Science.gov

Sample records for fish oil improves

  1. [Can fish oil improve wound healing in surgery?].

    PubMed

    Neuwirthová, Jana; Gál, Břetislav; Urbánková, Pavla; Smilek, Pavel

    A surgical insult induces both local and systemic inflammatory responses which, if inappropriate, could impair wound healing. According to many studies ω-3 polyunsaturated fatty acids from fish oil improve the process of wound healing by their immunomodulatory effect. In contrast to current anti-inflammatory drugs, which could alter immune defence and impair the resolution of inflammation, ω-3 fatty acids have a simultaneous anti-inflammatory pro-resolution effect which is not immunosuppressive. Besides that they improve cicatrix quality. With regard to this effect they prevent excessive or prolonged inflammation and wound complications. anti-inflammatory agent - cicatrix - fish oil - macrophage - ω-3 fatty acid - resolution of inflammation - Toll-like receptor - wound healing.

  2. Fish oil supplementation improves neutrophil function during cancer chemotherapy.

    PubMed

    Bonatto, Sandro J R; Oliveira, Heloisa H P; Nunes, Everson A; Pequito, Daniele; Iagher, Fabiola; Coelho, Isabela; Naliwaiko, Katya; Kryczyk, Marcelo; Brito, Gleisson A P; Repka, João; Sabóia, Luciano V; Fukujima, George; Calder, Philip C; Fernandes, Luiz C

    2012-04-01

    Cancer chemotherapy is associated with neutropenia and impaired neutrophil function. This study aimed to investigate whether supplementation with low dose fish oil (FO), providing n-3 polyunsaturated fatty acids, in cancer patients receiving chemotherapy after surgical tumor (mainly gastrointestinal) removal is able to improve the function of blood neutrophils. Patients (n = 38) receiving chemotherapy (5-fluorouracil and leucovorin) were randomized into two groups; one group (control) did not receive a supplement, while the other group (FO) received 2 g FO/day for 8 weeks; the FO provided 0.3 g eicosapentaenoic acid plus 0.4 g docosahexaenoic acid per day. Patients in the control group lost an average of 2.5 kg of weight over the 8 weeks of the study. The number of blood polymorphonuclear cells (PMNC), mainly neutrophils, and their functions (phagocytosis and hydrogen peroxide production) decreased in the control group (average decreases of approximately 30, 45 and 17%, respectively). FO prevented these decreases and actually increased body weight (average of 1.7 kg weight gain; p < 0.002 vs. control group), PMNC number (average 29% increase), phagocytosis (average 14% increase) and superoxide production (average 28% increase). FO may be useful in preventing chemotherapy-induced decline in neutrophil number and function.

  3. Fish oil fatty acids improve postprandial vascular reactivity in healthy men.

    PubMed

    Armah, Christopher K; Jackson, Kim G; Doman, Izzy; James, Lewis; Cheghani, Farah; Minihane, Anne M

    2008-06-01

    Chronic fish oil intervention had been shown to have a positive impact on endothelial function. Although high-fat meals have often been associated with a loss of postprandial vascular reactivity, studies examining the effects of fish oil fatty acids on vascular function in the postprandial phase are limited. The aim of the present study was to examine the impact of the addition of fish oil fatty acids to a standard test meal on postprandial vascular reactivity. A total of 25 men received in a random order either a placebo oil meal (40 g of mixed fat; fatty acid profile representative of the U.K. diet) or a fish oil meal (31 g of mixed fat and 9 g of fish oil) on two occasions. Vascular reactivity was measured at baseline (0 h) and 4 h after the meal by laser Doppler iontophoresis, and blood samples were taken for the measurement of plasma lipids, total nitrite, glucose and insulin. eNOS (endothelial NO synthase) and NADPH oxidase gene expression were determined in endothelial cells after incubation with TRLs (triacylglycerol-rich lipoproteins) isolated from the plasma samples taken at 4 h. Compared with baseline, sodium nitroprusside (an endothelium-independent vasodilator)-induced reactivity (P=0.024) and plasma nitrite levels (P=0.001) were increased after the fish oil meal. In endothelial cells, postprandial TRLs isolated after the fish oil meal increased eNOS and decreased NADPH oxidase gene expression compared with TRLs isolated following the placebo oil meal (Pfish oils significantly improving postprandial endothelium-independent vasodilation.

  4. Fish oil mitigates myosteatosis and improves chemotherapy efficacy in a preclinical model of colon cancer.

    PubMed

    Almasud, Alaa A; Giles, Kaitlin H; Miklavcic, John J; Martins, Karen J B; Baracos, Vickie E; Putman, Charles T; Guan, Leluo L; Mazurak, Vera C

    2017-01-01

    This study aimed to assess whether feeding a diet containing fish oil was efficacious in reducing tumor- and subsequent chemotherapy-associated myosteatosis, and improving tumor response to treatment. Female Fischer 344 rats were fed either a control diet for the entire study (control), or switched to a diet containing fish oil (2.0 g /100 g of diet) one week prior to tumor implantation (long term fish oil) or at the start of chemotherapy (adjuvant fish oil). Chemotherapy (irinotecan plus 5-fluorouracil) was initiated 2 weeks after tumor implantation (cycle-1) and 1 week thereafter (cycle-2). Reference animals received no tumor or treatment and only consumed the control diet. All skeletal muscle measures were conducted in the gastrocnemius. To assess myosteatosis, lipids were assessed histologically by Oil Red O staining and total triglyceride content was quantified by gas chromatography. Expression of adipogenic transcription factors were assessed at the mRNA level by real-time RT-PCR. Feeding a diet containing fish oil significantly reduced tumor- and subsequent chemotherapy-associated increases in skeletal muscle neutral lipid (p<0.001) and total triglyceride content (p<0.03), and expression of adipogenic transcription factors (p<0.01) compared with control diet fed animals. The adjuvant fish oil diet was as effective as the long term fish oil diet in mitigating chemotherapy-associated skeletal muscle fat content, and in reducing tumor volume during chemotherapy compared with control fed animals (p<0.01). Long term and adjuvant fish oil diets are equally efficacious in reducing chemotherapy-associated myosteatosis that may be occurring by reducing expression of transcription factors involved in adipogenesis/lipogenesis, and improving tumor-response to chemotherapy in a neoplastic model.

  5. New antioxidants and antioxidant systems for improvement of the stability of vegetable oils and fish oils

    USDA-ARS?s Scientific Manuscript database

    Most vegetable oils and fish oils contain polyunsaturated fatty acids ranging from 18 carbons with two to three double bonds, to 22 or 24 carbons, and up to six double bonds. Nutritional research over the years has indicated that individual fatty acids from the diet play a complex role in nutrition ...

  6. Replacement of dietary fish oil with vegetable oils improves the growth and flesh quality of large yellow croaker ( Larmichthys crocea)

    NASA Astrophysics Data System (ADS)

    Duan, Qingyuan; Mai, Kangsen; Shentu, Jikang; Ai, Qinghui; Zhong, Huiying; Jiang, Yujian; Zhang, Lu; Zhang, Chunxiao; Guo, Sitong

    2014-06-01

    We investigated the effect of the replacement of dietary fish oil with vegetable oils on the growth and flesh quality of large yellow croaker ( Larmichthys crocea). The basal diet (FO) was formulated to contain 66.5% fish meal and 6.4% menhaden fish oil; whereas the other 3 experimental diets were formulated by replacing the fish oil with 50% soybean oil (SO50), 100% soybean oil (SO100) and 100% palm oil (PO100), respectively. The 4 diets were randomly assigned to 4 floating sea cages (3.0 m × 3.0 m × 3.0 m), and each was stocked with 250 fish individuals with an initial average weight of 245.29 g ± 7.45 g. The fish were fed to apparent satiation twice a day at 5:00 and 17:00, respectively, for 12 weeks. Experimental analysis showed that the specific growth rate of fish fed SO50 or PO100 were significantly higher than that of fish fed FO or SO100 ( P<0.05), and crude lipid contents of ventral muscle and viscera were significantly lower in fish fed FO than in those fed the other 3 diets ( P<0.05). No significant differences in condition factor, viscerosomatic index, hepatosomatic index, gutted yield and colorimetric values of fish among the dietary treatments were observed ( P>0.05). Compared to FO diet, SO50, SO100 and PO100 diets led to substantial decreases in the liquid loss and water loss from fresh fillets (1 d, 4°C) ( P<0.05). Similarly, thiobarbituric acid reactive substance (TBARS) values of fillets under different storage conditions (1 d, 4°C; 7 d, 4°C; 4 weeks, -20°C; 8 weeks, -20°C) decreased significantly after partial or complete replacement of fish oil with vegetable oils. These findings indicated that the growth performance and selected flesh quality properties (liquid holding capacity and TBARS value) of large yellow croaker were substantially improved by replacing dietary fish oil with vegetable oils.

  7. Thermodynamic analysis questions claims of improved cardiac efficiency by dietary fish oil

    PubMed Central

    Goo, Eden; Chapman, Brian; Hickey, Anthony J.R.

    2016-01-01

    Studies in the literature describe the ability of dietary supplementation by omega-3 fish oil to increase the pumping efficiency of the left ventricle. Here we attempt to reconcile such studies with our own null results. We undertake a quantitative analysis of the improvement that could be expected theoretically, subject to physiological constraints, by posing the following question: By how much could efficiency be expected to increase if inefficiencies could be eliminated? Our approach utilizes thermodynamic analyses to investigate the contributions, both singly and collectively, of the major components of cardiac energetics to total cardiac efficiency. We conclude that it is unlikely that fish oils could achieve the required diminution of inefficiencies without greatly compromising cardiac performance. PMID:27574288

  8. Fish oil supplementation inhibits endoplasmic reticulum stress and improves insulin resistance: involvement of AMP-activated protein kinase.

    PubMed

    Yang, Wenqi; Chen, Xu; Chen, Ming; Li, Yanping; Li, Qing; Jiang, Xinwei; Yang, Yan; Ling, Wenhua

    2017-04-19

    The beneficial effects of fish oil consumption on glucose metabolism have been generally reported. However, the mechanism underlying the fish oil-induced protective effects against insulin resistance remains unclear. Endoplasmic reticulum (ER) stress is recognized as an important contributor to insulin resistance. The aim of this study is to evaluate whether fish oil supplementation reduces ER stress and ameliorates insulin resistance in diet-induced obese mice, and to investigate the molecular mechanism of fish oil-induced benefits on ER stress. C57BL/6J mice were fed one of the following diets for 12 weeks: the low-fat diet (LFD), the high-fat diet (HFD) or the fish oil-supplemented high-fat diet (FOD). Fish oil supplementation led to lower blood glucose, better glucose tolerance and improved insulin sensitivity in high-fat diet-induced obese mice. Importantly, fish oil administration inhibited high-fat feeding-induced ER stress and reduced adipose tissue dysfunction. The fish oil-induced improvements were accompanied by the elevation of phosphorylated AMP-activated protein kinase (AMPK) expression in white adipose tissue. Correspondingly, the results of in vitro experiments showed that docosahexaenoic acid (DHA), the main n-3 polyunsaturated fatty acid (PUFA) in the fish oil used in the study, led to a dose-dependent increase in AMPK phosphorylation and suppressed palmitic acid (PA)-triggered ER stress in differentiated 3T3-L1 adipocytes. Furthermore, AMPK inhibitor (compound C) treatment largely blocked the effects of DHA to inhibit PA-induced ER stress. Our data indicate that n-3 PUFAs suppress ER stress in adipocytes through AMPK activation, and may thereby exert protective effects against high-fat feeding-induced adipose tissue dysfunction and insulin resistance.

  9. A high-fat diet supplemented with fish oil improves metabolic features associated with type 2 diabetes.

    PubMed

    Jelinek, David; Castillo, Joseph J; Arora, Surpreet L; Richardson, Lisa M; Garver, William S

    2013-09-01

    The goal of this study was to investigate the effects of a high-fat diet supplemented with fish oil or olive oil, fed to C57BL/6J mice for an extended period, on metabolic features associated with type 2 diabetes. Mice were fed one of four diets for 30 wk: a low-fat diet, a high-fat diet supplemented with lard, a high-fat diet supplemented with fish oil, or a high-fat diet supplemented with olive oil. Phenotypic and metabolic analysis were determined at 15 and 25 to 30 wk, thereby providing comparative analysis for weight gain, energy consumption, fat distribution, glucose and insulin tolerance, and hepatic/plasma lipid analysis. Mice fed a high-fat diet supplemented with fish oil had improved glucose tolerance after an extended period compared with mice fed a high-fat diet supplemented with lard. Moreover, mice fed a high-fat diet supplemented with fish oil had significantly decreased concentrations of liver cholesterol, cholesteryl ester, and triacylglycerol compared with mice fed a high-fat diet supplemented with either lard or olive oil. Mice fed a high-fat diet supplemented with fish oil improved metabolic features associated with type 2 diabetes such as impaired glucose tolerance and hepatic steatosis. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Prosopis alba exudate gum as excipient for improving fish oil stability in alginate-chitosan beads.

    PubMed

    Vasile, Franco Emanuel; Romero, Ana María; Judis, María Alicia; Mazzobre, María Florencia

    2016-01-01

    The aim of the present work was to employ an exudate gum obtained from a South American wild tree (Prosopis alba), as wall material component to enhance the oxidative stability of fish oil encapsulated in alginate-chitosan beads. For this purpose, beads were vacuum-dried and stored under controlled conditions. Oxidation products, fatty acid profiles and lipid health indices were measured during storage. Alginate-chitosan interactions and the effect of gum were manifested in the FT-IR spectra. The inclusion of the gum in the gelation media allowed decreasing the oxidative damage during storage in comparison to the free oil and alginate-chitosan beads. The gum also improved wall material properties, providing higher oil retention during the drying step and subsequent storage. Fatty acids quality and lipid health indices were widely preserved in beads containing the gum. Present results showed a positive influence of the gum on oil encapsulation and stability, being the main mechanism attributed to a physical barrier effect. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Microencapsulation of Fish Oil

    NASA Astrophysics Data System (ADS)

    Beindorff, Christiaan M.; Zuidam, Nicolaas Jan

    For those fortunate to live near rivers, lakes and the sea, fish has been part of their diet for many centuries, and trade in dried fish has a long history. The important fishing industry developed when fishermen started to fish over wider areas of the seas and when improvements in freezing facilities allowed storage at sea, and subsequent distribution to urban consumers. For many, fresh fish and fried fish are now a part of their standard diet.

  12. Butter blend containing fish oil improves the level of n-3 fatty acids in biological tissues of hamster.

    PubMed

    Porsgaard, Trine; Overgaard, Julie; Krogh, Anne Louise; Jensen, Mette Behrmann; Guo, Zheng; Mu, Huiling

    2007-09-05

    Many studies have shown beneficial effects of long chain n-3 polyunsaturated fatty acids (PUFA) on human health. Regardless of the positive effects of n-3 PUFA, the intake of these fatty acids remains low. An approach to increase the intake of n-3 PUFA in the population is to incorporate fish oil into food. In the present study, fish oil was incorporated into butter blends by enzymatic interesterification. The aim of the study was to investigate the effects of this butter product in comparison with a commercial butter blend and a product produced by interesterification but without fish oil. Golden Syrian hamsters received hamster feed blended with one of the three butter products. After 6 weeks of feeding, the fatty acid compositions of plasma, erythrocytes, liver, brain, and visceral fat were determined. The intake of butter product with fish oil resulted in a higher level of n-3 PUFA in plasma, erythrocytes, and liver. The incorporation of n-3 PUFA was significantly higher in phospholipids than in triacylglycerols. The results suggest that enriching butter blends with small amounts of fish oil can be used as an alternative method for improving the level of n-3 PUFA in biological tissues.

  13. Combining fish-oil supplements with regular aerobic exercise improves body composition and cardiovascular disease risk factors.

    PubMed

    Hill, Alison M; Buckley, Jonathan D; Murphy, Karen J; Howe, Peter R C

    2007-05-01

    Regular exercise and consuming long-chain n-3 fatty acids (FAs) from fish or fish oil can independently improve cardiovascular and metabolic health, but combining these lifestyle modifications may be more effective than either treatment alone. We examined the individual and combined effects of n-3 FA supplements and regular exercise on body composition and cardiovascular health. Overweight volunteers [body mass index (BMI; in kg/m(2)): >25] with high blood pressure, cholesterol, or triacylglycerols were randomly assigned to one of the following interventions: fish oil (FO), FO and exercise (FOX), sunflower oil (SO; control), or SO and exercise (SOX). Subjects consumed 6 g tuna FO/d ( approximately 1.9 g n-3 FA) or 6 g SO/d. The exercise groups walked 3 d/wk for 45 min at 75% age-predicted maximal heart rate. Plasma lipids, blood pressure, and arterial function were assessed at 0, 6, and 12 wk. Body composition was assessed by dual-energy X-ray absorptiometry at 0 and 12 wk only. FO supplementation lowered triacylglycerols, increased HDL cholesterol, and improved endothelium-dependent arterial vasodilation (P<0.05). Exercise improved arterial compliance (P<0.05). Both fish oil and exercise independently reduced body fat (P<0.05). FO supplements and regular exercise both reduce body fat and improve cardiovascular and metabolic health. Increasing intake of n-3 FAs could be a useful adjunct to exercise programs aimed at improving body composition and decreasing cardiovascular disease risk.

  14. Improvement of Fermented Fish Flour Quality Using Essential Oil Extracted From Fresh Leaves of Pimenta racemosa (Mill.) J. W. Moore.

    PubMed

    Adjou, Euloge S; Dègnon, René G; Dahouenon-Ahoussi, Edwige; Soumanou, Mohamed M; Sohounhloue, Dominique C K

    2017-08-01

    The aim of this study was to evaluate the efficacy of the essential oil extracted from fresh leaves of Pimenta racemosa in the improvement of fermented fish flour producing technology. Essential oil of Pimenta racemosa was extracted by hydrodistillation and its chemical composition was determined by GC and GC/MS. Different types of fermented fish flours from Lesser African Threadfin (Galeoides decadactylus) were produced by the modification of the traditional processing technology and the introduction of a step of essential oil adjunction during the process. Three different essential oil concentrations (0.5, 1.0 and 2.0 μL g(-1)) were investigated. Physicochemical, microbiological and nutritional analyzes were performed in order to evaluate the quality of the fermented fish flour produced. Results obtained revealed that the essential oil of Pimenta racemosa investigated has a chemical composition characterized by the presence of myrcene (25.1%), chavicol (7.5%) and eugenol (51.1%). Fermented fish flour produced have a good nutritional potential. However, on the microbiological level, only samples produced by adjunction of essential oil have a low level of microbial contamination, with an absence of pathogenic microorganisms.

  15. Hepatic fibrosis persists and progresses despite biochemical improvement in children treated with intravenous fish oil emulsion.

    PubMed

    Mercer, David F; Hobson, Brandy D; Fischer, Ryan T; Talmon, Geoffrey A; Perry, Deborah A; Gerhardt, Brandi K; Grant, Wendy J; Botha, Jean F; Langnas, Alan N; Quiros-Tejeira, Ruben E

    2013-04-01

    Intestinal failure-associated liver disease (IFALD) is a multifactorial process, which can culminate in cirrhosis and need for transplantation. Fish oil-based lipid emulsions (FOE) reportedly reverse hyperbilirubinemia, but there are little data on their effect on the histopathology of IFALD. We blindly examined sequential liver biopsy data on 6 children receiving FOE, with scoring of cholestasis, inflammation, fibrosis, and ductal proliferation based on standardized systems. This information was correlated with biochemical and clinical data to determine any possible relations between biologic and histologic improvement. The median gestational age was 35 weeks, median birth weight 2064 g, and common most reason for intestinal loss was gastroschisis (5/6 children). Median intestinal length was 26 cm beyond the ligament of Treitz and most children had roughly 2 of 3 of their colonic length. It was observed that although hyperbilirubinemia reversed and hepatic synthetic function was preserved across timepoints, fibrosis was persistent in 2 cases, progressive in 3 cases, and regressed in only 1. It remained severe (grade 2 or higher) in 5 of 6 children at last biopsy. Histologic findings of cholestasis improved in all patients and inflammation improved in 5 of 6 children. There were mixed effects on ductal proliferation and steatosis. In children treated with FOE, reversal of hyperbilirubinemia is not reflected by a similar histologic regression of fibrosis at the timepoints studied. Children with IFALD should have active ongoing treatment and be considered for early referral to an Intestinal Failure Program even with a normalized bilirubin.

  16. DHA- Rich Fish Oil Improves Complex Reaction Time in Female Elite Soccer Players.

    PubMed

    Guzmán, José F; Esteve, Hector; Pablos, Carlos; Pablos, Ana; Blasco, Cristina; Villegas, José A

    2011-01-01

    Omega-3 fatty acids (n-3) has shown to improve neuromotor function. This study examined the effects of docosahexaenoic acid (DHA) on complex reaction time, precision and efficiency, in female elite soccer players. 24 players from two Spanish female soccer Super League teams were randomly selected and assigned to two experimental groups, then administered, in a double-blind manner, 3.5 g·day(-1) of either DHA-rich fish oil (FO =12) or olive oil (OO = 12) over 4 weeks of training. Two measurements (pre- and post-treatment) of complex reaction time and precision were taken. Participants had to press different buttons and pedals with left and right hands and feet, or stop responding, according to visual and auditory stimuli. Multivariate analysis of variance displayed an interaction between supplement administration (pre/post) and experimental group (FO/OO) on complex reaction time (FO pre = 0.713 ± 0.142 ms, FO post = 0.623 ± 0.109 ms, OO pre = 0.682 ± 1.132 ms, OO post = 0.715 ± 0.159 ms; p = 0.004) and efficiency (FO pre = 40.88 ± 17.41, FO post = 57.12 ± 11.05, OO pre = 49.52 ± 14.63, OO post = 49. 50 ± 11.01; p = 0.003). It was concluded that after 4 weeks of supplementation with FO, there was a significant improvement in the neuromotor function of female elite soccer players. Key pointsThe results obtained from the study suggest that supplementation with DHA produced perceptual-motor benefits in female elite athletes.DHA could be a beneficial supplement in sports where decision making and reaction time efficiency are of importance.

  17. DHA- Rich Fish Oil Improves Complex Reaction Time in Female Elite Soccer Players

    PubMed Central

    Guzmán, José F.; Esteve, Hector; Pablos, Carlos; Pablos, Ana; Blasco, Cristina; Villegas, José A.

    2011-01-01

    Omega-3 fatty acids (n-3) has shown to improve neuromotor function. This study examined the effects of docosahexaenoic acid (DHA) on complex reaction time, precision and efficiency, in female elite soccer players. 24 players from two Spanish female soccer Super League teams were randomly selected and assigned to two experimental groups, then administered, in a double-blind manner, 3.5 g·day-1 of either DHA-rich fish oil (FO =12) or olive oil (OO = 12) over 4 weeks of training. Two measurements (pre- and post-treatment) of complex reaction time and precision were taken. Participants had to press different buttons and pedals with left and right hands and feet, or stop responding, according to visual and auditory stimuli. Multivariate analysis of variance displayed an interaction between supplement administration (pre/post) and experimental group (FO/OO) on complex reaction time (FO pre = 0.713 ± 0.142 ms, FO post = 0.623 ± 0.109 ms, OO pre = 0.682 ± 1.132 ms, OO post = 0.715 ± 0.159 ms; p = 0.004) and efficiency (FO pre = 40.88 ± 17.41, FO post = 57.12 ± 11.05, OO pre = 49.52 ± 14.63, OO post = 49. 50 ± 11.01; p = 0.003). It was concluded that after 4 weeks of supplementation with FO, there was a significant improvement in the neuromotor function of female elite soccer players. Key points The results obtained from the study suggest that supplementation with DHA produced perceptual-motor benefits in female elite athletes. DHA could be a beneficial supplement in sports where decision making and reaction time efficiency are of importance. PMID:24149875

  18. Fish oil: a panacea?

    PubMed

    Bilo, H J; Gans, R O

    1990-01-01

    Since the first report by Bang and Dyerberg regarding the apparent beneficial effects of a fish oil-enriched diet on the incidence of atherosclerotic heart disease in Greenland eskimos, a considerable number of studies have been performed regarding the effects of omega-3 polyunsaturated fatty acids on the prevention and treatment of a variety of disease states not necessarily related to atherosclerosis. Studies have been performed on healthy volunteers and in patients with hyperlipidaemia, atherosclerotic vascular disease, diabetes, asthma, psoriasis and chronic renal insufficiency, amongst others. Positive effects on platelet activity, lipid profile, blood rheology and blood pressure--all factors which are presumably of importance in the pathogenesis of atherosclerotic disease have been noted in these studies, albeit with a wide range of variability. Some negative effects also appear to exist. However, some general conclusions can be made regarding the effects of a fish oil-enriched diet.

  19. Autoxidation of Fish Oil Blended with Rice Bran Oil.

    PubMed

    Nakajima, Shigeo; Takai, Marie; Hayashi, Chieko; Tsuno, Takuo; Endo, Yasushi

    2017-06-01

    Effects of rice bran oil on the oxidative and flavor stability of fish oil were investigated by the gas liquid chromatography-head space method. When fish oil blending with different ratio of rice bran oils was oxidized at room temperature in the dark, volatile compounds produced during autoxidation was measured by gas liquid chromatography. The amounts of volatile compounds were decreased with increased the ratio of blended rice bran oil as well as peroxide value. The level of propanal and acrolein which gave unpleasant flavor was also decreased with increased the ratio of blended rice bran oil. Especially, the level of propanal and acrolein and peroxide value were remarkably decreased when blending more than 75% of rice bran oil. Blending of rice bran oil improved the oxidative and flavor stabilities of fish oil.

  20. Lipid peroxidation of fish oils.

    PubMed

    Godwin, Angela; Prabhu, H Ramachandra

    2006-03-01

    Fish and fish oils are the richest sources of ω-3 fatty acids. However, they are susceptible to lipid peroxidation due to their high degree of unsaturation. In the present study, the level of thiobarbituric acid reactive material in various fish oils available in the market with and without added Vitamin E was determined. The peroxide levels in fish oil heated to food frying temperature of 180°C and the effect of addition of vitamin E has also been studied. The results indicate that the peroxide levels in almost all the products available in the market were abnormally high irrespective of their Vitamin E content. This might be due to the inefficient methods used for processing and storage of fish oils. Addition of vitamin E was found to have a significant effect in lowering the rate of peroxidation of fish oil during thermal stress, showing that association of antioxidants with ω-3 fatty acids lowers the rate of lipid peroxidation.

  1. Fish oils and human diet.

    PubMed

    Sargent, J R

    1997-07-01

    Trends in global fish catches are described together with fish landings and fish consumption in the UK. The importance of n-6 and n-3 polyunsaturated fatty acids as essential constituents of human diets is considered and the role of oily fish as a dietary source of the long-chain n-3 polyunsaturates, docosahexaenoic acid and eicosapentaenoic acid, is emphasized. The origin of n-3 polyunsaturates in, the marine phytoplankton and their transmission via zooplankton to fish is described as a means of understanding the composition of different fish body oils. The ease with which the fatty acid composition of fish body oils can be manipulated by altering the fatty acid composition of their feeds is emphasized and the dietary requirements of marine and freshwater fish for n-3 and n-6 polyunsaturates considered. Farming fish on diets containing principally fish meal and fish oil, as used in salmon production in Scotland, generates a high quality product with levels of long-chain n-3 polyunsaturates equalling or exceeding those of wild fish. Farming fish on high quality marine oils rich in docosahexaenoic and eicosapentaenoic acids is an efficient means of delivering these essential nutrients in human diets and also efficiently exploiting a strictly limited marine bioresource.

  2. Improvement in the high-fat diet-induced dyslipidemia and adiponectin levels by fish oil feeding combined with food restriction in obese KKAy mice.

    PubMed

    Wakutsu, Masaki; Tsunoda, Nobuyo; Mochi, Yasuki; Numajiri, Mitsuki; Shiba, Sachiko; Muraki, Etsuko; Kasono, Keizo

    2012-01-01

    The effect on weight reduction of fish oil combined with food restriction in comparison with that of beef tallow was investigated in high-fat diet-induced obese KKAy mice. Although the reduction of body and white adipose tissue weight was similar in the two groups, fish oil increased adiponectin levels in the plasma, improved dyslipidemia accompanied by suppression of lipid synthesis in the liver when compared with beef tallow.

  3. Fish oil and fenofibrate inhibit pancreatic islet hypertrophy, and improve glucose and lipid metabolic dysfuntions with different ways in diabetic KK mice.

    PubMed

    Nakasatomi, Maki; Kim, Hyounju; Arai, Takeshi; Hirako, Satoshi; Shioda, Seiji; Iizuka, Yuzuru; Sakurai, Koji; Matsumoto, Akiyo

    2016-04-26

    We examined the effects of fish oil and fenofibrate (FF) on the pancreatic islet hypertrophy, and on the modification of glucose and lipid metabolic dysfunctions in KK mice with insulin resistance. The mice were fed one of four diets [25en% lard/safflower oil (LSO), 25en% fish oil (FO), or each of these diets plus 0.1wt% FF (LSO/FF, FO/FF)] for 9 weeks. FO group and both FF groups had significantly lower final body and adipose tissue weights than LSO group. Pancreatic islet hypertrophy was observed only in LSO group but not in the other groups with fish oil or FF. And, it is likely that fish oil has a stronger therapeutic effect on islet hypertrophy. Plasma adiponectin level was significantly higher in FO group but not in both FF groups. Expression of hepatic lipogenic enzyme genes such as fatty acid synthase (FAS) and stearoyl-CoA desaturase-1 (SCD-1) was lower in FO groups with or without FF, whereas fatty acid oxidation-related mRNAs such as acyl-CoA oxidase (AOX) and uncoupling protein-2 (UCP-2) were more abundant in FF groups with or without fish oil. Our results suggest that both fish oil and FF improve pancreatic islet hypertrophy with the amelioration of insulin resistance. Fish oil enhances insulin sensitivity by increasing plasma adiponectin; however, the beneficial effect of FF on insulin resistance seems to be independent of the plasma adiponectin level. These results mean that improvement of glucose and lipid metabolic dysfuctions in diabetic KK mice are independently approached by fish oil and FF. Copyright © 2016 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

  4. Towards Sustainable Aquafeeds: Complete Substitution of Fish Oil with Marine Microalga Schizochytrium sp. Improves Growth and Fatty Acid Deposition in Juvenile Nile Tilapia (Oreochromis niloticus).

    PubMed

    Sarker, Pallab K; Kapuscinski, Anne R; Lanois, Alison J; Livesey, Erin D; Bernhard, Katie P; Coley, Mariah L

    2016-01-01

    We conducted a 84-day nutritional feeding experiment with dried whole cells of DHA-rich marine microalga Schizochytrium sp. (Sc) to determine the optimum level of fish-oil substitution (partial or complete) for maximum growth of Nile tilapia. When we fully replaced fish oil with Schizochytrium (Sc100 diet), we found significantly higher weight gain and protein efficiency ratio (PER), and lower (improved) feed conversion ratio (FCR) and feed intake compared to a control diet containing fish oil (Sc0); and no significant change in SGR and survival rate among all diets. The Sc100 diet had the highest contents of 22:6n3 DHA, led to the highest DHA content in fillets, and consequently led to the highest DHA:EPA ratios in tilapia fillets. Schizochytrium sp. is a high quality candidate for complete substitution of fish oil in juvenile Nile tilapia feeds, providing an innovative means to formulate and optimize the composition of tilapia juvenile feed while simultaneously raising feed efficiency of tilapia aquaculture and to further develop environmentally and socially sustainable aquafeeds. Results show that replacing fish oil with DHA-rich marine Sc improves the deposition of n3 LC PUFA levels in tilapia fillet. These results support further studies to lower Schizochytrium production costs and to combine different marine microalgae to replace fish oil and fishmeal into aquafeeds.

  5. Towards Sustainable Aquafeeds: Complete Substitution of Fish Oil with Marine Microalga Schizochytrium sp. Improves Growth and Fatty Acid Deposition in Juvenile Nile Tilapia (Oreochromis niloticus)

    PubMed Central

    Sarker, Pallab K.; Kapuscinski, Anne R.; Lanois, Alison J.; Livesey, Erin D.; Bernhard, Katie P.; Coley, Mariah L.

    2016-01-01

    We conducted a 84-day nutritional feeding experiment with dried whole cells of DHA-rich marine microalga Schizochytrium sp. (Sc) to determine the optimum level of fish-oil substitution (partial or complete) for maximum growth of Nile tilapia. When we fully replaced fish oil with Schizochytrium (Sc100 diet), we found significantly higher weight gain and protein efficiency ratio (PER), and lower (improved) feed conversion ratio (FCR) and feed intake compared to a control diet containing fish oil (Sc0); and no significant change in SGR and survival rate among all diets. The Sc100 diet had the highest contents of 22:6n3 DHA, led to the highest DHA content in fillets, and consequently led to the highest DHA:EPA ratios in tilapia fillets. Schizochytrium sp. is a high quality candidate for complete substitution of fish oil in juvenile Nile tilapia feeds, providing an innovative means to formulate and optimize the composition of tilapia juvenile feed while simultaneously raising feed efficiency of tilapia aquaculture and to further develop environmentally and socially sustainable aquafeeds. Results show that replacing fish oil with DHA-rich marine Sc improves the deposition of n3 LC PUFA levels in tilapia fillet. These results support further studies to lower Schizochytrium production costs and to combine different marine microalgae to replace fish oil and fishmeal into aquafeeds. PMID:27258552

  6. Fish oil improves anxiety-like, depressive-like and cognitive behaviors in olfactory bulbectomised rats.

    PubMed

    Pudell, Claudia; Vicente, Bianca A; Delattre, Ana M; Carabelli, Bruno; Mori, Marco A; Suchecki, Deborah; Machado, Ricardo B; Zanata, Sílvio M; Visentainer, Jesuí V; de Oliveira Santos Junior, Oscar; Lima, Marcelo M S; Ferraz, Anete C

    2014-01-01

    Depression is increasingly present in the population, and its pathophysiology and treatment have been investigated with several animal models, including olfactory bulbectomy (Obx). Fish oil (FO) supplementation during the prenatal and postnatal periods decreases depression-like and anxiety-like behaviors. The present study evaluated the effect of FO supplementation on Obx-induced depressive-like behavior and cognitive impairment. Female rats received supplementation with FO during habituation, mating, gestation, and lactation, and their pups were subjected to Obx in adulthood; after the recovery period, the adult offspring were subjected to behavioral tests, and the hippocampal levels of brain-derived neurotrophic factor (BDNF), serotonin (5-HT) and the metabolite 5-hydroxyindoleacetic (5-HIAA) were determined. Obx led to increased anxiety-like and depressive-like behaviors, and impairment in the object location task. All behavioral changes were reversed by FO supplementation. Obx caused reductions in the levels of hippocampal BDNF and 5-HT, whereas FO supplementation restored these levels to normal values. In control rats, FO increased the hippocampal level of 5-HT and reduced that of 5-HIAA, indicating low 5-HT metabolism in this brain region. The present results indicate that FO supplementation during critical periods of brain development attenuated anxiety-like and depressive-like behaviors and cognitive dysfunction induced by Obx. These results may be explained by increased levels of hippocampal BDNF and 5-HT, two major regulators of neuronal survival and long-term plasticity in this brain structure.

  7. Fish oil: what is the role in cardiovascular health?

    PubMed

    Brinson, Betsy E; Miller, Susan

    2012-02-01

    Fish and fish oil supplements are often used to lower triglycerides; however, recent studies suggest the beneficial use of fish oil for other cardiovascular reasons. Studies have shown that in addition to decreasing triglycerides, fish oil has shown benefit in providing antiplatelet activity, improving heart failure, and improving vascular function in diabetes. Fish oil was shown to improve triglycerides in combination with other lipid-lowering therapy such as a statin or fibrate. Fish oil also had effects on lowering total cholesterol, very-low-density lipoprotein (VLDL), and increasing high-density lipoprotein (HDL). In terms of its antiplatelet activity, fish oil was shown to lower platelet aggregation when given in combination with clopidogrel and aspirin therapy during PCI, thus fish oil appears to enhance platelet response to clopidogrel. Fish oil has a role in heart failure as well.Fish oil was shown to slightly decrease morbidity and mortality in patients with class II-IV heart failure compared to placebo.Finally, fish oil showed benefit in patients with type II diabetes in terms of improving micro- and macrovascular function.

  8. Fish oil improves the lipid profile and reduces inflammatory cytokines in Wistar rats with precancerous colon lesions.

    PubMed

    Rosa, Damiana Diniz; Lourenço, Fabíola Cesário; da Fonseca, Ana Carolina Machado; de Sales, Regiane Lopes; Ribeiro, Sônia Machado Rocha; Neves, Clóvis Andrade; Peluzio, Maria do Carmo Gouveia

    2012-01-01

    A fatty diet is regarded as one of the most important risk factors related to the etiology of colorectal cancer, and this effect is linked to the quantity and principal types of fatty acids consumed. In this study, the chemopreventive effects of different oils on rats were investigated. Forty Wistar rats received 1,2-dimetilhidrazine (DMH) and were divided into 4 groups fed normal lipid diets to which 4% olive, fish, flaxseed, or soybean oils (control) were added. The group fed with fish oil presented higher levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid in hepatic tissue and greater levels of linolenic acid and EPA in adipose tissue compared to the other treatments. In the proximal portion of the colon, lower levels of aberrant crypt foci were found in the fish and flaxseed oil groups; however, this behavior was not observed in the middle and distal regions. Via a benchmarking method, the fish oil group showed a greater transforming growth factor β expression and lower interleukin-8 expression in relation to the other treatments. Fish oil in a normal lipid diet demonstrated a limited protective effect on the colonic precancerous mucosa in carcinogen-treated rodents, whereas it had a beneficial effect on inflammatory modulation.

  9. Fish oil improves gene targets of Down syndrome in C57BL and BALB/c mice.

    PubMed

    Zmijewski, Peter A; Gao, Linda Y; Saxena, Abhinav R; Chavannes, Nastacia K; Hushmendy, Shazaan F; Bhoiwala, Devang L; Crawford, Dana R

    2015-05-01

    We have considered a novel gene targeting approach for treating pathologies and conditions whose genetic bases are defined using diet and nutrition. One such condition is Down syndrome, which is linked to overexpression of RCAN1 on human chromosome 21 for some phenotypes. We hypothesize that a decrease in RCAN1 expression with dietary supplements in individuals with Down syndrome represents a potential treatment. Toward this, we used in vivo studies and bioinformatic analysis to identify potential healthy dietary RCAN1 expression modulators. We observed Rcan1 isoform 1 (Rcan1-1) protein reduction in mice pup hippocampus after a 4-week curcumin and fish oil supplementation, with only fish oil reduction being statistically significant. Focusing on fish oil, we observed a 17% Rcan1-1 messenger RNA (mRNA) and 19% Rcan1-1 protein reduction in BALB/c mice after 5 weeks of fish oil supplementation. Fish oil supplementation starting at conception and in a different mouse strain (C57BL) led to a 27% reduction in hippocampal Rcan1-1 mRNA and a 34% reduction in spleen Rcan1-1 mRNA at 6 weeks of age. Hippocampal protein results revealed a modest 11% reduction in RCAN1-1, suggesting translational compensation. Bioinformatic mining of human fish oil studies also revealed reduced RCAN1 mRNA expression, consistent with the above studies. These results suggest the potential use of fish oil in treating Down syndrome and support our strategy of using select healthy dietary agents to treat genetically defined pathologies, an approach that we believe is simple, healthy, and cost-effective. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Elimination of soybean lipid emulsion in parenteral nutrition and supplementation with enteral fish oil improve cholestasis in infants with short bowel syndrome.

    PubMed

    Rollins, Michael D; Scaife, Eric R; Jackson, W Daniel; Meyers, Rebecka L; Mulroy, Cecilia W; Book, Linda S

    2010-04-01

    Parenteral nutrition-associated liver disease (PNALD) is a potentially fatal complication for children with intestinal failure. Fish oil-based lipid emulsions have shown promise for the treatment of PNALD but are not readily available. Six cases are presented in which cholestasis resolved after soybean lipid emulsion (SLE) was removed from parenteral nutrition (PN) and enteral fish oil was given. A retrospective review at a tertiary children's hospital (July 2003 to August 2008) identified 6 infants with intestinal failure requiring PN for >6 months who developed severe hepatic dysfunction that was managed by eliminating SLE and providing enteral fish oil. Twenty-three infants with short bowel syndrome requiring prolonged PN developed cholestasis. SLE was removed in 6 of these patients, and 4 of the 6 received enteral fish oil. Standard PN included 2-3 g/kg/d SLE with total PN calories ranging from 57 to 81 kcal/kg/d at the time of SLE removal. Hyperbilirubinemia resolved after elimination of SLE within 1.8-5.4 months. Total PN calories required to maintain growth generally did not change. Temporary elimination of SLE and supplementation with enteral fish oil improved cholestasis in PN-dependent infants. Further trials are needed to evaluate this management strategy.

  11. High potency fish oil supplement improves omega-3 fatty acid status in healthy adults: an open-label study using a web-based, virtual platform.

    PubMed

    Udani, Jay K; Ritz, Barry W

    2013-08-08

    The health benefits of omega-3 fatty acids from fish are well known, and fish oil supplements are used widely in a preventive manner to compensate the low intake in the general population. The aim of this open-label study was to determine if consumption of a high potency fish oil supplement could improve blood levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and impact SF-12 mental and physical health scores in healthy adults. A novel virtual clinical research organization was used along with the HS-Omega-3 Index, a measure of EPA and DHA in red blood cell membranes expressed as a percentage of total fatty acids that has been shown to correlate with a reduction in cardiovascular and other risk factors. Briefly, adult subjects (mean age 44 years) were recruited from among U.S. health food store employees and supplemented with 1.1 g/d of omega-3 from fish oil (756 mg EPA, 228 mg DHA, Minami Nutrition MorEPA Platinum) for 120 days (n = 157). Omega-3 status and mental health scores increased with supplementation (p < 0.001), while physical health scores remained unchanged. The use of a virtual, web-based platform shows considerable potential for engaging in clinical research with normal, healthy subjects. A high potency fish oil supplement may further improve omega-3 status in a healthy population regularly consuming an omega-3 supplement.

  12. FISH OIL IMPROVES MOTOR FUNCTION, LIMITS BLOOD-BRAIN BARRIER DISRUPTION, AND REDUCES MMP9 GENE EXPRESSION IN A RAT MODEL OF JUVENILE TRAUMATIC BRAIN INJURY

    PubMed Central

    Russell, K. L.; Berman, N. E. J.; Gregg, P. R. A.; Levant, B.

    2014-01-01

    SUMMARY The effects of an oral fish oil treatment regimen on sensorimotor, blood-brain barrier, and biochemical outcomes of traumatic brain injury (TBI) were investigated in a juvenile rat model. Seventeen-day old Long-Evans rats were given a 15 mL/kg fish oil (2.01 g/kg EPA, 1.34 g/kg DHA) or soybean oil dose via oral gavage 30 minutes prior to being subjected to a controlled cortical impact injury or sham surgery, followed by daily doses for seven days. Fish oil treatment resulted in less severe hindlimb deficits after TBI as assessed with the beam walk test, decreased cerebral IgG infiltration, and decreased TBI-induced expression of the Mmp9h gene one day after injury. These results indicate that fish oil improved functional outcome after TBI resulting, at least in part from decreased disruption of the blood-brain barrier through a mechanism that includes attenuation of TBI-induced expression of Mmp9. PMID:24342130

  13. Soy Protein Alleviates Hypertension and Fish Oil Improves Diastolic Heart Function in the Han:SPRD-Cy Rat Model of Cystic Kidney Disease.

    PubMed

    Ibrahim, Naser H M; Thandapilly, Sijo J; Jia, Yong; Netticadan, Thomas; Aukema, Harold

    2016-05-01

    Abnormalities in cardiac structure and function are very common among people with chronic kidney disease, in whom cardiovascular disease is the major cause of death. Dietary soy protein and fish oil reduce kidney disease progression in the Han:SPRD-Cy model of cystic renal disease. However, the effects of these dietary interventions in preventing alterations in cardiac structure and function due to kidney disease (reno-cardiac syndrome) in a cystic kidney disease model are not known. Therefore, weanling Han:SPRD-Cy diseased (Cy/+) and normal (+/+) rats were given diets containing either casein or soy protein, and either soy or fish oil in a three-way design for 8 weeks. Diseased rats had larger hearts, augmented left ventricular mass, and higher systolic and mean arterial blood pressure compared to the normal rats. Assessment of cardiac function using two-dimensional guided M-mode and pulse-wave Doppler echocardiography revealed that isovolumic relaxation time was prolonged in the diseased compared to normal rats, reflecting a diastolic heart dysfunction, and fish oil prevented this elevation. Soy protein resulted in a small improvement in systolic and mean arterial pressure but did not improve diastolic heart function, while fish oil prevented diastolic heart dysfunction in this model of cystic kidney disease.

  14. Fish oil for kidney transplant recipients.

    PubMed

    Lim, Andy K H; Manley, Karen J; Roberts, Matthew A; Fraenkel, Margaret B

    2016-08-18

    Calcineurin inhibitors used in kidney transplantation for immunosuppression have adverse effects that may contribute to nephrotoxicity and increased cardiovascular risk profile. Fish oils are rich in very long chain omega-3 fatty acids, which may reduce nephrotoxicity by improving endothelial function and reduce rejection rates through their immuno-modulatory effects. They may also modify the cardiovascular risk profile. Hence, fish oils may potentially prolong graft survival and reduce cardiovascular mortality. This review aimed to look at the benefits and harms of fish oil treatment in ameliorating the kidney and cardiovascular adverse effects of CNI-based immunosuppressive therapy in kidney transplant recipients. We searched the Cochrane Kidney and Transplant Specialised Register (up to 17 March 2016) through contact with the Information Specialist using search terms relevant to this review. All randomised controlled trials (RCTs) and quasi-RCTs of fish oils in kidney transplant recipients on a calcineurin inhibitor-based immunosuppressive regimen. RCTs of fish oil versus statins were included. Data was extracted and the quality of studies assessed by two authors, with differences resolved by discussion with a third independent author. Dichotomous outcomes were reported as risk ratio (RR) and continuous outcome measures were reported as the mean difference (MD) with 95% confidence intervals using the random effects model. Heterogeneity was assessed using a Chi(2) test on n-1 degrees of freedom and the I(2) statistic. Data not suitable for pooling were tabulated and described. Fifteen studies (733 patients) were suitable for analysis. All studies were small and had variable methodology. Fish oil did not significantly affect patient or graft survival, acute rejection rates, or calcineurin inhibitor toxicity when compared to placebo. Overall SCr was significantly lower in the fish oil group compared to placebo (5 studies, 237 participants: MD -30.63 µmol/L, 95% CI

  15. A double-blind randomized trial of fish oil to lower triglycerides and improve cardiometabolic risk in adolescents.

    PubMed

    Gidding, Samuel S; Prospero, Carol; Hossain, Jobayer; Zappalla, Frances; Balagopal, Prabhakaran Babu; Falkner, Bonita; Kwiterovich, Peter

    2014-09-01

    To determine the efficacy of 4 g/day fish oil to lower triglycerides and impact lipoprotein particles, inflammation, insulin resistance, coagulation, and thrombosis. Participants (n = 42, age 14 ± 2 years) with hypertriglyceridemia and low-density lipoprotein (LDL) cholesterol <160 mg/dL were enrolled in a randomized, double-blind, crossover trial comparing 4 g of fish oil daily with placebo. Treatment interval was 8 weeks with a 4-week washout. Lipid profile, lipoprotein particle distribution and size, glucose, insulin, high-sensitivity C-reactive protein, interleukin-6, fibrinogen, plasminogen activator inhibitor-1, and thrombin generation were measured. Baseline lipid profile was total cholesterol 194 (5.4) mg/dL (mean [SE]), triglycerides 272 (21) mg/dL, high-density lipoprotein cholesterol 39 (1) mg/dL, and LDL cholesterol 112 (3.7) mg/dl. LDL particle number was 1614 (60) nmol/L, LDL size was 19.9 (1.4) nm, and large very low-density lipoprotein/chylomicron particle number was 9.6 (1.4) nmol/L. Triglycerides decreased on fish oil treatment but the difference was not significant compared with placebo (-52 ± 16 mg/dL vs -16 ± 16 mg/dL). Large very low-density lipoprotein particle number was reduced (-5.83 ± 1.29 nmol/L vs -0.96 ± 1.31 nmol/L; P < .0001). There was no change in LDL particle number or size. There was a trend towards a lower prothrombotic state (lower fibrinogen and plasminogen activator inhibitor-1; .10 > P > .05); no other group differences were seen. In children, fish oil (4 g/day) lowers triglycerides slightly and may have an antithrombotic effect but has no effect on LDL particles. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Diet, atherosclerosis, and fish oil.

    PubMed

    Connor, W E; Connor, S L

    1990-01-01

    The principal goal of dietary prevention and treatment of atherosclerotic coronary heart disease is the achievement of physiological levels of the plasma total and LDL cholesterol, triglyceride, and VLDL. These goals have been well delineated by the National Cholesterol Education Program of the National Heart, Lung and Blood Institute and the American Heart Association. Dietary treatment is first accomplished by enhancing LDL receptor activity and at the same time depressing liver synthesis of cholesterol and triglyceride. Both dietary cholesterol and saturated fat decrease LDL receptor activity and inhibit the removal of LDL from the plasma by the liver. Saturated fat decreases LDL receptor activity, especially when cholesterol is concurrently present in the diet. The total amount of dietary fat is of importance also. The greater the flux of chylomicron remnants is into the liver, the greater is the influx of cholesterol ester. In addition, factors that affect VLDL and LDL synthesis could be important. These include excessive calories (obesity), which enhance triglyceride and VLDL and hence LDL synthesis. Weight loss and omega-3 fatty acids from fish oil depress synthesis of both VLDL and triglyceride in the liver. The optimal diet for the treatment of children and adults to prevent coronary disease has the following characteristics: cholesterol (100 mg/day), total fat (20% of calories, 6% saturated with the balance from omega-3 and omega-6 polyunsaturated and monounsaturated fat), carbohydrate (65% of calories, two thirds from starch including 11 to 15 gm of soluble fiber), and protein (15% of calories). This low-fat, high-carbohydrate diet can lower the plasma cholesterol 18% to 21%. This diet is also an antithrombotic diet, thrombosis being another major consideration in preventing coronary heart disease. Dietary therapy is the mainstay of the prevention and treatment of coronary heart disease through the control of plasma lipid and lipoprotein levels. The

  17. Weight loss, but not fish oil consumption, improves fasting and postprandial serum lipids, markers of endothelial function, and inflammatory signatures in moderately obese men.

    PubMed

    Plat, Jogchum; Jellema, Annemarie; Ramakers, Julian; Mensink, Ronald P

    2007-12-01

    Overweight persons are at risk for cardiovascular diseases, which may relate to a disturbed endothelial function and pro-inflammatory serum profiles. Indeed, weight loss lowers cardiovascular disease risk, but weight maintenance is difficult. Therefore, dietary supplements such as fish oil, which improve endothelial function, are useful. In this study, we evaluated effects of fish oil and moderate weight loss in the same population. For this, 11 normolipidemic healthy, moderately obese men (BMI 30-35 kg/m2) received in random order 1.1 g/d eicosapentanoic acid (EPA) + docosahexanoic acid (DHA) or oleic acid (control) for 6 wk. In the 3rd period, 8 of the 11 subjects consumed low-energy diets (2 MJ/d) for 4 wk followed by 4 wk weight stabilization. Their body weight was reduced by 9.4 +/- 2.0 kg (P < 0.05). On the final day of all 3 periods, a postprandial test was conducted. Weight loss lowered fasting and postprandial plasma triacylglycerol (TG) responses (P < 0.001), whereas fish oil reduced only postprandial TG (P = 0.006). Fish oil did not affect soluble intercellular adhesion molecule (s-ICAM), whereas weight loss reduced fasting (P = 0.009) and postprandial s-ICAM responses (P < 0.001). Fasting s-ICAM and TG correlated (r = 0.68; P = 0.029), as did changes in fasting s-ICAM and TG during weight loss (r = 0.80; P = 0.029) and fish oil treatment (r = 0.76; P = 0.009). Fasting (P = 0.027) and postprandial (P < 0.001) serum C-reactive protein were lowered by weight loss. The postprandial monocyte chemoattractant protein-1 response was lowered by fish oil and after weight loss (P < 0.001). This indicates that 1.1 g/d EPA+DHA supplied for 6 wk, in contrast to approximately 10 kg weight loss, does not improve markers of endothelial function and inflammation.

  18. Fish oil and the management of hypertriglyceridemia.

    PubMed

    Mattar, Melanie; Obeid, Omar

    2009-01-01

    Hypertriglyceridemia, regarded as one of the independent clinical markers of metabolic syndrome, is a frequently observed disorder that has been shown to be common in the Arab region. Epidemiologic and clinical trials demonstrated that omega-3 fatty acids have the potential to reduce the incidence of cardiovascular disease (CVD); one of the mechanisms by which this effect is achieved is through reducing plasma triglyceride levels. There is strong scientific evidence from human trials that omega-3 fatty acids from either fish or fish oil supplements significantly reduce blood triglyceride levels and these benefits appear to be dose-dependent. The active ingredients of fish oils include the long chain fatty acids EPA and DHA. The ideal amount of omega-3 fatty acid that should be incorporated into the diet without provoking detrimental effects on other lipid components such as decreasing HDL-C and/or increasing LDL-C has not yet been elucidated. Presently, a prescription form of omega-3 fatty acid has been approved by the United States Food and Drug Administration (USFDA) as an adjunct to the diet for the treatment of very high triglyceride levels (> or = 500 mg/dl) in adults. Patients with hypertriglyceridemia have been shown to respond well to the use of omega-3 fatty acids even when used in conjunction with statins where greater improvements in the lipid profile were found as compared to treatment with statins alone. A determinant of the responsiveness to fish oil could be attributed to the ApoE genotype of individuals.

  19. Fish and fish oil in health and disease prevention

    USDA-ARS?s Scientific Manuscript database

    Fish is an important dietary component due to its contribution of valuable nutrients. In addition to the high quality protein and micronutrients provided, fish is the primary source of long-chain omega-3 fatty acids which are found in oils of ‘fatty’ cold water fish. Biomedical evidence supports th...

  20. An exclusively based parenteral fish-oil emulsion reverses cholestasis.

    PubMed

    Triana Junco, Miryam; García Vázquez, Natalia; Zozaya, Carlos; Ybarra Zabala, Marta; Abrams, Steven; García de Lorenzo, Abelardo; Sáenz de Pipaón Marcos, Miguel

    2014-10-25

    Prolonged parenteral nutrition (PN) leads to liver damage. Recent interest has focused on the lipid component of PN. A lipid emulsion based on w-3 fatty acids decrease conjugated bilirubin. A mixed lipid emulsion derived from soybean, coconut, olive, and fish oils reverses jaundice. Here we report the reversal of cholestasis and the improvement of enteral feeding tolerance in 1 infant with intestinal failure-associated liver disease. Treatment involved the substitution of a mixed lipid emulsion with one containing primarily omega-3 fatty acids during 37 days. Growth and biochemical tests of liver function improved significantly. This suggests that fat emulsions made from fish oils may be more effective means of treating this condition compared with an intravenous lipid emulsion containing soybean oil, medium -chain triglycerides, olive oil, and fish oil.

  1. [Functional components in fish and algae oils].

    PubMed

    Conchillo, A; Valencia, I; Puente, A; Ansorena, D; Astiasarán, I

    2006-01-01

    An important area of the development of new functional foods is facussed on finding or applying food components which favour achieving a healthier lipid profile in the organism. The objective of this work was to carry out the characterisation of the lipid fraction of two oils, fish oil and algae oil, to evaluate their potential use as functional ingredients, in relation to the high molecular weight fatty acid content and the presence of sterols and other components of the unsaponificable fraction. Both oils showed a lipid fraction rich in high molecular weight polyunsaturated omega-3 fatty acids, containing a 33.75% in the fish oil and a 43.97% in the algae oil. Eicosapentaenoic acid was the major fatty acid in fish oil, whereas docosahexaenoic was the most abundant fatty acid in algae oil. The omega-6/omega-3 ratio was lower than 0.4 in both oils. In the unsaponificable fraction, algae oil had a Mold lower cholesterol content and a higher proportion of squalene than fish oil. The phytosterol content was significantly higher in the algae oil.

  2. Dietary supplementation with a specific combination of high protein, leucine, and fish oil improves muscle function and daily activity in tumour-bearing cachectic mice.

    PubMed

    van Norren, K; Kegler, D; Argilés, J M; Luiking, Y; Gorselink, M; Laviano, A; Arts, K; Faber, J; Jansen, H; van der Beek, E M; van Helvoort, A

    2009-03-10

    Cancer cachexia is characterised by metabolic alterations leading to loss of adipose tissue and lean body mass and directly compromises physical performance and the quality of life of cancer patients. In a murine cancer cachectic model, the effects of dietary supplementation with a specific combination of high protein, leucine and fish oil on weight loss, muscle function and physical activity were investigated. Male CD2F1 mice, 6-7 weeks old, were divided into body weight-matched groups: (1) control, (2) tumour-bearing, and (3) tumour-bearing receiving experimental diets. Tumours were induced by s.c. inoculation with murine colon adenocarcinoma (C26) cells. Food intake, body mass, tumour size and 24 h-activity were monitored. Then, 20 days after tumour/vehicle inoculation, the animals were killed and muscle function was tested ex vivo. Tumour-bearing mice showed reduced carcass, muscle and fat mass compared with controls. EDL muscle performance and total daily activity were impaired in the tumour-bearing mice. Addition of single nutrients resulted in no or modest effects. However, supplementation of the diet with the all-in combination of high protein, leucine and fish oil significantly reduced loss of carcass, muscle and fat mass (loss in mass 45, 52 and 65% of TB-con, respectively (P<0.02)) and improved muscle performance (loss of max force reduced to 55-64% of TB-con (P<0.05)). Moreover, total daily activity normalised after intervention with the specific nutritional combination (50% of the reduction in activity of TB-con (P<0.05)). In conclusion, a nutritional combination of high protein, leucine and fish oil reduced cachectic symptoms and improved functional performance in cancer cachectic mice. Comparison of the nutritional combination with its individual modules revealed additive effects of the single components provided.

  3. Mixture of Peanut Skin Extract and Fish Oil Improves Memory in Mice via Modulation of Anti-Oxidative Stress and Regulation of BDNF/ERK/CREB Signaling Pathways

    PubMed Central

    Xiang, Lan; Cao, Xue-Li; Xing, Tian-Yan; Mori, Daisuke; Tang, Rui-Qi; Li, Jing; Gao, Li-Juan; Qi, Jian-Hua

    2016-01-01

    Long-term use of fish oil (FO) is known to induce oxidative stress and increase the risk of Alzheimer’s disease in humans. In the present study, peanut skin extract (PSE), which has strong antioxidant capacity, was mixed with FO to reduce its side effects while maintaining its beneficial properties. Twelve-week Institute of Cancer Research (ICR) mice were used to conduct animal behavior tests in order to evaluate the memory-enhancing ability of the mixture of peanut skin extract and fish oil (MPF). MPF significantly increased alternations in the Y-maze and cognitive index in the novel object recognition test. MPF also improved performance in the water maze test. We further sought to understand the mechanisms underlying these effects. A significant decrease in superoxide dismutase (SOD) activity and an increase in malonyldialdehyde (MDA) in plasma were observed in the FO group. The MPF group showed reduced MDA level and increased SOD activity in the plasma, cortex and hippocampus. Furthermore, the gene expression levels of brain-derived neurotrophic factor (BDNF) and cAMP responsive element-binding protein (CREB) in the hippocampus were increased in the MPF group, while phosphorylation of protein kinase B (AKT), extracellular signal-regulated kinase (ERK) and CREB in the hippocampus were enhanced. MPF improves memory in mice via modulation of anti-oxidative stress and activation of BDNF/ERK/CREB signaling pathways. PMID:27136583

  4. Fish oil improves lipid profile in juvenile rats with intrauterine growth retardation by altering the transcriptional expression of lipid-related hepatic genes.

    PubMed

    Chen, Lian-Hui; Liang, Li; Fang, Yan-Lan; Wang, Ying-Min; Zhu, Wei-Fen

    2016-10-01

    To determine whether maternal intrauterine undernutrition and post-weaning fish oil intake influence lipid profile in juvenile offspring, and explore the possible mechanisms at transcriptional levels. After weaning, 32 control offspring and 24 intrauterine growth retardation (IUGR) offspring were randomly allocated to standard chow or fish oil diet. At 10 weeks, fasting plasma glucose, triglycerides, total cholesterol and expressions of related hepatic genes were examined. IUGR offspring without catch-up growth tended to develop hyperglycemia, dyslipidemia and hepatic steatosis. Down-regulation of CPT-1 and LDLR at transcriptional levels were found in IUGR offspring. Early short-term fish oil intervention reversed these unfavorable changes in juvenile rats with IUGR. The mechanisms might be mediated by decreased expression of ACC-1, increased expression of CPT-1, LDLR and ABCG5. These data suggest that IUGR offspring already present lipid abnormality in juvenile stage, and early short-term fish oil consumption is beneficial to prevent these unfavorable changes.

  5. Fish oil supplementation reduces cachexia and tumor growth while improving renal function in tumor-bearing rats.

    PubMed

    Coelho, Isabela; Casare, Fernando; Pequito, Danielle C T; Borghetti, Gina; Yamazaki, Ricardo K; Brito, Gleisson A P; Kryczyk, Marcelo; Fernandes, Luiz Claudio; Coimbra, Terezila M; Fernandez, Ricardo

    2012-11-01

    The objective of the present work was to study the renal function of healthy and tumor-bearing rats chronically supplemented with fish oil (FO), a source of n-3 polyunsaturated fatty acids. Weanling male rats were divided in two groups, one control (C) and another orally supplemented for 70 days with FO (1 g/kg body weight). After this time, half the animals of each group were injected in the right flank with a suspension of Walker 256 tumor cells (W and WFO). The W group had less proteinemia reflecting cachectic proteolysis, FO reversed this fact. Tumor weight gain was also reduced in WFO. Glomerular filtration rate (GFR) was not different in FO or W compared to C, but was higher in WFO. Renal plasma flow (RPF) was higher in the FO supplemented groups. The W group had lower plasma osmolality than the C group, but FO supplementation resulted in normalization of this parameter. Fractional sodium excretion (FE(Na+)) of FO rats was similar to C. Proximal Na(+) reabsorption, evaluated by lithium clearance, was similar among the groups. Urinary thromboxane B(2) (TXB(2)) excretion was lower in the supplemented groups. The number of macrophages in renal tissue was higher in W compared to C rats, but was lower in WFO rats compared to W rats. In conclusion, FO supplementation resulted in less tumor growth and cachexia, and appeared to be renoprotective, as suggested by higher RPF and GFR.

  6. The utilization of crude fish oil (CFO) to increase mudcrab (Scylla serrata) feed quality

    NASA Astrophysics Data System (ADS)

    Lamid, Mirni; Agustono

    2017-02-01

    Crude fish oil is one of essential fatty acid sources, which is found in Sardinella lemuru. This research aims to study the quality improvement of mudcrab(Scylla serrata) feed. Four feed formulations were designed by using completely randomized design, including P0 = trash fish + 1% tapioca starch; P1=trash fish + 2.0% crude fish oil + 1% tapioca starch;, P2= trash fish +4.0% crude fish oil + 1% tapioca starch; P3=trash fish + 6.0% crude fish oil + 1% tapioca starch; P4=trash fish +8.0% crude fish oil + 1% tapioca starch, respectively, which were carried out in quadruplicate. This study showed that feed formulation significantly affected crude protein, crude fiber, crude lipid, ash, organic matter and nitrogen free extract and energy of mudcrab. The P2 feed was the best formulation but had a slight different from P3 formulation.

  7. Fish oil supplements, longevity and aging

    PubMed Central

    de Magalhães, João Pedro; Müller, Michael; Rainger, G. Ed.; Steegenga, Wilma

    2016-01-01

    Fish oil supplementation is of great medical and public interest with epidemiological evidence of health benefits in humans, in particular by conferring protection against heart diseases. Its anti-inflammatory properties have also been reported. Initial results from short-lived mouse strains showed that fish oil can increase lifespan, affecting pathways like inflammation and oxidation thought to be involved in the regulation of aging. Could fish oil and its omega-3 fatty acids act as geroprotectors? Probably not. A new study by Strong et al. challenges the role for fish oil supplementation in aging. Using a large cohort of genetically heterogeneous mice in three sites, part of the Interventions Testing Program of the NIA, Strong et al. show that fish oil supplementation at either low or high dosages has no effect on the lifespan of male or female mice. Although it is still possible that fish oil supplementation has health benefits for specific age-related diseases, it does not appear to slow aging or have longevity benefits. PMID:27564420

  8. The influence of fish oil on neurological development and function.

    PubMed

    Abu-Ouf, Noran M; Jan, Mohammed M

    2014-01-01

    Fish oil originates from fish tissue rich in omega-3 fatty acids. These include eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). Healthy individuals are advised to consume foods rich in fish oil at least twice a week. However, such intake varies depending on cultural or personal preference, and socio-economic status. Many families and patients with chronic neurological conditions consume supplements containing omega-3 fatty acids. We are frequently requested to give advice and recommendations on using such agents to help improve neurological developmental and cognitive functions. The objective of this review is to discuss the available literature supporting the role of fish oils on brain development and function. There is a growing body of literature suggesting a potential benefit of long chain polyunsaturated fatty acids; however it is still unclear if there are response variations according to the developmental stage, age, and dose.

  9. Fish oil improves learning impairments of diabetic rats by blocking PI3K/AKT/nuclear factor-κB-mediated inflammatory pathways.

    PubMed

    Jia, D; Heng, L-J; Yang, R-H; Gao, G-D

    2014-01-31

    Previous research has demonstrated that diabetes induces learning and memory deficits. However, the mechanism of memory impairment induced by diabetes is poorly understood. Dietary fatty acids, especially polyunsaturated fatty acids, have been shown to enhance learning and memory and prevent memory deficits in various experimental conditions. The present study investigated the effects of fish oil supplementation on the lipid peroxidation, inflammation and neuron apoptosis in the hippocampus of streptozotocin (STZ)-induced diabetes rats. The effects of diabetes and fish oil treatment on the spatial learning and memory were also evaluated using the Morris Water Maze. STZ-induced diabetes impaired spatial learning and memory of rats, which was associated with the inflammation, oxidative stress and apoptosis of hippocampal neurons. Fish oil administration ameliorated cognitive deficit, reduced oxidative stress and tumor necrosis factor α (TNF-α), protected the hippocampal neurons by increasing Protein Kinase B (AKT) phosphorylation and decreasing caspase-9 expression. These results suggested that the principle mechanisms involved in the antidiabetic and neuroprotective effect of fish oil were its antioxidant, anti-inflammatory and anti-apoptosis potential, supporting a potential role for fish oil as an adjuvant therapy for the prevention and treatment of diabetic complications.

  10. Improving fish survival through turbines

    SciTech Connect

    Ferguson, J.W. )

    1993-04-01

    Much of what is known about fish passage through hydroturbines has been developed by studying migratory species of fish passing through large Kaplan turbine units. A review of the literature on previous fish passage research presented in the accompanying story illustrates that studies have focused on determining mortality levels, rather than identifying the causal mechanism involved. There is a need for understanding how turbine designs could be altered to improve fish passage conditions, how to retrofit existing units, and how proposed hydro plant operational changes may affect fish survival. The US Army Corps of Engineers has developed a research program to define biologically based engineering criteria for improving fish passage conditions. Turbine designs incorporating these criteria can be evaluated for their effects on fish survival, engineering issues, costs, and power production. The research program has the following objectives: To gain a thorough knowledge of the mechanisms of fish mortality; To define the biological sensitivities of key fish species to these mechanisms of mortality; To develop new turbine design criteria to reduce fish mortality; To construct prototype turbine designs, and to test these designs for fish passage, hydro-mechanical operation, and power production; and To identify construction and power costs associated with new turbine designs.

  11. Fish oil decreases C-reactive protein/albumin ratio improving nutritional prognosis and plasma fatty acid profile in colorectal cancer patients.

    PubMed

    Mocellin, Michel Carlos; Pastore e Silva, Juliana de Aguiar; Camargo, Carolina de Quadros; Fabre, Maria Emília de Souza; Gevaerd, Scheila; Naliwaiko, Katya; Moreno, Yara Maria Franco; Nunes, Everson Araújo; Trindade, Erasmo Benicio Santos de Moraes

    2013-09-01

    Previous studies have shown that n-3 polyunsaturated fatty acids n-3 (n-3 PUFA) have several anticancer effects, especially attributed to their ability to modulate a variety of genomic and immune responses. In this context, this randomized, prospective, controlled clinical trial was conducted in order to check whether supplementation of 2 g/day of fish oil for 9 weeks alters the production of inflammatory markers, the plasma fatty acid profile and the nutritional status in patients with colorectal cancer (CRC). Eleven adults with CRC in chemotherapy were randomized into two groups: (a) supplemented (SG) daily with 2 g/day of encapsulated fish oil [providing 600 mg/day of eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA)] for 9 weeks (n = 6), and (b) control (CG) (n = 5). All outcomes were evaluated on the day before the first chemotherapy session and 9 weeks later. Plasma TNF-α, IL-1β, IL-10 and IL-17A, the pro/anti-inflammatory balance (ratio TNF-α/IL-10 and IL-1β/IL10) and serum albumin, showed no significant changes between times and study groups (p > 0.05). C-reactive protein (CRP) and the CRP/albumin ratio showed opposite behavior in groups, significantly reducing their values in SG (p < 0.05). Plasma proportions of EPA and DHA increased 1.8 and 1.4 times, respectively, while the ARA reduced approximately 0.6 times with the supplementation (9 weeks vs baseline, p < 0.05). Patients from SG gained 1.2 kg (median) while the CG lost -0.5 kg (median) during the 9 weeks of chemotherapy (p = 0.72). These results demonstrate that 2 g/day of fish oil for 9 weeks of chemotherapy improves CRP values, CRP/albumin status, plasma fatty acid profile and potentially prevents weight loss during treatment.

  12. Reduced medication use and improved pulmonary function with supplements containing vegetable and fruit concentrate, fish oil and probiotics in asthmatic school children: a randomised controlled trial.

    PubMed

    Lee, Shu-Chen; Yang, Yao-Hsu; Chuang, Shao-Yuan; Huang, Shih-Yi; Pan, Wen-Harn

    2013-07-14

    Dietary pattern changes may be one of the key factors associated with increasing asthma prevalence. Observational studies have found negative associations between fruit, vegetable and fish consumption and risk of asthma. Experimental studies have also shown that probiotics can modulate the immune system. However, each dietary component exhibits a modest effect. The objective of the present study was to investigate the joint effect of multiple beneficial dietary components on asthma. We designed a 16-week school-based double-blind placebo-controlled randomised trial. The supplement group received fruit plus vegetable concentrate, fish oil and probiotics (FVFP supplement), while the control group received placebos. A total of 192 asthmatic children aged 10-12 years were recruited from elementary schools in metropolitan Taipei. Pulmonary function, medication usage, Paediatric Asthma Quality of Life Questionnaire (PAQLQ) score and the Childhood Asthma Control Test score were evaluated at baseline, and at weeks 8 and 16. Compared with the placebo group, the supplement group showed significant improvement in pulmonary function parameters (91 v. 178 ml for forced vital capacity (FVC), 40 v. 107 ml for forced expiratory volume in 1 s (FEV1) and 1·6 v. 4·8 % for FEV1:FVC ratio; all P values < 0·01) and had a significantly reduced proportion of those using short-acting inhaled bronchodilators and inhaled corticosteroids. However, the PAQLQ score and the Childhood Asthma Control Test score were not significantly different between the two groups, possibly because the majority of the children were treated routinely. FVFP supplements reduced medication use and improved pulmonary function in asthmatic children. The present study supports an adjuvant intervention with a combination of fruit, vegetable, fish and probiotic foods.

  13. The role of adipose tissue in mediating the beneficial effects of dietary fish oil

    PubMed Central

    Puglisi, Michael J.; Hasty, Alyssa H.; Saraswathi, Viswanathan

    2010-01-01

    Fish oil improves several features of metabolic syndrome such as dyslipidemia, insulin resistance and hepatic steatosis. Fish oil may mediate some of its beneficial effects by modulating the storage and/or secretory functions of adipose tissue. The storage of triglycerides in adipose tissue is regulated by the availability of free fatty acids as well as the degree of lipolysis in adipose tissue. Fish oil has been shown to reduce lipolysis in several studies indicating improved triglyceride storage. Importantly, adipose tissue secretes a variety of adipokines and fish oil feeding is associated with remarkable changes in the plasma levels of two key adipokines, adiponectin and leptin. Much attention has been focused on the contribution of adiponectin in fish oil mediated improvements in metabolic syndrome. However, emerging evidence also indicates a role of leptin in modulating the components of the metabolic syndrome upon fish oil feeding. In addition to improving the storage and secretory functions of adipose tissue, fish oil, and the n-3 fatty acids found in fish oil, has been shown to reduce inflammation in adipose tissue. These effects may be in part a result of activation of peroxisome proliferator-activated receptor γ or inhibition of toll-like receptor 4. Thus, there is compelling evidence that fish oil mediates its beneficial effects on metabolic syndrome by improving adipose tissue storage and secretory functions and by reducing inflammation. PMID:21145721

  14. Leukotrienes, fish-oil, and asthma.

    PubMed

    Arm, J P; Thien, F C; Lee, T H

    1994-01-01

    Studies suggest that leukotrienes which have been metabolized from arachidonic acid released from membranes phospholipids during cell activation may play a significant role in a variety of inflammatory disorders including the pathophysiology of chronic allergic asthma. Two major types of polyunsaturated fatty acids prominent in marine fish oils are eicosapentaenoic acid (EPA) and docosahexaenoic acid (DCHA). These fish oils limit leukotriene synthesis and biological activities by substituting substrate fatty acids as alternatives to arachidonic acid. Both EPA and DCHA inhibit the conversion of arachidonic acid by the cyclooxygenase pathway to prostanoid metabolites and reduce the production of platelet-activating factor (PAF).

