Sample records for fish migration patterns

  1. Migration history of air-breathing fishes reveals Neogene atmospheric circulation patterns

    NASA Astrophysics Data System (ADS)

    Böhme, M.

    2004-05-01

    The migration history of an air-breathing fish group (Channidae; snakehead fishes) is used for reconstructing Neogene Eurasian precipitation and atmospheric circulation patterns. The study shows that snakeheads are sensitive indicators of summer precipitation maxima in subtropical and temperate regions, and are present regularly if the wettest month exceeds 150 mm precipitation and 20 °C mean temperature. The analysis of 515 fossil freshwater fish deposits of the past 50 m.y. from Africa and Eurasia shows two continental-scale migration events from the snakeheads' center of origin in the south Himalayan region, events that can be related to changes in the Northern Hemisphere circulation pattern. The first migration, ca. 17.5 Ma, into western and central Eurasia may have been caused by a northward shift of the Intertropical Convergence Zone that brought western Eurasia under the influence of trade winds that produced a zonal and meridional precipitation gradient in Europe. During the second migration, between 8 and 4 Ma, into Africa and East Asia, snakeheads reached their present-day distribution. This migration could have been related to the intensification of the Asian monsoon that brought summer precipitation to their migratory pathways in East Africa Arabia and East Asia.

  2. [Avoidance of injuries to migrating fish by hydropower and water intake plants].

    PubMed

    Adam, B

    2004-03-01

    Every year numerous downstream migrating fish are lethally injured by hydro power plants and inlet works. Especially the katadromous Eel (Anguilla anguilla) and anadromous species like Atlantic Salmon (Salmo salar), which have to migrate downstream into the ocean for closing their life cycle, are highly endangered. Due to their specific migratory behavioral pattern, size and morphology conventional protection techniques, like screens do not properly keep them out from getting into the power plant intakes. Despite of the relevance of this problem for ecology and fishing, there are no protection and downstream migration facilities in Europe available, which can efficiently avoid the damage of all species and sizes of downstream migrating fish. Nevertheless according to protect the fish populations it's necessary to use consequently fish protection and downstream migration facilities, i.e. mechanical barrieres or alternative techniques like early warning systems as a prerequisit for a fish-friendly operational management of hydro power plants.

  3. Influences of body size and environmental factors on autumn downstream migration of bull trout in the Boise River, Idaho

    USGS Publications Warehouse

    Monnot, L.; Dunham, J.B.; Hoem, T.; Koetsier, P.

    2008-01-01

    Many fishes migrate extensively through stream networks, yet patterns are commonly described only in terms of the origin and destination of migration (e.g., between natal and feeding habitats). To better understand patterns of migration in bull trout,Salvelinus confluentus we studied the influences of body size (total length [TL]) and environmental factors (stream temperature and discharge) on migrations in the Boise River basin, Idaho. During the autumns of 2001-2003, we tracked the downstream migrations of 174 radio-tagged bull trout ranging in size from 21 to 73 cm TL. The results indicated that large bull trout (>30 cm) were more likely than small fish to migrate rapidly downstream after spawning in headwater streams in early autumn. Large bull trout also had a higher probability of arriving at the current terminus of migration in the system, Arrowrock Reservoir. The rate of migration by small bull trout was more variable and individuals were less likely to move into Arrowrock Reservoir. The rate of downstream migration by all fish was slower when stream discharge was greater. Temperature was not associated with the rate of migration. These findings indicate that fish size and environmentally related changes in behavior have important influences on patterns of migration. In a broader context, these results and other recent work suggest, at least in some cases, that commonly used classifications of migratory behavior may not accurately reflect the full range of behaviors and variability among individuals (or life stages) and environmental conditions. ?? Copyright by the American Fisheries Society 2008.

  4. DIEL OXYGEN-INDUCED MOVEMENT OF FISH ASSEMBLAGES IN A GREAT LAKES COASTAL WETLAND

    EPA Science Inventory

    To determine the importance of dissolved oxygen conditions in influencing daily ovement patterns of fishes in Great Lakes coastal wetlands, we sampled migrating fish assemblages from habitats with varying diurnal dissolved oxygen patterns in a Lake Superior coastal wetland during...

  5. Influences of body size and environmental factors on autumn downstream migration of bull trout in the Boise River, Idaho

    Treesearch

    Lauri Monnot; Jason B. Dunham; Tammy Hoem; Peter Koetsier

    2008-01-01

    Many fishes migrate extensively through stream networks, yet patterns are commonly described only in terms of the origin and destination of migration (e.g., between natal and feeding habitats). To better understand patterns of migration in bull trout, Salvelinus confluentus we studied the influences of body size (total length [TL]) and environmental...

  6. Evaluating spawning migration patterns and predicting spawning success of shovelnose sturgeon in the Lower Missouri River

    USGS Publications Warehouse

    Wildhaber, M.L.; Holan, S.H.; Davis, G.M.; Gladish, D.W.; DeLonay, A.J.; Papoulias, D.M.; Sommerhauser, D.K.

    2011-01-01

    Approaches using telemetry, precise reproductive assessments, and surgically implanted data storage tags (DSTs) were used in combination with novel applications of analytical techniques for fish movement studies to describe patterns in migratory behavior and predict spawning success of gravid shovelnose sturgeon. From 2004 to 2007, over 300 gravid female shovelnose sturgeon (Scaphirhynchus platorynchus) from the Lower Missouri River, that were expected to spawn in the year they were collected, were surgically implanted with transmitters and archival DSTs. Functional cluster modeling of telemetry data from the spawning season suggested two common migration patterns of gravid female shovelnose sturgeon. Fish implanted from 958 to 1181 river kilometer (rkm) from the mouth of the Missouri River (or northern portion of the Lower Missouri River within 354rkm of the lowest Missouri River dam at rkm 1305) had one migration pattern. Of fish implanted from 209 to 402rkm from the mouth of the Missouri River (or southern portion of the Lower Missouri River), half demonstrated a movement pattern similar to the northern fish while the other half demonstrated a migration pattern that covered more of the river. There was no apparent difference in migration patterns between successful and unsuccessful spawners. Multiple hypotheses exist to explain differences in migratory patterns among fish from different river reaches. Additional work is required to determine if observed differences are due to multiple adapted strategies, environmental alteration, and/or initial tagging date. Hierarchical Bayesian modeling of DST data indicated that variation in depth usage patterns was consistently different between successful and unsuccessful spawners, as indicated by differences in likelihood of switching between high and low variability states. Analyses of DST data, and data collected at capture, were sufficient to predict 8 of 10 non-spawners/incomplete spawners and all 30 spawners in the absence of telemetry location data. Together, the results of these two separate analyses suggest that caution is necessary in extrapolating spawning success from broad-scale movement data alone. More direct measures of spawning success may be necessary to precisely determine spawning success and to evaluate the effects of management actions. ?? 2011 Blackwell Verlag, Berlin.

  7. Evaluating spawning migration patterns and predicting spawning success of shovelnose sturgeon in the Lower Missouri River

    USGS Publications Warehouse

    Wildhaber, M.L.; Holan, S.H.; Davis, G.M.; Gladish, D.W.; DeLonay, A.J.; Papoulias, D.M.; Sommerhauser, D.K.

    2011-01-01

    Approaches using telemetry, precise reproductive assessments, and surgically implanted data storage tags (DSTs) were used in combination with novel applications of analytical techniques for fish movement studies to describe patterns in migratory behavior and predict spawning success of gravid shovelnose sturgeon. From 2004 to 2007, over 300 gravid female shovelnose sturgeon (Scaphirhynchus platorynchus) from the Lower Missouri River, that were expected to spawn in the year they were collected, were surgically implanted with transmitters and archival DSTs. Functional cluster modeling of telemetry data from the spawning season suggested two common migration patterns of gravid female shovelnose sturgeon. Fish implanted from 958 to 1181 river kilometer (rkm) from the mouth of the Missouri River (or northern portion of the Lower Missouri River within 354 rkm of the lowest Missouri River dam at rkm 1305) had one migration pattern. Of fish implanted from 209 to 402 rkm from the mouth of the Missouri River (or southern portion of the Lower Missouri River), half demonstrated a movement pattern similar to the northern fish while the other half demonstrated a migration pattern that covered more of the river. There was no apparent difference in migration patterns between successful and unsuccessful spawners. Multiple hypotheses exist to explain differences in migratory patterns among fish from different river reaches. Additional work is required to determine if observed differences are due to multiple adapted strategies, environmental alteration, and/or initial tagging date. Hierarchical Bayesian modeling of DST data indicated that variation in depth usage patterns was consistently different between successful and unsuccessful spawners, as indicated by differences in likelihood of switching between high and low variability states. Analyses of DST data, and data collected at capture, were sufficient to predict 8 of 10 non-spawners/incomplete spawners and all 30 spawners in the absence of telemetry location data. Together, the results of these two separate analyses suggest that caution is necessary in extrapolating spawning success from broad-scale movement data alone. More direct measures of spawning success may be necessary to precisely determine spawning success and to evaluate the effects of management actions.

  8. Early migration and estuary stopover of introduced chinook salmon population in the Lapataia River Basin, southern Tierra del Fuego Island

    NASA Astrophysics Data System (ADS)

    Chalde, T.; Fernández, D. A.

    2017-12-01

    Established populations of chinook salmon (Oncorhynchus tshawytscha) have recently been reported in South America, at both Atlantic and Pacific basins. Several studies have evaluated different aspects of their life histories; however, little is known about the use of the estuaries by the juveniles of these populations. We examined spawning time, seaward migration timing, growth rate, scale patterns, diet, and geometric morphometric, contrasting the early life history during freshwater and estuary residence of a chinook population established in Lapataia Basin. Fall run spawning took place in March-April and the parr emerged in September. Two distinct seaward migration patterns were identified from sein net fishing records: one population segment migrating earlier to the estuary in October and a second group migrating later in February. The growth rate of fish captured at the estuary was significantly higher than the fish captured in freshwater. In addition, higher scale intercirculi distances were observed in estuary fish showing differences in growth rate. The feeding habitat in fish captured in both environments changed through time from bottom feeding to surface feeding and from significant diet overlap to no overlap. The morphology of the fish captured at the estuary was associated with the elongation of the caudal peduncle and a decrease in the condition factor index, both changes related to smolt transformation. The earlier migration and the higher growth rate of juveniles in the estuary together with fish of 1 + yo captured in this environment reveal that the estuary of Lapataia Basin is not only a stopover for the chinook salmon, but also a key habitat to reside and feed previous to the final seaward migration.

  9. Habitat use by fishes of Lake Superior. II. Consequences of diel habitat use for habitat linkages and habitat coupling in nearshore and offshore waters

    USGS Publications Warehouse

    Gorman, Owen T.; Yule, Daniel L.; Stockwell, Jason D.

    2012-01-01

    Diel migration patterns of fishes in nearshore (15–80 m depth) and offshore (>80 m) waters of Lake Superior were examined to assess the potential for diel migration to link benthic and pelagic, and nearshore and offshore habitats. In our companion article, we described three types of diel migration: diel vertical migration (DVM), diel bank migration (DBM), and no diel migration. DVM was expressed by fishes migrating from benthopelagic to pelagic positions and DBM was expressed by fishes migrating horizontally from deep to shallow waters at night. Fishes not exhibiting diel migration typically showed increased activity by moving from benthic to benthopelagic positions within demersal habitat. The distribution and biomass of fishes in Lake Superior was characterized by examining 704 bottom trawl samples collected between 2001 and 2008 from four depth zones: ≤40, 41–80, 81–160, and >160 m. Diel migration behaviors of fishes described in our companion article were applied to estimates of areal biomass (kg ha−1) for each species by depth zone. The relative strength of diel migrations were assessed by applying lake area to areal biomass estimates for each species by depth zone to yield estimates of lake-wide biomass (metric tonnes). Overall, species expressing DVM accounted for 83%, DBM 6%, and non-migration 11% of the total lake-wide community biomass. In nearshore waters, species expressing DVM represented 74% of the biomass, DBM 25%, and non-migration 1%. In offshore waters, species expressing DVM represented 85%, DBM 1%, and non-migration 14% of the biomass. Of species expressing DVM, 83% of total biomass occurred in offshore waters. Similarly, 97% of biomass of non-migrators occurred in offshore waters while 83% of biomass of species expressing DBM occurred in nearshore waters. A high correlation (R2 = 0.996) between lake area and community biomass by depth zone resulted in 81% of the lake-wide biomass occurring in offshore waters. Accentuating this nearshore-offshore trend was one of increasing estimated total areal biomass of the fish community with depth zone, which ranged from 13.71 kg ha−1 at depths ≤40 m to 18.81 kg ha−1 at depths >160 m, emphasizing the importance of the offshore fish community to the lake ecosystem. The prevalence of diel migration expressed by Lake Superior fishes increases the potential of fish to link benthic and pelagic and shallow and deepwater habitats. These linkages enhance the potential for habitat coupling, a condition where habitats become interconnected and interdependent through transfers of energy and nutrients. Habitat coupling facilitates energy and nutrient flow through a lake ecosystem, thereby increasing productivity, especially in large lakes where benthic and pelagic, and nearshore and offshore habitats are often well separated. We propose that the application of biomass estimates to patterns of diel migration in fishes can serve as a useful metric for assessing the potential for habitat linkages and habitat coupling in lake ecosystems, and provide an important indicator of ecosystem health and function. The decline of native Lake Trout and ciscoes and recent declines in exotic Alewife and Rainbow Smelt populations in other Great Lakes have likely reduced the capacity for benthic-pelagic coupling in these systems compared to Lake Superior. We recommend comparing the levels and temporal changes in diel migration in other Great Lakes as a means to assess changes in the relative health and function of these ecosystems.

  10. Fish distribution during smolt migration in the Penobscot Estuary, ME

    NASA Astrophysics Data System (ADS)

    Volkel, S. L.

    2016-02-01

    Estuaries are complex and dynamic ecosystems. The Penobscot Estuary is particularly important because it harbors a suite of imperiled diadromous fish species. In order to properly manage these populations, it is imperative to understand their distribution and ecology. My study focuses on May because endangered Atlantic salmon migrate seaward then. Successful emigration of these smolts is important to the population's overall fitness. One potential way to increase the likelihood of migratory success (survival) is to decrease their risk of predation. Assuming that predators in this system are generalists, overall smolt predation may be reduced by having a larger selection of alternative prey (other fish species). We hypothesize that diadromous fish abundance is increasing as a result of recent (2012-2013) dam removals. To explore this hypothesis, I used hydroacoustic methods to characterize the distribution patterns of alternative prey (TL=10-30 cm). I found that peak fish abundances occurred in the mid-estuary, especially during mid-May, and depth distribution patterns varied weekly. By understanding these seasonal, longitudinal, and vertical distribution patterns, I explored potential interactions of other fish populations as prey buffers to emigrating smolts.

  11. Migration behavior and dispersal of adult spring Chinook salmon released into Lake Scanewa on the upper Cowlitz River during 2005

    USGS Publications Warehouse

    Perry, R.W.; Kock, Tobias J.; Kritter , M.A; Rondorf, Dennis W.

    2007-01-01

    During 2005, we conducted a radio-telemetry study to answer a number of basic questions about the migration behavior of adult Spring Chinook salmon (Oncorhynchus tshawytscha) released into the upper Cowlitz River watershed. We also conducted a pilot study of adult Coho salmon (Oncorhynchus kisutch) using radio-tags recovered from adult spring Chinook salmon. This data is included as an Appendix. Our study was designed to evaluate the dispersal of adult spring Chinook salmon to determine the proportion of the run 1) spawning in the Cispus River, 2) spawning in the Cowlitz River, 3) passing downstream through Cowlitz Falls Dam into Riffe Lake, and 4) remaining in Lake Scanewa. We also examined spatial patterns of movement in the study area and temporal patterns of fish movements. Last, we examined differences in migration behavior between hatchery and wild fish and male and female fish.

  12. Dynamic in-lake spawning migrations by female sockeye salmon

    USGS Publications Warehouse

    Young, Daniel B.; Woody, C.A.

    2007-01-01

    Precise homing by salmon to natal habitats is considered the primary mechanism in the evolution of population-specific traits, yet few studies have focused on this final phase of their spawning migration. We radio tagged 157 female sockeye salmon (Oncorhynchus nerka) as they entered Lake Clark, Alaska, and tracked them every 1-10 days to their spawning locations. Contrary to past research, no specific shoreline migration pattern was observed (e.g., clockwise) nor did fish enter a tributary unless they spawned in that tributary. Tributary spawning fish migrated faster (mean = 4.7 km??day-1, SD = 2.7, vs. 1.6 km??day-1, SD = 2.1) and more directly (mean linearity = 0.8, SD = 0.2, vs. 0.4, SD = 0.2) than Lake Clark beach spawning fish. Although radio-tagged salmon migrated to within 5 km of their final spawning location in an average of 21.2 days (SD = 13.2), some fish migrated five times the distance necessary and over 50 days to reach their spawning destination. These results demonstrate the dynamic nature of this final phase of migration and support studies indicating a higher degree of homing precision by tributary spawning fish. ?? Journal compilation 2007 Blackwell Munksgaard No claim to original US government works.

  13. Spatial and Temporal Variability of Elemental Signautres in Juvenile Winter Flounder (Psuedopleuronectes americanus): Implications for Natal Connectivity

    EPA Science Inventory

    Elemental signatures in otoliths (fish ear-stones) have become a powerful tool in fisheries science for identifying fish migration patterns, reconstructing environmental histories, and for delineating the nursery origins of adult fish populations. Assessing connectivity between a...

  14. Acoustic telemetry reveals large-scale migration patterns of walleye in Lake Huron

    USGS Publications Warehouse

    Hayden, Todd A.; Holbrook, Christopher; Fielder, David G.; Vandergoot, Christopher S.; Bergstedt, Roger A.; Dettmers, John M.; Krueger, Charles C.; Cooke, Steven J.

    2014-01-01

    Fish migration in large freshwater lacustrine systems such as the Laurentian Great Lakes is not well understood. The walleye (Sander vitreus) is an economically and ecologically important native fish species throughout the Great Lakes. In Lake Huron walleye has recently undergone a population expansion as a result of recovery of the primary stock, stemming from changing food web dynamics. During 2011 and 2012, we used acoustic telemetry to document the timing and spatial scale of walleye migration in Lake Huron and Saginaw Bay. Spawning walleye (n = 199) collected from a tributary of Saginaw Bay were implanted with acoustic tags and their migrations were documented using acoustic receivers (n = 140) deployed throughout U.S. nearshore waters of Lake Huron. Three migration pathways were described using multistate mark-recapture models. Models were evaluated using the Akaike Information Criterion. Fish sex did not influence migratory behavior but did affect migration rate and walleye were detected on all acoustic receiver lines. Most (95%) tagged fish migrated downstream from the riverine tagging and release location to Saginaw Bay, and 37% of these fish emigrated from Saginaw Bay into Lake Huron. Remarkably, 8% of walleye that emigrated from Saginaw Bay were detected at the acoustic receiver line located farthest from the release location more than 350 km away. Most (64%) walleye returned to the Saginaw River in 2012, presumably for spawning. Our findings reveal that fish from this stock use virtually the entirety of U.S. nearshore waters of Lake Huron.

  15. Acoustic telemetry reveals large-scale migration patterns of walleye in Lake Huron.

    PubMed

    Hayden, Todd A; Holbrook, Christopher M; Fielder, David G; Vandergoot, Christopher S; Bergstedt, Roger A; Dettmers, John M; Krueger, Charles C; Cooke, Steven J

    2014-01-01

    Fish migration in large freshwater lacustrine systems such as the Laurentian Great Lakes is not well understood. The walleye (Sander vitreus) is an economically and ecologically important native fish species throughout the Great Lakes. In Lake Huron walleye has recently undergone a population expansion as a result of recovery of the primary stock, stemming from changing food web dynamics. During 2011 and 2012, we used acoustic telemetry to document the timing and spatial scale of walleye migration in Lake Huron and Saginaw Bay. Spawning walleye (n = 199) collected from a tributary of Saginaw Bay were implanted with acoustic tags and their migrations were documented using acoustic receivers (n = 140) deployed throughout U.S. nearshore waters of Lake Huron. Three migration pathways were described using multistate mark-recapture models. Models were evaluated using the Akaike Information Criterion. Fish sex did not influence migratory behavior but did affect migration rate and walleye were detected on all acoustic receiver lines. Most (95%) tagged fish migrated downstream from the riverine tagging and release location to Saginaw Bay, and 37% of these fish emigrated from Saginaw Bay into Lake Huron. Remarkably, 8% of walleye that emigrated from Saginaw Bay were detected at the acoustic receiver line located farthest from the release location more than 350 km away. Most (64%) walleye returned to the Saginaw River in 2012, presumably for spawning. Our findings reveal that fish from this stock use virtually the entirety of U.S. nearshore waters of Lake Huron.

  16. Acoustic Telemetry Reveals Large-Scale Migration Patterns of Walleye in Lake Huron

    PubMed Central

    Hayden, Todd A.; Holbrook, Christopher M.; Fielder, David G.; Vandergoot, Christopher S.; Bergstedt, Roger A.; Dettmers, John M.; Krueger, Charles C.; Cooke, Steven J.

    2014-01-01

    Fish migration in large freshwater lacustrine systems such as the Laurentian Great Lakes is not well understood. The walleye (Sander vitreus) is an economically and ecologically important native fish species throughout the Great Lakes. In Lake Huron walleye has recently undergone a population expansion as a result of recovery of the primary stock, stemming from changing food web dynamics. During 2011 and 2012, we used acoustic telemetry to document the timing and spatial scale of walleye migration in Lake Huron and Saginaw Bay. Spawning walleye (n = 199) collected from a tributary of Saginaw Bay were implanted with acoustic tags and their migrations were documented using acoustic receivers (n = 140) deployed throughout U.S. nearshore waters of Lake Huron. Three migration pathways were described using multistate mark-recapture models. Models were evaluated using the Akaike Information Criterion. Fish sex did not influence migratory behavior but did affect migration rate and walleye were detected on all acoustic receiver lines. Most (95%) tagged fish migrated downstream from the riverine tagging and release location to Saginaw Bay, and 37% of these fish emigrated from Saginaw Bay into Lake Huron. Remarkably, 8% of walleye that emigrated from Saginaw Bay were detected at the acoustic receiver line located farthest from the release location more than 350 km away. Most (64%) walleye returned to the Saginaw River in 2012, presumably for spawning. Our findings reveal that fish from this stock use virtually the entirety of U.S. nearshore waters of Lake Huron. PMID:25506913

  17. Habitat use by fishes of Lake Superior. I. Diel patterns of habitat use in nearshore and offshore waters of the Apostle Islands region

    USGS Publications Warehouse

    Gorman, O.T.; Yule, D.L.; Stockwell, J.D.

    2012-01-01

    Diel patterns of distribution of fishes in nearshore (15–80 m depth) and offshore (>80 m) waters of the Apostle Islands region of Lake Superior were described using bottom trawls, mid-water trawls, and acoustic gear during day and night sampling. These data revealed three types of diel migration: diel vertical migration (DVM), diel bank migration (DBM), and no migration. DVM was expressed by fishes migrating from benthopelagic to pelagic strata and DBM was expressed by fishes migrating horizontally from deeper waters in the day to shallower waters at night while remaining within the benthopelagic stratum. Most fishes that did not exhibit diel migration showed increased nighttime densities as a result of increased activity and movement from benthic to benthopelagic strata. Rainbow Smelt (Osmerus mordax), Cisco (Coregonus artedi), Bloater (C. hoyi), Kiyi (C. kiyi), juvenile Trout-Perch (Percopsis omiscomaycus), and adult siscowet (Salvelinus namaycush siscowet) exhibited DVM. Lake Whitefish (C. clupeaformis), lean Lake Trout (Salvelinus namaycush namaycush), and juvenile siscowet exhibited DBM. Adult Trout-Perch and adult Pygmy Whitefish (Prosopium coulteri) exhibited a mixture of DBM and DVM. Burbot (Lota lota), Slimy Sculpin (Cottus cognatus), Spoonhead Sculpin (C. ricei), and Deepwater Sculpin (Myoxocephalus thompsonii) did not exhibit diel migration, but showed evidence of increased nocturnal activity. Ninespine Stickleback (Pungitius pungitius) exhibited a mixture of DVM and non-migration. Juvenile Pygmy Whitefish did not show a diel change in density or depth distribution. Species showing ontogenetic shifts in depth distribution with larger, adult life stages occupying deeper waters included, Rainbow Smelt, lean and siscowet Lake Trout, Lake Whitefish, Pygmy Whitefish, Ninespine Stickleback and Trout-Perch. Of these species, siscowet also showed an ontogenetic shift from primarily DBM as juveniles to primarily DVM as adults. Across all depths, fishes expressing DVM accounted for 73% of the total estimated community areal biomass (kg ha−1) while those expressing DBM accounted for 25% and non-migratory species represented 2% of the biomass. The proportion of total community biomass exhibiting DVM increased with depth, from 59% to 95% across ≤30 m to >90 m depth zones. Along the same depth gradient, the proportion of total community biomass exhibiting DBM declined from 40% to 1%, while non-migrators increased from 1% to 4%. These results indicate that DVM and DBM behaviors are pervasive in the Lake Superior fish community and potentially provide strong linkages that effect coupling of benthic and pelagic and nearshore and offshore habitats.

  18. Seasonal Movement and Distribution of Fluvial Adult Bull Trout in Selected Watersheds in the Mid-Columbia River and Snake River Basins

    PubMed Central

    Starcevich, Steven J.; Howell, Philip J.; Jacobs, Steven E.; Sankovich, Paul M.

    2012-01-01

    From 1997 to 2004, we used radio telemetry to investigate movement and distribution patterns of 206 adult fluvial bull trout (mean, 449 mm FL) from watersheds representing a wide range of habitat conditions in northeastern Oregon and southwestern Washington, a region for which there was little previous information about this species. Migrations between spawning and wintering locations were longest for fish from the Imnaha River (median, 89 km) and three Grande Ronde River tributaries, the Wenaha (56 km) and Lostine (41 km) rivers and Lookingglass Creek (47 km). Shorter migrations were observed in the John Day (8 km), Walla Walla (20 km) and Umatilla river (22 km) systems, where relatively extensive human alterations of the riverscape have been reported. From November through May, fish displayed station-keeping behavior within a narrow range (basin medians, 0.5–6.2 km). Prespawning migrations began after snowmelt-driven peak discharge and coincided with declining flows. Most postspawning migrations began by late September. Migration rates of individuals ranged from 0.1 to 10.7 km/day. Adults migrated to spawning grounds in consecutive years and displayed strong fidelity to previous spawning areas and winter locations. In the Grande Ronde River basin, most fish displayed an unusual fluvial pattern: After exiting the spawning tributary and entering a main stem river, individuals moved upstream to wintering habitat, often a substantial distance (maximum, 49 km). Our work provides additional evidence of a strong migratory capacity in fluvial bull trout, but the short migrations we observed suggest adult fluvial migration may be restricted in basins with substantial anthropogenic habitat alteration. More research into bull trout ecology in large river habitats is needed to improve our understanding of how adults establish migration patterns, what factors influence adult spatial distribution in winter, and how managers can protect and enhance fluvial populations. PMID:22655037

  19. Buoyancy characteristics of the bloater (Coregonus hoyi) in relation to patterns of vertical migration and acoustic backscattering

    USGS Publications Warehouse

    Fleischer, Guy W.; TeWinkel, Leslie M.

    1998-01-01

    Acoustic studies in Lake Michigan found that bloaters (Coregonus hoyi) were less reflective per size than the other major pelagic species. This difference in in situ acoustic backscattering could indicate that the deep-water bloaters have compressed swimbladders for much of their vertical range with related implications on buoyancy. To test this hypothesis, the buoyancy characteristics of bloaters were determined with fish placed in a cage that was lowered to bottom and monitored with an underwater camera. We found bloaters were positively buoyant near surface, neutrally buoyant at intermediate strata, and negatively buoyant near bottom. This pattern was consistent for the range of depths bloaters occur. The depth of neutral buoyancy (near the 50-n strata) corresponds with the maximum extent of vertical migration for bloaters observed in acoustic surveys. Fish below this depth would be negatively buoyant which supports our contention that bloaters deeper in the water column have compressed swimbladders. Understanding the buoyancy characteristics of pelagic fishes will help to predict the effects of vertical migration on target strength measurement and confirms the use of acoustics as a tool to identify and quantify the ecological phenomenon of vertical migration.

  20. Patterns of migration and residency in coastal cutthroat trout Oncorhynchus clarkii clarkii from two tributaries of the lower Columbia River

    USGS Publications Warehouse

    Zydlewski, G.B.; Zydlewski, Joseph D.; Johnson, J.

    2009-01-01

    Coastal cutthroat trout Onchorhynchus clarkii clarkii life-history variants, migration and freshwater residency were monitored using stationary passive integrated transponder (PIT) tag arrays in two tributaries of the Columbia River from 2001 to 2005 (Abernathy Creek, river kilometre, rkm 76) and from 2002 to 2005 (Chinook River, rkm 6). In 2001-2003 and 2002-2003 (Abernathy and Chinook, respectively), 300-500 coastal O. c. clarkii were captured in each tributary by electrofishing and implanted with 23 mm PIT tags. PIT arrays monitored movements from the initiation of tagging through the spring of 2005. Rotary screw traps were also operated on both tributaries. In Abernathy Creek, 28% of tagged individuals were observed through either active capture or passive interrogation. Of these, 32% were identified as migrants and 68% were identified as residents. In the Chinook River, 48% of tagged fish were observed subsequent to tagging; 92% of these fish were migrants and only 8% were resident. In both tributaries, a greater proportion of resident fish were in the upper reaches. The majority of migrants (78-93%) moved the spring following tagging. Migrants leaving at age 2+ years tended to grow faster than those that migrated at age 3+ years or residents. Patterns of growth or growth opportunities may influence both patterns of life-history expression and the timing of migration. ?? 2009 The Fisheries Society of the British Isles.

  1. Patterns of lake occupancy by fish indicate different adaptations to life in a harsh Arctic environment

    USGS Publications Warehouse

    Haynes, Trevor B.; Rosenberger, Amanda E.; Lindberg, Mark S.; Whitman, Matthew; Schmutz, Joel A.

    2014-01-01

    Based on these patterns, we propose an overall model of primary controls on the distribution of fish on the Arctic Coastal Plain of Alaska. Harsh conditions, including lake freezing, limit occupancy in winter through extinction events while lake occupancy in spring and summer is driven by directional migration (large-bodied species) and undirected dispersal (small-bodied species).

  2. Investigations into the Early History of Naturally Produced Spring Chinook Salmon in the Grand Ronde Basin : Fish Research Project Oregon : Annual Progress Report Project Period September 1, 1996 to August 31, 1997.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johasson, Brian C.; Tranquilli, J. Vincent; Keefe, MaryLouise

    1998-10-28

    We have documented two general life history strategies utilized by juvenile spring chinook salmon in the Grande Ronde River basin: (1) juveniles migrate downstream out of summer rearing areas in the fall, overwinter in river valley habitats, and begin their seaward migration in the spring, and (2) juveniles remain in summer rearing areas through the winter and begin seaward migration in the spring. In migration year 96-97, the patterns evident from migrant trap data were similar for the three Grande Ronde River populations studied, with 42% of the Lostine River migrants and 76% of the Catherine Creek migrants leaving uppermore » rearing areas in the fall. Contrary to past years, the majority (98%) of upper Grande Ronde River migrants moved out in the fall. Total trap catch for the upper Grande Ronde River was exceedingly low (29 salmon), indicating that patterns seen this year may be equivocal. As in previous years, approximately 99% of chinook salmon juveniles moved past our trap at the lower end of the Grande Ronde River valley in the spring, reiterating that juvenile chinook salmon overwinter within the Grande Ronde valley section of the river. PIT-tagged fish were recaptured at Grande Ronde River traps and mainstem dams. Recapture data showed that fish that overwintered in valley habitats left as smolts and arrived at Lower Granite Dam earlier than fish that overwintered in upstream rearing areas. Fish from Catherine Creek that overwintered in valley habitats were recaptured at the dams at a higher rate than fish that overwintered upstream. In this first year of data for the Lostine River, fish tagged during the fall migration were detected at a similar rate to fish that overwintered upstream. Abundance estimates for migration year 96-97 were 70 for the upper Grande Ronde River, 4,316 for the Catherine Creek, and 4,323 for the Lostine River populations. Although present in most habitats, juvenile spring chinook salmon were found in the greatest abundance in pool habitats, particularly alcove and backwater pools. These results were consistent for both summer and winter surveys.« less

  3. Migration Background Influences Consumption Patterns Based on Dietary Recommendations of Food Bank Users in Germany.

    PubMed

    Stroebele-Benschop, Nanette; Depa, Julia; Gyngell, Fiona; Müller, Annalena; Eleraky, Laila; Hilzendegen, Carolin

    2018-03-29

    People with low income tend to eat less balanced than people with higher income. This seems to be particularly the case for people with migration background. This cross-sectional study examined the relation of consumption patterns of 597 food bank users with different migration background in Germany. Questionnaires were distributed assessing sociodemographic information and consumption patterns. Analyses were conducted using binary logistic regressions. Models were controlled for age, gender, type of household and education. The group of German food bank users consumed fewer fruits and vegetables and less fish compared to all other groups with migration background (former USSR, Balkan region, Middle East). A significant predictor for fruit and vegetable consumption was migration status. Participants from the former USSR consumed less often SSBs compared to the other groups. Dietary recommendations for low income populations should take into consideration other aspects besides income such as migration status.

  4. ELEMENTAL FINGERPRINTS OF JUVENILE WINTER FLOUNDER OTOLITHS FROM NARRAGNSETT BAY, RI AND SURROUNDING COASTAL PONDS

    EPA Science Inventory

    Elemental fingerprinting has become a powerful tool in fisheries science for identifying fish migration patterns, seasonal changes in habitat use, and for delineating the nursery origins of adult fish populations. In this study we investigated whether elemental signatures in juve...

  5. What happens in an estuary doesn't stay there: patterns of biotic connectivity resulting from long term ecological research

    USGS Publications Warehouse

    Mather, Martha E.; Finn, John T.; Kennedy, Christina G.; Deegan, Linda A.; Smith, Joseph M.

    2013-01-01

    The paucity of data on migratory connections and an incomplete understanding of how mobile organisms use geographically separate areas have been obstacles to understanding coastal dynamics. Research on acoustically tagged striped bass (Morone saxatilis) at the Plum Island Ecosystems (PIE) Long Term Ecological Research site, Massachusetts, documents intriguing patterns of biotic connectivity (i.e., long-distance migration between geographically distinct areas). First, the striped bass tagged at PIE migrated southward along the coast using different routes. Second, these tagged fish exhibited strong fidelity and specificity to PIE. For example, across multiple years, tagged striped bass resided in PIE waters for an average of 1.5-2.5 months per year (means: 51-72 days; range 2-122 days), left this estuary in fall, then returned in subsequent years. Third, this specificity and fidelity connected PIE to other locations. The fish exported nutrients and energy to at least three other coastal locations through biomass added as growth. These results demonstrate that what happens in an individual estuary can affect other estuaries. Striped bass that use tightly connected routes to feed in specific estuaries should have greater across-system impacts than fish that are equally likely to go anywhere. Consequently, variations in when, where, and how fish migrate can alter across-estuary impacts.

  6. Vertical migrations of a deep-sea fish and its prey.

    PubMed

    Afonso, Pedro; McGinty, Niall; Graça, Gonçalo; Fontes, Jorge; Inácio, Mónica; Totland, Atle; Menezes, Gui

    2014-01-01

    It has been speculated that some deep-sea fishes can display large vertical migrations and likely doing so to explore the full suite of benthopelagic food resources, especially the pelagic organisms of the deep scattering layer (DSL). This would help explain the success of fishes residing at seamounts and the increased biodiversity found in these features of the open ocean. We combined active plus passive acoustic telemetry of blackspot seabream with in situ environmental and biological (backscattering) data collection at a seamount to verify if its behaviour is dominated by vertical movements as a response to temporal changes in environmental conditions and pelagic prey availability. We found that seabream extensively migrate up and down the water column, that these patterns are cyclic both in short-term (tidal, diel) as well as long-term (seasonal) scales, and that they partially match the availability of potential DSL prey components. Furthermore, the emerging pattern points to a more complex spatial behaviour than previously anticipated, suggesting a seasonal switch in the diel behaviour mode (benthic vs. pelagic) of seabream, which may reflect an adaptation to differences in prey availability. This study is the first to document the fine scale three-dimensional behaviour of a deep-sea fish residing at seamounts.

  7. SE Asian freshwater fish population and networks: the impacts of climatic and environmental change on a vital resource

    NASA Astrophysics Data System (ADS)

    Santos, Rita; Parsons, Daniel; Cowx, Ian

    2016-04-01

    The Mekong River is the 10th largest freshwater river in the world, with the second highest biodiversity wealth, behind the much larger Amazon basin. The fisheries activity in the Lower Mekong countries counts for 2.7 million tons of fish per year, with an estimated value worth up to US 7 billion. For the 60 million people living in the basin, fish represent their primary source of economic income and protein intake, with an average per capita consumption estimated at 45.4 Kg. The proposed hydropower development in the basin is threatening its sustainability and resilience. Such developments affect fish migration patterns, hydrograph flood duration and magnitudes and sediment flux. Climate change is also likely to impact the basin, exacerbating the issues created by development. As a monsoonal system, the Mekong River's pronounced annual flood pulse cycle is important in creating variable habitat for fish productivity. Moreover, the annual flood also triggers fish migration and provides vital nutrients carried by the sediment flux. This paper examines the interactions between both dam development and climate change scenarios on fish habitat and habitat connectivity, with the aim of predicting how these will affect fish species composition and fisheries catch. The project will also employ Environmental DNA (eDNA) to quantify and understand the species composition of this complex and large freshwater system. By applying molecular analysis, it is possible to trace species abundance and migration patterns of fish and evaluate the ecological networks establish between an inland system. The aim of this work is to estimate, using process-informed models, the impacts of the proposed dam development and climate change scenarios on the hydrological and hydraulic conditions of habitat availability for fish. Furthermore, it will evaluate the connectivity along the Mekong and its tributaries, and the importance of maintaining these migration pathways, used by a great diversity of fish species. It will also present the preliminary findings on eDNA analysis for species composition and the ecological networks established along the river and particularly on the fish hotspot place for biodiversity, the Tonle Sap system in Cambodia. Keywords: Mekong River, climate change, fish production, dams, eDNA analysis, numerical modelling.

  8. ELEMENTAL AND ISOTPOIC FINGERPRINTS OF JUVENILE WINTER FLOUNDER (PLEURONECTES AMERICANUS) FROM NARRAGANSETT BAY, RI (USA) AND SURROUNDING COASTAL PONDS

    EPA Science Inventory

    Elemental fingerprinting has become a powerful tool in fisheries science for identifying fish migration patterns, seasonal changes in habitat use, and for delineating the nursery origins of adult fish populations. In this study, we investigated whether elemental and isotopic sign...

  9. Local adaptation and pronounced genetic differentiation in an extremophile fish, Poecilia mexicana, inhabiting a Mexican cave with toxic hydrogen sulphide.

    PubMed

    Plath, M; Hauswaldt, J S; Moll, K; Tobler, M; García De León, F J; Schlupp, I; Tiedemann, R

    2007-03-01

    We investigated genetic differentiation and migration patterns in a small livebearing fish, Poecilia mexicana, inhabiting a sulfidic Mexican limestone cave (Cueva del Azufre). We examined fish from three different cave chambers, the sulfidic surface creek draining the cave (El Azufre) and a nearby surface creek without the toxic hydrogen sulphide (Arroyo Cristal). Using microsatellite analysis of 10 unlinked loci, we found pronounced genetic differentiation among the three major habitats: Arroyo Cristal, El Azufre and the cave. Genetic differentiation was also found within the cave between different pools. An estimation of first-generation migrants suggests that (i) migration is unidirectional, out of the cave, and (ii) migration among different cave chambers occurs to some extent. We investigated if the pattern of genetic differentiation is also reflected in a morphological trait, eye size. Relatively large eyes were found in surface habitats, small eyes in the anterior cave chambers, and the smallest eyes were detected in the innermost cave chamber (XIII). This pattern shows some congruence with a previously proposed morphocline in eye size. However, our data do not support the proposed mechanism for this morphocline, namely that it would be maintained by migration from both directions into the middle cave chambers. This would have led to an increased variance in eye size in the middle cave chambers, which we did not find. Restricted gene flow between the cave and the surface can be explained by local adaptations to extreme environmental conditions, namely H2S and absence of light. Within the cave system, habitat properties are patchy, and genetic differentiation between cave chambers despite migration could indicate local adaptation at an even smaller scale.

  10. Effects of training on functional variables of muscles in reared Atlantic salmon Salmo salar smolts: connection to downstream migration pattern.

    PubMed

    Anttila, K; Jokikokko, E; Erkinaro, J; Järvilehto, M; Mänttäri, S

    2011-02-01

    The relative amount of muscle contraction regulating dihydropyridine and ryanodine receptors in the swimming muscles of trained reared Atlantic salmon Salmo salar smolts was compared with those of untrained and wild smolts. After an optimized 2 week training period, i.e. swimming with a velocity of 1·5 body lengths per second for 6 h per day, the level of both receptors was significantly higher in the muscles of trained S. salar than in the untrained ones before they were released into the natural environment. This difference persisted after downstream migration in the river. The highest level of receptors was observed in wild S. salar. Swimming performance was also higher in trained fish compared to untrained ones. Furthermore, swimming performance was positively associated with the level of receptors in both red and white muscle types. Downstream migration after release into the wild was significantly slower in trained smolts than in untrained fish. This indicates that trained smolts were most probably swimming harder against the current in the river than untrained smolts. The possible advantages for a slower migration in the river are discussed. This study shows that the prerequisites for effective contraction of the swimming muscles are better met in trained S. salar compared to untrained fish, and the muscles of trained smolts more closely resemble those of wild smolts. The results also imply that the capacity of untrained, reared smolts to swim against the current is not equal to that of their trained or wild counterparts which affects the downstream migration pattern of S. salar smolts. © 2011 The Authors. Journal of Fish Biology © 2011 The Fisheries Society of the British Isles.

  11. Spawning migration movements of Lost River and shortnose suckers in the Williamson and Sprague Rivers, Oregon, following the removal of Chiloquin Dam-2009 Annual Report

    USGS Publications Warehouse

    Ellsworth, Craig M.; VanderKooi, Scott P.

    2011-01-01

    The Chiloquin Dam was located at river kilometer (rkm) 1.3 on the Sprague River near the town of Chiloquin, Oregon. The dam was identified as a barrier that potentially inhibited or prevented the upstream spawning migrations and other movements of endangered Lost River suckers (Deltistes luxatus), shortnose suckers (Chasmistes brevirostris), and other fish in the Sprague River. Our research objectives in 2009 were to evaluate adult catostomid spawning migration patterns using radio telemetry to identify and describe shifts in spawning area distribution and migration behavior following the removal of Chiloquin Dam in 2008. We attached external radio transmitters to 58 Lost River suckers and 59 shortnose suckers captured at the Williamson River fish weir. A total of 17 radio-tagged Lost River suckers and one radio-tagged shortnose sucker were detected approaching the site of the former Chiloquin Dam but only two radio-tagged fish (one male Lost River sucker and one female Lost River sucker) were detected crossing upstream of the dam site. A lower proportion of radio-tagged shortnose suckers were detected migrating into the Sprague River when compared with previous years. Detections on remote passive integrated transponder (PIT) tag arrays located in the Sprague River show that although the proportion of fish coming into the Sprague River is small when compared to the number of fish crossing the Williamson River fish weir, the number of fish migrating upstream of the Chiloquin Dam site increased exponentially in the first year since its removal. These data will be used in conjunction with larval production and adult spawning distribution data to evaluate the effectiveness of dam removal in order to provide increased access to underutilized spawning habitat located further upstream in the Sprague River and to reduce the crowding of spawning fish below the dam site.

  12. Innovative techniques for analyzing the three-dimensional behavioral results from acoustically tagged fish

    NASA Astrophysics Data System (ADS)

    Steig, Tracey W.; Timko, Mark A.

    2005-04-01

    Acoustic tags were used to monitor the swimming patterns of downstream migrating salmon smolts approaching various dams on the Columbia River, USA. Downstream migrating yearling chinook (Oncorhynchus tshawytscha), steelhead (Oncorhynchus mykiss), sockeye (Oncorhynchus nerka), and sub-yearling chinook smolts were surgically implanted with acoustic tags. Fish were tracked in three-dimensions as they approached and passed into the turbine intakes, spillways, and surface bypass channel entrances at the dams during the 2004 spring and summer outmigrations. A number of advances in the analysis techniques and software have been made over the past few years. Some of these improvements include the development of various fish density algorithms, stream trace modeling analysis, and advances of three-dimensional animation programs. Three-dimensional tracks of fish approaching the turbine intakes, spillways, and surface bypass channel entrances will be presented. Concentrations of fish passage will be presented as three-dimensional fish densities superimposed over dam structures. Stream trace modeling animation will be presented showing predicted fish passage routes.

  13. Turbulence investigation and reproduction for assisting downstream migrating juvenile salmonids, Part II of II: Effects of induced turbulence on behavior of juvenile salmon, 2001-2005 final report

    USGS Publications Warehouse

    Perry, R.; Farley , M.; Hansen, G.; Morse , J.; Rondorf, D.

    2005-01-01

    Passage through dams is a major source of mortality of anadromous juvenile salmonids because some populations must negotiate up to eight dams in Columbia and Snake rivers. Dams cause direct mortality when fish pass through turbines, but dams may also cause indirect mortality by altering migration conditions in rivers. Forebays immediately upstream of dams have decreased the water velocity of rivers and may contribute substantially to the total migration delay of juvenile salmonids. Recently, Coutant (2001a) suggested that in addition to low water velocities, lack of natural turbulence may contribute to migration delay by causing fish to lose directional cues. Coutant (2001a) further hypothesized that restoring turbulence in dam forebays may reduce migration delay by providing directional cues that allow fish to find passage routes more quickly (Coutant 2001a). Although field experiments have yielded proof of the concept of using induced turbulence to guide fish to safe passage routes, little is known about mechanisms actually causing behavioral changes. To test hypotheses about how turbulence influences movement and behavior of migrating juvenile salmonids, we conducted two types of controlled experiments at Cowlitz Falls Dam, Washington. A common measure of migration delay is the elapsed time between arrival at, and passage through, a dam. Therefore, for the first set of experiments, we tested the effect of induced turbulence on the elapsed time needed for fish to traverse through a raceway and pass over a weir at its downstream end (time trial experiment). If turbulence helps guide fish to passage routes, then fish should pass through the raceway quicker in the presence of appropriately scaled and directed turbulent cues. Second, little is known about how the physical properties of water movement provide directional cues to migrating juvenile salmonids. To examine the feasibility of guiding fish with turbulence, we tested whether directed turbulence could guide fish into one of two channels in the raceway, and subsequently cause them to pass disproportionately over the weir where turbulent cues were aimed (guidance experiment). Last, we measured and mapped water velocity and turbulence during the experiments to understand water movement patterns and the spatial distribution of turbulence in the raceways.

  14. Seasonal migration and environmental conditions of Pacific halibut Hippoglossus stenolepis, elucidated from pop-up archival transmitting (PAT) tags

    USGS Publications Warehouse

    Loher, Timothy; Seitz, Andrew C.

    2006-01-01

    Pop-up archival transmitting (PAT) tags were used to study the fall migration of halibut in the Gulf of Alaska (GOA). We tagged 6 Pacific halibut Hippoglossus stenolepis on summer feeding grounds in the eastern GOA and another 6 in the western GOA from June 13 to August 6, 2002. The tags were programed to be released from the fish on January 15, 2003, at the height of the winter spawning season: 10 tags successfully detached, transmitted archived environmental data (depth and temperature), and generated accurate latitude–longitude coordinates shortly after pop-up; 2 tags deployed off SE Alaska were lost. The tags revealed that 6 fish had moved a considerable distance (>200 km) between tagging and pop-up, and all of these had moved northward to some extent. The longest of the observed migrations was from the southern Alaska Peninsula to Yakutat Bay, a linear displacement of 1153 km; 4 fish showed little evidence of geographic displacement, exhibiting migrations that ranged only from 30 to 69 km. Although 2 fish had moved inshore by the end of the tagging period, all other fish had moved offshore regardless of their overall migration distance. The precise timing of offshore movements varied, beginning as early as August and as late as January. These observations generally corroborate conventional tagging, indicating migration of halibut toward winter spawning grounds in the northern GOA, and movement of fish to deep water in fall. However, no single stereotypic migration behavior was apparent, and a variety of vertical movement patterns and temperature profiles were observed. Halibut spent most time in waters of 5 to 7°C, but experienced temperatures ranging from 2.6 to 11.6°C. Depth observations ranged from 0 to 736 m, with summertime activity concentrated in depths from 0 to 400 m, and halibut that exhibited offshore movement were typically observed at 300 to 700 m by mid-winter. Vertical movement (short-period changes in depth) varied among fish and over time, with some fish displaying little vertical activity, others displaying short periods of activity, and still others displaying considerable activity throughout their time at liberty.

  15. Implications of climate change for potamodromous fishes.

    PubMed

    Beatty, Stephen J; Morgan, David L; Lymbery, Alan J

    2014-06-01

    There is little understanding of how climate change will impact potamodromous freshwater fishes. Since the mid 1970s, a decline in annual rainfall in south-western Australia (a globally recognized biodiversity hotspot) has resulted in the rivers of the region undergoing severe reductions in surface flows (ca. 50%). There is universal agreement amongst Global Climate Models that rainfall will continue to decline in this region. Limited data are available on the movement patterns of the endemic freshwater fishes of south-western Australia or on the relationship between their life histories and hydrology. We used this region as a model to determine how dramatic hydrological change may impact potamodromous freshwater fishes. Migration patterns of fishes in the largest river in south-western Australia were quantified over a 4 year period and were related to a number of key environmental variables including discharge, temperature, pH, conductivity and dissolved oxygen. Most of the endemic freshwater fishes were potamodromous, displaying lateral seasonal spawning migrations from the main channel into tributaries, and there were significant temporal differences in movement patterns between species. Using a model averaging approach, amount of discharge was clearly the best predictor of upstream and downstream movement for most species. Given past and projected reductions in surface flow and groundwater, the findings have major implications for future recruitment rates and population viabilities of potamodromous fishes. Freshwater ecosystems in drying climatic regions can only be managed effectively if such hydro-ecological relationships are considered. Proactive management and addressing existing anthropogenic stressors on aquatic ecosystems associated with the development of surface and groundwater resources and land use is required to increase the resistance and resilience of potamodromous fishes to ongoing flow reductions. © 2013 John Wiley & Sons Ltd.

  16. San Francisco Estuary Striped Bass Migration History Determined by Electron-microprobe Analysis of Otolith Sr/Ca Ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ostrach, D J; Phillis, C C; Weber, P K

    2004-09-17

    Habitat use has been shown to be an important factor in the bioaccumulation of contaminants in striped bass. This study examines migration in striped bass as part of a larger study investigating bioaccumulation and maternal transfer of xenobiotics to progeny in the San Francisco Estuary system. Habitat use, residence time and spawning migration over the life of females (n = 23) was studied. Female striped bass were collected between Knights Landing and Colusa on the Sacramento River during the spawning runs of 1999 and 2001. Otoliths were removed, processed and aged via otolith microstructure. Subsequently, otoliths were analyzed for strontium/calciummore » (Sr/Ca) ratio using an electron-microprobe to measure salinity exposure and to distinguish freshwater, estuary, and marine habitat use. Salinity exposure during the last year before capture was examined more closely for comparison of habitat use by the maternal parent to contaminant burden transferred to progeny. Results were selectively confirmed by ion microprobe analyses for habitat use. The Sr/Ca data demonstrate a wide range of migratory patterns. Age of initial ocean entry differs among individuals before returning to freshwater, presumably to spawn. Some fish reside in freshwater year-round, while others return to more saline habitats and make periodic migrations to freshwater. Frequency of habitat shifts and residence times differs among fish, as well as over the lifetime of individual fish. While at least one fish spent its final year in freshwater, the majority of spawning fish spent their final year in elevated salinity. However, not all fish migrated to freshwater to spawn in the previous year. Results from this investigation concerning migration history in striped bass can be combined with contaminant and histological developmental analyses to better understand the bioaccumulation of contaminants and the subsequent effects they and habitat use have on fish populations in the San Francisco Estuary system.« less

  17. Mule Deer (Odocoileus hemionus) Movement and Habitat Use Patterns in Relation to Roadways in Northwest Wyoming

    DOT National Transportation Integrated Search

    2013-10-01

    The purpose of this study was to provide the Wyoming Department of Transportation and Wyoming Game and Fish Department with useful information about the patterns of mule deer seasonal habitat use, migration, road crossings, and wildlife-vehicle colli...

  18. Species Profiles: Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (Pacific Northwest) Pink Salmon

    DTIC Science & Technology

    1989-01-01

    methodology weight in the sockeye salmon for determining instream flow re- ( Oncorhynchus nerka ) and the pink quirements for fish. Pages 72-86 in salmon (0...Scientific name ........... Oncorhynchus jor pink salmon runs. Migration gorbuscha (Walbaum) (Figure a patterns of fish entering British Preferred...A dominant male guards the considered the most specialized of the female during the digging process, salmon in the genus Oncorhynchus be- attacking

  19. Trace contaminant determination in fish scale by laser-ablation technique

    NASA Astrophysics Data System (ADS)

    Lee, Ida; Coutant, C. C.; Arakawa, E. T.

    1993-10-01

    Laser ablation on rings of fish scale has been used to analyze the historical accumulation of polychlorinated biphenyls (PCB) in striped bass in the Watts Bar Reservoir. Rings on a fish scale grow in a pattern that forms a record of the fish's chemical intake. In conjunction with the migration patterns of fish monitored by ecologists, relative PCB concentrations in the seasonal rings of fish scale can be used to study the PCB distribution in the reservoir. In this study, a tightly-focused laser beam from a XeCl excimer laser was used to ablate and ionize a small portion of a fish scale placed in a vacuum chamber. The ions were identified and quantified by a time-of-flight mass spectrometer. Studies of this type can provide valuable information for the Department of Energy (DOE) off-site clean-up efforts as well as identifying the impacts of other sources to local aquatic populations.

  20. The Origin And Migration Of Primordial Germ Cells In Sturgeons

    PubMed Central

    Saito, Taiju; Pšenička, Martin; Goto, Rie; Adachi, Shinji; Inoue, Kunio; Arai, Katsutoshi; Yamaha, Etsuro

    2014-01-01

    Primordial germ cells (PGCs) arise elsewhere in the embryo and migrate into developing gonadal ridges during embryonic development. In several model animals, formation and migration patterns of PGCs have been studied, and it is known that these patterns vary. Sturgeons (genus Acipenser) have great potential for comparative and evolutionary studies of development. Sturgeons belong to the super class Actinoptergii, and their developmental pattern is similar to that of amphibians, although their phylogenetic position is an out-group to teleost fishes. Here, we reveal an injection technique for sturgeon eggs allowing visualization of germplasm and PGCs. Using this technique, we demonstrate that the PGCs are generated at the vegetal pole of the egg and they migrate on the yolky cell mass toward the gonadal ridge. We also provide evidence showing that PGCs are specified by inheritance of maternally supplied germplasm. Furthermore, we demonstrate that the migratory mechanism is well-conserved between sturgeon and other remotely related teleosts, such as goldfish, by a single PGCs transplantation (SPT) assay. The mode of PGCs specification in sturgeon is similar to that of anurans, but the migration pattern resembles that of teleosts. PMID:24505272

  1. Floodplain rehabilitation as a hedge against hydroclimatic uncertainty in a migration corridor of threatened steelhead.

    PubMed

    Boughton, David A; Pike, Andrew S

    2013-12-01

    A strategy for recovering endangered species during climate change is to restore ecosystem processes that moderate effects of climate shifts. In mid-latitudes, storm patterns may shift their intensity, duration, and frequency. These shifts threaten flooding in human communities and reduce migration windows (conditions suitable for migration after a storm) for fish. Rehabilitation of historic floodplains can in principle reduce these threats via transient storage of storm water, but no one has quantified the benefit of floodplain rehabilitation for migrating fish, a widespread biota with conservation and economic value. We used simple models to quantify migration opportunity for a threatened migratory fish, steelhead (Oncorhynchus mykiss), in an episodic rain-fed river system, the Pajaro River in central California. We combined flow models, bioenergetic models, and existing climate projections to estimate the sensitivity of migration windows to altered storm patterns under alternate scenarios of floodplain rehabilitation. Generally, migration opportunities were insensitive to warming, weakly sensitive to duration or intensity of storms, and proportionately sensitive to frequency of storms. The rehabilitation strategy expanded migration windows by 16-28% regardless of climate outcomes. Warmer conditions raised the energy cost of migrating, but not enough to matter biologically. Novel findings were that fewer storms appeared to pose a bigger threat to migrating steelhead than warmer or smaller storms and that floodplain rehabilitation lessened the risk from fewer or smaller storms across all plausible hydroclimatic outcomes. It follows that statistical downscaling methods may mischaracterize risk, depending on how they resolve overall precipitation shifts into changes of storm frequency as opposed to storm size. Moreover, anticipating effects of climate shifts that are irreducibly uncertain (here, rainfall) may be more important than anticipating effects of relatively predictable changes such as warming. This highlights a need to credibly identify strategies of ecosystem rehabilitation that are robust to uncertainty. Rehabilitación de Planicies Inundables como Cerco contra la Incertidumbre Hidroclimática en un Corredor Migratorio de Oncorhynchus mykiss, Especie Amenazada. © 2013 Society for Conservation Biology No claim to original US government works.

  2. Spawning site selection and contingent behavior in Common Snook, Centropomus undecimalis.

    PubMed

    Lowerre-Barbieri, Susan; Villegas-Ríos, David; Walters, Sarah; Bickford, Joel; Cooper, Wade; Muller, Robert; Trotter, Alexis

    2014-01-01

    Reproductive behavior affects spatial population structure and our ability to manage for sustainability in marine and diadromous fishes. In this study, we used fishery independent capture-based sampling to evaluate where Common Snook occurred in Tampa Bay and if it changed with spawning season, and passive acoustic telemetry to assess fine scale behavior at an inlet spawning site (2007-2009). Snook concentrated in three areas during the spawning season only one of which fell within the expected spawning habitat. Although in lower numbers, they remained in these areas throughout the winter months. Acoustically-tagged snook (n = 31) showed two seasonal patterns at the spawning site: Most fish occurred during the spawning season but several fish displayed more extended residency, supporting the capture-based findings that Common Snook exhibit facultative catadromy. Spawning site selection for iteroparous, multiple-batch spawning fishes occurs at the lifetime, annual, or intra-annual temporal scales. In this study we show colonization of a new spawning site, indicating that lifetime spawning site fidelity of Common Snook is not fixed at this fine spatial scale. However, individuals did exhibit annual and intra-seasonal spawning site fidelity to this new site over the three years studied. The number of fish at the spawning site increased in June and July (peak spawning months) and on new and full lunar phases indicating within population variability in spawning and movement patterns. Intra-seasonal patterns of detection also differed significantly with sex. Common Snook exhibited divergent migration tactics and habitat use at the annual and estuarine scales, with contingents using different overwintering habitat. Migration tactics also varied at the spawning site at the intra-seasonal scale and with sex. These results have important implications for understanding how reproductive behavior affects spatio-temporal patterns of fish abundance and their resilience to disturbance events and fishing pressure.

  3. Inducible Sterilization of Zebrafish by Disruption of Primordial Germ Cell Migration

    PubMed Central

    Wong, Ten-Tsao; Collodi, Paul

    2013-01-01

    During zebrafish development, a gradient of stromal-derived factor 1a (Sdf1a) provides the directional cue that guides the migration of the primordial germ cells (PGCs) to the gonadal tissue. Here we describe a method to produce large numbers of infertile fish by inducing ubiquitous expression of Sdf1a in zebrafish embryos resulting in disruption of the normal PGC migration pattern. A transgenic line of zebrafish, Tg(hsp70:sdf1a-nanos3, EGFP), was generated that expresses Sdf1a under the control of the heat-shock protein 70 (hsp70) promoter and nanos3 3?UTR. To better visualize the PGCs, the Tg(hsp70:sdf1a-nanos3, EGFP) fish were crossed with another transgenic line, Tg(kop:DsRed-nanos3), that expresses DsRed driven by the PGC-specific kop promoter. Heat treatment of the transgenic embryos caused an induction of Sdf1a expression throughout the embryo resulting in the disruption of their normal migration. Optimal embryo survival and disruption of PGC migration was achieved when transgenic embryos at the 4- to 8-cell stage were incubated at 34.5°C for 18 hours. Under these conditions, disruption of PGC migration was observed in 100% of the embryos. Sixty-four adult fish were developed from three separate batches of heat-treated embryos and all were found to be infertile males. When each male was paired with a wild-type female, only unfertilized eggs were produced and histological examination revealed that each of the adult male fish possessed severely under-developed gonads that lacked gametes. The results demonstrate that inducible Sdf1a expression is an efficient and reliable strategy to produce infertile fish. This approach makes it convenient to generate large numbers of infertile adult fish while also providing the capability to maintain a fertile brood stock. PMID:23826390

  4. Physiological development and migratory behavior of subyearling fall chinook salmon in the Columbia River

    USGS Publications Warehouse

    Tiffan, K.F.; Rondorf, D.W.; Wagner, P.G.

    2000-01-01

    We describe the migratory behavior and physiological development of subyearling fall chinook salmon Oncorhynchus tshawytscha migrating through John Day Reservoir on the Columbia River, Washington and Oregon. Fish were freeze-branded and coded-wire-tagged at McNary Dam, Oregon, from 1991 to 1994, to determine travel time to John Day Dam and subsequent adult contribution. Stepwise multiple regression showed that 47% of the variation in subyearling fall chinook salmon travel time was explained by the reciprocal of minimum flow and fish size. Smoltification, as measured by gill Na+-K+ adenosine triphosphatase (ATPase) activity, was not important in explaining variability in travel time of subyearling chinook salmon. Fish marked early in the out-migration generally traveled faster than middle and late migrants. Seawater challenges were used to describe physiological development and showed that osmoregulatory competence of premigrants in the Hanford Reach of the Columbia River increased with fish size and gill ATPase activity. Once active migrants began passing McNary Dam, fish generally had survival exceeding 90% and were able to regulate their blood plasma Na+ in seawater. Gill ATPase activity increased as premigrants, reared in nearshore areas of the Hanford Reach, reached a peak among active migrants in late June and early July then decreased through the remainder of the out-migration. Salinity preference also peaked in subyearling fall chinook salmon during late June to mid July in 1995. Return of adults from marked groups showed no consistent patterns that would suggest a survival advantage for any portion of the juvenile out-migration. Presumed wild migrants from the middle and late portions of the out-migration were primary contributors to all fisheries, except the Priest Rapids Hatchery. As such, fishery managers should take action to ensure the survival of these fish, especially because they migrate under more unfavorable environmental conditions than early migrants.

  5. Fish diversity in the Río de la Plata and adjacent waters: an overview of environmental influences on its spatial and temporal structure.

    PubMed

    Jaureguizar, A J; Solari, A; Cortés, F; Milessi, A C; Militelli, M I; Camiolo, M D; Luz Clara, M; García, M

    2016-07-01

    The fish diversity and the main environmental factors affecting the spatial distribution of species, life history stages and community structure in the Río de la Plata (RdP) and adjacent waters are reviewed and analysed, with emphasis on the functional guild classification. The functional guild classification indicated that most species in the RdP were marine stragglers, zoobenthivores and oviparous species, although the biomass was dominated by estuarine species. Salinity had a stronger influence than temperature on the spatial pattern for all life stages, shallower and fresher waters are the preferred habitats of neonates and juveniles. During the breeding season (spring-summer), adults showed an intrusion into the inner part of RdP or to its adjacent nearshore waters from the offshore waters for spawning or mating, respectively. Variations in river discharge and wind patterns greatly affected the spatial extent of estuarine water, which ultimately influenced the domain of the main life-history stages (juveniles or adults) for both marine and estuarine fishes, as well as species and fish assemblage composition. The strong environmental gradient restricts some species and life-history stages to a particular section and defines three main fish assemblage areas. The composition of the fish assemblage is indicative of the recruitment of freshwater and marine species to the estuary in opposite ways, determined by the vertical stratification. Seasonal changes in the species composition were related to migration as a result of salinity and temperature variations and reproductive migrations to spawning and mating areas. This overview reveals that the RdP is under environmental variations that are likely to produce modifications to fish distribution and abundance that affect its fisheries. This context plus fish stock declines and changes in exploitation patterns could amplify the magnitude of the variations in the fisheries resources availability and affect the sustainability of fishing communities. © 2016 The Fisheries Society of the British Isles.

  6. Patterns of variations in large pelagic fish: A comparative approach between the Indian and the Atlantic Oceans

    NASA Astrophysics Data System (ADS)

    Corbineau, A.; Rouyer, T.; Fromentin, J.-M.; Cazelles, B.; Fonteneau, A.; Ménard, F.

    2010-07-01

    Catch data of large pelagic fish such as tuna, swordfish and billfish are highly variable ranging from short to long term. Based on fisheries data, these time series are noisy and reflect mixed information on exploitation (targeting, strategy, fishing power), population dynamics (recruitment, growth, mortality, migration, etc.), and environmental forcing (local conditions or dominant climate patterns). In this work, we investigated patterns of variation of large pelagic fish (i.e. yellowfin tuna, bigeye tuna, swordfish and blue marlin) in Japanese longliners catch data from 1960 to 2004. We performed wavelet analyses on the yearly time series of each fish species in each biogeographic province of the tropical Indian and Atlantic Oceans. In addition, we carried out cross-wavelet analyses between these biological time series and a large-scale climatic index, i.e. the Southern Oscillation Index (SOI). Results showed that the biogeographic province was the most important factor structuring the patterns of variability of Japanese catch time series. Relationships between the SOI and the fish catches in the Indian and Atlantic Oceans also pointed out the role of climatic variability for structuring patterns of variation of catch time series. This work finally confirmed that Japanese longline CPUE data poorly reflect the underlying population dynamics of tunas.

  7. Diversity in destinations, routes and timing of small adult and sub-adult striped bass Morone saxatilis on their southward autumn migration

    USGS Publications Warehouse

    Mather, Martha E.; Finn, John T.; Pautzke, Sarah M.; Fox, Dewayne A.; Savoy, Tom; Brundage, Harold M.; Deegan, Linda A.; Muth, Robert M.

    2010-01-01

    Almost three-quarters of the 46 young adult and sub-adult striped bass Morone saxatilis that were acoustically tagged in Plum Island Estuary, Massachusetts, U.S.A., in the summer of 2006 were detected in one or more southern coastal arrays during their autumn migration. On the basis of the trajectories along which these M. saxatilis moved from feeding to overwintering areas, three migratory groups emerged. After leaving Plum Island Estuary, about half of the fish were detected only in a mid-latitude array, Long Island Sound. The other half of the tagged fish were detected during autumn and winter in a more southern array, the Delaware Estuary. This latter group of fish may have used two routes. Some travelled to the Delaware Estuary through Long Island Sound while other fish may have taken a second, more direct, coastal route that did not include Long Island Sound. Consequently, a seemingly homogeneous group of fish tagged at the same time in the same non-natal feeding location exhibited a diversity of southward movement patterns that could affect population-level processes. These three groups that differed in overwintering location and migration route could be movement contingents with migratory connectivity.

  8. Estimating freshwater productivity, overwinter survival, and migration patterns of Klamath River Coho Salmon

    USGS Publications Warehouse

    Manhard, Christopher V.; Som, Nicholas A.; Perry, Russell W.; Faukner, Jimmy; Soto, Toz

    2018-01-01

    An area of great importance to resource management and conservation biology in the Klamath Basin is balancing water usage against the life history requirements of threatened Coho Salmon. One tool for addressing this topic is a freshwater dynamics model to forecast Coho Salmon productivity based on environmental inputs. Constructing such a forecasting tool requires local data to quantify the unique life history processes of Coho Salmon inhabiting this region. Here, we describe analytical methods for estimating a series of sub-models, each capturing a different life history process, which will eventually be synchronized as part of a freshwater dynamics model for Klamath River Coho Salmon. Specifically, we draw upon extensive population monitoring data collected in the basin to estimate models of freshwater productivity, overwinter survival, and migration patterns. Our models of freshwater productivity indicated that high summer temperatures and high winter flows can both adversely affect smolt production and that such relationships are more likely in tributaries with naturally regulated flows due to substantial intraannual environmental variation. Our models of overwinter survival demonstrated extensive variability in survival among years, but not among rearing locations, and demonstrated that a substantial proportion (~ 20%) of age-0+ fish emigrate from some rearing sites in the winter. Our models of migration patterns indicated that many age-0+ fish redistribute in the basin during the summer and winter. Further, we observed that these redistributions can entail long migrations in the mainstem where environmental stressors likely play a role in cueing refuge entry. Finally, our models of migration patterns indicated that changes in discharge are important in cueing the seaward migration of smolts, but that the nature of this behavioral response can differ dramatically between tributaries with naturally and artificially regulated flows. Collectively, these analyses demonstrate that environmental variation interacts with most phases of the freshwater life history of Klamath River Coho Salmon and that anthropogenic environmental variation can have a particularly large bearing on productivity.

  9. Toward conservation of midcontinental shorebird migrations

    USGS Publications Warehouse

    Skagen, Susan K.; Knopf, Fritz L.

    1993-01-01

    Shorebirds represent a highly diverse group of species, many of which experience tremendous energy demands associated with long-distance migratory flights. Transcontinental migrants are dependant upon dynamic freshwater wetlands for stopover resources essential for replenishment of lipid reserves and completion of migration. Patterns of shorebird migration across midcontinental wetlands were detected from migration reports to American Birds and information provided by U.S. Fish and Wildlife Service national wildlife refuges. Patterns in species composition and abundance varied geographically, emphasizing the uniqueness of different regions to migrating shorebirds. Smaller species and neotropical migrants moved primarily across the Great Plains, whereas larger species and North American migrants predominated in assemblages in the intermountain west. Shorebirds were broadly dispersed in wetland habitats with dynamic water regimes. Whereas populations of shorebirds in coastal system appear to concentrate at sites of seasonally predictable and abundant food resources, we propose that transcontinental shorebirds disperse and use wetlands opportunistically. This migration system exemplifies the need for large-scale, coordinated regional management efforts that recognize the dynamic nature of ecosystem processes.

  10. Temporal patterns of migration and spawning of river herring in coastal Massachusetts

    USGS Publications Warehouse

    Rosset, Julianne; Roy, Allison; Gahagan, Benjamin I.; Whiteley, Andrew R.; Armstrong, Michael P.; Sheppard, John J.; Jordaan, Adrian

    2017-01-01

    Migrations of springtime Alewife Alosa pseudoharengus and Blueback Herring A. aestivalis, collectively referred to as river herring, are monitored in many rivers along the Atlantic coast to estimate population sizes. While these estimates give an indication of annual differences in the number of returning adults, links to the subsequent timing and duration of spawning and freshwater juvenile productivity remain equivocal. In this study, we captured juvenile river herring at night in 20 coastal Massachusetts lakes using a purse seine and extracted otoliths to derive daily fish ages and back-calculate spawn dates. Estimates of spawning dates were compared with fishway counts of migrating adults to assess differences in migration timing and the timing and duration of spawning. We observed a distinct delay between the beginning of the adult migration run and the start of spawning, ranging from 7 to 28 d across the 20 lakes. Spawning continued 13–48 d after adults stopped migrating into freshwater, further demonstrating a pronounced delay in spawning following migration. Across the study sites the duration of spawning (43–76 d) was longer but not related to the duration of migration (29–66 d). The extended spawning period is consistent with recent studies suggesting that Alewives are indeterminate spawners. The long duration in freshwater provides the opportunity for top-down (i.e., predation on zooplankton) and bottom-up (i.e., food for avian, fish, and other predators) effects, with implications for freshwater food webs and nutrient cycling. General patterns of spawn timing and duration can be incorporated into population models and used to estimate temporal changes in productivity associated with variable timing and density of spawning river herring in lakes.

  11. Migration of Sakhalin taimen (Parahucho perryi): Evidence of freshwater resident life history types

    USGS Publications Warehouse

    Zimmerman, C.E.; Rand, P.S.; Fukushima, M.; Zolotukhin, S.F.

    2012-01-01

    Sakhalin taimen (Parahucho perryi) range from the Russian Far East mainland along the Sea of Japan coast, and Sakhalin, Kuril, and Hokkaido Islands and are considered to primarily be an anadromous species. We used otolith strontium-to-calcium ratios (Sr/Ca) to determine the chronology of migration between freshwater and saltwater and identify migratory contingents of taimen collected from the Koppi River, Russia. In addition, we examined taimen from the Sarufutsu River, Japan and Tumnin River, Russia that were captured in marine waters. Transects of otolith Sr/Ca for the Sarufutsu River fish were consistent with patterns observed in anadromous salmonids. Two fish from the Tumnin River appeared to be recent migrants to saltwater and one fish was characterized by an otolith Sr/Ca transect consistent with marine migration. Using these transects as benchmarks, all Koppi River taimen were classified as freshwater residents. These findings suggest more work is needed to assess life history variability among locations and the role of freshwater productivity in controlling migratory behavior in taimen. ?? 2011 Springer Science+Business Media B.V. (outside the USA).

  12. 77 FR 21539 - Taking and Importing Marine Mammals; Taking Marine Mammals Incidental to Sturgeon Research in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-10

    .... SUMMARY: NMFS has received a request from the U.S. Fish and Wildlife Service (USFWS) for authorization to... disruption of behavioral patterns, including, but not limited to, migration, breathing, nursing, breeding...

  13. Inferring genetic connectivity in real populations, exemplified by coastal and oceanic Atlantic cod.

    PubMed

    Spies, Ingrid; Hauser, Lorenz; Jorde, Per Erik; Knutsen, Halvor; Punt, André E; Rogers, Lauren A; Stenseth, Nils Chr

    2018-05-08

    Genetic data are commonly used to estimate connectivity between putative populations, but translating them to demographic dispersal rates is complicated. Theoretical equations that infer a migration rate based on the genetic estimator F ST , such as Wright's equation, F ST ≈ 1/(4 N e m + 1), make assumptions that do not apply to most real populations. How complexities inherent to real populations affect migration was exemplified by Atlantic cod in the North Sea and Skagerrak and was examined within an age-structured model that incorporated genetic markers. Migration was determined under various scenarios by varying the number of simulated migrants until the mean simulated level of genetic differentiation matched a fixed level of genetic differentiation equal to empirical estimates. Parameters that decreased the N e / N t ratio (where N e is the effective and N t is the total population size), such as high fishing mortality and high fishing gear selectivity, increased the number of migrants required to achieve empirical levels of genetic differentiation. Higher maturity-at-age and lower selectivity increased N e / N t and decreased migration when genetic differentiation was fixed. Changes in natural mortality, fishing gear selectivity, and maturity-at-age within expected limits had a moderate effect on migration when genetic differentiation was held constant. Changes in population size had the greatest effect on the number of migrants to achieve fixed levels of F ST , particularly when genetic differentiation was low, F ST ≈ 10 -3 Highly variable migration patterns, compared with constant migration, resulted in higher variance in genetic differentiation and higher extreme values. Results are compared with and provide insight into the use of theoretical equations to estimate migration among real populations. Copyright © 2018 the Author(s). Published by PNAS.

  14. Food resource effects on diel movements and body size of cisco in north-temperate lakes.

    PubMed

    Ahrenstorff, Tyler D; Hrabik, Thomas R; Jacobson, Peter C; Pereira, Donald L

    2013-12-01

    The movement patterns and body size of fishes are influenced by a host of physical and biological conditions, including temperature and oxygen, prey densities and foraging potential, growth optimization, and predation risk. Our objectives were to (1) investigate variability in vertical movement patterns of cisco (Coregonus artedi) in a variety of inland lakes using hydroacoustics, (2) explore the causal mechanisms influencing movements through the use of temperature/oxygen, foraging, growth, and predation risk models, and (3) examine factors that may contribute to variations in cisco body size by considering all available information. Our results show that cisco vertical movements vary substantially, with different populations performing normal diel vertical migrations (DVM), no DVM, and reverse DVM in lakes throughout Minnesota and northern Wisconsin, USA. Cisco populations with the smallest body size were found in lakes with lower zooplankton densities. These smaller fish showed movements to areas of highest foraging or growth potential during the day and night, despite moving out of preferred temperature and oxygen conditions and into areas of highest predation risk. In lakes with higher zooplankton densities, cisco grew larger and had movements more consistent with behavioral thermoregulation and predator avoidance, while remaining in areas with less than maximum foraging and growth potential. Furthermore, the composition of potential prey items present in each lake was also important. Cisco that performed reverse DVM consumed mostly copepods and cladocerans, while cisco that exhibited normal DVM or no migration consumed proportionally more macro-zooplankton species. Overall, our results show previously undocumented variation in migration patterns of a fish species, the mechanisms underlying those movements, and the potential impact on their growth potential.

  15. Reducing the Impacts of Hydroelectric Dams on Juvenile Anadromous Fishes: Bioengineering Evaluations Using Acoustic Imaging in the Columbia River, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Gary E.; Ploskey, Gene R.; Hedgepeth, J.

    2008-07-29

    Dams impact the survival of juvenile anadromous fishes by obstructing migration corridors, lowering water quality, delaying migrations, and entraining fish in turbine discharge. To reduce these impacts, structural and operational modifications to dams— such as voluntary spill discharge, turbine intake guidance screens, and surface flow outlets—are instituted. Over the last six years, we have used acoustic imaging technology to evaluate the effects of these modifications on fish behavior, passage rates, entrainment zones, and fish/flow relationships at hydroelectric projects on the Columbia River. The imaging technique has evolved from studies documenting simple movement patterns to automated tracking of images to mergingmore » and analysis with concurrent hydraulic data. This chapter chronicles this evolution and shows how the information gleaned from the scientific evaluations has been applied to improve passage conditions for juvenile salmonids. We present data from Bonneville and The Dalles dams that document fish behavior and entrainment zones at sluiceway outlets (14 to 142 m3/s), fish passage rates through a gap at a turbine intake screen, and the relationship between fish swimming effort and hydraulic conditions. Dam operators and fisheries managers have applied these data to support decisions on operational and structural changes to the dams for the benefit of anadromous fish populations in the Columbia River basin.« less

  16. Movement Patterns of American Shad Transported Upstream of Dams on The Roanoke River, North Carolina and Virginia

    USGS Publications Warehouse

    Harris, Julianne E.; Hightower, J.E.

    2011-01-01

    American shad Alosa sapidissima are in decline throughout much of their native range as a result of overfishing, pollution, and habitat alteration in coastal rivers where they spawn. One approach to restoration in regulated rivers is to provide access to historical spawning habitat above dams through a trap-and-transport program. We examined the initial survival, movement patterns, spawning, and downstream passage of sonic-tagged adult American shad transported to reservoir and riverine habitats upstream of hydroelectric dams on the Roanoke River, North Carolina and Virginia, during 2007–2009. Average survival to release in 2007–2008 was 85%, but survival decreased with increasing water temperature. Some tagged fish released in reservoirs migrated upstream to rivers; however, most meandered back and forth within the reservoir. A higher percentage of fish migrated through a smaller (8,215-ha) than a larger (20,234-ha) reservoir, suggesting that the population-level effects of transport may depend on upper basin characteristics. Transported American shad spent little time in upper basin rivers but were there when temperatures were appropriate for spawning. No American shad eggs were collected during weekly plankton sampling in upper basin rivers. The estimated initial survival of sonic-tagged American shad after downstream passage through each dam was 71–100%; however, only 1% of the detected fish migrated downstream through all three dams and many were relocated just upstream of a dam late in the season. Although adult American shad were successfully transported to upstream habitats in the Roanoke River basin, under present conditions transported individuals may have reduced effective fecundity and postspawning survival compared with nontransported fish that spawn in the lower Roanoke River.

  17. Quantitative methods for analysing cumulative effects on fish migration success: a review.

    PubMed

    Johnson, J E; Patterson, D A; Martins, E G; Cooke, S J; Hinch, S G

    2012-07-01

    It is often recognized, but seldom addressed, that a quantitative assessment of the cumulative effects, both additive and non-additive, of multiple stressors on fish survival would provide a more realistic representation of the factors that influence fish migration. This review presents a compilation of analytical methods applied to a well-studied fish migration, a more general review of quantitative multivariable methods, and a synthesis on how to apply new analytical techniques in fish migration studies. A compilation of adult migration papers from Fraser River sockeye salmon Oncorhynchus nerka revealed a limited number of multivariable methods being applied and the sub-optimal reliance on univariable methods for multivariable problems. The literature review of fisheries science, general biology and medicine identified a large number of alternative methods for dealing with cumulative effects, with a limited number of techniques being used in fish migration studies. An evaluation of the different methods revealed that certain classes of multivariable analyses will probably prove useful in future assessments of cumulative effects on fish migration. This overview and evaluation of quantitative methods gathered from the disparate fields should serve as a primer for anyone seeking to quantify cumulative effects on fish migration survival. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  18. Migration timing of female kokanee salmon Oncorhynchus nerka: diel patterns and effects of maturation state.

    PubMed

    Warren, M A; Morbey, Y E

    2012-09-01

    Diel patterns of migration and migration speed were compared between reproductive timing phenotypes in female kokanee salmon Oncorhynchus nerka. Females of varying degrees of reproductive maturation were captured on their migration route to the Meadow Creek Spawning Channel (British Columbia, Canada), were tagged with passive-integrated transponders (PIT tags) and were subsequently monitored with stationary receivers. Females showed crepuscular migration timing, with approximately equal detections at dawn and dusk. In particular, peaks of movement were associated with the appearance of the sun over the mountains in the east and the disappearance of the sun over the mountains in the west. Over 25 m, migration speed was 1·0 body lengths (measured as fork length; L(F)) s(-1) and did not depend on maturation state. Over 3 km, migration speed was much slower (0·2-0·3 L(F) s(-1)) than over the short distance, with less mature females migrating more slowly than more mature females. Less mature females appeared to be in less of a hurry to reach breeding areas compared with more mature females. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  19. Stickleback increase in the Baltic Sea - A thorny issue for coastal predatory fish

    NASA Astrophysics Data System (ADS)

    Bergström, Ulf; Olsson, Jens; Casini, Michele; Eriksson, Britas Klemens; Fredriksson, Ronny; Wennhage, Håkan; Appelberg, Magnus

    2015-09-01

    In the Baltic Sea, the mesopredator three-spined stickleback (Gasterosteus aculeatus) spends a large part of its life cycle in the open sea, but reproduces in shallow coastal habitats. In coastal waters, it may occur in high abundances, is a potent predator on eggs and larvae of fish, and has been shown to induce trophic cascades with resulting eutrophication symptoms through regulation of invertebrate grazers. Despite its potential significance for the coastal food web, little is known about its life history and population ecology. This paper provides a description of life history traits, migration patterns and spatiotemporal development of the species in the Baltic Sea during the past decades, and tests the hypothesis that stickleback may have a negative impact on populations of coastal predatory fish. Offshore and coastal data during the last 30 years show that stickleback has increased fourfold in the Bothnian Sea, 45-fold in the Central Baltic Sea and sevenfold in the Southern Baltic Sea. The abundances are similar in the two northern basins, and two orders of magnitude lower in the Southern Baltic Sea. The coastward spawning migration of sticklebacks from offshore areas peaks in early May, with most spawners being two years of age at a mean length of 65 mm. The early juvenile stage is spent at the coast, whereafter sticklebacks perform a seaward feeding migration in early autumn at a size of around 35 mm. A negative spatial relation between the abundance of stickleback and early life stages of perch and pike at coastal spawning areas was observed in spatial survey data, indicating strong interactions between the species. A negative temporal relationship was observed also between adult perch and stickleback in coastal fish monitoring programmes supporting the hypothesis that stickleback may have negative population level effects on coastal fish predators. The recent increase in stickleback populations in different basins of the Baltic Sea in combination with negative spatiotemporal patterns and previously observed interactions between stickleback and coastal predatory fish suggests that this species may have gained a key role in the coastal food webs of the Baltic Sea. Through its migrations, stickleback may also constitute an important vector linking coastal and open sea ecosystem dynamics.

  20. Fish Research Project Oregon; Aspects of Life History and Production of Juvenile Oncorhynchus Mykiss in the Grande Ronde River Basin, Northeast Oregon, 1995-1999 Summary Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Dyke, Erick S.; Jonnasson, Brian C.; Carmichael, Richard W.

    2001-07-01

    Rotary screw traps, located at four sites in the Grande Ronde River basin, were used to characterize aspects of early life history exhibited by juvenile Onchorhychus mykiss during migration years 1995-99. The Lostine, Catherine Creek and upper Grande Ronde traps captured fish as they migrated out of spawning areas into valley rearing habitats. The Grande Ronde Valley trap captured fish as they left valley habitats downstream of Catherine Creek and upper Grande Ronde River rearing habitats. Dispersal downstream of spawning areas was most evident in fall and spring, but movement occurred during all seasons that the traps were fished. Seawardmore » migration occurred primarily in spring when O. mykiss smolts left overwintering area located in both spawning area and valley habitats. Migration patterns exhibited by O. mykiss suggest that Grande Ronde Valley habitats are used for overwintering and should be considered critical rearing habitat. We were unable to positively differentiate anadromous and resident forms of O. mykiss in the Grande Ronde River basin because both forms occur in our study area. The Grande Ronde Valley trap provided the best information on steelhead production in the basin because it fished below valley habitats where O. mykiss overwinter. Length frequency histograms of O. mykiss captured below upper spawning and rearing habitats showed a bimodal distribution regardless of the season of capture. Scale analyses suggested that each mode represents a different brood year. Length frequency histograms of O. mykiss captured in the Grande Ronde Valley trap were not bimodal, and primarily represented a size range consistent with other researchers' accounts of anadromous smolts.« less

  1. Test of salt marsh as a site of production and export of fish biomass with implications for impoundment management and restoration

    USGS Publications Warehouse

    Stevens, Philip W.

    2002-01-01

    Salt marshes are among the most productive ecosystems in the world, and although they are thought to enhance the productivity of open estuarine waters, the mechanism by which energy transfer occurs has been debated for decades. One possible mechanism is the transfer of saltmarsh production to estuarine waters by vagile fishes and invertebrates. Saltmarsh impoundments in the Indian River Lagoon, Florida, that have been reconnected to the estuary by culverts provide unique opportunities for studying marsh systems with respect to aquatic communities. The boundaries between salt marshes and the estuary are clearly defined by a system of dikes that confine fishes into a known area, and the exchange of aquatic organisms are restricted to culverts where they may be easily sampled. A multi-gear approach was used monthly to estimate fish standing stock, fish ingress/egress, and predation. Changes in saltmarsh fish abundance, and exchange with the estuary reflected the seasonal pattern of marsh flooding in the xv northern Indian River Lagoon system. During a six month period of marsh flooding, saltmarsh fishes had continuous access to marsh food resources. Piscivorous fishes regularly entered the marsh via creeks and ditches to prey upon marsh fishes, and piscivorous birds aggregated following major fish migrations to the marsh surface or to deep habitats. As water levels receded in winter, saltmarsh fishes concentrated into deep habitats and migration to the estuary ensued. The monthly estimates of fish standing stock, net fish ingress, and predation were used to develop a biomass budget to estimate annual production of fishes and the relative yield to predatory fish, birds, and direct migration to the estuary. Annual production of saltmarsh fishes was estimated to be 17.7 g·m-2 salt marsh, which falls within the range of previously reported values for estuarine fish communities. The relative yields were at least 21% to piscivorous fishes, 14% to piscivorous birds, and 32% to export. Annual export of fish biomass was 5.6 g fish·m-2 salt marsh, representing about 2% of saltmarsh primary production. Saltmarsh fishes convert marsh production to high quality vagile biomass (fishes concentrate energy, protein, and nutrients as body mass) and move this readily useable production to the estuary, providing an efficient link between salt marshes and estuarine predators.

  2. PHYLOGEOGRAPHIC PATTERNS IN LARGE RIVER ECOSYSTEMS: GENETIC STRUCTURE OF SMALLMOUTH BUFFALO (ICTIOBUS BUBALUS) IN THE OHIO RIVER

    EPA Science Inventory

    Genetic studies on populations of large river fishes provide a potentially useful but underutilized research and assessment tool. Population genetic research on freshwater systems has provided meaningful insight into stock structure, hybridization issues, and gene flow/migration...

  3. Unravelling the life history of Amazonian fishes through otolith microchemistry

    PubMed Central

    Hermann, Theodore W.; Stewart, Donald J.; Limburg, Karin E.; Castello, Leandro

    2016-01-01

    Amazonian fishes employ diverse migratory strategies, but the details of these behaviours remain poorly studied despite numerous environmental threats and heavy commercial exploitation of many species. Otolith microchemistry offers a practical, cost-effective means of studying fish life history in such a system. This study employed a multi-method, multi-elemental approach to elucidate the migrations of five Amazonian fishes: two ‘sedentary’ species (Arapaima sp. and Plagioscion squamosissimus), one ‘floodplain migrant’ (Prochilodus nigricans) and two long-distance migratory catfishes (Brachyplatystoma rousseauxii and B. filamentosum). The Sr : Ca and Zn : Ca patterns in Arapaima were consistent with its previously observed sedentary life history, whereas Sr : Ca and Mn : Ca indicated that Plagioscion may migrate among multiple, chemically distinct environments during different life-history stages. Mn : Ca was found to be potentially useful as a marker for identifying Prochilodus's transition from its nursery habitats into black water. Sr : Ca and Ba : Ca suggested that B. rousseauxii resided in the Amazon estuary for the first 1.5–2 years of life, shown by the simultaneous increase/decrease of otolith Sr : Ca/Ba : Ca, respectively. Our results further suggested that B. filamentosum did not enter the estuary during its life history. These results introduce what should be a productive line of research desperately needed to better understand the migrations of these unique and imperilled fishes. PMID:27429777

  4. Efficiency of two-way weirs and prepositioned electrofishing for sampling potamodromous fish migrations

    USGS Publications Warehouse

    Favrot, Scott D.; Kwak, Thomas J.

    2016-01-01

    Potamodromy (i.e., migration entirely in freshwater) is a common life history strategy of North American lotic fishes, and efficient sampling methods for potamodromous fishes are needed to formulate conservation and management decisions. Many potamodromous fishes inhabit medium-sized rivers and are mobile during spawning migrations, which complicates sampling with conventional gears (e.g., nets and electrofishing). We compared the efficiency of a passive migration technique (resistance board weirs) and an active technique (prepositioned areal electrofishers; [PAEs]) for sampling migrating potamodromous fishes in Valley River, a southern Appalachian Mountain river, from March through July 2006 and 2007. A total of 35 fish species from 10 families were collected, 32 species by PAE and 19 species by weir. Species richness and diversity were higher for PAE catch, and species dominance (i.e., proportion of assemblage composed of the three most abundant species) was higher for weir catch. Prepositioned areal electrofisher catch by number was considerably higher than weir catch, but biomass was lower for PAE catch. Weir catch decreased following the spawning migration, while PAEs continued to collect fish. Sampling bias associated with water velocity was detected for PAEs, but not weirs, and neither gear demonstrated depth bias in wadeable reaches. Mean fish mortality from PAEs was five times greater than that from weirs. Catch efficiency and composition comparisons indicated that weirs were effective at documenting migration chronology, sampling nocturnal migration, and yielding samples unbiased by water velocity or habitat, with low mortality. Prepositioned areal electrofishers are an appropriate sampling technique for seasonal fish occupancy objectives, while weirs are more suitable for quantitatively describing spawning migrations. Our comparative results may guide fisheries scientists in selecting an appropriate sampling gear and regime for research, monitoring, conservation, and management of potamodromous fishes.

  5. Viewpoints of high migratory tuna species ecology. Comment on ;Physics of metabolic organization; by M. Jusup et al.

    NASA Astrophysics Data System (ADS)

    Kitagawa, Takashi; Aoki, Yoshinori

    2017-03-01

    When discussing the evolution of fish migration, it is necessary to consider the total benefit fish acquire over their entire life history. With diadromous migration, for instance, some fish species migrate from freshwater and feed in the ocean (anadromous species), and others migrate from the ocean and feed in freshwater (catadromous). These contrasting directions of migration can largely be explained by the relative availability of food resources in ocean and freshwater habitats [1]. However, there are few examples that measure or quantify total energy as a concrete value that a single fish acquires through migration.

  6. [Downstream migration, behavior, and distribution of fish fry in the lower reaches of the Ozernaya River (southwestern Kamchatka)].

    PubMed

    Pavlov, D S; Kirillova, E A; Kirillov, P I; Nezdoliĭ, V K

    2015-01-01

    Fry of five species of salmonids are found in the lower reaches of the Ozernaya River. The most abundant are chum salmon and pink salmon which compose the bulk of fry which migrate downstream from the river to the sea. The dates and duration of migration of particular species differed according to the specific traits of their biology. Pink salmon is characterized by a simple migration strategy: it migrated downstream in a short time after emergence from theground. Chum salmon has two strategies of downstream migration: some fry start migration soon after emergence, and others remained in the river for several weeks. Downstream migration of pink salmon occurred mainly at night in contrast to that of chum salmon, over 24 h, the part of daytime increased with growth, of the fish. Migration of pink salmon was passive. Passive migration of chum salmon changed into active-passive with growth of the fish. The ratio of fish in the inshore zone and in the current was different in the course of 24 h. The number of fish in the inshore zone decreased in the period of intensive downstream migration.

  7. Life histories of potamodromous fishes [Chapter 4

    Treesearch

    Russell F. Thurow

    2016-01-01

    Potamodromous fishes move and complete their life cycle entirely within freshwater. Myers (1949) proposed the term potamodromous to distinguish freshwater migratory fishes from diadromous fishes, which migrate between the sea and freshwater and oceanodromous fishes that migrate wholly within the sea. Diadromous fishes include anadromous, catadromous and amphidromous...

  8. Spatially explicit measures of production of young alewives in Lake Michigan: Linkage between essential fish habitat and recruitment

    USGS Publications Warehouse

    Hook, Tomas O.; Rutherford, Edward S.; Brines, Shannon J.; Mason, Doran M.; Schwab, David J.; McCormick, Michael; Desorcie, Timothy J.

    2003-01-01

    The identification and protection of essential habitats for early life stages of fishes are necessary to sustain fish stocks. Essential fish habitat for early life stages may be defined as areas where fish densities, growth, survival, or production rates are relatively high. To identify critical habitats for young-of-year (YOY) alewives (Alosa pseud oharengus) in Lake Michigan, we integrated bioenergetics models with GIS (Geographic Information Systems) to generate spatially explicit estimates of potential population production (an index of habitat quality). These estimates were based upon YOY alewife bioenergetic growth rate potential and their salmonine predators’ consumptive demand. We compared estimates of potential population production to YOY alewife yield (an index of habitat importance). Our analysis suggested that during 1994–1995, YOY alewife habitat quality and yield varied widely throughout Lake Michigan. Spatial patterns of alewife yield were not significantly correlated to habitat quality. Various mechanisms (e.g., predator migrations, lake circulation patterns, alternative strategies) may preclude YOY alewives from concentrating in areas of high habitat quality in Lake Michigan.

  9. Stripes and belly-spots – a review of pigment cell morphogenesis in vertebrates

    PubMed Central

    Kelsh, Robert N.; Harris, Melissa L.; Colanesi, Sarah; Erickson, Carol A.

