Indicators of AEI applied to the Delaware Estuary.
Barnthouse, Lawrence W; Heimbuch, Douglas G; Anthony, Vaughn C; Hilborn, Ray W; Myers, Ransom A
2002-05-18
We evaluated the impacts of entrainment and impingement at the Salem Generating Station on fish populations and communities in the Delaware Estuary. In the absence of an agreed-upon regulatory definition of "adverse environmental impact" (AEI), we developed three independent benchmarks of AEI based on observed or predicted changes that could threaten the sustainability of a population or the integrity of a community. Our benchmarks of AEI included: (1) disruption of the balanced indigenous community of fish in the vicinity of Salem (the "BIC" analysis); (2) a continued downward trend in the abundance of one or more susceptible fish species (the "Trends" analysis); and (3) occurrence of entrainment/impingement mortality sufficient, in combination with fishing mortality, to jeopardize the future sustainability of one or more populations (the "Stock Jeopardy" analysis). The BIC analysis utilized nearly 30 years of species presence/absence data collected in the immediate vicinity of Salem. The Trends analysis examined three independent data sets that document trends in the abundance of juvenile fish throughout the estuary over the past 20 years. The Stock Jeopardy analysis used two different assessment models to quantify potential long-term impacts of entrainment and impingement on susceptible fish populations. For one of these models, the compensatory capacities of the modeled species were quantified through meta-analysis of spawner-recruit data available for several hundred fish stocks. All three analyses indicated that the fish populations and communities of the Delaware Estuary are healthy and show no evidence of an adverse impact due to Salem. Although the specific models and analyses used at Salem are not applicable to every facility, we believe that a weight of evidence approach that evaluates multiple benchmarks of AEI using both retrospective and predictive methods is the best approach for assessing entrainment and impingement impacts at existing facilities.
Tanaka, Yuichiro; Takahashi, Hajime; Kitazawa, Nao; Kimura, Bon
2010-01-01
A rapid system using terminal restriction fragment length polymorphism (T-RFLP) analysis targeting 16S rDNA is described for microbial population analysis in edible fish samples. The defined terminal restriction fragment database was constructed by collecting 102 strains of bacteria representing 53 genera that are associated with fish. Digestion of these 102 strains with two restriction enzymes, HhaI and MspI, formed 54 pattern groups with discrimination to the genus level. This T-RFLP system produced results comparable to those from a culture-based method in six natural fish samples with a qualitative correspondence of 71.4 to 92.3%. Using the T-RFLP system allowed an estimation of the microbial population within 7 h. Rapid assay of the microbial population is advantageous for food manufacturers and testing laboratories; moreover, the strategy presented here allows adaptation to specific testing applications.
McGarvey, Daniel J.; Falke, Jeffrey A.; Li, Hiram W.; Li, Judith; Hauer, F. Richard; Lamberti, G.A.
2017-01-01
Methods to sample fishes in stream ecosystems and to analyze the raw data, focusing primarily on assemblage-level (all fish species combined) analyses, are presented in this chapter. We begin with guidance on sample site selection, permitting for fish collection, and information-gathering steps to be completed prior to conducting fieldwork. Basic sampling methods (visual surveying, electrofishing, and seining) are presented with specific instructions for estimating population sizes via visual, capture-recapture, and depletion surveys, in addition to new guidance on environmental DNA (eDNA) methods. Steps to process fish specimens in the field including the use of anesthesia and preservation of whole specimens or tissue samples (for genetic or stable isotope analysis) are also presented. Data analysis methods include characterization of size-structure within populations, estimation of species richness and diversity, and application of fish functional traits. We conclude with three advanced topics in assemblage-level analysis: multidimensional scaling (MDS), ecological networks, and loop analysis.
Comparative Analysis of State Fish Consumption Advisories Targeting Sensitive Populations
Scherer, Alison C.; Tsuchiya, Ami; Younglove, Lisa R.; Burbacher, Thomas M.; Faustman, Elaine M.