  15. Control of salicylate intolerance with fish oils.

    PubMed

    Healy, E; Newell, L; Howarth, P; Friedmann, P S

    2008-12-01

    We report three patients with disabling salicylate-induced intolerance who experienced abrogation of symptoms following dietary supplementation with omega-3 polyunsaturated fatty acids (PUFAs). All three patients experienced severe urticaria, asthma requiring systemic steroid therapy and anaphylactic reactions. After dietary supplementation with 10 g daily of fish oils rich in omega-3 PUFAs for 6-8 weeks all three experienced complete or virtually complete resolution of symptoms allowing discontinuation of systemic corticosteroid therapy. Symptoms relapsed after dose reduction. Fish oil appears a safe and effective treatment for this difficult and often serious condition.

  16. Design of the fish oil inhibition of stenosis in hemodialysis grafts (FISH) study.

    PubMed

    Lok, Charmaine E; Allon, Michael; Donnelly, Sandra; Dorval, Marc; Hemmelgarn, Brenda; Moist, Louise; Oliver, Matthew J; Tonelli, Marcello; Stanley, Kenneth

    2007-01-01

    Arteriovenous grafts (AVG) are the predominant form of permanent vascular access used among hemodialysis (HD) patients in North America but suffer from high intervention and complication rates associated with vascular stenosis. The fish oil inhibition of stenosis in hemodialysis grafts (FISH) study evaluates the efficacy of fish oil in improving HD graft patency. This study is a multi-center, randomized, double blind placebo-controlled clinical trial of 232 chronic HD patients who require a new graft access. Participants are randomized to fish oil versus placebo post-operatively. The primary endpoint is the proportion of AVG with loss of native patency within 12 months of creation. Secondary endpoints are aimed to determine the effect of fish oil on factors that may promote stenosis and thrombosis. Cumulative patency rates, survival analysis, and analysis of inflammatory markers and adverse events will provide a better understanding of the potential effect of fish oil on a patient's vascular access and cardiovascular system. The FISH study is registered at current controlled trials (www.controlled-trials.com) ISRCTN: 15838383. Details of the study protocol are described including mechanisms of reducing bias through randomization and double blinding, sample size determination, evaluation of patient adherence, access monitoring, and the safety of using fish oil. The main challenges of designing and implementing this study, including using a natural supplement as an intervention in modern medical practice and recruitment of graft recipients in the ;fistula first' environment are discussed. This is the first large, multicenter, randomized controlled trial of a natural supplement in preventing HD graft stenosis and thrombosis.

  17. Using the essential oil of Aloysia triphylla (L'Her.) Britton to sedate silver catfish (Rhamdia quelen) during transport improved the chemical and sensory qualities of the fish during storage in ice.

    PubMed

    Daniel, Ana Paula; Veeck, Ana Paula L; Klein, Bruna; Ferreira, Lauren F; da Cunha, Mauro A; Parodi, Thaylise V; Zeppenfeld, Carla C; Schmidt, Denise; Caron, Braulio O; Heinzmann, Berta M; Baldisserotto, Bernardo; Emanuelli, Tatiana

    2014-06-01

    Exposure of silver catfish to 40 μL/L of the essential oil of Aloysia triphylla (AT) during in vivo transport delayed the onset and resolution of rigor mortis as well as the degradation of IMP into HxR compared to the control. The fish that were treated with 30 or 40 μL/L of AT received lower sensory demerit scores after 10 d of storage in ice compared to the control, and the fish that were treated with 40 μL/L of AT had a longer sensory shelf life than did the control. These results indicated that using AT as a sedative in the water in which the silver catfish were transported extended their freshness and increased their shelf life during refrigerated storage. Interest in natural anesthetics, such as Aloysia triphylla, has increased in the field of commercial aquaculture because they reduce the number of fish lesions acquired during capture, handling, and transportation. Fish sedated with the essential oil of A. triphylla at 40 μL/L during transport before slaughter exhibited a delay in the loss of freshness and an increased shelf life in ice. In addition to improving animal welfare before slaughter, the essential oil appears to be a promising product for improving fish conservation in the food industry. © 2014 Institute of Food Technologists®

  18. Borage and fish oils lifelong supplementation decreases inflammation and improves bone health in a murine model of senile osteoporosis.

    PubMed

    Wauquier, Fabien; Barquissau, Valentin; Léotoing, Laurent; Davicco, Marie-Jeanne; Lebecque, Patrice; Mercier, Sylvie; Philippe, Claire; Miot-Noirault, Elisabeth; Chardigny, Jean-Michel; Morio, Béatrice; Wittrant, Yohann; Coxam, Véronique

    2012-02-01

    Fats are prevalent in western diets; they have known deleterious effects on muscle insulin resistance and may contribute to bone loss. However, relationships between fatty acids and locomotor system dysfunctions in elderly population remain controversial. The aim of this study was to analyze the impact of fatty acid quality on the age related evolution of the locomotor system and to understand which aging mechanisms are involved. In order to analyze age related complications, the SAMP8 mouse strain was chosen as a progeria model as compared to the SAMR1 control strain. Then, two months old mice were divided in different groups and subjected to the following diets : (1) standard "growth" diet - (2) "sunflower" diet (high ω6/ω3 ratio) - (3) "borage" diet (high γ-linolenic acid) - (4) "fish" diet (high in long chain ω3). Mice were fed ad libitum through the whole protocol. At 12 months old, the mice were sacrificed and tissues were harvested for bone studies, fat and muscle mass measures, inflammation parameters and bone cell marker expression. We demonstrated for the first time that borage and fish diets restored inflammation and bone parameters using an original model of senile osteoporosis that mimics clinical features of aging in humans. Therefore, our study strongly encourages nutritional approaches as relevant and promising strategies for preventing aged-related locomotor dysfunctions. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Duration of pregnancy in relation to fish oil supplementation and habitual fish intake: a randomised clinical trial with fish oil.

    PubMed

    Olsen, S F; Østerdal, M L; Salvig, J D; Weber, T; Tabor, A; Secher, N J

    2007-08-01

    To examine the effect of fish oil supplementation on duration of pregnancy, conditional on the woman's habitual fish intake. Multicentre 1:1 randomised clinical trial of effect of fish oil in a high-risk population of pregnant women in whom habitual fish intake was assessed at randomisation. Nineteen university delivery wards in seven European countries. Pregnant women with preterm delivery, intrauterine growth retardation (IUGR), or pregnancy-induced hypertension (PIH) in a previous pregnancy (group 1, n=495); with twin pregnancies (group 2, n=367); or with suspicion of IUGR or threatening preeclampsia in the current pregnancy (group 3, n=106). Women were stratified into low, middle, or high fish consumers. The intervention group received fish oil capsules providing 2.7 g long-chain n-3 fatty acids per day (n-3 poly unsaturated fatty acids (PUFA)) from around week 20 (groups 1 and 2) or 6.3 g n-3 PUFA from week 33 (group 3). The control regimen was capsules with olive oil. Effect on timing of spontaneous delivery was examined by Cox regression, assuming elective delivery (occurring in 40%) as a censoring event. Analyses of effect of fish oil were intention to treat, and all analyses were adjusted for maternal smoking, age, and parity. In group 1, fish oil reduced the hazard rate of spontaneous delivery (HR) by 44% (95% confidence interval 14-64%) and 39% (16-56%) in low and middle fish consumers, respectively, with no detectable effect (-56 to 33%) in high fish consumers. In groups 2 and 3, no significant effect of fish oil was detected in any of the sub-strata defined by baseline fish consumption. In pregnant women with previous pregnancy complications, fish oil supplementation delayed onset of delivery in low and middle, but not in high, fish consumers. March of Dimes Birth Defects Foundation, Concerted Action (ERB-BMH1-CT92-1906) and PECO (ERB-CIPD-CT94-0235) programmes of the European Commission, and the Danish National Research Foundation. Lube Ltd donated

  20. Fish oil decreases inflammation and reduces cardiac remodeling in rosiglitazone treated aging mice

    PubMed Central

    Halade, Ganesh V.; Williams, Paul J.; Lindsey, Merry L.; Fernandes, Gabriel

    2012-01-01

    Clinical studies suggest that rosiglitazone (RSG) treatment may increase the incidence of heart failure in diabetic patients. In this study, we examined whether a high corn oil diet with RSG treatment in insulin resistant aging mice exerted metabolic and pro-inflammatory effects that stimulate cardiac dysfunction. We also evaluated whether fish oil attenuated these effects. Female C57BL/6J mice (13 months old) were divided into 5 groups: (1) lean control (LC), (2) corn oil, (3) fish oil, (4) corn oil + RSG and (5) fish oil + RSG. Mice fed a corn oil enriched diet and RSG developed hypertrophy of the left ventricle (LV) and decreased fractional shortening, despite a significant increase in total body lean mass. In contrast, LV hypertrophy was prevented in RSG treated mice fed a fish oil enriched diet. Importantly, hyperglycemia was controlled in both RSG groups. Further, fish oil + RSG decreased LV expression of atrial and brain natriuretic peptides, fibronectin and the pro-inflammatory cytokines interleukin-6 and tumor necrosis factor-α, concomitant with increased interleukin-10 and adiponectin levels compared to the corn oil + RSG group. Fish oil + RSG treatment suppressed inflammation, increased serum adiponectin, and improved fractional shortening, attenuating the cardiac remodeling seen in the corn oil + RSG diet fed C57BL/6J insulin resistant aging mice. Our results suggest that RSG treatment has context-dependent effects on cardiac remodeling and serves a negative cardiac role when given with a corn oil enriched diet. PMID:21193042

  1. Effect of lipophilization of hydroxytyrosol on its antioxidant activity in fish oils and fish oil-in-water emulsions.

    PubMed

    Medina, I; Lois, S; Alcántara, D; Lucas, R; Morales, J C

    2009-10-28

    The effect of lipophilization of the antioxidant efficiency of hydroxytyrosol on fish oil enriched systems was studied. Hydroxytyrosol fatty acid esters with increasing size of the alkyl chain and different lipophilicity were tested in bulk fish oils and fish oil-in-water emulsions. Results showed a significant antioxidant activity of hydroxytyrosol esters in both systems especially in emulsions. The introduction of a lipophilic chain decreased the antioxidant effectiveness of hydroxytyrosol in homogeneous systems as fish oils. In emulsion systems, the presence of a short-medium lipophilic chain (acetate, butyrate or octanoate) improved the antioxidant efficiency of hydroxytyrosol favoring the physical location of the antioxidant in the interface, but longer alkyl chain (laurate) maintained or even decreased their antioxidant activity. A maximum of antioxidant efficiency seems to appear when the chain length of the hydroxytyrosol derivative is that of eight carbons which is probably associated with a preferential location of the diorthophenolic moiety in the right geometry. These results are of high importance for the optimum design of effective antioxidants for omega 3 enriched foods, which are very susceptible to suffer oxidation and, then, rancidity.

  2. Fish Oil and Osteoarthritis: Current Evidence.

    PubMed

    Boe, Chelsea; Vangsness, C Thomas

    2015-07-01

    According to the 2005 US census, osteoarthritis (OA) was the leading cause of disability in the United States, affecting more than 50 million people. Current treatments are targeted at reducing symptoms of the inflammatory reaction that occurs after destruction of essential joint cartilage. However, these treatments do not prevent significant pain and activity restriction. We reviewed the literature to address claims that fish oil supplementation can prevent or decrease severity of OA. Our extensive search of databases covered all relevant terms related to omega-3-containing supplements and their effects on OA. We hypothesized there would be insufficient clinical studies to justify recommending supplementation to patients.Laboratory studies have shown that eicosapentaenoic acid and docosahexaenoic acid reduce proinflammatory mediators and increase joint lubrication in vitro. In addition, canine trials have shown clinically significant reductions in various symptom parameters. Results of human clinical trials have not been consistently significant. Well-designed clinical trials are needed to substantiate or refute the potential benefit of fish oils in OA treatment. Long-term studies are needed to assess the possibility of prevention. In addition, standardization of the fish oil industry is needed for consistency of therapy.

  3. Fish oil, essential fatty acids, and hypertension.

    PubMed

    Lee, R M

    1994-08-01

    A proper balance between the n-3 and n-6 series of essential fatty acids (EFAs) is essential for homeostasis and normal growth in humans. Dietary supplement with fish oil and related n-3 EFAs has been used to study their antihypertensive property in animals and humans with borderline and essential hypertension. In the animal models, chronic treatment of young animals generally only attenuated the development of hypertension. In animals with hypercholesterolemia, n-3 EFA supplement increased the incidence of atherosclerosis. In humans, chronic treatment with fish oil only produced a small reduction in blood pressure. The concerns are that the high dose of fish oil may interfere with the control of blood glucose in diabetic patients, and may cause prolonged bleeding in surgical patients. Studies on the animal models of hypertension showed that n-6 EFAs are more effective than n-3 EFAs in lowering and normalizing the blood pressure of these animals, probably through the production of tissue prostaglandins, which favour vasodilation. The antihypertensive effect of the n-6 EFAs in humans is not well known, because there are only a few studies, usually involving a very small number of patients. A possible side effects of n-6 EFAs for concern is that they might stimulate tumour development. A careful examination of these risk factors is needed before any recommendation can be made concerning the use of EFAs for the control of hypertension for humans.

  4. Effects of fish oil supplementation on inflammatory acne.

    PubMed

    Khayef, Golandam; Young, Julia; Burns-Whitmore, Bonny; Spalding, Thomas

    2012-12-03

    Given that acne is a rare condition in societies with higher consumption of omega-3 (n-3) relative to omega-6 (n-6) fatty acids, supplementation with n-3 may suppress inflammatory cytokine production and thereby reduce acne severity. 13 individuals with inflammatory acne were given three grams of fish oil containing 930 mg of EPA to their unchanged diet and existing acne remedies for 12 weeks. Acne was assessed using an overall severity grading scale, total inflammatory lesion counts, and colorimetry. There was no significant change in acne grading and inflammatory counts at week 12 compared to baseline. However, there was a broad range of response to the intervention on an individual basis. The results showed that acne severity improved in 8 individuals, worsened in 4, and remained unchanged in 1. Interestingly, among the individuals who showed improvement, 7 were classified as having moderate to severe acne at baseline, while 3 of the 4 whose acne deteriorated were classified as having mild acne. There is some evidence that fish oil supplementation is associated with an improvement in overall acne severity, especially for individuals with moderate to severe acne. Divergent responses to fish oil in our pilot study indicates that dietary and supplemental lipids are worthy of further investigation in acne.

  5. Acute in vivo administration of a fish oil-containing emulsion improves post-ischemic cardiac function in n-3-depleted rats.

    PubMed

    Peltier, S; Malaisse, W J; Portois, L; Demaison, L; Novel-Chate, V; Chardigny, J M; Sebedio, J L; Carpentier, Y A; Leverve, X M

    2006-10-01

    A novel i.v. lipid preparation (MCT:FO) containing 80% medium chain-triacylglycerols and 20% fish oil was recently developed to rapidly replenish cell membrane phospholipids with omega 3 (n-3) polyunsaturated fatty acids (PUFA). In regard of this property, we investigated the effect of a single i.v. administration of MCT:FO on the recovery of cardiac function after ischemia in control and n-3-depleted rats. Results were compared with those obtained either with a control preparation, where FO was replaced by triolein (MCT:OO), or with saline. Saline (1 ml) or lipid preparation (also 1 ml) was injected as a bolus via the left saphenous vein. After 60 min the heart was removed and perfused for 20 min in normoxic conditions according to Langendorff. Thereafter, the heart was subjected to a 20 min zero-flow normothermic ischemia, followed by 40 min reperfusion. Cardiac mechanical and metabolic functions were monitored. In control rats, the previous administration of a lipid preparation (MCT:FO or MCT:OO) versus saline improved cardiac function during aerobic reperfusion post-ischemia. N-3-depleted rats showed decreased basal cardiac function and impaired recovery following ischemia. However, the bolus injection of MCT:FO opposed the deleterious effect of long-term n-3-deficiency and, in this respect, was superior to MCT:OO over the first 20 min of reperfusion. This novel approach to rapidly correct n-3 PUFA-deficiency might be clinically relevant and offer interesting perspectives in the management of acute ischemic accidents.

  6. Comparing Nigella sativa Oil and Fish Oil in Treatment of Vitiligo

    PubMed Central

    Ghorbanibirgani, Alireza; Khalili, Ali; Rokhafrooz, Darioush

    2014-01-01

    Background: Vitiligo is one of the autoimmune skin diseases that destroy the melanocytes of the skin. Moreover, its prevalence varies in different countries and regions. Objectives: The aim of this study was to compare the effect of Nigella sativa and fish oil on vitiligo lesions of the patients referred to a dermatology clinic. Materials and Methods: This randomized, double blind clinical trial was conducted in the dermatology clinic of the Imam Khomeini Hospital Ahvaz, Iran, from June to December 2011. We used a randomized simple sampling. From 96 patients with vitiligo, 52 eligible patients were selected and allocated to two groups with equal size. The study medications were applied twice a day by patients on their lesions. After six months, the improvement rate of lesions was assessed by the Vitiligo Area Scoring Index (VASI). Data were analyzed using SPSS v. 15; P value < 0.05 was considered as statistically significant. Results: After six months, a mean score of VASI decreased from 4.98 to 3.75 in patients applying topical Nigella sativa and from 4.98 to 4.62 in those using topical fish oil. Most of the percent improvement observed in upper extremities, trunk, head, and neck of those who received Nigella sativa and head, neck, trunk, and feet of those who received fish oil. No adverse effect was reported by the patients. Conclusions: Nigella sativa oil and fish oil were effective in reduction the size of patient’s lesions; however, Nigella sativa was more effective in comparison to the fish oil. Therefore, using Nigella sativa with the major drugs in the treatment of vitiligo is recommended. PMID:25068060

  7. Comparing Nigella sativa Oil and Fish Oil in Treatment of Vitiligo.

    PubMed

    Ghorbanibirgani, Alireza; Khalili, Ali; Rokhafrooz, Darioush

    2014-06-01

    Vitiligo is one of the autoimmune skin diseases that destroy the melanocytes of the skin. Moreover, its prevalence varies in different countries and regions. The aim of this study was to compare the effect of Nigella sativa and fish oil on vitiligo lesions of the patients referred to a dermatology clinic. This randomized, double blind clinical trial was conducted in the dermatology clinic of the Imam Khomeini Hospital Ahvaz, Iran, from June to December 2011. We used a randomized simple sampling. From 96 patients with vitiligo, 52 eligible patients were selected and allocated to two groups with equal size. The study medications were applied twice a day by patients on their lesions. After six months, the improvement rate of lesions was assessed by the Vitiligo Area Scoring Index (VASI). Data were analyzed using SPSS v. 15; P value < 0.05 was considered as statistically significant. After six months, a mean score of VASI decreased from 4.98 to 3.75 in patients applying topical Nigella sativa and from 4.98 to 4.62 in those using topical fish oil. Most of the percent improvement observed in upper extremities, trunk, head, and neck of those who received Nigella sativa and head, neck, trunk, and feet of those who received fish oil. No adverse effect was reported by the patients. Nigella sativa oil and fish oil were effective in reduction the size of patient's lesions; however, Nigella sativa was more effective in comparison to the fish oil. Therefore, using Nigella sativa with the major drugs in the treatment of vitiligo is recommended.

  8. Why Fish Oil Fails: A Comprehensive 21st Century Lipids-Based Physiologic Analysis

    PubMed Central

    Peskin, B. S.

    2014-01-01

    The medical community suffered three significant fish oil failures/setbacks in 2013. Claims that fish oil's EPA/DHA would stop the progression of heart disease were crushed when The Risk and Prevention Study Collaborative Group (Italy) released a conclusive negative finding regarding fish oil for those patients with high risk factors but no previous myocardial infarction. Fish oil failed in all measures of CVD prevention—both primary and secondary. Another major 2013 setback occurred when fish oil's DHA was shown to significantly increase prostate cancer in men, in particular, high-grade prostate cancer, in the Selenium and Vitamin E Cancer Prevention Trial (SELECT) analysis by Brasky et al. Another monumental failure occurred in 2013 whereby fish oil's EPA/DHA failed to improve macular degeneration. In 2010, fish oil's EPA/DHA failed to help Alzheimer's victims, even those with low DHA levels. These are by no means isolated failures. The promise of fish oil and its so-called active ingredients EPA / DHA fails time and time again in clinical trials. This lipids-based physiologic review will explain precisely why there should have never been expectation for success. This review will focus on underpublicized lipid science with a focus on physiology. PMID:24551453

  9. Supplementation of parenteral nutrition with fish oil attenuates acute lung injury in a rat model

    PubMed Central

    Kohama, Keisuke; Nakao, Atsunori; Terashima, Mariko; Aoyama-Ishikawa, Michiko; Shimizu, Takayuki; Harada, Daisuke; Nakayama, Mitsuo; Yamashita, Hayato; Fujiwara, Mayu; Kotani, Joji

    2014-01-01

    Fish oil rich in n-3 polyunsaturated fatty acids has diverse immunomodulatory properties and attenuates acute lung injury when administered in enternal nutrition. However, enteral nutrition is not always feasible. Therefore, we investigated the ability of parenteral nutrition supplemented with fish oil to ameliorate acute lung injury. Rats were infused with parenteral nutrition solutions (without lipids, with soybean oil, or with soybean oil and fish oil) for three days. Lipopolysaccharide (15 mg/kg) was then administered intratracheally to induce acute lung injury, characterized by impaired lung function, polymorphonuclear leukocyte recruitment, parenchymal tissue damage, and upregulation of mRNAs for inflammatory mediators. Administration of parenteral nutrition supplemented with fish oil prior to lung insult improved gas exchange and inhibited neutrophil recruitment and upregulation of mRNAs for inflammatory mediators. Parenteral nutrition supplemented with fish oil also prolonged survival. To investigate the underlying mechanisms, leukotriene B4 and leukotriene B5 secretion was measured in neutrophils from the peritoneal cavity. The neutrophils from rats treated with fish oil-rich parenteral nutrition released significantly more leukotriene B5, an anti-inflammatory eicosanoid, than neutrophils isolated from rats given standard parenteral nutrition. Parenteral nutrition with fish oil significantly reduced lipopolysaccharide-induced lung injury in rats in part by promoting the synthesis of anti-inflammatory eicosanoids. PMID:24688221

  10. Dietary Fish Oil in Reducing Bone Metastasis of Breast Cancer

    DTIC Science & Technology

    2006-09-01

    inhibitory effect of fish oil on growth of breast cancer cells last year wereported that fish oil or w-3 polyunsaturated fatty acids ( PUFAs ) (1...needs to be verified using larger animal pool and statisticalanalysis. 15. SUBJECT TERMS Omega 3- fatty acids ; Bone morphogenetic protein-2 (BMP-2...membrane of the apoptotic cells. In addition we tested fish oil diet, rich in ω-3 polyunsaturated fatty acids ( PUFAs ) such as DHA and EPA, for its

  11. A trial assessing N-3 as treatment for injury-induced cachexia (ATLANTIC trial): does a moderate dose fish oil intervention improve outcomes in older adults recovering from hip fracture?

    PubMed Central

    2010-01-01

    Background Proximal femoral fractures are associated with increased morbidity and mortality. Pre-existing malnutrition and weight loss amongst this patient group is of primary concern, with conventional nutrition support being largely ineffective. The inflammatory response post proximal femoral fracture surgery and the subsequent risk of cachexia may explain the inability of conventional high energy high protein management to produce an anabolic response amongst these patients. Omega-3 fatty acids derived from fish oils have been extensively studied for their anti-inflammatory benefits. Due to their anti-inflammatory properties, the benefit of fish oil combined with individualized nutrition support amongst proximal femoral fracture patients post surgery is an attractive potential therapeutic strategy. The aim of the ATLANTIC trial is to assess the potential benefits of an anti-inflammatory dose of fish oil within the context of a 12 week individualised nutrition program, commencing seven days post proximal femoral fracture surgery. Methods/Design This randomized controlled, double blinded trial, will recruit 150 community dwelling elderly patients aged ≥65 years, within seven days of surgery for proximal femoral fracture. Participants will be randomly allocated to receive either a 12 week individualized nutrition support program complemented with 20 ml/day anti-inflammatory dose fish oil (~3.6 g eicosapentaenoic acid, ~2.4 g docosahexanoic acid; intervention), or, a 12 week individualized nutrition support program complemented with 20 ml/day low dose fish oil (~0.36 g eicosapentaenoic acid, ~0.24 g docosahexanoic acid; control). Discussion The ATLANTIC trial is the first of its kind to provide fish oil combined with individualized nutrition therapy as an intervention to address the inflammatory response experienced post proximal femoral fracture surgery amongst elderly patients. The final outcomes of this trial will assist clinicians in the development of

  12. A trial assessing N-3 as treatment for injury-induced cachexia (ATLANTIC trial): does a moderate dose fish oil intervention improve outcomes in older adults recovering from hip fracture?

    PubMed

    Miller, Michelle D; Yaxley, Alison; Villani, Anthony; Cobiac, Lynne; Fraser, Robert; Cleland, Leslie; James, Michael; Crotty, Maria

    2010-10-22

    Proximal femoral fractures are associated with increased morbidity and mortality. Pre-existing malnutrition and weight loss amongst this patient group is of primary concern, with conventional nutrition support being largely ineffective. The inflammatory response post proximal femoral fracture surgery and the subsequent risk of cachexia may explain the inability of conventional high energy high protein management to produce an anabolic response amongst these patients. Omega-3 fatty acids derived from fish oils have been extensively studied for their anti-inflammatory benefits. Due to their anti-inflammatory properties, the benefit of fish oil combined with individualized nutrition support amongst proximal femoral fracture patients post surgery is an attractive potential therapeutic strategy. The aim of the ATLANTIC trial is to assess the potential benefits of an anti-inflammatory dose of fish oil within the context of a 12 week individualised nutrition program, commencing seven days post proximal femoral fracture surgery. This randomized controlled, double blinded trial, will recruit 150 community dwelling elderly patients aged ≥65 years, within seven days of surgery for proximal femoral fracture. Participants will be randomly allocated to receive either a 12 week individualized nutrition support program complemented with 20 ml/day anti-inflammatory dose fish oil (~3.6 g eicosapentaenoic acid, ~2.4 g docosahexanoic acid; intervention), or, a 12 week individualized nutrition support program complemented with 20 ml/day low dose fish oil (~0.36 g eicosapentaenoic acid, ~0.24 g docosahexanoic acid; control). The ATLANTIC trial is the first of its kind to provide fish oil combined with individualized nutrition therapy as an intervention to address the inflammatory response experienced post proximal femoral fracture surgery amongst elderly patients. The final outcomes of this trial will assist clinicians in the development of effective and alternative treatment methods

  13. Enhanced absorption of n-3 fatty acids from emulsified compared with encapsulated fish oil

    USDA-ARS?s Scientific Manuscript database

    The omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have important nutrition and disease management properties. Presently fish oil (FO) supplementation relies on capsular triglyceride. Flavored emulsified lipid preparations may provide an improved approach to FO del...

  14. Fish oil disrupts seabird feather microstructure and waterproofing.

    PubMed

    Morandin, Lora A; O'Hara, Patrick D

    2014-10-15

    Seabirds and other aquatic avifauna are highly sensitive to exposure to petroleum oils. A small amount of oil is sufficient to break down the feather barrier that is necessary to prevent water penetration and hypothermia. Far less attention has been paid to potential effects on aquatic birds of so called 'edible oils', non-petroleum oils such as vegetable and fish oils. In response to a sardine oil discharge by a vessel off the coast of British Columbia, we conducted an experiment to assess if feather exposure to sheens of sardine oil (ranging from 0.04 to 3 μm in thickness) resulted in measurable oil and water uptake and significant feather microstructure disruption. We designed the experiment based on a previous experiment on effects of petroleum oils on seabird feathers. Feathers exposed to the thinnest fish oil sheens (0.04 μm) resulted in measurable feather weight gain (from oil and water uptake) and significant feather microstructure disruption. Both feather weight gain and microstructure disruption increased with increasing fish oil thickness. Because of the absence of primary research on effects of edible oils on sea birds, we conducted interviews with wildlife rehabilitation professionals with experience rehabilitating sea birds after edible oil exposure. The consensus from interviews and our experiment indicated that physical contact with fish and other 'edible oils' in the marine environment is at least as harmful to seabirds as petroleum oils.

  15. Testing the acceptability of liquid fish oil in older adults.

    PubMed

    Yaxley, Alison; Miller, Michelle D; Fraser, Robert J; Cobiac, Lynne; Crotty, Maria

    2011-01-01

    Inflammatory conditions likely to benefit from fish oil therapy are prevalent in older adults however acceptability in this group is uncertain. This study aimed to assess the palatability of a range of liquid fish oil concentrations, the frequency and extent of side effects, and to summarise any effects on adherence to fish oil therapy in older adults. One hundred patients (>=60 years) completed a randomised, single-blind palatability study, conducted in two parts. In part one, 50 subjects, blinded to random sample order, consumed multiple liquid fish oil samples (2x10%, 40% and 100%). In part two, 50 subjects tasted one concentration, or 100% extra light olive oil (control). Pleasantness of taste was scored on a 5-point Likert scale. Side effects were recorded 24-hr post-tasting. Results of part one showed that 9/50 participants reported increasingly unpleasant taste with increasing fish oil concentration. 14/50 reported unpleasant taste for 100% fish oil vs 7/50 for 10%. 14/50 reported side effects which would not affect compliance with therapy. For part two, 1/12 reported unpleasant taste for 100% vs 0/13 for 10% fish oil or control. 4/50 reported side effects and 2/4 indicated these would prevent ongoing fish oil therapy. The authors conclude that taste itself is not a deterrent to fish oil therapy. Furthermore, reported adverse effects may not be a true reaction to fish oil, or dissuade patients from compliance. Liquid fish oil supplements are acceptable to older adults, therefore should be investigated as a therapy for geriatric conditions.

  16. Are fish oil supplements safe in finned fish-allergic patients?

    PubMed

    Mark, Barry J; Beaty, Andrew D; Slavin, Raymond G

    2008-01-01

    Fish oil supplements are popular alternative medicines. Many manufacturers label their products with the warning "avoid this product if you are allergic to fish." The objective of this study was to determine if finned fish (FF)-allergic patients could safely tolerate fish oil supplements. Six FF-sensitive subjects as determined by history and skin testing were selected. They were skin tested with two different fish oil supplements and given an oral challenge of each supplement 1 hour apart. Vital signs were measured at baseline and at 20-minute intervals after each challenge. Spirometry was measured at baseline and 1 hour after each challenge. Six of six patients with positive skin tests to at least one FF had negative skin tests to both fish oil supplements. All six subjects then had negative oral challenges to both supplements. In this pilot study, FF-sensitive patients tolerated fish oil supplements.

  17. The effect of diets supplemented with fish broth and fish oil on the health of weaners.

    PubMed

    Bakuła, T; Lis, Ł; Iwaniuk, Z; Ordyński, Z

    2011-01-01

    The aim of this study was to determine the effect of fish-based feed materials, as a source of readily available protein contained in fish broth and essential polyunsaturated fatty acids (PUFAs) found in fish oil, on the health of piglets and rearing results. The experiment was conducted on a commercial pig fattening farm. The study involved a total of 80 weaners with an approximate body weight of 15 kg. The experiment was carried out over a period of 40 days. Feed samples were subjected to laboratory analyses. Blood samples were collected from experimental group animals to determine serum biochemical and immunological parameters. The body weight gains of weaners, mortality rates and average feed intake per animal were calculated for the entire experimental period. The addition of fish broth and fish oil significantly improved the n3:n6 fatty acid ratio in diets. The presence of EPA and DHA in the experimental diet could have had a positive health effect on piglets, comparable with that exerted by therapeutic doses of zinc often administered to pigs of this age group. During the experiment, feed conversion ratio (FCR) gain was considerably reduced in the experimental group, with similar daily gains in the control and experimental group.

  18. Effect of fish and oil nature on frying process and nutritional product quality.

    PubMed

    Ansorena, Diana; Guembe, Ainhoa; Mendizábal, Tatiana; Astiasarán, Iciar

    2010-03-01

    The modifications on a lean fish (cod-Gadus morhua) and a fatty fish (farmed salmon-Salmo salar) after the application of pan-frying using 2 types of oil with different lipid profile (extra virgin olive oil and sunflower oil) was the aim of this study. Fat content and total energetic value increased significantly after the frying process only in the lean fish, without relevant changes in the fatty fish. Extra virgin olive oil led to a higher fat absorption rate than sunflower oil in both fish. Frying hardly affected the lipid profile of farmed salmon regardless the oil used, however it drastically changed in fried cod compared to raw cod. Omega-6/omega-3 ratio increased from 0.08 in raw cod to 1.01 and 6.63 in fried cod with olive oil and sunflower oil, respectively. In farmed salmon, the omega-6/omega-3 ratio was 0.38 (raw), and 0.39 to 0.58 in fried salmon. The amount of EPA + DHA slightly decreased with frying in salmon, and increased in cod. The type of oil has more influence in the nutritional fish quality for the lean fish compared to that of the fatty fish. The use of extra virgin olive oil was efficient to avoid a significant increase of the lipid oxidation intensity during frying in cod but not in salmon. Food modifies its composition and nutritional value with the application of cooking technologies. As most food table composition tables are based on raw food products, this article contributes with interesting data on pan-fried fish composition, which may improve the approach to achieve a real intake of healthy nutrients as omega 3 fatty acids.

  19. Effects of palm oil blended with oxidized fish oil on growth performances, hematology, and several immune parameters in juvenile Japanese sea bass, Lateolabrax japonicas.

    PubMed

    Han, Yu-Zhe; Ren, Tong-Jun; Jiang, Zhi-Qiang; Jiang, Bai-Qiao; Gao, Jian; Koshio, Shunsuke; Komilus, Connie-Fay

    2012-12-01

    A 60-day feeding trial was conducted to determine the effects of palm oil blended with oxidized and non-oxidized fish oil on growth performances, hematology, and non-specific immune response in juvenile Japanese sea bass, Lateolabrax japonicas. Japanese sea bass (1.73 ± 0.01 g) were fed seven experimental diets containing 100 g/kg of dietary lipid in forms of palm oil (10P), fish oil (10F), fish oil blended with palm oil at different ratios, 6:4 (6F4P) and 4:6 (4F6P), oxidized fish oil (10OF), and oxidized fish oil blended with palm oil at different ratios, 6:4 (6OF4P) and 4:6 (4OF6P). After the feeding trial, the following results were illustrated. No significant effects were observed in survival, feed conversion ratio, condition factor, and hematocrit after feeding with experimental diets for 60 days. The relatively higher specific growth rate and hematology were observed in 6F4P. Furthermore, both palm oil and oxidized fish oil acted as a negatively on serum lysozyme activity (P < 0.05). This study suggested that a ration of 6F4P is recommended as an innocuous ratio for Japanese sea bass. Furthermore, according to the present investigation, palm oil seems to have the ability to improve the protein efficiency when added to oxidized fish diets as well as a positive trend to the growth performance (P > 0.05).

  20. Fish oil and olive oil-rich diets modify ozone-induced cardiovascular effect in rats

    EPA Science Inventory

    Rationale: Air pollution exposure has been associated with adverse cardiovascular health effects. Our clinical studies suggest that fish oil (FO) and olive oil (OO) supplementations attenuate the cardiovascular responses to inhaled concentrated ambient particles. This study was...

  1. Fish oil prevents excessive accumulation of subcutaneous fat caused by an adverse effect of pioglitazone treatment and positively changes adipocytes in KK mice.

    PubMed

    Iizuka, Yuzuru; Kim, Hyounju; Nakasatomi, Maki; Izawa, Takuya; Hirako, Satoshi; Matsumoto, Akiyo

    2016-01-01

    Pioglitazone, a thiazolidinedione (TZD), is widely used as an insulin sensitizer in the treatment of type 2 diabetes. However, body weight gain is frequently observed in TZD-treated patients. Fish oil improves lipid metabolism dysfunction and obesity. In this study, we demonstrated suppression of body weight gain in response to pioglitazone administration by combination therapy of pioglitazone and fish oil in type 2 diabetic KK mice. Male KK mice were fed experimental diets for 8 weeks. In safflower oil (SO), safflower oil/low-dose pioglitazone (S/PL), and safflower oil/high-dose pioglitazone (S/PH) diets, 20% of calories were provided by safflower oil containing 0%, 0.006%, or 0.012% (wt/wt) pioglitazone, respectively. In fish oil (FO), fish oil/low-dose pioglitazone (F/PL), and fish oil/high-dose pioglitazone (F/PH) diets, 20% of calories were provided by a mixture of fish oil and safflower oil. Increased body weight and subcutaneous fat mass were observed in the S/PL and S/PH groups; however, diets containing fish oil were found to ameliorate these changes. Hepatic mRNA levels of lipogenic enzymes were significantly decreased in fish oil-fed groups. These findings demonstrate that the combination of pioglitazone and fish oil decreases subcutaneous fat accumulation, ameliorating pioglitazone-induced body weight gain, through fish oil-mediated inhibition of hepatic de novo lipogenesis.

  2. Discrimination of fish oil and mineral oil slicks on sea water

    NASA Technical Reports Server (NTRS)

    Mac Dowall, J.

    1969-01-01

    Fish oil and mineral oil slicks on sea water can be discriminated by their different spreading characteristics and by their reflectivities and color variations over a range of wavelengths. Reflectivities of oil and oil films are determined using a duel beam reflectance apparatus.

  3. Fish Oil in Critical Illness: Mechanisms and Clinical Applications

    PubMed Central

    Stapleton, Renee D.; Martin, Julie M.; Mayer, Konstantin

    2015-01-01

    SYNOPSIS Fish oil is rich in omega-3 fatty acids which have been shown to be beneficial in multiple disease states that involve an inflammatory process. It is now hypothesized that omega-3 fatty acids may decrease the inflammatory response and be beneficial in critical illness. After a review of the mechanisms of omega-3 fatty acids in inflammation, research using enteral nutrition formulas and parenteral nutrition lipid emulsions fortified with fish oil are examined. The results of this research to date are inconclusive for both enteral and parenteral omega-3 fatty acid administration. More research is required before definitive recommendations can be made on fish oil supplementation in critical illness. PMID:20643303

  4. Fish oil in knee osteoarthritis: a randomised clinical trial of low dose versus high dose.

    PubMed

    Hill, Catherine L; March, Lynette M; Aitken, Dawn; Lester, Susan E; Battersby, Ruth; Hynes, Kristen; Fedorova, Tanya; Proudman, Susanna M; James, Michael; Cleland, Leslie G; Jones, Graeme

    2016-01-01

    To determine whether high-dose fish oil is superior to low-dose supplementation for symptomatic and structural outcomes in knee osteoarthritis (OA). A randomised, double-blind, multicentre trial enrolled 202 patients with knee OA and regular knee pain. They were randomised 1:1 to high-dose fish oil (4.5 g omega-3 fatty acids) 15 mL/day or (2) low-dose fish oil (blend of fish oil and sunola oil; ratio of 1:9, 0.45 g omega-3 fatty acids) 15 mL/day. The primary endpoints were Western Ontario and McMaster Universities Arthritis Index (WOMAC) pain score at 3, 6, 12 and 24 months, and change in cartilage volume at 24 months. Secondary outcomes included WOMAC function, quality of life, analgesic and non-steroidal anti-inflammatory drug use and bone marrow lesion score. Although there was improvement in both groups, the low-dose fish oil group had greater improvement in WOMAC pain and function scores at 2 years compared with the high-dose group, whereas between-group differences at 1 year did not reach statistical significance. There was no difference between the two groups in cartilage volume loss at 2 years. For other secondary endpoints, there was no difference between the two groups at 2 years. In people with symptomatic knee OA, there was no additional benefit of a high-dose fish oil compared with low-dose fish oil. The combination comparator oil appeared to have better efficacy in reducing pain at 2 years, suggesting that this requires further investigation. Australian New Zealand Clinical Trials Registry (ACTRN 12607000415404). Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  5. Idaho Fish Screening Improvements Final Status Report.

    SciTech Connect

    Leitzinger, Eric J.

    2008-11-12

    This project funds two Idaho Department of Fish and Game (IDFG) fish habitat biologists to develop, secure funding for, and implement on-the-ground fish habitat improvement projects in the lower Clearwater River drainage and the upper Salmon River drainage. This report summarizes project activity during the first year of funding. The Clearwater Region fish habitat biologist began work on January 28, 2008 and the Salmon Region habitat biologist began on February 11, 2008.

  6. From alga to omega; have we reached peak (fish) oil?

    PubMed

    Clayton, Paul R; Ladi, Szabolcs

    2015-09-01

    SummaryWhile the Inuit diet was highly cardio-protective and consuming oily fish within a Western diet is to a lesser degree, the case for purified fish oil supplements is less convincing. Purification of fish oil removes lipophilic polyphenols which likely contribute to the health benefits of oily fish; leaving the ω3 highly unsaturated fatty acids exposed and prone to conferring oxidative and inflammatory stress. The authors believe that due to such issues as dietary shift, it may now be inadvisable to prescribe or sell purified ω3 highly unsaturated fatty acids supplements, unless the appropriate co-factors are included. © The Royal Society of Medicine.

  7. Effect of Grape Seed Proanthocyanidin-Gelatin Colloidal Complexes on Stability and in Vitro Digestion of Fish Oil Emulsions.

    PubMed

    Su, Yu-Ru; Tsai, Yi-Chin; Hsu, Chun-Hua; Chao, An-Chong; Lin, Cheng-Wei; Tsai, Min-Lang; Mi, Fwu-Long

    2015-11-25

    The colloidal complexes composed of grape seed proanthocyanidin (GSP) and gelatin (GLT), as natural antioxidants to improve stability and inhibit lipid oxidation in menhaden fish oil emulsions, were evaluated. The interactions between GSP and GLT, and the chemical structures of GSP/GLT self-assembled colloidal complexes, were characterized by isothermal titration calorimetry (ITC), circular dichroism (CD), and Fourier transform infrared spectroscopic (FTIR) studies. Fish oil was emulsified with GLT to obtain an oil-in-water (o/w) emulsion. After formation of the emulsion, GLT was fixed by GSP to obtain the GSP/GLT colloidal complexes stabilized fish oil emulsion. Menhaden oil emulsified by GSP/GLT(0.4 wt %) colloidal complexes yielded an emulsion with smaller particles and higher emulsion stability as compared to its GLT emulsified counterpart. The GSP/GLT colloidal complexes inhibited the lipid oxidation in fish oil emulsions more effectively than free GLT because the emulsified fish oil was surrounded by the antioxidant GSP/GLT colloidal complexes. The digestion rate of the fish oil emulsified with the GSP/GLT colloidal complexes was reduced as compared to that emulsified with free GLT. The extent of free fatty acids released from the GSP/GLT complexes stabilized fish oil emulsions was 63.3% under simulated digestion condition, indicating that the fish oil emulsion was considerably hydrolyzed with lipase.

  8. Transgenic plants as a sustainable, terrestrial source of fish oils.

    PubMed

    Napier, Johnathan A; Usher, Sarah; Haslam, Richard P; Ruiz-Lopez, Noemi; Sayanova, Olga

    2015-09-01

    1An alternative, sustainable source of omega-3 long chain polyunsaturated fatty acids is widely recognized as desirable, helping to reduce pressure on current sources (wild capture fisheries) and providing a de novo source of these health beneficial fatty acids. This review will consider the efforts and progress to develop transgenic plants as terrestrial sources of omega-3 fish oils, focusing on recent developments and the possible explanations for advances in the field. We also consider the utility of such a source for use in aquaculture, since this industry is the major consumer of oceanic supplies of omega-3 fish oils. Given the importance of the aquaculture industry in meeting global requirements for healthy foodstuffs, an alternative source of omega-3 fish oils represents a potentially significant breakthrough for this production system. Transgenic Camelina seeds engineered to accumulate the omega-3 fatty acids EPA and DHA, represent a sustainable alternative to fish oils.

  9. Fish oil supplementation and insulin sensitivity: a systematic review and meta-analysis.

    PubMed

    Gao, Huanqing; Geng, Tingting; Huang, Tao; Zhao, Qinghua

    2017-07-03

    Fish oil supplementation has been shown to be associated with a lower risk of metabolic syndrome and benefit a wide range of chronic diseases, such as cardiovascular disease, type 2 diabetes and several types of cancers. However, the evidence of fish oil supplementation on glucose metabolism and insulin sensitivity is still controversial. This meta-analysis summarized the exist evidence of the relationship between fish oil supplementation and insulin sensitivity and aimed to evaluate whether fish oil supplementation could improve insulin sensitivity. We searched the Cochrane Library, PubMed, Embase database for the relevant studies update to Dec 2016. Two researchers screened the literature independently by the selection and exclusion criteria. Studies were pooled using random effect models to estimate a pooled SMD and corresponding 95% CI. This meta-analysis was performed by Stata 13.1 software. A total of 17 studies with 672 participants were included in this meta-analysis study after screening from 498 published articles found after the initial search. In a pooled analysis, fish oil supplementation had no effects on insulin sensitivity compared with the placebo (SMD 0.17, 95%CI -0.15 to 0.48, p = 0.292). In subgroup analysis, fish oil supplementation could benefit insulin sensitivity among people who were experiencing at least one symptom of metabolic disorders (SMD 0.53, 95% CI 0.17 to 0.88, p < 0.001). Similarly, there were no significant differences between subgroups of methods of insulin sensitivity, doses of omega-3 polyunsaturated fatty acids (n-3 PUFA) of fish oil supplementation or duration of the intervention. The sensitivity analysis indicated that the results were robust. Short-term fish oil supplementation is associated with increasing the insulin sensitivity among those people with metabolic disorders.

  10. Fish and rapeseed oil consumption in infants and mothers: dietary habits and determinants in a nationwide sample in Germany.

    PubMed

    Stimming, Madlen; Mesch, Christina M; Kersting, Mathilde; Libuda, Lars

    2015-10-01

    Fish and rapeseed oil are major sources of omega-3 polyunsaturated fatty acids (n-3 PUFA) in complementary food, but little is known about current consumption in Germany. We conducted a nationwide consumer survey to assess the consumption habits of fish and rapeseed oil and their determining factors in 985 mother-child dyads in Germany. One-fourth of infants ate fish as often as recommended, i.e. at least once per week. Half of the mothers stated that they mainly used rapeseed oil for self-prepared and/or commercial vegetable-potato-meat meals. In contrast, mothers more frequently met recommendations for fish consumption (41 %), but used rapeseed oil (34 %) less often for their own nutrition. Maternal eating behaviour was the most important predictor for both of these n-3 PUFA rich foods in infants' nutrition. In contrast to infants' fish consumption, rapeseed oil intake in infancy was found to be influenced by some further factors, i.e. mothers' social class and omega-3 knowledge, which were also key determinants of mothers' own fish and rapeseed oil consumption. To promote fish with complementary feeding, programs should focus on families whose mothers rarely eat fish. Nutritional campaigns to improve omega-3 knowledge-especially focusing on lower social classes-could be effective in increasing rapeseed oil consumption, although these programs should be combined with environmental improvements as it has been already started through the use of rapeseed oil in commercial baby jars.

  11. Effect of fish oil supplementation in a rat model of multiple mild traumatic brain injuries.

    PubMed

    Wang, Tao; Van, Ken C; Gavitt, Brian J; Grayson, J Kevin; Lu, Yi-Cheng; Lyeth, Bruce G; Pichakron, Kullada O

    2013-01-01

    Repetitive mild traumatic brain injury (TBI) is a major military and sports health concern. The purpose of this study was to determine if a diet rich in omega-3 fatty acids would reduce cognitive deficits and neuronal cell death in a novel fluid percussion rat model of repetitive mild TBIs. Thirty-two Sprague-Dawley rats were assigned to either an experimental rat chow enhanced with 6% fish oil (source of omega-3 fatty acids) or a control rat chow. Both rat chows contained equivalent quantities of calories, oil, and nutrients. After four weeks, both groups received mild repetitive bilateral fluid percussion TBIs on two sequential days. Pre-injury diets were resumed, and the animals were monitored for two weeks. On post-injury days 10-14, Morris Water Maze testing was performed to assess spatial learning and cognitive function. Animals were euthanized at 14 days post-injury to obtain specimens for neurohistopathology. There was no difference in pre-injury weight gain between groups. Post-injury, animals on the fish oil diet lost less weight and recovered their weight significantly faster. By 14 days, the fish oil diet group performed significantly better in the Morris Water Maze. Neurohistopathology identified a non-significant trend toward a higher density of hippocampal neurons in the fish oil diet group. Pre-injury dietary supplementation with fish oil improves recovery of body weight and provides a small improvement in cognitive performance in a rat model of multiple mild TBIs.

  12. Effect of anaesthesia with clove oil in fish (review).

    PubMed

    Javahery, Susan; Nekoubin, Hamed; Moradlu, Abdolmajid Haji

    2012-12-01

    Clove oil is an effective, local and natural anaesthetic. Many hatcheries and research studies use clove oil to immobilize fish for handling, sorting, tagging, artificial reproduction procedures and surgery and to suppress sensory systems during invasive procedures. Clove oil may be more appropriate for use in commercial aquaculture situations. Improper clove oil use can decrease fish viability, distort physiological data or result in mortalities. Because animals may be anaesthetized by unskilled labourers and released in natural water bodies, training in the proper use of clove oil may decrease variability in recovery and experimental results and increase fish survival. Here, we briefly describe many aspects of clove oil, including the legal uses of it, anaesthesia mechanism and what is currently known about the preparation and behavioural and pathologic effects of the anaesthetic. We outline methods and precautions for administration and changes in fish behaviour during progressively deeper anaesthesia and discuss the physiological effects of clove oil, its potential for compromising fish health and effectiveness of water quality parameters.

  13. Photoenhanced Toxicity of Oil to Larval Fish

    EPA Science Inventory

    Photoenhanced toxicity is the increase in the toxicity of a chemical in the presence of ultraviolet light (UV), compared to toxicity elicited under conditions of minimal UV. Oil products, weathered oils, combusted oil products, and specific polycyclic aromatic compounds in oil ha...

  14. Photoenhanced Toxicity of Oil to Larval Fish

    EPA Science Inventory

    Photoenhanced toxicity is the increase in the toxicity of a chemical in the presence of ultraviolet light (UV), compared to toxicity elicited under conditions of minimal UV. Oil products, weathered oils, combusted oil products, and specific polycyclic aromatic compounds in oil ha...

  15. Dietary inclusion of fish oil changes the semen lipid composition but does not improve the post-thaw semen quality of ram spermatozoa.

    PubMed

    Díaz, Rommy; Torres, Mariana A; Paz, Erwin; Quiñones, John; Bravo, Silvana; Farías, Jorge G; Sepúlveda, Néstor

    2017-08-01

    The aim of this study was to investigate the effects of dietary fish oil (FO) time-response on the fatty acid profile, cholesterol levels and sperm cryosurvival in ram semen. Criollo Araucano rams were randomly assigned to two groups (n=4) according to the type of supplementation: a control group without FO and a supplemented group fed a diet with 3% FO for 8 weeks. The semen lipid profile and post-thaw sperm quality were analyzed at weeks 0 (pre-supplementation), 4, 8, 12 and 16 (post-supplementation) to evaluate the effects of FO supplementation by time interaction. Post-thaw sperm quality was determined by CASA and flow cytometry. In spermatozoa, the supplemented group increased the linoleic acid (C18:2n6c) and docosahexaenoic acid (DHA; C22:6n3) with levels higher at week 16 (P<0.05). The effect of FO on cholesterol concentration in sperm was significant at the end of the experiment (week 16). In seminal plasma, statistical differences of butyric acid (C4:0), palmitic acid (C16:0), stearic acid (C18:0), eicosatrienoic acid (C20:3n3) and DHA were observed at week 12. The cholesterol concentration was not affected by dietary treatments (P>0.05). However, the post-thaw sperm quality of the FO treatment group decreased. Motility percentage decreased 50% and spermatozoa with permeable plasma membrane and reacted acrosome were higher (63%) at week 16 than the control group. These results showed that DHA was effectively incorporated into semen through dietary supplementation with FO, but evaluations of post-thaw sperm quality confirm alteration specificity related to the structure of the lipid bilayer. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Fish oil, lard and soybean oil differentially shape gut microbiota of middle-aged rats.

    PubMed

    Li, He; Zhu, Yingying; Zhao, Fan; Song, Shangxin; Li, Yingqiu; Xu, Xinglian; Zhou, Guanghong; Li, Chunbao

    2017-04-11

    High-fat diets have been associated with overweight/obesity and increased mortality in middle-aged populations. However, it is still unclear how gut microbiota in middle-aged populations responds to dietary fats at a normal dose. In this study, we explored gut microbiota structure in middle-aged rats (aged 12 months) after feeding 4% (w/w) soybean oil, lard or fish oil for 3 months, respectively. The results showed that the gut microbiota structure in the fish oil group was substantially different from those of the soybean oil and lard groups in both in vitro and in vivo studies. The relative abundances of phylum Proteobacteria and genus Desulfovibrio in the caecal and colonic contents were the highest in the fish oil group (p < 0.05). The mRNA levels of biomarkers for inflammation in the colon, including IL-1β, IL-6, IL-17, IL-18 and TNF-α, were also the highest in the fish oil group (p < 0.05). Meanwhile, the fish oil group had the highest microbial DNA abundance of a predicted lipid metabolism. Our results gave a new insight into the potentially negative impact of fish oil diet on health of middle-aged populations by changing gut microbiota and inducing inflammation as compared to soybean oil and lard diets.

  17. Effects of Fish Oil Supplementation on Postresistance Exercise Muscle Soreness.

    PubMed

    Tinsley, Grant M; Gann, Joshua J; Huber, Stefan R; Andre, Thomas L; La Bounty, Paul M; Bowden, Rodney G; Gordon, Paul M; Grandjean, Peter W

    2016-07-21

    The aim of this study was to examine the effects of fish oil supplementation on the magnitude and time-course of postresistance exercise muscle soreness. This study was a randomized, placebo-controlled, double-blind trial. Nonresistance trained females were randomized into one of two groups: fish oil supplementation (6 g/day; 5:1 eicosapentaenoic acid to docosahexaenoic acid (EPA:DHA)) or placebo (6 g/day corn/soy oil). After consuming the supplements for one week, participants underwent a single bout of resistance exercise consisting of 10 sets to failure of elbow flexion and leg extension machines. Muscle soreness was measured daily over the next week via grounded visual analog scale while participants continued to consume their assigned supplement. At 48 hours and one week postexercise, soreness during functional movements and limb circumferences were measured. The fish oil group perceived less static and functional muscle soreness than placebo, although the differences were not statistically significant. Effect sizes for resistance exercise-induced static and functional soreness responses were 33 to 42% lower in fish oil versus placebo without changes in upper arm and thigh circumferences. Supplementing the diet with 6 g per day of fish oil may alleviate muscle soreness experienced after resistance training in young untrained females.

  18. Is Fish Oil a Potential Treatment for Diabetic Peripheral Neuropathy?

    PubMed

    Yorek, Mark Anthony

    2017-05-22

    Peripheral neuropathy affects about 50% of the diabetic population. The manifestations range from pain, numbness, paresthesia and ulceration in the extremities and it is the major cause of non-traumatic amputations. Currently there is no effective treatment for peripheral neuropathy. With the prevalence of obesity and type 2 diabetes and associated complications reaching epidemic levels there is a critical need for finding a treatment to preserve nerve function. This article will review the potential for fish oil as a treatment for diabetic peripheral neuropathy. A through search of the PubMed database was performed and relevant articles on the topic were included in this review. Many studies support a role for fish oil in cardiovascular health. However, less information is available regarding the effect of fish oil on diabetes complications including neuropathy. Pre-clinical studies from my laboratory using diabetic rodent models have demonstrated that fish oil can slow progression and reverse diabetic neuropathy as determined by examining multiple endpoints. Mechanistically fish oil has been shown to have anti-inflammatory properties. Lowering the omega-6/omega-3 fatty acid ratio has been shown to be anti-thrombotic. Moreover, metabolites of eicosapentaenoic and docosahexaenoic acids, the main polyunsaturated fatty acids found in fish oil, commonly referred to as resolvins and neuroprotectin have been shown to be neuroprotective and can stimulate neuron outgrowth in vitro. Additional studies are required but existing data suggests that dietary enrichment with omega-3 fatty acids contained in fish oil may be beneficial treatment for diabetic neuropathy. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Dietary fish and evening primrose oil with vitamin E effects on semen variables in cockerels.

    PubMed

    Cerolini, S; Surai, P F; Speake, B K; Sparks, N H C

    2005-04-01

    Our aim was to determine the effect of n-3 (2%, wt/wt, fish oil rich diet) and n-6 (2%, wt/wt, evening primrose oil rich diet) fatty acid dietary supplementation and their combination with two concentrations of vitamin E (40 vs 200 mg/kg) on semen variables and on fatty acid and vitamin E profiles of spermatozoa in broiler breeders at 32, 42 and 52 weeks of age. The inclusion of fish oil in the cockerel diets increased the docosahexaenoic acid proportion in the sperm phospholipid fraction, which was almost threefold higher compared to the other two groups irrespective of vitamin E supplementation. In contrast, an increase in the proportion of total n-6 polyunsaturates, mainly 22:4n-6, was observed in the evening primrose oil group compared to the control only when the dietary content of vitamin E was increased to 200 mg/kg. Sperm concentration was decreased in the fish and evening primrose oil groups if vitamin E was 40 mg/kg, but such an effect was prevented in the fish, not the evening primrose oil group, by increasing the vitamin E to 200 mg. The proportion of motile spermatozoa was improved by the increased supplementation of vitamin E in all oil treatments.

  20. Docosahexaenoic Acid-Rich Fish Oil Supplementation Improves Body Composition without Influence of the PPARγ Pro12Ala Polymorphism in Patients with Type 2 Diabetes: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial.

    PubMed

    Mansoori, Anahita; Sotoudeh, Gity; Djalali, Mahmoud; Eshraghian, Mohammad-Reza; Keramatipour, Mohammad; Nasli-Esfahani, Ensieh; Shidfar, Farzad; Alvandi, Ehsan; Toupchian, Omid; Koohdani, Fariba

    2015-01-01

    The aims of this research were to investigate (1) the impact of docosahexaenoic acid (DHA)-rich fish oil supplementation on body composition, plasma adiponectin level, and peroxisome proliferator-activated receptor γ (PPARγ) gene expression, and (2) whether the effect of DHA-rich fish oil supplementation on the aforementioned variables is modulated by PPARγ Pro12Ala polymorphism. We genotyped PPARγ Pro12Ala polymorphism in subjects with type 2 diabetes mellitus (T2DM). Ala carriers and non-Ala carriers were randomly assigned to DHA-rich fish oil or placebo intake for 8 weeks. Glycemic control was not affected by the intervention. The supplementation with DHA-rich fish oil decreased waist circumference (p < 0.001), body fat mass (p = 0.01), body fat percent (p = 0.04), and viscera fat rating (p = 0.02) as well as trunk fat mass (p = 0.04). Weight, body mass index, fat-free mass, adiponectin level, and PPARγ gene expression changes showed no significant difference. No gene-diet interaction was found on body composition, adiponectin level, and PPARγ gene expression. DHA-rich fish oil supplementation favorably modulated body composition in patients with T2DM and could be useful to reduce visceral obesity. However, the PPARγ Pro12Ala polymorphism did not influence the changes in the desired variables. © 2016 S. Karger AG, Basel.

  1. Crude oil impairs cardiac excitation-contraction coupling in fish.

    PubMed

    Brette, Fabien; Machado, Ben; Cros, Caroline; Incardona, John P; Scholz, Nathaniel L; Block, Barbara A

    2014-02-14

    Crude oil is known to disrupt cardiac function in fish embryos. Large oil spills, such as the Deepwater Horizon (DWH) disaster that occurred in 2010 in the Gulf of Mexico, could severely affect fish at impacted spawning sites. The physiological mechanisms underlying such potential cardiotoxic effects remain unclear. Here, we show that crude oil samples collected from the DWH spill prolonged the action potential of isolated cardiomyocytes from juvenile bluefin and yellowfin tunas, through the blocking of the delayed rectifier potassium current (I(Kr)). Crude oil exposure also decreased calcium current (I(Ca)) and calcium cycling, which disrupted excitation-contraction coupling in cardiomyocytes. Our findings demonstrate a cardiotoxic mechanism by which crude oil affects the regulation of cellular excitability, with implications for life-threatening arrhythmias in vertebrates.

  2. Transcriptomic analysis of the effects of a fish oil enriched diet on murine brains.

    PubMed

    Hammamieh, Rasha; Chakraborty, Nabarun; Gautam, Aarti; Miller, Stacy-Ann; Muhie, Seid; Meyerhoff, James; Jett, Marti

    2014-01-01

    The health benefits of fish oil enriched with high omega-3 polyunsaturated fatty acids (n-3 PUFA) are widely documented. Fish oil as dietary supplements, however, show moderate clinical efficacy, highlighting an immediate scope of systematic in vitro feedback. Our transcriptomic study was designed to investigate the genomic shift of murine brains fed on fish oil enriched diets. A customized fish oil enriched diet (FD) and standard lab diet (SD) were separately administered to two randomly chosen populations of C57BL/6J mice from their weaning age until late adolescence. Statistical analysis mined 1,142 genes of interest (GOI) differentially altered in the hemibrains collected from the FD- and SD-fed mice at the age of five months. The majority of identified GOI (∼ 40%) encodes proteins located in the plasma membrane, suggesting that fish oil primarily facilitated the membrane-oriented biofunctions. FD potentially augmented the nervous system's development and functions by selectively stimulating the Src-mediated calcium-induced growth cascade and the downstream PI3K-AKT-PKC pathways. FD reduced the amyloidal burden, attenuated oxidative stress, and assisted in somatostatin activation-the signatures of attenuation of Alzheimer's disease, Parkinson's disease, and affective disorder. FD induced elevation of FKBP5 and suppression of BDNF, which are often linked with the improvement of anxiety disorder, depression, and post-traumatic stress disorder. Hence we anticipate efficacy of FD in treating illnesses such as depression that are typically triggered by the hypoactivities of dopaminergic, adrenergic, cholinergic, and GABAergic networks. Contrastingly, FD's efficacy could be compromised in treating illnesses such as bipolar disorder and schizophrenia, which are triggered by hyperactivities of the same set of neuromodulators. A more comprehensive investigation is recommended to elucidate the implications of fish oil on disease pathomechanisms, and the result

  3. Transcriptomic Analysis of the Effects of a Fish Oil Enriched Diet on Murine Brains

    PubMed Central

    Gautam, Aarti; Miller, Stacy-Ann; Muhie, Seid; Meyerhoff, James; Jett, Marti

    2014-01-01

    The health benefits of fish oil enriched with high omega-3 polyunsaturated fatty acids (n-3 PUFA) are widely documented. Fish oil as dietary supplements, however, show moderate clinical efficacy, highlighting an immediate scope of systematic in vitro feedback. Our transcriptomic study was designed to investigate the genomic shift of murine brains fed on fish oil enriched diets. A customized fish oil enriched diet (FD) and standard lab diet (SD) were separately administered to two randomly chosen populations of C57BL/6J mice from their weaning age until late adolescence. Statistical analysis mined 1,142 genes of interest (GOI) differentially altered in the hemibrains collected from the FD- and SD-fed mice at the age of five months. The majority of identified GOI (∼40%) encodes proteins located in the plasma membrane, suggesting that fish oil primarily facilitated the membrane-oriented biofunctions. FD potentially augmented the nervous system's development and functions by selectively stimulating the Src-mediated calcium-induced growth cascade and the downstream PI3K-AKT-PKC pathways. FD reduced the amyloidal burden, attenuated oxidative stress, and assisted in somatostatin activation—the signatures of attenuation of Alzheimer's disease, Parkinson's disease, and affective disorder. FD induced elevation of FKBP5 and suppression of BDNF, which are often linked with the improvement of anxiety disorder, depression, and post-traumatic stress disorder. Hence we anticipate efficacy of FD in treating illnesses such as depression that are typically triggered by the hypoactivities of dopaminergic, adrenergic, cholinergic, and GABAergic networks. Contrastingly, FD's efficacy could be compromised in treating illnesses such as bipolar disorder and schizophrenia, which are triggered by hyperactivities of the same set of neuromodulators. A more comprehensive investigation is recommended to elucidate the implications of fish oil on disease pathomechanisms, and the result

  4. Transgenic oilseed crops as an alternative to fish oils.

    PubMed

    Sayanova, Olga; Napier, Johnathan A

    2011-11-01

    Growing evidence suggests that omega-3 long chain polyunsaturated fatty acids (VLC-PUFAs), especially eicosapentaenoic acid (EPA; 20:5Δ5,8,11,14,17) and docosahexaenoic acid (DHA; 22:6Δ4,7,10,13,16,19) play critical roles in human health and development. VLC-PUFAs are mainly found in fish, some fungi, marine bacteria and microalgae. Currently, the predominant dietary sources of VLC-PUFAs are marine fish and seafood. However, the increasing demand for fish and fish oils is putting enormous pressure on marine ecosystems leading to a depletion of fish stocks while commercial cultivation of marine microorganisms and aquaculture are not sustainable and cannot compensate for the shortage in fish supply. Therefore, there is an obvious requirement for an alternative and sustainable source for VLC-PUFAs. Over the last decade, many genes encoding the primary VLC-PUFAs biosynthetic activities became available providing a toolkit for the "reverse-engineering" of transgenic plants to produce fish oils. In this review, we will describe the recent advances in this field and the insights they give us into the complexities of metabolic engineering of oil-seed crops producing VLC-PUFAs.

  5. Incorporated fish oil fatty acids prevent action potential shortening induced by circulating fish oil fatty acids.

    PubMed

    Den Ruijter, Hester M; Verkerk, Arie O; Coronel, Ruben

    2010-01-01

    Increased consumption of fatty fish, rich in omega-3-polyunsaturated fatty acids (ω3-PUFAs) reduces the severity and number of arrhythmias. Long-term ω3-PUFA-intake modulates the activity of several cardiac ion channels leading to cardiac action potential shortening. Circulating ω3-PUFAs in the bloodstream and incorporated ω3-PUFAs in the cardiac membrane have a different mechanism to shorten the action potential. It is, however, unknown whether circulating ω3-PUFAs in the bloodstream enhance or diminish the effects of incorporated ω3-PUFAs. In the present study, we address this issue. Rabbits were fed a diet rich in fish oil (ω3) or sunflower oil (ω9, as control) for 3 weeks. Ventricular myocytes were isolated by enzymatic dissociation and action potentials were measured using the perforated patch-clamp technique in the absence and presence of acutely administered ω3-PUFAs. Plasma of ω3 fed rabbits contained more free eicosapentaenoic acid (EPA) and isolated myocytes of ω3 fed rabbits contained higher amounts of both EPA and docosahexaenoic acid (DHA) in their sarcolemma compared to control. In the absence of acutely administered fatty acids, ω3 myocytes had a shorter action potential with a more negative plateau than ω9 myocytes. In the ω9 myocytes, but not in the ω3 myocytes, acute administration of a mixture of EPA + DHA shortened the action potential significantly. From these data we conclude that incorporated ω3-PUFAs into the sarcolemma and acutely administered ω3 fatty acids do not have a cumulative effect on action potential duration and morphology. As a consequence, patients with a high cardiac ω3-PUFA status will probably not benefit from short term ω3 supplementation as an antiarrhythmic therapy.

  6. Incorporated Fish Oil Fatty Acids Prevent Action Potential Shortening Induced by Circulating Fish Oil Fatty Acids

    PubMed Central

    Ruijter, Hester M. Den; Verkerk, Arie O.; Coronel, Ruben

    2010-01-01

    Increased consumption of fatty fish, rich in omega-3-polyunsaturated fatty acids (ω3-PUFAs) reduces the severity and number of arrhythmias. Long-term ω3-PUFA-intake modulates the activity of several cardiac ion channels leading to cardiac action potential shortening. Circulating ω3-PUFAs in the bloodstream and incorporated ω3-PUFAs in the cardiac membrane have a different mechanism to shorten the action potential. It is, however, unknown whether circulating ω3-PUFAs in the bloodstream enhance or diminish the effects of incorporated ω3-PUFAs. In the present study, we address this issue. Rabbits were fed a diet rich in fish oil (ω3) or sunflower oil (ω9, as control) for 3 weeks. Ventricular myocytes were isolated by enzymatic dissociation and action potentials were measured using the perforated patch-clamp technique in the absence and presence of acutely administered ω3-PUFAs. Plasma of ω3 fed rabbits contained more free eicosapentaenoic acid (EPA) and isolated myocytes of ω3 fed rabbits contained higher amounts of both EPA and docosahexaenoic acid (DHA) in their sarcolemma compared to control. In the absence of acutely administered fatty acids, ω3 myocytes had a shorter action potential with a more negative plateau than ω9 myocytes. In the ω9 myocytes, but not in the ω3 myocytes, acute administration of a mixture of EPA + DHA shortened the action potential significantly. From these data we conclude that incorporated ω3-PUFAs into the sarcolemma and acutely administered ω3 fatty acids do not have a cumulative effect on action potential duration and morphology. As a consequence, patients with a high cardiac ω3-PUFA status will probably not benefit from short term ω3 supplementation as an antiarrhythmic therapy. PMID:21423389

  7. Randomised double-blind placebo-controlled trial of fish oil in the treatment of depression.

    PubMed

    Silvers, Karen M; Woolley, Cheryl C; Hamilton, Frances C; Watts, Peter M; Watson, Rosemary A

    2005-03-01

    Converging evidence suggests that omega-3 polyunsaturated fatty acids have aetiological importance in depression. To determine the effect of adding fish oil to existing therapy in participants who were being treated for depression in a community setting, 77 participants were randomly assigned to receive 8 g of either fish or olive oil per day in addition to their existing therapy. Fifty-nine (77%) participants completed 12 weeks of treatment. Dietary, biochemical and lifestyle factors were measured throughout the study. Mood was assessed using the Short Form Hamilton Depression Rating Scale (HDRS-SF) and the Beck Depression Inventory II. Sample size calculations were based on the HDRS-SF. Intention-to-treat and per protocol analyses were carried out using residual maximum likelihood. There was no evidence that fish oil improved mood when compared to the placebo oil, despite an increase in circulating omega-3 polyunsaturated fatty acids. However, mood improved significantly in both groups within the first 2 weeks of the study (P<0.001) and this improvement was sustained throughout. In conclusion, fish oil was no more effective than the control as an add-on therapy for depression in this setting.

  8. Fish oil enhances intestinal integrity and inhibits TLR4 and NOD2 signaling pathways in weaned pigs after LPS challenge.

    PubMed

    Liu, Yulan; Chen, Feng; Odle, Jack; Lin, Xi; Jacobi, Sheila K; Zhu, Huiling; Wu, Zhifeng; Hou, Yongqing

    2012-11-01

    Long-chain (n-3) PUFA exert beneficial effects on inflammatory bowel diseases in animal models and clinical trials. In addition, pattern recognition receptors such as toll-like receptors (TLR) and nucleotide-binding oligomerization domain proteins (NOD) play a critical role in intestinal inflammation. We hypothesized that fish oil could alleviate Escherichia coli LPS-induced intestinal injury via modulation of TLR4 and NOD signaling pathways. Twenty-four weaned piglets were used in a 2 × 2 factorial design and the main factors included a dietary treatment (5% corn oil or 5% fish oil) and immunological challenge (LPS or saline). After feeding fish oil or corn oil diets for 21 d, pigs were injected with LPS or saline. At 4 h postinjection, blood samples were collected and pigs were killed. EPA, DHA, and total (n-3) PUFA were enriched in intestinal mucosa through fish supplementation. Fish oil improved intestinal morphology, indicated by greater villus height and villus height:crypt depth ratio, and intestinal barrier function, indicated by decreased plasma diamine oxidase (DAO) activity and increased mucosal DAO activity as well as enhanced protein expression of intestinal tight junction proteins including occludin and claudin-1. Moreover, fish oil decreased intestinal TNFα and PGE(2) concentrations and caspase-3 and heat shock protein 70 protein expression. Finally, fish oil downregulated the mRNA expression of intestinal TLR4 and its downstream signals myeloid differentiation factor 88, IL-1 receptor-associated kinase 1, TNFα receptor-associated factor 6, and NOD2, and its adaptor molecule, receptor-interacting serine/threonine-protein kinase 2. Fish oil decreased the protein expression of intestinal NFκB p65. These results indicate that fish oil supplementation is associated with inhibition of TLR4 and NOD2 signaling pathways and concomitant improvement of intestinal integrity under an inflammatory condition.