    2009-01-01

    Pigment patterns in the integument have long-attracted attention from both scientists and non-scientists alike since their natural attractiveness combines with their excellence as models for the general problem of pattern formation. Pigment cells are formed from the neural crest and must migrate to reach their final locations. In this review, we focus on our current understanding of mechanisms underlying the control of pigment cell migration and patterning in diverse vertebrates. The model systems discussed here –chick, mouse, and zebrafish – each provide unique insights into the major morphogenetic events driving pigment pattern formation. In birds and mammals, melanoblasts must be specified before they can migrate on the dorsolateral pathway. Transmembrane receptors involved in guiding them onto this route include EphB2 and Ednrb2 in chick, and Kit in mouse. Terminal migration depends, in part, upon extracellular matrix reorganization by ADAMTS20. Invasion of the ectoderm, especially into the feather germ and hair follicles, requires specific signals that are beginning to be characterized. We summarize our current understanding of the mechanisms regulating melanoblast number and organization in the epidermis. We note the apparent differences in pigment pattern formation in poikilothermic vertebrates when compared with birds and mammals. With more pigment cell types, migration pathways are more complex and largely unexplored; nevertheless, a role for Kit signaling in melanophore migration is clear and indicates that at least some patterning mechanisms may be highly conserved. We summarize the multiple factors thought to contribute to zebrafish embryonic pigment pattern formation, highlighting a recent study identifying Sdf1a as one factor crucial for regulation of melanophore positioning. Finally, we discuss the mechanisms generating a second, metamorphic pigment pattern in adult fish, emphasizing recent studies strengthening the evidence that undifferentiated progenitor cells play a major role in generating adult pigment cells. PMID:18977309

  10. Downstream migration and multiple dam passage by Atlantic Salmon smolts

    USGS Publications Warehouse

    Nyqvist, D.; McCormick, Stephen; Greenberg, L.; Ardren, W.R.; Bergman, E.; Calles, O.; Castro-Santos, Theodore R.

    2017-01-01

    The purpose of this study was to investigate behavior and survival of radio-tagged wild and hatchery-reared landlocked Atlantic Salmon Salmo salar smolts as they migrated past three hydropower dams equipped with fish bypass solutions in the Winooski River, Vermont. Among hatchery-reared smolts, those released early were more likely to initiate migration and did so after less delay than those released late. Once migration was initiated, however, the late-released hatchery smolts migrated at greater speeds. Throughout the river system, hatchery-reared fish performed similarly to wild fish. Dam passage rates varied between the three dams and was highest at the dam where unusually high spill levels occurred throughout the study period. Of the 50 fish that did migrate downstream, only 10% managed to reach the lake. Migration success was low despite the presence of bypass solutions, underscoring the need for evaluations of remedial measures; simply constructing a fishway is not synonymous with providing fish passage.

  11. Deglacial changes in oxygen minimum zones - the roles of physics, phytoplankton and ... fish? (Invited)

    NASA Astrophysics Data System (ADS)

    Galbraith, E. D.; bianchi, D.

    2013-12-01

    A global network of marine multi-proxy sediment records has shown that during the last deglaciation, hypoxic waters of the northern Indo-Pacific expanded, the oxygen minimum zones intensified, and denitrification within the oxygen minima accelerated. These changes would have impacted the fish and zooplankton that migrate on a daily basis down to the upper margins of hypoxic, or even suboxic waters, presumably in order to hide from predators. But the reasons behind these observed changes remain uncertain. Physical circulation changes could have altered the supply rate of oxygen to the subsurface, simultaneously modifying the resupply of nutrients to the ocean surface, while changes in dust deposition could have changed the iron nutrition of phytoplankton, further modifying export fluxes. Changes in respiration patterns could also have played an important part, either by altering the sinking depth of organic particles, or - perhaps - through changes in the respiration patterns of migrating animals, which could have acted as a strong feedback on any of the other changes. We show model simulations that explore the possible roles of these different mechanisms in natural oceanic oxygenation changes of the Quaternary.

  12. Webinar on PTM with CMS

    DTIC Science & Technology

    2013-12-04

    Coral Reef Dredging Project SAV Migrating Fish Coral Reef Dredging Project SAV Migrating Fish... Coral Reef Dredging Project SAV Migrating Fish Coral Reef Dredging Project Coastal and Hydraulics Laboratory 22 Dredging Materials and...Introduction to CMS Coastal and Hydraulics Laboratory Integrated waves , current, and sediment transport model in the Surface-water Modeling

  13. Migratory patterns of hatchery and stream-reared Atlantic salmon Salmo salar smolts in the Connecticut River, U.S.A.

    USGS Publications Warehouse

    McCormick, Stephen D.; Haro, Alexander; Lerner, Darren T.; O'Dea, Michael F.; Regish, Amy M.

    2014-01-01

    The timing of downstream migration and detection rates of hatchery-reared Atlantic salmon Salmo salar smolts and stream-reared smolts (stocked 2 years earlier as fry) were examined in the Connecticut River (U.S.A.) using passive integrated transponder (PIT) tags implanted into fish and then detected at a downstream fish bypass collection facility at Turners Falls, MA (river length 192 km). In two successive years, hatchery-reared smolts were released in mid-April and early May at two sites: the West River (river length 241 km) or the Passumpsic (river length 450 km). Hatchery-reared smolts released higher in the catchment arrived 7 to 14 days later and had significantly lower detection rates than smolts stocked lower in the catchment. Hatchery-reared smolts released 3 weeks apart at the same location were detected downstream at similar times, indicating that early-release smolts had a lower average speed after release and longer residence time. The size and gill Na+/K+-ATPase (NKA) activity of smolts at the time of release were significantly greater for detected fish (those that survived and migrated) than for those that were not detected. Stream-reared pre-smolts (>11·5 cm) from four tributaries (length 261–551 km) were tagged in autumn and detected during smolt migration the following spring. Stream-reared smolts higher in the catchment arrived later and had significantly lower detection rates. The results indicate that both hatchery and stream-reared smolts from the upper catchment will arrive at the mouth of the river later and experience higher overall mortality than fish from lower reaches, and that both size and gill NKA activity are related to survival during downstream migration.

  14. Is feeding behaviour related to glass eel propensity to migrate?

    NASA Astrophysics Data System (ADS)

    Bureau du Colombier, Sarah; Lambert, Patrick; Bardonnet, Agnès

    2008-11-01

    Several studies have shown that eel diadromy is facultative and that migratory divergences may appear during glass eel estuarine migration. The origin of the differences in migratory behaviour among glass eels remains unclear but initial evidence supports the role of individual energetic and thyroidal status. Even if starvation is usually associated with glass eel migration, feeding does seem to occur in some glass eels. The aim of the present study was to investigate feeding behaviour and glass eel growth in relation to the propensity to migrate. Feeding rate and weight gain were higher in fish having a high propensity to migrate (M + fish) than in fish having a low propensity to migrate (M - fish) in fed glass eels, whereas no clear difference in the variation in body weight was observed among unfed fish (controls). M - fish initially had lower percent dry weight than M + fish, which suggests a link between appetite, propensity to migrate, and energy content. We discuss the role played by endocrine signals on these processes. In fish, thyroid hormones contribute to the control of growth and development. In addition, they play a role in flatfish and leptocephalus metamorphosis and appear to be involved in smolt and glass eel migratory behaviour. As such, they represent a good candidate which would promote the propensity to migrate as well as digestive system development. Their role in the hormonal control of food intake however remains vague. The large and sharp decline in glass eel abundances observed since the 1980s could partly be explained by changes in ocean productivity. If so, it could be accompanied by a decrease in glass eel energy stores. The ability to resume feeding in the course of the estuarine crossing would then represent a serious advantage to maintain energy levels compatible with migration.

  15. A field reciprocal transplant experiment reveals asymmetric costs of migration between lake and river ecotypes of three-spined sticklebacks (Gasterosteus aculeatus).

    PubMed

    Kaufmann, J; Lenz, T L; Kalbe, M; Milinski, M; Eizaguirre, C

    2017-05-01

    Theory of local adaptation predicts that nonadapted migrants will suffer increased costs compared to local residents. Ultimately this process can result in the reduction of gene flow and culminate in speciation. Here, we experimentally investigated the relative fitness of migrants in foreign habitats, focusing on diverging lake and river ecotypes of three-spined sticklebacks. A reciprocal transplant experiment performed in the field revealed asymmetric costs of migration: whereas mortality of river fish was increased under lake conditions, lake migrants suffered from reduced growth relative to river residents. Selection against migrants thus involved different traits in each habitat but generally contributed to bidirectional reduction in gene flow. Focusing particularly on the parasitic environments, migrant fish differed from resident fish in the parasite community they harboured. This pattern correlated with both cellular phenotypes of innate immunity as well as with allelic variation at the genes of the major histocompatibility complex. In addition to showing the costs of migration in three-spined sticklebacks, this study highlights the role of asymmetric selection particularly from parasitism in genotype sorting and in the emergence of local adaptation. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  16. Behavior and reproductive ecology of the Sicklefin Redhorse: An imperiled southern Appalachian Mountain fish

    USGS Publications Warehouse

    Favrot, Scott D.; Kwak, Thomas J.

    2018-01-01

    Many nongame fishes are poorly understood but are essential to maintaining healthy aquatic ecosystems globally. The undescribed Sicklefin Redhorse Moxostoma sp. is a rare, imperiled, nongame fish endemic to two southern Appalachian Mountain river basins. Little is known of its behavior and ecology, but this information is urgently needed for conservation planning. We assessed the spatial and temporal bounds of spawning migration, quantified seasonal weekly movement patterns, and characterized seasonal and spawning behavior using radiotelemetry and weir sampling in the Hiwassee River basin, North Carolina–Georgia, during 2006 and 2007. Hiwassee River tributaries were occupied predominantly during the fish's spawning season, lower reaches of the tributaries and the Hiwassee River were primarily occupied during the postspawning season (i.e., summer and fall), and lower lotic reaches of Hiwassee River (upstream from Hiwassee Lake) were occupied during winter. Adults occupied Hiwassee Lake only as a movement corridor during spawning migrations. Both sexes conducted upstream spawning migrations simultaneously, but males occupied spawning tributaries longer than females. Sicklefin Redhorse exhibited interannual spawning‐area and tributary fidelity. Cold water temperatures associated with hypolimnetic releases from reservoirs and meteorological conditions influenced spawning migration distance and timing. During 2007, decreased discharges during the spawning season were associated with decreases in migration distance and spawning tributary occupancy duration. Foraging was the dominant behavior observed annually, followed by reproductive behaviors (courting and spawning) during the spawning season. No agonistic reproductive behavior was observed, but females exhibited a repetitious postspawning digging behavior that may be unique in the family Catostomidae. Our findings suggest that protection and restoration of river continuity, natural flow regimes, seasonally appropriate water temperatures, and geographic range expansion are critical components to include in Sicklefin Redhorse conservation planning. Fisheries and ecosystem managers can use our findings to justify sensitive management decisions that conserve and restore critical streams and rivers occupied by this imperiled species.

  17. A Foraging Cost of Migration for a Partially Migratory Cyprinid Fish

    PubMed Central

    Chapman, Ben B.; Eriksen, Anders; Baktoft, Henrik; Brodersen, Jakob; Nilsson, P. Anders; Hulthen, Kaj; Brönmark, Christer; Hansson, Lars-Anders; Grønkjær, Peter; Skov, Christian

    2013-01-01

    Migration has evolved as a strategy to maximise individual fitness in response to seasonally changing ecological and environmental conditions. However, migration can also incur costs, and quantifying these costs can provide important clues to the ultimate ecological forces that underpin migratory behaviour. A key emerging model to explain migration in many systems posits that migration is driven by seasonal changes to a predation/growth potential (p/g) trade-off that a wide range of animals face. In this study we assess a key assumption of this model for a common cyprinid partial migrant, the roach Rutilus rutilus, which migrates from shallow lakes to streams during winter. By sampling fish from stream and lake habitats in the autumn and spring and measuring their stomach fullness and diet composition, we tested if migrating roach pay a cost of reduced foraging when migrating. Resident fish had fuller stomachs containing more high quality prey items than migrant fish. Hence, we document a feeding cost to migration in roach, which adds additional support for the validity of the p/g model of migration in freshwater systems. PMID:23723967

  18. Ontogenetic development of migration: Lagrangian drift trajectories suggest a new paradigm for sea turtles.

    PubMed

    Hays, Graeme C; Fossette, Sabrina; Katselidis, Kostas A; Mariani, Patrizio; Schofield, Gail

    2010-09-06

    Long distance migration occurs in a wide variety of taxa including birds, insects, fishes, mammals and reptiles. Here, we provide evidence for a new paradigm for the determinants of migration destination. As adults, sea turtles show fidelity to their natal nesting areas and then at the end of the breeding season may migrate to distant foraging sites. For a major rookery in the Mediterranean, we simulated hatchling drift by releasing 288 000 numerical particles in an area close to the nesting beaches. We show that the pattern of adult dispersion from the breeding area reflects the extent of passive dispersion that would be experienced by hatchlings. Hence, the prevailing oceanography around nesting areas may be crucial to the selection of foraging sites used by adult sea turtles. This environmental forcing may allow the rapid evolution of new migration destinations if ocean currents alter with climate change.

  19. Animal migration and risk of spread of viral infections: Chapter 9

    USGS Publications Warehouse

    Prosser, Diann J.; Nagel, Jessica; Takekawa, John Y.; Edited by Singh, Sunit K.

    2013-01-01

    The potential contribution of migration towards the spread of disease is as varied as the ecology of the pathogens themselves and their host populations. This chapter outlines multiple examples of viral diseases in animal populations and their mechanisms of viral spread. Many species of insects, mammals, fish, and birds exhibit migratory behavior and have the potential to disperse diseases over long distances. The majority of studies available on viral zoonoses have focused on birds and bats, due to their highly migratory life histories. A number of studies have reported evidence of changes in the timing of animal migrations in response to climate change. The majority indicate an advancement of spring migration, with few or inconclusive results for fall migration. Predicting the combined effects of climate change on migratory patterns of host species and epidemiology of viral pathogens is complex and not fully realistic.

  20. Ontogenetic development of migration: Lagrangian drift trajectories suggest a new paradigm for sea turtles

    PubMed Central

    Hays, Graeme C.; Fossette, Sabrina; Katselidis, Kostas A.; Mariani, Patrizio; Schofield, Gail

    2010-01-01

    Long distance migration occurs in a wide variety of taxa including birds, insects, fishes, mammals and reptiles. Here, we provide evidence for a new paradigm for the determinants of migration destination. As adults, sea turtles show fidelity to their natal nesting areas and then at the end of the breeding season may migrate to distant foraging sites. For a major rookery in the Mediterranean, we simulated hatchling drift by releasing 288 000 numerical particles in an area close to the nesting beaches. We show that the pattern of adult dispersion from the breeding area reflects the extent of passive dispersion that would be experienced by hatchlings. Hence, the prevailing oceanography around nesting areas may be crucial to the selection of foraging sites used by adult sea turtles. This environmental forcing may allow the rapid evolution of new migration destinations if ocean currents alter with climate change. PMID:20236958

  1. Deep-pelagic (0-3000 m) fish assemblage structure over the Mid-Atlantic Ridge in the area of the Charlie-Gibbs Fracture Zone

    NASA Astrophysics Data System (ADS)

    Cook, April B.; Sutton, Tracey T.; Galbraith, John K.; Vecchione, Michael

    2013-12-01

    Only a miniscule fraction of the world’s largest volume of living space, the ocean’s midwater biome, has ever been sampled. As part of the International Census of Marine Life field project on Mid-Atlantic Ridge ecosystems (MAR-ECO), a discrete-depth trawling survey was conducted in 2009 aboard the NOAA FSV Henry B. Bigelow to examine the pelagic faunal assemblage structure and distribution over the Charlie-Gibbs Fracture Zone (CGFZ) of the northern Mid-Atlantic Ridge. Day/night sampling at closely spaced stations allowed the first characterization of diel vertical migration of pelagic nekton over the MAR-ECO study area. Discrete-depth sampling from 0-3000 m was conducted using a Norwegian “Krill” trawl with five codends that were opened and closed via a pre-programmed timer. Seventy-five species of fish were collected, with a maximum diversity and biomass observed between depths of 700-1900 m. A gradient in sea-surface temperature and underlying watermasses, from northwest to southeast, was mirrored by a similar gradient in ichthyofaunal diversity. Using multivariate analyses, eight deep-pelagic fish assemblages were identified, with depth as the primary discriminatory variable. Strong diel vertical migration (DVM) of the mesopelagic fauna was a prevalent feature of the study area, though the numerically dominant fish, Cyclothone microdon (Gonostomatidae), exhibited a broad (0-3000 m) vertical distribution and did not appear to migrate on a diel basis. Three patterns of vertical distribution were observed in the study area: (a) DVM of mesopelagic, and possibly bathypelagic, taxa; (b) broad vertical distribution spanning meso- and bathypelagic depths; and (c) discrete vertical distribution within a limited depth range. Overall species composition and rank order of abundance of fish species agreed with two previous expeditions to the CGFZ (1982-1983 and 2004), suggesting some long-term consistency in the ichthyofaunal composition of the study area, at least in the summer. Frequent captures of putative bathypelagic fishes, shrimps, and cephalopods in the epipelagic zone (0-200 m) were confirmed. The results of this expedition reveal distributional patterns unlike those previously reported for open-ocean ecosystems, with the implication of increased transfer efficiency of surface production to great depths in the mid-North Atlantic.

  2. Understanding barotrauma in fish passing hydro structures: a global strategy for sustainable development of water resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Richard S.; Colotelo, Alison HA; Pflugrath, Brett D.

    2014-03-24

    Freshwater fishes are one of the most imperiled groups of vertebrates and species declines have been linked to a number of anthropogenic influences. This is alarming as the diversity and stability of populations are at risk. In addition, freshwater fish serve as important protein sources, particularly in developing countries. One of the focal activities thought to influence freshwater fish population declines is water resource development, which is anticipated to increase over the next several decades. For fish encountering hydro structures, such as passing through hydroturbines, there may be a rapid decrease in pressure which can lead to injuries commonly referredmore » to as barotraumas. The authors summarize the research to date that has examined the effects of rapid pressure changes on fish and outline the most important factors to consider (i.e., swim bladder morphology, depth of acclimation, migration pattern and life stage) when examining the susceptibility of barotraumas for fish of interest.« less

  3. Fine-scale spatial patterns in the demersal fish and invertebrate community in a northwest Atlantic ecosystem

    NASA Astrophysics Data System (ADS)

    Malek, Anna J.; Collie, Jeremy S.; Gartland, James

    2014-06-01

    The abundance, biomass, diversity, and species composition of the demersal fish and invertebrate community in Rhode Island Sound and Block Island Sound, an area identified for offshore renewable energy development, were evaluated for spatial and seasonal structure. We conducted 58 otter trawls and 51 beam trawls in the spring, summer and fall of 2009-2012, and incorporated additional data from 88 otter trawls conducted by the Northeast Area Monitoring and Assessment Program. We used regionally-grouped abundance, biomass, diversity, and size spectra to assess spatial patterns in the aggregate fish community, and hierarchical cluster analysis to evaluate trends in species assemblages. Our analyses revealed coherent gradients in fish community biomass, diversity and species composition extending from inshore to offshore waters, as well as patterns related to the differing bathymetry of Rhode Island and Block Island Sounds. The fish communities around Block Island and Cox's Ledge are particularly diverse, suggesting that the proximity of hard bottom habitat may be important in structuring fish communities in this area. Species assemblages in Rhode Island and Block Island Sounds are characterized by a combination of piscivores (silver hake, summer flounder, spiny dogfish), benthivores (American lobster, black sea bass, Leucoraja spp. skates, scup) and planktivores (sea scallop), and exhibit geographic patterns that are persistent from year to year, yet variable by season. Such distributions reflect the cross-shelf migration of fish and invertebrate species in the spring and fall, highlighting the importance of considering seasonal fish behavior when planning construction schedules for offshore development projects. The fine spatial scale (10 s of kms) of this research makes it especially valuable for local marine spatial planning efforts by identifying local-scale patterns in fish community structure that will enable future assessment of the ecological impacts of offshore development. As such, this knowledge of the spatial and temporal structure of the demersal fish community in Rhode Island and Block Island Sounds will help to guide the placement of offshore structures so as to preserve the ecological and economic value of the area.

  4. Linkages between life history type and migration pathways in freshwater and marine environments for Chinook salmon, Oncorhynchus tshawytscha

    NASA Astrophysics Data System (ADS)

    Sharma, Rishi; Quinn, Thomas P.

    2012-05-01

    Chinook salmon, Oncorhynchus tshawytscha, are commonly categorized as ocean-type (migrating to the ocean in their first year of life) or stream-type (migrating after a full year in freshwater). These two forms have been hypothesized to display different ocean migration pathways; the former are hypothesized to migrate primarily on the continental shelf whereas the latter are hypothesized to migrate off the shelf to the open ocean. These differences in migration patterns have important implications for management, as fishing mortality rates are strongly influenced by ocean migration. Ocean-type Chinook salmon predominate in coastal rivers in the southern part of the species' range, whereas stream-type predominate in the interior and northerly rivers. This latitudinal gradient has confounded previous efforts to test the hypothesis regarding ocean migration pathways. To address this problem, we used a pair-wise design based on coded wire tagging data to compare the marine distributions of stream- and ocean-type Chinook salmon from a suite of rivers producing both forms. Both forms of Chinook salmon from the lower Columbia River, Oregon coast, lower Fraser River, and northern British Columbia rivers followed similar migration paths, contradicting the hypothesis. In contrast, recoveries of tagged Chinook salmon from the upper Columbia River, Snake River, and the upper Fraser River revealed migration patterns consistent with the hypothesis. These findings have important implications for our understanding of these life history types, and also for the conservation and management of declining, threatened, or endangered stream-type Chinook salmon populations in the US and Canada.

  5. Seasonally dynamic diel vertical migrations of Mysis diluviana, coregonine fishes, and siscowet lake trout in the pelagia of western Lake Superior

    USGS Publications Warehouse

    Ahrenstorff, Tyler D.; Hrabik, Thomas R.; Stockwell, Jason D.; Yule, Daniel L.; Sass, Greg G.

    2011-01-01

    Diel vertical migrations are common among many aquatic species and are often associated with changing light levels. The underlying mechanisms are generally attributed to optimizing foraging efficiency or growth rates and avoiding predation risk (μ). The objectives of this study were to (1) assess seasonal and interannual changes in vertical migration patterns of three trophic levels in the Lake Superior pelagic food web and (2) examine the mechanisms underlying the observed variability by using models of foraging, growth, and μ. Our results suggest that the opossum shrimp Mysis diluviana, kiyi Coregonus kiyi, and siscowet lake trout Salvelinus namaycush migrate concurrently during each season, but spring migrations are less extensive than summer and fall migrations. In comparison with M. diluviana, kiyis, and siscowets, the migrations by ciscoes C. artedi were not as deep in the water column during the day, regardless of season. Foraging potential and μ probably drive the movement patterns of M. diluviana, while our modeling results indicate that movements by kiyis and ciscoes are related to foraging opportunity and growth potential and receive a lesser influence from μ. The siscowet is an abundant apex predator in the pelagia of Lake Superior and probably undertakes vertical migrations in the water column to optimize foraging efficiency and growth. The concurrent vertical movement patterns of most species are likely to facilitate nutrient transport in this exceedingly oligotrophic ecosystem, and they demonstrate strong linkages between predators and prey. Fishery management strategies should use an ecosystem approach and should consider how altering the densities of long-lived top predators produces cascading effects on the nutrient cycling and energy flow in lower trophic levels.

  6. The physiological basis of the migration continuum in brown trout (Salmo trutta).

    PubMed

    Boel, Mikkel; Aarestrup, Kim; Baktoft, Henrik; Larsen, Torben; Søndergaard Madsen, Steffen; Malte, Hans; Skov, Christian; Svendsen, Jon C; Koed, Anders

    2014-01-01

    Partial migration is common in many animal taxa; however, the physiological variation underpinning migration strategies remains poorly understood. Among salmonid fishes, brown trout (Salmo trutta) is one of the species that exhibits the most complex variation in sympatric migration strategies, expressed as a migration continuum, ranging from residency to anadromy. In looking at brown trout, our objective with this study was to test the hypothesis that variation in migration strategies is underpinned by physiological variation. Prior to migration, physiological samples were taken from fish in the stream and then released at the capture site. Using telemetry, we subsequently classified fish as resident, short-distance migrants (potamodromous), or long-distance migrants (potentially anadromous). Our results revealed that fish belonging to the resident strategy differed from those exhibiting any of the two migratory strategies. Gill Na,K-ATPase activity, condition factor, and indicators of nutritional status suggested that trout from the two migratory strategies were smoltified and energetically depleted before leaving the stream, compared to those in the resident strategy. The trout belonging to the two migratory strategies were generally similar; however, lower triacylglycerides levels in the short-distance migrants indicated that they were more lipid depleted prior to migration compared with the long-distance migrants. In the context of migration cost, we suggest that additional lipid depletion makes migrants more inclined to terminate migration at the first given feeding opportunity, whereas individuals that are less lipid depleted will migrate farther. Collectively, our data suggest that the energetic state of individual fish provides a possible mechanism underpinning the migration continuum in brown trout.

  7. Experimental study to control the upstream migration of invasive alien fish species by submerged weir

    NASA Astrophysics Data System (ADS)

    Sakuma, Masami; Kunimatsu, Fumihiro; Tsuchiya, Taku; Kawamura, Makiko; Fujita, Hiroshi

    Largemouth bass and Bluegill, major invasive alien fish species in Japan, have been extending their habitat ranges over not only Lake Biwa and the lagoons but also surrounding waters connected to them through small rivers and canals. Their increasing number is bringing about the reduction in the number of native fish species. To prevent the spread of these alien species through small rivers and canals during breeding season of the native fish (crucian carp), this study experimentally examined the effect of a submerged weir on controlling upstream migration of the alien species and the native fish. As a result of the experiment, the ratio of the alien species migrating upstream decreased as the weir height rose, whereas the ratio did not show the same trend in the case of the native fish. The ratio of the alien species also decreased as the overflow velocity over the weir rose. On the other hand, the ratio of the native fish increased as the overflow velocity rose up to 1.0m/s and decreased thereafter. These results suggest that the submerged weir may control upstream migration of the alien species to surrounding waters through small rivers and canals without interfering with the reproductive migration of the native fish.

  8. Bile salts as semiochemicals in fish

    USGS Publications Warehouse

    Buchinger, Tyler J.; Li, Weiming; Johnson, Nicholas S.

    2014-01-01

    Bile salts are potent olfactory stimuli in fishes; however the biological functions driving such sensitivity remain poorly understood. We provide an integrative review of bile salts as semiochemicals in fish. First, we present characteristics of bile salt structure, metabolism, and function that are particularly relevant to chemical communication. Bile salts display a systematic pattern of structural variation across taxa, are efficiently synthesized, and are stable in the environment. Bile salts are released into the water via the intestine, urinary tract, or gills, and are highly water soluble. Second, we consider the potential role of bile salts as semiochemicals in the contexts of detecting nearby fish, foraging, assessing risk, migrating, and spawning. Lastly, we suggest future studies on bile salts as semiochemicals further characterize release into the environment, behavioral responses by receivers, and directly test the biological contexts underlying olfactory sensitivity.

  9. Assessment of the Fishery Improvement Opportunities on the Pend Oreille River, 1989 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barber, Michael R.; Renberg, Becky L.; Vella, John J.

    1990-09-01

    The purpose of this study was to assess the fishery improvement opportunities on the Box Canyon portion of the Pend Oreille River. This three year study was initiated as part of the Northwest Power Planning Council's 1987 Columbia River Basin Fish and Wildlife Program. This report contains the findings of the second year of the study. Currently, yellow perch (Perca flavescens (Mitchill)) are the predominant fish species in the river and largemouth bass (Micropterus salmoides (Lacepede)) are the predominant sport fish. The objectives of the second year of the study were to determine: the relative abundance of each species inmore » the river and sloughs; the population levels in five selected tributaries and, if possible, for fish in the river and sloughs; fish growth rates; the feeding habits and abundance of preferred prey; migration patterns; and the total fishing pressure, catch-per-unit-effort, and total harvest by conducting a year-round creel survey. 55 refs., 7 figs., 154 tabs.« less

  10. Fish navigation of large dams emerges from their modulation of flow field experience

    PubMed Central

    Goodwin, R. Andrew; Politano, Marcela; Garvin, Justin W.; Nestler, John M.; Hay, Duncan; Anderson, James J.; Weber, Larry J.; Dimperio, Eric; Smith, David L.; Timko, Mark

    2014-01-01

    Navigating obstacles is innate to fish in rivers, but fragmentation of the world’s rivers by more than 50,000 large dams threatens many of the fish migrations these waterways support. One limitation to mitigating the impacts of dams on fish is that we have a poor understanding of why some fish enter routes engineered for their safe travel around the dam but others pass through more dangerous routes. To understand fish movement through hydropower dam environments, we combine a computational fluid dynamics model of the flow field at a dam and a behavioral model in which simulated fish adjust swim orientation and speed to modulate their experience to water acceleration and pressure (depth). We fit the model to data on the passage of juvenile Pacific salmonids (Oncorhynchus spp.) at seven dams in the Columbia/Snake River system. Our findings from reproducing observed fish movement and passage patterns across 47 flow field conditions sampled over 14 y emphasize the role of experience and perception in the decision making of animals that can inform opportunities and limitations in living resources management and engineering design. PMID:24706826

  11. Diel activity patterns of juvenile late fall-run Chinook salmon with implications for operation of a gated water diversion in the Sacramento–San Joaquin River Delta

    USGS Publications Warehouse

    Plumb, John M.; Adams, Noah S.; Perry, Russell W.; Holbrook, Christopher; Romine, Jason G.; Blake, Aaron R.; Burau, Jon R.

    2016-01-01

    In the Sacramento-San Joaquin River Delta, California, tidal forces that reverse river flows increase the proportion of water and juvenile late fall-run Chinook salmon diverted into a network of channels that were constructed to support agriculture and human consumption. This area is known as the interior delta, and it has been associated with poor fish survival. Under the rationale that the fish will be diverted in proportion to the amount of water that is diverted, the Delta Cross Channel (DCC) has been prescriptively closed during the winter out-migration to reduce fish entrainment and mortality into the interior delta. The fish are thought to migrate mostly at night, and so daytime operation of the DCC may allow for water diversion that minimizes fish entrainment and mortality. To assess this, the DCC gate was experimentally opened and closed while we released 2983 of the fish with acoustic transmitters upstream of the DCC to monitor their arrival and entrainment into the DCC. We used logistic regression to model night-time arrival and entrainment probabilities with covariates that included the proportion of each diel period with upstream flow, flow, rate of change in flow and water temperature. The proportion of time with upstream flow was the most important driver of night-time arrival probability, yet river flow had the largest effect on fish entrainment into the DCC. Modelling results suggest opening the DCC during daytime while keeping the DCC closed during night-time may allow for water diversion that minimizes fish entrainment into the interior delta.

  12. Diversity in migratory patterns among Neotropical fishes in a highly regulated river basin.

    PubMed

    Makrakis, M C; Miranda, L E; Makrakis, S; Fontes Júnior, H M; Morlis, W G; Dias, J H P; Garcia, J O

    2012-07-01

    Migratory behaviour of selected fish species is described in the Paraná River, Brazil-Argentina-Paraguay, to search for patterns relevant to tropical regulated river systems. In a 10 year mark-recapture study, spanning a 1425 km section of the river, 32 867 fishes composed of 18 species were released and 1083 fishes were recaptured. The fishes recaptured were at liberty an average 166 days (maximum 1548 days) and travelled an average 35 km (range 0-625 km). Cluster analysis applied to variables descriptive of movement behaviour identified four general movement patterns. Cluster 1 included species that moved long distances (mean 164 km) upstream (54%) and downstream (40%) the mainstem river and showed high incidence (27%) of passage through dams; cluster 2 also exhibited high rate of movement along the mainstem (49% upstream, 13% downstream), but moved small distances (mean 10 km); cluster 3 included the most fishes moving laterally into tributaries (45%) or not moving at all (25%), but little downstream movement (8%); fishes in cluster 4 exhibited little upstream movement (13%) and farthest downstream movements (mean 41 km). Whereas species could be numerically clustered with statistical models, a species ordination showed ample spread, suggesting that species exhibit diverse movement patterns that cannot be easily classified into just a few classes. The cluster and ordination procedures also showed that adults and juveniles of the same species exhibit similar movement patterns. Conventional concepts about Neotropical migratory fishes portray them as travelling long distances upstream. The present results broaden these concepts suggesting that migratory movements are more diverse, could be long, short or at times absent, upriver, downriver or lateral, and the diversity of movements can vary within and among species. The intense lateral migrations exhibited by a diversity of species, especially to and from large tributaries (above reservoirs) and reservoir tributaries, illustrate the importance of these habitats for the fish species life cycle. Considering that the Paraná River is highly impounded, special attention should be given to the few remaining low-impact habitats as they continue to be targets of hydropower development that will probably intensify the effects on migratory fish stocks. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  13. Geomagnetic imprinting predicts spatio-temporal variation in homing migration of pink and sockeye salmon

    PubMed Central

    Putman, Nathan F.; Jenkins, Erica S.; Michielsens, Catherine G. J.; Noakes, David L. G.

    2014-01-01

    Animals navigate using a variety of sensory cues, but how each is weighted during different phases of movement (e.g. dispersal, foraging, homing) is controversial. Here, we examine the geomagnetic and olfactory imprinting hypotheses of natal homing with datasets that recorded variation in the migratory routes of sockeye (Oncorhynchus nerka) and pink (Oncorhynchus gorbuscha) salmon returning from the Pacific Ocean to the Fraser River, British Columbia. Drift of the magnetic field (i.e. geomagnetic imprinting) uniquely accounted for 23.2% and 44.0% of the variation in migration routes for sockeye and pink salmon, respectively. Ocean circulation (i.e. olfactory imprinting) predicted 6.1% and 0.1% of the variation in sockeye and pink migration routes, respectively. Sea surface temperature (a variable influencing salmon distribution but not navigation, directly) accounted for 13.0% of the variation in sockeye migration but was unrelated to pink migration. These findings suggest that geomagnetic navigation plays an important role in long-distance homing in salmon and that consideration of navigation mechanisms can aid in the management of migratory fishes by better predicting movement patterns. Finally, given the diversity of animals that use the Earth's magnetic field for navigation, geomagnetic drift may provide a unifying explanation for spatio-temporal variation in the movement patterns of many species. PMID:25056214

  14. Optimum swimming pathways of fish spawning migrations in rivers

    USGS Publications Warehouse

    McElroy, Brandon; DeLonay, Aaron; Jacobson, Robert

    2012-01-01

    Fishes that swim upstream in rivers to spawn must navigate complex fluvial velocity fields to arrive at their ultimate locations. One hypothesis with substantial implications is that fish traverse pathways that minimize their energy expenditure during migration. Here we present the methodological and theoretical developments necessary to test this and similar hypotheses. First, a cost function is derived for upstream migration that relates work done by a fish to swimming drag. The energetic cost scales with the cube of a fish's relative velocity integrated along its path. By normalizing to the energy requirements of holding a position in the slowest waters at the path's origin, a cost function is derived that depends only on the physical environment and not on specifics of individual fish. Then, as an example, we demonstrate the analysis of a migration pathway of a telemetrically tracked pallid sturgeon (Scaphirhynchus albus) in the Missouri River (USA). The actual pathway cost is lower than 105 random paths through the surveyed reach and is consistent with the optimization hypothesis. The implication—subject to more extensive validation—is that reproductive success in managed rivers could be increased through manipulation of reservoir releases or channel morphology to increase abundance of lower-cost migration pathways.

  15. Space-time cluster analysis of sea lice infestation (Caligus clemensi and Lepeophtheirus salmonis) on wild juvenile Pacific salmon in the Broughton Archipelago of Canada.

    PubMed

    Patanasatienkul, Thitiwan; Sanchez, Javier; Rees, Erin E; Pfeiffer, Dirk; Revie, Crawford W

    2015-06-15

    Sea lice infestation levels on wild chum and pink salmon in the Broughton Archipelago region are known to vary spatially and temporally; however, the locations of areas associated with a high infestation level had not been investigated yet. In the present study, the multivariate spatial scan statistic based on a Poisson model was used to assess spatial clustering of elevated sea lice (Caligus clemensi and Lepeophtheirus salmonis) infestation levels on wild chum and pink salmon sampled between March and July of 2004 to 2012 in the Broughton Archipelago and Knight Inlet regions of British Columbia, Canada. Three covariates, seine type (beach and purse seining), fish size, and year effect, were used to provide adjustment within the analyses. The analyses were carried out across the five months/datasets and between two fish species to assess the consistency of the identified clusters. Sea lice stages were explored separately for the early life stages (non-motile) and the late life stages of sea lice (motile). Spatial patterns in fish migration were also explored using monthly plots showing the average number of each fish species captured per sampling site. The results revealed three clusters for non-motile C. clemensi, two clusters for non-motile L. salmonis, and one cluster for the motile stage in each of the sea lice species. In general, the location and timing of clusters detected for both fish species were similar. Early in the season, the clusters of elevated sea lice infestation levels on wild fish are detected in areas closer to the rivers, with decreasing relative risks as the season progresses. Clusters were detected further from the estuaries later in the season, accompanied by increasing relative risks. In addition, the plots for fish migration exhibit similar patterns for both fish species in that, as expected, the juveniles move from the rivers toward the open ocean as the season progresses The identification of space-time clustering of infestation on wild fish from this study can help in targeting investigations of factors associated with these infestations and thereby support the development of more effective sea lice control measures. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Using radar to advance migratory bird management: An interagency collaboration

    USGS Publications Warehouse

    Sojda, R.; Ruth, J.M.; Barrow, W.C.; Dawson, D.K.; Diehl, R.H.; Manville, A.; Green, M.T.; Krueper, D.J.; Johnston, S.

    2005-01-01

    Migratory birds face many changes to the landscapes they traverse and the habitats they use. Wind turbines and communications towers, which pose hazards to birds and bats in flight, are being erected across the United States and offshore. Human activities can also destroy or threaten habitats critical to birds during migratory passage, and climate change appears to be altering migratory patterns. The U.S. Fish and Wildlife Service (USFWS) and other agencies are under increasing pressure to identify and evaluate movement patterns and habitats used during migration and other times.

  17. Complex movement patterns of greenback flounder (Rhombosolea tapirina) in the Murray River estuary and Coorong, Australia

    NASA Astrophysics Data System (ADS)

    Earl, Jason; Fowler, Anthony J.; Ye, Qifeng; Dittmann, Sabine

    2017-04-01

    The greenback flounder Rhombosolea tapirina is a commercially-important flatfish species in southern Australia and New Zealand, whose population dynamics are poorly understood. Acoustic telemetry was used to assess movement patterns and area use for R. tapirina in the Murray River estuary and Coorong, South Australia. Twenty fish (221-313 mm total length) equipped with acoustic transmitters were monitored for up to seven months during a period of high freshwater inflow. Fish were detected over a large part of the system, but showed a strong preference for brackish and near-marine conditions in the inner estuary. Tagged fish exhibited complex movement patterns that differed among individuals, including: (1) within estuary movements; (2) dispersal from the estuary to the sea; and (3) return migrations between the estuary and the sea. A diurnal shift in fine-scale area use was observed in the part of the estuary where residency was highest, with individuals occupying deeper habitats during the day and shallower areas during the night. The results demonstrate the individualistic and often highly transient behaviour of this species and its ability to undertake regular movements over the spatial scale of 10s of km. Understanding such movement patterns can improve effective management of estuarine flatfish populations and ecosystems.

  18. Assessment of the Fshery Improvement Opportunities on the Pend Oreille River, 1990 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashe, Becky L.; Lillengreen, Kelly L.; Vella, John J.

    1991-03-01

    The purpose of this study was to assess the fishery improvement opportunities on the Box Canyon portion of the Pend Oreilla River. This three year study was initiated as part of the Northwest Power Planning Council's 1987 Columbia River Basin Fish and Wildlife Program. This report contains the findings of the third and final year of the study. The objectives of the third year of the study were to determine the relative abundance of each species in the river and sloughs; the population levels in five selected tributaries and, if possible, for fish in the river and sloughs; each speciesmore » growth rate, feeding habits abundance preferred prey, and migration patterns; and the seasonal movement patterns and habitat utilization of largemouth bass. 64 refs., 8 figs., 263., tabs.« less

  19. Spatio-temporal variability in movement, age, and growth of mountain whitefish (Prosopium williamsoni) in a river network based upon PIT tagging and otolith chemistry

    USGS Publications Warehouse

    Benjamin, Joseph R.; Wetzel, Lisa A.; Martens, Kyle D.; Larsen, Kimberly; Connolly, Patrick J.

    2013-01-01

    Connectivity of river networks and the movements among habitats can be critical for the life history of many fish species, and understanding of the patterns of movement is central to managing populations, communities, and the landscapes they use. We combined passive integrated transponder tagging over 4 years and strontium isotopes in otoliths to demonstrate that 25% of the mountain whitefish (Prosopium williamsoni) sampled moved between the Methow and Columbia rivers, Washington, USA. Seasonal migrations downstream from the Methow River to the Columbia River to overwinter occurred in autumn and upstream movements in the spring. We observed migration was common during the first year of life, with migrants being larger than nonmigrants. However, growth between migrants and nonmigrants was similar. Water temperature was positively related to the proportion of migrants and negatively related to the timing of migration, but neither was related to discharge. The broad spatio-temporal movements we observed suggest mountain whitefish, and likely other nonanadromous fish, require distant habitats and also suggests that management and conservation strategies to keep connectivity of large river networks are imperative.

  20. Hydroacoustic Evaluation of Overwintering Summer Steelhead Fallback and Kelt Passage at The Dalles Dam 2008-2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Fenton; Johnson, Gary E.; Weiland, Mark A.

    2009-09-01

    This report presents the results of an evaluation of overwintering summer steelhead (Oncorhynchus mykiss) fallback and early out-migrating steelhead kelts downstream passage at The Dalles Dam (TDA) sluiceway and turbines during fall/winter 2008 and early spring 2009, respectively. The study was conducted by the Pacific Northwest National Laboratory (PNNL) for the U.S. Army Corps of Engineers, Portland District (USACE). Operating the sluiceway reduces the potential for hydropower production. However, this surface flow outlet may be the optimal non-turbine route for fallbacks in late fall after the sluiceway is typically closed for juvenile fish passage and for overwintering summer steelhead andmore » kelt passage in the early spring before the start of the voluntary spill season. The goal of this study was to characterize adult steelhead spatial and temporal distributions and passage rates at the sluiceway and turbines, and their movements in front of the sluiceway at TDA to inform fisheries managers’ and engineers’ decision-making relative to sluiceway operations. The study periods were from November 1 to December 15, 2008 (45 days) and from March 1 to April 9, 2009 (40 days). The study objectives were to 1) estimate the number and distribution of overwintering summer steelhead fallbacks and kelt-sized acoustic targets passing into the sluiceway and turbines at TDA during the two study periods, respectively, and 2) assess the behavior of these fish in front of sluice entrances. We obtained fish passage data using fixed-location hydroacoustics and fish behavior data using acoustic imaging. For the overwintering summer steelhead, fallback occurred throughout the 45-day study period. We estimated that a total of 1790 ± 250 (95% confidence interval) summer steelhead targets passed through the powerhouse intakes and operating sluices during November 1 to December 15, 2008. Ninety five percent of these fish passed through the sluiceway. Therefore, without the sluiceway as a route through the dam, a number of steelhead may have fallen back through turbines. Run timing peaked in late November, but fish continued to pass the dam until the end of the study. Horizontal distribution data indicated that sluice 1 is the preferred route for these fish during fallback through the dam. Diel distribution for overwintering steelhead fallbacks was variable with no apparent distinct patterns. Therefore, sluiceway operations should not be based on diel distribution. For the early spring study, overwintering summer steelhead and early out-migrating steelhead kelt downstream passage occurred throughout the 40-day study period. A total of 1766 ± 277 (95% confidence interval) kelt-size targets were estimated to have passed through the powerhouse intakes and operating sluices. Ninety five percent of these fish passed through the sluiceway. Therefore, as with steelhead fallback, not having the sluiceway as a route through the dam, a number of overwintering steelhead and kelts may use the turbines for downstream passage before the start of the spill season. Run timing peaked in late March; however, relatively large numbers of kelt-sized targets passed the dam on March 2 and March 6 (162 and 188 fish, respectively). Horizontal distribution indicated that sluice 1 is the preferred route for these adult salmonids as they migrate downstream through the dam. Again, no clear pattern was seen for diel distribution of overwintering steelhead and early out-migrating kelt passage.« less

  1. Behavioural thermoregulation and bioenergetics of riverine smallmouth bass associated with ambient cold-period thermal refuge

    USGS Publications Warehouse

    Westhoff, Jacob T.; Paukert, Craig P.; Ettinger-Dietzel, Sarah; Dodd, H.R.; Siepker, Michael

    2016-01-01

    Smallmouth bass in thermally heterogeneous streams may behaviourally thermoregulate during the cold period (i.e., groundwater temperature greater than river water temperature) by inhabiting warm areas in the stream that result from high groundwater influence or springs. Our objectives were to determine movement of smallmouth bass (Micropterus dolomieu) that use thermal refuge and project differences in growth and consumption among smallmouth bass exhibiting different thermal-use patterns. We implanted radio transmitters in 29 smallmouth bass captured in Alley Spring on the Jacks Fork River, Missouri, USA, during the winter of 2012. Additionally, temperature archival tags were implanted in a subset of nine fish. Fish were tracked using radio telemetry monthly from January 2012 through January of 2013. The greatest upstream movement was 42.5 km, and the greatest downstream movement was 22.2 km. Most radio tagged fish (69%) departed Alley Spring when daily maximum river water temperature first exceeded that of the spring (14 °C) and during increased river discharge. Bioenergetic modelling predicted that a 350 g migrating smallmouth bass that used cold-period thermal refuge would grow 16% slower at the same consumption level as a fish that did not seek thermal refuge. Contrary to the bioenergetics models, extrapolation of growth scope results suggested migrating fish grow 29% more than fish using areas of stream with little groundwater influence. Our results contradict previous findings that smallmouth bass are relatively sedentary, provide information about potential cues for migratory behaviour, and give insight to managers regarding use and growth of smallmouth bass in thermally heterogeneous river systems.

  2. Complex small pelagic fish population patterns arising from individual behavioral responses to their environment

    NASA Astrophysics Data System (ADS)

    Brochier, Timothée; Auger, Pierre-Amaël; Pecquerie, Laure; Machu, Eric; Capet, Xavier; Thiaw, Modou; Mbaye, Baye Cheikh; Braham, Cheikh-Baye; Ettahiri, Omar; Charouki, Najib; Sène, Ousseynou Ndaw; Werner, Francisco; Brehmer, Patrice

    2018-05-01

    Small pelagic fish (SPF) species are heavily exploited in eastern boundary upwelling systems (EBUS) as their transformation products are increasingly used in the world's food chain. Management relies on regular monitoring, but there is a lack of robust theories for the emergence of the populations' traits and their evolution in highly variable environments. This work aims to address existing knowledge gaps by combining physical and biogeochemical modelling with an individual life-cycle based model applied to round sardinella (Sardinella aurita) off northwest Africa, a key species for regional food security. Our approach focused on the processes responsible for seasonal migrations, spatio-temporal size-structure, and interannual biomass fluctuations. Emergence of preferred habitat resulted from interactions between natal homing behavior and environmental variability that impacts early life stages. Exploration of the environment by the fishes was determined by swimming capabilities, mesoscale to regional habitat structure, and horizontal currents. Fish spatio-temporal abundance variability emerged from a complex combination of distinct life-history traits. An alongshore gradient in fish size distributions is reported and validated by in situ measurements. New insights into population structure are provided, within an area where the species is abundant year-round (Mauritania) and with latitudinal migrations of variable (300-1200 km) amplitude. Interannual biomass fluctuations were linked to modulations of fish recruitment over the Sahara Bank driven by variability in alongshore current intensity. The identified processes constitute an analytical framework that can be implemented in other EBUS and used to explore impacts of regional climate change on SPF.

  3. Use of non-natal estuaries by migratory striped bass (Morone saxatilis) in summer

    USGS Publications Warehouse

    Mather, M. E.; Finn, John T.; Ferry, K.H.; Deegan, Linda A.; Nelson, G.A.

    2009-01-01

    For most migratory fish, little is known about the location and size of foraging areas or how long individuals remain in foraging areas, even though these attributes may affect their growth, survival, and impact on local prey. We tested whether striped bass (Morone saxatilis Walbaum), found in Massachusetts in summer, were migratory, how long they stayed in non-natal estuaries, whether observed spatial patterns differed from random model predictions, whether fish returned to the same area across multiple years, and whether fishing effort could explain recapture patterns. Anchor tags were attached to striped bass that were caught and released in Massachusetts in 1999 and 2000, and recaptured between 1999 and 2007. In fall, tagged striped bass were caught south of where they were released in summer, confirming that fish were coastal migrants. In the first summer, 77% and 100% of the recaptured fish in the Great Marsh and along the Massachusetts coast, respectively, were caught in the same place where they were released. About two thirds of all fish recaptured near where they were released were caught 2-7 years after tagging. Our study shows that smaller (400-500 mm total length) striped bass migrate hundreds of kilometers along the Atlantic Ocean coast, cease their mobile lifestyle in summer when they use a relatively localized area for foraging (<20 km2), and return to these same foraging areas in subsequent years.

  4. Evaluation of energy expenditure in adult spring Chinook salmon migrating upstream in the Columbia River Basin: an assessment based on sequential proximate analysis

    USGS Publications Warehouse

    Mesa, M.G.; Magie, C.D.

    2006-01-01

    The upstream migration of adult anadromous salmonids in the Columbia River Basin (CRB) has been dramatically altered and fish may be experiencing energetically costly delays at dams. To explore this notion, we estimated the energetic costs of migration and reproduction of Yakima River-bound spring Chinook salmon Oncorhynchus tshawytscha using a sequential analysis of their proximate composition (i.e., percent water, fat, protein, and ash). Tissues (muscle, viscera, and gonad) were sampled from fish near the start of their migration (Bonneville Dam), at a mid point (Roza Dam, 510 km upstream from Bonneville Dam) and from fresh carcasses on the spawning grounds (about 100 km above Roza Dam). At Bonneville Dam, the energy reserves of these fish were remarkably high, primarily due to the high percentage of fat in the muscle (18-20%; energy content over 11 kJ g-1). The median travel time for fish from Bonneville to Roza Dam was 27 d and ranged from 18 to 42 d. Fish lost from 6 to 17% of their energy density in muscle, depending on travel time. On average, fish taking a relatively long time for migration between dams used from 5 to 8% more energy from the muscle than faster fish. From the time they passed Bonneville Dam to death, these fish, depending on gender, used 95-99% of their muscle and 73-86% of their viscera lipid stores. Also, both sexes used about 32% of their muscular and very little of their visceral protein stores. However, we were unable to relate energy use and reproductive success to migration history. Our results suggest a possible influence of the CRB hydroelectric system on adult salmonid energetics.

  5. Vertical structure of larval fish assemblages during diel cycles in summer and winter in the southern part of Bahía de La Paz, México

    NASA Astrophysics Data System (ADS)

    Aceves-Medina, Gerardo; Saldierna-Martínez, Ricardo; Hinojosa-Medina, Alejandro; Jiménez-Rosenberg, Sylvia P. A.; Hernández-Rivas, Martín E.; Morales-Ávila, Raúl

    2008-03-01

    The effect of environmental variables on the vertical structure of larval fish assemblages in a tropical coastal lagoon was analyzed. Ichthyoplankton samples were collected from the near-bottom and surface strata near the mouth of a subtropical lagoon during contrasting seasonal conditions of temperature, photoperiod, light intensity, and tidal heights. During summer, larval fish assemblages had high species richness ( R) and were dominated by tropical species. During winter, assemblages had lower R values and were dominated by subtropical and temperate species. Vertical distribution patterns of the taxa were determined by the interaction of environmental variables and behavior of each species to maintain their position in a stratum in the water column, or to achieve vertical migrations induced by environmental stimuli that, in this case, were thermal gradient, column water stratification, and intensity of light. Depth position and vertical migration of fish larvae, coupled with the flood and ebb tide conditions, played an important role in their retention and displacement toward the lagoon. Fish larvae with distribution restricted to the inner part of the inlet, such as Achirus mazatlanus, Etropus sp., and several gobies, were more abundant in the near-bottom stratum during the ebb tide, allowing them to avoid exportation, whereas those that could spawn outside, but depended on the inlet as a nursery area, were more abundant near the surface during flood tide, such as Abudefduf troschelii and Stegastes rectifraenum.

  6. IsoMark - a comprehensive assessment of the potential of isotopes in hard parts of freshwater fish to determine origin and migratory patterns using LA-(MC)-ICP-MS

    NASA Astrophysics Data System (ADS)

    Zitek, Andreas; Irrgeher, Johanna; Sturm, Monika; Brunner, Marion; Dillinger, Benno; Prohaska, Thomas

    2010-05-01

    The ‘IsoMark' project focuses for the first time on the comprehensive investigation of microchemical information (elemental fingerprint of Ca, Sr, Na, Ba, Mg; isotopic fingerprint of Sr, Ca, and additionally of C and O) in different hard parts of several typical European freshwater fish species like brown trout (Salmo trutta f.f., L.), European grayling (Thymallus thymallus, L.) or nase (Chondrostoma nasus, L.) and the barbel (Barbus barbus, L.). Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is used as major technique for the direct in situ analysis of trace elements and isotopes, whereby the employment of a multiple collector - inductively coupled plasma - mass spectrometer (MC-ICP-MS) enables high precise isotope ratio analysis of such sample matrices due to its simultaneous detection capabilities. Microchemical patterns in hard parts of farmed and wild fish are analysed resulting in natural site specific elemental and isotopic signatures. Within a pilot study the potential to discriminate between wild and hatchery trout by chronological microchemical patterns of different otolith regions in relation to site specific water chemistry was documented. 100% accuracy of classification of fish to life stage specific habitats and therefore to their origin was achieved by the elemental ratios 88Sr/43Ca, 23Na/43Ca and the isotope ratio of 87Sr/86Sr. Clear differences in otolith chemistry were found, when fish experienced different geological units or specific environmental situations (e.g. groundwater) in hatcheries during a certain period of their life. These results proved the concept that natural microchemical patterns in hard parts linked to specific life stages of fish represent a valuable tool for a wide variety of ecological questions, e.g. discriminating wild and hatchery fish without the necessity of inducing any other artificial mark, or studying natural migration phenomena on small spatial scales in freshwater systems within geologically diverse river catchments.

  7. An assessment of fish assemblage structure in a large river

    USGS Publications Warehouse

    Kiraly, Ian A.; Coghlan, S.M.; Zydlewski, Joseph D.; Hayes, D.

    2015-01-01

    The Penobscot River drains the largest watershed in Maine and once provided spawning and rearing habitats to 11 species of diadromous fishes. The construction of dams blocked migrations of these fishes and likely changed the structure and function of fish assemblages throughout the river. The proposed removal of two main-stem dams, improved upstream fish passage at a third dam, and construction of a fish bypass on a dam obstructing a major tributary is anticipated to increase passage of and improve habitat connectivity for both diadromous and resident fishes. We captured 61 837 fish of 35 species in the Penobscot River and major tributaries, through 114 km of boat electrofishing. Patterns of fish assemblage structure did not change considerably during our sampling; relatively few species contributed to seasonal and annual variability within the main-stem river, including smallmouth bass Micropterus dolomieu, white sucker Catostomus commersonii, pumpkinseed Lepomis gibbosus, and golden shiner Notemigonus crysoleucas. However, distinct fish assemblages were present among river sections bounded by dams. Many diadromous species were restricted to tidal waters downriver of the Veazie Dam; Fundulus species were also abundant within the tidal river section. Smallmouth bass and pumpkinseed were most prevalent within the Veazie Dam impoundment and the free-flowing river section immediately upriver, suggesting the importance of both types of habitat that supports multiple life stages of these species. Further upriver, brown bullhead Ameiurus nebulosus, yellow perch Perca flavescens, chain pickerel Esox niger, and cyprinid species were more prevalent than within any other river section. Our findings describe baseline spatial patterns of fish assemblages in the Penobscot River in relation to dams with which to compare assessments after dam removal occurs.

  8. Vertical distribution, composition and migratory patterns of acoustic scattering layers in the Canary Islands

    NASA Astrophysics Data System (ADS)

    Ariza, A.; Landeira, J. M.; Escánez, A.; Wienerroither, R.; Aguilar de Soto, N.; Røstad, A.; Kaartvedt, S.; Hernández-León, S.

    2016-05-01

    Diel vertical migration (DVM) facilitates biogeochemical exchanges between shallow waters and the deep ocean. An effective way of monitoring the migrant biota is by acoustic observations although the interpretation of the scattering layers poses challenges. Here we combine results from acoustic observations at 18 and 38 kHz with limited net sampling in order to unveil the origin of acoustic phenomena around the Canary Islands, subtropical northeast Atlantic Ocean. Trawling data revealed a high diversity of fishes, decapods and cephalopods (152 species), although few dominant species likely were responsible for most of the sound scattering in the region. We identified four different acoustic scattering layers in the mesopelagic realm: (1) at 400-500 m depth, a swimbladder resonance phenomenon at 18 kHz produced by gas-bearing migrant fish such as Vinciguerria spp. and Lobianchia dofleini, (2) at 500-600 m depth, a dense 38 kHz layer resulting primarily from the gas-bearing and non-migrant fish Cyclothone braueri, and to a lesser extent, from fluid-like migrant fauna also inhabiting these depths, (3) between 600 and 800 m depth, a weak signal at both 18 and 38 kHz ascribed either to migrant fish or decapods, and (4) below 800 m depth, a weak non-migrant layer at 18 kHz which was not sampled. All the dielly migrating layers reached the epipelagic zone at night, with the shorter-range migrations moving at 4.6 ± 2.6 cm s - 1 and the long-range ones at 11.5 ± 3.8 cm s - 1. This work reduces uncertainties interpreting standard frequencies in mesopelagic studies, while enhances the potential of acoustics for future research and monitoring of the deep pelagic fauna in the Canary Islands.

  9. Movement and spawning of American shad transported above dams on the Roanoke River, North Carolina and Virginia

    USGS Publications Warehouse

    Harris, Julianne E.; Hightower, Joseph E.

    2011-01-01

    American shad Alosa sapidissima are in decline throughout much of their native range as a result of overfishing, pollution, and habitat alteration in coastal rivers where they spawn. One approach to restoration in regulated rivers is to provide access to historical spawning habitat above dams through a trap-and-transport program. We examined the initial survival, movement patterns, spawning, and downstream passage of sonic-tagged adult American shad transported to reservoir and riverine habitats upstream of hydroelectric dams on the Roanoke River, North Carolina and Virginia, during 2007–2009. Average survival to release in 2007–2008 was 85%, but survival decreased with increasing water temperature. Some tagged fish released in reservoirs migrated upstream to rivers; however, most meandered back and forth within the reservoir. A higher percentage of fish migrated through a smaller (8,215-ha) than a larger (20,234-ha) reservoir, suggesting that the population-level effects of transport may depend on upper basin characteristics. Transported American shad spent little time in upper basin rivers but were there when temperatures were appropriate for spawning. No American shad eggs were collected during weekly plankton sampling in upper basin rivers. The estimated initial survival of sonic-tagged American shad after downstream passage through each dam was 71–100%; however, only 1% of the detected fish migrated downstream through all three dams and many were relocated just upstream of a dam late in the season. Although adult American shad were successfully transported to upstream habitats in the Roanoke River basin, under present conditions transported individuals may have reduced effective fecundity and postspawning survival compared with nontransported fish that spawn in the lower Roanoke River.

  10. Congener Patterns of Persistent Organic Pollutants Establish the Extent of Contaminant Biotransport by Pacific Salmon in the Great Lakes.

    PubMed

    Gerig, Brandon S; Chaloner, Dominic T; Janetski, David J; Rediske, Richard R; O'Keefe, James P; Moerke, Ashley H; Lamberti, Gary A

    2016-01-19

    In the Great Lakes, introduced Pacific salmon (Oncorhynchus spp.) can transport persistent organic pollutants (POPs), such as polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs), to new environments during their spawning migrations. To explore the nature and extent of POP biotransport by salmon, we compared 58 PCB and 6 PBDE congeners found in spawning salmon directly to those in resident stream fish. We hypothesized that stream fish exposed to salmon spawners would have congener patterns similar to those of salmon, the presumed contaminant source. Using permutational multivariate analysis of variance (PERMANOVA) and nonmetric multidimensional scaling (NMDS), we found that POP congener patterns of Pacific salmon varied among regions in the Great Lakes basin (i.e., Lake Huron, Lake Michigan, or Lake Superior), tissue type (whole fish or eggs), and contaminant type (PCB or PBDE). For stream-resident fish, POP congener pattern was influenced by the presence of salmon, location (i.e., Great Lakes Basin), and species identity (i.e., brook trout [Salvelinus fontinalis] or mottled sculpin [Cottus bairdii]). Similarity in congener patterns indicated that salmon are a source of POPs to brook trout in stream reaches receiving salmon spawners from Lake Michigan and Lake Huron but not from Lake Superior. Congener patterns of mottled sculpin differed from those of brook trout and salmon, suggesting that brook trout and mottled sculpin either use salmon tissue to differing degrees, acquire POPs from different dietary sources, or bioaccumulate or metabolize POPs differently. Overall, our analyses identified the important role of salmon in contaminant biotransport but also demonstrated that the extent of salmon-mediated POP transfer and uptake in Great Lakes tributaries is location- and species-specific.

  11. Identification of the Spawning, Rearing, and Migratory Requirements of Fall Chinook Salmon in the Columbia River Basin, Annual Report 1993.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rondorf, Dennis W.; Tiffan, Kenneth F.

    1994-12-01

    Recovery efforts for the endangered fall chinook salmon necessitates knowledge of the factors limiting the various life history stages. This study attempts to identify those physical and biological factors which affect spawning of the fish in the free-flowing Snake River and their rearing seward migration through Columbia River basin reservoirs. The spawning was generally a November event in 1993, with some activity in late Oct. and early Dec. Spawning habitat availability was assessed by applying hydraulic and habitat models to known fall chinook salmon spawning sites. Juveniles were seined and PIT tagged in the free-flowing Snake River, and in themore » Columbia River in he Hanford Reach and in McNary Reservoir. Subyearling fish were marked at McNary Dam to relate river flow and migration patterns of juveniles to adult returns. Hydroacoustic surveys were conducted on McNary and John Day reservoirs and in net pens.« less

  12. Spatial extent and dynamics of dam impacts on tropical island freshwater fish assemblages

    USGS Publications Warehouse

    Cooney, Patrick B.; Kwak, Thomas J.

    2013-01-01

    Habitat connectivity is vital to the persistence of migratory fishes. Native tropical island stream fish assemblages composed of diadromous species require intact corridors between ocean and riverine habitats. High dams block fish migration, but low-head artificial barriers are more widespread and are rarely assessed for impacts. Among all 46 drainages in Puerto Rico, we identified and surveyed 335 artificial barriers that hinder fish migration to 74.5% of the upstream habitat. We also surveyed occupancy of native diadromous fishes (Anguillidae, Eleotridae, Gobiidae, and Mugilidae) in 118 river reaches. Occupancy models demonstrated that barriers 2 meters (m) high restricted nongoby fish migration and extirpated those fish upstream of 4-m barriers. Gobies are adapted to climbing and are restricted by 12-m barriers and extirpated upstream of 32-m barriers. Our findings quantitatively illustrate the extensive impact of low-head structures on island stream fauna and provide guidance for natural resource management, habitat restoration, and water development strategies.

  13. Contour matching for a fish recognition and migration-monitoring system

    NASA Astrophysics Data System (ADS)

    Lee, Dah-Jye; Schoenberger, Robert B.; Shiozawa, Dennis; Xu, Xiaoqian; Zhan, Pengcheng

    2004-12-01

    Fish migration is being monitored year round to provide valuable information for the study of behavioral responses of fish to environmental variations. However, currently all monitoring is done by human observers. An automatic fish recognition and migration monitoring system is more efficient and can provide more accurate data. Such a system includes automatic fish image acquisition, contour extraction, fish categorization, and data storage. Shape is a very important characteristic and shape analysis and shape matching are studied for fish recognition. Previous work focused on finding critical landmark points on fish shape using curvature function analysis. Fish recognition based on landmark points has shown satisfying results. However, the main difficulty of this approach is that landmark points sometimes cannot be located very accurately. Whole shape matching is used for fish recognition in this paper. Several shape descriptors, such as Fourier descriptors, polygon approximation and line segments, are tested. A power cepstrum technique has been developed in order to improve the categorization speed using contours represented in tangent space with normalized length. Design and integration including image acquisition, contour extraction and fish categorization are discussed in this paper. Fish categorization results based on shape analysis and shape matching are also included.

  14. Variation in fatty acid composition of the bigeye snapper Lutjanus lutjanus collected in coral reef habitats of the Malaysian South China Sea.

    PubMed

    Arai, Takaomi; Amalina, Razikin; Bachok, Zainudin

    2015-12-01

    In order to understand trophic ecology, habitat use and migration of coral reef fish, fatty acid composition and levels were examined in the bigeye snapper Lutjanus lutjanus collected in the Malaysian South China Sea. Proportions of saturated fatty acids (SAFA) ranged from 55.0% to 66.5%, with the highest proportions in fatty acids, the second highest was monounsaturated fatty acids (MUFA) ranged from 30.7% to 40.2% while the proportion of polyunsaturated fatty acids (PUFA) was the lowest ranged from 2.8% to 4.8%. Palmitic acid (16:0) was the most common in SAFA, oleic acid (C18:1ω9c) was the dominant in MUFA and linolenic acid (C18:3n3) showed the highest value in PUFA. Fatty acid concentrations, especially in SAFA and MUFA, increased with fish growth, suggesting diet and habitat shifts during the fish life history. Most of the fish had more than 1 of EPA: DHA ratio, which suggested that diets of L. lutjanus tended to be higher trophic organisms such as zooplankton and crustacean in coral ecosystem. The diet shift revealed by the composition and levels of the fatty acid profile revealed potential pattern in the habitat use and migration scale in coral reef environment of L. lutjanus.

  15. Passive acoustic telemetry reveals highly variable home range and movement patterns among unicornfish within a marine reserve

    NASA Astrophysics Data System (ADS)

    Marshell, A.; Mills, J. S.; Rhodes, K. L.; McIlwain, J.

    2011-09-01

    Marine reserves are the primary management tool for Guam's reef fish fishery. While a build-up of fish biomass has occurred inside reserve boundaries, it is unknown whether reserve size matches the scale of movement of target species. Using passive acoustic telemetry, we quantified movement patterns and home range size of two heavily exploited unicornfish Naso unicornis and Naso lituratus. Fifteen fish ( N. unicornis: n = 7; N. lituratus: n = 4 male, n = 4 female) were fitted with internal acoustic tags and tracked continuously over four months within a remote acoustic receiver array located in a decade-old marine reserve. This approach provided robust estimates of unicornfish movement patterns and home range size. The mean home range of 3.2 ha for N. unicornis was almost ten times larger than that previously recorded from a three-week tracking study of the species in Hawaii. While N. lituratus were smaller in body size, their mean home range (6.8 ha) was over twice that of N. unicornis. Both species displayed strong site fidelity, particularly during nocturnal and crepuscular periods. Although there was some overlap, individual movement patterns and home range size were highly variable within species and between sexes. N. unicornis home range increased with body size, and only the three largest fish home ranges extended into the deeper outer reef slope beyond the shallow reef flat. Both Naso species favoured habitat dominated by corals. Some individuals made predictable daily crepuscular migrations between different locations or habitat types. There was no evidence of significant spillover from the marine reserve into adjacent fished areas. Strong site fidelity coupled with negligible spillover suggests that small-scale reserves, with natural habitat boundaries to emigration, are effective in protecting localized unicornfish populations.

  16. Enumeration of Salmonids in the Okanogan Basin Using Underwater Video, Performance Period: October 2005 (Project Inception) - 31 December 2006.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Peter N.; Rayton, Michael D.; Nass, Bryan L.

    2007-06-01

    The Confederated Tribes of the Colville Reservation (Colville Tribes) identified the need for collecting baseline census data on the timing and abundance of adult salmonids in the Okanogan River Basin in order to determine basin and tributary-specific spawner distributions, evaluate the status and trends of natural salmonid production in the basin, document local fish populations, and augment existing fishery data. This report documents the design, installation, operation and evaluation of mainstem and tributary video systems in the Okanogan River Basin. The species-specific data collected by these fish enumeration systems are presented along with an evaluation of the operation of amore » facility that provides a count of fish using an automated method. Information collected by the Colville Tribes Fish & Wildlife Department, specifically the Okanogan Basin Monitoring and Evaluation Program (OBMEP), is intended to provide a relative abundance indicator for anadromous fish runs migrating past Zosel Dam and is not intended as an absolute census count. Okanogan Basin Monitoring and Evaluation Program collected fish passage data between October 2005 and December 2006. Video counting stations were deployed and data were collected at two locations in the basin: on the mainstem Okanogan River at Zosel Dam near Oroville, Washington, and on Bonaparte Creek, a tributary to the Okanogan River, in the town of Tonasket, Washington. Counts at Zosel Dam between 10 October 2005 and 28 February 2006 are considered partial, pilot year data as they were obtained from the operation of a single video array on the west bank fishway, and covered only a portion of the steelhead migration. A complete description of the apparatus and methodology can be found in 'Fish Enumeration Using Underwater Video Imagery - Operational Protocol' (Nass 2007). At Zosel Dam, totals of 57 and 481 adult Chinook salmon were observed with the video monitoring system in 2005 and 2006, respectively. Run timing for Chinook in 2006 indicated that peak passage occurred in early October and daily peak passage was noted on 5 October when 52 fish passed the dam. Hourly passage estimates of Chinook salmon counts for 2005 and 2006 at Zosel Dam revealed a slight diel pattern as Chinook passage events tended to remain low from 1900 hours to 0600 hours relative to other hours of the day. Chinook salmon showed a slight preference for passing the dam through the video chutes on the east bank (52%) relative to the west bank (48%). A total of 48 adult sockeye salmon in 2005 and 19,245 in 2006 were counted passing through the video chutes at Zosel Dam. The 2006 run timing pattern was characterized by a large peak in passage from 3 August through 10 August when 17,698 fish (92% of total run observed for the year) were observed passing through the video chutes. The daily peak of 5,853 fish occurred on 4 August. Hourly passage estimates of sockeye salmon counts for 2005 and 2006 at the dam showed a strong diel pattern with increased passage during nighttime hours relative to daytime hours. Sockeye showed a strong preference for passing Zosel Dam on the east bank (72%) relative to the west bank (28%). A total of 298 adult upstream-migrating steelhead were counted at Zosel Dam in 2005 and 2006, representing the 2006 cohort based on passage data from 5 October 2005 through 15 July 2006. Eighty-seven percent (87%) of the total steelhead observed passed the dam between 23 March and 25 April with a peak passage occurring on 6 April when 31 fish were observed. Steelhead passage at Zosel Dam exhibited no diel pattern. In contrast to both Chinook and sockeye salmon, steelhead were shown to have a preference for passing the dam on the west bank (71%) relative to the east bank (29%). Both Chinook and sockeye passage at Zosel Dam were influenced by Okanogan River water temperature. When water temperatures peaked in late July (daily mean exceeded 24 C and daily maximum exceeded 26.5 C), Chinook and sockeye counts went to zero. A subsequent decrease in water temperature resulted in sharp increases in both Chinook and sockeye passage. A total of six steelhead were observed with the video monitoring system at Bonaparte Creek in 2006, with three passage events occurring on 29 March and one each on 20, 21, and 23 April. This system was operational for only a portion of the migration.« less

  17. Ocean Heat Content Reveals Secrets of Fish Migrations

    PubMed Central

    Luo, Jiangang; Ault, Jerald S.; Shay, Lynn K.; Hoolihan, John P.; Prince, Eric D.; Brown, Craig A.; Rooker, Jay R.

    2015-01-01

    For centuries, the mechanisms surrounding spatially complex animal migrations have intrigued scientists and the public. We present a new methodology using ocean heat content (OHC), a habitat metric that is normally a fundamental part of hurricane intensity forecasting, to estimate movements and migration of satellite-tagged marine fishes. Previous satellite-tagging research of fishes using archival depth, temperature and light data for geolocations have been too coarse to resolve detailed ocean habitat utilization. We combined tag data with OHC estimated from ocean circulation and transport models in an optimization framework that substantially improved geolocation accuracy over SST-based tracks. The OHC-based movement track provided the first quantitative evidence that many of the tagged highly migratory fishes displayed affinities for ocean fronts and eddies. The OHC method provides a new quantitative tool for studying dynamic use of ocean habitats, migration processes and responses to environmental changes by fishes, and further, improves ocean animal tracking and extends satellite-based animal tracking data for other potential physical, ecological, and fisheries applications. PMID:26484541

  18. Migratory delay leads to reduced passage success of Atlantic salmon smolts at a hydroelectric dam

    USGS Publications Warehouse

    Nyqvist, Daniel; Greenberg, L.; Goerig, E.; Calles, O.; Bergman, E.; Ardren, William R.; Castro-Santos, Theodore R.

    2017-01-01

    Passage of fish through hydropower dams is associated with mortality, delay, increased energy expenditure and migratory failure for migrating fish and the need for remedial measures for both upstream and downstream migration is widely recognised. A functional fish passage must ensure safe and timely passage routes that a substantial portion of migrating fish will use. Passage solutions must address not only the number or percentage of fish that successfully pass a barrier, but also the time it takes to pass. Here, we used radiotelemetry to study the functionality of a fish bypass for downstream-migrating wild-caught and hatchery-released Atlantic salmon smolts. We used time-to-event analysis to model the influence of fish characteristics and environmental variables on the rates of a series of events associated with dam passage. Among the modelled events were approach rate to the bypass entry zone, retention rates in both the forebay and the entry zone and passage rates. Despite repeated attempts, only 65% of the tagged fish present in the forebay passed the dam. Fish passed via the bypass (33%), via spill (18%) and via turbines (15%). Discharge was positively related to approach, passage and retention rates. We did not detect any differences between wild and hatchery fish. Even though individual fish visited the forebay and the entry zone on multiple occasions, most fish passed during the first exposures to these zones. This study underscores the importance of timeliness to passage success and the usefulness of time-to-event analysis for understanding factors governing passage performance.

  19. Genetic differences between hatchery and wild steelhead for growth and survival in the hatchery and seaward migration after release (Study sites: Dworshak Hatchery and Clearwater Hatchery; Stocks: Dworshak hatchery and Selway River wild; Year classes: 1994 and 1995): Chapter 2

    USGS Publications Warehouse

    Rubin, Stephen P.; Reisenbichler, Reginald R.; Hensleigh, Jay E.; Wetzel, Lisa A.; Baker, Bruce M.; Rubin, Stephen P.; Reisenbichler, Reginald R.; Wetzel, Lisa A.; Hayes, Michael C.

    2012-01-01

    Various studies suggest that sea ranching of anadromous salmonids can result in domestication (increased fitness in the hatchery program) and a loss of fitness for natural production; however, the mechanism has not been characterized adequately. We artificially spawned hatchery and wild steelhead Oncorhynchus mykiss from the Clearwater River, Idaho, reared the resulting genetically marked (at the PEPA allozyme locus) progeny (HxH, HxW from hatchery females and wild males, and WxW) in hatcheries, and tested for differences in survival, growth, early maturation, downstream migration, and adult returns. Rearing treatments were mixed (crosses reared together) and separate (crosses reared separately from each other) at the hatchery of origin for the hatchery population where smolts are produced in one year, and at a nearby hatchery employing lower rations, lower winter temperatures, and two years of rearing to more closely mimic the natural life history (natural smolt age = 2-4 years). The hatchery population had been artificially propagated for six generations at the onset of our study. We found little or no difference in survival in the hatchery but substantially higher rates of growth and subsequent downstream migration for HxH than for WxW fish. Faster growth for HxH fish resulted in greater size at release which contributed to their higher migration rate, but other as yet uncharacterized traits also affected migration since the migration difference between crosses was apparent even within size classes. Growth of WxW fish was slower in the mixed than in the separate treatment indicating that WxW fish were competitively inferior to HxH fish in the hatchery environment. Incidence of precocious males was higher for WxW than for HxH fish in the separate but not in the mixed treatment. Incidence of HxH precocious males was similar between treatments. Apparently, the presence of HxH fish suppressed high incidence of early maturation by WxW males. A direct effect beyond the suppression of WxW growth by HxH fish was involved because the effect persisted within size categories. In-hatchery survival and growth of WxW relative to HxH fish may have been better with two-year rearing than in the standard one-year program (differences were consistent but small and non-significant); however, performance remained substantially worse for progeny of wild fish. Greater downstream migration for HxH than for WxW fish was primarily due to greater residualization for WxW than for HxH fish near the smolt release site rather than to immediate differential mortality. By August the residuals had lost condition compared to their condition in the hatchery the previous March, a month before release, and the residuals produced almost no smolts the following spring. Adult return rate was higher for HxH than for WxW fish for one year-class, consistent with the difference in downstream migration; only three adults (all WxW) returned from the other. Intermediate performance by HxW fish on growth, early maturation, downstream migration, and adult returns corroborated the genetic basis of the stock differences. Natural selection after release from the hatchery favored fish that performed well in the hatchery (grew fast, didn’t mature early, and excelled in other as yet uncharacterized traits) and genetically changed (domesticated) the wild population to resemble the hatchery population.

  20. Weirs: Counting and sampling adult salmonids in streams and rivers

    USGS Publications Warehouse

    Zimmerman, Christian E.; Zabkar, Laura M.; Johnson, David H.; Shrier, Brianna M.; O'Neal, Jennifer S.; Knutzen, John A.; Augerot, Xanthippe; O'Neal, Thomas A.; Pearsons, Todd N.

    2007-01-01

    Weirs—which function as porous barriers built across stream—have long been used to capture migrating fish in flowing waters. For example, the Netsilik peoples of northern Canada used V-shaped weirs constructed of river rocks gathered onsite to capture migrating Arctic char Salvelinus alpinus (Balikci 1970). Similarly, fences constructed of stakes and a latticework of willow branches or staves were used by Native Americans to capture migrating salmon in streams along the West Coast of North America (Stewart 1994). In modern times, weirs have also been used in terminal fisheries and to capture brood fish for use in fish culture. Weirs have been used to gather data on age structure, condition, sex ratio, spawning escapement, abundance, and migratory patterns of fish in streams. One of the critical elements of fisheries management and stock assessment of salmonids is a count of adult fish returning to spawn. Weirs are frequently used to capture or count fish to determine status and trends of populations or direct inseason management of fisheries; generally, weirs are the standard against which other techniques are measured. To evaluate fishery management actions, the number of fish escaping to spawn is often compared to river-specific target spawning requirements (O’Connell and Dempson 1995). A critical factor in these analyses is the determination of total run size (O’Connell 2003). O’Connell compared methods of run-size estimation against absolute counts from a rigid weir and concluded that, given the uncertainty of estimators, the absolute counts obtained at the weir wer significantly better than modeled estimates, which deviated as much as 50–60% from actual counts. The use of weirs is generally restricted to streams and small rivers because of construction expense, formation of navigation barriers, and the tendency of weirs to clog with debris, which can cause flooding and collapse of the structure (Hubert 1996). When feasible, however, weirs are generally regarded as the most accurate technique available to quantify escapement as the result is supposedly an absolute count (Cousens et al. 1982). Weirs also provide the opportunity to capture fish for observation and sampling of biological characteristics and tissues; they may also serve as recapture sites for basin-wide, mark–recapture population estimates. Temporary weirs are useful in monitoring wild populations of salmonids as well as for capturing broodstock for artificial propagation.

  1. Movements of Diadromous Fish in Large Unregulated Tropical Rivers Inferred from Geochemical Tracers

    PubMed Central

    Walther, Benjamin D.; Dempster, Tim; Letnic, Mike; McCulloch, Malcolm T.

    2011-01-01

    Patterns of migration and habitat use in diadromous fishes can be highly variable among individuals. Most investigations into diadromous movement patterns have been restricted to populations in regulated rivers, and little information exists for those in unregulated catchments. We quantified movements of migratory barramundi Lates calcarifer (Bloch) in two large unregulated rivers in northern Australia using both elemental (Sr/Ba) and isotope (87Sr/86Sr) ratios in aragonitic ear stones, or otoliths. Chemical life history profiles indicated significant individual variation in habitat use, particularly among chemically distinct freshwater habitats within a catchment. A global zoning algorithm was used to quantify distinct changes in chemical signatures across profiles. This algorithm identified between 2 and 6 distinct chemical habitats in individual profiles, indicating variable movement among habitats. Profiles of 87Sr/86Sr ratios were notably distinct among individuals, with highly radiogenic values recorded in some otoliths. This variation suggested that fish made full use of habitats across the entire catchment basin. Our results show that unrestricted movement among freshwater habitats is an important component of diadromous life histories for populations in unregulated systems. PMID:21494693

  2. Geomagnetic imprinting predicts spatio-temporal variation in homing migration of pink and sockeye salmon.

    PubMed

    Putman, Nathan F; Jenkins, Erica S; Michielsens, Catherine G J; Noakes, David L G

    2014-10-06

    Animals navigate using a variety of sensory cues, but how each is weighted during different phases of movement (e.g. dispersal, foraging, homing) is controversial. Here, we examine the geomagnetic and olfactory imprinting hypotheses of natal homing with datasets that recorded variation in the migratory routes of sockeye (Oncorhynchus nerka) and pink (Oncorhynchus gorbuscha) salmon returning from the Pacific Ocean to the Fraser River, British Columbia. Drift of the magnetic field (i.e. geomagnetic imprinting) uniquely accounted for 23.2% and 44.0% of the variation in migration routes for sockeye and pink salmon, respectively. Ocean circulation (i.e. olfactory imprinting) predicted 6.1% and 0.1% of the variation in sockeye and pink migration routes, respectively. Sea surface temperature (a variable influencing salmon distribution but not navigation, directly) accounted for 13.0% of the variation in sockeye migration but was unrelated to pink migration. These findings suggest that geomagnetic navigation plays an important role in long-distance homing in salmon and that consideration of navigation mechanisms can aid in the management of migratory fishes by better predicting movement patterns. Finally, given the diversity of animals that use the Earth's magnetic field for navigation, geomagnetic drift may provide a unifying explanation for spatio-temporal variation in the movement patterns of many species. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  3. Changes in food habits after migration among South Asians settled in Oslo: the effect of demographic, socio-economic and integration factors.

    PubMed

    Wandel, Margareta; Råberg, Marte; Kumar, Bernadette; Holmboe-Ottesen, Gerd

    2008-01-01

    The aim is to explore changes in food habits after migration, and the resultant present food consumption patterns, as well as the effect of demographic, socio-economic and integration factors on these changes. Analyses were based on data collected through the Oslo Immigrant Health study, from 629 persons 30-60 years of age, born in Sri Lanka and Pakistan, and living in Oslo, Norway. A majority of the Sri Lankans reported increase in the consumption of meat, milk, butter, margarine and potatoes. Around half of those from Pakistan reported increased consumption of oil, meat, fish and potatoes. Both groups reported a decrease in bean and lentil consumption. Multivariate regression showed that age was negatively related to increases in butter and margarine consumption, and a good command of the Norwegian language reduced the likelihood of increased consumption of oil and butter. The likelihood of having present fat and sugar rich food patterns were reduced with age and years of education, whereas scoring high on an index of integration increased the likelihood of a fat rich food pattern. In conclusion, a number of demographic and socio-cultural factors may modify the changes in food habits after migration. Some of these may have substantial health implications.

  4. Physiological preparedness and performance of Atlantic salmon Salmo salar smolts in relation to behavioural salinity preferences and thresholds

    USGS Publications Warehouse

    Stich, D.S.; Zydlewski, G.B.; Zydlewski, Joseph D.

    2015-01-01

    This study investigated the relationships between behavioural responses of Atlantic salmon Salmo salarsmolts to saltwater (SW) exposure and physiological characteristics of smolts in laboratory experiments. It concurrently described the behaviour of acoustically tagged smolts with respect to SW and tidal cycles during estuary migration. Salmo salar smolts increased their use of SW relative to fresh water (FW) from April to June in laboratory experiments. Mean preference for SW never exceeded 50% of time in any group. Preference for SW increased throughout the course of smolt development. Maximum continuous time spent in SW was positively related to gill Na+, K+-ATPase (NKA) activity and osmoregulatory performance in full-strength SW (measured as change in gill NKA activity and plasma osmolality). Smolts decreased depth upon reaching areas of the Penobscot Estuary where SW was present, and all fish became more surface oriented during passage from head of tide to the ocean. Acoustically tagged, migrating smolts with low gill NKA activity moved faster in FW reaches of the estuary than those with higher gill NKA activity. There was no difference in movement rate through SW reaches of the estuary based on gill NKA activity. Migrating fish moved with tidal flow during the passage of the lower estuary based on the observed patterns in both vertical and horizontal movements. The results indicate that smolts select low-salinity water during estuary migration and use tidal currents to minimize energetic investment in seaward migration. Seasonal changes in osmoregulatory ability highlight the importance of the timing of stocking and estuary arrival.

  5. Predicting the Influence of Streamflow on Migration and Spawning of a Threatened Diadromous Fish, the Australian Grayling Prototroctes Maraena

    NASA Astrophysics Data System (ADS)

    Koster, W. M.; Crook, D. A.; Dawson, D. R.; Gaskill, S.; Morrongiello, J. R.

    2018-03-01

    The development of effective strategies to restore the biological functioning of aquatic ecosystems with altered flow regimes requires a detailed understanding of flow-ecology requirements, which is unfortunately lacking in many cases. By understanding the flow conditions required to initiate critical life history events such as migration and spawning, it is possible to mitigate the threats posed by regulated river flow by providing targeted environmental flow releases from impoundments. In this study, we examined the influence of hydrological variables (e.g., flow magnitude), temporal variables (e.g., day of year) and spatial variables (e.g., longitudinal position of fish) on two key life history events (migration to spawning grounds and spawning activity) for a threatened diadromous fish (Australian grayling Prototroctes maraena) using data collected from 2008 to 2015 in the Bunyip-Tarago river system in Victoria. Our analyses revealed that flow changes act as a cue to downstream migration, but movement responses differed spatially: fish in the upper catchment showed a more specific requirement for rising discharge to initiate migration than fish in the lower catchment. Egg concentrations peaked in May when weekly flows increased relative to the median flow during a given spawning period. This information has recently been incorporated into the development of targeted environmental flows to facilitate migration and spawning by Australian grayling in the Bunyip-Tarago river system and other coastal systems in Victoria.

  6. Seasonal cues of Arctic grayling movement in a small Arctic stream: the importance of surface water connectivity

    USGS Publications Warehouse

    Heim, Kurt C.; Wipfli, Mark S.; Whitman, Matthew S.; Arp, Christopher D.; Adams, Jeff; Falke, Jeffrey A.

    2015-01-01

    In Arctic ecosystems, freshwater fish migrate seasonally between productive shallow water habitats that freeze in winter and deep overwinter refuge in rivers and lakes. How these movements relate to seasonal hydrology is not well understood. We used passive integrated transponder tags and stream wide antennae to track 1035 Arctic grayling in Crea Creek, a seasonally flowing beaded stream on the Arctic Coastal Plain, Alaska. Migration of juvenile and adult fish into Crea Creek peaked in June immediately after ice break-up in the stream. Fish that entered the stream during periods of high flow and cold stream temperature traveled farther upstream than those entering during periods of lower flow and warmer temperature. We used generalized linear models to relate migration of adult and juvenile fish out of Crea Creek to hydrology. Most adults migrated in late June – early July, and there was best support (Akaike weight = 0.46; w i ) for a model indicating that the rate of migration increased with decreasing discharge. Juvenile migration occurred in two peaks; the early peak consisted of larger juveniles and coincided with adult migration, while the later peak occurred shortly before freeze-up in September and included smaller juveniles. A model that included discharge, minimum stream temperature, year, season, and mean size of potential migrants was most strongly supported (w i  = 0.86). Juvenile migration rate increased sharply as daily minimum stream temperature decreased, suggesting fish respond to impending freeze-up. We found fish movements to be intimately tied to the strong seasonality of discharge and temperature, and demonstrate the importance of small stream connectivity for migratory Arctic grayling during the entire open-water period. The ongoing and anticipated effects of climate change and petroleum development on Arctic hydrology (e.g. reduced stream connectivity, earlier peak flows, increased evapotranspiration) have important implications for Arctic freshwater ecosystems.

  7. Larval Transport and Its Association with Recruitment of Blue Crabs to Chesapeake Bay

    DTIC Science & Technology

    1989-01-01

    conditions in the dependent fishing industry and making it difficult to optimize the yield through effective management. In part, successful management depends ...bibliography, can be found in Millikin and Williams (1984). After mating; the Chesapeake Bay blue crab females migrate to the higher salinity waters near the...similar pattern, and suggesting a similar cycle of environmental involvement. A physical mechanism for the retention of the larvae within sufficient

  8. Optimum Pathways of Fish Spawning Migrations in Rivers

    NASA Astrophysics Data System (ADS)

    McElroy, B. J.; Jacobson, R. B.; Delonay, A.

    2010-12-01

    Many fish species migrate large distances upstream in rivers to spawn. These migrations require energetic expenditures that are inversely related to fecundity of spawners. Here we present the theory necessary to quantify relative energetic requirements of upstream migration pathways and then test the hypothesis that least-cost paths are taken by the federally endangered pallid sturgeon (Scaphyrhyncus Albus), a benthic rheophile, in the lower Missouri River, USA. Total work done by a fish through a migratory path is proportional to the size of the fish, the total drag on the fish, and the distance traversed. Normalizing by the work required to remain stationary at the beginning of a path, relative work expenditure at each point of the path is found to be the cube of the ratio of the velocity along the path to the velocity at the start of the path. This is the velocity of the fish relative to the river flow. A least-cost migratory pathway can be determined from the velocity field in a reach as the path that minimizes a fish's relative work expenditure. We combine location data from pallid sturgeon implanted with telemetric tags and pressure-sensitive data storage tags with depth and velocity data collected with an acoustic Doppler profiler. During spring 2010 individual sturgeon were closely followed as they migrated up the Missouri River to spawn. These show that, within a small margin, pallid sturgeon in the lower Missouri River select least-cost paths as they swim upstream (typical velocities near 1.0 - 1.2 m/s). Within the range of collected data, it is also seen that many alternative paths not selected for migration are two orders of magnitude more energetically expensive (typical velocities near 2.0 - 2.5 m/s). In general these sturgeon migrated along the inner banks of bends avoiding high velocities in the thalweg, crossing the channel where the thalweg crosses in the opposite direction in order to proceed up the inner bank of subsequent bends. Overall, these results suggest a management strategy for increasing fecundity and reproductive success could be to manage flows to lower levels during prespawn migrations thereby decreasing expenditure necessary to reach spawning sites.

  9. Partial migration: growth varies between resident and migratory fish.

    PubMed

    Gillanders, Bronwyn M; Izzo, Christopher; Doubleday, Zoë A; Ye, Qifeng

    2015-03-01

    Partial migration occurs in many taxa and ecosystems and may confer survival benefits. Here, we use otolith chemistry data to determine whether fish from a large estuarine system were resident or migratory, and then examine whether contingents display differences in modelled growth based on changes in width of otolith growth increments. Sixty-three per cent of fish were resident based on Ba : Ca of otoliths, with the remainder categorized as migratory, with both contingents distributed across most age/size classes and both sexes, suggesting population-level bet hedging. Migrant fish were in slightly better condition than resident fish based on Fulton's K condition index. Migration type (resident versus migratory) was 56 times more likely to explain variation in growth than a model just incorporating year- and age-related growth trends. While average growth only varied slightly between resident and migratory fish, year-to-year variation was significant. Such dynamism in growth rates likely drives persistence of both life-history types. The complex relationships in growth between contingents suggest that management of species exhibiting partial migration is challenging, especially in a world subject to a changing climate. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  10. Distribution and Joint Fish-Tag Survival of Juvenile Chinook Salmon Migrating through the Sacramento-San Joaquin River Delta, California, 2008

    USGS Publications Warehouse

    Holbrook, Christopher M.; Perry, Russell W.; Adams, Noah S.

    2009-01-01

    Acoustic telemetry was used to obtain the movement histories of 915 juvenile fall-run Chinook salmon (Oncorhynchus tshawytscha) through the lower San Joaquin River and Sacramento-San Joaquin Delta, California, in 2008. Data were analyzed within a release-recapture framework to estimate survival, route distribution, and detection probabilities among three migration pathways through the Delta. The pathways included the primary route through the San Joaquin River and two less direct routes (Old River and Turner Cut). Strong inferences about survival were limited by premature tag failure, but estimates of fish distribution among migration routes should be unaffected by tag failure. Based on tag failure tests (N = 66 tags), we estimated that only 55-78 percent of the tags used in this study were still functioning when the last fish was detected exiting the study area 15 days after release. Due to premature tag failure, our 'survival' estimates represent the joint probability that both the tag and fish survived, not just survival of fish. Low estimates of fish-tag survival could have been caused by fish mortality or fish travel times that exceeded the life of the tag, but we were unable to differentiate between the two. Fish-tag survival through the Delta (from Durham Ferry to Chipps Island by all routes) ranged from 0.05 +or- 0.01 (SE) to 0.06 +or- 0.01 between the two weekly release groups. Among the three migration routes, fish that remained in the San Joaquin River exhibited the highest joint fish-tag survival (0.09 +or- 0.02) in both weeks, but only 22-33 percent of tagged fish used this route, depending on the week of release. Only 4-10 percent (depending on week) of tagged fish traveled through Turner Cut, but no tagged fish that used this route were detected exiting the Delta. Most fish (63-68 percent, depending on week of release) migrated through Old River, but fish-tag survival through this route (0.05 +or- 0.01) was only about one-half that of fish that remained in the San Joaquin River. Once tagged fish entered Old River, only fish collected at two large water conveyance projects and transported through the Delta by truck were detected exiting the Delta, suggesting that this route was the only successful migration pathway for fish that entered Old River. The rate of entrainment of tagged juvenile salmon into Old River was similar to the fraction of San Joaquin River discharge flowing into Old River, which averaged 63 percent but varied tidally and ranged from 33 to 100 percent daily. Although improvements in transmitter battery life are clearly needed, this information will help guide the development of future research and monitoring efforts in this system.

  11. Testing pop-up satellite tags as a tool for identifying critical habitat for Pacific halibut (Hippoglossus stenolepis) in the Gulf of Alaska

    USGS Publications Warehouse

    Seitz, Andrew C.; Wilson, Derek; Nielsen, Jennifer L.

    2002-01-01

    To maintain healthy commercial and sport fisheries for Pacific halibut (Hippoglossus stenolepis), critical habitat must be defined by determining life history patterns on a daily and seasonal basis. Pop-up satellite archival transmitting (PSAT) tags provide a fisheries-independent method of collecting environmental preference data (depth and ambient water temperature) as well as daily geolocation estimates based on ambient light conditions. In this study, 14 adult halibut (107-165 cm FL) were tagged and released with PSAT tags in and around Resurrection Bay, Alaska. Commercial fishermen recovered two tags, while five tags transmitted data to ARGOS satellites. Horizontal migration was not consistent among fish as three halibut remained in the vicinity of release while four traveled up to 358 km from the release site. Vertical migration was not consistent among fish and over time, but they spent most their time between 150-350 m. The minimum and maximum depths reached by any of the halibut were 2m and 502m, respectively. The fish preferred water temperatures of roughly 6 °C while experiencing ambient temperatures between 4.3 °C and 12.2 °C. Light attenuation with depth prevented existing geolocation software and light sensing hardware from accurately estimating geoposition, however, information from temperature, depth, ocean bathymetry, and pop-off locations provided inference on fish movement in the study area. PSAT tags were a viable tool for determining daily and seasonal behavior and identifying critical halibut habitat, which will aid fisheries managers in future decisions regarding commercial and sport fishing regulations.