2008-01-01
Objective Fish consumption advisories are issued to warn the public of possible toxicological threats from consuming certain fish species. Although developing fetuses and children are particularly susceptible to toxicants in fish, fish also contain valuable nutrients. Hence, formulating advice for sensitive populations poses challenges. We conducted a comparative analysis of advisory Web sites issued by states to assess health messages that sensitive populations might access. Data sources We evaluated state advisories accessed via the National Listing of Fish Advisories issued by the U.S. Environmental Protection Agency. Data extraction We created criteria to evaluate advisory attributes such as risk and benefit message clarity. Data synthesis All 48 state advisories issued at the time of this analysis targeted children, 90% (43) targeted pregnant women, and 58% (28) targeted women of childbearing age. Only six advisories addressed single contaminants, while the remainder based advice on 2–12 contaminants. Results revealed that advisories associated a dozen contaminants with specific adverse health effects. Beneficial health effects of any kind were specifically associated only with omega-3 fatty acids found in fish. Conclusions These findings highlight the complexity of assessing and communicating information about multiple contaminant exposure from fish consumption. Communication regarding potential health benefits conferred by specific fish nutrients was minimal and focused primarily on omega-3 fatty acids. This overview suggests some lessons learned and highlights a lack of both clarity and consistency in providing the breadth of information that sensitive populations such as pregnant women need to make public health decisions about fish consumption during pregnancy. PMID:19079708
Yao, Weiwei; Chen, Yuansheng
2018-04-01
Colorado River is a unique ecosystem and provides important ecological services such as habitat for fish species as well as water power energy supplies. River management for this ecosystem requires assessment and decision support tools for fish which involves protecting, restoring as well as forecasting of future conditions. In this paper, a habitat and population model was developed and used to determine the levels of fish habitat suitability and population density in Colorado River between Lees Ferry and Lake Mead. The short term target fish populations are also predicted based on native fish recovery strategy. This model has been developed by combining hydrodynamics, heat transfer and sediment transport models with a habitat suitability index model and then coupling with habitat model into life stage population model. The fish were divided into four life stages according to the fish length. Three most abundant and typical native and non-native fish were selected as target species, which are rainbow trout (Oncorhynchus mykiss), brown trout (Salmo trutta) and flannelmouth sucker (Catostomus latipinnis). Flow velocity, water depth, water temperature and substrates were used as the suitability indicators in habitat model and overall suitability index (OSI) as well as weight usable area (WUA) was used as an indicator in population model. A comparison was made between simulated fish population alteration and surveyed fish number fluctuation during 2000 to 2009. The application of this habitat and population model indicates that this model can be accurate present habitat situation and targets fish population dynamics of in the study areas. The analysis also indicates the flannelmouth sucker population will steadily increase while the rainbow trout will decrease based on the native fish recovery scheme. Copyright © 2018. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Fidler, Robert Young, III
Overfishing and destructive fishing practices threaten the sustainability of fisheries worldwide. In addition to reducing population sizes, anthropogenic fishing effort is highly size-selective, preferentially removing the largest individuals from harvested stocks. Intensive, size-selective mortality induces widespread phenotypic shifts toward the predominance of smaller and earlier-maturing individuals. Fish that reach sexual maturity at smaller size and younger age produce fewer, smaller, and less viable larvae, severely reducing the reproductive capacity of exploited populations. These directional phenotypic alterations, collectively known as "fisheries-induced evolution" (FIE) are among the primary causes of the loss of harvestable fish biomass. Marine protected areas (MPAs) are one of the most widely utilized components of fisheries management programs around the world, and have been proposed as a potential mechanism by which the impacts of FIE may be mitigated. The ability of MPAs to buffer exploited populations against fishing pressure, however, remains debated due to inconsistent results across studies. Additionally, empirical evidence of phenotypic shifts in fishes within MPAs is lacking. This investigation addresses both of these issues by: (1) using a categorical meta-analysis of MPAs to standardize and quantify the magnitude of MPA impacts across studies; and (2) conducting a direct comparison of life-history phenotypes known to be influenced by FIE in six reef-fish species inside and outside of MPAs. The Philippines was used as a model system for analyses due to the country's significance in global marine biodiversity and reliance on MPAs as a fishery management tool. The quantitative impact of Philippine MPAs was assessed using a "reef-wide" meta-analysis. This analysis used pooled visual census data from 39 matched pairs of MPAs and fished reefs surveyed twice over a mean period of 3 years. In 17 of these MPAs, two additional surveys were conducted using size-specific fish counts, allowing for spatiotemporal comparisons of abundance and demographic structure of fish populations across protected and fished areas. Results of the meta-analysis revealed that: (1) although fish density was higher inside MPAs than in fished reefs at each sampling period, reef-wide density often increased or remained stable over time; and (2) increases in large-bodied fish were evident reef-wide between survey periods, indicating that