  9. Supplementation of L-Alanyl-L-Glutamine and Fish Oil Improves Body Composition and Quality of Life in Patients With Chronic Heart Failure

    PubMed Central

    Wu, Christina; Kato, Tomoko S.; Ji, Ruiping; Zizola, Cynthia; Brunjes, Danielle L.; Deng, Yue; Akashi, Hirokazu; Armstrong, Hilary F.; Kennel, Peter J.; Thomas, Tiffany; Forman, Daniel E.; Hall, Jennifer; Chokshi, Aalap; Bartels, Matthew N.; Mancini, Donna; Seres, David; Schulze, P. Christian

    2016-01-01

    Background Skeletal muscle dysfunction and exercise intolerance are clinical hallmarks of patients with heart failure (HF). These have been linked to a progressive catabolic state, skeletal muscle inflammation and impaired oxidative metabolism. Prior studies suggest beneficial effects of ω-3 polyunsaturated fatty acids (PUFAs) and glutamine on exercise performance and muscle protein balance. Methods and Results In a randomized double-blind, placebo-controlled trial, 31 HF patients were randomized to either L-alanyl-L-glutamine (8g/d) and PUFA (6.5g/d) or placebo (safflower oil and milk powder) for 3 months. Cardiopulmonary exercise testing, dual-energy X-ray absorptiometry, 6 minute walk test, hand grip strength, functional muscle testing, echocardiography and quality of life and lateral quadriceps muscle biopsy were performed at baseline and at follow-up. Oxidative capacity and metabolic gene expression were analyzed on muscle biopsies. No differences in muscle function, echocardiography, 6 minute walk test or hand grip strength and a non-significant increase in peak VO2 in the treatment group were found. Lean body mass increased and quality-of-life improved in the active treatment group. Molecular analysis revealed no differences in muscle fiber composition, fiber cross sectional area, gene expression of metabolic marker genes (PGC-1α, CPT1, PDK4, GLUT4) and skeletal muscle oxidative capacity. Conclusions The combined supplementation of L-alanyl-L-glutamine and PUFA did not improve exercise performance or muscle function but increased lean body mass and quality-of-life in patients with chronic stable HF. These findings suggest potentially beneficial effects of high dose nutritional PUFAs and amino acid supplementations in patients with chronic stable HF. Clinical Trial Registration URL: http://www.clinicaltrials.gov. Unique identifier: NCT01534663. PMID:26269566

  10. Plasma and neutrophil fatty acid composition in advanced cancer patients and response to fish oil supplementation.

    PubMed

    Pratt, V C; Watanabe, S; Bruera, E; Mackey, J; Clandinin, M T; Baracos, V E; Field, C J

    2002-12-02

    Metabolic demand and altered supply of essential nutrients is poorly characterised in patients with advanced cancer. A possible imbalance or deficiency of essential fatty acids is suggested by reported beneficial effects of fish oil supplementation. To assess fatty acid status (composition of plasma and neutrophil phospholipids) in advanced cancer patients before and after 14 days of supplementation (12+/-1 g day(-1)) with fish (eicosapentaenoic acid, and docosahexaenoic acid) or placebo (olive) oil. Blood was drawn from cancer patients experiencing weight loss of >5% body weight (n=23). Fatty acid composition of plasma phospholipids and the major phospholipid classes of isolated neutrophils were determined using gas liquid chromatography. At baseline, patients with advanced cancer exhibited low levels (<30% of normal values) of plasma phospholipids and constituent fatty acids and elevated 20 : 4 n-6 content in neutrophil phospholipids. High n-6/n-3 fatty acid ratios in neutrophil and plasma phospholipids were inversely related to body mass index. Fish oil supplementation raised eicosapentaenoic acid and docosahexaenoic acid content in plasma but not neutrophil phospholipids. 20 : 4 n-6 content was reduced in neutrophil PI following supplementation with fish oil. Change in body weight during the supplementation period related directly to increases in eicosapentaenoic acid in plasma. Advanced cancer patients have alterations in lipid metabolism potentially due to nutritional status and/or chemotherapy. Potential obstacles in fatty acid utilisation must be addressed in future trials aiming to improve outcomes using nutritional intervention with fish oils.

  11. Administration of dietary fish oil capsules in healthy middle-aged Japanese men with a high level of fish consumption.

    PubMed

    Watanabe, N; Watanabe, Y; Kumagai, M; Fujimoto, K

    2009-01-01

    The nutritional effects of fish oil, which is rich in the n-3 polyunsaturated fatty acids, have been reported. In this randomized, placebo-controlled, double-blind, crossover study, we evaluated the effects of dietary fish oil capsules on the hematological parameters of healthy middle-aged Japanese men with a high level of fish oil consumption. Over a 4-week period, subjects were administered five fish oil or olive oil (placebo) capsules with every meal (1,260 mg eicosapentaenoic acid and 540 mg docosahexaenoic acid/day). There was a 4-week washout period between the treatment phases. The results did not demonstrate a decrease in plasma triacylglycerol, cholesterol, low-density lipoprotein cholesterol, and whole-blood viscosity. Further, no changes in the fatty acid composition of plasma and erythrocyte phospholipids were noted. These results suggested that the supplementation of fish oil might be effective only for those subjects who have a lower level of fish oil consumption.

  12. Dietary combination of fish oil and taurine decreases fat accumulation and ameliorates blood glucose levels in type 2 diabetic/obese KK-A(y) mice.

    PubMed

    Mikami, Nana; Hosokawa, Masashi; Miyashita, Kazuo

    2012-06-01

    n-3 Polyunsaturated fatty acids (PUFAs) such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and taurine are functional compounds abundantly present in seafoods. In this study, we examined the combined effects of EPA- and DHA-rich fish oil and taurine on white adipose tissue (WAT) weight and blood glucose levels in diabetic/obese KK-A(y) mice. After a 4-wk administration of experimental diets (soybean oil or fish oil, supplemented with 0%, 2%, or 4% taurine), the increase in WAT weight of the mice fed the "fish oil + 4% taurine" diet was significantly suppressed compared to the "soybean oil + 4% taurine" and "fish oil only" diets. Serum triglycerides, free fatty acids, and total cholesterol levels decreased by fish oil administration. In addition, fish oil and taurine increased the activity of acyl-CoA oxidase, which is the rate-limiting enzyme of peroxisomal β-oxidation, increased in the liver of KK-A(y) mice. The activity of fatty acid synthase decreased by fish oil diets. Furthermore, blood glucose and insulin levels were significantly lower in the mice fed fish oil than in the soybean oil-fed mice. In fish oil + 4% taurine group, hyperglycemia and hyperinsulinemia were effectively improved in KK-A(y) mice compared to the fish oil only groups. In particular, the combination of fish oil and taurine enhanced the glucose transporter 4 (GLUT4) distribution in the plasma membrane of muscle tissue. These results suggest that EPA- and DHA-rich fish oil, especially in combination with taurine, exhibits preventive effects on WAT weight gain and hyperglycemia in diabetic/obese KK-A(y) mice. © 2012 Institute of Food Technologists®

  13. Use Carum copticum essential oil for controlling the Listeria monocytogenes growth in fish model system

    PubMed Central

    Rabiey, Soghra; Hosseini, Hedayat; Rezaei, Masoud

    2014-01-01

    This study was conducted to evaluate the antibacterial effect of Carum copticum essential oil (Ajowan EO) against Listeria monocytogenes in fish model system. Ajowan EO chemical composition was determined by gas chromatography/mass spectral analysis and the highest concentration of Carum copticum essential oil without any significant changes on sensory properties of kutum fish (Rutilus frisii kutum) was assigned. Then the inhibitory effect of Ajowan EO at different concentrations in presence of salt and smoke component was tested on L. monocytogenes growth in fish peptone broth (FPB), kutum broth and cold smoked kutum broth at 4 °C for 12 days. Ajowan EO completely decreased the number of L. monocytogenes in FPB after 12 days of storage, however, antimicrobial effect of EO significantly reduced in kutum and cold smoked kutum broth. Addition of 4% NaCl and smoke component improved the anti-listerial activity of Ajowan EO in all fish model broths. PMID:24948918

  14. Use Carum copticum essential oil for controlling the Listeria monocytogenes growth in fish model system.

    PubMed

    Rabiey, Soghra; Hosseini, Hedayat; Rezaei, Masoud

    2014-01-01

    This study was conducted to evaluate the antibacterial effect of Carum copticum essential oil (Ajowan EO) against Listeria monocytogenes in fish model system. Ajowan EO chemical composition was determined by gas chromatography/mass spectral analysis and the highest concentration of Carum copticum essential oil without any significant changes on sensory properties of kutum fish (Rutilus frisii kutum) was assigned. Then the inhibitory effect of Ajowan EO at different concentrations in presence of salt and smoke component was tested on L. monocytogenes growth in fish peptone broth (FPB), kutum broth and cold smoked kutum broth at 4 °C for 12 days. Ajowan EO completely decreased the number of L. monocytogenes in FPB after 12 days of storage, however, antimicrobial effect of EO significantly reduced in kutum and cold smoked kutum broth. Addition of 4% NaCl and smoke component improved the anti-listerial activity of Ajowan EO in all fish model broths.

  15. Effect of spray nozzle design on fish oil-whey protein microcapsule properties.

    PubMed

    Legako, Jerrad; Dunford, Nurhan Turgut

    2010-08-01

    Microencapsulation improves oxidative stability and shelf life of fish oil. Spray and freeze drying are widely used to produce microcapsules. Newer spray-nozzles utilize multiple fluid channels allowing for mixing of wall and core materials at the point of atomization. Sonic energy has also been employed as a means of atomization. The objective of this study was to examine the effect of nozzle type and design on fish oil encapsulation efficiency and microcapsule properties. A total of 3 nozzle types, a pressure nozzle with 1 liquid channel, a pressure nozzle with 2 liquid channels, and a sonic atomizer with 2 liquid channels were examined for their suitability to encapsulate fish oil in whey protein isolate. Physical and chemical properties of freeze dried microcapsules were compared to those of microcapsules produced by spray drying. The 2-fluid pressure and ultrasonic nozzles had the highest (91.6%) and the lowest microencapsulation efficiencies (76%), respectively. There was no significant difference in bulk density of microcapsules produced by ultrasonic and 3-fluid pressure nozzles. The ultrasonic nozzle showed a significantly narrower particle size distribution than the other nozzles. This study demonstrated that new nozzle designs that eliminate emulsion preparation prior to spray drying can be beneficial for microencapsulation applications. However, there is still a need for research to improve microencapsulation efficiency of multiple channel spray nozzles. Practical Application: Since this research evaluates new spray nozzle designs for oil microencapsulation, the information presented in this article could be an interest to fish oil producers and food industry.

  16. Effects of soybean isoflavone on intestinal antioxidant capacity and cytokines in young piglets fed oxidized fish oil*

    PubMed Central

    Huang, Lin; Ma, Xian-yong; Jiang, Zong-yong; Hu, You-jun; Zheng, Chun-tian; Yang, Xue-fen; Wang, Li; Gao, Kai-guo

    2016-01-01

    To investigate the effect of glycitein, a synthetic soybean isoflavone (ISF), on the intestinal antioxidant capacity, morphology, and cytokine content in young piglets fed oxidized fish oil, 72 4-d-old male piglets were assigned to three treatments. The control group was fed a basal diet containing fresh fish oil, and the other two groups received the same diet except for the substitution with the same dosage of oxidized fish oil alone or with ISF (oxidized fish oil plus ISF). After 21 d of feeding, supplementation of oxidized fish oil increased the levels of malondialdehyde (MDA), oxidized glutathione (GSSG), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), interleukin-2 (IL-2), nuclear factor κ B (NF-κB), inducible nitric oxide synthase (iNOS), NO, and Caspase-3 in jejunal mucosa, and decreased the villous height in duodenum and the levels of secretory immunoglobulin A (sIgA) and IL-4 in the jejunal mucosa compared with supplementation with fresh oil. The addition of oxidized fish oil plus ISF partially alleviated this negative effect. The addition of oxidized fish oil plus ISF increased the villous height and levels of sIgA and IL-4 in jejunal mucosa, but decreased the levels of IL-1β and IL-2 in jejunal mucosa (P<0.05) compared with oxidized fish oil. Collectively, these results show that dietary supplementation of ISF could partly alleviate the negative effect of oxidized fish oil by improving the intestinal morphology as well as the antioxidant capacity and immune function in young piglets. PMID:27921401

  17. The chronic effects of fish oil with exercise on postprandial lipaemia and chylomicron homeostasis in insulin resistant viscerally obese men

    PubMed Central

    2012-01-01

    Background Visceral obesity and insulin resistance are associated with a postprandial accumulation of atherogenic chylomicron remnants that is difficult to modulate with lipid-lowering therapies. Dietary fish oil and exercise are cardioprotective interventions that can significantly modify the metabolism of TAG-rich lipoproteins. In this study, we investigated whether chronic exercise and fish oil act in combination to affect chylomicron metabolism in obese men with moderate insulin resistance. Methods The single blind study tested the effect of fish oil, exercise and the combined treatments on fasting and postprandial chylomicron metabolism. Twenty nine men with metabolic syndrome were randomly assigned to take fish oil or placebo for four weeks, before undertaking an additional 12 week walking program. At baseline and at the end of each treatment, subjects were tested for concentrations of fasting apo B48, plasma lipids and insulin. Postprandial apo B48 and TAG kinetics were also determined following ingestion of a fat enriched meal. Results Combining fish oil and exercise resulted in a significant reduction in the fasting apo B48 concentration, concomitant with attenuation of fasting TAG concentrations and the postprandial TAGIAUC response (p < 0.05). Fish oil by itself reduced the postprandial TAG response (p < 0.05) but not postprandial apo B48 kinetics. Individual treatments of fish oil and exercise did not correspond with improvements in fasting plasma TAG and apo B48. Conclusion Fish oil was shown to independently improve plasma TAG homeostasis but did not resolve hyper-chylomicronaemia. Instead, combining fish oil with chronic exercise reduced the plasma concentration of pro-atherogenic chylomicron remnants; in addition it reduced the fasting and postprandial TAG response in viscerally obese insulin resistant subjects. PMID:22314022

  18. Fish oil and treadmill exercise have age-dependent effects on episodic memory and oxidative state of the hippocampus.

    PubMed

    Macêdo, Patrícia Fortes Cavalcanti de; de Melo, Janatar Stella Vasconcelos; Costa, Laís Alves Ribeiro; Braz, Glauber Rudá F; de Sousa, Shirley M; Lagranha, Cláudia J; Hornsby, Manuella Batista-de-Oliveira

    2017-01-09

    There is a growing interest to better understand how lifestyle choices can improve memory functions. Treadmill exercise and long-chain n-3 polyunsaturated fatty acids found in fish oil are able to stimulate hippocampal antioxidant defenses and improve memory. The aim was to test whether fish oil and exercise can improve rat's performance on memory tasks and optimize hippocampal antioxidant state in an age-dependent manner. Therefore, young and adult rats were exercised and received fish oil during 4 weeks. The exercise was performed for 30 min/day, with the speed gradually increasing from the first to the last week. Afterwards, episodic memory was measured by the recognition of object identity and spatial location. Hippocampal oxidative state was investigated with the levels of malondialdehyde (MDA), carbonyls content, antioxidant enzymatic activity (superoxide dismutase (SOD), catalase (CAT)), and antioxidant nonenzymatic activity (reduced glutathione, sulfhydryl content). The adult rats treated with fish oil and exercise (FO&EX) were able to recognize object's shape and placement; however, FO&EX young rats had impaired spatial recognition (p < 0.05). The FO&EX young rats did not have reduced MDA or carbonyl content, though either fish oil or exercise reduced MDA (p < 0.05) and carbonyl levels (p < 0.01). Exercise increased SOD (p < 0.001) and CAT activities (p < 0.05), and fish oil enhanced SOD activity (p < 0.05) in young rats. At adulthood, exercise increased MDA levels (p < 0.05), and FO&EX reduced MDA (p < 0.001). Finally, exercise and fish oil improved nonenzymatic antioxidant defense (p < 0.05) only in adult rats. Results support age-dependent effects of fish oil and exercise on memory and oxidative state of the hippocampus during either neurodevelopment or adulthood.

  19. Enhanced increase of omega-3 index in healthy individuals with response to 4-week n-3 fatty acid supplementation from krill oil versus fish oil

    PubMed Central

    2013-01-01

    Background Due to structural differences, bioavailability of krill oil, a phospholipid based oil, could be higher than fish oil, a triglyceride-based oil, conferring properties that render it more effective than fish oil in increasing omega-3 index and thereby, reducing cardiovascular disease (CVD) risk. Objective The objective was to assess the effects of krill oil compared with fish oil or a placebo control on plasma and red blood cell (RBC) fatty acid profile in healthy volunteers. Participants and methods Twenty four healthy volunteers were recruited for a double blinded, randomized, placebo-controlled, crossover trial. The study consisted of three treatment phases including krill or fish oil each providing 600 mg of n-3 polyunsaturated fatty acids (PUFA) or placebo control, corn oil in capsule form. Each treatment lasted 4 wk and was separated by 8 wk washout phases. Results Krill oil consumption increased plasma (p = 0.0043) and RBC (p = 0.0011) n-3 PUFA concentrations, including EPA and DHA, and reduced n-6:n-3 PUFA ratios (plasma: p = 0.0043, RBC: p = 0.0143) compared with fish oil consumption. Sum of EPA and DHA concentrations in RBC, the omega-3 index, was increased following krill oil supplementation compared with fish oil (p = 0.0143) and control (p < 0.0001). Serum triglycerides and HDL cholesterol concentrations did not change with any of the treatments. However, total and LDL cholesterol concentrations were increased following krill (TC: p = 0.0067, LDL: p = 0.0143) and fish oil supplementation (TC: p = 0.0028, LDL: p = 0.0143) compared with control. Conclusions Consumption of krill oil was well tolerated with no adverse events. Results indicate that krill oil could be more effective than fish oil in increasing n-3 PUFA, reducing n-6:n-3 PUFA ratio, and improving the omega-3 index. Trial registration ClinicalTrials.gov, NCT01323036 PMID:24304605

  20. Fish sauce, soy sauce, and vegetable oil fortification in Cambodia: where do we stand to date?

    PubMed

    Theary, Chan; Panagides, Dora; Laillou, Arnaud; Vonthanak, Saphoon; Kanarath, Chheng; Chhorvann, Chhea; Sambath, Pol; Sowath, Sol; Moench-Pfanner, Regina

    2013-06-01

    The prevalence of micronutrient deficiencies in Cambodia is among the highest in Southeast Asia. Fortification of staple foods and condiments is considered to be one of the most cost-effective strategies for addressing micronutrient deficiencies at the population level. The Government of Cambodia has recognized the importance of food fortification as one strategy for improving the nutrition security of its population. This paper describes efforts under way in Cambodia for the fortification of fish sauce, soy sauce, and vegetable oil. Data were compiled from a stability test of Cambodian fish sauces fortified with sodium iron ethylenediaminetetraacetate (NaFeEDTA); analysis of fortified vegetable oils in the Cambodian market; a Knowledge, Attitudes, and Practices (KAP) study of fortified products; and food fortification program monitoring documents. At different levels of fortification of fish sauce with NaFeEDTA, sedimentation and precipitation were observed. This was taken into consideration in the government-issued standards for the fortification of fish sauce. All major brands of vegetable oil found in markets at the village and provincial levels are imported, and most are nonfortified. Fish sauce, soy sauce, and vegetable oil are widely consumed throughout Cambodia and are readily available in provincial and village markets. Together with an effective regulatory monitoring system, the government can guarantee that these commodities, whether locally produced or imported, are adequately fortified. A communications campaign would be worthwhile, once fortified commodities are available, as the KAP study found that Cambodians had a positive perception of fortified sauces.

  1. Fish Oil During Pregnancy May Cut Kids' Asthma Risk

    MedlinePlus

    ... said. The study, published Dec. 29 in the New England Journal of Medicine , adds to evidence that fish oil ... pediatrics, Nicklaus Children's Hospital, Miami; Dec. 29, 2016, New England Journal of Medicine HealthDay Copyright (c) 2016 HealthDay . All ...

  2. Fish oil: what the prescriber needs to know

    PubMed Central

    Cleland, Leslie G; James, Michael J; Proudman, Susanna M

    2006-01-01

    There is a general belief among doctors, in part grounded in experience, that patients with arthritis need nonsteroidal anti-inflammatory drugs (NSAIDs). Implicit in this view is that these patients require the symptomatic relief provided by inhibiting synthesis of nociceptive prostaglandin E2, a downstream product of the enzyme cyclo-oxygenase (COX), which is inhibited by NSAIDs. However, the concept of 'safe' NSAIDs has collapsed following a multiplicity of observations establishing increased risk for cardiovascular events associated with NSAID use, especially but not uniquely with the new COX-2-selective NSAIDs. This mandates greater parsimony in the use of these agents. Fish oils contain a natural inhibitor of COX, reduce reliance on NSAIDs, and reduce cardiovascular risk through multiple mechanisms. Fish oil thus warrants consideration as a component of therapy for arthritis, especially rheumatoid arthritis, in which its symptomatic benefits are well established. A major barrier to the therapeutic use of fish oil in inflammatory diseases is ignorance of its mechanism, range of beneficial effects, safety profile, availability of suitable products, effective dose, latency of effects and instructions for administration. This review provides an evidence-based resource for doctors and patients who may choose to prescribe or take fish oil. PMID:16542466

  3. Dietary fish oil enhances renal hypertrophy in experimental diabetes.

    PubMed

    Logan, J L; Benson, B; Lee, S M

    1990-10-01

    Renal hypertrophy occurs early in the natural history of human and experimental diabetes and may be a manifestation of the same pathophysiological process which ultimately results in diabetic nephropathy. The precise biological events which stimulate and regulate this growth process remain incompletely understood. We postulated that renal eicosanoids contribute to the development of renal hypertrophy in diabetes. We elected to test the effects of suppression of dienoic eicosanoid metabolism (arachidonic acid metabolism) on renal hypertrophy in diabetic rats by feeding fish oil. Diabetic rats fed fish oil had markedly reduced insulin requirements compared to control rats pair-fed a beef tallow-rich diet. The concentrations of prostaglandin E2, 6-keto-prostaglandin F1 alpha, and thromboxane B2 were depressed in the renal cortex of diabetic rats fed fish oil. This alteration in eicosanoid metabolism was associated with a substantial enhancement of diabetic renal hypertrophy. These results indicate that dietary fish oil has profound effects on renal eicosanoid metabolism in experimental diabetes and that these autocoids may participate in the biological events which regulate diabetic renal hypertrophy.

  4. 21 CFR 186.1551 - Hydrogenated fish oil.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Hydrogenated fish oil. 186.1551 Section 186.1551 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE...

  5. 21 CFR 186.1551 - Hydrogenated fish oil.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Hydrogenated fish oil. 186.1551 Section 186.1551 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) INDIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed...

  6. 21 CFR 186.1551 - Hydrogenated fish oil.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Hydrogenated fish oil. 186.1551 Section 186.1551 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE...

  7. 21 CFR 186.1551 - Hydrogenated fish oil.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Hydrogenated fish oil. 186.1551 Section 186.1551 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE...

  8. 21 CFR 186.1551 - Hydrogenated fish oil.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Hydrogenated fish oil. 186.1551 Section 186.1551 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE...

  9. A Nutritional-Toxicological Assessment of Antarctic Krill Oil versus Fish Oil Dietary Supplements

    PubMed Central

    Bengtson Nash, Susan M.; Schlabach, Martin; Nichols, Peter D.

    2014-01-01

    Fish oil dietary supplements and complementary medicines are pitched to play a role of increasing strategic importance in meeting daily requirements of essential nutrients, such as long-chain (≥C20, LC) omega-3 polyunsaturated fatty acids and vitamin D. Recently a new product category, derived from Antarctic krill, has been launched on the omega-3 nutriceutical market. Antarctic krill oil is marketed as demonstrating a greater ease of absorption due to higher phospholipid content, as being sourced through sustainable fisheries and being free of toxins and pollutants; however, limited data is available on the latter component. Persistent Organic Pollutants (POP) encompass a range of toxic, man-made contaminants that accumulate preferentially in marine ecosystems and in the lipid reserves of organisms. Extraction and concentration of fish oils therefore represents an inherent nutritional-toxicological conflict. This study aimed to provide the first quantitative comparison of the nutritional (EPA and DHA) versus the toxicological profiles of Antarctic krill oil products, relative to various fish oil categories available on the Australian market. Krill oil products were found to adhere closely to EPA and DHA manufacturer specifications and overall were ranked as containing intermediate levels of POP contaminants when compared to the other products analysed. Monitoring of the pollutant content of fish and krill oil products will become increasingly important with expanding regulatory specifications for chemical thresholds. PMID:25170991

  10. A nutritional-toxicological assessment of Antarctic krill oil versus fish oil dietary supplements.

    PubMed

    Bengtson Nash, Susan M; Schlabach, Martin; Nichols, Peter D

    2014-08-28

    Fish oil dietary supplements and complementary medicines are pitched to play a role of increasing strategic importance in meeting daily requirements of essential nutrients, such as long-chain (≥ C20, LC) omega-3 polyunsaturated fatty acids and vitamin D. Recently a new product category, derived from Antarctic krill, has been launched on the omega-3 nutriceutical market. Antarctic krill oil is marketed as demonstrating a greater ease of absorption due to higher phospholipid content, as being sourced through sustainable fisheries and being free of toxins and pollutants; however, limited data is available on the latter component. Persistent Organic Pollutants (POP) encompass a range of toxic, man-made contaminants that accumulate preferentially in marine ecosystems and in the lipid reserves of organisms. Extraction and concentration of fish oils therefore represents an inherent nutritional-toxicological conflict. This study aimed to provide the first quantitative comparison of the nutritional (EPA and DHA) versus the toxicological profiles of Antarctic krill oil products, relative to various fish oil categories available on the Australian market. Krill oil products were found to adhere closely to EPA and DHA manufacturer specifications and overall were ranked as containing intermediate levels of POP contaminants when compared to the other products analysed. Monitoring of the pollutant content of fish and krill oil products will become increasingly important with expanding regulatory specifications for chemical thresholds.

  11. Analysis of persistent halogenated hydrocarbons in fish feeds containing fish oil and other alternative lipid sources.

    PubMed

    You, Jing; Kelley, Rebecca A; Crouse, Curtis C; Trushenski, Jesse T; Lydy, Michael J

    2011-09-15

    A trade-off exists between beneficial n-3 long-chain polyunsaturated acids and toxic persistent halogenated hydrocarbons (PHHs), both of which primarily originate from fish oil commonly used in fish feeds. Alternative lipid sources are being investigated for use in fish feeds to reduce harmful contaminant accumulation, hence, research is needed to evaluate PHHs in fish feeds with various lipid compositions. An analytical method was developed for PHHs including nine organochlorine insecticides (OCPs), 26 polychlorinated biphenyls (PCBs) and seven polybrominated diphenyl ethers (PBDEs) in fish feeds with differing proportions of fish oils and alternative lipid sources by GC-ECD after accelerated solvent extraction, gel permeation chromatography (GPC), and sulfuric acid cleanup. The GPC removed the majority of the neutral lipids and sulfuric acid treatment effectively destroyed the polar lipids. Thus, the combination of the two methods removed approximately 99.7% of the lipids in the extracts. The method detection limits were less than 5 ng/g dry weight (dw) for most PHHs, while recoveries were 75-118%, 67-105%, 69-92%, 63-100% and 94-144% with relative standard deviations of 0.2-39%, 0.3-20%, 0.5-12%, 1.5-18% and 1.5-15% for PHHs in five types of fish feeds made from different lipid sources. Although the source of lipid showed no impact on cleanup efficiency and the developed method worked well for all feeds, fish feeds with 100% fish oil contained background PHHs and more interference than feeds containing alternative lipids. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Fish oil replacement in current aquaculture feed: is cholesterol a hidden treasure for fish nutrition?

    PubMed

    Norambuena, Fernando; Lewis, Michael; Hamid, Noor Khalidah Abdul; Hermon, Karen; Donald, John A; Turchini, Giovanni M

    2013-01-01

    Teleost fish, as with all vertebrates, are capable of synthesizing cholesterol and as such have no dietary requirement for it. Thus, limited research has addressed the potential effects of dietary cholesterol in fish, even if fish meal and fish oil are increasingly replaced by vegetable alternatives in modern aquafeeds, resulting in progressively reduced dietary cholesterol content. The objective of this study was to determine if dietary cholesterol fortification in a vegetable oil-based diet can manifest any effects on growth and feed utilization performance in the salmonid fish, the rainbow trout. In addition, given a series of studies in mammals have shown that dietary cholesterol can directly affect the fatty acid metabolism, the apparent in vivo fatty acid metabolism of fish fed the experimental diets was assessed. Triplicate groups of juvenile fish were fed one of two identical vegetable oil-based diets, with additional cholesterol fortification (high cholesterol; H-Chol) or without (low cholesterol; L-Chol), for 12 weeks. No effects were observed on growth and feed efficiency, however, in fish fed H-Col no biosynthesis of cholesterol, and a remarkably decreased apparent in vivo fatty acid β-oxidation were recorded, whilst in L-Chol fed fish, cholesterol was abundantly biosynthesised and an increased apparent in vivo fatty acid β-oxidation was observed. Only minor effects were observed on the activity of stearyl-CoA desaturase, but a significant increase was observed for both the transcription rate in liver and the apparent in vivo activity of the fatty acid Δ-6 desaturase and elongase, with increasing dietary cholesterol. This study showed that the possible effects of reduced dietary cholesterol in current aquafeeds can be significant and warrant future investigations.

  13. Fish Oil Replacement in Current Aquaculture Feed: Is Cholesterol a Hidden Treasure for Fish Nutrition?

    PubMed Central

    Norambuena, Fernando; Lewis, Michael; Hamid, Noor Khalidah Abdul; Hermon, Karen; Donald, John A.; Turchini, Giovanni M.

    2013-01-01

    Teleost fish, as with all vertebrates, are capable of synthesizing cholesterol and as such have no dietary requirement for it. Thus, limited research has addressed the potential effects of dietary cholesterol in fish, even if fish meal and fish oil are increasingly replaced by vegetable alternatives in modern aquafeeds, resulting in progressively reduced dietary cholesterol content. The objective of this study was to determine if dietary cholesterol fortification in a vegetable oil-based diet can manifest any effects on growth and feed utilization performance in the salmonid fish, the rainbow trout. In addition, given a series of studies in mammals have shown that dietary cholesterol can directly affect the fatty acid metabolism, the apparent in vivo fatty acid metabolism of fish fed the experimental diets was assessed. Triplicate groups of juvenile fish were fed one of two identical vegetable oil-based diets, with additional cholesterol fortification (high cholesterol; H-Chol) or without (low cholesterol; L-Chol), for 12 weeks. No effects were observed on growth and feed efficiency, however, in fish fed H-Col no biosynthesis of cholesterol, and a remarkably decreased apparent in vivo fatty acid β-oxidation were recorded, whilst in L-Chol fed fish, cholesterol was abundantly biosynthesised and an increased apparent in vivo fatty acid β-oxidation was observed. Only minor effects were observed on the activity of stearyl-CoA desaturase, but a significant increase was observed for both the transcription rate in liver and the apparent in vivo activity of the fatty acid Δ-6 desaturase and elongase, with increasing dietary cholesterol. This study showed that the possible effects of reduced dietary cholesterol in current aquafeeds can be significant and warrant future investigations. PMID:24324720

  14. Fish oil enhances recovery of intestinal microbiota and epithelial integrity in chronic rejection of intestinal transplant.

    PubMed

    Li, Qiurong; Zhang, Qiang; Wang, Chenyang; Tang, Chun; Zhang, Yanmei; Li, Ning; Li, Jieshou

    2011-01-01

    The intestinal chronic rejection (CR) is the major limitation to long-term survival of transplanted organs. This study aimed to investigate the interaction between intestinal microbiota and epithelial integrity in chronic rejection of intestinal transplantation, and to find out whether fish oil enhances recovery of intestinal microbiota and epithelial integrity. The luminal and mucosal microbiota composition of CR rats were characterized by DGGE analysis at 190 days after intestinal transplant. The specific bacterial species were determined by sequence analysis. Furthermore, changes in the localization of intestinal TJ proteins were examined by immunofluorescent staining. PCR-DGGE analysis revealed that gut microbiota in CR rats had a shift towards Escherichia coli, Bacteroides spp and Clostridium spp and a decrease in the abundance of Lactobacillales bacteria in the intestines. Fish oil supplementation could enhance the recovery of gut microbiota, showing a significant decrease of gut bacterial proportions of E. coli and Bacteroides spp and an increase of Lactobacillales spp. In addition, CR rats showed pronounced alteration of tight junction, depicted by marked changes in epithelial cell ultrastructure and redistribution of occuldin and claudins as well as disruption in TJ barrier function. Fish oil administration ameliorated disruption of epithelial integrity in CR, which was associated with an improvement of the mucosal structure leading to improved tight junctions. Our study have presented novel evidence that fish oil is involved in the maintenance of epithelial TJ integrity and recovery of gut microbiota, which may have therapeutic potential against CR in intestinal transplantation.

  15. Fish Oil Supplementation and Fatty Acid Synthase Expression in the Prostate: A Randomized Controlled Trial

    DTIC Science & Technology

    2009-03-01

    randomized to receive three months of either fish oil capsules (treatment 1) or olive oil (placebo) capsules (treatment 2). Potential...sensitivity to fish oil, olive oil or green tea • Subject reported history of hemophilia, van Willebrands disease or other bleeding disorder, except

  16. Oil and oil dispersant do not cause synergistic toxicity to fish embryos.

    PubMed

    Adams, Julie; Sweezey, Michael; Hodson, Peter V

    2014-01-01

    Atlantic herring (Clupea harengus) embryos were exposed to water accommodated fractions (WAFs; oil dissolved in water) and chemically enhanced water accommodated fractions (CEWAFs; oil dispersed in water with Corexit 9500A) of Medium South American (MESA) crude oil. The CEWAF was approximately 100-fold more toxic than WAF based on nominal loadings of test solutions (% v/v). In contrast, the ratio of WAF and CEWAF toxicity expressed as measured oil concentrations approximated 1.0, indicating that the higher toxicity of CEWAFs was caused by an increase in exposure to hydrocarbons with chemical dispersion. In a second experiment, the chronic toxicity of Corexit 9500A and chemically dispersed heavy fuel oil 7102 (HFO 7102) to rainbow trout (Oncorhynchus mykiss) embryos was compared to chemically dispersed Nujol, a nontoxic mineral oil. Dispersant alone was toxic, but caused different signs of toxicity than HFO 7102. Nujol at a dispersant-to-oil ratio of 1:20 was nontoxic, suggesting that dispersant was sequestered by oil and not present at toxic concentrations. In contrast, the same nominal loadings of dispersed HFO 7102 caused concentration-dependent increases in toxicity. Both experiments suggest that chemically dispersed oil was more toxic to fish embryos than solutions created by mechanical mixing due to the increased exposure of fish to petroleum hydrocarbons and not to changes in hydrocarbon toxicity. The Nujol control discriminated between the toxicity of oil and chemical dispersant and would be a practical addition to programs of dispersant testing.

  17. Treatment for 6 months with fish oil-derived n-3 polyunsaturated fatty acids has neutral effects on glycemic control but improves dyslipidemia in type 2 diabetic patients with abdominal obesity: a randomized, double-blind, placebo-controlled trial.

    PubMed

    Wang, Feng; Wang, Yanyan; Zhu, Yan; Liu, Xiaosong; Xia, Hui; Yang, Xian; Sun, Guiju

    2016-12-02

    This study aimed to determine the effects of fish oil-derived n-3 PUFA on glycemic control and lipid profiles in type 2 diabetic patients with abdominal obesity. In a randomized, double-blind, placebo-controlled trial, 100 type 2 diabetic patients with abdominal obesity were randomized into two groups including 4 g/day of fish oil (2.4 g n-3 PUFA) or placebo (corn oil) for 6 months. Serum fatty acid, body composition, as well as markers of glucose regulation and lipid parameters were measured before and after intervention. Thirty-five men and 64 women aged 65.4 ± 5.3 years completed the intervention. Although body composition was unchanged, serum EPA and DHA were higher in the fish oil group than those in the placebo group (P < 0.001 and P < 0.001, respectively). Serum triglyceride (TG) decreased (P = 0.007), whereas high-density lipoprotein cholesterol (HDL-C) increased (P = 0.006) in the fish oil group compared with the placebo group after 6 months. Serum total cholesterol, low-density lipoprotein cholesterol (LDL-C), the ratio of LDL-C to HDL-C, and glycemic control (measured by serum glucose, glycated hemoglobin, insulin, and homeostasis model assessment-insulin resistance) were not significantly different between the two groups after 6 months. This study showed that 6 months of fish oil supplement had no statistically significant effects on glycemic control, but improved TG and HDL-C in type 2 diabetic patients with abdominal obesity. Chictr.org ChiCTR-TRC-14005084.

  18. Asphaltenes and improved oil recovery

    SciTech Connect

    Yen, T.F.

    1995-12-31

    Often, asphaltene is related solely to the downstream petroleum refining aspect, the logic being that these large, refractoric molecules in heavy ends or bottoms of barrels are difficult to convert into light petroleum hydrocarbons. The refinery bottoms or residues are largely asphaltics (asphaltene, resin, and preasphaltene). This persuades many investigators to correlate and interrelate asphaltene with catalyst compositions, conversion conditions, etc., in refining operations. Few papers appearing in the literature deal with asphaltene and upstream petroleum production and recovery. To this goal, the present paper summarizes the role which petroleum asphaltene plays in production and recovery, especially to improved oil recovery (IOR).

  19. Dietary fish oil reduces glomerular injury and elevated renal hydroxyeicosatetraenoic acid levels in the JCR:LA-cp rat, a model of the metabolic syndrome.

    PubMed

    Aukema, Harold M; Lu, Jing; Borthwick, Faye; Proctor, Spencer D

    2013-07-14

    We have previously shown nutritional intervention with fish oil (n-3 PUFA) to reduce numerous complications associated with the metabolic syndrome (MetS) in the JCR:LA-corpulent (cp) rat. In the present study, we sought to explore the potential role of fish oil to prevent glomerulosclerosis in JCR:LA-cp rats via renal eicosanoid metabolism and lipidomic analysis. Male lean and MetS JCR:LA-cp rats were fed a lipid-balanced diet supplemented with fish oil (5 or 10 % of total fat). After 16 weeks of feeding, albuminuria was significantly reduced in MetS rats supplemented with 5 or 10 % fish oil ( - 53 and - 70 %, respectively, compared with the untreated MetS rats). The 5 % fish oil diet resulted in markedly lower glomerulosclerosis ( - 43 %) in MetS rats and to a lesser extent in those supplemented with 10 % fish oil. Interestingly, untreated MetS rats had higher levels of 11- and 12-hydroxyeicosatetraenoic acids (HETE) v. lean rats. Dietary fish oil reduced these levels, as well as other (5-, 9- and 15-) HETE. Whilst genotype did not alter prostanoid levels, fish oil reduced endogenous renal levels of 6-keto PGF1α (PGI2 metabolite), thromboxane B2 (TxB2), PGF2α and PGD2 by approximately 60 % in rats fed 10 % fish oil, and TxB2 ( - 50 %) and PGF2α ( - 41 %) in rats fed 5 % fish oil. In conclusion, dietary fish oil prevented glomerular damage in MetS rats and mitigated the elevation in renal HETE levels. These results suggest a potential role for dietary fish oil to improve dysfunctional renal eicosanoid metabolism associated with kidney damage during conditions of the MetS.

  20. Contrasting effects of fish oil and safflower oil on hepatic peroxisomal and tissue lipid content.

    PubMed

    Neschen, Susanne; Moore, Irene; Regittnig, Werner; Yu, Chun Li; Wang, Yanlin; Pypaert, Marc; Petersen, Kitt Falk; Shulman, Gerald I

    2002-02-01

    To examine the mechanism by which fish oil protects against fat-induced insulin resistance, we studied the effects of control, fish oil, and safflower oil diets on peroxisomal content, fatty acyl-CoA, diacylglycerol, and ceramide content in rat liver and muscle. We found that, in contrast to control and safflower oil-fed rats, fish oil feeding induced a 150% increase in the abundance of peroxisomal acyl-CoA oxidase and 3-ketoacyl-CoA thiolase in liver but lacked similar effects in muscle. This was paralleled by an almost twofold increase in hepatic peroxisome content (both P < 0.002 vs. control and safflower). These changes in the fish oil-fed rats were associated with a more than twofold lower hepatic triglyceride/diacylglycerol, as well as intramuscular triglyceride/fatty acyl-CoA, content. In conclusion, these data strongly support the hypothesis that n-3 fatty acids protect against fat-induced insulin resistance by serving as peroxisome proliferator-activated receptor-alpha ligands and thereby induce hepatic, but not intramuscular, peroxisome proliferation. In turn, an increased hepatic beta-oxidative capacity results in lower hepatic triglyceride/diacylglycerol and intramyocellular triglyceride/fatty acyl-CoA content.

  1. Varying quality of fish oil capsules: fatty acids and tocopherol.

    PubMed

    Ahmed, Mukhtiar; Moazzami, Ali A; Andersson, Roger; Pickova, Jana

    2011-01-01

    To assess the content and composition of fatty acids and tocopherols in commercially available oil capsules, and to assay thiobarbituric acid reactive substances (TBARS) as a marker of oxidation in these oils. Fish and seal oil capsules were analyzed for their contents of long-chain omega-3 fatty acids (DPA, EPA, and DHA), tocopherols, and malondialdehyde. Large variations were found in the levels of EPA (6.5-40.9%), and DHA (8.1-26.4%), α-tocopherol (117-10282 μg/g), γ-tocopherol (406-2352 μg/g) and δ-tocopherol (127-978 μg/g). The level of malondialdehyde was very low in all capsules. The tested samples of oil capsules showed large variation in quality with respect to long-chain n-3 polyunsaturated fatty acids and tocopherols. The low levels of malondialdehyde indicated a successful oxidation protection strategy. © 2011 Neuroendocrinology Letters

  2. [The effect of dietary fish oil supplementation on the clinical course of asthma in children].

    PubMed

    Machura, E; Brus, R; Kalacinński, W; Lacheta, M

    1996-02-01

    The effect of fish oil on the clinical progress of asthma in children was examined in this study. Twenty-one children with mild asthma and 16 children with severe asthma were given 15 ml of fish oil daily for 12 weeks. A control group of 23 children took sunflower oil. The basic therapy of asthma was continued. Clinical symptoms, ratings of PEF, FEV1, FEF25-75 and blood levels of total cholesterol, triglicerydes and 25-OHD were monitored. After the 8-th week, only slight improvement in the case of mild asthma was observed. The changes in lipids were within the normal range, but there was a significant increase in the 25-OHD level.

  3. Experimental Investigations on Diesel engine using Methyl esters of Jatropha oil and fish oil

    NASA Astrophysics Data System (ADS)

    Karthikeyan, A.; Jayaprabakar, J.; Dude Williams, Richard

    2017-05-01

    The aim of the study is to use fish oil methyl ester (FME) and Jatropha oil methyl ester (JME) as a substitute for diesel in compression ignition engine. Experiments were conducted when the engine was fuelled with Diesel, Fish oil methyl ester and Jatropha oil methyl ester. The experiment covered a range of loads. An AVL smoke meter was used to measure the smoke density in HSU (Hatridge Smoke Unit). The exhaust emissions were measured using exhaust gas analyzer. High volume sampler was employed to measure the particulate matter in exhaust. The performance of the engine was evaluated in terms of brake specific fuel consumption, brake thermal efficiency. The combustion characteristics of the engine were studied in terms of cylinder pressure with respect to crank angle. The emissions of the engine were studied in terms of concentration of CO, NOx, particulate matter and smoke density. The results obtained for Fish oil methyl ester, Jatropha oil methyl ester, were compared with the results of diesel. Bio-diesel, which can be used as an alternate diesel fuel, is made from vegetable oil and animal fats. It is renewable, non-toxic and possesses low emission profiles.

  4. Prosopis alba exudate gum as novel excipient for fish oil encapsulation in polyelectrolyte bead system.

    PubMed

    Vasile, Franco Emanuel; Judis, María Alicia; Mazzobre, María Florencia

    2017-06-15

    In this work, a bottom-up approach based on the study of polyelectrolyte interactions was performed in order to evaluate the effect of Prosopis alba exudate gum as novel excipient for fish oil encapsulation in composed calcium-alginate-chitosan beads. Emulsion and beads properties such as oil distribution, encapsulation efficiency, yield, microstructure and thermo-oxidative protection were evaluated. Alginate and gum exert a synergistic effect on emulsion stability properties, which conducted to better oil distribution in the beads and higher encapsulation efficiencies (98%) and yield (89%). The positive effect of including the gum as wall material was observed in terms of a higher oil retention capacity of the alginate beads, improved oxidative thermal stability and better microstructural features. Present results are promising and allowed considering P. alba gum as a novel non-conventional polyelectrolyte for improving Ca-alginate beads microstructure and stability with the added benefit of taking advantage of an available resource currently untapped.

  5. Effects of dietary fish oil replacement on fillet lipids in North American Atlantic salmon (Salmo salar) families

    USDA-ARS?s Scientific Manuscript database

    Consumers want fish that contain high amount of long-chain omega-3 fatty acids for the health benefits. Fish producers desire to supply fish with these fatty acids while reducing the amount of fish oil included in the diet and replacing the fish oil with alternative oils. Two studies were conducte...

  6. Dietary Supplementation with Olive Oil or Fish Oil and Vascular Effects of Concentrated Ambient Particulate Matter Exposure in Human Volunteers

    EPA Science Inventory

    Background: Exposure to ambient particulate matter (PM) induces endothelial dysfunction, a risk factor for cardiovascular disease. Olive oil (OO) and fish oil (FO) supplements have beneficial effects on endothelial function. Objective: In this study we evaluated the efficacy of...

  7. Dietary Supplementation with Olive Oil or Fish Oil and Vascular Effects of Concentrated Ambient Particulate Matter Exposure in Human Volunteers

    EPA Science Inventory

    Background: Exposure to ambient particulate matter (PM) induces endothelial dysfunction, a risk factor for cardiovascular disease. Olive oil (OO) and fish oil (FO) supplements have beneficial effects on endothelial function. Objective: In this study we evaluated the efficacy of...

  8. The use of fish oil in bronchial asthma.

    PubMed

    Arm, J P; Lee, T H

    1989-01-01

    A fish-oil enriched diet has potential in modulating the humoral and inflammatory components of the allergic response by inhibiting the generation of pro-inflammatory mediators derived from arachidonic acid and by reducing the production of PAF-acether. In addition, EPA suppresses the responses of target cells and tissues. Studies in bronchial asthma confirm the anti-inflammatory potential of a fish-oil enriched diet. Dietary supplementation with EPA in subjects with asthma led to changes in leukocyte mediator generation and chemotactic responses. There was also a significant attenuation of the late asthmatic response to inhaled antigen. Further studies are needed to determine the full potential of such diets in effecting changes in the clinical aspects of allergic disease.

  9. Nutritional value of various ray fish liver oils to the pacific white shrimp Litopenaeus vannamei.

    PubMed

    Perez-Velazquez, Martin; González-Félix, Mayra L; Navarro-García, Gerardo; Valenzuela-Escalante, Erasmo

    2008-11-01

    A 32-day comparative feeding trial was performed to evaluate the nutritional value of four different ray fish liver oils to the Pacific white shrimp Litopenaeus vannamei. Four feeds were prepared with liver oil extracted from Dasyatis brevis, Rhinoptera steindachneri, Aetobatus narinari, and R. bonasus. A control feed was prepared with Menhaden fish oil. Ray fish liver oils were mainly composed of poly- and highly unsaturated fatty acids and contained levels of 20:5n-3 and 22:6n-3 comparable in magnitude to those of Menhaden fish oil, except for A. narinari liver oil, which had moderately low concentrations of 20:5n-3 and 22:6n-3 but showed a particularly high level of 20:4n-6, more than six times greater than that of Menhaden fish oil. Dietary fatty acids significantly influenced the fatty acid composition of shrimp muscle tissue, e.g., the diet with Menhaden fish oil elicited significantly higher shrimp muscle DHA level than diets with oil from D. brevis, and A. narinari, but not than diets with oil from R. steindachneri and R. bonasus. In spite of these differences, all four ray fish liver oils evaluated were as efficient in promoting growth and survival of L. vannamei as Menhaden fish oil, an ingredient known for its adequate nutritional quality to shrimp and fish. This study demonstrated one of the many possible applications of a locally-available resource that is currently being wasted.

  10. Effect of fish oil on arrhythmias and mortality: systematic review

    PubMed Central

    León, Hernando; Shibata, Marcelo C; Sivakumaran, Soori; Dorgan, Marlene; Chatterley, Trish

    2008-01-01

    Objective To synthesise the literature on the effects of fish oil—docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA)—on mortality and arrhythmias and to explore dose response and formulation effects. Design Systematic review and meta-analysis. Data sources Medline, Embase, the Cochrane Library, PubMed, CINAHL, IPA, Web of Science, Scopus, Pascal, Allied and Complementary Medicine, Academic OneFile, ProQuest Dissertations and Theses, Evidence-Based Complementary Medicine, and LILACS. Studies reviewed Randomised controlled trials of fish oil as dietary supplements in humans. Data extraction The primary outcomes of interest were the arrhythmic end points of appropriate implantable cardiac defibrillator intervention and sudden cardiac death. The secondary outcomes were all cause mortality and death from cardiac causes. Subgroup analyses included the effect of formulations of EPA and DHA on death from cardiac causes and effects of fish oil in patients with coronary artery disease or myocardial infarction. Data synthesis 12 studies totalling 32 779 patients met the inclusion criteria. A neutral effect was reported in three studies (n=1148) for appropriate implantable cardiac defibrillator intervention (odds ratio 0.90, 95% confidence interval 0.55 to 1.46) and in six studies (n=31 111) for sudden cardiac death (0.81, 0.52 to 1.25). 11 studies (n=32 439 and n=32 519) provided data on the effects of fish oil on all cause mortality (0.92, 0.82 to 1.03) and a reduction in deaths from cardiac causes (0.80, 0.69 to 0.92). The dose-response relation for DHA and EPA on reduction in deaths from cardiac causes was not significant. Conclusions Fish oil supplementation was associated with a significant reduction in deaths from cardiac causes but had no effect on arrhythmias or all cause mortality. Evidence to recommend an optimal formulation of EPA or DHA to reduce these outcomes is insufficient. Fish oils are a heterogeneous product, and the optimal formulations

  11. Effect of a single dose of emulsified versus capsular fish oils on plasma phospholipid fatty acids over 48 hours

    USDA-ARS?s Scientific Manuscript database

    Emulsified fish oil supplements provide an alternative to encapsulated fish oils. Oil-in-water emulsions may offer an advantage in digestion and absorption thereby increasing the bioavailability of fatty acids. We evaluated the effect of three oil-in-water emulsified fish oils (Emulsion B, Emulsion ...

  12. Dietary Fish Oil in Reducing Bone Metastasis of Breast Cancer

    DTIC Science & Technology

    2005-09-01

    polyunsaturated fatty acids ( PUFAs ) (1) increase the level of tumor suppressor protein PTEN, (2) inhibit the activity of PI 3 kinase, thus blocking a potent...15. SUBJECT TERMS Omega 3- fatty acids , bone morphogenetic protein-2 (BMP-2), breast cancer bone metastasis 16. SECURITY CLASSIFICATION OF: 17...complications must be of highest priority in formulating breast cancer therapy. Fish oil, rich in (o-3 polyunsaturated fatty acids ( PUFAs ) such as

  13. Fate of oil hydrocarbons in fish and shrimp after major oil spills in the Arabian Gulf

    SciTech Connect

    Fayad, N.M.; El-Mubarak, A.H.; Edora, R.L.

    1996-03-01

    Pollution of the marine environment with crude oil represents one of the most serious environmental problems that confront Saudi Arabia and other Gulf states. Oil pollution in the Arabian Gulf environment may affect the inhabitants through (1) human health hazard resulting from the consumption of contaminated sea food, (2) loss of food due to alteration of species productivity or elimination of some species, and (3) deterioration of recreation areas. Moreover, the problem of oil spill may be more severe in this part of the world. This is mainly because the source of drinking water in various Gulf states depends largely on sea water from which desalinated water is produced. Contamination of sea water with crude oil may adversely affect the quality of desalinated water and may badly damage desalination plants. During the last twelve years, the Arabian Gulf has been affected by two major oil spills. The first spill occurred on February 4, 1983 during the Iraq-Iran War, and the second major oil spill occured during the 1991 Gulf War. There is limited information about the level of oil hydrocarbons in edible fish, but two studies were carried out after both spills. This paper summarized the results of both studies carried out to assess the extent of contamination of various fish species of commercial value from the Arabian Gulf with oil hydrocarbons.

  14. High fish plus fish oil intake is associated with slightly reduced risk of venous thromboembolism: the Tromsø Study.

    PubMed

    Hansen-Krone, Ida J; Enga, Kristin F; Südduth-Klinger, Julie M; Mathiesen, Ellisiv B; Njølstad, Inger; Wilsgaard, Tom; Watkins, Steven; Brækkan, Sigrid K; Hansen, John-Bjarne

    2014-06-01

    Current knowledge of the effect of fish consumption on risk of venous thromboembolism (VTE) is scarce and diverging. Therefore, the purpose of the present study was to investigate the impact of fish consumption and fish oil supplements on the risk of VTE in a population-based cohort. Weekly intake of fish for dinner and intake of fish oil supplements during the previous year were registered in 23,621 persons aged 25-97 y who participated in the Tromsø Study from 1994 to 1995. Incident VTE events were registered throughout follow-up (31 December 2010). Cox-regression models were used to calculate HRs for VTE, adjusted for age, body mass index, sex, triglycerides, HDL cholesterol, physical activity, and education level. During a median of 15.8 y of follow-up there were 536 incident VTE events. High fish consumption was associated with a slightly reduced risk of VTE. Participants who ate fish ≥3 times/wk had 22% lower risk of VTE than those who consumed fish 1-1.9 times/wk (multivariable HR: 0.78; 95% CI: 0.60, 1.01; P = 0.06). The addition of fish oil supplements strengthened the inverse association with risk of VTE. Participants who consumed fish ≥3 times/wk who additionally used fish oil supplements had 48% lower risk than those who consumed fish 1-1.9 times/wk but did not use fish oil supplements (HR: 0.52; 95% CI: 0.34, 0.79; P = 0.002). In conclusion, a high weekly intake (≥3 times/wk) of fish was associated with a slightly reduced risk of VTE, and the addition of fish oil supplements strengthened the inverse effect. © 2014 American Society for Nutrition.

  15. Differential effects of krill oil and fish oil on the hepatic transcriptome in mice.

    PubMed

    Burri, Lena; Berge, Kjetil; Wibrand, Karin; Berge, Rolf K; Barger, Jamie L

    2011-01-01

    Dietary supplementation with ω-3 polyunsaturated fatty acids (ω-3 PUFAs), specifically the fatty acids docosahexaenoic acid (DHA; 22:6 ω-3) and eicosapentaenoic acid (EPA; 20:5 ω-3), is known to have beneficial health effects including improvements in glucose and lipid homeostasis and modulation of inflammation. To evaluate the efficacy of two different sources of ω-3 PUFAs, we performed gene expression profiling in the liver of mice fed diets supplemented with either fish oil (FO) or krill oil (KO). We found that ω-3 PUFA supplements derived from a phospholipid krill fraction (KO) downregulated the activity of pathways involved in hepatic glucose production as well as lipid and cholesterol synthesis. The data also suggested that KO-supplementation increases the activity of the mitochondrial respiratory chain. Surprisingly, an equimolar dose of EPA and DHA derived from FO modulated fewer pathways than a KO-supplemented diet and did not modulate key metabolic pathways regulated by KO, including glucose metabolism, lipid metabolism and the mitochondrial respiratory chain. Moreover, FO upregulated the cholesterol synthesis pathway, which was the opposite effect of krill-supplementation. Neither diet elicited changes in plasma levels of lipids, glucose, or insulin, probably because the mice used in this study were young and were fed a low-fat diet. Further studies of KO-supplementation using animal models of metabolic disorders and/or diets with a higher level of fat may be required to observe these effects.

  16. Evening primose oil and fish oil are ineffective as supplementary treatment of bronchial asthma.

    PubMed

    Stenius-Aarniala, B; Aro, A; Hakulinen, A; Ahola, I; Seppälä, E; Vapaatalo, H

    1989-06-01

    The effect of daily dietary supplementation with 15 to 20 mL of evening primrose seed oil or fish oil was assessed by comparison with olive oil as placebo in a cross-over study in 29 asthmatics. During 10 weeks of each regimen, the patients kept record of symptoms, peak expiratory flow rates and medication. Plasma and urine TxB2, PGE2, PGF2 alpha and 6 keto-PGF1 alpha and plasma fatty acid composition of plasma cholesterol esters were measured at the end of each treatment period. There were no differences between regimes with regard to peak flow rates, symptoms, or drug consumption. Plasma PGE2 levels increased during the fish oil treatment but there were no changes in other prostanoids in plasma or urine. The fatty acid pattern of plasma cholesterol esters showed significant differences between the supplementation periods. We conclude that moderate doses of evening primrose oil or fish oil are ineffective as a supplementary treatment of bronchial asthma.

  17. Plasma and neutrophil fatty acid composition in advanced cancer patients and response to fish oil supplementation

    PubMed Central

    Pratt, V C; Watanabe, S; Bruera, E; Mackey, J; Clandinin, M T; Baracos, V E; Field, C J

    2002-01-01

    Metabolic demand and altered supply of essential nutrients is poorly characterised in patients with advanced cancer. A possible imbalance or deficiency of essential fatty acids is suggested by reported beneficial effects of fish oil supplementation. To assess fatty acid status (composition of plasma and neutrophil phospholipids) in advanced cancer patients before and after 14 days of supplementation (12±1 g day−1) with fish (eicosapentaenoic acid, and docosahexaenoic acid) or placebo (olive) oil. Blood was drawn from cancer patients experiencing weight loss of >5% body weight (n=23). Fatty acid composition of plasma phospholipids and the major phospholipid classes of isolated neutrophils were determined using gas liquid chromatography. At baseline, patients with advanced cancer exhibited low levels (<30% of normal values) of plasma phospholipids and constituent fatty acids and elevated 20 : 4 n-6 content in neutrophil phospholipids. High n-6/n-3 fatty acid ratios in neutrophil and plasma phospholipids were inversely related to body mass index. Fish oil supplementation raised eicosapentaenoic acid and docosahexaenoic acid content in plasma but not neutrophil phospholipids. 20 : 4 n-6 content was reduced in neutrophil PI following supplementation with fish oil. Change in body weight during the supplementation period related directly to increases in eicosapentaenoic acid in plasma. Advanced cancer patients have alterations in lipid metabolism potentially due to nutritional status and/or chemotherapy. Potential obstacles in fatty acid utilisation must be addressed in future trials aiming to improve outcomes using nutritional intervention with fish oils. British Journal of Cancer (2002) 87, 1370–1378. doi:10.1038/sj.bjc.6600659 www.bjcancer.com © 2002 Cancer Research UK PMID:12454764

  18. Effects of crude oil and dispersed crude oil on the critical swimming speed of puffer fish, Takifugu rubripes.

    PubMed

    Yu, Xiaoming; Xu, Chuancai; Liu, Haiying; Xing, Binbin; Chen, Lei; Zhang, Guosheng

    2015-05-01

    In order to examine the effects of crude oil and dispersed crude oil (DCO) on the swimming ability of puffer fish, Takifugu rubripes, the critical swimming speeds (U crit) of fish exposed to different concentrations of water-soluble fraction (WSF) of crude oil and DCO solution were determined in a swimming flume. WSF and DCO significantly affected the U crit of puffer fish (p < 0.05). The U crit of puffer fish exposed to 136 mg L(-1) WSF and 56.4 mg L(-1) DCO decreased 48.7 % and 43.4 %, respectively. DCO was more toxic to puffer fish than WSF. These results suggested that crude oil and chemically dispersed oil could weaken the swimming ability of puffer fish.

  19. Inclusion of fish or fish oil in weight-loss diets for young adults: effects on blood lipids.

    PubMed

    Gunnarsdottir, I; Tomasson, H; Kiely, M; Martinéz, J A; Bandarra, N M; Morais, M G; Thorsdottir, I

    2008-07-01

    To assess the effects of fish (lean or oily) and fish oil consumption on blood lipid concentration during weight loss. Randomized, controlled 8-week trial of energy-restricted diet varying in fish and fish oil content. Subjects, 324 men and women, aged 20-40 years, body mass index 27.5-32.5 kg m(-2), from Iceland, Spain and Ireland, were randomized to one of four groups: (1) control (sunflower oil capsules, no seafood), (2) cod diet (3 x 150 g week(-1)), (3) salmon diet (3 x 150 g week(-1)), (4) fish oil (DHA/EPA capsules, no seafood). The macronutrient composition of the diets was similar between the groups and the capsule groups were single-blinded. Total cholesterol (TC), high-density lipoprotein (HDL) and low-density lipoprotein cholesterol, triacylglycerol (TG) and anthropometrics were measured at baseline and end point. The difference in logTG lowering between the control group and the cod diet, salmon diet and fish oil from baseline to end point was -0.036 (95% CI -0.079 to 0.006), -0.060 (-0.101 to -0.018) and -0.037 (-0.079 to 0.006), respectively. Reduction in TC was about 0.2 mmol l(-1) greater in the fish groups (cod and salmon) than in the control group, but only of borderline significance when adjusting for weight loss. HDL tended to decrease less in the diet groups consuming a significant amount of n-3 fatty acids (salmon and fish oil). Weight-loss diet including oily fish resulted in greater TG reduction than did a diet without fish or fish oil. Controlled trials using whole fish as a test meal are encouraged to be able to elucidate the role of different constituents of fish for human health.

  20. FTIR and turbidity studies of fish oil-dipalmitoylphosphatidylcholine model membrane interactions

    NASA Astrophysics Data System (ADS)

    Severcan, F.; Bayari, S.; Karahan, D.

    1999-05-01

    The temperature induced effects of fish oil on dipalmitoyl phosphatidylcholine (DPPC) model membranes (fish oil/lipid ratio: 2% w/w) were investigated by Fourier transform infrared (FTIR) and UV/Visible spectroscopic techniques. In FTIR study the C-H and CO stretching modes were investigated. The results of the FTIR study reveals that fish oil changes the physical properties of the DPPC multilamellar liposomes by broadening the phase transition profile and increasing the bandwidth of the CH 2 stretching bands. Those results imply respectively that fish oil interacts with the cooperativity region (C2-C8) of the fatty acyl chain and increases the dynamics of the acyl chains. At this fish oil/lipid ratio, fish oil decreases the main phase transition temperature to lower degrees. No significant change in the frequency of the CH 2 stretching bands is observed implying that fish oil does not change the number of gauche conformers, i.e., does not make any significant effect on the order of the membrane. Investigation of the CO band reveals that fish oil does not make hydrogen bonding with the CO group of phospholipid. Turbidity studies were performed at 550 nm. With the addition of fish oil, main phase transition temperature shifts to lower degrees and a dramatic decrease in absorbance values were observed indicating that fish oil increases the fluidity of the membrane. The results of turbidity studies are consistent with the FTIR study.

  1. A comparison of fish oil, flaxseed oil and hempseed oil supplementation on selected parameters of cardiovascular health in healthy volunteers.

    PubMed

    Kaul, Nalini; Kreml, Renee; Austria, J Alejandro; Richard, Melanie N; Edel, Andrea L; Dibrov, Elena; Hirono, Satoru; Zettler, Marjorie E; Pierce, Grant N

    2008-02-01

    The impact of dietary polyunsaturated fatty acids (PUFAs) of the n-6 and n-3 series on the cardiovascular system is well documented. To directly compare the effects of three dietary oils (fish, flaxseed and hempseed) given in concentrations expected to be self-administered in the general population on specific cardiovascular parameters in healthy volunteers. 86 healthy male and female volunteers completed a 12 week double blinded, placebo controlled, clinical trial. They were randomly assigned to one of the four groups. Subjects were orally supplemented with two 1 gm capsules of placebo, fish oil, flaxseed oil or hempseed oil per day for 12 weeks. Plasma levels of the n-3 fatty acids docosahexanoic acid and eicosapentanoic acid increased after 3 months supplementation with fish oil. Alpha linolenic acid concentrations increased transiently after flaxseed supplementation. However, supplementation with hempseed oil did not significantly alter the concentration of any plasma fatty acid. The lipid parameters (TC, HDL-C, LDL-C and TG) did not show any significant differences among the four groups. Oxidative modification of LDL showed no increase in lag time over the 12 wk period. None of the dietary interventions induced any significant change in collagen or thrombin stimulated platelet aggregation and no increase in the level of inflammatory markers was observed. From a consumer's perspective, ingesting 2 capsules of any of these oils in an attempt to achieve cardiovascular health benefits may not provide the desired or expected result over a 3 month period.

  2. Association of fish and fish liver oil intake in pregnancy with infant size at birth among women of normal weight before pregnancy in a fishing community.

    PubMed

    Thorsdottir, Inga; Birgisdottir, Bryndis E; Halldorsdottir, Sveinbjorg; Geirsson, Reynir T

    2004-09-01

    This 1998 study investigated the association between intake of fish and fish oil during pregnancy and full-term infants' size at birth in an Icelandic fishing community. Healthy women aged 20-40 years of normal weight before pregnancy (body mass index: 19.5-25.5 kg/m(2)) and at 38-43 weeks of gestation were selected randomly. Information on infant size at birth was collected from maternity records. Intake of fish and fish oil in pregnancy was ascertained (n = 491, 80.1%) by using a validated, focused, food frequency questionnaire. Infants of women in the lowest quartile of fish consumption weighed less (p = 0.036), were shorter (p < 0.001), and had a smaller head circumference (p < 0.001) at birth than those of women consuming higher amounts of fish. Infants of women in the highest quartile of fish oil intake (> or =1 tablespoon (11 ml)/day), consuming threefold the recommended dietary allowance of vitamin A and twofold that of vitamin D, were shorter (p = 0.036) and had a smaller head circumference (p = 0.003) than those of women consuming less. Infant size at birth increased with fish consumption, especially for women in the lower quartiles of consumption. Smaller birth size was linked to the highest levels of fish oil intake. Constituents of fish and fish oil might affect birth size differently depending on the amount consumed.

  3. Thrombogenicity of dietary milkfat, fish oil and hydrogenated coconut oil in a pig model.

    PubMed

    Thompson, K G; James, K A; Maccoll, A J; Arthur, D G

    1995-01-06

    Abstract Extract Several indicators of thrombosis and thrombolysis were measured in four groups of 16 pigs fed for 10 weeks on either a low fat basal ration or rations containing 10% anhydrous milkfat (AMF), 10% fish oil (MaxEPA), or 10% hydrogenated coconut oil (HCO). At the end of the feeding period, pigs on the three test fat/oil rations were subjected to balloon angioplasty of both femoral arteries. Thrombus size at the site of injury was measured both morphometrically and using autologous blood platelets labelled with (99)Tc-HMPAO (technetium - "Deretec").

  4. Detection of polycyclic aromatic hydrocarbons (PAHs) in raw menhaden fish oil using fluorescence spectroscopy: Method development.

    PubMed

    Pena, Edwin A; Ridley, Lauren M; Murphy, Wyatt R; Sowa, John R; Bentivegna, Carolyn S

    2015-09-01

    Raw menhaden fish oil was developed for biomonitoring polycyclic aromatic hydrocarbons (PAHs) using fluorescence spectroscopy. Menhaden (Genus Brevoortia) were collected in 2010 and/or 2011 from Delaware Bay, New Jersey, USA; James River, Virginia, USA; Vermillion Bay, Louisiana, USA (VBLA); and Barataria Bay, Louisiana, USA (BBLA). Barataria Bay, Louisiana received heavy oiling from the Deepwater Horizon oil spill. Method development included determining optimal wavelengths for PAH detection, fish oil matrix interferences, and influence of solvent concentration on extraction. Results showed that some fish oils contained high molecular weight PAH-like compounds in addition to other fluorescent compounds such as albumin and vitamin A and vitamin E. None of these naturally occurring compounds interfered with detection of high molecular weight PAHs. However, data suggested that the lipid component of fish oil was altering fluorescence spectra by supporting the formation of PAH excimers. For example, the most intense excitation wavelength for hydroxypyrene shifted from Ex285/Em430 to Ex340/Em430. Comparison of Deepwater Horizon crude oil and fish oil spectra indicated that some fish oils contained crude oil-like PAHs. Using wavelengths of Ex360/Em430, fish oil concentrations were calculated as 3.92 μg/g, 0.61 μg/g, and 0.14 μg/g for a Delaware Bay sample, BBLA 2011, and VBLA 2011, respectively. Overall, these results supported using menhaden fish oil to track PAH exposures spatially and temporally.

  5. Fish oil attenuates liver injury caused by LPS in weaned pigs associated with inhibition of TLR4 and nucleotide-binding oligomerization domain protein signaling pathways.

    PubMed

    Chen, Feng; Liu, Yulan; Zhu, Huiling; Hong, Yu; Wu, Zhifeng; Hou, Yongqing; Li, Quan; Ding, Binying; Yi, Dan; Chen, Hongbo

    2013-10-01

    This study evaluated whether fish oil exerted a hepatoprotective effect in a LPS-induced liver injury model via regulation of TLR4 and nucleotide-binding oligomerization domain protein (NOD) signaling pathways. Twenty-four piglets were used in a 2 × 2 factorial design, and the main factors included diet (5% corn oil or 5% fish oil) and immunological challenge (LPS or saline). Fish oil resulted in enrichment of eicosapentaenoic acid, docosahexaenoic acid and total (n-3) polyunsaturated fatty acids in liver. Less severe liver injury was observed in pigs fed fish oil, as evidenced by improved serum biochemical parameters and less severe histological liver damage. In addition, higher expression of liver tight junction proteins, and lower hepatocyte proliferation and higher hepatocyte apoptosis were observed in pigs fed fish oil. The improved liver integrity in pigs fed fish oil was concurrent with reduced hepatic mRNA expression of TLR4, myeloid differentiation factor 88, IL-1 receptor-associated kinase 1 and TNF-α receptor-associated factor 6, and NOD1, NOD2 and receptor-interacting serine/threonine-protein kinase 2, as well as reduced hepatic protein expression of NF-κB p65, leading to reduced hepatic pro-inflammatory mediators. These results indicate that fish oil improves liver integrity partially via inhibition of TLR4 and NOD signaling pathways under an inflammatory condition.

  6. Substitution of dietary fish oil with plant oils is associated with shortened mid intestinal folds in Atlantic salmon (Salmo salar)

    PubMed Central

    2014-01-01

    Background Fish meal and fish oil are increasingly replaced by ingredients from terrestrial sources in the feeds for farmed salmonids due to expanding production and reduced availability of marine feed raw material. Fish oil that is rich in n-3 polyunsaturated fatty acids is considered beneficial to human health in general and to prevent intestinal inflammation and carcinogenesis in particular. In contrast, n-6 fatty acids that are present in many vegetable oils have been associated with increased risk of colitis and colon cancer in rodents and humans, as well as lowered transcription levels of certain stress and antioxidant-related genes in Atlantic salmon. The aim of the present study was to investigate the intestinal health in Atlantic salmon fed with different vegetable oils as partial substitutes of fish oil in the diet. A feed trial lasting for 28 weeks included one reference diet containing fish oil as the sole lipid source and three diets where 80% of the fish oil was replaced by a plant oil blend with either olive oil, rapeseed oil or soybean oil as the main lipid source. These plant oils have intermediate or low n-3/n-6-ratios compared to fish oil having a high n-3/n-6-ratio. The protein and carbohydrate fractions were identical in all the feeds. Results Morphometric measurements showed significantly shorter folds in the mid intestine in all groups fed vegetable oils compared to the group fed fish oil. In the distal intestine, the complex folds were significantly shorter in the fish fed soybean oil compared to the fish fed rapeseed oil. Histological and immunohistochemical examination did not show clear difference in the degree of inflammation or proliferation of epithelial cells related to dietary groups, which was further confirmed by real-time RT-PCR which revealed only moderate alterations in the mRNA transcript levels of selected immune-related genes. Conclusions Shortened intestinal folds might be associated with reduced intestinal surface and

  7. Substitution of dietary fish oil with plant oils is associated with shortened mid intestinal folds in Atlantic salmon (Salmo salar).

    PubMed

    Moldal, Torfinn; Løkka, Guro; Wiik-Nielsen, Jannicke; Austbø, Lars; Torstensen, Bente E; Rosenlund, Grethe; Dale, Ole Bendik; Kaldhusdal, Magne; Koppang, Erling Olaf

    2014-03-07

    Fish meal and fish oil are increasingly replaced by ingredients from terrestrial sources in the feeds for farmed salmonids due to expanding production and reduced availability of marine feed raw material. Fish oil that is rich in n-3 polyunsaturated fatty acids is considered beneficial to human health in general and to prevent intestinal inflammation and carcinogenesis in particular. In contrast, n-6 fatty acids that are present in many vegetable oils have been associated with increased risk of colitis and colon cancer in rodents and humans, as well as lowered transcription levels of certain stress and antioxidant-related genes in Atlantic salmon.The aim of the present study was to investigate the intestinal health in Atlantic salmon fed with different vegetable oils as partial substitutes of fish oil in the diet. A feed trial lasting for 28 weeks included one reference diet containing fish oil as the sole lipid source and three diets where 80% of the fish oil was replaced by a plant oil blend with either olive oil, rapeseed oil or soybean oil as the main lipid source. These plant oils have intermediate or low n-3/n-6-ratios compared to fish oil having a high n-3/n-6-ratio. The protein and carbohydrate fractions were identical in all the feeds. Morphometric measurements showed significantly shorter folds in the mid intestine in all groups fed vegetable oils compared to the group fed fish oil. In the distal intestine, the complex folds were significantly shorter in the fish fed soybean oil compared to the fish fed rapeseed oil. Histological and immunohistochemical examination did not show clear difference in the degree of inflammation or proliferation of epithelial cells related to dietary groups, which was further confirmed by real-time RT-PCR which revealed only moderate alterations in the mRNA transcript levels of selected immune-related genes. Shortened intestinal folds might be associated with reduced intestinal surface and impaired nutrient absorption and

  8. Performance, carcass traits, muscle fatty acid composition and meat sensory properties of male Mahabadi goat kids fed palm oil, soybean oil or fish oil.