  12. Atlantic cod actively avoid CO2 and predator odour, even after long-term CO2 exposure.

    PubMed

    Jutfelt, Fredrik; Hedgärde, Maria

    2013-12-27

    The rising atmospheric CO2 level is continuously driving the dissolution of more CO2 into the oceans, and some emission scenarios project that the surface waters may reach 1000 μatm by the end of the century. It is not known if fish can detect moderately elevated CO2 levels, and if they avoid areas with high CO2. If so, avoidance behaviour to water with high CO2 could affect movement patterns and migrations of fish in the future. It is also being increasingly recognized that fish behaviour can be altered by exposure to CO2. Therefore this study investigated how long-term exposure to elevated pCO2 affects predator avoidance and CO2 avoidance in juvenile Atlantic cod (Gadus morhua). The fish were exposed to control water or CO2-enriched water (1000 μatm) for six weeks before being subjected to tests of behaviour. Despite long term exposure to elevated pCO2 the cod still strongly avoided the smell of a predator. These data are surprising because several coral reef fish have demonstrated reversal of olfactory responses after CO2 exposure, turning avoidance of predator cues into preference for predator cues. Fish from both treatment groups also demonstrated strong avoidance of CO2 when presented with the choice of control or CO2-acidified water, indicating that habituation to the CO2 sensory stimuli is negligible. As Atlantic cod maintained normal behavioural responses to olfactory cues, they may be tolerant to CO2-induced behavioural changes. The results also suggest that despite the long-term exposure to CO2-acidified water, the fish still preferred the control water over CO2-acidified water. Therefore, in the future, fish may alter their movements and migrations in search of waters with a lower CO2 content.

  13. Atlantic cod actively avoid CO2 and predator odour, even after long-term CO2 exposure

    PubMed Central

    2013-01-01

    Introduction The rising atmospheric CO2 level is continuously driving the dissolution of more CO2 into the oceans, and some emission scenarios project that the surface waters may reach 1000 μatm by the end of the century. It is not known if fish can detect moderately elevated CO2 levels, and if they avoid areas with high CO2. If so, avoidance behaviour to water with high CO2 could affect movement patterns and migrations of fish in the future. It is also being increasingly recognized that fish behaviour can be altered by exposure to CO2. Therefore this study investigated how long-term exposure to elevated pCO2 affects predator avoidance and CO2 avoidance in juvenile Atlantic cod (Gadus morhua). The fish were exposed to control water or CO2-enriched water (1000 μatm) for six weeks before being subjected to tests of behaviour. Results Despite long term exposure to elevated pCO2 the cod still strongly avoided the smell of a predator. These data are surprising because several coral reef fish have demonstrated reversal of olfactory responses after CO2 exposure, turning avoidance of predator cues into preference for predator cues. Fish from both treatment groups also demonstrated strong avoidance of CO2 when presented with the choice of control or CO2-acidified water, indicating that habituation to the CO2 sensory stimuli is negligible. Conclusions As Atlantic cod maintained normal behavioural responses to olfactory cues, they may be tolerant to CO2-induced behavioural changes. The results also suggest that despite the long-term exposure to CO2-acidified water, the fish still preferred the control water over CO2-acidified water. Therefore, in the future, fish may alter their movements and migrations in search of waters with a lower CO2 content. PMID:24373523

  14. The impact of fishing-induced mortality on the evolution of alternative life-history tactics in brook charr

    PubMed Central

    Thériault, Véronique; Dunlop, Erin S; Dieckmann, Ulf; Bernatchez, Louis; Dodson, Julian J

    2008-01-01

    Although contemporary trends indicative of evolutionary change have been detected in the life-history traits of exploited populations, it is not known to what extent fishing influences the evolution of alternative life-history tactics in migratory species such as salmonids. Here, we build a model to predict the evolution of anadromy and residency in an exploited population of brook charr, Salvelinus fontinalis. Our model allows for both phenotypic plasticity and genetic change in the age and size at migration by including migration reaction norms. Using this model, we predict that fishing of anadromous individuals over the course of 100 years causes evolution in the migration reaction norm, resulting in a decrease in average probabilities of migration with increasing harvest rate. Moreover, we show that differences in natural mortalities in freshwater greatly influence the magnitude and rate of evolutionary change. The fishing-induced changes in migration predicted by our model alter population abundances and reproductive output and should be accounted for in the sustainable management of salmonids. PMID:25567640

  15. Role of biogenic amines in the post-mortem migration of Anisakis pegreffii (Nematoda: Anisakidae Dujardin, 1845) larvae into fish fillets.

    PubMed

    Šimat, Vida; Miletić, Jelena; Bogdanović, Tanja; Poljak, Vedran; Mladineo, Ivona

    2015-12-02

    Infective third-stage larvae (L3) of nematode Anisakis spp. have been recognized as one of the major food-borne threats in lightly processed fish products in Europe, particularly in the Mediterranean region. Therefore, the effect of different storage temperatures of fish on larval post-mortem migration from visceral cavity into fillets is an important parameter to take into account when evaluating the risk for consumer safety. The European anchovy (Engraulis encrasicolus) were caught during fishing season, a subsample of fillets was checked for the presence of Anisakis larvae at capture (mean abundance=0.07), and the rest was stored at four different temperatures (-18, 0, 4 and 22°C) in order to count migrating larvae and measure the production of biogenic amines over a period of time. Larvae were identified by morphological features and molecular tools. Post-mortem migration was observed in fillets stored at 0 and 4°C after three and five days, respectively, but not at 22 and -18°C. In case of storage at 22°C for two days, at the onset of putrefaction of the visceral organs, larvae migrated out of the visceral cavity towards the fish surface. Measured pH and biogenic amine profile during storage indicated that certain biochemical conditions trigger larval migration into fillets. Likewise, migration was observed at pH ~6.4 when sensory degradation of the fish was markedly visible. Although larval migration was delayed for approximately four days at a temperature of <4°C the correlation between pH and abundance of A. pegreffii larvae in the fillet was high and statistically significant at both 0 (r=0.998, p<0.01) and 4°C (r=0.946, p<0.05). Out of eight biogenic amines measured, cadaverine and putrescine levels correlated the most with the post-mortem migration at 4°C, while tyramine levels were significant at both temperatures. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Cost effective system for monitoring of fish migration with a camera

    NASA Astrophysics Data System (ADS)

    Sečnik, Matej; Brilly, Mitja; Vidmar, Andrej

    2016-04-01

    Within the European LIFE project Ljubljanica connects (LIFE10 NAT/SI/000142) we have developed a cost-effective solution for the monitoring of fish migration through the fish passes with the underwater camera. In the fish pass at Ambrožev trg and in the fish pass near the Fužine castle we installed a video camera called "Fishcam" to be able to monitor the migration of fish through the fish passes and success of its reconstruction. Live stream from fishcams installed in the fishpassesis available on our project website (http://ksh.fgg.uni-lj.si/ljubljanicaconnects/ang/12_camera). The system for the fish monitoring is made from two parts. First is the waterproof box for the computer with charger and the second part is the camera itself. We used a high sensitive Sony analogue camera. The advantage of this camera is that it has very good sensitivity in low light conditions, so it can take good quality pictures even at night with a minimum additional lighting. For the night recording we use additional IR reflector to illuminate passing fishes. The camera is connected to an 8-inch tablet PC. We decided to use a tablet PC because it is quite small, cheap, it is relatively fast and has a low power consumption. On the computer we use software which has advanced motion detection capabilities, so we can also detect the small fishes. When the fish is detected by a software, its photograph is automatically saved to local hard drive and for backup also on Google drive. The system for monitoring of fish migration has turned out to work very well. From the beginning of monitoring in June 2015 to end of the year there were more than 100.000 photographs produced. The first analysis of them was already prepared estimating fish species and their frequency in passing the fish pass.

  17. Linking habitat use of Hudson River striped bass to accumulation of polychlorinated biphenyl congeners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashley, J.T.F.; Secor, D.H.; Zlokovitz, E.

    2000-03-15

    Since 1976, the commercial striped bass fishery in the Hudson River (NY) has been closed due to total polychlorinated biphenyl (t-PCB) concentrations that exceed the US Food and Drug Administration's advisory level of 2 {micro}g/g-wet weight. Extensive monitoring of Hudson River striped bass demonstrated much more variability in t-PCB levels among individual striped bass than could be explained by their age, sex, or lipid contents. To investigate the possible role of differential habitat use among subpopulations of striped bass in controlling their PCB exposures, 70 fish collected throughout the Hudson River estuary and Long Island Sound in 1994--1995 were analyzedmore » for PCB congeners, and their lifetime migration behaviors were estimated by otolith microchemistry. The mean salinity encountered during the fish's last growth season prior to capture was inversely correlated with the t-PCB body burden. Striped bass permanently residing in fresh and oligohaline portions of the estuary adjacent to known PCB sources had elevated t-PCB levels and congeneric patterns with higher proportions of di-, tri-, and tetrachlorobiphenyls. Conversely, fish spending the majority of their life in more saline waters of the estuary or migrating frequently throughout the salinity gradient contained lower PCB levels composed of more highly chlorinated congeners. The approach used in this study allows habitat use to be incorporated into exposure assessments for anadromous fish species such as striped bass.« less

  18. Diel and seasonal movement pattern of the dusky grouper Epinephelus marginatus inside a marine reserve.

    PubMed

    Koeck, Barbara; Pastor, Jérémy; Saragoni, Gilles; Dalias, Nicolas; Payrot, Jérôme; Lenfant, Philippe

    2014-03-01

    Temporal movement patterns and spawning behaviour of the dusky grouper Epinephelus marginatus were investigated using depth and temperature sensors combined to acoustic telemetry. Results showed that these fish are year-round resident, remaining inside the fully protected area of the marine reserve of Cerbère-Banyuls (65 ha) and display a diurnal activity pattern. Records from depth sensors revealed that groupers range inside small, distinct, and individual territories. Individual variations in habitat depth are only visible on a seasonal scale, i.e., between the spawning season and the rest of the year. In fact, during summer months when the seawater temperature exceeded 20 °C, tagged groupers made vertical spawning migrations of 4-8 m in amplitude. These vertical migrations are characteristic of the reproductive behaviour of dusky groupers, during which they release their gametes. The results are notable for the implementation of management rules in marine protected areas, such as reduced navigation speed, boating or attendance during spawning season. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Fishing out collective memory of migratory schools

    PubMed Central

    De Luca, Giancarlo; Mariani, Patrizio; MacKenzie, Brian R.; Marsili, Matteo

    2014-01-01

    Animals form groups for many reasons, but there are costs and benefits associated with group formation. One of the benefits is collective memory. In groups on the move, social interactions play a crucial role in the cohesion and the ability to make consensus decisions. When migrating from spawning to feeding areas, fish schools need to retain a collective memory of the destination site over thousands of kilometres, and changes in group formation or individual preference can produce sudden changes in migration pathways. We propose a modelling framework, based on stochastic adaptive networks, that can reproduce this collective behaviour. We assume that three factors control group formation and school migration behaviour: the intensity of social interaction, the relative number of informed individuals and the strength of preference that informed individuals have for a particular migration area. We treat these factors independently and relate the individuals’ preferences to the experience and memory for certain migration sites. We demonstrate that removal of knowledgeable individuals or alteration of individual preference can produce rapid changes in group formation and collective behaviour. For example, intensive fishing targeting the migratory species and also their preferred prey can reduce both terms to a point at which migration to the destination sites is suddenly stopped. The conceptual approaches represented by our modelling framework may therefore be able to explain large-scale changes in fish migration and spatial distribution. PMID:24647905

  20. Fishing out collective memory of migratory schools.

    PubMed

    De Luca, Giancarlo; Mariani, Patrizio; MacKenzie, Brian R; Marsili, Matteo

    2014-06-06

    Animals form groups for many reasons, but there are costs and benefits associated with group formation. One of the benefits is collective memory. In groups on the move, social interactions play a crucial role in the cohesion and the ability to make consensus decisions. When migrating from spawning to feeding areas, fish schools need to retain a collective memory of the destination site over thousands of kilometres, and changes in group formation or individual preference can produce sudden changes in migration pathways. We propose a modelling framework, based on stochastic adaptive networks, that can reproduce this collective behaviour. We assume that three factors control group formation and school migration behaviour: the intensity of social interaction, the relative number of informed individuals and the strength of preference that informed individuals have for a particular migration area. We treat these factors independently and relate the individuals' preferences to the experience and memory for certain migration sites. We demonstrate that removal of knowledgeable individuals or alteration of individual preference can produce rapid changes in group formation and collective behaviour. For example, intensive fishing targeting the migratory species and also their preferred prey can reduce both terms to a point at which migration to the destination sites is suddenly stopped. The conceptual approaches represented by our modelling framework may therefore be able to explain large-scale changes in fish migration and spatial distribution.

  1. Body size and condition influence migration timing of juvenile Arctic grayling

    USGS Publications Warehouse

    Heim, Kurt C.; Wipfli, Mark S.; Whitman, Matthew S.; Seitz, Andrew C.

    2016-01-01

    Freshwater fishes utilising seasonally available habitats within annual migratory circuits time movements out of such habitats with changing hydrology, although individual attributes of fish may also mediate the behavioural response to environmental conditions. We tagged juvenile Arctic grayling in a seasonally flowing stream on the Arctic Coastal Plain in Alaska and recorded migration timing towards overwintering habitat. We examined the relationship between individual migration date, and fork length (FL) and body condition index (BCI) for fish tagged in June, July and August in three separate models. Larger fish migrated earlier; however, only the August model suggested a significant relationship with BCI. In this model, 42% of variability in migration timing was explained by FL and BCI, and fish in better condition were predicted to migrate earlier than those in poor condition. Here, the majority (33%) of variability was captured by FL with an additional 9% attributable to BCI. We also noted strong seasonal trends in BCI reflecting overwinter mass loss and subsequent growth within the study area. These results are interpreted in the context of size and energetic state-specific risks of overwinter starvation and mortality (which can be very high in the Arctic), which may influence individuals at greater risk to extend summer foraging in a risky, yet prey rich, habitat. Our research provides further evidence that heterogeneity among individuals within a population can influence migratory behaviour and identifies potential risks to late season migrants in Arctic beaded stream habitats influenced by climate change and petroleum development.

  2. Barriers impede upstream spawning migration of flathead chub

    USGS Publications Warehouse

    Walters, David M.; Zuellig, Robert E.; Crockett, Harry J.; Bruce, James F.; Lukacs, Paul M.; Fitzpatrick, Ryan M.

    2014-01-01

    Many native cyprinids are declining throughout the North American Great Plains. Some of these species require long reaches of contiguous, flowing riverine habitat for drifting eggs or larvae to develop, and their declining populations have been attributed to habitat fragmentation or barriers (e.g., dams, dewatered channels, and reservoirs) that restrict fish movement. Upstream dispersal is also needed to maintain populations of species with passively drifting eggs or larvae, and prior researchers have suggested that these fishes migrate upstream to spawn. To test this hypothesis, we conducted a mark–recapture study of Flathead Chub Platygobio gracilis within a 91-km reach of continuous riverine habitat in Fountain Creek, Colorado. We measured CPUE, spawning readiness (percent of Flathead Chub expressing milt), and fish movement relative to a channel-spanning dam. Multiple lines of evidence indicate that Flathead Chub migrate upstream to spawn during summer. The CPUE was much higher at the base of the dam than at downstream sites; the seasonal increases in CPUE at the dam closely tracked seasonal increases in spawning readiness, and marked fish moved upstream as far as 33 km during the spawning run. The upstream migration was effectively blocked by the dam. The CPUE of Flathead Chub was much lower upstream of the OHDD than at downstream sites, and <0.2% of fish marked at the dam were recaptured upstream. This study provides the first direct evidence of spawning migration for Flathead Chub and supports the general hypothesis that barriers limit adult dispersal of these and other plains fishes.

  3. Use of a Fish Transportation Barge for Increasing Returns of Steelhead Imprinted for Homing, Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harmon, Jerrel R.

    1989-08-01

    The objective of this 7-year National Fisheries Service study, which began is 1982, was to determine if transporting juvenile steelhead (Oncorhynchus mykiss) by truck and barge from Dworshak National Fish Hatchery (NFH), on the Clearwater River, to a release site on the Columbia River below Bonneville Dam would result in increased returns of adults to the various fisheries and to the hatchery homing site. During 1982 and 1983, over 500,000 marked juvenile steelhead were serially released as controls from the hatchery or barged as test fish to below Bonneville Dam. Recoveries of marked adults to various recovery sites are complete.more » Fish released in 1983 showed a stronger homing ability and more rapid upstream migration than test fish released in 1982. Most adults from both control and test releases in 1983 and control releases in 1982 migrated a considerable distance upstream and overwintered in the Snake and Clearwater Rivers--behavior similar to Clearwater River fish previously transported from Lower Granite Dam. In contrast, many of the adults from test releases in 1982 failed to migrate upstream during the fall, overwintered in the Columbia River, and migrated upstream the following spring. Survival of control fish released at Dworshak NFH in late April 1982 was substantially higher than survival of those released in mid-May. Survival and homing of control fish released in late April and early May 1983 were over 10 times that for fish released in late May. Return of adults from normal hatchery releases in 1982 was the highest ever observed at Dworshak NFH.« less

  4. Comparison of migration rate and survival between radio-tagged and PIT-tagged migrant yearling chinook salmon in the Snake and Columbia rivers

    USGS Publications Warehouse

    Hockersmith, E.E.; Muir, W.D.; Smith, S.G.; Sandford, B.P.; Perry, R.W.; Adams, N.S.; Rondorf, D.W.

    2003-01-01

    A study was conducted to compare the travel times, detection probabilities, and survival of migrant hatchery-reared yearling chinook salmon Oncorhynchus tshawytscha tagged with either gastrically or surgically implanted sham radio tags (with an imbedded passive integrated transponder [PIT] tag) with those of their cohorts tagged only with PIT tags in the Snake and Columbia rivers. Juvenile chinook salmon with gastrically implanted radio tags migrated significantly faster than either surgically radio-tagged or PIT-tagged fish, while migration rates were similar among surgically radio-tagged and PIT-tagged fish. The probabilities of PIT tag detection at downstream dams varied by less than 5% and were not significantly different among the three groups. Survival was similar among treatments for median travel times of less than approximately 6 d (migration distance of 106 km). However, for both gastrically and surgically radio-tagged fish, survival was significantly less than for PIT-tagged fish, for which median travel times exceeded approximately 10 d (migration distance of 225 km). The results of this study support the use of radio tags to estimate the survival of juvenile chinook salmon having a median fork length of approximately 150 mm (range, 127-285 mm) and a median travel time of migration of less than approximately 6 d.

  5. Evaluation of a mark-recapture method for estimating mortality and migration rates of stratified populations

    USGS Publications Warehouse

    Dorazio, R.M.; Rago, P.J.

    1991-01-01

    We simulated mark–recapture experiments to evaluate a method for estimating fishing mortality and migration rates of populations stratified at release and recovery. When fish released in two or more strata were recovered from different recapture strata in nearly the same proportions, conditional recapture probabilities were estimated outside the [0, 1] interval. The maximum likelihood estimates tended to be biased and imprecise when the patterns of recaptures produced extremely "flat" likelihood surfaces. Absence of bias was not guaranteed, however, in experiments where recapture rates could be estimated within the [0, 1] interval. Inadequate numbers of tag releases and recoveries also produced biased estimates, although the bias was easily detected by the high sampling variability of the estimates. A stratified tag–recapture experiment with sockeye salmon (Oncorhynchus nerka) was used to demonstrate procedures for analyzing data that produce biased estimates of recapture probabilities. An estimator was derived to examine the sensitivity of recapture rate estimates to assumed differences in natural and tagging mortality, tag loss, and incomplete reporting of tag recoveries.

  6. Indicators: Fish Assemblage

    EPA Pesticide Factsheets

    Fish assemblage refers to the variety and abundance of fish species in a given waterbody. Fish are sensitive indicators of physical and chemical habitat degradation, environmental contamination, migration barriers, and overall ecosystem productivity.

  7. Migrating pharyngeal foreign bodies: a series of four cases of saw-toothed fish bones.

    PubMed

    Chung, Sung Min; Kim, Han Su; Park, Eun Hee

    2008-09-01

    Pharyngeal foreign bodies are common problems seen at emergency rooms or ENT outpatient clinics, and fish bones are the most common foreign bodies encountered in East Asia and in Korea. One of the rare complications of a swallowed sharp fish bone is its migration from the site of entry into the subcutaneous tissues of the neck. We present four unusual cases of ingested fish bones that migrated out of the upper digestive tract to the neck. In the first case, this caused a recurrent deep neck infection for 2 years; in the second case, there was penetration of the facial artery; in the third case, there was a hematoma of the floor of the mouth; in the fourth case, there was a retropharyngeal abscess.

  8. Tower counts

    USGS Publications Warehouse

    Woody, Carol Ann; Johnson, D.H.; Shrier, Brianna M.; O'Neal, Jennifer S.; Knutzen, John A.; Augerot, Xanthippe; O'Neal, Thomas A.; Pearsons, Todd N.

    2007-01-01

    Counting towers provide an accurate, low-cost, low-maintenance, low-technology, and easily mobilized escapement estimation program compared to other methods (e.g., weirs, hydroacoustics, mark-recapture, and aerial surveys) (Thompson 1962; Siebel 1967; Cousens et al. 1982; Symons and Waldichuk 1984; Anderson 2000; Alaska Department of Fish and Game 2003). Counting tower data has been found to be consistent with that of digital video counts (Edwards 2005). Counting towers do not interfere with natural fish migration patterns, nor are fish handled or stressed; however, their use is generally limited to clear rivers that meet specific site selection criteria. The data provided by counting tower sampling allow fishery managers to determine reproductive population size, estimate total return (escapement + catch) and its uncertainty, evaluate population productivity and trends, set harvest rates, determine spawning escapement goals, and forecast future returns (Alaska Department of Fish and Game 1974-2000 and 1975-2004). The number of spawning fish is determined by subtracting subsistence, sport-caught fish, and prespawn mortality from the total estimated escapement. The methods outlined in this protocol for tower counts can be used to provide reasonable estimates ( plus or minus 6%-10%) of reproductive salmon population size and run timing in clear rivers. 

  9. Repeated, long-distance migrations by a philopatric predator targeting highly contrasting ecosystems

    PubMed Central

    Lea, James S. E.; Wetherbee, Bradley M.; Queiroz, Nuno; Burnie, Neil; Aming, Choy; Sousa, Lara L.; Mucientes, Gonzalo R.; Humphries, Nicolas E.; Harvey, Guy M.; Sims, David W.; Shivji, Mahmood S.

    2015-01-01

    Long-distance movements of animals are an important driver of population spatial dynamics and determine the extent of overlap with area-focused human activities, such as fishing. Despite global concerns of declining shark populations, a major limitation in assessments of population trends or spatial management options is the lack of information on their long-term migratory behaviour. For a large marine predator, the tiger shark Galeocerdo cuvier, we show from individuals satellite-tracked for multiple years (up to 1101 days) that adult males undertake annually repeated, round-trip migrations of over 7,500 km in the northwest Atlantic. Notably, these migrations occurred between the highly disparate ecosystems of Caribbean coral reef regions in winter and high latitude oceanic areas in summer, with strong, repeated philopatry to specific overwintering insular habitat. Partial migration also occurred, with smaller, immature individuals displaying reduced migration propensity. Foraging may be a putative motivation for these oceanic migrations, with summer behaviour showing higher path tortuosity at the oceanic range extremes. The predictable migratory patterns and use of highly divergent ecosystems shown by male tiger sharks appear broadly similar to migrations seen in birds, reptiles and mammals, and highlight opportunities for dynamic spatial management and conservation measures of highly mobile sharks. PMID:26057337

  10. Repeated, long-distance migrations by a philopatric predator targeting highly contrasting ecosystems.

    PubMed

    Lea, James S E; Wetherbee, Bradley M; Queiroz, Nuno; Burnie, Neil; Aming, Choy; Sousa, Lara L; Mucientes, Gonzalo R; Humphries, Nicolas E; Harvey, Guy M; Sims, David W; Shivji, Mahmood S

    2015-06-09

    Long-distance movements of animals are an important driver of population spatial dynamics and determine the extent of overlap with area-focused human activities, such as fishing. Despite global concerns of declining shark populations, a major limitation in assessments of population trends or spatial management options is the lack of information on their long-term migratory behaviour. For a large marine predator, the tiger shark Galeocerdo cuvier, we show from individuals satellite-tracked for multiple years (up to 1101 days) that adult males undertake annually repeated, round-trip migrations of over 7,500 km in the northwest Atlantic. Notably, these migrations occurred between the highly disparate ecosystems of Caribbean coral reef regions in winter and high latitude oceanic areas in summer, with strong, repeated philopatry to specific overwintering insular habitat. Partial migration also occurred, with smaller, immature individuals displaying reduced migration propensity. Foraging may be a putative motivation for these oceanic migrations, with summer behaviour showing higher path tortuosity at the oceanic range extremes. The predictable migratory patterns and use of highly divergent ecosystems shown by male tiger sharks appear broadly similar to migrations seen in birds, reptiles and mammals, and highlight opportunities for dynamic spatial management and conservation measures of highly mobile sharks.

  11. Repeated, long-distance migrations by a philopatric predator targeting highly contrasting ecosystems

    NASA Astrophysics Data System (ADS)

    Lea, James S. E.; Wetherbee, Bradley M.; Queiroz, Nuno; Burnie, Neil; Aming, Choy; Sousa, Lara L.; Mucientes, Gonzalo R.; Humphries, Nicolas E.; Harvey, Guy M.; Sims, David W.; Shivji, Mahmood S.

    2015-06-01

    Long-distance movements of animals are an important driver of population spatial dynamics and determine the extent of overlap with area-focused human activities, such as fishing. Despite global concerns of declining shark populations, a major limitation in assessments of population trends or spatial management options is the lack of information on their long-term migratory behaviour. For a large marine predator, the tiger shark Galeocerdo cuvier, we show from individuals satellite-tracked for multiple years (up to 1101 days) that adult males undertake annually repeated, round-trip migrations of over 7,500 km in the northwest Atlantic. Notably, these migrations occurred between the highly disparate ecosystems of Caribbean coral reef regions in winter and high latitude oceanic areas in summer, with strong, repeated philopatry to specific overwintering insular habitat. Partial migration also occurred, with smaller, immature individuals displaying reduced migration propensity. Foraging may be a putative motivation for these oceanic migrations, with summer behaviour showing higher path tortuosity at the oceanic range extremes. The predictable migratory patterns and use of highly divergent ecosystems shown by male tiger sharks appear broadly similar to migrations seen in birds, reptiles and mammals, and highlight opportunities for dynamic spatial management and conservation measures of highly mobile sharks.

  12. Physiological preparedness and performance of Atlantic salmon Salmo salar smolts in relation to behavioural salinity preferences and thresholds.

    PubMed

    Stich, D S; Zydlewski, G B; Zydlewski, J D

    2016-02-01

    This study investigated the relationships between behavioural responses of Atlantic salmon Salmo salar smolts to saltwater (SW) exposure and physiological characteristics of smolts in laboratory experiments. It concurrently described the behaviour of acoustically tagged smolts with respect to SW and tidal cycles during estuary migration. Salmo salar smolts increased their use of SW relative to fresh water (FW) from April to June in laboratory experiments. Mean preference for SW never exceeded 50% of time in any group. Preference for SW increased throughout the course of smolt development. Maximum continuous time spent in SW was positively related to gill Na(+), K(+)-ATPase (NKA) activity and osmoregulatory performance in full-strength SW (measured as change in gill NKA activity and plasma osmolality). Smolts decreased depth upon reaching areas of the Penobscot Estuary where SW was present, and all fish became more surface oriented during passage from head of tide to the ocean. Acoustically tagged, migrating smolts with low gill NKA activity moved faster in FW reaches of the estuary than those with higher gill NKA activity. There was no difference in movement rate through SW reaches of the estuary based on gill NKA activity. Migrating fish moved with tidal flow during the passage of the lower estuary based on the observed patterns in both vertical and horizontal movements. The results indicate that smolts select low-salinity water during estuary migration and use tidal currents to minimize energetic investment in seaward migration. Seasonal changes in osmoregulatory ability highlight the importance of the timing of stocking and estuary arrival. © 2015 The Fisheries Society of the British Isles.

  13. Evolutionary responses by native species to major anthropogenic changes to their ecosystems: Pacific salmon in the Columbia River hydropower system.

    PubMed

    Waples, Robin S; Zabel, Richard W; Scheuerell, Mark D; Sanderson, Beth L

    2008-01-01

    The human footprint is now large in all the Earth's ecosystems, and construction of large dams in major river basins is among the anthropogenic changes that have had the most profound ecological consequences, particularly for migratory fishes. In the Columbia River basin of the western USA, considerable effort has been directed toward evaluating demographic effects of dams, yet little attention has been paid to evolutionary responses of migratory salmon to altered selective regimes. Here we make a first attempt to address this information gap. Transformation of the free-flowing Columbia River into a series of slack-water reservoirs has relaxed selection for adults capable of migrating long distances upstream against strong flows; conditions now favour fish capable of migrating through lakes and finding and navigating fish ladders. Juveniles must now be capable of surviving passage through multiple dams or collection and transportation around the dams. River flow patterns deliver some groups of juvenile salmon to the estuary later than is optimal for ocean survival, but countervailing selective pressures might constrain an evolutionary response toward earlier migration timing. Dams have increased the cost of migration, which reduces energy available for sexual selection and favours a nonmigratory life history. Reservoirs are a benign environment for many non-native species that are competitors with or predators on salmon, and evolutionary responses are likely (but undocumented). More research is needed to tease apart the relative importance of evolutionary vs. plastic responses of salmon to these environmental changes; this research is logistically challenging for species with life histories like Pacific salmon, but results should substantially improve our understanding of key processes. If the Columbia River is ever returned to a quasinatural, free-flowing state, remaining populations might face a Darwinian debt (and temporarily reduced fitness) as they struggle to re-evolve historical adaptations.

  14. Physiological indices of seawater readiness in postspawning steelhead kelts

    USGS Publications Warehouse

    Buelow, Jessica; Moffitt, Christine M.

    2015-01-01

    Management goals to improve the recovery of steelhead (Oncorhynchus mykiss) stocks at risk of extinction include increasing the proportion of postspawning fish that survive and spawn again. To be successful, postspawning steelhead (kelts) migrating downstream to the ocean must prepare physiologically and physically for a seawater transition. We sampled blood, gill filaments, and evaluated the external condition of migrating kelts from an ESA-listed population in the Snake/Columbia River system over two consecutive years to evaluate their physiological readiness for transition to seawater. We chose attributes often considered as measures of preparation for seawater in juveniles, including gill Na+,K+ ATPase activity, plasma electrolytes and hormones to consider factors related to external condition, size and sex. We found kelts in good external condition had plasma profiles similar to downstream-migrating smolts. In addition, we found more than 80% of kelts ranked in good external condition had smolt-like body silvering. We compared measures from migrating kelts with samples obtained from hatchery fish at the time of spawning to confirm that Na+, K+ ATPase activity in kelts was significantly elevated over spawning fish. We found significant differences in gill Na+, K+ ATPase activity in migrating kelts between the years of sampling, but little indication of influence of fish condition. We conclude that the postspawning steelhead sampled exhibited a suite of behaviours, condition and physiology characteristic of fish prepared for successful transition to a seawater environment.

  15. Combining genetic, isotopic, and field data to better describe the influence of dams and diversions on Burbot Movement in the Wind River Drainage, Wyoming

    USGS Publications Warehouse

    Hooley-Underwood, Zachary; Mandeville, Elizabeth G.; Gerrity, Paul C.; Deromedi, J. W.; Johnson, Kevin; Walters, Annika W.

    2018-01-01

    Dams and water diversions fragment habitat, entrain fish, and alter fish movement. Many Burbot Lota lota populations are declining, with dams and water diversions thought to be a major threat. We used multiple methods to identify Burbot movement patterns and assess entrainment into an irrigation system in the Wind River, Wyoming. We assessed seasonal movement of Burbot with a mark–recapture (PIT tagging) study, natal origins of entrained fish with otolith microchemistry, and historic movement with genotyping by sequencing. We found limited evidence of entrainment in irrigation waters across all approaches. The mark–recapture study indicated that out‐migration from potential source populations could be influenced by flow regime but was generally low. Otolith and genomic results suggested the presence of a self‐sustaining population within the irrigation network. We conclude that emigration from natural tributary populations is not the current source of the majority of Burbot found in irrigation waters. Instead, reservoir and irrigation canal construction has created novel habitat in which Burbot have established a population. Using a multi‐scale approach increased our inferential abilities and mechanistic understanding of movement patterns between natural and managed systems.

  16. Monitoring of Downstream Salmon and Steelhead at Federal Hydroelectric Facilities, 1991 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawkes, Lynette A.; Martinson, Rick D.; Smith, W. William

    1992-04-01

    The 1991 smolt monitoring project of the National Marine Fisheries Service provided data on the seaward migration of juvenile salmon and steelhead at John Day, The Dalles and Bonneville Dams. All pertinent fish capture and condition data as well as dam operations and river flow data were provided to Fish Passage Center for use in developing fish passage indices and migration timing, and for water budget and spill management.

  17. An Ocean Mural.

    ERIC Educational Resources Information Center

    Graham, Frank; Graham, Ada

    1998-01-01

    Introduces a class project on oceans, fishes, and fishing industries around the world. Groups of students make a mural of the world, filling the oceans with accurate drawings of fish, fishing boats, and fishing equipment. Students learn about the importance of fish in various cultures and about the migration routes of fish. Includes a resource…

  18. Tracing the origins, migrations, and other movements of fishes using stable isotopes

    EPA Science Inventory

    Although stable isotope studies are increasingly used to trace fish origin, migration, and movement, the approach has not been as widely adopted as extrinsic marking and tagging. This is, at least in part, because many fishery scientists do not have a background in biogeochemistr...

  19. Evidence of Partial Migration in a Large Coastal Predator: Opportunistic Foraging and Reproduction as Key Drivers?

    PubMed Central

    Espinoza, Mario; Heupel, Michelle R.; Tobin, Andrew J.; Simpfendorfer, Colin A.

    2016-01-01

    Understanding animal movement decisions that involve migration is critical for evaluating population connectivity, and thus persistence. Recent work on sharks has shown that often only a portion of the adult population will undertake migrations, while the rest may be resident in an area for long periods. Defining the extent to which adult sharks use specific habitats and their migratory behaviour is essential for assessing their risk of exposure to threats such as fishing and habitat degradation. The present study used acoustic telemetry to examine residency patterns and migratory behaviour of adult bull sharks (Carcharhinus leucas) along the East coast of Australia. Fifty-six VR2W acoustic receivers were used to monitor the movements of 33 bull sharks in the central Great Barrier Reef (GBR). Both males and females were detected year-round, but their abundance and residency peaked between September and December across years (2012–2014). High individual variability in reef use patterns was apparent, with some individuals leaving the array for long periods, whereas others (36%) exhibited medium (0.20–0.40) or high residency (> 0.50). A large portion of the population (51%) undertook migrations of up to 1,400 km to other coral reefs and/or inshore coastal habitats in Queensland and New South Wales. Most of these individuals (76%) were mature females, and the timing of migrations coincided with the austral summer (Dec-Feb). All migrating individuals (except one) returned to the central GBR, highlighting its importance as a potential foraging ground. Our findings suggest that adult bull sharks appear to be highly dependent on coral reef resources and provide evidence of partial migration, where only a portion of the female population undertook seasonal migrations potentially to give birth. Given that estuarine habitats face constant anthropogenic pressures, understanding partial migration and habitat connectivity of large coastal predators should be a priority for their management. PMID:26841110

  20. Linking behavior, physiology, and survival of Atlantic Salmon smolts during estuary migration

    USGS Publications Warehouse

    Stich, Daniel S.; Zydlewski, Gayle B.; Kocik, John F.; Zydlewski, Joseph D.

    2015-01-01

    Decreased marine survival is identified as a component driver of continued declines of Atlantic Salmon Salmo salar. However, estimates of marine mortality often incorporate loss incurred during estuary migration that may be mechanistically distinct from factors affecting marine mortality. We examined movements and survival of 941 smolts (141 wild and 800 hatchery-reared fish) released in freshwater during passage through the Penobscot River estuary, Maine, from 2005 to 2013. We related trends in estuary arrival date, movement rate, and survival to fish characteristics, migratory history, and environmental conditions in the estuary. Fish that experienced the warmest thermal history arrived in the estuary 8 d earlier than those experiencing the coolest thermal history during development. Estuary arrival date was 10 d later for fish experiencing high flow than for fish experiencing low flow. Fish released furthest upstream arrived in the estuary 3 d later than those stocked further downstream but moved 0.5 km/h faster through the estuary. Temporally, movement rate and survival in the estuary both peaked in mid-May. Spatially, movement rate and survival both decreased from freshwater to the ocean. Wild smolts arrived in the estuary later than hatchery fish, but we observed no change in movement rate or survival attributable to rearing history. Fish with the highest gill Na+, K+-ATPase activity incurred 25% lower mortality through the estuary than fish with the lowest gill Na+, K+-ATPase activity. Smolt survival decreased (by up to 40%) with the increasing number of dams passed (ranging from two to nine) during freshwater migration. These results underscore the importance of physiological preparedness on performance and the delayed, indirect effects of dams on survival of Atlantic Salmon smolts during estuary migration, ultimately affecting marine survival estimates.

  1. Downstream Migration of Masu Salmon Smolt at a Diversion Facility of Dam

    NASA Astrophysics Data System (ADS)

    Hayashida, K.; Nii, H.; Kasuga, K.; Watanabe, K.

    2014-12-01

    A diversion facility was installed on the upstream of Pirika Dam in Northern Japan that produced a downstream flow into the fishway, thus allowing the fish to migrate to the sea. On the other hand, if the flow rate in the river was more than 7.00 m 3/s (design flow rate of diversion facility), masu salmon smolt were concerned about accessing the dam reservoir, because the smolt can't migrate to the sea through the diversion facility unfortunately. Therefore, the downstream migration of smolt was investigated around the diversion facility. The PIT tag system and radio transmitters as the biotelemetry were used to determine 1) whether masu salmon smolt were able to migrate downstream through the diversion facility and fishway at Pirika Dam, 2) when the smolt started to migrate downstream, 3) whether the downstream migration of smolt were affected by the flow increase in the river. It was clarified that 88% of the smolt were able to enter the diversion facility, and then 81% of the smolt were able to access the fishway. It was also clarified that smolt downstream migration had two peaks in a day (5:00 and 18:00). During the study period, although the flow rate was in the 2.21 m3/s to 30.44 m3/s range (average 6.70 m3/s), it was revealed that the diversion facility has a satisfactory function for the downstream migration of smolt as presented above. The survey clarified the downstream migration behavior of masu salmon by using two types of biotelemetry equipment. PIT tag and radio transmitter were found to be very effective in tracking the behavior of small fish such as smolt. PIT tags, in particular, require very little operating cost, because once they are inserted in the fish, they do not need human labor for tracking. It is desirable to actively introduce the biotelemetry as tracking equipment when surveying the fish migration in the river.

  2. Effects of feeding regimes and early maturation on migratory behaviour of landlocked hatchery-reared Atlantic salmon Salmo salar smolts.

    PubMed

    Norrgård, J R; Bergman, E; Schmitz, M; Greenberg, L A

    2014-10-01

    The migratory behaviour of hatchery-reared landlocked Atlantic salmon Salmo salar raised under three different feeding regimes was monitored through the lower part of the River Klarälven, Sweden. The smolts were implanted with acoustic transmitters and released into the River Klarälven, 25 km upstream of the outlet in Lake Vänern. Early mature males, which had matured the previous autumn, were also tagged and released. To monitor migration of the fish, acoustic receivers were deployed along the migratory route. The proportion of S. salar that reached Lake Vänern was significantly greater for fish fed fat-reduced feed than for fish given rations with higher fat content, regardless of ration size. Fish from the early mature male group remained in the river to a greater extent than fish from the three feeding regimes. Smolt status (degree of silvering), as visually assessed, did not differ among the feeding regime groups, and moreover, fully-silvered fish, regardless of feeding regime, migrated faster and had a greater migration success than fish with less developed smolt characteristics. Also, successful migrants had a lower condition factor than unsuccessful ones. These results indicate that the migration success of hatchery-reared S. smolts released to the wild can be enhanced by relatively simple changes in feeding regimes and by matching stocking time with smolt development. © 2014 The Fisheries Society of the British Isles.

  3. Assessment of the Fishery Improvement Opportunities on the Pend Oreille River, Appendices, 1990 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashe, Becky L.; Lillengreen, Kelly L.; Vella, John J.

    1991-03-01

    This report is a compilation of the seven appendices to DOE/BP/39339--4 the annual report for FY 1990. These appendices contain the supporting numerical data for the study. The purpose of this study was to assess the fishery improvement opportunities on the Box Canyon portion of the Pend Oreilla River. This three year study was initiated as part of the Northwest Power Planning Council's 1987 Columbia River Basin Fish and Wildlife Program. This report contains the findings of the third and final year of the study. The objectives of the third year of the study were to determine the relative abundancemore » of each species in the river and sloughs; the population levels in five selected tributaries and, if possible, for fish in the river and sloughs; each species growth rate, feeding habits, abundance of preferred prey, and migration patterns; and the seasonal movement patterns and habitat utilization of largemouth bass.« less

  4. Monitoring of Downstream Salmon and Steelhead at Federal Hydroelectric Facilities, 1992 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawkes, Lynnette A.; Martinson, Rick D.; Absolon, Randall F.

    1993-05-01

    The seaward migration of salmonid smolts was monitored by the National marine Fisheries Service (NMFS) at two sites on the Columbia River in 1992. The NMFS Smolt Monitoring Project is part of a larger Smolt Monitoring Program to index Columbia Basin juvenile salmonied stocks. It is coordinated by the Fish Passage Center (FPC) for the Columbia Basin Fish and Wildlife Agencies and Tribes. Its purpose is to facilitate fish passage through reservoirs and at dams by providing FPC with timely smolt migration data used for flow and spill management. Data is also used for travel time, migration timing and relativemore » run size magnitude analysis. This program is carried out under the auspices of the Northwest Power Planning Council Fish and Wildlife Program and is funded by the Bonneville Power Administration (BPA). Sampling sites were John Day and Bonneville Dams under the 1992 Smolt Monitoring Program. All pertinent fish capture, condition, brand recovery, and flow data, were reported daily to FPC. These data were incorporated into the FPC`s Fish Passage Data System (FPDS).« less

  5. Guiding out-migrating juvenile sea lamprey (Petromyzon marinus) with pulsed direct current

    USGS Publications Warehouse

    Johnson, Nicholas S.; Miehls, Scott M.

    2014-01-01

    Non-physical stimuli can deter or guide fish without affecting water flow or navigation and therefore have been investigated to improve fish passage at anthropogenic barriers and to control movement of invasive fish. Upstream fish migration can be blocked or guided without physical structure by electrifying the water, but directional downstream fish guidance with electricity has received little attention. We tested two non-uniform pulsed direct current electric systems, each having different electrode orientations (vertical versus horizontal), to determine their ability to guide out-migrating juvenile sea lamprey (Petromyzon marinus) and rainbow trout (Oncorhynchus mykiss). Both systems guided significantly more juvenile sea lamprey to a specific location in our experimental raceway when activated than when deactivated, but guidance efficiency decreased at the highest water velocities tested. At the electric field setting that effectively guided sea lamprey, rainbow trout were guided by the vertical electrode system, but most were blocked by the horizontal electrode system. Additional research should characterize the response of other species to non-uniform fields of pulsed DC and develop electrode configurations that guide fish over a range of water velocity.

  6. Trading-off fish biodiversity, food security, and hydropower in the Mekong River Basin.

    PubMed

    Ziv, Guy; Baran, Eric; Nam, So; Rodríguez-Iturbe, Ignacio; Levin, Simon A

    2012-04-10

    The Mekong River Basin, site of the biggest inland fishery in the world, is undergoing massive hydropower development. Planned dams will block critical fish migration routes between the river's downstream floodplains and upstream tributaries. Here we estimate fish biomass and biodiversity losses in numerous damming scenarios using a simple ecological model of fish migration. Our framework allows detailing trade-offs between dam locations, power production, and impacts on fish resources. We find that the completion of 78 dams on tributaries, which have not previously been subject to strategic analysis, would have catastrophic impacts on fish productivity and biodiversity. Our results argue for reassessment of several dams planned, and call for a new regional agreement on tributary development of the Mekong River Basin.

  7. Migration in the Anthropocene: how collective navigation, environmental system and taxonomy shape the vulnerability of migratory species.

    PubMed

    Hardesty-Moore, Molly; Deinet, Stefanie; Freeman, Robin; Titcomb, Georgia C; Dillon, Erin M; Stears, Keenan; Klope, Maggie; Bui, An; Orr, Devyn; Young, Hillary S; Miller-Ter Kuile, Ana; Hughey, Lacey F; McCauley, Douglas J

    2018-05-19

    Recent increases in human disturbance pose significant threats to migratory species using collective movement strategies. Key threats to migrants may differ depending on behavioural traits (e.g. collective navigation), taxonomy and the environmental system (i.e. freshwater, marine or terrestrial) associated with migration. We quantitatively assess how collective navigation, taxonomic membership and environmental system impact species' vulnerability by (i) evaluating population change in migratory and non-migratory bird, mammal and fish species using the Living Planet Database (LPD), (ii) analysing the role of collective navigation and environmental system on migrant extinction risk using International Union for Conservation of Nature (IUCN) classifications and (iii) compiling literature on geographical range change of migratory species. Likelihood of population decrease differed by taxonomic group: migratory birds were more likely to experience annual declines than non-migrants, while mammals displayed the opposite pattern. Within migratory species in IUCN, we observed that collective navigation and environmental system were important predictors of extinction risk for fishes and birds, but not for mammals, which had overall higher extinction risk than other taxa. We found high phylogenetic relatedness among collectively navigating species, which could have obscured its importance in determining extinction risk. Overall, outputs from these analyses can help guide strategic interventions to conserve the most vulnerable migrations.This article is part of the theme issue 'Collective movement ecology'. © 2018 The Author(s).

  8. Migration and rearing histories of chinook salmon (Oncorhynchus tshawytscha) determined by ion microprobe Sr isotope and Sr/Ca transects of otoliths

    USGS Publications Warehouse

    Bacon, C.R.; Weber, P.K.; Larsen, K.A.; Reisenbichler, R.; Fitzpatrick, J.A.; Wooden, J.L.

    2004-01-01

    Strontium isotope and Sr/Ca ratios measured in situ by ion microprobe along radial transects of otoliths of juvenile chinook salmon (Oncorhynchus tshawytscha) vary between watersheds with contrasting geology. Otoliths from ocean-type chinook from Skagit River estuary, Washington, had prehatch regions with 87Sr/86Sr ratios of ???0.709, suggesting a maternally inherited marine signature, extensive fresh water growth zones with 87Sr/86Sr ratios similar to those of the Skagit River at ???0.705, and marine-like 87Sr/86Sr ratios near their edges. Otoliths from stream-type chinook from central Idaho had prehatch 87Sr/86Sr ratios ???0.711, indicating that a maternal marine Sr isotopic signature is not preserved after the ???1000- to 1400-km migration from the Pacific Ocean. 87Sr/86Sr ratios in the outer portions of otoliths from these Idaho juveniles were similar to those of their respective streams (???0.708-0.722). For Skagit juveniles, fresh water growth was marked by small decreases in otolith Sr/Ca, with increases in Sr/Ca corresponding to increases in 87Sr/86Sr with migration into salt water. Otoliths of Idaho fish had Sr/Ca radial variation patterns that record seasonal fluctuation in ambient water Sr/Ca ratios. The ion microprobe's ability to measure both 87Sr/86Sr and Sr/Ca ratios of otoliths at high spatial resolution in situ provides a new tool for studies of fish rearing and migration. ?? 2004 NRC Canada.

  9. Behavior and movement of formerly landlocked juvenile coho salmon after release into the free-flowing Cowlitz River, Washington

    USGS Publications Warehouse

    Kock, Tobias J.; Henning, Julie A.; Liedtke, Theresa L.; Royer, Ida M.; Ekstrom, Brian K.; Rondorf, Dennis W.

    2011-01-01

    Formerly landlocked Coho Salmon (Oncorhynchus kisutch) juveniles (age 2) were monitored following release into the free-flowing Cowlitz River to determine if they remained in the river or resumed seaward migration. Juvenile Coho Salmon were tagged with a radio transmitter (30 fish) or Floy tag (1050 fish) and their behavior was monitored in the lower Cowlitz River. We found that 97% of the radio-tagged fish remained in the Cowlitz River beyond the juvenile outmigration period, and the number of fish dispersing downstream decreased with increasing distance from the release site. None of the tagged fish returned as spawning adults in the 2 y following release. We suspect that fish in our study failed to migrate because they exceeded a threshold in size, age, or physiological status. Tagged fish in our study primarily remained in the Cowlitz River, thus it is possible that these fish presented challenges to juvenile salmon migrating through the system either directly by predation or indirectly by competition for food or habitat. Given these findings, returning formerly landlocked Coho Salmon juveniles to the free-flowing river apparently provided no benefit to the anadromous population. These findings have management implications in locations where landlocked salmon have the potential to interact with anadromous species of concern.

  10. Light and lunar cycle as cues to diel migration of a sound-scattering layer

    NASA Astrophysics Data System (ADS)

    Benoit-Bird, Kelly J.; Au, Whitlow W. L.

    2001-05-01

    The Hawaiian mesopelagic boundary community is an island-associated midwater scattering layer comprised of small fishes, shrimps, and squids that undergoes diel vertical as well as horizontal migrations. It has been hypothesized that light levels are an important cue or trigger for vertical migration and presumably, horizontal migration. The migration pattern of the scattering layer was measured over complete lunar cycles while the incident light levels were recorded. Due to differences in the rise and set times of the moon and cloud cover, light and lunar cycle were not completely coupled, allowing separation of the light effects of moon phase and other cues associated with lunar cycle. Four calibrated echosounder moorings were deployed with approximately even spacing, perpendicular to the leeward coast of Oahu. Moorings were deployed for one complete lunar cycle at each of three locations, recording 10 echoes every 15 min. Light sensors measured the nocturnal light intensity at 30-s intervals. Statistical analysis revealed significant effects of both light and other lunar cycle cues. Overall, the effect size was very low considering the light transmission characteristics of the subtropical Pacific, making measurement from stationary acoustic platforms critical.

  11. Home range, habitat use, and migrations of hawksbill turtles tracked from Dry Tortugas National Park, Florida, USA

    USGS Publications Warehouse

    Hart, Kristen M.; Sartain-Iverson, Autumn R.; Fujisaki, Ikuko; Pratt, Harold L.; Morley, Danielle; Feeley, Michael W.

    2012-01-01

    To determine habitat-use patterns of sub-adult hawksbills Eretmochelys imbricata, we conducted satellite- and acoustic-tracking of 3 turtles captured in August 2008 within Dry Tortugas National Park (DRTO), south Florida, USA, in the Gulf of Mexico; turtles ranged in size from 51.9 to 69.8 cm straight carapace length. After 263, 699, and 655 d of residence in the park, turtles migrated out of the DRTO. Within the park, core-use areas (i.e. 50% kernel density estimates) were 9.2 to 21.5 km2; all 3 turtle core-use areas overlapped in an area 6.1 km2 within a zone of the park with multiple human uses (e.g. fishing, anchoring). Two turtles migrated to Cuba and ceased transmitting after 320 and 687 tracking days; the third turtle migrated toward Key West, Florida, and ceased transmitting after 884 tracking days. The present study highlights previously unknown regional connections for hawksbills, possible turtle-harvest incidents, and fine-scale habitat use of sub-adult hawksbills within a United States National Park.

  12. Stock-specific migration timing of adult spring-summer Chinook salmon in the Columbia River basin

    USGS Publications Warehouse

    Keefer, M.L.; Peery, C.A.; Jepson, M.A.; Tolotti, K.R.; Bjornn, T.C.; Stuehrenberg, L.C.

    2004-01-01

    An understanding of the migration timing patterns of Pacific salmon Oncorhynchus spp. and steelhead O. mykiss is important for managing complex mixed-stock fisheries and preserving genetic and life history diversity. We examined adult return timing for 3,317 radio-tagged fish from 38 stocks of Columbia River basin spring-summer Chinook salmon O. tshawytscha over 5 years. Stock composition varied widely within and between years depending on the strength of influential populations. Most individual stocks migrated at similar times each year relative to overall runs, supporting the hypotheses that run timing is predictable, is at least partially due to genetic adaptation, and can be used to differentiate between some conspecific populations. Arrival timing of both aggregated radio-tagged stocks and annual runs was strongly correlated with river discharge; stocks arrived earlier at Bonneville Dam and at upstream dams in years with low discharge. Migration timing analyses identified many between-stock and between-year differences in anadromous salmonid return behavior and should and managers interested in protection and recovery of evolutionary significant populations.

  13. Seasonal and diel movements of white sturgeon in the lower columbia river

    USGS Publications Warehouse

    Parsley, M.J.; Popoff, N.D.; Van Der Leeuw, B. K.; Wright, C.D.

    2008-01-01

    Continuous monitoring of the movements and depths used by white sturgeon Acipenser transmontanus with acoustic telemetry technologies in the lower Columbia River provided information on diel and seasonal migrations, local movements, and site fidelity. White sturgeon moved to shallower water at night and showed greater activity, inferred from rates of movement, than during daytime. The extent of local movement within a season was variable among fish; some fish readily moved among habitats while the movements of others were more constrained. White sturgeon were absent from the study area (river kilometers 45-52) during winter and returned from upstream during the spring, confirming an upstream seasonal migration in the fall and downstream migration in spring. The return of individual fish and reoccupation of areas previously inhabited showed that some white sturgeon exhibit site fidelity. This work shows that studies seeking to characterize habitat for white sturgeon need to be cognizant of diel migrations and site fidelity. We urge caution in the use of limited fish location data to describe habitats if diel activities and fine-scale movements are not known.

  14. Snake River fall Chinook salmon life history investigations, annual report 2008

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Connor, William P.; Bellgraph, Brian J.; Buchanan, Rebecca A.

    2010-01-01

    In 2009, we used radio and acoustic telemetry to evaluate the migratory behavior, survival, mortality, and delay of subyearling fall Chinook salmon in the Clearwater River and Lower Granite Reservoir. We released a total of 1,000 tagged hatchery subyearlings at Cherry Lane on the Clearwater River in mid August and we monitored them as they passed downstream through various river and reservoir reaches. Survival through the free-flowing river was high (>0.85) for both radio- and acoustic-tagged fish, but dropped substantially as fish delayed in the Transition Zone and Confluence areas. Estimates of the joint probability of migration and survival through the Transition Zone and Confluence reaches combined were similar for both radio- and acoustic-tagged fish, and ranged from about 0.30 to 0.35. Estimates of the joint probability of delaying and surviving in the combined Transition Zone and Confluence peaked at the beginning of the study, ranging from 0.323 ( SE =NA; radio-telemetry data) to 0.466 ( SE =0.024; acoustic-telemetry data), and then steadily declined throughout the remainder of the study. By the end of October, no live tagged juvenile salmon were detected in either the Transition Zone or the Confluence. As estimates of the probability of delay decreased throughout the study, estimates of the probability of mortality increased, as evidenced by the survival estimate of 0.650 ( SE =0.025) at the end of October (acoustic-telemetry data). Few fish were detected at Lower Granite Dam during our study and even fewer fish passed the dam before PIT-tag monitoring ended at the end of October. Five acoustic-tagged fish passed Lower Granite Dam in October and 12 passed the dam in November based on detections in the dam tailrace; however, too few detections were available to calculate the joint probabilities of migrating and surviving or delaying and surviving. Estimates of the joint probability of migrating and surviving through the reservoir was less than 0.2 based on acoustic-tagged fish. Migration rates of tagged fish were highest in the free-flowing river (median range = 36 to 43 km/d) but were generally less than 6 km/d in the reservoir reaches. In particular, median migration rates of radio-tagged fish through the Transition Zone and Confluence were 3.4 and 5.2 km/d, respectively. Median migration rate for acoustic-tagged fish though the Transition Zone and Confluence combined was 1 km/d.

  15. The Dynamics of Vertical Migration in the Oceanic Gulf of Mexico after Deepwater Horizon: Active Linkage of Large Vertebrates and Deep-Pelagic Nekton

    NASA Astrophysics Data System (ADS)

    Sutton, T.; Cook, A.; Frank, T. M.; Boswell, K. M.; Vecchione, M.; Judkins, H.; Romero, I.

    2016-02-01

    Toothed whales, smaller cetaceans, seabirds, and epipelagic gamefishes rely on deep-pelagic (meso- and bathypelagic) nekton as primary or secondary prey. This trophic interaction is mediated by downward and upward vertical movements (e.g., sperm whale diving and lanternfishes migration, respectively). This interaction also links particle-feeding lower trophic levels with top predators in a manner that spans the gamut of depth domains. This is particularly important with respect to a whole-water column disturbance such as the Deepwater Horizon oil spill (DWHOS). Here we present highly resolved vertical distribution and migration data collected during a large-scale, NOAA-supported, deep-pelagic (0-1500 m) survey in 2011, along with data collected during ongoing GoMRI-supported DEEPEND consortium surveys. The deep-pelagic nekton community of the Gulf of Mexico is a complex mixture of migrating, non-migrating, and partially migrating assemblages that connect surface waters with depths in excess of 1000 m. Major patterns of vertical distribution for 400+ species of fishes, cephalopods, and macrocrustaceans, the primary prey of many important species of oceanic vertebrates living near-surface, will be summarized and quantified with the goal of highlighting potential vectors of anthropogenic contamination transfer in the deep-pelagial, the Gulf's largest ecosystem.

  16. The Expression of Leptin, Estrogen Receptors, and Vitellogenin mRNAs in Migrating Female Chum Salmon, Oncorhynchus keta: The Effects of Hypo-osmotic Environmental Changes

    PubMed Central

    Choi, Young Jae; Kim, Na Na; Shin, Hyun Suk; Choi, Cheol Young

    2014-01-01

    Leptin plays an important role in energy homeostasis and reproductive function in fish, especially in reproduction. Migrating fish, such as salmonoids, are affected by external environmental factors, and salinity changes are a particularly important influence on spawning migrations. The aim of this study was to test whether changes in salinity affect the expression of leptin, estrogen receptors (ERs), and vitellogenin (VTG) in chum salmon (Oncorhynchus keta). The expression and activity of leptin, the expression of ERs and VTG, and the levels of estradiol-17β and cortisol increased after the fish were transferred to FW, demonstrating that changes in salinity stimulate the HPG axis in migrating female chum salmon. These findings reveal details about the role of elevated leptin levels and sex steroid hormones in stimulating sexual maturation and reproduction in response to salinity changes in chum salmon. PMID:25049977

  17. Small-scale fisheries, population dynamics, and resource use in Africa: the case of Moree, Ghana.

    PubMed

    Marquette, Catherine M; Koranteng, Kwame A; Overå, Ragnhild; Aryeetey, Ellen Bortei-Doku

    2002-06-01

    We consider population dynamics and sustainable use and development of fishery resources in Moree, a small-scale fishing and coastal community of 20,000 people in the Central Region of Ghana near Cape Coast. Moree suggests that relationships between population dynamics and fishery resources are more complex than the concept of Malthusian overfishing implies. Reasons include changing biophysical characteristics of the upwelling system along the coast of West Africa; qualitative as well as quantitative changes in fishing activity throughout the year; the market nature of fishing activity and nonlocal demands for fish; regular fishery migration; and institutions regulating fishery resource access at home and at migration destinations. Population and resource relationships in Moree may be the effects of fishery resource and economic changes on migration rather than population pressure on fishery resources. Fisheries management policies must take into account processes that lie beyond the influence of local fishermen.

  18. Plasma insulin-like growth factor-I concentrations in yearling chinook salmon (Oncorhynchus tshawytscha) migrating from the Snake River Basin, USA

    USGS Publications Warehouse

    Congleton, J.L.; Biga, P.R.; Peterson, B.C.

    2003-01-01

    During the parr-to-smolt transformation (smoltification) of juvenile salmonids, preadaptive changes in osmoregulatory and ionoregulatory ability are regulated in part by the growth hormone (GH)/insulin-like growth factor-I (IGF-I) axis. If food intake is sufficient, plasma IGF-I increases during smoltification. On the other hand, plasma IGF-I typically decreases in fasting fish and other vertebrate animals. Because food availability is limited for juvenile salmonids undertaking an extended 6- to 12-week spring migration to and through the Snake-Columbia River hydropower system (northwestern USA), IGF-I concentrations might be expected to decrease, potentially compromising seawater tolerance. To address this possibility, yearling chinook salmon Oncorhynchus tshawytscha reared in three Snake River Basin hatcheries were sampled before release and at two downstream dams. Dry masses of migrating fish either did not increase during the migration (in 2000, an average-flow year), or decreased significantly (in 2001, a low-flow year). In both years, plasma IGF-I levels were significantly higher (1.6-fold in 2000, 3.7-fold in 2001) for fish sampled at the last dam on the lower Columbia River than for fish sampled prior to release. Plasma IGF-I concentrations in migrating fish may, nonetheless, have been nutritionally down-regulated to some degree, because plasma IGF-I concentrations in juvenile chinook salmon captured at a Snake River dam and transported to the laboratory increased in fed groups, but decreased in unfed groups. The ability of migrating smolts to maintain relatively elevated IGF-I levels despite restricted food intake and loss of body mass is likely related to smoltification-associated changes in hormonal balance. ?? 2004 Kluwer Academic Publishers.

  19. Rock Island Dam Smolt Monitoring; 1994-1995 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Truscott, Keith B.; Fielder, Paul C.

    1995-10-01

    Downstream migrating salmon and steelhead trout (Oncorhynchus spp.) smolts were monitored at the Rock Island Dam bypass trap from April 1 - August 31, 1954. This was the tenth consecutive year that the bypass trap was monitored. Data collected included: (1) number of fish caught by species, (2) number of adipose clipped and/or Passive Integrated Transponder (PIT) tagged fish caught by species, (3) daily average riverflow, (4) daily average powerhouse No. 1 and No. 2 flows and daily average spill. These data were transmitted to the Fish Passage Center, which manages the Smolt Monitoring Program throughout the Columbia River Basin.more » The Smolt Monitoring Program is used to manage the {open_quotes}water budget{close_quotes}, releasing upstream reservoir water storage allocated to supplement river flows to enhance survival of downstream migrating juvenile salmonids. The Rock Island Dam trapping facility collected 37,795 downstream migrating salmonids in 1994. Collected fish included 4 yearling and 4 sub-yearling chinook salmon (O. tshawytscha) that had been previously PIT tagged to help determine migration rates. Additionally, 1,132 sub-yearling chinook, 4,185 yearling chinook, 6,627 steelhead, (O. mykiss) and 422 sockeye (O. nerka) with clipped adipose fins were collected. The middle 80% of the 1994 spring migration (excluding sub-yearling chinooks) passed Rock Island Dam during a 34 day period, April 25 - May 28. Passage rates of chinook and steelhead smolts released from hatcheries and the downstream migration timing of all salmonids are presented. The spring migration timing of juvenile salmonids is strongly influenced by hatchery releases above Rock Island Dam.« less

  20. Downstream fish passage guide walls: A hydraulic scale model analysis

    USGS Publications Warehouse

    Mulligan, Kevin; Towler, Brett; Haro, Alexander J.; Ahlfeld, David P.

    2018-01-01

    Partial-depth guide walls are used to improve passage efficiency and reduce the delay of out-migrating anadromous fish species by guiding fish to a bypass route (i.e. weir, pipe, sluice gate) that circumvents the turbine intakes, where survival is usually lower. Evaluation and monitoring studies, however, indicate a high propensity for some fish to pass underneath, rather than along, the guide walls, compromising their effectiveness. In the present study we evaluated a range of guide wall structures to identify where/if the flow field shifts from sweeping (i.e. flow direction primarily along the wall and towards the bypass) to downward-dominant. Many migratory fish species, particularly juveniles, are known to drift with the flow and/or exhibit rheotactic behaviour during their migration. When these behaviours are present, fish follow the path of the flow field. Hence, maintaining a strong sweeping velocity in relation to the downward velocity along a guide wall is essential to successful fish guidance. Nine experiments were conducted to measure the three-dimensional velocity components upstream of a scale model guide wall set at a wide range of depths and angles to flow. Results demonstrated how each guide wall configuration affected the three-dimensional velocity components, and hence the downward and sweeping velocity, along the full length of the guide wall. In general, the velocities produced in the scale model were sweeping dominant near the water surface and either downward dominant or close to the transitional depth near the bottom of the guide wall. The primary exception to this shift from sweeping do downward flow was for the minimum guide wall angle tested in this study (15°). At 15° the flow pattern was fully sweeping dominant for every cross-section, indicating that a guide wall with a relatively small angle may be more likely to produce conditions favorable to efficient guidance. A critical next step is to evaluate the behaviour of migratory fish as they approach and swim along a guide wall in a controlled laboratory environment.

  1. Trading-off fish biodiversity, food security, and hydropower in the Mekong River Basin

    PubMed Central

    Ziv, Guy; Baran, Eric; Nam, So; Rodríguez-Iturbe, Ignacio; Levin, Simon A.

    2012-01-01

    The Mekong River Basin, site of the biggest inland fishery in the world, is undergoing massive hydropower development. Planned dams will block critical fish migration routes between the river's downstream floodplains and upstream tributaries. Here we estimate fish biomass and biodiversity losses in numerous damming scenarios using a simple ecological model of fish migration. Our framework allows detailing trade-offs between dam locations, power production, and impacts on fish resources. We find that the completion of 78 dams on tributaries, which have not previously been subject to strategic analysis, would have catastrophic impacts on fish productivity and biodiversity. Our results argue for reassessment of several dams planned, and call for a new regional agreement on tributary development of the Mekong River Basin. PMID:22393001

  2. A critical life stage of the Atlantic salmon Salmo salar: behaviour and survival during the smolt and initial post-smolt migration.

    PubMed

    Thorstad, E B; Whoriskey, F; Uglem, I; Moore, A; Rikardsen, A H; Finstad, B

    2012-07-01

    The anadromous life cycle of Atlantic salmon Salmo salar involves long migrations to novel environments and challenging physiological transformations when moving between salt-free and salt-rich waters. In this article, (1) environmental factors affecting the migration behaviour and survival of smolts and post-smolts during the river, estuarine and early marine phases, (2) how behavioural patterns are linked to survival and (3) how anthropogenic factors affect migration and survival are synthesized and reviewed based on published literature. The timing of the smolt migration is important in determining marine survival. The timing varies among rivers, most likely as a consequence of local adaptations, to ensure sea entry during optimal periods. Smolts and post-smolts swim actively and fast during migration, but in areas with strong currents, their own movements may be overridden by current-induced transport. Progression rates during the early marine migration vary between 0.4 and 3.0 body lengths s(-1) relative to the ground. Reported mortality is 0.3-7.0% (median 2.3) km(-1) during downriver migration, 0.6-36% (median 6.0) km(-1) in estuaries and 0.3-3.4% (median 1.4) km(-1) in coastal areas. Estuaries and river mouths are the sites of the highest mortalities, with predation being a common cause. The mortality rates varied more among studies in estuaries than in rivers and marine areas, which probably reflects the huge variation among estuaries in their characteristics. Behaviour and survival during migration may also be affected by pollution, fish farming, sea lice Lepeophtheirus salmonis, hydropower development and other anthropogenic activities that may be directly lethal, delay migration or have indirect effects by inhibiting migration. Total mortality reported during early marine migration (up to 5-230 km from the river mouths) in the studies available to date varies between 8 and 71%. Hence, the early marine migration is a life stage with high mortalities, due to both natural and human influences. Factors affecting mortality during the smolt and post-smolt stages contribute to determine the abundance of spawner returns. With many S. salar populations in decline, increased mortality at these stages may considerably contribute to limit S. salar production, and the consequences of human-induced mortality at this stage may be severe. Development of management actions to increase survival and fitness at the smolt and post-smolt stages is crucial to re-establish or conserve wild populations. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  3. Incorporating movement patterns to improve survival estimates for juvenile bull trout

    USGS Publications Warehouse

    Bowerman, Tracy; Budy, Phaedra

    2012-01-01

    Populations of many fish species are sensitive to changes in vital rates during early life stages, but our understanding of the factors affecting growth, survival, and movement patterns is often extremely limited for juvenile fish. These critical information gaps are particularly evident for bull trout Salvelinus confluentus, a threatened Pacific Northwest char. We combined several active and passive mark–recapture and resight techniques to assess migration rates and estimate survival for juvenile bull trout (70–170 mm total length). We evaluated the relative performance of multiple survival estimation techniques by comparing results from a common Cormack–Jolly–Seber (CJS) model, the less widely used Barker model, and a simple return rate (an index of survival). Juvenile bull trout of all sizes emigrated from their natal habitat throughout the year, and thereafter migrated up to 50 km downstream. With the CJS model, high emigration rates led to an extreme underestimate of apparent survival, a combined estimate of site fidelity and survival. In contrast, the Barker model, which allows survival and emigration to be modeled as separate parameters, produced estimates of survival that were much less biased than the return rate. Estimates of age-class-specific annual survival from the Barker model based on all available data were 0.218±0.028 (estimate±SE) for age-1 bull trout and 0.231±0.065 for age-2 bull trout. This research demonstrates the importance of incorporating movement patterns into survival analyses, and we provide one of the first field-based estimates of juvenile bull trout annual survival in relatively pristine rearing conditions. These estimates can provide a baseline for comparison with future studies in more impacted systems and will help managers develop reliable stage-structured population models to evaluate future recovery strategies.

  4. Disentangling the roles of air exposure, gill net injury, and facilitated recovery on the postcapture and release mortality and behavior of adult migratory sockeye salmon (Oncorhynchus nerka) in freshwater.

    PubMed

    Nguyen, Vivian M; Martins, Eduardo G; Robichaud, Dave; Raby, Graham D; Donaldson, Michael R; Lotto, Andrew G; Willmore, William G; Patterson, David A; Farrell, Anthony P; Hinch, Scott G; Cooke, Steven J

    2014-01-01

    We sought to improve the understanding of delayed mortality in migrating sockeye salmon (Oncorhynchus nerka) captured and released in freshwater fisheries. Using biotelemetry, blood physiology, and reflex assessments, we evaluated the relative roles of gill net injury and air exposure and investigated whether using a recovery box improved survival. Fish (n=238), captured by beach seine, were allocated to four treatment groups: captured only, air exposed, injured, and injured and air exposed. Only half of the fish in each group were provided with a 15-min facilitated recovery. After treatment, fish were radio-tagged and released to resume their migration. Blood status was assessed in 36 additional untagged fish sampled after the four treatments. Compared with fish sampled immediately on capture, all treatments resulted in elevated plasma lactate and cortisol concentrations. After air exposure, plasma osmolality was elevated and reflexes were significantly impaired relative to the control and injured treatments. Injured fish exhibited reduced short-term migration speed by 3.2 km/d and had a 14.5% reduced survival to subnatal watersheds compared to controls. The 15-min facilitated recovery improved reflex assessment relative to fish released immediately but did not affect survival. We suggest that in sockeye salmon migrating in cool water temperatures (∼13°-16°C), delayed mortality can result from injury and air exposure, perhaps through sublethal stress, and that injury created additive delayed mortality likely via secondary infections.

  5. Walla Walla River Fish Passage Operations Project : Annual Progress Report October 2007 - September 2008.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bronson, James P.; Duke, Bill; Loffink, Ken

    2008-12-30

    In the late 1990s, the Confederated Tribes of the Umatilla Indian Reservation, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife, along with many other agencies, began implementing fisheries restoration activities in the Walla Walla Basin. An integral part of these efforts is to alleviate the inadequate fish migration conditions in the basin. Migration concerns are being addressed by removing diversion structures, constructing fish passage facilities, implementing minimum instream flow requirements, and providing trap and haul efforts when needed. The objective of the Walla Walla River Fish Passage Operations Project is to increase the survival ofmore » migrating adult and juvenile salmonids in the Walla Walla River basin. The project is responsible for coordinating operation and maintenance of ladders, screen sites, bypasses, trap facilities, and transportation equipment. In addition, the project provides technical input on passage and trapping facility design, operation, and criteria. Operation of the various passage facilities and passage criteria guidelines are outlined in an annual operations plan that the project develops. Beginning in March of 2007, two work elements from the Walla Walla Fish Passage Operations Project were transferred to other projects. The work element Enumeration of Adult Migration at Nursery Bridge Dam is now conducted under the Walla Walla Basin Natural Production Monitoring and Evaluation Project and the work element Provide Transportation Assistance is conducted under the Umatilla Satellite Facilities Operation and Maintenance Project. Details of these activities can be found in those project's respective annual reports.« less

  6. Fish passage research: S.O. Conte Anadromous Fish Research Laboratory

    USGS Publications Warehouse

    Garebedian, Steve

    2008-01-01

    The Leetown Science Center’s S.O. Conte Anadromous Fish Research Laboratory conducts basic and applied scientific studies of fish passage and migration to define underlying principles and relationships of fish behavior and hydraulics, and to develop integrated, predictive research that can be applied to a wide range of fish passage problems.

  7. Innate and adaptive immune responses in migrating spring-run adult chinook salmon, Oncorhynchus tshawytscha

    USGS Publications Warehouse

    Dolan, Brian P.; Fisher, Kathleen M.; Colvin, Michael E.; Benda, Susan E.; Peterson, James T.; Kent, Michael L.; Schreck, Carl B.

    2016-01-01

    Adult Chinook salmon (Oncorhynchus tshawytscha) migrate from salt water to freshwater streams to spawn. Immune responses in migrating adult salmon are thought to diminish in the run up to spawning, though the exact mechanisms for diminished immune responses remain unknown. Here we examine both adaptive and innate immune responses as well as pathogen burdens in migrating adult Chinook salmon in the Upper Willamette River basin. Messenger RNA transcripts encoding antibody heavy chain molecules slightly diminish as a function of time, but are still present even after fish have successfully spawned. In contrast, the innate anti-bacterial effector proteins present in fish plasma rapidly decrease as spawning approaches. Fish also were examined for the presence and severity of eight different pathogens in different organs. While pathogen burden tended to increase during the migration, no specific pathogen signature was associated with diminished immune responses. Transcript levels of the immunosuppressive cytokines IL-10 and TGF beta were measured and did not change during the migration. These results suggest that loss of immune functions in adult migrating salmon are not due to pathogen infection or cytokine-mediated immune suppression, but is rather part of the life history of Chinook salmon likely induced by diminished energy reserves or hormonal changes which accompany spawning.

  8. Stress and food deprivation: linking physiological state to migration success in a teleost fish.

    PubMed

    Midwood, Jonathan D; Larsen, Martin H; Aarestrup, Kim; Cooke, Steven J

    2016-12-01

    Food deprivation is a naturally occurring stressor that is thought to influence the ultimate life-history strategy of individuals. Little is known about how food deprivation interacts with other stressors to influence migration success. European populations of brown trout (Salmo trutta) exhibit partial migration, whereby a portion of the population smoltifies and migrates to the ocean, and the rest remain in their natal stream. This distinct, natural dichotomy of life-history strategies provides an excellent opportunity to explore the roles of energetic state (as affected by food deprivation) and activation of the glucocorticoid stress response in determining life-history strategy and survival of a migratory species. Using an experimental approach, the relative influences of short-term food deprivation and experimental cortisol elevation (i.e. intra-coelomic injection of cortisol suspended in cocoa butter) on migratory status, survival and growth of juvenile brown trout relative to a control were evaluated. Fewer fish migrated in both the food deprivation and cortisol treatments; however, migration of fish in cortisol and control treatments occurred at the same time while that of fish in the food deprivation treatment was delayed for approximately 1 week. A significantly greater proportion of trout in the food deprivation treatment remained in their natal stream, but unlike the cortisol treatment, there were no long-term negative effects of food deprivation on growth, relative to the control. Overall survival rates were comparable between the food deprivation and control treatments, but significantly lower for fish in the cortisol treatment. Food availability and individual energetic state appear to dictate the future life-history strategy (migrate or remain resident) of juvenile salmonids while experimental elevation of the stress hormone cortisol causes impaired growth and reduced survival of both resident and migratory individuals. © 2016. Published by The Company of Biologists Ltd.

  9. Initiation of migration and movement rates of Atlantic salmon smolts in fresh water

    USGS Publications Warehouse

    Stich, Daniel S.; Kinnison, Michael T.; Kocik, John F.; Zydlewski, Joseph D.

    2015-01-01

    Timing of ocean entry is critical for marine survival of both hatchery and wild Atlantic salmon (Salmo salar) smolts. Management practices and barriers to migration such as dams may constrain timing of smolt migrations resulting in suboptimal performance at saltwater entry. We modeled influences of stocking location, smolt development, and environmental conditions on (i) initiation of migration by hatchery-reared smolts and (ii) movement rate of hatchery- and wild-reared Atlantic salmon smolts in the Penobscot River, Maine, USA, from 2005 through 2014 using acoustic telemetry data. We also compared movement rates in free-flowing reaches with rates in reaches with hydropower dams and head ponds. We compared movement rates before and after (1) removal of two mainstem dams and (2) construction of new powerhouses. Initiation of movement by hatchery fish was influenced by smolt development, stocking location, and environmental conditions. Smolts with the greatest gill Na+, K+-ATPase (NKA) activity initiated migration 24 h sooner than fish with the lowest gill NKA activity. Fish with the greatest cumulative thermal experience initiated migration 5 days earlier than those with lowest cumulative thermal experience. Smolts released furthest from the ocean initiated migration earlier than those released downstream, but movement rate increased by fivefold closer to the ocean, indicating behavioral trade-offs between initiation and movement rate. Dams had a strong effect on movement rate. Movement rate increased from 2.8 to 5.4 km·h−1 in reaches where dams were removed, but decreased from 2.1 to 0.1 km·h−1 in reaches where new powerhouses were constructed. Movement rate varied throughout the migratory period and was inversely related to temperature. Fish moved slower at extreme high or low discharge. Responses in fish movement rates to dam removal indicate the potential scope of recovery for these activities.

  10. Influence of forest and rangeland management on anadromous fish habitat in Western North America: habitat requirements of anadromous salmonids.

    Treesearch

    D.W. Reiser; T.C. Bjornn

    1979-01-01

    Habitat requirements of anadromous and some resident salmonid fishes have been described for various life stages, including upstream migration of adults, spawning, incubation, and juvenile rearing. Factors important in the migration of adults are water temperature, minimum water depth, maximum water velocity, turbidity, dissolved oxygen, and...

  11. Infection of gill and kidney of Fraser River sockeye salmon, Oncorhynchus nerka (Walbaum), by Parvicapsula minibicornis and its effect on host physiology.

    PubMed

    Bradford, M J; Lovy, J; Patterson, D A

    2010-09-01

    Adult sockeye salmon, Oncorhynchus nerka (Walbaum), migrating upstream in the Fraser River, British Columbia, are exposed to the myxozoan parasite Parvicapsula minibicornis when they enter the river from the ocean. Infections are initially localized in the kidney but have recently been associated with branchitis in one population. Adult fish from five locations in the watershed were sampled to determine whether branchitis was widespread. P. minibicornis infections in kidney glomeruli were prevalent in all samples except for a sample of fish that had just entered the Fraser River from the ocean. For fish captured in spawning streams, parasites were observed in the renal tubules and gill, and branchitis was observed in 70% of fish. Plasma osmolality was negatively correlated with the number of parasites in the kidney tubules, which we hypothesize to be caused by the breach of glomerular membranes as the parasite leaves the fish. Plasma lactate values increased with increasing levels of pathology in gills. These findings support the hypothesis that P. minibicornis impacts the physiology of migrating fish, which may in turn affect the likelihood that adults will be able to migrate and spawn successfully.

  12. Use of electromyogram telemetry to assess swimming activity of adult spring Chinook salmon migrating past a Columbia River dam

    USGS Publications Warehouse

    Brown, R.S.; Geist, D.R.; Mesa, M.G.

    2006-01-01

    Electromyogram (EMG) radiotelemetry was used to estimate the swim speeds of spring Chinook salmon Oncorhynchus tshawytscha migrating upstream past a Columbia River dam. Electrodes from EMG transmitters were surgically implanted in the red muscle of fish captured at Bonneville Dam, and output from the tags was calibrated to defined swim speeds for each fish in a tunnel respirometer. The fish were then released below Bonneville Dam and radio-tracked as they migrated through the tailraces, fishways, and forebays of the dam. On average, swim speed was significantly higher when tagged salmon were moving through tailraces than when they were moving through other parts of the dam. Specifically, swim speeds for fish in tailraces (106.4 cm/s) were 23% higher than those of fish in fishways (84.9 cm/s) and 32% higher than those of fish in forebays (80.2 cm/s). Swim speeds were higher in fishways during the day than during the night, but there were no diel differences in swim speeds in tailraces and forebays. During dam passage, Chinook salmon spent the most time in tailraces, followed by fishways and forebays. ?? Copyright by the American Fisheries Society 2006.

  13. The effects of variable front persistence and intensity on mesopelagic fish communities: a comparison of three fronts in the California Current Ecosystem

    NASA Astrophysics Data System (ADS)

    Netburn, A. N.; Koslow, J. A.

    2016-02-01

    Although the strong physical gradients at fronts are primarily realized in the epipelagic, the biological impacts of frontal ecosystems can extend into mesopelagic waters. In 2008, Lara-Lopez et al. (2012) observed a significant shift in total biomass and community composition of migrating mesopelagic fishes at a strong persistent front off of the Pt. Conception area of the southern California Current Ecosystem. Through the California Current Ecosystem Long-Term Ecological Research Program, two additional intensive sampling cruises have been conducted on frontal systems in the general region. In 2011 and 2012, paired day and night midwater Matsuda-Oozeki-Hu trawls were conducted at stations located on either side of the fronts and at the fronts themselves, a suite of concurrent observations of the physical environment measured, and lower trophic levels sampled. Using satellite imagery, we estimate front duration of each of the 2008, 2011, and 2012 fronts, and investigate changes to the relative abundance and community composition across these systems, comparing the resolved patterns in 2011 and 2012 to those published from 2008. Results of this work will help address the questions: (1) What are the timescales required for front presence to impact mesopelagic fish communities? (2) Do different types of frontal systems (e.g., an eddy front vs. a "classic" front) result in different patterns of mesopelagic fish abundance and community composition? These answers will provide insight into the mechanisms of accumulation of fishes at fronts. As many mesopelagic fishes are important forage species for oceanic predators, understanding their response to the high productivity frontal systems is key to understanding ecosystem-wide impacts of fronts.

  14. Yakima River Radio-Telemetry Study: Spring Chinook Salmon, 1991-1992 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hockersmith, Eric

    1994-09-01

    As part of the presupplementation planning, baseline data on the productivity of spring chinook salmon (Oncorhynchus tshawytscha) in the Yakima River have been collected. However, for adult salmonids, data on habitat use, delays in passage at irrigation diversions, migration rates, and substock separation had not been previously collected. In 1991, the National Marine Fisheries Service began a 2-year radio-telemetry study of adult spring chinook salmon in the Yakima River Basin. Specific objectives addressed in this study were: to determine spawning populations` run timing, passage patterns at irrigation diversion dams, and morphometric characteristics to determine where and when substocks become separated;more » to evaluate fish passage at Yakima River Basin diversion dams including Prosser, Sunnyside, Wapato, Roza, Town Diversion, Easton, Cowiche, and Wapatox Dams; to determine spring chinook salmon migration rates between Yakima River Basin dams, prespawning behavior, temporal distribution, and habitat utilization; to identify spawning distribution and timing of spring chinook salmon; to determine the amount and cause of prespawning mortality of spring chinook salmon; and to evaluate adult fish-handling procedures for the right-bank, adult-trapping facility at Prosser Dam.« less

  15. Fishing-induced changes in adult length are mediated by skipped-spawning.

    PubMed

    Wang, Hui-Yu; Chen, Ying-Shiuan; Hsu, Chien-Chung; Shen, Sheng-Feng

    2017-01-01

    Elucidating fishing effects on fish population dynamics is a critical step toward sustainable fisheries management. Despite previous studies that have suggested age or size truncation in exploited fish populations, other aspects of fishing effects on population demography, e.g., via altering life histories and density, have received less attention. Here, we investigated the fishing effects altering adult demography via shifting reproductive trade-offs in the iconic, overexploited, Pacific bluefin tuna Thunnus orientalis. We found that, contrary to our expectation, mean lengths of catch increased over time in longline fisheries. On the other hand, mean catch lengths for purse seine fisheries did not show such increasing trends. We hypothesized that the size-dependent energetic cost of the spawning migration and elevated fishing mortality on the spawning grounds potentially drive size-dependent skipped spawning for adult tuna, mediating the observed changes in the catch lengths. Using eco-genetic individual-based modeling, we demonstrated that fishing-induced evolution of skipped spawning and size truncation interacted to shape the observed temporal changes in mean catch lengths for tuna. Skipped spawning of the small adults led to increased mean catch lengths for the longline fisheries, while truncation of small adults by the purse seines could offset such a pattern. Our results highlight the eco-evolutionary dynamics of fishing effects on population demography and caution against using demographic traits as a basis for fisheries management of the Pacific bluefin tuna as well as other migratory species. © 2016 by the Ecological Society of America.

  16. Assessing freshwater habitat of adult anadromous alewives using multiple approaches

    USGS Publications Warehouse

    Mather, Martha E.; Frank, Holly J.; Smith, Joseph M.; Cormier, Roxann D.; Muth, Robert M.; Finn, John T.

    2012-01-01

    After centuries of disturbance, environmental professionals now recognize the need to restore coastal watersheds for native fish and protect the larger ecosystems on which fish and other aquatic biota depend. Anadromous fish species are an important component of coastal ecosystems that are often adversely affected by human activities. Restoring native anadromous fish species is a common focus of both fish and coastal watershed restoration. Yet restoration efforts have met with uneven success, often due to lack of knowledge about habitat availability and use. Using habitat surveys and radio tracking of adult anadromous alewives Alosa pseudoharengus during their spring spawning migration, we illustrate a method for quantifying habitat using multiple approaches and for relating mobile fish distribution to habitat. In the Ipswich River, Massachusetts, measuring habitat units and physical conditions at transects (width, depth, and velocity) provided an ecological basis for the interpretation of landscape patterns of fish distribution. Mapping habitat units allowed us to efficiently census habitat relevant to alewives for the entire 20.6 river kilometers of interest. Our transect data reinforced the results of the habitat unit survey and provided useful, high‐resolution ecological data for restoration efforts. Tagged alewives spent little time in riffle–run habitats and substantial time in pools, although the locations of pool occupancy varied. The insights we provide here can be used to (1) identify preferred habitats into which anadromous fish can be reintroduced in order to maximize fish survival and reproduction and (2) pinpoint habitat types in urgent need of protection or restoration.

  17. Seasonal variability of rocky reef fish assemblages: Detecting functional and structural changes due to fishing effects

    NASA Astrophysics Data System (ADS)

    Henriques, Sofia; Pais, Miguel Pessanha; Costa, Maria José; Cabral, Henrique Nogueira

    2013-05-01

    The present study analyzed the effects of seasonal variation on the stability of fish-based metrics and their capability to detect changes in fish assemblages, which is yet poorly understood despite the general idea that guilds are more resilient to natural variability than species abundances. Three zones subject to different levels of fishing pressure inside the Arrábida Marine Protected Area (MPA) were sampled seasonally. The results showed differences between warm (summer and autumn) and cold (winter and spring) seasons, with the autumn clearly standing out. In general, the values of the metrics density of juveniles, density of invertebrate feeders and density of omnivores increased in warm seasons, which can be attributed to differences in recruitment patterns, spawning migrations and feeding activity among seasons. The density of generalist/opportunistic individuals was sensitive to the effect of fishing, with higher values at zones with the lowest level of protection, while the density of individuals with high commercial value only responded to fishing in the autumn, due to a cumulative result of both juveniles and adults abundances during this season. Overall, this study showed that seasonal variability affects structural and functional features of the fish assemblage and that might influence the detection of changes as a result of anthropogenic pressures. The choice of a specific season, during warm sea conditions after the spawning period (July-October), seems to be more adequate to assess changes on rocky-reef fish assemblages.

  18. Bimanual, intra-operative, fluoroscopy-guided removal of nasopharyngeal migratory fish bone from carotid space.

    PubMed

    Al-Abduwani, J A; Bhargava, D; Sawhney, S; Al-Abri, R

    2010-07-01

    We report a rare and unusual case of a patient with an ingested fishbone which migrated from the oropharynx to the anterior compartment of the retropharyngeal space and then to the deep neck space in the nasopharynx (i.e. the carotid space). This report aims to describe a successful, minimally invasive method of foreign body removal which avoided both major skull base surgery and any potential life-threatening complications. A secondary aim is to highlight the role of intra-operative fluoroscopy, an under-used tool. We present a 67-year-old man with a history of fish bone impaction but no fish bone visible on plain X-ray or flexible endoscopy. The diagnosis of fish bone lodged in the retropharyngeal space was confirmed by computed tomography. Surgical exploration of the anterior retropharyngeal space failed to locate the fish bone, as it had migrated to a new, unknown location. Intra-operative fluoroscopy was vital for the removal of the fish bone, as it was impossible to see with the naked eye and had migrated from its previously imaged position. The fish bone was finally retrieved bimanually using external pressure on the submandibular region, which displaced the fish bone, and fluoroscopic guidance, which assisted its removal from the nasopharyngeal lumen. To the best of our knowledge, this is the first reported case of bimanual, intra-operative, fluoroscopy-guided, intra-luminal removal of a migratory fish bone from the deep neck space in this region of the nasopharynx.

  19. Vertical migration and nighttime distribution of adult bloaters in Lake Michigan

    USGS Publications Warehouse

    TeWinkel, Leslie M.; Fleischer, Guy W.

    1999-01-01

    The vertical migration and nighttime vertical distribution of adult bloaters Coregonus hoyi were investigated during late summer in Lake Michigan using acoustics simultaneously with either midwater or bottom trawling. Bloaters remained on or near bottom during the day. At night, bloaters were distributed throughout 30-65 m of water, depending on bottom depth. Shallowest depths of migration were not related to water temperature or incident light. Maximum distances of migration increased with increasing bottom depth. Nighttime midwater densities ranged from 0.00 to 6.61 fish/1,000 mA? and decreased with increasing bottom depth. Comparisons of length distributions showed that migrating and nonmigrating bloaters did not differ in size. However, at most sites, daytime bottom catches collected a greater proportion of larger individuals compared with nighttime midwater or bottom catches. Mean target strengths by 5-m strata indicated that migrating bloaters did not stratify by size in the water column at night. Overall, patterns in frequency of empty stomachs and mean digestive state of prey indicated that a portion of the bloater population fed in the water column at night. Bloater diet composition indicated both midwater feeding and bottom feeding. In sum, although a portion of the bloater population fed in the water column at night, bloaters were not limited to feeding at this time. This research confirmed that bloaters are opportunistic feeders and did not fully support the previously proposed hypothesis that bloater vertical migration is driven by the vertically migrating macroinvertebrate the opossom shrimp Mysis relicta.

  20. Hydrokinetic Turbine Effects on Fish Swimming Behaviour

    PubMed Central

    Hammar, Linus; Andersson, Sandra; Eggertsen, Linda; Haglund, Johan; Gullström, Martin; Ehnberg, Jimmy; Molander, Sverker

    2013-01-01

    Hydrokinetic turbines, targeting the kinetic energy of fast-flowing currents, are under development with some turbines already deployed at ocean sites around the world. It remains virtually unknown as to how these technologies affect fish, and rotor collisions have been postulated as a major concern. In this study the effects of a vertical axis hydrokinetic rotor with rotational speeds up to 70 rpm were tested on the swimming patterns of naturally occurring fish in a subtropical tidal channel. Fish movements were recorded with and without the rotor in place. Results showed that no fish collided with the rotor and only a few specimens passed through rotor blades. Overall, fish reduced their movements through the area when the rotor was present. This deterrent effect on fish increased with current speed. Fish that passed the rotor avoided the near-field, about 0.3 m from the rotor for benthic reef fish. Large predatory fish were particularly cautious of the rotor and never moved closer than 1.7 m in current speeds above 0.6 ms-1. The effects of the rotor differed among taxa and feeding guilds and it is suggested that fish boldness and body shape influenced responses. In conclusion, the tested hydrokinetic turbine rotor proved non-hazardous to fish during the investigated conditions. However, the results indicate that arrays comprising multiple turbines may restrict fish movements, particularly for large species, with possible effects on habitat connectivity if migration routes are exploited. Arrays of the investigated turbine type and comparable systems should therefore be designed with gaps of several metres width to allow large fish to pass through. In combination with further research the insights from this study can be used for guiding the design of hydrokinetic turbine arrays where needed, so preventing ecological impacts. PMID:24358334

  1. Hydrokinetic turbine effects on fish swimming behaviour.

    PubMed

    Hammar, Linus; Andersson, Sandra; Eggertsen, Linda; Haglund, Johan; Gullström, Martin; Ehnberg, Jimmy; Molander, Sverker

    2013-01-01

    Hydrokinetic turbines, targeting the kinetic energy of fast-flowing currents, are under development with some turbines already deployed at ocean sites around the world. It remains virtually unknown as to how these technologies affect fish, and rotor collisions have been postulated as a major concern. In this study the effects of a vertical axis hydrokinetic rotor with rotational speeds up to 70 rpm were tested on the swimming patterns of naturally occurring fish in a subtropical tidal channel. Fish movements were recorded with and without the rotor in place. Results showed that no fish collided with the rotor and only a few specimens passed through rotor blades. Overall, fish reduced their movements through the area when the rotor was present. This deterrent effect on fish increased with current speed. Fish that passed the rotor avoided the near-field, about 0.3 m from the rotor for benthic reef fish. Large predatory fish were particularly cautious of the rotor and never moved closer than 1.7 m in current speeds above 0.6 ms(-1). The effects of the rotor differed among taxa and feeding guilds and it is suggested that fish boldness and body shape influenced responses. In conclusion, the tested hydrokinetic turbine rotor proved non-hazardous to fish during the investigated conditions. However, the results indicate that arrays comprising multiple turbines may restrict fish movements, particularly for large species, with possible effects on habitat connectivity if migration routes are exploited. Arrays of the investigated turbine type and comparable systems should therefore be designed with gaps of several metres width to allow large fish to pass through. In combination with further research the insights from this study can be used for guiding the design of hydrokinetic turbine arrays where needed, so preventing ecological impacts.

  2. The effect of thiamine injection on upstream migration, survival, and thiamine status of putative thiamine-deficient coho salmon

    USGS Publications Warehouse

    Fitzsimons, J.D.; Williston, B.; Amcoff, P.; Balk, L.; Pecor, C.; Ketola, H.G.; Hinterkopf, J.P.; Honeyfield, D.C.

    2005-01-01

    A diet containing a high proportion of alewives Alosa pseudoharengus results in a thiamine deficiency that has been associated with high larval salmonid mortality, known as early mortality syndrome (EMS), but relatively little is known about the effects of the deficiency on adults. Using thiamine injection (50 mg thiamine/kg body weight) of ascending adult female coho salmon Oncorhynchus kisutch on the Platte River, Michigan, we investigated the effects of thiamine supplementation on migration, adult survival, and thiamine status. The thiamine concentrations of eggs, muscle (red and white), spleen, kidney (head and trunk), and liver and the transketolase activity of the liver, head kidney, and trunk kidney of fish injected with thiamine dissolved in physiological saline (PST) or physiological saline only (PS) were compared with those of uninjected fish. The injection did not affect the number of fish making the 15-km upstream migration to a collection weir but did affect survival once fish reached the upstream weir, where survival of PST-injected fish was almost twice that of controls. The egg and liver thiamine concentrations in PS fish sampled after their upstream migration were significantly lower than those of uninjected fish collected at the downstream weir, but the white muscle thiamine concentration did not differ between the two groups. At the upper weir, thiamine levels in the liver, spleen, head kidney, and trunk kidney of PS fish were indistinguishable from those of uninjected fish (called "wigglers") suffering from a severe deficiency and exhibiting reduced equilibrium, a stage that precedes total loss of equilibrium and death. For PST fish collected at the upstream weir, total thiamine levels in all tissues were significantly elevated over those of PS fish. Based on the limited number of tissues examined, thiamine status was indicated better by tissue thiamine concentration than by transketolase activity. The adult injection method we used appears to be a more effective means of increasing egg thiamine levels than immersion of eggs in a thiamine solution. ?? Copyright by the American Fisheries Society 2005.