    PubMed

    Najafi, M H; Zeinoaldini, S; Ganjkhanlou, M; Mohammadi, H; Hopkins, D L; Ponnampalam, E N

    2012-12-01

    This study examined the effect of palm, soybean or fish oils on the performance, muscle fatty acid composition and meat quality of goat kids. Twenty-four male Mahabadi kids (BW=19.4±1.2 kg) were divided into three groups according to liveweight and randomly allocated to one of three diets. Animals were fed ad libitum for 84 days. Different dietary fat sources had no effect on performance and/or carcass quality attributes. The soybean oil diet decreased 16:0 and 18:0 concentrations and increased 18:2 and 18:3 and the ratio of PUFA/SFA in the muscle compared with other treatments. Fish oil feeding increased 20:5 n-3 and 22:6 n-3 concentrations and decreased the ratio of n-6/n-3 in the muscle. The results demonstrate that the use of fish oil is a nutritional strategy to improve the health claimable long-chain omega-3 fatty acid content and n-6/n-3 ratio in goat meat without changing the sensory properties or colour of meat.

  9. Encapsulation of fish oil into hollow solid lipid micro- and nanoparticles using carbon dioxide.

    PubMed

    Yang, Junsi; Ciftci, Ozan Nazim

    2017-09-15

    Fish oil was encapsulated in hollow solid lipid micro- and nanoparticles formed from fully hydrogenated soybean oil (FHSO) using a novel green method based on atomization of supercritical carbon dioxide (SC-CO2)-expanded lipid. The highest fish oil loading efficiency (97.5%, w/w) was achieved at 50%, w/w, initial fish oil concentration. All particles were spherical and in the dry free-flowing form; however, less smooth surface with wrinkles was observed when the initial fish oil concentration was increased up to 50%. With increasing initial fish oil concentration, melting point of the fish oil-loaded particles shifted to lower onset melting temperatures, and major polymorphic form transformed from α to β and/or β'. Oxidative stability of the loaded fish oil was significantly increased compared to the free fish oil (p<0.05). This innovative method forms free-flowing powder products that are easy-to-use solid fish oil formulation, which makes the handling and storage feasible and convenient. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Effect of fish oil on appetite and other symptoms in patients with advanced cancer and anorexia/cachexia: a double-blind, placebo-controlled study.

    PubMed

    Bruera, Eduardo; Strasser, Florian; Palmer, J Lynn; Willey, Jie; Calder, Kathryn; Amyotte, Gail; Baracos, Vickie

    2003-01-01

    To determine whether high doses of fish oil, administered over 2 weeks, improve symptoms in patients with advanced cancer and decreased weight and appetite. Sixty patients were randomly assigned to fish oil capsules or placebo. Appetite, tiredness, nausea, well-being, caloric intake, nutritional status, and function were prospectively assessed at days 1 and 14. The baseline weight loss was 16 +/- 11 and 16 +/- 8 kg in the fish oil (n = 30) and placebo (n = 30) group respectively, whereas the baseline appetite (0 mm = best and 10 mm = worst) was 58 +/- 24 mm and 67 +/- 19 mm, respectively (P = not significant). The mean daily dose was 10 +/- 4 (fish oil group) and 9 +/- 3 (placebo group) capsules, which provided 1.8 g of eicosapentaenoic acid and 1.2 g of docosahexaenoic acid in the fish oil group. No significant differences in symptomatic or nutritional parameters were found (P <.05), and there was no correlation between changes in different variables between days 1 and 14 and the fish oil doses. Finally, the majority of the patients were not able to swallow more than 10 fish oil capsules per day, mainly because of burping and aftertaste. Fish oil did not significantly influence appetite, tiredness, nausea, well-being, caloric intake, nutritional status, or function after 2 weeks compared with placebo in patients with advanced cancer and loss of both weight and appetite.

  11. Sunflower Oil but Not Fish Oil Resembles Positive Effects of Virgin Olive Oil on Aged Pancreas after Life-Long Coenzyme Q Addition

    PubMed Central

    González-Alonso, Adrián; Ramírez-Tortosa, César L.; Varela-López, Alfonso; Roche, Enrique; Arribas, María I.; Ramírez-Tortosa, M. Carmen; Giampieri, Francesca; Ochoa, Julio J.; Quiles, José L.

    2015-01-01

    An adequate pancreatic structure is necessary for optimal organ function. Structural changes are critical in the development of age-related pancreatic disorders. In this context, it has been reported that different pancreatic compartments from rats were affected according to the fat composition consumed. Since there is a close relationship between mitochondria, oxidative stress and aging, an experimental approach has been developed to gain more insight into this process in the pancreas. A low dosage of coenzyme Q was administered life-long in rats in order to try to prevent pancreatic aging-related alterations associated to some dietary fat sources. According to that, three groups of rats were fed normocaloric diets containing Coenzyme Q (CoQ) for two years, where virgin olive, sunflower, or fish oil was included as unique fat source. Pancreatic samples for microscopy and blood samples were collected at the moment of euthanasia. The main finding is that CoQ supplementation gives different results according to fat used in diet. When sunflower oil was the main fat in the diet, CoQ supplementation seems to improve endocrine pancreas structure and in particular β-cell mass resembling positive effects of virgin olive oil. Conversely, CoQ intake does not seem to improve the structural alterations of exocrine compartment previously observed in fish oil fed rats. Therefore CoQ may improve pancreatic alterations associated to the chronic intake of some dietary fat sources. PMID:26426013

  12. Sunflower Oil but Not Fish Oil Resembles Positive Effects of Virgin Olive Oil on Aged Pancreas after Life-Long Coenzyme Q Addition.

    PubMed

    González-Alonso, Adrián; Ramírez-Tortosa, César L; Varela-López, Alfonso; Roche, Enrique; Arribas, María I; Ramírez-Tortosa, M Carmen; Giampieri, Francesca; Ochoa, Julio J; Quiles, José L

    2015-09-29

    An adequate pancreatic structure is necessary for optimal organ function. Structural changes are critical in the development of age-related pancreatic disorders. In this context, it has been reported that different pancreatic compartments from rats were affected according to the fat composition consumed. Since there is a close relationship between mitochondria, oxidative stress and aging, an experimental approach has been developed to gain more insight into this process in the pancreas. A low dosage of coenzyme Q was administered life-long in rats in order to try to prevent pancreatic aging-related alterations associated to some dietary fat sources. According to that, three groups of rats were fed normocaloric diets containing Coenzyme Q (CoQ) for two years, where virgin olive, sunflower, or fish oil was included as unique fat source. Pancreatic samples for microscopy and blood samples were collected at the moment of euthanasia. The main finding is that CoQ supplementation gives different results according to fat used in diet. When sunflower oil was the main fat in the diet, CoQ supplementation seems to improve endocrine pancreas structure and in particular β-cell mass resembling positive effects of virgin olive oil. Conversely, CoQ intake does not seem to improve the structural alterations of exocrine compartment previously observed in fish oil fed rats. Therefore CoQ may improve pancreatic alterations associated to the chronic intake of some dietary fat sources.

  13. Docosahexaenoic acid-concentrated fish oil supplementation in subjects with mild cognitive impairment (MCI): a 12-month randomised, double-blind, placebo-controlled trial.

    PubMed

    Lee, Lai Kuan; Shahar, Suzana; Chin, Ai-Vyrn; Yusoff, Noor Aini Mohd

    2013-02-01

    Epidemiological studies have suggested a beneficial effect of fish oil supplementation in halting the initial progression of Alzheimer's disease. However, it remains unclear whether fish oil affects cognitive function in older people with mild cognitive impairment (MCI). This study investigated the effects of fish oil supplementation on cognitive function in elderly person with MCI. This was a 12-month, randomised, double-blind, placebo-controlled study using fish oil supplementation with concentrated docosahexaenoic acid (DHA). Thirty six low-socioeconomic-status elderly subjects with MCI were randomly assigned to receive either concentrated DHA fish oil (n = 18) or placebo (n = 18) capsules. The changes of memory, psychomotor speed, executive function and attention, and visual-constructive skills were assessed using cognitive tests. Secondary outcomes were safety and tolerability of the DHA concentrate. The fish oil group showed significant improvement in short-term and working memory (F = 9.890; ηp (2) = 0.254; p < 0.0001), immediate verbal memory (F = 3.715; ηp (2) = 0.114; p < 0.05) and delayed recall capability (F = 3.986; ηp (2) = 0.121; p < 0.05). The 12-month change in memory (p < 0.01) was significantly better in the fish oil group. Fish oil consumption was well tolerated, and the side effects were minimal and self-limiting. This study suggested the potential role of fish oil to improve memory function in MCI subjects. Studies with larger sample sizes, longer intervention periods, different fish oil dosages and genetic determinations should be investigated before definite recommendations can be made.

  14. A systematic review of the association between fish oil supplementation and the development of asthma exacerbations

    PubMed Central

    Hardy, M Scott; Kekic, Adrijana; Graybill, Nicole L; Lancaster, Zachary R

    2016-01-01

    A systematic review was conducted to examine the association between fish oil supplementation and the development of asthma exacerbations. Comprehensive literature reviews of recent fish oil studies were performed to evaluate alterations in asthma surrogate markers. Additionally, the relative compositions of the fish oils used in each study were analyzed. The results of the review were inconclusive, but provide a basis for future research methods. PMID:27635249

  15. A systematic review of the association between fish oil supplementation and the development of asthma exacerbations.

    PubMed

    Hardy, M Scott; Kekic, Adrijana; Graybill, Nicole L; Lancaster, Zachary R

    2016-01-01

    A systematic review was conducted to examine the association between fish oil supplementation and the development of asthma exacerbations. Comprehensive literature reviews of recent fish oil studies were performed to evaluate alterations in asthma surrogate markers. Additionally, the relative compositions of the fish oils used in each study were analyzed. The results of the review were inconclusive, but provide a basis for future research methods.

  16. Authentication of canned fish packing oils by means of Fourier transform infrared spectroscopy.

    PubMed

    Dominguez-Vidal, Ana; Pantoja-de la Rosa, Jaime; Cuadros-Rodríguez, Luis; Ayora-Cañada, María José

    2016-01-01

    The authentication of packing oil from commercial canned tuna and other tuna-like fish species was examined by means of attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and chemometrics. Using partial least squares discriminant analysis (PLS-DA), it was possible to differentiate olive oil from seed oils. Discrimination of olive oil from high-oleic sunflower oil was possible, despite the latter having a degree of unsaturation more similar to olive oil than to sunflower oil. However, in the samples analyzed, sunflower oil could not be differentiated clearly from those labeled with the generic term "vegetable oil". Furthermore, the authentication of extra virgin olive oil, although more difficult, could be achieved using ATR-FTIR spectroscopy. The method could be applied regardless of fish type, without interference from fish lipids.

  17. Fish oil and treatment of cancer cachexia.

    PubMed

    Giacosa, Attilio; Rondanelli, Mariangela

    2008-04-01

    Cancer cachexia is a syndrome characterized by high prevalence and multifactorial etiology. The pathophysiology of cancer-induced weight loss is mainly due to failure of food intake and to various metabolic abnormalities, including hypermetabolism. Multiple biologic pathways are involved in this process, including pro-inflammatory cytokines, neuroendocrine hormones and tumour specific factors such as proteolysis inducing factor (PIF). As a result, a protein and energy depletion is observed that is greater than what would be expected based on the simple decrease of food intake and is associated with marked reduction of lean body mass (LBM). Therapy requires a multi-model approach with control of reduced food intake and of the metabolic abnormalities. Combination treatment with nutritional support and modulation of metabolic/inflammation changes is promising. In this regard, n-3 fatty acids in dose of at least 1.5 g/day for a prolonged time to advanced cancer patients with weight loss, are associated with an improvement of clinical, biological and functional parameters and with amelioration of quality of life.

  18. Replacement of fish oil with thraustochytrid Schizochytrium sp. L oil in Atlantic salmon parr (Salmo salar L) diets.

    PubMed

    Miller, Matthew R; Nichols, Peter D; Carter, Chris G

    2007-10-01

    Replacing fish oil with that from a docosahexaenoic acid (22:6omega3, DHA) rich single cell micro-organism, thraustochytrid Schizochytrium sp. L, in diets for Atlantic salmon (Salmo salar) was investigated. Four experimental diets containing 100% thraustochytrid oil (TO), 100% palm oil (PO) and a 4:1 palm and thraustochytrid oil mixture (MX) were compared to a fish oil (FO) diet over 9 weeks. A saltwater transfer challenge occurred at the end of the trial for 14 days to test the diet treatments on the ability of salmon to smolt. There were no significant differences in the feed consumption of the diets or the digestibility of the omega3 or omega6 PUFA, indicating no differences in the digestibility of fatty acids between diets. No significant differences were noted between the growth of fish on the four diet treatments. Significant differences were noted in the fatty acid profiles of the fish muscle tissues between all diets. Fish on the TO diet had a significantly greater percentage of DHA in muscle tissue compared with fish on all other diets. Blood osmolarity, which is inversely related to the ability of salmon to smolt, from the TO and FO fed fish was significantly lower than that of fish on the PO diet. This study showed that thraustochytrid oil can be used to replace fish oil in Atlantic salmon diets without detriment to the growth of parr. Including thraustochytrid oil in fish diets significantly increases the amount of DHA in Atlantic salmon muscle and therefore is a candidate for use in oil blends for salmon diets. Thraustochytrid oil provides a renewable source of essential fatty acids, in particular DHA, for aquafeeds.

  19. Influence of palm oil and glycerol on properties of fish skin gelatin-based films.

    PubMed

    Nilsuwan, Krisana; Benjakul, Soottawat; Prodpran, Thummanoon

    2016-06-01

    Properties of fish skin gelatin film incorporated with palm oil at 50 and 75 % (w/w) as affected by glycerol at 0-30 % (w/w) were investigated. Increases in water vapour permeability and elongation at break along with decrease in tensile strength were noticed when levels of glycerol were increased (p < 0.05). Decrease in L*- and a*-values with coincidental increase in b*- and ΔE*-values were observed in emulsified films when amount of palm oil incorporated increased (p < 0.05). Light transmittance of all films increased as glycerol levels were increased (p < 0.05). FTIR results suggested that the protein-protein interaction in film matrix decreased when palm oil was incorporated. Films added with palm oil had lower glass transition and degradation temperatures than control films. The addition of 75 % palm oil and 10 % glycerol improved water vapour barrier property of fish skin gelatin films without drastic alteration of mechanical properties.

  20. Biomarkers of fish oil omega-3 polyunsaturated fatty acids intake in humans.

    PubMed

    Silva, Veronica; Barazzoni, Rocco; Singer, Pierre

    2014-02-01

    A biomarker is a measured characteristic that may be used as an indicator of some biological state or condition. In health and disease, biomarkers have been used not only for clinical diagnosis purposes but also as tools to assess effectiveness of a nutrition or drug intervention. When considering nutrition studies, evaluating the appropriate biomarker is a useful tool to assess compliance and incidence of a particular dietary component in the biochemistry of the organism. Fish oil is rich in ω-3 fatty acids that have well-known beneficial effects on human health mainly through its anti-inflammatory properties. It has been widely use to improve health and as a nutrition supplement in different pathological conditions such as cardiovascular, neurological, and critically ill related diseases. Eicosapentaenoic acid and docosahexaenoic acid levels present in different biological moieties (plasma, cellular membranes, adipose tissue, etc) are the best biomarkers of fish oil intake. Each biological source of fatty acids has its own advantages and disadvantages, thus which biomarker to choose and where to measure it requires a comprehension of the objectives of the investigation. In this article we will review key facts about fish oil intake biomarkers to evaluate how components of a specific diet could be monitored and identified in biological samples. Having an accurate assessment of nutrition patterns could provide effective targets for intervention aimed at modifying eating habits and lifestyle towards the improvement of health.

  1. Lymphatic transport of fat in rats with normal- and malabsorption following intake of fats made from fish oil and decanoic acid. Effects of triacylglycerol structure.

    PubMed

    Straarup, E M.; Høy, C -E.

    2001-07-01

    Fish oils contain essential polyunsaturated fatty acids of the n-3 family. In fat malabsorption the n-3 fatty acids are poorly absorbed. Absorption may be improved by modifying the fatty acid profile of fish oil through interesterification with medium chain fatty acids. We examined the absorption of fish oil interesterified with decanoic acid in rats with normal- and malabsorption compared to a physical mixture and the fish oil itself. The interesterified fats were: 1) a regiospecific fat with decanoic acid located mainly in the sn1/3-positions and a long chain fatty acid from fish oil in the sn2-position, 2) a fat with a random distribution of fatty acids in all positions of the triacylglycerol. The main mesenteric lymph duct was cannulated for collection of lymph. In the malabsorbing rats the common bile duct was cannulated as well to divert both pancreatic juice and bile. The fatty acid composition in lymph samples collected for 24 hours was determined. Accumulated transport of n-3 fatty acids from fish oil was improved in malabsorbing rats and recoveries of fatty acids after 24 hours were improved in both rats with normal- and malabsorption administered the randomized fat compared to fish oil.

  2. Dietary high-linoleate safflower oil is not hypocholesterolemic in aged mice after a long-term feeding--comparison with lard, perilla oil and fish oil.

    PubMed

    Ishihara, A; Ito, A; Sakai, K; Watanabe, S; Kobayashi, T; Okuyama, H

    1995-04-01

    Aged mice (6 months of age) fed a conventional diet were shifted to diets containing 10% lard, high-linoleate safflower seed oil, high alpha-linolenate perilla seed oil or high-docosahexaenoate fish oil. A significant increase in whole body cholesterol (/g wt) was seen within 30 d after the shift (rapid response), followed by a gradual decrease in 60 to 120 d (slow response); similar changes occurred in all the dietary groups. Shortly after the shift, the serum cholesterol concentrations increased to higher levels in the lard and safflower oil groups than in the other groups, and the levels at 120 d were in the group order of safflower oil > lard > perilla oil > fish oil. Rapid and slow responses to dietary shifts were also seen in hepatic cholesterol levels (/g wt), which were higher in the lard group than in the other groups at 120 d. The arterial cholesterol contents of the fish oil group tended to be less than in the other groups at 120 d. Thus in aged mice after a relatively long-term feeding (> one tenth of the life-span), safflower oil was not hypocholesterolemic as compared with lard and other omega 3-rich oils. Long-term feeding of fish oil maintained serum cholesterol concentrations at lower levels than feeding with safflower oil or lard and without accumulating cholesterol in the aorta, liver or whole body; perilla oil was also hypocholesterolemic but to a lesser degree than fish oil.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Fish Oil Enhances Recovery of Intestinal Microbiota and Epithelial Integrity in Chronic Rejection of Intestinal Transplant

    PubMed Central

    Li, Qiurong; Zhang, Qiang; Wang, Chenyang; Tang, Chun; Zhang, Yanmei; Li, Ning; Li, Jieshou

    2011-01-01

    Background The intestinal chronic rejection (CR) is the major limitation to long-term survival of transplanted organs. This study aimed to investigate the interaction between intestinal microbiota and epithelial integrity in chronic rejection of intestinal transplantation, and to find out whether fish oil enhances recovery of intestinal microbiota and epithelial integrity. Methods/Principal Findings The luminal and mucosal microbiota composition of CR rats were characterized by DGGE analysis at 190 days after intestinal transplant. The specific bacterial species were determined by sequence analysis. Furthermore, changes in the localization of intestinal TJ proteins were examined by immunofluorescent staining. PCR-DGGE analysis revealed that gut microbiota in CR rats had a shift towards Escherichia coli, Bacteroides spp and Clostridium spp and a decrease in the abundance of Lactobacillales bacteria in the intestines. Fish oil supplementation could enhance the recovery of gut microbiota, showing a significant decrease of gut bacterial proportions of E. coli and Bacteroides spp and an increase of Lactobacillales spp. In addition, CR rats showed pronounced alteration of tight junction, depicted by marked changes in epithelial cell ultrastructure and redistribution of occuldin and claudins as well as disruption in TJ barrier function. Fish oil administration ameliorated disruption of epithelial integrity in CR, which was associated with an improvement of the mucosal structure leading to improved tight junctions. Conclusions/Significance Our study have presented novel evidence that fish oil is involved in the maintenance of epithelial TJ integrity and recovery of gut microbiota, which may have therapeutic potential against CR in intestinal transplantation. PMID:21698145

  4. Effects of dietary fish oil and trans fat on rat aorta histopathology and cardiovascular risk markers.

    PubMed

    Park, Seonhye; Park, Yongsoon

    2009-01-01

    Fish oil and shortening have been suggested to have opposite effects on cardiovascular disease (CVD). This study investigated the effect of shortening and fish oil on CVD risk factors and aorta histopathology, and the association between risk factors and aorta histopathology. Male Wister rats (n=30) were fed an AIN-93G diet containing 20% fat in the form of fish oil, shortening, or soybean oil for 4 weeks. Total cholesterol (TC), triacylglyceride (TG), and C-reactive protein levels were significantly (P<0.001) lower in the fish oil than in soybean oil and shortening groups. HDL-cholesterol concentrations were significantly different (P<0.001) between groups. In addition, LDL-cholesterol levels were significantly (P<0.001) lower in the fish oil and shortening groups than in the soybean oil group. Insulin and glucose concentrations did not differ among groups. Effect of dietary fat on tissue fatty acid composition significantly differed in abdominal fat and brain compared with RBC, heart, kidney and liver. The aortic wall was significantly (P=0.02) thinner in the fish oil group than in the soybean oil and shortening groups. The aortic wall thickness was positively correlated with TG and TC, but negatively with EPA + DHA levels of all tissues. These results suggested that fish oil had protective effects on aorta histopathology by hypolipidemic action in this rat model.

  5. Fish oil promotes survival and protects against cognitive decline in severely undernourished mice by normalizing satiety signals

    PubMed Central

    Avraham, Yosefa; Saidian, Mayer; Burston, James J.; Mevorach, Raphael; Vorobiev, Lia; Magen, Iddo; Kunkes, Eithan; Borges, Beatriz; Lichtman, Aron H.; Berry, Elliot M.

    2010-01-01

    Severe malnutrition resulting from anorexia nervosa or involuntary starvation leads to low weight, cognitive deficits, and increased mortality rates. In the present study, we examined whether fish oil supplementation, compared with canola oil, would ameliorate the morbidity and mortality associated with these conditions by normalizing endocannabinoid and monoaminergeric systems as well as other systems involved in satiety and cognitive function within the hypothalamus and hippocampus. Female Sabra mice restricted to 40% of their daily food intake exhibited decreased body weight, were sickly in appearance, displayed cognitive deficits, and had increased mortality rates. Strikingly, fish oil supplementation that contains high omega-3 fatty acids levels decreased mortality and morbidity, and normalized the expression of genes and neurotransmitters in the hippocampus and hypothalamus. Fish oil supplementation, but not canola oil, increased survival rates, improved general appearance, and prevented cognitive decline, despite the facts that both diets contained an equivalent number of calories and that there were no differences in weight between mice maintained on the two diets in 100% but decrease in the 40%. In the hypothalamus, the beneficial effects of fish oil supplementation were related to normalization of the endocannabinoid 2-arachidonylglycerol (2-AG), serotonin (5-HT) (p<0.056), dopamine (DA), neuropeptide Y (NPY), and Ca2+/calmodulin (CaM)-dependent protein kinase (Camkk2). In the hippocampus, fish oil supplementation normalized 5-HT, Camkk2, silent mating type information regulation 1 (SIRT-1), and brain-derived neurotrophic factor (BDNF). In conclusion, dietary supplements of fish oil, as source of omega-3 fatty acids, may alleviate cognitive impairments associated with severe diet restriction and prolong survival independently of weight gain by normalizing neurochemical systems. PMID:21109417

  6. Fish oil promotes survival and protects against cognitive decline in severely undernourished mice by normalizing satiety signals.

    PubMed

    Avraham, Yosefa; Saidian, Mayer; Burston, James J; Mevorach, Raphael; Vorobiev, Lia; Magen, Iddo; Kunkes, Eithan; Borges, Beatriz; Lichtman, Aron H; Berry, Elliot M

    2011-08-01

    Severe malnutrition resulting from anorexia nervosa or involuntary starvation leads to low weight, cognitive deficits and increased mortality rates. In the present study, we examined whether fish oil supplementation, compared with that of canola oil, would ameliorate the morbidity and mortality associated with these conditions by normalizing endocannabinoid and monoaminergic systems as well as other systems involved in satiety and cognitive function within the hypothalamus and hippocampus. Female Sabra mice restricted to 40% of their daily food intake exhibited decreased body weight, were sickly in appearance, displayed cognitive deficits and had increased mortality rates. Strikingly, fish oil supplementation that contains high omega-3 fatty acids levels decreased mortality and morbidity, and normalized the expression of genes and neurotransmitters in the hippocampus and hypothalamus. Fish oil supplementation, but not canola oil, increased survival rates, improved general appearance and prevented cognitive decline, despite the facts that both diets contained an equivalent number of calories and that there were no differences in weight between mice maintained on the two diets in 100% but decrease in the 40%. In the hypothalamus, the beneficial effects of fish oil supplementation were related to normalization of the endocannabinoid 2-arachidonylglycerol, serotonin (5-HT) (P<.056), dopamine, neuropeptide Y (NPY) and Ca(2+)/calmodulin (CaM)-dependent protein kinase (Camkk2). In the hippocampus, fish oil supplementation normalized 5-HT, Camkk2, silent mating type information regulation 1 and brain-derived neurotrophic factor. In conclusion, dietary supplements of fish oil, as source of omega-3 fatty acids, may alleviate cognitive impairments associated with severe diet restriction and prolong survival independently of weight gain by normalizing neurochemical systems. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Fish and fish-liver oil consumption in adolescence and midlife and risk of CHD in older women

    PubMed Central

    Haraldsdottir, Alfheidur; Torfadottir, Johanna E; Valdimarsdottir, Unnur A; Aspelund, Thor; Harris, Tamara B; Launer, Lenore J; Gudnason, Vilmundur; Steingrimsdottir, Laufey

    2017-01-01

    Objective To study the association of fish and fish-liver oil consumption across the lifespan with CHD later in life among Icelandic women, with special emphasis on the effects of consumption in adolescence. Design Prevalence association study. Logistic regression was used to estimate odds ratios and 95 % confidence intervals of CHD according to fish or fish-liver oil exposure. Models were adjusted for age, education, concurrent diet and other known risk factors. Setting The study was nested within the AGES-Reykjavik Study, conducted in Reykjavik, Iceland. Subjects Participants were 3326 women aged 66–96 years, with available information on CHD status at entry to the study and information on fish and fish-liver oil consumption during midlife and adolescence. Dietary habits were assessed retrospectively using a validated FFQ. Results CHD was identified in 234 (7·9 %) women. Compared with women with no intake of fish-liver oil in adolescence or midlife, women who consumed fish-liver oil at least three times weekly in adolescence or in midlife had a decreased risk of CHD (OR = 0·62; 95 % CI 0·45, 0·85 and OR = 0·68; 95 % CI 0·50, 0·94, respectively). No associations were observed between fish intake (>2 portions/week v. ≤2 portions/week) in adolescence or midlife and CHD in this population with high fish intake. Conclusions Fish-liver oil consumption, from early life, may reduce the risk of CHD in older women. Lifelong nutrition may be of importance in the prevention of CHD in older women. PMID:25882499

  8. High-performance liquid chromatographic determination of vitamin D3 in fish liver oils and eel body oils.

    PubMed

    Takeuchi, A; Okano, T; Ayame, M; Yoshikawa, H; Teraoka, S; Murakami, Y; Kobayashi, T

    1984-10-01

    Identification and determination of vitamin D3 (or D2) and 25-OH-D3 in fish liver oils and eel body oils were carried out. By co-chromatography on HPLC, UV spectra and/or GC-MS, vitamin D3 was identified in naturally occurring fish liver oils and eel body oils, whereas a drop of fish liver oil contained supplemented vitamin D2. 25-OH-D3 was identified only in skipjack liver oil. The HPLC method proposed in a previous report (Takeuchi, A. et al. (1984): J. Nutr. Sci. Vitaminol., 30, 11-25) was confirmed to also be useful for determination of vitamin D3 (or D2) in fish liver oils and eel body oils. The assayed values of vitamin D3 in skipjack and tuna liver oils were 57,760 and 16,200 IU/g, respectively, which were much higher than those in cod and pollack liver oils. The assayed values of vitamin D3 in eel body oils were very low (16-43 IU/g) and showed no appreciable change despite differences in the farming conditions. Determination of 25-OH-D3 in skipjack oil was performed by using HPLC, and the assayed value was 1.8 micrograms/g. This was about 1/800 lower than that of vitamin D3.

  9. Fatty acid profiles, growth, and immune responses of neonatal lambs fed milk replacer and supplemented with fish oil or safflower oil

    USDA-ARS?s Scientific Manuscript database

    Diets supplemented with long-chain, n-3 (e.g., marine fish oil) polyunsaturated fatty acids (PUFA) have improved the health and performance of neonatal and growing animals. This study was conducted with lambs that were orphaned at approximately 1 day of age to determine whether supplementing milk re...

  10. Modifying shale oil to improve flow characteristics

    SciTech Connect

    Seitzer, W.H.; Lovell, P.F.

    1982-05-01

    Shale oil, which forms a viscous, wax slurry below 25 C, was treated in several different ways to try to improve its flow characteristics as measured in a concentric cylinder viscometer. Removing the wax does not greatly improve the pumpability of the oil. Hydrotreatment of the whole oil to take out nitrogen, sulfur, and oxygen can lower the viscosity by a factor of five or more, even though the pour point is not greatly affected. Apparently hydrogenolysis of the nitrogen, sulfur, and oxygen lowers the molecular weight of the oil without much modification of the paraffinic wax. The pour point of the shale oil can be decreased with various commercial pour improvers. Sometimes an accompanying drop in viscosity is observed, but most of this decrease is not stable to shear in the viscometer.

  11. Effects of a fish oil containing lipid emulsion on plasma phospholipid fatty acids, inflammatory markers, and clinical outcomes in septic patients: a randomized, controlled clinical trial

    PubMed Central

    2010-01-01

    Introduction The effect of parenteral fish oil in septic patients is not widely studied. This study investigated the effects of parenteral fish oil on plasma phospholipid fatty acids, inflammatory mediators, and clinical outcomes. Methods Twenty-five patients with systemic inflammatory response syndrome or sepsis, and predicted to need parenteral nutrition were randomized to receive either a 50:50 mixture of medium-chain fatty acids and soybean oil or a 50:40:10 mixture of medium-chain fatty acids, soybean oil and fish oil. Parenteral nutrition was administrated continuously for five days from admission. Cytokines and eicosanoids were measured in plasma and in lipopolysaccharide-stimulated whole blood culture supernatants. Fatty acids were measured in plasma phosphatidylcholine. Results Fish oil increased eicosapentaenoic acid in plasma phosphatidylcholine (P < 0.001). Plasma interleukin (IL)-6 concentration decreased significantly more, and IL-10 significantly less, in the fish oil group (both P < 0.001). At Day 6 the ratio PO2/FiO2 was significantly higher in the fish oil group (P = 0.047) and there were fewer patients with PO2/FiO2 <200 and <300 in the fish oil group (P = 0.001 and P = 0.015, respectively). Days of ventilation, length of intensive care unit (ICU) stay and mortality were not different between the two groups. The fish oil group tended to have a shorter length of hospital stay (22 ± 7 vs. 55 ± 16 days; P = 0.079) which became significant (28 ± 9 vs. 82 ± 19 days; P = 0.044) when only surviving patients were included. Conclusions Inclusion of fish oil in parenteral nutrition provided to septic ICU patients increases plasma eicosapentaenoic acid, modifies inflammatory cytokine concentrations and improves gas exchange. These changes are associated with a tendency towards shorter length of hospital stay. Trials Registration Clinical Trials Registration Number ISRCTN89432944 PMID:20085628

  12. Fish Oil Reduces Hepatic Injury by Maintaining Normal Intestinal Permeability and Microbiota in Chronic Ethanol-Fed Rats

    PubMed Central

    Chen, Jiun-Rong; Chen, Ya-Ling; Peng, Hsiang-Chi; Lu, Yu-An; Chuang, Hsiao-Li; Chang, Hsiao-Yun; Wang, Hsiao-Yun; Su, Yu-Ju; Yang, Suh-Ching

    2016-01-01

    The aim of this study was to investigate the ameliorative effects of fish oil on hepatic injury in ethanol-fed rats based on the intestinal permeability and microbiota. Rats were assigned to 6 groups and fed either a control diet or an ethanol diet such as C (control), CF25 (control with 25% fish oil), CF57 (control with 57% fish oil), E (ethanol), EF25 (ethanol with 25% fish oil), and EF57 (ethanol with 57% fish oil) groups. Rats were sacrificed at the end of 8 weeks. Plasma aspartate aminotransferase (AST) and aminotransferase (ALT) activities, hepatic cytokines, and plasma endotoxin levels were significantly higher in the E group. In addition, hepatic histopathological analysis scores in the E group were significantly elevated. Rats in the E group also showed increased intestinal permeability and decreased numbers of fecal Bifidobacterium. However, plasma AST and ALT activities and hepatic cytokine levels were significantly lower in the EF25 and EF57 groups. Histological changes and intestinal permeability were also improved in the EF25 and EF57 groups. The fecal Escherichia coli numbers were significantly lower, but fecal Bifidobacterium numbers were significantly higher in the EF25 and EF57 groups. PMID:27143963

  13. Dietary combination effects of conjugated linoleic acid and flaxseed or fish oil on the concentration of linoleic and arachidonic acid in poultry meat.

    PubMed

    Shin, D; Narciso-Gaytán, C; Park, J H; Smith, S B; Sánchez-Plata, M X; Ruiz-Feria, C A

    2011-06-01

    This study was conducted to determine the effects of the combination of dietary conjugated linoleic acid (CLA) and n-3 fatty acids on the linoleic acid (C18:2n-6) and arachidonic acid (C20:4n-6) concentrations of broiler chicken breast and thigh muscles. One hundred and twenty broilers were raised to 6 wk of age. All chicks were fed a basal corn-soybean meal diet containing 5 different fat sources at an inclusion level of 2% total fat: 1) CLA, 2) flaxseed oil, 3) menhaden fish oil, 4) CLA and flaxseed oil, and 5) CLA and menhaden fish oil. Eight broilers from each treatment were processed at 4 and 6 wk of age. Breast and thigh muscle samples were collected and analyzed for total fat content and fatty acid composition. The results showed that broilers from the CLA and fish oil treatment had lower arachidonic acid concentrations in both breast and thigh muscles than those fed the flaxseed oil diet or the CLA and flaxseed oil diet (P < 0.05). The arachidonic acid concentration and n-6:n-3 ratio of breast and thigh samples from the menhaden fish oil diet were similar to those of the CLA and fish oil diet (P > 0.05), but the inclusion of linoleic acid into chicken thigh muscles of broilers fed the CLA and menhaden fish oil diet improved significantly when compared with that of the diet containing menhaden fish oil only. Thus, the combination of CLA and menhaden fish oil is recommended to reduce the concentrations of linoleic and arachidonic acids in broiler chicken breast and thigh muscles.

  14. Physical and oxidative stability of fish oil-in-water emulsions stabilized with fish protein hydrolysates.

    PubMed

    García-Moreno, Pedro J; Guadix, Antonio; Guadix, Emilia M; Jacobsen, Charlotte

    2016-07-15

    The emulsifying and antioxidant properties of fish protein hydrolysates (FPH) for the physical and oxidative stabilization of 5% (by weight) fish oil-in-water emulsions were investigated. Muscle proteins from sardine (Sardina pilchardus) and small-spotted catshark (Scyliorhinus canicula) were hydrolyzed to degrees of hydrolysis (DH) of 3-4-5-6% with subtilisin. Sardine hydrolysates with low DH, 3% and 4%, presented the most effective peptides to physically stabilize emulsions with smaller droplet size. This implied more protein adsorbed at the interface to act as physical barrier against prooxidants. This fact might also be responsible for the higher oxidative stability of these emulsions, as shown by their lowest peroxide value and concentration of volatiles such as 1-penten-3-one and 1-penten-3-ol. Among the hydrolysates prepared from small-spotted catshark only the hydrolysate with DH 3% yielded a physically stable emulsion with low concentration of unsaturated aldehydes. These results show the potential of FPH as alternative protein emulsifiers for the production of oxidatively stable fish oil-in-water emulsions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Randomized clinical trial of intravenous soybean oil alone versus soybean oil plus fish oil emulsion after gastrointestinal cancer surgery.

    PubMed

    Jiang, Z M; Wilmore, D W; Wang, X R; Wei, J M; Zhang, Z T; Gu, Z Y; Wang, S; Han, S M; Jiang, H; Yu, K

    2010-06-01

    Specific immunonutrients may reduce the incidence of postoperative complications and shorten recovery time. This randomized trial evaluated the clinical efficacy of a fish oil emulsion on outcome and immune function after gastrointestinal cancer surgery. A total of 206 patients with gastrointestinal or colonic cancer were randomized to receive isocaloric and isonitrogenous intravenous infusions of either soybean oil alone (1.2 g per kg bodyweight per day; control group, 103 analysed) or soybean plus fish oil emulsion (1.0 and 0.2 g per kg per day respectively; treatment group, 100 analysed) over 20-24 h daily for 7 days after surgery. Baseline data were comparable in the two groups. There were fewer infectious complications (four versus 12 on day 8; P = 0.066), systemic inflammatory response syndrome (SIRS) was significantly less common (four versus 13; P = 0.039) and hospital stay was significantly shorter (mean(s.d.) 15(5) versus 17(8) days; P = 0.041) in the treatment group. Total postoperative medical costs were comparable in the two groups (mean(s.d.) US $ 1269(254) and 1302(324) in treatment and control groups respectively; P = 0.424). The median (interquartile range) difference in CD4/CD8 between days 1 and 8 after surgery was + 0.30 (0.06 to 0.79) in patients receiving fish oil and + 0.20 (-0.19 to 0.55) in controls (P = 0.021). No severe adverse events occurred in either group. Fish oil emulsion-supplemented parenteral nutrition significantly reduced SIRS and length of hospital stay. These clinical benefits may be related to normalization of cellular immune functions and modulation of the inflammatory response.

  16. Fish oil prevents essential fatty acid deficiency and enhances growth: clinical and biochemical implications.

    PubMed

    Strijbosch, Robert A M; Lee, Sang; Arsenault, Danielle A; Andersson, Charlotte; Gura, Kathleen M; Bistrian, Bruce R; Puder, Mark

    2008-05-01

    Fish oil, a rich source of omega-3 fatty acids, has never been used as the sole source of lipid in clinical practice for fear of development of essential fatty acid deficiency, as it lacks the believed requisite levels of linoleic acid, an omega-6 fatty acid. The objectives of this study were to establish biochemical standards for fish oil as the sole fat and to test the hypothesis that fish oil contains adequate amounts of omega-6 fatty acids to prevent essential fatty acid deficiency. Forty mice were divided into 2 groups that were either pair fed or allowed to eat ad libitum. In each group, 4 subgroups of 5 mice were fed 1%, 5%, and 10% fish oil diets by weight or a control soybean diet for 9 weeks. Blood was collected at 4 time points, and fatty acid analysis was performed. Food intake and weight status were monitored. All groups but the pair-fed 1% fish oil group gained weight, and the 5% fish oil group showed the highest caloric efficiency in both pair-fed and ad libitum groups. Fatty acid profiles for the 1% fish oil group displayed clear essential fatty acid deficiency, 5% fish oil appeared marginal, and 10% and soybean oil diets were found to prevent essential fatty acid deficiency. Fish oil enhances growth through higher caloric efficiency. We established a total omega-6 fatty acid requirement of between 0.30% and 0.56% of dietary energy, approximately half of the conventionally believed 1% as linoleic acid. This can presumably be attributed to the fact that fish oil contains not only a small amount of linoleic acid, but also arachidonic acid, which has greater efficiency to meet omega-6 fatty acid requirements.

  17. Physicochemical Property and Oxidative Stability of Whey Protein Concentrate Multiple Nanoemulsion Containing Fish Oil.

    PubMed

    Hwang, Jae-Young; Ha, Ho-Kyung; Lee, Mee-Ryung; Kim, Jin Wook; Kim, Hyun-Jin; Lee, Won-Jae

    2017-02-01

    The objectives of this research were to produce whey protein concentrate (WPC) multiple nanoemulsion (MNE) and to study how whey protein concentration level and antioxidant type affected the physicochemical properties and oxidative stability of fish oil in MNE. The morphological and physicochemical characteristics of MNE were investigated by using transmission electron microscopy and particle size analyzer, respectively. The oxidative stability of fish oil in MNEs was assessed by measuring peroxide value (PV), p-anisidine value, and volatile compounds. The spherical forms of emulsions with size ranging from 190 to 210 nm were observed indicating the successful production of MNE. Compared with free fish oil, fish oil in MNE exhibited lower PV, p-anisidine value, and formation of maker of oxidation of fish oil indicating the oxidative stability of fish oil in MNE was enhanced. PV, p-anisidine value, and makers of oxidation of fish oil were decreased with increased WPC concentration level. The combined use of Vitamin C and E in MNE resulted in a reduction in PV and p-anisidine value, and development of maker of oxidation. In conclusion, WPC concentration level and antioxidant type are key factors affecting the droplet size of MNE and oxidative stability of fish oil. © 2017 Institute of Food Technologists®.

  18. Fish Oil Supplementation and Fatty Acid Synthase Expression in the Prostate: A Randomized Controlled Trial

    DTIC Science & Technology

    2007-03-01

    14. ABSTRACT: See next page. 15. SUBJECT TERMS Prostate Cancer; Lipid Medtabolism, Clinical Trial; Omega -3 Fatty Acids 16. SECURITY...AD_________________ Award Number: W81XWH-04-1-0296 TITLE: Fish Oil Supplementation and Fatty Acid ...SUBTITLE Fish Oil Supplementation and Fatty Acid Synthase Expression in the Prostate: A 5a. CONTRACT NUMBER Randomized

  19. Enhanced bioavailability of EPA from emulsified fish oil preparations versus capsular triacylglycerol

    USDA-ARS?s Scientific Manuscript database

    Pre-emulsified fish oil supplements, an alternative to capsular triacylglycerol, may enhance the uptake of LCn3 fatty acids it contains. A randomized, Latin-square crossover design was used to compare the effects of four fish oil supplement preparations on phospholipid (PLFA) and chylomicron fatty ...

  20. Oxidized fish oil in rat pregnancy causes high newborn mortality and increases maternal insulin resistance.

    PubMed

    Albert, Benjamin B; Vickers, Mark H; Gray, Clint; Reynolds, Clare M; Segovia, Stephanie A; Derraik, José G B; Lewandowski, Paul A; Garg, Manohar L; Cameron-Smith, David; Hofman, Paul L; Cutfield, Wayne S

    2016-09-01

    Fish oil is commonly taken by pregnant women, and supplements sold at retail are often oxidized. Using a rat model, we aimed to assess the effects of supplementation with oxidized fish oil during pregnancy in mothers and offspring, focusing on newborn viability and maternal insulin sensitivity. Female rats were allocated to a control or high-fat diet and then mated. These rats were subsequently randomized to receive a daily gavage treatment of 1 ml of unoxidized fish oil, a highly oxidized fish oil, or control (water) throughout pregnancy. At birth, the gavage treatment was stopped, but the same maternal diets were fed ad libitum throughout lactation. Supplementation with oxidized fish oil during pregnancy had a marked adverse effect on newborn survival at day 2, leading to much greater odds of mortality than in the control (odds ratio 8.26) and unoxidized fish oil (odds ratio 13.70) groups. In addition, maternal intake of oxidized fish oil during pregnancy led to increased insulin resistance at the time of weaning (3 wks after exposure) compared with control dams (HOMA-IR 2.64 vs. 1.42; P = 0.044). These data show that the consumption of oxidized fish oil is harmful in rat pregnancy, with deleterious effects in both mothers and offspring. Copyright © 2016 the American Physiological Society.

  1. Decontamination solutions for polychlorinated biphenyls (PCBs) in raw fish oils from environmentally contaminated sea fishes.

    PubMed

    Fernández-González, R; Yebra-Pimentel, I; Martínez-Carballo, E; Simal-Gándara, J

    2014-01-15

    Fish oil has been identified as one of the most important contributors to the levels of polychlorinated biphenyls (PCBs) in food and feed products. In this study, PCB adsorption from fish oil onto activated carbon (AC), other sustainable adsorbents (mussel shell and wood waste ashes) and organic solvent such as ethanol were compared and optimized. Regarding to adsorbents, PCBs were extracted from fish oil by a 2.0% adsorbent material dose, during 6.0 h at 25 °C. Solvent extraction was carried out using 2 × 5.0 mL ethanol by manually stirring for 3.0 min, and then by Ultrasound-Assisted Solvent Extraction (UASE) for 5.0 min. The results showed that removal rates obtained by using adsorbent materials ranged from 0.0 to 10% for marker PCBs, from 0.0 to 37% for mono-ortho-PCBs, from 0.0 to 74% for PCB11 and from 0.0 to 95% for non-ortho-PCBs. Regarding to solvent extraction, ethanol was used by manually stirring and then by Ultrasound-Assisted Solvent Extraction (UASE). The samples were then centrifuged (2000 rpm/10 min) and the alcoholic phase was removed. With this method, removal efficiencies were much better (85-116%); nevertheless, high eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) removal rates (70-78 and 71-79%, respectively) were detected. We can conclude that adsorption with adsorbents depends on the geometry of PCB congeners, as well as both type of adsorption material and their origin, and that several sorption cycles are needed. Adsorption with ethanol could be the most effective methodology but nutritional quality was impaired, what makes necessary to look for other not so polar removal solvents.

  2. Combined effects of soy isoflavone and fish oil on ovariectomy-induced bone loss in mice.

    PubMed

    Uchida, Raina; Chiba, Hiroshige; Ishimi, Yoshiko; Uehara, Mariko; Suzuki, Kazuharu; Kim, Hyounju; Matsumoto, Akiyo

    2011-07-01

    Both soy isoflavone and n-3 polyunsaturated fatty acids are known to reduce the levels of bone-resorbing cytokines; however, the synergistic effects of these food ingredients have not been examined yet. This study was performed to elucidate the effect of concomitant intake of soy isoflavone and fish oil on bone mass in ovariectomized mice. Eight-week-old ddY female mice were subjected to ovariectomy (OVX) or sham surgery, and then fed an AIN-93G with safflower oil (So) as a control lipid source, isoflavone-supplemented safflower oil (So + I), fish oil instead of safflower oil (Fo) or isoflavone-supplemented fish oil (Fo + I) for 4 weeks. Femoral bone mineral density was significantly decreased by OVX; however, this decrease was inhibited by the intake of isoflavone and/or fish oil. Histomorphometric analyses showed that bone volume and trabecular thickness in the distal femoral trabecular bone were significantly lower in the So group than in the sham group, but those were restored in the Fo + I groups. The number of osteoclasts was significantly decreased by isoflavone intake. The increased rate of bone resorption after OVX was inhibited by isoflavone and/or fish oil. The serum concentration of tumor necrosis factor alpha was increased after OVX, but was significantly lower with the combination of isoflavone with fish oil than isoflavone or fish oil alone. The results of this study indicated that the intakes of soy isoflavone and/or fish oil might have ameliorating effects on bone loss due to OVX. Further, the concomitant intake of soy isoflavone and fish oil at a low dose showed better effects on cytokines related with bone resorption.

  3. Identification of unresolved complex mixtures (UCMs) of hydrocarbons in commercial fish oil supplements.

    PubMed

    Reid, Anna-Jean M; Budge, Suzanne M

    2015-01-01

    Heightened awareness of the health benefits of fish oil consumption has led to a great increase in the number of fish oil supplements available to the consumer. Therefore manufacturers are continually looking for ways to distinguish their products from those of competitors. Minimally refined or virgin fish oils provide a unique feature; however, petroleum hydrocarbon contamination from oil spills is a reality in the world's oceans. The question arises whether oil produced from fish species caught in these polluted areas is free of petroleum hydrocarbons, with particular interest in unresolved complex mixtures (UCMs). This study investigates the presence of UCMs in commercially available fish oil supplements advertised as being virgin, as well as refined. Weathered petroleum hydrocarbons in the form of a UCM were found at 523 µg g(-1) in a virgin Alaskan salmon oil supplement. Supplements that were refined were free of this contamination. Fish used in the production of fish oil supplements appear to have accumulated petrogenic hydrocarbons in their tissues which were not removed by minimal oil refining. Further study is required to determine if there are any health implications associated with long-term consumption of these contaminated supplements. © 2014 Society of Chemical Industry.

  4. Enhanced incorporation of n-3 fatty acids from fish compared with fish oils.

    PubMed

    Elvevoll, Edel O; Barstad, Harald; Breimo, Einar S; Brox, Jan; Eilertsen, Karl-Erik; Lund, Trine; Olsen, Jan Ole; Osterud, Bjarne

    2006-12-01

    This work was undertaken to study the impact of the source of n-3 FA on their incorporation in serum, on blood lipid composition, and on cellular activation. A clinical trial comprising 71 volunteers, divided into five groups, was performed. Three groups were given 400 g smoked salmon (n = 14), cooked salmon (n = 15), or cooked cod (n = 13) per week for 8 wk. A fourth group was given 15 mL/d of cod liver oil (CLO) (n = 15), and a fifth group served as control (n = 14) without supplementation. The serum content of EPA and DHA before and after intervention revealed a higher rise in EPA and DHA in the cooked salmon group (129% rise in EPA and 45% rise in DHA) as compared with CLO (106 and 25%, respectively) despite an intake of EPA and DHA in the CLO group of 3.0 g/d compared with 1.2 g/d in the cooked salmon group. No significant changes were observed in blood lipids, fibrinogen, fibrinolysis, or lipopolysaccharide (LPS)-induced tissue factor (TF) activity, tumor necrosis factor-alpha (TNFalpha), interleukin-8 (IL-8), leukotriene B4 (LTB4), and thromboxane B2 (TxB2) in whole blood. EPA and DHA were negatively correlated with LPS-induced TNFalpha, IL-8, LTB4, TxB2, and TF in whole blood. In conclusion, fish consumption is more effective in increasing serum EPA and DHA than supplementing the diet with fish oil. Since the n-3 FA are predominantly in TAG in fish as well as CLO, it is suggested that the larger uptake from fish than CLO is due to differences in physiochemical structure of the lipids.

  5. Fish Oil Prevents Lipopolysaccharide-Induced Depressive-Like Behavior by Inhibiting Neuroinflammation.

    PubMed

    Shi, Zhe; Ren, Huixia; Huang, Zhijian; Peng, Yu; He, Baixuan; Yao, Xiaoli; Yuan, Ti-Fei; Su, Huanxing

    2016-11-04

    Depression is associated with somatic immune changes, and neuroinflammation is now recognized as hallmark for depressive disorders. N-3 (or omega-3) polyunsaturated fatty acids (PUFAs) are well known to suppress neuroinflammation, reduce oxidative stress, and protect neuron from injury. We pretreated animals with fish oil and induced acute depression-like behaviors with systemic lipopolysaccharide (LPS) injection. The levels of cytokines and stress hormones were determined from plasma and different brain areas. The results showed that fish oil treatment prevent LPS-induce depressive behavior by suppression of neuroinflammation. LPS induced acute neuroinflammation in different brain regions, which were prevented in fish oil fed mice. However, neither LPS administration nor fish oil treatment has strong effect on stress hormone secretion in the hypothalamus and adrenal. Fish oil might provide a useful therapy against inflammation-associated depression.

  6. Sensitivity of branchial mucous to crude oil toxicity in a freshwater fish, Colisa fasciatus

    SciTech Connect

    Prasad, M.S.

    1988-11-01

    In the maintenance of respiratory activity of the gills in fishes, mucus secretion is known to have an important function. Crude oils and their fractions enter the fish tissue by positive transfer via the gills thus the mucus cells of gill epithelia act as an obvious site of pathogenic interactions between the fish and the environment. Mucous cell hyperplasia is a general phenomenon associated with crude oil toxicity. Even though a large quantity of crude oil pollutes the freshwater environment annually, literatures on the pathogenic effect of oil pollutants on the branchial mucous cells of fishes are limited to the marine and estuarine species. This investigation has been undertaken to provide a better understanding of the pathogenic effects of crude oil on the branchial mucous of a freshwater fish, Colisa fasciatus. The toxicity assessment is based on the histochemical observations of mucous cells present in the epithelia of gill rakers and filaments.

  7. Evaluating daily exposure to polychlorinated biphenyls and polybrominated diphenyl ethers in fish oil supplements.

    PubMed

    Ashley, J T F; Ward, J S; Schafer, M W; Stapleton, H M; Velinsky, D J

    2010-08-01

    Fish oil supplements have become a popular means of increasing one's dietary intake of essential polyunsaturated fatty acids. However, there is growing concern that the levels and potential health effects of lipophilic organic contaminants such as polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) may diminish some of the health benefits associated with the daily consumption of fish oil supplements. In this study, ten over-the-counter fish oil supplements available in the United States were analysed for PCBs and PBDEs and daily exposures calculated. Based on manufacturers' recommended dosages, daily intakes of PCBs and PBDEs ranged from 5 to 686 ng day(-1) and from 1 to 13 ng day(-1), respectively. Daily consumption of fish oil supplements expose consumers to PCBs and PBDEs. However, in comparison with fish ingestion, fish supplements may decrease daily PCB exposure and provide a safer pathway for individuals seeking to maintain daily recommended levels of polyunsaturated fatty acids.

  8. Dietary fish oil and fish and borage oil suppress intrapulmonary proinflammatory eicosanoid biosynthesis and attenuate pulmonary neutrophil accumulation in endotoxic rats.

    PubMed

    Mancuso, P; Whelan, J; DeMichele, S J; Snider, C C; Guszcza, J A; Karlstad, M D

    1997-07-01

    Proinflammatory eicosanoids and cytokines are important mediators of local inflammation in acute lung injury. We determined if enteral nutrition with anti-inflammatory fatty acids, eicosapentaenoic acid, and gamma-linolenic acid would reduce the intrapulmonary synthesis of proinflammatory eicosanoids and cytokines and pulmonary neutrophil accumulation in a rat model of acute lung injury. Prospective, randomized, controlled, double-blind study. Research laboratory at a university medical center. Male Long-Evans rats (250 g). Rats were randomly assigned to three dietary treatment groups and fed nutritionally complete diets (300 kcal/kg/day) containing 55.2% of the total calories from fat with either 97% corn oil, 20% fish oil, or 20% fish and 20% borage oil for 21 days. On day 22, bronchoalveolar lavage was performed 2 hrs after an intravenous injection of Salmonella enteritidis endotoxin (10 mg/kg) or saline. Bronchoalveolar lavage fluid was analyzed for leukotriene B4, leukotriene C4/D4, thromboxane B2, prostaglandin E2, 6 keto-prostaglandin F1alpha, tumor necrosis factor (TNF)-alpha, and macrophage inflammatory protein-2 (MIP-2). Lung myeloperoxidase activity (a marker for neutrophil accumulation) and phospholipid fatty acid composition were also determined. Lung phospholipid concentrations of arachidonic acid were lower and the concentrations of eicosapentaenoic acid and docosahexaenoic acid were higher with fish oil and fish and borage oil as compared with corn oil. Dihomo-gamma-linolenic acid, the desaturated and elongated intermediate of gamma-linolenic acid, increased with fish and borage oil as compared with fish oil and corn oil. The levels of leukotriene B4, leukotriene C4/D4, 6-keto-prostaglandin F1alpha, and thromboxane B2 with corn oil were significantly increased with endotoxin as compared with saline. In contrast to the corn oil group, endotoxin did not significantly increase bronchoalveolar lavage levels of leukotriene B4, leukotriene C4/D4, and

  9. Fish oil reduces cholesterol and arachidonic acid levels in plasma and lipoproteins from hypercholesterolemic chicks.

    PubMed

    Castillo, M; Amalik, F; Linares, A; García-Peregrín, E

    2000-07-01

    The value of fish oil for prevention and/or treatment of human atherosclerosis has not been fully established. This study shows that replacement of saturated fat in young chick diet with menhaden oil produced a significant reversion of the hypercholesterolemia previously induced by coconut oil feeding. Fish oil also produced a clear decrease of plasma triacylglycerol levels. Coconut oil increased the percentages of 12:0 and 14:0 fatty acids, while menhaden oil increased those of 20:5 n-3 and 22:6 n-3. Percentages of 20:4 n-6, 18:2 n-6 and 18:1 n-9 significantly decreased by fish oil addition to the diet. Total cholesterol, phospholipid and protein contents of high and low density lipoproteins increased by coconut oil feeding. When coconut oil was replaced by menhaden oil, total cholesterol was significantly reduced in high, low and very low density lipoproteins. All chemical components of VLDL were decreased by menhaden oil feeding. Our results show a strong hypocholesterolemic effect of menhaden oil when this fat was supplemented to hypercholesterolemic chicks. The clear decrease found in arachidonic acid content of chick plasma and lipoproteins may contribute to the beneficial effects of fish oil consumption by lowering the production of its derived eicosanoids.

  10. Composition and properties of milk and butter from cows fed fish oil.

    PubMed

    Baer, R J; Ryali, J; Schingoethe, D J; Kasperson, K M; Donovan, D C; Hippen, A R; Franklin, S T

    2001-02-01

    A control diet and a fish oil diet were fed to 12 multiparous Holstein cows to determine how the incorporation of Menhaden fish oil in the diet would influence the fatty acid composition, especially the conjugated linoleic acid and transvaccenic acid, contents of milk and butter. The control diet consisted of a 50:50 ratio of forage to concentrate, and the fish oil diet consisted of the control diet with 2% (on a dry matter basis) added fish oil. Milk from cows fed the control diet contained higher average concentrations of milk fat (3.37%) compared with milk from cows fed the fish oil diet (2.29%). Milk from cows fed fish oil contained higher concentrations of conjugated linoleic acid, transvaccenic acid, and total unsaturated fatty acids (0.68 and 2.51; 1.42 and 6.28; and 30.47 and 41.71 g/100 g of fat, respectively). Butter made from the fish oil diet milk also had higher concentrations of conjugated linoleic acid, transvaccenic acid, and unsaturated fatty acids. Penetrometer readings indicated fish oil diet butters were softer at 4 and 20 degrees C than the control diet butters. Acid degree values were similar in the fish oil butters compared with the control butters. No significant difference was found in the flavor characteristics of milk and butter from cows fed the control and fish oil diets. Production of milk and butter with increased amounts of conjugated linoleic acid, transvaccenic acid, and other beneficial fatty acids may have a desirable impact on the health of consumers and lead to increased sales.

  11. Partial and total fish meal replacement by agricultural products in the diets improve sperm quality in African catfish (Clarias gariepinus).

    PubMed

    Nyina-Wamwiza, L; Milla, S; Pierrard, M-A; Rurangwa, E; Mandiki, S N M; Van Look, K J W; Kestemont, P

    2012-01-01

    This study investigated the long-term effects of total and partial replacement of dietary fish meal (FM) by a mixture of agricultural products on sperm quality of African catfish Clarias gariepinus. Four isonitrogenous and isoenergetic diets were formulated containing graded levels of either 50% FM and maize meal (diet 1); 25% FM mixed with crude sunflower oil cake (SFOC) and bean meal (BM) (diet 2); 12.5% FM mixed with sunflower oil cake, BM and ground nut oil cake (GOC) (diet 3) and 0% FM mixed with de-hulled sunflower oil cake (SFOCD), BM and ground nut oil cake (diet 4). Gonadosomatic index (GSI), sperm quality, plasma sex steroids (11-keto testosterone [11-KT]; testosterone [T]; estradiol-17beta [E2]) were evaluated on 10 to 24 fish fed on each diet. Sperm quality was assessed using computer-assisted sperm analysis (CASA). Total replacement of fish meal by plant products markedly increased sperm volume, spermatocrit, spermatozoa integrity, and sperm motility. Fish fed diet 3 (12.5% fish meal) provided intermediate results on sperm quality whereas the lowest values were obtained in fish fed diets 1 and 2. In fish fed 0% fish meal (diet 4), androgen levels were higher and estrogen levels were lower than in fish fed fish meal diets. Based on dietary lipid and fatty acid analyses, these results suggest a positive impact of short chain n-6 fatty acids on androgen synthesis and sperm quality. In conclusion, a combination of ground nut oil cake, bean meal and sunflower oil cake (preferably when the sunflower is dehulled) in African catfish diet improves the sperm quality.

  12. Replacement of dietary fish oil with increasing levels of linseed oil: modification of flesh fatty acid compositions in Atlantic salmon (Salmo salar) using a fish oil finishing diet.

    PubMed

    Bell, J Gordon; Henderson, R James; Tocher, Douglas R; Sargent, John R

    2004-03-01

    Five groups of salmon, of initial mean weight 127 +/- 3 g, were fed increasing levels of dietary linseed oil (LO) in a regression design. The control diet contained capelin oil (FO) only, and the same oil was blended with LO to provide the experimental diets. After an initial period of 40 wk, all groups were switched to a finishing diet containing only FO for a further 24 wk. Growth and flesh lipid contents were not affected by dietary treatment. The FA compositions of flesh total lipids were linearly correlated with dietary FA compositions (r2 = 0.88-1.00, P < 0.0001). LO included at 50% of added dietary lipids reduced flesh DHA and EPA (20:5n-3) concentrations to 65 and 58%, respectively, of the concentrations in fish fed FO. Feeding 100% LO reduced flesh DHA and EPA concentrations to 38 and 30%, respectively, of the values in fish fed FO. Differences between diet and flesh FA concentrations showed that 16:0, 18:1n-9, and especially DHA were preferentially retained in flesh, whereas 18:2n-6, 18:3n-3, and 22:1n-11 were selected against and presumably utilized for energy. In fish previously fed 50 and 100% LO, feeding a finishing diet containing FO for 16 wk restored flesh DHA and EPA concentrations, to approximately 80% of the values in fish fed FO throughout. Flesh DHA and EPA concentrations in fish fed up to 50% LO were above recommended intake values for humans for these EFA. This study suggests that LO can be used as a substitute for FO in seawater salmon feeds and that any reductions in DHA and EPA can be largely overcome with a finishing diet high in FO before harvest.

  13. A high-fish-oil diet prevents adiposity and modulates white adipose tissue inflammation pathways in mice.

    PubMed

    Bargut, Thereza Cristina Lonzetti; Mandarim-de-Lacerda, Carlos Alberto; Aguila, Marcia Barbosa

    2015-09-01

    Fish oil improves obesity and its comorbidities, but its mechanisms of action remain unknown. We evaluate the effects of a diet rich in fish oil in white adipose tissue (WAT) inflammation pathways, renin-angiotensin system (RAS) and mitogen-activated protein kinases (MAPKs). To achieve our aims, four groups of male C57BL/6 mice were fed different diets: standard chow diet (SC; 10% energy from fat), SC+fish oil diet (SC-FO; 10% energy from fat), high-fat lard diet (HF-L; 50% energy from lard) and HF fish oil diet (HF-FO; 50% energy from fish oil). We evaluated body mass, epididymal fat pad mass, food intake and glucose tolerance. In WAT, we assessed adipocyte hypertrophy, monocyte chemotactic protein-1 immunofluorescence, and gene and protein expression of insulin signaling, inflammation, MAPKs, RAS, peroxisome proliferator-activated receptors (PPARs) and AMP-activated protein kinase (AMPK). In relation to the results, the HF-L group, as expected, showed elevated body mass and adiposity, glucose intolerance and hypertrophied adipocytes. In WAT, we found a defect in insulin signaling, infiltration of macrophages and inflammatory markers with the associated activation of MAPKs and local RAS. On the contrary, the HF-FO group did not present increased body mass, adiposity or glucose intolerance. In this group, insulin signaling, macrophage infiltration and inflammation were reduced in WAT in comparison with the HF-L group. We also observed decreases of MAPKs and local RAS and elevation of PPAR and AMPK. In summary, fish oil activates PPAR (the three isoforms) and AMPK, decreases WAT insulin resistance and inflammation, and inhibits MAPK and RAS pathways activation. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Biological studies of turmeric oil, part 3: anti-inflammatory and analgesic properties of turmeric oil and fish oil in comparison with aspirin.

    PubMed

    Jacob, James N; Badyal, Dinesh K

    2014-02-01

    Turmeric and fish oil have been gaining interest as food supplements because of their beneficial properties. Turmeric oil contains sesquiterpenes and fish oil has eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), possessing anti-inflammatory activity. The present study is to evaluate and compare the anti-inflammatory and analgesic properties of these two natural food products with aspirin as a standard. The percent inhibition as a measure of paw edema for turmeric oil and fish oil at 100 mg/kg was 76% and 31%, respectively, while the percent inhibition by the combination of the two at 100 mg/kg was 62%, which was the same as that of aspirin at the same dose. The inhibitory activity of fish oil at 50 mg/kg was 86% and with an increase in dose the activity decreased. The analgesic activity measured by the tail flick method showed optimum activities for turmeric oil and fish oil at 60 and 90 minutes, respectively, whereas the combination of the two decreased the analgesic activity. Thus the two common food ingredients, oils from turmeric and fish, have desirable biochemical properties to develop further their use as food and medicine.

  15. The effects of fish oil consumption on cardiovascular remodeling in ApoE deficient mice.

    PubMed

    Cleverley, Kelby; Du, Xiaozhou; Premecz, Sheena; Le, Khuong; Zeglinski, Matthew; Nicholson, Tiffany; Goh, Chun Y; Lu, Yan; Anderson, Hope D; Moghadasian, Mohammed H; Jassal, Davinder S

    2013-11-01

    Owing to their spontaneous development of atherosclerosis, apolipoprotein E knockout mice (ApoE(KO)) are one of the best studied animal models for this disease. Little is known about the utility of various omega-3 fatty acid regimens, in particular fish oils, in preventing cardiac disease in ApoE(KO) mice. The purpose of this study was to determine the cardiovascular effects of omega-3 fatty acid supplementation with either safflower oil (control), fish oil, flaxseed oil, or designed oil in ApoE(KO) mice fed a high-fat diet for a total of 16 weeks. In-vivo cardiac function was assessed weekly using murine echocardiography. Blood pressure, plasma lipid levels, and brain natriuretic peptide (BNP) were serially measured. The results show that ApoE(KO) mice fed fish oil demonstrated an increase in left ventricular wall thickness as a result of increased afterload. Despite chronic treatment with fish oil over 16 weeks, blood pressure increased in ApoE(KO) mice by 20% compared with the baseline. Both echocardiographic evidence of left ventricular hypertrophy and biochemical increase in BNP levels confirmed diastolic dysfunction in ApoE(KO) mice fed fish oil. This suggests that high-fat diet supplemented with fish oil may lead to adverse cardiovascular effects in ApoE deficient mice.

  16. Fish Oil Supplementation and Fatty Acid Synthase Expression in the Prostate: A Randomized Controlled Trial

    DTIC Science & Technology

    2010-03-20

    olive oil (placebo) capsules (treatment 2). Potential confounding variables are assessed through completion of a comprehensive diet history...reported allergy or sensitivity to fish oil, olive oil or green tea • Subject reported history of hemophilia, van Willebrands disease or other

  17. Postischemic fish oil treatment confers task-dependent memory recovery.

    PubMed

    de Oliveira, Janaína Nicolau; Reis, Luane Oliveira; Ferreira, Emilene Dias Fiuza; Godinho, Jacqueline; Bacarin, Cristiano Correia; Soares, Ligia Mendes; de Oliveira, Rúbia Maria Weffort; Milani, Humberto

    2017-08-01

    A series of our previous studies demonstrated that fish oil (FO), equivalent to 300mg/kg docosahexahenoic acid (DHA), facilitates memory recovery after transient, global cerebral ischemia (TGCI) in the aversive radial maze (AvRM). The present study sought to address two main issues: (i) whether the memory-protective effect of FO that has been observed in the AvRM can be replicated in the passive avoidance test (PAT) and object location test (OLT) and (ii) whether FO at doses that are lower than those used previously can also prevent TGCI-induced memory loss. In Experiment 1, naive rats were trained in the PAT, subjected to TGCI (4-vessel occlusion model), and tested for retrograde memory performance 8 and 15days after ischemia. Fish oil (300mg/kg/day DHA) was given orally for 8days. The first dose was delivered 4h postischemia. In Experiment 2, the rats were subjected to TGCI, treated with the same FO regimen, and then trained and tested in the OLT. In Experiment 3, the rats were trained in the AvRM, subjected to TGCI, administered FO (100, 200, and 300mg/kg DHA), and tested for memory performance up to 3weeks after TGCI. At the end of the behavioral tests, the brains were examined for neurodegeneration and neuroblast proliferation. All of the behavioral tests (PAT, OLT, and AvRM) were sensitive to ischemia, but only the AvRM was able to detect the memory-protective effect of FO. Ischemia-induced neurodegeneration and neuroblast proliferation were unaffected by FO treatment. These results suggest that (i) the beneficial effect of FO on memory recovery after TGCI is task-dependent, (ii) doses of FO<300mg/kg DHA can protect memory function in the radial maze, and (iii) cognitive recovery occurs in the absence of neuronal rescue and/or hippocampal neurogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Echium oil and linseed oil as alternatives for fish oil in the maternal diet: Blood fatty acid profiles and oxidative status of sows and piglets.

    PubMed

    Tanghe, S; Millet, S; De Smet, S

    2013-07-01

    Echium oil (source of stearidonic acid) and linseed oil (source of α-linolenic acid) were evaluated as alternatives for fish oil in the diet of sows to increase the docosahexaenoic acid (DHA) status of the offspring. The hypothesis was that echium oil would be more efficient than linseed oil to increase the DHA concentration, as it bypasses the enzyme Δ6-desaturase. In addition, it was determined whether adding PUFA to the diet affected the plasma oxidative status. Sows were fed either a palm oil diet or a diet containing 1% linseed oil, echium oil, or fish oil from d 73 of gestation and during lactation (n = 16 per dietary treatment). Total oil concentrations in the diets were similar among dietary treatments. Blood samples were taken for fatty acid analysis and oxidative status of sows on d 73 and 93 of gestation and at parturition and the lightest and heaviest piglet per litter at birth and weaning. Colostrum was also sampled. No effect of diet was observed on total number of piglets born (13.7 ± 0.4), number of weaned piglets (10.8 ± 0.4), and gestation length (114.8 ± 0.2 d). Piglets from sows fed fish oil had lighter birth weights (1.41 ± 0.03 kg) than piglets from the linseed oil diet (1.54 ± 0.03 kg; P = 0.006), with no difference between the palm oil (1.45 ± 0.03 kg) and echium oil diet (1.49 ± 0.03 kg). Daily BW gain until weaning was less for piglets from sows fed the fish oil diet (214 ± 5 g) compared with piglets from sows fed the echium oil (240 ± 5 g; P < 0.001) or linseed oil diet (234 ± 5 g; P = 0.02). Compared with the palm oil diet, echium and linseed oil in the maternal diet increased the DHA concentration in the colostrum and the sow and piglet plasma to the same extent (1.1 to 1.4-fold; P < 0.001). On the fish oil diet, 20.7-fold, 10-fold, and 2.4-fold increases in DHA in colostrum, sow, and piglet plasma, respectively, were observed (P < 0.001). At 1% in the maternal diet, echium oil had, thus, no benefit over linseed oil and

  19. Protective effect of soybean oil- or fish oil-rich diets on allergic airway inflammation

    PubMed Central

    Navarro-Xavier, Roberta Araujo; de Barros, Karina Vieira; de Andrade, Iracema Senna; Palomino, Zaira; Casarini, Dulce Elena; Flor Silveira, Vera Lucia

    2016-01-01

    Background The increased prevalence of asthma and allergic diseases in westernized societies has been associated with increased intake of diets rich in n-6 fatty acids (FAs) and poor in n-3 FAs. This study aimed to analyze the prophylactic effects of treatment with a soybean oil-rich diet (rich in n-6) or fish oil (rich in n-3) in an allergic airway inflammation model on lung inflammation score, leukocyte migration, T-helper cell (Th)-2 (interleukin [IL]-4, IL-5) and Th1 (interferon [IFN]-γ, tumor necrosis factor-α) cytokines, lipoxin A4, nitric oxide, bradykinin, and corticosterone levels in bronchoalveolar lavage (BAL) or lungs. Methods Male Wistar rats fed with soybean oil- or fish oil-rich diet or standard rat chow were sensitized twice with ovalbumin–alumen and challenged twice with ovalbumin aerosol. The BAL and lungs were examined 24 hours later. Results Both diets, rich in n-6 or n-3 FAs, impaired the allergic lung inflammation and reduced leukocyte migration, eosinophil and neutrophil percentages, and IL-4/IL-5/bradykinin levels in BAL and/or lungs, as well as increased the nitric oxide levels in BAL. The soybean oil-rich diet additionally increased the levels of lipoxin A4 and corticosterone in the lungs. Conclusion Data presented demonstrated that the n-6 FA-rich diet had protective effect upon allergic airway inflammation and was as anti-inflammatory as the n-3 FA-rich diet, although through different mechanisms, suggesting that both diets could be considered as complementary therapy or a prophylactic alternative for allergic airway inflammation. PMID:27274303

  20. Reduced hepatic triglyceride secretion in rats fed docosahexaenoic acid-rich fish oil suppresses postprandial hypertriglyceridemia.

    PubMed

    Ikeda, I; Kumamaru, J; Nakatani, N; Sakono, M; Murota, I; Imaizumi, K

    2001-04-01

    To evaluate the mechanisms of suppression of postprandial hypertriglyceridemia by fish oil rich in docosahexaenoic acid, the effect on the intestinal absorption of triglyceride, activities of lipoprotein lipase (LPL) and hepatic triglyceride lipase (HTGL) and metabolism of chylomicrons (CM) and CM remnants were compared with that of safflower oil in Sprague-Dawley rats in a series of studies. The feeding of fish oil for 3 wk suppressed postprandial hypertriglyceridemia (study 1). Dietary fish oil did not alter the rate of lymphatic absorption of triglyceride (study 2). The activities of LPL and HTGL were measured at 5 h after the beginning of feeding, when serum triglyceride concentrations were highest in both dietary groups. The activities of LPL in adipose tissue and heart were greater (P < 0.05) and those of HTGL were lower (P < 0.05) in the rats fed fish oil (study 3). In contrast, there were no differences in the activities of LPL and HTGL in postheparin plasma between the fish and safflower oil groups (study 4). The clearance rates of CM and CM remnants were measured by injecting intravenously CM collected from rats fed safflower or fish oils with [14C]triolein and [3H]cholesterol (study 5). Dietary oil did not influence the half-lives of CM or CM remnants. The secretion of triglyceride from the liver of rats injected with Triton WR-1339 was lower (P < 0.05) in the rats fed docosahexaenoic acid, a major component of fish oil, than those fed linoleic acid, a major component of safflower oil (study 6). These observations strongly support the hypothesis that in rats, the principal cause of the suppression of postprandial hypertriglyceridemia by fish oil is the depression of triglyceride secretion from the liver.