  3. White sturgeon (Acipenser transmontanus) passage at the Dalles Dam, Columbia River, USA

    USGS Publications Warehouse

    Parsley, M.J.; Wright, C.D.; Van Der Leeuw, B. K.; Kofoot, E.E.; Peery, C.A.; Moser, M.L.

    2007-01-01

    White sturgeon (Acipenser transmontanus) ???95 cm TL were monitored using acoustic and radio telemetry at a large hydroelectric dam (the Dalles Dam) on the Columbia River, during March 2004 through November 2005 to determine timing and routes of passage and to characterize general movements. Transmitters were surgically implanted into 148 fish during the study; 90 were released into the tailrace and 58 into the forebay. We documented 26 passage events by 19 tagged fish: eight upstream via fish ladders and 18 downstream, mostly through open spill gates. During the study 17 fish entered the two ladders one or more times; 11 entered only the east ladder, three entered only the north ladder, and three entered both ladders at sometime. Residence time within the ladders by individual fish was variable, ranging from about 1 min to nearly 6 months (median = 7.7 h). Only six fish successfully ascended the east ladder, one fish twice. We could not unequivocally determine which fish ladder one fish used to pass upstream. Differences in construction between the north and east fish ladders may account for the greater success of the east fish ladder in passing sturgeon upstream. Changes to operations at hydroelectric dams to benefit migrating anadromous salmonids may influence upstream or downstream passage by white sturgeon. Altering patterns and timing of spill discharge, altering fish ladder entrance attraction flows, and the use of lights, sound, and partial barriers to direct other species of fish to preferred passage routes have unknown effects on sturgeon passage. A better understanding of the consequences to the metapopulation of increasing or precluding upstream or downstream passage is needed. ?? 2007 The Authors.

  4. Passage Distribution and Federal Columbia River Power System Survival for Steelhead Kelts Tagged Above and at Lower Granite Dam, Year 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colotelo, Alison HA; Harnish, Ryan A.; Jones, Bryan W.

    Steelhead (Oncorhynchus mykiss) populations have declined throughout their range in the last century and many populations, including those of the Snake River Basin are listed under the Endangered Species Act of 1973. The reasons for their decline are many and complex, but include habitat loss and degradation, overharvesting, and dam construction. The 2008 Biological Opinion calls for an increase in the abundance of female steelhead through an increase in iteroparity (i.e., repeat spawning) and this can be realized through a combination of reconditioning and in-river survival of migrating kelts. The goal of this study is to provide the data necessarymore » to inform fisheries managers and dam operators of Snake River kelt migration patterns, survival, and routes of dam passage. Steelhead kelts (n = 487) were captured and implanted with acoustic transmitters and passive integrated transponder (PIT)-tags at the Lower Granite Dam (LGR) Juvenile Fish Facility and at weirs located in tributaries of the Snake and Clearwater rivers upstream of LGR. Kelts were monitored as they moved downstream through the Federal Columbia River Power System (FCRPS) by 15 autonomous and 3 cabled acoustic receiver arrays. Cabled receiver arrays deployed on the dam faces allowed for three-dimensional tracking of fish as they approached the dam face and were used to determine the route of dam passage. Overall, 27.3% of the kelts tagged in this study successfully migrated to Martin Bluff (rkm 126, as measured from the mouth of the Columbia River), which is located downstream of all FCRPS dams. Within individual river reaches, survival per kilometer estimates ranged from 0.958 to 0.999; the lowest estimates were observed in the immediate forebay of FCRPS dams. Steelhead kelts tagged in this study passed over the spillway routes (spillway weirs, traditional spill bays) in greater proportions and survived at higher rates compared to the few fish passed through powerhouse routes (turbines and juvenile bypass systems). The results of this study provide information about the route of passage and subsequent survival of steelhead kelts that migrated through the Snake and Columbia rivers from LGR to Bonneville Dam in 2013. These data may be used by fisheries managers and dam operators to identify potential ways to increase the survival of kelts during their seaward migrations.« less

  5. Passage Distribution and Federal Columbia River Power System Survival for Steelhead Kelts Tagged Above and at Lower Granite Dam, Year 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colotelo, Alison H.A.; Harnish, Ryan A.; Jones, Bryan W.

    2014-12-15

    Steelhead (Oncorhynchus mykiss) populations have declined throughout their range in the last century and many populations, including those of the Snake River Basin are listed under the Endangered Species Act of 1973. The reasons for their decline are many and complex, but include habitat loss and degradation, overharvesting, and dam construction. The 2008 Biological Opinion calls for an increase in the abundance of female steelhead through an increase in iteroparity (i.e., repeat spawning) and this can be realized through a combination of reconditioning and in-river survival of migrating kelts. The goal of this study is to provide the data necessarymore » to inform fisheries managers and dam operators of Snake River kelt migration patterns, survival, and routes of dam passage. Steelhead kelts (n = 487) were captured and implanted with acoustic transmitters and passive integrated transponder (PIT)-tags at the Lower Granite Dam (LGR) Juvenile Fish Facility and at weirs located in tributaries of the Snake and Clearwater rivers upstream of LGR. Kelts were monitored as they moved downstream through the Federal Columbia River Power System (FCRPS) by 15 autonomous and 3 cabled acoustic receiver arrays. Cabled receiver arrays deployed on the dam faces allowed for three-dimensional tracking of fish as they approached the dam face and were used to determine the route of dam passage. Overall, 27.3% of the kelts tagged in this study successfully migrated to Martin Bluff (rkm 126, as measured from the mouth of the Columbia River), which is located downstream of all FCRPS dams. Within individual river reaches, survival per kilometer estimates ranged from 0.958 to 0.999; the lowest estimates were observed in the immediate forebay of FCRPS dams. Steelhead kelts tagged in this study passed over the spillway routes (spillway weirs, traditional spill bays) in greater proportions and survived at higher rates compared to the few fish passed through powerhouse routes (turbines and juvenile bypass systems). The results of this study provide information about the route of passage and subsequent survival of steelhead kelts that migrated through the Snake and Columbia rivers from LGR to Bonneville Dam in 2013. These data may be used by fisheries managers and dam operators to identify potential ways to increase the survival of kelts during their seaward migrations.« less

  6. Seasonal movement and habitat use by sub-adult bull trout in the upper Flathead River system, Montana

    USGS Publications Warehouse

    Muhlfeld, Clint C.; Marotz, Brian

    2005-01-01

    Despite the importance of large-scale habitat connectivity to the threatened bull trout Salvelinus confluentus, little is known about the life history characteristics and processes influencing natural dispersal of migratory populations. We used radiotelemetry to investigate the seasonal movements and habitat use by subadult bull trout (i.e., fish that emigrated from natal streams to the river system) tracked for varying durations from 1999 to 2002 in the upper Flathead River system in northwestern Montana. Telemetry data revealed migratory (N = 32 fish) and nonmigratory (N = 35 fish) behavior, indicating variable movement patterns in the subadult phase of bull trout life history. Most migrating subadults (84%) made rapid or incremental downriver movements (mean distance, 33 km; range, 6–129 km) to lower portions of the river system and to Flathead Lake during high spring flows and as temperatures declined in the fall and winter. Bull trout subadults used complex daytime habitat throughout the upper river system, including deep runs that contained unembedded boulder and cobble substrates, pools with large woody debris, and deep lake-influenced areas of the lower river system. Our results elucidate the importance of maintaining natural connections and a diversity of complex habitats over a large spatial scale to conserve the full expression of life history traits and processes influencing the natural dispersal of bull trout populations. Managers should seek to restore and enhance critical river corridor habitat and remove migration barriers, where possible, for recovery and management programs.

  7. Movement patterns of armado, Pterodoras granulosus, in the Paraná River Basin

    USGS Publications Warehouse

    Makrakis, M.C.; Miranda, L.E.; Makrakis, S.; Fernandez, D.R.; Garcia, J.O.; Dias, J.H.P.

    2007-01-01

    We studied the migratory behaviour of armado, Pterodoras granulosus, in the Paraná River Basin of Brazil, Paraguay and Argentina, during 1997–2005. This species invaded the Upper Paraná River after upstream dispersal was facilitated when Itaipu Reservoir inundated a natural barrier. Fish were tagged (N = 8051) in the mainstems of the Yacyreta and Itaipu reservoirs, bays of major tributaries, the Paraná River floodplain above Itaipu Reservoir, and below dams. In all, 420 fish were recaptured of which 61% moved away from the release area. Fish moved a maximum of 215 km (mean 42), and at a maximum rate of 9.4 km·day−1 (mean 0.6). Of the 256 armados that moved away from the release site, 145 moved upstream towards unimpounded stretches of the Paraná River and 111 moved downstream into the reservoir and bays of its tributaries (maximum 150 km). Based on the observed migratory movements, we suspect that most of the reproductive output originates in tributaries to the reservoirs. The ability of this species to expand its range presents a conundrum by pitting fishery management interests against conservation needs. Maintenance of the important armado fisheries depends on the ability of the species to migrate freely to use spawning and nursery areas in reservoir tributaries and floodplains. However, its ability to migrate long distances can allow this non-native species the opportunity to invade most of the Upper Paraná River.

  8. Electronic tagging of green sturgeon reveals population structure and movement among estuaries

    USGS Publications Warehouse

    Lindley, S.T.; Erickson, D.L.; Moser, M.L.; Williams, G.; Langness, O.P.; McCovey, B.W.; Belchik, M.; Vogel, D.; Pinnix, W.; Kelly, J.T.; Heublein, J.C.; Klimley, A.P.

    2011-01-01

    Green sturgeon Acipenser medirostris spend much of their lives outside of their natal rivers, but the details of their migrations and habitat use are poorly known, which limits our understanding of how this species might be affected by human activities and habitat degradation.We tagged 355 green sturgeon with acoustic transmitters on their spawning grounds and in known nonspawning aggregation sites and examined their movement among these sites and other potentially important locations using automated data-logging hydrophones. We found that green sturgeon inhabit a number of estuarine and coastal sites over the summer, including the Columbia River estuary, Willapa Bay, Grays Harbor, and the estuaries of certain smaller rivers in Oregon, especially the Umpqua River estuary. Green sturgeon from different natal rivers exhibited different patterns of habitat use; most notably, San Francisco Bay was used only by Sacramento River fish, while the Umpqua River estuary was used mostly by fish from the Klamath and Rogue rivers. Earlier work, based on analysis of microsatellite markers, suggested that the Columbia River mixed stock was mainly composed of fish from the Sacramento River, but our results indicate that fish from the Rogue and Klamath River populations frequently use the Columbia River as well. We also found evidence for the existence of migratory contingentswithin spawning populations.Our findings have significant implications for the management of the threatened Sacramento River population of green sturgeon, which migrates to inland waters outside of California where anthropogenic impacts, including fisheries bycatch and water pollution, may be a concern. Our results also illustrate the utility of acoustic tracking to elucidate the migratory behavior of animals that are otherwise difficult to observe. ?? American Fisheries Society 2011.

  9. Environmental influences on the spatial ecology and spawning behaviour of an estuarine-resident fish, Macquaria colonorum

    NASA Astrophysics Data System (ADS)

    Walsh, C. T.; Reinfelds, I. V.; Ives, M. C.; Gray, C. A.; West, R. J.; van der Meulen, D. E.

    2013-02-01

    Estuarine-resident fishes are highly susceptible to the effects of environmental and anthropogenic impacts on their assemblages and habitats. We investigated the distribution, movement and spawning behaviour of estuary perch, Macquaria colonorum, in response to selected environmental variables using an acoustic telemetry array in a large tidal river in south-eastern (SE) Australia. Adult M. colonorum were monitored for up to two years, covering two consecutive spawning periods between September 2007 and 2009. Salinity, water temperature and river flows all had a significant relationship with their estuarine distribution. In particular, large-scale movements were influenced by large freshwater inflow events and the resultant reduction in salinity levels, together with the seasonal cooling and warming trends in water temperatures associated with spawning behaviour. During the winter months, male and female M. colonorum migrated from their upper estuarine home ranges to the lower estuarine spawning grounds in synchrony, with numbers of individual visits by both sexes consistently higher in the 'wetter' winter/spring period of 2008. Location, arrival, departure and occupation time within the spawning grounds were similar between sexes and years. Both resident and migrating M. colonorum exhibited strong diel, and to a lesser extent, tidal behavioural patterns, with fish more likely to be detected at night and during the ebb tides. It is postulated that the effect of environmental fluctuations on the distribution and movement of M. colonorum is influenced by behavioural mechanisms in response to osmoregulatory stress, predator-prey interactions and reproductive activity. The results also demonstrate the importance of accounting for autocorrelation inherent in telemetry data, and for developing management strategies that are more robust to the effect of future climate trends on estuarine fish populations.

  10. Warm oceanographic anomalies and fishing pressure drive seabird nesting north

    PubMed Central

    Velarde, Enriqueta; Ezcurra, Exequiel; Horn, Michael H.; Patton, Robert T.

    2015-01-01

    Parallel studies of nesting colonies in Mexico and the United States show that Elegant Terns (Thalasseus elegans) have expanded from the Gulf of California Midriff Island Region into Southern California, but the expansion fluctuates from year to year. A strong inverse relationship between nesting pairs in three Southern California nesting areas [San Diego saltworks, Bolsa Chica Ecological Reserve, and Los Angeles Harbor (1991 to 2014)] and Isla Rasa in the Midriff (1980 to 2014) shows that terns migrate northward when confronting warm oceanographic anomalies (>1.0°C), which may decrease fish availability and hamper nesting success. Migration pulses are triggered by sea surface temperature anomalies localized in the Midriff and, secondarily, by reductions in the sardine population as a result of intensive fishing. This behavior is new; before year 2000, the terns stayed in the Midriff even when oceanographic conditions were adverse. Our results show that terns are responding dynamically to rapidly changing oceanographic conditions and fish availability by migrating 600 km northwest in search of more productive waters. PMID:26601193

  11. Temporal genetic population structure and interannual variation in migration behavior of Pacific Lamprey Entosphenus tridentatus

    USGS Publications Warehouse

    Clemens, Benjamin J.; Wyss, Lance A.; McCoun, Rebecca; Courter, Ian; Schwabe, Lawrence; Peery, Christopher; Schreck, Carl B.; Spice, Erin K.; Docker, Margaret F.

    2017-01-01

    Studies using neutral loci suggest that Pacific lamprey, Entosphenus tridentatus, lack strong spatial genetic population structure. However, it is unknown whether temporal genetic population structure exists. We tested whether adult Pacific lamprey: (1) show temporal genetic population structure; and (2) migrate different distances between years. We non-lethally sampled lamprey for DNA in 2009 and 2010 and used eight microsatellite loci to test for genetic population structure. We used telemetry to record the migration behaviors of these fish. Lamprey were assignable to three moderately differentiated genetic clusters (FST = 0.16–0.24 for all pairwise comparisons): one cluster was composed of individuals from 2009, and the other two contained individuals from 2010. The FST value between years was 0.13 and between genetic clusters within 2010 was 0.20. A total of 372 (72.5%) fish were detected multiple times during their migrations. Most fish (69.9%) remained in the mainstem Willamette River; the remaining 30.1% migrated into tributaries. Eighty-two lamprey exhibited multiple back-and-forth movements among tributaries and the mainstem, which may indicate searching behaviors. All migration distances were significantly greater in 2010, when the amplitude of river discharge was greater. Our data suggest genetic structuring between and within years that may reflect different cohorts.

  12. Reproductive ecology of Prochilodus brevis an endemic fish from the semiarid Region of Brazil.

    PubMed

    Gurgel, Liliane de Lima; Verani, José Roberto; Chellappa, Sathyabama

    2012-01-01

    The commercially important migratory fish Prochilodus brevis is from the Neotropical region, and understanding the reproductive ecology of this potamodromous fish is essential for its conservation and management. This study investigated the length-mass relationship, sex ratio, length at first gonadal maturity, gonadal development stages, gonadosomatic index, condition factor, and reproductive period of P. brevis. Temporal distribution of rainfall, temperature, dissolved oxygen concentration, pH, and electrical conductivity of the water were related to the reproductive period of this fish. Rainfall seems to be the main environmental factor which modulates changes in limnological parameters and the timing of the spawning period of this fish. P. brevis migrates into lower reaches of the river to feed during the dry season and returns to the upper reaches during the rainy season to spawn. Inadequate facilities for migration create obstacles for spawning success of this ecologically important fish.

  13. Use of Electromyogram Telemetry to Assess Swimmng Activity of Adult Spring Chinook Salmon Migrating Past a Columbia River Dam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Richard S.; Geist, David R.; Mesa, Matthew G.

    Electromyogram (EMG) radiotelemetry was used to examine the amount of energy expended by spring Chinook salmon Oncorhynchus tshawytscha migrating upstream past a Columbia River dam. Electrodes from EMG transmitters were surgically implanted in the red muscle of fish captured at Bonneville Dam and output from the tags was calibrated to defined swim speeds for each fish in a tunnel respirometer. The fish were then released below Bonneville Dam and radio-tracked as they migrated through the tailraces, fishways, and forebays of the dam. On average, the rate of aerobic energy used by spring Chinook salmon was significantly higher when they weremore » moving through tailraces (1.27 kcal•kg-1•h-1) than when they were moving through other parts of the dam. Specifically, the rate of aerobic energy use for fish in tailraces was 14% higher than that used by fish in fishways (1.11 kcal•kg-1•h-1) and 27% higher than the rate used by fish in forebays (1.00 kcal•kg-1•h-1). Most (80%) of the aerobic energy used by fish to pass this dam was expended in the tailrace (25.5 kcal/kg), while only 18% (5.6 kcal/kg) and 2% (0.6 kcal/kg) were used in the fishways and forebays.« less

  14. Life History Correlates and Extinction Risk of Capital-Breeding Fishes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jager, Yetta; Vila-Gispert, Dr Anna; Rose, Kenneth A.

    2008-03-01

    We consider a distinction for fishes, often made for birds and reptiles, between capital-breeding and income-breeding species. Species that follow a capital-breeding strategy tend to evolve longer intervals between reproductive events and tend to have characteristics that we associate with higher extinction risk. To examine whether these ideas are relevant for fishes, we assembled life-history data for fish species, including an index of extinction risk, the interval between spawning events, the degree of parental care, and whether or not the species migrates to spawn. These data were used to evaluate two hypotheses: 1) fish species with a major accessory activitymore » to spawning (migration or parental care) spawn less often and 2) fish species that spawn less often are at greater risk of extinction. We tested these hypotheses by applying two alternative statistical methods that account for phylogenetic correlation in cross-taxon comparisons. The two methods predicted average intervals between spawning events 0.13 to 0.20 years longer for fishes with a major accessory activity. Both accessories, above-average parental care and spawning migration, were individually associated with longer average spawning intervals. We conclude that the capital-breeding paradigm is relevant for fishes. We also confirmed the second hypothesis, that species in higher IUCN extinction risk categories had longer average spawning intervals. Further research is needed to understand the relationship between extinction risk and spawning interval, within the broader context of life history traits and aquatic habitats.« less

  15. Spatial and temporal diet patterns of subadult and small adult striped bass in Massachusetts estuaries: Data, a synthesis, and trends across scales

    USGS Publications Warehouse

    Ferry, K.H.; Mather, Martha E.

    2012-01-01

    Subadult and small adult (375–475 mm total length) striped bass Morone saxatilis are abundant and represent an important component of the recovered U.S. Atlantic coast stocks. However, little is known about these large aggregations of striped bass during their annual foraging migrations to New England. A quantitative understanding of trends in the diets of subadult and small adult migrants is critical to research and management. Because of the complexity of the Massachusetts coast, we were able to compare diets at multiple spatial, temporal, and taxonomic scales and evaluate which of these provided the greatest insights into the foraging patterns of this size of fish. Specifically, during spring through autumn, we quantified the diets of 797 migratory striped bass collected from 13 Massachusetts estuaries distributed among three geographic regions in two biogeographic provinces. Our data provided three useful results. First, subadult and young adult striped bass ate a season-specific mixture of fish and invertebrates. For example, more juvenile Atlantic herring Clupea harengus were eaten in spring than in summer or autumn, more juvenile Atlantic menhaden Brevoortia tyrannus were eaten in autumn than in spring or summer, amphipods were eaten primarily in the southern biogeographic province, and shrimp Crangon sp. were eaten in all locations and seasons. Second, examining diets by season was essential because of the temporal variability in striped bass prey. Grouping prey by fish and invertebrates revealed the potential for predictable differences in growth across geographic locations and seasons, based on the output from simple bioenergetics simulations. Third, of the three spatial scales examined, region provided the most quantitative and interpretable ecological trends. Our results demonstrate the utility of comparing multiple scales to evaluate the best way to depict diet trends in a migrating predator that seasonally uses different geographic locations.

  16. Marine Habitat Use by Anadromous Bull Trout from the Skagit River, Washington

    USGS Publications Warehouse

    Hayes, Michael C.; Rubin, Steve P.; Reisenbichler, Reginald; Goetz, Fred A.; Jeanes, Eric; McBride, Aundrea

    2011-01-01

    Acoustic telemetry was used to describe fish positions and marine habitat use by tagged bull trout Salvelinus confluentus from the Skagit River, Washington. In March and April 2006, 20 fish were captured and tagged in the lower Skagit River, while 15 fish from the Swinomish Channel were tagged during May and June. Sixteen fish tagged in 2004 and 2005 were also detected during the study. Fish entered Skagit Bay from March to May and returned to the river from May to August. The saltwater residency for the 13 fish detected during the out-migration and return migration ranged from 36 to 133 d (mean ± SD, 75 ± 22 d). Most bull trout were detected less than 14 km (8.5 ± 4.4 km) from the Skagit River, and several bay residents used the Swinomish Channel while migrating. The bull trout detected in the bay were associated with the shoreline (distance from shore, 0.32 ± 0.27 km) and occupied shallow-water habitats (mean water column depth, Zostera sp.) vegetation classes made up more than 70% of the area used by bull trout. Our results will help managers identify specific nearshore areas that may require further protection to sustain the unique anadromous life history of bull trout.

  17. Investigations into the Early Life-history of Naturally Produced Spring Chinook Salmon and Summer Steelhead in the Grande Ronde River Basin, Annual Report 2001.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reischauer, Alyssa; Monzyk, Frederick; Van Dyke, Erick

    2003-06-01

    We determined migration timing and abundance of juvenile spring chinook salmon Oncorhynchus tshawytscha and juvenile steelhead/rainbow trout Oncorhynchus mykiss using rotary screw traps on four streams in the Grande Ronde River basin during the 2001 migratory year (MY 2001) from 1 July 2000 through 30 June 2001. Based on migration timing and abundance, two distinct life-history strategies of juvenile spring chinook and O. mykiss could be distinguished. An 'early' migrant group left upper rearing areas from 1 July 2000 through 29 January 2001 with a peak in the fall. A 'late' migrant group descended from upper rearing areas from 30more » January 2001 through 30 June 2001 with a peak in the spring. The migrant population of juvenile spring chinook salmon in the upper Grande Ronde River in MY 2001 was very low in comparison to previous migratory years. We estimated 51 juvenile spring chinook migrated out of upper rearing areas with approximately 12% of the migrant population leaving as early migrants to overwinter downstream. In the same migratory year, we estimated 16,067 O. mykiss migrants left upper rearing areas with approximately 4% of these fish descending the upper Grande Ronde River as early migrants. At the Catherine Creek trap, we estimated 21,937 juvenile spring chinook migrants in MY 2001. Of these migrants, 87% left upper rearing areas early to overwinter downstream. We also estimated 20,586 O. mykiss migrants in Catherine Creek with 44% leaving upper rearing areas early to overwinter downstream. At the Lostine River trap, we estimated 13,610 juvenile spring chinook migrated out of upper rearing areas with approximately 77% migrating early. We estimated 16,690 O. mykiss migrated out of the Lostine River with approximately 46% descending the river as early migrants. At the Minam River trap, we estimated 28,209 juvenile spring chinook migrated out of the river with 36% migrating early. During the same period, we estimated 28,113 O. mykiss with approximately 14% of these fish leaving as early migrants. Juvenile spring chinook salmon PIT-tagged at trap sites in the fall and in upper rearing areas during winter were used to compare migration timing and survival to Lower Granite Dam of the early and late migrant groups. Juvenile spring chinook tagged on the upper Grande Ronde River were detected at Lower Granite Dam from 4 May to 20 May 2001, with a median passage date of 17 May. Too few fish were collected and tagged to conduct detection rate and survival comparisons between migrant groups. PIT-tagged salmon from Catherine Creek trap were detected at Lower Granite Dam from 27 April to 13 July 2001. Early migrants were detected significantly earlier (median = 10 May) than late migrants (median = 1 June). Also, early migrants from Catherine Creek were detected at a significantly higher rate than fish tagged in upper rearing areas in the winter, suggesting better survival for fish that migrated out of upper rearing areas in the fall. Juvenile spring chinook salmon from the Lostine River were detected at Lower Granite Dam from 2 April through 4 July 2001. Early migrants were detected significantly earlier (median = 27 April) than late migrants (median = 14 May). However, there was no difference in detection rates between early and late migrants. Survival probabilities showed similar patterns as dam detection rates. Juvenile spring chinook salmon from the Minam River were detected at Lower Granite Dam from 8 April through 18 August 2001. Early migrants were detected significantly earlier (median = 28 April) than late migrants (median = 14 May). Late migrants from the Minam River were tagged at the trap in the spring. Spring chinook salmon parr PIT-tagged in summer 2000 on Catherine Creek and the Imnaha, Lostine, and Minam rivers were detected at Lower Granite Dam over an 87 d period from 8 April to 3 July 2001. The migratory period of individual populations ranged from 51 d (Imnaha River) to 67 d (Catherine Creek) in length. Median dates of migration ranged from 30 April (Imnaha River) to 17 May (Catherine Creek). Detection rates differed between populations with Catherine Creek spring chinook salmon detected at the lowest rate (8.2%). Imnaha, Lostine, and Minam detection rates were not significantly different from each other. A similar pattern was seen for survival probabilities. Using mark-and-recapture and scale-aging techniques, we determined the population size and age-structure of spring chinook salmon parr in Catherine Creek and the Lostine River during the summer of 2001. In Catherine Creek, we estimated that 986 mature age-1 parr (precocious males) and 15,032 immature age-0 parr were present during August 2001. We estimated there were 7.5 mature male parr for every anadromous female spawner in Catherine Creek in 2001. We estimated 33,086 immature, age-0 parr inhabited the Lostine River in August 2001.« less

  18. Evaluation of Head-of-Reservoir Conditions for Downstream Migration of Juvenile Chinook Salmon and Steelhead at Shasta Lake, California

    NASA Astrophysics Data System (ADS)

    Clancey, K. M.; Saito, L.; Svoboda, C.; Bender, M. D.; Hannon, J.; Hellmann, K. M.

    2015-12-01

    Since completion of Shasta Dam, migration of Chinook salmon and steelhead trout in the Sacramento River has been blocked, causing loss of spawning and rearing habitat. This has been a factor leading to population declines of these fish species over several decades. Winter-run Chinook salmon, spring-run Chinook salmon and steelhead trout are now listed under the Endangered Species Act. A habitat assessment of the tributaries upstream of Shasta Dam showed that the Sacramento and McCloud tributaries have suitable habitat for reintroduction of adult salmon and steelhead for spawning. Such reintroduction would require downstream passage of juvenile Chinook salmon and steelhead past Shasta Dam. To evaluate the possibility of collecting and transporting juvenile Chinook salmon and steelhead past Shasta Dam, a CE-QUAL-W2 model of Shasta Lake and the Sacramento River, McCloud River, Pit River and Squaw Creek tributaries was used to assess where and when conditions were favorable at head-of-reservoir locations upstream of proposed temperature curtains to collect juvenile fish. Head-of-reservoir is the zone of transition between the river and the upstream end of the reservoir. Criteria for evaluating locations suitable to collect these fish included water temperature and velocities in the Sacramento and McCloud tributaries. Model output was analyzed during months of downstream migration under dry, median and wet year conditions. Potential for proposed temperature curtains, anchored and floating, to improve conditions for fish migration was also evaluated with the CE-QUAL-W2 model. Use of temperature curtains to assist fish migration is a novel approach that to our knowledge has not previously been assessed for recovery of Chinook salmon and steelhead populations. Providing safe passage conditions is challenging, however the study findings may assist in formulation of a juvenile fish passage alternative that is suitable for Shasta Lake.

  19. Influence of mesoscale features on micronekton and large pelagic fish communities in the Mozambique Channel

    NASA Astrophysics Data System (ADS)

    Potier, Michel; Bach, Pascal; Ménard, Frédéric; Marsac, Francis

    2014-02-01

    We investigated the diversity and distribution of two communities, micronekton organisms and large predatory fishes, sampled in mesoscale features of the Mozambique Channel from 2003 to 2009, by combining mid-water trawls, stomach contents of fish predators and instrumented longline fishing surveys. The highest species richness for assemblages was found in divergences and fronts rather than in the core of eddies. Despite an unbalanced scheme, diversity indices did not differ significantly between cyclonic and anticyclonic eddies, divergences and fronts. We found that eddies and associated physical cues did not substantially affect the distribution of micronektonic species which are mainly driven by the diel vertical migration pattern. Top predators exhibited a more complex response. Swordfish (Xiphias gladius) associated better with mesoscale features than tunas, with a clear preference for divergences which is consistent with the diel vertical migrations and occurrence of its main prey, the flying squids Sthenoteuthis oualaniensis (Ommastrephidae). On the other hand, the probability of presence of yellowfin tuna was not tied to any specific eddy structure. However, the highest values of positive yellowfin CPUEs were associated with low horizontal gradients of sea-level anomalies. We also showed a non-linear response of positive yellowfin CPUEs with respect to the depth of the minimal oxygen content. The larger the distance between the hooks and the minimal oxygen layer, towards the surface or at greater depths, the higher the CPUE, highlighting that yellowfin congregated in well-oxygenated waters. Micronekton sampled by mid-water trawls and stomach contents exhibited different species composition. The highly mobile organisms were not caught by trawling whereas they remain accessible to predators. The combination of stomach contents and mid-water trawls undoubtedly improved our understanding of the micronekton assemblage distribution. Our results provide some evidence that mesoscale features in the Mozambique Channel do not strongly affect the distribution of the mid-trophic level organisms such as micronekton and most of the large predatory fishes, and hypotheses are proposed to support this result.

  20. What is "fallback"?: metrics needed to assess telemetry tag effects on anadromous fish behavior

    USGS Publications Warehouse

    Frank, Holly J.; Mather, Martha E.; Smith, Joseph M.; Muth, Robert M.; Finn, John T.; McCormick, Stephen D.

    2009-01-01

    Telemetry has allowed researchers to document the upstream migrations of anadromous fish in freshwater. In many anadromous alosine telemetry studies, researchers use downstream movements (“fallback”) as a behavioral field bioassay for adverse tag effects. However, these downstream movements have not been uniformly reported or interpreted. We quantified movement trajectories of radio-tagged anadromous alewives (Alosa pseudoharengus) in the Ipswich River, Massachusetts (USA) and tested blood chemistry of tagged and untagged fish held 24 h. A diverse repertoire of movements was observed, which could be quantified using (a) direction of initial movements, (b) timing, and (c) characteristics of bouts of coupled upstream and downstream movements (e.g., direction, distance, duration, and speed). Because downstream movements of individual fish were almost always made in combination with upstream movements, these should be examined together. Several of the movement patterns described here could fall under the traditional definition of “fallback” but were not necessarily aberrant. Because superficially similar movements could have quite different interpretations, post-tagging trajectories need more precise definitions. The set of metrics we propose here will help quantify tag effects in the field, and provide the basis for a conceptual framework that helps define the complicated behaviors seen in telemetry studies on alewives and other fish in the field.

  1. Assessment of the Fishery Improvement Opportunities on the Pend Oreille River, 1988 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barber, Michael R.; Willms, Roger A.; Scholz, Allan T.

    1989-10-01

    The purpose of this study is to assess the fishery improvement opportunities on the Box Canyon portion of the Pend Oreille River. This report contains the findings of the first year of the study. Chinook salmon (Oncorhynchus tshawytscha (Walbaum)) and steelhead (Oncorhynchus mykiss (Richardson)) were present in the Pend Oreille River prior to the construction of Grand Coulee Dam. The river also contained native cutthroat trout (Oncorhynchus clarki (Richardson)), bull trout (Salvelinus confluentus (Walbaum)) and mountain whitefish (Prosopium williamsoni (Girard)). Rainbow trout were planted in the river and some grew to lengths in excess of 30 inches. With the constructionmore » of Box Canyon Dam, in 1955, the most productive section of the river was inundated. Following the construction of the dam the trout fishery declined and the populations of spiny ray fish and rough fish increased. The objectives of the first year of the study were to determine the relative abundance of each species in the river and sloughs; the population levels in fish in the river and four selected tributaries; fish growth rates; the feeding habits and abundance of preferred prey; the migration patterns; and the total fishing pressure, catch per unit effort, and total harvest by conducting a year-round creel survey. 132 refs.« less

  2. The dynamics of a fish stock exploited in two fishing zones.

    PubMed

    Mchich, R; Auger, P; Raïss, N

    2000-12-01

    This work presents a specific stock-effort dynamical model. The stocks correspond to two populations of fish moving and growing between two fishery zones. They are harvested by two different fleets. The effort represents the number of fishing boats of the two fleets that operate in the two fishing zones. The bioeconomical model is a set of four ODE's governing the fishing efforts and the stocks in the two fishing areas. Furthermore, the migration of the fish between the two patches is assumed to be faster than the growth of the harvested stock. The displacement of the fleets is also faster than the variation in the number of fishing boats resulting from the investment of the fishing income. So, there are two time scales: a fast one corresponding to the migration between the two patches, and a slow time scale corresponding to growth. We use aggregation methods that allow us to reduce the dimension of the model and to obtain an aggregated model for the total fishing effort and fish stock of the two fishing zones. The mathematical analysis of the model is shown. Under some conditions, we obtain a stable equilibrium, which is a desired situation, as it leads to a sustainable harvesting equilibrium, keeping the stock at exploitable densities.

  3. Musculoskeletal determinants of pelvic sucker function in Hawaiian stream gobiid fishes: interspecific comparisons and allometric scaling.

    PubMed

    Maie, Takashi; Schoenfuss, Heiko L; Blob, Richard W

    2013-07-01

    Gobiid fishes possess a distinctive ventral sucker, formed from fusion of the pelvic fins. This sucker is used to adhere to a wide range of substrates including, in some species, the vertical cliffs of waterfalls that are climbed during upstream migrations. Previous studies of waterfall-climbing goby species have found that pressure differentials and adhesive forces generated by the sucker increase with positive allometry as fish grow in size, despite isometry or negative allometry of sucker area. To produce such scaling patterns for pressure differential and adhesive force, waterfall-climbing gobies might exhibit allometry for other muscular or skeletal components of the pelvic sucker that contribute to its adhesive function. In this study, we used anatomical dissections and modeling to evaluate the potential for allometric growth in the cross-sectional area, effective mechanical advantage (EMA), and force generating capacity of major protractor and retractor muscles of the pelvic sucker (m. protractor ischii and m. retractor ischii) that help to expand the sealed volume of the sucker to produce pressure differentials and adhesive force. We compared patterns for three Hawaiian gobiid species: a nonclimber (Stenogobius hawaiiensis), an ontogenetically limited climber (Awaous guamensis), and a proficient climber (Sicyopterus stimpsoni). Scaling patterns were relatively similar for all three species, typically exhibiting isometric or negatively allometric scaling for the muscles and lever systems examined. Although these scaling patterns do not help to explain the positive allometry of pressure differentials and adhesive force as climbing gobies grow, the best climber among the species we compared, S. stimpsoni, does exhibit the highest calculated estimates of EMA, muscular input force, and output force for pelvic sucker retraction at any body size, potentially facilitating its adhesive ability. Copyright © 2013 Wiley Periodicals, Inc.

  4. Reef Fish Community Biomass and Trophic Structure Changes across Shallow to Upper-Mesophotic Reefs in the Mesoamerican Barrier Reef, Caribbean

    PubMed Central

    Gress, Erika; Wright, Georgina; Exton, Dan A.; Rogers, Alex D.

    2016-01-01

    Mesophotic coral ecosystems (MCEs; reefs 30-150m depth) are of increased research interest because of their potential role as depth refuges from many shallow reef threats. Yet few studies have identified patterns in fish species composition and trophic group structure between MCEs and their shallow counterparts. Here we explore reef fish species and biomass distributions across shallow to upper-MCE Caribbean reef gradients (5-40m) around Utila, Honduras, using a diver-operated stereo-video system. Broadly, we found reef fish species richness, abundance and biomass declining with depth. At the trophic group level we identified declines in herbivores (both total and relative community biomass) with depth, mostly driven by declines in parrotfish (Scaridae). Piscivores increased as a proportion of the community with increased depth while, in contrast to previous studies, we found no change in relative planktivorous reef fish biomass across the depth gradient. In addition, we also found evidence of ontogenetic migrations in the blue tang (Acanthurus coeruleus), striped parrotfish (Scarus iserti), blue chromis (Chromis cyanea), creole wrasse (Clepticus parrae), bluehead wrasse (Thalassoma bifasciatum) and yellowtail snapper (Ocyurus chrysurus), with a higher proportion of larger individuals at mesophotic and near-mesophotic depths than on shallow reefs. Our results highlight the importance of using biomass measures when considering fish community changes across depth gradients, with biomass generating different results to simple abundance counts. PMID:27332811

  5. Relationships between water temperatures and upstream migration, cold water refuge use, and spawning of adult bull trout from the Lostine River, Oregon, USA

    USGS Publications Warehouse

    Howell, P.J.; Dunham, J.B.; Sankovich, P.M.

    2010-01-01

    Understanding thermal habitat use by migratory fish has been limited by difficulties in matching fish locations with water temperatures. To describe spatial and temporal patterns of thermal habitat use by migratory adult bull trout, Salvelinus confluentus, that spawn in the Lostine River, Oregon, we employed a combination of archival temperature tags, radio tags, and thermographs. We also compared temperatures of the tagged fish to ambient water temperatures to determine if the fish were using thermal refuges. The timing and temperatures at which fish moved upstream from overwintering areas to spawning locations varied considerably among individuals. The annual maximum 7-day average daily maximum (7DADM) temperatures of tagged fish were 16-18 ??C and potentially as high as 21 ??C. Maximum 7DADM ambient water temperatures within the range of tagged fish during summer were 18-25 ??C. However, there was no evidence of the tagged fish using localized cold water refuges. Tagged fish appeared to spawn at 7DADM temperatures of 7-14 ??C. Maximum 7DADM temperatures of tagged fish and ambient temperatures at the onset of the spawning period in late August were 11-18 ??C. Water temperatures in most of the upper Lostine River used for spawning and rearing appear to be largely natural since there has been little development, whereas downstream reaches used by migratory bull trout are heavily diverted for irrigation. Although the population effects of these temperatures are unknown, summer temperatures and the higher temperatures observed for spawning fish appear to be at or above the upper range of suitability reported for the species. Published 2009. This article is a US Governmentwork and is in the public domain in the USA.

  6. Monitoring the Migrations of Wild Snake River Spring/Summer Chinook Salmon Juveniles, 2007-2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achord, Stephen; Sandford, Benjamin P.; Hockersmith, Eric E.

    2009-07-09

    This report provides results from an ongoing project to monitor the migration behavior and survival of wild juvenile spring/summer Chinook salmon in the Snake River Basin. Data reported is from detections of PIT tagged fish during late summer 2007 through mid-2008. Fish were tagged in summer 2007 by the National Marine Fisheries Service (NMFS) in Idaho and by the Oregon Department of Fish and Wildlife (ODFW) in Oregon. Our analyses include migration behavior and estimated survival of fish at instream PIT-tag monitors and arrival timing and estimated survival to Lower Granite Dam. Principal results from tagging and interrogation during 2007-2008more » are: (1) In July and August 2007, we PIT tagged and released 7,390 wild Chinook salmon parr in 12 Idaho streams or sample areas. (2) Overall observed mortality from collection, handling, tagging, and after a 24-hour holding period was 1.4%. (3) Of the 2,524 Chinook salmon parr PIT tagged and released in Valley Creek in summer 2007, 218 (8.6%) were detected at two instream PIT-tag monitoring systems in lower Valley Creek from late summer 2007 to the following spring 2008. Of these, 71.6% were detected in late summer/fall, 11.9% in winter, and 16.5% in spring. Estimated parr-to-smolt survival to Lower Granite Dam was 15.5% for the late summer/fall group, 48.0% for the winter group, and 58.5% for the spring group. Based on detections at downstream dams, the overall efficiency of VC1 (upper) or VC2 (lower) Valley Creek monitors for detecting these fish was 21.1%. Using this VC1 or VC2 efficiency, an estimated 40.8% of all summer-tagged parr survived to move out of Valley Creek, and their estimated survival from that point to Lower Granite Dam was 26.5%. Overall estimated parr-to-smolt survival for all summer-tagged parr from this stream at the dam was 12.1%. Development and improvement of instream PIT-tag monitoring systems continued throughout 2007 and 2008. (4) Testing of PIT-tag antennas in lower Big Creek during 2007-2008 showed these antennas (and anchoring method) are not adequate to withstand high spring flows in this drainage. Future plans involve removing these antennas before high spring flows. (5) At Little Goose Dam in 2008, length and/or weight were taken on 505 recaptured fish from 12 Idaho stream populations. Fish had grown an average of 40.1 mm in length and 10.6 g in weight over an average of 288 d. Their mean condition factor declined from 1.25 at release (parr) to 1.05 at recapture (smolt). (6) Mean release lengths for detected fish were significantly larger than for fish not detected the following spring and summer (P < 0.0001). (7) Fish that migrated through Lower Granite Dam in April and May were significantly larger at release than fish that migrated after May (P < 0.0001) (only 12 fish migrated after May). (8) In 2008, peak detections at Lower Granite Dam of parr tagged during summer 2007 (from the 12 stream populations in Idaho and 4 streams in Oregon) occurred during moderate flows of 87.5 kcfs on 7 May and high flows of 197.3 kcfs on 20 May. The 10th, 50th, and 90th percentile passage occurred on 30 April, 11 May, and 23 May, respectively. (9) In 2007-2008, estimated parr-to-smolt survival to Lower Granite Dam for Idaho and Oregon streams (combined) averaged 19.4% (range 6.2-38.4% depending on stream of origin). In Idaho streams the estimated parr-to-smolt survival averaged 21.0%. This survival was the second highest since 1993 for Idaho streams. Relative parr densities were lower in 2007 (2.4 parr/100 m2) than in all previous years since 2000. In 2008, we observed low-to-moderate flows prior to mid-May and relatively cold weather conditions throughout the spring migration season. These conditions moved half of the fish through Lower Granite Dam prior to mid-May; then high flows moved 50 to 90% of the fish through the dam in only 12 days. Clearly, complex interrelationships of several factors drive the annual migrational timing of the stocks.« less

  7. Factors influencing fish and macrocrustacean communities in the surf zone of sandy beaches in Belgium: temporal variation

    NASA Astrophysics Data System (ADS)

    Beyst, Bregje; Hostens, Kris; Mees, Jan

    2001-12-01

    Monthly samples were taken in the surf zone of sandy beaches along the Belgian coast from May 1996 until July 1997 at four selected stations. Temporal patterns of the macrocrustacean and fish species residing the surf zone were investigated, as well as the abiotic variables structuring the community. In total 34 species were recorded belonging to caridean shrimps (3), anomuran and brachyuran crabs (5), cephalopods (2) and fish (24). The brown shrimp Crangon crangon dominated almost all samples (>80%). Total densities often exceeded 400 ind per 100 m2, and if C. crangon was excluded 10 ind per 100 m2. Notwithstanding the harsh hydrodynamic conditions, the surf zone of Belgian sandy beaches is used intensively by a number of epibenthic macro-crustaceans and demersal fish species. Seven resident and ten migrant species were identified. As mainly juvenile fishes were present, the surf zone of the Belgian sandy beaches may act as a nursery for longer (e.g. plaice Pleuronectes platessa) or shorter (e.g. brill Scophthalmus rhombus) periods. However, its nursery function should be studied in more detail, since the highly dynamic circumstances and more specifically wave height and wind speed may be important structuring factors for the epibenthic communities. The surf zone of Belgian sandy beaches also seems to function as a transient area to other nurseries (e.g. bass Dicentrarchus labrax) or between a nursery and the true marine environment (e.g. dab Limanda limanda). Temporal variation in community structure was greatly masked by spatial differences between sites. Although variables such as salinity and hydrodynamic factors may have influenced the data, clear temperature-related, seasonal patterns occur. Most likely, extreme winter conditions and subsequent migration of organisms to deeper waters caused a decline in winter in both density and diversity.

  8. Characterizing seasonal and diel vertical movement and habitat use of lake whitefish (Coregonus clupeaformis) in Clear Lake, Maine

    USGS Publications Warehouse

    Zydlewski, Joseph D.; Gorsky, Dimitry; Balsey, David

    2016-01-01

    Seasonal and daily vertical activity of lake whitefish Coregonus clupeaformis was studied in Clear Lake, Maine (253 ha), using acoustic telemetry from November 2004 to June 2009. Twenty adult lake whitefish were tagged with acoustic tags that had either a depth sensor or both depth and temperature sensors to assess vertical habitat use at a seasonal and daily resolution. Vertical habitat selection varied seasonally and was strongly influenced by temperature. Between December and April, when the lake was covered with ice, surface temperature was below 2°C and tagged individuals occupied deep areas of the lake (∼15 m). After ice-out, fish ascended into shallow waters (∼5 m), responding to increased water temperature and possibly to greater foraging opportunity. When surface water temperatures exceeded 20°C, fish descended below the developing thermocline (∼9 m), where they remained until surface temperatures fell below 20°C; fish then ascended into shallower depths, presumably for feeding and spawning. Through the winter, fish remained in thermal habitats that were warmer than the surface temperatures; in the summer, they selected depths with thermal habitats below 15°C. Though the amplitude varied greatly across seasons, lake whitefish displayed a strong diurnal pattern of activity as measured by vertical velocities. Fish were twofold more active during spring, summer, and fall than during winter. Lake whitefish exhibited diel vertical migrations, rising in the water column during nighttime and occupying deeper waters during the day. This pattern was more pronounced in the spring and fall and far less prominent during winter and summer. The strong linkage between temperature and habitat use may limit the current range of lake whitefish and may be directly impacted by climatic change.

  9. From Shelf to Shelf: Assessing Historical and Contemporary Genetic Differentiation and Connectivity across the Gulf of Mexico in Gag, Mycteroperca microlepis

    PubMed Central

    Jue, Nathaniel K.; Brulé, Thierry; Coleman, Felicia C.; Koenig, Christopher C.

    2015-01-01

    Describing patterns of connectivity among populations of species with widespread distributions is particularly important in understanding the ecology and evolution of marine species. In this study, we examined patterns of population differentiation, migration, and historical population dynamics using microsatellite and mitochondrial loci to test whether populations of the epinephelid fish, Gag, Mycteroperca microlepis, an important fishery species, are genetically connected across the Gulf of Mexico and if so, whether that connectivity is attributable to either contemporary or historical processes. Populations of Gag on the Campeche Bank and the West Florida Shelf show significant, but low magnitude, differentiation. Time since divergence/expansion estimates associated with historical population dynamics indicate that any population or spatial expansions indicated by population genetics would have likely occurred in the late Pleistocene. Using coalescent-based approaches, we find that the best model for explaining observed spatial patterns of contemporary genetic variation is one of asymmetric gene flow, with movement from Campeche Bank to the West Florida Shelf. Both estimated migration rates and ecological data support the hypothesis that Gag populations throughout the Gulf of Mexico are connected via present day larval dispersal. Demonstrating this greatly expanded scale of connectivity for Gag highlights the influence of “ghost” populations (sensu Beerli) on genetic patterns and presents a critical consideration for both fisheries management and conservation of this and other species with similar genetic patterns. PMID:25856095

  10. A retrospective on hydroacoustic assessment of fish passage in Alaskan rivers

    NASA Astrophysics Data System (ADS)

    Burwen, Debby; Fleischman, Steve; Maxwell, Suzanne; Pfisterer, Carl

    2005-04-01

    The Alaska Department of Fish and Game (ADFG) has enumerated fish stocks in rivers for over 30 years using a variety of acoustic technologies including single-, dual-, and split-beam sonar. Most recently, ADFG has evaluated a relatively new sonar technology at several sites in Alaska to determine its applicability to counting migrating fish in rivers. The new system, called a Dual frequency IDentification SONar (DIDSON), is a high-definition imaging sonar designed and manufactured by the University of Washington's Applied Physics Lab for military applications such as diver detection and underwater mine identification. Results from experiments conducted in 2002-2004 indicate that DIDSON provides significant improvements in our ability to detect, track, and determine the direction of travel of migrating fish in rivers. One of the most powerful uses of the DIDSON has been to combine its camera-like images of fish swimming behavior with corresponding split-beam data. These linked datasets have allowed us to evaluate the effects of fish orientation and swimming behavior on echo shape parameters that have proven useful in the classification of certain fish species.

  11. Identification of Barramundi (Lates calcarifer) DC-SCRIPT, a Specific Molecular Marker for Dendritic Cells in Fish

    PubMed Central

    Zoccola, Emmanuelle; Delamare-Deboutteville, Jérôme; Barnes, Andrew C.

    2015-01-01

    Antigen presentation is a critical step bridging innate immune recognition and specific immune memory. In mammals, the process is orchestrated by dendritic cells (DCs) in the lymphatic system, which initiate clonal proliferation of antigen-specific lymphocytes. However, fish lack a classical lymphatic system and there are currently no cellular markers for DCs in fish, thus antigen-presentation in fish is poorly understood. Recently, antigen-presenting cells similar in structure and function to mammalian DCs were identified in various fish, including rainbow trout (Oncorhynchus mykiss) and zebrafish (Danio rerio). The present study aimed to identify a potential molecular marker for DCs in fish and therefore targeted DC-SCRIPT, a well-conserved zinc finger protein that is preferentially expressed in all sub-types of human DCs. Putative dendritic cells were obtained in culture by maturation of spleen and pronephros-derived monocytes. DC-SCRIPT was identified in barramundi by homology using RACE PCR and genome walking. Specific expression of DC-SCRIPT was detected in barramundi cells by Stellaris mRNA FISH, in combination with MHCII expression when exposed to bacterial derived peptidoglycan, suggesting the presence of DCs in L. calcarifer. Moreover, morphological identification was achieved by light microscopy of cytospins prepared from these cultures. The cultured cells were morphologically similar to mammalian and trout DCs. Migration assays determined that these cells have the ability to move towards pathogens and pathogen associated molecular patterns, with a preference for peptidoglycans over lipopolysaccharides. The cells were also strongly phagocytic, engulfing bacteria and rapidly breaking them down. Barramundi DCs induced significant proliferation of responder populations of T-lymphocytes, supporting their role as antigen presenting cells. DC-SCRIPT expression in head kidney was higher 6 and 24 h following intraperitoneal challenge with peptidoglycan and lipopolysaccharide and declined after 3 days relative to PBS-injected controls. Relative expression was also lower in the spleen at 3 days post challenge but increased again at 7 days. As DC-SCRIPT is a constitutively expressed nuclear receptor, independent of immune activation, this may indicate initial migration of immature DCs from head kidney and spleen to the injection site, followed by return to the spleen for maturation and antigen presentation. DC-SCRIPT may be a valuable tool in the investigation of antigen presentation in fish and facilitate optimisation of vaccines and adjuvants for aquaculture. PMID:26173015

  12. Composition and relative abundance of fish species in the lower White Salmon River, Washington, prior to the removal of Condit Dam

    USGS Publications Warehouse

    Allen, M. Brady; Connolly, Patrick J.

    2011-01-01

    Information about the composition and relative abundance of fish species was collected by a rotary screw trap and backpack electrofishing in the lower White Salmon River, Washington. The information was collected downstream of Condit Dam, which is at river kilometer (rkm) 5.2, and is proposed for removal in October 2011. A rotary screw trap was installed in the White Salmon River at rkm 1.5 and operated from March through June during 2006–09. All captured fish were identified to species and enumerated. Daily subsets of fish were weighed, measured, and fin clipped for a genetic analysis by the U.S. Fish and Wildlife Service.Fall Chinook salmon (Oncorhynchus tshawytscha) were captured in the highest numbers (n=18, 640), and were composed of two stocks: tule and upriver bright. Almost all captured fall Chinook salmon were age-0, with only 16 (0.09 percent) being age-1 or older.Tule fall Chinook salmon, the native stock, generally out-migrated from mid-March through early April. The tule stock was the more abundant fall Chinook salmon subspecies, comprising 85 percent of those captured in the trap.Upriver bright fall Chinook salmon comprised 15 percent of the Chinook salmon catch and generally out-migrated from late May to early June.Coho salmon ( kisutch) and steelhead trout (O. mykiss) were captured by the rotary screw trap in all years. Coho salmon were caught in low numbers (n=661) and 69 percent were age-0 fish. Steelhead were slightly more abundant (n=679) than coho salmon and 84 percent were age-1 or older fish.Trap efficiency estimates varied widely (range, 0-10 percent) by species, fish size, and time of year. However, if we use only the estimates from efficiency tests where more than 300 wild age-0 Chinook salmon were released, there was a mean trapping efficiency of 1.4 percent (n=4, median, 1.3 percent, range, 0.3–2.4 percent) during the tule out-migration period, and a mean trapping efficiency of 0.8 percent (n=2, range, 0.3–1.2 percent) during the upriver bright fall Chinook salmon out-migration period.When water levels in the White Salmon River declined in late summer, we electrofished the river margins in 2006–09 along three sites at rkm 1.5, 2.3, and 4.2. Age-0 steelhead were the most abundant fish captured (n=565, 62 percent), followed by age-0 coho salmon (n=222, 24 percent). In autumn, age-0 Chinook salmon were collected while electrofishing (n=40, 4 percent). This suggests that there may be a migration in the autumn as age-0 Chinook salmon or in the spring as age-1 Chinook salmon, since the Chinook salmon that migrate as age-0 fish in the spring departed several months earlier (the typical life history for fall Chinook salmon). The only age-1 salmonids captured while electrofishing were steelhead (n=84, 9 percent). Fish distribution and abundance will likely change when Condit Dam is removed and anadromous fish gain access to their historical spawning and rearing areas in the White Salmon River. These findings should provide a baseline with which to compare juvenile fish species composition and relative abundance after Condit Dam is removed.

  13. Evaluation of Fish Movements, Migration Patterns, and Population Abundance with Streamwidth PIT Tag Interrogation Systems, Final Report 2002.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zydlewski, Gayle; Winter, Christiane; McClanahan, Dee

    2003-02-01

    Two remote Streamwidth PIT tag Interrogation systems (SPIs) were operated continuously for over one year to test the feasibility of these systems for generating movement, migration, survival and smolt production estimates for salmonids. A total of 1,588 juvenile (< 100 mm FL) naturally produced salmonids (7 coho salmon, 482 cutthroat trout, and 1,099 steelhead) were PIT tagged above the upstream-most SPI (9 sites approximately 1 linear km each) in Fall 2001. Age at tagging for wild caught cutthroat and steelhead was 1 year. SPIs were operating before any PIT tagged fish were released in the creek. Over 390,000 detections weremore » recorded from October 2001 to 31 July 2002. Efficiencies were site dependent, but overall detection efficiency for the creek was 97% with 95% confidence intervals of 91-100%. PIT tag detection efficiency ranged from 55-100% depending on the SPI and varied throughout the year with average efficiencies of 73% and 89%. SPI efficiency of PIT tag detection was not completely dependent on electronics noise levels or environmental conditions. Fish from all tagging locations were detected at the SPIs. Steelhead and cutthroat trout were primarily detected moving in the Spring (April-June) coincident with the anticipated smolt migration. Steelhead were also detected moving past SPIs at lower numbers in the Fall and Winter. Travel time between SPIs (downstream movement) was highly dependent on time of year. Travel time in the Spring was significantly faster (34.4 {+-} 7.0 hours) for all species than during any other time of year (763.1 {+-} 267.0 hours). Steelhead and cutthroat migrating in the Spring were the same age as those that did not migrate in the Spring. Peak of steelhead migration recorded at the two SPIs was 5/11 and 5/12 and the peak in the screw trap was recorded on 5/17. Steelhead smolt production estimates using SPIs (3,802 with 95% confidence intervals of 3,440 - 4,245) was similar to those using more standard screw trap methods (approximately 5,400). All species used the faster moving/deeper section of the creek at both SPIs. A backpack PIT tag detector was also developed and used as another remote 'recapture' for additional accuracy in estimating population survival and recapture probability. This unit was used at an approximate efficiency of 24% to survey the creek after the Spring migration. Twenty-five individual fish were re-located. All PIT tag data were used to calculate survival and recapture probabilities using the Cormack-Jolly-Seber population model. Survival for steelhead was high and recapture probability depended greatly on season. Probability of recapture was highest in Spring (29.5%) and relatively low in all other seasons (< 7% in Fall, Winter, and Summer). Wild steelhead PIT tagged in the field and returned to the laboratory had a tag retention rate of 97.6%. A laboratory study was designed to determine the effects of 3-sized PIT tags (12 mm, 20 mm, and 23 mm) on survival and growth of individuals. Survival from surgical implantation of 23 mm PIT tags was > 98% for fish (coho salmon and steelhead). Retention of 23 mm PIT tags was 100% for coho salmon and 89% for steelhead. For both coho and steelhead, growth rates during the first month were affected by tagging, but by the end of 2 months growth effects equalized for all tag sizes. Life history characteristics quantified with SPI techniques are comparable to standard techniques. For example, peaks of Spring migration for steelhead and cutthroat were amazingly similar to those reported from the screw trap. These techniques will enable application of less laborious methods which are more accurate at estimating life history parameters.« less

  14. Evaluation of Fish Movements, Migration Patterns and Populations Abundance with Streamwidth PIT Tag Interrogation Systems, Final Report 2002.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zydlewski, Gayle B.; Casey, Sean

    2003-02-01

    Two remote Streamwidth PIT tag Interrogation systems (SPIs) were operated continuously for over one year to test the feasibility of these systems for generating movement, migration, survival and smolt production estimates for salmonids. A total of 1,588 juvenile (< 100 mm FL) naturally produced salmonids (7 coho salmon, 482 cutthroat trout, and 1,099 steelhead) were PIT tagged above the upstream-most SPI (9 sites approximately 1 linear km each) in Fall 2001. Age at tagging for wild caught cutthroat and steelhead was 1 year. SPIs were operating before any PIT tagged fish were released in the creek. Over 390,000 detections weremore » recorded from October 2001 to 31 July 2002. Efficiencies were site dependent, but overall detection efficiency for the creek was 97% with 95% confidence intervals of 91-100%. PIT tag detection efficiency ranged from 55-100% depending on the SPI and varied throughout the year with average efficiencies of 73% and 89%. SPI efficiency of PIT tag detection was not completely dependent on electronics noise levels or environmental conditions. Fish from all tagging locations were detected at the SPIs. Steelhead and cutthroat trout were primarily detected moving in the Spring (April-June) coincident with the anticipated smolt migration. Steelhead were also detected moving past SPIs at lower numbers in the Fall and Winter. Travel time between SPIs (downstream movement) was highly dependent on time of year. Travel time in the Spring was significantly faster (34.4 {+-} 7.0 hours) for all species than during any other time of year (763.1 {+-} 267.0 hours). Steelhead and cutthroat migrating in the Spring were the same age as those that did not migrate in the Spring. Peak of steelhead migration recorded at the two SPIs was 5/11 and 5/12 and the peak in the screw trap was recorded on 5/17. Steelhead smolt production estimates using SPIs (3,802 with 95% confidence intervals of 3,440-4,245) was similar to those using more standard screw trap methods (approximately 5,400). All species used the faster moving/deeper section of the creek at both SPIs. A backpack PIT tag detector was also developed and used as another remote ''recapture'' for additional accuracy in estimating population survival and recapture probability. This unit was used at an approximate efficiency of 24% to survey the creek after the Spring migration. Twenty-five individual fish were re-located. All PIT tag data were used to calculate survival and recapture probabilities using the Cormack-Jolly-Seber population model. Survival for steelhead was high and recapture probability depended greatly on season. Probability of recapture was highest in Spring (29.5%) and relatively low in all other seasons (< 7% in Fall, Winter, and Summer). Wild steelhead PIT tagged in the field and returned to the laboratory had a tag retention rate of 97.6%. A laboratory study was designed to determine the effects of 3-sized PIT tags (12 mm, 20 mm, and 23 mm) on survival and growth of individuals. Survival from surgical implantation of 23 mm PIT tags was > 98% for fish (coho salmon and steelhead). Retention of 23 mm PIT tags was 100% for coho salmon and 89% for steelhead. For both coho and steelhead, growth rates during the first month were affected by tagging, but by the end of 2 months growth effects equalized for all tag sizes. Life history characteristics quantified with SPI techniques are comparable to standard techniques. For example, peaks of Spring migration for steelhead and cutthroat were amazingly similar to those reported from the screw trap. These techniques will enable application of less laborious methods which are more accurate at estimating life history parameters.« less

  15. Consequences of high temperatures and premature mortality on the transcriptome and blood physiology of wild adult sockeye salmon (Oncorhynchus nerka)

    PubMed Central

    Jeffries, Ken M; Hinch, Scott G; Sierocinski, Thomas; Clark, Timothy D; Eliason, Erika J; Donaldson, Michael R; Li, Shaorong; Pavlidis, Paul; Miller, Kristi M

    2012-01-01

    Elevated river water temperature in the Fraser River, British Columbia, Canada, has been associated with enhanced mortality of adult sockeye salmon (Oncorhynchus nerka) during their upriver migration to spawning grounds. We undertook a study to assess the effects of elevated water temperatures on the gill transcriptome and blood plasma variables in wild-caught sockeye salmon. Naturally migrating sockeye salmon returning to the Fraser River were collected and held at ecologically relevant temperatures of 14°C and 19°C for seven days, a period representing a significant portion of their upstream migration. After seven days, sockeye salmon held at 19°C stimulated heat shock response genes as well as many genes associated with an immune response when compared with fish held at 14°C. Additionally, fish at 19°C had elevated plasma chloride and lactate, suggestive of a disturbance in osmoregulatory homeostasis and a stress response detectable in the blood plasma. Fish that died prematurely over the course of the holding study were compared with time-matched surviving fish; the former fish were characterized by an upregulation of several transcription factors associated with apoptosis and downregulation of genes involved in immune function and antioxidant activity. Ornithine decarboxylase (ODC1) was the most significantly upregulated gene in dying salmon, which suggests an association with cellular apoptosis. We hypothesize that the observed decrease in plasma ions and increases in plasma cortisol that occur in dying fish may be linked to the increase in ODC1. By highlighting these underlying physiological mechanisms, this study enhances our understanding of the processes involved in premature mortality and temperature stress in Pacific salmon during migration to spawning grounds. PMID:22957178

  16. Consequences of high temperatures and premature mortality on the transcriptome and blood physiology of wild adult sockeye salmon (Oncorhynchus nerka).

    PubMed

    Jeffries, Ken M; Hinch, Scott G; Sierocinski, Thomas; Clark, Timothy D; Eliason, Erika J; Donaldson, Michael R; Li, Shaorong; Pavlidis, Paul; Miller, Kristi M

    2012-07-01

    Elevated river water temperature in the Fraser River, British Columbia, Canada, has been associated with enhanced mortality of adult sockeye salmon (Oncorhynchus nerka) during their upriver migration to spawning grounds. We undertook a study to assess the effects of elevated water temperatures on the gill transcriptome and blood plasma variables in wild-caught sockeye salmon. Naturally migrating sockeye salmon returning to the Fraser River were collected and held at ecologically relevant temperatures of 14°C and 19°C for seven days, a period representing a significant portion of their upstream migration. After seven days, sockeye salmon held at 19°C stimulated heat shock response genes as well as many genes associated with an immune response when compared with fish held at 14°C. Additionally, fish at 19°C had elevated plasma chloride and lactate, suggestive of a disturbance in osmoregulatory homeostasis and a stress response detectable in the blood plasma. Fish that died prematurely over the course of the holding study were compared with time-matched surviving fish; the former fish were characterized by an upregulation of several transcription factors associated with apoptosis and downregulation of genes involved in immune function and antioxidant activity. Ornithine decarboxylase (ODC1) was the most significantly upregulated gene in dying salmon, which suggests an association with cellular apoptosis. We hypothesize that the observed decrease in plasma ions and increases in plasma cortisol that occur in dying fish may be linked to the increase in ODC1. By highlighting these underlying physiological mechanisms, this study enhances our understanding of the processes involved in premature mortality and temperature stress in Pacific salmon during migration to spawning grounds.

  17. To boldly go: individual differences in boldness influence migratory tendency.

    PubMed

    Chapman, Ben B; Hulthén, Kaj; Blomqvist, David R; Hansson, Lars-Anders; Nilsson, Jan-Åke; Brodersen, Jakob; Anders Nilsson, P; Skov, Christian; Brönmark, Christer

    2011-09-01

    Partial migration, whereby only a fraction of the population migrates, is thought to be the most common type of migration in the animal kingdom, and can have important ecological and evolutionary consequences. Despite this, the factors that influence which individuals migrate and which remain resident are poorly understood. Recent work has shown that consistent individual differences in personality traits in animals can be ecologically important, but field studies integrating personality traits with migratory behaviour are extremely rare. In this study, we investigate the influence of individual boldness, an important personality trait, upon the migratory propensity of roach, a freshwater fish, over two consecutive migration seasons. We assay and individually tag 460 roach and show that boldness influences migratory propensity, with bold individuals being more likely to migrate than shy fish. Our data suggest that an extremely widespread personality trait in animals can have significant ecological consequences via influencing individual-level migratory behaviour. © 2011 Blackwell Publishing Ltd/CNRS.

  18. Corresponding long-term shifts in stream temperature and invasive fish migration

    USGS Publications Warehouse

    McCann, Erin L.; Johnson, Nicholas; Pangle, Kevin

    2018-01-01

    By investigating historic trapping records of invasive sea lamprey (Petromyzon marinus) throughout tributaries to the Laurentian Great Lakes, we found that upstream spawning migration timing was highly correlated with stream temperatures over large spatial and temporal scales. Furthermore, several streams in our study exceeded a critical spring thermal threshold (i.e., 15°C) and experienced peak spawning migration up to 30 days earlier since the 1980s, whereas others were relatively unchanged. Streams exhibiting warming trends and earlier migration were spatially clustered and generally found on the leeward side of the Great Lakes where the lakes most affect local climate. These findings highlight that all streams are not equally impacted by climate change and represent, to our knowledge, the first observation linking long-term changes in stream temperatures to shifts in migration timing of an invasive fish. Earlier sea lamprey migration in Great Lakes tributaries may improve young of the year growth and survival, but not limit their spatial distribution, making sea lamprey control more challenging.

  19. Linking habitat mosaics and connectivity in a coral reef seascape.

    PubMed

    McMahon, Kelton W; Berumen, Michael L; Thorrold, Simon R

    2012-09-18

    Tropical marine ecosystems are under mounting anthropogenic pressure from overfishing and habitat destruction, leading to declines in their structure and function on a global scale. Although maintaining connectivity among habitats within a seascape is necessary for preserving population resistance and resilience, quantifying movements of individuals within seascapes remains challenging. Traditional methods of identifying and valuing potential coral reef fish nursery habitats are indirect, often relying on visual surveys of abundance and correlations of size and biomass among habitats. We used compound-specific stable isotope analyses to determine movement patterns of commercially important fish populations within a coral reef seascape. This approach allowed us to quantify the relative contributions of individuals from inshore nurseries to reef populations and identify migration corridors among important habitats. Our results provided direct measurements of remarkable migrations by juvenile snapper of over 30 km, between nurseries and reefs. We also found significant plasticity in juvenile nursery residency. Although a majority of individuals on coastal reefs had used seagrass nurseries as juveniles, many adults on oceanic reefs had settled directly into reef habitats. Moreover, seascape configuration played a critical but heretofore unrecognized role in determining connectivity among habitats. Finally, our approach provides key quantitative data necessary to estimate the value of distinctive habitats to ecosystem services provided by seascapes.

  20. Stocks and seasonal migrations of the flounder Xystreurys rasile as indicated by its parasites.

    PubMed

    Alarcos, A J; Timi, J T

    2013-09-01

    The aims of this study were (1) to compare the structure and composition of parasite assemblages of the flounder Xystreurys rasile in two regions of the Argentine Sea in order to evaluate the hypothesis for the existence of different stocks, and (2) to test the hypothesis for X. rasile migration from the Argentine-Uruguayan Common Fishing Zone (AUCFZ) towards more southern waters during spring. Parasitological evidence shows that at least two stocks of X. rasile inhabit the coastal and shelf waters of the northern Argentine Sea, one in El Rincón and the other in the AUCFZ. These stocks should be considered as discrete entities in management plans to ensure a sustainable use of these resources. The results also confirm the existence of migratory patterns in the northern stock. © 2013 The Fisheries Society of the British Isles.

  1. Adult Pacific Lamprey Migration in the Lower Columbia River: 2011 Half-Duplex Pit Tag Studies

    DTIC Science & Technology

    2012-01-01

    Technical Report 2012-3 IDAHO COOPERATIVE FISH AND WILDLIFE RESEARCH UNIT...Keefer, C. C. Caudill, E. L. Johnson, T. S. Clabough, M. A. Jepson, C. T. Boggs Department of Fish and Wildlife Sciences and Idaho Cooperative Fish ...NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) University of Idaho,Department of Fish and Wildlife Sciences,Idaho Cooperative Fish and

  2. Fatty acid composition indicating diverse habitat use in coral reef fishes in the Malaysian South China Sea.

    PubMed

    Arai, Takaomi; Amalina, Razikin; Bachok, Zainudin

    2015-02-22

    In order to understand feeding ecology and habitat use of coral reef fish, fatty acid composition was examined in five coral reef fishes, Thalassoma lunare, Lutjanus lutjanus, Abudefduf bengalensis, Scarus rivulatus and Scolopsis affinis collected in the Bidong Island of Malaysian South China Sea. Proportions of saturated fatty acids (SAFA) ranged 57.2% 74.2%, with the highest proportions in fatty acids, the second highest was monounsaturated fatty acids (MUFA) ranged from 21.4% to 39.0% and the proportion of polyunsaturated fatty acids (PUFA) was the lowest ranged from 2.8% to 14.1%. Each fatty acid composition differed among fishes, suggesting diverse feeding ecology, habitat use and migration during the fishes' life history in the coral reef habitats. Diets of the coral fish species might vary among species in spite of that each species are living sympatrically. Differences in fatty acid profiles might not just be considered with respect to the diets, but might be based on the habitat and migration.

  3. Dead fish swimming: a review of research on the early migration and high premature mortality in adult Fraser River sockeye salmon Oncorhynchus nerka.

    PubMed

    Hinch, S G; Cooke, S J; Farrell, A P; Miller, K M; Lapointe, M; Patterson, D A

    2012-07-01

    Adult sockeye salmon Oncorhynchus nerka destined for the Fraser River, British Columbia are some of the most economically important populations but changes in the timing of their homeward migration have led to management challenges and conservation concerns. After a directed migration from the open ocean to the coast, this group historically would mill just off shore for 3-6 weeks prior to migrating up the Fraser River. This milling behaviour changed abruptly in 1995 and thereafter, decreasing to only a few days in some years (termed early migration), with dramatic consequences that have necessitated risk-averse management strategies. Early migrating fish consistently suffer extremely high mortality (exceeding 90% in some years) during freshwater migration and on spawning grounds prior to spawning. This synthesis examines multidisciplinary, collaborative research aimed at understanding what triggers early migration, why it results in high mortality, and how fisheries managers can utilize these scientific results. Tissue analyses from thousands of O. nerka captured along their migration trajectory from ocean to spawning grounds, including hundreds that were tracked with biotelemetry, have revealed that early migrants are more reproductively advanced and ill-prepared for osmoregulatory transition upon their entry into fresh water. Gene array profiles indicate that many early migrants are also immunocompromised and stressed, carrying a genomic profile consistent with a viral infection. The causes of these physiological changes are still under investigation. Early migration brings O. nerka into the river when it is 3-6° C warmer than historical norms, which for some late-run populations approaches or exceeds their critical maxima leading to the collapse of metabolic and cardiac scope, and mortality. As peak spawning dates have not changed, the surviving early migrants tend to mill in warm lakes near to spawning areas. These results in the accumulation of many more thermal units and longer exposures to freshwater diseases and parasites compared to fish that delay freshwater entry by milling in the cool ocean environment. Experiments have confirmed that thermally driven processes are a primary cause of mortality for early-entry migrants. The Fraser River late-run O. nerka early migration phenomenon illustrates the complex links that exist between salmonid physiology, behaviour and environment and the pivotal role that water temperature can have on population-specific migration survival. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  4. Tangential migratory pathways of subpallial origin in the embryonic telencephalon of sharks: evolutionary implications.

    PubMed

    Quintana-Urzainqui, Idoia; Rodríguez-Moldes, Isabel; Mazan, Sylvie; Candal, Eva

    2015-09-01

    Tangential neuronal migration occurs along different axes from the axis demarcated by radial glia and it is thought to have evolved as a mechanism to increase the diversity of cell types in brain areas, which in turn resulted in increased complexity of functional networks. In the telencephalon of amniotes, different embryonic tangential pathways have been characterized. However, little is known about the exact routes of migrations in basal vertebrates. Cartilaginous fishes occupy a key phylogenetic position to assess the ancestral condition of vertebrate brain organization. In order to identify putative subpallial-derived tangential migratory pathways in the telencephalon of sharks, we performed a detailed analysis of the distribution pattern of GAD and Dlx2, two reliable markers of tangentially migrating interneurons of subpallial origin in the developing forebrain. We propose the existence of five tangential routes directed toward different telencephalic regions. We conclude that four of the five routes might have emerged in the common ancestor of jawed vertebrates. We have paid special attention to the characterization of the proposed migratory pathway directed towards the olfactory bulbs. Our results suggest that it may be equivalent to the "rostral migratory stream" of mammals and led us to propose a hypothesis about its evolution. The analysis of the final destinations of two other streams allowed us to identify the putative dorsal and medial pallium of sharks, the regions from which the neocortex and hippocampus might have, respectively, evolved. Derived features were also reported and served to explain some distinctive traits in the morphology of the telencephalon of cartilaginous fishes.

  5. Impacts of hypoxia on the structure and processes in the pelagic community (zooplankton, macro-invertebrates and fish)

    NASA Astrophysics Data System (ADS)

    Ekau, W.; Auel, H.; Pörtner, H.-O.; Gilbert, D.

    2009-05-01

    Dissolved oxygen (DO) concentration in the water column is an environmental parameter that is crucial for the successful development of many pelagic organisms. Hypoxia tolerance and threshold values are species- and stage-specific and can vary enormously. While some fish species may suffer from oxygen values of less than 3 ml L-1 and show impact on growth, development and behaviour, other organisms such as euphausiids may survive DO levels as low as 0.1 ml L-1. A change in the average or the minimum or maximum DO in an area may have significant impacts on the survival of certain species and hence on the species composition in the ecosystem with consequent changes in trophic pathways and productivity. Evidence of the deleterious effects of oxygen depletion on species of the pelagic realm is scarce, particularly in terms of the effect of low oxygen on development, recruitment and patterns of migration and distribution. While planktonic organisms have to cope with different DOs and find adaptive mechanisms, nektonic species may avoid areas of inconvenient DO and develop adapted migrational strategies. Planktonic organisms may only be able to escape vertically, above or beneath the Oxygen Minimum Zone (OMZ). In shallow areas only the surface layer can serve as a refuge, in deep waters many organisms have developed vertical migration strategies to use, pass and cope with the OMZ. This paper elucidates the role of DO for different taxa in the pelagic realm and the consequences of low oxygen for foodweb structure and system productivity.

  6. Otolith research for Puget Sound

    USGS Publications Warehouse

    Larsen, K.; Reisenbichler, R.

    2007-01-01

    Otoliths are hard structures located in the brain cavity of fish. These structures are formed by a buildup of calcium carbonate within a gelatinous matrix that produces light and dark bands similar to the growth rings in trees. The width of the bands corresponds to environmental factors such as temperature and food availability. As juvenile salmon encounter different environments in their migration to sea, they produce growth increments of varying widths and visible 'checks' corresponding to times of stress or change. The resulting pattern of band variations and check marks leave a record of fish growth and residence time in each habitat type. This information helps Puget Sound restoration by determining the importance of different habitats for the optimal health and management of different salmon populations. The USGS Western Fisheries Research Center (WFRC) provides otolith research findings directly to resource managers who put this information to work.

  7. Distribution and movement of humpback chub in the Colorado River, Grand Canyon, based on recaptures

    USGS Publications Warehouse

    Paukert, C.P.; Coggins, L.G.; Flaccus, C.E.

    2006-01-01

    Mark-recapture data from the federally endangered humpback chub Gila cypha in the Colorado River, Grand Canyon, were analyzed from 1989 to 2002 to determine large-scale movement patterns and distribution. A total of 14,674 recaptures from 7,127 unique fish were documented; 87% of the recaptures occurred in the same main-stem river reach or tributary as the original captures, suggesting restricted distribution by most fish. A total of 99% of all recaptures were from in and around the Little Colorado River (LCR), a tributary of the Colorado River and primary aggregation and spawning location of humpback chub in Grand Canyon. Time at liberty averaged 394 d, but some fish were recaptured near their main-stem capture location over 10 years later. Proportionally fewer large (>300-mm) humpback chub exhibited restricted distribution than small (<200-mm) fish. However, several fish did move more than 154 km throughout Grand Canyon between capture and recapture, suggesting that limited movement occurs throughout Grand Canyon. The majority of the recaptured fish remained in or returned to the LCR or the Colorado River near the LCR. Although many large-river fishes exhibit extensive migrations to fulfill their life history requirements, most of the humpback chub in Grand Canyon appear to remain in or come back to the LCR and LCR confluence across multiple sizes and time scales. Detecting trends in the overall abundance of this endangered fish in Grand Canyon can probably be accomplished by monitoring the area in and around the LCR.

  8. Sea lice and salmon population dynamics: effects of exposure time for migratory fish.

    PubMed

    Krkosek, Martin; Morton, Alexandra; Volpe, John P; Lewis, Mark A

    2009-08-07

    The ecological impact of parasite transmission from fish farms is probably mediated by the migration of wild fishes, which determines the period of exposure to parasites. For Pacific salmon and the parasitic sea louse, Lepeophtheirus salmonis, analysis of the exposure period may resolve conflicting observations of epizootic mortality in field studies and parasite rejection in experiments. This is because exposure periods can differ by 2-3 orders of magnitude, ranging from months in the field to hours in experiments. We developed a mathematical model of salmon-louse population dynamics, parametrized by a study that monitored naturally infected juvenile salmon held in ocean enclosures. Analysis of replicated trials indicates that lice suffer high mortality, particularly during pre-adult stages. The model suggests louse populations rapidly decline following brief exposure of juvenile salmon, similar to laboratory study designs and data. However, when the exposure period lasts for several weeks, as occurs when juvenile salmon migrate past salmon farms, the model predicts that lice accumulate to abundances that can elevate salmon mortality and depress salmon populations. The duration of parasite exposure is probably critical to salmon-louse population dynamics, and should therefore be accommodated in coastal planning and management where fish farms are situated on wild fish migration routes.

  9. Movements of yellow perch marked in southern Green Bay, Lake Michigan, in 1950

    USGS Publications Warehouse

    Mraz, Donald

    1952-01-01

    These investigations have demonstrated that for studying migration of yellow perch, tagging is superior to fin-clipping as a method of marking. The technique of the tagging, however, needs to be improved, and better means must be found to trace tagged fish of small size. Furthermore certain small regions in the bay not at present open to commercial fishing must be explored in order to obtain more comprehensive information as to migration.

  10. Migration patterns of post-spawning Pacific herring in a subarctic sound

    NASA Astrophysics Data System (ADS)

    Bishop, Mary Anne; Eiler, John H.

    2018-01-01

    Understanding the distribution of Pacific herring (Clupea pallasii) can be challenging because spawning, feeding and overwintering may take place in different areas separated by 1000s of kilometers. Along the northern Gulf of Alaska, Pacific herring movements after spring spawning are largely unknown. During the fall and spring, herring have been seen moving from the Gulf of Alaska into Prince William Sound, a large embayment, suggesting that fish spawning in the Sound migrate out into the Gulf of Alaska. We acoustic-tagged 69 adult herring on spawning grounds in Prince William Sound during April 2013 to determine seasonal migratory patterns. We monitored departures from the spawning grounds as well as herring arrivals and movements between the major entrances connecting Prince William Sound and the Gulf of Alaska. Departures of herring from the spawning grounds coincided with cessation of major spawning events in the immediate area. After spawning, 43 of 69 tagged herring (62%) moved to the entrances of Prince William Sound over a span of 104 d, although most fish arrived within 10 d of their departure from the spawning grounds. A large proportion remained in these areas until mid-June, most likely foraging on the seasonal bloom of large, Neocalanus copepods. Pulses of tagged herring detected during September and October at Montague Strait suggest that some herring returned from the Gulf of Alaska. Intermittent detections at Montague Strait and the Port Bainbridge passages from September through early January (when the transmitters expired) indicate that herring schools are highly mobile and are overwintering in this area. The pattern of detections at the entrances to Prince William Sound suggest that some herring remain in the Gulf of Alaska until late winter. The results of this study confirm the connectivity between local herring stocks in Prince William Sound and the Gulf of Alaska.

  11. Impacts of an underwater high voltage DC power cable on fish migration movements in the San Francisco Bay.

    NASA Astrophysics Data System (ADS)

    Wyman, M. T.; Kavet, R.; Klimley, A. P.

    2016-02-01

    There is an increasingly strong interest on a global scale in offshore renewable energy production and transportation. However, there is concern that the electromagnetic fields (EMF) produced by these underwater cables may alter the behavior and physiology of marine species. Despite this concern, few studies have investigated these effects in free-living species. In 2009, a 85 km long high-voltage DC (HVDC) power cable was placed within the San Francisco Bay, running parallel, then perpendicular to, the migration route of anadromous species moving from the inland river system to the oceans. In this study, we assess the impacts of this HVDC cable on the migration behaviors of EMF-sensitive fish, including juvenile salmonids (Chinook salmon, Oncorhynchus tshawytscha, and steelhead trout, Oncorhynchus mykiss) and adult green sturgeon, Acipenser medirostris. Acoustic telemetry techniques were used to track fish migration movements through the San Francisco Bay both before and after the cable was activated; individuals implanted with acoustic transmitters were detected on cross-channel hydrophone arrays at key locations in the system. Magnetic fields were surveyed and mapped at these locations using a transverse gradiometer, and models of the cable's magnetic field were developed that closely matched the empirically measured values. Here, we present our analyses on the relationships between migration-related behavioral metrics (e.g., percent of successful migrations, duration of migration, time spent near vs. far from cable location, etc.) and environmental parameters, such as cable activation and load level, local magnetic field levels, depth, and currents.

  12. Diverse Early Life-History Strategies in Migratory Amazonian Catfish: Implications for Conservation and Management.

    PubMed

    Hegg, Jens C; Giarrizzo, Tommaso; Kennedy, Brian P

    2015-01-01

    Animal migrations provide important ecological functions and can allow for increased biodiversity through habitat and niche diversification. However, aquatic migrations in general, and those of the world's largest fish in particular, are imperiled worldwide and are often poorly understood. Several species of large Amazonian catfish carry out some of the longest freshwater fish migrations in the world, travelling from the Amazon River estuary to the Andes foothills. These species are important apex predators in the main stem rivers of the Amazon Basin and make up the region's largest fishery. They are also the only species to utilize the entire Amazon Basin to complete their life cycle. Studies indicate both that the fisheries may be declining due to overfishing, and that the proposed and completed dams in their upstream range threaten spawning migrations. Despite this, surprisingly little is known about the details of these species' migrations, or their life history. Otolith microchemistry has been an effective method for quantifying and reconstructing fish migrations worldwide across multiple spatial scales and may provide a powerful tool to understand the movements of Amazonian migratory catfish. Our objective was to describe the migratory behaviors of the three most populous and commercially important migratory catfish species, Dourada (Brachyplatystoma rousseauxii), Piramutaba (Brachyplatystoma vaillantii), and Piraíba (Brachyplatystoma filamentosum). We collected fish from the mouth of the Amazon River and the Central Amazon and used strontium isotope signatures ((87)Sr/(86)Sr) recorded in their otoliths to determine the location of early rearing and subsequent. Fish location was determined through discriminant function classification, using water chemistry data from the literature as a training set. Where water chemistry data was unavailable, we successfully in predicted (87)Sr/(86)Sr isotope values using a regression-based approach that related the geology of the upstream watershed to the Sr isotope ratio. Our results provide the first reported otolith microchemical reconstruction of Brachyplatystoma migratory movements in the Amazon Basin. Our results indicate that juveniles exhibit diverse rearing strategies, rearing in both upstream and estuary environments. This contrasts with the prevailing understanding that juveniles rear in the estuary before migrating upstream; however, it is supported by some fisheries data that has indicated the presence of alternate spawning and rearing life-histories. The presence of alternate juvenile rearing strategies may have important implications for conservation and management of the fisheries in the region.

  13. Monitoring of Downstream Salmon and Steelhead at Federal Hydroelectric Facilities, 1990 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawkes, Lynette A.

    1991-03-01

    The seaward migration of salmonid smolts was monitored by the National Marine Fisheries Service (NMFS) at three sites on the Columbia River system in 1990. This project is a part of the continuing Smolt Monitoring Program to monitor Columbia Basin salmonid stocks coordinated by the Fish Passage Center (FPC) for the Columbia Basin Fish and Wildlife Agencies and Indian Tribes. It's purpose is to provide timely data to the Fish Passage Managers for in season flow and spill management for fish passage and post-season analysis for travel time, relative magnitude and timing and the smolt migration. This program is carriedmore » out under the auspices of the Northwest Power Planning Council Fish and Wildlife Program and is funded by the Bonneville Power Administration (BPA). Sampling sites were John Day and Bonneville Dams under the Smolt Monitoring program, and the Dallas Dam under the Fish Spill Memorandum of Agreement'' for 1990. All pertinent fish capture, condition and brand data, as well as dam operations and river flow data were reported daily to FPC. These data were incorporated into the FPC Fish Passage Data Information System (FPDIS). 10 refs., 8 figs., 1 tab.« less

  14. Advances of FishNet towards a fully automatic monitoring system for fish migration

    NASA Astrophysics Data System (ADS)

    Kratzert, Frederik; Mader, Helmut

    2017-04-01

    Restoring the continuum of river networks, affected by anthropogenic constructions, is one of the main objectives of the Water Framework Directive. Regarding fish migration, fish passes are a widely used measure. Often the functionality of these fish passes needs to be assessed by monitoring. Over the last years, we developed a new semi-automatic monitoring system (FishCam) which allows the contact free observation of fish migration in fish passes through videos. The system consists of a detection tunnel, equipped with a camera, a motion sensor and artificial light sources, as well as a software (FishNet), which helps to analyze the video data. In its latest version, the software is capable of detecting and tracking objects in the videos as well as classifying them into "fish" and "no-fish" objects. This allows filtering out the videos containing at least one fish (approx. 5 % of all grabbed videos) and reduces the manual labor to the analysis of these videos. In this state the entire system has already been used in over 20 different fish passes across Austria for a total of over 140 months of monitoring resulting in more than 1.4 million analyzed videos. As a next step towards a fully automatic monitoring system, a key feature is the automatized classification of the detected fish into their species, which is still an unsolved task in a fully automatic monitoring environment. Recent advances in the field of machine learning, especially image classification with deep convolutional neural networks, sound promising in order to solve this problem. In this study, different approaches for the fish species classification are tested. Besides an image-only based classification approach using deep convolutional neural networks, various methods that combine the power of convolutional neural networks as image descriptors with additional features, such as the fish length and the time of appearance, are explored. To facilitate the development and testing phase of this approach, a subset of six fish species of Austrian rivers and streams is considered in this study. All scripts and the data to reproduce the results of this study will be made publicly available on GitHub* at the beginning of the EGU2017 General Assembly. * https://github.com/kratzert/EGU2017_public/

  15. [New view on the population genetic structure of marine fish].

    PubMed

    Salmenkova, E A

    2011-11-01

    The view on homogeneous population genetic structure in many marine fish with high mobility has changed significantly during the last ten years. Molecular genetic population studies over the whole ranges of such species as Atlantic herring and Atlantic cod showed a complex picture of spatial differentiation both on the macrogeographic and, in many areas, on the microgeographic scale, although the differentiation for neutral molecular markers was low. It was established that the migration activity of such fish is constrained in many areas of the species range by hydrological and physicochemical transition zones (environmental gradients), as well as gyres in the spawning regions. Natal homing was recorded in a number of marine fish species. Existing in marine fish constraints of gene migration and a very high variance of reproductive success determine a significantly smaller proportion of effective reproductive size of their populations in the total population size, which generates more complex abundance dynamics than assumed earlier. The various constraints on gene migration and natal homing in marine fish promote the formation of local adaptations at ecologically important phenotypic traits. Effects of selection underlying adaptations are actively investigated in marine fish on the genomic level, using approaches of population genomics. The knowledge of adaptive intraspecific structure enables understanding the ecological and evolutionary processes, that influence biodiversity and providing spatial frames for conservation of genetic resources under commercial exploitation. Contemporary views on the population genetic and adaptive structures or biocomplexity in marine fish support and develop the main principles of the conception of systemic organization of the species and its regional populations, which were advanced by Yu.P. Altukhov and Yu.G. Rychkov.

  16. St. Louis River fish migrations: Gains and losses of ecosystem services

    EPA Science Inventory

    The Twin Ports fishery has undergone change from a migratory fish-based fishery to a Lake Superior-based fishery, and is now returning to a diverse fishery that includes fish of both life histories. These changes reflect past disturbances to the Great Lakes ecosystem as well as r...

  17. Variation in the diel vertical distributions of larvae and transforming stages of oceanic fishes across the tropical and equatorial Atlantic

    NASA Astrophysics Data System (ADS)

    Olivar, M. Pilar; Contreras, Tabit; Hulley, P. Alexander; Emelianov, Mikhail; López-Pérez, Cristina; Tuset, Víctor; Castellón, Arturo

    2018-01-01

    The vertical distributions of early developmental stages of oceanic fishes were investigated across the tropical and equatorial Atlantic, from oligotrophic waters close to the Brazilian coast to more productive waters close to the Mauritanian Upwelling Region. Stratification of the water column was observed throughout the study region. Fishes were caught with a MOCNESS-1 net with mouth area of 1 m2 at 11 stations. Each station was sampled both during the day and at night within a single 24-h period. The investigation covered both larvae and transforming stages from the surface to 800 m depth. Distribution patterns were analysed, and weighted mean depths for the larvae and transforming stages of each species were calculated for day and night conditions. Forty-seven different species were found. The highest number of species occurred in the three stations south of Cape Verde Islands, characterized by a mixture of South Atlantic Central Water (SACW) and Eastern North Atlantic Central Water (ENACW). There was a marked drop in species richness in the three stations closer to the African upwelling, dominated by ENACW. The highest abundances occurred in the families Myctophidae, Sternoptychidae, Gonostomatidae and Phosichthyidae. Day and night vertical distributions of larvae and transforming stages showed contrasting patterns, both in the depths of the main concentration layers in the water column, and in the diel migration patterns (where these were observed). Larvae generally showed a preference for the upper mixed layer (ca. 0-50 m) and upper thermocline (ca. 50-100 m), except for sternoptychids, which were also abundant in the lower thermocline layer (100-200 m) and even extended into the mesopelagic zone (down to 500 m). Transforming stages showed a more widespread distribution, with main concentrations in the mesopelagic zone (200-800 m). Larvae showed peak concentrations in the more illuminated and zooplankton-rich upper mixed layers during the day and a wider distribution through the upper 100 m during the night. For most species, transforming stages were concentrated in the mesopelagic layers both day and night, although in some species (Diaphus cf. vanhoeffeni and Vinciguerria nimbaria), the transforming stages displayed vertical migration into the upper 100 m at night, in a manner similar to their adult stages.

  18. Migration and spawning of radio-tagged zulega Prochilodus argenteus in a dammed Brazilian river

    USGS Publications Warehouse

    Godinho, Alexandre L.; Kynard, B.

    2006-01-01

    It is difficult for agencies to evaluate the impacts of the many planned dams on Sa??o Francisco River, Brazil, migratory fishes because fish migrations are poorly known. We conducted a study on zulega Prochilodus argenteus, an important commercial and recreational fish in the Sa??o Francisco River, to identify migrations and spawning areas and to determine linear home range. During two spawning seasons (2001-2003), we radio-tagged fish in three main-stem reaches downstream of Tre??s Marias Dam (TMD), located at river kilometer (rkm) 2,109. We tagged 10 fish at Tre??s Marias (TM), which is 5 km downstream of TMD; 12 fish at Pontal, which is 28 km downstream of TMD and which includes the mouth of the Abaete?? River, and 10 fish at Cilga, which is 45 km downstream of TMD. Late-stage (ripe) adults tagged in each area during the spawning season remained at or near the tagging site, except for four Cilga fish that went to Pontal and probably spawned. The Pontal area at the Abaete?? River mouth was the most important spawning site we found. Prespawning fish moved back and forth between main-stem staging areas upstream of the Abaete?? River mouth and Pontal for short visits. These multiple visits were probably needed as ripe fish waited for spawning cues from a flooding Abaete?? River. Some fish homed to prespaw ning staging areas, spawning areas, and nonspawning areas. The migratory style of zulega was dualistic, with resident and migratory fish. Total linear home range was also dualistic, with small (<26-km) and large (53-127-km) ranges. The locations of spawning areas and home ranges suggest that the Pontal group (which includes Cilga fish) is one population that occupies about 110 km. The Pontal population overlaps a short distance with a population located downstream of Cilga. Movements of late-stage TM adults suggest that the TM group is a separate population, possibly with connections to populations upstream of TMD. ?? Copyright by the American Fisheries Society 2006.

  19. Anguilla rostrata glass eel migration and recruitment in the estuary and Gulf of St Lawrence.

    PubMed

    Dutil, J-D; Dumont, P; Cairns, D K; Galbraith, P S; Verreault, G; Castonguay, M; Proulx, S

    2009-06-01

    This study describes catches of Anguilla rostrata glass eels and associated oceanographic conditions in the St Lawrence Estuary and Gulf. Ichthyoplankton survey data suggest that they enter the Gulf primarily in May, migrate at the surface at night, and disperse broadly once they have passed Cabot Strait. They arrive in estuaries beginning at about mid-June and through the month of July. Migration extends west up to Québec City, in the freshwater zone of the St Lawrence Estuary, 1000 km west of Cabot Strait. Anguilla rostrata glass eels travel between Cabot Strait and receiving estuaries at a straight-line ground speed of c. 10-15 km day(-1). Catches of fish per unit effort in estuaries in the St Lawrence system are much lower than those reported for the Atlantic coast of Canada. Low abundance of A. rostrata glass eels in the St Lawrence system may be due to cold surface temperatures during the migration period which decrease swimming capacity, long distances from the spawning ground to Cabot Strait and from Cabot Strait to the destination waters (especially the St Lawrence River), complex circulation patterns, and hypoxic conditions in bottom waters of the Laurentian Channel and the St Lawrence Estuary.