  1. Lipogenic enzyme activities and glucose uptake in fat tissue of dyslipemic, insulin-resistant rats: effects of fish oil.

    PubMed

    Rossi, Andrea S; Lombardo, Yolanda B; Chicco, Adriana G

    2010-02-01

    The purposes of the present work were twofold: (1) investigate same mechanisms involved in the development of fat cell hypertrophy in the experimental model of dyslipidemia and whole-body insulin resistance induced in rats chronically fed a sucrose-rich diet (SRD); and (2) analyze the possible beneficial effect of fish oil on these mechanisms. For 6 mo, male Wistar rats received a sucrose-rich diet (62.5% w/w sucrose, 8% corn oil) or a control diet in which sucrose was replaced by starch. After this period, the sucrose-fed animals were divided randomly into two groups: the first one continued with the same diet up to 8 mo and the second one received the same diet, but with corn oil replaced by 7% fish oil+1 % corn oil. Rats were fed with this diet for the next 2 mo. Although an enlarged fat cell lipolysis and an impaired insulin-stimulated glucose uptake were present in the fat cells of SRD-fed rats, an increase of several key enzymes of the novo lipogenesis could be one of the possible mechanisms involved in visceral adiposity. The addition of dietary fish oil restored or improved the above abnormalities. This study shows possible mechanisms conditioning the influence of nutrients on the development and management of dyslipidemia, insulin sensitivity, and fat cell accretion, all abnormalities present in the metabolic syndrome. 2010 Elsevier Inc. All rights reserved.

  2. Enhancement of the nutritional status and quality of fresh pork sausages following the addition of linseed oil, fish oil and natural antioxidants.

    PubMed

    Valencia, I; O'Grady, M N; Ansorena, D; Astiasarán, I; Kerry, J P

    2008-12-01

    Fresh pork sausages (pork shoulder, pork back fat, water, rusk and seasoning) were manufactured where 15% of the pork back fat was substituted with linseed oil (LO) or fish oil (FO). Green tea catechins (GTC) and green coffee antioxidant (GCA) were added to both LO (LGTC 200 and LGCA 200) and FO (FGTC 200 and FGCA 200) substituted sausages at a level of 200mg/kg. Raw and cooked pork sausages were either over-wrapped with oxygen permeable film (aerobic storage) or stored in modified atmosphere packages (MAP) containing 80% O(2):20% CO(2) or 70% N(2):30% CO(2), respectively for 7 days at 4°C. Effects on fatty acid profiles, lipid oxidation, colour and sensorial properties were investigated. α-Linolenic acid increased from 1.34% (control) to 8.91% (LO) and up to 11.2% (LGTC 200 and LGCA 200). Addition of fish oil increased levels of EPA from 0.05% (control) to 2.83% (FO), 3.02% (FGTC 200) and 2.87% (FGCA 200) and DHA levels increased from 0.04% (control) to a maximum of 1.93% (FGTC 200). Lipid oxidation was low in raw and cooked linseed oil containing sausages. GTC (200mg/kg) significantly (P<0.05) reduced lipid oxidation in raw fish oil containing sausages after 7 days of storage. Colour parameters in raw pork sausages were unaffected by the packaging atmosphere. L(∗) lightness values were lower (P<0.05) in LGTC 200 and a(∗) redness values lower (P<0.05) in LGTC 200 and FGTC 200 after 7 days of storage. Sensory scores of cooked pork sausages were unaffected by linseed oil addition. Flavour and overall acceptability scores in cooked fish oil containing sausages were improved by GTC addition. Results obtained demonstrate potential for the production of nutritionally enhanced fresh pork sausages.

  3. Oil and fish conflict: Implications for ocean management

    SciTech Connect

    Yu, H.

    1992-01-01

    Ocean management seeks to increase net benefits from overall resource allocations for the various marine uses through fostering policy integration on the ocean dimension. This concept has been challenged for cutting off links of these uses along their respective functional or sectoral lines. While the sectoral approach still dominates the marine management, the degree of the need for policy integration on the ocean dimension, its scope and form, becomes a fundamental marine policy issue. The present dissertation explores this issue though assessing the level of the conflict between marine fisheries and offshore oil development and its implication for ocean management within the United States. The conflicts assessed are related to offshore installations, debris, collision and geophysical survey, as well as operational discharges, oil spills, and onshore impacts. Criteria for the assessment include probability and intensity of biogeochemical interactions, the associated socioeconomic impacts, the related concerns, and the tractability of the consequences. Some interconnections of the existing management systems which have important bearings on the resolution of the conflict are characterized and evaluated as to their adequacies. In the United States, oil and fish conflict largely concerns the impacts of Outer Continental Shelf (OCS) activities on the coastal fisheries. The study found that the conflict is either regionally significant or locally serious; and that costs of the conflict, including the costs of conflict resolution efforts themselves have not been fully incorporated in the existing decision-making premises in managing the uses concerned. These conclusions do not support the overhauling of the existing management systems on the federal level, but demonstrate a need for establishing an interdisciplinary and intersectoral mechanism to monitor the level of multiple use consequences, and a need for further marine policy integration on the regional basis.

  4. Effect of Layer-by-Layer (LbL) Encapsulation of Nano-Emulsified Fish Oil on Their Digestibility Ex Vivo and Skin Permeability In Vitro

    PubMed Central

    Jung, Eun Young; Hong, Ki Bae; Son, Heung Soo; Suh, Hyung Joo; Park, Yooheon

    2016-01-01

    Omega-3 rich fish oils are extremely labile, thus requiring control of oxidation and off flavor development. A recently proposed emulsification method, layer-by-layer (LbL) deposition, was found to be a plausible method to enhance the characteristics of bioactive ingredients, especially lipids. The present work was designed to test the possibility of enhancing the uptake and utilization of omega-3 fatty acids present in fish oil. The bioavailability of nano-emulsified fish oil was monitored in terms of intestinal absorption as well as skin permeability by using the everted intestinal sac model and Franz cell model. The skin permeability and intestinal absorption characteristics was significantly improved by LbL emulsification with lecithin/chitosan/low methoxypectin. Multilayer encapsulation along with nano-emulsification can be a useful method to deliver biologically active lipids and related components, such as fish oil. The protective effect of this tool from lipid oxidation still needs to be verified. PMID:27390723

  5. Static mixer improves crude-oil measurement

    SciTech Connect

    Graves, H.

    1987-03-09

    Water contamination in crude oil frequently hampers the accuracy of conventional sampling techniques for inline measurement. Installation of a static crude-oil mixer upstream of a sampling point has been shown to improve the accuracy of such measurement. Crude oil is sampled in pipelines to ensure that an agreed quality standard is obtained. Deviations from the standard, if undetected, can cost or save large sums of money. It is, therefore, necessary to achieve accurate and representative sampling. Discussion here is limited to representative sampling of oil flowing in a pipeline. In general, the oil industry is concerned with the measurement of crude-oil quality in two situations: Pipelines in which oil flows continuously with only small variations in flow and composition. Batch transfer operations, as in the unloading of tankers. In this case the following can be expected: 1. Start-up-low flow and high water content. 2. Normal conditions-high flow and medium or low water content. 3. Final phases of unloading and shutdown-decreasing flow and increasing water content. These two situations present different problems. In the case of the pipeline, it is usual for the pipe run prior to sampling to be very long, resulting in stratification of phases. Water will, in general, flow at the base of the pipe, although slugging can occur under certain conditions. In the case of batch transfer, the pipework is often tortuous, but flow rates can be low and at the same time water concentration varies.

  6. Nutritional evaluation of microalgae oils rich in omega-3 long chain polyunsaturated fatty acids as an alternative for fish oil.

    PubMed

    Ryckebosch, Eline; Bruneel, Charlotte; Termote-Verhalle, Romina; Goiris, Koen; Muylaert, Koenraad; Foubert, Imogen

    2014-10-01

    The purpose of this work was to evaluate the nutritional value of the total lipid extract of different omega-3 long chain polyunsaturated fatty acids producing photoautotrophic microalgae in one study. It was shown that microalgae oils from Isochrysis, Nannochloropsis, Phaeodactylum, Pavlova and Thalassiosira contain sufficient omega-3 LC-PUFA to serve as an alternative for fish oil, which was used as the 'golden standard'. In the microalgae oils an important part of the omega-3 long chain polyunsaturated fatty acids are present in the polar lipid fraction, which may be favourable from a bioavailability and stability viewpoint. Consumption of microalgae oil ensures intake of sterols and carotenoids. The intake of sterols, including cholesterol and phytosterols, is probably not relevant. The intake of carotenoids is however definitely significant and could give the microalgae oils a nutritional added value compared to fish oil.

  7. Is Exposure to Macondo Oil Reflected in the Otolith Chemistry of Marsh-Resident Fish?

    PubMed Central

    López-Duarte, Paola C.; Fodrie, F. Joel; Jensen, Olaf P.; Whitehead, Andrew; Galvez, Fernando; Dubansky, Benjamin; Able, Kenneth W.

    2016-01-01

    Genomic and physiological responses in Gulf killifish (Fundulus grandis) in the northern Gulf of Mexico have confirmed oil exposure of resident marsh fish following the Macondo blowout in 2010. Using these same fish, we evaluated otolith microchemistry as a method for assessing oil exposure history. Laser-ablation inductively-coupled-plasma mass spectrometry was used to analyze the chemical composition of sagittal otoliths to assess whether a trace metal signature could be detected in the otoliths of F. grandis collected from a Macondo-oil impacted site in 2010, post-spill relative to pre-spill, as well as versus fish from areas not impacted by the spill. We found no evidence of increased concentrations of two elements associated with oil contamination (nickel and vanadium) in F. grandis otoliths regardless of Macondo oil exposure history. One potential explanation for this is that Macondo oil is relatively depleted of those metals compared to other crude oils globally. During and after the spill, however, elevated levels of barium, lead, and to a lesser degree, copper were detected in killifish otoliths at the oil-impacted collection site in coastal Louisiana. This may reflect oil contact or other environmental perturbations that occurred concomitant with oiling. For example, increases in barium in otoliths from oil-exposed fish followed (temporally) freshwater diversions in Louisiana in 2010. This implicates (but does not conclusively demonstrate) freshwater diversions from the Mississippi River (with previously recorded higher concentrations of lead and copper), designed to halt the ingress of oil, as a mechanism for elevated elemental uptake in otoliths of Louisiana marsh fishes. These results highlight the potentially complex and indirect effects of the Macondo oil spill and human responses to it on Gulf of Mexico ecosystems, and emphasize the need to consider the multiple stressors acting simultaneously on inshore fish communities. PMID:27682216

  8. Is Exposure to Macondo Oil Reflected in the Otolith Chemistry of Marsh-Resident Fish?

    PubMed

    López-Duarte, Paola C; Fodrie, F Joel; Jensen, Olaf P; Whitehead, Andrew; Galvez, Fernando; Dubansky, Benjamin; Able, Kenneth W

    Genomic and physiological responses in Gulf killifish (Fundulus grandis) in the northern Gulf of Mexico have confirmed oil exposure of resident marsh fish following the Macondo blowout in 2010. Using these same fish, we evaluated otolith microchemistry as a method for assessing oil exposure history. Laser-ablation inductively-coupled-plasma mass spectrometry was used to analyze the chemical composition of sagittal otoliths to assess whether a trace metal signature could be detected in the otoliths of F. grandis collected from a Macondo-oil impacted site in 2010, post-spill relative to pre-spill, as well as versus fish from areas not impacted by the spill. We found no evidence of increased concentrations of two elements associated with oil contamination (nickel and vanadium) in F. grandis otoliths regardless of Macondo oil exposure history. One potential explanation for this is that Macondo oil is relatively depleted of those metals compared to other crude oils globally. During and after the spill, however, elevated levels of barium, lead, and to a lesser degree, copper were detected in killifish otoliths at the oil-impacted collection site in coastal Louisiana. This may reflect oil contact or other environmental perturbations that occurred concomitant with oiling. For example, increases in barium in otoliths from oil-exposed fish followed (temporally) freshwater diversions in Louisiana in 2010. This implicates (but does not conclusively demonstrate) freshwater diversions from the Mississippi River (with previously recorded higher concentrations of lead and copper), designed to halt the ingress of oil, as a mechanism for elevated elemental uptake in otoliths of Louisiana marsh fishes. These results highlight the potentially complex and indirect effects of the Macondo oil spill and human responses to it on Gulf of Mexico ecosystems, and emphasize the need to consider the multiple stressors acting simultaneously on inshore fish communities.

  9. Fish oil supplementation reduces severity of exercise-induced bronchoconstriction in elite athletes.

    PubMed

    Mickleborough, Timothy D; Murray, Rachael L; Ionescu, Alina A; Lindley, Martin R

    2003-11-15

    In elite athletes, exercise-induced bronchoconstriction (EIB) may respond to dietary modification, thereby reducing the need for pharmacologic treatment. Ten elite athletes with EIB and 10 elite athletes without EIB (control subjects) participated in a randomized, double-blind crossover study. Subjects entered the study on their normal diet, and then received either fish oil capsules containing 3.2 g eicosapentaenoic acid and 2.2 g docohexaenoic acid (n-3 polyunsaturated fatty acid [PUFA] diet; n = 5) or placebo capsules containing olive oil (placebo diet; n = 5) taken daily for 3 weeks. Diet had no effect on preexercise pulmonary function in either group or on postexercise pulmonary function in control subjects. However, in subjects with EIB, the n-3 PUFA diet improved postexercise pulmonary function compared with the normal and placebo diets. FEV1 decreased by 3 +/- 2% on n-3 PUFA diet, 14.5 +/- 5% on placebo diet, and 17.3 +/- 6% on normal diet at 15 minutes postexercise. Leukotriene (LT)E4, 9alpha, 11beta-prostaglandin F2, LTB4, tumor necrosis factor-alpha, and interleukin-1beta, all significantly decreased on the n-3 PUFA diet compared with normal and placebo diets and after the exercise challenge. These data suggest that dietary fish oil supplementation has a markedly protective effect in suppressing EIB in elite athletes, and this may be attributed to their antiinflammatory properties.

  10. Fish Oil and Atrial Fibrillation after Cardiac Surgery: A Meta-Analysis of Randomized Controlled Trials

    PubMed Central

    Xin, Wei; Wei, Wei; Lin, Zhiqin; Zhang, Xiaoxia; Yang, Hongxia; Zhang, Tao; Li, Bin; Mi, Shuhua

    2013-01-01

    Background Influence of fish oil supplementation on postoperative atrial fibrillation (POAF) was inconsistent according to published clinical trials. The aim of the meta-analysis was to evaluate the effects of perioperative fish oil supplementation on the incidence of POAF after cardiac surgery. Methods Pubmed, Embase and the Cochrane Library databases were searched. Randomized controlled trials (RCTs) assessing perioperative fish oil supplementation for patients undergoing cardiac surgery were identified. Data concerning study design, patient characteristics, and outcomes were extracted. Risk ratio (RR) and weighted mean differences (WMD) were calculated using fixed or random effects models. Results Eight RCTs involving 2687 patients were included. Perioperative supplementation of fish oil did not significantly reduce the incidence of POAF (RR = 0.86, 95%CI 0.71 to 1.03, p = 0.11) or length of hospitalization after surgery (WMD = 0.10 days, 95% CI: 0.48 to 0.67 days, p = 0.75). Fish oil supplementation also did not affect the perioperative mortality, incidence of major bleeding or the length of stay in the intensive care unit. Meta-regression and subgroup analyses indicated mean DHA dose in the supplements may be a potential modifier for the effects of fish oil for POAF. For supplements with DHA >1 g/d, fish oil significantly reduced the incidence of POAF; while it did not for the supplements with a lower dose of DHA. Conclusions Current evidence did not support a preventative role of fish oil for POAF. However, relative amounts of DHA and EPA in fish oil may be important for the prevention of POAF. PMID:24039820

  11. Fishing for improvements: managing fishing by boat on New York City water supply reservoirs and lakes

    Treesearch

    Nicole L. Green; Jennifer A. Cairo

    2008-01-01

    In 2003, the New York City Department of Environmental Protection Bureau of Water Supply undertook a 5-year initiative to improve fishing by boat on its water supply reservoirs and controlled lakes in upstate New York. The project includes: revising administrative procedures; cleaning up boat fishing areas on reservoir shores; improving two-way communication with...

  12. Assessment of Thermal and Textural Characteristics and Consumer Preferences of Lemon and Strawberry Flavored Fish Oil Organogels.

    PubMed

    Yılmaz, Emin; Öǧütcü, Mustafa; Arifoglu, Nazan

    2015-01-01

    In this study, strawberry and lemon flavored fish oil organogels (FOO) were prepared with beeswax as the organogelator. The physical, thermal and textural characteristics as well as the consumer preferences of the flavored organogels were determined in comparison with fish oil and FOO containing no flavor. Furthermore, the stability of the organogels was evaluated during 90 day storage at 4°C. The results revealed that, structurally stable fish oil organogels as spreadable products might be formed and that flavoring of the gels enhances consumer preference. Thus, flavoring of fish oil organogels could be a challenge in increasing the consumption of fish oil.

  13. Dietary fish oil stimulates hepatic low density lipoprotein transport in the rat.

    PubMed Central

    Ventura, M A; Woollett, L A; Spady, D K

    1989-01-01

    These studies were undertaken to examine the effect of fish oil, safflower oil, and hydrogenated coconut oil on the major processes that determine the concentration of low density lipoprotein (LDL) in plasma, i.e., the rate of LDL production and the rates of receptor-dependent and receptor-independent LDL uptake in the various organs of the body. When fed at the 20% level, fish oil reduced plasma LDL-cholesterol levels by 38% primarily by increasing LDL receptor activity in the liver. Dietary safflower oil also increased hepatic LDL receptor activity; however, since the rate of LDL production also increased, plasma LDL-cholesterol levels remained essentially unchanged. Hydrogenated coconut oil had no effect on LDL receptor activity but increased the rate of LDL-cholesterol production causing plasma LDL-cholesterol levels to increase 46%. Dietary fish oil had no effect on the receptor-dependent transport of asialofetuin by the liver, suggesting that the effect of fish oil on hepatic LDL receptor activity was specific and not due to a generalized alteration in the physical properties of hepatic membranes. Finally, dietary fish oil increased hepatic cholesteryl ester levels and suppressed hepatic cholesterol synthesis rates, suggesting that the up-regulation of hepatic LDL receptor activity in these animals was not simply a response to diminished cholesterol availability in the liver. PMID:2760200

  14. Fish oil diet may reduce inflammatory levels in the liver of middle-aged rats.

    PubMed

    Li, Yingqiu; Zhao, Fan; Wu, Qiayu; Li, Mengjie; Zhu, Yingying; Song, Shangxin; Zhu, Jing; Ma, Yafang; Li, He; Shi, Xuebin; Xu, Xinglian; Zhou, Guanghong; Li, Chunbao

    2017-07-24

    The impact of dietary soybean oil, lard and fish oil on physiological responses in middle age is little studied. In this study, we investigated the changes of oxidative stress, inflammatory cytokines, telomere length, and age-related gene expression in the liver of middle-aged rats in response to the above three fat diets. Male Sprague Dawley rats (12 months old) were fed AIN-93M diets for 3 months, in which soybean oil was equivalently replaced by lard or fish oil. As compared to the lard diet, intake of fish oil diet significantly decreased body weight gain, white blood cell count, and levels of hepatic triacylglycerol, total cholesterol, fat accumulation, low-density lipoprotein, oxidative stress and inflammatory cytokines (P < 0.05), but increased telomere length (P < 0.05). On the other hand, lard diet and soybean oil diet showed great similarity in the above variables. PCR array analysis further indicated that fish oil diet significantly down-regulated gene expression related to inflammatory response, apoptosis, DNA binding, proteostasis and telomere attrition. Differentially expressed genes were enriched in the complement and coagulation cascades pathways. Such physiological and molecular responses could be due to different fatty acid composition in fish oil, lard and soybean oil.

  15. Improved Soybean Oil for Biodiesel Fuel

    SciTech Connect

    Tom Clemente; Jon Van Gerpen

    2007-11-30

    The goal of this program was to generate information on the utility of soybean germplasm that produces oil, high in oleic acid and low in saturated fatty acids, for its use as a biodiesel. Moreover, data was ascertained on the quality of the derived soybean meal (protein component), and the agronomic performance of this novel soybean germplasm. Gathering data on these later two areas is critical, with respect to the first, soybean meal (protein) component is a major driver for commodity soybean, which is utilized as feed supplements in cattle, swine, poultry and more recently aquaculture production. Hence, it is imperative that the resultant modulation in the fatty acid profile of the oil does not compromise the quality of the derived meal, for if it does, the net value of the novel soybean will be drastically reduced. Similarly, if the improved oil trait negative impacts the agronomics (i.e. yield) of the soybean, this in turn will reduce the value of the trait. Over the course of this program oil was extruded from approximately 350 bushels of soybean designated 335-13, which produces oil high in oleic acid (>85%) and low in saturated fatty acid (<6%). As predicted improvement in cold flow parameters were observed as compared to standard commodity soybean oil. Moreover, engine tests revealed that biodiesel derived from this novel oil mitigated NOx emissions. Seed quality of this soybean was not compromised with respect to total oil and protein, nor was the amino acid profile of the derived meal as compared to the respective control soybean cultivar with a conventional fatty acid profile. Importantly, the high oleic acid/low saturated fatty acids oil trait was not impacted by environment and yield was not compromised. Improving the genetic potential of soybean by exploiting the tools of biotechnology to improve upon the lipid quality of the seed for use in industrial applications such as biodiesel will aid in expanding the market for the crop. This in turn, may

  16. Fish oil and flax seed oil supplemented diets increase FFAR4 expression in the rat colon.

    PubMed

    Cheshmehkani, Ameneh; Senatorov, Ilya S; Kandi, Praveen; Singh, Monalisa; Britt, April; Hayslett, Renee; Moniri, Nader H

    2015-10-01

    Omega-3 fatty acids, such as α-linolenic acid (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), are polyunsaturated fatty acids (PUFA) that have long been associated with anti-inflammatory activity and general benefit toward human health. Over the last decade, the identification of a family of cell-surface G protein-coupled receptors that bind and are activated by free-fatty acids, including omega-3 fatty acids, suggest that many effects of PUFA are receptor-mediated. One such receptor, free-fatty acid receptor-4 (FFAR4), previously described as GPR120, has been shown to modulate anti-inflammatory and insulin-sensitizing effects in response to PUFA such as ALA and DHA. Additionally, FFAR4 stimulates secretion of the insulin secretagogue glucagon-like peptide-1 (GLP-1) from the GI tract and acts as a dietary sensor to regulate energy availability. The aim of the current study was to assess the effects of dietary omega-3 fatty acid supplementation on FFAR4 expression in the rat colon. Sprague-Dawley rats were fed control soybean oil diets or alternatively, diets supplemented with either fish oil, which is enriched in DHA and EPA, or flaxseed oil, which is enriched in ALA, for 7 weeks. GLP-1 and blood glucose levels were monitored weekly and at the end of the study period, expression of FFAR4 and the inflammatory marker TNF-α was assessed. Our findings indicate that GLP-1 and blood glucose levels were unaffected by omega-3 fatty acid supplementation, however, animals that were fed fish or flaxseed oil-supplemented diets had significantly heightened colonic FFAR4 and actin expression, and reduced expression of the pro-inflammatory cytokine TNF-α compared to animals fed control diets. These results suggest that similar to ingestion of other fats, dietary-intake of omega-3 fatty acids can alter FFAR4 expression within the colon.

  17. Nano-encapsulation of fish oil in nano-liposomes and its application in fortification of yogurt.

    PubMed

    Ghorbanzade, Tahere; Jafari, Seid Mahdi; Akhavan, Sahar; Hadavi, Roxana

    2017-02-01

    Fish oils have many dietary benefits, but due to their strong odors and rapid deterioration, their application in food formulations is limited. For these reasons, nano-liposome was used to nano-encapsulate fish oil in this study and encapsulated fish oil was utilized in fortifying yogurt. Physicochemical properties of produced yogurt including pH, acidity, syneresis, fatty acid composition, peroxide value as well as sensory tests were investigated during three weeks storage at 4°C. Nano-liposome encapsulation resulted in a significant reduction in acidity, syneresis and peroxide value. The results of gas chromatography analyses revealed that after 21days storage, yogurt fortified with nano-encapsulated fish oil had a higher DHA and EPA contents than yogurt containing free fish oil. Overall, the results of this study indicates that adding nano-encapsulated fish oil into yogurt gave closer characteristics to control sample in terms of sensory characteristics than yogurt fortified with free fish oil.

  18. Exxon Valdez to Deepwater Horizon: comparable toxicity of both crude oils to fish early life stages.

    PubMed

    Incardona, John P; Swarts, Tanya L; Edmunds, Richard C; Linbo, Tiffany L; Aquilina-Beck, Allisan; Sloan, Catherine A; Gardner, Luke D; Block, Barbara A; Scholz, Nathaniel L

    2013-10-15

    The 2010 Deepwater Horizon disaster in the Gulf of Mexico was the largest oil spill in United States history. Crude oils are highly toxic to developing fish embryos, and many pelagic fish species were spawning in the northern Gulf in the months before containment of the damaged Mississippi Canyon 252 (MC252) wellhead (April-July). The largest prior U.S. spill was the 1989 grounding of the Exxon Valdez that released 11 million gallons of Alaska North Slope crude oil (ANSCO) into Prince William Sound. Numerous studies in the aftermath of the Exxon Valdez spill defined a conventional crude oil injury phenotype in fish early life stages, mediated primarily by toxicity to the developing heart. To determine whether this type of injury extends to fishes exposed to crude oil from the Deepwater Horizon - MC252 incident, we used zebrafish to compare the embryotoxicity of ANSCO alongside unweathered and weathered MC252 oil. We also developed a standardized protocol for generating dispersed oil water-accommodated fractions containing microdroplets of crude oil in the size range of those detected in subsurface plumes in the Gulf. We show here that MC252 oil and ANSCO cause similar cardiotoxicity and photo-induced toxicity in zebrafish embryos. Morphological defects and patterns of cytochrome P450 induction were largely indistinguishable and generally correlated with polycyclic aromatic compound (PAC) composition of each oil type. Analyses of embryos exposed during different developmental windows provided additional insight into mechanisms of crude oil cardiotoxicity. These findings indicate that the impacts of MC252 crude oil on fish embryos and larvae are consistent with the canonical ANSCO cardiac injury phenotype. For those marine fish species that spawned in the northern Gulf of Mexico during and after the Deepwater Horizon incident, the established literature can therefore inform the assessment of natural resource injury in the form of potential year-class losses.

  19. Natural sunlight and residual fuel oils are an acutely lethal combination for fish embryos.

    PubMed

    Hatlen, Kristin; Sloan, Catherine A; Burrows, Douglas G; Collier, Tracy K; Scholz, Nathaniel L; Incardona, John P

    2010-08-01

    The majority of studies characterizing the mechanisms of oil toxicity in fish embryos and larvae have focused largely on unrefined crude oil. Few studies have addressed the toxicity of modern bunker fuels, which contain residual oils that are the highly processed and chemically distinct remains of the crude oil refinement process. Here we use zebrafish embryos to investigate potential toxicological differences between unrefined crude and residual fuel oils, and test the effects of sunlight as an additional stressor. Using mechanically dispersed oil preparations, the embryotoxicity of two bunker oils was compared to a standard crude oil from the Alaska North Slope. In the absence of sunlight, all three oils produced the stereotypical cardiac toxicity that has been linked to the fraction of tricyclic aromatic compounds in an oil mixture. However, the cardiotoxicity of bunker oils did not correlate strictly with the concentrations of tricyclic compounds. Moreover, when embryos were sequentially exposed to oil and natural sunlight, the bunker oils produced a rapid onset cell-lethal toxicity not observed with crude oil. To investigate the chemical basis of this differential toxicity, a GC/MS full scan analysis was used to identify a range of compounds that were enriched in the bunker oils. The much higher phototoxic potential of chemically distinct bunker oils observed here suggests that this mode of action should be considered in the assessment of bunker oil spill impacts, and indicates the need for a broader approach to understanding the aquatic toxicity of different oils.

  20. Alkylphenol metabolites in fish bile as biomarkers of exposure to offshore oil industry produced water in feral fish.

    PubMed

    Beyer, Jonny; Sundt, Rolf C; Sanni, Steinar; Sydnes, Magne O; Jonsson, Grete

    2011-01-01

    The measurement of low-concentration alkylphenol (AP) exposure in fish is relevant in connection with monitoring and risk assessment of offshore oil industry produced water (PW) discharges. Detection of AP markers in fish bile offers significantly greater sensitivity than detection of AP in tissues such as liver. Recent studies revealed that gas chromatography-mass spectrometry in electron ionization mode (GC-EI-MS) enabled a selective and sensitive analytical detection of PW AP in mixtures with unknown composition. A procedure consisting of enzymatic deconjugation of metabolites in fish bile followed by derivatization with bis(trimethylsilyl)trifluoroacetamide and then separation and quantification of derivatized AP using GC-EI-MS is presented. The use of this procedure as a possible recommended approach for assessment and biomonitoring of AP contamination in fish populations living down-current from offshore oil production fields is presented.

  1. Fish-oil supplementation in patients with implantable cardioverter defibrillators: a meta-analysis

    PubMed Central

    Jenkins MD, David J.A.; Josse, Andrea R.; Beyene, Joseph; Dorian, Paul; Burr, Michael L.; LaBelle, Roxanne; Kendall, Cyril W.C.; Cunnane, Stephen C.

    2008-01-01

    Background A recent Cochrane meta-analysis did not confirm the benefits of fish and fish oil in the secondary prevention of cardiac death and myocardial infarction. We performed a meta-analysis of randomized controlled trials that examined the effect of fish-oil supplementation on ventricular fibrillation and ventricular tachycardia to determine the overall effect and to assess whether heterogeneity exists between trials. Methods We searched electronic databases (MEDLINE, EMBASE, The Cochrane Central Register of Controlled Trials, CINAHL) from inception to May 2007. We included randomized controlled trials of fish-oil supplementation on ventricular fibrillation or ventricular tachycardia in patients with implantable cardioverter defibrillators. The primary outcome was implantable cardioverter defibrillator discharge. We calculated relative risk [RR] for outcomes at 1-year follow-up for each study. We used the DerSimonian and Laird random-effects methods when there was significant heterogeneity between trials and the Mantel-Hanzel fixed-effects method when heterogeneity was negligible. Results We identified 3 trials of 1–2 years' duration. These trials included a total of 573 patients who received fish oil and 575 patients who received a control. Meta-analysis of data collected at 1 year showed no overall effect of fish oil on the relative risk of implantable cardioverter defibrillator discharge. There was significant heterogeneity between trials. The second largest study showed a significant benefit of fish oil (relative risk [RR] 0.74, 95% confidence interval [CI] 0.56–0.98). The smallest showed an adverse tendency at 1 year (RR 1.23, 95% CI 0.92–1.65) and significantly worse outcome at 2 years among patients with ventricular tachycardia at study entry (log rank p = 0.007). Conclusion These data indicate that there is heterogeneity in the response of patients to fish-oil supplementation. Caution should be used when prescribing fish-oil supplementation for

  2. Fish oil supplementation reduces markers of oxidative stress but not muscle soreness after eccentric exercise.

    PubMed

    Gray, Patrick; Chappell, Andrew; Jenkinson, Alison McE; Thies, Frank; Gray, Stuart R

    2014-04-01

    Due to the potential anti-inflammatory properties of fish-derived long chain n-3 fatty acids, it has been suggested that athletes should regularly consume fish oils-although evidence in support of this recommendation is not clear. While fish oils can positively modulate immune function, it remains possible that, due to their high number of double bonds, there may be concurrent increases in lipid peroxidation. The current study aims to investigate the effect of fish oil supplementation on exercise-induced markers of oxidative stress and muscle damage. Twenty males underwent a 6-week double-blind randomized placebo-controlled supplementation trial involving two groups (fish oil or placebo). After supplementation, participants undertook 200 repetitions of eccentric knee contractions. Blood samples were taken presupplementation, postsupplementation, immediately, 24, 48, and 72 hr postexercise and muscle soreness/maximal voluntary contraction (MVC) assessed. There were no differences in creatine kinase, protein carbonyls, endogenous DNA damage, muscle soreness or MVC between groups. Plasma thiobarbituric acid reactive substances (TBARS) were lower (p < .05) at 48 and 72 hr post exercise and H2O2 stimulated DNA damage was lower (p < .05) immediately postexercise in the fish oil, compared with the control group. The current study demonstrates that fish oil supplementation reduces selected markers of oxidative stress after a single bout of eccentric exercise.

  3. Efficacy of phytosterols and fish-oil supplemented high-oleic-sunflower oil rich diets in hypercholesterolemic growing rats.

    PubMed

    Alsina, Estefania; Macri, Elisa V; Lifshitz, Fima; Bozzini, Clarisa; Rodriguez, Patricia N; Boyer, Patricia M; Friedman, Silvia M

    2016-06-01

    Phytosterols (P) and fish-oil (F) efficacy on high-oleic-sunflower oil (HOSO) diets were assessed in hypercholesterolemic growing rats. Controls (C) received a standard diet for 8 weeks; experimental rats were fed an atherogenic diet (AT) for 3 weeks, thereafter were divided into four groups fed for 5 weeks a monounsaturated fatty acid diet (MUFA) containing either: extra virgin olive oil (OO), HOSO or HOSO supplemented with P or F. The diets did not alter body weight or growth. HOSO-P and HOSO-F rats showed reduced total cholesterol (T-chol), non-high-density lipoprotein-cholesterol (non-HDL-chol) and triglycerides and increased HDL-chol levels, comparably to the OO rats. Total body fat (%) was similar among all rats; but HOSO-F showed the lowest intestinal, epididymal and perirenal fat. However, bone mineral content and density, and bone yield stress and modulus of elasticity were unchanged. Growing hypercholesterolemic rats fed HOSO with P or F improved serum lipids and fat distribution, but did not influence material bone quality.

  4. Protective effects of fish oil and pioglitazone on pancreatic tissue in obese KK mice with type 2 diabetes.

    PubMed

    Iizuka, Yuzuru; Kim, Hyounju; Izawa, Takuya; Sakurai, Koji; Hirako, Satoshi; Wada, Masahiro; Matsumoto, Akiyo

    2016-12-01

    n-3 Polyunsaturated fatty acids, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have protective effects against the pancreatic β-cell dysfunction through several mechanisms. Thiazolidines are insulin sensitizers and are used in treating patients with type 2 diabetes. Our previous study demonstrated that a combination of fish oil, which is rich with EPA and DHA, and pioglitazone exerts beneficial effects on obesity and diabetes through their actions on the liver and adipose tissue. However, it remains largely unknown whether such combination therapy affects the pancreas. To answer this question, KK mice, which serve as a model for obesity and type 2 diabetes, were treated for 8 weeks with fish oil and pioglitazone. The combined regimen suppressed pancreatic islet hypertrophy (mean islet area decreased by an average of 49% vs. control) compared with mice treated with fish oil or pioglitazone alone (decreased by an average of 21% and 32% vs. control, respectively). Compared with the controls, individual or combined treatment significantly increased the percentage of β-cell area in the pancreatic islets, significantly decreased endoplasmic reticulum stress, and reduced the percentage of apoptotic cell death in the pancreatic islets. These findings suggest that fish oil and/or pioglitazone prevents β-cell dysfunction by improving the insulin resistance and decreasing the ER stress. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Fish oil ameliorates trimethylamine N-oxide-exacerbated glucose intolerance in high-fat diet-fed mice.

    PubMed

    Gao, Xiang; Xu, Jie; Jiang, Chengzi; Zhang, Yi; Xue, Yong; Li, Zhaojie; Wang, Jingfeng; Xue, Changhu; Wang, Yuming

    2015-04-01

    Trimethylamine N-oxide (TMAO), a component commonly present in seafood, has been found to have a harmful impact on glucose tolerance in high-fat diet (HFD)-fed mice. However, seafood also contains fish oil (FO), which has been shown to have beneficial effects on metabolism. Here, we investigated the effect of FO on TMAO-induced impaired glucose tolerance in HFD-fed mice. Male C57BL/6 mice were randomly assigned to the high fat (HF), TMAO, and fish oil groups. The HF group was fed a diet containing 25% fat, the TMAO group was fed the HFD plus 0.2% TMAO, and the FO group was fed the HFD plus 0.2% TMAO and 2% fish oil for 12 weeks. After 10 weeks of feeding, oral glucose tolerance tests were performed. Dietary FO improved the fasting glucose level, the fasting insulin level, HOMA-IR value, QUICKI score and ameliorated TMAO-induced exacerbated impaired glucose tolerance in HFD-fed mice. These effects were associated with the expression of genes related to the insulin signalling pathway, glycogen synthesis, gluconeogenesis, and glucose transport in peripheral tissues. Dietary fish oil also decreased TMAO-aggravated adipose tissue inflammation. Our results suggested that dietary FO ameliorated TMAO-induced impaired glucose tolerance, insulin signal transduction in peripheral tissue, and adipose tissue inflammation in HFD-fed mice.

  6. Fish Oil Supplementation and Quality of Life in Stage II Colorectal Cancer Patients: A 24-Month Follow-Up Study.

    PubMed

    Lewis, Cari; Xun, Pengcheng; Fly, Alyce D; Luo, Juhua; He, Ka

    2015-01-01

    Research suggests that cancer survivors have an interest in lifestyle changes following a diagnosis. However, few studies have prospectively investigated whether these changes result in positive outcomes. The objective of this study was to examine the associations between fish oil supplementation and quality of life (QoL), cancer recurrence, and all-cause mortality in Stage 2 colorectal cancer (CRC) patients following diagnosis. Four hundred fifty-three patients were enrolled from the North Carolina Cancer Registry from 2009 to 2011. Data on demography, treatment, and health behaviors were collected at diagnosis, 12-, and 24 mo postdiagnosis. Generalized estimating equations were performed to examine fish oil supplementation in relation to QoL, recurrence, and all-cause mortality. An increase in fish oil supplementation over 24 mo postdiagnosis was associated with an increase in the physical component score of the 12-item Medical Outcomes Short Form (β = 2.43, 95% CI: 0.10-4.76). Supplementation showed no association with the Functional Assessment of Cancer-Colorectal, cancer recurrence or mortality across the 24-mo follow-up. This study suggests that fish oil supplementation may improve symptom-related QoL (i.e., physical functioning) in Stage 2 CRC patients following diagnosis. Future research should address the dose-dependent effects of this relationship.

  7. Effects of fish oil on ovarian development in spotted scat (Scatophagus argus).

    PubMed

    Zhang, Min-Zhi; Li, Guang-Li; Zhu, Chun-Hua; Deng, Si-Ping

    2013-09-01

    The effects of different concentrations of dietary fish oil (0, 2%, or 6%) on ovarian development in 2-year-old female Scatophagus argus were investigated. The levels of serum sex steroid hormones (estradiol-17β, E2; testosterone, T), protein phosphorus (SPP), and protein calcium (SPC), as well as vitellogenin (vtg) mRNA expression in livers and ovaries were measured. Over the eight week experimental period, oocytes did not develop further and remained at phase III in fish fed with the control diet with no supplement of fish oil. Fish fed with 2% fish oil supplement had oocytes at transition phase from III to IV. Fish fed with 6% fish oil supplement had oocytes at late phase IV. Higher gonadosmatic index, serum E2, SPP, SPC, and liver vtg expression were found in 6% fish oil group compared to that in the 2% fish oil group (except E2) and the control group (P<0.05). In addition, vtg expression in livers was 600-1000 times higher than that in the ovaries. Gonadosmatic index, E2, and SPP, as well as liver vtg expression increased during the experiment and peaked at the end of experiment. However, hepatosomatic index, serum T, and ovarian vtg expression peaked at 4 weeks, and then decreased at 8 weeks, with no significant difference among the 3 groups. In summary, we showed that 6% fish oil supplementation in S. argus could effectively promote ovarian development, with associated increases in E2 secretion and increased liver vtg mRNA expression.

  8. Blood pressure and vascular reactivity changes in spontaneously hypertensive rats fed fish oil.

    PubMed Central

    Yin, K.; Chu, Z. M.; Beilin, L. J.

    1991-01-01

    1. To examine possible mechanisms of antihypertensive effects of feeding fish oil rich in n-3 fatty acids, we have studied vascular reactivity of aortic rings and perfused mesenteric resistance vessels of spontaneously hypertensive rats (SHR) given such a diet. 2. In two experiments, rats were fed a semi-synthetic diet containing either 'fish oil' (10 and 20% by weight) or hydrogenated coconut oil (control) (10 and 20%) for 4 weeks. 3. Blood pressure rose significantly less in the fish oil group than in controls in both experiments. 4. Aortic rings from control rats showed endothelium-dependent relaxations to low concentrations of acetylcholine (ACh) but relaxed less at higher concentrations. In contrast, rings from the fish oil group had relaxations which increased through the range of concentrations used. Indomethacin (10 microM) also increased the relaxation responses seen in rings from control rats, suggesting that fish oil inhibits a contractile cyclo-oxygenase product. This contractile substance may be thromboxane A2 (TxA2) or its endoperoxide precursor, prostaglandin H2 (PGH2) as aortic incubates and serum levels of TxB2 (the stable product of TxA2) were greatly reduced in fish oil-fed rats, and the decrease of relaxant responses to high concentrations of ACh were also blocked by a TxA2/PGH2 receptor blocker (SQ 29548). 5. In contrast to aortic rings, perfused preconstricted mesenteric resistance vessels of control rats relaxed to ACh in a similar fashion to tissues from fish oil-fed rats. However, in this preparation, fish oil feeding enhanced relaxations to sodium nitroprusside (SNP) and contractile responses to noradrenaline were less than controls.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1855129

  9. Effects of fish oil on cytokines and immune functions of mice with murine AIDS.

    PubMed

    Xi, S; Cohen, D; Chen, L H

    1998-08-01

    The effects of fish oil, which is rich in n-3 fatty acids, on cytokine levels in a murine model of acquired immune deficiency syndrome (AIDS) were studied. Thirty-two C57BL/6 female mice were divided into two dietary groups and fed either a corn oil diet or a fish oil diet. After 4 weeks, each diet group was further divided into two subgroups, and mice in one subgroup were injected i.p. with LP-BM5 murine retrovirus (MAIDS) stock. After 4 weeks, all mice were killed, blood samples were collected, and the spleens and the livers were excised. Splenocytes were isolated immediately and cultured in RPMI-1640 medium and stimulated by either lipopolysaccharide (LPS) or Concanavalin A (ConA) for 24 h. The supernatant was collected for cytokine assays. The results showed that MAIDS infection increased the levels of tumor necrosis factor-alpha (TNF-alpha) and interleukin-1-beta (IL-1beta), while fish oil partially prevented this elevation. MAIDS infection depressed interleukin-2 (IL-2) and interferon-gamma (IFNgamma), while fish oil partially prevented the depression of IL-2. In addition, MAIDS infection depressed LPS- and ConA-stimulated cell proliferation, while fish oil partially prevented the depression. The results suggest that fish oil may slow down the progression of murine AIDS by modulating levels of cytokines including TNF-alpha, IL-1beta, and IL-2.

  10. Enrichment of milk with conjugated linoleic acid by supplementing diets with fish and sunflower oil.

    PubMed

    Abo El-Nor, S A H; Khattab, Mostafa S A

    2012-07-15

    There is an increase interesting in enrichment of milk with Conjugated Linoleic Acid (CLA) due to its anti-oxidative and anti-carcinogenic properties. The objective of this study was to investigate the effect of supplementing diets fed to lactating goats with sunflower, fish oil and its blend. Eight lactating Nubian goats were fed a base diet (T1), diet supplemented with 2% sunflower oil (on dry matter (DM) basis) (T2), diet supplemented with 2% fish oil (T3) and diet supplemented with 2% sunflower and fish oil (T4) for 84 day. Milk composition milk fat, protein (%) decreased in T2, T3 and T4 compared with control (T1) while there was no significant differences between treatments in milk lactose content. CLA content in milk fat was higher in response to fish oil or sunflower and fish oil blend compared with control (T1). The results indicated that supplementing diets fed to lactating goats with sunflower, fish oil increased CLA contents in the milk 2-4 times than control.

  11. Effects of fish oil containing eicosapentaenoic acid and docosahexaenoic acid on dystrophic mdx mice.

    PubMed

    Fogagnolo Mauricio, Adriana; Minatel, Elaine; Santo Neto, Humberto; Marques, Maria Julia

    2013-08-01

    In Duchenne muscular dystrophy (DMD) and in the mdx mouse model of DMD, the lack of dystrophin leads to muscle degeneration and inflammation contributes to progression of the disease. In this study, we evaluated the effects of commercially available fish oil containing EPA and docosahexaenoic acid (DHA) on mdx. Mdx mice (14 days old) were treated with fish oil (FDC Vitamins; 0.002 g EPA and 0.001 g DHA) for 16 days by gavage. Control mdx mice received mineral oil (Nujol). Grip strength measurement was used for functional evaluation. The sternomastoid, diaphragm and biceps brachii muscles were removed and processed for histopathology and Western blot analysis. Fish oil decreased creatine kinase and myonecrosis. In all muscles studied, the inflammatory area was significantly reduced after treatment (18.0 ± 3.0% inflammatory area in untreated mdx mice versus 4.0 ± 1% in treated mdx mice). Fish oil protected against the loss of muscle strength. Fish oil significantly reduced the levels of TNF-α and the levels of 4-HNE-protein adducts (30-34% reduction for both) in all muscles studied. Commercially available fish oil may be potentially useful to ameliorate dystrophic progression of skeletal muscles, deserving further clinical trials in DMD patients. Copyright © 2012 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  12. Over-the-counter fish oil use in a county hospital: Medication use evaluation and efficacy analysis.

    PubMed

    Tatachar, Amulya; Pio, Margaret; Yeung, Denise; Moss, Elizabeth; Chow, Diem; Boatright, Steven; Quinones, Marissa; Mathew, Annie; Hulstein, Jeffrey; Adams-Huet, Beverley; Ahmad, Zahid

    2015-01-01

    Little is known about the use and effectiveness of over-the-counter (OTC) fish oil supplements for triglyceride (TG) lowering. To (1) perform a medication-use evaluation (MUE) and (2) assess the efficacy of OTC fish oil. Retrospective, observational cohort study using electronic medical records and the pharmacy database from Parkland Health and Hospital System in Dallas, Texas. Parkland is a tax-supported county institution that provides patients with single-brand OTC fish oil. Two separate analyses were conducted. Six hundred seventeen patients (prescribed fish oil between July 1, 2012, and August 31, 2012) were included in the MUE analysis and 235 patients (109 fish oil, 72 fenofibrate, and 54 gemfibrozil, prescribed between January 1, 2012, and July 31, 2013) were included in the efficacy analysis. The main outcome measure for the MUE was fish oil prescribing habits including dosages and patient adherence, as defined by medication possession ratio. The main outcome measure for the efficacy analysis was change in lipids measured using the last value before fish oil treatment and the first value after fish oil treatment. MUE: 617 patients received prescriptions for OTC fish oil. Sixty-four percent were prescribed a total daily dose of 2000 mg. Only 25% of patients were adherent. Efficacy analysis: despite being prescribed suboptimal doses, fish oil reduced TGs by 29% (95% confidence interval, 34.3-22.7). Compared with fish oil therapy, fibrate therapy resulted in a greater TG reduction: 48.5% (55.1-41.0) with fenofibrate and 49.8% (57.6-40.5) with gemfibrozil (P < .0001, both medications compared with fish oil). Health care providers prescribe suboptimal doses of fish oil, and adherence is poor. Even at low doses (2 g/d), though, fish oil lowers TGs by 29%. Copyright © 2015 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  13. Over-the-counter fish oil use in a county hospital: Medication use evaluation and efficacy analysis

    PubMed Central

    Tatachar, Amulya; Pio, Margaret; Yeung, Denise; Moss, Elizabeth; Chow, Diem; Boatright, Steven; Quinones, Marissa; Mathew, Annie; Hulstein, Jeffrey; Adams-Huet, Beverley; Ahmad, Zahid

    2016-01-01

    BACKGROUND Little is known about the use and effectiveness of over-the-counter (OTC) fish oil supplements for triglyceride (TG) lowering. OBJECTIVES To (1) perform a medication-use evaluation (MUE) and (2) assess the efficacy of OTC fish oil. METHODS Retrospective, observational cohort study using electronic medical records and the pharmacy database from Parkland Health and Hospital System in Dallas, Texas. Parkland is a tax-supported county institution that provides patients with single-brand OTC fish oil. Two separate analyses were conducted. Six hundred seventeen patients (prescribed fish oil between July 1, 2012, and August 31, 2012) were included in the MUE analysis and 235 patients (109 fish oil, 72 fenofibrate, and 54 gemfibrozil, prescribed between January 1, 2012, and July 31, 2013) were included in the efficacy analysis. The main outcome measure for the MUE was fish oil prescribing habits including dosages and patient adherence, as defined by medication possession ratio. The main outcome measure for the efficacy analysis was change in lipids measured using the last value before fish oil treatment and the first value after fish oil treatment. RESULTS MUE: 617 patients received prescriptions for OTC fish oil. Sixty-four percent were prescribed a total daily dose of 2000 mg. Only 25% of patients were adherent. Efficacy analysis: despite being prescribed suboptimal doses, fish oil reduced TGs by 29% (95% confidence interval, 34.3–22.7). Compared with fish oil therapy, fibrate therapy resulted in a greater TG reduction: 48.5% (55.1–41.0) with fenofibrate and 49.8% (57.6–40.5) with gemfibrozil (P < 0001, both medications compared with fish oil). CONCLUSIONS Health care providers prescribe suboptimal doses of fish oil, and adherence is poor. Even at low doses (2 g/d), though, fish oil lowers TGs by 29%. PMID:26073390

  14. An early approach for the evaluation of repair processes in fish after exposure to sediment contaminated by an oil spill.

    PubMed

    Salamanca, Maria J; Jimenez-Tenorio, Natalia; Reguera, Diana F; Morales-Caselles, Carmen; Delvalls, T Angel

    2008-12-01

    A chronic bioassay was carried out under laboratory conditions using juvenile Solea senegalensis to determine the toxicity of contaminants from an oil spill(Prestige). Also, the repair processes in fish affected by contaminants due to oil exposure were evaluated. Over 30 days individuals were exposed to clean sediment (control) and to sediment contaminated by a mixture of polyaromatic hydrocarbons (PAHs) and other substances. The physicochemical parameters of the tanks (salinity, temperature, pH and dissolved oxygen) were controlled during the exposure period. Clean sediment from the Bay of Cadiz (Spain) was used as negative control and was mixed with fuel oil to prepare the dilution (0.5% w:w dry-weight). After the exposure period, fish were labeled and transferred to "clean tanks" (tanks without sediment) in order to study the recovery and the repair processes in the exposed organisms. A biomarker of exposure (ethoxyresorufin-O-deethylase activity - EROD activity) and a biomarker of effect (histopathology) were analyzed during the exposure and recovery period. After 10, 20 and 30 days of exposure, individuals showed significant induction (P < 0.05) of the EROD activity and also presented diverse histopathological damages. The analysis of both the biomarkers of exposure and effect, after the 5th and 10th day of recovery in the "clean tank", enabled a first evaluation of the repair process of the induced damages due to the fuel oil exposure. After the recovery phase, control individuals showed a more significant decrease (P < 0.05) of the alteration of the measured biomarkers than in the oil-exposed fish. While in the oil-exposed fish the EROD activity showed some recovery, the histopathological damages did hardly improve. According to our results, tissue repair processes probably need longer recovery periods to observe significant improvement of the affected organs. This will be further investigated in the future.

  15. Fish oil reduces heart rate and oxygen consumption during exercise.

    PubMed

    Peoples, Gregory E; McLennan, Peter L; Howe, Peter R C; Groeller, Herbert

    2008-12-01

    Dietary omega-3 polyunsaturated fatty acids (PUFAs) are readily incorporated into heart and skeletal muscle membranes where, in the heart, animal studies show they reduce O2 consumption. To test the hypothesis that omega-3 PUFAs alter O2 efficiency in humans, the effects of fish oil (FO) supplementation on O2 consumption during exercise were evaluated. Sixteen well-trained men (cyclists), randomly assigned to receive 8 x 1 g capsules per day of olive oil (control) or FO for 8 weeks in a double-blind, parallel design, completed the study (control: n = 7, age 27.1 +/- 2.7 years; FO: n = 9, age 23.2 +/- 1.2 years). Subjects used an electronically braked cycle ergometer to complete peak O2 consumption tests (VO 2peak) and sustained submaximal exercise tests at 55% of peak workload (from the VO 2peak test) before and after supplementation. Whole-body O2 consumption and indirect measurements of myocardial O2 consumption [heart rate and rate pressure product (RPP)] were assessed. FO supplementation increased omega-3 PUFA content of erythrocyte cell membranes. There were no differences in VO 2peak (mL kg(-1) min(-1)) (control: pre 66.8 +/- 2.4, post 67.2 +/- 2.3; FO: pre 68.3 +/- 1.4, post 67.2 +/- 1.2) or peak workload after supplementation. The FO supplementation lowered heart rate (including peak heart rate) during incremental workloads to exhaustion (P < 0.05). In addition, the FO supplementation lowered steady-state submaximal exercise heart rate, whole-body O2 consumption, and RPP (P < 0.01). Time to voluntary fatigue was not altered by FO supplementation. This study indicates that FOs may act within the healthy heart and skeletal muscle to reduce both whole-body and myocardial O2 demand during exercise, without a decrement in performance.

  16. Potential impacts of the Deepwater Horizon oil spill on large pelagic fishes

    NASA Astrophysics Data System (ADS)

    Frias-Torres, Sarrah; Bostater, Charles R., Jr.

    2011-11-01

    Biogeographical analyses provide insights on how the Deepwater Horizon oil spill impacted large pelagic fishes. We georeferenced historical ichthyoplankton surveys and published literature to map the spawning and larval areas of bluefin tuna, swordfish, blue marlin and whale shark sightings in the Gulf of Mexico with daily satellite-derived images detecting surface oil. The oil spill covered critical areas used by large pelagic fishes. Surface oil was detected in 100% of the northernmost whale shark sightings, in 32.8 % of the bluefin tuna spawning area and 38 % of the blue marlin larval area. No surface oil was detected in the swordfish spawning and larval area. Our study likely underestimates the extend of the oil spill due to satellite sensors detecting only the upper euphotic zone and the use of dispersants altering crude oil density, but provides a previously unknown spatio-temporal analysis.

  17. Improving vegetable oil properties for lubrication methods

    USDA-ARS?s Scientific Manuscript database

    The inherent problems of vegetable oils, such as poor oxidation and low-temperature properties, can be improved by attaching functional groups at the sites of unsaturation through chemical modifications. In this article, you will see how functionalization helps overcome these disadvantages....

  18. Fish Oil Slows Prostate Cancer Xenograft Growth Relative to Other Dietary Fats and is Associated with Decreased Mitochondrial and Insulin Pathway Gene Expression

    PubMed Central

    Lloyd, Jessica C.; Masko, Elizabeth M.; Wu, Chenwei; Keenan, Melissa M.; Pilla, Danielle M.; Aronson, William J.; Chi, Jen-Tsan A.; Freedland, Stephen J.

    2013-01-01

    Background Previous mouse studies suggest that decreasing dietary fat content can slow prostate cancer (PCa) growth. To our knowledge, no study has yet compared the effect of multiple different fats on PCa progression. We sought to systematically compare the effect of fish oil, olive oil, corn oil, and animal fat on PCa progression. Methods A total of 96 male SCID mice were injected with LAPC-4 human PCa cells. Two weeks following injection, mice were randomized to a fish oil, olive oil, corn oil, or animal fat-based Western diet (35% kcals from fat). Animals were euthanized when tumors reached 1,000mm3. Serum was collected at sacrifice and assayed for PSA, insulin, IGF-1, IGFBP-3, and PGE-2 levels. Tumors were also assayed for PGE-2 and COX-2 levels and global gene expression analyzed using Affymetrix microarrays. Results Mice weights and tumor volumes were equivalent across groups at randomization. Overall, fish oil consumption was associated with improved survival, relative to other dietary groups (p=0.014). On gene expression analyses, the fish oil group had decreased signal in pathways related to mitochondrial physiology and insulin synthesis/secretion. Conclusions In this xenograft model, we found that consuming a diet in which fish oil was the only fat source slowed tumor growth and improved survival, compared to mice consuming diets composed of olive oil, corn oil, or animal fat. While prior studies showed that the amount of fat is important for PCa growth, the current study suggests that type of dietary fat consumed may also be important. PMID:23877027

  19. Fish oil slows prostate cancer xenograft growth relative to other dietary fats and is associated with decreased mitochondrial and insulin pathway gene expression.

    PubMed

    Lloyd, J C; Masko, E M; Wu, C; Keenan, M M; Pilla, D M; Aronson, W J; Chi, J-Ta; Freedland, S J

    2013-12-01

    Previous mouse studies suggest that decreasing dietary fat content can slow prostate cancer (PCa) growth. To our knowledge, no study has yet compared the effect of multiple different fats on PCa progression. We sought to systematically compare the effect of fish oil, olive oil, corn oil and animal fat on PCa progression. A total of 96 male severe combined immunodeficient mice were injected with LAPC-4 human PCa cells. Two weeks following injection, mice were randomized to a Western diet based on fish oil, olive oil, corn oil or animal fat (35% kilocalories from fat). Animals were euthanized when tumor volumes reached 1000 mm(3). Serum was collected at death and assayed for PSA, insulin, insulin-like growth factor-1 (IGF-1), IGF-1-binding protein-3 and prostaglandin E-2 (PGE-2) levels. Tumors were also assayed for PGE-2 and cyclooxygenase-2 levels, and global gene expression was analyzed using Affymetrix microarrays. Mice weights and tumor volumes were equivalent across groups at randomization. Overall, fish oil consumption was associated with improved survival relative to other dietary groups (P=0.014). On gene expression analyses, the fish oil group had decreased signal in pathways related to mitochondrial physiology and insulin synthesis/secretion. In this xenograft model, we found that consuming a diet in which fish oil was the only fat source slowed tumor growth and improved survival compared with that in mice consuming diets composed of olive oil, corn oil or animal fat. Although prior studies showed that the amount of fat is important for PCa growth, this study suggests that the type of dietary fat consumed may also be important.

  20. The preventive effect of fish oil on abdominal aortic aneurysm development.

    PubMed

    Kugo, Hirona; Zaima, Nobuhiro; Mouri, Youhei; Tanaka, Hiroki; Yanagimoto, Kenichi; Urano, Tetsumei; Unno, Naoki; Moriyama, Tatsuya

    2016-06-01

    Abdominal aortic aneurysm (AAA) is a vascular disease involving gradual dilation of the abdominal aorta and high rupture-related mortality rates. AAA is histologically characterized by oxidative stress, chronic inflammation, and extracellular matrix degradation in the vascular wall. We previously demonstrated that aortic hypoperfusion could cause the vascular inflammation and AAA formation. However, the preventive method for hypoperfusion-induced AAA remains unknown. In this study, we evaluated the effect of fish oil on AAA development using a hypoperfusion-induced AAA animal model. Dilation of the abdominal aorta in the fish oil administration group was smaller than in the control group. Collagen destruction and oxidative stress were suppressed in the fish oil administration group than in the control group. These results suggested that fish oil could prevent the development of AAA induced by hypoperfusion.

  1. Omega-3 polyunsaturated fatty acid (fish oil) supplementation and the prevention of clinical cardiovascular disease

    USDA-ARS?s Scientific Manuscript database

    Multiple randomized controlled trials (RCTs) have assessed the effects of supplementation with eicosapentaenoic acid plus docosahexaenoic acid (omega-3 polyunsaturated fatty acids, commonly called fish oils) on the occurrence of clinical cardiovascular diseases. Although the effects of supplementati...

  2. Fish oil curtails the human action potential dome in a heterogeneous manner: implication for arrhythmogenesis.

    PubMed

    Verkerk, Arie O; den Ruijter, Hester M; de Jonge, Nicolaas; Coronel, Ruben

    2009-02-06

    Omega-3 polyunsaturated fatty acids (omega 3-PUFAs) from fish oil modulate various ion channels, including the L-type calcium current (I(Ca,L)). As a result, fish oil shortens the cardiac action potential and may cause a loss of the dome of the action potential (AP). Under conditions of increased preexisting heterogeneity in repolarization this may aggravate dispersion in action potential duration. We isolated ventricular myocytes of explanted hearts from patients with cardiomyopathy at the time of cardiac transplantation, and characterized spike-and-dome morphology in the presence of acutely administered fish oil. Fish oil omega 3-PUFA eicosapentaenoic acid (EPA), but not the control omega 9-PUFA oleic acid (OA), curtails the AP-dome in a heterogeneous manner and may even result in loss of the AP-dome in some but not all myocytes.

  3. Fish oil alleviated high-fat diet-induced non-alcoholic fatty liver disease via regulating hepatic lipids metabolism and metaflammation: a transcriptomic study.

    PubMed

    Yuan, Fahu; Wang, Hualin; Tian, Yu; Li, Qi; He, Lei; Li, Na; Liu, Zhiguo

    2016-02-01

    Intake of fish oil rich in n-3 polyunsaturated fatty acids (PUFAs) is believed to be beneficial against development of non-alcoholic fatty liver disease (NAFLD). However, the underlying mechanisms remain unclear. This study was to gain further understanding of the potential mechanisms of the protective effects of fish oil against NAFLD. Ten male Sprague-Dawley rats were fed a control diet (CON), a Western style high-fat and high-cholesterol diet (WD), or a WD diet containing fish oil (FOH) for 16 weeks respectively. The development of liver steatosis and fibrosis were verified by histological and biochemical examination. Hepatic transcriptome were extracted for RNA-seq analysis, and particular results were confirmed by real-time polymerase chain reaction (PCR). The consumption of fish oil significantly ameliorated WD-induced dyslipidemia, transaminase elevation, hepatic steatosis, inflammatory infiltration, and fibrosis. Hepatic RNA-Seq analysis showed that long-term intake of fish oil restored the expression of circadian clock-related genes per2 and per3, which were reduced in WD fed animals. Fish oil consumption also corrected the expression levels of genes involved in fatty acid and cholesterol metabolism, such as Srebf1, Fasn, Scd1, Insig2, Cd36, Cyp7a1, Abcg5, Abcg8 and Pcsk9. Moreover, the expression levels of pro-inflammation genes Mcp1, Socs2, Sema4a, and Cd44 in the FOH group were lower than that of WD group, implying that fish oil protects the liver against WD-induced hepatic inflammation. The present study demonstrates fish oil protects against WD-induced NALFD via improving lipid metabolism and ameliorating hepatic inflammation. Our findings add to the current understanding on the benefits of n-3 PUFAs against NAFLD.

  4. Comparative analysis of EPA and DHA in fish oil nutritional capsules by GC-MS.

    PubMed

    Yi, Tao; Li, Shuk-Man; Fan, Jia-Yi; Fan, Lan-Lan; Zhang, Zhi-Feng; Luo, Pei; Zhang, Xiao-Jun; Wang, Jian-Gang; Zhu, Lin; Zhao, Zhong-Zhen; Chen, Hu-Biao

    2014-12-13

    Fish oil is a popular nutritional product consumed in Hong Kong. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are the two main bioactive components responsible for the health benefits of fish oil. Market survey in Hong Kong demonstrated that various fish oil capsules with different origins and prices are sold simultaneously. However, these capsules are labelled with same ingredient levels, namely EPA 180 mg/g and DHA 120 mg/g. This situation makes the consumers very confused. To evaluate the quality of various fish oil capsules, a comparative analysis of the contents of EPA and DHA in fish oil is crucial. A gas chromatography-mass spectrometry (GC-MS) method was developed for identification and determination of EPA and DHA in fish oil capsules. A comprehensive validation of the developed method was conducted. Ten batches of fish oil capsules samples purchased from drugstores of Hong Kong were analyzed by using the developed method. The present method presented good sensitivity, precision and accuracy. The limits of detection (LOD) for EPA and DHA were 0.08 ng and 0.21 ng, respectively. The relative standard deviation (RSD) values of EPA and DHA for repeatability tests were both less than 1.05%; and the recovery for accuracy test of EPA and DHA were 100.50% and 103.83%, respectively. In ten fish oil samples, the contents of EPA ranged from 39.52 mg/g to 509.16 mg/g, and the contents of DHA ranged from 35.14 mg/g to 645.70 mg/g. The present method is suitable for the quantitative analysis of EPA and DHA in fish oil capsules. There is a significant variation in the contents of the quantified components in fish oil samples, and there is not a linear relationship between price and contents of EPA and DHA. Strict supervision of the labelling of the fish oil capsules is urgently needed.

  5. Perilla Oil Has Similar Protective Effects of Fish Oil on High-Fat Diet-Induced Nonalcoholic Fatty Liver Disease and Gut Dysbiosis.

    PubMed

    Tian, Yu; Wang, Hualin; Yuan, Fahu; Li, Na; Huang, Qiang; He, Lei; Wang, Limei; Liu, Zhiguo

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease in developed countries. Recent studies indicated that the modification of gut microbiota plays an important role in the progression from simple steatosis to steatohepatitis. Epidemiological studies have demonstrated consumption of fish oil or perilla oil rich in n-3 polyunsaturated fatty acids (PUFAs) protects against NAFLD. However, the underlying mechanisms remain unclear. In the present study, we adopted 16s rRNA amplicon sequencing technique to investigate the impacts of fish oil and perilla oil on gut microbiomes modification in rats with high-fat diet- (HFD-) induced NAFLD. Both fish oil and perilla oil ameliorated HFD-induced hepatic steatosis and inflammation. In comparison with the low-fat control diet, HFD feeding significantly reduced the relative abundance of Gram-positive bacteria in the gut, which was slightly reversed by either fish oil or perilla oil. Additionally, fish oil and perilla oil consumption abrogated the elevated abundance of Prevotella and Escherichia in the gut from HFD fed animals. Interestingly, the relative abundance of antiobese Akkermansia was remarkably increased only in animals fed fish oil compared with HFD group. In conclusion, compared with fish oil, perilla oil has similar but slightly weaker potency against HFD-induced NAFLD and gut dysbiosis.

  6. Perilla Oil Has Similar Protective Effects of Fish Oil on High-Fat Diet-Induced Nonalcoholic Fatty Liver Disease and Gut Dysbiosis

    PubMed Central

    Tian, Yu; Wang, Hualin; Yuan, Fahu; Li, Na; Huang, Qiang; He, Lei; Wang, Limei

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease in developed countries. Recent studies indicated that the modification of gut microbiota plays an important role in the progression from simple steatosis to steatohepatitis. Epidemiological studies have demonstrated consumption of fish oil or perilla oil rich in n-3 polyunsaturated fatty acids (PUFAs) protects against NAFLD. However, the underlying mechanisms remain unclear. In the present study, we adopted 16s rRNA amplicon sequencing technique to investigate the impacts of fish oil and perilla oil on gut microbiomes modification in rats with high-fat diet- (HFD-) induced NAFLD. Both fish oil and perilla oil ameliorated HFD-induced hepatic steatosis and inflammation. In comparison with the low-fat control diet, HFD feeding significantly reduced the relative abundance of Gram-positive bacteria in the gut, which was slightly reversed by either fish oil or perilla oil. Additionally, fish oil and perilla oil consumption abrogated the elevated abundance of Prevotella and Escherichia in the gut from HFD fed animals. Interestingly, the relative abundance of antiobese Akkermansia was remarkably increased only in animals fed fish oil compared with HFD group. In conclusion, compared with fish oil, perilla oil has similar but slightly weaker potency against HFD-induced NAFLD and gut dysbiosis. PMID:27051672

  7. A nutritionally-enhanced oil from transgenic Camelina sativa effectively replaces fish oil as a source of eicosapentaenoic acid for fish.

    PubMed

    Betancor, M B; Sprague, M; Usher, S; Sayanova, O; Campbell, P J; Napier, J A; Tocher, D R

    2015-01-29

    For humans a daily intake of up to 500 mg omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFA) is recommended, amounting to an annual requirement of 1.25 million metric tonnes (mt) for a population of 7 billion people. The annual global supply of n-3 LC-PUFA cannot meet this level of requirement and so there is a large gap between supply and demand. The dietary source of n-3 LC-PUFA, fish and seafood, is increasingly provided by aquaculture but using fish oil in feeds to supply n-3 LC-PUFA is unsustainable. Therefore, new sources of n-3 LC-PUFA are required to supply the demand from aquaculture and direct human consumption. One approach is metabolically engineering oilseed crops to synthesize n-3 LC-PUFA in seeds. Transgenic Camelina sativa expressing algal genes was used to produce an oil containing n-3 LC-PUFA to replace fish oil in salmon feeds. The oil had no detrimental effects on fish performance, metabolic responses or the nutritional quality of the fillets of the farmed fish.

  8. A nutritionally-enhanced oil from transgenic Camelina sativa effectively replaces fish oil as a source of eicosapentaenoic acid for fish

    PubMed Central

    Betancor, M. B.; Sprague, M.; Usher, S.; Sayanova, O.; Campbell, P. J.; Napier, J. A.; Tocher, D. R.

    2015-01-01

    For humans a daily intake of up to 500 mg omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFA) is recommended, amounting to an annual requirement of 1.25 million metric tonnes (mt) for a population of 7 billion people. The annual global supply of n-3 LC-PUFA cannot meet this level of requirement and so there is a large gap between supply and demand. The dietary source of n-3 LC-PUFA, fish and seafood, is increasingly provided by aquaculture but using fish oil in feeds to supply n-3 LC-PUFA is unsustainable. Therefore, new sources of n-3 LC-PUFA are required to supply the demand from aquaculture and direct human consumption. One approach is metabolically engineering oilseed crops to synthesize n-3 LC-PUFA in seeds. Transgenic Camelina sativa expressing algal genes was used to produce an oil containing n-3 LC-PUFA to replace fish oil in salmon feeds. The oil had no detrimental effects on fish performance, metabolic responses or the nutritional quality of the fillets of the farmed fish. PMID:25632018

  9. Relative Condition Factors of Fish as Bioindicators One Year after the Deepwater Horizon Oil Spill

    DTIC Science & Technology

    2012-02-01

    Research Report 3. DATES COVERED (From - To) 07-01-2010 to 30-1-2012 4. TITLE AND SUBTITLE Relative Condition Factors of Fish as Bioindicators One...Condition index, relative condition factor, bioindicator , oil spill 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF...Condition Factors of Fish as Bioindicators One Year after the Deepwater Horizon Oil Spill Joshua Courtney,1 Taylor Klinkmann,2 Amy Courtney,1 Joseph

  10. Fish oil for the reduction of atrial fibrillation recurrence, inflammation, and oxidative stress.

    PubMed

    Nigam, Anil; Talajic, Mario; Roy, Denis; Nattel, Stanley; Lambert, Jean; Nozza, Anna; Jones, Peter; Ramprasath, Vanu R; O'Hara, Gilles; Kopecky, Stephen; Brophy, James M; Tardif, Jean-Claude

    2014-10-07

    Recent trials of fish oil for the prevention of atrial fibrillation (AF) recurrence have provided mixed results. Notable uncertainties in the existing evidence base include the roles of high-dose fish oil, inflammation, and oxidative stress in patients with paroxysmal or persistent AF not receiving conventional antiarrhythmic (AA) therapy. The aim of this study was to evaluate the influence of high-dose fish oil on AF recurrence, inflammation, and oxidative stress parameters. We performed a double-blind, randomized, placebo-controlled, parallel-arm study in 337 patients with symptomatic paroxysmal or persistent AF within 6 months of enrollment. Patients were randomized to fish oil (4 g/day) or placebo and followed, on average, for 271 ± 129 days. The primary endpoint was time to first symptomatic or asymptomatic AF recurrence lasting >30 s. Secondary endpoints were high-sensitivity C-reactive protein (hs-CRP) and myeloperoxidase (MPO). The primary endpoint occurred in 64.1% of patients in the fish oil arm and 63.2% of patients in the placebo arm (hazard ratio: 1.10; 95% confidence interval: 0.84 to 1.45; p = 0.48). hs-CRP and MPO were within normal limits at baseline and decreased to a similar degree at 6 months (Δhs-CRP, 11% vs. -11%; ΔMPO, -5% vs. -9% for fish oil vs. placebo, respectively; p value for interaction = NS). High-dose fish oil does not reduce AF recurrence in patients with a history of AF not receiving conventional AA therapy. Furthermore, fish oil does not reduce inflammation or oxidative stress markers in this population, which may explain its lack of efficacy. (Multi-center Study to Evaluate the Effect of N-3 Fatty Acids [OMEGA-3] on Arrhythmia Recurrence in Atrial Fibrillation [AFFORD]; NCT01235130). Copyright © 2014 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  11. Fish oil prevents sucrose-induced fatty liver but exacerbates high-safflower oil-induced fatty liver in ddy mice.