  20. Mesopelagic fishes across the tropical and equatorial Atlantic: Biogeographical and vertical patterns

    NASA Astrophysics Data System (ADS)

    Olivar, M. Pilar; Hulley, P. Alexander; Castellón, Arturo; Emelianov, Mikhail; López, Cristina; Tuset, Víctor M.; Contreras, Tabit; Molí, Balbina

    2017-02-01

    In this investigation we analysed the changes in fish species occurrences and relative abundances across the tropical and equatorial Atlantic, and their vertical distribution patterns in relation to the different environmental scenarios. The study covers a wide region encompassing different water masses, and marked differences in productivity, from an oligotrophic zone close to the Brazilian coast, to a very productive upwelling region close to the Northwest African upwelling. Fishes were collected with a medium-sized midwater trawl (Mesopelagos), complemented by hauls made with a macrozooplankton net (MOCNESS). Species richness in the region was higher than in subtropical, temperate and cold regions. The total number of species and their overall abundance was lower in the stations closer to the Brazilian coast. Abundant species across the entire region were the gonostomatids Cyclothone alba, Cyclothone acclinidens, Cyclothone pallida and Cyclothone pseudopallida, the myctophid Lampanyctus alatus, the sternoptychid Sternoptyx diaphana, and the phosichthyid Vinciguerria nimbaria. The occurrences and abundances of C. parapallida, Lampanyctus nobilis and Lepidophanes guentheri were related to zones where AAIW waters occupied the mesopelagic layers, while other species such as Cyclothone livida and Polyipnus polli increased their abundance when AAIW disappears from their living depths. The presence of Eastern North Atlantic Central Water (ENACW) was associated with the occurrence of several myctophids (Benthosema glaciale, Ceratoscopelus maderensis, Diaphus holti, Diaphus rafinesquii, Hygophum hygomii, Lampanyctus crocodilus, Myctophum punctatum, Symbolophorus veranyi), and the gonostomatid Cyclothone braueri. In spite of the important differences in hydrographic features across the tropical and equatorial Atlantic, all stations showed either the general night migration into the epipelagic layers carried out by myctophids, phosicthyids, and some stomiids, or the presence of the several species of Cyclothone, sternoptychids and melamphaeids that remain in the mesopelagic layers, both day and night. The oxygen minimum zone (OMZ) at mesopelagic depths in the north-eastern sector does not seem to disrupt diel vertical migration. Day-night distributions in our study proved that mesopelagic migratory species are capable of crossing these wide hypoxic layers, and that some species such as Diaphus vanhoeffeni remain in these layers during the day. Other non-migratory fishes (Cyclothone spp. and S. diaphana) proved to be widely tolerant to these low oxygen concentrations, as shown by their high numerical abundances in the OMZ.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouwes, Nick; Petrosky, Charlie; Schaller, Howard

    The Comparative Survival Study (CSS) was initiated in 1996 as a multi-year program of the fishery agencies and tribes to estimate survival rates over different life stages for spring and summer chinook (hereafter, chinook) produced in major hatcheries in the Snake River basin and from selected hatcheries in the lower Columbia River. Much of the information evaluated in the CSS is derived from fish tagged with Passive Integrated Transponder (PIT) tags. A comparison of survival rates of chinook marked in two different regions (which differ in the number of dams chinook have to migrate through) provides insight into the effectsmore » of the Snake/Columbia hydroelectric system (hydrosystem). The CSS also compares the smolt-to-adult survival rates (SARs) for Snake River chinook that were transported versus those that migrated in-river to below Bonneville Dam. Additional comparisons can be made within in-river experiences as well comparison between the different collector projects from which smolts are transported. CSS also compares these survival rates for wild Snake River spring and summer chinook. These comparisons generate information regarding the relative effects of the current management actions used to recover this listed species.Scientists and managers have recently emphasized the importance of delayed hydrosystem mortality to long-term management decisions. Delayed hydrosystem mortality may be related to the smolts. experience in the Federal Columbia River Power System, and could occur for both smolts that migrate in-river and smolts that are transported. The CSS PIT tag information on in-river survival rates and smolt-to-adult survival rates (SARs) of transported and in-river fish are relevant to estimation of ''D'', which partially describes delayed hydrosystem mortality. ''D'', or differential delayed mortality, is the differential survival rate of transported fish relative to fish that migrate in-river, as measured from below Bonneville Dam to adults returning to Lower Granite Dam. A ''D'' equal to one indicates that there is no difference in survival rate after hydrosystem passage, while a ''D'' less than one indicates that transported smolts die at a greater rate after release, than smolts that have migrated through the hydrosystem. While the relative survival rates of transported and in-river migrants are important, the SARs must be also be sufficient to allow the salmon to persist and recover (Mundy et al. 1994). Decreased SARs could result from delayed hydrosystem mortality for either transported or in-river migrants, or both. Major objectives of CSS include: (1) development of a long-term index of transport SAR to in-river SAR for Snake River hatchery spring and summer chinook smolts measured at Lower Granite Dam; (2) develop a long-term index of survival rates from release of smolts at Snake River hatcheries to return of adults to the hatcheries; (3) compute and compare the overall SARs for selected upriver and downriver spring and summer chinook hatcheries; (4) begin a time series of SARs for use in hypothesis testing and in the regional long-term monitoring and evaluation program; (5) evaluate growth patterns of transported and in-river migrating smolts, and of upriver and downriver stocks. Primary CSS focus in this report for the 1997-1999 migration years included hatchery chinook tasks for objectives 1, 4 and 5.« less

  2. The diel rhythms of biosonar behavior in the Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis) in the port of the Yangtze River: The correlation between prey availability and boat traffic.

    PubMed

    Wang, Zhitao; Akamatsu, Tomonari; Wang, Kexiong; Wang, Ding

    2014-01-01

    Information on the habitat use of the critically endangered Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis) is critical for its conservation. The diel biosonar behavior of the porpoise in the port areas of the Yangtze River was examined along with simultaneous observations of fish density and boat traffic. Biosonar pulses from the porpoises were detected for 1233 min (5.77%) over a 21,380 min duration of effective observations. In total, 190 (5.63%) buzzes (an indication of prey capture attempts) were recorded among the 3372 identified click trains. Of the 168 echolocation encounters (bouts of click trains less than eight min apart), 150 (89.3%) involved single animals, indicating that solitary porpoises were frequently present and feeding in the port areas. Significant diel patterns were evident involving the biosonar behavior of the porpoises (including click trains and buzzes), fish density and boat traffic. The frequencies of the click trains and buzzes were significantly lower during the day than in the evening and at night, which suggests that porpoises in this region are primarily engaged in crepuscular and nocturnal foraging. The lack of a significant diel pattern in the echolocation encounters indicates the importance of the port in porpoise conservation. A forced feeding schedule may be associated with the lack of a significant correlation between porpoise acoustics and boat traffic. Overall, prey availability appears to be the primary factor that attracts porpoises. Additionally, porpoises tend to migrate or remain downstream in the morning and migrate or remain upstream in the evening, most likely to follow their prey. The findings of this study can be used to improve the conservation of the Yangtze finless porpoise.

  3. The Diel Rhythms of Biosonar Behavior in the Yangtze Finless Porpoise (Neophocaena asiaeorientalis asiaeorientalis) in the Port of the Yangtze River: The Correlation between Prey Availability and Boat Traffic

    PubMed Central

    Wang, Zhitao; Akamatsu, Tomonari; Wang, Kexiong; Wang, Ding

    2014-01-01

    Information on the habitat use of the critically endangered Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis) is critical for its conservation. The diel biosonar behavior of the porpoise in the port areas of the Yangtze River was examined along with simultaneous observations of fish density and boat traffic. Biosonar pulses from the porpoises were detected for 1233 min (5.77%) over a 21,380 min duration of effective observations. In total, 190 (5.63%) buzzes (an indication of prey capture attempts) were recorded among the 3372 identified click trains. Of the 168 echolocation encounters (bouts of click trains less than eight min apart), 150 (89.3%) involved single animals, indicating that solitary porpoises were frequently present and feeding in the port areas. Significant diel patterns were evident involving the biosonar behavior of the porpoises (including click trains and buzzes), fish density and boat traffic. The frequencies of the click trains and buzzes were significantly lower during the day than in the evening and at night, which suggests that porpoises in this region are primarily engaged in crepuscular and nocturnal foraging. The lack of a significant diel pattern in the echolocation encounters indicates the importance of the port in porpoise conservation. A forced feeding schedule may be associated with the lack of a significant correlation between porpoise acoustics and boat traffic. Overall, prey availability appears to be the primary factor that attracts porpoises. Additionally, porpoises tend to migrate or remain downstream in the morning and migrate or remain upstream in the evening, most likely to follow their prey. The findings of this study can be used to improve the conservation of the Yangtze finless porpoise. PMID:24823945

  4. Assessment of Potential Impact of Electromagnetic Fields from Undersea Cable on Migratory Fish Behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klimley, A. P.; Wyman, M. T.; Kavet, Rob

    The US Department of Energy and US Department of the Interior, Bureau of Ocean Energy Management commissioned this study to address the limited scientific data on the impacts of high voltage direct current cables on aquatic biota, in particular migratory species within the San Francisco Bay. Empirical evidence exists that marine animals perceive and orient to local distortions in the earth’s main geomagnetic field magnetic field. The electromagnetic fields (EMF) generated by the cables that carry electricity from hydrokinetic energy sources to shore-based power stations may produce similar local distortions in the earth’s main field. Concern exists that animals thatmore » migrate along the continental shelves might orient to the EMF from the cables, and move either inshore or offshore away from their normal path. The Trans Bay Cable (TBC) is a ±200-kilovolt (kV), 400 MW 85-km long High Voltage Direct Current (DC) buried transmission line linking Pittsburg, CA with San Francisco, CA (SF) through the San Francisco Bay. The study addresses the following specific questions based on measurements and projections of the EMF produced by an existing marine cable, the TBC, in San Francisco Bay. Specifically, does the presence of EMF from an operating power cable alter the behavior and path of bony fishes and sharks along a migratory corridor? Does the EMF from an operating power cable guide migratory movements or pose an obstacle to movement? To meet the main study objectives several activities needed to be carried out: 1) modeling of the magnetic fields produced by the TBC, 2) assessing the migratory impacts on Chinook salmon smolts (Oncorhynchus tshawytscha) and green sturgeon (Acipenser medirostris) as a result of local magnetic field distortions produced by bridge structures and 3) analyzing behavioral responses by migratory Chinook salmon and green sturgeon to a high-voltage power cable. To meet the first objective, magnetic field measurements were made using two submerged Geometrics magnetometers towed behind a survey vessel in four locations in the San Francisco estuary along profiles crossing the cable path. We applied basic formulas to describe magnetic field from a DC cable summed vectorially with the background geomagnetic field (in the absence of other sources that would perturb the ambient field) to derive characteristics of the cable not immediately or otherwise observable. The magnetic field profiles of 76 survey lines were regressed against the measured fields, representing eight days of measurement. Many profiles were dominated by field distortions caused by bridge structures or other submerged objects, and the cable contribution to the field was not detectable. The regressions based on fundamental principles (Biot Savart law) and the vectorial summation of cable and geomagnetic fields provide estimates of cable characteristics consistent with plausible expectations. For the second objective, detailed gradiometer survey were examined. Distortions in the earth’s main field produced by bridges across the estuary were much greater than those from the TBC. The former anomalies exceeded the latter by an order of magnitude or more. Significant numbers of tagged Chinook salmon smolts migrated past bridges, which produced strong magnetic anomalies, to the Golden Gate Bridge, where they were recorded by dual arrays of acoustic tag-detecting monitors moored in lines across the mouth of the bay. Adult green sturgeon successfully swam upstream and downstream through the estuary on the way to and from their spawning grounds. Hence, the large anomalies produced by the bridges that run perpendicular to these migration routes do not appear to present a strong barrier to the natural seasonal movement patterns of salmonid smolts and adult green sturgeon. Finally, to assess the behavioral responses by migratory Chinook salmon and green sturgeon to a high- voltage power cable - the potential impacts effect of the TBC on fishes migrating through the San Francisco Estuary were examined. These included late-fall run Chinook salmon smolts (Oncorhynchus tshawytscha) that migrate downstream through the San Francisco Estuary to the Pacific Ocean and adult green sturgeon (Acipenser medirostris), which migrate upstream from the ocean through the estuary to their spawning habitat in the upper Sacramento River and return to the ocean after spawning occurs. Our results indicate Chinook salmon smolts may be attracted to the cable after activation (more cable location crossings, more detections at Bay Bridge, high importance of distance to cable in predicting fish location), but are not impeded from successfully migrating through the San Francisco Bay (similar proportions of successful exits, faster transit rates). Cable activity had opposite effects on outbound and inbound green sturgeon migrations: outbound migrations had significantly longer transit times while inbound migrations had significantly shorter migration times. However, the proportion of green sturgeon that successfully migrated through the San Francisco Bay was not strongly impacted after cable activation for either migration type. Based on the work, we provide the following conclusions: 1) calculations of magnetic fields for assessment of marine life can be performed; however, local anomalies in the fields resulting from submerged structures require validation of such calculations through collection of ambient DC magnetic field data, 2) the large anomalies produced by the bridges that run perpendicular to these migration routes do not appear to present a strong barrier to the natural seasonal movement patterns of salmonid smolts and adult green sturgeon and 3) Chinook salmon smolts may be attracted to the activated cable based on analysis of cable crossing, misdirections, and first presence at the array data, however, the cable activation does not appear to change the proportion of smolts that successfully migrate through the San Francisco Bay. Cable activation impacts inbound and outbound migrating adult green sturgeon: travel time was increased for outbound migrations but decreased for inbound migrations. However, cable activation did not appear to impact the success of either migration type in this species.« less

  5. Esophageal fish bone migration induced thyroid abscess: case report and review of the literature.

    PubMed

    Chen, Ching Yuan; Peng, Jyh Ping

    2011-01-01

    A thyroid abscess is a rare condition, and it is so infrequently encountered. A migrated fish bone is a rare otolaryngologic emergency indicated when the foreign body penetrates through the esophageal mucosa into the thyroid gland space of the neck after several weeks of swallowing. We present the case of a 50-year-old woman who had fever and anterior neck painful mass. An intrathyroid abscess was diagnosed; and she underwent thyrotomy with transcervical approach. A foreign body, which proved to be a fish bone and which fortunately did not cause any adverse effects, was removed. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.

  6. Thermal Stress Limit Rafting Migration of Seahorses: Prediction Based on Physiological and Behavioral Responses to Thermal Stress

    NASA Astrophysics Data System (ADS)

    Qin, G.; Li, C.; Lin, Q.

    2017-12-01

    Marine fish species escape from harmful environment by migration. Seahorses, with upright posture and low mobility, could migrate from unfavorable environment by rafting with their prehensile tail. The present study was designed to examine the tolerance of lined seahorse Hippocampus erectus to thermal stress and evaluate the effects of temperature on seahorse migration. The results figured that seahorses' tolerance to thermal stress was time dependent. Acute thermal stress (30°C) increased breathing rate and HSP genes expression significantly, but didn't affect seahorse feeding behavior. Chronic thermal treatment lead to persistent high expression of HSP genes, higher breathing rate, and decreasing feeding, and final higher mortality, suggesting that seahorse cannot adapt to thermal stress by acclimation. No significant negative effects were found in seahorse reproduction in response to chronic thermal stress. Given that seahorses make much slower migration by rafting on sea surface compared to other fishes, we suggest that thermal stress might limit seahorse migration range. and the influence might be magnified by global warming in future.

  7. RECENT ECOLOGICAL DIVERGENCE DESPITE MIGRATION IN SOCKEYE SALMON (ONCORHYNCHUS NERKA)

    PubMed Central

    Pavey, Scott A; Nielsen, Jennifer L; Hamon, Troy R

    2010-01-01

    Ecological divergence may result when populations experience different selection regimes, but there is considerable discussion about the role of migration at the beginning stages of divergence before reproductive isolating mechanisms have evolved. However, detection of past migration is difficult in current populations and tools to differentiate genetic similarities due to migration versus recent common ancestry are only recently available. Using past volcanic eruption times as a framework, we combine morphological analyses of traits important to reproduction with a coalescent-based genetic analysis of two proximate sockeye salmon (Oncorhynchus nerka) populations. We find that this is the most recent (∼500 years, 100 generations) natural ecological divergence recorded in a fish species, and report that this divergence is occurring despite migration. Although studies of fish divergence following the retreat of glaciers (10,000–15,000 years ago) have contributed extensively to our understanding of speciation, the Aniakchak system of sockeye salmon provides a rare example of the initial stages of ecological divergence following natural colonization. Our results show that even in the face of continued migration, populations may diverge in the absence of a physical barrier. PMID:20030707

  8. Recent ecological divergence despite migration in sockeye salmon (Oncorhynchus nerka).

    PubMed

    Pavey, Scott A; Nielsen, Jennifer L; Hamon, Troy R

    2010-06-01

    Ecological divergence may result when populations experience different selection regimes, but there is considerable discussion about the role of migration at the beginning stages of divergence before reproductive isolating mechanisms have evolved. However, detection of past migration is difficult in current populations and tools to differentiate genetic similarities due to migration versus recent common ancestry are only recently available. Using past volcanic eruption times as a framework, we combine morphological analyses of traits important to reproduction with a coalescent-based genetic analysis of two proximate sockeye salmon (Oncorhynchus nerka) populations. We find that this is the most recent (approximately 500 years, 100 generations) natural ecological divergence recorded in a fish species, and report that this divergence is occurring despite migration. Although studies of fish divergence following the retreat of glaciers (10,000-15,000 years ago) have contributed extensively to our understanding of speciation, the Aniakchak system of sockeye salmon provides a rare example of the initial stages of ecological divergence following natural colonization. Our results show that even in the face of continued migration, populations may diverge in the absence of a physical barrier.

  9. Recent ecological divergence despite migration in sockeye salmon (Oncorhynchus nerka)

    USGS Publications Warehouse

    Pavey, Scott A.; Nielsen, Jennifer L.; Hamon, Troy R.

    2010-01-01

    Ecological divergence may result when populations experience different selection regimes, but there is considerable discussion about the role of migration at the beginning stages of divergence before reproductive isolating mechanisms have evolved. However, detection of past migration is difficult in current populations and tools to differentiate genetic similarities due to migration versus recent common ancestry are only recently available. Using past volcanic eruption times as a framework, we combine morphological analyses of traits important to reproduction with a coalescent-based genetic analysis of two proximate sockeye salmon (Oncorhynchus nerka) populations. We find that this is the most recent (~500 years, 100 generations) natural ecological divergence recorded in a fish species, and report that this divergence is occurring despite migration. Although studies of fish divergence following the retreat of glaciers (10,000–15,000 years ago) have contributed extensively to our understanding of speciation, the Aniakchak system of sockeye salmon provides a rare example of the initial stages of ecological divergence following natural colonization. Our results show that even in the face of continued migration, populations may diverge in the absence of a physical barrier.

  10. The relationship between annual survival rate and migration distance in mallards: an examination of the time-allocation hypothesis for the evolution of migration

    USGS Publications Warehouse

    Hestbeck, J.B.; Nichols, J.D.; Hines, J.E.

    1992-01-01

    Predictions of the time-allocation hypothesis were tested with several a posteriori analyses of banding data for the mallard (Anas platyrhynchos). The time-allocation hypothesis states that the critical difference between resident and migrant birds is their allocation of time to reproduction on the breeding grounds and survival on the nonbreeding grounds. Residents have higher reproduction and migrants have higher survival. Survival and recovery rates were estimated by standard band-recovery methods for banding reference areas in the central United States and central Canada. A production-rate index was computed for each reference area with data from the U.S. Fish and Wildlife Service May Breeding Population Survey and July Production Survey. An analysis of covariance was used to test for the effects of migration distance and time period (decade) on survival, recovery, and production rates. Differences in migration chronology were tested by comparing direct-recovery distributions for different populations during the fall migration. Differences in winter locations were tested by comparing distributions of direct recoveries reported during December and January. A strong positive relationship was found between survival rate, and migration distance for 3 of the 4 age and sex classes. A weak negative relationship was found between recovery rate and migration distance. No relationship was found between production rate and migration distance. During the fall migration, birds from the northern breeding populations were located north of birds from the southern breeding populations. No pattern could be found in the relative locations of breeding and wintering areas. Although our finding that survival rate increased with migration distance was consistent with the time-allocation hypothesis, our results on migration chronology and location of wintering areas were not consistent with the mechanism underlying the time-allocation hypothesis. Neither this analysis nor other recent studies of life-history characteristics of migratory and resident birds supported the timeallocation hypothesis.

  11. Physiological and endocrine changes in Atlantic salmon smolts during hatchery rearing, downstream migration and ocean entry

    USGS Publications Warehouse

    McCormick, Stephen D.; Sheehan, Timothy F.; Björnsson, Björn Thrandur; Lipsky, Christine; Kocik, John F.; Regish, Amy M.; O'Dea, Michael F.

    2013-01-01

    Billions of hatchery salmon smolts are released annually in an attempt to mitigate anthropogenic impacts on freshwater habitats, often with limited success. Mortality of wild and hatchery fish is high during downstream and early ocean migration. To understand changes that occur during migration, we examined physiological and endocrine changes in Atlantic salmon (Salmo salar) smolts during hatchery rearing, downstream migration, and early ocean entry in two successive years. Gill Na+/K+-ATPase activity increased in the hatchery during spring, increased further after river release, and was slightly lower after recapture in the ocean. Plasma growth hormone levels increased in the hatchery, were higher in the river, and increased further in the ocean. Plasma IGF-I remained relatively constant in the hatchery, increased in the river, then decreased in the ocean. Plasma thyroid hormones were variable in the hatchery, but increased in both river- and ocean-captured smolts. Naturally reared fish had lower condition factor, gill NKA activity, and plasma thyroxine than hatchery fish in the river but were similar in the ocean. This novel data set provides a vital first step in understanding the role and norms of endocrine function in smolts and the metrics of successful marine entry.

  12. Monitoring the Migrations of Wild Snake River Spring/Summer Chinook Salmon Juveniles, 2007-2008 Report of Research.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achord, Stephen; Sandford, Benjamin P.; Hockersmith, Eric E.

    2009-05-26

    This report provides results from an ongoing project to monitor the migration behavior and survival of wild juvenile spring/summer Chinook salmon in the Snake River Basin. Data reported is from detections of PIT tagged fish during late summer 2007 through mid-2008. Fish were tagged in summer 2007 by the National Marine Fisheries Service (NMFS) in Idaho and by the Oregon Department of Fish and Wildlife (ODFW) in Oregon. Our analyses include migration behavior and estimated survival of fish at instream PIT-tag monitors and arrival timing and estimated survival to Lower Granite Dam. Principal results from tagging and interrogation during 2007-2008more » are listed below: (1) In July and August 2007, we PIT tagged and released 7,390 wild Chinook salmon parr in 12 Idaho streams or sample areas. (2) Overall observed mortality from collection, handling, tagging, and after a 24-hour holding period was 1.4%. (3) Of the 2,524 Chinook salmon parr PIT tagged and released in Valley Creek in summer 2007, 218 (8.6%) were detected at two instream PIT-tag monitoring systems in lower Valley Creek from late summer 2007 to the following spring 2008. Of these, 71.6% were detected in late summer/fall, 11.9% in winter, and 16.5% in spring. Estimated parr-to-smolt survival to Lower Granite Dam was 15.5% for the late summer/fall group, 48.0% for the winter group, and 58.5% for the spring group. Based on detections at downstream dams, the overall efficiency of VC1 (upper) or VC2 (lower) Valley Creek monitors for detecting these fish was 21.1%. Using this VC1 or VC2 efficiency, an estimated 40.8% of all summer-tagged parr survived to move out of Valley Creek, and their estimated survival from that point to Lower Granite Dam was 26.5%. Overall estimated parr-to-smolt survival for all summer-tagged parr from this stream at the dam was 12.1%. Development and improvement of instream PIT-tag monitoring systems continued throughout 2007 and 2008. (4) Testing of PIT-tag antennas in lower Big Creek during 2007-2008 showed these antennas (and anchoring method) are not adequate to withstand high spring flows in this drainage. Future plans involve removing these antennas before high spring flows. (5) At Little Goose Dam in 2008, length and/or weight were taken on 505 recaptured fish from 12 Idaho stream populations. Fish had grown an average of 40.1 mm in length and 10.6 g in weight over an average of 288 d. Their mean condition factor declined from 1.25 at release (parr) to 1.05 at recapture (smolt). (6) Mean release lengths for detected fish were significantly larger than for fish not detected the following spring and summer (P < 0.0001). (7) Fish that migrated through Lower Granite Dam in April and May were significantly larger at release than fish that migrated after May (P < 0.0001) (only 12 fish migrated after May). (8) In 2008, peak detections at Lower Granite Dam of parr tagged during summer 2007 (from the 12 stream populations in Idaho and 4 streams in Oregon) occurred during moderate flows of 87.5 kcfs on 7 May and high flows of 197.3 kcfs on 20 May. The 10th, 50th, and 90th percentile passage occurred on 30 April, 11 May, and 23 May, respectively. (9) In 2007-2008, estimated parr-to-smolt survival to Lower Granite Dam for Idaho and Oregon streams (combined) averaged 19.4% (range 6.2-38.4% depending on stream of origin). In Idaho streams the estimated parr-to-smolt survival averaged 21.0%. This survival was the second highest since 1993 for Idaho streams. Relative parr densities were lower in 2007 (2.4 parr/100 m{sup 2}) than in all previous years since 2000. In 2008, we observed low-to-moderate flows prior to mid-May and relatively cold weather conditions throughout the spring migration season. These conditions moved half of the fish through Lower Granite Dam prior to mid-May; then high flows moved 50 to 90% of the fish through the dam in only 12 days. Clearly, complex interrelationships of several factors drive the annual migrational timing of the stocks.« less

  13. Effects of Shoreline Hardening and Shoreline Protection Features on Fish Utilization and Behavior at Washaway Beach, Washington (Report 2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Martin C.; Williams, Greg D.; O'Rourke, Lohna K.

    2002-02-13

    This report is the second in a series detailing the procedures used and the results obtained from studies designed to determine the impacts of erosion control structures on fish habitat at Willapa Bay, Washington. The erosion control structure, consisting of a 1600-ft rock groin and an attached 930-ft underwater dike was placed on Washaway Beach in 1998 to protect State Route (SR) 105 from erosion. The objectives of the study are to develop an understanding about whether groin-type structures on the outer coast can alter migratory movement or predation pressure on juvenile and adult salmon. Field surveys in this reportmore » were conducted from October 14-21, 2001, and consisted of gillnetting, passive drifter surveys, diver surveys, interviews with fishers and Washington Department of Fish and Wildlife (WDFW) personnel, bird and mammal surveys, and split beam hydroacoustic surveys. Field sampling activities were begun on October 14 and were suspended during the commercial gillnet season from October 16-18. Interviews with fishers and WDFW were conducted during that period, and field sampling recommenced on October 19. The hydroacoustic surveys were conducted from October 19-21. The migration pattern of fish, presumed to be salmon, was documented relative to the tidal phase. Fish were observed to congregate in the deeper portion of the channel during the end of the ebb tide. The fishermen set their nets and rid the tide upstream as they catch fish. Many fewer fish were observed in the channel at the high tide stand.« less

  14. Nonanadromous fish passage in highway culverts.

    DOT National Transportation Integrated Search

    1995-01-01

    Highway culverts may hinder the normal migrations of various trout species in wild trout streams, due to increased flow velocity, shallow water depths, increased turbulence, and perching. This can impede migrational movements, affecting the genetic d...

  15. Double-crested cormorants along the upper Mississippi River

    USGS Publications Warehouse

    Kirsch, E.M.

    1995-01-01

    The Upper Mississippi River is an important habitat corridor for migratory birds and other wildlife, and it supports an important commercial and sport fishery. A study was initiated by the U.S. Fish and Wildlife Service in 1991 to describe Double-crested cormorant (Phalacrocorax auritus) distribution and abundance on the Upper Mississippi River throughout the year to better understand the possible impacts of cormorants on fish resources and populations of other piscivorous birds. Double-crested Cormorants were common breeders and abundant during migration on the Upper Mississippi River during the 1940s. Numbers of cormorants declined in the 1960s and 1970s along the Upper Mississippi River as they did in other parts of the United States. In 1992, 418 cormorant pairs were estimated to have nested in four colonies on the Upper Mississippi River, and less than 7,000 cormorants were estimated to have migrated along the river during the fall and spring of 1991 and 1992. Recent public concern for fish resources has grown with a perceived growth of the local cormorant population. Migrating cormorants collected on the Upper Mississippi River took Gizzard Shad (Dorosoma cepedianum) primarily, but chicks were fed a wide variety of fish species.

  16. Humpback whale “super-groups” – A novel low-latitude feeding behaviour of Southern Hemisphere humpback whales (Megaptera novaeangliae) in the Benguela Upwelling System

    PubMed Central

    Seakamela, S. Mduduzi; Meÿer, Michael A.; Kirkman, Stephen P.; Barendse, Jaco; Cade, David E.; Hurwitz, David; Kennedy, Amy S.; Kotze, Pieter G. H.; McCue, Steven A.; Thornton, Meredith; Vargas-Fonseca, O. Alejandra; Wilke, Christopher G.

    2017-01-01

    Southern Hemisphere humpback whales (Megaptera novaeangliae) generally undertake annual migrations from polar summer feeding grounds to winter calving and nursery grounds in subtropical and tropical coastal waters. Evidence for such migrations arises from seasonality of historic whaling catches by latitude, Discovery and natural mark returns, and results of satellite tagging studies. Feeding is generally believed to be limited to the southern polar region, where Antarctic krill (Euphausia superba) has been identified as the primary prey item. Non-migrations and / or suspended migrations to the polar feeding grounds have previously been reported from a summer presence of whales in the Benguela System, where feeding on euphausiids (E. lucens), hyperiid amphipods (Themisto gaudichaudii), mantis shrimp (Pterygosquilla armata capensis) and clupeid fish has been described. Three recent research cruises (in October/November 2011, October/November 2014 and October/November 2015) identified large tightly-spaced groups (20 to 200 individuals) of feeding humpback whales aggregated over at least a one-month period across a 220 nautical mile region of the southern Benguela System. Feeding behaviour was identified by lunges, strong milling and repetitive and consecutive diving behaviours, associated bird and seal feeding, defecations and the pungent “fishy” smell of whale blows. Although no dedicated prey sampling could be carried out within the tightly spaced feeding aggregations, observations of E. lucens in the region of groups and the full stomach contents of mantis shrimp from both a co-occurring predatory fish species (Thyrsites atun) and one entangled humpback whale mortality suggest these may be the primary prey items of at least some of the feeding aggregations. Reasons for this recent novel behaviour pattern remain speculative, but may relate to increasing summer humpback whale abundance in the region. These novel, predictable, inter-annual, low latitude feeding events provide considerable potential for further investigation of Southern Hemisphere humpback feeding behaviours in these relatively accessible low-latitude waters. PMID:28249036

  17. Humpback whale "super-groups" - A novel low-latitude feeding behaviour of Southern Hemisphere humpback whales (Megaptera novaeangliae) in the Benguela Upwelling System.

    PubMed

    Findlay, Ken P; Seakamela, S Mduduzi; Meÿer, Michael A; Kirkman, Stephen P; Barendse, Jaco; Cade, David E; Hurwitz, David; Kennedy, Amy S; Kotze, Pieter G H; McCue, Steven A; Thornton, Meredith; Vargas-Fonseca, O Alejandra; Wilke, Christopher G

    2017-01-01

    Southern Hemisphere humpback whales (Megaptera novaeangliae) generally undertake annual migrations from polar summer feeding grounds to winter calving and nursery grounds in subtropical and tropical coastal waters. Evidence for such migrations arises from seasonality of historic whaling catches by latitude, Discovery and natural mark returns, and results of satellite tagging studies. Feeding is generally believed to be limited to the southern polar region, where Antarctic krill (Euphausia superba) has been identified as the primary prey item. Non-migrations and / or suspended migrations to the polar feeding grounds have previously been reported from a summer presence of whales in the Benguela System, where feeding on euphausiids (E. lucens), hyperiid amphipods (Themisto gaudichaudii), mantis shrimp (Pterygosquilla armata capensis) and clupeid fish has been described. Three recent research cruises (in October/November 2011, October/November 2014 and October/November 2015) identified large tightly-spaced groups (20 to 200 individuals) of feeding humpback whales aggregated over at least a one-month period across a 220 nautical mile region of the southern Benguela System. Feeding behaviour was identified by lunges, strong milling and repetitive and consecutive diving behaviours, associated bird and seal feeding, defecations and the pungent "fishy" smell of whale blows. Although no dedicated prey sampling could be carried out within the tightly spaced feeding aggregations, observations of E. lucens in the region of groups and the full stomach contents of mantis shrimp from both a co-occurring predatory fish species (Thyrsites atun) and one entangled humpback whale mortality suggest these may be the primary prey items of at least some of the feeding aggregations. Reasons for this recent novel behaviour pattern remain speculative, but may relate to increasing summer humpback whale abundance in the region. These novel, predictable, inter-annual, low latitude feeding events provide considerable potential for further investigation of Southern Hemisphere humpback feeding behaviours in these relatively accessible low-latitude waters.

  18. Condition of larval and early juvenile Japanese temperate bass Lateolabrax japonicus related to spatial distribution and feeding in the Chikugo estuarine nursery ground in the Ariake Bay, Japan

    NASA Astrophysics Data System (ADS)

    Islam, Md. Shahidul; Hibino, Manabu; Nakayama, Kouji; Tanaka, Masaru

    2006-02-01

    The present study investigates feeding and condition of larval and juvenile Japanese temperate bass Lateolabrax japonicus in relation to spatial distribution in the Chikugo estuary (Japan). Larvae were collected in a wide area covering the nursery grounds of the species in 2002 and 2003. Food habits of the fish were analysed by examining their gut contents. Fish condition was evaluated by using morphometric (the length-weight relationship and condition factor) and biochemical (the RNA:DNA ratio and other nucleic acid based parameters) indices and growth rates. The nucleic-acid contents in individually frozen larvae and juveniles were quantified by standard fluorometric methods. Two distinct feeding patterns, determined by the distribution of prey copepods, were identified. The first pattern showed dependence on the calanoid copepod Sinocalanus sinensis, which was the single dominant prey in low-saline upper river areas. The second pattern involved a multi-specific dietary habit mainly dominated by Acartia omorii, Oithona davisae, and Paracalanus parvus. As in the gut contents analyses, two different sets of values were observed for RNA, DNA, total protein, growth rates and for all the nucleic acid-based indices: one for the high-saline downstream areas and a second for the low-saline upstream areas, which was significantly higher than the first. The proportion of starving fish was lower upstream than downstream. Values of the allometric coefficient ( b) and the condition factor ( K) obtained from the length-weight relationships increased gradually from the sea to the upper river. Clearly, fish in the upper river had a better condition than those in the lower estuary. RNA:DNA ratios correlated positively with temperature and negatively with salinity. We hypothesise that by migration to the better foraging grounds of the upper estuary (with higher prey biomass, elevated temperature and reduced salinity), the fish reduce early mortality and attain a better condition. We conclude that utilisation of the copepod S. sinensis in the upstream nursery grounds is one of the key early survival strategies in Japanese temperate bass in the Chikugo estuary.

  19. Hydroacoustic Evaluation of Overwintering Summer Steelhead Fallback and Kelt Passage at The Dalles Dam, 2009-2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Fenton; Johnson, Gary E.; Weiland, Mark A.

    2010-07-31

    This report presents the results of an evaluation of overwintering summer steelhead (Oncorhynchus mykiss) fallback and early out-migrating steelhead kelts downstream passage at The Dalles Dam (TDA) sluiceway and turbines during fall/winter 2009 through early spring 2010. The study was conducted by the Pacific Northwest National Laboratory (PNNL) for the U.S. Army Corps of Engineers, Portland District (USACE). The goal of this study was to characterize adult steelhead spatial and temporal distributions and passage rates at the sluiceway and turbines for fisheries managers and engineers to use in decision-making relative to sluiceway operations. The study was from November 1, 2009more » to April 10, 2010. The study was divided into three study periods: Period 1, November 1 - December 15, 2009 for a fall/winter sluiceway and turbine study; Period 2, December 16, 2009 - February 28, 2010 for a turbine only study; Period 3, March 1 - April 10, 2010 for a spring sluiceway and turbine study. Sluiceway operations were scheduled to begin on March 1 for this study; however, because of an oil spill cleanup near the sluice outfall, sluiceway operations were delayed until March 8, 2010, therefore the spring study period did not commence until March 8. The study objectives were to (1) estimate the number and distribution of overwintering summer steelhead fallbacks and kelt-sized acoustic targets passing into the sluiceway and turbines at TDA between November 1 and December 15, 2009 and March 1 and April 10, 2010, and (2) estimate the numbers and distribution of adult steelhead and kelt-sized targets passing into turbine units between December 16, 2009 and February 28, 2010. We obtained fish passage data using fixed-location hydroacoustics. For Period 1, overwintering summer steelhead fallback occurred throughout the 45-day study period. A total of 879 {+-} 165 (95% CI) steelhead targets passed through the powerhouse and sluiceway during November 1 to December 15, 2009. Ninety two percent of these fish passed through the sluiceway. Run timing peaked in early December, but fish continued to pass the dam until the end of the study. Horizontal distribution data indicated that Sluice 1 is the preferred route for these fish during fallback through the dam. Diel distribution for steelhead was variable with no apparent distinct patterns. For Period 2, adult steelhead passage occurred on January 14 and 31 and February 2, 22, and 24. A total of 62 {+-} 40 (95% CI) steelhead targets passed through the powerhouse intakes during December 16, 2009 to March 7, 2010. Horizontal distribution data indicated turbine unit 18 passed the majority of fish. Fish passage occurred during morning periods. Passage did not occur during afternoon or nighttime. For Period 3, the early spring study period, overwintering summer steelhead and early out-migrating steelhead kelt downstream passage occurred throughout the 34-day study period. A total of 1,985 {+-} 234 (95% CI) kelt-size targets were estimated to have passed through the powerhouse sluiceway. Ninety-nine percent of these fish passed through the sluiceway. Run timing peaked in late March and again in early April. Horizontal distribution indicated that Sluice 1 is the preferred route for these adult salmonids as they migrate downstream through the dam. Diel distribution for steelhead was variable with no apparent distinct patterns. The results of this study strongly suggest that operating the TDA sluiceway for steelhead passage (fallbacks and kelts) during the late fall, winter, and early spring months will provide an optimal, non-turbine route for these fishes to pass the dam.« less

  20. Physiological and molecular endocrine changes in maturing wild sockeye salmon, Oncorhynchus nerka, during ocean and river migration.

    PubMed

    Flores, A M; Shrimpton, J M; Patterson, D A; Hills, J A; Cooke, S J; Yada, T; Moriyama, S; Hinch, S G; Farrell, A P

    2012-01-01

    Maturing adult sockeye salmon Oncorhynchus nerka were intercepted while migrating in the ocean and upstream in freshwater over a combined distance of more than 1,300 km to determine physiological and endocrine changes associated with ionoregulation. Sockeye migrating through seawater and freshwater showed consistent declines in gill Na+/K+ -ATPase (NKA) activity, plasma osmolality and plasma chloride concentration. In contrast, plasma sodium concentration became elevated in seawater as fish approached the river mouth and was then restored after sockeye entered the river. Accompanying the movement from seawater to freshwater was a significant increase in mRNA for the NKA α1a subunit in the gill, with little change in the α1b subunit. Potential endocrine signals stimulating the physiological changes during migration were assessed by measuring plasma cortisol and prolactin (Prl) concentrations and quantifying mRNA extracted from the gill for glucocorticoid receptors 1 and 2 (GR1 and GR2), mineralocorticoid receptor (MR), growth hormone 1 receptor (GH1R), and prolactin receptor (PrlR). Plasma cortisol and prolactin concentrations were high in seawater suggesting a preparatory endocrine signal before freshwater entry. Generally, the mRNA expression for GR1, GR2 and MR declined during migration, most notably after fish entered freshwater. In contrast, PrlR mRNA increased throughout migration, particularly as sockeye approached the spawning grounds. A highly significant association existed between gill PrlR mRNA and gill NKA α1a mRNA. GH1R mRNA also increased significantly, but only after sockeye had migrated beyond tidal influence in the river and then again just before the fish reached the spawning grounds. These findings suggest that cortisol and prolactin stimulate ionoregulation in the gill as sockeye salmon adapt to freshwater.

  1. Ionoregulatory changes in different populations of maturing sockeye salmon Oncorhynchus nerka during ocean and river migration.

    PubMed

    Shrimpton, J M; Patterson, D A; Richards, J G; Cooke, S J; Schulte, P M; Hinch, S G; Farrell, A P

    2005-11-01

    We present the first data on changes in ionoregulatory physiology of maturing, migratory adult sockeye salmon Oncorhynchus nerka. Fraser River sockeye were intercepted in the ocean as far away as the Queen Charlotte Islands (approximately 850 km from the Fraser River) and during freshwater migration to the spawning grounds; for some populations this was a distance of over 700 km. Sockeye migrating in seawater toward the mouth of the Fraser River and upriver to spawning grounds showed a decline in gill Na+,K+-ATPase activity. As a result, gill Na+,K+-ATPase activity of fish arriving at the spawning grounds was significantly lower than values obtained from fish captured before entry into freshwater. Plasma osmolality and chloride levels also showed significant decreases from seawater values during the freshwater migration to spawning areas. Movement from seawater to freshwater increased mRNA expression of a freshwater-specific Na+,K+-ATPase isoform (alpha1a) while having no effect on the seawater-specific isoform (alpha1b). In addition, gill Na+,K+-ATPase activity generally increased in active spawners compared with unspawned fish on the spawning grounds and this was associated with a marked increase in Na+,K+-ATPase alpha1b mRNA. Increases in gill Na+,K+-ATPase activities observed in spawners suggests that the fish may be attempting to compensate for the osmotic perturbation associated with the decline in plasma chloride concentration and osmolality.

  2. Spawning and nursery habitats of neotropical fish species in the tributaries of a regulated river

    USGS Publications Warehouse

    Makrakis, Maristela Cavicchioli; da Silva, Patrícia S.; Makrakis, Sergio; de Lima, Ariane F.; de Assumpção, Lucileine; de Paula, Salete; Miranda, Leandro E.; Dias, João Henrique Pinheiro

    2012-01-01

    This chapter provides information on ontogenetic patterns of neotropical fish species distribution in tributaries (Verde, Pardo, Anhanduí, and Aguapeí rivers) of the Porto Primavera Reservoir, in the heavily dammed Paraná River, Brazil, identifying key spawning and nursery habitats. Samplings were conducted monthly in the main channel of rivers and in marginal lagoons from October through March during three consecutive spawning seasons in 2007-2010. Most species spawn in December especially in Verde River. Main river channels are spawning habitats and marginal lagoons are nursery areas for most fish, mainly for migratory species. The tributaries have high diversity of larvae species: a total of 56 taxa representing 21 families, dominated by Characidae. Sedentary species without parental care are more abundant (45.7%), and many long-distance migratory fish species are present (17.4%). Migrators included Prochilodus lineatus, Rhaphiodon vulpinus, Hemisorubim platyrhynchos, Pimelodus maculatus, Pseudoplatystoma corruscans, Sorubim lima, two threatened migratory species: Salminus brasiliensis and Zungaro jahu, and one endangered migratory species: Brycon orbignyanus. Most of these migratory species are vital to commercial and recreational fishing, and their stocks have decreased drastically in the last decades, attributed to habitat alteration, especially impoundments. The fish ladder at Porto Primavera Dam appears to be playing an important role in re-establishing longitudinal connectivity among critical habitats, allowing ascent to migratory fish species, and thus access to upstream reaches and tributaries. Establishment of Permanent Conservation Units in tributaries can help preserve habitats identified as essential spawning and nursery areas, and can be key to the maintenance and conservation of the fish species in the Paraná River basin.

  3. A birds-eye view of biological connectivity in mangrove systems

    NASA Astrophysics Data System (ADS)

    Buelow, Christina; Sheaves, Marcus

    2015-01-01

    Considerable advances in understanding of biological connectivity have flowed from studies of fish-facilitated connectivity within the coastal ecosystem mosaic. However, there are limits to the information that fish can provide on connectivity. Mangrove-bird communities have the potential to connect coastal habitats in different ways and at different scales than fish, so incorporation of these links into our models of coastal ecosystem mosaics affords the opportunity to greatly increase the breadth of our understanding. We review the habitat and foraging requirements of mangrove-bird functional groups to understand how bird use of mangroves facilitates biological connectivity in coastal ecosystem mosaics, and how that connectivity adds to the diversity and complexity of ecological processes in mangrove ecosystems. Avian biological connectivity is primarily characterized by foraging behavior and habitat/resource requirements. Therefore, the consequence of bird links for coastal ecosystem functioning largely depends on patterns of habitat use and foraging, and potentially influences nutrient cycling, top-down control and genetic information linkage. Habitats that experience concentrated bird guano deposition have high levels of nitrogen and phosphorus, placing particular importance on the consequences of avian nutrient translocation and subsidization for coastal ecosystem functioning. High mobility allows mangrove-bird communities to link mangrove forests to other mangrove, terrestrial and marine-pelagic systems. Therefore, the spatial scale of coastal connectivity facilitated by birds is substantially more extensive than fish-facilitated connectivity. In particular, migratory birds link habitats at regional, continental and inter-continental scales as they travel among seasonally available feeding areas from breeding grounds to non-breeding grounds; scales at which there are few fish equivalents. Knowledge of the nature and patterns of fish connectivity have contributed to shifting the initial, historical perception of mangrove-ecosystem functioning from that of a simple system based on nutrient and energy retention, to a view that includes fish-facilitated energy export. In a similar way, understanding the nature and implications of mangrove connectivity through bird movements and migrations affords new possibilities for revising our view of the extent of functional links between mangroves and other ecosystems.

  4. Aquatic ecology of the Elwha River estuary prior to dam removal: Chapter 7 in Coastal habitats of the Elwha River, Washington--biological and physical patterns and processes prior to dam removal

    USGS Publications Warehouse

    Duda, Jeffrey J.; Beirne, Matthew M.; Larsen, Kimberly; Barry, Dwight; Stenberg, Karl; McHenry, Michael L.; Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.

    2011-01-01

    The removal of two long-standing dams on the Elwha River in Washington State will initiate a suite of biological and physical changes to the estuary at the river mouth. Estuaries represent a transition between freshwater and saltwater, have unique assemblages of plants and animals, and are a critical habitat for some salmon species as they migrate to the ocean. This chapter summarizes a number of studies in the Elwha River estuary, and focuses on physical and biological aspects of the ecosystem that are expected to change following dam removal. Included are data sets that summarize (1) water chemistry samples collected over a 16 month period; (2) beach seining activities targeted toward describing the fish assemblage of the estuary and migratory patterns of juvenile salmon; (3) descriptions of the aquatic and terrestrial invertebrate communities in the estuary, which represent an important food source for juvenile fish and are important water quality indicators; and (4) the diet and growth patterns of juvenile Chinook salmon in the lower Elwha River and estuary. These data represent baseline conditions of the ecosystem after nearly a century of changes due to the dams and will be useful in monitoring the changes to the river and estuary following dam removal.

  5. Stable Isotopes in Ecological Sceinces: Bird and Fish Diet and Migration in Virginia

    NASA Astrophysics Data System (ADS)

    Schmidt, S.; Dias, R. F.; Ake, R.; Jones, C. M.

    2002-12-01

    The preservation of ecologically sensitive habitats for birds and fishes in Virginia requires a detailed understanding of the important changes in diet and migration over the life span of the animal. Stable isotope analysis offers the potential to assess migration and trophic level variability in birds and fishes from southeastern Virginia and the greater Chesapeake Bay. Fish of various species and ages from different locations throughout the Chesapeake Bay were analyzed for carbon-13 and nitrogen-15 bulk natural abundance. Of particular note, blue fish were found to have significantly higher d15N values than striped bass which are believed to be trophic competitors. Observations are discussed relative to the maturity of the different fish, variation in water-mass chemistry (N-inputs), local environmental habitats, trophic relationships and migratory habits. In conjunction with banding studies being conducted by Virginia Department of Game and Inland Fisheries in the Great Dismal Swamp (VA), breast feathers from Carolina Wren, Common Yellowthroat, Northern Cardinal, Ovenbird, and Prothonotary Warbler were analyzed for carbon-13 and nitrogen-15 bulk natural abundance. Given the preliminary nature of this work our ability to identify trends between species was less than satisfying, thus highlighting the need for larger sample populations over more than one breeding season. However, within a given species (most notably the Prothonotary Warbler) we are able to discern a change in diet. The hatching year Prothonotary warbler were more enriched in both carbon-13 and nitrogen-15 than the after-hatching-year (AHY) birds, indicating a change in food sources between the two age groups. By sampling over time and at various sample sites, isotopic analyses allow a more detailed investigation of the spatial and temporal variation in the diets and migratory habits of fishes and birds in Virginia and the Chesapeake Bay.

  6. Impacts of hypoxia on the structure and processes in pelagic communities (zooplankton, macro-invertebrates and fish)

    NASA Astrophysics Data System (ADS)

    Ekau, W.; Auel, H.; Pörtner, H.-O.; Gilbert, D.

    2010-05-01

    Dissolved oxygen (DO) concentration in the water column is an environmental parameter that is crucial for the successful development of many pelagic organisms. Hypoxia tolerance and threshold values are species- and stage-specific and can vary enormously. While some fish species may suffer from oxygen values of less than 3 mL O2 L-1 through impacted growth, development and behaviour, other organisms such as euphausiids may survive DO levels as low as 0.1 mL O2 L-1. A change in the average or the range of DO may have significant impacts on the survival of certain species and hence on the species composition in the ecosystem with consequent changes in trophic pathways and productivity. Evidence for the deleterious effects of oxygen depletion on pelagic species is scarce, particularly in terms of the effect of low oxygen on development, recruitment and patterns of migration and distribution. While planktonic organisms have to cope with variable DOs and exploit adaptive mechanisms, nektonic species may avoid areas of unfavourable DO and develop adapted migration strategies. Planktonic organisms may only be able to escape vertically, above or beneath the Oxygen Minimum Zone (OMZ). In shallow areas only the surface layer can serve as a refuge, but in deep waters many organisms have developed vertical migration strategies to use, pass through and cope with the OMZ. This paper elucidates the role of DO for different taxa in the pelagic realm and the consequences of low oxygen for foodweb structure and system productivity. We describe processes in two contrasting systems, the semi-enclosed Baltic Sea and the coastal upwelling system of the Benguela Current to demonstrate the consequences of increasing hypoxia on ecosystem functioning and services.

  7. Isotopes and genes reveal freshwater origins of Chinook salmon Oncorhynchus tshawytscha aggregations in California’s coastal ocean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Rachel C.; Garza, John Carlos; MacFarlane, R. Bruce

    The ability of salmon to navigate from the ocean back to their river of origin to spawn acts to reinforce local adaptation and maintenance of unique and heritable traits among salmon populations. Here, the extent to which Chinook salmon Oncorhynchus tshawytscha from the same freshwater breeding groups associate together in the ocean at regional and smaller-scale aggregations prior to homeward migration is evaluated. Natural variation in salmon otolith daily growth bands, strontium isotopes ( 87Sr/ 86Sr), and microsatellite DNA were used as intrinsic tags to link the distributions of fish caught in the ocean with their freshwater origins. Adults weremore » caught from vessels by hook and line in small aggregations (7-18 ind.) at the same geographic location (1-24 km of coastline) and time (4-36 h) from 3 ocean regions along central California, USA. Salmon caught together in aggregations were from the same genetic group, and to a lesser extent, of the same natal origin (individual rivers or hatcheries). However, at regional scales, adult salmon mixed. Central Valley winter-run Chinook salmon caught together in the ocean varied in the duration of freshwater rearing for up to 2-3 mo prior to seaward migration, suggesting associations within the group were not established in freshwater or maintained over the lifetime of the fish. Our findings are consistent with coarser information indicating stocks are distributed differently in time and space, but larger sample sizes are required to evaluate the consistency of patterns at smaller spatial scales. This study uncovers freshwater associations prior to homeward migration, a principle and undocumented prerequisite of the collective navigation hypothesis.« less

  8. Isotopes and genes reveal freshwater origins of Chinook salmon Oncorhynchus tshawytscha aggregations in California’s coastal ocean

    DOE PAGES

    Johnson, Rachel C.; Garza, John Carlos; MacFarlane, R. Bruce; ...

    2016-04-21

    The ability of salmon to navigate from the ocean back to their river of origin to spawn acts to reinforce local adaptation and maintenance of unique and heritable traits among salmon populations. Here, the extent to which Chinook salmon Oncorhynchus tshawytscha from the same freshwater breeding groups associate together in the ocean at regional and smaller-scale aggregations prior to homeward migration is evaluated. Natural variation in salmon otolith daily growth bands, strontium isotopes ( 87Sr/ 86Sr), and microsatellite DNA were used as intrinsic tags to link the distributions of fish caught in the ocean with their freshwater origins. Adults weremore » caught from vessels by hook and line in small aggregations (7-18 ind.) at the same geographic location (1-24 km of coastline) and time (4-36 h) from 3 ocean regions along central California, USA. Salmon caught together in aggregations were from the same genetic group, and to a lesser extent, of the same natal origin (individual rivers or hatcheries). However, at regional scales, adult salmon mixed. Central Valley winter-run Chinook salmon caught together in the ocean varied in the duration of freshwater rearing for up to 2-3 mo prior to seaward migration, suggesting associations within the group were not established in freshwater or maintained over the lifetime of the fish. Our findings are consistent with coarser information indicating stocks are distributed differently in time and space, but larger sample sizes are required to evaluate the consistency of patterns at smaller spatial scales. This study uncovers freshwater associations prior to homeward migration, a principle and undocumented prerequisite of the collective navigation hypothesis.« less

  9. Lower Granite Dam Smolt Monitoring Program, 2005-2006 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mensik, Fred; Rapp, Shawn; Ross, Doug

    2007-01-01

    The 2005 fish collection season at Lower Granite Dam (LGR) was characterized by average water temperatures, below average flows, above average spill, low levels of debris and the record number of smolts collected compared to the previous five years. With the continued release of unclipped supplementation chinook and steelhead above LGR, we cannot accurately distinguish wild chinook, steelhead, and sockeye/kokanee in the sample. For the purposes of this report we will designate fish as clipped and unclipped. This season a total of 13,030,967 juvenile salmonids were collected at LGR. Of these, 12,099,019 were transported to release sites below Bonneville Dam,more » 12,032,623 by barge and 66,396 by truck. An additional 898,235 fish were bypassed to the river due to over-capacity of the raceways, barges or trucks and for research purposes. This was the first season of summer spill at LGR. Spill was initiated at 12:01am June 20 as directed by the ruling set forth by Judge James Redden of the United States District Court (Order CV 01-640-RE). In addition, the Lower Granite project also conducted a summer spill test alternating spill and spill patterns between spill to the gas cap without the removable spillway weir (RSW) and spill with up to 20 kcfs utilizing the RSW. Because of the forecast low flow this year, most hatchery reared subyearling fall chinook were released up to three weeks early. With the unexpected high flows in late May and early June, more than 90% of the subyearling chinook were collected prior to the initiation of the court ordered summer spill program. Collection number fluctuations reflect river flow and project operations for any given year. For example, low flow years (2001, 2004 and 2005) result in higher collection numbers. Court ordered spill throughout the summer migration will directly affect collection of fall subyearling chinook collection numbers. The editors of this report urge the reader to use caution when comparing fish collection numbers between years, considering both annual river flows and annual project operations, because both affect fish migration and collection.« less

  10. Lower Granite Dam Smolt Monitoring Program, Annual Report 2005-2006.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menski, Fred

    2007-01-01

    The 2005 fish collection season at Lower Granite Dam (LGR) was characterized by average water temperatures, below average flows, above average spill, low levels of debris and the record number of smolts collected compared to the previous five years. With the continued release of unclipped supplementation chinook and steelhead above LGR, we cannot accurately distinguish wild chinook, steelhead, and sockeye/kokanee in the sample. For the purposes of this report we will designate fish as clipped and unclipped. This season a total of 13,030,967 juvenile salmonids were collected at LGR. Of these, 12,099,019 were transported to release sites below Bonneville Dam,more » 12,032,623 by barge and 66,396 by truck. An additional 898,235 fish were bypassed to the river due to over-capacity of the raceways, barges or trucks and for research purposes. This was the first season of summer spill at LGR. Spill was initiated at 12:01am June 20 as directed by the ruling set forth by Judge James Redden of the United States District Court (Order CV 01-640-RE). In addition, the Lower Granite project also conducted a summer spill test alternating spill and spill patterns between spill to the gas cap without the removable spillway weir (RSW) and spill with up to 20 kcfs utilizing the RSW. Because of the forecast low flow this year, most hatchery reared subyearling fall chinook were released up to three weeks early. With the unexpected high flows in late May and early June, more than 90% of the subyearling chinook were collected prior to the initiation of the court ordered summer spill program. Collection number fluctuations reflect river flow and project operations for any given year. For example, low flow years (2001, 2004 and 2005) result in higher collection numbers. Court ordered spill throughout the summer migration will directly affect collection of fall subyearling chinook collection numbers. The editors of this report urge the reader to use caution when comparing fish collection numbers between years, considering both annual river flows and annual project operations, because both affect fish migration and collection.« less

  11. A case study of human migration and the sea cucumber crisis in the Galapagos Islands.

    PubMed

    Bremner, Jason; Perez, Jaime

    2002-06-01

    The sea cucumber fishing crisis in Galapagos is an example of the potential consequences of rapid migration, growing economic competition, and weak regulatory mechanisms. In a short period of time sea cucumber fishing has become the most inflammatory issue in the Galapagos. The key factors that allowed for the efficient exploitation of the new resource were not the fishermen themselves but rather the new fishing techniques and access to credit and markets. This suggests that the annual sea cucumber crisis is due to factors more complex than simply more fishermen generating greater sea cucumber catches. This paper examines census data and fisher registries to analyze population growth in the islands. A public opinion survey is used to determine the population's attitudes toward sea cucumber fishing and regulations. Qualitative interviews explore the history of the sea cucumber boom. Information from the sea cucumber monitoring program provides estimates for the annual sea cucumber catches.

  12. Sea-louse parasites on juvenile wild salmon in the Broughton Archipelago, British Columbia, Canada.

    PubMed

    Peacock, Stephanie J; Bateman, Andrew W; Krkošek, Martin; Connors, Brendan; Rogers, Scott; Portner, Lauren; Polk, Zephyr; Webb, Coady; Morton, Alexandra

    2016-07-01

    The global expansion of aquaculture has changed the structure of fish populations in coastal environments, with implications for disease dynamics. In Pacific Canada, farmed salmon act as reservoir hosts for parasites and pathogens, including sea lice (Lepeophtheirus salmonis and Caligus clemensi) that can transmit to migrating wild salmon. Assessing the impact of salmon farms on wild salmon requires regular monitoring of sea-louse infections on both farmed and wild fish. Since 2001, we have collected juvenile pink (Oncorhynchus gorbuscha) and chum (O. keta) salmon annually at three sites in the Broughton Archipelago in British Columbia, Canada, during the annual juvenile salmon migration from fresh water to the open ocean. From sampled fish, we recorded counts of parasitic copepodid-, chalimus-, and motile-stage sea lice. We report louse abundances as well as supplementary observations of fish size, development, and health. © 2016 by the Ecological Society of America.

  13. Comparative Survival Study (CSS) of PIT-Tagged Spring/Summer Chinook and Summer Steelhead : 2008 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comparative Survival Study Oversight Committee and Fish Passage Center

    2008-12-02

    The Comparative Survival Study (CSS; BPA Project 199602000) began in 1996 with the objective of establishing a long term dataset of the survival rate of annual generations of salmon from their outmigration as smolts to their return to freshwater as adults to spawn (smolt-to-adult return rate; SAR). The study was implemented with the express need to address the question whether collecting juvenile fish at dams and transporting them downstream in barges and trucks and releasing them downstream of Bonneville Dam was compensating for the effect of the Federal Columbia River Power System (FCRPS) on survival of Snake Basin spring/summer Chinookmore » salmon migrating through the hydrosystem. The Completion of this annual report for the CSS signifies the 12th outmigration year of hatchery spring/summer Chinook salmon marked with Passive Integrated Transponder (PIT) tags as part of the CSS and the 9th complete brood year return as adults of those PIT-tagged fish (report covers adult returns from 1997-2006 hatchery Chinook juvenile migrations). In addition, the CSS has provided PIT-tags to on-going tagging operations for wild Chinook since 2002 (report covers adult returns from 1994-2006 wild Chinook juvenile migrations). The CSS tags wild steelhead on the lower Clearwater River and utilized wild and hatchery steelhead from other tagging operations in evaluations of transportation (report covers adult returns from 1997-2005 wild and hatchery steelhead migrations). The primary purpose of this report is to update the time series of smolt-to-adult survival rate data and related parameters with additional years of data since the completion of the CSS 10-yr retrospective analysis report (Schaller et al 2007). The 10-yr report provided a synthesis of the results from this ongoing study, the analytical approaches employed, and the evolving improvements incorporated into the study as reported in CSS annual progress reports. This current report specifically addresses the constructive comments of the most recent regional technical review conducted by the Independent Scientific Advisory Board and Independent Scientific Review Panel (ISAB and ISRP 2007). This report completes the 3-salt returns from migration years 2004 for wild and hatchery Chinook and steelhead (all returns are to Lower Granite Dam). For wild and hatchery Chinook, this report also provides 3-salt returns from migration year 2005 and 2-salt returns from migration year 2006 through a cutoff date of August 13, 2008. For wild and hatchery steelhead, it provides completed 2-salt returns for wild and hatchery steelhead that outmigrated in 2005 (any 3-salt returns of PIT-tagged steelhead are few, but will occur after July 1, 2008). All of the Chinook salmon evaluated in the CSS study exhibit a stream-type life history. All study fish used in this report were uniquely identifiable based on a PIT-tag implanted in the body cavity during (or before) the smolt life stage and retained through their return as adults. These tagged fish can then be detected as juveniles and adults at several locations of the Snake and Columbia rivers. Reductions in the number of individuals detected as the tagged fish grow older provide estimates of survival. This allows comparisons of survival over different life stages between fish with different experiences in the hydrosystem (e.g. transportation vs. in-river migrants and migration through various numbers of dams) as illustrated in Figure 1.1. The CSS is a long term study within the Northwest Power and Conservation Council's Columbia Basin Fish and Wildlife Program (NPCC FWP) and is funded by Bonneville Power Administration (BPA). Study design and analyses are conducted through a CSS Oversight Committee with representation from Columbia River Inter-Tribal Fish Commission (CRITFC), Idaho Department of Fish and Game (IDFG), Oregon Department of Fish and Wildlife (ODFW), U.S. Fish and Wildlife Service (USFWS), and Washington Department of Fish and Wildlife (WDFW). The Fish Passage Center (FPC) coordinates the PIT-tagging efforts, data management and preparation, and CSSOC work. The location of all tagging sites is identified in Figures 1.2 and 1.3. All draft and final written work products are subject to regional technical and public review and are available electronically on FPC and BPA websites: FPC: http://www.fpc.org/documents/CSS.html; and BPA: http://www.efw.bpa.gov/searchpublications/index.aspx?projid.« less

  14. Comparative analyses of animal-tracking data reveal ecological significance of endothermy in fishes

    PubMed Central

    Watanabe, Yuuki Y.; Goldman, Kenneth J.; Caselle, Jennifer E.; Chapman, Demian D.; Papastamatiou, Yannis P.

    2015-01-01

    Despite long evolutionary separations, several sharks and tunas share the ability to maintain slow-twitch, aerobic red muscle (RM) warmer than ambient water. Proximate causes of RM endothermy are well understood, but ultimate causes are unclear. Two advantages often proposed are thermal niche expansion and elevated cruising speeds. The thermal niche hypothesis is generally supported, because fishes with RM endothermy often exhibit greater tolerance to broad temperature ranges. In contrast, whether fishes with RM endothermy cruise faster, and achieve any ecological benefits from doing so, remains unclear. Here, we compiled data recorded by modern animal-tracking tools for a variety of free-swimming marine vertebrates. Using phylogenetically informed allometry, we show that both cruising speeds and maximum annual migration ranges of fishes with RM endothermy are 2–3 times greater than fishes without it, and comparable to nonfish endotherms (i.e., penguins and marine mammals). The estimated cost of transport of fishes with RM endothermy is twice that of fishes without it. We suggest that the high energetic cost of RM endothermy in fishes is offset by the benefit of elevated cruising speeds, which not only increase prey encounter rates, but also enable larger-scale annual migrations and potentially greater access to seasonally available resources. PMID:25902489

  15. Moonlight Drives Ocean-Scale Mass Vertical Migration of Zooplankton during the Arctic Winter.

    PubMed

    Last, Kim S; Hobbs, Laura; Berge, Jørgen; Brierley, Andrew S; Cottier, Finlo

    2016-01-25

    In extreme high-latitude marine environments that are without solar illumination in winter, light-mediated patterns of biological migration have historically been considered non-existent [1]. However, diel vertical migration (DVM) of zooplankton has been shown to occur even during the darkest part of the polar night, when illumination levels are exceptionally low [2, 3]. This paradox is, as yet, unexplained. Here, we present evidence of an unexpected uniform behavior across the entire Arctic, in fjord, shelf, slope and open sea, where vertical migrations of zooplankton are driven by lunar illumination. A shift from solar-day (24-hr period) to lunar-day (24.8-hr period) vertical migration takes place in winter when the moon rises above the horizon. Further, mass sinking of zooplankton from the surface waters and accumulation at a depth of ∼50 m occurs every 29.5 days in winter, coincident with the periods of full moon. Moonlight may enable predation of zooplankton by carnivorous zooplankters, fish, and birds now known to feed during the polar night [4]. Although primary production is almost nil at this time, lunar vertical migration (LVM) may facilitate monthly pulses of carbon remineralization, as they occur continuously in illuminated mesopelagic systems [5], due to community respiration of carnivorous and detritivorous zooplankton. The extent of LVM during the winter suggests that the behavior is highly conserved and adaptive and therefore needs to be considered as "baseline" zooplankton activity in a changing Arctic ocean [6-9]. VIDEO ABSTRACT. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Impact of estuary barrage construction on fish assemblages in the lower part of a river and the role of fishways as a passage

    NASA Astrophysics Data System (ADS)

    Yoon, Ju-Duk; Kim, Jeong-Hui; Park, Sang-Hyeon; Kim, Eve; Jang, Min-Ho

    2017-03-01

    The construction of an estuary barrage, an instream structure in the lower reaches of a river, causes significant physical changes in water flow patterns and river morphology, and results in altered environmental conditions. Here, we examined the impact of the Geum River estuary barrage, completed in 1990, on fish assemblages by using a literature search and fresh surveys of fishways in the barrage. We found that fish assemblages upstream and downstream of the barrage were altered following its completion. After construction, more species were found in the freshwater area, with a particularly great increase in freshwater species. Conversely, estuarine and marine species were only consistently caught in the downstream salt-water area, although the number of species increased. In total, 15,829 fish from 47 species and 20 families were identified at the three types (pool and weir, rubble type, and boat passage) of fishways in the barrage. The dominant species were Chelon haematocheilus, an estuarine species, Coilia nasus, a diadromous species, and Erythroculter erythropterus, a freshwater species. The mean total length of fish (101.9 ± 76.0 mm) in the boat passage fishway was approximately 100 mm lesser than those in the pool and weir (207.2 ± 112.8 mm) and rubble type (205.8 ± 112.7 mm) fishways. The boat passage fishway was the most efficient for fish movements. The current fishway system is not sufficient for fish migration, and thus additional ways are required to improve the system such as the boat passage. Few estuarine or diadromous species were found in both freshwater and salt-water areas, but freshwater fishes that accidently moved to salt-water area actively used fishways. Therefore, fishway management in the Geum River estuary barrage has to focus on freshwater fish; however, this may need to change to a focus on migratory fishes depending on ecological life cycles of migratory fish.

  17. Verification of a ‘freshwater-type’ life history variant of juvenile American shad in the Columbia River

    USGS Publications Warehouse

    Wetzel, Lisa A.; Larsen, Kimberly A.; Parsley, Michael J.; Zimmerman, Christian E.

    2011-01-01

    American shad are native to the Atlantic coast of North America and were successfully introduced to the Pacific coast in the 1870s. They are now more abundant in the Columbia River than are its native salmon. As in their native range, Columbia River American shad are anadromous and have been assumed to solely exhibit an ‘ocean-type’ life history, characterized by a short period of juvenile rearing in freshwater, followed by seaward migration and saltwater entry before age-1, with sexually mature individuals returning to freshwater to spawn beginning at age-3. During October 2007, emigrating juvenile American shad were captured in the juvenile fish monitoring facility at Bonneville Dam (river kilometer 235) on the Columbia River. Their length frequencies revealed the presence of two modes; the lower mode averaged 77 mm fork length (FL) and the upper mode averaged 184 mm FL. A subsample of fish from each mode was aged using otoliths. Otoliths from the lower mode (n=10) had no annuli, indicating that they were all age-0, while otoliths from the upper mode (n=25) had one or two annuli, indicating that they were either age-1 or age-2, respectively. Spawning adults collected in June 2007 averaged 393 mm FL (range 305-460 mm; n=21) and were estimated to range in age from 3-6. Elemental analyses of juvenile and adult otoliths provide evidence for deviations from the typical migration pattern expected for this species, including extensive freshwater rearing of up to two years. This evidence shows that a ‘freshwater-type’ of juvenile American shad exists as year-round or transient residents in the Columbia River basin. The ecological role of this life history variant within the fish community is unknown.

  18. Characterizing stopover sites of migrating passerine birds in the lower Chesapeake Bay region for conservation: an integrated radar-habitat study

    USGS Publications Warehouse

    Mabey, S.; Watts, B.; Paxton, B.; Smith, F.; Truitt, B.; Dawson, D.

    2005-01-01

    Many conservation organizations and initiatives including Partners-in-Flight and the U.S. Fish and Wildlife Service's regional Joint Ventures have identified migratory songbird stopover habitat as a priority conservation target. However, the spatial and temporal variability inherent in migration presents a number of challenges to both identifying and characterizing stopover habitat. Scarce conservation resources further demand that stopover sites be classified on a scale of priority so that conservation action can proceed according to ecological value. We are applying weather surveillance radar data collected from the National Weather Service WSR-88D at Wakefield, VA, and NASA's Doppler radar, NPOL, in Oyster, VA, to identify passerine stopover sites in the lower Chesapeake Bay region and develop spatial models to characterize these sites based on relative migrant abundance and consistency of use between and within seasons. We are using the stopover patterns to generate hypotheses regarding the habitat, geographic, and stochastic factors contributing to the distribution of migrants at a regional scale. We are testing these hypotheses with detailed habitat data and ground surveys of migrating birds with the goal of creating a generalized prioritization system for stopover site conservation.

  19. Environmental migratory patterns and stock identification of Mugil cephalus in the Spanish Mediterranean Sea, by means of otolith microchemistry

    NASA Astrophysics Data System (ADS)

    Callicó Fortunato, Roberta; Reguera Galán, Aida; García Alonso, Ignacio; Volpedo, Alejandra; Benedito Durà, Vicent

    2017-03-01

    The Flathead grey mullet, Mugil cephalus is the most globally-distributed Mugilidae species and its migrations and movement patterns have been studied globally but not in-depth in the Mediterranean region. Thus, the present study aimed: (1) to identify migratory patterns throughout the life-history of the Mugil cephalus in different Spanish Mediterranean wetlands, and (2) to study the presence of potential fish stocks of the species in the region, by means of otolith microchemistry. Specimens (n = 43) were obtained in three wetlands: Parque Natural Delta del Ebro (DE), a stratified estuary; Parque Natural de l'Albufera de Valencia (AV), a Mediterranean lake; and Parque Natural Salinas de Santa Pola (SP), a coastal salt marsh. Otolith microchemistry was studied using LA-ICP-MS (chronological variation of Sr:Ca and Ba:Ca ratios). The analysis of lifetime profiles revealed four behavioral patterns: Type I: most frequent use of estuarine environments (estuarine resident); Type II: freshwater behaviour during early life history, moving though estuarine to marine waters at the end of their profile (freshwater migrant); Type III: estuarine water use in early life stages moving then towards sea waters (estuarine migrant); and Type IV: sea/high salinity water habitat use during their entire lifetime (seawater resident). A Canonical Discriminant Analysis, using Sr:Ca and Ba:Ca ratios from core and edge as variables, assigned individuals to the detected patterns with high accuracy (Type I > 95%; Type II and Type III > 83%; and Type IV > 88%). Moreover, two potential fish stocks were identified by the analysis of Sr:Ca otoliths-edge ratios: one in the Valencian Gulf, DE-AV areas presented similar ratios, and the other in the southern location, SP (higher Sr:Ca values). Mugil cephalus presented diverse life patterns on the Valencian Community Mediterranean coast. Different strategies could be identified by the used methodology: some particular to an area (Type IV-SP); others shared among areas, changing environments in different stages of their life. The presence of different fish stocks could be influenced by a mesoscale current phenomenon observed in the region associated with the Balearic front.

  20. COMPLIANCE STUDIES: WHAT ABOUT THE FISH?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodley, Christa M.; Fischer, Eric S.; Wagner, Katie A.

    2013-08-21

    ABSTRACT It is understood that operational and structural conditions at hydroelectric facilities along with environmental conditions of the migration corridors affect the passage conditions for fish. Hydropower fish survival assessments at the individual- and population-level have progressed over the past decade with development of turbine simulation software and improvements in telemetry systems, in particular, micro-transmitters, cabled and autonomous receivers, and advanced statistical designs that provide precise estimates of passage routes and dam-passage survival. However, these approaches often ignore fish condition as a variable in passage and survival analyses. To account for fish condition effects on survival results, compliance statistical modelsmore » often require increased numbers of tagged fish. For example, prior to and during migration, fish encounter numerous stressors (e.g., disease, predation, contact with structures, decompression events), all of which can cause physical and physiological stress, altering the probability of survival after passage through a dam or a series of dams. In addition, the effects of surgical transmitter implantation process or the transmitter itself may cause physiological stress, alter behavior, and/or decrease survival. Careful physiological evaluations can augment survival model assumptions, resultant data, and predictive scenarios. To exemplify this, surgeons concurrently noted fish condition and surgical implantation during a multi-dam compliance study in 2011. The analyses indicted that surgeon observations on fish condition and surgical outcomes were related to 24 h holding mortalities and fish that never detected after release. Short reach and long reach survival were related to surgical outcomes and fish condition, respectively.« less

  1. Diverse Early Life-History Strategies in Migratory Amazonian Catfish: Implications for Conservation and Management

    PubMed Central

    Hegg, Jens C.; Giarrizzo, Tommaso; Kennedy, Brian P.

    2015-01-01

    Animal migrations provide important ecological functions and can allow for increased biodiversity through habitat and niche diversification. However, aquatic migrations in general, and those of the world’s largest fish in particular, are imperiled worldwide and are often poorly understood. Several species of large Amazonian catfish carry out some of the longest freshwater fish migrations in the world, travelling from the Amazon River estuary to the Andes foothills. These species are important apex predators in the main stem rivers of the Amazon Basin and make up the region’s largest fishery. They are also the only species to utilize the entire Amazon Basin to complete their life cycle. Studies indicate both that the fisheries may be declining due to overfishing, and that the proposed and completed dams in their upstream range threaten spawning migrations. Despite this, surprisingly little is known about the details of these species’ migrations, or their life history. Otolith microchemistry has been an effective method for quantifying and reconstructing fish migrations worldwide across multiple spatial scales and may provide a powerful tool to understand the movements of Amazonian migratory catfish. Our objective was to describe the migratory behaviors of the three most populous and commercially important migratory catfish species, Dourada (Brachyplatystoma rousseauxii), Piramutaba (Brachyplatystoma vaillantii), and Piraíba (Brachyplatystoma filamentosum). We collected fish from the mouth of the Amazon River and the Central Amazon and used strontium isotope signatures (87Sr/86Sr) recorded in their otoliths to determine the location of early rearing and subsequent. Fish location was determined through discriminant function classification, using water chemistry data from the literature as a training set. Where water chemistry data was unavailable, we successfully in predicted 87Sr/86Sr isotope values using a regression-based approach that related the geology of the upstream watershed to the Sr isotope ratio. Our results provide the first reported otolith microchemical reconstruction of Brachyplatystoma migratory movements in the Amazon Basin. Our results indicate that juveniles exhibit diverse rearing strategies, rearing in both upstream and estuary environments. This contrasts with the prevailing understanding that juveniles rear in the estuary before migrating upstream; however, it is supported by some fisheries data that has indicated the presence of alternate spawning and rearing life-histories. The presence of alternate juvenile rearing strategies may have important implications for conservation and management of the fisheries in the region. PMID:26153984

  2. Epizootics of wild fish induced by farm fish.

    PubMed

    Krkosek, Martin; Lewis, Mark A; Morton, Alexandra; Frazer, L Neil; Volpe, John P

    2006-10-17

    The continuing decline of ocean fisheries and rise of global fish consumption has driven aquaculture growth by 10% annually over the last decade. The association of fish farms with disease emergence in sympatric wild fish stocks remains one of the most controversial and unresolved threats aquaculture poses to coastal ecosystems and fisheries. We report a comprehensive analysis of the spread and impact of farm-origin parasites on the survival of wild fish populations. We mathematically coupled extensive data sets of native parasitic sea lice (Lepeophtheirus salmonis) transmission and pathogenicity on migratory wild juvenile pink (Oncorhynchus gorbuscha) and chum (Oncorhynchus keta) salmon. Farm-origin lice induced 9-95% mortality in several sympatric wild juvenile pink and chum salmon populations. The epizootics arise through a mechanism that is new to our understanding of emerging infectious diseases: fish farms undermine a functional role of host migration in protecting juvenile hosts from parasites associated with adult hosts. Although the migratory life cycles of Pacific salmon naturally separate adults from juveniles, fish farms provide L. salmonis novel access to juvenile hosts, in this case raising infection rates for at least the first approximately 2.5 months of the salmon's marine life (approximately 80 km of the migration route). Spatial segregation between juveniles and adults is common among temperate marine fishes, and as aquaculture continues its rapid growth, this disease mechanism may challenge the sustainability of coastal ecosystems and economies.

  3. Effects of Chiloquin Dam on spawning distribution and larval emigration of Lost River, shortnose, and Klamath largescale suckers in the Williamson and Sprague Rivers, Oregon

    USGS Publications Warehouse

    Martin, Barbara A.; Hewitt, David A.; Ellsworth, Craig M.

    2013-01-01

    Chiloquin Dam was constructed in 1914 on the Sprague River near the town of Chiloquin, Oregon. The dam was identified as a barrier that potentially inhibited or prevented the upstream spawning migrations and other movements of endangered Lost River (Deltistes luxatusChasmistes brevirostris) suckers, as well as other fish species. In 2002, the Bureau of Reclamation led a working group that examined several alternatives to improve fish passage at Chiloquin Dam. Ultimately it was decided that dam removal was the best alternative and the dam was removed in the summer of 2008. The U.S. Geological Survey conducted a long-term study on the spawning ecology of Lost River, shortnose, and Klamath largescale suckers (Catostomus snyderi) in the Sprague and lower Williamson Rivers from 2004 to 2010. The objective of this study was to evaluate shifts in spawning distribution following the removal of Chiloquin Dam. Radio telemetry was used in conjunction with larval production data and detections of fish tagged with passive integrated transponders (PIT tags) to evaluate whether dam removal resulted in increased utilization of spawning habitat farther upstream in the Sprague River. Increased densities of drifting larvae were observed at a site in the lower Williamson River after the dam was removed, but no substantial changes occurred upstream of the former dam site. Adult spawning migrations primarily were influenced by water temperature and did not change with the removal of the dam. Emigration of larvae consistently occurred about 3-4 weeks after adults migrated into a section of river. Detections of PIT-tagged fish showed increases in the numbers of all three suckers that migrated upstream of the dam site following removal, but the increases for Lost River and shortnose suckers were relatively small compared to the total number of fish that made a spawning migration in a given season. Increases for Klamath largescale suckers were more substantial. Post-dam removal monitoring only included 2 years with below average river discharge during the spawning season; data from years with higher flows may provide a different perspective on the effects of dam removal on the spawning migrations of the two endangered sucker species.

  4. Gene expression profiling of three different stressors in the water flea Daphnia magna.

    PubMed

    Jansen, Mieke; Vergauwen, Lucia; Vandenbrouck, Tine; Knapen, Dries; Dom, Nathalie; Spanier, Katina I; Cielen, Anke; De Meester, Luc

    2013-07-01

    Microarrays are an ideal tool to screen for differences in gene expression of thousands of genes simultaneously. However, often commercial arrays are not available. In this study, we performed microarray analyses to evaluate patterns of gene transcription following exposure to two natural and one anthropogenic stressor. cDNA microarrays compiled of three life stage specific and three stressor-specific EST libraries, yielding 1734 different EST sequences, were used. We exposed juveniles of the water flea Daphnia magna for 48, 96 and 144 h to three stressors known to exert strong selection in natural populations of this species i.e. a sublethal concentration of the pesticide carbaryl, infective spores of the endoparasite Pasteuria ramosa, and fish predation risk mimicked by exposure to fish kairomones. A total of 148 gene fragments were differentially expressed compared to the control. Based on a PCA, the exposure treatments were separated into two main groups based on the extent of the transcriptional response: a low and a high (144 h of fish or carbaryl exposure and 96 h of parasite exposure) stress group. Firstly, we observed a general stress-related transcriptional expression profile independent of the treatment characterized by repression of transcripts involved in transcription, translation, signal transduction and energy metabolism. Secondly, we observed treatment-specific responses including signs of migration to deeper water layers in response to fish predation, structural challenge of the cuticle in response to carbaryl exposure, and disturbance of the ATP production in parasite exposure. A third important conclusion is that transcription expression patterns exhibit stress-specific changes over time. Parasite exposure shows the most differentially expressed gene fragments after 96 h. The peak of differentially expressed transcripts came only after 144 h of fish exposure, while carbaryl exposure induced a more stable number of differently expressed gene fragments over time.

  5. Marine dispersal determines the genetic population structure of migratory stream fauna of Puerto Rico: evidence for island-scale population recovery processes

    Treesearch

    Benjamin D. Cook; Sofie Bernays; Catherine M. Pringle; Jane M. Hughes

    2009-01-01

    Various components of island stream faunas, including caridean shrimps, fish, and gastropods, undertake obligate amphidromous migration, whereby larvae are released in upstream freshwater reaches, drift downstream to estuaries or marine waters, then migrate upstream as postlarvae to freshwater adult habitats. Longitudinal migration from estuaries to headwaters is well...

  6. Does behavioural thermoregulation underlie seasonal movements in Lake Erie walleye?

    USGS Publications Warehouse

    Raby, Graham D.; Vandergoot, Christopher; Hayden, Todd A.; Faust, Matthew D.; Kraus, Richard T.; Dettmers, John M.; Cooke, Steven J.; Zhao, Yingming; Fisk, Aaron T.; Krueger, Charles C.

    2018-01-01

    Thermoregulation is presumed to be a widespread determinant of behaviour in fishes, but has not often been investigated as a mechanism shaping long-distance migrations. We used acoustic telemetry and animal-borne thermal loggers to test the hypothesis that seasonal migration in adult walleye (Sander vitreus) in Lake Erie is size- and (or) sex-specific and related to behavioural thermoregulation. Female walleye migrated out of the warm, shallow western basin earlier than did males and were 1.8 times more likely to be detected on acoustic receivers in the deeper and cooler eastern basin. The few fish that remained in the western basin were restricted to a smaller range of higher temperatures (≥20 °C) than those that migrated to the central and eastern basins (∼16–21 °C). However, temperature records from walleye in the central basin were nearly indistinguishable from those in the eastern basin, suggesting thermal preferences alone could not explain migration to the eastern basin. As such, our effort to understand the mechanisms that cause migratory behaviours has generated mixed evidence on the role of temperature and that factors like foraging opportunities may have synergistic roles in the migration.

  7. Novel Infection Site and Ecology of Cryptic Didymocystis sp. (Trematoda) in the Fish Scomberomorus maculatus.

    PubMed

    Schrandt, Meagan N; Andres, Michael J; Powers, Sean P; Overstreet, Robin M

    2016-06-01

    An undescribed, cryptic species of Didymocystis, as determined from sequences of 2 ribosomal genes and superficially similar to Didymocystis scomberomori ( MacCallum and MacCallum, 1916 ), infected the skin of the Spanish mackerel, Scomberomorus maculatus , in the north-central Gulf of Mexico (GOM). An analysis of 558 fish from 2011 to 2013 from Louisiana, Mississippi, Alabama, and the Florida panhandle showed the prevalence of the trematode varied both spatially and temporally but not with sex of the fish host. Month, year, and geographic location were identified by a negative binomial generalized linear model as indicators of the abundance and intensity of infection. Prevalence, abundance, and intensity of infection were greatest in spring and fall months off the Florida panhandle. Furthermore, the abundance and intensity of infection correlated negatively with fork length, weight, and gonad weight of mature fish but positively with longitude. Therefore, smaller adult fish tended to be more infected than larger adults, and prevalence and intensity increased from west to east (Louisiana to Florida). Spatial and temporal trends seemed to result from physical factors (e.g., water temperature, salinity, bottom type), but they also coincided with the annual migration of S. maculatus as fish moved northward along the GOM coastline from the southern tip of Florida in the spring months and returned in the fall, being present in the north-central GOM from late spring through fall. This pattern suggests the possibility that acquisition of infections occurred from a molluscan host in waters off the Florida panhandle.

  8. The effects of river impoundment and hatchery rearing on the migration behavior of juvenile steelhead in the Lower Snake River, Washington

    USGS Publications Warehouse

    Plumb, J.M.; Perry, R.W.; Adams, N.S.; Rondorf, D.W.

    2006-01-01

    We used radiotelemetry to monitor the migration behavior of juvenile hatchery and wild steelhead Oncorhynchus mykiss as they migrated through Lower Granite Reservoir and Dam on the lower Snake River, Washington. From 1996 to 2001, we surgically implanted radio transmitters in 1,540 hatchery steelhead and 1,346 wild steelhead. For analysis, we used the inverse Gaussian distribution to describe travel time distributions for cohorts (>50 fish) of juvenile steelhead as they migrated downriver. Mean travel rates were significantly related to reach- and discharge-specific water velocities. Also, mean travel rates near the dam were slower for a given range of water velocities than were mean travel rates through the reservoir, indicating that the presence of the dam caused delay to juvenile steelhead over and above the effect of water velocity. Hatchery steelhead took about twice as long as wild steelhead to pass the dam as a result of the higher proportions of hatchery steelhead traveling upriver from the dam. Because upriver travel and the resulting migration delay might decrease survival, it is possible that hatchery steelhead survive at lower rates than wild steelhead. Our analysis identified a discharge threshold (???2,400 m3/s) below which travel time and the percentage of fish traveling upriver from the dam increased rapidly, providing support for the use of minimum flow targets to mitigate for fish delay and possibly enhance juvenile steelhead survival.

  9. Hydroacoustic Assessment of Behavioral Responses by Fish Passing Near an Operating Tidal Turbine in the East River, New York

    DOE PAGES

    Bevelhimer, Mark; Scherelis, Constantin C.; Colby, Jonathan; ...

    2017-06-13

    An important environmental issue facing the marine and hydrokinetic energy industry is whether fish that encounter underwater energy devices are likely to be struck and injured by moving components, primarily rotating turbine blades. The automated analysis of nearly 3 weeks of multibeam hydroacoustics data identified about 35,000 tracks of fish passing a tidal turbine in the East River, New York. These tracks included both individual fish and schools during periods with the turbine absent, the turbine present and operating, and the turbine present but not operating. The density of fish in the sampled area when the turbine was absent wasmore » roughly twice the density observed when the turbine was in place, particularly when the turbine was operating. This suggests that some avoidance occurred before fish were close enough to the turbine to be observed by the hydroacoustics system. Various measures of swimming behavior (direction, velocity, and linearity) were calculated for each track and evaluated for indication of behavioral responses to turbine presence and operation. Fish tracks were grouped based on tidal cycle, current velocity, and swimming direction and were evaluated with respect to turbine presence and operation and with respect to distance from the turbine. Nonparametric tests (Kolmogorov–Smirnov test) and multivariate analysis (canonical discriminant analysis) found significant differences among groups with respect to turbine presence and operation, suggesting that some fish responded to the turbine by adjusting swimming behavior, such as making small adjustments to swimming direction and velocity as they passed near the turbine. We found no evidence that fish were being struck by rotating blades, but there did appear to be large-scale avoidance initiated out of the range of the hydroacoustics detection system. Furthermore, more study is needed to determine whether such avoidance behavior has significant ramifications for normal fish movement patterns, bioenergetics, seasonal migrations, and predator exposure.« less

  10. Hydroacoustic Assessment of Behavioral Responses by Fish Passing Near an Operating Tidal Turbine in the East River, New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bevelhimer, Mark; Scherelis, Constantin C.; Colby, Jonathan

    An important environmental issue facing the marine and hydrokinetic energy industry is whether fish that encounter underwater energy devices are likely to be struck and injured by moving components, primarily rotating turbine blades. The automated analysis of nearly 3 weeks of multibeam hydroacoustics data identified about 35,000 tracks of fish passing a tidal turbine in the East River, New York. These tracks included both individual fish and schools during periods with the turbine absent, the turbine present and operating, and the turbine present but not operating. The density of fish in the sampled area when the turbine was absent wasmore » roughly twice the density observed when the turbine was in place, particularly when the turbine was operating. This suggests that some avoidance occurred before fish were close enough to the turbine to be observed by the hydroacoustics system. Various measures of swimming behavior (direction, velocity, and linearity) were calculated for each track and evaluated for indication of behavioral responses to turbine presence and operation. Fish tracks were grouped based on tidal cycle, current velocity, and swimming direction and were evaluated with respect to turbine presence and operation and with respect to distance from the turbine. Nonparametric tests (Kolmogorov–Smirnov test) and multivariate analysis (canonical discriminant analysis) found significant differences among groups with respect to turbine presence and operation, suggesting that some fish responded to the turbine by adjusting swimming behavior, such as making small adjustments to swimming direction and velocity as they passed near the turbine. We found no evidence that fish were being struck by rotating blades, but there did appear to be large-scale avoidance initiated out of the range of the hydroacoustics detection system. Furthermore, more study is needed to determine whether such avoidance behavior has significant ramifications for normal fish movement patterns, bioenergetics, seasonal migrations, and predator exposure.« less

  11. Abundance, stock origin, and length of marked and unmarked juvenile Chinook salmon in the surface waters of greater Puget Sound

    USGS Publications Warehouse

    Rice, C.A.; Greene, C.M.; Moran, P.; Teel, D.J.; Kuligowski, D.R.; Reisenbichler, R.R.; Beamer, E.M.; Karr, J.R.; Fresh, K.L.

    2011-01-01

    This study focuses on the use by juvenile Chinook salmon Oncorhynchus tshawytscha of the rarely studied neritic environment (surface waters overlaying the sublittoral zone) in greater Puget Sound. Juvenile Chinook salmon inhabit the sound from their late estuarine residence and early marine transition to their first year at sea. We measured the density, origin, and size of marked (known hatchery) and unmarked (majority naturally spawned) juveniles by means of monthly surface trawls at six river mouth estuaries in Puget Sound and the areas in between. Juvenile Chinook salmon were present in all months sampled (April-November). Unmarked fish in the northern portion of the study area showed broader seasonal distributions of density than did either marked fish in all areas or unmarked fish in the central and southern portions of the sound. Despite these temporal differences, the densities of marked fish appeared to drive most of the total density estimates across space and time. Genetic analysis and coded wire tag data provided us with documented individuals from at least 16 source populations and indicated that movement patterns and apparent residence time were, in part, a function of natal location and time passed since the release of these fish from hatcheries. Unmarked fish tended to be smaller than marked fish and had broader length frequency distributions. The lengths of unmarked fish were negatively related to the density of both marked and unmarked Chinook salmon, but those of marked fish were not. These results indicate more extensive use of estuarine environments by wild than by hatchery juvenile Chinook salmon as well as differential use (e.g., rearing and migration) of various geographic regions of greater Puget Sound by juvenile Chinook salmon in general. In addition, the results for hatchery-generated timing, density, and length differences have implications for the biological interactions between hatchery and wild fish throughout Puget Sound. ?? American Fisheries Society 2011.

  12. Effects of host migration, diversity and aquaculture on sea lice threats to Pacific salmon populations.

    PubMed

    Krkosek, Martin; Gottesfeld, Allen; Proctor, Bart; Rolston, Dave; Carr-Harris, Charmaine; Lewis, Mark A

    2007-12-22

    Animal migrations can affect disease dynamics. One consequence of migration common to marine fish and invertebrates is migratory allopatry-a period of spatial separation between adult and juvenile hosts, which is caused by host migration and which prevents parasite transmission from adult to juvenile hosts. We studied this characteristic for sea lice (Lepeophtheirus salmonis and Caligus clemensi) and pink salmon (Oncorhynchus gorbuscha) from one of the Canada's largest salmon stocks. Migratory allopatry protects juvenile salmon from L. salmonis for two to three months of early marine life (2-3% prevalence). In contrast, host diversity facilitates access for C. clemensi to juvenile salmon (8-20% prevalence) but infections appear ephemeral. Aquaculture can augment host abundance and diversity and increase parasite exposure of wild juvenile fish. An empirically parametrized model shows high sensitivity of salmon populations to increased L. salmonis exposure, predicting population collapse at one to five motile L. salmonis per juvenile pink salmon. These results characterize parasite threats of salmon aquaculture to wild salmon populations and show how host migration and diversity are important factors affecting parasite transmission in the oceans.

  13. Endangered river fish: factors hindering conservation and restoration

    USGS Publications Warehouse

    Cooke, Steven J.; Paukert, Craig P.; Hogan, Zeb

    2012-01-01

    Globally, riverine fish face many anthropogenic threats including riparian and flood plain habitat degradation, altered hydrology, migration barriers, fisheries exploitation, environmental (climate) change, and introduction of invasive species. Collectively, these threats have made riverine fishes some of the most threatened taxa on the planet. Although much effort has been devoted to identifying the threats faced by river fish, there has been less effort devoted to identifying the factors that may hinder our ability to conserve and restore river fish populations and their watersheds. Therefore, we focus our efforts on identifying and discussing 10 general factors (can also be viewed as research and implementation needs) that constrain or hinder effective conservation action for endangered river fish: (1) limited basic natural history information; (2) limited appreciation for the scale/extent of migrations and the level of connectivity needed to sustain populations; (3) limited understanding of fish/river-flow relationships; (4) limited understanding of the seasonal aspects of river fish biology, particularly during winter and/or wet seasons; (5) challenges in predicting the response of river fish and river ecosystems to both environmental change and various restoration or management actions; (6) limited understanding of the ecosystem services provided by river fish; (7) the inherent difficulty in studying river fish; (8) limited understanding of the human dimension of river fish conservation and management; (9) limitations of single species approaches that often fail to address the broader-scale problems; and (10) limited effectiveness of governance structures that address endangered river fish populations and rivers that cross multiple jurisdictions. We suggest that these issues may need to be addressed to help protect, restore, or conserve river fish globally, particularly those that are endangered.