    PubMed

    Yamazaki, Tomomi; Nakamori, Akiko; Sasaki, Eriko; Wada, Satoshi; Ezaki, Osamu

    2007-12-01

    Diets high in sucrose/fructose or fat can result in hepatic steatosis (fatty liver). We analyzed the effects of dietary fish oil on fatty liver induced by sucrose, safflower oil, and butter in ddY mice. In experiment I, mice were fed a high-starch diet [70 energy% (en%) starch] plus 20% (wt/wt) sucrose in the drinking water or fed a high-safflower oil diet (60 en%) for 11 weeks. As a control, mice were fed a high-starch diet with drinking water. Fish oil (10 en%) was either supplemented or not. Mice supplemented with sucrose or fed safflower oil showed a 1.7-fold or 2.2-fold increased liver triglyceride content, respectively, compared with that of control mice. Fish oil completely prevented sucrose-induced fatty liver, whereas it exacerbated safflower oil-induced fatty liver. Sucrose increased SREBP-1c and target gene messenger RNAs (mRNAs), and fish oil completely inhibited these increases. In experiment II, mice were fed a high-safflower oil or a high-butter diet, with or without fish oil supplementation. Fish oil exacerbated safflower oil-induced fatty liver but did not affect butter-induced fatty liver. Fish oil increased expression of peroxisome proliferator-activated receptor gamma (PPARgamma) and target CD36 mRNA in safflower oil-fed mice. These increases were not observed in sucrose-supplemented or butter-fed mice. The effects of dietary fish oil on fatty liver differ according to the cause of fatty liver; fish oil prevents sucrose-induced fatty liver but exacerbates safflower oil-induced fatty liver. The exacerbation of fatty liver may be due, at least in part, to increased expression of liver PPARgamma.

  12. Hydrolysis of fish oils containing polymers of triacylglycerols by pancreatic lipase in vitro.

    PubMed

    Henderson, R J; Burkow, I C; Millar, R M

    1993-04-01

    Fish oils containing different levels of polymers of triacylglycerols formed during autoxidation were incubated with pancreatic lipase to establish whether these polymers are substrates for lipase hydrolysis. With oils containing low amounts (less than 4%) of triacylglycerol polymers as substrates, both triacylglycerols and polymers of triacylglycerols were almost completely hydrolyzed, and fatty acid monomers and monoacylglycerols were the major lipid products. Under the same incubation conditions, some triacylglycerols remained intact when highly oxidized oils containing 20 or 30% triacylglycerol polymers were the substrate. The fatty acid composition of these residual triacylglycerols was almost identical to that of triacylglycerols present at the start of the assay. When fish oil containing 30% triacylglycerol polymers was incubated with the lipase, the component triacylglycerols and polymers of triacylglycerols were hydrolyzed at similar rates, and fatty acid dimers were detected as a product. It is concluded that the high molecular weight polymers of triacylglycerols present in oxidized fish oils can be hydrolyzed by pancreatic lipase in vitro.

  13. Rapid determination of saponification value and polymer content of vegetable and fish oils by terahertz spectroscopy.

    PubMed

    Jiang, Feng Ling; Ikeda, Ikuo; Ogawa, Yuichi; Endo, Yasushi

    2012-01-01

    A rapid method for determining the saponification value (SV) and polymer content of vegetable and fish oils using the terahertz (THz) spectroscopy was developed. When the THz absorption spectra for vegetable and fish oils were measured in the range of 20 to 400 cm⁻¹, two peaks were seen at 77 and 328 cm⁻¹. The level of absorbance at 77 cm⁻¹ correlated well with the SV. When the THz absorption spectra of thermally treated high-oleic safflower oils were measured, the absorbance increased with heating time. The polymer content in thermally treated oil correlated with the absorbance at 77 cm⁻¹. These results demonstrate that the THz spectrometry is a suitable non-destructive technique for the rapid determination of the SV and polymer content of vegetable and fish oils.

  14. Determinants of Adoption of Improved Fish Production Technologies among Fish Farmers in Delta State, Nigeria

    ERIC Educational Resources Information Center

    Ofuoku, A. U.; Olele, N. F.; Emah, G. N.

    2008-01-01

    This study was conducted to isolate the determinants of improved fish production technologies in Delta State, Nigeria. Data were collected from a sample population of 250 fish farmers from ten randomly selected Local Government Areas of Delta State. The data were elicited from respondents with the use of structured interview schedule while…

  15. Determinants of Adoption of Improved Fish Production Technologies among Fish Farmers in Delta State, Nigeria

    ERIC Educational Resources Information Center

    Ofuoku, A. U.; Olele, N. F.; Emah, G. N.

    2008-01-01

    This study was conducted to isolate the determinants of improved fish production technologies in Delta State, Nigeria. Data were collected from a sample population of 250 fish farmers from ten randomly selected Local Government Areas of Delta State. The data were elicited from respondents with the use of structured interview schedule while…

  16. Fish oil – how does it reduce plasma triglycerides?

    PubMed Central

    Shearer, Gregory C.; Savinova, Olga V.; Harris, William S.

    2012-01-01

    Long chain omega-3 fatty acids (FAs) are effective for reducing plasma triglyceride (TG) levels. At the pharmaceutical dose, 3.4 g/day, they reduce plasma TG by about 25-50% after one month of treatment, resulting primarily from the decline in hepatic very low density lipoprotein (VLDL-TG) production, and secondarily from the increase in VLDL clearance. Numerous mechanisms have been shown to contribute to the TG overproduction, but a key component is an increase in the availability of FAs in the liver. The liver derives FAs from three sources: diet (delivered via chylomicron remnants), de novo lipogenesis, and circulating non-esterified FAs (NEFAs). Of these, NEFAs contribute the largest fraction to VLDL-TG production in both normotriglyceridemic subjects and hypertriglyceridemic, insulin resistant patients. Thus reducing NEFA delivery to the liver would be a likely locus of action for fish oils (FO). The key regulator of plasma NEFA is intracellular adipocyte lipolysis via hormone sensitive lipase (HSL), which increases as insulin sensitivity worsens. FO counteracts intracellular lipolysis in adipocytes by suppressing adipose tissue inflammation. In addition, FO increases extracellular lipolysis by lipoprotein lipase (LpL) in adipose, heart and skeletal muscle and enhances hepatic and skeletal muscle β-oxidation which contributes to reduced FA delivery to the liver. FO could activate transcription factors which control metabolic pathways in a tissue specific manner regulating nutrient traffic and reducing plasma TG. PMID:22041134

  17. Fish oil and krill oil supplementations differentially regulate lipid catabolic and synthetic pathways in mice.

    PubMed

    Tillander, Veronika; Bjørndal, Bodil; Burri, Lena; Bohov, Pavol; Skorve, Jon; Berge, Rolf K; Alexson, Stefan Eh

    2014-01-01

    Marine derived oils are rich in long-chain polyunsaturated omega-3 fatty acids, in particular eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which have long been associated with health promoting effects such as reduced plasma lipid levels and anti-inflammatory effects. Krill oil (KO) is a novel marine oil on the market and is also rich in EPA and DHA, but the fatty acids are incorporated mainly into phospholipids (PLs) rather than triacylglycerols (TAG). This study compares the effects of fish oil (FO) and KO on gene regulation that influences plasma and liver lipids in a high fat diet mouse model. Male C57BL/6J mice were fed either a high-fat diet (HF) containing 24% (wt/wt) fat (21.3% lard and 2.3% soy oil), or the HF diet supplemented with FO (15.7% lard, 2.3% soy oil and 5.8% FO) or KO (15.6% lard, 2.3% soy oil and 5.7% KO) for 6 weeks. Total levels of cholesterol, TAG, PLs, and fatty acid composition were measured in plasma and liver. Gene regulation was investigated using quantitative PCR in liver and intestinal epithelium. Plasma cholesterol (esterified and unesterified), TAG and PLs were significantly decreased with FO. Analysis of the plasma lipoprotein particles indicated that the lipid lowering effect by FO is at least in part due to decreased very low density lipoprotein (VLDL) content in plasma with subsequent liver lipid accumulation. KO lowered plasma non-esterified fatty acids (NEFA) with a minor effect on fatty acid accumulation in the liver. In spite of a lower omega-3 fatty acid content in the KO supplemented diet, plasma and liver PLs omega-3 levels were similar in the two groups, indicating a higher bioavailability of omega-3 fatty acids from KO. KO more efficiently decreased arachidonic acid and its elongation/desaturation products in plasma and liver. FO mainly increased the expression of several genes involved in fatty acid metabolism, while KO specifically decreased the expression of genes involved in the early steps of

  18. Fish oil and krill oil supplementations differentially regulate lipid catabolic and synthetic pathways in mice

    PubMed Central

    2014-01-01

    Background Marine derived oils are rich in long-chain polyunsaturated omega-3 fatty acids, in particular eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which have long been associated with health promoting effects such as reduced plasma lipid levels and anti-inflammatory effects. Krill oil (KO) is a novel marine oil on the market and is also rich in EPA and DHA, but the fatty acids are incorporated mainly into phospholipids (PLs) rather than triacylglycerols (TAG). This study compares the effects of fish oil (FO) and KO on gene regulation that influences plasma and liver lipids in a high fat diet mouse model. Methods Male C57BL/6J mice were fed either a high-fat diet (HF) containing 24% (wt/wt) fat (21.3% lard and 2.3% soy oil), or the HF diet supplemented with FO (15.7% lard, 2.3% soy oil and 5.8% FO) or KO (15.6% lard, 2.3% soy oil and 5.7% KO) for 6 weeks. Total levels of cholesterol, TAG, PLs, and fatty acid composition were measured in plasma and liver. Gene regulation was investigated using quantitative PCR in liver and intestinal epithelium. Results Plasma cholesterol (esterified and unesterified), TAG and PLs were significantly decreased with FO. Analysis of the plasma lipoprotein particles indicated that the lipid lowering effect by FO is at least in part due to decreased very low density lipoprotein (VLDL) content in plasma with subsequent liver lipid accumulation. KO lowered plasma non-esterified fatty acids (NEFA) with a minor effect on fatty acid accumulation in the liver. In spite of a lower omega-3 fatty acid content in the KO supplemented diet, plasma and liver PLs omega-3 levels were similar in the two groups, indicating a higher bioavailability of omega-3 fatty acids from KO. KO more efficiently decreased arachidonic acid and its elongation/desaturation products in plasma and liver. FO mainly increased the expression of several genes involved in fatty acid metabolism, while KO specifically decreased the expression of genes involved in

  19. A field laboratory for improved oil recovery

    SciTech Connect

    Hildebrandt, A.F.; McDonald, J.; Claridge, E.; Killough, J.

    1992-09-01

    The purpose of Annex III of the Memorandum of Understanding, undertaken by the Houston Petroleum Research Center at the University of Houston, was to develop a field laboratory for research in improved oil recovery using a Gulf Coast reservoir in Texas. The participants: (1) make a field site selection and conducted a high resolution seismic survey in the demonstration field, (2) obtained characteristics of the reservoir (3) developed an evaluation of local flood efficiency in different parts of the demonstration reservoir, (4) used diverse methodology to evaluate the potential recovery of the remaining oil in the test reservoir, (5) developed cross-well seismic tomography, and (6) will transfer the learned technologies to oil operators through publication and workshops. This abstract is an overview of these tasks.

  20. Bifidobacterium lactis 420 and fish oil enhance intestinal epithelial integrity in Caco-2 cells.

    PubMed

    Mokkala, Kati; Laitinen, Kirsi; Röytiö, Henna

    2016-03-01

    Increased intestinal permeability is a predisposing factor for low-grade inflammation-associated conditions, including obesity and type 2 diabetes. Dietary components may influence intestinal barrier integrity. We hypothesized that the dietary supplements Bifidobacterium lactis 420, Lactobacillus rhamnosus HN001, and fish oil have beneficial impacts on intestinal barrier integrity. In addition, we hypothesized that the coadministration of these components results in synergistic benefits to the integrity of the intestinal barrier. To study this, we investigated the impact of cell-free culture supernatant from dietary supplements B lactis 420 and L rhamnosus HN001, and fish oil, separately and in combination, on intestinal permeability in a CaCo-2 cell model. Administered separately, both B lactis 420 supernatant and fish oil significantly increased the integrity of the intestinal epithelial barrier, as determined by an increase in transepithelial electrical resistance (TEER), whereas L rhamnosus did not. The TEER increase with B lactis 420 was dose dependent. Interestingly, a combination of B lactis 420 supernatant and fish oil negated the increase in TEER of the single components. mRNA expression of tight junction proteins, measured by real-time quantitative polymerase chain reaction, was not altered, but the mRNA expression of myosin light chain kinase increased after fish oil treatment. To conclude, single dietary components, namely, B lactis 420 and fish oil, induced beneficial effects on intestinal barrier integrity in vitro, whereas a combination of 2 beneficial test compounds resulted in a null effect.

  1. Fish oil and inflammatory disease: is asthma the next target for n-3 fatty acid supplements?

    PubMed

    Stephensen, Charles B

    2004-12-01

    Eating fish or taking n-3 fatty acid supplements can decrease the risk and severity of cardiovascular disease. Such supplements also provide symptomatic relief for rheumatoid arthritis patients. Recent research suggests that asthma, another highly prevalent, chronic inflammatory disease, may also respond to fish oil supplements.

  2. A single dose of emulsified versus capsular fish oils has equivalent effects on chylomicron fatty acids over 8 hours

    USDA-ARS?s Scientific Manuscript database

    Long chain omega-3 fatty acids are important in nutrition and disease management. Flavored emulsified fish oil supplements provide an alternative to encapsulated fish oils. Oil in water emulsions may offer an advantage in bio-availability of the fatty acids. Chylomicrons transport triglyceride from...

  3. Intestinal failure-associated liver disease and the use of fish oil-based lipid emulsions.

    PubMed

    Goulet, Olivier J

    2015-01-01

    Intestinal failure (IF) is caused by the critical reduction of functional gut mass below the minimal amount necessary for adequate digestion and absorption to satisfy body nutrient and fluid requirements for maintenance in adults and growth in children. The advent of parenteral nutrition (PN) resulted in a dramatic improvement in life expectancy of patients suffering IF, but it has its own complications, such as catheter related sepsis. In pediatric patients suffering IF, intraluminal intestinal bacterial overgrowth may cause bacterial translocation and subsequent cholestasis and liver fibrosis. With our current understanding of the genesis of intestinal failure associated liver disease (IFALD), it should be prevented or at least early recognized and treated especially in patients experiencing prematurity and/or sepsis. Targeting harmful cytokine responses can be expected to reduce the severity and frequency of IFALD. In that view, prevention of sepsis, appropriate management of enteral feeding, prevention and treatment of intestinal bacterial overgrowth and the effects of fish oil, as providing omega-3 fatty with anti-inflammatory effects, are promising in avoiding or reversing cholestasis. This chapter aims to review both IF and PN related factors of liver disease with special emphasize on inflammation as cause of liver injury and on the use of fish oil based lipid emulsions as a provision of both alpha-tocopherol (200 g/l of 20% emulsion), as anti-oxidant agent and long-chain PUFAs.

  4. Hybrid striped bass feeds based on fish oil, beef tallow, and eicosapentaenoic acid/docosahexaenoic acid supplements: Insight regarding fish oil sparing and demand for -3 long-chain polyunsaturated fatty acids.

    PubMed

    Bowzer, J; Jackson, C; Trushenski, J

    2016-03-01

    Previous research suggests that saturated (SFA) and monounsaturated fatty acid (MUFA) rich lipids, including beef tallow, can make utilization or diet-to-tissue transfer of long-chain polyunsaturated fatty acids (LC-PUFA) more efficient. We hypothesized that using beef tallow as an alternative to fish oil may effectively reduce the LC-PUFA demand of hybrid striped bass × and allow for greater fish oil sparing. Accordingly, we evaluated growth performance and tissue fatty acid profiles of juvenile fish (23.7 ± 0.3 g) fed diets containing menhaden fish oil (considered an ideal source of LC-PUFA for this taxon), beef tallow (BEEF ONLY), or beef tallow amended with purified sources of eicosapentaenoic acid (EPA) and/or docosahexaenoic acid (DHA) to achieve levels corresponding to 50 or 100% of those observed in the FISH ONLY feed. Diets were randomly assigned to quadruplicate tanks of fish ( = 4; 10 fish/tank), and fish were fed assigned diets to apparent satiation once daily for 10 wk. Survival (98-100%) was equivalent among treatments, but weight gain (117-180%), specific growth rate (1.1-1.5% BW/d), feed intake (1.4-1.8% BW/d), thermal growth coefficient (0.50-0.70), and feed conversion ratio (FCR; 1.1-1.4, DM basis) varied. Except for FCR, no differences were observed between the FISH ONLY and BEEF ONLY treatments, but performance was generally numerically superior among fish fed the diets containing beef tallow supplemented with DHA at the 100% or both EPA and DHA at the 50% or 100% level. Tissue fatty acid composition was significantly distorted in favor among fish fed the beef tallow-based feeds; however, profile distortion was most overt in peripheral tissues. Results suggest that beef tallow may be used as a primary lipid source in practical diets for hybrid striped bass, but performance may be improved by supplementation with LC-PUFA, particularly DHA. Furthermore, our results suggest that -3 LC-PUFA requirements reported for hybrid striped bass may not be

  5. Coconut, Fish, and Olive Oil-Rich Diets Modify Ozone-Induced Metabolic Effects

    EPA Science Inventory

    Pulmonary health effects of ozone (O3) exposure are well known; however, the cardiovascular and metabolic consequences are still under investigation. Fish oil (FO) and olive oil (OO) dietary supplementation have several cardioprotective benefits, but it is not established if thes...

  6. Coconut, Fish, and Olive Oil-Rich Diets Modify Ozone-Induced Metabolic Effects

    EPA Science Inventory

    Pulmonary health effects of ozone (O3) exposure are well known; however, the cardiovascular and metabolic consequences are still under investigation. Fish oil (FO) and olive oil (OO) dietary supplementation have several cardioprotective benefits, but it is not established if thes...

  7. Partition coefficients as a measure of bioconcentration potential of crude oil compounds in fish and shellfish

    SciTech Connect

    Ogata, M.; Fujisawa, K.; Ogino, Y.; Mano, E.

    1984-11-01

    This paper deals with the correlation between the partition coefficient and the concentration factor of alkyl benzenes in crude oil for gold fish and also the correlation between the partition coefficients and concentration factor of alkyl dibenzothiophene for shellfish reared in oil suspension and that caught in the sea.

  8. Fish oil and argan oil intake differently modulate insulin resistance and glucose intolerance in a rat model of dietary-induced obesity.

    PubMed

    Samane, Samira; Christon, Raymond; Dombrowski, Luce; Turcotte, Stéphane; Charrouf, Zoubida; Lavigne, Charles; Levy, Emile; Bachelard, Hélène; Amarouch, Hamid; Marette, André; Haddad, Pierre Selim

    2009-07-01

    We investigated the potential metabolic benefits of fish oil (FO) or vegetable argan oil (AO) intake in a dietary model of obesity-linked insulin resistance. Rats were fed a standard chow diet (controls), a high-fat/high-sucrose (HFHS) diet, or an HFHS diet in which 6% of the fat was replaced by either FO or AO feeding, respectively. The HFHS diet increased adipose tissue weight and insulin resistance as revealed by increased fasting glucose and exaggerated glycemic and insulin responses to a glucose tolerance test (intraperitoneal glucose tolerance test). Fish oil feeding prevented fat accretion, reduced fasting glycemia, and normalized glycemic or insulin responses to intraperitoneal glucose tolerance test as compared with HFHS diet. Unlike FO consumption, AO intake failed to prevent obesity, yet restored fasting glycemia back to chow-fed control values. Insulin-induced phosphorylation of Akt and Erk in adipose tissues, skeletal muscles, and liver was greatly attenuated in HFHS rats as compared with chow-fed controls. High-fat/high-sucrose diet-induced insulin resistance was also confirmed in isolated hepatocytes. Fish oil intake prevented insulin resistance by improving or fully restoring insulin signaling responses in all tissues and isolated hepatocytes. Argan oil intake also improved insulin-dependent phosphorylations of Akt and Erk; and in adipose tissue, these responses were increased even beyond values observed in chow-fed controls. Taken together, these results strongly support the beneficial action of FO on diet-induced insulin resistance and glucose intolerance, an effect likely explained by the ability of FO to prevent HFHS-induced adiposity. Our data also show for the first time that AO can improve some of the metabolic and insulin signaling abnormalities associated with HFHS feeding.

  9. Increased Plasma Levels of Chemoresistance-Inducing Fatty Acid 16:4(n-3) After Consumption of Fish and Fish Oil.

    PubMed

    Daenen, Laura G M; Cirkel, Geert A; Houthuijzen, Julia M; Gerrits, Johan; Oosterom, Ilse; Roodhart, Jeanine M L; van Tinteren, Harm; Ishihara, Kenji; Huitema, Alwin D R; Verhoeven-Duif, Nanda M; Voest, Emile E

    2015-06-01

    Our research group previously identified specific endogenous platinum-induced fatty acids (PIFAs) that, in picomolar quantities, activate splenic macrophages leading to resistance to chemotherapy in mouse models. Fish oil was shown to contain the PIFA 16:4(n-3) (hexadeca-4,7,10,13-tetraenoic acid) and when administered to mice neutralized chemotherapy activity. Because patients with cancer frequently use fish oil supplements, we set out to determine exposure to 16:4(n-3) after intake of fish or fish oil. (1) In November 2011, 400 patients with cancer undergoing treatment at the University Medical Center Utrecht were surveyed to determine their use of fish oil supplements; 118 patients responded to the questionnaire (30%); (2) pharmacokinetic analysis of the 16:4(n-3) content of 6 fish oils and 4 fishes was carried out; (3) from April through November 2012, a healthy volunteer study was performed to determine 16:4(n-3) plasma levels after intake of 3 different brands of fish oil or 4 different fish species. Thirty healthy volunteers were randomly selected for the fish oil study; 20 were randomly selected for the fish study. These studies were supported by preclinical tumor experiments in mice to determine chemoresistance conducted between September 2011 and December 2012. (1) Rate of use of fish oil supplements among patients undergoing cancer treatment at our institution; (2) levels of 16:4(n-3) present in 3 brands of fish oil and 4 species of fish; and (3) plasma levels of 16:4(n-3) present in healthy volunteers after consuming fish oil or fish. Eleven percent of respondents reported using omega-3 supplements. All fish oils tested contained relevant amounts of 16:4(n-3), from 0.2 to 5.7 µM. Mouse experiments showed that addition of 1 µL of fish oil to cisplatin was sufficient to induce chemoresistance, treatment having no impact on the growth rate of tumors compared with vehicle-treated controls (estimated tumor volume difference, 44.1 mm3; P > .99). When

  10. Mitigating the impact of oil-palm monoculture on freshwater fishes in Southeast Asia.

    PubMed

    Giam, Xingli; Hadiaty, Renny K; Tan, Heok Hui; Parenti, Lynne R; Wowor, Daisy; Sauri, Sopian; Chong, Kwek Yan; Yeo, Darren C J; Wilcove, David S

    2015-10-01

    Anthropogenic land-cover change is driving biodiversity loss worldwide. At the epicenter of this crisis lies Southeast Asia, where biodiversity-rich forests are being converted to oil-palm monocultures. As demand for palm oil increases, there is an urgent need to find strategies that maintain biodiversity in plantations. Previous studies found that retaining forest patches within plantations benefited some terrestrial taxa but not others. However, no study has focused on aquatic taxa such as fishes, despite their importance to human well-being. We assessed the efficacy of forested riparian reserves in conserving freshwater fish biodiversity in oil-palm monoculture by sampling stream fish communities in an oil-palm plantation in Central Kalimantan, Indonesia. Forested riparian reserves maintained preconversion local fish species richness and functional diversity. In contrast, local and total species richness, biomass, and functional diversity declined markedly in streams without riparian reserves. Mechanistically, riparian reserves appeared to increase local species richness by increasing leaf litter cover and maintaining coarse substrate. The loss of fishes specializing in leaf litter and coarse substrate decreased functional diversity and altered community composition in oil-palm plantation streams that lacked riparian reserves. Thus, a land-sharing strategy that incorporates the retention of forested riparian reserves may maintain the ecological integrity of fish communities in oil-palm plantations. We urge policy makers and growers to make retention of riparian reserves in oil-palm plantations standard practice, and we encourage palm-oil purchasers to source only palm oil from plantations that employ this practice.

  11. Oil removal from animals, fish and birds using viscoelasticity

    SciTech Connect

    Popino, J.P.

    1993-06-01

    (1) A method for removing oil-spill oil from an external surface of a bird, or water fowl, affected by an oil spill is described comprising external treatment with a composition comprising polyisobutylene. (2) A method according to claim 1, wherein said composition is a non-toxic polymer composite having food grade additive quality and comprising about 80 percent by weight of polyisobutylene. (3) A method according to claim 2, wherein said composition is formed by a method comprising freezing the polyisobutylene to below about - 100 degrees centigrade to provide said polyisobutylene in the form of a glassy fine powder, followed by coating the glassy fine powder of said polyisobutylene with calcium stearate. (4) A method according to claim 2, for removing said oil-spill oil from an external surface of a bird or water fowl, wherein said method comprises (a) amount of a non-toxic polymer composite having food grade additive quality and comprising about 80% by weight of polyisobutylene contained in a low volatile organic solvent effective to bond with said oil spill oil; (b) Permitting said oil-spill oil and composition to bond to form a viscous, cohesive, elastic-like composite consisting of said oil-spill oil and said composition, without substantially effecting removal of natural oils of said bird or water fowl; and (c) washing said composite from said bird or water fowl to remove the oil-spill oil.

  12. Influence of formulas with borage oil or borage oil plus fish oil on the arachidonic acid status in premature infants.

    PubMed

    Demmelmair, H; Feldl, F; Horváth, I; Niederland, T; Ruszinkó, V; Raederstorff, D; De Min, C; Muggli, R; Koletzko, B

    2001-06-01

    Several studies have reported that feeding gamma-linolenic acid (GLA) has resulted in no increase in arachidonic acid (AA) in newborns. This result was ascribed to the eicosapentaenoic acid (EPA)-rich fish oil used in these formulas. Docosahexaenoic acid (DHA) sources with only minor amounts of EPA are now available, thus the addition of GLA to infant formulas might be considered an alternative to AA supplementation. Sixty-six premature infants were randomized to feeding one of four formulas [ST: no GLA, no long-chain polyunsaturated fatty acids; BO: 0.6% GLA (borage oil); BO + FOLOW: 0.6% GLA, 0.3% DHA, 0.06% EPA; BO + FOHIGH: 0.6% GLA, 0.3% DHA, 0.2% EPA] or human milk (HM, nonrandomized) for 4 wk. Anthropometric measures and blood samples were obtained at study entry and after 14 and 28 d. There were no significant differences between groups in anthropometric measures, tocopherol, and retinol status at any of the studied time points. The AA content of plasma phospholipids was similar between groups at study start and decreased significantly until day 28 in all formulafed groups, but not in the breast-fed infants [ST: 6.6 +/- 0.2%, BO: 6.9 +/- 0.3%, BO + FOLOW: 6.9 +/- 0.4%, BO + FOHIGH: 6.7 +/- 0.2%, HM: 8.6 +/- 0.5%, where values are reported as mean +/- standard error; all formulas significantly different (P< 0.05) from HM]. There was no significant influence of GLA or fish oil addition to the diet. GLA had only a very limited effect on AA status which was too small to obtain satisfactory concentrations (concentrations similar to breast-fed babies) under the circumstances tested. The effect of GLA on AA is independent of the EPA and DHA content in the diet within the dose ranges studied.

  13. Astaxanthin limits fish oil-related oxidative insult in the anterior forebrain of Wistar rats: putative anxiolytic effects?

    PubMed

    Mattei, Rita; Polotow, Tatiana G; Vardaris, Cristina V; Guerra, Beatriz A; Leite, José Roberto; Otton, Rosemari; Barros, Marcelo P

    2011-09-01

    The habitual consumption of marine fish is largely associated to human mental health. Fish oil is particularly rich in n-3 polyunsaturated fatty acids that are known to play a role in several neuronal and cognitive functions. In parallel, the orange-pinkish carotenoid astaxanthin (ASTA) is found in salmon and displays important antioxidant and anti-inflammatory properties. Many neuronal dysfunctions and anomalous psychotic behavior (such as anxiety, depression, etc.) have been strongly related to the higher sensitivity of cathecolaminergic brain regions to oxidative stress. Thus, the aim of this work was to study the combined effect of ASTA and fish oil on the redox status in plasma and in the monoaminergic-rich anterior forebrain region of Wistar rats with possible correlations with the anxiolytic behavior. Upon fish oil supplementation, the downregulation of superoxide dismutase and catalase activities combined to increased "free" iron content resulted in higher levels of lipid and protein oxidation in the anterior forebrain of animals. Such harmful oxidative modifications were hindered by concomitant supplementation with ASTA despite ASTA-related antioxidant protection was mainly observed in plasma. Although it is clear that ASTA properly crosses the brain-blood barrier, our data also address a possible indirect role of ASTA in restoring basal oxidative conditions in anterior forebrain of animals: by improving GSH-based antioxidant capacity of plasma. Preliminary anxiolytic tests performed in the elevated plus maze are in alignment with our biochemical observations.

  14. Effect of peppermint and citronella essential oils on properties of fish skin gelatin edible films

    NASA Astrophysics Data System (ADS)

    Yanwong, S.; Threepopnatkul, P.

    2015-07-01

    Fish skin gelatin films incorporated with peppermint and citronella essential oils at difference concentrations (10, 20 and 30% w/w) were prepared by solution casting. Addition of peppermint oil contributed to a significant decrease of tensile strength and Young's modulus, while the percent elongation at break showed an obvious increase except at 30% w/w. On the other hand, addition of citronella oils promoted a great increase of tensile strength and young's modulus, but an intense decrease of the percent elongation at break. At the predetermined content, the film incorporated with citronella oils outperformed the one with peppermint oils in term of water vapor transmission and solubility in water. Thermal properties of gelatin films with citronella oils exhibited an enhancement in heat stability, while the one with peppermint oils showed slight decrease in heat stability. The additions with both of essential oils exhibited excellent antibacterial properties against both Staphylococcus aureus and Escherichia coli.

  15. Comparison of bioavailability of krill oil versus fish oil and health effect

    PubMed Central

    Ulven, Stine M; Holven, Kirsten B

    2015-01-01

    Background The aim of this review is to summarize the effects of krill oil (KO) or fish oil (FO) on eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) incorporation in plasma phospholipids or membrane of red blood cells (RBCs) as shown in human and animal studies. Furthermore, we discuss the findings in relation to the possible different health effects, focusing on lipids, inflammatory markers, cardiovascular disease risk, and biological functions of these two sources of long-chain n-3 polyunsaturated fatty acids (PUFAs). Methods A literature search was conducted in PubMed in January 2015. In total, 113 articles were identified, but based on selection criteria, 14 original papers were included in the review. Results Studies on bioavailability of EPA and DHA from KO and FO in humans and animals are limited and the interpretation is difficult, as different amounts of EPA and DHA have been used, duration of intervention differs, and different study groups have been included. Two human studies – one postprandial study and one intervention study – used the same amount of EPA and DHA from KO or FO, and they both showed that the bioavailability of EPA and DHA from KO seems to be higher than that from FO. Limited effects of KO and FO on lipids and inflammatory markers in human and animal studies were reported. Gene expression data from animal studies showed that FO upregulated the cholesterol synthesis pathway, which was the opposite of the effect mediated by KO. KO also regulated far more metabolic pathways than FO, which may indicate different biological effects of KO and FO. Conclusion There seems to be a difference in bioavailability of EPA and DHA after intake of KO and FO, but more studies are needed before a firm conclusion can be made. It is also necessary to document the beneficial health effects of KO with more human studies and to elucidate if these effects differ from those after regular fish and FO intake. PMID:26357480

  16. Effects of a fish oil enriched diet on aspirin intolerant asthmatic patients: a pilot study.

    PubMed

    Picado, C; Castillo, J A; Schinca, N; Pujades, M; Ordinas, A; Coronas, A; Agusti-Vidal, A

    1988-02-01

    The effect of a fish oil enriched diet containing about 3 g of eicosapentaenoic acid was studied in 10 patients with aspirin intolerant asthma. Subjects were studied during six weeks on a control diet followed by six weeks on the fish oil diet in a single blind study design. They were asked to record their peak expiratory flow (PEF) twice daily, bronchodilator and steroid doses, and subjective ratings of pulmonary symptoms on diary cards. There were no significant changes in symptom scores over the six weeks of either the control diet or the fish oil diet. PEF values, however, were significantly lower during the fifth and sixth week of the fish oil diet than during the control diet (308 v 262 l/min week 5 and 306 v 256 l/min week 6). Bronchodilator usage was also greater during the fifth and sixth week of the fish oil diet than during the control period (12.0 v 7.4 and 13.0 v 7.4 puffs a day in weeks 5 and 6). This pilot study suggests that fish diets may have a deleterious effect on patients with aspirin intolerant asthma.

  17. Fish Oil Accelerates Diet-Induced Entrainment of the Mouse Peripheral Clock via GPR120

    PubMed Central

    Itokawa, Misa; Nagahama, Hiroki; Ohtsu, Teiji; Furutani, Naoki; Kamagata, Mayo; Yang, Zhi-Hong; Hirasawa, Akira; Tahara, Yu; Shibata, Shigenobu

    2015-01-01

    The circadian peripheral clock is entrained by restricted feeding (RF) at a fixed time of day, and insulin secretion regulates RF-induced entrainment of the peripheral clock in mice. Thus, carbohydrate-rich food may be ideal for facilitating RF-induced entrainment, although the role of dietary oils in insulin secretion and RF-induced entrainment has not been described. The soybean oil component of standard mouse chow was substituted with fish or soybean oil containing docosahexaenoic acid (DHA) and/or eicosapentaenoic acid (EPA). Tuna oil (high DHA/EPA), menhaden oil (standard), and DHA/EPA dissolved in soybean oil increased insulin secretion and facilitated RF-induced phase shifts of the liver clock as represented by the bioluminescence rhythms of PER2::LUCIFERASE knock-in mice. In this model, insulin depletion blocked the effect of tuna oil and fish oil had no effect on mice deficient for GPR120, a polyunsaturated fatty acid receptor. These results suggest food containing fish oil or DHA/EPA is ideal for adjusting the peripheral clock. PMID:26161796

  18. Chronic toxicity of heavy fuel oils to fish embryos using multiple exposure scenarios.

    PubMed

    Martin, Jonathan D; Adams, Julie; Hollebone, Bruce; King, Thomas; Brown, R Stephen; Hodson, Peter V

    2014-03-01

    The chronic toxicity to rainbow trout (Oncorhynchus mykiss) embryos of heavy fuel oil (HFO) 6303, weathered HFO 6303, HFO 7102, and medium South American (MESA) crude oil was assessed by different exposure regimes. These included water accommodated fractions (WAF; water in contact with floating oil), chemically enhanced WAF (CEWAF; oil dispersed with Corexit 9500), and effluent from columns of gravel coated with stranded oil. Heavy fuel oil WAF was nontoxic and did not contain detectable concentrations of hydrocarbons, likely because the high density and viscosity of HFO prevented droplet formation. In contrast, chemically dispersed HFO and effluent from columns of stranded HFO contained measurable concentrations of alkyl polycyclic aromatic hydrocarbons (PAH), coincident with embryo toxicity. These exposure regimes enhanced the surface area of oil in contact with water, facilitating oil-water partitioning of hydrocarbons. Heavy fuel oil was consistently more toxic to fish than crude oil and the rank order of alkyl PAH concentrations in whole oil were sufficient to explain the rank order of toxicity, regardless of exposure method. Thus, the propensity of HFO to sink and strand in spawning shoals creates a long-term risk to developing fish because of the sustained release of PAHs from HFO to interstitial waters. Further, PAH monitoring is key to accurate risk assessment. © 2013 SETAC.

  19. Fish oil supplementation in the treatment of major depression: a randomised double-blind placebo-controlled trial.

    PubMed

    Grenyer, Brin F S; Crowe, Trevor; Meyer, Barbara; Owen, Alice J; Grigonis-Deane, Elizabeth M; Caputi, Peter; Howe, Peter R C

    2007-10-01

    Dietary deficiencies in essential omega-3 polyunsaturated fatty acids derived from fish are associated with depression and some fish oils may have therapeutic benefits. We aimed to determine whether taking tuna fish oil confers any additional benefit to conventional outpatient treatment for major depression. A randomized double-blind placebo-controlled four-month trial comparing tuna fish oil versus placebo was conducted on 83 outpatients with major depression. Despite large reductions in depression there were no significant differences at any assessment time point between patients receiving fish oil compared to placebo. Red blood cell incorporation of fatty acids indicated good compliance with oil supplementation, although this sample was not initially deficient in omega-3s. This particular dose and type of fish oil conferred no additional benefit to conventional treatment of depression in this sample. Future studies could target participants with pre-existing omega-3 deficiency and appraise alternate enriched types and higher doses of omega-3 supplementation.

  20. Antioxidant protection of eicosapentaenoic acid and fish oil oxidation by polyphenolic-enriched apple skin extract.

    PubMed

    Rupasinghe, H P Vasantha; Erkan, Naciye; Yasmin, Afsana

    2010-01-27

    Two apple skin extracts (ASE) prepared from "Northern Spy" cultivar were examined for their antioxidant properties to inhibit lipid oxidation in aqueous eicosapentaenoic acid (EPA) emulsions and bulk fish oil. The ASE were effective in reducing the oxidation induced by heat, UV light and peroxyl radical, when the extent of oxidation of the emulsions and bulk oil was measured by using the ferric thiocyanate test, the thiobarbituric acid reactive substances assay and Rancimat. On the basis of total phenolic concentration of extracts, removal of sugars and organic acids (ASE 2) from crude ethanol extract of apple skins (ASE 1) enhanced the antioxidant properties in both the emulsion and bulk fish oil systems. The average induction times of accelerated oxidation at 50 to 80 degrees C of fish oil incorporated with ASE 2 (400 microg/mL) was similar to that of alpha-tocopherol (400 microg/mL) and butylated hydroxytoluene (200 microg/mL).

  1. Randomized trial of weight-loss-diets for young adults varying in fish and fish oil content.

    PubMed

    Thorsdottir, I; Tomasson, H; Gunnarsdottir, I; Gisladottir, E; Kiely, M; Parra, M D; Bandarra, N M; Schaafsma, G; Martinéz, J A

    2007-10-01

    To investigate the effect of including seafood and fish oils, as part of an energy-restricted diet, on weight loss in young overweight adults. Randomized controlled trial of energy-restricted diet varying in fish and fish oil content was followed for 8 weeks. Subjects were randomized to one of four groups: (1) control (sunflower oil capsules, no seafood); (2) lean fish (3 x 150 g portions of cod/week); (3) fatty fish (3 x 150 g portions of salmon/week); (4) fish oil (DHA/EPA capsules, no seafood). The macronutrient composition of the diets was similar between the groups and the capsule groups, were single-blinded. A total of 324 men and women aged 20-40 years, BMI 27.5-32.5 kg/m(2) from Iceland, Spain and Ireland. Anthropometric data were collected at baseline, midpoint and endpoint. Confounding factors were accounted for, with linear models, for repeated measures with two-way interactions. The most important interactions for weight loss were (diet x energy intake), (gender x diet) and (gender x initial-weight). An average man in the study (95 kg at baseline receiving 1600 kcal/day) was estimated to lose 3.55 kg (95% CI, 3.14-3.97) (1); 4.35 kg (95% CI, 3.94-4.75) (2); 4.50 kg (95% CI, 4.13-4.87) (3) and 4.96 kg (95% CI, 4.53-5.40) on diet (4) in 4 weeks, from baseline to midpoint. The weight-loss from midpoint to endpoint was 0.45 (0.41-0.49) times the observed weight loss from baseline to midpoint. The diets did not differ in their effect on weight loss in women. Changes in measures of body composition were in line with changes in body weight. In young, overweight men, the inclusion of either lean or fatty fish, or fish oil as part of an energy-restricted diet resulted in approximately 1 kg more weight loss after 4 weeks, than did a similar diet without seafood or supplement of marine origin. The addition of seafood to a nutritionally balanced energy-restricted diet may boost weight loss.

  2. Total substitution of fish oil by vegetable oils in gilthead sea bream (Sparus aurata) diets: effects on hepatic Mx expression and some immune parameters.

    PubMed

    Montero, D; Grasso, V; Izquierdo, M S; Ganga, R; Real, F; Tort, L; Caballero, M J; Acosta, F

    2008-02-01

    The use of vegetable oils in fish nutrition has been extensively studied; and recent work has focused attention on replacing fish oil with alternative fatty acid sources and their effect on the immune system. However, little is known about the effect of these oils on immune parameters such as the fish interferon system. In this study we evaluate the effect of two vegetable oils (linseed and soybean) on gilthead sea bream Mx expression and other innate immune parameters. Experimental diets were formulated where fish oil was totally replaced by vegetable oils or for a mixture of them (50% linseed and 50% soybean). Another diet prepared with pure fish oil was used as a control. Two experiments were carried out in order to evaluate growth, feed utilization, serum alternative complement pathway activity, serum lysozyme and phagocytic activity of head kidney leucocytes as well as Mx expression in the liver. In the first experiment fish were fed with experimental diets for 6 months and then, growth and feed utilization as well as immune parameters were analyzed. In the second experiment, fish from the previous feeding trial were injected with either a sub-lethal dose of Photobacterium damselae subsp. piscicida (94/99) or a synthetic dsRNA (Poly I:C) in order to stimulate an Mx response. The results show that total substitution of fish oil by vegetable oils decreased the growth of gilthead sea bream juveniles. Furthermore, both phagocytic activity and serum alternative complement pathway activity were significantly reduced by the inclusion of either vegetable oil individually in the sea bream diets, but the diet with mixed vegetable oils had no significant effect. There was no effect on serum lysozyme levels but the basal constitutive levels of Mx transcript expression in the liver were elevated in the fish fed the vegetable oil diets. The time-course of the Mx response to injection of Poly I:C was shorter in the fish fed the fish oil diet and the fish fed the diet based

  3. Effects of fish oil and spirulina on oxidative stress and inflammation in hypercholesterolemic hamsters.

    PubMed

    Muga, Miriam Adoyo; Chao, Jane C-J

    2014-12-06

    Altered plasma lipids, oxidative stress, and inflammation have been involved in the pathogenesis of cardiovascular disease. Fish oil has shown inconclusive effects on plasma lipids and oxidative stress. Spirulina has both cholesterol lowering and antioxidant properties. However, the effect of fish oil and spirulina on hypercholesterolemia has not been studied. We investigated the effects of fish oil, spirulina, and their combination on hypercholesterolemia. The hamsters were divided into 7 groups: control, high cholesterol (HF), fish oil (post FO), spirulina (post SP), and a combination of fish oil and spirulina (post SF, pre-SF, and HF + SF) groups. The HF and HF + SF groups were given a high cholesterol diet for 8 weeks. The post FO, post SP, and post SF groups were given a high cholesterol diet for 4 weeks and then the treatment for 4 weeks. The pre-SF group was given the combined treatment for 4 weeks and then a high cholesterol diet for 4 weeks. The HF and HF + SF groups altered plasma lipids, increased oxidative stress, inhibited antioxidants, and increased inflammation. While the post FO group increased plasma lipids and was more atherogenic. The vice versa was observed in spirulina-treated group. Both the post SP and post SF groups inhibited oxidative stress and increased antioxidant status, and post FO and post SP diets regulated pro-inflammatory cytokines to near the control levels. Both single treatment of fish oil or spirulina inhibit oxidative stress and inflammation. Treatment with a combination of fish oil and spirulina (post SF) may be beneficial for diet-induced hypercholesterolemic hamsters.

  4. Physicochemical and sensory properties of yogurt enriched with microencapsulated fish oil.

    PubMed

    Tamjidi, F; Nasirpour, A; Shahedi, M

    2012-08-01

    Encapsulation of marine omega-3 oil by complex coacervation technique has been introduced as most effective approach to delay its oxidation and extend shelf life of ω(3)-enriched food products. Therefore, to produce enriched yogurt, fish oil containing long-chain omega-3 polyunsaturated fatty acids was microencapsulated in complex coacervates of gelatin/acacia gum. Then, the microcapsules were dried and their surface oil was extracted. Set yogurt was prepared by enriched milk with microcapsules powder. Physicochemical and sensory properties of enriched yogurt were measured during 21 days storage. Acidity, apparent viscosity and water holding capacity of enriched samples were higher and gel strength and amount of whey separation were lower compared to the control. The enriched yogurt samples were more yellowish compared to control. The peroxide value of free and encapsulated fish oil in enriched yogurt samples, after 22 days storage, were increased to 72% and 260%, respectively. Fish oil release of microcapsules was not detected by gas chromatography in extracted oil from enriched yogurt. Sensory results showed that untrained panelists evaluated overall acceptance of enriched yogurt with treated-fish oil microcapsules by lime juice as 'neither liked nor disliked to slightly liked'.

  5. Effects of extra virgin olive oil and fish oil on lipid profile and oxidative stress in patients with metabolic syndrome.

    PubMed

    Venturini, Danielle; Simão, Andréa Name Colado; Urbano, Mariana Ragassi; Dichi, Isaias

    2015-06-01

    The aim of this study was to verify if extra virgin olive oil and fish oil have a synergistic effect on lipid and oxidative stress parameters in patients with metabolic syndrome (MetS). This intervention study included 102 patients (81 women and 21 men) with MetS (mean age 51.45 ± 8.27 y) from the ambulatory center of the University Hospital of Londrina, Paraná, Brazil. Patients were randomly assigned to one of four groups: Patients in the control group (CG) were instructed to maintain their usual diet; the second group (fish oil group [FO]) received 3 g/d of fish oil ω-3 fatty acids (10 capsules); the third group (extra virgin olive oil group [OO]) received 10 mL/d of extra virgin olive oil at lunch and dinner; and the fourth group (fish oil and extra virgin olive oil group [FOO]) received 3 g/d of fish oil ω-3 fatty acids and 10 mL/d of extra virgin olive oil. MetS related markers and oxidative stress were measured at baseline and after 90 d. Differences across treatment groups showed a statistically significant decrease (P < 0.05) in total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) when FOO was compared with CG and OO, respectively. Hydroperoxides showed a significant decrease (P < 0.05) when FOO was compared with CG, whereas there was an increase in total peroxyl radical-trapping antioxidant potential/advanced oxidation protein products (TRAP/AOPP; P < 0.05) in FOO when compared with FO. In relation to baseline values, there was a significant decrease (P < 0.05) in LDL-C values, and TC/high-density lipoprotein cholesterol (HDL-C) and LDL-C/HDL-C indexes in FOO. There was also a decrease (P < 0.05) in hydroperoxides, in AOPP and in AOPP/TRAP index in FOO, and an increase (P < 0.05) in TRAP/AOPP index in FOO and in TRAP/uric acid ratio in OO. The present study provides evidence that increased dietary ω-3 polyunsaturated fatty acids and extra virgin olive oil have beneficial synergistic effects on lipid metabolism and oxidative stress in

  6. Substitution of fish oil with camelina oil and inclusion of camelina meal in diets fed to Atlantic cod (Gadus morhua) and their effects on growth, tissue lipid classes, and fatty acids.

    PubMed

    Hixson, S M; Parrish, C C

    2014-03-01

    Developing a commercially relevant Atlantic cod aquaculture industry will require improvements in feed sustainability. Camelina oil and meal are potential replacements of fish oil and fish meal in aquaculture feeds. Camelina oil is high in 18:3ω3 (30%), with an ω3/ω6 ratio > 1. Camelina meal has a considerable crude protein level (38%), which includes significant amounts of methionine and phenylalanine. Four diets were tested; each diet was fed to triplicate tanks (3 tanks per diet) of Atlantic cod (14.4 g/fish; 70 fish per tank) for 13 wk. The diets included a fish oil/fish meal control (FO) and three diets which replaced 100% of fish oil with camelina oil: one diet contained fish meal (100CO), another solvent extracted fish meal (100COSEFM), and another had fish meal partially reduced by 15% inclusion of camelina meal (100CO15CM). Growth was measured (length and weight) and tissue samples were collected for lipid analysis (muscle, liver, brain, gut, spleen, skin, and carcass) at wk 0 (before feeding the experimental diet) and at wk 13. Cod fed camelina oil had a lower (P < 0.001) final weight than cod fed the FO diet (50.8 ± 10.3 g/fish). Cod fed 100CO15CM had a lower (P < 0.001) final weight (35.0 ± 8.0 g) than those fed 100CO (43.6 ± 8.9 g) and 100COSEFM (46.7 ± 10.7 g). Cod tissues in the 100COSEFM treatment were most impacted by dietary fatty acid profile. Multivariate statistics revealed that FO and 100COSEFM tissue fatty acid profiles were 21 to 31% different, depending on tissue type. The full replacement of fish oil with camelina oil, plus solvent extracted fish meal had an overarching effect on the entire fatty acid profile of the whole animal. Fatty acid mass balance calculations indicated that cod fed 100COSEFM elongated 13% of 18:3ω3 to 20:3ω3 and oxidized the remaining 87%, whereas cod fed fish oil showed a much lower (P < 0.001) elongation of 18:3ω3 of 1.6%. These results suggest that excess 18:3ω3 from camelina oil caused some fatty acid

  7. Effect of fish oil supplementation on graft patency and cardiovascular events among patients with new synthetic arteriovenous hemodialysis grafts: a randomized controlled trial.

    PubMed

    Lok, Charmaine E; Moist, Louise; Hemmelgarn, Brenda R; Tonelli, Marcello; Vazquez, Miguel A; Dorval, Marc; Oliver, Matthew; Donnelly, Sandra; Allon, Michael; Stanley, Kenneth

    2012-05-02

    Synthetic arteriovenous grafts, an important option for hemodialysis vascular access, are prone to recurrent stenosis and thrombosis. Supplementation with fish oils has theoretical appeal for preventing these outcomes. To determine the effect of fish oil on synthetic hemodialysis graft patency and cardiovascular events. The Fish Oil Inhibition of Stenosis in Hemodialysis Grafts (FISH) study, a randomized, double-blind, controlled clinical trial conducted at 15 North American dialysis centers from November 2003 through December 2010 and enrolling 201 adults with stage 5 chronic kidney disease (50% women, 63% white, 53% with diabetes), with follow-up for 12 months after graft creation. Participants were randomly allocated to receive fish oil capsules (four 1-g capsules/d) or matching placebo on day 7 after graft creation. Proportion of participants experiencing graft thrombosis or radiological or surgical intervention during 12 months' follow-up. The risk of the primary outcome did not differ between fish oil and placebo recipients (48/99 [48%] vs 60/97 [62%], respectively; relative risk, 0.78 [95% CI, 0.60 to 1.03; P = .06]). However, the rate of graft failure was lower in the fish oil group (3.43 vs 5.95 per 1000 access-days; incidence rate ratio [IRR], 0.58 [95% CI, 0.44 to 0.75; P < .001]). In the fish oil group, there were half as many thromboses (1.71 vs 3.41 per 1000 access-days; IRR, 0.50 [95% CI, 0.35 to 0.72; P < .001]); fewer corrective interventions (2.89 vs 4.92 per 1000 access-days; IRR, 0.59 [95% CI, 0.44 to 0.78; P < .001]); improved cardiovascular event-free survival (hazard ratio, 0.43 [95% CI, 0.19 to 0.96; P = .04]); and lower mean systolic blood pressure (-3.61 vs 4.49 mm Hg; difference, -8.10 [95% CI, -15.4 to -0.85]; P = .01). Among patients with new hemodialysis grafts, daily fish oil ingestion did not decrease the proportion of grafts with loss of native patency within 12 months. Although fish oil improved some relevant secondary outcomes

  8. Clove oil induces anaesthesia and blunts muscle contraction power in three Amazon fish species.

    PubMed

    Fujimoto, Rodrigo Yudi; Pereira, Débora Martins; Silva, Jessica Cristina Souza; de Oliveira, Laís Cássia Araújo; Inoue, Luis Antonio Kioshi Aoki; Hamoy, Moisés; de Mello, Vanessa Jóia; Torres, Marcelo Ferreira; Barbas, Luis André Luz

    2017-10-12

    Clove oil is used as an anaesthetic for many species of fish worldwide; however, relatively few studies have assessed its effectiveness on Amazon fish species and no compelling evidence has ever been reported on the relaxant properties of this oil for skeletal muscle of fish. Thus, the objective of this study was to evaluate the latencies to deep anaesthesia and recovery, along with the myorelaxant effect of clove oil on three Amazon fish species: cardinal tetra, Paracheirodon axelrodi, banded cichlid, Heros severus and angelfish, Pterophyllum scalare, submitted to short-term anaesthetic baths. Fish were assayed in three groups of 60 fish each and individually anaesthetized in a completely randomized design with six clove oil concentrations using 10 fish/species/concentration. Electromyographic recordings from dorsal muscle were performed during stages of induction and recovery in which nine fish/species/stage were used. Deep anaesthesia was attained for all concentrations tested, and no mortalities were observed throughout the experiments and after a 48-h observation period. Concentration of 90 μL L(-1) and above promoted fast deep anaesthesia (< 3 min) and calm recovery in angelfish and cardinal tetra, whereas the concentration of 60 μL L(-1) sufficed to quickly anaesthetize banded cichlid. Times to full recovery were not significantly contrasting among species and occurred within appropriate time threshold (< 5 min). Clove oil exerted a conspicuous depression of muscle contraction power, and therefore can be effectively used as a muscle relaxant agent for P. scalare, P. axelrodi, H. severus and potentially, for other fish species.

  9. Effects of supplementation of dairy cattle with fish oil on silage intake, milk yield and milk composition.

    PubMed

    Keady, T W; Mayne, C S; Fitzpatrick, D A

    2000-05-01

    The effects of level of fish oil inclusion in the diet on grass silage intake, and milk yield and composition of dairy cows offered either 5 or 10 kg concentrates/d were evaluated in a ten treatment, partly balanced, changeover design experiment involving 50 cows in early lactation. Concentrates were prepared to provide 0, 150, 300 or 450 g fish oil/cow per d or 300 g fish oil/cow per d from a premix when each animal was offered 5 kg/d. The fish oil was predominantly from herring and mackerel caught in the North Atlantic while the fish oil premix was obtained from a commercial source and used palm kernel expeller as a carrier. Increasing fish oil supplementation decreased silage dry matter intake and the concentrations of milk fat and protein, and increased milk yield and diet digestibility. There were significant interactions between concentrate feed level and level of fish oil for silage intake and milk yield. Other than for the concentrations of milk fat and protein, and 20:4n-6 fatty acids, the source of fish oil did not affect forage intake or animal performance. Fish oil supplementation also decreased the concentrations of milk protein by 0.9 g/kg for each 100 g increase in fish oil supplementation, the depression being similar at each level of concentrate feeding. Supplementing the feed of dairy cows with 450 g fish oil/cow per d decreased the concentration of milk fat by 15 g/kg. This study also showed that feeding dairy cattle with fish oil is an efficient method of increasing eicosapentaenoic acid in the human diet through transfer into milk.

  10. Association Between Fish Oil Consumption and the Incidence of Mental Health Issues Among Active Duty Military Personnel

    DTIC Science & Technology

    2016-03-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited ASSOCIATION BETWEEN FISH OIL...REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE ASSOCIATION BETWEEN FISH OIL CONSUMPTION AND THE INCIDENCE OF MENTAL HEALTH ISSUES...Health Related Behaviors Survey of Active Duty Military Personnel, we analyze the association between fish oil consumption and mental health outcomes

  11. SURFACTANT - POLYMER INTERACTION FOR IMPROVED OIL RECOVERY

    SciTech Connect

    Unknown

    1998-10-01

    The goal of this research is to use the interaction between a surfactant and a polymer for efficient displacement of tertiary oil by improving slug integrity, adsorption and mobility control. Surfactant--polymer flooding has been shown to be highly effective in laboratory-scale linear floods. The focus of this proposal is to design an inexpensive surfactant-polymer mixture that can efficiently recover tertiary oil by avoiding surfactant slug degradation high adsorption and viscous/heterogeneity fingering. A mixture comprising a ''pseudo oil'' with appropriate surfactant and polymer has been selected to study micellar-polymer chemical flooding. The physical properties and phase behavior of this system have been determined. A surfactant-polymer slug has been designed to achieve high efficiency recovery by improving phase behavior and mobility control. Recovery experiments have been performed on linear cores and a quarter 5-spot. The same recovery experiments have been simulated using a commercially available simulator (UTCHEM). Good agreement between experimental data and simulation results has been achieved.

  12. Genomic and physiological footprint of the Deepwater Horizon oil spill on resident marsh fishes.

    PubMed

    Whitehead, Andrew; Dubansky, Benjamin; Bodinier, Charlotte; Garcia, Tzintzuni I; Miles, Scott; Pilley, Chet; Raghunathan, Vandana; Roach, Jennifer L; Walker, Nan; Walter, Ronald B; Rice, Charles D; Galvez, Fernando

    2012-12-11

    The biological consequences of the Deepwater Horizon oil spill are unknown, especially for resident organisms. Here, we report results from a field study tracking the effects of contaminating oil across space and time in resident killifish during the first 4 mo of the spill event. Remote sensing and analytical chemistry identified exposures, which were linked to effects in fish characterized by genome expression and associated gill immunohistochemistry, despite very low concentrations of hydrocarbons remaining in water and tissues. Divergence in genome expression coincides with contaminating oil and is consistent with genome responses that are predictive of exposure to hydrocarbon-like chemicals and indicative of physiological and reproductive impairment. Oil-contaminated waters are also associated with aberrant protein expression in gill tissues of larval and adult fish. These data suggest that heavily weathered crude oil from the spill imparts significant biological impacts in sensitive Louisiana marshes, some of which remain for over 2 mo following initial exposures.

  13. Supplementing oregano essential oil to boar diet with strengthened fish oil: Effects on semen antioxidant status and semen quality parameters.

    PubMed

    Liu, Q; Duan, R J; Zhou, Y F; Wei, H K; Peng, J; Li, J L

    2017-02-22

    Previous research has shown benefits of dietary fish oil supplementation on semen quality of boars. However, little is known about how antioxidant protects lipid peroxidation on spermatozoa from n-3 polyunsaturated fatty acid (PUFA) addition. This study evaluated the effect of oregano essential oil (OEO) supplementation on semen antioxidant status and semen quality in boars fed a diet enriched with fish oil. Thirty-four mature boars of proven fertility, received daily 2.5 kg basal diet top-dressed with 45 g soybean oil and 15 g fish oil to meet the n-3 PUFA requirement of spermatozoa, randomly allocated to one of four groups supplemented with 100 mg α-tocopheryl acetate kg(-1) (control), or 250 or 500 or 750 mg OEO kg(-1) for 16 weeks. Semen was collected at weeks 0, 8, 12 and 16 for measurements of sperm production, motion characteristics, sperm α-tocopherol content, antioxidant enzyme activities, reactive oxygen species (ROS), DNA damage (8-hydroxydeoxyguanosine, 8-OHdG), lipoperoxidation (malondialdehyde, MDA) and seminal total antioxidant capacity (TAC). Sperm production and motion characteristics were similar (p > .05) among groups throughout the experimental week 16, but increased (p < .01) with experimental week. Although higher α-tocopherol content and superoxide dismutase (SOD) activities were in OEO group spermatozoa, feeding diet with 500 mg/kg OEO resulted in elevation in seminal TAC, decrease in sperm ROS, MDA and 8-OHdG than control group (p < .05). Overall, these results support the view that oregano essential oil has a positive effect on antioxidant capacity in boar when used fish oil.

  14. The growth performance of Jade Tiger cultured abalone fed diets supplemented with fish oil and vegetable oils.

    PubMed

    Mateos, Hintsa T; Lewandowski, Paul A; Su, Xiao Q

    2013-04-01

    The effects of fish oil (FO) supplementation and the dietary replacement of FO with flaxseed oil (FlaxO) and canola oil (CO) on the growth of cultured abalone was investigated. The study involved three growth experiments: (E1) diets containing 0.5, 1.0, 1.5, 2.0 and 2.5% of FO, respectively; (E2) diets in which FO was serially replaced by 25, 50, 75 and 100% FlaxO, respectively; and (E3) diets in which FO was serially replaced by 25, 50, 75 and 100% CO, respectively. In Experiment 1, abalone fed a diet supplemented with 1.5% FO showed a significantly higher (121.2 ± 1.1 mg day(-1)) daily growth rate of weight (DGRw ) compared to control (70.1 ± 1.71 mg day(-1)). In Experiment 2, abalone fed 1.5% FO diet and diets containing 25-75% FlaxO showed no significant differences in DGRw. The diet containing 100% FlaxO showed significantly lower (63.3 ± 6.7 mg day(-1)) DGRw. In Experiment 3, abalone fed diets containing 25% and 50% CO showed similar DGRw as those fed a 1.5% FO diet. The diet containing 75% and 100% CO showed significantly lower (63.7 ± 5.0 to 95.4 ± 5.1 mg day(-1)) DGRw. Supplementation with 1.5% of dietary FO can improve growth performance in cultured abalone. It is feasible to replace 75% of dietary FO with FlaxO and 50% of dietary FO with CO, without negative effect on growth performance. © 2012 Society of Chemical Industry.

  15. Fish Oil Finishing Diet Maintains Optimal n-3 Long-Chain Fatty Acid Content in European Whitefish (Coregonus lavaretus).

    PubMed

    Suomela, Jukka-Pekka; Tarvainen, Marko; Kallio, Heikki; Airaksinen, Susanna

    2017-08-31

    This study examined the effect of substituting vegetable oil for fish oil in feed, with subsequent re-introduction of fish oil-rich feed (finishing feeding) in late stages of growth, on the fatty acids of cultivated European whitefish (Coregonus lavaretus). Restorative finishing feeding with fish oil-rich feed for 15 and 25 weeks was sufficient to change the total content of nutritionally valuable long-chain n-3 fatty acids, eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (22:6n-3), to correspond to that of fish fed the fish oil-rich feed throughout their lifespan. Under natural conditions, 15 and 25 weeks correspond to weight gains of 75% and 100% (i.e. doubling), respectively. Also, the fatty acid profile of the fish was restored after finishing periods of 15 and 25 weeks. Limiting the use of fish oil by lowering the overall fat content of the feed (no vegetable oil added) resulted in a decrease in the long-chain n-3 fatty acids. Based on the results, after receiving a vegetable oil-rich diet, restorative fish oil-rich feeding in the last stages of growth in European whitefish is nutritionally justified in order to balance nutritional gain for consumers with sustainable use of finite marine oils. The results encourage commercial efforts to further utilize and optimize finishing feeding practices.

  16. Effect of fish oil supplementation for two generations on changes of lymphocyte function induced by Walker 256 cancer cachexia in rats.

    PubMed

    Folador, Alessandra; de Lima-Salgado, Thais Martins; Hirabara, Sandro Massao; Aikawa, Júlia; Yamazaki, Ricardo K; Martins, Edgair F; de Oliveira, Heloisa Helena P; Pizatto, Nathalia; Kanunfre, Carla C; Peres, Carmem M; Fernandes, Luiz C; Curi, Rui

    2009-01-01

    Fish oil supplementation has been shown to improve the cachectic state of tumor-bearing animals and humans. Our previous study showed that fish oil supplementation (1 g per kg body weight per day) for 2 generations had anticancer and anticachetic effects in Walker 256 tumor-bearing rats as demonstrated by reduced tumor growth and body weight loss and increased food intake and survival. In this study, the effect of fish oil supplementation for 2 generations on membrane integrity, proliferation capacity, and CD4/CD8 ratio of lymphocytes isolated from mesenteric lymph nodes, spleen, and thymus of Walker 256 tumor-bearing animals was investigated. We also determined fish oil effect on plasma concentration and ex vivo production of cytokines [tumor necrosis factor-alpha (TNF-alpha), interferon-gamma (IFN-gamma), interleukin-4 (IL-4), IL-6, and IL-10]. Lymphocytes from thymus of tumor-bearing rats presented lower viability, but this change was abolished by fish oil supplementation. Tumor growth increased proliferation of lymphocytes from all lymphoid organs, and fish oil supplementation abolished this effect. Ex vivo production of TNF-alpha and IL-6 was reduced in supplemented animals, but IL-4 and IL-10 secretion was stimulated in both nontumor and tumor-bearing rats. IL-10 and IFN-gamma plasma levels was also decreased in supplemented animals. These results suggest that the anticachetic effects of fish oil supplementation for a long period of time (2 generations) in Walker 256 tumor-bearing rats may be associated to a decrease in lymphocyte function as demonstrated by reduced viability, proliferation capacity, and cytokine production.

  17. Proteomics identifies molecular networks affected by tetradecylthioacetic acid and fish oil supplemented diets.

    PubMed

    Wrzesinski, Krzysztof; R León, Ileana; Kulej, Katarzyna; Sprenger, Richard R; Bjørndal, Bodil; Christensen, Bjørn J; Berge, Rolf K; Jensen, Ole N; Rogowska-Wrzesinska, Adelina

    2013-06-12

    Fish oil (FO) and tetradecylthioacetic acid (TTA) - a synthetic modified fatty acid have beneficial effects in regulating lipid metabolism. In order to dissect the mechanisms underlying the molecular action of those two fatty acids we have investigated the changes in mitochondrial protein expression in a long-term study (50weeks) in male Wistar rats fed 5 different diets. The diets were as follows: low fat diet; high fat diet; and three diets that combined high fat diet with fish oil, TTA or combination of those two as food supplements. We used two different proteomics techniques: a protein centric based on 2D gel electrophoresis and mass spectrometry, and LC-MS(E) based peptide centric approach. As a result we provide evidence that fish oil and TTA modulate mitochondrial metabolism in a synergistic manner yet the effects of TTA are much more dramatic. We demonstrate that fatty acid metabolism; lipid oxidation, amino acid metabolism and oxidative phosphorylation pathways are involved in fish oil and TTA action. Evidence for the involvement of PPAR mediated signalling is provided. Additionally we postulate that down regulation of components of complexes I and II contributes to the strong antioxidant properties of TTA. This study for the first time explores the effect of fish oil and TTA - tetradecyl-thioacetic acid and the combination of those two as diet supplements on mitochondria metabolism in a comprehensive and systematic manner. We show that fish oil and TTA modulate mitochondrial metabolism in a synergistic manner yet the effects of TTA are much more dramatic. We demonstrate in a large scale that fatty acid metabolism and lipid oxidation are affected by fish oil and TTA, a phenomenon already known from more directed molecular biology studies. Our approach, however, shows additionally that amino acid metabolism and oxidative phosphorylation pathways are also strongly affected by TTA and also to some extent by fish oil administration. Strong evidence for the

  18. A Comparison of Fish Oil Sources for Parenteral Lipid Emulsions in a Murine Model

    PubMed Central

    Fell, Gillian L.; Cho, Bennet S.; Pan, Amy; Nose, Vania; Anez-Bustillos, Lorenzo; Dao, Duy; Baker, Meredith A.; Nandivada, Prathima; Gura, Kathleen M.; Puder, Mark

    2017-01-01

    Background Parenteral fat emulsions are important components of parenteral nutrition (PN). For patients who develop PN-associated liver disease (PNALD), use of fish oil (FO) fat emulsions reverses cholestasis. The European Pharmacopeia contains two FO monographs. One is “fish oil; rich in omega-3 fatty acids,” (NFO). The other is “omega-3 acids,” (PFO) derived from NFO but enriched in omega-3 fatty acids, particularly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). The purpose of this study is to compare the effects of 20% NFO and PFO emulsions produced in the laboratory and tested in a murine model. Methods Lipid emulsions (20% oil) were compounded containing different oils: United States Pharmacopoeia (USP)-grade soybean oil (SO), NFO, PFO with 66% of the purified fatty acids in triglyceride form (PFO66), and PFO with 90% of the purified fatty acids in triglyceride form (PFO90). Chow-fed C57BL/6 mice received saline, one of the above emulsions, or a commercial FO (OM) by tail vein injection (2.4g/kg/day) for 19 days. Effects after each dose were recorded. On day 19, animals were euthanized and livers, spleens, and lungs were procured for histologic analysis. Results Animals administered OM, SO, NFO, and PFO90 tolerated injections well clinically, while those administered PFO66 developed tachypnea and lethargy for ~1 minute following injections. At euthanasia, PFO66- and PFO90-treated animals had organomegaly compared to the other groups. On histologic analysis, PFO66 and PFO90 groups had splenic fat-laden macrophages and hepatic sinusoidal lipid-laden Kupffer cells with no inflammation or necrosis. Lungs in these groups had scattered fat deposits. All other groups had normal-appearing livers, spleens, and lungs. Conclusions Use of PFO lipid emulsions is an attractive possibility for improving systemic inflammation in PN-dependent patients and optimizing management of PNALD by concentrating anti-inflammatory EPA and DHA. However, when

  19. Monola oil versus canola oil as a fish oil replacer in rainbow trout feeds: effects on growth, fatty acid metabolism and final eating quality.

    PubMed

    Turchini, G M; Moretti, V M; Hermon, K; Caprino, F; Busetto, M L; Bellagamba, F; Rankin, T; Keast, R S J; Francis, D S

    2013-11-15

    Monola oil, a high oleic acid canola cultivar, and canola oil were evaluated as replacers of fish oil at three levels of inclusion (60%, 75% and 90%) in rainbow trout diets. After a 27-week grow-out cycle, the diet-induced effects on growth, fatty acid metabolism and final eating quality were assessed. Overall, no effects were noted for growth, feed utilisation or fish biometry, and the fatty acid composition of fish fillets mirrored that of the diets. Dietary treatments affected fillet lipid oxidation (free malondialdehyde), pigmentation and flavour volatile compounds, but only minor effects on sensorial attributes were detected. Ultimately, both oils were demonstrated to possess, to differing extents, suitable qualities to adequately replace fish oil from the perspective of fish performance and final product quality. However, further research is required to alleviate on-going issues associated with the loss of health promoting attributes (n-3 long chain polyunsaturated fatty acids) of final farmed products. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Evaluation of fish oil-rich in MUFAs for anti-diabetic and anti-inflammation potential in experimental type 2 diabetic rats

    PubMed Central

    Keapai, Waranya; Apichai, Sopida; Amornlerdpison, Doungporn

    2016-01-01

    The advantages of monounsaturated fatty acids (MUFAs) on insulin resistance and type 2 diabetes mellitus (T2DM) have been well established. However, the molecular mechanisms of the anti-diabetic action of MUFAs remain unclear. This study examined the anti-hyperglycemic effect and explored the molecular mechanisms involved in the actions of fish oil- rich in MUFAs that had been acquired from hybrid catfish (Pangasius larnaudii×Pangasianodon hypophthalmus) among experimental type 2 diabetic rats. Diabetic rats that were fed with fish oil (500 and 1,000 mg/kg BW) for 12 weeks significantly reduced the fasting plasma glucose levels without increasing the plasma insulin levels. The diminishing levels of plasma lipids and the muscle triglyceride accumulation as well as the plasma leptin levels were identified in T2DM rats, which had been administrated with fish oil. Notably, the plasma adiponectin levels increased among these rats. The fish oil supplementation also improved glucose tolerance, insulin sensitivity and pancreatic histological changes. Moreover, the supplementation of fish oil improved insulin signaling (p-AktSer473 and p-PKC-ζ/λThr410/403), p-AMPKThr172 and membrane GLUT4 protein expressions, whereas the protein expressions of pro-inflammatory cytokines (TNF-α and nuclear NF-κB) as well as p-PKC-θThr538 were down regulated in the skeletal muscle. These data indicate that the effects of fish oil-rich in MUFAs in these T2DM rats were partly due to the attenuation of insulin resistance and an improvement in the adipokine imbalance. The mechanisms of the anti-hyperglycemic effect are involved in the improvement of insulin signaling, AMPK activation, GLUT4 translocation and suppression of pro-inflammatory cytokine protein expressions. PMID:27847435

  1. Chemical and olfactometric characterization of volatile flavor compounds in a fish oil enriched milk emulsion.

    PubMed

    Venkateshwarlu, Gudipati; Let, Mette B; Meyer, Anne S; Jacobsen, Charlotte

    2004-01-28

    Development of objectionable fishy off-flavors is an obstacle in the development of fish oil enriched foods. Only little is known about the sensory impact of specific volatile fish oil oxidation products in food emulsions. This study examined the volatiles profiles of fish oil enriched milk during cold storage (2 degrees C) for 14 days by dynamic headspace sampling followed by gas chromatography-mass spectrometry analyses. Different volatiles (n = 60) comprising alkenals, alkadienals, alkatrienals, and vinyl ketones were identified in the fish oil enriched milk. The potent odorants identified by gas chromatography-olfactometry were 1-penten-3-one, (Z)-4-heptenal, 1-octen-3-one, (Z)-1,5-octadien-3-one, (E,E)-2,4-heptadienal, and (E,Z)-2,6-nonadienal, but despite their potency, none of the separated volatiles imparted a fishy or metallic odor. Two isomers, (E,Z,Z) and (E,E,Z) of 2,4,7-decatrienal were identified in fish oil enriched milk emulsions with peroxide values 0.8 and 3.4 meq/kg, respectively. To our knowledge, this is the first report on appearance of these decatrienals in food emulsions having a relatively low peroxide value.

  2. The effect of cocoa, soy, oats and fish oil on metabolic syndrome in rats.

    PubMed

    Barrios-Ramos, Juan P; Garduño-Siciliano, Leticia; Loredo, Maria; Chamorro-Cevallos, German; Jaramillo-Flores, Maria E

    2012-08-30

    The effect of functional foods alone or in combination (cocoa + soy + oats + fish oil) on hepatic damage in rats affected with metabolic syndrome was investigated. Rats that were given cocoa showed a decrease in the levels of triglycerides (TGs) and glucose (63 and 32% respectively) as well as a decrease in blood pressure (15%). Animals fed with soy showed a reduction of 21% in total cholesterol, 15% in blood pressure and 44% in TGs, while feeding oats reduced the concentration of TGs by 53% (P < 0.5). Fish oil caused a reduction in TGs (56%) and glucose (26%). The effect on blood pressure was statistically significant for the groups supplemented with cocoa, soy, cocoa + oats and the total mix. The main finding was a reduction in liver steatosis in animals supplemented with cocoa + oats (from 30 to 4.7% steatosis). Cocoa or fish oil alone did not protect the liver from damage, while cocoa + fish oil did. The most relevant effects were that the cocoa + oats mix decreased steatosis by a very large percentage, as did the cocoa + fish oil mix and the mix of all four functional foods. Copyright © 2012 Society of Chemical Industry.

  3. Dietary Fish Oil Blocks the Microcirculatory Manifestations of Ischemia- Reperfusion Injury in Striated Muscle in Hamsters

    NASA Astrophysics Data System (ADS)

    Lehr, Hans-Anton; Hubner, Christoph; Nolte, Dirk; Kohlschutter, Alfried; Messmer, Konrad

    1991-08-01

    Epidemiologic observations and experimental studies have demonstrated a protective effect of dietary fish oil on the clinical manifestations of ischemia-reperfusion injury. To investigate the underlying mechanisms, we used the dorsal skinfold chamber model for intravital fluorescence microscopy of the microcirculation in striated muscle of awake hamsters. In control hamsters (n = 7), reperfusion after a 4-hr pressure-induced ischemia to the muscle tissue elicited the adhesion of fluorescently stained leukocytes to the endothelium of postcapillary venules, capillary obstruction, and the breakdown of endothelial integrity. These microvascular manifestations of ischemia-reperfusion injury were significantly attenuated in animals (n = 7) when fed with a fish oil-enriched diet for 4 weeks prior to the experiments. In leukocyte total lipids, the fish oil diet resulted in a substantial displacement of arachidonic acid, the precursor of the potent adhesionpromoting leukotriene (LT) B_4, by fish oil-derived eicosapentaenoic acid, the precursor of biologically less potent LTB_5, emphasizing the mediator role of LTB_4 in ischemia-reperfusion injury. These results suggest that the preservation of microvascular perfusion by dietary fish oil contributes to its protective effects on the clinical manifestations of ischemia-reperfusion injury.

  4. Effect of Fish Oil on Circulating Adiponectin: A Systematic Review and Meta-Analysis of Randomized Controlled Trials

    PubMed Central

    Cahill, Leah E.; Mozaffarian, Dariush

    2013-01-01

    Context: Seafood long-chain polyunsaturated omega-3 fatty acids (n-3 PUFAs) improve insulin sensitivity in animal experiments, but findings remain inconsistent in humans. Adiponectin is a robust marker for insulin sensitivity and adipocyte function. Whether n-3 PUFAs affect adiponectin in humans is unknown. Objective: Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, the objective of the study was to perform a systematic review and meta-analysis of randomized, placebo-controlled clinical trials (RCTs) to determine the effect of n-3 PUFA consumption on circulating adiponectin in humans. Data Sources: MEDLINE, EMBASE, CABI (CAB abstracts), Cochrane Central Registry of Controlled Trials, ClinicalTrials.gov, SIGLE, and Faculty of 1000 were searched through to June 2012, supplemented with author contact and reference list searches. Study Selection: RCTs of either fish oil supplementation or isocaloric fish meal feeding that evaluated adiponectin as an outcome were selected for the study. Data Extraction: Two investigators independently extracted the data. Effect estimates were pooled using inverse-variance weighted, random-effects meta-analysis. Heterogeneity was assessed by the I2 and Q statistic. Prespecified sources of heterogeneity were investigated by meta-regression. Publication bias was assessed using funnel plots and Egger's test. Data Synthesis: Of 110 studies, 14 RCTs met inclusion criteria. Fourteen trial arms evaluated fish oil (fish oil, n = 682; placebo, n = 641). Fish oil increased adiponectin by 0.37 μg/mL [95% confidence interval (CI) 0.07; 0.67, P = .02]. Although effects in 11 of 14 trials were 0 or greater, statistical heterogeneity was evident (I2 = 72.9%), unexplained by n-3 PUFA dose or duration, study quality score, study location, or baseline body mass index (meta-regression P > .05 each). The funnel plot was asymmetric in favor of smaller trials with greater effects (Egger's P = .11); the fill

  5. The fat-1 mouse has brain docosahexaenoic acid levels achievable through fish oil feeding.

    PubMed

    Orr, Sarah K; Tong, Jasmin Y M; Kang, Jing X; Ma, David W L; Bazinet, Richard P

    2010-05-01

    Fat-1 transgenic mice endogenously convert n-6 to n-3 polyunsaturated fatty acids (PUFA). The aims of this study were to test whether a) fish oil feeding can attain similar brain n-3 PUFA levels as the fat-1 mouse, and b) fat-1 mouse brain docosahexaenoic acid (22:6n-3; DHA) levels can be potentiated by fish oil feeding. Fat-1 mice and their wildtype littermates consumed either a 10% safflower oil (SO) or a 2% fish oil and 8% safflower oil chow (FO). Brain total lipid and phospholipid fraction fatty acids were analyzed using GC-FID. Wildtype mice fed FO chow had similar brain levels of DHA as fat-1 mice fed SO chow. Fat-1 mice fed FO chow had similar brain n-3 PUFA levels as fat-1 mice fed SO chow. In conclusion, brain levels of DHA in the fat-1 mouse can be obtained by and were not further augmented with fish oil feeding.

  6. Deepwater Horizon crude oil impacts the developing hearts of large predatory pelagic fish

    PubMed Central

    Incardona, John P.; Gardner, Luke D.; Linbo, Tiffany L.; Brown, Tanya L.; Esbaugh, Andrew J.; Mager, Edward M.; Stieglitz, John D.; French, Barbara L.; Labenia, Jana S.; Laetz, Cathy A.; Tagal, Mark; Sloan, Catherine A.; Elizur, Abigail; Benetti, Daniel D.; Grosell, Martin; Block, Barbara A.; Scholz, Nathaniel L.

    2014-01-01

    The Deepwater Horizon disaster released more than 636 million L of crude oil into the northern Gulf of Mexico. The spill oiled upper surface water spawning habitats for many commercially and ecologically important pelagic fish species. Consequently, the developing spawn (embryos and larvae) of tunas, swordfish, and other large predators were potentially exposed to crude oil-derived polycyclic aromatic hydrocarbons (PAHs). Fish embryos are generally very sensitive to PAH-induced cardiotoxicity, and adverse changes in heart physiology and morphology can cause both acute and delayed mortality. Cardiac function is particularly important for fast-swimming pelagic predators with high aerobic demand. Offspring for these species develop rapidly at relatively high temperatures, and their vulnerability to crude oil toxicity is unknown. We assessed the impacts of field-collected Deepwater Horizon (MC252) oil samples on embryos of three pelagic fish: bluefin tuna, yellowfin tuna, and an amberjack. We show that environmentally realistic exposures (1–15 µg/L total PAH) cause specific dose-dependent defects in cardiac function in all three species, with circulatory disruption culminating in pericardial edema and other secondary malformations. Each species displayed an irregular atrial arrhythmia following oil exposure, indicating a highly conserved response to oil toxicity. A considerable portion of Gulf water samples collected during the spill had PAH concentrations exceeding toxicity thresholds observed here, indicating the potential for losses of pelagic fish larvae. Vulnerability assessments in other ocean habitats, including the Arctic, should focus on the developing heart of resident fish species as an exceptionally sensitive and consistent indicator of crude oil impacts. PMID:24706825

  7. Deepwater Horizon crude oil impacts the developing hearts of large predatory pelagic fish.

    PubMed

    Incardona, John P; Gardner, Luke D; Linbo, Tiffany L; Brown, Tanya L; Esbaugh, Andrew J; Mager, Edward M; Stieglitz, John D; French, Barbara L; Labenia, Jana S; Laetz, Cathy A; Tagal, Mark; Sloan, Catherine A; Elizur, Abigail; Benetti, Daniel D; Grosell, Martin; Block, Barbara A; Scholz, Nathaniel L

    2014-04-15

    The Deepwater Horizon disaster released more than 636 million L of crude oil into the northern Gulf of Mexico. The spill oiled upper surface water spawning habitats for many commercially and ecologically important pelagic fish species. Consequently, the developing spawn (embryos and larvae) of tunas, swordfish, and other large predators were potentially exposed to crude oil-derived polycyclic aromatic hydrocarbons (PAHs). Fish embryos are generally very sensitive to PAH-induced cardiotoxicity, and adverse changes in heart physiology and morphology can cause both acute and delayed mortality. Cardiac function is particularly important for fast-swimming pelagic predators with high aerobic demand. Offspring for these species develop rapidly at relatively high temperatures, and their vulnerability to crude oil toxicity is unknown. We assessed the impacts of field-collected Deepwater Horizon (MC252) oil samples on embryos of three pelagic fish: bluefin tuna, yellowfin tuna, and an amberjack. We show that environmentally realistic exposures (1-15 µg/L total PAH) cause specific dose-dependent defects in cardiac function in all three species, with circulatory disruption culminating in pericardial edema and other secondary malformations. Each species displayed an irregular atrial arrhythmia following oil exposure, indicating a highly conserved response to oil toxicity. A considerable portion of Gulf water samples collected during the spill had PAH concentrations exceeding toxicity thresholds observed here, indicating the potential for losses of pelagic fish larvae. Vulnerability assessments in other ocean habitats, including the Arctic, should focus on the developing heart of resident fish species as an exceptionally sensitive and consistent indicator of crude oil impacts.

  8. SURFACTANT - POLYMER INTERACTION FOR IMPROVED OIL RECOVERY

    SciTech Connect

    Unknown

    1997-09-01

    The goal of this research is to use the interaction between a surfactant and a polymer for efficient displacement of tertiary oil by improving slug integrity, adsorption and mobility control. Surfactant--polymer flooding has been shown to be highly effective in laboratory-scale linear floods. The focus of this proposal is to design an inexpensive surfactant-polymer mixture that can efficiently recover tertiary oil by avoiding surfactant slug degradation, high adsorption and viscous/heterogeneity fingering. This report contains data concerning selection of appropriate fluids for use in laboratory experiments and numerical simulations. A mixture comprising a ''pseudo oil'' with appropriate surfactant and polymer is proposed. The properties of this system has been determined. The experimental set-up has been conditioned for use and experiments involving the aforementioned system have already started. A commercial simulator has been acquired for use in reproducing the experiments. A graduate student has been trained in its use. Linear stability analysis equations have been developed and phase maps for one and two-dimensions are currently computed.

  9. The effects of diets containing standard soybean oil, soybean oil enhanced with conjugated linoleic acids, menhaden fish oil, or an algal docosahexaenoic acid supplement on channel catfish performance, body composition,...

    USDA-ARS?s Scientific Manuscript database

    Fish consumption is a common method of obtaining beneficial n-3 highly unsaturated fatty acids (HUFAs), but increased use of vegetable oils in fish diets to reduce dependence on fish oil dilutes these HUFAs. Conjugated linoleic acids (CLA) are also considered beneficial for human health. Therefore,...

  10. Renal cortex remodeling in streptozotocin-induced diabetic spontaneously hypertensive rats treated with olive oil, palm oil and fish oil from Menhaden.

    PubMed

    Medeiros, Fernanda J; Aguila, Marcia B; Mandarim-de-Lacerda, Carlos A

    2006-12-01

    We studied the effects of edible oils intake on the renal cortical structure of streptozotocin-induced diabetic (Db) and non-diabetic spontaneously hypertensive rats (SHR). Male SHR divided into 5 groups were studied during 6 weeks: one non-diabetic SHR group and four diabetic SHR groups (three groups received by gavage olive, palm or fish oil). Kidneys were analyzed by light microscopy and stereology. Oils intake did not change the plasma glucose levels. The blood pressure (BP) was lower in SHR-Db than in SHR, but SHR-Db-fish oil showed the lowest BP. Creatinine clearance was different between diabetic SHR and non-diabetic SHR, but not between treated SHR-Db and untreated SHR-Db. The renal cortex showed scars surrounding obsolete glomeruli with inflammatory infiltrate mainly in untreated SHR-Db. The olive oil, palm oil and mainly fish oil intake retard the usual loss of glomeruli and attenuate the renal cortex adverse remodeling of Db and non-Db SHR.

  11. Vitamin A and fish oils for retinitis pigmentosa.

    PubMed

    Rayapudi, Sobharani; Schwartz, Stephen G; Wang, Xue; Chavis, Pamela

    2013-12-19

    Retinitis pigmentosa (RP) comprises a group of hereditary eye diseases characterized by progressive degeneration of retinal photoreceptors. It results in severe visual loss that may lead to legal blindness. Symptoms may become manifest during childhood or adulthood, and include poor night vision (nyctalopia) and constriction of peripheral vision (visual field loss). This field loss is progressive and usually does not reduce central vision until late in the disease course.The worldwide prevalence of RP is one in 4000, with 100,000 patients affected in the USA. At this time, there is no proven therapy for RP. The objective of this review was to synthesize the best available evidence regarding the effectiveness and safety of vitamin A and fish oils (docosahexaenoic acid (DHA)) in preventing the progression of RP. We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (2013, Issue 7), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to August 2013), EMBASE (January 1980 to August 2013), Latin American and Caribbean Health Sciences Literature Database (LILACS) (January 1982 to August 2013), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com), ClinicalTrials.gov (www.clinicaltrials.gov) and the WHO International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 20 August 2013. We included randomized controlled trials (RCTs) evaluating the effectiveness of vitamin A, fish oils (DHA) or both, as a treatment for RP. We excluded cluster-randomized trials and cross-over trials. We pre-specified the following outcomes: mean change from baseline visual field, mean change from baseline electroretinogram (ERG) amplitudes, and anatomic changes as measured by optical coherence tomography (OCT), at one

  12. Vitamin A and fish oils for retinitis pigmentosa

    PubMed Central

    Rayapudi, Sobharani; Schwartz, Stephen G; Wang, Xue; Chavis, Pamela

    2014-01-01

    Background Retinitis pigmentosa (RP) comprises a group of hereditary eye diseases characterized by progressive degeneration of retinal photoreceptors. It results in severe visual loss that may lead to legal blindness. Symptoms may become manifest during childhood or adulthood, and include poor night vision (nyctalopia) and constriction of peripheral vision (visual field loss). This field loss is progressive and usually does not reduce central vision until late in the disease course. The worldwide prevalence of RP is one in 4000, with 100,000 patients affected in the USA. At this time, there is no proven therapy for RP. Objectives The objective of this review was to synthesize the best available evidence regarding the effectiveness and safety of vitamin A and fish oils (docosahexaenoic acid (DHA)) in preventing the progression of RP. Search methods We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (2013, Issue 7),Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to August 2013), EMBASE (January 1980 to August 2013), Latin American and Caribbean Health Sciences Literature Database (LILACS) (January 1982 to August 2013), the meta Register of Controlled Trials (mRCT) (www.controlled-trials.com), ClinicalTrials.gov (www.clinicaltrials.gov) and the WHO International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en).We did not use any date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 20 August 2013. Selection criteria We included randomized controlled trials (RCTs) evaluating the effectiveness of vitamin A, fish oils (DHA) or both, as a treatment for RP. We excluded cluster-randomized trials and cross-over trials. Data collection and analysis We pre-specified the following outcomes: mean change from baseline visual field, mean change from baseline electroretinogram (ERG

  13. Effect of the partial replacement of pork backfat by microencapsulated fish oil or mixed fish and olive oil on the quality of frankfurter type sausage.

    PubMed

    Domínguez, Rubén; Pateiro, Mirian; Agregán, Rubén; Lorenzo, José M

    2017-01-01

    Frankfurter sausages were reformulated to produce better lipid compositions by replacing the pork backfat by healthy oils. Sausages in, three different batches were manufactured: control (CO) with 100% of pork backfat, and modified sausages where the pork backfat was replaced with 50% by microencapsulated fish oil (ME) and by unencapsulated olive and fish oil mixture (OM). The ME treatments showed the lowest pH, fat and energy values and the highest protein and carbohydrates levels. The fat replacement by oils significantly (P < 0.05) affected to color parameters, since the ME batches presented the highest L* and b* values, whereas the OM treatments showed the highest values of a* values. As expected, the replacement of backfat by oils also greatly modified the fatty acids profile, since the OM group had the highest MUFA and n-3 PUFA contents. The microencapsulation process significantly (P < 0.001) increased the lipid oxidation. The ME batch presented the highest TBARS values and volatile compounds derivate from lipid oxidation, while the OM treatment showed the same lipid oxidation rate as CO group.

  14. Effect of Clupeonella grimmi (anchovy/kilka) fish oil on dysmenorrhoea.

    PubMed

    Moghadamnia, A A; Mirhosseini, N; Abadi, M Haji; Omranirad, A; Omidvar, S

    2010-04-01

    To examine whether dietary supplementation with omega-3 fatty acids from Clupeonella grimmi can relieve symptoms of dysmenorrhoea, we carried out a cross-over clinical trial on 36 girls aged 18-22 years. They were randomly allocated into 2 groups of 18. Group A received 15 mL fish oil daily (550 mg eicosapentaenoic acid; 205 mg decosahexaenoic acid) while Group B received placebo. After 3 months, the treatment regimens were swapped. The treatment groups reported a significant difference after 3 months of supplementation with fish oil (visual analogue scale score 20.9 compared with 61.8 for the placebo (P= 0.001). There was also a marked reduction in low back pain and abdominal pain (P < 0.05), and participants needed significantly fewer rescue doses of ibuprofen while using fish oil.

  15. Antioxidative effect of lipophilized caffeic acid in fish oil enriched mayonnaise and milk.

    PubMed

    Alemán, Mercedes; Bou, Ricard; Guardiola, Francesc; Durand, Erwann; Villeneuve, Pierre; Jacobsen, Charlotte; Sørensen, Ann-Dorit Moltke

    2015-01-15

    The antioxidative effect of lipophilized caffeic acid was assessed in two different fish oil enriched food products: mayonnaise and milk. In both emulsion systems, caffeic acid esterified with fatty alcohols of different chain lengths (C1-C20) were better antioxidants than the original phenolic compound. The optimal chain length with respect to protection against oxidation was, however, different for the two food systems. Fish oil enriched mayonnaise with caffeates of medium alkyl chain length (butyl, octyl and dodecyl) added resulted in a better oxidative stability than caffeates with shorter (methyl) or longer (octadecyl) alkyl chains. Whereas in fish oil enriched milk emulsions the most effective caffeates were those with shorter alkyl chains (methyl and butyl) rather than the ones with medium and long chains (octyl, dodecyl, hexadecyl and eicosyl). These results demonstrate that there might be an optimum alkyl chain length for each phenolipid in each type of emulsion systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Properties and antioxidant activity of fish skin gelatin film incorporated with citrus essential oils.

    PubMed

    Tongnuanchan, Phakawat; Benjakul, Soottawat; Prodpran, Thummanoon

    2012-10-01

    Properties of protein-based film from fish skin gelatin incorporated with different citrus essential oils, including bergamot, kaffir lime, lemon and lime (50% based on protein) in the presence of 20% and 30% glycerol were investigated. Films containing 20% glycerol had higher tensile strength (TS) but lower elongation at break (EAB), compared with those prepared with 30% glycerol, regardless of essential oils incorporated (p<0.05). Films incorporated with essential oils, especially from lime, at both glycerol levels showed the lower TS but higher EAB than the control films (without incorporated essential oil) (p<0.05). Water vapour permeability (WVP) of films containing essential oils was lower than that of control films for both glycerol levels (p<0.05). Films with essential oils had varying ΔE(*) (total colour difference), where the highest value was observed in that added with bergamot essential oil (p<0.05). Higher glycerol content increased EAB and WVP but decreased TS of films. Fourier transforms infrared (FTIR) spectra indicated that films added with essential oils exhibited higher hydrophobicity with higher amplitude at wavenumber of 2874-2926 cm(-1) and 1731-1742 cm(-1) than control film. Film incorporated with essential oils exhibited slightly lower thermal degradation resistance, compared to the control film. Varying effect of essential oil on thermal degradation temperature and weight loss was noticeable, but all films prepared using 20% glycerol had higher thermal degradation temperature with lower weight loss, compared with those containing 30% glycerol. Films added with all types of essential oils had rough cross-section, compared with control films, irrespective of glycerol levels. However, smooth surface was observed in all film samples. Film incorporated with lemon essential oil showed the highest ABTS radical scavenging activity and ferric reducing antioxidant power (FRAP) (p<0.05), while the other films had lower activity. Thus, the

  17. Fish oil and olive oil-rich diets modify ozone-induced ...

    EPA Pesticide Factsheets

    Rationale: Air pollution exposure has been associated with adverse cardiovascular health effects. Our clinical studies suggest that fish oil (FO) and olive oil (OO) supplementations attenuate the cardiovascular responses to inhaled concentrated ambient particles. This study was designed to examine the cardiovascular effects of ozone and the efficacy of FO and OO-rich diets in attenuating these effects of ozone exposure in rats. Methods: Male Wistar Kyoto rats were fed either a normal diet (ND), or a diet enriched with 6% FO or OO starting at 4 weeks of age. Eight weeks following the start of the diet, animals were exposed to filtered air (FA) or 0.8 ppm ozone, 4 hr/day for 2 consecutive days. Immediately after exposure, cardiac responses were assessed ex vivo using a Langendorff heart preparation with a protocol consisting of 20 min of global ischemia followed by 2 hr reperfusion. Cardiac function was measured as the index of left-ventricular developed pressure (LVDP) and contractility (dP/dtmax and dP/dtmin) before ischemia. Upon reperfusion after ischemia, the recovery of post-ischemic LVDP and infarct size were examined. Results: The pre-ischemic LVDP, dP/dtmax, and dP/dtmin were lower after ozone exposure when compared to the FA control in the rats fed ND but not FO and OO. OO diet shortened the time to ischemic contracture of the hearts after FA exposure compared to ND. Ozone exposure increased pre-ischemic heart rate and the time to ischemic contractur

  18. Effect of a fish oil-containing beverage on changes in plasma lipid fatty acids in patients with malabsorption

    PubMed Central

    McCowen, Karen C.; Ling, Pei-Ra; Ollero, Mario; Tawa, Nicholas; Bistrian, Bruce R.

    2015-01-01

    Background The aim of this pilot study was to assess tolerance of a beverage containing ω-3 fatty acids (fish oil) in patients with malabsorption receiving chronic parenteral nutrition (PN). We wanted to determine whether fish oil could be absorbed and incorporated into plasma fatty acids, and reduce markers of inflammation. Methods This was a small intervention study in home-dwelling PN-dependent patients with chronic malabsorption. Ten patients were provided a drink containing 1.5g of fish oil per day for 12 weeks. Baseline and post-supplement serum fatty acid profiles were compared. Results Five of 10 patients withdrew from the study due to gastrointestinal side effects, principally worsened diarrhea, associated with the supplement. Modest increases were found in 20:5ω-3, 22:5ω-3, and 22:6ω-3 levels in both phospholipids and triglycerides in plasma (all p<0.05). In phospholipids, a reduced arachidonic acid level was seen (p=0.02). These changes were not sufficient to effect improvements in serum tumor necrosis factor-alpha (TNFα), soluble TNF receptor, c-reactive protein or Interleukin-6. Conclusions Some patients with severe malabsorption can absorb oral ω-3 fatty acid supplements and can incorporate these fatty acids into serum phospholipids and triglycerides. However, side effects are very common, and no anti-inflammatory effect was found, presumably related to the modest level of fatty acid change. PMID:20962312

  19. Photoenhanced toxicity of oil to larval fish - abstract

    EPA Science Inventory

    Photoenhanced toxicity is the increase in the toxicity of a chemical in the presence of ultraviolet light (UV), compared to toxicity elicited under conditions of minimal UV. A variety of oil products, weathered and chemically dispersed oils, and specific polycyclic aromatic compo...

  20. Photoenhanced toxicity of oil to larval fish - abstract

    EPA Science Inventory

    Photoenhanced toxicity is the increase in the toxicity of a chemical in the presence of ultraviolet light (UV), compared to toxicity elicited under conditions of minimal UV. A variety of oil products, weathered and chemically dispersed oils, and specific polycyclic aromatic compo...

  1. Fish embryos are damaged by dissolved PAHs, not oil particles.

    PubMed

    Carls, Mark G; Holland, Larry; Larsen, Marie; Collier, Tracy K; Scholz, Nathaniel L; Incardona, John P

    2008-06-23

    To distinguish the toxicity of whole oil droplets from compounds dissolved in water, responses of zebrafish embryos exposed to particulate-laden, mechanically dispersed Alaska North Slope crude oil (mechanically dispersed oil (MDO)) were compared to those of embryos protected from direct oil droplet contact by an agarose matrix. Most polycyclic aromatic hydrocarbons (PAHs) in MDO were contained in oil droplets; about 16% were dissolved. The agarose precluded embryo contact with particulate oil but allowed diffusive passage of dissolved PAHs. The incidence of edema, hemorrhaging, and cardiac abnormalities in embryos was dose-dependent in both MDO and agarose and the biological effects in these compartments were identical in character. Although mean total PAH (TPAH) concentrations in MDO were about 5-9 times greater than in agarose, dissolved PAH concentrations were similar in the two compartments. Furthermore, mean differences in paired embryo responses between compartments were relatively small (14-23%, grand mean 17%), typically with a larger response in embryos exposed to MDO. Therefore, the embryos reacted only to dissolved PAHs and the response difference between compartments is explained by diffusion. Averaged over 48 h, the estimated mean TPAH concentration in agarose was about 16% less than the dissolved TPAH concentration in MDO. Thus, PAHs dissolved from oil are toxic and physical contact with oil droplets is not necessary for embryotoxicity.

  2. Dietary fish oil reduces the acute inflammatory response and enhances resolution of antigen-induced peritonitis.

    PubMed

    Tomasdottir, Valgerdur; Vikingsson, Arnor; Freysdottir, Jona; Hardardottir, Ingibjorg

    2013-10-01

    Dietary n-3 polyunsaturated fatty acids (PUFA) influence the inductive phase of inflammation but less is known about their effects on the resolution phase. This study examined the effects of dietary fish oil on induction and resolution of antigen-induced inflammation in mice. Mice were fed a control diet with or without 2.8% fish oil, immunized twice with methylated BSA (mBSA) and inflammation induced by intraperitoneal injection of mBSA. Prior to and at different time points after mBSA administration, peritoneal cells were analyzed and expression of surface molecules determined by flow cytometry. Concentration of chemokines, cytokines and soluble cytokine receptors was determined by ELISA. Mice fed the fish oil diet had fewer peritoneal neutrophils, shorter resolution interval and lower levels of pro-inflammatory cytokines and chemokines than mice fed the control diet. In mice fed the fish oil diet there was an early peak in peritoneal levels of the immunosuppressive molecules sIL-6R and TGF-β, that was not seen in mice fed the control diet. In the resolution phase, peritoneal macrophages from mice fed the fish oil diet expressed more of the atypical chemokine receptor D6 and peritoneal TGF-β levels were higher than that in mice fed the control diet. Furthermore, in the late-resolution phase there were more peritoneal eosinophils and macrophages in mice fed the fish oil diet than in mice fed the control diet. These results demonstrate a suppressive effect of n-3 PUFA on the inductive phase of inflammation and indicate an enhancing effect of n-3 PUFA on resolution of inflammation. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Prenatal fish oil supplementation and early childhood development in the Upstate KIDS Study.

    PubMed

    Vollet, K; Ghassabian, A; Sundaram, R; Chahal, N; Yeung, E H

    2017-08-01

    Fish oil contains omega-3 fatty acids, which play a vital role in fetal growth and development. In utero exposure to omega-3 fatty acids is exclusively dependent on maternal nutrition. Previous studies have suggested that prenatal fish oil supplementation has positive impacts on child neurodevelopment later in life. This study examines the associations between fish oil supplementation both before pregnancy and throughout pregnancy and subsequent child development. Mother-child pairs from the Upstate KIDS Study, a birth cohort consisting of children born between 2008 and 2010, were included. Self-reported prenatal fish oil supplementation data were available for 5845 children (3807 singletons and 2038 twins). At multiple time points, from 4 months to 3 years of age, child development was reported by the parents on the Ages and Stages Questionnaire (ASQ). Five developmental domains were assessed: fine motor, gross motor, communication, personal-social functioning and problem solving. Generalized linear mixed models were used to estimate odds ratios (OR) while adjusting for covariates. Primary analyses showed that the risk of failing the ASQ problem-solving domain was significantly lower among children of women who took fish oil before pregnancy (OR 0.40, 95% confidence intervals (CI) 0.18-0.89) and during pregnancy (OR 0.43, 95% CI 0.22-0.83). Gender interaction was not statistically significant, although stratified results indicated stronger associations among girls. Similarly, associations were primarily among singletons. Prenatal fish oil supplementation may be beneficial in regards to neurodevelopment. Specifically, it is associated with a lower risk of failing the problem-solving domain up to 3 years of age.

  4. Fish oil supplementation in type 2 diabetes: a quantitative systematic review.

    PubMed

    Montori, V M; Farmer, A; Wollan, P C; Dinneen, S F

    2000-09-01

    To determine the effects of fish oil supplementation on lipid levels and glycemic control in patients with type 2 diabetes. A comprehensive search of Medline, Embase, Lilacs, the Cochrane Clinical Trials Registry bibliographies of relevant papers, and expert input updated through September 1998 was undertaken. All randomized placebo-controlled trials were included in which fish oil supplementation was the only intervention in subjects with type 2 diabetes. Three investigators performed data extraction and quality scoring independently with discrepancies resolved by consensus. Eighteen trials including 823 subjects followed for a mean of 12 weeks were included. Doses of fish oil used ranged from 3 to 18 g/day The outcomes studied were glycemic control and lipid levels. Meta-analysis of pooled data demonstrated a statistically significant effect of fish oil on lowering triglycerides (-0.56 mmol/l [95% CI -0.71 to -0.41]) and raising LDL cholesterol (0.21 mmol/l [0.02 to 0.41]). No statistically significant effect was observed for fasting glucose. HbA1c total cholesterol, or HDL cholesterol. The triglyceride-lowering effect and the elevation in LDL cholesterol were most marked in those trials that recruited hypertriglyceridemic subjects and used higher doses of fish oil. Heterogeneity was observed and explained by the recruitment of subjects with baseline hypertriglyceridemia in some studies. Fish oil supplementation in type 2 diabetes lowers triglycerides, raises LDL cholesterol, and has no statistically significant effect on glycemic control. Trials with hard clinical end points are needed.

  5. Effect of fish oil intake on glucose levels in rat prefrontal cortex, as measured by microdialysis.

    PubMed

    de Sousa, Isy F; de Souza, Adriana P; Andrade, Iracema S; Boldarine, Valter T; Nascimento, Claúdia M O; Oyama, Lila M; Telles, Mônica M; Ribeiro, Eliane B

    2013-12-26

    Brain glucose sensing may contribute to energy homeostasis control. The prefrontal cortex (PFC) participates in the hedonic component of feeding control. As high-fat diets may disrupt energy homeostasis, we evaluated in male Wistar rats whether intake of high-fat fish-oil diet modified cortical glucose extracellular levels and the feeding induced by intracerebroventricular glucose or PFC glucoprivation. Glucose levels in PFC microdialysates were measured before and after a 30-min meal. Food intake was measured in animals receiving intracerebroventricular glucose followed, 30-min. later, by 2-deoxy-D-glucose injected into the PFC. The fish-oil group showed normal body weight and serum insulin while fat pads weight and glucose levels were increased. Baseline PFC glucose and 30-min. carbohydrates intake were similar between the groups. Feeding-induced PFC glucose levels increased earlier and more pronouncedly in fish-oil than in control rats. Intracerebroventricular glucose inhibited feeding consistently in the control but not in the fish-oil group. Local PFC glucoprivation with 2-DG attenuated glucose-induced hypophagia. The present experiments have shown that, following food intake, more glucose reached the prefrontal cortex of the rats fed the high-fat fish-oil diet than of the rats fed the control diet. However, when administered directly into the lateral cerebral ventricle, glucose was able to consistently inhibit feeding only in the control rats. The findings indicate that, an impairment of glucose transport into the brain does not contribute to the disturbances induced by the high-fat fish-oil feeding.

  6. Fish oil provides protection against the oxidative stress in pilocarpine model of epilepsy.

    PubMed

    Nejm, Mariana B; Haidar, André A; Marques, Márcia J G; Hirata, Aparecida E; Nogueira, Fernando N; Cavalheiro, Esper A; Scorza, Fulvio A; Cysneiros, Roberta Monterazzo

    2015-08-01

    Temporal lobe epilepsy (TLE), the most common form of epilepsy is often resistant to pharmacological treatment. Neuronal loss observed in epileptic brain may be result of an overproduction of free radicals (oxidative stress). Oxidative stress is characterized by an imbalance between antioxidant defenses and oxidizing agents (free radicals), which can lead to tissue injury. The n-3 PUFAs are important for the development and maintenance of central nervous system functions. Research by our group has shown that chronic treatment with fish oil, immediately after status epilepticus (SE), exhibits both neuroprotective effects and effects on neuroplasticity. The main purpose of this research was to evaluate if fish oil exhibits a protective effect against oxidative stress. Animals were subjected to TLE model by pilocarpine administration. After 3 h of SE they were randomly divided into the following groups: control animals treated daily with vehicle or with 85 mg/kg of fish oil and animals with epilepsy treated daily with vehicle or with 85 mg/kg of fish oil. After 90 days, superoxide anion production, enzymatic activity of superoxide dismutase (SOD) and catalase (CAT) and protein expression of NAD(P)H oxidase subunits (p47(PHOX) and gp91(PHOX)) were analyzed. Our results showed evidences that reactive oxygen species are increased in animals with epilepsy and that fish oil supplementation could counteract it. Fish oil supplementation promoted protection against oxidative stress by multiple ways, which involved the reduction of activity and expression of NAD(P)H oxidase subunits and increased the activity and expression of antioxidants enzymes, contributing to well-known neuroprotective effect in epilepsy.

  7. Effect of fish oil intake on glucose levels in rat prefrontal cortex, as measured by microdialysis

    PubMed Central

    2013-01-01

    Background Brain glucose sensing may contribute to energy homeostasis control. The prefrontal cortex (PFC) participates in the hedonic component of feeding control. As high-fat diets may disrupt energy homeostasis, we evaluated in male Wistar rats whether intake of high-fat fish-oil diet modified cortical glucose extracellular levels and the feeding induced by intracerebroventricular glucose or PFC glucoprivation. Methods Glucose levels in PFC microdialysates were measured before and after a 30-min meal. Food intake was measured in animals receiving intracerebroventricular glucose followed, 30-min. later, by 2-deoxy-D-glucose injected into the PFC. Results The fish-oil group showed normal body weight and serum insulin while fat pads weight and glucose levels were increased. Baseline PFC glucose and 30-min. carbohydrates intake were similar between the groups. Feeding-induced PFC glucose levels increased earlier and more pronouncedly in fish-oil than in control rats. Intracerebroventricular glucose inhibited feeding consistently in the control but not in the fish-oil group. Local PFC glucoprivation with 2-DG attenuated glucose-induced hypophagia. Conclusions The present experiments have shown that, following food intake, more glucose reached the prefrontal cortex of the rats fed the high-fat fish-oil diet than of the rats fed the control diet. However, when administered directly into the lateral cerebral ventricle, glucose was able to consistently inhibit feeding only in the control rats. The findings indicate that, an impairment of glucose transport into the brain does not contribute to the disturbances induced by the high-fat fish-oil feeding. PMID:24369745

  8. Persistent organic pollutants in fish oil supplements on the Canadian market: polychlorinated biphenyls and organochlorine insecticides.

    PubMed

    Rawn, Dorothea F K; Breakell, K; Verigin, V; Nicolidakis, H; Sit, D; Feeley, M

    2009-01-01

    Fish and seal oil dietary supplements, marketed to be rich in omega-3 fatty acids, are frequently consumed by Canadians. Samples of these supplements (n = 30) were collected in Vancouver, Canada, between 2005 and 2007. All oil supplements were analyzed for polychlorinated biphenyls (PCBs) and organochlorine insecticides (OCs) and each sample was found to contain detectable residues. The highest SigmaPCB and SigmaDDT (1,1,1-trichloro-di-(4-chlorophenyl)ethane) concentrations (10400 ng/g and 3310 ng/g, respectively) were found in a shark oil sample while lowest levels were found in supplements prepared using mixed fish oils (anchovy, mackerel, and sardine) (0.711 ng SigmaPCB/g and 0.189 ng SigmaDDT/g). Mean SigmaPCB concentrations in oil supplements were 34.5, 24.2, 25.1, 95.3, 12.0, 5260, 321, and 519 ng/g in unidentified fish, mixed fish containing no salmon, mixed fish with salmon, salmon, vegetable with mixed fish, shark, menhaden (n = 1), and seal (n = 1), respectively. Maximum concentrations of the other OCs were generally observed in the seal oil. The hexachlorinated PCB congeners were the dominant contributors to SigmaPCB levels, while SigmaDDT was the greatest contributor to organochlorine levels. Intake estimates were made using maximum dosages on manufacturers' labels and results varied widely due to the large difference in residue concentrations obtained. Average SigmaPCB and SigmaDDT intakes were calculated to be 736 +/- 2840 ng/d and 304 +/- 948 ng/d, respectively.

  9. Microencapsulation of fish oil by spray granulation and fluid bed film coating.

    PubMed

    Anwar, Sri Haryani; Weissbrodt, Jenny; Kunz, Benno

    2010-08-01

    The stability of microencapsulated fish oil prepared with 2 production processes, spray granulation (SG) and SG followed by film coating (SG-FC) using a fluid bed equipment, was investigated. In the 1st process, 3 types of fish oil used were based on the ratios of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) (10/50, 33/22, and 18/12). Each type was emulsified with soluble soybean polysaccharide (SSPS) and maltodextrin to produce 25% oil powders. In the 2nd process, 15% film coating of hydroxypropyl betacyclodextrin (HPBCD) was applied to the granules from the 1st process. The powder stability against oxidation was examined by measurement of peroxide values (PV) and headspace propanal after storage at room temperature and at 3 to 4 degrees C for 6 wk. Uncoated powder containing the lowest concentration of PUFA (18/12) was found to be stable during storage at room temperature with maximum PV of 3.98 +/- 0.001 meq/kg oil. The PV increased sharply for uncoated powder with higher concentration of omega-3 (in 33/22 and 10/50 fish oils) after 3 wk storage. The PVs were in agreement with the concentration of propanal, and these 2 parameters remained constant for most of the uncoated powders stored at low temperature. Unexpectedly, the outcomes showed that the coated powders had lower stability than uncoated powders as indicated by higher initial PVs; more hydroperoxides were detected as well as increasing propanal concentration. The investigation suggests that the film-coating by HPBCD ineffectively protected fish oil as the coating process might have induced further oxidation; however, SG is a good method for producing fish oil powder and to protect it from oxidation because of the "onion skin" structure of granules produced in this process.

  10. Long-term consumption of fish oil-enriched diet impairs serotonin hypophagia in rats.

    PubMed

    Watanabe, Regina L H; Andrade, Iracema S; Telles, Mônica M; Albuquerque, Kelse T; Nascimento, Cláudia M O; Oyama, Lila M; Casarini, Dulce E; Ribeiro, Eliane B

    2010-10-01

    Hypothalamic serotonin inhibits food intake and stimulates energy expenditure. High-fat feeding is obesogenic, but the role of polyunsaturated fats is not well understood. This study examined the influence of different high-PUFA diets on serotonin-induced hypophagia, hypothalamic serotonin turnover, and hypothalamic protein levels of serotonin transporter (ST), and SR-1B and SR-2C receptors. Male Wistar rats received for 9 weeks from weaning a diet high in either soy oil or fish oil or low fat (control diet). Throughout 9 weeks, daily intake of fat diets decreased such that energy intake was similar to that of the control diet. However, the fish group developed heavier retroperitoneal and epididymal fat depots. After 12 h of either 200 or 300 μg intracerebroventricular serotonin, food intake was significantly inhibited in control group (21-25%) and soy group (37-39%) but not in the fish group. Serotonin turnover was significantly lower in the fish group than in both the control group (-13%) and the soy group (-18%). SR-2C levels of fish group were lower than those of control group (50%, P = 0.02) and soy group (37%, P = 0.09). ST levels tended to decrease in the fish group in comparison to the control group (16%, P = 0.339) and the soy group (21%, P = 0.161). Thus, unlike the soy-oil diet, the fish-oil diet decreased hypothalamic serotonin turnover and SR-2C levels and abolished serotonin-induced hypophagia. Fish-diet rats were potentially hypophagic, suggesting that, at least up to this point in its course, the serotonergic impairment was either compensated by other factors or not of a sufficient extent to affect feeding. That fat pad weight increased in the absence of hyperphagia indicates that energy expenditure was affected by the serotonergic hypofunction.

  11. Replacement of dietary fish oil by vegetable oils affects humoral immunity and expression of pro-inflammatory cytokines genes in gilthead sea bream Sparus aurata.

    PubMed

    Montero, D; Mathlouthi, F; Tort, L; Afonso, J M; Torrecillas, S; Fernández-Vaquero, A; Negrin, D; Izquierdo, M S

    2010-12-01

    Commercial gilthead sea bream feeds are highly energetic, fish oil traditionally being the main lipid source. But the decreased fish oil production together with the increased prices of this oil encourages its substitution by vegetable oils, imposing new nutritional habits to aquaculture species. Partial replacement of fish oil by vegetable oils in diets for marine species allows good feed utilization and growth but may affect fish health, since imbalances in dietary fatty acids may alter fish immunological status. The effect of dietary oils on different aspects of fish immune system has been reported for some species, but very little is known about the effect of dietary oils on immune-related genes expression in fish. Thus, the objective of this study was to elucidate the role of dietary oils on the expression of two pro-inflammatory cytokines, Tumor Necrosis Factor-α (TNF-α) and Interleukine 1β (IL-1β) on intestine and head kidney after exposure to the bacterial pathogen Photobacterium damselae sp. piscicida. For that purpose, 5 iso-nitrogenous and iso-lipidic diets (45% crude protein, 22% crude lipid content) were formulated. Anchovy oil was the only lipid source used in the control diet (FO), but in the other diets, fish oil was totally (100%) or partially (70%) substituted by linseed (rich in n-3 fatty acids) or soybean (rich in n-6 fatty acids) (100L, 100S, 70L, 70S). Fish were fed experimental diets during 80 days and after this period were exposed to an experimental intestinal infection with the pathogen. Serum and tissue samples were obtained at pre-infection and after 1, 3 and 7 days of infection. RNA was extracted and cDNA was synthesized by reverse transcription from intestine and head kidney and the level expression of TNF-α and IL-1β were assayed by using quantitative real time PCR. The expression level of genes analysed was represented as relative value, using the comparative Ct method (2(-ΔΔCt)). Serum anti-bacterial activity was measured as

  12. Dietary fish oil reverse epididymal tissue adiposity, cell hypertrophy and insulin resistance in dyslipemic sucrose fed rat model small star, filled.

    PubMed

    Soria, Ana; Chicco, Adriana; Eugenia D'Alessandro, María; Rossi, Andrea; Lombardo, Yolanda B.

    2002-04-01

    The present work was designed to assess the possible benefits of (7% w/w) dietary fish oil in reversing the morphological and metabolic changes present in the adipose tissue of rats fed an SRD for a long time. With this purpose, in the epididymal fat tissue, we investigated the effect of dietary fish oil upon: i) the number, size and distribution of cells, ii) the basal and stimulated lipolysis, iii) the lipoprotein lipase (LPL) and the glucose 6-phosphate dehydrogenase activities, and iv) the antilipolytic action of insulin. The study was conducted on rats fed an SRD during 120 days with fish oil being isocaloric substituted for corn oil for 90-120 days in half the animals. Permanent hypertriglyceridemia, insulin resistance and abnormal glucose homeostasis were present in the rats before the source of fat in the diet was replaced. The major new findings of this study are the following: i) Dietary fish oil markedly reduced the fat pads mass, the hypertrophy of fat cells and improved the altered cell size distribution. ii) The presence of fish oil in the diet corrected the inhibitory effect of high sucrose diet upon the antilipolytic action of insulin, reduced the "in vitro" enhanced basal lipolysis and normalized isoproterenol-stimulated lipolysis. Fat pads lipoprotein lipase activity decreased reaching values similar to those observed in age-matched controls fed a control diet (CD). These effects were not accompanied by any change in rat body weight. All these data suggest that the dyslipemic rats fed a moderate amount of dietary fish oil constitute a useful animal model to study diet-regulated insulin action.

  13. Fish assemblages associated with oil industry structures on the continental shelf of north-western Australia.

    PubMed

    Pradella, N; Fowler, A M; Booth, D J; Macreadie, P I

    2014-01-01

    This study provides the first assessment of fish associations with oil and gas structures located in deep water (85-175 m) on Australia's north-west continental shelf, using rare oil industry video footage obtained from remotely operated vehicles. A diverse range of taxa were observed associating with the structures, including reef-dependent species and transient pelagic species. Ten commercially fished species were observed, the most abundant of which was Lutjanus argentimaculatus, with an estimated biomass for the two deepest structures (Goodwyn and Echo) of 109 kg.

  14. Fish oil increases mitochondrial phospholipid unsaturation, upregulating reactive oxygen species and apoptosis in rat colonocytes

    NASA Technical Reports Server (NTRS)

    Hong, Mee Young; Chapkin, Robert S.; Barhoumi, Rola; Burghardt, Robert C.; Turner, Nancy D.; Henderson, Cara E.; Sanders, Lisa M.; Fan, Yang-Yi; Davidson, Laurie A.; Murphy, Mary E.; hide

    2002-01-01

    We have shown that a combination of fish oil (high in n-3 fatty acids) with the butyrate-producing fiber pectin, upregulates apoptosis in colon cells exposed to the carcinogen azoxymethane, protecting against colon tumor development. We now hypothesize that n-3 fatty acids prime the colonocytes such that butyrate can initiate apoptosis. To test this, 30 Sprague-Dawley rats were provided with diets differing in the fatty acid composition (corn oil, fish oil or a purified fatty acid ethyl ester diet). Intact colon crypts were exposed ex vivo to butyrate, and analyzed for reactive oxygen species (ROS), mitochondrial membrane potential (MMP), translocation of cytochrome C to the cytosol, and caspase-3 activity (early events in apoptosis). The fatty acid composition of the three major mitochondrial phospholipids was also determined, and an unsaturation index calculated. The unsaturation index in cardiolipin was correlated with ROS levels (R = 0.99; P = 0.02). When colon crypts from fish oil and FAEE-fed rats were exposed to butyrate, MMP decreased (P = 0.041); and translocation of cytochrome C to the cytosol (P = 0.037) and caspase-3 activation increased (P = 0.032). The data suggest that fish oil may prime the colonocytes for butyrate-induced apoptosis by enhancing the unsaturation of mitochondrial phospholipids, especially cardiolipin, resulting in an increase in ROS and initiating apoptotic cascade.

  15. Protective effect of clove oil-supplemented fish diets on experimental Lactococcus garvieae infection in tilapia.

    PubMed

    Rattanachaikunsopon, Pongsak; Phumkhachorn, Parichat

    2009-09-01

    The essential oils extracted from the four herbs, cinnamon (Cinnamomum verum), clove (Syzygium aromaticum), ginger (Zingiber officinale) and holy basil (Ocimum sanctum), were investigated for their antimicrobial activity and mode of action against Lactococcus garvieae, a fish pathogenic bacteria causing lactococcosis. Of all the tested oils, clove oil had the strongest inhibitory effect and exhibited a bactericidal mode of action against the pathogenic bacterium. When an intraperitoneal infection of tilapia (Oreochromis niloticus) with L. garvieae was performed, the median lethal dose (LD(50)) was determined to be 1.78x10(2) CFU/fish. For an in vivo trial, no mortality was apparent in fish fed on the fish diets supplemented with 3% (w/w) of clove oil and with 0.5% (w/w) of oxytetracycline 5 d prior to the infection with L. garvieae. These results indicate that clove oil had a protective effect on experimental L. garvieae infection in tilapia and the potential to replace antibiotics for controlling the disease.

  16. Fish oil increases mitochondrial phospholipid unsaturation, upregulating reactive oxygen species and apoptosis in rat colonocytes

    NASA Technical Reports Server (NTRS)

    Hong, Mee Young; Chapkin, Robert S.; Barhoumi, Rola; Burghardt, Robert C.; Turner, Nancy D.; Henderson, Cara E.; Sanders, Lisa M.; Fan, Yang-Yi; Davidson, Laurie A.; Murphy, Mary E.; Spinka, Christine M.; Carroll, Raymond J.; Lupton, Joanne R.

    2002-01-01

    We have shown that a combination of fish oil (high in n-3 fatty acids) with the butyrate-producing fiber pectin, upregulates apoptosis in colon cells exposed to the carcinogen azoxymethane, protecting against colon tumor development. We now hypothesize that n-3 fatty acids prime the colonocytes such that butyrate can initiate apoptosis. To test this, 30 Sprague-Dawley rats were provided with diets differing in the fatty acid composition (corn oil, fish oil or a purified fatty acid ethyl ester diet). Intact colon crypts were exposed ex vivo to butyrate, and analyzed for reactive oxygen species (ROS), mitochondrial membrane potential (MMP), translocation of cytochrome C to the cytosol, and caspase-3 activity (early events in apoptosis). The fatty acid composition of the three major mitochondrial phospholipids was also determined, and an unsaturation index calculated. The unsaturation index in cardiolipin was correlated with ROS levels (R = 0.99; P = 0.02). When colon crypts from fish oil and FAEE-fed rats were exposed to butyrate, MMP decreased (P = 0.041); and translocation of cytochrome C to the cytosol (P = 0.037) and caspase-3 activation increased (P = 0.032). The data suggest that fish oil may prime the colonocytes for butyrate-induced apoptosis by enhancing the unsaturation of mitochondrial phospholipids, especially cardiolipin, resulting in an increase in ROS and initiating apoptotic cascade.

  17. Induction of Cd36 expression elicited by fish oil PUFA in spontaneously hypertensive rats.

    PubMed

    Alexander Aguilera, Alfonso; Hernández Díaz, Guillermo; Lara Barcelata, Martín; Angulo Guerrero, Ofelia; Oliart Ros, Rosa M

    2006-11-01

    Cd36 is an integral membrane glycoprotein expressed on the surface of cells active in fatty acid metabolism (adipocytes, muscle cells, platelets, monocytes, heart and intestine cells). This protein plays diverse functions including uptake of long-chain fatty acids and oxidized low-density lipoproteins. A recent report demonstrates that Cd36 deficiency underlies insulin resistance, defective fatty acid metabolism and hypertriglyceridemia in spontaneously hypertensive rats (SHRs). Cd36 is a tightly regulated protein whose expression is modulated through peroxisome proliferator-activated receptor (PPAR) transcription factors, by conditions that alter lipid metabolism such as diabetes mellitus and high-fat feeding. The purpose of this study was to evaluate the effect of dietary fish oil, rich in n-3 polyunsaturated fatty acids (PUFAs), on metabolic parameters and on the expression levels of Cd36 in adipose tissue in the SHR. Spontaneously hypertensive rats showed lower Cd36 mRNA levels when compared to Kyoto-Wistar (KW) rats (control). After 6 weeks of fish oil (FO) administration, this group of SHRs (FO-SHR) presented increased levels of Cd36 mRNA, concomitantly with decreased insulin, free fatty acids (FFAs), triglycerides, cholesterol, LDL, HDL, total lipids and blood pressure, in comparison to control rats that received a corn-canola oil diet. The study confirmed the beneficial effects of fish oil administration on the metabolic syndrome, suggesting that the induction of Cd36 expression could be one of the molecular mechanisms elicited by fish oil PUFAs.

  18. Anti-Inflammatory and Anti-Fibrotic Profile of Fish Oil Emulsions Used in Parenteral Nutrition-Associated Liver Disease

    PubMed Central

    Pastor-Clerigues, Alfonso; Marti-Bonmati, Ezequiel; Milara, Javier; Almudever, Patricia; Cortijo, Julio

    2014-01-01

    Home parenteral nutrition (PN) is associated with many complications including severe hepatobiliary dysfunction. Commercial ω-6 fatty acid-soybean based-lipid emulsions in PN may mediate long term PN associate liver disease (PNALD) whereas ω-3-fish oil parenteral emulsions have shown to reverse PNALD in children. However, its clinical effectiveness in adults has been scarcely reported. In this work, we study the role of soybean and fish oil lipid commercial emulsions on inflammatory and profibrotic liver markers in adults with long term PNALD and in in vitro cellular models. Inflammatory and profibrotic markers were measured in serum of ten adults with long term PNALD and in culture supernatants of monocytes. Liver epithelial to mesenchymal transition (EMT) was induced by transforming growth factor beta 1 (TGFβ1) to evaluate in vitro liver fibrosis. Omegaven®, a 100% fish oil commercial emulsion, was infused during four months in two patients with severe long term PNALD reversing, at the first month, the inflammatory, profibrotic and clinical parameters of PNALD. The effect was maintained during the treatment course but impaired when conventional lipid emulsions were reintroduced. The other patients under chronic soybean oil-based PN showed elevated inflammatory and profibrotic parameters. In vitro human monocytes stimulated with lipopolysaccharide induced a strong inflammatory response that was suppressed by Omegaven®, but increased by soybean emulsions. In other experiments, TGFβ1 induced EMT that was suppressed by Omegaven® and enhanced by soybean oil lipid emulsions. Omegaven® improves clinical, anti-inflammatory and anti-fibrotic parameters in adults with long-term home PNALD. PMID:25502575

  19. Global fishmeal and fish-oil supply: inputs, outputs and markets.

    PubMed

    Shepherd, C J; Jackson, A J

    2013-10-01

    Recent data on fishmeal and fish-oil supply are presented identifying key producer countries and raw material sources and distinguishing between whole fish and by-products. The conversion of these raw materials into marine ingredients is discussed and global volumes presented. This is followed by a summary of the main countries using these marine ingredients over recent years. Uses of fishmeal and fish-oil by market segment are then presented. From this, a global mass balance of inputs and outputs is derived which allows the calculation of the input-to-output ratios (fish in:fish out; FIFO) for the main aquaculture production types to be made. Current areas of focus by the industry include the need to demonstrate sustainable practice, more strategic use of marine ingredients, greater use of fishery and land-animal by-products as well as vegetable substitutes, and novel sources of essential omega-3 fats, notably the long-chain polyunsaturated fatty acids, eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids. Implications are drawn for future supply prospects of fishmeal and fish-oil and their future role in aquaculture, agriculture and human health.

  20. Effect of fish oil supplementation for 2 generations on changes in macrophage function induced by Walker 256 cancer cachexia in rats.

    PubMed

    Folador, Alessandra; Hirabara, Sandro M; Bonatto, Sandro J R; Aikawa, Júlia; Yamazaki, Ricardo K; Curi, Rui; Fernandes, Luiz C

    2007-01-15

    The effect of coconut fat (rich in medium saturated fatty acids) or fish oil (rich in omega-3 polyunsaturated fatty acids) supplementation for 2 generations on tumor growth, cancer cachexia, animal survival and macrophage function was investigated in Walker 256 tumor-bearing rats. Female Wistar rats were supplemented with coconut fat or fish oil prior to mating and then throughout pregnancy and gestation. Both supplementations were daily and orally given at 1 g per kg body weight as a single bolus. Same treatment was performed by the 2 following generations. At 90 days of age, male offspring (50%) from F2 generation were subcutaneously inoculated with 2 x 10(7) Walker 256 tumor cells. At 14 days after tumor implantation, rats not supplemented displayed cancer cachexia characterized by loss of body weight, hypoglycemia, hyperlacticidemia, hypertriglyceridemia, decreased food intake and depletion of glycogen stores in the liver and skeletal muscles. Supplementation with coconut fat did not affect these parameters. However, supplementation with fish oil decreased tumor growth (59%), prevented body weight loss and food intake reduction and attenuated cancer cachexia. In addition, fish oil increased animal survival up to 20 days (from 25% in rats not supplemented to 67% in rats supplemented with fish oil) and improved macrophage function characterized by increased phagocytosis capacity and production of hydrogen peroxide and nitric oxide. These results suggest that fish oil supplementation for 2 generations improves macrophage function in association to reduced tumor growth and attenuated cancer cachexia, maintaining food intake and increasing animal survival. (c) 2006 Wiley-Liss, Inc.

  1. Increasing Fish Oil Levels in Commercial Diets Influences Hematological and Immunological Responses of Channel Catfish, Ictalurus punctatus

    USDA-ARS?s Scientific Manuscript database

    Growth performance, immune responses and disease resistance were studied in juvenile channel catfish, Ictalurus punctatus fed a commercial diet (35.3% crude protein and 5.6% lipid) supplemented with menhaden fish oil at levels of 0, 3, 6 and 9% for 15 weeks. Dietary fish oil levels did not significa...

  2. Detection of arsenic-containing hydrocarbons in a range of commercial fish oils by GC-ICPMS analysis.

    PubMed

    Sele, Veronika; Amlund, Heidi; Berntssen, Marc H G; Berntsen, Jannicke A; Skov, Kasper; Sloth, Jens J

    2013-06-01

    The present study describes the use of a simple solid-phase extraction procedure for the extraction of arsenic-containing hydrocarbons from fish oil followed by analysis using gas chromatography (GC) coupled to inductively coupled plasma mass spectrometry (ICPMS). The procedure permitted the analysis of a small sample amount, and the method was applied on a range of different commercial fish oils, including oils of anchovy (Engraulis ringens), Atlantic herring (Clupea harengus), sand eel (Ammodytes marinus), blue whiting (Micromesistius poutassou) and a commercial mixed fish oil (mix of oils of Atlantic herring, Atlantic cod (Gadus morhua) and saithe (Pollachius virens)). Total arsenic concentrations in the fish oils and in the extracts of the fish oils were determined by microwave-assisted acid digestion and ICPMS. The arsenic concentrations in the fish oils ranged from 5.9 to 8.7 mg kg(-1). Three dominant arsenic-containing hydrocarbons in addition to one minor unidentified compound were detected in all the oils using GC-ICPMS. The molecular structures of the arsenic-containing hydrocarbons, dimethylarsinoyl hydrocarbons (C17H38AsO, C19H42AsO, C23H38AsO), were verified using GC coupled to tandem mass spectrometry (MS/MS), and the accurate masses of the compounds were verified using quadrupole time-of-flight mass spectrometry (qTOF-MS). Additionally, total arsenic and the arsenic-containing hydrocarbons were studied in decontaminated and in non-decontaminated fish oils, where a reduced arsenic concentration was seen in the decontaminated fish oils. This provided an insight to how a decontamination procedure originally ascribed for the removal of persistent organic pollutants affects the level of arsenolipids present in fish oils.

  3. Effect of low-to-moderate amounts of dietary fish oil on neutrophil lipid composition and function.

    PubMed

    Healy, D A; Wallace, F A; Miles, E A; Calder, P C; Newsholm, P

    2000-07-01

    Although essential to host defense, neutrophils are also involved in numerous inflammatory disorders including rheumatoid arthritis. Dietary supplementation with relatively large amounts of fish oil [containing >2.6 g eicosapentaenoic acid (EPA) plus 1.4 g docosahexaenoic acid (DHA) per day] can attenuate neutrophil functions such as chemotaxis and superoxide radical production. In this study, the effects of more moderate supplementation with fish oil on neutrophil lipid composition and function were investigated. The rationale for using lower supplementary doses of fish oil was to avoid adverse gastrointestinal problems, which have been observed at high supplementary concentrations of fish oil. Healthy male volunteers aged <40 yr were randomly assigned to consume one of six dietary supplements daily for 12 wk (n = 8 per treatment group). The dietary supplements included four different concentrations of fish oil (the most concentrated fish oil provided 0.58 g EPA plus 1.67 g DHA per day), linseed oil, and a placebo oil. The percentages of EPA and DHA increased (both P < 0.05) in neutrophil phospholipids in a dose-dependent manner after 4 wk of supplementation with the three most concentrated fish oil supplements. No further increases in EPA or DHA levels were observed after 4 wk. The percentage of arachidonic acid in neutrophil phospholipids decreased (P < 0.05) after 12 wk supplementation with the linseed oil supplement or the two most concentrated fish oil supplements. There were no significant changes in N-formyl-met-leu-phe-induced chemotaxis and superoxide radical production following the dietary supplementations. In conclusion, low-to-moderate amounts of dietary fish oil can be used to manipulate neutrophil fatty acid composition. However, this may not be accompanied by modulation of neutrophil functions such as chemotaxis and superoxide radical production.

  4. Intravenous fish oil lipid emulsion promotes a shift toward anti-inflammatory proresolving lipid mediators

    PubMed Central

    Kalish, Brian T.; Le, Hau D.; Fitzgerald, Jonathan M.; Wang, Samantha; Seamon, Kyle; Gura, Kathleen M.; Gronert, Karsten

    2013-01-01

    Parenteral nutrition (PN)-associated liver disease (PNALD) is a life-threatening complication of the administration of PN. The development of PNALD may be partly due to the composition of the lipid emulsion administered with PN: soybean oil-based lipid emulsions (SOLE) are associated with liver disease, while fish oil-based lipid emulsions (FOLE) are associated with prevention and improvement of liver disease. The objective of this study was to determine how the choice of lipid emulsion modified the production of bioactive lipid mediators (LMs). We utilized a mouse model of steatosis to study the differential effect of FOLE and SOLE. We subsequently validated these results in serum samples from a small cohort of human infants transitioning from SOLE to FOLE. In mice, FOLE was associated with production of anti-inflammatory, proresolving LMs; SOLE was associated with increased production of inflammatory LMs. In human infants, the transition from SOLE to FOLE was associated with a shift toward a proresolving lipidome. Together, these results demonstrate that the composition of the lipid emulsion directly modifies inflammatory homeostasis. PMID:24091595

  5. Dietary fish oil does not protect rats exposed to restraint or sleep deprivation stress.

    PubMed

    Papakonstantinou, Emilia; Ryan, Donna H; Harris, Ruth B S

    2003-04-01

    It has been suggested that fish oil (FO) prevents weight loss caused by physiological stress such as cancer, injury, or cardiovascular disorders. Previously, we observed that a high-fat diet containing corn and coconut oil exaggerated weight loss caused by the mixed physiological and psychological stress of repeated restraint (RR). This experiment tested the effects of a high-fat diet containing FO as the predominant lipid source in rats exposed to the mixed physiological and psychological stress of either RR or sleep deprivation (SD). FO did not prevent stress-induced hypophagia or weight loss in RR or SD rats but exaggerated the negative effects of stress on body weight in SD rats by promoting loss of lean body mass. RR caused a reduction in body fat content irrespective of dietary treatment. In SD rats, both stress and FO independently reduced body fat mass. FO did not have any effect on adrenal and thymus weights during RR or SD and did not influence corticosterone levels after 1 h of RR or after 48 or 96 h of SD. In conclusion, our results suggest that high levels of dietary FO do not improve the response to stress in rats exposed to mixed stressors.

  6. A fish-oil-rich diet reduces vascular oxidative stress in apoE(-/-) mice.

    PubMed

    Casós, Kelly; Zaragozá, María C; Zarkovic, Neven; Zarkovic, Kamelija; Andrisic, Luka; Portero-Otín, Manuel; Cacabelos, Daniel; Mitjavila, María T

    2010-07-01

    Oxidative stress contributes to lipid peroxidation and decreases nitric oxide (NO) bioavailability in atherosclerosis. While long-chain (n-3) polyunsaturated fatty acids (PUFA) are easily oxidized in vitro, they improve endothelial function. Hence, this study postulates that long-chain (n-3) PUFA decrease atherogenic oxidative stress in vivo. To test this, apoE(-/-) mice were fed a corn oil- or a fish oil (FO)-rich diet for 8, 14 or 20 weeks and parameters related to NO and superoxide (O(2)(.-)) plus markers of lipid peroxidation and protein oxidative damage in the aortic root were evaluated. The FO-rich diet increased NO production and endothelial NO synthase (NOS) expression and lowered inducible NOS, p22(phox) expression and O(2)(.-)production after 14 and 20 weeks of diet. Protein lipoxidative damage (including 4-hydroxynonenal) was decreased after a long-term FO-diet. This supports the hypothesis that a FO-rich diet could counteract atherogenic oxidative stress, showing beneficial effects of long-chain (n-3) PUFA.

  7. Biodegradable gelatin-chitosan films incorporated with essential oils as antimicrobial agents for fish preservation.

    PubMed

    Gómez-Estaca, J; López de Lacey, A; López-Caballero, M E; Gómez-Guillén, M C; Montero, P

    2010-10-01

    Essential oils of clove (Syzygium aromaticum L.), fennel (Foeniculum vulgare Miller), cypress (Cupressus sempervirens L.), lavender (Lavandula angustifolia), thyme (Thymus vulgaris L.), herb-of-the-cross (Verbena officinalis L.), pine (Pinus sylvestris) and rosemary (Rosmarinus officinalis) were tested for their antimicrobial activity on 18 genera of bacteria, which included some important food pathogen and spoilage bacteria. Clove essential oil showed the highest inhibitory effect, followed by rosemary and lavender. In an attempt to evaluate the usefulness of these essential oils as food preservatives, they were also tested on an extract made of fish, where clove and thyme essential oils were the most effective. Then, gelatin-chitosan-based edible films incorporated with clove essential oil were elaborated and their antimicrobial activity tested against six selected microorganisms: Pseudomonas fluorescens, Shewanella putrefaciens, Photobacterium phosphoreum, Listeria innocua, Escherichia coli and Lactobacillus acidophilus. The clove-containing films inhibited all these microorganisms irrespectively of the film matrix or type of microorganism. In a further experiment, when the complex gelatin-chitosan film incorporating clove essential oil was applied to fish during chilled storage, the growth of microorganisms was drastically reduced in gram-negative bacteria, especially enterobacteria, while lactic acid bacteria remained practically constant for much of the storage period. The effect on the microorganisms during this period was in accordance with biochemical indexes of quality, indicating the viability of these films for fish preservation. 2010 Elsevier Ltd. All rights reserved.

  8. Biomarkers in Natural Fish Populations Indicate Adverse Biological Effects of Offshore Oil Production

    PubMed Central

    Balk, Lennart; Hylland, Ketil; Hansson, Tomas; Berntssen, Marc H. G.; Beyer, Jonny; Jonsson, Grete; Melbye, Alf; Grung, Merete; Torstensen, Bente E.; Børseth, Jan Fredrik; Skarphedinsdottir, Halldora; Klungsøyr, Jarle

    2011-01-01

    Background Despite the growing awareness of the necessity of a sustainable development, the global economy continues to depend largely on the consumption of non-renewable energy resources. One such energy resource is fossil oil extracted from the seabed at offshore oil platforms. This type of oil production causes continuous environmental pollution from drilling waste, discharge of large amounts of produced water, and accidental spills. Methods and principal findings Samples from natural populations of haddock (Melanogrammus aeglefinus) and Atlantic cod (Gadus morhua) in two North Sea areas with extensive oil production were investigated. Exposure to and uptake of polycyclic aromatic hydrocarbons (PAHs) were demonstrated, and biomarker analyses revealed adverse biological effects, including induction of biotransformation enzymes, oxidative stress, altered fatty acid composition, and genotoxicity. Genotoxicity was reflected by a hepatic DNA adduct pattern typical for exposure to a mixture of PAHs. Control material was collected from a North Sea area without oil production and from remote Icelandic waters. The difference between the two control areas indicates significant background pollution in the North Sea. Conclusion It is most remarkable to obtain biomarker responses in natural fish populations in the open sea that are similar to the biomarker responses in fish from highly polluted areas close to a point source. Risk assessment of various threats to the marine fish populations in the North Sea, such as overfishing, global warming, and eutrophication, should also take into account the ecologically relevant impact of offshore oil production. PMID:21625421

  9. Biomarkers in natural fish populations indicate adverse biological effects of offshore oil production.

    PubMed

    Balk, Lennart; Hylland, Ketil; Hansson, Tomas; Berntssen, Marc H G; Beyer, Jonny; Jonsson, Grete; Melbye, Alf; Grung, Merete; Torstensen, Bente E; Børseth, Jan Fredrik; Skarphedinsdottir, Halldora; Klungsøyr, Jarle

    2011-01-01

    Despite the growing awareness of the necessity of a sustainable development, the global economy continues to depend largely on the consumption of non-renewable energy resources. One such energy resource is fossil oil extracted from the seabed at offshore oil platforms. This type of oil production causes continuous environmental pollution from drilling waste, discharge of large amounts of produced water, and accidental spills. Samples from natural populations of haddock (Melanogrammus aeglefinus) and Atlantic cod (Gadus morhua) in two North Sea areas with extensive oil production were investigated. Exposure to and uptake of polycyclic aromatic hydrocarbons (PAHs) were demonstrated, and biomarker analyses revealed adverse biological effects, including induction of biotransformation enzymes, oxidative stress, altered fatty acid composition, and genotoxicity. Genotoxicity was reflected by a hepatic DNA adduct pattern typical for exposure to a mixture of PAHs. Control material was collected from a North Sea area without oil production and from remote Icelandic waters. The difference between the two control areas indicates significant background pollution in the North Sea. It is most remarkable to obtain biomarker responses in natural fish populations in the open sea that are similar to the biomarker responses in fish from highly polluted areas close to a point source. Risk assessment of various threats to the marine fish populations in the North Sea, such as overfishing, global warming, and eutrophication, should also take into account the ecologically relevant impact of offshore oil production.

  10. Modifying the acute phase response of Jersey calves by supplementing milk replacer with omega-3 fatty acids from fish oil.

    PubMed

    Ballou, M A; Cruz, G D; Pittroff, W; Keisler, D H; DePeters, E J

    2008-09-01

    Fifty-one Jersey bull calves (5 +/- 1 d old) were assigned to 1 of 3 milk replacers to determine the effects of increasing doses of n-3 fatty acids from fish oil on the acute phase response after an endotoxin challenge. All calves were fed a 22.5% crude protein and 18% lipid milk replacer (Calva Products, Acampo, CA) supplemented with an additional 2% fatty acids. Treatments differed only in the supplemental lipid source and included a 3:1 mix of corn and canola oils, a 1:1 blend of fish oil (Omega Proteins, Houston, TX) and the 3:1 mix of corn and canola oils, and fish oil only. On d 23, each calf was injected subcutaneously with 4 microg/kg of body weight of Salmonella Typhimurium endotoxin. Clinical, hematological, and biochemical parameters were measured at 0, 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 18, 24, and 72 h post endotoxin challenge. Endotoxin caused a dramatic rise in respiratory rate; feeding fish oil significantly attenuated the increase. Heart rate and rectal temperature were not affected by treatment. Feeding fish oil attenuated the change in serum iron concentration over time. Endotoxin caused severe hypoglycemia, reaching a nadir at 4 h. Calves supplemented with fish oil had reduced concentrations of serum glucose for 8 to 24 h. Furthermore, calves supplemented with fish oil alone had reduced serum insulin at 12, 28, and 24 h. In contrast, endotoxin caused an acute increase in blood urea nitrogen and nonesterified fatty acids; there were significant linear effects of fish oil on both blood urea nitrogen and nonesterified fatty acids. Serum triglycerides were elevated beginning at 12 h after the endotoxin challenge and returned to baseline values within 72 h. Fish oil suppressed the rise in triglycerides during this period, and the effect was linear with increasing fish oil. Serum concentrations of leptin decreased after the endotoxin challenge; however, the treatment did not influence the response. There was no treatment effect on serum aspartate

  11. Improving oil classification quality from oil spill fingerprint beyond six sigma approach.

    PubMed

    Juahir, Hafizan; Ismail, Azimah; Mohamed, Saiful Bahri; Toriman, Mohd Ekhwan; Kassim, Azlina Md; Zain, Sharifuddin Md; Ahmad, Wan Kamaruzaman Wan; Wah, Wong Kok; Zali, Munirah Abdul; Retnam, Ananthy; Taib, Mohd Zaki Mohd; Mokhtar, Mazlin

    2017-07-15

    This study involves the use of quality engineering in oil spill classification based on oil spill fingerprinting from GC-FID and GC-MS employing the six-sigma approach. The oil spills are recovered from various water areas of Peninsular Malaysia and Sabah (East Malaysia). The study approach used six sigma methodologies that effectively serve as the problem solving in oil classification extracted from the complex mixtures of oil spilled dataset. The analysis of six sigma link with the quality engineering improved the organizational performance to achieve its objectivity of the environmental forensics. The study reveals that oil spills are discriminated into four groups' viz. diesel, hydrocarbon fuel oil (HFO), mixture oil lubricant and fuel oil (MOLFO) and waste oil (WO) according to the similarity of the intrinsic chemical properties. Through the validation, it confirmed that four discriminant component, diesel, hydrocarbon fuel oil (HFO), mixture oil lubricant and fuel oil (MOLFO) and waste oil (WO) dominate the oil types with a total variance of 99.51% with ANOVA giving Fstat>Fcritical at 95% confidence level and a Chi Square goodness test of 74.87. Results obtained from this study reveals that by employing six-sigma approach in a data-driven problem such as in the case of oil spill classification, good decision making can be expedited. Copyright © 2017. Published by Elsevier Ltd.