  14. Migration and diving behavior of Centrophorus squamosus in the NE Atlantic. Combining electronic tagging and Argo hydrography to infer deep ocean trajectories

    NASA Astrophysics Data System (ADS)

    Rodríguez-Cabello, Cristina; González-Pola, Cesar; Sánchez, Francisco

    2016-09-01

    A total of nine leafscale gulper sharks Centrophorus squamosus (Bonnaterre, 1788), were tagged with pop-up, satellite, archival, transmitting tags (PSAT) in the Marine Protected Area (MPA) of El Cachucho (Le Danois Bank) located in waters to the north of Spain, (NE Atlantic). Tags provided data on time, pressure and temperature that were used to examine movement patterns and diving behavior. Data collected from Argo floats in the study area have been used to devise a simple geolocation algorithm to infer the probable routes followed by this species. Tag release points revealed that C. squamosus moved both to the west (Galician waters) and to the north (Porcupine Bank) from the tagging area, suggesting well defined preferred pathways. The inferred trajectories indicated that sharks alternate periods constrained to specific geographical regions with quick and prompt movements covering large distances. Two sharks made conspicuous diurnal vertical migrations being at shallower depths around midnight and at maximum depths at midday, while other sharks did not make vertical migrations. Vertical movements were done smoothly and independently of the fish swimming long-distances or resting in the area. Overall results confirm that this species is highly migratory, supporting speeds of 20 nautical miles.day-1 and well capable to swim and make vertical migrations well above the abyssal plain.

  15. Seasonal and spatial variations in fish and macrocrustacean assemblage structure in Mad Island Marsh estuary, Texas

    NASA Astrophysics Data System (ADS)

    Akin, S.; Winemiller, K. O.; Gelwick, F. P.

    2003-05-01

    Fish and macrocrustacean assemblage structure was analyzed along an estuarine gradient at Mad Island Marsh (MIM), Matagorda Bay, TX, during March 1998-August 1999. Eight estuarine-dependent fish species accounted for 94% of the individual fishes collected, and three species accounted for 96% of macrocrustacean abundance. Consistent with evidence from other Gulf of Mexico estuarine studies, species richness and abundance were highest during late spring and summer, and lowest during winter and early spring. Sites near the bay supported the most individuals and species. Associations between fish abundance and environmental variables were examined with canonical correspondence analysis. The dominant gradient was associated with water depth and distance from the bay. The secondary gradient reflected seasonal variation and was associated with temperature, salinity, dissolved oxygen, and vegetation cover. At the scales examined, estuarine biota responded to seasonal variation more than spatial variation. Estuarine-dependent species dominated the fauna and were common throughout the open waters of the shallow lake during winter-early spring when water temperature and salinity were low and dissolved oxygen high. During summer-early fall, sub-optimal environmental conditions (high temperature, low DO) in upper reaches accounted for strong spatial variation in assemblage composition. Small estuarine-resident fishes and the blue crab ( Callinectes sapidus) were common in warm, shallow, vegetated inland sites during summer-fall. Estuarine-dependent species were common at deeper, more saline locations near the bay during this period. During summer, freshwater species, such as gizzard shad ( Dorosoma cepedianum) and gars ( Lepisosteus spp.), were positively associated with water depth and proximity to the bay. The distribution and abundance of fishes in MIM appear to result from the combined effects of endogenous, seasonal patterns of reproduction and migration operating on large spatial scales, and species-specific response to local environmental variation.

  16. Longitudinal structure in temperate stream fish communities: evaluating conceptual models with temporal data

    USGS Publications Warehouse

    Roberts, James H.; Hitt, Nathaniel P.

    2010-01-01

    Five conceptual models of longitudinal fish community organization in streams were examined: (1) niche diversity model (NDM), (2) stream continuum model (SCM), (3) immigrant accessibility model (IAM), (4) environmental stability model (ESM), and (5) adventitious stream model (ASM). We used differences among models in their predictions about temporal species turnover, along with five spatiotemporal fish community data sets, to evaluate model applicability. Models were similar in predicting a positive species richness–stream size relationship and longitudinal species nestedness, but differed in predicting either similar temporal species turnover throughout the stream continuum (NDM, SCM), higher turnover upstream (IAM, ESM), or higher turnover downstream (ASM). We calculated measures of spatial and temporal variation from spatiotemporal fish data in five wadeable streams in central and eastern North America spanning 34–68 years (French Creek [New York], Piasa Creek [Illinois], Spruce Run [Virginia], Little Stony Creek [Virginia], and Sinking Creek [Virginia]). All streams exhibited substantial species turnover (i.e., at least 27% turnover in stream-scale species pools), in contrast to the predictions of the SCM. Furthermore, community change was greater in downstream than upstream reaches in four of five streams. This result is most consistent with the ASM and suggests that downstream communities are strongly influenced by migrants to and from species pools outside the focal stream. In Sinking Creek, which is isolated from external species pools, temporal species turnover (via increased richness) was higher upstream than downstream, which is a pattern most consistent with the IAM or ESM. These results corroborate the hypothesis that temperate stream habitats and fish communities are temporally dynamic and that fish migration and environmental disturbances play fundamental roles in stream fish community organization.

  17. Fish assemblages in oxbow lakes relative to connectivity with the Mississippi River

    USGS Publications Warehouse

    Miranda, L.E.

    2005-01-01

    The alluvial valley of the lower Mississippi River contains hundreds of fluvial lakes that are periodically connected to the river during high water, although the frequency, duration, and timing of the connections vary. To help design plans to restore and preserve fish assemblages in these alluvial lakes, this investigation tested whether predictable patterns in lake fish assemblages were linked to the level of connectivity with the river. Results suggested that connectivity played an important role in structuring fish assemblages and that it was correlated with variables such as lake size, depth, distance from the river, and age, which exhibit a continuum of predictable features as the river migrates away from abandoned channels. Annual floods homogenize the floodplain and promote connectivity to various degrees, allowing for fish exchanges between river and floodplain that directly affect fish assemblages. The major physical changes linked to reduced connectivity are loss of depth and area, which in turn affect a multiplicity of abiotic and biotic features that indirectly affect community structure. In advanced stages of disconnection, fish assemblages in oxbow lakes are expected to include largely species that thrive in turbid, shallow systems with few predators and low oxygen content. When the river flowed without artificial restraint, oxbow lakes were created at the rate of 13-15 per century. At present, no or few oxbow lakes are being formed, and as existing lakes age, they are becoming shallower, smaller, and progressively more disconnected from the river. Given that modifications to the Mississippi River appear to be irreversible, conservation of this resource requires maintenance of existing lakes at a wide range of aging phases that provide diverse habitats and harbor distinct species assemblages.

  18. Identification of olfactory receptor genes in the Japanese grenadier anchovy Coilia nasus.

    PubMed

    Zhu, Guoli; Wang, Liangjiang; Tang, Wenqiao; Wang, Xiaomei; Wang, Cong

    2017-01-01

    Olfaction is essential for fish to detect odorant elements in the environment and plays a critical role in navigating, locating food and detecting predators. Olfactory function is produced by the olfactory transduction pathway and is activated by olfactory receptors (ORs) through the binding of odorant elements. Recently, four types of olfactory receptors have been identified in vertebrate olfactory epithelium, including main odorant receptors (MORs), vomeronasal type receptors (VRs), trace-amine associated receptors (TAARs) and formyl peptide receptors (FPRs). It has been hypothesized that migratory fish, which have the ability to perform spawning migration, use olfactory cues to return to natal rivers. Therefore, obtaining OR genes from migratory fish will provide a resource for the study of molecular mechanisms that underlie fish spawning migration behaviors. Previous studies of OR genes have mainly focused on genomic data, however little information has been gained at the transcript level. In this study, we identified the OR genes of an economically important commercial fish Coilia nasus through searching for olfactory epithelium transcriptomes. A total of 142 candidate MOR, 52 V2R/OlfC, 32 TAAR and two FPR putative genes were identified. In addition, through genomic analysis we identified several MOR genes containing introns, which is unusual for vertebrate MOR genes. The transcriptome-scale mining strategy proved to be fruitful in identifying large sets of OR genes from species whose genome information is unavailable. Our findings lay the foundation for further research into the possible molecular mechanisms underlying the spawning migration behavior in C. nasus .

  19. The organization of STI/HIV risk-taking among long-line fishermen in Bali, Indonesia.

    PubMed

    Setiawan, I Made; Patten, Jane H

    2010-01-01

    We report on selected findings of a qualitative social network study investigating STI/HIV-related risk among migrant fishermen based at one of Indonesia's major fishing ports in Bali. Their activities between fishing trips include drinking parties, watching pornographic videos, and visiting brothels, while condom use is rare. While on board, they plan and anticipate these activities and many insert penile implants. These fishermen run a high personal risk of contracting STI/HIV, and, with their circular migration patterns among Indonesian and foreign ports such as Thailand and South Africa, and with visits back to their rural hometowns and wives or girlfriends in Java, there is a serious risk of disease transmission to the general population. This paper argues that the role that social interactions play in HIV/AIDS-related risks should be considered as important as (if not more important than) individual knowledge, attitudes, and practices in the design of effective STI/HIV prevention programs.

  20. Lower Snake River, Fish and Wildlife Compensation. Status of the Warmwater Fishery and the Potential of Improving Warmwater Fish Habitat in the Lower Snake Reservoirs.

    DTIC Science & Technology

    1983-01-01

    fisheries for salaonids such as kokanee ( Oncorhynchus nerka ) and catchable rainbow trout. Goodnight (1972) report- ed catch rates of 1.42 fish/angler... Oncorhynchus tshawytscha) and steelhead trout (Salmo gairdneri) migrated to Shoshone Falls on the Snake River (PNRBC 1971). Construction of Swan Falls

  1. Influence of forest and rangeland management on anadromous fish habitat in Western North America: planning forest roads to protect salmonid habitat.

    Treesearch

    Carlton S. Yee; Terry D. Roelofs

    1980-01-01

    The construction and existence of forest roads, landings, and decking areas may have significant effects on anadromous fish habitat . Major effects discussed in this paper are increased sedimentation from transportation networks, the hindrance to fish migration of drainage structures, and possible changes in water quality from road stabilization additives. Guidelines...

  2. INDIVIDUAL BASED MODELLING APPROACH TO THERMAL REFUGE USE BY MIGRATING ADULT SALMON AND STEELHEAD

    EPA Science Inventory

    Diadromous fish populations in the Pacific Northwest face challenges along their migratory routes from declining habitat quality, harvest, and barriers to longitudinal connectivity. Changes in river temperature regimes are producing an additional challenge for upstream migrating ...

  3. Swimming activity in marine fish.

    PubMed

    Wardle, C S

    1985-01-01

    Marine fish are capable of swimming long distances in annual migrations; they are also capable of high-speed dashes of short duration, and they can occupy small home territories for long periods with little activity. There is a large effect of fish size on the distance fish migrate at slow swimming speeds. When chased by a fishing trawl the effect of fish size on swimming performance can decide their fate. The identity and thickness of muscle used at each speed and evidence for the timing of myotomes used during the body movement cycle can be detected using electromyogram (EMG) electrodes. The cross-sectional area of muscle needed to maintain different swimming speeds can be predicted by relating the swimming drag force to the muscle force. At maximum swimming speed one completed cycle of swimming force is derived in sequence from the whole cross-sectional area of the muscles along the two sides of the fish. This and other aspects of the swimming cycle suggest that each myotome might be responsible for generating forces involved in particular stages of the tail sweep. The thick myotomes at the head end shorten during the peak thrust of the tail blade whereas the thinner myotomes nearer the tail generate stiffness appropriate for transmission of these forces and reposition the tail for the next cycle.

  4. The novel use of pop-off satellite tags (PSATs) to investigate the migratory behaviour of European sea bass Dicentrarchus labrax.

    PubMed

    O'Neill, R; Ó Maoiléidigh, N; McGinnity, P; Bond, N; Culloty, S

    2018-05-01

    A total of 12 adult European sea bass Dicentrarchus labrax were tagged with pop-off satellite archival tags (PSAT) in Irish coastal waters and in offshore waters in the north-east Celtic Sea between 2015 and 2016. Archived data were successfully recovered from five of the 12 tags deployed, three from fish released in inshore Irish waters and two from fish released offshore in the eastern Celtic Sea. All three fish tagged in inshore waters were found to undertake migrations into the open ocean coinciding with the spawning period. These fish also exhibited fidelity to inshore sites post-migration, returning to the same general location (within c. 73 km, which is roughly the predicted mean accuracy of the method) of their original release site. Although the number of tracks obtained here was limited, some degree of aggregation between inshore and offshore tagged fish in the eastern Celtic Sea was noted during the expected spawning period suggesting PSATs can provide new information on specific spawning locations of European sea bass. © 2018 The Fisheries Society of the British Isles.

  5. Hoxa2 knockdown in Xenopus results in hyoid to mandibular homeosis.

    PubMed

    Baltzinger, Mireille; Ori, Michela; Pasqualetti, Massimo; Nardi, Irma; Rijli, Filippo M

    2005-12-01

    The skeletal structures of the face and throat are derived from cranial neural crest cells (NCCs) that migrate from the embryonic neural tube into a series of branchial arches (BAs). The first arch (BA1) gives rise to the upper and lower jaw cartilages, whereas hyoid structures are generated from the second arch (BA2). The Hox paralogue group 2 (PG2) genes, Hoxa2 and Hoxb2, show distinct roles for hyoid patterning in tetrapods and fishes. In the mouse, Hoxa2 acts as a selector of hyoid identity, while its paralogue Hoxb2 is not required. On the contrary, in zebrafish Hoxa2 and Hoxb2 are functionally redundant for hyoid arch patterning. Here, we show that in Xenopus embryos morpholino-induced functional knockdown of Hoxa2 is sufficient to induce homeotic changes of the second arch cartilage. Moreover, Hoxb2 is downregulated in the BA2 of Xenopus embryos, even though initially expressed in second arch NCCs, similar to mouse and unlike in zebrafish. Finally, Xbap, a gene involved in jaw joint formation, is selectively upregulated in the BA2 of Hoxa2 knocked-down frog embryos, supporting a hyoid to mandibular change of NCC identity. Thus, in Xenopus Hoxa2 does not act redundantly with Hoxb2 for BA2 patterning, similar to mouse and unlike in fish. These data bring novel insights into the regulation of Hox PG2 genes and hyoid patterning in vertebrate evolution and suggest that Hoxa2 function is required at late stages of BA2 development. Copyright 2005 Wiley-Liss, Inc.

  6. Distribution, migration behavior, habitat use, and species interactions of fall-released juvenile hatchery spring Chinook salmon in the Deschutes River, Oregon, 2003

    USGS Publications Warehouse

    Reagan, R.E.; Adams, N.S.; Rondorf, D.W.; Fitzgerald, G.; Spateholts, R.; Hoffman, T.; Olson, D.E.

    2005-01-01

    In a review of National Fish Hatcheries (NFH), the U.S. Fish and Wildlife Service (USFWS) identified the need to assess the fate of hatchery-reared fish and their potential effect on the aquatic community (USFWS 1998). Additionally, the National Marine Fisheries Service (NMFS) recommended monitoring and evaluating ecological interactions between hatchery and wild fish (NMFS 1999; Columbia River Biological Opinion). In 2003, a study was designed to investigate the fate of hatchery-reared fish and to assess habitat use and fish interactions in the Deschutes River, Oregon.

  7. Review of Recent Literature Relevant to the Environmental Effects of Marine and Hydrokinetic Energy Devices Task 2.1.3: Effects on Aquatic Organisms – Fiscal Year 2011 Progress Report Environmental Effects of Marine and Hydrokinetic Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kropp, Roy K.

    2011-09-30

    A literature search was conducted by using the Web of Science® Databases component of the ISI Web of KnowledgeSM to identify recent articles that would be useful to help assess the potential environmental effects of renewable energy development in the ocean, with emphasis on marine mammals, seabirds, and fish. Several relatively recent general review articles that included possible effects of marine renewable energy devices on marine mammals and seabirds were examined to begin the search process (e.g., Boehlert et al. 2008; Thompson et al. 2008; Simas et al. 2009). From these articles, several general topics of potential environmental effects onmore » marine mammals, seabirds, and fish were derived. These topics were used as the primary search factors. Searches were conducted with reference to the potential effects of offshore wind farms and MHK devices on marine mammals, seabirds, and fish. Additional sources were identified by cross-checking the Web of Science databases for articles that cited the review articles. It also became clear that often the potential effects were offered as hypotheses that often were not supported by the presentation of appropriate documentation. Therefore, the search was refined and focused on trying to obtain the necessary information to support or challenge a proposed potential effect to a specific concern. One of the expressed concerns regarding MHK devices is that placing wave parks in coastal waters could compromise the migration patterns of whales. Disruption of the annual migration of the gray whale (Eschrichtius robustus), which swims at least 30,000 km on its round trip from breeding grounds in Baja California to feeding areas in the Bering Sea, is of particular concern. Among the hypothesized effects on the migrating gray whales are increased predation risk by constricting migration corridor to between array and shore or by forcing the whales to swim into deeper waters, increased metabolic energy costs and delays in reaching the destinations, and interrupting feeding by blocking access to benthic areas under arrays. The literature search focused on identifying published studies that could provide information to evaluate these concerns. The results were developed into a case study that evaluated the potential effects of the placement of wave parks in coastal waters along the migration route of the gray whale. Wave parks and other MHK arrays may have additional effects on gray whales and other marine mammals, including entanglement in mooring lines and interference with communications among other effects, that were not included in this case study. The case study results were rewritten into a simpler form that would be suitable for placement on a web blog« less

  8. Short-term seaward fish migration in the Messolonghi Etoliko lagoons (Western Greek coast) in relation to climatic variables and the lunar cycle

    NASA Astrophysics Data System (ADS)

    Katselis, George; Koukou, Katerina; Dimitriou, Evagelos; Koutsikopoulos, Constantin

    2007-07-01

    In the present study we analysed the daily seaward migratory behaviour of four dominant euryhaline fish species (Mugilidae: Liza saliens, Liza aurata, Mugil cephalus and Sparidae: Sparus aurata) in the Messolonghi Etoliko lagoon system (Western Greek coast) based on the daily landings' time series of barrier traps and assessed the relationship between their migratory behaviour and various climatic variables (air temperature and atmospheric pressure) and the lunar cycle. A 2-year time series of daily fish landings (1993 and 1994), a long time series of daily air temperature and daily temperature range (1991 1998) as well as a 4-year time series of the daily atmospheric pressure (1994 1997) and daily pressure range were used. Harmonic models (HM) consisting of annual and lunar cycle harmonic components explained most (R2 > 0.80) of the mean daily species landings and temperature variations, while a rather low part of the variation (0.18 < R2 < 0.27) was explained for pressure, daily pressure range and daily temperature range. In all the time series sets the amplitude of the annual component was highest. The model values of all species revealed two important migration periods (summer and winter) corresponding to the spawning and refuge migrations. The lunar cycle effect on species' daily migration rates and the short-term fluctuation of daily migration rates were rather low. However, the short-term fluctuation of some species' daily migration rates during winter was greater than during summer. In all species, the main migration was the spawning migration. The model lunar components of the species landings showed a monthly oscillation synchronous to the full moon (S. aurata and M. cephalus) or a semi-monthly oscillation synchronous to the new and full moon (L. aurata and L. saliens). Bispectral analysis of the model values and the model residuals' time series revealed that the species daily migration were correlated (coherencies > 0.6) to the daily fluctuations of the climatic variables at seasonal, mid and short-term scales.

  9. Temporal migration patterns between natal locations of ruby-throated hummingbirds (Archilochus colubris) and their Gulf Coast stopover site.

    PubMed

    Zenzal, Theodore J; Contina, Andrea J; Kelly, Jeffrey F; Moore, Frank R

    2018-01-01

    Autumn latitudinal migrations generally exhibit one of two different temporal migration patterns: type 1 where southern populations migrate south before northern populations, or type 2 where northern populations overtake southern populations en route . The ruby-throated hummingbird ( Archilochus colubris ) is a species with an expansive breeding range, which allows opportunities to examine variation in the timing of migration. Our objective was to determine a relationship between natal origin of ruby-throated hummingbirds and arrival at a Gulf coast stopover site; and if so, what factors, such as differences in body size across the range as well as the cost of migration, might drive such a pattern. To carry out our objectives, we captured hummingbirds at a coastal stopover site during autumn migration, at which time we collected feathers from juveniles for analysis of hydrogen stable isotopes. Using the hydrogen stable isotope gradient of precipitation across North America and published hydrogen isotope values of feathers from populations of breeding ruby-throated hummingbirds, we assigned migrants to probable natal latitudes. Our results confirm that individuals from across the range (30-50° N) stopover along the Gulf of Mexico and there is a positive relationship between arrival day and latitude, suggesting a type 1 migration pattern. We also found no relationship between fuel load (proxy for migration cost) or fat-free body mass (proxy for body size) and natal latitude. Our results, coupled with previous work on the spatial migration patterns of hummingbirds, show a type 1 chain migration pattern. While the mechanisms we tested do not seem to influence the evolution of migratory patterns, other factors such as resource availability may play a prominent role in the evolution of this migration system.

  10. Walla Walla River Fish Passage Operations Program, 2000-2001 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimmerman, Brian C.; Duke, Bill B.

    2004-02-01

    In the late 1990's, the Confederated Tribes of the Umatilla Indian Reservation, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife, along with many other agencies, began implementing fisheries restoration activities in the Walla Walla Basin. An integral part of these efforts is to alleviate the inadequate migration conditions in the basin. The migration concerns are being addressed by removing diversion structures, constructing fish passage facilities, implementing minimum instream flow measures, and initiating trap and haul efforts. The objective of the Walla Walla River Fish Passage Operations Project is to increase the survival of migrating adultmore » and juvenile salmonids in the basin. The project is responsible for coordinating operation and maintenance of ladders, screen sites, bypasses, trap facilities, and transportation equipment. In addition, the project provides technical input on passage criteria and passage and trapping facility design and operation. Operation of the various passage facilities and passage criteria guidelines are outlined in an annual operations plan that the project develops. During the 2000-2001 project year, there were 624 summer steelhead (Oncorhynchus mykiss), 24 bull trout (Salvelinus confluentus), and 47 spring chinook (O. tshawytscha) counted at the Nursery Bridge Dam adult trap between December 27, 2000 and June 7, 2001. The Little Walla Walla River juvenile trap was not operated this year. The project transported 1600 adult spring chinook from Ringold Springs Hatchery to the South Fork Walla Walla Brood Holding Facility and outplanted 1156 for natural spawning in the basin. The project also provided equipment for transportation of juveniles captured during the construction fish salvage at Nursery Bridge Dam.« less

  11. Goldspotted spinefoot Siganus punctatus (Siganidae) age-based reproductive life history and fisheries vulnerability.

    PubMed

    Rhodes, K; Hernandez-Ortiz, D; Ioanis, M; Washington, W; Maxim, S; Olpet, K; Malakai, S

    2017-11-01

    Between February 2015 and 2016, samples of the Indo-Pacific goldspotted spinefoot Siganus punctatus were taken from local fish markets, feeding sites and nursery grounds on the main island of Pohnpei, Micronesia, to ascertain sexual pattern, reproductive seasonality, age, growth and mortality. Microscopic examinations of gonads identified two seasonal peaks in reproduction: February to May and September to December, with evidence of some spawning activity in most months. Ripe females were observed 4 days on either side of the new moon. Females first matured at c. 180 mm fork length (L F ) and 1 year of age, which coincides with their entry into the fishery. Ninety five per cent of individuals were less than 3 years and the oldest fish were 8 years. To examine the species vulnerability to fishing, a tag-and-recapture study was conducted over 4 months in 2015 in a locally managed marine area and at an unprotected site. Findings suggest high residency and high vulnerability to fishing at shallow-water feeding sites and restricted migration overall. The placement of marine protected areas within critical habitat appears to be an effective conservation strategy for this species, particularly when combined with gear and seasonal market restrictions during vulnerable life-history phases. © 2017 The Fisheries Society of the British Isles.

  12. Accuracy of Assignment of Atlantic Salmon (Salmo salar L.) to Rivers and Regions in Scotland and Northeast England Based on Single Nucleotide Polymorphism (SNP) Markers

    PubMed Central

    Gilbey, John; Cauwelier, Eef; Coulson, Mark W.; Stradmeyer, Lee; Sampayo, James N.; Armstrong, Anja; Verspoor, Eric; Corrigan, Laura; Shelley, Jonathan; Middlemas, Stuart

    2016-01-01

    Understanding the habitat use patterns of migratory fish, such as Atlantic salmon (Salmo salar L.), and the natural and anthropogenic impacts on them, is aided by the ability to identify individuals to their stock of origin. Presented here are the results of an analysis of informative single nucleotide polymorphic (SNP) markers for detecting genetic structuring in Atlantic salmon in Scotland and NE England and their ability to allow accurate genetic stock identification. 3,787 fish from 147 sites covering 27 rivers were screened at 5,568 SNP markers. In order to identify a cost-effective subset of SNPs, they were ranked according to their ability to differentiate between fish from different rivers. A panel of 288 SNPs was used to examine both individual assignments and mixed stock fisheries and eighteen assignment units were defined. The results improved greatly on previously available methods and, for the first time, fish caught in the marine environment can be confidently assigned to geographically coherent units within Scotland and NE England, including individual rivers. As such, this SNP panel has the potential to aid understanding of the various influences acting upon Atlantic salmon on their marine migrations, be they natural environmental variations and/or anthropogenic impacts, such as mixed stock fisheries and interactions with marine power generation installations. PMID:27723810

  13. Evidence for long-term change in length, mass and migration phenology of anadromous spawners in French Atlantic salmon Salmo salar.

    PubMed

    Bal, G; Montorio, L; Rivot, E; Prévost, E; Baglinière, J-L; Nevoux, M

    2017-06-01

    This study provides new data on Atlantic salmon Salmo salar life-history traits across France. Using a long-term recreational angling database (1987-2013) covering 34 rivers in three regions (genetic units), a decline in individual length, mass and a delayed adult return to French rivers was reported. Temporal similarities in trait variations between regions may be attributed to common change in environmental conditions at sea. The relative rate of change in phenotypic traits was more pronounced in early maturing fish [1 sea-winter (1SW) fish] than in late maturing fish (2SW fish). Such contrasted response within populations highlights the need to account for the diversity in life histories when exploring mechanisms of phenotypic change in S. salar. Such detailed life-history data on returning S. salar have not previously been reported from France. This study on French populations also contributes to reducing the gap in knowledge by providing further empirical evidence of a global pattern in S. salar across its distribution range. Results are consistent with the hypothesis that the observed changes in life-history traits are primarily associated with environmental changes in the North Atlantic Ocean. They also emphasize the presence of less important, but still significant contrasts between region and life history. © 2017 The Fisheries Society of the British Isles.

  14. Analysis of impediments to spawning migrations of anadromous fishes in Virginia rivers : final report.

    DOT National Transportation Integrated Search

    1985-01-01

    The historic and present ranges of anadromous alosids and striped bass were determined for three of Virginia's rivers. American shad, blueback herring, and alewives migrated to at least Remington (river mile 188) on the Rappahannock River. They ascen...

  15. INDIVIDUAL BASED MODELLING APPROACH TO THERMAL REFUGE USE BY MIGRATING ADULT SALMON AND STEELHEAD: Part II

    EPA Science Inventory

    Diadromous fish populations in the Pacific Northwest face challenges along their migratory routes from declining habitat quality, harvest, and barriers to longitudinal connectivity. Changes in river temperature regimes are producing an additional challenge for upstream migrating ...

  16. Mate choice and body pattern variations in the Crown Butterfly fish Chaetodon paucifasciatus (Chaetodontidae)

    PubMed Central

    Levy, Keren; Lerner, Amit; Shashar, Nadav

    2014-01-01

    ABSTRACT Mate choice is an important ecological behavior in fish, and is often based on visual cues of body patterns. The Crown Butterfly fish Chaetodon paucifasciatus (Chaetodontidae) is a monogamist, territorial species; it swims in close proximity to its partner throughout most of its life. This species is characterized by a pattern of 6–8 vertical black stripes on a white background, on both sides of its body. Our aim was to define spatial features (variations) in body patterns by evaluating the level of dissimilarity between both sides of each individual fish, and the level of dissimilarity between patterns of different individuals. In addition, we tested whether the fish are attracted to or reject specific features of the body patterns. Features were defined and counted using photographs of body patterns. Attraction to or rejection of specific features were tested behaviorally using a dual-choice experiment of video animations of individuals swimming over a coral-reef background. We found that the patterns of each fish and sides of the body were no less dissimilar, compared intraspecificly to other fish, and that each side pattern was unique and distinguishable. Variations in the patterns occurred mostly in the last three posterior stripes. Individuals were mainly attracted to conspecifics with multiple crossing patterns (two or more consecutive crossings), and rejected patterns with holes. Our results suggest that in this species the unique body pattern of each fish is used for conspecific identification of mates and intruders. PMID:25432516

  17. Evaluating the effectiveness of restoring longitudinal connectivity for stream fish communities: towards a more holistic approach.

    PubMed

    Tummers, Jeroen S; Hudson, Steve; Lucas, Martyn C

    2016-11-01

    A more holistic approach towards testing longitudinal connectivity restoration is needed in order to establish that intended ecological functions of such restoration are achieved. We illustrate the use of a multi-method scheme to evaluate the effectiveness of 'nature-like' connectivity restoration for stream fish communities in the River Deerness, NE England. Electric-fishing, capture-mark-recapture, PIT telemetry and radio-telemetry were used to measure fish community composition, dispersal, fishway efficiency and upstream migration respectively. For measuring passage and dispersal, our rationale was to evaluate a wide size range of strong swimmers (exemplified by brown trout Salmo trutta) and weak swimmers (exemplified by bullhead Cottus perifretum) in situ in the stream ecosystem. Radio-tracking of adult trout during the spawning migration showed that passage efficiency at each of five connectivity-restored sites was 81.3-100%. Unaltered (experimental control) structures on the migration route had a bottle-neck effect on upstream migration, especially during low flows. However, even during low flows, displaced PIT tagged juvenile trout (total n=153) exhibited a passage efficiency of 70.1-93.1% at two nature-like passes. In mark-recapture experiments juvenile brown trout and bullhead tagged (total n=5303) succeeded in dispersing upstream more often at most structures following obstacle modification, but not at the two control sites, based on a Laplace kernel modelling approach of observed dispersal distance and barrier traverses. Medium-term post-restoration data (2-3years) showed that the fish assemblage remained similar at five of six connectivity-restored sites and two control sites, but at one connectivity-restored headwater site previously inhabited by trout only, three native non-salmonid species colonized. We conclude that stream habitat reconnection should support free movement of a wide range of species and life stages, wherever retention of such obstacles is not needed to manage non-native invasive species. Evaluation of the effectiveness of fish community restoration in degraded streams benefits from a similarly holistic approach. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Survival and migration behavior of juvenile Coho Salmon in the Klamath River relative to discharge at Iron Gate Dam, Northern California, 2007

    USGS Publications Warehouse

    Beeman, John W.; Juhnke, Steve; Stutzer, Greg; Hetrick, Nicholas

    2008-01-01

    This report describes a study of survival and migration behavior of radio-tagged juvenile coho salmon (Oncorhynchus kisutch) in the Klamath River, northern California, in 2007. This was the third year of a multi-year study with the goal of determining the effects of discharge at Iron Gate Dam (IGD) on survival of juvenile coho salmon downstream. Survival and factors affecting survival were estimated in 2006 and 2007 after work in 2005 showed radio telemetry could be used effectively. The study has included collaborative efforts among U.S. Geological Survey (USGS), U.S. Fish and Wildlife Service (USFWS), the Karuk and Yurok Tribal Fisheries Departments, and the U.S. Bureau of Reclamation. The objectives of the study included: (1) estimating the survival of wild and hatchery juvenile coho salmon in the Klamath River downstream of Iron Gate Dam, determining the effects of discharge and other covariates on juvenile coho salmon survival (2) and migration (3), and (4) determining if fish from Iron Gate Hatchery (IGH) could be used as surrogates for the limited source of wild fish. We have been able to meet the first objective by estimating the survivals of hatchery and wild fish (when available) downstream of IGD. We have not yet met the second or third objectives, because we have been unable to separate effects of discharge from other environmental variables as they pertain to the survival or migration of juvenile coho salmon. This was foreseen when the study began, as it was known there would likely be no experimental discharges. A multi-year analysis will be conducted after the data for the third planned year are available. The fourth objective was initiated in 2006, but wild fish were not available in 2007. The next year wild fish may be available is in 2009, based on their 3-year cycle of abundance. River discharges during the 2007 study period (April 10 through July 28, 2007) were below average compared to the period of record beginning in 1962. Average daily discharge at IGD was 1,518 cubic feet per second (ft3/s) and ranged from 1,020 to 2,460 ft3/s. Average daily discharge near the estuary at river kilometer (rkm) 13 was 9,820 ft3/s and ranged from 3,270 to 20,500 ft3/s. This study was based on hatchery fish taken directly from a holding tank at IGH. Wild fish were not available in numbers sufficient for use in 2007. Fish tagging began on April 9 and concluded on May 17, 2007. A total of 246 hatchery coho salmon were tagged and released, split evenly between releases in the Klamath River near IGH (rkm 309) and near the Tree of Heaven campground at rkm 280. The two release sites were used to enable estimation of a relative survival between IGH and the campground using the paired-release design, because potential effects of tagging and handling can be cancelled out with this method. However, the assumption that the survival probabilities of fish from each release site are equal in the reaches they have in common was violated, preventing its use in 2007. All estimates of survival were therefore calculated using the single-release design. The reach-specific estimates of survival were lower in 2007 than in 2006, but a similar survival pattern was evident among reaches in each year. The survival from IGH to rkm 33 was 0.653 [standard error (SE) 0.039] in 2006 and 0.497 (SE 0.044) in 2007. In each year, the reaches with the lowest survivals were upstream of the Scott River, which also is the area with the greatest differences in survivals between years. The reach with the highest survivals were in the Salmon River-to-Trinity River reach (at or near 1.0 in each year). The cause of the difference in survivals in each year were not identified, but could be related to differences in discharge or turbidity, as these are the primary differences between the years. These differences and other effects will be analyzed when the data from all study years (initially planned for 2006 through 2008) are available. Models of su

  19. A genetically distinct hybrid zone occurs for two globally invasive mosquito fish species with striking phenotypic resemblance.

    PubMed

    Wilk, Rebecca J; Horth, Lisa

    2016-12-01

    Hybrid zones allow for the investigation of incipient speciation and related evolutionary processes of selection, gene flow, and migration. Interspecific dynamics, like competition, can impact the size, shape, and directional movement of species in hybrid zones. Hybrid zones contribute to a paradox for the biological species concept because interbreeding between species occurs while parental forms remain distinct. A long-standing zone of intergradation or introgression exists for eastern and western mosquito fish ( Gambusia holbrooki and G. affinis ) around Mobile Bay, AL. The region has been studied episodically, over decades, making it perfect for addressing temporal dynamics and for providing a deeper understanding of the genetics of these periodically reclassified fishes (as species or subspecies). We used six microsatellite markers to assess the current population structure and gene flow patterns across 19 populations of mosquito fish and then compared our results with historical data. Genetic evidence demonstrates that the current hybrid zone is located in a similar geographic region as the historical one, even after three decades. Hybrid fish, however, demonstrate relatively low heterozygosity and are genetically distinct from western and eastern mosquito fish populations. Fin ray counts, sometimes used to distinguish the two species from one another, demonstrate more eastern ( G. holbrooki) phenotype fish within the molecular genetic hybrid zone today. Mosquito fish are globally invasive, often found on the leading edge of flooded waters that they colonize, so the impact of hurricanes in the wake of climate change was also evaluated. An increase in the frequency and intensity of hurricanes in the hybrid region has occurred, and this point warrants further attention since hurricanes are known to move these aggressive, invasive species into novel territory. This work contributes to our classical understanding of hybrid zone temporal dynamics, refines our understanding of mosquito fish genetics in their native range, evaluates important genotype-phenotype relationships, and identifies a potential new impact of climate change.

  20. The giant mottled eel, Anguilla marmorata, uses blue-shifted rod photoreceptors during upstream migration.

    PubMed

    Wang, Feng-Yu; Fu, Wen-Chun; Wang, I-Li; Yan, Hong Young; Wang, Tzi-Yuan

    2014-01-01

    Catadromous fishes migrate between ocean and freshwater during particular phases of their life cycle. The dramatic environmental changes shape their physiological features, e.g. visual sensitivity, olfactory ability, and salinity tolerance. Anguilla marmorata, a catadromous eel, migrates upstream on dark nights, following the lunar cycle. Such behavior may be correlated with ontogenetic changes in sensory systems. Therefore, this study was designed to identify changes in spectral sensitivity and opsin gene expression of A. marmorata during upstream migration. Microspectrophotometry analysis revealed that the tropical eel possesses a duplex retina with rod and cone photoreceptors. The λmax of rod cells are 493, 489, and 489 nm in glass, yellow, and wild eels, while those of cone cells are 508, and 517 nm in yellow, and wild eels, respectively. Unlike European and American eels, Asian eels exhibited a blue-shifted pattern of rod photoreceptors during upstream migration. Quantitative gene expression analyses of four cloned opsin genes (Rh1f, Rh1d, Rh2, and SWS2) revealed that Rh1f expression is dominant at all three stages, while Rh1d is expressed only in older yellow eel. Furthermore, sequence comparison and protein modeling studies implied that a blue shift in Rh1d opsin may be induced by two known (N83, S292) and four putative (S124, V189, V286, I290) tuning sites adjacent to the retinal binding sites. Finally, expression of blue-shifted Rh1d opsin resulted in a spectral shift in rod photoreceptors. Our observations indicate that the giant mottled eel is color-blind, and its blue-shifted scotopic vision may influence its upstream migration behavior and habitat choice.

  1. Ontogenetic behavior and migration of Atlantic sturgeon, Acipenser oxyrinchus oxyrinchus, and shortnose sturgeon, A. brevirostrum, with notes on social behavior

    USGS Publications Warehouse

    Kynard, B.; Horgan, M.

    2002-01-01

    Ontogenetic behavior of Hudson River Atlantic sturgeon and Connecticut River shortnose sturgeon early life intervals were similar during laboratory observations. After hatching, free embryos were photonegative and sought cover. When embryos developed into larvae, fish left cover, were photopositive, and initiated downstream migration. Free embryos may remain at the spawning site instead of migrating downstream because the risk of predation at spawning sites is low. The two species are sympatric, but not closely related, so the similarities in innate behaviors suggest common adaptations, not phylogenetlc relationship. Atlantic sturgeon migrated downstream for 12 days (peak, first 6 days), shortnose sturgeon migrated for 3 days, and year-0 juveniles of both species did not resume downstream migration. Short or long migrations of larvae may reflect different styles related to the total migratory distance from spawning sites to juvenile rearing areas. Atlantic sturgeon need to move a short distance to reach rearing areas and they had a long 1-step migration of 6-12 days. In contrast, shortnose sturgeon need to move a long distance to reach all rearing areas. This may be accomplished by a 2-step migration, of which the brief migration of larvae is only the first step. Early migrant Atlantic sturgeon were nocturnal, while late migrants were diurnal, and shortnose sturgeon were diurnal. These diel differences may also be adaptations for long (Atlantic sturgeon) or short (shortnose sturgeon) migrations. Cultured shortnose sturgeon, and possibly Atlantic sturgeon, have a dominance hierarchy with large fish dominant when competing for limited foraging space. Social behavior may be more important in the life history of wild sturgeons than is generally recognized.

  2. Spatial patterns and movements of red king and Tanner crabs: Implications for the design of marine protected areas

    USGS Publications Warehouse

    Taggart, S. James; Mondragon, Jennifer; Andrews, A.G.; Nielsen, J.K.

    2008-01-01

    Most examples of positive population responses to marine protected areas (MPAs) have been documented for tropical reef species with very small home ranges; the utility of MPAs for commercially harvested temperate species that have large movement patterns remains poorly tested. We measured the distribution and abundance of red king Paralithodes camtschaticus and Tanner Chionoecetes bairdi crabs inside and outside of MPAs in Glacier Bay National Park, Alaska, USA. By tagging a sub-sample of crabs with sonic tags, we estimated the movement of adult crabs from one of the MPAs (Muir Inlet) into the central portion of Glacier Bay where fishing still occurs. Tanner crabs and red king crabs moved similar average distances per day, although Tanner crabs had a higher transfer out of the Muir Inlet MPA into the central bay. Tanner crab movements were characterized by large variation among individual crabs, both in distance and direction traveled, while red king crabs migrated seasonally between 2 specific areas. Although Tanner crabs exhibited relatively large movements, distribution and abundance data suggest that they may be restricted at large spatial scales by habitat barriers. MPAs that are effective at protecting king and especially Tanner crab brood stock from fishing mortality will likely need to be larger than is typical of MPAs worldwide. However, by incorporating information on the seasonal movements of red king crabs and the location of habitat barriers for Tanner crabs, MPAs could likely be designed that would effectively protect adults from fishing mortality. ?? Inter-Research 2008.

  3. Seasonal migration and homing of channel catfish in the lower Wisconsin River, Wisconsin

    USGS Publications Warehouse

    Pellett, Thomas D.; Van Dyck, Gene J.; Adams, Jean V.

    1998-01-01

    A multiyear tag and recapture study was conducted to determine whether channel catfishIctalurus punctatus were migratory and if they had strong homing tendencies. Over 10,000 channel catfish were tagged from the lower Wisconsin River and adjacent waters of the upper Mississippi River during the 3-year sampling period. Data on movements were obtained from study recaptures and through tag returns and harvest information provided by sport anglers and commercial fishers. Channel catfish occupied relatively small home ranges during summer, migrated downstream to the upper Mississippi River in autumn, then migrated back up the Wisconsin River in spring to spawn and to occupy the same summer home sites they had used in previous summers. Fish size was a factor in the degree of fidelity to summer home sites, with larger fish showing greater fidelity.

  4. Periodic sediment shift in migrating ripples influences benthic microbial activity

    NASA Astrophysics Data System (ADS)

    Zlatanović, Sanja; Fabian, Jenny; Mendoza-Lera, Clara; Woodward, K. Benjamin; Premke, Katrin; Mutz, Michael

    2017-06-01

    Migrating bedforms have high levels of particulate organic matter and high rates of pore water exchange, causing them to be proposed as hot spots of carbon turnover in rivers. Yet, the shifting of sediments and associated mechanical disturbance within migrating bedforms, such as ripples, may stress and abrade microbial communities, reducing their activity. In a microcosm experiment, we replicated the mechanical disturbances caused by the periodic sediment shift within ripples under oligotrophic conditions. We assessed the effects on fungal and bacterial biomass ratio (F:B), microbial community respiration (CR), and bacterial production (BCP) and compared with stable undisturbed sediments. Interactions between periodic mechanical disturbance and sediment-associated particulate organic matter (POM) were tested by enriching sediments collected from migrating ripples with different qualities of POM (fish feces, leaf litter fragments and no addition treatments). F:B and BCP were affected by an interaction between mechanical disturbance and POM quality. Fish feces enriched sediments showed increased F:B and BCP compared to sediments with lower POM quality and responded with a decrease of F:B and BCP to sediment disturbance. In the other POM treatments F:B and BCP were not affected by disturbance. Microbial respiration was however reduced by mechanical disturbance to similar low activity levels regardless of POM qualities added, whereas fish feces enriched sediment showed short temporary boost of CR. With the worldwide proliferation of migrating sand ripples due to massive catchment erosion, suppressed mineralization of POM will increasingly affect stream metabolism, downstream transport of POM and carbon cycling from reach to catchment scale.

  5. Hybrid mechanosensing system to generate the polarity needed for migration in fish keratocytes

    PubMed Central

    Okimura, Chika; Iwadate, Yoshiaki

    2016-01-01

    ABSTRACT Crawling cells can generate polarity for migration in response to forces applied from the substratum. Such reaction varies according to cell type: there are both fast- and slow-crawling cells. In response to periodic stretching of the elastic substratum, the intracellular stress fibers in slow-crawling cells, such as fibroblasts, rearrange themselves perpendicular to the direction of stretching, with the result that the shape of the cells extends in that direction; whereas fast-crawling cells, such as neutrophil-like differentiated HL-60 cells and Dictyostelium cells, which have no stress fibers, migrate perpendicular to the stretching direction. Fish epidermal keratocytes are another type of fast-crawling cell. However, they have stress fibers in the cell body, which gives them a typical slow-crawling cell structure. In response to periodic stretching of the elastic substratum, intact keratocytes rearrange their stress fibers perpendicular to the direction of stretching in the same way as fibroblasts and migrate parallel to the stretching direction, while blebbistatin-treated stress fiber-less keratocytes migrate perpendicular to the stretching direction, in the same way as seen in HL-60 cells and Dictyostelium cells. Our results indicate that keratocytes have a hybrid mechanosensing system that comprises elements of both fast- and slow-crawling cells, to generate the polarity needed for migration. PMID:27124267

  6. Facial Recognition in a Discus Fish (Cichlidae): Experimental Approach Using Digital Models

    PubMed Central

    Satoh, Shun; Tanaka, Hirokazu; Kohda, Masanori

    2016-01-01

    A number of mammals and birds are known to be capable of visually discriminating between familiar and unfamiliar individuals, depending on facial patterns in some species. Many fish also visually recognize other conspecifics individually, and previous studies report that facial color patterns can be an initial signal for individual recognition. For example, a cichlid fish and a damselfish will use individual-specific color patterns that develop only in the facial area. However, it remains to be determined whether the facial area is an especially favorable site for visual signals in fish, and if so why? The monogamous discus fish, Symphysopdon aequifasciatus (Cichlidae), is capable of visually distinguishing its pair-partner from other conspecifics. Discus fish have individual-specific coloration patterns on entire body including the facial area, frontal head, trunk and vertical fins. If the facial area is an inherently important site for the visual cues, this species will use facial patterns for individual recognition, but otherwise they will use patterns on other body parts as well. We used modified digital models to examine whether discus fish use only facial coloration for individual recognition. Digital models of four different combinations of familiar and unfamiliar fish faces and bodies were displayed in frontal and lateral views. Focal fish frequently performed partner-specific displays towards partner-face models, and did aggressive displays towards models of non-partner’s faces. We conclude that to identify individuals this fish does not depend on frontal color patterns but does on lateral facial color patterns, although they have unique color patterns on the other parts of body. We discuss the significance of facial coloration for individual recognition in fish compared with birds and mammals. PMID:27191162

  7. Facial Recognition in a Discus Fish (Cichlidae): Experimental Approach Using Digital Models.

    PubMed

    Satoh, Shun; Tanaka, Hirokazu; Kohda, Masanori

    2016-01-01

    A number of mammals and birds are known to be capable of visually discriminating between familiar and unfamiliar individuals, depending on facial patterns in some species. Many fish also visually recognize other conspecifics individually, and previous studies report that facial color patterns can be an initial signal for individual recognition. For example, a cichlid fish and a damselfish will use individual-specific color patterns that develop only in the facial area. However, it remains to be determined whether the facial area is an especially favorable site for visual signals in fish, and if so why? The monogamous discus fish, Symphysopdon aequifasciatus (Cichlidae), is capable of visually distinguishing its pair-partner from other conspecifics. Discus fish have individual-specific coloration patterns on entire body including the facial area, frontal head, trunk and vertical fins. If the facial area is an inherently important site for the visual cues, this species will use facial patterns for individual recognition, but otherwise they will use patterns on other body parts as well. We used modified digital models to examine whether discus fish use only facial coloration for individual recognition. Digital models of four different combinations of familiar and unfamiliar fish faces and bodies were displayed in frontal and lateral views. Focal fish frequently performed partner-specific displays towards partner-face models, and did aggressive displays towards models of non-partner's faces. We conclude that to identify individuals this fish does not depend on frontal color patterns but does on lateral facial color patterns, although they have unique color patterns on the other parts of body. We discuss the significance of facial coloration for individual recognition in fish compared with birds and mammals.

  8. Seawater tolerance and post-smolt migration of wild Atlantic salmon Salmo salar × brown trout S. trutta hybrid smolts.

    PubMed

    Urke, H A; Kristensen, T; Arnekleiv, J V; Haugen, T O; Kjærstad, G; Stefansson, S O; Ebbesson, L O E; Nilsen, T O

    2013-01-01

    High levels of hybridization between Atlantic salmon Salmo salar and brown trout Salmo trutta have been reported in the River Driva. This study presents the underlying mechanisms of development of seawater (SW) tolerance and marine migration pattern for S. salar×S. trutta hybrids. Migrating S. salar×S. trutta hybrid smolts caught in the River Driva, Norway (a river containing Gyrodactylus salaris), displayed freshwater (FW) gill Na(+), K(+) -ATPase (NKA) activity levels of 11·8 µmol ADP mg protein h(-1), which were equal to or higher than activity levels observed in S. salar and S. trutta smolts. Following 4 days of SW exposure (salinity 32·3), enzyme activity remained high and plasma ion levels were maintained within the normal physiological range observed in S. salar smolts, indicating no signs of ion perturbations in S. salar×S. trutta hybrids. SW exposure induced an increase in NKA α1b-subunit mRNA levels with a concurrent decrease in α1a levels. Salmo salar×S. trutta post-smolts migrated rapidly through the fjord system, with increasing speed with distance from the river, as is often seen in S. salar smolts. The present findings suggest that S. salar×S. trutta smolts, as judged by the activity and transcription of the NKA system, regulation of plasma ion levels and migration speed more closely resemble S. salar than S. trutta. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  9. Sprecies profiles: Life histories and environmental requirements of coastal fishes and invertebrates (Mid-Atlantic): Bluefish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pottern, G.B.; Huish, M.T.; Kerby, J.H.

    1989-02-01

    Species profiles are literature summaries of the taxonomy, morphology, distribution, life history, and environmental requirements of coastal fishes and invertebrates within a specified range. They are written to assist in environmental impact assessment and decision making by coastal planners and developers. Bluefish are the most important recreational fish in the United States, especially in the mid-Atlantic region. The commercial catch is smaller but has increased during recent years. One population spawns offshore during spring from northern Florida to North Carolina, and these young migrate into mid-Atlantic coastal waters to spend their summer and fall. A second population spawns offshore duringmore » summer from North Carolina to Massachusetts, but most of these young remain offshore for the remainder of the season. In late fall, young and adults of both populations migrate south until the following spring. Bluefish are migratory, opportunistic, pelagic predators throughout life, and their seasonal abundance may have profound community structuring effects. Schools of juvenile bluefish may be important forage for many pelagic predators, including adults of their own species. Photoperiod apparently triggers long-range migration, and temperature serves as a proximal cue to short-range migration. Bluefish are sensitive to bacterial infection in polluted water and have little tolerance for low oxygen conditions. 55 refs., 6 figs., 3 tabs.« less

  10. Walla Walla River Fish Passage Operations Program, 2004-2005 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bronson, James P.; Duke, Bill B.

    2006-02-01

    In the late 1990s, the Confederated Tribes of the Umatilla Indian Reservation, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife, along with many other agencies, began implementing fisheries restoration activities in the Walla Walla Basin. An integral part of these efforts is to alleviate the inadequate fish migration conditions in the basin. The migration concerns are being addressed by removing diversion structures, constructing fish passage facilities, implementing minimum instream flow requirements, and providing trap and haul efforts when needed. The objective of the Walla Walla River Fish Passage Operations Project is to increase the survivalmore » of migrating adult and juvenile salmonids in the Walla Walla River basin. The project is responsible for coordinating operation and maintenance of ladders, screen sites, bypasses, trap facilities, and transportation equipment. In addition, the project provides technical input on passage criteria and passage and trapping facility design and operation. Operation of the various passage facilities and passage criteria guidelines are outlined in an annual operations plan that the project develops. During the 2004-2005 project year, there were 590 adult summer steelhead, 31 summer steelhead kelts (Oncorhynchus mykiss), 70 adult bull trout (Salvelinus confluentus); 80 adult and 1 jack spring Chinook (O. tshawytscha) enumerated at the Nursery Bridge Dam fishway video counting window between December 13, 2004, and June 16, 2005. Summer steelhead and spring chinook were observed moving upstream while bull trout were observed moving both upstream and downstream of the facility. In addition, the old ladder trap was operated by ODFW in order to enumerate fish passage. Of the total, 143 adult summer steelhead and 15 summer steelhead kelts were enumerated at the west ladder at Nursery Bridge Dam during the video efforts between February 4 and May 23, 2005. Operation of the Little Walla Walla River juvenile trap for trap and haul purposes was not necessary this year.« less

  11. Seasonal thermal ecology of adult walleye (Sander vitreus) in Lake Huron and Lake Erie.

    PubMed

    Peat, Tyler B; Hayden, Todd A; Gutowsky, Lee F G; Vandergoot, Christopher S; Fielder, David G; Madenjian, Charles P; Murchie, Karen J; Dettmers, John M; Krueger, Charles C; Cooke, Steven J

    2015-10-01

    The purpose of this study was to characterize thermal patterns and generate occupancy models for adult walleye from lakes Erie and Huron with internally implanted biologgers coupled with a telemetry study to assess the effects of sex, fish size, diel periods, and lake. Sex, size, and diel periods had no effect on thermal occupancy of adult walleye in either lake. Thermal occupancy differed between lakes and seasons. Walleye from Lake Erie generally experienced higher temperatures throughout the spring and summer months than did walleye in Lake Huron, due to limnological differences between the lakes. Tagged walleye that remained in Saginaw Bay, Lake Huron (i.e., adjacent to the release location), as opposed to those migrating to the main basin of Lake Huron, experienced higher temperatures, and thus accumulated more thermal units (the amount of temperature units amassed over time) throughout the year. Walleye that migrated toward the southern end of Lake Huron occupied higher temperatures than those that moved toward the north. Consequently, walleye that emigrated from Saginaw Bay experienced thermal environments that were more favorable for growth as they spent more time within their thermal optimas than those that remained in Saginaw Bay. Results presented in this paper provide information on the thermal experience of wild fish in a large lake, and could be used to refine sex- and lake-specific bioenergetics models of walleye in the Great Lakes to enable the testing of ecological hypotheses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Seasonal thermal ecology of adult walleye (Sander vitreus) in Lake Huron and Lake Erie

    USGS Publications Warehouse

    Peat, Tyler B; Hayden, Todd A.; Gutowsky, Lee F G; Vandergoot, Christopher S.; Fielder, David G.; Madenjian, Charles P.; Murchie, Karen J; Dettmers, John M.; Krueger, Charles C.; Cooke, Steven J.

    2015-01-01

    The purpose of this study was to characterize thermal patterns and generate occupancy models for adult walleye from lakes Erie and Huron with internally implanted biologgers coupled with a telemetry study to assess the effects of sex, fish size, diel periods, and lake. Sex, size, and diel periods had no effect on thermal occupancy of adult walleye in either lake. Thermal occupancy differed between lakes and seasons. Walleye from Lake Erie generally experienced higher temperatures throughout the spring and summer months than did walleye in Lake Huron, due to limnological differences between the lakes. Tagged walleye that remained in Saginaw Bay, Lake Huron (i.e., adjacent to the release location), as opposed to those migrating to the main basin of Lake Huron, experienced higher temperatures, and thus accumulated more thermal units (the amount of temperature units amassed over time) throughout the year. Walleye that migrated toward the southern end of Lake Huron occupied higher temperatures than those that moved toward the north. Consequently, walleye that emigrated from Saginaw Bay experienced thermal environments that were more favorable for growth as they spent more time within their thermal optimas than those that remained in Saginaw Bay. Results presented in this paper provide information on the thermal experience of wild fish in a large lake, and could be used to refine sex- and lake-specific bioenergetics models of walleye in the Great Lakes to enable the testing of ecological hypotheses.

  13. In-reservoir behavior, dam passage, and downstream migration of juvenile Chinook salmon and juvenile steelhead from Detroit Reservoir and Dam to Portland, Oregon, February 2013-February 2014

    USGS Publications Warehouse

    Beeman, John W.; Adams, Noah S.

    2015-01-01

    As part of the evaluations conducted at Detroit Dam, we continued to refine and improve methods for monitoring fish movements in the Willamette River. The goal was to develop stable, cost-effective, long-term monitoring arrays suitable for detection of any Juvenile Salmon Acoustic Telemetry System (JSATS)-tagged fish in the Willamette River. These data then could be used to estimate timing, migration rates, and survival of JSATS-tagged fish from various studies in the Willamette River Basin. The challenge, however, is that acoustic telemetry generally performs poorly in shallow, turbulent water, like that found in the Willamette River. We successfully designed, deployed, and maintained a series of monitoring sites near the Oregon cities of Salem, Wilsonville, and Portland. In the spring, detection probabilities at these sites ranged from 0.900 to 1.000. In the fall, the detection probabilities decreased and ranged from 0.526 to 1.000. The lower detection probabilities, particularly at the Salem site (0.526), were owing to loss of data caused by abnormally high flows as well as the 2013 Federal government shutdown, which prevented us from servicing the equipment. The monitoring sites that we installed seem to be robust and enable the efficient use of acoustic-tagged fish for studies of migration or survival in the Willamette River and similar environments.

  14. Monitoring of the in-river migration of smolts from two groups of spring chinook salmon, Oncorhynchus tshawytscha (Walbaum), with different profiles of Renibacterium salmoninarum infection

    USGS Publications Warehouse

    Pascho, R.J.; Elliott, D.G.; Achord, S.

    1993-01-01

    Broodstock segregation based on the measurement of maternal Renibacterium salmoninarum infection levels by the enzyme-linked immunosorbent assay (ELISA) and the membrane filtration-fluorescent antibody technique (MF-FAT) was previously shown to affect the prevalence and levels of bacterial kidney disease (BKD) in progeny of chinook salmon, Oncorhynchus tshawytscha (Walbaum), during hatchery rearing. Subgroups of fish from that study were marked with passive integrated transponder (PIT) tags, and monitored by PIT-tag detectors during the first 342km of their migration to the Pacific Ocean. Differences in the recovery of tagged fish were significant (P≤ 0·01) at each detection point and became more pronounced as the fish moved downstream. Cumulative recoveries of fish from the low-BKD group and the high-BKD group, respectively, were 31% and 28% after 116km, 44% and 37% after 176km, and 51% and 42% after 342km. There were no apparent differences in the migration timing of the two groups to the first detection point. The data suggested that in-river survival was higher in the progeny group from parents that had low R. salmoninarum infection levels or tested negative for R. salmoninarum (low-BKD group) than in the group female parents with high infection levels (high-BKD group).

  15. Müller glia: Stem cells for generation and regeneration of retinal neurons in teleost fish

    PubMed Central

    Lenkowski, Jenny R.; Raymond, Pamela A.

    2014-01-01

    Adult zebrafish generate new neurons in the brain and retina throughout life. Growth-related neurogenesis allows a vigorous regenerative response to damage, and fish can regenerate retinal neurons, including photoreceptors, and restore functional vision following photic, chemical, or mechanical destruction of the retina. Müller glial cells in fish function as radial-glial-like neural stem cells. During adult growth, Müller glial nuclei undergo sporadic, asymmetric, self-renewing mitotic divisions in the inner nuclear layer to generate a rod progenitor that migrates along the radial fiber of the Müller glia into the outer nuclear layer, proliferates, and differentiates exclusively into rod photoreceptors. When retinal neurons are destroyed, Müller glia in the immediate vicinity of the damage partially and transiently dedifferentiate, re-express retinal progenitor and stem cell markers, re-enter the cell cycle, undergo interkinetic nuclear migration (characteristic of neuroepithelial cells), and divide once in an asymmetric, self-renewing division to generate a retinal progenitor. This daughter cell proliferates rapidly to form a compact neurogenic cluster surrounding the Müller glia; these multipotent retinal progenitors then migrate along the radial fiber to the appropriate lamina to replace missing retinal neurons. Some aspects of the injury-response in fish Müller glia resemble gliosis as observed in mammals, and mammalian Müller glia exhibit some neurogenic properties, indicative of a latent ability to regenerate retinal neurons. Understanding the specific properties of fish Müller glia that facilitate their robust capacity to generate retinal neurons will inform and inspire new clinical approaches for treating blindness and visual loss with regenerative medicine. PMID:24412518

  16. Effects of Renibacterium salmoninarum on olfactory organs of Chinook salmon (Oncorhynchus tshawytscha) marked with coded wire tags

    USGS Publications Warehouse

    Elliott, Diane G.; Conway, Carla M.; Bruno, D.W.; Elliott, D.G.; Nowak, B.

    2014-01-01

    Bacterial kidney disease (BKD) caused by Renibacterium salmoninarum can cause significant morbidity and mortality in Chinook salmon (Oncorhynchus tshawytscha), particularly in Chinook salmon of the stream (spring) life history type, which migrate to sea as yearlings rather than subyearlings. R. salmoninarum can be transmitted vertically from the female parent to the progeny in association with the egg, as well as horizontally from fish to fish. This study was conducted as part of a research project to investigate whether the prevalence and intensity of R. salmoninarum infections in adult spring Chinook salmon could affect the survival and pathogen prevalence and intensity in their progeny (Pascho et al., 1991, 1993; Elliott et al., 1995). Fish from two brood years (1988 and 1989) were reared at Dworshak National Fish Hatchery (Idaho, USA) for about 1-1/2 years, released as yearling smolts, and allowed to migrate to the Pacific Ocean for maturation. The majority of progeny fish were marked with coded wire tags (CWTs) about 4 months before they were released from the hatchery so that adult returns could be monitored. The CWTs were implanted in the snouts of the fish by an experienced team of fish markers using automated wire-tagging machines. The intended placement site was the cartilage, skeletal muscle or loose connective tissue of the snout.

  17. Morphological selection and the evaluation of potential tradeoffs between escape from predators and the climbing of waterfalls in the Hawaiian stream goby Sicyopterus stimpsoni.

    PubMed

    Blob, Richard W; Kawano, Sandy M; Moody, Kristine N; Bridges, William C; Maie, Takashi; Ptacek, Margaret B; Julius, Matthew L; Schoenfuss, Heiko L

    2010-12-01

    Environmental pressures may vary over the geographic range of a species, exposing subpopulations to divergent functional demands. How does exposure to competing demands shape the morphology of species and influence the divergence of populations? We explored these questions by performing selection experiments on juveniles of the Hawaiian goby Sicyopterus stimpsoni, an amphidromous fish that exhibits morphological differences across portions of its geographic range where different environmental pressures predominate. Juvenile S. stimpsoni face two primary and potentially opposing selective pressures on body shape as they return from the ocean to freshwater streams on islands: (1) avoiding predators in the lower reaches of a stream; and (2) climbing waterfalls to reach the habitats occupied by adults. These pressures differ in importance across the Hawaiian Islands. On the youngest island, Hawai'i, waterfalls are close to shore, thereby minimizing exposure to predators and placing a premium on climbing performance. In contrast, on the oldest major island, Kaua'i, waterfalls have eroded further inland, lengthening the exposure of juveniles to predators before migrating juveniles begin climbing. Both juvenile and adult fish show differences in body shape between these islands that would be predicted to improve evasion of predators by fish from Kaua'i (e.g., taller bodies that improve thrust) and climbing performance for fish from Hawai'i (e.g., narrower bodies that reduce drag), matching the prevailing environmental demand on each island. To evaluate how competing selection pressures and functional tradeoffs contribute to the divergence in body shape observed in S. stimpsoni, we compared selection imposed on juvenile body shape by (1) predation by the native fish Eleotris sandwicensis versus (2) climbing an artificial waterfall (∼100 body lengths). Some variables showed opposing patterns of selection that matched predictions: for example, survivors of predation had lower fineness ratios than did control fish (i.e., greater body depth for a given length), whereas successful climbers had higher fineness ratios (reducing drag) than did fish that failed. However, most morphological variables showed significant selection in only one treatment rather than opposing selection across both. Thus, functional tradeoffs between evasion of predators and minimizing drag during climbing might influence divergence in body shape across subpopulations, but even when selection is an important contributing mechanism, directly opposite patterns of selection across environmental demands are not required to generate morphological divergence.

  18. Education in Engineering and Ecohydrology for Fish Passage

    NASA Astrophysics Data System (ADS)

    Ahlfeld, D.; Towler, B.

    2011-12-01

    Historical fish migration routes linking feeding and spawning habitats have been significantly impacted by culverts, dikes, dams, and other barriers on waterways throughout the world. For example an estimated 2.5 million barriers to fish migration exist in the United States. In recent years, there has been an increased focus on removing or mitigating these barriers as an efficient mechanism to restore habitat. Effective design and implementation of these measures requires specialists with skills at the intersection of engineering, hydrology and biology. Recognizing the need for a cadre of engineers with the additional skills in hydraulics and ecohydrology needed to analyze and design solutions for enhancing fish passage in streams and rivers, the University of Massachusetts Amherst now offers a Master of Science in Civil Engineering (MSCE) degree with a specialization in Fish Passage Engineering. The curriculum is offered in conjunction with the U.S. Fish and Wildlife Service and is informed by the recommendations of the Curriculum Working Group of the Bioengineering Section of the American Fisheries Society. The curriculum is offered through the Department of Civil and Environmental Engineering. This presentation will describe the motivation for the degree, the content of coursework and the challenges inherent in developing an interdisciplinary education program spanning biogeosciences and engineering.

  19. Columbia River Basin Fish and Wildlife Program Annual Implementation Work Plan for Fiscal Year 1994.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    United States. Bonneville Power Administration; Northwest Power Planning Council; Columbia Basin Fish and Wildlife Authority

    1994-02-01

    This document is part of Bonneville Power Administration`s program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric facilities on the Columbia River and its tributaries. The Fiscal Year 1994 (FY 1994) Annual Implementation Work Plan (AIWP) presents Bonneville Power Administration`s (BPA`s) plan for implementation of the Columbia River Basin Fish and Wildlife Program (Program). The purpose of the Program is to guide BPA and other federal agencies in carrying out their responsibilities to protect, mitigate, and enhance fish and wildlife in the Columbia River Basin. Phase I began the work of salmonmore » recovery with certain fast-track measures completed in August 1991. Phase II dealt with Snake and Columbia river flow and salmon harvest and was completed in December 1991. Phase III dealt with system-wide habitat and salmon production issues and was completed in September 1992. Phase IV planning, focusing on resident fish and wildlife, began in August 1993, and was finished and adopted in November 1993. This report provides summaries of the ongoing and new projects for FY 1994 within the areas of juvenile migration, adult migration, salmon harvest, production and habitat, coordinated implementation, monitoring and evaluation, resident fish, and wildlife.« less

  20. Climate Change and Migration along the Albemarle and Pamlico Sounds, North Carolina

    NASA Astrophysics Data System (ADS)

    Rummel, J. D.; Griffith, D. C.; Kimmel, D. G.; Landry, C. E.; Montz, B. E.

    2012-12-01

    Climactic events that have stimulated or enhanced human migrations have been documented historically. For example, the U.S. granted Temporary Protective Status to Honduran migrants following Hurricane Mitch in 1998, and many of those migrated to North Carolina and other parts of the U.S. South. In North Carolina and elsewhere, changing environmental conditions have led to shifting migration patterns among fish, birds, marine mammals, and other species—with a concomitant change in fishing practices and other forms of marine resource exploitation. Now, significant landscape changes are taking place as a result of global climate change, including sea level rise, changing ice cover at the poles, an increasing frequency and duration of drought, forest fires, and storms. Anthropocentric responses to the occasional disasters that will punctuate these changes suggest that the relationship between climate/environmental change and migration is likely to become central to the future of the geosciences along with the environmental and social sciences, as well as an essential focus to policies influencing population movements, environmental health, and risk management. Over the last two decades, the Albemarle-Pamlico region of North Carolina has harbored one of the nation's fastest growing populations, with immigrants to the region primarily consisting of two distinct, yet interconnected, groups: 1) relatively affluent U.S. citizens (including many retirees seeking proximity to coastal amenities); and, 2) relatively poor workers (many from Mexico and Central America) attracted to the region for work in agriculture, fisheries, food processing, construction/ landscaping, tourism, and forestry. By settling near the coast, these immigrants can be particularly susceptible to storm surge and other damage from the combination of sea level rise, hurricanes, and related processes that are reshaping coastal environments. This paper considers the past, present, and future of climate change along the Albemarle and Pamlico Sounds in the context of past, present, and future migrations—and other human dimensions—that are affected by the pervasive changes we now face along the coast.; The Albemarle-Pamlico Peninsula. East and North of the City of Washington (black dot), much of the peninsula is nearly at sea-level. The major west-east elevation change between green and yellow occurs at the Suffolk Scarp, a 120 kya paleo-shoreline.

  1. Coastal Fisheries in the Eastern Baltic Sea (Gulf of Finland) and Its Basin from the 15 to the Early 20th Centuries

    PubMed Central

    Lajus, Julia; Kraikovski, Alexei; Lajus, Dmitry

    2013-01-01

    The paper describes and analyzes original data, extracted from historical documents and scientific surveys, related to Russian fisheries in the southeastern part of the Gulf of Finland and its inflowing rivers during the 15- early 20th centuries. The data allow tracing key trends in fisheries development and in the abundance of major commercial species. In particular, results showed that, over time, the main fishing areas moved from the middle part of rivers downstream towards and onto the coastal sea. Changes in fishing patterns were closely interrelated with changes in the abundance of exploited fish. Anadromous species, such as Atlantic sturgeon, Atlantic salmon, brown trout, whitefish, vimba bream, smelt, lamprey, and catadromous eel were the most important commercial fish in the area because they were abundant, had high commercial value and were easily available for fishing in rivers. Due to intensive exploitation and other human-induced factors, populations of most of these species had declined notably by the early 20th century and have now lost commercial significance. The last sturgeon was caught in 1996, and today only smelt and lamprey support small commercial fisheries. According to historical sources, catches of freshwater species such as roach, ide, pike, perch, ruffe and burbot regularly occurred, in some areas exceeding half of the total catch, but they were not as important as migrating fish and no clear trends in abundance are apparent. Of documented marine catch, Baltic herring appeared in the 16th century, but did not become commercially significant until the 19th century. From then until now herring have been the dominant catch. PMID:24204735

  2. Predicting the effect of seine rope layout pattern and haul-in procedure on the effectiveness of demersal seine fishing: A Computer simulation-based approach.

    PubMed

    Madsen, Nina A H; Aarsæther, Karl G; Herrmann, Bent

    2017-01-01

    Demersal Seining is an active fishing method applying two long seine ropes and a seine net. Demersal seining relies on fish responding to the seine rope as it moves during the fishing process. The seine ropes and net are deployed in a specific pattern encircling an area on the seabed. In some variants of demersal seining the haul-in procedure includes a towing phase where the fishing vessel moves forward before starting to winch in the seine ropes. The initial seine rope encircled area, the gradual change in it during the haul-in process and the fish's reaction to the moving seine ropes play an important role in the catch performance of demersal seine fishing. The current study investigates this subject by applying computer simulation models for demersal seine fishing. The demersal seine fishing is dynamic in nature and therefore a dynamic model, SeineSolver is applied for simulating the physical behaviour of the seine ropes during the fishing process. Information about the seine rope behaviour is used as input to another simulation tool, SeineFish that predicts the catch performance of the demersal seine fishing process. SeineFish implements a simple model for how fish at the seabed reacts to an approaching seine rope. Here, the SeineSolver and SeineFish tools are applied to investigate catching performance for a Norwegian demersal seine fishery targeting cod (Gadus morhua) in the coastal zone. The effect of seine rope layout pattern and the duration of the towing phase are investigated. Among the four different layout patterns investigated, the square layout pattern was predicted to perform best; catching 69%-86% more fish than would be obtained with the rectangular layout pattern. Inclusion of a towing phase in the fishing process was found to increase the catch performance for all layout patterns. For the square layout pattern, inclusion of a towing phase of 15 or 35 minutes increased the catch performance by respectively 37% and 48% compared to fishing without a towing phase. These results highlights the importance of the selected seine rope layout pattern and the duration of the towing phase when fishermen try to maximize the catch performance of their fishery. To our knowledge this is the first time the combination of models for the physical behaviour of seine ropes and for fish behaviour in response to seine rope movements have been applied to predict catch performance for demersal seining.

  3. Predicting the effect of seine rope layout pattern and haul-in procedure on the effectiveness of demersal seine fishing: A Computer simulation-based approach

    PubMed Central

    Madsen, Nina A. H.; Aarsæther, Karl G.; Herrmann, Bent

    2017-01-01

    Demersal Seining is an active fishing method applying two long seine ropes and a seine net. Demersal seining relies on fish responding to the seine rope as it moves during the fishing process. The seine ropes and net are deployed in a specific pattern encircling an area on the seabed. In some variants of demersal seining the haul-in procedure includes a towing phase where the fishing vessel moves forward before starting to winch in the seine ropes. The initial seine rope encircled area, the gradual change in it during the haul-in process and the fish's reaction to the moving seine ropes play an important role in the catch performance of demersal seine fishing. The current study investigates this subject by applying computer simulation models for demersal seine fishing. The demersal seine fishing is dynamic in nature and therefore a dynamic model, SeineSolver is applied for simulating the physical behaviour of the seine ropes during the fishing process. Information about the seine rope behaviour is used as input to another simulation tool, SeineFish that predicts the catch performance of the demersal seine fishing process. SeineFish implements a simple model for how fish at the seabed reacts to an approaching seine rope. Here, the SeineSolver and SeineFish tools are applied to investigate catching performance for a Norwegian demersal seine fishery targeting cod (Gadus morhua) in the coastal zone. The effect of seine rope layout pattern and the duration of the towing phase are investigated. Among the four different layout patterns investigated, the square layout pattern was predicted to perform best; catching 69%-86% more fish than would be obtained with the rectangular layout pattern. Inclusion of a towing phase in the fishing process was found to increase the catch performance for all layout patterns. For the square layout pattern, inclusion of a towing phase of 15 or 35 minutes increased the catch performance by respectively 37% and 48% compared to fishing without a towing phase. These results highlights the importance of the selected seine rope layout pattern and the duration of the towing phase when fishermen try to maximize the catch performance of their fishery. To our knowledge this is the first time the combination of models for the physical behaviour of seine ropes and for fish behaviour in response to seine rope movements have been applied to predict catch performance for demersal seining. PMID:28771583

  4. Ambient salinity modifies the action of triiodothyronine in the air-breathing fish Anabas testudineus Bloch: effects on mitochondria-rich cell distribution, osmotic and metabolic regulations.

    PubMed

    Peter, M C Subhash; Leji, J; Peter, Valsa S

    2011-04-01

    The hydromineral and metabolic actions of thyroid hormone on osmotic acclimation in fish is less understood. We, therefore, studied the short-term action of triiodothyronine (T(3)), the potent thyroid hormone, on the distribution and the function of gill mitochondria-rich (MR) cells and on the whole body hydromineral and metabolic regulations of air-breathing fish (Anabas testudineus) adapted to either freshwater (FW) or acclimated to seawater (SA; 30 g L(-1)). As expected, 24 h T(3) injection (100 ng g(-1)) elevated (P<0.05) plasma T(3) but classically reduced (P<0.05) plasma T(4). The higher Na(+), K(+)-ATPase immunoreactivity and the varied distribution pattern of MR cells in the gills of T(3)-treated FW and SA fish, suggest an action of T(3) on gill MR cell migration, though the density of these cells remained unchanged after T(3) treatment. The ouabain-sensitive Na(+), K(+)-ATPase activity, a measure of hydromineral competence, showed increases (P<0.05) in the gills of both FW and SA fish after T(3) administration, but inhibited (P<0.05) in the kidney of the FW fish and not in the SA fish. Exogenous T(3) reduced glucose (P<0.05) and urea (P<0.05) in the plasma of FW fish, whereas these metabolites were elevated (P<0.05) in the SA fish, suggesting a modulatory effect of ambient salinity on the T(3)-driven metabolic actions. Our data identify gill MR cell as a target for T(3) action as it promotes the spatial distribution and the osmotic function of these cells in both fresh water and in seawater. The results besides confirming the metabolic and osmotic actions of T(3) in fish support the hypothesis that the differential actions of T(3) may be due to the direct influence of ambient salinity, a major environmental determinant that alters the osmotic and metabolic strategies of fish. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Otolith microchemistry of tropical diadromous fishes: spatial and migratory dynamics

    USGS Publications Warehouse

    Smith, William E.; Kwak, Thomas J.

    2014-01-01

    Otolith microchemistry was applied to quantify migratory variation and the proportion of native Caribbean stream fishes that undergo full or partial marine migration. Strontium and barium water chemistry in four Puerto Rico, U.S.A., rivers was clearly related to a salinity gradient; however, variation in water barium, and thus fish otoliths, was also dependent on river basin. Strontium was the most accurate index of longitudinal migration in tropical diadromous fish otoliths. Among the four species examined, bigmouth sleeper Gobiomorus dormitor, mountain mullet Agonostomus monticola, sirajo goby Sicydium spp. and river goby Awaous banana, most individuals were fully amphidromous, but 9-12% were semi-amphidromous as recruits, having never experienced marine or estuarine conditions in early life stages and showing no evidence of marine elemental signatures in their otolith core. Populations of one species, G. dormitor, may have contained a small contingent of semi-amphidromous adults, migratory individuals that periodically occupied marine or estuarine habitats (4%); however, adult migratory elemental signatures may have been confounded with those related to diet and physiology. These findings indicate the plasticity of migratory strategies of tropical diadromous fishes, which may be more variable than simple categorization might suggest.

  6. Otolith microchemistry of tropical diadromous fishes: spatial and migratory dynamics.

    PubMed

    Smith, W E; Kwak, T J

    2014-04-01

    Otolith microchemistry was applied to quantify migratory variation and the proportion of native Caribbean stream fishes that undergo full or partial marine migration. Strontium and barium water chemistry in four Puerto Rico, U.S.A., rivers was clearly related to a salinity gradient; however, variation in water barium, and thus fish otoliths, was also dependent on river basin. Strontium was the most accurate index of longitudinal migration in tropical diadromous fish otoliths. Among the four species examined, bigmouth sleeper Gobiomorus dormitor, mountain mullet Agonostomus monticola, sirajo goby Sicydium spp. and river goby Awaous banana, most individuals were fully amphidromous, but 9-12% were semi-amphidromous as recruits, having never experienced marine or estuarine conditions in early life stages and showing no evidence of marine elemental signatures in their otolith core. Populations of one species, G. dormitor, may have contained a small contingent of semi-amphidromous adults, migratory individuals that periodically occupied marine or estuarine habitats (4%); however, adult migratory elemental signatures may have been confounded with those related to diet and physiology. These findings indicate the plasticity of migratory strategies of tropical diadromous fishes, which may be more variable than simple categorization might suggest. © 2014 The Fisheries Society of the British Isles.

  7. Investigations into the Early Life History of Naturally Produced Spring Chinook Salmon in the Grande Ronde Riiver Basin : Fish Research Project Oregon : Annual Progress Report 1 September 1995 to 1 August 1996.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonasson, Brian C.; Carmichael, Richard W.; Keefe, MaryLouise

    1997-09-01

    Historically, the Grande Ronde River produced an abundance of salmonids including stocks of spring, summer and fall chinook salmon, sockeye salmon, coho salmon, and summer steelhead. During the past century, numerous factors have caused the reduction of salmon stocks such that only sustainable stocks of spring chinook salmon and summer steelhead remain. The sizes of spring chinook salmon populations in the Grande Ronde River basin also have been declining steadily and are substantially depressed from estimates of historic levels. In addition to a decline in population abundance, a reduction of spring chinook salmon spawning distribution is evident in the Grandemore » Ronde River basin. Numerous factors are thought to contribute to the decline of spring chinook salmon in the Snake River and its tributaries. These factors include passage problems and increased mortality of juvenile and adult migrants at mainstem Columbia and Snake river dams, overharvest, and habitat degradation associated with timber, agricultural, and land development practices. This study was designed to describe aspects of the life history strategies exhibited by spring chinook salmon in the Grande Ronde River basin. During the past year the focus was on rearing and migration patterns of juveniles in the upper Grande Ronde River and Catherine Creek. The study design included three objectives: (1) document the annual in-basin migration patterns for spring chinook salmon juveniles in the upper Grande Ronde River and Catherine Creek, including the abundance of migrants, migration timing and duration; (2) estimate and compare smolt survival indices to mainstem Columbia and Snake river dams for fall and spring migrating spring chinook salmon; and (3) determine summer and winter habitat utilization and preference of juvenile spring chinook salmon in the upper Grande Ronde River and Catherine Creek.« less

  8. Social aggregation in the pelagic zone with special reference to fish and invertebrates.

    PubMed

    Ritz, David A; Hobday, Alistair J; Montgomery, John C; Ward, Ashley J W

    2011-01-01

    Aggregations of organisms, ranging from zooplankton to whales, are an extremely common phenomenon in the pelagic zone; perhaps the best known are fish schools. Social aggregation is a special category that refers to groups that self-organize and maintain cohesion to exploit benefits such as protection from predators, and location and capture of resources more effectively and with greater energy efficiency than could a solitary individual. In this review we explore general aggregation principles, with specific reference to pelagic organisms; describe a range of new technologies either designed for studying aggregations or that could potentially be exploited for this purpose; report on the insights gained from theoretical modelling; discuss the relationship between social aggregation and ocean management; and speculate on the impact of climate change. Examples of aggregation occur in all animal phyla. Among pelagic organisms, it is possible that repeated co-occurrence of stable pairs of individuals, which has been established for some schooling fish, is the likely precursor leading to networks of social interaction and more complex social behaviour. Social network analysis has added new insights into social behaviour and allows us to dissect aggregations and to examine how the constituent individuals interact with each other. This type of analysis is well advanced in pinnipeds and cetaceans, and work on fish is progressing. Detailed three-dimensional analysis of schools has proved to be difficult, especially at sea, but there has been some progress recently. The technological aids for studying social aggregation include video and acoustics, and have benefited from advances in digitization, miniaturization, motion analysis and computing power. New techniques permit three-dimensional tracking of thousands of individual animals within a single group which has allowed novel insights to within-group interactions. Approaches using theoretical modelling of aggregations have a long history but only recently have hypotheses been tested empirically. The lack of synchrony between models and empirical data, and lack of a common framework to schooling models have hitherto hampered progress; however, recent developments in this field offer considerable promise. Further, we speculate that climate change, already having effects on ecosystems, could have dramatic effects on aggregations through its influence on species composition by altering distribution ranges, migration patterns, vertical migration, and oceanic acidity. Because most major commercial fishing targets schooling species, these changes could have important consequences for the dependent businesses. 2011 Elsevier Ltd. All rights reserved.

  9. Migration Related to Climate Change: Impact, Challenges and Proposed Policy Initiatives

    NASA Astrophysics Data System (ADS)

    Sarkar, A.

    2015-12-01

    Migration of human population possesses a great threat to human development and nation building. A significant cause for migration is due to change in climatic conditions and vulnerabilities associated with it. Our case study focuses on the consequent reason and impact of such migration in the coastal areas of West Bengal, India. The changes in rainfall pattern and the variation of temperature have been considered as parameters which have resulted in migration. It is worthy to note that the agricultural pattern has subsequently changed over the last two decades due to change in rainfall and temperature. India being an agriculture oriented economy, the changes in the meteorological variables have not only altered the rate of agricultural pattern but also the rate of migration. A proposed framework depicting relationship between changes in meteorological variables and the migration pattern, and an estimate of how the migration pattern is expected to change over the next century by utilizing the downscaled values of future rainfall and temperature has been analyzed. Moreover, various public policy frameworks has also been proposed through the study for addressing the challenges of migration related to climate change. The proposed public policy framework has been streamlined along the lines of various international treaties and conventions in order to integrate the policy initiatives through universalization of law and policy research.

  10. Geographic migration of black and white families over four generations.

    PubMed

    Sharkey, Patrick

    2015-02-01

    This article analyzes patterns of geographic migration of black and white American families over four consecutive generations. The analysis is based on a unique set of questions in the Panel Study of Income Dynamics (PSID) asking respondents about the counties and states in which their parents and grandparents were raised. Using this information along with the extensive geographic information available in the PSID survey, the article tracks the geographic locations of four generations of family members and considers the ways in which families and places are linked together over the course of a family's history. The patterns documented in the article are consistent with much of the demographic literature on the Great Migration of black Americans out of the South, but they reveal new insights into patterns of black migration after the Great Migration. In the most recent generation, black Americans have remained in place to a degree that is unique relative to the previous generation and relative to whites of the same generation. This new geographic immobility is the most pronounced change in black Americans' migration patterns after the Great Migration, and it is a pattern that has implications for the demography of black migration as well as the literature on racial inequality.

  11. Functional Requirements for Heparan Sulfate Biosynthesis in Morphogenesis and Nervous System Development in C. elegans.

    PubMed

    Blanchette, Cassandra R; Thackeray, Andrea; Perrat, Paola N; Hekimi, Siegfried; Bénard, Claire Y

    2017-01-01

    The regulation of cell migration is essential to animal development and physiology. Heparan sulfate proteoglycans shape the interactions of morphogens and guidance cues with their respective receptors to elicit appropriate cellular responses. Heparan sulfate proteoglycans consist of a protein core with attached heparan sulfate glycosaminoglycan chains, which are synthesized by glycosyltransferases of the exostosin (EXT) family. Abnormal HS chain synthesis results in pleiotropic consequences, including abnormal development and tumor formation. In humans, mutations in either of the exostosin genes EXT1 and EXT2 lead to osteosarcomas or multiple exostoses. Complete loss of any of the exostosin glycosyltransferases in mouse, fish, flies and worms leads to drastic morphogenetic defects and embryonic lethality. Here we identify and study previously unavailable viable hypomorphic mutations in the two C. elegans exostosin glycosyltransferases genes, rib-1 and rib-2. These partial loss-of-function mutations lead to a severe reduction of HS levels and result in profound but specific developmental defects, including abnormal cell and axonal migrations. We find that the expression pattern of the HS copolymerase is dynamic during embryonic and larval morphogenesis, and is sustained throughout life in specific cell types, consistent with HSPGs playing both developmental and post-developmental roles. Cell-type specific expression of the HS copolymerase shows that HS elongation is required in both the migrating neuron and neighboring cells to coordinate migration guidance. Our findings provide insights into general principles underlying HSPG function in development.

  12. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 2005 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buettner, Edwin W.; Putnam, Scott A.

    This project monitored the daily passage of Chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon O. nerka smolts during the 2005 spring out-migration at migrant traps on the Snake River and Salmon River. In 2005 fish management agencies released significant numbers of hatchery Chinook salmon and steelhead trout above Lower Granite Dam that were not marked with a fin clip or coded-wire tag. Generally, the age-1 and older fish were distinguishable from wild fish by the occurrence of fin erosion. Age-0 Chinook salmon are more difficult to distinguish between wild and non-adclipped hatchery fish and therefore classifiedmore » as unknown rearing. The total annual hatchery spring/summer Chinook salmon catch at the Snake River trap was 0.34 times greater in 2005 than in 2004. The wild spring/summer Chinook catch was 0.34 times less than the previous year. Hatchery steelhead trout catch was 0.67 times less than in 2004. Wild steelhead trout catch was 0.72 times less than the previous year. The Snake River trap collected 1,152 age-0 Chinook salmon of unknown rearing. During 2005, the Snake River trap captured 219 hatchery and 44 wild/natural sockeye salmon and 110 coho salmon O. kisutch of unknown rearing. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with flow. Trap operations began on March 6 and were terminated on June 3. The trap was out of operation for a total of one day due to heavy debris. FPC requested that the trap be restarted on June 15 through June 22 to collect and PIT tag age-0 Chinook salmon. Hatchery Chinook salmon catch at the Salmon River trap was 1.06 times greater and wild Chinook salmon catch was 1.26 times greater than in 2004. The hatchery steelhead trout collection in 2005 was 1.41 times greater and wild steelhead trout collection was 1.27 times greater than the previous year. Trap operations began on March 6 and were terminated on May 17 due to high flows. There were two days when the trap was taken out of service because of mechanical failure. Travel time (d) and migration rate (km/d) through Lower Granite Reservoir for passive integrated transponder (PIT) tagged Chinook salmon and steelhead trout marked at the Snake River trap were affected by discharge. Statistical analysis of 2005 data detected a relation between migration rate and discharge for hatchery Chinook but was unable to detect a relation for wild Chinook. The inability to detect a migration rate discharge relation for wild Chinook salmon was caused by a lack of data. For hatchery Chinook salmon there was a 1.8-fold increase in migration rate between 50 and 100 kcfs. For steelhead trout tagged at the Snake River trap, statistical analysis detected a significant relation between migration rate and lower Granite Reservoir inflow discharge. For hatchery and wild steelhead trout, there was a 2.2-fold and a 2.2-fold increase in migration rate, respectively, between 50 and 100 kcfs. Travel time and migration rate to Lower Granite Dam for fish marked at the Salmon River trap were calculated. Statistical analysis of the 2005 data detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge for hatchery Chinook salmon, wild Chinook salmon, hatchery steelhead trout, and wild steelhead trout. Migration rate increased 4.2-fold for hatchery Chinook salmon, 2.9-fold for wild Chinook salmon and 2.5-fold for hatchery steelhead, and 1.7-fold for wild steelhead as discharge increased between 50 kcfs and 100 kcfs. Fish tagged with PIT tags at the Snake River and Salmon River traps were interrogated at four dams with PIT tag detection systems (Lower Granite, Little Goose, Lower Monumental and McNary dams). Because of the addition of the fourth interrogation site (Lower Monumental) in 1993 and the installation of the Removable Spillway Weir at Lower Granite Dam in 2001, caution must be used in comparing cumulative interrogation data. Cumulative interrogations at the four dams for fish marked at the Snake River trap were 84% for hatchery Chinook, 89% for wild Chinook, 94% for hatchery steelhead, and 93% for wild steelhead. Cumulative interrogations at the four dams for fish marked at the Salmon River trap were 71% for hatchery Chinook, 78% for wild Chinook salmon, 80% for hatchery steelhead trout, and 81% for wild steelhead trout.« less

  13. Global trophic ecology of yellowfin, bigeye, and albacore tunas: Understanding predation on micronekton communities at ocean-basin scales

    NASA Astrophysics Data System (ADS)

    Duffy, Leanne M.; Kuhnert, Petra M.; Pethybridge, Heidi R.; Young, Jock W.; Olson, Robert J.; Logan, John M.; Goñi, Nicolas; Romanov, Evgeny; Allain, Valerie; Staudinger, Michelle D.; Abecassis, Melanie; Choy, C. Anela; Hobday, Alistair J.; Simier, Monique; Galván-Magaña, Felipe; Potier, Michel; Ménard, Frederic

    2017-06-01

    Predator-prey interactions for three commercially valuable tuna species: yellowfin (Thunnus albacares), bigeye (T. obesus), and albacore (T. alalunga), collected over a 40-year period from the Pacific, Indian, and Atlantic Oceans, were used to quantitatively assess broad, macro-scale trophic patterns in pelagic ecosystems. Analysis of over 14,000 tuna stomachs, using a modified classification tree approach, revealed for the first time the global expanse of pelagic predatory fish diet and global patterns of micronekton diversity. Ommastrephid squids were consistently one of the top prey groups by weight across all tuna species and in most ocean bodies. Interspecific differences in prey were apparent, with epipelagic scombrid and mesopelagic paralepidid fishes globally important for yellowfin and bigeye tunas, respectively, while vertically-migrating euphausiid crustaceans were important for albacore tuna in the Atlantic and Pacific Oceans. Diet diversity showed global and regional patterns among tuna species. In the central and western Pacific Ocean, characterized by low productivity, a high diversity of micronekton prey was detected while low prey diversity was evident in highly productive coastal waters where upwelling occurs. Spatial patterns of diet diversity were most variable in yellowfin and bigeye tunas while a latitudinal diversity gradient was observed with lower diversity in temperate regions for albacore tuna. Sea-surface temperature was a reasonable predictor of the diets of yellowfin and bigeye tunas, whereas chlorophyll-a was the best environmental predictor of albacore diet. These results suggest that the ongoing expansion of warmer, less productive waters in the world's oceans may alter foraging opportunities for tunas due to regional changes in prey abundances and compositions.

  14. Occupancy patterns of mammals and lentic amphibians in the Elwha River riparian zone before dam removal

    USGS Publications Warehouse

    Jenkins, Kurt J.; Chelgren, Nathan; Sager-Fradkin, K.A.; Happe, P.J.; Adams, Michael J.

    2015-01-01

    The downstream transport of sediments and organics and upstream migration of anadromous fishes are key ecological processes in unregulated riverine ecosystems of the North Pacific coast, but their influence on wildlife habitats and populations is poorly documented. Removal of two large hydroelectric dams in Washington’s Elwha Valley provides an unprecedented opportunity to study long-term responses of wildlife populations to dam removal and restoration of these key ecological processes. We compared pre-dam removal patterns in the relative abundance and occupancy of mesocarnivores, small mammals and lentic amphibians of the Elwha River riparian zone above, between and below the dams. Occupancy of riparian habitats by three mesocarnivore species diminished upriver but did not appear to be closely linked with the absence of salmon in the upper river. Although the importance of salmon in the lower river cannot be discounted, other gradients in food resources also likely contributed to observed distribution patterns of mesocarnivores. Abundance and occupancy patterns within congeneric pairs of new world mice (Peromyscus spp.) and shrews (Sorex spp.) indicated that closely related species were negatively associated with each other and responded to habitat gradients in the riparian zone. The availability of lentic habitats of amphibians was highly variable, and occupancy was low as a result of rapidly changing flows during the larval development period. We speculate that long-term changes in habitat conditions and salmon availability following dam removal will elicit long-term changes in distribution of mesocarnivores, small mammals and amphibians. Long-term monitoring will enhance understanding of the role of fish and restored ecosystem processes on wildlife communities along salmon-bearing rivers in the region.

  15. A space oddity: geographic and specific modulation of migration in Eudyptes penguins.

    PubMed

    Thiebot, Jean-Baptiste; Cherel, Yves; Crawford, Robert J M; Makhado, Azwianewi B; Trathan, Philip N; Pinaud, David; Bost, Charles-André

    2013-01-01

    Post-breeding migration in land-based marine animals is thought to offset seasonal deterioration in foraging or other important environmental conditions at the breeding site. However the inter-breeding distribution of such animals may reflect not only their optimal habitat, but more subtle influences on an individual's migration path, including such factors as the intrinsic influence of each locality's paleoenvironment, thereby influencing animals' wintering distribution. In this study we investigated the influence of the regional marine environment on the migration patterns of a poorly known, but important seabird group. We studied the inter-breeding migration patterns in three species of Eudyptes penguins (E. chrysolophus, E. filholi and E. moseleyi), the main marine prey consumers amongst the World's seabirds. Using ultra-miniaturized logging devices (light-based geolocators) and satellite tags, we tracked 87 migrating individuals originating from 4 sites in the southern Indian Ocean (Marion, Crozet, Kerguelen and Amsterdam Islands) and modelled their wintering habitat using the MADIFA niche modelling technique. For each site, sympatric species followed a similar compass bearing during migration with consistent species-specific latitudinal shifts. Within each species, individuals breeding on different islands showed contrasting migration patterns but similar winter habitat preferences driven by sea-surface temperatures. Our results show that inter-breeding migration patterns in sibling penguin species depend primarily on the site of origin and secondly on the species. Such site-specific migration bearings, together with similar wintering habitat used by parapatrics, support the hypothesis that migration behaviour is affected by the intrinsic characteristics of each site. The paleo-oceanographic conditions (primarily, sea-surface temperatures) when the populations first colonized each of these sites may have been an important determinant of subsequent migration patterns. Based on previous chronological schemes of taxonomic radiation and geographical expansion of the genus Eudyptes, we propose a simple scenario to depict the chronological onset of contrasting migration patterns within this penguin group.