  12. Dietary Butyrate Helps to Restore the Intestinal Status of a Marine Teleost (Sparus aurata) Fed Extreme Diets Low in Fish Meal and Fish Oil

    PubMed Central

    Estensoro, Itziar; Ballester-Lozano, Gabriel; Benedito-Palos, Laura; Grammes, Fabian; Martos-Sitcha, Juan Antonio; Mydland, Liv-Torunn; Calduch-Giner, Josep Alvar; Fuentes, Juan; Karalazos, Vasileios; Ortiz, Álvaro; Øverland, Margareth; Pérez-Sánchez, Jaume

    2016-01-01

    There is a constant need to find feed additives that improve health and nutrition of farmed fish and lessen the intestinal inflammation induced by plant-based ingredients. The objective of this study was to evaluate the effects of adding an organic acid salt to alleviate some of the detrimental effects of extreme plant-ingredient substitution of fish meal (FM) and fish oil (FO) in gilthead sea bream diet. Three experiments were conducted. In a first trial (T1), the best dose (0.4%) of sodium butyrate (BP-70 ®NOREL) was chosen after a short (9-weeks) feeding period. In a second longer trial (T2) (8 months), four diets were used: a control diet containing 25% FM (T2-D1) and three experimental diets containing 5% FM (T2-D2, T2-D3, T2-D4). FO was the only added oil in D1, while a blend of plant oils replaced 58% and 84% of FO in T2-D2, and T2-D3 and T2-D4, respectively. The latter was supplemented with 0.4% BP-70. In a third trial (T3), two groups of fish were fed for 12 and 38 months with D1, D3 and D4 diets of T2. The effects of dietary changes were studied using histochemical, immunohistochemical, molecular and electrophysiological tools. The extreme diet (T2-D3) modified significantly the transcriptomic profile, especially at the anterior intestine, up-regulating the expression of inflammatory markers, in coincidence with a higher presence of granulocytes and lymphocytes in the submucosa, and changing genes involved in antioxidant defences, epithelial permeability and mucus production. Trans-epithelial electrical resistance (Rt) was also decreased (T3-D3). Most of these modifications were returned to control values with the addition of BP-70. None of the experimental diets modified the staining pattern of PCNA, FABP2 or ALPI. These results further confirm the potential of this additive to improve or reverse the detrimental effects of extreme fish diet formulations. PMID:27898676

  13. Dietary Butyrate Helps to Restore the Intestinal Status of a Marine Teleost (Sparus aurata) Fed Extreme Diets Low in Fish Meal and Fish Oil.

    PubMed

    Estensoro, Itziar; Ballester-Lozano, Gabriel; Benedito-Palos, Laura; Grammes, Fabian; Martos-Sitcha, Juan Antonio; Mydland, Liv-Torunn; Calduch-Giner, Josep Alvar; Fuentes, Juan; Karalazos, Vasileios; Ortiz, Álvaro; Øverland, Margareth; Sitjà-Bobadilla, Ariadna; Pérez-Sánchez, Jaume

    2016-01-01

    There is a constant need to find feed additives that improve health and nutrition of farmed fish and lessen the intestinal inflammation induced by plant-based ingredients. The objective of this study was to evaluate the effects of adding an organic acid salt to alleviate some of the detrimental effects of extreme plant-ingredient substitution of fish meal (FM) and fish oil (FO) in gilthead sea bream diet. Three experiments were conducted. In a first trial (T1), the best dose (0.4%) of sodium butyrate (BP-70 ®NOREL) was chosen after a short (9-weeks) feeding period. In a second longer trial (T2) (8 months), four diets were used: a control diet containing 25% FM (T2-D1) and three experimental diets containing 5% FM (T2-D2, T2-D3, T2-D4). FO was the only added oil in D1, while a blend of plant oils replaced 58% and 84% of FO in T2-D2, and T2-D3 and T2-D4, respectively. The latter was supplemented with 0.4% BP-70. In a third trial (T3), two groups of fish were fed for 12 and 38 months with D1, D3 and D4 diets of T2. The effects of dietary changes were studied using histochemical, immunohistochemical, molecular and electrophysiological tools. The extreme diet (T2-D3) modified significantly the transcriptomic profile, especially at the anterior intestine, up-regulating the expression of inflammatory markers, in coincidence with a higher presence of granulocytes and lymphocytes in the submucosa, and changing genes involved in antioxidant defences, epithelial permeability and mucus production. Trans-epithelial electrical resistance (Rt) was also decreased (T3-D3). Most of these modifications were returned to control values with the addition of BP-70. None of the experimental diets modified the staining pattern of PCNA, FABP2 or ALPI. These results further confirm the potential of this additive to improve or reverse the detrimental effects of extreme fish diet formulations.

  14. Fish oil consumption prevents glucose intolerance and hypercorticosteronemy in footshock-stressed rats

    PubMed Central

    2011-01-01

    Background Environmental stress plays an important role in the development of glucose intolerance influencing lipid and glucose metabolism through sympathetic nervous system, cytokines and hormones such as glucocorticoids, catecholamines and glucagon. Otherwise, fish oil prevents glucose intolerance and insulin resistance. Although the mechanisms involved are not fully understood, it is known that sympathetic and HPA responses are blunted and catecholamines and glucocorticoids concentrations can be modulated by fish consumption. The aim of the present study was to evaluate whether fish oil, on a normal lipidic diet: 1) could prevent the effect of footshock-stress on the development of glucose intolerance; 2) modified adiponectin receptor and serum concentration; and 3) also modified TNF-α, IL-6 and interleukin-10 (IL-10) levels in adipose tissue and liver. The study was performed in thirty day-old male Wistar randomly assigned into four groups: no stressed (C) and stressed (CS) rats fed with control diet, and no stressed (F) and stressed (FS) rats fed with a fish oil rich diet. The stress was performed as a three daily footshock stress sessions. Results Body weight, carcass fat and protein content were not different among groups. FS presented a reduction on the relative weight of RET. Basal serum glucose levels were higher in CS and FS but 15 min after glucose load just CS remained with higher levels than other groups. Serum corticosterone concentration was increased in CS, this effect was inhibited in FS. However, 15 min after footshock-stress, corticosterone levels were similar among groups. IL-6 was increased in EPI of CS but fish oil consumption prevented IL-6 increase in FS. Similar levels of TNF-α and IL-10 in RET, EPI, and liver were observed among groups. Adipo R1 protein concentration was not different among groups. Footshock-stress did not modify AdipoR2 concentration, but fish oil diet increases AdipoR2 protein concentration. Conclusions Footshock

  15. Metabolic effects of krill oil are essentially similar to those of fish oil but at lower dose of EPA and DHA, in healthy volunteers.

    PubMed

    Ulven, Stine M; Kirkhus, Bente; Lamglait, Amandine; Basu, Samar; Elind, Elisabeth; Haider, Trond; Berge, Kjetil; Vik, Hogne; Pedersen, Jan I

    2011-01-01

    The purpose of the present study is to investigate the effects of krill oil and fish oil on serum lipids and markers of oxidative stress and inflammation and to evaluate if different molecular forms, triacylglycerol and phospholipids, of omega-3 polyunsaturated fatty acids (PUFAs) influence the plasma level of EPA and DHA differently. One hundred thirteen subjects with normal or slightly elevated total blood cholesterol and/or triglyceride levels were randomized into three groups and given either six capsules of krill oil (N = 36; 3.0 g/day, EPA + DHA = 543 mg) or three capsules of fish oil (N = 40; 1.8 g/day, EPA + DHA = 864 mg) daily for 7 weeks. A third group did not receive any supplementation and served as controls (N = 37). A significant increase in plasma EPA, DHA, and DPA was observed in the subjects supplemented with n-3 PUFAs as compared with the controls, but there were no significant differences in the changes in any of the n-3 PUFAs between the fish oil and the krill oil groups. No statistically significant differences in changes in any of the serum lipids or the markers of oxidative stress and inflammation between the study groups were observed. Krill oil and fish oil thus represent comparable dietary sources of n-3 PUFAs, even if the EPA + DHA dose in the krill oil was 62.8% of that in the fish oil.

  16. Subchronic toxicity of fish oil concentrates in male and female rats.

    PubMed

    Rabbani, P I; Alam, H Z; Chirtel, S J; Duvall, R E; Jackson, R C; Ruffin, G

    2001-06-01

    There are an overwhelming number of reports indicating the beneficial effects of fish oil supplements in human and animal nutrition. The purpose of this study, second in a series, was to evaluate the effects, particularly those that may be harmful, of high-dose, long-term consumption of fish oil concentrates (FOC) using male and female rats. One hundred and twenty male and 120 female rats were gavaged daily with oils and oil mixtures in a volume equal to 0.5% body weight (5 mL/kg/d) for 13 weeks. The administered oils were corn oil, pure menhaden oil (MO), pure MaxEPA fish oil or different mixtures of corn oil with MO. The stability and the homogeneity of the dosing solutions were tested under study conditions. The animals received isocaloric and isonitrogenous diets throughout. Food and pure water were supplied ad libitum. At the end of the in-life phase of the study, the animals were anaesthetized with CO2 and humanely killed by exsanguination. Blood and other tissues were prepared for various clinical, histopathological and laboratory tests. Some beneficial effects of FOC, such as reduction in total serum cholesterol, in rats were confirmed. However, we also observed a significant reduction in absolute amount of serum HDL and a significant increase in relative liver and spleen weights in both sexes with the high dose of FOC. High doses of FOC (5 mL/kg/d) reduced serum iron and vitamin E concentrations. A reduction in osmotic fragility of RBC as well as an increase in RBC deformity were also observed in rats treated with high doses of FOC. These rats showed a significant overall increase in WBC count. We conclude that in rats, subchronic consumption of high levels of FOC can be beneficial but may also be harmful because of induction of clinical abnormalities including increased red cell deformity, increased relative liver and spleen weights, and reduced serum HDL, iron and vitamin E concentrations.

  17. Monitoring of bisphenol-A-diglycidyl-ether (BADGE) in canned fish in oil.

    PubMed

    Simoneau, C; Theobald, A; Hannaert, P; Roncari, P; Roncari, A; Rudolph, T; Anklam, E

    1999-05-01

    A survey at the European levels was initiated on the quantification of bisphenol-A-diglycidyl-ether (BADGE) in canned fish in oil in order to assess the exposure of BADGE. A total of 382 canned fish sample were collected from all 15 Member States and Switzerland and analysed for BADGE in fish. The fish was extracted first with hexane and reextracted with acetonitrile, followed by a membrane filtration and reverse phase HPLC analysis with fluorescence detection. The analysis of the fish showed that about 3% of the samples contained BADGE at a level above 1 mg/kg. The samples exceeding the limit by a larger margin were mostly from anchovy cans and cans manufactured in 1991-1995.

  18. Occurrence of bisphenol-F-diglycidyl ether (BFDGE) in fish canned in oil.

    PubMed

    Theobald, A; Simoneau, C; Hannaert, P; Roncari, P; Roncari, A; Rudolph, T; Anklam, E

    2000-10-01

    The levels of bisphenol-F-diglycidyl ether (BFDGE) were quantified as part of a European survey on the migration of residues of epoxy resins into oil from canned fish. The contents of BFDGE in cans, lids and fish collected from all 15 Member States of the European Union and Switzerland were analysed in 382 samples. Cans and lids were separately extracted with acetonitrile. The extraction from fish was carried out with hexane followed by re-extraction with acetonitrile. The analysis was performed by reverse phase HPLC with fluorescence detection. BFDGE could be detected in 12% of the fish, 24% of the cans and 18% of the lids. Only 3% of the fish contained BFDGE in concentrations considerably above 1 mg/kg. In addition to the presented data, a comparison was made with the levels of BADGE (bisphenol-A-diglycidyl ether) analysed in the same products in the context of a previous study.

  19. Effects of conjugated linoleic acid, fish oil and soybean oil on PPARs (α & γ) mRNA expression in broiler chickens and their relation to body fat deposits.

    PubMed

    Royan, Maryam; Meng, Goh Yong; Othman, Fauziah; Sazili, Awis Qurni; Navidshad, Bahman

    2011-01-01

    An experiment was conducted on broiler chickens to study the effects of different dietary fats (Conjugated linoleic acid (CLA), fish oil, soybean oil, or their mixtures, as well as palm oil, as a more saturated fat), with a as fed dose of 7% for single fat and 3.5 + 3.5% for the mixtures, on Peroxisome Proliferator-Activated Receptors (PPARs) gene expression and its relation with body fat deposits. The CLA used in this experiment was CLA LUTA60 which contained 60% CLA, so 7% and 3.5% dietary inclusions of CLA LUTA60 were equal to 4.2% and 2.1% CLA, respectively. Higher abdominal fat pad was found in broiler chickens fed with a diet containing palm oil compared to chickens in the other experimental groups (P ≤ 0.05). The diets containing CLA resulted in an increased fat deposition in the liver of broiler chickens (P ≤ 0.05). The only exception was related to the birds fed with diets containing palm oil or fish oil + soybean oil, where contents of liver fat were compared to the CLA + fish oil treatment. PPARγ gene in adipose tissue of chickens fed with palm oil diet was up-regulated compared to other treatments (P ≤ 0.001), whereas no significant differences were found in adipose PPARγ gene expression between chickens fed with diets containing CLA, fish oil, soybean oil or the mixture of these fats. On the other hand, the PPARα gene expression in liver tissue was up-regulated in response to the dietary fish oil inclusion and the differences were also significant for both fish oil and CLA + fish oil diets compared to the diets with palm oil, soybean oil or CLA as the only oil source (P ≤ 0.001). In conclusion, the results of present study showed that there was a relationship between the adipose PPARγ gene up-regulation and abdominal fat pad deposition for birds fed with palm oil diet, while no deference was detected in n-3 and n-6 fatty acids, as well as CLA on PPARγ down regulation in comparison to a more saturated fat. When used on its own, fish oil was

  20. Fish Gill Inspired Crossflow for Efficient and Continuous Collection of Spilled Oil.

    PubMed

    Dou, Yuhai; Tian, Dongliang; Sun, Ziqi; Liu, Qiannan; Zhang, Na; Kim, Jung Ho; Jiang, Lei; Dou, Shi Xue

    2017-03-28

    Developing an effective system to clean up large-scale oil spills is of great significance due to their contribution to severe environmental pollution and destruction. Superwetting membranes have been widely studied for oil/water separation. The separation, however, adopts a gravity-driven approach that is inefficient and discontinuous due to quick fouling of the membrane by oil. Herein, inspired by the crossflow filtration behavior in fish gills, we propose a crossflow approach via a hydrophilic, tilted gradient membrane for spilled oil collection. In crossflow collection, as the oil/water flows parallel to the hydrophilic membrane surface, water is gradually filtered through the pores, while oil is repelled, transported, and finally collected for storage. Owing to the selective gating behavior of the water-sealed gradient membrane, the large pores at the bottom with high water flux favor fast water filtration, while the small pores at the top with strong oil repellency allow easy oil transportation. In addition, the gradient membrane exhibits excellent antifouling properties due to the protection of the water layer. Therefore, this bioinspired crossflow approach enables highly efficient and continuous spilled oil collection, which is very promising for the cleanup of large-scale oil spills.

  1. Linking hematological, biochemical, genotoxic, and behavioral responses to crude oil in the Amazon fish Colossoma macropomum (Cuvier, 1816).

    PubMed

    Kochhann, Daiani; de Azevedo Brust, Sandra Maristher; Domingos, Fabíola Xochilt Valdez; Val, Adalberto Luis

    2013-08-01

    Despite safety protocols, crude oil extraction and transportation in the Amazon basin has a potential for inadvertent oil spills, which can impact aquatic organisms in local rivers. The objective of this study was to assess the effects of crude oil on juvenile Amazonian fish tambaqui, Colossoma macropomum, at various biological levels. Furthermore, the effect of crude oil on response to alarm substance, an important communication system in fish, was reported for the first time. Fish exposed to crude oil showed a 90 % decrease in their response to alarm substance and a 60 % decrease in swimming activity relative to control fish. Basic hematology was not affected, although an increase of 200 % of DNA damage and an increase of GST activity were observed in animals exposed to crude oil. Inverse correlations were found between genotoxicity end points and behavioral parameters, suggesting that genotoxic end points can also reflect behavioral changes.

  2. Composition and flavor of milk and butter from cows fed fish oil, extruded soybeans, or their combination.

    PubMed

    Ramaswamy, N; Baer, R J; Schingoethe, D J; Hippen, A R; Kasperson, K M; Whitlock, L A

    2001-10-01

    Milk was collected from eight multiparous Holstein and four multiparous Brown Swiss cows that were distributed into four groups and arranged in a randomized complete block design with four 4-wk periods. The four treatments included a control diet of a 50:50 ratio of forage-to-concentrate; a fish oil diet of the control diet with 2% (on dry matter basis) added fat from menhaden fish oil; a fish oil with extruded soybean diet of the control diet with 1% (on dry matter basis) added fat from menhaden fish oil and 1% (on dry matter basis) added fat from extruded soybeans; and an extruded soybean diet of the control diet with 2% (on dry matter basis) added fat from extruded soybeans. Milk from cows fed control, fish oil, fish oil with extruded soybean, and extruded soybean diets contained 3.31, 2.58, 2.94, and 3.47% fat, respectively. Concentrations of conjugated linoleic acid in milk were highest in the fish oil (2.30 g/100 g of fatty acids) and fish oil with extruded soybean (2.17 g/100 g of fatty acids) diets compared with the control (0.56 g/100 g fatty acids) diet. Milk, cream, butter, and buttermilk from the fish oil, fish oil with extruded soybean, and extruded soybean diets had higher concentrations of transvaccenic acid and unsaturated fatty acids compared with the controls. Butter made from the extruded soybean diet was softest compared with all treatments. An experienced sensory panel found no flavor differences in milks or butters.

  3. Fish oil at low dietary levels enhances physiological activity of sesamin to increase hepatic fatty acid oxidation in rats.

    PubMed

    Ide, Takashi

    2012-11-01

    We previously demonstrated that a diet containing fish oil at a level of 80 g/kg strongly stimulated the physiological activity of a sesame sesamin preparation containing sesamin and episesamin at equal amounts to increase hepatic fatty acid oxidation. This study was conducted to clarify whether fish oil at lower dietary levels enhances the physiological activity of sesamin to increase hepatic fatty acid oxidation. Rats were fed experimental diets supplemented with 0 or 2 g sesamin/kg, and containing 0, 15 or 30 g fish oil/kg for 15 days. Among rats fed sesamin-free diets, diets containing 15 and 30 g fish oil/kg slightly increased the activity of enzymes involved in hepatic fatty acid oxidation. Sesamin increased these values irrespective of the presence or absence of fish oil in diets; however, the extent of the increase of many parameters was much greater in rats given fish oil-containing diets than in those fed a fish oil-free diet. Diets simultaneously containing sesamin and fish oil increased the gene expression of various peroxisomal fatty acid oxidation enzymes in a synergistic manner; but they were ineffective in causing a synergistic increase in mRNA levels of mitochondrial fatty acid oxidation enzymes. The extent of the synergistic increase in the activity of hepatic fatty acid oxidation enzymes and mRNA levels of the peroxisomal enzymes was indistinguishable between diets containing 15 and 30 g fish oil/kg and appeared comparable to that observed previously with a diet containing 80 g fish oil/kg.

  4. Dispersed oil decreases the ability of a model fish (Dicentrarchus labrax) to cope with hydrostatic pressure.

    PubMed

    Dussauze, Matthieu; Pichavant-Rafini, Karine; Belhomme, Marc; Buzzacott, Peter; Privat, Killian; Le Floch, Stéphane; Lemaire, Philippe; Theron, Michaël

    2017-01-01

    Data on the biological impact of oil dispersion in deep-sea environment are scarce. Hence, the aim of this study was to evaluate the potential interest of a pressure challenge as a new experimental approach for the assessment of consequences of chemically dispersed oil, followed by a high hydrostatic pressure challenge. This work was conducted on a model fish: juvenile Dicentrarchus labrax. Seabass were exposed for 48 h to dispersant alone (nominal concentration (NC) = 4 mg L(-1)), mechanically dispersed oil (NC = 80 mg L(-1)), two chemically dispersed types of oil (NC = 50 and 80 mg L(-1) with a dispersant/oil ratio of 1/20), or kept in clean seawater. Fish were then exposed for 30 min at a simulated depth of 1350 m, corresponding to pressure of 136 absolute atmospheres (ATA). The probability of fish exhibiting normal activity after the pressure challenge significantly increased from 0.40 to 0.55 when they were exposed to the dispersant but decreased to 0.26 and 0.11 in the case of chemical dispersion of oil (at 50 and 80 mg L(-1), respectively). The chemical dispersion at 80 mg L(-1) also induced an increase in probability of death after the pressure challenge (from 0.08 to 0.26). This study clearly demonstrates the ability of a pressure challenge test to give evidence of the effects of a contaminant on the capacity of fish to face hydrostatic pressure. It opens new perspectives on the analysis of the biological impact of chemical dispersion of oil at depth, especially on marine species performing vertical migrations.

  5. Fish-oil fat emulsion supplementation may reduce the risk of severe retinopathy in VLBW infants.

    PubMed

    Pawlik, Dorota; Lauterbach, Ryszard; Turyk, Ewa

    2011-02-01

    The retina contains rods and cones that have membranes highly enriched with docosahexaenoic acid (DHA). Infants born prematurely are at risk of DHA insufficiency, because they may not have benefited from a full third trimester of the mother's lipid stores. Moreover, within the first 2 to 3 weeks of life, the main sources of lipids for premature infants are fat emulsions, which do not contain DHA. This observational study was designed to compare the safety and efficacy outcomes of an intravenous fat emulsion that consists of fish-oil emulsion (contains DHA) with soybean and olive oil, administered from the first day of life to 40 infants who weighed <1250 g; results were obtained from a historical cohort of 44 preterm neonates who were given an emulsion of soybean and olive oil. The primary study outcomes were the occurrence of retinopathy and need for laser therapy and cholestasis. Infants in the 2 groups were comparable with regard to demographic and clinical characteristics and were subjected to the same conventional therapy. There was a significantly lower risk of laser therapy for infants who received an emulsion of soybean, olive oil, and fish oil (P = .023). No significant differences were found in acuity and latency of visual evoked potentials between infants in the 2 groups. There was no infant with cholestasis among those who received fish-oil emulsion, and there were 5 subjects with cholestasis in the historical group (P = .056). Fish-oil-based fat emulsion administered from the first day of life may be effective in the prophylaxis of severe retinopathy.

  6. Fish oil supplementation attenuates changes in plasma lipids caused by dexamethasone treatment in rats.

    PubMed

    Barbosa, Amanda Marreiro; Francisco, Priscila de Cássia; Motta, Katia; Chagas, Thayz Rodrigues; Dos Santos, Cristiane; Rafacho, Alex; Nunes, Everson Araújo

    2016-04-01

    Dexamethasone is an anti-inflammatory glucocorticoid that may alter glucose and lipid homeostasis when administered in high doses or for long periods of time. Omega-3 fatty acids, present in fish oil (FO), can be used as potential modulators of intermediary glucose and lipid metabolism. Herein, we evaluate the effects of FO supplementation (1 g·kg(-1) body weight (BW)) on glucose and lipid metabolism in rats treated with dexamethasone (0.5 mg·kg(-1) BW) for 15 days. Adult male Wistar rats were distributed among 4 groups: control (saline, 1 mL·kg(-1) BW and mineral oil, 1 g·kg(-1) BW), DEX (dexamethasone and mineral oil), FO (fish oil and saline), and DFO (fish oil and dexamethasone). Dexamethasone and saline were administered intraperitoneally, and fish oil and mineral oil were administered by gavage. We evaluated functional and molecular parameters of lipid and glycemic profiles at 8 days and at the end of treatment. FO supplementation increased hepatic docosahexaenoic acid (DEX: 5.6% ± 0.7%; DFO: 10.5% ± 0.8%) and eicosapentaenoic acid (DEX: 0.3% ± 0.0%; DFO: 1.3% ± 0.1%) contents and attenuated the increase of plasma triacylglycerol, total cholesterol, and non-high-density lipoprotein cholesterol concentrations in DFO rats compared with DEX rats. These effects seem not to depend on hepatic expression of insulin receptor substrate 1, protein kinase B, peroxisome proliferator-activated receptor γ coactivator 1-α, and peroxisome proliferator-activated receptor γ. There was no effect of supplementation on body weight loss, fasting glycemia, and glucose tolerance in rats treated with dexamethasone. In conclusion, we show that FO supplementation for 15 days attenuates the dyslipidemia induced by dexamethasone treatment.

  7. Umatilla River Subbasin Fish Habitat Improvement Program, 2005 Annual Report.

    SciTech Connect

    St. Hilaire, Danny R.

    2006-05-01

    This annual report is in fulfillment of contractual obligations with Bonneville Power Administration (BPA), which is the funding source for the Oregon Department of Fish and Wildlife's (ODFW), Umatilla River Subbasin Fish Habitat Improvement Program (Program). The Program works cooperatively with private landowners to develop long-term restoration agreements, under which, passive and active Habitat Improvement Projects are conducted. Historically, projects have included livestock exclusion fencing (passive restoration) to protect riparian habitats, along with the installation of instream structures (active restoration) to address erosion and improve fish habitat conditions. In recent years, the focus of active restoration has shifted to bioengineering treatments and, more recently, to channel re-design and re-construction aimed at improving fish habitat, through the restoration of stable channel function. This report provides a summary of Program activities for the 2005 calendar year (January 1 through December 31, 2005), within each of the four main project phases, including: (1) Implementation--Pre-Work, (2) Implementation--On Site Development, (3) Operation and Maintenance (O&M), and (4) Monitoring and Evaluation (M&E). This report also summarizes activities associated with Program Administration, Interagency Coordination, and Public Education.

  8. The Prestige crisis: operational oceanography applied to oil recovery, by the Basque fishing fleet.

    PubMed

    González, Manuel; Uriarte, Adolfo; Pozo, Rogelio; Collins, Michael

    2006-01-01

    On 19th November 2002, the oil tanker Prestige (containing 77,000 tonnes of heavy fuel no. 2 (M100)) sank in 3500 m of water, off the coast of northwestern Spain. Intermittent discharge of oil from the stricken tanker, combined with large-scale sea surface dispersion, created a tracking and recovery problem. Initially, conventional oil recovery approaches were adopted, close to the wreck. With time and distance from the source, the oil dispersed dramatically and became less viscous. Consequently, a unique monitoring, prediction and data dissemination system was established, based upon the principles of 'operational oceanography'; this utilised in situ tracked buoys and numerical (spill trajectory) modelling outputs, in combination with remote sensing (satellite sensors and visual observation). Overall, wind effects on the surface waters were found to be the most important mechanism controlling the smaller oil slick movements. The recovery operation involved up to 180 fishing boats, 9-30 m in length. Such labour-intensive recovery of the oil (21,000 tonnes, representing an unprecedented ratio of 6.6 tonnes at sea, per tonne recovered on land) continued over a 10 month period. The overall recovery at sea, by the fishing vessels, represented 63% of the total oil recovered at sea; this compares to only 37% recovered by specialised 'counter- pollution' vessels.

  9. Lipid emulsions containing fish oil protect against PN-induced cholestatic liver disease in preterm piglets

    USDA-ARS?s Scientific Manuscript database

    During their first weeks of life preterm infants are dependent on parenteral nutrition (PN). However, PN is associated with the development of cholestasis (PN Associated Liver Disease PNALD). Studies in children showed that fish oil-based lipid emulsions can reverse PNALD; whether they prevent PNALD...

  10. Effect of fish oil on glutathione redox system in multiple sclerosis

    PubMed Central

    Sorto-Gomez, Tania E; Ortiz, Genaro G; Pacheco-Moises, Fermín P; Torres-Sanchez, Erandis D; Ramirez-Ramirez, Viridiana; Macias-Islas, Miguel A; de la Rosa, Alfredo Celis; Velázquez-Brizuela, Irma E

    2016-01-01

    Multiple sclerosis (MS) is a chronic, inflammatory and autoimmune disease of the central nervous system. Dysregulation of glutathione homeostasis and alterations in glutathione-dependent enzyme activities are implicated in the induction and progression of MS. Evidence suggests that Omega-3 polyunsaturated fatty acids (PUFAs) have anti-inflammatory, antioxidant and neuroprotective effects. The aim of the present work was to evaluate the effect of fish oil on the activity of glutathione reductase (GR), content of reduced and oxidized glutathione, and GSH/GSSG ratio in MS. 50 patients with relapsing-remitting MS were enrolled. The experimental group received orally 4 g/day of fish oil for 12 months. Fish oil supplementation resulted in a significant increase in n-3 fatty acids and a decrease n-6 fatty acids. No differences in glutathione reductase activity, content of reduced and oxidized glutathione, and GSH/GSSG ratio were found. Conclusion: Glutathione reductase activity was not significantly different between the groups; however, fish oil supplementation resulted in smaller increase in GR compared with control group, suggesting a possible effect on antioxidant defence mechanisms. PMID:27335704

  11. Effect of fish oil on glutathione redox system in multiple sclerosis.

    PubMed

    Sorto-Gomez, Tania E; Ortiz, Genaro G; Pacheco-Moises, Fermín P; Torres-Sanchez, Erandis D; Ramirez-Ramirez, Viridiana; Macias-Islas, Miguel A; de la Rosa, Alfredo Celis; Velázquez-Brizuela, Irma E

    2016-01-01

    Multiple sclerosis (MS) is a chronic, inflammatory and autoimmune disease of the central nervous system. Dysregulation of glutathione homeostasis and alterations in glutathione-dependent enzyme activities are implicated in the induction and progression of MS. Evidence suggests that Omega-3 polyunsaturated fatty acids (PUFAs) have anti-inflammatory, antioxidant and neuroprotective effects. The aim of the present work was to evaluate the effect of fish oil on the activity of glutathione reductase (GR), content of reduced and oxidized glutathione, and GSH/GSSG ratio in MS. 50 patients with relapsing-remitting MS were enrolled. The experimental group received orally 4 g/day of fish oil for 12 months. Fish oil supplementation resulted in a significant increase in n-3 fatty acids and a decrease n-6 fatty acids. No differences in glutathione reductase activity, content of reduced and oxidized glutathione, and GSH/GSSG ratio were found. Glutathione reductase activity was not significantly different between the groups; however, fish oil supplementation resulted in smaller increase in GR compared with control group, suggesting a possible effect on antioxidant defence mechanisms.

  12. Similar eicosapentaenoic acid and docosahexaenoic acid plasma levels achieved with fish oil or krill oil in a randomized double-blind four-week bioavailability study.

    PubMed

    Yurko-Mauro, Karin; Kralovec, Jaroslav; Bailey-Hall, Eileen; Smeberg, Vanessa; Stark, Jeffrey G; Salem, Norman

    2015-09-02

    Long-chain n-3 polyunsaturated fatty acids (LC n-3-PUFA), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) provide multiple health benefits for heart, brain and eyes. However, consumption of fatty fish, the main source of LC n-3-PUFAs is low in Western countries. Intakes of LC n-3-PUFA can be increased by taking dietary supplements, such as fish oil, algal oil, or krill oil. Recently, conflicting information was published on the relative bioavailability of these omega-3 supplements. A few studies suggested that the phospholipid form (krill) is better absorbed than the fish oil ethyl ester (EE) or triglyceride (TG) forms. Yet studies did not match the doses administered nor the concentrations of DHA and EPA per supplement across such comparisons, leading to questionable conclusions. This study was designed to compare the oral bioavailability of the same dose of both EPA and DHA in fish oil-EE vs. fish oil-TG vs. krill oil in plasma at the end of a four-week supplementation. Sixty-six healthy adults (n = 22/arm) were enrolled in a double blind, randomized, three-treatment, multi-dose, parallel study. Subjects were supplemented with a 1.3 g/d dose of EPA + DHA (approximately 816 mg/d EPA + 522 mg/d DHA, regardless of formulation) for 28 consecutive days, as either fish oil-EE, fish oil-TG or krill oil capsules (6 caps/day). Plasma and red blood cell (RBC) samples were collected at baseline (pre-dose on Day 1) and at 4, 8, 12, 48, 72, 336, and 672 h. Total plasma EPA + DHA levels at Week 4 (Hour 672) were measured as the primary endpoint. No significant differences in total plasma EPA + DHA at 672 h were observed between fish oil-EE (mean = 90.9 ± 41 ug/mL), fish oil-TG (mean = 108 ± 40 ug/mL), and krill oil (mean = 118.5 ± 48 ug/mL), p = 0.052 and bioavailability differed by < 24 % between the groups. Additionally, DHA + EPA levels were not significantly different in RBCs among the 3 formulations, p = 0.19, providing comparable omega-3 indexes. Similar

  13. High-resolution (13)C nuclear magnetic resonance spectroscopy pattern recognition of fish oil capsules.

    PubMed

    Aursand, Marit; Standal, Inger B; Axelson, David E

    2007-01-10

    13C NMR (nuclear magnetic resonance) spectroscopy, in conjunction with multivariate analysis of commercial fish oil-related health food products, have been used to provide discrimination concerning the nature, composition, refinement, and/or adulteration or authentication of the products. Supervised (probabilistic neural networks, PNN) and unsupervised (principal component analysis, PCA; Kohonen neural networks; generative topographic mapping, GTM) pattern recognition techniques were used to visualize and classify samples. Simple PCA score plots demonstrated excellent, but not totally unambiguous, class distinctions, whereas Kohonen and GTM visualization provided better results. Quantitative class predictions with accuracies >95% were achieved with PNN analysis. Trout, salmon, and cod oils were completely and correctly classified. Samples reported to be salmon oils and cod liver oils did not cluster with true salmon and cod liver oil samples, indicating mislabeling or adulteration.

  14. A prospective, randomized, controlled study of ω-3 fish oil fat emulsion-based parenteral nutrition for patients following surgical resection of gastric tumors.

    PubMed

    Wei, Ziran; Wang, Weimin; Chen, Ji; Yang, Dejun; Yan, Ronglin; Cai, Qingping

    2014-03-24

    Nutrients such as ω-3 fatty acids including fish oil components eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) suppress the growth and promote apoptosis of tumor cells, improve immune function and reduce the effects of systemic inflammatory response syndrome. We sought to investigate the effect of ω-3 fish oil fat emulsion-based parenteral nutrition (PN) on nutritional state, immune function, inflammatory reaction, expression of tumor factors and complication incidence in patients after surgical resection of gastric cancer. Forty-eight patients after surgical operation of gastric tumor in hospital were randomly divided into the control group and intervention group. Patients in both groups were treated with iso-nitrogen and iso-caloric parenteral nutrition support. In addition, the intervention group received ω-3 fish oil fat emulsion and the control group received soybean oil. The indicators of nutrition, immune function and inflammation in the two groups were detected on the day before the operation and postoperative day 6. The rate of complication was compared between the two groups. There was no significant difference in nutritional state, liver function and renal function between the two groups (P > 0.05). However, the levels of inflammatory markers were significantly decreased (P < 0.01), and the rate of complication was also decreased in the intervention group as compared with the control group. ω-3 fish oil fat emulsion-based parenteral nutrition alleviates the inflammatory reaction and reduces the rate of inflammatory complications.

  15. Replacement of Marine Fish Oil with de novo Omega-3 Oils from Transgenic Camelina sativa in Feeds for Gilthead Sea Bream (Sparus aurata L.).

    PubMed

    Betancor, Mónica B; Sprague, M; Montero, D; Usher, S; Sayanova, O; Campbell, P J; Napier, J A; Caballero, M J; Izquierdo, M; Tocher, D R

    2016-10-01

    Omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFA) are essential components of the diet of all vertebrates. The major dietary source of n-3 LC-PUFA for humans has been fish and seafood but, paradoxically, farmed fish are also reliant on marine fisheries for fish meal and fish oil (FO), traditionally major ingredients of aquafeeds. Currently, the only sustainable alternatives to FO are vegetable oils, which are rich in C18 PUFA, but devoid of the eicosapentaenoic (EPA) and docosahexaenoic acids (DHA) abundant in FO. Two new n-3 LC-PUFA sources obtained from genetically modified (GM) Camelina sativa containing either EPA alone (ECO) or EPA and DHA (DCO) were compared to FO and wild-type camelina oil (WCO) in juvenile sea bream. Neither ECO nor DCO had any detrimental effects on fish performance, although final weight of ECO-fed fish (117 g) was slightly lower than that of FO- and DCO-fed fish (130 and 127 g, respectively). Inclusion of the GM-derived oils enhanced the n-3 LC-PUFA content in fish tissues compared to WCO, although limited biosynthesis was observed indicating accumulation of dietary fatty acids. The expression of genes involved in several lipid metabolic processes, as well as fish health and immune response, in both liver and anterior intestine were altered in fish fed the GM-derived oils. This showed a similar pattern to that observed in WCO-fed fish reflecting the hybrid fatty acid profile of the new oils. Overall the data indicated that the GM-derived oils could be suitable alternatives to dietary FO in sea bream.

  16. n-3 Oil sources for use in aquaculture--alternatives to the unsustainable harvest of wild fish.

    PubMed

    Miller, Matthew R; Nichols, Peter D; Carter, Chris G

    2008-12-01

    The present review examines renewable sources of oils with n-3 long-chain (> or = C20) PUFA (n-3 LC-PUFA) as alternatives to oil from wild-caught fish in aquafeeds. Due to the increased demand for and price of wild-caught marine sources of n-3 LC-PUFA-rich oil, their effective and sustainable replacement in aquafeeds is an industry priority, especially because dietary n-3 LC-PUFA from eating fish are known to have health benefits in human beings. The benefits and challenges involved in changing dietary oil in aquaculture are highlighted and four major potential sources of n-3 LC-PUFA for aquafeeds, other than fish oil, are compared. These sources of oil, which contain n-3 LC-PUFA, specifically EPA (20:5n-3) and DHA (22:6n-3) or precursors to these key essential fatty acids, are: (1) other marine sources of oil; (2) vegetable oils that contain biosynthetic precursors, such as stearidonic acid, which may be used by fish to produce n-3 LC-PUFA; (3) single-cell oil sources of n-3 LC-PUFA; (4) vegetable oils derived from oil-seed crops that have undergone genetic modification to contain n-3 LC-PUFA. The review focuses on Atlantic salmon (Salmo salar L.), because it is the main intensively cultured finfish species and it both uses and stores large amounts of oil, in particular n-3 LC-PUFA, in the flesh.

  17. Fish Oil Supplementation in Humans: Effects on Platelet Responses, Phospholipid Composition and Metabolism.

    NASA Astrophysics Data System (ADS)

    Skeaff, Clark Murray

    Platelets are believed to play a significant role in the development of occlusive vascular diseases. Epidemiological reports have correlated the high intake of marine foods, rich in omega3 fatty acids, with diminished platelet responses and a low incidence of arterial thrombosis and myocardial infarction. The activation of platelet responses is mediated by the accelerated metabolism of membrane phospholipid; therefore, it was of interest to examine, in human volunteers, the effect of a dietary fish oil concentrate (MaxEPA), enriched in omega 3 polyunsaturated fatty acids, on platelet aggregation and phospholipid composition/metabolism. For the complete separation of cellular phospholipids, a one-dimensional thin-layer chromatography system using silica-gel pre-coated glass plates was developed. The solvent system consisted of CHCl_3/CH_3OH/CH _3COOH/H_2O (50/37.5/3.5/2.0, by vol), required approximately 90-120 minutes for full phospholipid separation, and was highly reproducible even under conditions of variable humidity and temperature. The consumption of a fish oil concentrate (MaxEPA) for 6 weeks (3.6 g of 20:5omega 3 and 2.4 g of 22:6omega3 per day) diminished both the collagen- and platelet activating factor-induced maximum aggregation responses in washed human platelet suspensions by 50.1% and 27.2%, respectively, as compared to initial unsupplemented baseline responses. Thrombin -induced aggregation remained unchanged. Thrombin stimulation of intact human platelets produced a significant decrease in the mass of phosphatidylinositol in plasma membrane. In platelets pre-labelled with (2-^3H) glycerol and stimulated with either thrombin or low-dose collagen, the loss of (^3H) phosphatidylinositol did not differ between those subjects consuming olive oil or fish oil. Likewise, the thrombin-stimulated accumulation of diacylglycerol, an activator of protein kinase C, was unaffected by fish oil consumption. The ratio of collagen -induced increase in radioactivity

  18. Removal of trimethylamine by adsorption over zeolite catalysts and deodorization of fish oil.

    PubMed

    Chung, Kyong-Hwan; Lee, Ki-Young

    2009-12-30

    Trimethylamine (TMA) is the main agent for the odor often associated with fouling fish, some infections, and bad breath. This study focused on the adsorption of TMA over various microporous zeolites for application in the low-temperature deodorization of fishy odor from raw fish oil. The faujasite (Si/Al=3) zeolite exhibited the high adsorption ability, which, in combination with its wide surface area and pore volume, may have induced the high adsorption ability. The H-mordenite (Si/Al=10) zeolite exhibited a large TMA adsorption. It was considered to have generated more attractive adsorption with TMA ions, because TMA interacted briskly with cations of acid sites on the zeolites. The fishy odor of raw fish oil was considerably reduced by low-temperature adsorption on the zeolites. The surface area of the zeolites retained most of the TMA adsorption ability, and their acid strength further enhanced the adsorption ability.

  19. Distribution of naphthenic acids in tissues of laboratory-exposed fish and in wild fishes from near the Athabasca oil sands in Alberta, Canada.

    PubMed

    Young, Rozlyn F; Michel, Lorelei Martínez; Fedorak, Phillip M

    2011-05-01

    Naphthenic acids, which have a variety of commercial applications, occur naturally in conventional crude oil and in highly biodegraded petroleum such as that found in the Athabasca oil sands in Alberta, Canada. Oil sands extraction is done using a caustic aqueous extraction process. The alkaline pH releases the naphthenic acids from the oil sands and dissolves them into water as their soluble naphthenate forms, which are anionic surfactants. These aqueous extracts contain concentrations of naphthenates that are acutely lethal to fishes and other aquatic organisms. Previous research has shown that naphthenic acids can be taken up by fish, but the distribution of these acids in various tissues of the fish has not been determined. In this study, rainbow trout (Oncorhynchus mykiss) were exposed to commercial (Merichem) naphthenic acids in the laboratory. After a 10-d exposure to approximately 3mg naphthenic acids/L, the fish were dissected and samples of gills, heart, liver, kidney, muscle, and eggs were extracted and analyzed for free (unconjugated) naphthenic acids by a gas chromatography-mass spectrometry method. Each of the tissues contained naphthenic acids and non-parametric statistical analyses showed that gills and livers contained higher concentrations than the muscles and that the livers had higher concentrations than the hearts. Four different species of fish (two fish of each species) were collected from the Athabasca River near two oil sands mining and extraction operations. No free naphthenic acids were detected in the muscle or liver of these fish.

  20. Effect of replacement of fish oil with camelina (Camelina sativa) oil on growth, lipid class and fatty acid composition of farmed juvenile Atlantic cod (Gadus morhua).

    PubMed

    Hixson, Stefanie M; Parrish, Christopher C; Anderson, Derek M

    2013-12-01

    Camelina (Camelina sativa) oil was tested as a replacement for fish oil in diets for farmed Atlantic cod (Gadus morhua). Camelina differs from other plant oilseeds previously used in aquaculture with high lipid (40 %), α-linolenic acid (40 %), antioxidants and low proportions of saturated fats. Dietary treatments were fed to cod (19 g fish⁻¹ initial weight) for 9 weeks and included a fish oil control (FO), 40 % (CO40) and 80 % (CO80) replacement of fish oil with camelina oil. There was no effect of replacing fish oil with camelina oil included at levels up to 80 % on the growth performance. Cod fed CO80 stored more lipid in the liver (p < 0.01), including more neutral lipid (p < 0.05) and triacylglycerol (p < 0.05). Cod fed CO80 decreased in total polyunsaturated fatty acids (PUFAs) in muscle compared to CO40 and FO (p < 0.05), increased in monounsaturated fatty acids (p < 0.01), decreased in total ω3 fatty acids (FO > CO40 > CO80; p < 0.01) and increased in total ω6 fatty acids (FO < CO40 < CO80; p < 0.01). In the liver, long-chain (LC) PUFA such as 20:4ω6, 20:5ω3, 22:5ω3 and 22:6ω3 decreased when fish oil was removed from the diet (p < 0.05), and increased in 18-carbon fatty acids (p < 0.01). Camelina oil can reduce the amount of fish oil needed to meet lipid requirements, although replacing 80 % of fish oil reduced LC PUFAs in both tissues. A comparison of BF₃ and H₂SO₄ as catalysts to transmethylate cod liver and muscle lipids revealed small but significant differences in some fatty acid proportions.

  1. Umatilla River Subbasin Fish Habitat Improvement; 1995 Annual Report.

    SciTech Connect

    Laws, Troy S.

    1996-06-01

    This annual report is in fulfillment of contract obligations with Bonneville Power Administration which is the funding source for the Oregon Department of Fish and Wildlife`s Umatilla Basin Habitat Improvement Project. Major activities undertaken during this report period included: (1) Flood damage assessment of project leases after the May 1995 and November 1995 floods, (2) reconstruction of 0.75 miles of riparian fence, (3) inspection and routine maintenance of 14.8 miles of fence, (4) collection of approximately 55,000 native willow and cottonwood cuttings and installation of approximately 21,600 of these material, (5) implementation of two bioengineering projects and initiation of a third project, (6) installation of approximately 30 tree/rootwads for fish habitat enhancement, (7) removal of an abandoned flood irrigation dam/fish barrier, (8) collection and summarization of physical and biological monitoring data, and (9) extensive interagency coordination.

  2. Quantification of eicosapentaenoic and docosahexaenoic acid geometrical isomers formed during fish oil deodorization by gas-liquid chromatography.

    PubMed

    Fournier, Véronique; Destaillats, Frédéric; Hug, Bernadette; Golay, Pierre-Alain; Joffre, Florent; Juanéda, Pierre; Sémon, Etienne; Dionisi, Fabiola; Lambelet, Pierre; Sébédio, Jean-Louis; Berdeaux, Olivier

    2007-06-22

    Long-chain polyunsaturated fatty acids (LC-PUFAs) of the n-3 series and especially eicosapentaenoic and docosahexaenoic acids (EPA and DHA, respectively) have important biological properties. The main dietary sources of LC-PUFAs are fish and fish oil. Geometrical isomerization is one of the main reactions happening during the thermal treatment of polyunsaturated fatty acids. Refined fish oils are used to supplement food products in LC-PUFAs and the quality of these nutritional ingredients have to be controlled. In the present study, a suitable method for the quantification of EPA and DHA geometrical isomers in fish oils by gas-liquid chromatography (GC) is presented. A highly polar capillary column (CP-Sil 88, 100 m) operating under optimal conditions was used. Method selectivity was studied by GC-mass spectrometry. The performance characteristics of the quantification method were studied using samples of fish oil deodorized at 220 degrees C for 3 h. The linearity of the method was assessed by analyzing composite samples obtained by mixing fish oil deodorized at 220 degrees C with semi-refined fish oil (control). Precision was evaluated by analyzing the same samples in triplicate. Results showed that the validated method is suitable to quantify low amounts of geometrical (trans) isomers of EPA and DHA in refined fish oils. The limits of quantification of the EPA and DHA geometrical isomers are 0.16 and 0.56 g/100 g of fish oil, for EPA and DHA, respectively. Commercially available LC-PUFA oil samples were evaluated by using the validated method. The results show that the oils analyzed contain low amounts (<1% of total fatty acids) of geometrical isomers of EPA and DHA.

  3. Fish Oil Supplementation and Urinary Oxalate Excretion in Normal Subjects on a Low-oxalate Diet

    PubMed Central

    Lange, Jessica N.; Mufarrij, Patrick W.; Easter, Linda; Knight, John; Holmes, Ross P.; Assimos, Dean G.

    2014-01-01

    OBJECTIVE To determine if fish oil supplementation reduces endogenous oxalate synthesis in healthy subjects. MATERIALS AND METHODS Fifteen healthy non–stone-forming adults participated in this study. Subjects first abstained from using vitamins, medications, or foods enriched in omega-3 fatty acids for 30 days. Next, they collected two 24-hour urine specimens while consuming a self-selected diet. Subjects consumed an extremely low-oxalate and normal-calcium diet for 5 days and collected 24-hour urine specimens on the last 3 days of this diet. Next, the subjects took 2 fish oil capsules containing 650-mg eicosapentaenoic acid and 450-mg docosahexaenoic acid twice daily for 30 days. They consumed a self-selected diet on days 1–25 and the controlled diet on days 26–30. Twenty-four-hour urine samples were collected on days 28–30. Excretion levels of urinary analytes including oxalate and glycolate were analyzed. RESULTS Although there was a significant reduction in urinary oxalate, magnesium, and potassium excretions and an increase in uric acid excretion during the controlled dietary phases compared with the self-selected diet, there were no significant differences in their excretion during controlled diet phases with and without fish oil supplementation. CONCLUSION These results suggest that fish oil supplementation does not reduce endogenous oxalate synthesis or urinary oxalate excretion in normal adults during periods of extremely low oxalate intake. However, these results do not challenge the previously described reduction in urinary oxalate excretion demonstrated in normal subjects consuming a moderate amount of oxalate in conjunction with fish oil. PMID:25102784

  4. Intravenous fish oil in critically ill and surgical patients - Historical remarks and critical appraisal.

    PubMed

    Kreymann, K Georg; Heyland, Daren K; de Heer, Geraldine; Elke, Gunnar

    2017-07-13

    The purpose of this review is to explain the historical and clinical background for intravenous fish oil administration, to evaluate its results by using a product specific metaanalysis, and to stimulate further research in the immune-modulatory potential of fish oil. Concerning the immune-modulatory effects of fatty acids, a study revealed that ω-3 as well as ω-6 fatty acids would prolong transplant survival, and only a mixture with an ω-6:ω-3 ratio of 2.1:1 would give immune-neutral results. In 1998, the label of a newly registered fish oil emulsion also acknowledged this immune-neutral ratio in conjunction with ω-6 lipids. Also, two fish oil-supplemented fat emulsions, registered in 2004, used a similar ω-6:ω-3 ratio. Such an immune-neutral ω-6:ω-3 ratio denoted progress for most patients compared to pure ω-6 lipid emulsions. However, this immune-neutrality might on the other hand be responsible for the limited positive clinical results gained so far in critically ill and surgical patients where in most cases significance could only be shown for the pooled effect of numerous trials. Our product specific metaanalysis also did not reveal any differences, neither in infections rates nor in ICU or hospital length of stay. To evaluate the immune-modulatory effect of fish oil administered alone, new dose finding studies, reporting relevant clinical outcome parameters, are required. Precise mechanistic or physiological biomarkers for the indication of such a therapy should also be developed and validated. Copyright © 2017 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  5. Study of mechanisms of glucocorticoid hypertension in rats: endothelial related changes and their amelioration by dietary fish oils.

    PubMed Central

    Yin, K.; Chu, Z. M.; Beilin, L. J.

    1992-01-01

    1. To investigate possible mechanisms of increased systolic blood pressure after 1 weeks treatment with dexamethasone and its amelioration by fish oil feeding, we have examined the reactivity of aortic rings and perfused mesenteric resistance vessels. 2. Thirty six Sprague-Dawley rats were initially divided into two groups and fed a semisynthetic diet containing either (10% by weight) hydrogenated coconut oil and safflower oil mixture (HCO/S) (24 rats) or fish oil (12 rats) for 5 weeks. From the end of the fourth week, dexamethasone (1.25 mg ml-1) in drinking water, was given to half the rats on hydrogenated coconut oil (HCO/S+Dex) and to the fish oil-fed group (fish oil+Dex). 3. One week of dexamethasone treatment raised systolic blood pressure in the HCO/S+Dex rats but not in the fish oil+Dex group. 4. Endothelium-dependent relaxation to acetylcholine (ACh) was decreased in aortic rings taken from HCO/S+Dex rats compared to rats on HCO/S alone. Relaxant responses to ACh of aortic rings from rats given fish oil+Dex were intermediate between the three groups. Aortic endothelium-independent responses to sodium nitroprusside (SNP) were unchanged between the groups, while aortic contractile responses to noradrenaline were similar in all the groups. 5. In the perfused mesenteric resistance artery, sensitivity to noradrenaline was decreased in rats given fish oil and dexamethasone compared to the other two groups. There were no differences in resistance vessel relaxation to ACh or SNP between groups. 6. Serum corticosterone levels, used as a marker of dexamethasone absorption, were substantially suppressed in dexamethasone-treated rats but levels were higher in rats on fish oil than on HCO/S diets.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1393269

  6. Developing a strawberry yogurt fortified with marine fish oil

    USDA-ARS?s Scientific Manuscript database

    Fortified dairy products appeal to a wide variety of consumers and have the potential to increase sales in the yogurt industry and contribute to boost the intake of omega-3 fatty acids. The objectives of this study were to develop a strawberry yogurt containing microencapsulated salmon oil (2% w/v) ...

  7. Oil, Floods, and Fish: The Social Role of Environmental Scientists

    ERIC Educational Resources Information Center

    Lesen, Amy E.

    2012-01-01

    The environmental and social effects of hurricane-related flooding and the recent oil disaster in southeastern Louisiana, and the current global crisis in world fisheries, are case studies that reveal the need for scientific work that is carried out and disseminated with conscious attention paid to the important relationship between scientists,…

  8. Oil, Floods, and Fish: The Social Role of Environmental Scientists

    ERIC Educational Resources Information Center

    Lesen, Amy E.

    2012-01-01

    The environmental and social effects of hurricane-related flooding and the recent oil disaster in southeastern Louisiana, and the current global crisis in world fisheries, are case studies that reveal the need for scientific work that is carried out and disseminated with conscious attention paid to the important relationship between scientists,…

  9. High-fat diets rich in soy or fish oil distinctly alter hypothalamic insulin signaling in rats.

    PubMed

    Pimentel, Gustavo D; Dornellas, Ana P S; Rosa, José C; Lira, Fábio S; Cunha, Cláudio A; Boldarine, Valter T; de Souza, Gabriel I H; Hirata, Aparecida E; Nascimento, Cláudia M O; Oyama, Lila M; Watanabe, Regina L H; Ribeiro, Eliane B

    2012-07-01

    Hypothalamic insulin inhibits food intake, preventing obesity. High-fat feeding with polyunsaturated fats may be obesogenic, but their effect on insulin action has not been elucidated. The present study evaluated insulin hypophagia and hypothalamic signaling after central injection in rats fed either control diet (15% energy from fat) or high-fat diets (50% energy from fat) enriched with either soy or fish oil. Soy rats had increased fat pad weight and serum leptin with normal body weight, serum lipid profile and peripheral insulin sensitivity. Fish rats had decreased body and fat pad weight, low leptin and corticosterone levels, and improved serum lipid profile. A 20-mU dose of intracerebroventricular (ICV) insulin inhibited food intake in control and fish groups, but failed to do so in the soy group. Hypothalamic protein levels of IR, IRS-1, IRS-2, Akt, mTOR, p70S6K and AMPK were similar among groups. ICV insulin stimulated IR tyrosine phosphorylation in control (68%), soy (36%) and fish (34%) groups. Tyrosine phosphorylation of the pp185 band was significantly stimulated in control (78%) and soy (53%) rats, but not in fish rats. IRS-1 phosphorylation was stimulated only in control rats (94%). Akt serine phosphorylation was significantly stimulated only in control (90%) and fish (78%) rats. The results showed that, rather than the energy density, the fat type was a relevant aspect of high-fat feeding, since blockade of hypothalamic insulin signal transmission and insulin hypophagia was promoted only by the high-fat soy diet, while they were preserved in the rats fed with the high-fat fish diet. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Using otolith microchemistry and shape to assess the habitat value of oil structures for reef fish.

    PubMed

    Fowler, Ashley M; Macreadie, Peter I; Bishop, David P; Booth, David J

    2015-05-01

    Over 7500 oil and gas structures (e.g. oil platforms) are installed in offshore waters worldwide and many will require decommissioning within the next two decades. The decision to remove such structures or turn them into reefs (i.e. 'rigs-to-reefs') hinges on the habitat value they provide, yet this can rarely be determined because the residency of mobile species is difficult to establish. Here, we test a novel solution to this problem for reef fishes; the use of otolith (earstone) properties to identify oil structures of residence. We compare the otolith microchemistry and otolith shape of a site-attached coral reef fish (Pseudanthias rubrizonatus) among four oil structures (depth 82-135 m, separated by 9.7-84.2 km) on Australia's North West Shelf to determine if populations developed distinct otolith properties during their residency. Microchemical signatures obtained from the otolith edge using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) differed among oil structures, driven by elements Sr, Ba and Mn, and to a lesser extent Mg and Fe. A combination of microchemical data from the otolith edge and elliptical Fourier (shape) descriptors allowed allocation of individuals to their 'home' structure with moderate accuracy (overall allocation accuracy: 63.3%, range: 45.5-78.1%), despite lower allocation accuracies for each otolith property in isolation (microchemistry: 47.5%, otolith shape: 45%). Site-specific microchemical signatures were also stable enough through time to distinguish populations during 3 separate time periods, suggesting that residence histories could be recreated by targeting previous growth zones in the otolith. Our results indicate that reef fish can develop unique otolith properties during their residency on oil structures which may be useful for assessing the habitat value of individual structures. The approach outlined here may also be useful for determining the residency of reef fish on artificial reefs, which would

  11. Fatty acid clearance by isolated perfused hindquarters of rats fed fish oil

    SciTech Connect

    Herzberg, G.R.; MacCharles, G.; Rogerson, M. )

    1990-02-26

    The authors have previously shown that, compared to the dietary fatty acid composition, n-3 fatty acids are underrepresented in the adipose tissue of rats consuming fish oil diets. They have also shown that in rats fed fish oil diets, lipoprotein lipase is elevated in skeletal muscle and heart but not in adipose tissue. These two observations led us to hypothesize that n-3 enriched lipoproteins and n-3 fatty acids are preferentially utilized by muscle. Rats were fed diets containing 10% by weight corn oil (CO) or 2% CO + 8% fish oil (MaxEPA) for two weeks. Skinned hindquarters were perfused using a Krebs-Henselheit buffer containing 3% albumin, 5.5 mM glucose and 0.5 mM fatty acid. Muscle ATP was unaffected by previous diet or fatty acid perfused and was approximately 6 {mu}mol/g wet weight in each group. The rate of fatty acid removal was linear for 60 minutes by which time between 30 and 50% of the fatty acid in the perfusate had been removed. They determined the removal of either {sup 14}C EPA and {sup 14}C oleate. There was a significant effect of both the type of fatty acid and the previous diet of the rats from which the hindquarters were obtained. EPA was removed more rapidly by hindquarters from MaxEPA-fed rats than corn oil fed rats. These results support the hypothesis that enhanced utilization of fatty acids by muscle contributes to the hypotriglyceridemic effect of dietary fish oils. They also suggest that n-3 fatty acids are more rapidly utilized by skeletal muscle.

  12. Partition behavior of virgin olive oil phenolic compounds in oil-brine mixtures during thermal processing for fish canning.

    PubMed

    Sacchi, Raffaele; Paduano, Antonello; Fiore, Francesca; Della Medaglia, Dorotea; Ambrosino, Maria Luisa; Medina, Isabel

    2002-05-08

    The chemical modifications and partitioning toward the brine phase (5% salt) of major phenol compounds of extra virgin olive oil (EVOO) were studied in a model system formed by sealed cans filled with oil-brine mixtures (5:1, v/v) simulating canned-in-oil food systems. Filled cans were processed in an industrial plant using two sterilization conditions commonly used during fish canning. The partitioning of phenolic compounds toward brine induced by thermal processing was studied by reversed-phase high-performance liquid chromatographic analysis of the phenol fraction extracted from oils and brine. Hydroxytyrosol (1), tyrosol (2), and the complex phenolic compounds containing 1 and 2 (i.e., the dialdehydic form of decarboxymethyl oleuropein aglycon 3, the dialdehydic form of decarboxymethyl ligstroside aglycon 4, and the oleuropein aglycon 6) decreased in the oily phase after sterilization with a marked partitioning toward the brine phase. The increase of the total amount of 1 and 2 after processing, as well as the presence of elenolic acid 7 released in brine, revealed the hydrolysis of the ester bond of hydrolyzable phenolic compounds 3, 4, and 6 during thermal processing. Both phenomena (partitioning toward the water phase and hydrolysis) contribute to explain the loss of phenolic compounds exhibited by EVOO used as filling medium in canned foods, as well as the protection of n-3 polyunsaturated fatty acids in canned-in-EVOO fish products.

  13. [Omega-3 fatty acids, fish, fish oil and cardiovascular disease--a review with implications to Israeli nutritional guidelines].

    PubMed

    Eilat-Adar, Sigal; Lipovetzky, Nestor; Goldbourt, Uri; Henkin, Yaakov

    2004-08-01

    Evidence from epidemiological and randomized controlled trials shows beneficial effects of omega-3 (n-3) fatty acids from fish and plant sources on cardiovascular disease (CVD), especially in patients with preexisting CVD. The optimal dose of n-3 is not yet determined, but prospective secondary prevention studies suggest that the addition of 0.5-1.8 grams/day of marine-derived eicosapentaenoic acid and docosahexaenoic acid, or plant derived alpha-linolenic acid at a dose of 1.5-3 grams/day significantly reduce subsequent cardiac events and mortality. These data have led the American Heart Association Dietary Guidelines committee to recommend to the general population the consumption of at least two servings of fatty fish per week, in addition to vegetable oils high in alpha-linolenic acid. The risk of adverse effects and toxicity from contaminants at this dose is low. The amount of daily n-3 fatty acids recommended for patients with coronary heart disease is 1 gram/day. In patients who cannot consume this dose of n-3 fatty acids through diet alone, addition of n-3 supplements should be considered. Higher doses of contaminant-free n-3 supplements, 2-4 grams/day, can be used in the treatment of hypertriglyceridemia. Data on the content of n-3 fatty acids and contaminants in Israeli bred fish is limited. Thus, caution should be exercised when applying these recommendations to the Israeli fish market.

  14. Effects of Dietary Fish Oil and Apple Polyphenol on the Concentration Serum Lipids and Excretion of Fecal Bile Acids in Rats.

    PubMed

    Hosoyamada, Yasue; Yamada, Masako

    2017-01-01

    We studied the effects of fish oil and apple polyphenol combined with a high cholesterol diet in rats, and assessed serum and liver lipids concentrations, serum oxidative stress and fecal bile acid excretion. Young male rats were fed a diet containing the control (Control), apple polyphenol (AP), fish oil (FO) or fish oil+apple polyphenol (FO+AP) for 4 wk. The control diet contained a lard component. Posterior abdominal wall fat and testicle peripheral fat weights decreased in the FO+AP group compared to the AP group. The concentration of total cholesterol in the serum and liver decreased in the FO group and the FO+AP group compared to the Control and the AP groups. The concentration of adiponectin and biological antioxidant potential in the serum increased in the FO group compared to the other groups. The diacron-reactive oxygen metabolites in serum decreased in the FO group and the FO+AP group compared to the Control and the AP groups. The bile acid excretion in feces increased in the AP group, the FO group and the FO+AP group compared to the Control group. These results suggested that the combination of fish oil and apple polyphenol in the diet improved serum and liver lipids, which should assist in the prevention and improvement of metabolic syndrome.

  15. Rumen microbial response in production of CLA and methane to safflower oil in association with fish oil or/and fumarate.

    PubMed

    Li, Xiang Z; Long, Rui J; Yan, Chang G; Lee, Hong G; Kim, Young J; Song, Man K

    2011-06-01

    Supplementation effect of fish oil and/or fumarate on production of conjugated linoleic acid (CLA) and methane by rumen microbes was examined when incubated with safflower oil. One hundred and twenty milligrams of safflower oil (SO), safflower oil with 24 mg fish oil (SOFO), safflower oil with 24 mmol/L fumarate (SOFA), or safflower oil with 24 mg fish oil and 24 mmol/L fumarate (SOFOFA) were added to the 90 mL culture solution. The culture solution was also made without any supplements (control). The SOFA and SOFOFA increased pH and propionate (C3) compared to other treatments from 3 h incubation time. An accumulated amount of total methane (CH(4) ) for 12 h incubation was decreased by all the supplements compared to control. The concentrations of c9,t11CLA for all the incubation times were increased in the treatments of SOFO, SOFA and SOFOFA compared to SO. The highest concentration of c9,t11CLA was observed from SOFOFA among all the treatments at all incubation times. Overall data indicate that supplementation of combined fumarate and/or fish oil when incubated with safflower oil could depress CH(4) generation and increase production of C(3) and CLA under the condition of current in vitro study.

  16. Sub chronic exposure to crude oil, dispersed oil and dispersant induces histopathological alterations in the gills of the juvenile rabbit fish (Siganus canaliculatus).

    PubMed

    Agamy, Esam

    2013-06-01

    There is little existing information on the sub-lethal effects of experimental exposure of Arabian Gulf fish to oil pollution. This study investigated the potential sub-lethal effects of the water accommodated fraction (WAF) of light Arabian crude oil, dispersed oil and dispersant (Maxi Clean 2) on the gills of the juvenile rabbit fish (Siganus canaliculatus), observing several histopathological biomarkers at different time points and different doses. These laboratory exposures simulated a range of possible oil pollution events. Significant alterations in four health categories (circulatory, proliferative, degenerative and inflammatory) were identified and form the basis for understanding the short-term response of fish to oil. Evaluations of histopathological lesions in gill tissue were carried out following 3, 6, 9, 12, 15, 18 and 21 days of exposure. The main lesions observed and quantified were lamellar capillary aneurysms, vasodilatation of lamellae, hemorrhage, edema, lifting of lamellar and filamentary epithelium and epithelium necrosis, epithelial and chloride cell hypertrophy and hyperplasia, fusion of adjacent lamellae, epitheliocystis and inflammatory infiltration. Exposure of juvenile fish to WAF, dispersant oil and dispersant caused significant changes in the gill lesions and reaction patterns. Dispersed oil caused the most significant effect followed by WAF and then dispersant. The present study is one of the first which explores the relationship between oil pollution and epitheliocystis and reports that exposure to crude oil and dispersed oil increases the prevalence of epitheliocystis formation under controlled laboratory conditions.

  17. A novel system for embryo-larval toxicity testing of pelagic fish: Applications for impact assessment of Deepwater Horizon crude oil.

    PubMed

    Stieglitz, John D; Mager, Edward M; Hoenig, Ronald H; Alloy, Matthew; Esbaugh, Andrew J; Bodinier, Charlotte; Benetti, Daniel D; Roberts, Aaron P; Grosell, Martin

    2016-11-01

    Key differences in the developmental process of pelagic fish embryos, in comparison to embryos of standard test fish species, present challenges to obtaining sufficient control survival needed to successfully perform traditional toxicity testing bioassays. Many of these challenges relate to the change in buoyancy, from positive to negative, of pelagic fish embryos that occurs just prior to hatch. A novel exposure system, the pelagic embryo-larval exposure chamber (PELEC), has been developed to conduct successful bioassays on the early life stages (ELSs; embryos/larvae) of pelagic fish. Using this unique recirculating upwelling system, it was possible to significantly improve control survival in pelagic fish ELS bioassays compared to commonly used static exposure methods. Results demonstrate that control performance of mahi-mahi (Coryphaena hippurus) embryos in the PELEC system, measured as percent survival after 96-hrs, significantly outperformed agitated static exposure and static exposure systems. Similar significant improvements in 72-hr control survival were obtained with yellowfin tuna (Thunnus albacares). The PELEC system was subsequently used to test the effects of photo-induced toxicity of crude oil to mahi-mahi ELSs over the course of 96-hrs. Results indicate a greater than 9-fold increase in toxicity of Deepwater Horizon (DWH) crude oil during co-exposure to ambient sunlight compared to filtered ambient sunlight, revealing the importance of including natural sunlight in 96-hr DWH crude oil bioassays as well as the PELEC system's potential application in ecotoxicological assessments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Development and physical characterization of polymer-fish oil bigel (hydrogel/oleogel) system as a transdermal drug delivery vehicle.

    PubMed

    Rehman, Khurram; Mohd Amin, Mohd Cairul Iqbal; Zulfakar, Mohd Hanif

    2014-01-01

    Polymer-Fish oil bigel (hydrogel/oleogel colloidal mixture) was developed by using fish oil and natural (sodium alginate) and synthetic (hydroxypropyl methylcellulose) polymer for pharmaceutical purposes. The bigels were closely monitored and thermal, rheological and mechanical properties were compared with the conventional hydrogels for their potential use as an effective transdermal drug delivery vehicle. Stability of the fish oil fatty acids (especially eicosapentanoic acid, EPA and docosahexanoic acid, DHA) was determined by gas chromatography and the drug content (imiquimod) was assessed with liquid chromatography. Furthermore, in vitro permeation study was conducted to determine the capability of the fish oil-bigels as transdermal drug delivery vehicle. The bigels showed pseudoplastic rheological features, with excellent mechanical properties (adhesiveness, peak stress and hardness), which indicated their excellent spreadability for application on the skin. Bigels prepared with mixture of sodium alginate and fish oil (SB1 and SB2), and the bigels prepared with the mixture of hydroxypropyl methylcellulose and fish oil (HB1-HB3) showed high cumulative permeation and drug flux compared to hydrogels. Addition of fish oil proved to be beneficial in increasing the drug permeation and the results were statistically significant (p < 0.05, one-way Anova, SPSS 20.0). Thus, it can be concluded that bigel formulations could be used as an effective topical and transdermal drug delivery vehicle for pharmaceutical purposes.

  19. Dietary supplementation with fish oil prevents high fat diet-induced enhancement of sensitivity to the behavioral effects of quinpirole.

    PubMed

    Hernandez-Casner, Caroline; Ramos, Jeremiah; Serafine, Katherine M

    2017-09-01

    Eating a diet high in fat can lead to negative health consequences, including obesity and insulin resistance. Omega-3 polyunsaturated fatty acids (such as those found in fish oil) prevent high fat diet-induced obesity and insulin resistance in rats. Eating a high fat diet also enhances sensitivity of rats to the behavioral effects of drugs that act on dopamine systems (e.g. quinpirole, a dopamine D2/D3 receptor agonist). To test the hypothesis that dietary supplementation with fish oil prevents high fat diet-induced enhanced sensitivity to the behavioral effects of quinpirole (0.0032-0.32 mg/kg), male rats ate standard laboratory chow, high fat chow, standard chow with fish oil, or high fat chow with fish oil (20% w/w). After 5 weeks, rats eating high fat chow were more sensitive (e.g. leftward shift of the quinpirole dose-response curve) than rats eating standard chow to yawning induced by quinpirole. Dietary supplementation with fish oil prevented this effect. That is, quinpirole dose-response curves were not different between rats eating high fat chow supplemented with fish oil and standard chow fed controls. These data add to a growing literature showing the complex relationship between diet and dopamine systems, and the health benefits of fish oil.

  20. DNA Methylation Changes Induced by a High-Fat Diet and Fish Oil Supplementation in the Skeletal Muscle of Mice.

    PubMed

    Amaral, Catia L; Crisma, Amanda R; Masi, Laureane N; Martins, Amanda R; Hirabara, Sandro M; Curi, Rui

    2014-01-01

    To investigate the global changes in DNA methylation and methylation of the promoter region of the peroxisome proliferator-activated receptor gamma transcript variant 2 (Pparg2) gene resulting from a high-fat diet (HFD) and/or fish oil supplementation. Fish oil, rich in omega-3 polyunsaturated fatty acids, or water was orally administered to male mice for 12 weeks. After the first 4 weeks, the animals were fed a control diet or an HFD until the end of the experimental protocol, when the epididymal fat, gastrocnemius muscle and liver were excised. Pparg2 mRNA expression was upregulated by obesity and downregulated by fish oil supplementation in the liver. In the gastrocnemius muscle, diet-induced obesity increased global DNA methylation. Fish oil prevented the decrease in Pparg2 promoter methylation induced by obesity in the gastrocnemius muscle. Regardless of the diet given, fish oil supplementation increased Pparg2 promoter methylation at CpG-263 in muscle and adipose tissue. HFD and fish oil modified global and Pparg2 promoter DNA methylation in a tissue-specific manner. Fish oil supplementation attenuated body weight gain, abolished the increase in Pparg2 expression in the liver and prevented the decrease in Pparg2 promoter methylation in the muscle induced by the HFD. © 2015 S. Karger AG, Basel.

  1. Development of botanical and fish oil standard reference materials for fatty acids.

    PubMed

    Schantz, Michele M; Sander, Lane C; Sharpless, Katherine E; Wise, Stephen A; Yen, James H; NguyenPho, Agnes; Betz, Joseph M

    2013-05-01

    As part of a collaboration with the National Institutes of Health's Office of Dietary Supplements and the Food and Drug Administration's Center for Drug Evaluation and Research, the National Institute of Standards and Technology has developed Standard Reference Material (SRM) 3274 Botanical Oils Containing Omega-3 and Omega-6 Fatty Acids and SRM 3275 Omega-3 and Omega-6 Fatty Acids in Fish Oil. SRM 3274 consists of one ampoule of each of four seed oils (3274-1 Borage (Borago officinalis), 3274-2 Evening Primrose (Oenothera biennis), 3274-3 Flax (Linium usitatissimum), and 3274-4 Perilla (Perilla frutescens)), and SRM 3275 consists of two ampoules of each of three fish oils (3275-1 a concentrate high in docosahexaenoic acid, 3275-2 an anchovy oil high in docosahexaenoic acid and eicosapentaenoic acid, and 3275-3 a concentrate containing 60% long-chain omega-3 fatty acids). Each oil has certified and reference mass fraction values for up to 20 fatty acids. The fatty acid mass fraction values are based on results from analyses using gas chromatography with flame ionization detection (GC-FID) and mass spectrometry (GC/MS). These SRMs will complement other reference materials currently available with mass fractions for similar analytes and are part of a series of SRMs being developed for dietary supplements.

  2. Oxidative stability of fish and algae oils containing long-chain polyunsaturated fatty acids in bulk and in oil-in-water emulsions.

    PubMed

    Frankel, Edwin N; Satué-Gracia, Teresa; Meyer, Anne S; German, J Bruce

    2002-03-27

    The oxidative stability of long-chain polyunsaturated fatty acid (PUFA) and docosahexaenoic acid (DHA)-containing fish and algae oils varies widely according to their fatty acid composition, the physical and colloidal states of the lipids, the contents of tocopherols and other antioxidants, and the presence and activity of transition metals. Fish and algal oils were initially much more stable to oxidation in bulk systems than in the corresponding oil-in-water emulsions. The oxidative stability of emulsions cannot, therefore, be predicted on the basis of stability data obtained with bulk long-chain PUFA-containing fish oils and DHA-containing algal oils