  16. Genetic and phenotypic variation along an ecological gradient in lake trout Salvelinus namaycush

    USGS Publications Warehouse

    Baillie, Shauna M.; Muir, Andrew M.; Hansen, Michael J.; Krueger, Charles C.; Bentzen, Paul

    2016-01-01

    BackgroundAdaptive radiation involving a colonizing phenotype that rapidly evolves into at least one other ecological variant, or ecotype, has been observed in a variety of freshwater fishes in post-glacial environments. However, few studies consider how phenotypic traits vary with regard to neutral genetic partitioning along ecological gradients. Here, we present the first detailed investigation of lake trout Salvelinus namaycushthat considers variation as a cline rather than discriminatory among ecotypes. Genetic and phenotypic traits organized along common ecological gradients of water depth and geographic distance provide important insights into diversification processes in a lake with high levels of human disturbance from over-fishing.ResultsFour putative lake trout ecotypes could not be distinguished using population genetic methods, despite morphological differences. Neutral genetic partitioning in lake trout was stronger along a gradient of water depth, than by locality or ecotype. Contemporary genetic migration patterns were consistent with isolation-by-depth. Historical gene flow patterns indicated colonization from shallow to deep water. Comparison of phenotypic (Pst) and neutral genetic variation (Fst) revealed that morphological traits related to swimming performance (e.g., buoyancy, pelvic fin length) departed more strongly from neutral expectations along a depth gradient than craniofacial feeding traits. Elevated phenotypic variance with increasing water depth in pelvic fin length indicated possible ongoing character release and diversification. Finally, differences in early growth rate and asymptotic fish length across depth strata may be associated with limiting factors attributable to cold deep-water environments.ConclusionWe provide evidence of reductions in gene flow and divergent natural selection associated with water depth in Lake Superior. Such information is relevant for documenting intraspecific biodiversity in the largest freshwater lake in the world for a species that recently lost considerable genetic diversity and is now in recovery. Unknown is whether observed patterns are a result of an early stage of incipient speciation, gene flow-selection equilibrium, or reverse speciation causing formerly divergent ecotypes to collapse into a single gene pool.

  17. Potential interactions between diadromous fishes of U.K. conservation importance and the electromagnetic fields and subsea noise from marine renewable energy developments.

    PubMed

    Gill, A B; Bartlett, M; Thomsen, F

    2012-07-01

    The considerable extent of construction and operation of marine renewable energy developments (MRED) within U.K. and adjacent waters will lead, among other things, to the emission of electromagnetic fields (EMF) and subsea sounds into the marine environment. Migratory fishes that respond to natural environmental cues, such as the Earth's geomagnetic field or underwater sounds, move through the same waters that the MRED occupy, thereby raising the question of whether there are any effects of MRED on migratory fishes. Diadromous species, such as the Salmonidae and Anguillidae, which undertake large-scale migrations through coastal and offshore waters, are already significantly affected by other human activities leading to national and international conservation efforts to manage any existing threats and to minimize future concerns, including the potential effect of MRED. Here, the current state of knowledge with regard to the potential for diadromous fishes of U.K. conservation importance to be affected by MRED is reviewed. The information on which to base the review was found to be limited with respect to all aspects of these fishes' migratory behaviour and activity, especially with regards to MRED deployment, making it difficult to establish cause and effect relationships. The main findings, however, were that diadromous species can use the Earth's magnetic field for orientation and direction finding during migrations. Juveniles of anadromous brown trout (sea trout) Salmo trutta and close relatives of S. trutta respond to both the Earth's magnetic field and artificial magnetic fields. Current knowledge suggests that EMFs from subsea cables may interact with migrating Anguilla sp. (and possibly other diadromous fishes) if their movement routes take them over the cables, particularly in shallow water (<20 m). The only known effect is a temporary change in swimming direction. Whether this will represent a biologically significant effect, for example delayed migration, cannot yet be determined. Diadromous fishes are likely to encounter EMFs from subsea cables either during the adult movement phases of life or their early life stages during migration within shallow, coastal waters adjacent to natal rivers. The underwater sound from MRED devices has not been fully characterized to determine its acoustic properties and propagation through the coastal waters. MRED that require pile driving during construction appear to be the most relevant to consider. In the absence of a clear understanding of their response to underwater sound, the specific effects on migratory species of conservation concern remain very difficult to determine in relation to MRED. Based on the studies reviewed, it is suggested that fishes that receive high intensity sound in close proximity to construction may be physiologically affected to some degree, whereas those at farther distances, potentially up to several km, may exhibit behaviour responses; the effect of which is unknown and will be dependent on the properties of the received sound and receptor characteristics and condition. Whether there are behavioural effects on the fishes during operation is unknown but any change to the environment and subsequent response by the fishes would need to be considered over the lifetime of the MRED. It is not yet possible to determine if effects relating to sound exposure are biologically significant. The current assumptions of limited effects are built on an incomplete understanding of how the species move around their environment and interact with natural and anthropogenic EMFs and subsea sound. A number of important knowledge gaps exist, principally whether migratory fish species on the whole respond to the EMF and the sound associated with MRED. Future research should address the principal gaps before assuming that any effect on diadromous species results in a biological effect. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  18. Spatial and temporal patterns of subtidal and intertidal crabs excursions

    NASA Astrophysics Data System (ADS)

    Silva, A. C. F.; Boaventura, D. M.; Thompson, R. C.; Hawkins, S. J.

    2014-01-01

    Highly mobile predators such as fish and crabs are known to migrate from the subtidal zone to forage in the intertidal zone at high-tide. The extent and variation of these habitat linking movements along the vertical shore gradient have not been examined before for several species simultaneously, hence not accounting for species interactions. Here, the foraging excursions of Carcinus maenas (L.), Necora puber (Linnaeus, 1767) and Cancer pagurus (Linnaeus, 1758) were assessed in a one-year mark-recapture study on two replicated rocky shores in southwest U.K. A comparison between the abundance of individuals present on the shore at high-tide with those present in refuges exposed at low-tide indicated considerable intertidal migration by all species, showing strong linkage between subtidal and intertidal habitats. Estimates of population size based on recapture of marked individuals indicated that an average of ~ 4000 individuals combined for the three crab species, can be present on the shore during one tidal cycle. There was also a high fidelity of individuals and species to particular shore levels. Underlying mechanisms for these spatial patterns such as prey availability and agonistic interactions are discussed. Survival rates were estimated using the Cormack-Jolly-Seber model from multi-recapture analysis and found to be considerably high with a minimum of 30% for all species. Growth rates were found to vary intraspecifically with size and between seasons. Understanding the temporal and spatial variations in predation pressure by crabs on rocky shores is dependent on knowing who, when and how many of these commercially important crab species depend on intertidal foraging. Previous studies have shown that the diet of these species is strongly based on intertidal prey including key species such as limpets; hence intertidal crab migration could be associated with considerable impacts on intertidal assemblages.

  19. Coho salmon and steelhead trout of JDSF

    Treesearch

    Peter Cafferata; Karen Walton; Weldon Jones

    1989-01-01

    Spawning and rearing habitat for anadromous fish is the dominant use of Jackson Demonstration State Forest's (JDSF) many miles of streams. Both coho (silver) salmon and steelhead migrate from the ocean up our rivers in the fall and winter to spawn. About 90 miles of the Forest's streams have been classified as habitat for these fish.

  20. Evidence for migratory spawning behavior by morphologically distinct Cisco (Coregonus artedi) from a small inland lake

    USGS Publications Warehouse

    Ross, Alexander J.; Weidel, Brian C.; Leneker, Mellisa; Solomon, Christopher T.

    2017-01-01

    Conservation and management of rare fishes relies on managers having the most informed understanding of the underlying ecology of the species under investigation. Cisco (Coregonus artedi), a species of conservation concern, is a cold-water pelagic fish that is notoriously variable in morphometry and life history. Published reports indicate, at spawning time, Cisco in great lakes may migrate into or through large rivers, whereas those in small lakes move inshore. Nonetheless, during a sampling trip to Follensby Pond, a 393 ha lake in the Adirondack Mountains, New York, we observed gravid Cisco swimming over an outlet sill from a narrow shallow stream and into the lake. We opportunistically dip-netted a small subsample of 11 individuals entering the lake from the stream (three female, eight male) and compared them to fish captured between 2013 and 2015 with gillnets in the lake. Stream-captured Cisco were considerably larger than lake-captured individuals at a given age, had significantly larger asymptotic length, and were present only as mature individuals between age of 3 and age 5. These results could suggest either Cisco are migrating from a nearby lake to spawn in Follensby Pond, or that a distinct morphotype of Cisco from Follensby Pond migrates out to the stream and then back in at spawning time. Our results appear to complement a handful of other cases in which Cisco spawning migrations have been documented and to provide the first evidence for such behavior in a small inland lake.

  1. Feeding of predaceous fishes on out-migrating juvenile-salmonids in John Day Reservoir, Columbia River

    USGS Publications Warehouse

    Poe, Thomas P.; Hansel, Hal C.; Vigg, S.; Palmer, D.E.; Prendergast, L.A.

    1991-01-01

    Diets of northern squawfish Ptychocheilus oregonensis, smallmouth bass Micropterus dolomieu, walleye Stizostedion vitreum, and channel catfish Ictalurus punctatus from John Day Reservoir were examined to determine the extent of predation on juvenile salmonids during seaward migrations of the salmonids during April–August 1983–1986. Juvenile Pacific salmon Oncorhynchus spp. and steelhead O. mykiss were the most important food group (by weight) of northern squawfish – about 67% – but made up smaller proportions of the food of the other predators: channel catfish, 33%; walleyes, 14%; smallmouth bass, 4%. Seasonal changes in diets indicated that northern squawfish preferred juvenile salmonids in May and August (generally the peak period of salmonid out-migration), and switched to prickly sculpin Cottus asper when numbers of juvenile salmonids declined; walleyes and smallmouth bass showed a preference only for prickly sculpin among the prey fishes analyzed. As judged by dietary composition and prey selectivity, the northern squawfish was the major fish predator on juvenile salmonids in the reservoir; channel catfish also were important predators in the upper reservoir in spring. Walleyes and smallmouth bass were much less important predators on salmonids, and appeared to select subyearling chinook salmon only in August when the distribution of this prey overlapped with that of the predators. Size-selective predation by northern squawfish may also play an important role in reducing survival of the smaller individuals within each run of out-migrating juvenile salmonids.

  2. Monitoring of Downstream Salmon and Steelhead at Federal Hydroelectric Facilities, 1993 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Lynette A.; Graves, Ritchie J.; Killins, Susan D.

    1994-04-01

    The seaward migration of juvenile salmonids was monitored by the National Marine Fisheries Service (NMFS) at Bonneville and John Day Dams on the Columbia River in 1993 (river mile 145 and 216, respectively, Figure 1). The NMFS Smolt Monitoring Project is part of a larger Smolt Monitoring Program (SMP) coordinated by the Fish Passage Center (FPC) for the Columbia Basin Fish and Wildlife Authority. This program is carried out under the auspices of the Northwest Power Planning Council Fish and Wildlife Program and is funded by the Bonneville Power Administration. The purpose of the SMP is to index Columbia Basinmore » juvenile salmonid stocks and develop and implement flow and spill requests intended to facilitate fish passage. Data is also used for travel time, migration timing and relative run size magnitude analysis. The purpose of the NMFS portion of the program is to provide FPC with species specific data; numbers, condition, length, brand recaptures and flow data from John Day, and Bonneville Dams on a daily basis.« less

  3. Understanding the basis of shortnose sturgeon (Acipenser brevirostrum) partial migration in the Gulf of Maine

    USGS Publications Warehouse

    Altenritter, Matthew E.; Zydlewski, Gayle B.; Kinnison, Michael T.; Zydlewski, Joseph D.; Wippelhauser, Gail S.

    2018-01-01

    Movement of shortnose sturgeon (Acipenser brevirostrum) among major river systems in the Gulf of Maine is common and has implications for the management of this endangered species. Directed movements of 61 telemetered individuals monitored between 2010 and 2013 were associated with the river of tagging and individual characteristics. While a small proportion of fish tagged in the Kennebec River moved to the Penobscot River (5%), a much higher proportion of fish tagged in the Penobscot River moved to the Kennebec River (66%), during probable spawning windows. This suggests that Penobscot River fish derive from a migratory contingent within a larger Kennebec River population. Despite this connectivity, fish captured in the Penobscot River were larger (∼100 mm fork length) and had higher condition factors (median Fulton’s K: 0.76) than those captured in the Kennebec River (median Fulton’s K: 0.61). Increased abundance and resource limitation in the Kennebec River may be constraining growth and promoting migration to the Penobscot River by individuals with sufficient initial size and condition. Migrants could experience an adaptive reproductive advantage relative to nonmigratory individuals.

  4. Differences in Ichthyophonus prevalence and infection severity between upper Yukon River and Tanana River chinook salmon, Oncorhynchus tshawytscha (Walbaum), stocks

    USGS Publications Warehouse

    Kocan, R.; Hershberger, P.

    2006-01-01

    Two genetically distinct populations of chinook salmon, Oncorhynchus tshawytscha (Walbaum), were simultaneously sampled at the confluence of the Yukon and Tanana rivers in 2003. Upper Yukon-Canadian fish had significantly higher infection prevalence as well as more severe infections (higher parasite density in heart tissue) than the lower Yukon-Tanana River fish. Both populations had migrated the same distance from the mouth of the Yukon River at the time of sampling but had significantly different distances remaining to swim before reaching their respective spawning grounds. Multiple working hypotheses are proposed to explain the differences between the two stocks: (1) the two genetically distinct populations have different inherent resistance to infection, (2) genetically influenced differences in feeding behaviour resulted in temporal and/or spatial differences in exposure, (3) physiological differences resulting from different degrees of sexual maturity influenced the course of disease, and (4) the most severely infected Tanana River fish either died en route or fatigued and were unable to complete their migration to the Tanana River, thus leaving a population of apparently healthier fish. ?? 2006 Blackwell Publishing Ltd.

  5. Larval fish assemblages across an upwelling front: Indication for active and passive retention

    NASA Astrophysics Data System (ADS)

    Tiedemann, Maik; Brehmer, Patrice

    2017-03-01

    In upwelling areas, enrichment, concentration and retention are physical processes that have major consequences for larval fish survival. While these processes generally increase larval survival, strong upwelling can also increase mortality due to an offshore transport of larvae towards unfavorable habitats. In 2013 a survey was conducted along the Senegalese coast to investigate the upwelling effect with regard to larval fish assemblages and possible larval fish retention. According to water column characteristics two distinct habitats during an upwelling event were discriminated, i.e. the inshore upwelled water and the transition area over the deepest part of the Senegalese shelf. Along the two areas 42,162 fish larvae were collected representing 133 species within 40 families. Highest larval fish abundances were observed in the inshore area and decreasing abundances towards the transition, indicating that certain fish species make use of the retentive function of the inner shelf area as spawning grounds. Two larval fish assemblages overlap both habitats, which are sharply delimited by a strong upwelling front. One assemblage inhabited the inshore/upwelling area characterized by majorly neritic and pelagic species (Sparidae spp., Sardinella aurita), that seem to take the advantage of a passive retention on the shelf. The second assemblage consisted of a mix of pelagic and mesopelagic species (Engraulis encrasicolus, Carangidae spp. and Myctophidae spp.). Some species of the second assemblage, e.g. horse mackerels (Trachurus trachurus and Trachurus trecae), large finned-lantern fish (Hygophum macrochir) and foureyed sole (Microchirus ocellatus), revealed larval peak occurrences at intermediate and deep water layers, where the near-ground upwelling layer is able to transport larvae back to the shelf. This indicates active larval retention for species that are dominant in the transition area. Diel vertical migration patterns of S. aurita, E. encrasicolus and M. ocellatus revealed that a larval fish species may adapt its behavior to the local environment and do not necessarily follow a diurnal cycle. Field observations are essential to be integrated in larval drift models, since the vertical and horizontal larval distribution will have major consequences for survival. Comprehending larval survival mechanisms is necessary for the ultimate goal to understand and predict recruitment.

  6. Recent Salmon Declines: A Result of Lost Feeding Opportunities Due to Bad Timing?

    PubMed Central

    Chittenden, Cedar M.; Jensen, Jenny L. A.; Ewart, David; Anderson, Shannon; Balfry, Shannon; Downey, Elan; Eaves, Alexandra; Saksida, Sonja; Smith, Brian; Vincent, Stephen; Welch, David; McKinley, R. Scott

    2010-01-01

    As the timing of spring productivity blooms in near-shore areas advances due to warming trends in global climate, the selection pressures on out-migrating salmon smolts are shifting. Species and stocks that leave natal streams earlier may be favoured over later-migrating fish. The low post-release survival of hatchery fish during recent years may be in part due to static release times that do not take the timing of plankton blooms into account. This study examined the effects of release time on the migratory behaviour and survival of wild and hatchery-reared coho salmon (Oncorhynchus kisutch) using acoustic and coded-wire telemetry. Plankton monitoring and near-shore seining were also conducted to determine which habitat and food sources were favoured. Acoustic tags (n = 140) and coded-wire tags (n = 266,692) were implanted into coho salmon smolts at the Seymour and Quinsam Rivers, in British Columbia, Canada. Differences between wild and hatchery fish, and early and late releases were examined during the entire lifecycle. Physiological sampling was also carried out on 30 fish from each release group. The smolt-to-adult survival of coho salmon released during periods of high marine productivity was 1.5- to 3-fold greater than those released both before and after, and the fish's degree of smoltification affected their downstream migration time and duration of stay in the estuary. Therefore, hatchery managers should consider having smolts fully developed and ready for release during the peak of the near-shore plankton blooms. Monitoring chlorophyll a levels and water temperature early in the spring could provide a forecast of the timing of these blooms, giving hatcheries time to adjust their release schedule. PMID:20805978

  7. A comparison of genetic ariation between an anadromous steelhead, Oncorhynchus mykiss, population and seven derived populations sequestered in freshwater for 70 years

    USGS Publications Warehouse

    Thrower, Frank; Guthrie, Charles; Nielsen, Jennifer L.; Joyce, John

    2004-01-01

    In 1926 cannery workers from the Wakefield Fisheries Plant at Little Port Walter in Southeast Alaska captured small trout, Oncorhynchus mykiss, from a portion of Sashin Creek populated with a wild steelhead (anadromous O. mykiss) run. They planted them into Sashin Lake which had been fishless to that time and separated from the lower stream by two large waterfalls that prevented upstream migration of any fish. In 1996 we sampled adult steelhead from the lower creek and juvenile O. mykiss from an intermediate portion of the creek, Sashin Lake, and five lakes that had been stocked with fish from Sashin Lake in 1938. Tissue samples from these eight populations were compared for variation in: microsatellite DNA at 10 loci; D-loop sequences in mitochondrial DNA; and allozymes at 73 loci known to be variable in steelhead. Genetic variability was consistently less in the Sashin Lake population and all derived populations than in the source anadromous population. The cause of this reduction is unknown but it is likely that very few fish survived to reproduce from the initial transplant in 1926. Stockings of 50–85 fish into five other fishless lakes in 1938 from Sashin Lake did not result in a similar dramatic reduction in variability. We discuss potential explanations for the observed patterns of genetic diversity in relation to the maintenance of endangered anadromous O. mykiss populations in freshwater refugia.

  8. Spatial and temporal variation in artisanal catches of dolphinfish Coryphaena hippurus off north-eastern Brazil.

    PubMed

    Nóbrega, M F; Kinas, P G; Lessa, R; Ferrandis, E

    2015-02-01

    The sampling of fish from the artisanal fleet operating with surface lines off north-eastern Brazil was carried out between 1998 and 2000. Generalized linear models (GLMs) were used to standardize mean abundance indices using catch and fishing effort data on dolphinfish Coryphaena hippurus and to identify abundance trends in time and space, using 1215 surface line deployments. A standard relative abundance index (catch per unit effort, CPUE) was estimated for the most frequent vessels used in the sets, employing factors and coefficients generated in the GLMs. According to the models, C. hippurus catches are affected by the operating characteristics and power of different fishing vessels. These differences highlight the need for standardization of catch and effort data for artisanal fisheries. The highest mean abundance values for C. hippurus were off the state of Rio Grande do Norte, with an increasing tendency in areas with greater depths and more distant from the coast, reaching maximal values in areas whose depths range from 200 to 500 m. The highest mean abundance values occurred between April and June. The higher estimated abundance of C. hippurus in this period off the state of Rio Grande do Norte and within the 200-500 m depth range may be related to a migration pattern of food sources, as its main prey, the flying fish Hirundichthys affinis, uses floating algae as refuge and to deposit its pelagic eggs. © 2015 The Fisheries Society of the British Isles.

  9. Microhabitat use, not temperature, regulates intensity of Gyrodactylus cichlidarum long-term infection on farmed tilapia--are parasites evading competition or immunity?

    PubMed

    Rubio-Godoy, Miguel; Muñoz-Córdova, Germán; Garduño-Lugo, Mario; Salazar-Ulloa, Martha; Mercado-Vidal, Gabriel

    2012-02-10

    Gyrodactylids (Monogenea) are ectoparasites of fish, some of which negatively affect commercially valuable fishes. Temperature strongly regulates population dynamics of these viviparous flatworms in farmed and wild fish populations, with most gyrodactylid species showing positive temperature-abundance associations. In agreement with epidemiological theory, numerous laboratory studies demonstrate that these parasites cannot persist in confined fish populations without periodic introduction of susceptible hosts. Extinction of gyrodactylid populations is due to host immunity, which develops in several fish species. In this one-year study, we followed populations of the recognized pathogen Gyrodactylus cichlidarum infecting four genetic groups of confined tilapia (wild type Nile tilapia Oreochromis niloticus niloticus, red O. n. niloticus, Mozambique tilapia O. mossambicus and a red synthetic population called Pargo-UNAM) kept under farming conditions and subject to natural environmental fluctuations. Based on the antecedents given, we postulated the following three hypotheses: (1) parasite abundance will be regulated by water temperature; (2) parasites will induce host mortality, particularly during periods of rapid infrapopulation growth; and (3) gyrodactylid populations will eventually become extinct on confined fish hosts. We disproved the three hypotheses: (1) parasite numbers fluctuated independently of temperature but were associated to changes in microhabitat use; (2) although gyrodactylid populations exhibited considerable growth, no evidence was found of negative effects on the hosts; and (3) infections persisted for one year on confined fish. Microhabitat use changed over time, with most worms apparently migrating anteriorly from the caudal fin and ending on the pectoral fins. Gyrodactylid populations followed similar trajectories in all fish, aggregating and dispersing repeatedly. Several instances were found where increased parasite dispersion coincided with increased intensity of infection; as well as the opposite, where increased aggregation coincided with parasite population declines. Three alternative explanations could account for these observations: that parasites (1) experience differential mortality on different anatomical regions of the fish; (2) migrate to avoid intraspecific competition; and (3) migrate to escape localized immune responses induced by infection. Our data do not allow us to demonstrate which of these alternatives is correct, so we discuss the merits of each. We provide circumstantial evidence in support of the third explanation, because as shown in other fish host-gyrodactylid interactions where immune responses have been characterized, in this study worms progressively moved away from fins with high mucus cell density to those with low density - what would be anticipated if immune defenses occur and reach the fish surface through mucus. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Acoustically detected year-round presence of right whales in an urbanized migration corridor.

    PubMed

    Morano, Janelle L; Rice, Aaron N; Tielens, Jamey T; Estabrook, Bobbi J; Murray, Anita; Roberts, Bethany L; Clark, Christopher W

    2012-08-01

    Species' conservation relies on understanding their seasonal habitats and migration routes. North Atlantic right whales (Eubalaena glacialis), listed as endangered under the U.S. Endangered Species Act, migrate from the southeastern U.S. coast to Cape Cod Bay, Massachusetts, a federally designated critical habitat, from February through May to feed. The whales then continue north across the Gulf of Maine to northern waters (e.g., Bay of Fundy). To enter Cape Cod Bay, right whales must traverse an area of dense shipping and fishing activity in Massachusetts Bay, where there are no mandatory regulations for the protection of right whales or management of their habitat. We used passive acoustic recordings of right whales collected in Massachusetts Bay from May 2007 through October 2010 to determine the annual spatial and temporal distribution of the whales and their calling activity. We detected right whales in the bay throughout the year, in contrast to results from visual surveys. Right whales were detected on at least 24% of days in each month, with the exception of June 2007, in which there were no detections. Averaged over all years, right whale calls were most abundant from February through May. During this period, calls were most frequent between 17:00 and 20:00 local time; no diel pattern was apparent in other months. The spatial distribution of the approximate locations of calling whales suggests they may use Massachusetts Bay as a conduit to Cape Cod Bay in the spring and as they move between the Gulf of Maine and waters to the south in September through December. Although it is unclear how dependent right whales are on the bay, the discovery of their widespread presence in Massachusetts Bay throughout the year suggests this region may need to be managed to reduce the probability of collisions with ships and entanglement in fishing gear. ©2012 Society for Conservation Biology.

  11. International labour migration in the Asian-Pacific region: patterns, policies and economic implications.

    PubMed

    Athukorala, P

    1993-11-01

    "This paper reviews the literature on international labour migration from and within the Asian-Pacific region. It deals with patterns and characteristics of migration flows, government policies towards labour migration, and economic implications of labour migration for both labour-exporting and importing countries in the region. The indications are that, despite gradual slowing down of labour flows to the western industrial countries and the Middle East, labour migration will continue to be a major economic influence on surplus-labour countries in the region. As an integral part of the growth dynamism in the region, labour migration has now begun to take on a regional dimension, with immense implications for the process of industrial restructuring in high growth economies and the changing pattern of economic interdependence among countries." excerpt

  12. MIGRATION OF COLLEGE AND UNIVERSITY STUDENTS, STATE OF WASHINGTON.

    ERIC Educational Resources Information Center

    GOSSMAN, CHARLES S.; AND OTHERS

    TWO GENERAL ASPECTS OF COLLEGE AND UNIVERSITY STUDENT MIGRATION AS IT RELATES TO THE STATE OF WASHINGTON ARE DISCUSSED. THE FIRST ASPECT INCLUDES ANALYSIS OF MIGRATION PATTERNS IN ACCORDANCE WITH ENROLLMENT CATEGORIES AND TYPES OF INSTITUTIONS, DIFFERENTIAL VOLUMES AND PATTERNS OF MIGRATION FOR SPECIFIC COLLEGES AND UNIVERSITIES IN THE STATE, AND…

  13. Migration of Tundra Swans (Cygnus columbianus) Wintering in Japan Using Satellite Tracking: Identification of the Eastern Palearctic Flyway.

    PubMed

    Chen, Wenbo; Doko, Tomoko; Fujita, Go; Hijikata, Naoya; Tokita, Ken-Ichi; Uchida, Kiyoshi; Konishi, Kan; Hiraoka, Emiko; Higuchi, Hiroyoshi

    2016-02-01

    Migration through the Eastern Palearctic (EP) flyway by tundra swans (Cygnus columbianus) has not been thoroughly documented. We satellite-tracked the migration of 16 tundra swans that winter in Japan. The objectives of this study were 1) to show the migration pattern of the EP flyway of tundra swans; 2) to compare this pattern with the migration pattern of whooper swans; and 3) to identify stopover sites that are important for these swans' conservation. Tundra swans were captured at Kutcharo Lake, Hokkaido, in 2009-2012 and satellite-tracked. A new method called the "MATCHED (Migratory Analytical Time Change Easy Detection) method" was developed. Based on median, the spring migration began on 18 April and ended on 27 May. Autumn migration began on 9 September and ended on 2 November. The median duration of the spring and autumn migrations were 48 and 50 days, respectively. The mean duration at one stopover site was 5.5 days and 6.8 days for the spring and autumn migrations, respectively. The number of stopover sites was 3.0 and 2.5 for the spring and autumn migrations, respectively. The mean travel distances for the spring and autumn migrations were 6471 and 6331 km, respectively. Seven migration routes passing Sakhalin, the Amur River, and/or Kamchatka were identified. There were 15, 32, and eight wintering, stopover, and breeding sites, respectively. The migration routes and staging areas of tundra swans partially overlap with those of whooper swans, whose migration patterns have been previously documented. The migration patterns of these two swan species that winter in Japan confirm the importance of the Amur River, Udyl' Lake, Shchastya Bay, Aniva Bay, zaliv Chayvo Lake, zal Piltun Lake, zaliv Baykal Lake, Kolyma River, Buyunda River, Sen-kyuyel' Lake, and northern coastal areas of the Sea of Okhotsk.

  14. Population Dynamics of Adult Lost River (Deltistes luxatus) and Shortnose (Chasmistes brevirostris) Suckers in Clear Lake Reservoir, California, 2006-08

    USGS Publications Warehouse

    Barry, Patrick M.; Janney, Eric C.; Hewitt, David A.; Hayes, Brian S.; Scott, Alta C.

    2009-01-01

    We report results from ongoing research into the population dynamics of endangered Lost River and shortnose suckers in Clear Lake Reservoir, California. Results are included for sampling that occurred from fall 2006 to spring 2008. We summarize catches and passive integrated transponder tagging efforts from trammel net sampling in fall 2006 and fall 2007, and report on detections of tagged suckers on remote antennas in the primary spawning tributary, Willow Creek, in spring 2007 and spring 2008. Results from trammel net sampling were similar to previous years, although catches of suckers in fall 2006 were lower than in 2007 and past years. Lost River and shortnose suckers combined made up about 80 percent of the sucker catch in each year, and more than 2,000 new fish were tagged across the 2 years. Only a small number of the suckers captured in fall sampling were recaptures of previously tagged fish, reinforcing the importance of remote detections of fish for capture-recapture analysis. Detections of tagged suckers in Willow Creek were low in spring 2007, presumably because of low flows. Nonetheless, the proportions of tagged fish that were detected were reasonably high and capture-recapture analyses should be possible after another year of data collection. Run timing for Lost River and shortnose suckers was well described by first detections of individuals by antennas in Willow Creek, although we may not have installed the antennas early enough in 2008 to monitor the earliest portion of the Lost River sucker migration. The duration and magnitude of the spawning runs for both species were influenced by flows and water temperature. Flows in Willow Creek were much higher in 2008 than in 2007, and far more detections were recorded in 2008 and the migrations were more protracted. In both years and for both species, migrations began in early March at water temperatures between 5 and 6 deg C and peaks were related to periods of increasing water temperature. The sex ratio of Lost River suckers detected in Willow Creek was skewed toward males, despite consistently more females having been tagged in fall sampling. This pattern indicates that some tagged female Lost River suckers may be spawning elsewhere in the system, and we intend to investigate this possibility to verify or alter the representativeness of our spring monitoring. Length frequency analysis of fall trammel net catches showed that the populations of both species in Clear Lake Reservoir have undergone major demographic transitions during the last 15 years. In the mid-1990s, the populations were dominated by larger fish and showed little evidence of recent recruitment. These larger fish apparently disappeared in the late 1990s and early 2000s, and the populations are now dominated by fish that recruited into the adult populations in the late 1990s. The length frequencies from the last 4 years provide evidence of consistent recruitment into the Lost River sucker population, but provide no such evidence for the shortnose sucker population. Overall, annual growth rates for both species in Clear Lake were 2-4 times greater than growth rates for conspecifics in Upper Klamath Lake. However, little or no growth occurred for either species in Clear Lake between 2006 and 2007. Based on available evidence, we are unable to fully explain differences in growth rates between systems or among years within Clear Lake.

  15. Population genetic structure and connectivity in the widespread coral-reef fish Abudefduf saxatilis: the role of historic and contemporary factors

    NASA Astrophysics Data System (ADS)

    Piñeros, Victor Julio; Gutiérrez-Rodríguez, Carla

    2017-09-01

    We assessed geographic patterns of genetic variation and connectivity in the widely distributed coral-reef fish Abudefduf saxatilis at different temporal scales. We sequenced two mitochondrial regions (cytochrome b and control region) and genotyped 12 microsatellite loci in a total of 296 individuals collected from 14 reefs in two biogeographic provinces in the tropical western Atlantic Ocean and from three provinces within the Caribbean Sea. We used phylogeography, population genetics and coalescent methods to assess the potential effects of climatic oscillations in the Pleistocene and contemporary oceanographic barriers on the population genetic structure and connectivity of the species. Sequence analyses indicated high genetic diversity and a lack of genetic differentiation throughout the Caribbean and between the two biogeographic provinces. Different lines of evidence depicted demographic expansions of A. saxatilis populations dated to the Pleistocene. The microsatellites exhibited high genetic diversity, and no genetic differentiation was detected within the Caribbean; however, these markers identified a genetic discontinuity between the two western Atlantic biogeographic provinces. Migration estimates revealed gene flow across the Amazon-Orinoco Plume, suggesting that genetic divergence may be promoted by differential environmental conditions on either side of the barrier. The climatic oscillations of the Pleistocene, together with oceanographic barriers and the dispersal potential of the species, constitute important factors determining the geographic patterns of genetic variation in A. saxatilis.

  16. Inhibiting roles of melanin-concentrating hormone for skin pigment dispersion in barfin flounder, Verasper moseri.

    PubMed

    Mizusawa, Kanta; Kobayashi, Yuki; Sunuma, Toshikazu; Asahida, Takashi; Saito, Yumiko; Takahashi, Akiyoshi

    2011-03-01

    Barfin flounders change their surface color pattern to match their background. We have reported evidence of the association between hormones and body color changes in this fish. First, bolus intraperitoneal injection with melanin-concentrating hormone (MCH) immediately turned the skin color pale, while injection with melanocyte-stimulating hormone (MSH) did not change the skin color. Second, gene expression levels of MCH change in response to background color, while those of MSH do not. We also reported the expression of an MCH receptor gene (Mch-r2) in the skin of this fish. In this study, we aimed to further evaluate the roles of MCH in skin color change. First, long-term adaptation of adult barfin flounder to black or white background colors induced significantly different pigment migration patterns in both melanophores and xanthophores (P<0.05). However, continuous intraperitoneal injection with MCH did not influence chromatophore proliferation. Then, using in vitro experiments, we found that MCH aggregates both melanophores and xanthophores, and inhibits the pigment-dispersing activity of MSH in a similar manner. Finally, we identified transcripts of Mch-r2 in cells isolated from both melanophores and xanthophores. Taken together, the evidence suggests that MCH aggregates pigments via MCH-R2 in concert with the nervous system by overcoming the melanin-dispersing activities of MSH in barfin flounder. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Running the Gauntlet: Regional Movement Patterns of Manta alfredi through a Complex of Parks and Fisheries

    PubMed Central

    Germanov, Elitza S.; Marshall, Andrea D.

    2014-01-01

    Manta rays (Genus Manta) are economically important for fisheries and tourism in Indonesia. These species have been listed by the International Union for the Conservation of Nature Red List as Vulnerable to extinction; therefore, human exploitation of manta rays must be regulated. A better understanding of the habitat use and movement patterns of manta rays in Indonesia is needed in order to employ effective conservation measures. To gain better insight into the movements of Manta alfredi we used ‘Manta Matcher’, an online database with an integrated automated matching algorithm, to compare photographs from 2,604 encounters of M. alfredi collected by recreational divers and dive operators throughout Indonesia over a nine-year period. This photographic comparison revealed that manta rays migrated between regional sanctuaries such as Nusa Penida, the Gili Islands, and the Komodo National Park (up to 450 km straight-line distance). The areas between these sanctuaries are heavily fished and trafficked by ships, and when manta rays travel through these regions they risk being fished and injured by ship strikes. These long-range manta ray movements suggest connectivity between M. alfredi populations in neighboring islands and raise concerns about the future management of regional populations. It is recommended that a national conservation strategy be developed to protect the remaining populations in the country. PMID:25337865

  18. RSA migration of total knee replacements.

    PubMed

    Pijls, Bart G; Plevier, José W M; Nelissen, Rob G H H

    2018-06-01

    Purpose - We performed a systematic review and meta-analyses to evaluate the early and long-term migration patterns of tibial components of TKR of all known RSA studies. Methods - Migration pattern was defined as at least 2 postoperative RSA follow-up moments. Maximal total point motion (MTPM) at 6 weeks, 3 months, 6 months, 1 year, 2 years, 5 years, and 10 years were considered. Results - The literature search yielded 1,167 hits of which 53 studies were included, comprising 111 study groups and 2,470 knees. The majority of the early migration occurred in the first 6 months postoperatively followed by a period of stability, i.e., no or very little migration. Cemented and uncemented tibial components had different migration patterns. For cemented tibial components there was no difference in migration between all-poly and metal-backed components, between mobile bearing and fixed bearing, between cruciate retaining and posterior stabilized. Furthermore, no difference existed between TKR measured with model-based RSA or marker-based RSA methods. For uncemented TKR there was some variation in migration with the highest migration for uncoated TKR. Interpretation - The results from this meta-analysis on RSA migration of TKR are in line with both the survival analyses results from joint registries of these TKRs as well as revision rates results from meta-analyses, thus providing further proof for the association between early migration and late revision for loosening. The pooled migration patterns can be used both as benchmarks and for defining migration thresholds for future evaluation of new TKR.

  19. Smolt Monitoring Program Comparative Survival Rate Study (CSS); Oregon Department of Fish and Wildlife, Annual Report 2001-2002.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonasson, Brian; Carmichael, Richard

    2003-05-01

    We PIT-tagged juvenile spring chinook salmon reared at Lookingglass Hatchery in October 2001 as part of the Comparative Survival Rate Study (CSS) for migratory year (MY) 2002. We tagged 20,998 Imnaha stock spring chinook salmon, and after mortality and tag loss, we allowed the remaining 20,920 fish to leave the acclimation pond at our Imnaha River satellite facility beginning 21 March 2002 to begin their seaward migration. The fish remaining in the pond were forced out on 17 April 2002. We tagged 20,973 Catherine Creek stock captive brood progeny spring chinook salmon, and after mortality and tag loss, we allowedmore » the remaining 20,796 fish to leave the acclimation ponds at our Catherine Creek satellite facility beginning 1 April 2001 to begin their seaward migration. The fish remaining in the ponds were forced out on 15 April 2001. We estimated survival rates, from release to Lower Granite Dam in MY 2002, for three stocks of hatchery spring chinook salmon tagged at Lookingglass Hatchery to determine their relative migration performance. Imnaha River stock and Lostine River stock survival rates were similar and were higher than the survival rate of Catherine Creek stock. We PIT-tagged 20,950 BY 2001 Imnaha River stock and 20,820 BY 2001 Catherine Creek stock captive brood progeny in October 2002 as part of the CSS for MY 2003. At the time the fish were transferred from Lookingglass Hatchery to the acclimation site, the rates of mortality and tag loss for Imnaha River stock were 0.14% and 0.06%, respectively. Catherine Creek stock, during the same period, had rates of mortality and tag loss of 0.57% and 0.31%, respectively. There was slightly elevated mortality, primarily from BKD, in one raceway of Catherine Creek stock at Lookingglass Hatchery for BY 2001.« less

  20. Formation mechanism of complex pattern on fishes' skin

    NASA Astrophysics Data System (ADS)

    Li, Xia; Liu, Shuhua

    2009-10-01

    In this paper, the formation mechanism of the complex patterns observed on the skin of fishes has been investigated by a two-coupled reaction diffusion model. The effects of coupling strength between two layers play an important role in the pattern-forming process. It is found that only the epidermis layer can produce complicated patterns that have structures on more than one length scale. These complicated patterns including super-stripe pattern, mixture of spots and stripe, and white-eye pattern are similar to the pigmentation patterns on fishes' skin.

  1. Using a non-physical behavioural barrier to alter migration routing of juvenile Chinook salmon in the Sacramento–San Joaquin River Delta

    USGS Publications Warehouse

    Perry, R.W.; Romine, J.G.; Adams, N.S.; Blake, A.R.; Burau, J.R.; Johnston, S.V.; Liedtke, T.L.

    2012-01-01

    Anthropogenic alterations to river systems, such as irrigation and hydroelectric development, can negatively affect fish populations by reducing survival when fish are routed through potentially dangerous locations. Non-physical barriers using behavioural stimuli are one means of guiding fish away from such locations without obstructing water flow. In the Sacramento–San Joaquin River Delta, we evaluated a bio-acoustic fish fence (BAFF) composed of strobe lights, sound and a bubble curtain, which was intended to divert juvenile Chinook salmon (Oncorhynchus tshawytscha) away from Georgiana Slough, a low-survival migration route that branches off the Sacramento River. To quantify fish response to the BAFF, we estimated individual entrainment probabilities from two-dimensional movement paths of juvenile salmon implanted with acoustic transmitters. Overall, 7.7% of the fish were entrained into Georgiana Slough when the BAFF was on, and 22.3% were entrained when the BAFF was off, but a number of other factors influenced the performance of the BAFF. The effectiveness of the BAFF declined with increasing river discharge, likely because increased water velocities reduced the ability of fish to avoid being swept across the BAFF into Georgiana Slough. The BAFF reduced entrainment probability by up to 40 percentage points near the critical streakline, which defined the streamwise division of flow vectors entering each channel. However, the effect of the BAFF declined moving in either direction away from the critical streakline. Our study shows how fish behaviour and the environment interacted to influence the performance of a non-physical behavioural barrier in an applied setting.

  2. Long-Term Trends in Migration Timing Based on Thermal Response of a Temperate Forage Fish

    NASA Astrophysics Data System (ADS)

    Palamara, L. J.; Manderson, J.; Kohut, J. T.; Snow, A.

    2016-02-01

    The physiology of many marine animals is tightly coupled to their surrounding fluid environment. Several habitat features, most notably temperature, determine these animals' fitness by affecting their growth, survival, and reproductive success. In temperate regions, many species are mobile and able to track the specific temperatures encompassed by their thermal niches as the regional temperature distribution changes. Butterfish (Peprilus triacanthus), which demonstrate very strong seasonal and temperature-dependent migration patterns in the Mid-Atlantic Bight (MAB), a region exhibiting some of the highest seasonal and interannual temperature variability in the world, is an excellent example of this phenomenon. We developed a thermal niche model for butterfish based on the statistical relationship between catches and measured temperatures from spring and fall NMFS and NEAMAP surveys and several state inshore surveys, and fit parameters to the Boltzmann-Arrhenius function, a simple yet explanatory model of temperature dependence, so that the resulting curve closely matched the statistical relationship. This thermal relationship was coupled to over 30 years of daily shallow-water OI SST (optimal interpolation sea surface temperature) measured by satellite and various in situ platforms, and daily bottom temperatures estimated by a hydrodynamic hindcast ROMS (Regional Ocean Modeling System) model to examine long-term trends in thermal migration triggers into shallow inshore waters in the spring, and out of them to deep offshore wintering habitat in the fall. In many parts of the MAB, the "thermal fall" migration trigger was delayed during later decades of the time series compared to earlier decades. This suggests potential changes in butterfish productivity and life history stages, as well as potential changes in NMFS survey bias, as the ships are unable to tow in shallow waters and will catch most butterfish in deeper waters after the variable migration trigger.

  3. Lower Granite Dam Smolt Monitoring Program, 1998 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verhey, Peter; Ross, Doug; Morrill, Charles

    1998-12-01

    The 1998 fish collection season at Lower Granite was characterized by relatively moderate spring flows and spill, moderate levels of debris, cool spring, warm summer and fall water temperatures, and increased chinook numbers, particularly wild subyearling chinook collected and transported. The Fish Passage Center's Smolt Monitoring Program is designed to provide a consistent, real-time database on fish passage and document the migrational characteristics of the many stocks of salmon and steelhead in the Columbia Basin.

  4. Comparison of organotin accumulation in the masu salmon Oncorhynchus masou accompanying migratory histories

    NASA Astrophysics Data System (ADS)

    Ohji, Madoka; Arai, Takaomi; Miyazaki, Nobuyuki

    2007-05-01

    In order to examine the accumulation pattern of organotin compounds (OTs) accompanying the migration pattern in diadromous fish, tributyltin (TBT) and triphenyltin (TPT) compounds and their derivatives were determined in the liver, muscle, gill, and ovary tissues of both sea-run and freshwater-resident masu salmon, which are of the same species, Oncorhynchus masou. Their migratory histories were estimated using strontium (Sr) and calcium (Ca) analysis in the otolith. A significant difference in the mean Sr:Ca ratio from the core to the edge of the otolith was found between sea-run and freshwater-resident masu salmon. The TBT concentration in the liver was significantly higher than that in the other tissues in both sea-run and freshwater-resident fishes. In sea-run masu salmon, the TBT concentrations in all tissues except for the ovary were significantly higher than in those of freshwater-resident individuals. In the sea-run type, the percentage of TBT was higher than that of the freshwater-resident type. The TPT concentration in the liver of the sea-run type was also significantly higher than that in the other tissues, while that in the gill of the freshwater-resident type was significantly higher than that in the other tissues except for the ovary. The TPT concentrations found in the liver and muscle of the sea-run type were significantly higher than those in the freshwater-resident type, whereas the values of the gill in the sea-run type were significantly lower than those in the freshwater-resident fish examined. The percentage of TPT in the sea-run type was higher than that of the freshwater-resident type. These results suggest that the sea-run O. masou has a higher ecological risk of TBT and TPT exposure than the freshwater-residents during their life history.

  5. Possibilities of fish passage through the block ramp: Model-based estimation of permeability.

    PubMed

    Plesiński, Karol; Bylak, Aneta; Radecki-Pawlik, Artur; Mikołajczyk, Tomasz; Kukuła, Krzysztof

    2018-08-01

    Block ramps offer an opportunity to combine hydrotechnical structures with fish passages. The primary study objective was to evaluate the effectiveness of a block ramp for upstream fish movement in a mountain stream. Geodetic measurements of the bottom surface and water level were taken for three cross-sections. The description of the geometric and hydrodynamic parameters of the block ramp was supplemented with information on the width and length of crevices between boulders. Measurements of the geometric and hydrodynamic parameters of the block ramp were performed at 76 measurement sites, at three different types of discharge. Ichthyological data were collected in the analyzed stream. Measurements covered among others total length, width, and height of caught fish. Salmonid, cottid, balitorid, and cyprinid fish were studied. The determination of the main effects of the geometric and hydrodynamic parameters of the block ramp on the possibilities of use by target fish species employed generalized linear models (GLMs). The study shows that the block ramp cannot provide longitudinal connectivity and migration of fish occurring in the mountain stream. According to estimates, the block ramp did not meet the permeability expectations. The reason for low usefulness of the ramp for fish is particularly excessively strong water current. The stream concentration constituted an unsurmountable velocity barrier for fish moving upstream for each of the analyzed discharges. The developed model suggests that some crevices in the side zones of the ramp could be parts of the migration corridor, but only for small and medium-sized fish. At medium and high water stages, movement of fish in crevices was difficult due to fast water current, and at low and very low discharges, some crevices lost their permeability, and could become ecological traps for fish. The necessity of estimation of ramp permeability during pre-construction phase was emphasized. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Using Nocturnal Flight Calls to Assess the Fall Migration of Warblers and Sparrows along a Coastal Ecological Barrier

    PubMed Central

    Smith, Adam D.; Paton, Peter W. C.; McWilliams, Scott R.

    2014-01-01

    Atmospheric conditions fundamentally influence the timing, intensity, energetics, and geography of avian migration. While radar is typically used to infer the influence of weather on the magnitude and spatiotemporal patterns of nocturnal bird migration, monitoring the flight calls produced by many bird species during nocturnal migration represents an alternative methodology and provides information regarding the species composition of nocturnal migration. We used nocturnal flight call (NFC) recordings of at least 22 migratory songbirds (14 warbler and 8 sparrow species) during fall migration from eight sites along the mainland and island coasts of Rhode Island to evaluate five hypotheses regarding NFC detections. Patterns of warbler and sparrow NFC detections largely supported our expectations in that (1) NFC detections associated positively and strongly with wind conditions that influence the intensity of coastal bird migration and negatively with regional precipitation; (2) NFCs increased during conditions with reduced visibility (e.g., high cloud cover); (3) NFCs decreased with higher wind speeds, presumably due mostly to increased ambient noise; and (4) coastal mainland sites recorded five to nine times more NFCs, on average, than coastal nearshore or offshore island sites. However, we found little evidence that (5) nightly or intra-night patterns of NFCs reflected the well-documented latitudinal patterns of migrant abundance on an offshore island. Despite some potential complications in inferring migration intensity and species composition from NFC data, the acoustic monitoring of NFCs provides a viable and complementary methodology for exploring the spatiotemporal patterns of songbird migration as well as evaluating the atmospheric conditions that shape these patterns. PMID:24643060

  7. Social interactions between live and artificial weakly electric fish: Electrocommunication and locomotor behavior of Mormyrus rume proboscirostris towards a mobile dummy fish

    PubMed Central

    Kirschbaum, Frank; von der Emde, Gerhard

    2017-01-01

    Mormyrid weakly electric fish produce short, pulse-type electric organ discharges for actively probing their environment and to communicate with conspecifics. Animals emit sequences of pulse-trains that vary in overall frequency and temporal patterning and can lead to time-locked interactions with the discharge activity of other individuals. Both active electrolocation and electrocommunication are additionally accompanied by stereotypical locomotor patterns. However, the concrete roles of electrical and locomotor patterns during social interactions in mormyrids are not well understood. Here we used a mobile fish dummy that was emitting different types of electrical playback sequences to study following behavior and interaction patterns (electrical and locomotor) between individuals of weakly electric fish. We confronted single individuals of Mormyrus rume proboscirostris with a mobile dummy fish designed to attract fish from a shelter and recruit them into an open area by emitting electrical playbacks of natural discharge sequences. We found that fish were reliably recruited by the mobile dummy if it emitted electrical signals and followed it largely independently of the presented playback patterns. While following the dummy, fish interacted with it spatially by displaying stereotypical motor patterns, as well as electrically, e.g. through discharge regularizations and by synchronizing their own discharge activity to the playback. However, the overall emission frequencies of the dummy were not adopted by the following fish. Instead, social signals based on different temporal patterns were emitted depending on the type of playback. In particular, double pulses were displayed in response to electrical signaling of the dummy and their expression was positively correlated with an animals' rank in the dominance hierarchy. Based on additional analysis of swimming trajectories and stereotypical locomotor behavior patterns, we conclude that the reception and emission of electrical communication signals play a crucial role in mediating social interactions in mormyrid weakly electric fish. PMID:28902915

  8. Freshwater Fish Assemblage Patterns in Rhode Island Streams and Rivers

    EPA Science Inventory

    Patterns in fish assemblages in streams and rivers can inform watershed and water management, yet these patterns are not well characterized for the U.S. state of Rhode Island. Here we relate freshwater fish data collected by the Rhode Island Department of Environmental Managemen...

  9. Freshwater Fish Assemblage Patterns in Rhode Island Streams and Rivers (ESA)

    EPA Science Inventory

    Patterns in fish assemblages in streams and rivers can inform watershed and water management, yet these patterns are not well characterized for the U.S. state of Rhode Island. Here we relate freshwater fish data collected by the Rhode Island Department of Environmental Managemen...

  10. Assessment of smolt condition for travel time analysis. Annual report 1989

    USGS Publications Warehouse

    Beeman, J.W.; Rondorf, D.W.; Faler, J.C.; Free, M.E.; Haner, P.V.

    1990-01-01

    The Water Budget is a volume of water used to enhance environmental conditions (flows) in the Columbia and Snake rivers for juvenile salmonids during their seaward migration. To manage the Water Budget, the Fish Passage Center estimates travel times of juvenile salmonids in index reaches of the main-stem rivers, using information on river flows and the migrational characteristics of the juvenile salmonids. This study was initiated to provide physiological information on the juvenile salmonids used for these travel time estimates. The physiological ability to respond to stressors was evaluated by measuring concentrations of plasma cortisol, glucose, and chlorides before and after a 30-s handling-stress challenge test. As in 1988, most groups responded satisfactorily to the challenge. The scope for response was compromised among two groups of juvenile chinook salmon that were trucked to release sites and in steelhead from one hatchery after unusual marking and transportation protocols were used. The development of smoltification was assessed by measuring gill Na+-K+ ATPase activity and plasma thyroxine concentrations. Mean ATPase activities of marked hatchery groups of juvenile chinook salmon and steelhead changed little during the month before release and rose sharply for about the first 20 d of the migration after release. Mean plasma thyroxine was highest during the first 20 d after release. Mean gill ATPase activity of spring chinook salmon from the migration-at-large peaked at about the 90th percentile of passage at Rock Island and Lower Granite dams, and at about the 50th percentile of passage at McNary Dam. Mean gill ATPase activity of wild steelhead was higher than gill ATPase activity of hatchery steelhead at Rock Island Dam, the Snake River Trap, and Lower Granite Dam, but not at McNary Dam. This was attributed to a time-dependent relationship between increases in ATPase activity and the number of days fish migrated before recapture. Correlations of gill ATPase activity and/or plasma thyroxine concentrations with condition factor, morphology, or skin guanine concentration may be useful as non-lethal indicators of smoltification for inclusion in a smoltification index. Prevalence of bacterial kidney disease in spring chinook salmon was generally higher than in 1988, ranging from 81-100% using an enzyme-linked immunosorbent assay (ELISA) method. Fish from Snake River hatcheries had more severe infections than those from mid-Columbia hatcheries. The percentage of fish with severe infections was lower at two downstream dams than at the Snake River hatcheries of origin, suggesting a bias in dam collection facilities or that these fish ceased to migrate, either of which could lead to biases in travel time estimates.

  11. Migration depth and residence time of juvenile salmonids in the forebays of hydropower dams prior to passage through turbines or juvenile bypass systems: implications for turbine-passage survival.

    PubMed

    Li, Xinya; Deng, Zhiqun D; Brown, Richard S; Fu, Tao; Martinez, Jayson J; McMichael, Geoffrey A; Skalski, John R; Townsend, Richard L; Trumbo, Bradly A; Ahmann, Martin L; Renholds, Jon F

    2015-01-01

    Little is known about the three-dimensional depth distributions in rivers of individually marked fish that are in close proximity to hydropower facilities. Knowledge of the depth distributions of fish approaching dams can be used to understand how vulnerable fish are to injuries such as barotrauma as they pass through dams. To predict the possibility of barotrauma injury caused by pressure changes during turbine passage, it is necessary to understand fish behaviour relative to acclimation depth in dam forebays as they approach turbines. A guiding study was conducted using high-resolution three-dimensional tracking results of salmonids implanted with Juvenile Salmon Acoustic Telemetry System transmitters to investigate the depth distributions of subyearling and yearling Chinook salmon (Oncorhynchus tshawytscha) and juvenile steelhead (Oncorhynchus mykiss) passing two dams on the Snake River in Washington State. Multiple approaches were evaluated to describe the depth at which fish were acclimated, and statistical analyses were performed on large data sets extracted from ∼28 000 individually tagged fish during 2012 and 2013. Our study identified patterns of depth distributions of juvenile salmonids in forebays prior to passage through turbines or juvenile bypass systems. This research indicates that the median depth at which juvenile salmonids approached turbines ranged from 2.8 to 12.2 m, with the depths varying by species/life history, year, location (which dam) and diel period (between day and night). One of the most enlightening findings was the difference in dam passage associated with the diel period. The amount of time that turbine-passed fish spent in the immediate forebay prior to entering the powerhouse was much lower during the night than during the day. This research will allow scientists to understand turbine-passage survival better and enable them to assess more accurately the effects of dam passage on juvenile salmon survival.

  12. Migration depth and residence time of juvenile salmonids in the forebays of hydropower dams prior to passage through turbines or juvenile bypass systems: implications for turbine-passage survival

    PubMed Central

    Li, Xinya; Deng, Zhiqun D.; Brown, Richard S.; Fu, Tao; Martinez, Jayson J.; McMichael, Geoffrey A.; Skalski, John R.; Townsend, Richard L.; Trumbo, Bradly A.; Ahmann, Martin L.; Renholds, Jon F.

    2015-01-01

    Little is known about the three-dimensional depth distributions in rivers of individually marked fish that are in close proximity to hydropower facilities. Knowledge of the depth distributions of fish approaching dams can be used to understand how vulnerable fish are to injuries such as barotrauma as they pass through dams. To predict the possibility of barotrauma injury caused by pressure changes during turbine passage, it is necessary to understand fish behaviour relative to acclimation depth in dam forebays as they approach turbines. A guiding study was conducted using high-resolution three-dimensional tracking results of salmonids implanted with Juvenile Salmon Acoustic Telemetry System transmitters to investigate the depth distributions of subyearling and yearling Chinook salmon (Oncorhynchus tshawytscha) and juvenile steelhead (Oncorhynchus mykiss) passing two dams on the Snake River in Washington State. Multiple approaches were evaluated to describe the depth at which fish were acclimated, and statistical analyses were performed on large data sets extracted from ∼28 000 individually tagged fish during 2012 and 2013. Our study identified patterns of depth distributions of juvenile salmonids in forebays prior to passage through turbines or juvenile bypass systems. This research indicates that the median depth at which juvenile salmonids approached turbines ranged from 2.8 to 12.2 m, with the depths varying by species/life history, year, location (which dam) and diel period (between day and night). One of the most enlightening findings was the difference in dam passage associated with the diel period. The amount of time that turbine-passed fish spent in the immediate forebay prior to entering the powerhouse was much lower during the night than during the day. This research will allow scientists to understand turbine-passage survival better and enable them to assess more accurately the effects of dam passage on juvenile salmon survival. PMID:27293685

  13. Characteristics of Fishes with the Potential to Cause Acoustic Clutter off Oregon and Washington during the Summer of 2012

    DTIC Science & Technology

    2014-05-10

    14. Barboza, T., "West Coast sardine crash could radiate throughout ecosystem," Los Angeles Times, January 5, 2014. 15. Enticknap, B., Letter to the...AND SURVEYS Much of the Pacific sardine and Pacific hake stocks undertake annual north-south migrations . They migrate in late spring from off...California to the Pacific Northwest to feed during the summer. In the fall they migrate back to California to spawn during the winter and spring. The

  14. Is there a step-wise migration in Nigeria? A case study of the migrational histories of migrants in Lagos.

    PubMed

    Afolayan, A A

    1985-09-01

    "The paper sets out to test whether or not the movement pattern of people in Nigeria is step-wise. It examines the spatial order in the country and the movement pattern of people. It then analyzes the survey data and tests for the validity of step-wise migration in the country. The findings show that step-wise migration cannot adequately describe all the patterns observed." The presence of large-scale circulatory migration between rural and urban areas is noted. Ways to decrease the pressure on Lagos by developing intermediate urban areas are considered. excerpt

  15. On international fisheries agreements, entry deterrence, and ecological uncertainty.

    PubMed

    Ellefsen, Hans; Grønbæk, Lone; Ravn-Jonsen, Lars

    2017-05-15

    A prerequisite for an international fisheries agreement (IFA) to be stable is that parties expect the benefits from joining the agreement to exceed the benefits from free riding on the agreement, and parties only comply with the agreement as long as this is true. The agreement, therefore, implicitly builds on an expectation of the ecological condition of the natural resource. Game theoretical models often assume that all parties have the same (often perfect) information about the resource and that the exploitation is an equilibrium use of the stock. As stated by experts in natural science, the fish ecology still has many open questions, for example how to predict population dynamics, migration patterns, food availability, etc. In some cases, parties disagree about the state, abundance, and migration of a stock, which can reduce the possibilities of reaching an agreement for exploitation of the stock. This paper develops a model and applies it to the North-East Atlantic mackerel fishery, in order to analyze an IFA under different ecological scenarios, and also combines the model with the economic theory of entry deterrence. The model is used empirically to determine whether the parties with original access to the resource have an advantage when forming an agreement with a new party in having the ability to fish the stock down to a smaller size and thereby prevent another party from entering into the fishery. With a basis in entry deterrence, combined with lack of information, the paper illustrates the obstacles that have made an agreement for the North-East Atlantic mackerel so difficult to achieve. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Assessment of smolt condition for travel time analysis. Annual report 1988

    USGS Publications Warehouse

    Rondorf, D.W.; Beeman, J.W.; Faler, J.C.; Free, M.E.; Wagner, E.J.

    1989-01-01

    Estimates of migration rates and travel times of juvenile salmonids within index reaches of the Columbia River basin are collected through the Smolt Monitoring Program for use by the Fish Passage Center. With increased reliance upon travel time estimates in 1988 by the Fish Passage Center, this study was implemented to monitor the biological attributes of juvenile chinook salmon Oncorhynchus tshawytscha and steelhead trout 0.- mykiss used for the travel time estimates, The physiological ability of fish to respond to stress was assessed by measuring levels of plasma cortisol, glucose, and chloride before and after a stress-challenge test. Most mid-Columbia and Snake river groups responded normally to the stress challenge exhibiting an increase in plasma glucose and cortisol and a slight decrease in chloride. Fish trucked to release sites were more stressed than those released directly from the hatchery, but most still responded to the stress challenge test normally. An abnormal or extreme stress response occurred when there were deviations from preferred protocol, disease problems at hatcheries, or when fish were trucked over long periods (7h). The development of smoltification was evaluated by measuring gill Na+K+-ATPase, plasma thyroxine, purines, and body morphology. Most groups were similar at the hatcheries but differed as the migration to McNary Dam proceeded. Gill ATPase activity increased 2-3 fold during the first 20 days of migration, after which it changed little. Fish with longer in-river travel times appeared to be more smolted than those which were in the river for a shorter period of time. The prevalence of bacterial kidney disease (BKD) in spring chinook salmon was evaluated using the enzyme linked immunosorbent assay (ELISA) and fluorescent antibody technique (FAT). Prevalence of BKD in groups tested using the ELISA method was as high as 99% at some downstream locations. A review of indices is presented as a guide, to the development of an index of smolt condition and preliminary data are presented. An index could be used as a tool to synthesize information on fish condition to assist with management and evaluation of the Water Budget.

  17. Evaluation of stream flow effects on smolt survival in the Yakima River Basin, Washington, 2012-2014

    USGS Publications Warehouse

    Courter, Ian; Garrison, Tommy; Kock, Tobias J.; Perry, Russell W.

    2015-01-01

    The influence of stream flow on survival of emigrating juvenile (smolts) Pacific salmon Oncorhynchus spp. and steelhead trout O. mykiss is of key management interest. However, few studies have quantified flow effects on smolt migration survival, and available information does not indicate a consistent flow-survival relationship within the typical range of flows under management control. It is hypothesized that smolt migration and dam passage survival are positively correlated with stream flow because higher flows increase migration rates, potentially reducing exposure to predation, and reduce delays in reservoirs. However, available empirical data are somewhat equivocal concerning the influence of flow on smolt survival and the underlying mechanisms driving this relationship. Stream flow effects on survival of emigrating anadromous salmonids in the Yakima Basin have concerned water users and fisheries managers for over 20 years, and previous studies do not provide sufficient information at the resolution necessary to inform water operations, which typically occur on a small spatiotemporal scale. Using a series of controlled flow releases from 2012-2014, combined with radio telemetry, we quantified the relationship between flow and smolt survival from Roza Dam 208 km downstream to the Yakima River mouth, as well as for specific routes of passage at Roza Dam. A novel multistate mark-recapture model accounted for weekly variation in flow conditions experienced by radio-tagged fish. Groups of fish were captured and radio-tagged at Roza Dam and released at two locations, upstream at the Big Pines Campground (river kilometer [rkm] 211) and downstream in the Roza Dam tailrace (rkm 208). A total of 904 hatchery-origin yearling Chinook salmon O. tshawytscha were captured in the Roza Dam fish bypass, radio-tagged and released upstream of Roza Dam. Two hundred thirty seven fish were released in the tailrace of Roza Dam. Fish released in the tailrace of Roza Dam were tagged concurrently with fish released upstream of the dam using identical tagging methods. Tagging and release events were conducted to target a range of flow conditions indicative of flows observed during the typical migration period (March-May) for juvenile spring Chinook salmon in the Yakima River. Three, five and four separate upstream releases were conducted in 2012, 2013, and 2014 respectively, and at least 43 fish were released alive on each occasion. The release sample sizes in 2014 were much larger (~130) compared to previous years for the purpose of increasing precision of survival estimates across the range of flows tested. Migration movements of radio-tagged spring Chinook salmon smolts were monitored with an array of telemetry receiver stations (fixed sites) that extended 208 rkm downstream from the forebay of Roza Dam to the mouth of the Yakima River. Fixed monitoring sites included the forebay of Roza Dam (rkm 208), the tailrace of Roza Dam (rkm 207.9), the mouth of Wenas Creek (rkm 199.2), the mouth of the Naches River (two sites, rkm 189.4), Sunnyside Dam (two sites, rkm 169.1), Prosser Dam (rkm 77.2), and the mouth of the Yakima River (two sites, rkm2 3). This array segregated the study area into four discrete reaches in which survival of tagged fish was estimated. Aerial and underwater antennas were also used to monitor tagged fish at Roza Dam. Aerial antennas were located in the forebay, on the East gate, on the West gate, and in the tailrace of Roza Dam. Underwater antennas were located in the fish bypass, upstream of the East gate, and upstream of the West gate to collect route-specific passage data for tagged fish. Additional years of data collection and analysis could alter or improve our understanding of the influence of flow and other environmental factors on smolt survival in the Yakima River. Nevertheless, during 2012-2014, yearling hatchery Chinook salmon smolt emigration survival was significantly associated with stream flow in the

  18. CE-QUAL-W2 Modeling of Head-of-Reservoir Conditions at Shasta Reservoir, California

    NASA Astrophysics Data System (ADS)

    Clancey, K. M.; Saito, L.; Svoboda, C.; Bender, M. D.; Hannon, J.

    2014-12-01

    Restoration of Chinook salmon and steelhead is a priority in the Sacramento River Basin since they were listed under the Endangered Species Act in 1989 and 1998, respectively. Construction of Shasta Dam and Reservoir obstructed fish migration, resulting in severe population declines. Efforts have been undertaken to restore the fisheries, including evaluation of opportunities for reintroducing Chinook salmon upstream of the dam and providing juvenile fish passage downstream past Shasta Dam. Shasta Reservoir and the Sacramento River and McCloud River tributaries have been modeled with CE-QUAL-W2 (W2) to assess hydrodynamic and temperature conditions with and without surface curtains to be deployed in the tributaries. Expected head-of-reservoir tributary conditions of temperature and water depth are being simulated under dry, median and wet year conditions. Model output is analyzed during months of downstream migration of fish from upstream Sacramento and McCloud River tributaries. W2 will be used to determine presence of favorable conditions for juvenile rearing with proposed surface temperature curtains. Evaluation of favorable conditions for fish includes assessment of water temperature, velocities, and depth. Preliminary results for head-of-reservoir conditions and the influence of temperature curtains modeled with W2 will be presented. Study findings may assist in formulation of juvenile fish passage alternatives for Shasta Lake.

  19. Assessment and recommendations for two sites with active and potential aquaculture production in Rift Valley and Coast Provinces, Kenya

    USDA-ARS?s Scientific Manuscript database

    Kenya has a long history of local fish consumption. The population in the Lake Victoria area (Rift Valley Province) Northwest of Nairobi and coastal communities (Coast Province) have historically included fish in their diet. Migration from villages to urban areas and increasing commerce has created ...

  20. Modeling Parasite Dynamics on Farmed Salmon for Precautionary Conservation Management of Wild Salmon

    PubMed Central

    Rogers, Luke A.; Peacock, Stephanie J.; McKenzie, Peter; DeDominicis, Sharon; Jones, Simon R. M.; Chandler, Peter; Foreman, Michael G. G.; Revie, Crawford W.; Krkošek, Martin

    2013-01-01

    Conservation management of wild fish may include fish health management in sympatric populations of domesticated fish in aquaculture. We developed a mathematical model for the population dynamics of parasitic sea lice (Lepeophtheirus salmonis) on domesticated populations of Atlantic salmon (Salmo salar) in the Broughton Archipelago region of British Columbia. The model was fit to a seven-year dataset of monthly sea louse counts on farms in the area to estimate population growth rates in relation to abiotic factors (temperature and salinity), local host density (measured as cohort surface area), and the use of a parasiticide, emamectin benzoate, on farms. We then used the model to evaluate management scenarios in relation to policy guidelines that seek to keep motile louse abundance below an average three per farmed salmon during the March–June juvenile wild Pacific salmon (Oncorhynchus spp.) migration. Abiotic factors mediated the duration of effectiveness of parasiticide treatments, and results suggest treatment of farmed salmon conducted in January or early February minimized average louse abundance per farmed salmon during the juvenile wild salmon migration. Adapting the management of parasites on farmed salmon according to migrations of wild salmon may therefore provide a precautionary approach to conserving wild salmon populations in salmon farming regions. PMID:23577082

  1. Role of fish distribution on estimates of standing crop in a cooling reservoir

    USGS Publications Warehouse

    Barwick, D. Hugh

    1984-01-01

    Estimates of fish standing crop from coves in Keowee Reservoir, South Carolina, were obtained in May and August for 3 consecutive years. Estimates were significantly higher in May than in August for most of the major species of fish collected, suggesting that considerable numbers of fish had migrated from the coves by August. This change in fish distribution may have resulted from the operation of a 2,580-megawatt nuclear power plant which altered reservoir stratification. Because fish distribution is sensitive to conditions of reservoir stratification, and because power plants often alter reservoir stratification, annual cove sampling in August may not be sufficient to produce comparable estimates of fish standing crop on which to assess the impact of power plant operations on fish populations. Comparable estimates of fish standing crop can probably be obtained from cooling reservoirs by collecting annual samples at similar water temperatures and concentrations of dissolved oxygen.

  2. Zebrafish: an exciting model for investigating the spatio-temporal pattern of enteric nervous system development.

    PubMed

    Doodnath, Reshma; Dervan, Adrian; Wride, Michael A; Puri, Prem

    2010-12-01

    Recently, the zebrafish (Danio rerio) has been shown to be an excellent model for human paediatric research. Advantages over other models include its small size, externally visually accessible development and ease of experimental manipulation. The enteric nervous system (ENS) consists of neurons and enteric glia. Glial cells permit cell bodies and processes of neurons to be arranged and maintained in a proper spatial arrangement, and are essential in the maintenance of basic physiological functions of neurons. Glial fibrillary acidic protein (GFAP) is expressed in astrocytes, but also expressed outside of the central nervous system. The aim of this study was to investigate the spatio-temporal pattern of GFAP expression in developing zebrafish ENS from 24 h post-fertilization (hpf), using transgenic fish that express green fluorescent protein (GFP). Zebrafish embryos were collected from transgenic GFP Tg(GFAP:GFP)(mi2001) adult zebrafish from 24 to 120 hpf, fixed and processed for whole mount immunohistochemistry. Antibodies to Phox2b were used to identify enteric neurons. Specimens were mounted on slides and imaging was performed using a fluorescent laser confocal microscope. GFAP:GFP labelling outside the spinal cord was identified in embryos from 48 hpf. The patterning was intracellular and consisted of elongated profiles that appeared to migrate away from the spinal cord into the periphery. At 72 and 96 hpf, GFAP:GFP was expressed dorsally and ventrally to the intestinal tract. At 120 hpf, GFAP:GFP was expressed throughout the intestinal wall, and clusters of enteric neurons were identified using Phox2b immunofluorescence along the pathway of GFAP:GFP positive processes, indicative of a migratory pathway of ENS precursors from the spinal cord into the intestine. The pattern of migration of GFAP:GFP expressing cells outside the spinal cord suggests an organized, early developing migratory pathway to the ENS. This shows for the first time that Tg(GFAP:GFP)(mi2001) zebrafish model is an ideal one to study spatio-temporal patterning of early ENS development.

  3. [Spatial point patterns of Antarctic krill fishery in the northern Antarctic Peninsula].

    PubMed

    Yang, Xiao Ming; Li, Yi Xin; Zhu, Guo Ping

    2016-12-01

    As a key species in the Antarctic ecosystem, the spatial distribution of Antarctic krill (thereafter krill) often tends to present aggregation characteristics, which therefore reflects the spatial patterns of krill fishing operation. Based on the fishing data collected from Chinese krill fishing vessels, of which vessel A was professional krill fishing vessel and Vessel B was a fishing vessel which shifted between Chilean jack mackerel (Trachurus murphyi) fishing ground and krill fishing ground. In order to explore the characteristics of spatial distribution pattern and their ecological effects of two obvious different fishing fleets under a high and low nominal catch per unit effort (CPUE), from the viewpoint of spatial point pattern, the present study analyzed the spatial distribution characteristics of krill fishery in the northern Antarctic Peninsula from three aspects: (1) the two vessels' point pattern characteristics of higher CPUEs and lower CPUEs at different scales; (2) correlation of the bivariate point patterns between these points of higher CPUE and lower CPUE; and (3) correlation patterns of CPUE. Under the analysis derived from the Ripley's L function and mark correlation function, the results showed that the point patterns of the higher/lo-wer catch available were similar, both showing an aggregation distribution in this study windows at all scale levels. The aggregation intensity of krill fishing was nearly maximum at 15 km spatial scale, and kept stably higher values at the scale of 15-50 km. The aggregation intensity of krill fishery point patterns could be described in order as higher CPUE of vessel A > lower CPUE of vessel B >higher CPUE of vessel B > higher CPUE of vessel B. The relationship of the higher and lo-wer CPUEs of vessel A showed positive correlation at the spatial scale of 0-75 km, and presented stochastic relationship after 75 km scale, whereas vessel B showed positive correlation at all spatial scales. The point events of higher and lower CPUEs were synchronized, showing significant correlations at most of spatial scales because of the dynamics nature and complex of krill aggregation patterns. The distribution of vessel A's CPUEs was positively correlated at scales of 0-44 km, but negatively correlated at the scales of 44-80 km. The distribution of vessel B's CPUEs was negatively correlated at the scales of 50-70 km, but no significant correlations were found at other scales. The CPUE mark point patterns showed a negative correlation, which indicated that intraspecific competition for space and prey was significant. There were significant differences in spatial point pattern distribution between vessel A with higher fishing capacity and vessel B with lower fishing capacity. The results showed that the professional krill fishing vessel is suitable to conduct the analysis of spatial point pattern and scientific fishery survey.

  4. Effects of Iron Gate Dam discharge and other factors on the survival and migration of juvenile coho salmon in the lower Klamath River, northern California, 2006-09

    USGS Publications Warehouse

    Beeman, John; Juhnke, Steven; Stutzer, Greg; Wright, Katrina

    2012-01-01

    Current management of the Klamath River includes prescribed minimum discharges intended partly to increase survival of juvenile coho salmon during their seaward migration in the spring. To determine if fish survival was related to river discharge, we estimated apparent survival and migration rates of yearling coho salmon in the Klamath River downstream of Iron Gate Dam. The primary goals were to determine if discharge at Iron Gate Dam affected coho salmon survival and if results from hatchery fish could be used as a surrogate for the limited supply of wild fish. Fish from hatchery and wild origins that had been surgically implanted with radio transmitters were released into the Klamath River slightly downstream of Iron Gate Dam at river kilometer 309. Tagged fish were used to estimate apparent survival between, and passage rates at, a series of detection sites as far downstream as river kilometer 33. Conclusions were based primarily on data from hatchery fish, because wild fish were only available in 2 of the 4 years of study. Based on an information-theoretic approach, apparent survival of hatchery and wild fish was similar, despite differences in passage rates and timing, and was lowest in the 54 kilometer (km) reach between release and the Scott River. Models representing the hypothesis that a short-term tagging- or handling-related mortality occurred following release were moderately supported by data from wild fish and weakly supported by data from hatchery fish. Estimates of apparent survival of hatchery fish through the 276 km study area ranged from 0.412 (standard error [SE] 0.048) to 0.648 (SE 0.070), depending on the year, and represented an average of 0.790 per 100 km traveled. Estimates of apparent survival of wild fish through the study area were 0.645 (SE 0.058) in 2006 and 0.630 (SE 0.059) in 2009 and were nearly identical to the results from hatchery fish released on the same dates. The data and models examined supported positive effects of water temperature, river discharge, and fish weight as factors affecting apparent survival in the Klamath River upstream of the confluence with the Shasta River, but few of the variables examined were supported as factors affecting survival farther downstream. The effect of water temperature on apparent survival upstream of the Shasta River was greater than Iron Gate Dam discharge, which was greater than fish weight. The estimated effect on apparent survival between release and the Shasta River with each 1degree Celsius increase in water temperature was 1.4 times the effect of a 100 cubic feet per second increase in Iron Gate Dam discharge and 2.5 times the effect of a 1 gram increase in fish weight, and the effects of discharge and weight diminished at higher water temperatures up to the 17.91 degrees Celsius maximum present in the data examined. The rate of passage at the detection site near the confluence with the Shasta River was primarily affected by date of release, and water temperature was the only factor supported at the site near the confluence with the Scott River. Passage rates at sites downstream of the Scott River were affected by several of the variables examined, but the estimated effects were small and often imprecise. Results from this study indicate that discharge at Iron Gate Dam has a positive effect on apparent survival of yearling coho salmon in the Klamath River upstream of the Shasta River, but the effects are smaller than those of water temperature and are mediated by it. The results also support the use of hatchery fish as surrogates for wild fish in studies of apparent survival, but the available evidence suggests that study fish should be released well upstream of the area of interest, due to short-term differences in survival and migration behavior of hatchery and wild fish after release.

  5. Directional Cell Migration in Response to Repeated Substratum Stretching

    NASA Astrophysics Data System (ADS)

    Okimura, Chika; Iwadate, Yoshiaki

    2017-10-01

    Crawling migration plays an essential role in a variety of biological phenomena, including development, wound healing, and immune system function. Migration properties such as anterior-posterior polarity, directionality, and velocity are regulated not only by the reception of a chemoattractant but also by sensing mechanical inputs from the external environment. In this review, we describe the mechanical response of migrating cells, particularly under repeated stretching of the elastic substratum, highlighting the fact that there appear to be two independent mechanosensing systems that generate the polarity needed for migration. Cells that have no stress fibers, such as Dictyostelium cells and neutrophil-like differentiated HL-60 cells, migrate perpendicular to the stretching direction via myosin II localization. Cells that do possess stress fibers, however, such as fish keratocytes, migrate parallel to the stretching via a stress-fiber-dependent process.

  6. Role of self-caught fish in total fish consumption rates for recreational fishermen: Average consumption for some species exceeds allowable intake.

    PubMed

    Burger, Joanna

    2013-01-01

    Studies of fish consumption focus on recreational or subsistence fishing, on awareness and adherence to advisories, consumption patterns, and contaminants in fish. Yet the general public obtains their fish from commercial sources. In this paper I examine fish consumption patterns of recreational fishermen in New Jersey to determine: 1) consumption rates for self-caught fish and for other fish, 2) meals consumed per year, 3) average meal size, and average daily intake of mercury, and 4) variations in these parameters for commonly-consumed fish, and different methods of computing intake. Over 300 people were interviewed at fishing sites and fishing clubs along the New Jersey shore. Consumption patterns of anglers varied by species of fish. From 2 to 90 % of the anglers ate the different fish species, and between 9 and 75 % gave fish away to family or friends. Self-caught fish made up 7 to 92 % of fish diets. On average, self-caught fish were eaten for only 2 to 6 months of the year, whereas other fish (commercial or restaurant) were eaten up to 10 months a year. Anglers consumed from 5 to 36 meals of different fish a year, which resulted in intake of mercury ranging from 0.01 to 0.22 ug/kg/day. Average intake of Mako shark, swordfish, and tuna (sushi, canned tuna, self-caught tuna) exceeded the U.S. Environmental Protection Agency's oral, chronic reference dose for mercury of 0.1 ug/kg/day. However, computing intake using consumption for the highest month results in average mercury intake exceeding the reference dose for striped bass and bluefish as well. These data, and the variability in consumption patterns, have implications for risk assessors, risk managers, and health professionals.

  7. Role of self-caught fish in total fish consumption rates for recreational fishermen: Average consumption for some species exceeds allowable intake

    PubMed Central

    Burger, Joanna

    2013-01-01

    Studies of fish consumption focus on recreational or subsistence fishing, on awareness and adherence to advisories, consumption patterns, and contaminants in fish. Yet the general public obtains their fish from commercial sources. In this paper I examine fish consumption patterns of recreational fishermen in New Jersey to determine: 1) consumption rates for self-caught fish and for other fish, 2) meals consumed per year, 3) average meal size, and average daily intake of mercury, and 4) variations in these parameters for commonly-consumed fish, and different methods of computing intake. Over 300 people were interviewed at fishing sites and fishing clubs along the New Jersey shore. Consumption patterns of anglers varied by species of fish. From 2 to 90 % of the anglers ate the different fish species, and between 9 and 75 % gave fish away to family or friends. Self-caught fish made up 7 to 92 % of fish diets. On average, self-caught fish were eaten for only 2 to 6 months of the year, whereas other fish (commercial or restaurant) were eaten up to 10 months a year. Anglers consumed from 5 to 36 meals of different fish a year, which resulted in intake of mercury ranging from 0.01 to 0.22 ug/kg/day. Average intake of Mako shark, swordfish, and tuna (sushi, canned tuna, self-caught tuna) exceeded the U.S. Environmental Protection Agency’s oral, chronic reference dose for mercury of 0.1 ug/kg/day. However, computing intake using consumption for the highest month results in average mercury intake exceeding the reference dose for striped bass and bluefish as well. These data, and the variability in consumption patterns, have implications for risk assessors, risk managers, and health professionals. PMID:23914136

  8. Growth and smolting in lower-mode Atlantic Salmon stocked into the Penobscot River, Maine

    USGS Publications Warehouse

    Zydlewski, Joseph D.; O'Malley, Andrew; Cox, Oliver; Ruksznis, Peter; Trial, Joan G.

    2014-01-01

    Restoration of Atlantic Salmon Salmo salar in Maine has relied on hatchery-produced fry and smolts for critical stocking strategies. Stocking fry minimizes domestication selection, but these fish have poor survival. Conversely, stocked smolts have little freshwater experience but provide higher adult returns. Lower-mode (LM) fish, those not growing fast enough to ensure smolting by the time of stocking, are a by-product of the smolt program and are an intermediate hatchery product. From 2002 to 2009, between 70,000 and 170,000 marked LM Atlantic Salmon were stocked into the Pleasant River (a tributary in the Penobscot River drainage, Maine) in late September to early October. These fish were recaptured as actively migrating smolts (screw trapping), as nonmigrants (electrofishing), and as returning adults to the Penobscot River (Veazie Dam trap). Fork length (FL) was measured and a scale sample was taken to retrospectively estimate FL at winter annulus one (FW1) using the intercept-corrected direct proportion model. The LM fish were observed to migrate as age-1, age-2, and infrequently as age-3 smolts. Those migrating as age-1 smolts had a distinctly larger estimated FL at FW1 (>112 mm) than those that remained in the river for at least one additional year. At the time of migration, age-2 and age-3 smolts were substantially larger than age-1 smolts. Returning adult Atlantic Salmon of LM origin had estimated FLs at FW1 that corresponded to smolt age (greater FL for age 1 than age 2). The LM product produces both age-1 and age-2 smolts that have greater freshwater experience than hatchery smolts and may have growth and fitness advantages. The data from this study will allow managers to better assess the probability of smolting age and manipulate hatchery growth rates to produce a targeted-size LM product.

  9. A Novel Modeling Approach for Estimating Patterns of Migration into and out of San Francisco by HIV Status and Race among Men Who Have Sex with Men.

    PubMed

    Hughes, Alison J; Chen, Yea-Hung; Scheer, Susan; Raymond, H Fisher

    2017-06-01

    In the early 1980s, men who have sex with men (MSM) in San Francisco were one of the first populations to be affected by the human immunodeficiency virus (HIV) epidemic, and they continue to bear a heavy HIV burden. Once a rapidly fatal disease, survival with HIV improved drastically following the introduction of combination antiretroviral therapy in 1996. As a result, the ability of HIV-positive persons to move into and out of San Francisco has increased due to lengthened survival. Although there is a high level of migration among the general US population and among HIV-positive persons in San Francisco, in- and out-migration patterns of MSM in San Francisco have, to our knowledge, never been described. Understanding migration patterns by HIV serostatus is crucial in determining how migration could influence both HIV transmission dynamics and estimates of the HIV prevalence and incidence. In this article, we describe methods, results, and implications of a novel approach for indirect estimation of in- and out-migration patterns, and consequently population size, of MSM by HIV serostatus and race in San Francisco. The results suggest that the overall MSM population and all the MSM subpopulations studied decreased in size from 2006 to 2014. Further, there were differences in migration patterns by race and by HIV serostatus. The modeling methods outlined can be applied by others to determine how migration patterns contribute to HIV-positive population size and output from these models can be used in a transmission model to better understand how migration can impact HIV transmission.

  10. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 2004 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buettner, Edwin W.; Putnam, Scott A.

    This project monitored the daily passage of Chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon O. nerka smolts during the 2004 spring out-migration at migrant traps on the Snake River and Salmon River. In 2004 fish management agencies released significant numbers of hatchery Chinook salmon and steelhead trout above Lower Granite Dam that were not marked with a fin clip or coded-wire tag. Generally, these fish were distinguishable from wild fish by the occurrence of fin erosion. Total annual hatchery Chinook salmon catch at the Snake River trap was 1.1 times greater in 2004 than in 2003.more » The wild Chinook catch was 1.1 times greater than the previous year. Hatchery steelhead trout catch was 1.2 times greater than in 2003. Wild steelhead trout catch was 1.6 times greater than the previous year. The Snake River trap collected 978 age-0 Chinook salmon of unknown rearing. During 2004, the Snake River trap captured 23 hatchery and 18 wild/natural sockeye salmon and 60 coho salmon O. kisutch of unknown rearing. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with flow. Trap operations began on March 7 and were terminated on June 4. The trap was out of operation for a total of zero days due to mechanical failure or debris. Hatchery Chinook salmon catch at the Salmon River trap was 10.8% less and wild Chinook salmon catch was 19.0% less than in 2003. The hatchery steelhead trout collection in 2004 was 20.0% less and wild steelhead trout collection was 22.3% less than the previous year. Trap operations began on March 7 and were terminated on May 28 due to high flows. There were two days when the trap was taken out of service because wild Chinook catch was very low, hatchery Chinook catch was very high, and the weekly quota of PIT tagged hatchery Chinook had been met. Travel time (d) and migration rate (km/d) through Lower Granite Reservoir for PIT-tagged Chinook salmon and steelhead trout marked at the Snake River trap were affected by discharge. Statistical analysis of 2004 data detected a relation between migration rate and discharge for wild Chinook salmon but was unable to detect a relation for hatchery Chinook. The inability to detect a migration rate discharge relation for hatchery Chinook salmon was caused by age-0 fall Chinook being mixed in with the age 1 Chinook. Age-0 fall Chinook migrate much slower than age-1 Chinook, which would confuse the ability to detect the migration rate discharge relation. When several groups, which consisted of significant numbers of age-0 Chinook salmon, were removed from the analysis a relation was detected. For hatchery and wild Chinook salmon there was a 2.8-fold and a 2.4-fold increase in migration rate, respectively, between 50 and 100 kcfs. For steelhead trout tagged at the Snake River trap, statistical analysis detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge. For hatchery and wild steelhead trout, there was a 2.3-fold and a 2.0-fold increase in migration rate, respectively, between 50 and 100 kcfs. Travel time and migration rate to Lower Granite Dam for fish marked at the Salmon River trap were calculated. Statistical analysis of the 2004 data detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge for hatchery Chinook salmon, wild Chinook salmon and hatchery steelhead trout. Not enough data were available to perform the analysis for wild steelhead trout. Migration rate increased 7.0-fold for hatchery Chinook salmon, 4.7-fold for wild Chinook salmon and 3.8-fold for hatchery steelhead as discharge increased between 50 kcfs and 100 kcfs. Fish tagged with passive integrated transponder (PIT) tags at the Snake River and Salmon River traps were interrogated at four dams with PIT tag detection systems (Lower Granite, Little Goose, Lower Monumental, and McNary dams). Because of the addition of the fourth interrogation site (Lower Monumental) in 1993 and the installation of the Removable Spillway Weir at Lower Granite Dam in 2001, caution must be used in comparing cumulative interrogation data. Cumulative interrogations at the four dams for fish marked at the Snake River trap were 82% for hatchery Chinook, 77% for wild Chinook, 90% for hatchery steelhead, and 90% for wild steelhead. Cumulative interrogations at the four dams for fish marked at the Salmon River trap were 68% for hatchery Chinook, 70% for wild Chinook salmon, 80% for hatchery steelhead trout, and 79% for wild steelhead trout.« less

  11. AKT signaling displays multifaceted functions in neural crest development.

    PubMed

    Sittewelle, Méghane; Monsoro-Burq, Anne H

    2018-05-31

    AKT signaling is an essential intracellular pathway controlling cell homeostasis, cell proliferation and survival, as well as cell migration and differentiation in adults. Alterations impacting the AKT pathway are involved in many pathological conditions in human disease. Similarly, during development, multiple transmembrane molecules, such as FGF receptors, PDGF receptors or integrins, activate AKT to control embryonic cell proliferation, migration, differentiation, and also cell fate decisions. While many studies in mouse embryos have clearly implicated AKT signaling in the differentiation of several neural crest derivatives, information on AKT functions during the earliest steps of neural crest development had remained relatively scarce until recently. However, recent studies on known and novel regulators of AKT signaling demonstrate that this pathway plays critical roles throughout the development of neural crest progenitors. Non-mammalian models such as fish and frog embryos have been instrumental to our understanding of AKT functions in neural crest development, both in neural crest progenitors and in the neighboring tissues. This review combines current knowledge acquired from all these different vertebrate animal models to describe the various roles of AKT signaling related to neural crest development in vivo. We first describe the importance of AKT signaling in patterning the tissues involved in neural crest induction, namely the dorsal mesoderm and the ectoderm. We then focus on AKT signaling functions in neural crest migration and differentiation. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. An experimental field evaluation of winter carryover effects in semi-anadromous brown trout (Salmo trutta).

    PubMed

    Midwood, Jonathan D; Larsen, Martin H; Boel, Mikkel; Aarestrup, Kim; Cooke, Steven J

    2015-11-01

    For semi-anadromous brown trout, the decision whether or not to smoltify and migrate to the sea is believed to be made at the end of the preceding summer in response to both local environmental conditions and individual physiological status. Stressors experienced during the fall may therefore influence their propensity to migrate as well as carry over into the winter resulting in mortality when fish face challenging environmental conditions. To evaluate this possibility, we artificially elevated cortisol levels in juvenile trout (via intracoelomic injection of cortisol in the fall) and used passive integrated transponder tags to compare their overwinter and spring survival, growth, and migration success relative to a control group. Results suggest that overwinter mortality is high for individuals in this population regardless of treatment. However, survival rates were 2.5 times lower for cortisol-treated fish and they experienced significantly greater loss in mass. In addition, less than half as many cortisol-treated individuals made it downstream to a stationary antenna over the winter and also during the spring migration compared to the control treatment. These results suggest that a fall stressor can reduce overwinter survival of juvenile brown trout, negatively impact growth of individuals that survive, and ultimately result in a reduction in the number of migratory trout. Carryover effects such as those documented here reveal the cryptic manner in which natural and anthropogenic stressors can influence fish populations. J. Exp. Zool. 323A: 645-654, 2015. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  13. Deep scattering layer migration and composition: observations from a diving saucer.

    PubMed

    Barham, E G

    1966-03-18

    The distribution of a myctophid fish and physonect siphonophores observed during dives in the Soucoupe off Baja California closely correlates with scattering layers recorded simultaneously with a 12-kcy/sec echo sounder. These organisms were observed while they were migrating vertically, and at their night and daytime levels. They are capable of rapid, extensive changes in depth.

  14. Directional selection by fisheries and the timing of sockeye salmon (Oncorhynchus nerka) migrations.

    PubMed

    Quinn, Thomas P; Hodgson, Sayre; Flynn, Lucy; Hilborn, Ray; Rogers, Donald E

    2007-04-01

    The timing of migration from feeding to breeding areas is a critical link between the growth and survival of adult animals, their reproduction, and the fitness of their progeny. Commercial fisheries often catch a large fraction of the migrants (e.g., salmon), and exploitation rates can vary systematically over the fishing season. We examined daily records of sockeye salmon (Oncorhynchus nerka) in the Egegik and Ugashik management districts in Bristol Bay, Alaska (USA), for evidence of such temporally selective fishing. In recent years, the early migrants have experienced lower fishing rates than later migrants, especially in the Egegik district, and the median migration date of the fish escaping the fisheries has been getting progressively earlier in both districts. Moreover, the overall runs (catch and escapement) in the Egegik district and, to a lesser extent the Ugashik district, have been getting earlier, as predicted in response to the selection on timing. The trends in timing were not correlated with sea surface temperature in the region of the North Pacific Ocean where the salmon tend to concentrate, but the trends in the two districts were correlated with each other, indicating that there may be some common environmental influence in addition to the effect of selection. Despite the selection, both groups of salmon have remained productive. We hypothesize that this resilience may result from representation of all component populations among the early and late migrants, so that the fisheries have not eliminated entire populations, and from density-dependent processes that may have helped maintain the productivity of these salmon populations.

  15. Present-day African analogue of a pre-European Amazonian floodplain fishery shows convergence in cultural niche construction.

    PubMed

    McKey, Doyle B; Durécu, Mélisse; Pouilly, Marc; Béarez, Philippe; Ovando, Alex; Kalebe, Mashuta; Huchzermeyer, Carl F

    2016-12-27

    Erickson [Erickson CL (2000) Nature 408 (6809):190-193] interpreted features in seasonal floodplains in Bolivia's Beni savannas as vestiges of pre-European earthen fish weirs, postulating that they supported a productive, sustainable fishery that warranted cooperation in the construction and maintenance of perennial structures. His inferences were bold, because no close ethnographic analogues were known. A similar present-day Zambian fishery, documented here, appears strikingly convergent. The Zambian fishery supports Erickson's key inferences about the pre-European fishery: It allows sustained high harvest levels; weir construction and operation require cooperation; and weirs are inherited across generations. However, our comparison suggests that the pre-European system may not have entailed intensive management, as Erickson postulated. The Zambian fishery's sustainability is based on exploiting an assemblage dominated by species with life histories combining high fecundity, multiple reproductive cycles, and seasonal use of floodplains. As water rises, adults migrate from permanent watercourses into floodplains, through gaps in weirs, to feed and spawn. Juveniles grow and then migrate back to dry-season refuges as water falls. At that moment fishermen set traps in the gaps, harvesting large numbers of fish, mostly juveniles. In nature, most juveniles die during the first dry season, so that their harvest just before migration has limited impact on future populations, facilitating sustainability and the adoption of a fishery based on inherited perennial structures. South American floodplain fishes with similar life histories were the likely targets of the pre-European fishery. Convergence in floodplain fish strategies in these two regions in turn drove convergence in cultural niche construction.

  16. Chinook salmon and green sturgeon migrate through San Francisco Estuary despite large distortions in the local magnetic field produced by bridges

    PubMed Central

    Wyman, Megan T.; Kavet, Robert

    2017-01-01

    Empirical evidence exists that some marine animals perceive and orient to local distortions in the earth’s main static geomagnetic field. The magnetic fields produced by undersea electric power cables that carry electricity from hydrokinetic energy sources to shore-based power stations may produce similar local distortions in the earth’s main field. Concerns exist that animals migrating along the continental shelves might orient to the magnetic field from the cables, and move either inshore or offshore away from their normal path. We have studied the effect of the Trans Bay Cable (TBC), an 85-km long, high voltage, direct current (DC) transmission line leading underwater from Pittsburg, CA to San Francisco, CA, on fishes migrating through the San Francisco Estuary. These included Chinook salmon smolts (Oncorhynchus tshawytscha) that migrate downstream through the San Francisco Estuary to the Pacific Ocean and adult green sturgeon (Acipenser medirostris), which migrate upstream from the ocean through the estuary to their spawning habitat in the upper Sacramento River and return to the ocean after spawning occurs. Based on a detailed gradiometer survey, we found that the distortions in the earth’s main field produced by bridges across the estuary were much greater than those from the Trans Bay Cable. The former anomalies exceeded the latter by an order of magnitude or more. Significant numbers of tagged Chinook salmon smolts migrated past bridges, which produced strong magnetic anomalies, to the Golden Gate Bridge, where they were recorded by dual arrays of acoustic tag-detecting monitors moored in lines across the mouth of the bay. In addition, adult green sturgeon successfully swam upstream and downstream through the estuary on the way to and from their spawning grounds. Hence, the large anomalies produced by the bridges do not appear to present a strong barrier to the natural seasonal movement patterns of salmonid smolts and adult green sturgeon. PMID:28575021

  17. Chinook salmon and green sturgeon migrate through San Francisco Estuary despite large distortions in the local magnetic field produced by bridges.

    PubMed

    Klimley, A Peter; Wyman, Megan T; Kavet, Robert

    2017-01-01

    Empirical evidence exists that some marine animals perceive and orient to local distortions in the earth's main static geomagnetic field. The magnetic fields produced by undersea electric power cables that carry electricity from hydrokinetic energy sources to shore-based power stations may produce similar local distortions in the earth's main field. Concerns exist that animals migrating along the continental shelves might orient to the magnetic field from the cables, and move either inshore or offshore away from their normal path. We have studied the effect of the Trans Bay Cable (TBC), an 85-km long, high voltage, direct current (DC) transmission line leading underwater from Pittsburg, CA to San Francisco, CA, on fishes migrating through the San Francisco Estuary. These included Chinook salmon smolts (Oncorhynchus tshawytscha) that migrate downstream through the San Francisco Estuary to the Pacific Ocean and adult green sturgeon (Acipenser medirostris), which migrate upstream from the ocean through the estuary to their spawning habitat in the upper Sacramento River and return to the ocean after spawning occurs. Based on a detailed gradiometer survey, we found that the distortions in the earth's main field produced by bridges across the estuary were much greater than those from the Trans Bay Cable. The former anomalies exceeded the latter by an order of magnitude or more. Significant numbers of tagged Chinook salmon smolts migrated past bridges, which produced strong magnetic anomalies, to the Golden Gate Bridge, where they were recorded by dual arrays of acoustic tag-detecting monitors moored in lines across the mouth of the bay. In addition, adult green sturgeon successfully swam upstream and downstream through the estuary on the way to and from their spawning grounds. Hence, the large anomalies produced by the bridges do not appear to present a strong barrier to the natural seasonal movement patterns of salmonid smolts and adult green sturgeon.

  18. Chinook salmon and green sturgeon migrate through San Francisco Estuary despite large distortions in the local magnetic field produced by bridges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klimley, A. Peter; Wyman, Megan T.; Kavet, Robert

    Empirical evidence exists that some marine animals perceive and orient to local distortions in the earth's main static geomagnetic field. The magnetic fields produced by undersea electric power cables that carry electricity from hydrokinetic energy sources to shore-based power stations may produce similar local distortions in the earth's main field. Concerns exist that animals migrating along the continental shelves might orient to the magnetic field from the cables, and move either inshore or offshore away from their normal path. We studied the effect of the Trans Bay Cable (TBC), an 85-km long, high voltage, direct current (DC) transmission line leadingmore » underwater from Pittsburg, CA to San Francisco, CA, on fishes migrating through the San Francisco Estuary. These included Chinook salmon smolts (Oncorhynchus tshawytscha) that migrate downstream through the San Francisco Estuary to the Pacific Ocean and adult green sturgeon (Acipenser medirostris), which migrate upstream from the ocean through the estuary to their spawning habitat in the upper Sacramento River and return to the ocean after spawning occurs. And based on a detailed gradiometer survey, we found that the distortions in the earth's main field produced by bridges across the estuary were much greater than those from the Trans Bay Cable. The former anomalies exceeded the latter by an order of magnitude or more. Significant numbers of tagged Chinook salmon smolts migrated past bridges, which produced strong magnetic anomalies, to the Golden Gate Bridge, where they were recorded by dual arrays of acoustic tag-detecting monitors moored in lines across the mouth of the bay. Additionally, adult green sturgeon successfully swam upstream and downstream through the estuary on the way to and from their spawning grounds. Hence, the large anomalies produced by the bridges do not appear to present a strong barrier to the natural seasonal movement patterns of salmonid smolts and adult green sturgeon.« less

  19. Chinook salmon and green sturgeon migrate through San Francisco Estuary despite large distortions in the local magnetic field produced by bridges

    DOE PAGES

    Klimley, A. Peter; Wyman, Megan T.; Kavet, Robert; ...

    2017-06-02

    Empirical evidence exists that some marine animals perceive and orient to local distortions in the earth's main static geomagnetic field. The magnetic fields produced by undersea electric power cables that carry electricity from hydrokinetic energy sources to shore-based power stations may produce similar local distortions in the earth's main field. Concerns exist that animals migrating along the continental shelves might orient to the magnetic field from the cables, and move either inshore or offshore away from their normal path. We studied the effect of the Trans Bay Cable (TBC), an 85-km long, high voltage, direct current (DC) transmission line leadingmore » underwater from Pittsburg, CA to San Francisco, CA, on fishes migrating through the San Francisco Estuary. These included Chinook salmon smolts (Oncorhynchus tshawytscha) that migrate downstream through the San Francisco Estuary to the Pacific Ocean and adult green sturgeon (Acipenser medirostris), which migrate upstream from the ocean through the estuary to their spawning habitat in the upper Sacramento River and return to the ocean after spawning occurs. And based on a detailed gradiometer survey, we found that the distortions in the earth's main field produced by bridges across the estuary were much greater than those from the Trans Bay Cable. The former anomalies exceeded the latter by an order of magnitude or more. Significant numbers of tagged Chinook salmon smolts migrated past bridges, which produced strong magnetic anomalies, to the Golden Gate Bridge, where they were recorded by dual arrays of acoustic tag-detecting monitors moored in lines across the mouth of the bay. Additionally, adult green sturgeon successfully swam upstream and downstream through the estuary on the way to and from their spawning grounds. Hence, the large anomalies produced by the bridges do not appear to present a strong barrier to the natural seasonal movement patterns of salmonid smolts and adult green sturgeon.« less

  20. Development of schooling behaviour during the downstream migration of Atlantic salmon Salmo salar smolts in a chalk stream.

    PubMed

    Riley, W D; Ibbotson, A T; Maxwell, D L; Davison, P I; Beaumont, W R C; Ives, M J

    2014-10-01

    The downstream migratory behaviour of wild Atlantic salmon Salmo salar smolts was monitored using passive integrated transponder (PIT) antennae systems over 10 years in the lower reaches of a small chalk stream in southern England, U.K. The timing of smolt movements and the likely occurrence of schooling were investigated and compared to previous studies. In nine of the 10 consecutive years of study, the observed diel downstream patterns of S. salar smolt migration appeared to be synchronized with the onset of darkness. The distribution of time intervals between successive nocturnal detections of PIT-tagged smolts was as expected if generated randomly from observed hourly rates. There were, however, significantly more short intervals than expected for smolts detected migrating during the day. For each year from 2006 to 2011, the observed 10th percentile of the daytime intervals was <4 s, compared to ≥55 s for the simulated random times, indicating greater incidence of groups of smolts. Groups with the shortest time intervals between successive PIT tag detections originated from numerous parr tagging sites (used as a proxy for relatedness). The results suggest that the ecological drivers influencing daily smolt movements in the lower reaches of chalk stream catchments are similar to those previously reported at the onset of migration for smolts leaving their natal tributaries; that smolts detected migrating during the night are moving independently following initiation by a common environmental factor (presumably darkness), whereas those detected migrating during the day often move in groups, and that such schools may not be site (kin)-structured. The importance of understanding smolt migratory behaviour is considered with reference to stock monitoring programmes and enhancing downstream passage past barriers. © 2014 Crown copyright. Journal of Fish Biology © 2014 The Fisheries Society of the British Isles.

  1. Fish passage and abundance around grade control structures on incised streams

    USGS Publications Warehouse

    Thomas, J.T.; Papanicolaou, A.N.; Pierce, C.L.; Dermisis, D.C.; Litvan, M.E.; Larson, C.J.

    2009-01-01

    This paper summarizes research from separate studies of fish passage over weirs (Larson et al., 2004; Litvan, 2006; Litvan, et al., 2008a-c) and weir hydraulics (Papanicolaou and Dermisis, 2006; Papanicolaou and Dermisis, in press). Channel incision in the deep loess region of western Iowa has caused decreased biodiversity because streams have high sediment loads, altered flow regimes, lost habitat, and lost lateral connectivity with their former floodplains. In-stream grade control structures (GCS) are built to prevent further erosion, protect infrastructure, and reduce sediment loads. However, GCS can have a detrimental impact on fisheries abundance and migration, biodiversity, and longitudinal connectivity. Fish mark-recapture studies were performed on stretches of streams with and without GCS. GCS with vertical or 1:4 (rise/run) downstream slopes did not allow fish migration, but GCS with slopes ??? 1:15 did. GCS sites were characterized by greater proportions of pool habitat, maximum depths, fish biomass, slightly higher index of biotic integrity (IBI) scores, and greater macroinvertebrate abundance and diversity than non-GCS sites. After modification of three GCS, IBI scores increased and fish species exhibiting truncated distributions before were found throughout the study area. Another study examined the hydraulic performance of GCS to facilitate unimpeded fish passage by determining the mean and turbulent flow characteristics in the vicinity of the GCS via detailed, non-intrusive field tests. Mean flow depth (Y) and velocity (V) atop the GCS were critical for evaluating GCS performance. Turbulent flow measurements illustrated that certain GCS designs cause sudden constrictions which form eddies large enough to disorient fish. GCS with slopes ??? 1:15 best met the minimum requirements to allow catfish passage of a flow depth of ??? 0.31 m and a mean flow velocity of ??? 1.22 m/s. ?? 2009 ASCE.

  2. From the epipelagic zone to the abyss: Trophic structure at two seamounts in the subtropical and tropical Eastern Atlantic - Part II Benthopelagic fishes

    NASA Astrophysics Data System (ADS)

    Denda, Anneke; Stefanowitsch, Benjamin; Christiansen, Bernd

    2017-12-01

    Specific mechanisms, driving trophic interactions between seamount associated fishes and the pelagic community may be highly variable in different seamount systems. This study investigated the trophic structure and the main prey of benthopelagic fishes from the summit and slope regions of Ampère and Senghor, two shallow seamounts in the subtropical and tropical NE Atlantic, and the adjacent deep-sea plains. For the identification of food sources and nutritional links to the pelagic realm a combination of stomach content and stable isotope ratio (δ13C and δ15N) analyses was used. δ13C ranged from -22.2‰ to -15.4‰ and δ15N covered a total range of 8.0-15.9‰. Feeding types of fish species comprised mainly zooplanktivores and mixed feeders, but also benthivores, piscivores, and predator-scavengers. Based on epipelagic particulate organic matter, they occupied trophic positions between the 2nd and 4th trophic level. Differences in stomach contents and stable isotope signatures indicate a resource partitioning among the benthopelagic fish fauna through distinct habitat choice, vertical feeding positions and prey selection. Topographic trapping of vertically migrating zooplankton on the summit seemed to be of minor importance for food supply of the resident near-bottom fishes, rather horizontal current-driven advection of the planktonic prey was assumed as major factor. Vertically migrating micronekton and mesopelagic fishes show up as key players within the food webs at Ampère and Senghor Seamounts and the adjacent deep-sea plains.

  3. Diel horizontal migration in streams: juvenile fish exploit spatial heterogeneity in thermal and trophic resources

    USGS Publications Warehouse

    Armstrong, Jonathan B.; Schindler, Daniel E.; Ruff, Casey P.; Brooks, Gabriel T.; Bentley, Kale E.; Torgersen, Christian E.

    2013-01-01

    Vertical heterogeneity in the physical characteristics of lakes and oceans is ecologically salient and exploited by a wide range of taxa through diel vertical migration to enhance their growth and survival. Whether analogous behaviors exploit horizontal habitat heterogeneity in streams is largely unknown. We investigated fish movement behavior at daily timescales to explore how individuals integrated across spatial variation in food abundance and water temperature. Juvenile coho salmon made feeding forays into cold habitats with abundant food, and then moved long distances (350–1300 m) to warmer habitats that accelerated their metabolism and increased their assimilative capacity. This behavioral thermoregulation enabled fish to mitigate trade-offs between trophic and thermal resources by exploiting thermal heterogeneity. Fish that exploited thermal heterogeneity grew at substantially faster rates than did individuals that assumed other behaviors. Our results provide empirical support for the importance of thermal diversity in lotic systems, and emphasize the importance of considering interactions between animal behavior and habitat heterogeneity when managing and restoring ecosystems.

  4. Fish consumption pattern among adults of different ethnics in Peninsular Malaysia

    PubMed Central

    Ahmad, Nurul Izzah; Wan Mahiyuddin, Wan Rozita; Tengku Mohamad, Tengku Rozaina; Ling, Cheong Yoon; Daud, Siti Fatimah; Hussein, Nasriyah Che; Abdullah, Nor Aini; Shaharudin, Rafiza; Sulaiman, Lokman Hakim

    2016-01-01

    Background Understanding different patterns of fish consumption is an important component for risk assessment of contaminants in fish. A few studies on food consumption had been conducted in Malaysia, but none of them focused specifically on fish consumption. The objectives of this study were to document the meal pattern among three major ethnics in Malaysia with respect to fish/seafood consumption, identify most frequently consumed fish and cooking method, and examine the influence of demographic factors on pattern of fish consumption among study subjects. Methods A cross-sectional survey was conducted between February 2008 and May 2009 to investigate patterns of fish consumption among Malaysian adults in Peninsular Malaysia. Adults aged 18 years and above were randomly selected and fish consumption data were collected using a 3-day prospective food diary. Results A total of 2,675 subjects, comprising male (44.2%) and female (55.7%) participants from major ethnics (Malays, 76.9%; Chinese, 14.7%; Indians, 8.3%) with a mean age of 43.4±16.2 years, were involved in this study. The results revealed 10 most frequently consumed marine fish in descending order: Indian mackerel, anchovy, yellowtail and yellow-stripe scads, tuna, sardines, torpedo scad, Indian and short-fin scads, pomfret, red snapper, and king mackerel. Prawn and squid were also among the most preferred seafood by study subjects. The most frequently consumed freshwater fish were freshwater catfish and snakehead. The most preferred cooking style by Malaysians was deep-fried fish, followed by fish cooked in thick and/or thin chili gravy, fish curry, and fish cooked with coconut milk mixed with other spices and flavorings. Overall, Malaysians consumed 168 g/day fish, with Malay ethnics’ (175±143 g/day) consumption of fish significantly (p<0.001) higher compared with the other two ethnic groups (Chinese=152±133 g/day, Indians=136±141 g/day). Conclusion Fish consumption was significantly associated with ethnicity, age, marital status, residential area, and years of education of adults in Peninsular Malaysia, and the data collected are beneficial for the purpose of health risk assessment on the intake of contaminants through fish/seafood consumption. PMID:27534846

  5. Fish consumption pattern among adults of different ethnics in Peninsular Malaysia.

    PubMed

    Ahmad, Nurul Izzah; Wan Mahiyuddin, Wan Rozita; Tengku Mohamad, Tengku Rozaina; Ling, Cheong Yoon; Daud, Siti Fatimah; Hussein, Nasriyah Che; Abdullah, Nor Aini; Shaharudin, Rafiza; Sulaiman, Lokman Hakim

    2016-01-01

    Understanding different patterns of fish consumption is an important component for risk assessment of contaminants in fish. A few studies on food consumption had been conducted in Malaysia, but none of them focused specifically on fish consumption. The objectives of this study were to document the meal pattern among three major ethnics in Malaysia with respect to fish/seafood consumption, identify most frequently consumed fish and cooking method, and examine the influence of demographic factors on pattern of fish consumption among study subjects. A cross-sectional survey was conducted between February 2008 and May 2009 to investigate patterns of fish consumption among Malaysian adults in Peninsular Malaysia. Adults aged 18 years and above were randomly selected and fish consumption data were collected using a 3-day prospective food diary. A total of 2,675 subjects, comprising male (44.2%) and female (55.7%) participants from major ethnics (Malays, 76.9%; Chinese, 14.7%; Indians, 8.3%) with a mean age of 43.4±16.2 years, were involved in this study. The results revealed 10 most frequently consumed marine fish in descending order: Indian mackerel, anchovy, yellowtail and yellow-stripe scads, tuna, sardines, torpedo scad, Indian and short-fin scads, pomfret, red snapper, and king mackerel. Prawn and squid were also among the most preferred seafood by study subjects. The most frequently consumed freshwater fish were freshwater catfish and snakehead. The most preferred cooking style by Malaysians was deep-fried fish, followed by fish cooked in thick and/or thin chili gravy, fish curry, and fish cooked with coconut milk mixed with other spices and flavorings. Overall, Malaysians consumed 168 g/day fish, with Malay ethnics' (175±143 g/day) consumption of fish significantly (p<0.001) higher compared with the other two ethnic groups (Chinese=152±133 g/day, Indians=136±141 g/day). Fish consumption was significantly associated with ethnicity, age, marital status, residential area, and years of education of adults in Peninsular Malaysia, and the data collected are beneficial for the purpose of health risk assessment on the intake of contaminants through fish/seafood consumption.

  6. 76 FR 74046 - Snapper-Grouper Fishery off the Southern Atlantic States; Amendments 18A, 18B, 18C, 20A, and 20B

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-30

    ... NMFS are looking into how increasing or decreasing black sea bass fishing effort may affect migrating... on board a vessel to reduce fishing effort in the black sea bass pot component of the snapper-grouper... extended management range (New England and Mid-Atlantic); change the [[Page 74047

  7. Use of Virginia's tributaries of the Potomac River by anadromous fishes : final report for phase four of an analysis of the impediments to spawning migrations of anadromous fish in Virginia rivers.

    DOT National Transportation Integrated Search

    1988-10-01

    The use of Virginia's tributaries of the lower Potomac River (downstream of Great Falls) : by striped bass, American shad, hickory shad, and river herring (a collective term for alewife : and blueback herring) was determined by reviewing literature, ...

  8. Qualifying Work Activities in Louisiana: A Recruiter's Guide To Documenting Eligibility for Migrant Education. Louisiana Migrant Education Program.

    ERIC Educational Resources Information Center

    Louisiana State Dept. of Education, Baton Rouge. Bureau of Migrant Education.

    This manual was written as a guide for state migrant education recruiters who need to be familiar with the nature of seasonal and temporary work performed by Louisiana's migrating agricultural workers and fishing industry laborers. It is intended to teach recruiters about the agricultural and fishing activities necessary for raising and harvesting…

  9. Comparison of polyunsaturated fatty acids content in filets of anadromous and landlocked sockeye salmon Oncorhynchus nerka.

    PubMed

    Gladyshev, Michail I; Lepskaya, Ekaterina V; Sushchik, Nadezhda N; Makhutova, Olesia N; Kalachova, Galina S; Malyshevskaya, Kseniya K; Markevich, Grigory N

    2012-12-01

    Fatty acid composition and content of 2 forms of sockeye salmon Oncorhynchus nerka from lakes in Kamchatka Peninsula (Russia) were compared. One form of sockeye salmon was anadromous ("marine"), that is, adult fish migrated in ocean to feed and grow and than return in the lake to breed. Fish of another form, kokanee, never migrate in the ocean. Per cent levels of the main indicators of nutritive value, eicosapentaenoic acid (EPA, 20:5n-3), and docosahexaenoic acid (DHA, 22:6n-3), were significantly higher in the landlocked O. nerka. However, concentrations of EPA and DHA per wet weight of filets were higher in the marine form, because of the relatively higher content of sum of fatty acids in their muscle tissue. As concluded, fish fed in marine environment had higher contents of long-chain n-3 fatty acids per wet weight than fish of the same species, fed in fresh waters. In general, both the anadromous sockeye salmon and the landlocked kokanee salmon can be recommended for human diet as a valuable product concerning contents of EPA and DHA. © 2012 Institute of Food Technologists®

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perry, Russell W.; Skalski, John R.

    Wetlands in the Columbia River estuary are actively being restored by reconnecting these habitats to the estuary, making more wetland habitats available to rearing and migrating juvenile salmon. Concurrently, thousands of acoustically tagged juvenile salmonids are released into the Columbia River to estimate their survival as they migrate through the estuary. Here, we develop a release-recapture model that makes use of these tagged fish to measure the success of wetland restoration projects in terms of their contribution to populations of juvenile salmon. Specifically, our model estimates the fraction of the population that enter the wetland, survival within the wetland, andmore » the mean residence time of fish within the wetland. Furthermore, survival in mainstem Columbia River downstream of the wetland can be compared between fish that remained the mainstem and entered the wetland. These conditional survival estimates provide a means of testing whether the wetland improves the subsequent survival of juvenile salmon by fostering growth or improving their condition. Implementing such a study requires little additional cost because it takes advantage of fish already released to estimate survival through the estuary. Thus, such a study extracts the maximum information at minimum cost from research projects that typically cost millions of dollars annually.« less

  11. Blocking and guiding adult sea lamprey with pulsed direct current from vertical electrodes

    USGS Publications Warehouse

    Johnson, Nicholas S.; Thompson, Henry T.; Holbrook, Christopher M.; Tix, John A.

    2014-01-01

    Controlling the invasion front of aquatic nuisance species is of high importance to resource managers. We tested the hypothesis that adult sea lamprey (Petromyzon marinus), a destructive invasive species in the Laurentian Great Lakes, would exhibit behavioral avoidance to dual-frequency pulsed direct current generated by vertical electrodes and that the electric field would not injure or kill sea lamprey or non-target fish. Laboratory and in-stream experiments demonstrated that the electric field blocked sea lamprey migration and directed sea lamprey into traps. Rainbow trout (Oncorhynchus mykiss) and white sucker (Catostomus commersoni), species that migrate sympatrically with sea lamprey, avoided the electric field and had minimal injuries when subjected to it. Vertical electrodes are advantageous for fish guidance because (1) the electric field produced varies minimally with depth, (2) the electric field is not grounded, reducing power consumption to where portable and remote deployments powered by solar, wind, hydro, or a small generator are feasible, and (3) vertical electrodes can be quickly deployed without significant stream modification allowing rapid responses to new invasions. Similar dual-frequency pulsed direct current fields produced from vertical electrodes may be advantageous for blocking or trapping other invasive fish or for guiding valued fish around dams.

  12. Appearance and quantification of infectious hematopoietic necrosis virus in female sockeye salmon (Oncorhynchus nerka) during their spawning migration

    USGS Publications Warehouse

    Mulcahy, D.; Jenes, C.K.; Pascho, R.J.

    1984-01-01

    The incidence and amount of infectious hematopoietic necrosis (IHN) virus was determined in 10 organs and body fluids from each of 100 female sockeye salmon(Oncorhynchus nerka) before, during, and after their spawning migration into freshwater. Virus was found in high concentrations only in fish sampled during and after spawning. Infection rates increased from nil to 100 percent within 2 weeks. In spawning fish, incidences of IHN virus were high in all organs and fluids except brain and serum, and the highest concentrations were in the pyloric caeca and lower gut. Immediately before spawning, IHN virus was found most frequently in the gills, less frequently in the pyloric caeca and spleen, and rarely in other organs.

  13. Robotic Patterning a Superhydrophobic Surface for Collective Cell Migration Screening.

    PubMed

    Pang, Yonggang; Yang, Jing; Hui, Zhixin; Grottkau, Brian E

    2018-04-01

    Collective cell migration, in which cells migrate as a group, is fundamental in many biological and pathological processes. There is increasing interest in studying the collective cell migration in high throughput. Cell scratching, insertion blocker, and gel-dissolving techniques are some methodologies used previously. However, these methods have the drawbacks of cell damage, substrate surface alteration, limitation in medium exchange, and solvent interference. The superhydrophobic surface, on which the water contact angle is greater than 150 degrees, has been recently utilized to generate patterned arrays. Independent cell culture areas can be generated on a substrate that functions the same as a conventional multiple well plate. However, so far there has been no report on superhydrophobic patterning for the study of cell migration. In this study, we report on the successful development of a robotically patterned superhydrophobic array for studying collective cell migration in high throughput. The array was developed on a rectangular single-well cell culture plate consisting of hydrophilic flat microwells separated by the superhydrophobic surface. The manufacturing process is robotic and includes patterning discrete protective masks to the substrate using 3D printing, robotic spray coating of silica nanoparticles, robotic mask removal, robotic mini silicone blocker patterning, automatic cell seeding, and liquid handling. Compared with a standard 96-well plate, our system increases the throughput by 2.25-fold and generates a cell-free area in each well non-destructively. Our system also demonstrates higher efficiency than conventional way of liquid handling using microwell plates, and shorter processing time than manual operating in migration assays. The superhydrophobic surface had no negative impact on cell viability. Using our system, we studied the collective migration of human umbilical vein endothelial cells and cancer cells using assays of endpoint quantification, dynamic cell tracking, and migration quantification following varied drug treatments. This system provides a versatile platform to study collective cell migration in high throughput for a broad range of applications.

  14. Perspective: Towards environmentally acceptable criteria for downstream fish passage through mini hydro and irrigation infrastructure in the Lower Mekong River Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baumgartner, Lee J.; Daniel Deng, Z.; Thorncraft, Garry

    2014-01-01

    Tropical rivers have high annual discharges optimal for hydropower and irrigation development. The Mekong River is one of the largest tropical river systems, supporting a unique mega-diverse fish community. Fish are an important commodity in the Mekong, contributing a large proportion of calcium, protein, and essential nutrients to the diet of the local people and providing a critical source of income for rural households. Many of these fish migrate not only upstream and downstream within main-channel habitats but also laterally into highly productive floodplain habitat to both feed and spawn. Most work to date has focused on providing for upstreammore » fish passage, but downstream movement is an equally important process to protect. Expansion of hydropower and irrigation weirs can disrupt downstream migrations and it is important to ensure that passage through regulators or mini hydro systems is not harmful or fatal. Many new infrastructure projects (<6 m head) are proposed for the thousands of tributary streams throughout the Lower Mekong Basin and it is important that designs incorporate the best available science to protect downstream migrants. Recent advances in technology have provided new techniques which could be applied to Mekong fish species to obtain design criteria that can facilitate safe downstream passage. Obtaining and applying this knowledge to new infrastructure projects is essential in order to produce outcomes that are more favorable to local ecosystems and fisheries.« less

  15. Feasibility of Surgically Implanting Acoustic Tags into Pacific Herring

    USGS Publications Warehouse

    Hershberger, Paul K.; Gregg, Jacob L.; Seitz, A.C.; Norcross, Brenda L.; Payne, J.C.; Kagley, A.N.; Meloy, B

    2010-01-01

    Internally implanted acoustic tags represent a potentially valuable approach to assessing the seasonal migration and distribution patterns of Pacific herring Clupea palasii. We examined the feasibility of implanting two sizes of dummy acoustic tags (9 mm in diameter × 21 mm long, 1.6 g; and 7 mm in diameter × 18 mm long, 0.7 g) in Pacific herring that had been held in captivity for nearly a year and that ranged from 165 to 215 mm in fork length (FL) and from 41.6 to 142.6 g. Relatively low mortality (4%) and tag shedding (4%), as well as growth similar to that observed in control fish after 135 d, indicate that, with proper handling, Pacific herring are amenable to surgical implantation of acoustic tags.

  16. Temporal variations in early developmental decisions: an engine of forebrain evolution.

    PubMed

    Bielen, H; Pal, S; Tole, S; Houart, C

    2017-02-01

    Tight control of developmental timing is pivotal to many major processes in developmental biology, such as patterning, fate specification, cell cycle dynamics, cell migration and connectivity. Temporal change in these ontogenetic sequences is known as heterochrony, a major force in the evolution of body plans and organogenesis. In the last 5 years, studies in fish and rodents indicate that heterochrony in signaling during early development generates diversity in forebrain size and complexity. Here, we summarize these findings and propose that, additionally to spatio-temporal tuning of neurogenesis, temporal and quantitative modulation of signaling events drive pivotal changes in shape, size and complexity of the forebrain across evolution, participating to the generation of diversity in animal behavior and emergence of cognition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Reconstructing the migration patterns of late Pleistocene mammals from northern Florida, USA

    NASA Astrophysics Data System (ADS)

    Hoppe, Kathryn A.; Koch, Paul L.

    2007-11-01

    We used analyses of the strontium isotope ( 87Sr/ 86Sr) ratios of tooth enamel to reconstruct the migration patterns of fossil mammals collected along the Aucilla River in northern Florida. Specimens date to the late-glacial period and before the last glacial maximum (pre-LGM). Deer and tapir displayed low 87Sr/ 86Sr ratios that were similar to the ratios of Florida environments, which suggest that these taxa did not migrate long distance outside of the Florida region. Mastodons, mammoths, and equids all displayed a wide range of 87Sr/ 86Sr ratios. Some individuals in each taxon displayed low 87Sr/ 86Sr ratios that suggest they ranged locally, while other animals had high 87Sr/ 86Sr ratios that suggest they migrated long distances (> 150 km) outside of the Florida region. Mastodons were the only taxa from this region that provided enough well-dated specimens to compare changes in migration patterns over time. Pre-LGM mastodons displayed significantly lower 87Sr/ 86Sr ratios than late-glacial mastodons, which suggests that late-glacial mastodons from Florida migrated longer distances than their earlier counterparts. This change in movement patterns reflects temporal changes in regional vegetation patterns.

  18. Contrasting Fish Behavior in Artificial Seascapes with Implications for Resources Conservation

    PubMed Central

    Koeck, Barbara; Alós, Josep; Caro, Anthony; Neveu, Reda; Crec'hriou, Romain; Saragoni, Gilles; Lenfant, Philippe

    2013-01-01

    Artificial reefs are used by many fisheries managers as a tool to mitigate the impact of fisheries on coastal fish communities by providing new habitat for many exploited fish species. However, the comparison between the behavior of wild fish inhabiting either natural or artificial habitats has received less attention. Thus the spatio-temporal patterns of fish that establish their home range in one habitat or the other and their consequences of intra-population differentiation on life-history remain largely unexplored. We hypothesize that individuals with a preferred habitat (i.e. natural vs. artificial) can behave differently in terms of habitat use, with important consequences on population dynamics (e.g. life-history, mortality, and reproductive success). Therefore, using biotelemetry, 98 white seabream (Diplodus sargus) inhabiting either artificial or natural habitats were tagged and their behavior was monitored for up to eight months. Most white seabreams were highly resident either on natural or artificial reefs, with a preference for the shallow artificial reef subsets. Connectivity between artificial and natural reefs was limited for resident individuals due to great inter-habitat distances. The temporal behavioral patterns of white seabreams differed between artificial and natural reefs. Artificial-reef resident fish had a predominantly nocturnal diel pattern, whereas natural-reef resident fish showed a diurnal diel pattern. Differences in diel behavioral patterns of white seabream inhabiting artificial and natural reefs could be the expression of realized individual specialization resulting from differences in habitat configuration and resource availability between these two habitats. Artificial reefs have the potential to modify not only seascape connectivity but also the individual behavioral patterns of fishes. Future management plans of coastal areas and fisheries resources, including artificial reef implementation, should therefore consider the potential effect of habitat modification on fish behavior, which could have key implications on fish dynamics. PMID:23935978

  19. Contrasting fish behavior in artificial seascapes with implications for resources conservation.

    PubMed

    Koeck, Barbara; Alós, Josep; Caro, Anthony; Neveu, Reda; Crec'hriou, Romain; Saragoni, Gilles; Lenfant, Philippe

    2013-01-01

    Artificial reefs are used by many fisheries managers as a tool to mitigate the impact of fisheries on coastal fish communities by providing new habitat for many exploited fish species. However, the comparison between the behavior of wild fish inhabiting either natural or artificial habitats has received less attention. Thus the spatio-temporal patterns of fish that establish their home range in one habitat or the other and their consequences of intra-population differentiation on life-history remain largely unexplored. We hypothesize that individuals with a preferred habitat (i.e. natural vs. artificial) can behave differently in terms of habitat use, with important consequences on population dynamics (e.g. life-history, mortality, and reproductive success). Therefore, using biotelemetry, 98 white seabream (Diplodus sargus) inhabiting either artificial or natural habitats were tagged and their behavior was monitored for up to eight months. Most white seabreams were highly resident either on natural or artificial reefs, with a preference for the shallow artificial reef subsets. Connectivity between artificial and natural reefs was limited for resident individuals due to great inter-habitat distances. The temporal behavioral patterns of white seabreams differed between artificial and natural reefs. Artificial-reef resident fish had a predominantly nocturnal diel pattern, whereas natural-reef resident fish showed a diurnal diel pattern. Differences in diel behavioral patterns of white seabream inhabiting artificial and natural reefs could be the expression of realized individual specialization resulting from differences in habitat configuration and resource availability between these two habitats. Artificial reefs have the potential to modify not only seascape connectivity but also the individual behavioral patterns of fishes. Future management plans of coastal areas and fisheries resources, including artificial reef implementation, should therefore consider the potential effect of habitat modification on fish behavior, which could have key implications on fish dynamics.

  20. Monitoring of Downstream Salmon and Steelhead at Federal Hydroelectric Facilities, 1989 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnsen, Richard C.

    1990-02-19

    This project is a part of the continuing Smolt Monitoring Program (SMP) to monitor Columbia Basin salmonid stocks coordinated by the Fish Passage Center (FPC). The SMP provides timely data to the Fish Passage Managers for in season flow and spill management for fish passage and post-season analysis by the FPC for travel time, relative magnitude and timing of the smolt migration. Sampling sites were McNary, John Day and Bonneville Dams under the SMP, and the Dalles Dam under the Fish Spill Memorandum of Agreement'' for 1989. All pertinent fish capture, condition and brand data, as well as dam operationsmore » and river flow data were incorporated into the FPC Fish Passage Data Information System (FPDIS). 15 refs., 6 figs., 6 tabs.« less

  1. Migration and Socio-Economic Change in Africa.

    ERIC Educational Resources Information Center

    Adepoju, Aderanti

    1979-01-01

    Explores determinants, characteristics, and patterns of migration in Africa and relates these factors to socioeconomic change processes. Influences of migration are evaluated as they relate to work conditions, land use, marriage and family patterns, life style, and new skills and experiences gained in formal and non-formal educational situations.…

  2. Energetic and biomechanical constraints on animal migration distance.

    PubMed

    Hein, Andrew M; Hou, Chen; Gillooly, James F

    2012-02-01

    Animal migration is one of the great wonders of nature, but the factors that determine how far migrants travel remain poorly understood. We present a new quantitative model of animal migration and use it to describe the maximum migration distance of walking, swimming and flying migrants. The model combines biomechanics and metabolic scaling to show how maximum migration distance is constrained by body size for each mode of travel. The model also indicates that the number of body lengths travelled by walking and swimming migrants should be approximately invariant of body size. Data from over 200 species of migratory birds, mammals, fish, and invertebrates support the central conclusion of the model - that body size drives variation in maximum migration distance among species through its effects on metabolism and the cost of locomotion. The model provides a new tool to enhance general understanding of the ecology and evolution of migration. © 2011 Blackwell Publishing Ltd/CNRS.

  3. Whooping crane stopover site use intensity within the Great Plains

    USGS Publications Warehouse

    Pearse, Aaron T.; Brandt, David A.; Harrell, Wade C.; Metzger, Kristine L.; Baasch, David M.; Hefley, Trevor J.

    2015-09-23

    Whooping cranes (Grus americana) of the Aransas-Wood Buffalo population migrate twice each year through the Great Plains in North America. Recovery activities for this endangered species include providing adequate places to stop and rest during migration, which are generally referred to as stopover sites. To assist in recovery efforts, initial estimates of stopover site use intensity are presented, which provide opportunity to identify areas across the migration range used more intensively by whooping cranes. We used location data acquired from 58 unique individuals fitted with platform transmitting terminals that collected global position system locations. Radio-tagged birds provided 2,158 stopover sites over 10 migrations and 5 years (2010–14). Using a grid-based approach, we identified 1,095 20-square-kilometer grid cells that contained stopover sites. We categorized occupied grid cells based on density of stopover sites and the amount of time cranes spent in the area. This assessment resulted in four categories of stopover site use: unoccupied, low intensity, core intensity, and extended-use core intensity. Although provisional, this evaluation of stopover site use intensity offers the U.S. Fish and Wildlife Service and partners a tool to identify landscapes that may be of greater conservation significance to migrating whooping cranes. Initially, the tool will be used by the U.S. Fish and Wildlife Service and other interested parties in evaluating the Great Plains Wind Energy Habitat Conservation Plan.

  4. Gender and spatial population mobility in Iran.

    PubMed

    Hemmasi, M

    1994-01-01

    1976-1986 data from the National Census of Population and Housing were analyzed to examine the spatial patterns of internal migration of women and men in Iran within its Islamic patriarchal cultural system. The researcher also organized 1986 data into two interprovincial migration matrixes for men and women. Women were spatially as mobile as men (urban, 16.7% for men and 17% for women; rural, 8.4% and 8.9%, respectively). Gender spatial mobility patterns during the 10 years included: migration streams from nine provinces consistently led to Tehran province, most migration flows to Tehran and most other provinces originated from Khuzistan, East Azerbaijan province still continued to lose population (about 500,000), and out-flows generally originated from the provinces affected by the Iran-Iraq war and went to the central and eastern provinces. The strongest determinants of women's migration was men's migration ratio and the road distance between the origin and destination. Reasons for these strong associations were few employed women ( 10%), strong family ties, and traditional cultural values (e.g., women tend not to travel alone). So their migration patterns tended to be associational rather than autonomous. Despite the fact that internal migration patterns of men and women were the same, the causes, processes, and consequences of migration were still very gender-specific in Iran. There are no signs of change in the near future.

  5. Performance and scaling of a novel locomotor structure: adhesive capacity of climbing gobiid fishes.

    PubMed

    Maie, Takashi; Schoenfuss, Heiko L; Blob, Richard W

    2012-11-15

    Many species of gobiid fishes adhere to surfaces using a sucker formed from fusion of the pelvic fins. Juveniles of many amphidromous species use this pelvic sucker to scale waterfalls during migrations to upstream habitats after an oceanic larval phase. However, adults may still use suckers to re-scale waterfalls if displaced. If attachment force is proportional to sucker area and if growth of the sucker is isometric, then increases in the forces that climbing fish must resist might outpace adhesive capacity, causing climbing performance to decline through ontogeny. To test for such trends, we measured pressure differentials and adhesive suction forces generated by the pelvic sucker across wide size ranges in six goby species, including climbing and non-climbing taxa. Suction was achieved via two distinct growth strategies: (1) small suckers with isometric (or negatively allometric) scaling among climbing gobies and (2) large suckers with positively allometric growth in non-climbing gobies. Species using the first strategy show a high baseline of adhesive capacity that may aid climbing performance throughout ontogeny, with pressure differentials and suction forces much greater than expected if adhesion were a passive function of sucker area. In contrast, large suckers possessed by non-climbing species may help compensate for reduced pressure differentials, thereby producing suction sufficient to support body weight. Climbing Sicyopterus species also use oral suckers during climbing waterfalls, and these exhibited scaling patterns similar to those for pelvic suckers. However, oral suction force was considerably lower than that for pelvic suckers, reducing the ability for these fish to attach to substrates by the oral sucker alone.

  6. Mid-term migration analysis of a femoral short-stem prosthesis: a five-year EBRA-FCA-study.

    PubMed

    Freitag, Tobias; Fuchs, Michael; Woelfle-Roos, Julia V; Reichel, Heiko; Bieger, Ralf

    2018-05-01

    The objective of this study was to evaluate the mid-term migration pattern of a femoral short stem. Implant migration of 73 femoral short-stems was assessed by Ein-Bild-Roentgen-Analysis Femoral-Component-Analysis (EBRA-FCA) 5 years after surgery. Migration pattern of the whole group was analysed and compared to the migration pattern of implants "at risk" with a subsidence of more than 1.5 mm 2 years postoperative. Mean axial subsidence was 1.1 mm (-5.0 mm to 1.5 mm) after 60 months. There was a statistical significant axial migration until 2 years postoperative with settling thereafter. 2 years after surgery 18 of 73 Implants were classified "at risk." Nevertheless, all stems showed secondary stabilisation in the following period with no implant failure neither in the group of implants with early stabilisation nor the group with extensive early onset migration. In summary, even in the group of stems with more pronounced early subsidence, delayed settling occurred in all cases. The determination of a threshold of critical early femoral short stem subsidence is necessary because of the differing migration pattern described in this study with delayed settling of the Fitmore stem 2 years postoperatively compared to early settling within the first postoperative year described for conventional stems.

  7. Fishing for Effective Conservation: Context and Biotic Variation are Keys to Understanding the Survival of Pacific Salmon after Catch-and-Release.

    PubMed

    Raby, Graham D; Donaldson, Michael R; Hinch, Scott G; Clark, Timothy D; Eliason, Erika J; Jeffries, Kenneth M; Cook, Katrina V; Teffer, Amy; Bass, Arthur L; Miller, Kristina M; Patterson, David A; Farrell, Anthony P; Cooke, Steven J

    2015-10-01

    Acute stressors are commonly experienced by wild animals but their effects on fitness rarely are studied in the natural environment. Billions of fish are captured and released annually around the globe across all fishing sectors (e.g., recreational, commercial, subsistence). Whatever the motivation, release often occurs under the assumption of post-release survival. Yet, capture by fisheries (hereafter "fisheries-capture") is likely the most severe acute stressor experienced in the animal's lifetime, which makes the problem of physiological recovery and survival of relevance to biology and conservation. Indeed, fisheries managers require accurate estimates of mortality to better account for total mortality from fishing, while fishers desire guidance on strategies for reducing mortality and maintaining the welfare of released fish, to maximize current and future opportunities for fishing. In partnership with stakeholders, our team has extensively studied the effects of catch-and-release on Pacific salmon in both marine and freshwater environments, using biotelemetry and physiological assessments in a combined laboratory-based and field-based approach. The emergent theme is that post-release rates of mortality are consistently context-specific and can be affected by a suite of interacting biotic and abiotic factors. The fishing gear used, location of a fishery, water temperature, and handling techniques employed by fishers each can dramatically affect survival of the salmon they release. Variation among individuals, co-migrating populations, and between sexes all seem to play a role in the response of fish to capture and in their subsequent survival, potentially driven by pre-capture pathogen-load, maturation states, and inter-individual variation in responsiveness to stress. Although some of these findings are fascinating from a biological perspective, they all create unresolved challenges for managers. We summarize our findings by highlighting the patterns that have emerged most consistently, and point to areas of uncertainty that require further research. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  8. Status of downstream fish passage at hydroelectric projects in the northeast, USA

    USGS Publications Warehouse

    Odeh, Mufeed; Orvis, Curtis

    1997-01-01

    In the northeastern United States several guidance, protection, and conveyance methods have been employed to assist downstream migrating fish. Overlay racks, standard bar racks with close spacing, louvers, curtain walls, guide walls, netting, and other means have been used to guide and protect fish from entrainment. The design process of these facilities comprises consideration of various factors, including flow approach, attraction flow, guidance and protection devices, bypass location, conveyance mechanism, and plunge pool conditions. This paper presents the status of the design criteria for downstream fish passage facilities at hydroelectric sites in the northeast part of the United States. Examples of existing facilities are given.

  9. Clines in quantitative traits: The role of migration patterns and selection scenarios

    PubMed Central

    Geroldinger, Ludwig; Bürger, Reinhard

    2015-01-01

    The existence, uniqueness, and shape of clines in a quantitative trait under selection toward a spatially varying optimum is studied. The focus is on deterministic diploid two-locus n-deme models subject to various migration patterns and selection scenarios. Migration patterns may exhibit isolation by distance, as in the stepping-stone model, or random dispersal, as in the island model. The phenotypic optimum may change abruptly in a single environmental step, more gradually, or not at all. Symmetry assumptions are imposed on phenotypic optima and migration rates. We study clines in the mean, variance, and linkage disequilibrium (LD). Clines result from polymorphic equilibria. The possible equilibrium configurations are determined as functions of the migration rate. Whereas for weak migration, many polymorphic equilibria may be simultaneously stable, their number decreases with increasing migration rate. Also for intermediate migration rates polymorphic equilibria are in general not unique, however, for loci of equal effects the corresponding clines in the mean, variance, and LD are unique. For sufficiently strong migration, no polymorphism is maintained. Both migration pattern and selection scenario exert strong influence on the existence and shape of clines. The results for discrete demes are compared with those from models in which space varies continuously and dispersal is modeled by diffusion. Comparisons with previous studies, which investigated clines under neutrality or under linkage equilibrium, are performed. If there is no long-distance migration, the environment does not change abruptly, and linkage is not very tight, populations are almost everywhere close to linkage equilibrium. PMID:25446959

  10. Modeling and analyzing stripe patterns in fish skin

    NASA Astrophysics Data System (ADS)

    Zheng, Yibo; Zhang, Lei; Wang, Yuan; Liang, Ping; Kang, Junjian

    2009-11-01

    The formation mechanism of stripe patterns in the skin of tropical fishes has been investigated by a coupled two variable reaction diffusion model. Two types of spatial inhomogeneities have been introduced into a homogenous system. Several Turing modes pumped by the Turing instability give rise to a simple stripe pattern. It is found that the Turing mechanism can only determine the wavelength of stripe pattern. The orientation of stripe pattern is determined by the spatial inhomogeneity. Our numerical results suggest that it may be the most possible mechanism for the forming process of fish skin patterns.

  11. Linking landscapes and habitat suitability scores for diadromous fish restoration in the susquehanna river basin

    USGS Publications Warehouse

    Kocovsky, P.M.; Ross, R.M.; Dropkin, D.S.; Campbell, J.M.

    2008-01-01

    Dams within the Susquehanna River drainage, Pennsylvania, are potential barriers to migration of diadromous fishes, and many are under consideration for removal to facilitate fish passage. To provide useful input for prioritizing dam removal, we examined relations between landscape-scale factors and habitat suitability indices (HSIs) for native diadromous species of the Susquehanna River. We used two different methods (U.S. Fish and Wildlife Service method: Stier and Crance [1985], Ross et al. [1993a, 1993b, 1997], and Pardue [1983]; Pennsylvania State University method: Carline et al. [1994]) to calculate HSIs for several life stages of American shad Alosa sapidissima, alewives Alosa pseudoharengus, and blueback herring Alosa aestivalis and a single HSI for American eels Anguilla rostrata based on habitat variables measured at transects spaced every 5 km on six major Susquehanna River tributaries. Using geographical information systems, we calculated land use and geologic variables upstream from each transect and associated those data with HSIs calculated at each transect. We then performed canonical correlation analysis to determine how HSIs were linked to geologic and land use factors. Canonical correlation analysis identified the proportion of watershed underlain by carbonate rock as a positive correlate of HSIs for all species and life stages except American eels and juvenile blueback herring. We hypothesize that potential mechanisms linking carbonate rock to habitat suitability include increased productivity and buffering capacity. No other consistent patterns of positive or negative correlation between landscape-scale factors and HSIs were evident. This analysis will be useful for prioritizing removal of dams in the Susquehanna River drainage, because it provides a broad perspective on relationships between habitat suitability for diadromous fishes and easily measured landscape factors. This approach can be applied elsewhere to elucidate relationships between fine- and coarse-scale variables and suitability of habitat for fishes. ?? Copyright by the American Fisheries Society 2008.

  12. Use of navigation channels by Lake Sturgeon: Does channelization increase vulnerability of fish to ship strikes?

    PubMed

    Hondorp, Darryl W; Bennion, David H; Roseman, Edward F; Holbrook, Christopher M; Boase, James C; Chiotti, Justin A; Thomas, Michael V; Wills, Todd C; Drouin, Richard G; Kessel, Steven T; Krueger, Charles C

    2017-01-01

    Channelization for navigation and flood control has altered the hydrology and bathymetry of many large rivers with unknown consequences for fish species that undergo riverine migrations. In this study, we investigated whether altered flow distributions and bathymetry associated with channelization attracted migrating Lake Sturgeon (Acipenser fulvescens) into commercial navigation channels, potentially increasing their exposure to ship strikes. To address this question, we quantified and compared Lake Sturgeon selection for navigation channels vs. alternative pathways in two multi-channel rivers differentially affected by channelization, but free of barriers to sturgeon movement. Acoustic telemetry was used to quantify Lake Sturgeon movements. Under the assumption that Lake Sturgeon navigate by following primary flow paths, acoustic-tagged Lake Sturgeon in the more-channelized lower Detroit River were expected to choose navigation channels over alternative pathways and to exhibit greater selection for navigation channels than conspecifics in the less-channelized lower St. Clair River. Consistent with these predictions, acoustic-tagged Lake Sturgeon in the more-channelized lower Detroit River selected the higher-flow and deeper navigation channels over alternative migration pathways, whereas in the less-channelized lower St. Clair River, individuals primarily used pathways alternative to navigation channels. Lake Sturgeon selection for navigation channels as migratory pathways also was significantly higher in the more-channelized lower Detroit River than in the less-channelized lower St. Clair River. We speculated that use of navigation channels over alternative pathways would increase the spatial overlap of commercial vessels and migrating Lake Sturgeon, potentially enhancing their vulnerability to ship strikes. Results of our study thus demonstrated an association between channelization and the path use of migrating Lake Sturgeon that could prove important for predicting sturgeon-vessel interactions in navigable rivers as well as for understanding how fish interact with their habitat in landscapes altered by human activity.

  13. Effects of emergence time and early social rearing environment on behaviour of Atlantic salmon: consequences for juvenile fitness and smolt migration.

    PubMed

    Larsen, Martin H; Johnsson, Jörgen I; Winberg, Svante; Wilson, Alexander D M; Hammenstig, David; Thörnqvist, Per-Ove; Midwood, Jonathan D; Aarestrup, Kim; Höglund, Erik

    2015-01-01

    Consistent individual differences in behaviour have been well documented in a variety of animal taxa, but surprisingly little is known about the fitness and life-history consequences of such individual variation. In wild salmonids, the timing of fry emergence from gravel spawning nests has been suggested to be coupled with individual behavioural traits. Here, we further investigate the link between timing of spawning nest emergence and behaviour of Atlantic salmon (Salmo salar), test effects of social rearing environment on behavioural traits in fish with different emergence times, and assess whether behavioural traits measured in the laboratory predict growth, survival, and migration status in the wild. Atlantic salmon fry were sorted with respect to emergence time from artificial spawning nest into three groups: early, intermediate, and late. These emergence groups were hatchery-reared separately or in co-culture for four months to test effects of social rearing environment on behavioural traits. Twenty fish from each of the six treatment groups were then subjected to three individual-based behavioural tests: basal locomotor activity, boldness, and escape response. Following behavioural characterization, the fish were released into a near-natural experimental stream. Results showed differences in escape behaviour between emergence groups in a net restraining test, but the social rearing environment did not affect individual behavioural expression. Emergence time and social environment had no significant effects on survival, growth, and migration status in the stream, although migration propensity was 1.4 to 1.9 times higher for early emerging individuals that were reared separately. In addition, despite individuals showing considerable variation in behaviour across treatment groups, this was not translated into differences in growth, survival, and migration status. Hence, our study adds to the view that fitness (i.e., growth and survival) and life-history predictions from laboratory measures of behaviour should be made with caution and ideally tested in nature.

  14. Use of navigation channels by Lake Sturgeon: Does channelization increase vulnerability of fish to ship strikes?

    PubMed Central

    Bennion, David H.; Roseman, Edward F.; Holbrook, Christopher M.; Boase, James C.; Chiotti, Justin A.; Thomas, Michael V.; Wills, Todd C.; Drouin, Richard G.; Kessel, Steven T.; Krueger, Charles C.

    2017-01-01

    Channelization for navigation and flood control has altered the hydrology and bathymetry of many large rivers with unknown consequences for fish species that undergo riverine migrations. In this study, we investigated whether altered flow distributions and bathymetry associated with channelization attracted migrating Lake Sturgeon (Acipenser fulvescens) into commercial navigation channels, potentially increasing their exposure to ship strikes. To address this question, we quantified and compared Lake Sturgeon selection for navigation channels vs. alternative pathways in two multi-channel rivers differentially affected by channelization, but free of barriers to sturgeon movement. Acoustic telemetry was used to quantify Lake Sturgeon movements. Under the assumption that Lake Sturgeon navigate by following primary flow paths, acoustic-tagged Lake Sturgeon in the more-channelized lower Detroit River were expected to choose navigation channels over alternative pathways and to exhibit greater selection for navigation channels than conspecifics in the less-channelized lower St. Clair River. Consistent with these predictions, acoustic-tagged Lake Sturgeon in the more-channelized lower Detroit River selected the higher-flow and deeper navigation channels over alternative migration pathways, whereas in the less-channelized lower St. Clair River, individuals primarily used pathways alternative to navigation channels. Lake Sturgeon selection for navigation channels as migratory pathways also was significantly higher in the more-channelized lower Detroit River than in the less-channelized lower St. Clair River. We speculated that use of navigation channels over alternative pathways would increase the spatial overlap of commercial vessels and migrating Lake Sturgeon, potentially enhancing their vulnerability to ship strikes. Results of our study thus demonstrated an association between channelization and the path use of migrating Lake Sturgeon that could prove important for predicting sturgeon-vessel interactions in navigable rivers as well as for understanding how fish interact with their habitat in landscapes altered by human activity. PMID:28678798

  15. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 2002 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buettner, Edwin W.; Putnam, Scott A.

    This project monitored the daily passage of Chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon smolts O. nerka during the 2002 spring out-migration at migrant traps on the Snake River and Salmon River. In 2002 fish management agencies released significant numbers of hatchery Chinook salmon and steelhead trout above Lower Granite Dam that were not marked with a fin clip or coded-wire tag. Generally, these fish were distinguishable from wild fish by the occurrence of fin erosion. Total annual hatchery Chinook salmon catch at the Snake River trap was 11.4 times greater in 2002 than in 2001.more » The wild Chinook catch was 15.5 times greater than the previous year. Hatchery steelhead trout catch was 2.9 times greater than in 2001. Wild steelhead trout catch was 2.8 times greater than the previous year. The Snake River trap collected 3,996 age-0 Chinook salmon of unknown rearing. During 2002, the Snake River trap captured 69 hatchery and 235 wild/natural sockeye salmon and 114 hatchery coho salmon O. kisutch. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with flow. The significant increase in catch in 2002 was due to a 3.1 fold increase in hatchery Chinook production and a more normal spring runoff. Trap operations began on March 10 and were terminated on June 7. The trap was out of operation for a total of four days due to mechanical failure or debris. Hatchery Chinook salmon catch at the Salmon River trap was 4.2 times greater and wild Chinook salmon catch was 2.4 times greater than in 2001. The hatchery steelhead trout collection in 2002 was 81% of the 2001 numbers. Wild steelhead trout collection in 2002 was 81% of the previous year's catch. Trap operations began on March 10 and were terminated on May 29 due to high flows. The trap was out of operation for four days due to high flow or debris. The increase in hatchery Chinook catch in 2002 was due to a 3.1 fold increase in hatchery production and differences in flow between years. Changes in hatchery and wild steelhead catch are probably due to differences in flow between years. Travel time (d) and migration rate (km/d) through Lower Granite Reservoir for PIT-tagged Chinook salmon and steelhead trout marked at the Snake River trap were affected by discharge. Statistical analysis of 2002 data detected a relation between migration rate and discharge for hatchery and wild Chinook salmon. For hatchery and wild Chinook salmon there was a 4.7-fold and a 3.7-fold increase in migration rate, respectively, between 50 and 100 kcfs. For steelhead trout tagged at the Snake River trap, statistical analysis detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge. For hatchery and wild steelhead trout, there was a 1.8-fold and a 1.7-fold increase in migration rate, respectively, between 50 and 100 kcfs. Travel time and migration rate to Lower Granite Dam for fish marked at the Salmon River trap were calculated. Statistical analysis of the 2002 data detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge for wild Chinook salmon and hatchery steelhead trout. The analysis was unable to detect a relation between migration rate and discharge for hatchery Chinook salmon. The lack of a detectable relation was probably a result of the migration rate data being spread over a very narrow range of discharge. Not enough data were available to perform the analysis for wild steelhead trout. Migration rate increased 4.3-fold for wild Chinook salmon and 2.2-fold for hatchery steelhead between 50 kcfs and 100 kcfs. Fish tagged with passive integrated transponder (PIT) tags at the Snake River trap were interrogated at four dams with PIT tag detection systems (Lower Granite, Little Goose, Lower Monumental, and McNary dams). Because of the addition of the fourth interrogation site (Lower Monumental) in 1993 and the installation of the Removable Spillway Weir at Lower Granite Dam in 2000, caution must be used in comparing cumulative interrogation data. Cumulative interrogations at the four dams for fish marked at the Snake River trap were 61% for hatchery Chinook, 68% for wild Chinook, 58% for hatchery steelhead, and 62% for wild steelhead. Cumulative interrogations at the four dams for fish marked at the Salmon River trap were 51% for hatchery Chinook, 59% for wild Chinook salmon, 45% for hatchery steelhead trout, and 54% for wild steelhead trout. Cumulative interrogations were significantly lower in 2002 than in previous years with similar flow.« less

  16. Alternative barging strategies to improve survival of salmonids transported from Lower Granite Dam: Final report from the 2006-2008 spring/summer Chinook salmon and Steelhead juvenile migrations

    USGS Publications Warehouse

    Marsh, Tiffani M.; Muir, William D.; Sandford, Benjamin P.; Smith, Steven G.; Elliott, Diane G.

    2012-01-01

    We found no evidence of a consistent difference in SARs for fish released at the two barge-release locations. Data were not sufficient to evaluate the effects of fish pathogens on avian predation. There was clear evidence that fish of both species released at Astoria were less vulnerable to avian predators than those released at the customary site at Skamania Landing. Unfortunately, this survival benefit did not translate to higher SARs, as it was offset by higher rates of straying by fish released from Astoria. This was likely a result of greater impairment to homing ability for fish released at Astoria.

  17. Grande Ronde Endemic Spring Chinook Salmon Supplementation Program: Facility Operations and Maintenance, 2002 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLean, Michael L.; Seeger, Ryan; Hewitt, Laurie

    2003-03-01

    The Catherine Creek Acclimation Facility (CCAF) received 180,912 smolts from LFH. The size of the fish at delivery was 18.4 fish/lb. Volitional releases started 1 April 2002 with a total of 7,998 PIT-tagged fish (68,948 estimated total fish) migrating from the raceways during the volitional release period. Hourly detections of PIT-tagged fish showed that most of the fish left between 1400 and 2200 hours. The size of the fish remaining just before the forced release was 16.4 fish/lb. The total mortality for the acclimation period was 569 (0.3 %). No significant mortality related to disease was observed. The fish weremore » fed a total of 1,968 lbs of food for the acclimation period. The total number of fish released from the acclimation facility in 2002 was 180,343. The Upper Grande Ronde Acclimation Facility (UGRAF) received 201,958 smolts from LFH. The size of the fish at delivery was 17.4 fish/lb. On 3 March 2002 the water inflow to raceway 4 froze in the early morning hours and the entire raceway was lost. Volitional releases started 1 April 2002 with a total of 682 PIT-tagged fish (68,200 estimated total fish) migrating from the raceways during the volitional release period. Hourly detections of PIT-tagged fish showed that most of the fish left between 1500 and 2200 hours. The size of the fish left in the raceways just before the forced release was 18.3 fish/lb. The total mortality for the acclimation period not including raceway 4 was 402 (0.3 %). No significant mortality related to disease was observed. The fish were fed a total of 568 lbs of food for the acclimation period. The total number of fish released from the acclimation facility in 2002 was 151,444. Maintenance and repair activities were conducted at the acclimation facilities in 2002. Facility maintenance work consisted of snow removal, painting of building, installation of backup water supply system, construction of steps to intake area, improvements to raceway standpipes, removal of gravel from intake area, and complete overhaul of 2 travel trailers. Montgomery-Watson-Harza (MWH) completed construction activities to both acclimation facilities and the Catherine Creek Adult Collection Facility (CCACF) in 2002. Their work included installation of larger intake manifold, new inflow valves on each raceway, new manifold blowout valve, and handrails and grating around raceways and the weir.« less

  18. Fish oil-enriched diet protects against ischemia by improving angiogenesis, endothelial progenitor cell function and postnatal neovascularization.

    PubMed

    Turgeon, Julie; Dussault, Sylvie; Maingrette, Fritz; Groleau, Jessika; Haddad, Paola; Perez, Gemma; Rivard, Alain

    2013-08-01

    Fish oil consumption has been associated with a reduced incidence of cardiovascular diseases. However, the precise mechanisms involved are not completely understood. Here we tested the hypothesis that a fish oil-enriched diet improves neovascularization in response to ischemia. C57Bl/6 mice were fed a diet containing either 20% fish oil, rich in long-chain n-3 polyunsaturated fatty acids (PUFAs), or 20% corn oil, rich in n-6 PUFAs. After 4 weeks, hindlimb ischemia was surgically induced by femoral artery removal. We found that blood flow recovery was significantly improved in mice fed a fish oil diet compared to those fed a corn oil diet (Doppler flow ratio (DFR) at day 21 after surgery 78 ± 5 vs. 56 ± 4; p < 0.01). Clinically, this was associated with a significant reduction of ambulatory impairment and ischemic damage in the fish oil group. At the microvascular level, capillary density was significantly improved in ischemic muscles of mice fed a fish oil diet. This correlated with increased expression of VEGF and eNOS in ischemic muscles, and higher NO concentration in the plasma. Endothelial progenitor cells (EPCs) have been shown to have an important role for postnatal neovascularization. We found that the number of EPCs was significantly increased in mice fed a fish oil diet. In addition, oxidative stress levels (DCF-DA, DHE) were reduced in EPCs isolated from mice exposed to fish oil, and this was associated with improved EPC functional activities (migration and integration into tubules). In vitro, treatment of EPCs with fish oil resulted in a significant increase of cellular migration. In addition, the secretion of angiogenic growth factors including IL6 and leptin was significantly increased in EPCs exposed to fish oil. Fish oil-enriched diet is associated with improved neovascularization in response to ischemia. Potential mechanisms involved include activation of VEGF/NO pathway in ischemic tissues together with an increase in the number and the functional activities of EPCs. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. Species Profiles. Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (Pacific Northwest). Sockeye Salmon

    DTIC Science & Technology

    1989-12-01

    that of other fish. Fast growth during the early period of The major fingerling growing season includes July, marine life tends to be associated with...an earlier age of August, and September. Growth in the second season maturity (Peterman 1985). begins prior to or at the time of seaward migration of...than in the first and is less in the between 1935 and 1945 (Kolb 1971), and is now the third ocean season than in the second; (2) among fish of largest

  20. Steelhead Supplementation in Idaho Rivers : 2001 Project Progress Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byrne, Alan

    In 2001, Idaho Department of Fish and Game (IDFG) continued an assessment of the Sawtooth Hatchery steelhead Oncorhynchus mykiss stock to reestablish natural populations in Beaver and Frenchman creeks in the upper Salmon River. Crews stocked both streams with 20 pair of hatchery adults, and I estimated the potential smolt production from the 2000 adult outplants. n the Red River drainage, IDFG stocked Dworshak hatchery stock fingerlings and smolts from 1993 to 1999 to assess which life stage produces more progeny when the adults return to spawn. In 2001, IDFG operated the Red River weir to trap adults that returnedmore » from these stockings, but none were caught from either group. Wild steelhead populations in the Lochsa and Selway river drainages were assessed and the chinook salmon Oncorhynchus tshawytscha escapement was enumerated in Fish Creek. I estimated that 75 wild adult steelhead and 122 adult chinook salmon returned to Fish Creek in 2001. I estimated that slightly more than 30,000 juvenile steelhead migrated out of Fish Creek. This is the largest number of steelhead to migrate out of Fish Creek in a single year since I began estimating the yearly migration in 1994. Juvenile steelhead densities in Lochsa and Selway tributaries were somewhat higher in 2001 than those observed in 2000. Crews from IDFG collected over 4,800 fin samples from wild steelhead in 74 streams of the Clearwater, Snake, and Salmon river drainages and from five hatchery stocks during the summer of 2000 for a DNA analysis to assess Idaho's steelhead stock structure. The DNA analysis was subcontracted to Dr. Jennifer Nielsen, Alaska Biological Science Center, Anchorage. Her lab developed protocols to use for the analysis in 2001 and is continuing to analyze the samples. Dr. Nielsen plans to have the complete set of wild and hatchery stocks analyzed in 2002.« less

  1. The Reversal in Migration Patterns -- Some Rural Development Consequences.

    ERIC Educational Resources Information Center

    Ploch, Louis A.

    The reversal in migration patterns in the 1970's resulting in a net population flow from metropolitan (urban) to nonmetropolitan (rural) areas may have a variety of rural development consequences. Sizeable population increase in rural communities which traditionally have experienced net out-migration or very slow increases is evident in Maine…

  2. Spatial distribution and vertical migrations of fish larvae communities off Northwestern Iberia sampled with LHPR and Bongo nets

    NASA Astrophysics Data System (ADS)

    Garrido, Susana; Santos, A. Miguel P.; dos Santos, Antonina; Ré, Pedro

    2009-10-01

    The spatial distribution and diel vertical migration of fish larvae were studied in relation to the environmental conditions off NW Iberia during May 2002. Larvae from 23 families were identified, the most abundant were the Clupeidae, Gobiidae, Callionymidae, Blenniidae, Sparidae and Labridae. Sardina pilchardus was the most abundant species, mean concentrations 1 order of magnitude higher than the other fish larvae species. Larval horizontal distribution was mainly related to upwelling-driven circulation, resulting in an offshore increase of larval abundance while the vertical distribution was closely associated to the Western Iberia Buoyant Plume. Despite this general trend, taxon-specific relationships between the distribution of larvae and environmental variables were observed, and temperature was an important regressor explaining the distribution of most taxa. A comparison between ichthyoplankton samples collected alternatively with the LHPR and Bongo nets resulted in captures of larvae ≈1 order of magnitude higher for the LHPR, probably related to its higher towing speed. The spatial distribution and relative composition of larvae were also different for both nets, although the most frequent/abundant groups were the same. A fixed station sampled for 69-h showed diel vertical migrations performed by the larvae, with the highest larval concentrations occurring at surface layers during the night and most larvae being found in the neuston layer only during that period.

  3. Shape up or ship out: migratory behaviour predicts morphology across spatial scale in a freshwater fish.

    PubMed

    Chapman, Ben B; Hulthén, Kaj; Brönmark, Christer; Nilsson, P Anders; Skov, Christian; Hansson, Lars-Anders; Brodersen, Jakob

    2015-09-01

    1. Migration is a widespread phenomenon, with powerful ecological and evolutionary consequences. Morphological adaptations to reduce the energetic costs associated with migratory transport are commonly documented for migratory species. However, few studies have investigated whether variation in body morphology can be explained by variation in migratory strategy within a species. 2. We address this question in roach Rutilus rutilus, a partially migratory freshwater fish that migrates from lakes into streams during winter. We both compare body shape between populations that differ in migratory opportunity (open vs. closed lakes), and between individuals from a single population that vary in migratory propensity (migrants and residents from a partially migratory population). Following hydrodynamic theory, we posit that migrants should have a more shallow body depth, to reduce the costs associated with migrating into streams with higher flow conditions than the lakes the residents occupy all year round. 3. We find evidence both across and within populations to support our prediction, with individuals from open lakes and migrants from the partially migratory population having a more slender, shallow-bodied morphology than fish from closed lakes and all-year residents. 4. Our data suggest that a shallow body morphology is beneficial to migratory individuals and our study is one of the first to link migratory strategy and intraspecific variation in body shape. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  4. Variability of kokanee and rainbow trout food habits, distribution, and population dynamics, in an ultraoligotrophic lake with no manipulative management

    USGS Publications Warehouse

    Buktenica, M.W.; Girdner, S.F.; Larson, G.L.; McIntire, C.D.

    2007-01-01

    Crater Lake is a unique environment to evaluate the ecology of introduced kokanee and rainbow trout because of its otherwise pristine state, low productivity, absence of manipulative management, and lack of lotic systems for fish spawning. Between 1986 and 2004, kokanee displayed a great deal of variation in population demographics with a pattern that reoccurred in about 10 years. We believe that the reoccurring pattern resulted from density dependent growth, and associated changes in reproduction and abundance, driven by prey resource limitation that resulted from low lake productivity exacerbated by prey consumption when kokanee were abundant. Kokanee fed primarily on small-bodied prey from the mid-water column; whereas rainbow trout fed on large-bodied prey from the benthos and lake surface. Cladoceran zooplankton abundance may be regulated by kokanee. And kokanee growth and reproductive success may be influenced by the availability of Daphnia pulicaria, which was absent in zooplankton samples collected annually from 1990 to 1995, and after 1999. Distribution and diel migration of kokanee varied over the duration of the study and appeared to be most closely associated with prey availability, maximization of bioenergetic efficiency, and fish density. Rainbow trout were less abundant than were kokanee and exhibited less variation in population demographics, distribution, and food habits. There is some evidence that the population dynamics of rainbow trout were in-part related to the availability of kokanee as prey. ?? 2007 Springer Science+Business Media B.V.

  5. Development of the cerebellar afferent system in the shark Scyliorhinus canicula: insights into the basal organization of precerebellar nuclei in gnathostomes.

    PubMed

    Pose-Méndez, Sol; Candal, Eva; Adrio, Fátima; Rodríguez-Moldes, Isabel

    2014-01-01

    The cerebellum is recognized as an evolutionary innovation of jawed vertebrates, whose most primitive group is represented by the chondrichthyans, or cartilaginous fishes. A comprehensive knowledge of cerebellar connections in these fishes might shed light on the basal organization of the cerebellar system. Although the organization of the precerebellar system is known in adults, developmental studies are essential for understanding the origin and evolution of precerebellar nuclei. In the present work we performed a developmental study of cerebellar connections in embryos and juveniles of an advanced shark species, Scyliorhinus canicula, by application of tract tracing in combination with immunohistochemical techniques. Main precerebellar cell populations were located in the diencephalon (pretectum and thalamus), mesencephalon (reticular formation and nucleus ruber), rhombencephalon (cerebellar nucleus, reticular formation, and inferior olive), and spinal cord (ventral horn). The order of arrival of cerebellar afferent projections throughout development revealed a common pattern with other jawed vertebrates, which was helpful for comparison of stages of cerebellar development. The neurochemical study of the inferior olive and other precerebellar nuclei revealed many shared features with other gnathostomes. Furthermore, because many precerebellar nuclei originate from rhombic lips, the first analysis of neuronal migrations from these lips was performed with markers of neuroblasts. The shared features of development and organization of precerebellar connections observed between sharks and amniotes suggest that their basic pattern was established early in gnathostome evolution. Copyright © 2013 Wiley Periodicals, Inc.

  6. Walla Walla River Fish Passage Operations Program, 2003-2004 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bronson, James P.

    2004-12-01

    In the late 1990s, the Confederated Tribes of the Umatilla Indian Reservation, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife, along with many other agencies, began implementing fisheries restoration activities in the Walla Walla Basin. An integral part of these efforts is to alleviate the inadequate fish migration conditions in the basin. The migration concerns are being addressed by removing diversion structures, constructing fish passage facilities, implementing minimum instream flow requirements, and providing trap and haul efforts when needed. The objective of the Walla Walla River Fish Passage Operations Project is to increase the survivalmore » of migrating adult and juvenile salmonids in the Walla Walla River basin. The project is responsible for coordinating operation and maintenance of ladders, screen sites, bypasses, trap facilities, and transportation equipment. In addition, the project provides technical input on passage criteria and passage and trapping facility design and operation. Operation of the various passage facilities and passage criteria guidelines are outlined in an annual operations plan that the project develops. During the 2003-2004 project year, there were 379 adult summer steelhead (Oncorhynchus mykiss), 36 adult bull trout (Salvelinus confluentus); 108 adult and 3 jack spring chinook (O. tshawytscha) enumerated at the Nursery Bridge Dam fishway video counting window between December 21, 2003, and June 30, 2004. Summer steelhead and spring chinook were observed moving upstream while bull trout were observed moving both upstream and downstream of the facility. In addition, the old ladder trap was operated by the WWBNPME project in order to radio tag spring chinook adults. A total of 2 adult summer steelhead, 4 bull trout, and 23 adult spring chinook were enumerated at the west ladder at Nursery Bridge Dam during the trapping operations between May 6 and May 23, 2004. Operation of the Little Walla Walla River juvenile trap for trap and haul purposes was not necessary this year. The project transported adult spring chinook from Threemile Dam to the South Fork Walla Walla Brood Holding Facility. A total of 239 spring chinook were outplanted in August for natural spawning in the basin.« less

  7. Phylogeographic Pattern of the Striped Snakehead, Channa striata in Sundaland: Ancient River Connectivity, Geographical and Anthropogenic Singnatures

    PubMed Central

    Tan, Min Pau; Jamsari, Amirul Firdaus Jamaluddin; Siti Azizah, Mohd Nor

    2012-01-01

    A phylogeographic study of an economically important freshwater fish, the striped snakehead, Channa striata in Sundaland was carried out using data from mtDNA ND5 gene target to elucidate genetic patterning. Templates obtained from a total of 280 individuals representing 24 sampling sites revealed 27 putative haplotypes. Three distinct genetic lineages were apparent; 1)northwest Peninsular Malaysia, 2)southern Peninsular, east Peninsular, Sumatra and SW (western Sarawak) and 3) central west Peninsular and Malaysian Borneo (except SW). Genetic structuring between lineages showed a significant signature of natural geographical barriers that have been acting as effective dividers between these populations. However, genetic propinquity between the SW and southern Peninsular and east Peninsular Malaysia populations was taken as evidence of ancient river connectivity between these regions during the Pleistocene epoch. Alternatively, close genetic relationship between central west Peninsular Malaysia and Malaysian Borneo populations implied anthropogenic activities. Further, haplotype sharing between the east Peninsular Malaysia and Sumatra populations revealed extraordinary migration ability of C. striata (>500 km) through ancient connectivity. These results provide interesting insights into the historical and contemporary landscape arrangement in shaping genetic patterns of freshwater species in Sundaland. PMID:23284881

  8. Post-mortem sporulation of Ceratomyxa shasta (Myxozoa) after death in adult Chinook salmon

    USGS Publications Warehouse

    Kent, Michael L.; Soderlund, K.; Thomann, E.; Schreck, Carl B.; Sharpton, T.J.

    2014-01-01

    Ceratomyxa shasta (Myxozoa) is a common gastrointestinal pathogen of salmonid fishes in the Pacific Northwest of the United States. We have been investigating this parasite in adult Chinook salmon (Oncorhynchus tshawytscha) in the Willamette River, Oregon. In prior work, we observed differences in the pattern of development of C. shasta in adult salmon compared to juvenile salmon. Adult salmon consistently had large numbers of prespore stages in many of the fish that survived to spawn in the fall. However, myxospores were rarely observed, even though they were exposed and presumably infected for months before spawning. We evaluated the ability of C. shasta to sporulate following fish death because it is reported that myxosores are common in carcasses of Chinook salmon. We collected the intestine from 30 adult salmon immediately after artificial spawning and death (T0). A total of 23 fish were infected with C. shasta based on histology, but only a few myxospores were observed in 1 fish by histology. Intestines of these fish were examined at T0 and T7 (latter held at 17 C for 7 days) using quantified wet mount preparations. An increase in myxospore concentrations was seen in 39% of these fish, ranging between a 1.5- to a 14.5-fold increase. The most heavily infected fish exhibited a 4.6-fold increase from 27,841 to 129,352 myxospores/cm. This indicates, supported by various statistical analyses, that under certain conditions presporogonic forms are viable and continue to sporulate after death in adult salmon. Considering the life cycle of C. shasta and anadromous salmon, the parasite may have evolved 2, non-mutually exclusive developmental strategies. In young fish (parr and smolts), the parasite sporulates shortly after infection and is released into freshwater from either live or dead fish before their migration to seawater, where the alternate host is absent. The second strategy occurs in adult salmon, particularly spring Chinook salmon, which become infected upon their return to freshwater in the spring or early summer. For several months throughout the summer, only prespore stages are observed in most fish, even at the time of spawning. But once the fish dies, environmental conditions experienced by C. shasta change and viable presporogonic stages are induced to sporulate. As the post-spawned fish occur in the upper reaches of rivers, the myxospores would be released in a freshwater environment that would provide a reasonable opportunity for them to encounter their freshwater polychaete hosts, which reside downstream.

  9. Genetic structuring and migration patterns of Atlantic bigeye tuna, Thunnus obesus (Lowe, 1839).

    PubMed

    Gonzalez, Elena G; Beerli, Peter; Zardoya, Rafael

    2008-09-17

    Large pelagic fishes are generally thought to have little population genetic structuring based on their cosmopolitan distribution, large population sizes and high dispersal capacities. However, gene flow can be influenced by ecological (e.g. homing behaviour) and physical (e.g. present-day ocean currents, past changes in sea temperature and levels) factors. In this regard, Atlantic bigeye tuna shows an interesting genetic structuring pattern with two highly divergent mitochondrial clades (Clades I and II), which are assumed to have been originated during the last Pleistocene glacial maxima. We assess genetic structure patterns of Atlantic bigeye tuna at the nuclear level, and compare them with mitochondrial evidence. We examined allele size variation of nine microsatellite loci in 380 individuals from the Gulf of Guinea, Canary, Azores, Canada, Indian Ocean, and Pacific Ocean. To investigate temporal stability of genetic structure, three Atlantic Ocean sites were re-sampled a second year. Hierarchical AMOVA tests, RST pairwise comparisons, isolation by distance (Mantel) tests, Bayesian clustering analyses, and coalescence-based migration rate inferences supported unrestricted gene flow within the Atlantic Ocean at the nuclear level, and therefore interbreeding between individuals belonging to both mitochondrial clades. Moreover, departures from HWE in several loci were inferred for the samples of Guinea, and attributed to a Wahlund effect supporting the role of this region as a spawning and nursery area. Our microsatellite data supported a single worldwide panmictic unit for bigeye tunas. Despite the strong Agulhas Current, immigration rates seem to be higher from the Atlantic Ocean into the Indo-Pacific Ocean, but the actual number of individuals moving per generation is relatively low compared to the large population sizes inhabiting each ocean basin. Lack of congruence between mt and nuclear evidences, which is also found in other species, most likely reflects past events of isolation and secondary contact. Given the inferred relatively low number of immigrants per generation around the Cape of Good Hope, the proportions of the mitochondrial clades in the different oceans may keep stable, and it seems plausible that the presence of individuals belonging to the mt Clade I in the Atlantic Ocean may be due to extensive migrations that predated the last glaciation.

  10. A Nonsynonymous Mutation in the Transcriptional Regulator lbh Is Associated with Cichlid Craniofacial Adaptation and Neural Crest Cell Development

    PubMed Central

    Powder, Kara E.; Cousin, Hélène; McLinden, Gretchen P.; Craig Albertson, R.

    2014-01-01

    Since the time of Darwin, biologists have sought to understand the origins and maintenance of life’s diversity of form. However, the nature of the exact DNA mutations and molecular mechanisms that result in morphological differences between species remains unclear. Here, we characterize a nonsynonymous mutation in a transcriptional coactivator, limb bud and heart homolog (lbh), which is associated with adaptive variation in the lower jaw of cichlid fishes. Using both zebrafish and Xenopus, we demonstrate that lbh mediates migration of cranial neural crest cells, the cellular source of the craniofacial skeleton. A single amino acid change that is alternatively fixed in cichlids with differing facial morphologies results in discrete shifts in migration patterns of this multipotent cell type that are consistent with both embryological and adult craniofacial phenotypes. Among animals, this polymorphism in lbh represents a rare example of a coding change that is associated with continuous morphological variation. This work offers novel insights into the development and evolution of the craniofacial skeleton, underscores the evolutionary potential of neural crest cells, and extends our understanding of the genetic nature of mutations that underlie divergence in complex phenotypes. PMID:25234704

  11. An orthologue of the kit-related gene fms is required for development of neural crest-derived xanthophores and a subpopulation of adult melanocytes in the zebrafish, Danio rerio.

    PubMed

    Parichy, D M; Ransom, D G; Paw, B; Zon, L I; Johnson, S L

    2000-07-01

    Developmental mechanisms underlying traits expressed in larval and adult vertebrates remain largely unknown. Pigment patterns of fishes provide an opportunity to identify genes and cell behaviors required for postembryonic morphogenesis and differentiation. In the zebrafish, Danio rerio, pigment patterns reflect the spatial arrangements of three classes of neural crest-derived pigment cells: black melanocytes, yellow xanthophores and silver iridophores. We show that the D. rerio pigment pattern mutant panther ablates xanthophores in embryos and adults and has defects in the development of the adult pattern of melanocyte stripes. We find that panther corresponds to an orthologue of the c-fms gene, which encodes a type III receptor tyrosine kinase and is the closest known homologue of the previously identified pigment pattern gene, kit. In mouse, fms is essential for the development of macrophage and osteoclast lineages and has not been implicated in neural crest or pigment cell development. In contrast, our analyses demonstrate that fms is expressed and required by D. rerio xanthophore precursors and that fms promotes the normal patterning of melanocyte death and migration during adult stripe formation. Finally, we show that fms is required for the appearance of a late developing, kit-independent subpopulation of adult melanocytes. These findings reveal an unexpected role for fms in pigment pattern development and demonstrate that parallel neural crest-derived pigment cell populations depend on the activities of two essentially paralogous genes, kit and fms.

  12. Fluctuation localization imaging-based fluorescence in situ hybridization (fliFISH) for accurate detection and counting of RNA copies in single cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Yi; Hu, Dehong; Markillie, Lye Meng

    Quantitative gene expression analysis in intact single cells can be achieved using single molecule- based fluorescence in situ hybridization (smFISH). This approach relies on fluorescence intensity to distinguish between true signals, emitted from an RNA copy hybridized with multiple FISH sub-probes, and background noise. Thus, the precision in smFISH is often compromised by partial or nonspecific binding of sub-probes and tissue autofluorescence, limiting its accuracy. Here we provide an accurate approach for setting quantitative thresholds between true and false signals, which relies on blinking frequencies of photoswitchable dyes. This fluctuation localization imaging-based FISH (fliFISH) uses blinking frequency patterns, emitted frommore » a transcript bound to multiple sub-probes, which are distinct from blinking patterns emitted from partial or nonspecifically bound sub-probes and autofluorescence. Using multicolor fliFISH, we identified radial gene expression patterns in mouse pancreatic islets for insulin, the transcription factor, NKX2-2, and their ratio (Nkx2-2/Ins2). These radial patterns, showing higher values in β cells at the islet core and lower values in peripheral cells, were lost in diabetic mouse islets. In summary, fliFISH provides an accurate, quantitative approach for detecting and counting true RNA copies and rejecting false signals by their distinct blinking frequency patterns, laying the foundation for reliable single-cell transcriptomics.« less

  13. Design a light pattern of multiple concentric circles for LED fishing lamps using Fourier series and an energy mapping method.

    PubMed

    Shen, S C; Li, J S; Huang, M C

    2014-06-02

    Fourier series and an energy mapping method were used in this study to design a lens that produces a light pattern of multiple concentric circles (LPMCC) for a light-emitting diode (LED) fishing lamp. Fourier series were used to represent the light intensity distribution curve (LIDC) of the LPMCC light pattern. Energy mapping involves performing angular energy mapping based on the LIDCs of an LED light source and LPMCC to design a freeform lens. Type I and Type II LPMCC lenses were designed according to the phototaxis behavior of fish to create a LPMCC light pattern of interleaving light-dark zones that attracts fish shoals to stay in an area for a long period. The experimental results indicated that, in comparing the LIDCs of the Type I and II lenses with the respective simulation values, the normalized cross-correlation (NCC) value reached 96%. According to a 24-hour observation of the phototaxis of Poecilia reticulata to evaluate the effectiveness of the proposed light pattern to attract fish, when a fish shoal was habituated to a light source that emitted constant illumination light, it gradually moved away from the intense light zone and hovered around the junction of the light and dark zones. In the future, the design used in this study can be applied to LED fishing lamps to replace traditional fishing lamps.

  14. Ocean warming expands habitat of a rich natural resource and benefits a national economy.

    PubMed

    Jansen, Teunis; Post, Søren; Kristiansen, Trond; Óskarsson, Guðmundur J; Boje, Jesper; MacKenzie, Brian R; Broberg, Mala; Siegstad, Helle

    2016-10-01

    Geographic redistribution of living natural resources changes access and thereby harvesting opportunities between countries. Internationally shared fish resources can be sensitive to shifts in the marine environment and this may have great impact on the economies of countries and regions that rely most heavily on fisheries to provide employment and food supply. Here we present a climate change-related biotic expansion of a rich natural resource with substantial economic consequences, namely the appearance of northeast Atlantic mackerel (Scomber scombrus) in Greenlandic waters. In recent years, the summer temperature has reached record highs in the Irminger Current, and this development has expanded the available and realized mackerel habitat in time and space. Observations in the Irminger Current in east Greenland in 2011 of this temperature-sensitive epipelagic fish were the first records so far northwest in the Atlantic. This change in migration pattern was followed by a rapid development of a large-scale fishery of substantial importance for the national economy of Greenland (23% of Greenland's export value of all goods in 2014). A pelagic trawl survey was conducted in mid-summer 2014 and the results showed that the bulk of ~1 million Mg (=t) of mackerel in the Irminger Current in southeast Greenland were located in the relatively warm (>8.5°C) surface layer. Mackerel was also observed in southwest Greenland. Finally, 15 CMIP5 Earth System Model projections of future marine climate were used to evaluate the epipelagic environment in Greenland. These projections for moderate and high CO 2 emission scenarios (representative concentration pathways [RCP] 4.5 and 8.5) suggest how the available mackerel habitat may expand further in space and time. Overall, our results indicate that, if the stock remains large, productive, and continues its current migration pattern, then climate change has provided Greenland with a new unique opportunity for commercial exploitation. However, positive cases like this should not be cherry-picked and misused as arguments against timely and effective mitigation of climate change. © 2016 by the Ecological Society of America.

  15. Modeling the fate of p,p'-DDT in water and sediment of two typical estuarine bays in South China: Importance of fishing vessels' inputs.

    PubMed

    Fang, Shu-Ming; Zhang, Xianming; Bao, Lian-Jun; Zeng, Eddy Y

    2016-05-01

    Antifouling paint applied to fishing vessels is the primary source of dichloro-diphenyl-trichloroethane (DDT) to the coastal marine environments of China. With the aim to provide science-based support of potential regulations on DDT use in antifouling paint, we utilized a fugacity-based model to evaluate the fate and impact of p,p'-DDT, the dominant component of DDT mixture, in Daya Bay and Hailing Bay, two typical estuarine bays in South China. The emissions of p,p'-DDT from fishing vessels to the aquatic environments of Hailing Bay and Daya Bay were estimated as 9.3 and 7.7 kg yr(-1), respectively. Uncertainty analysis indicated that the temporal variability of p,p'-DDT was well described by the model if fishing vessels were considered as the only direct source, i.e., fishing vessels should be the dominant source of p,p'-DDT in coastal bay areas of China. Estimated hazard quotients indicated that sediment in Hailing Bay posed high risk to the aquatic system, and it would take at least 21 years to reduce the hazards to a safe level. Moreover, p,p'-DDT tends to migrate from water to sediment in the entire Hailing Bay and Daya Bay. On the other hand, our previous research indicated that p,p'-DDT was more likely to migrate from sediment to water in the maricultured zones located in shallow waters of these two bays, where fishing vessels frequently remain. These findings suggest that relocating mariculture zones to deeper waters would reduce the likelihood of farmed fish contamination by p,p'-DDT. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Use of the p,p'-DDD: p,p'-DDE concentration ratio to trace contaminant migration from a hazardous waste site.

    PubMed

    Pinkney, Alfred E; McGowan, Peter C

    2006-09-01

    For approximately 50 years, beginning in the 1920s, hazardous wastes were disposed in an 11-hectare area of the Marine Corps Base (MCB) Quantico, Virginia, USA known as the Old Landfill. Polychlorinated biphenyls (PCBs) and DDT compounds were the primary contaminants of concern. These contaminants migrated into the sediments of a 78-hectare area of the Potomac River, the Quantico Embayment. Fish tissue contamination resulted in the MCB posting signs along the embayment shoreline warning fishermen to avoid consumption. In this paper, we interpret total PCB (t-PCBs) and total DDT (t-DDT, sum of six DDT, DDD, and DDE isomers) data from monitoring studies. We use the ratio of p,p'-DDD to p,p'-DDE concentrations as a tracer to distinguish site-related from regional contamination. The median DDD/DDE ratio in Quantico Embayment sediments (3.5) was significantly higher than the median ratio (0.71) in sediments from nearby Powells Creek, used as a reference area. In general, t-PCBs and t-DDT concentrations were significantly higher in killifish (Fundulus diaphanus) and carp (Cyprinus carpio) from the Quantico Embayment compared with Powells Creek. For both species, Quantico Embayment fish had mean or median DDD/DDE ratios greater than one. Median ratios were significantly higher in Quantico Embayment (4.6) than Powells Creek (0.28) whole body carp. In contrast, t-PCBs and t-DDT in channel catfish (Ictalurus punctatus) fillets were similar in Quantico Embayment and Powells Creek collections, with median ratios of 0.34 and 0.26, respectively. Differences between species may be attributable to movement (carp and killifish being more localized) and feeding patterns (carp ingesting sediment while feeding). We recommend that environmental scientists use this ratio when investigating sites with DDT contamination.

  17. Present-day African analogue of a pre-European Amazonian floodplain fishery shows convergence in cultural niche construction

    PubMed Central

    McKey, Doyle B.; Durécu, Mélisse; Pouilly, Marc; Béarez, Philippe; Ovando, Alex; Kalebe, Mashuta; Huchzermeyer, Carl F.

    2016-01-01

    Erickson [Erickson CL (2000) Nature 408 (6809):190–193] interpreted features in seasonal floodplains in Bolivia’s Beni savannas as vestiges of pre-European earthen fish weirs, postulating that they supported a productive, sustainable fishery that warranted cooperation in the construction and maintenance of perennial structures. His inferences were bold, because no close ethnographic analogues were known. A similar present-day Zambian fishery, documented here, appears strikingly convergent. The Zambian fishery supports Erickson’s key inferences about the pre-European fishery: It allows sustained high harvest levels; weir construction and operation require cooperation; and weirs are inherited across generations. However, our comparison suggests that the pre-European system may not have entailed intensive management, as Erickson postulated. The Zambian fishery’s sustainability is based on exploiting an assemblage dominated by species with life histories combining high fecundity, multiple reproductive cycles, and seasonal use of floodplains. As water rises, adults migrate from permanent watercourses into floodplains, through gaps in weirs, to feed and spawn. Juveniles grow and then migrate back to dry-season refuges as water falls. At that moment fishermen set traps in the gaps, harvesting large numbers of fish, mostly juveniles. In nature, most juveniles die during the first dry season, so that their harvest just before migration has limited impact on future populations, facilitating sustainability and the adoption of a fishery based on inherited perennial structures. South American floodplain fishes with similar life histories were the likely targets of the pre-European fishery. Convergence in floodplain fish strategies in these two regions in turn drove convergence in cultural niche construction. PMID:27980030

  18. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam; Smolt Monitoring by Federal and Non-Federal Entities, 2001-2002 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buettner, Edwin W.; Putnam, Scott A.

    This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon smolts O. nerka during the 2001 spring out-migration at migrant traps on the Snake River and Salmon River. In 2001 fish management agencies released significant numbers of hatchery chinook salmon and steelhead trout above Lower Granite Dam that were not marked with a fin clip or coded-wire tag. Generally, these fish were distinguishable from wild fish by the occurrence of fin erosion. Total annual hatchery chinook salmon catch at the Snake River trap was 11% of the 2000 numbers. The wild chinookmore » catch was 3% of the previous year's catch. Hatchery steelhead trout catch was 49% of 2000 numbers. Wild steelhead trout catch was 69% of 2000 numbers. The Snake River trap collected 28 age-0 chinook salmon. During 2001 the Snake River trap captured zero hatchery and zero wild/natural sockeye salmon and six hatchery coho salmon O. kisutch. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with flow. The significant reduction in catch during 2001 was due to a reduction in hatchery chinook production (60% of 2000 release) and due to extreme low flows. Trap operations began on March 11 and were terminated on June 29. The trap was out of operation for a total of two days due to mechanical failure or debris. Hatchery chinook salmon catch at the Salmon River trap was 47% and wild chinook salmon catch was 67% of 2000 numbers. The hatchery steelhead trout collection in 2001 was 178% of the 2000 numbers. Wild steelhead trout collection in 2001 was 145% of the previous year's catch. Trap operations began on March 11 and were terminated on June 8 due to the end of the smolt monitoring season. There were no days where the trap was out of operation due to high flow or debris. The decrease in hatchery chinook catch in 2001 was due to a reduction in hatchery production (39% of 2000 releases). The increase in hatchery and wild steelhead trap catch is due to the ability to operate the trap in the thalweg for a longer period of time because of the extreme low flow condition in 2001. Travel time (d) and migration rate (km/d) through Lower Granite Reservoir for PIT-tagged chinook salmon and steelhead trout marked at the head of the reservoir were affected by discharge. There were not enough hatchery and wild chinook salmon tagged at the Snake River trap in 2001 to allow migration rate/discharge analysis. For steelhead trout tagged at the Snake River trap, statistical analysis of 2001 data detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge. For hatchery and wild steelhead trout, there was a 2.2-fold and a 1.5-fold increase in migration rate in, respectively, between 50 and 100 kcfs. Travel time and migration rate to Lower Granite Dam for fish marked at the Salmon River trap were calculated. Statistical analysis of the 2001 data detected a significant relation between migration rate and Lower Granite Reservoir inflow discharge for hatchery and wild chinook salmon and hatchery and wild steelhead trout. Migration rate increased 3.7-fold for hatchery chinook salmon and 2.5-fold for wild chinook salmon between 50 and 100 kcfs. For hatchery steelhead there was a 1.6-fold increase in migration rate, and for wild steelhead trout there was a 2.2-fold increase between 50 kcfs and 100 kcfs. Fish tagged with passive integrated transponder (PIT) tags at the Snake River trap were interrogated at four dams with PIT tag detection systems (Lower Granite, Little Goose, Lower Monumental, and McNary dams). Because of the addition of the fourth interrogation site (Lower Monumental) in 1993, cumulative interrogation data is not comparable with the prior five years (1988-1992). Cumulative interrogations at the four dams for fish marked at the Snake River trap were 86% for hatchery chinook, 70% for wild chinook, 71% for hatchery steelhead, and 89% for wild steelhead. Cumulative interrogations at the four dams for fish marked at the Salmon River trap were 74% for hatchery chinook, 83% for wild chinook salmon, 75% for hatchery steelhead trout, and 81% for wild steelhead trout.« less

  19. International migration patterns of Red-throated Loons (Gavia stellata) from four breeding populations in Alaska

    USGS Publications Warehouse

    McCloskey, Sarah E.; Uher-Koch, Brian D.; Schmutz, Joel A.; Fondell, Thomas F.

    2018-01-01

    Identifying post-breeding migration and wintering distributions of migratory birds is important for understanding factors that may drive population dynamics. Red-throated Loons (Gavia stellata) are widely distributed across Alaska and currently have varying population trends, including some populations with recent periods of decline. To investigate population differentiation and the location of migration pathways and wintering areas, which may inform population trend patterns, we used satellite transmitters (n = 32) to describe migration patterns of four geographically separate breeding populations of Red-throated Loons in Alaska. On average (± SD) Red-throated Loons underwent long (6,288 ± 1,825 km) fall and spring migrations predominantly along coastlines. The most northern population (Arctic Coastal Plain) migrated westward to East Asia and traveled approximately 2,000 km farther to wintering sites than the three more southerly populations (Seward Peninsula, Yukon-Kuskokwim Delta, and Copper River Delta) which migrated south along the Pacific coast of North America. These migration paths are consistent with the hypothesis that Red-throated Loons from the Arctic Coastal Plain are exposed to contaminants in East Asia. The three more southerly breeding populations demonstrated a chain migration pattern in which the more northerly breeding populations generally wintered in more northerly latitudes. Collectively, the migration paths observed in this study demonstrate that some geographically distinct breeding populations overlap in wintering distribution while others use highly different wintering areas. Red-throated Loon population trends in Alaska may therefore be driven by a wide range of effects throughout the annual cycle.

  20. On the orientation of stripes in fish skin patterning.

    PubMed

    Míguez, David G; Muñuzuri, Alberto P

    2006-11-20

    This paper is focused on the study of the stripes orientation in the fish skin patterns. Based on microscopic observations of the pigment cells behavior at the embryonic stage, the key aspects of the pigmentation process are implemented in an experimental reaction-diffusion system. The experiment consists of a photosensitive Turing pattern of stripes growing directionally in one direction with controlled velocity. Different growth velocities of the system rearrange the stripes in the same three possible orientations observed in the skin of the colored fishes: parallel, oblique, and perpendicular. Our results suggest that the spreading velocity of the pigment cells in the fish dermis selects the orientation in the patterning processes.

Top