positive demographic shifts occurred simultaneously in both MPAs and adjacent areas. Increases in large-bodied fish were observed across a range of taxa, but were most prominent in families directly targeted by fishermen. These results suggest that over relatively few years of protection, Philippine MPAs promoted beneficial shifts in population structure throughout entire reef systems, rather than simply maintaining stable populations within their borders. Relationships between MPA age and shifts in fish density or demographic structure were rare, but may have been precluded by the relatively short period between replicate surveys. Although increases in fish density inside MPAs were occasionally associated with MPA size, there were no significant relationships between the size of MPAs and reef-wide increases in fish density. The reef-wide framework of MPA assessment used in this study has the advantage of treating MPAs and fished reefs as an integrated system, thus revealing trends that would be indistinguishable in traditional spatial comparisons between MPAs and fished reefs. The impact of MPAs on fishing-induced life-history traits was assessed by comparing growth and maturation patterns exhibited by six reef-fish species inside and outside five MPAs and adjacent, fished reefs in Zambales, Luzon, Philippines. This analysis demonstrated considerable variation in terminal body-sizes (Linf) and growth rates (K) between conspecifics in MPAs and fished reefs. Three of the four experimental species directly targeted for food in the region (Acanthurus nigrofuscus, Ctenochaetus striatus, and Parupeneus multifasciatus) exhibited greater Linf, lower K, or both characteristics inside at least one MPA compared to populations in adjacent, fished reefs. Life-history shifts were concentrated in the oldest and largest MPAs, but occurred at least once in each of the five MPAs that were examined. A fourth species harvested for food (Ctenochaetus binotatus), as well as a species targeted for the aquarium trade (Zebrasoma scopas) and a non-target species (Plectroglyphidodon lacrymatus) did not exhibit differential phenotypes between MPAs and fished reefs. The relatively high frequency of alterations to life-history characteristics across MPAs in harvested species suggests that observed changes in the density and size-structure of harvested fish populations inside MPAs are likely driven by spatial disparities in fishing pressure, and are the result of phenotypic changes rather than increased longevity.
Mintram, Kate S; Brown, A Ross; Maynard, Samuel K; Thorbek, Pernille; Tyler, Charles R
2018-02-01
Endocrine active chemicals (EACs) are widespread in freshwater environments and both laboratory and field based studies have shown reproductive effects in fish at environmentally relevant exposures. Environmental risk assessment (ERA) seeks to protect wildlife populations and prospective assessments rely on extrapolation from individual-level effects established for laboratory fish species to populations of wild fish using arbitrary safety factors. Population susceptibility to chemical effects, however, depends on exposure risk, physiological susceptibility, and population resilience, each of which can differ widely between fish species. Population models have significant potential to address these shortfalls and to include individual variability relating to life-history traits, demographic and density-dependent vital rates, and behaviors which arise from inter-organism and organism-environment interactions. Confidence in population models has recently resulted in the EU Commission stating that results derived from reliable models may be considered when assessing the relevance of adverse effects of EACs at the population level. This review critically assesses the potential risks posed by EACs for fish populations, considers the ecological factors influencing these risks and explores the benefits and challenges of applying population modeling (including individual-based modeling) in ERA for EACs in fish. We conclude that population modeling offers a way forward for incorporating greater environmental relevance in assessing the risks of EACs for fishes and for identifying key risk factors through sensitivity analysis. Individual-based models (IBMs) allow for the incorporation of physiological and behavioral endpoints relevant to EAC exposure effects, thus capturing both direct and indirect population-level effects.
Stallings, Christopher D
2009-01-01
Understanding the current status of predatory fish communities, and the effects fishing has on them, is vitally important information for management. However, data are often insufficient at region-wide scales to assess the effects of extraction in coral reef ecosystems of developing nations. Here, I overcome this difficulty by using a publicly accessible, fisheries-independent database to provide a broad scale, comprehensive analysis of human impacts on predatory reef fish communities across the greater Caribbean region. Specifically, this study analyzed presence and diversity of predatory reef fishes over a gradient of human population density. Across the region, as human population density increases, presence of large-bodied fishes declines, and fish communities become dominated by a few smaller-bodied species. Complete disappearance of several large-bodied fishes indicates ecological and local extinctions have occurred in some densely populated areas. These findings fill a fundamentally important gap in our knowledge of the ecosystem effects of artisanal fisheries in developing nations, and provide support for multiple approaches to data collection where they are commonly unavailable.
Stallings, Christopher D.
2009-01-01
Background Understanding the current status of predatory fish communities, and the effects fishing has on them, is vitally important information for management. However, data are often insufficient at region-wide scales to assess the effects of extraction in coral reef ecosystems of developing nations. Methodology/Principal Findings Here, I overcome this difficulty by using a publicly accessible, fisheries-independent database to provide a broad scale, comprehensive analysis of human impacts on predatory reef fish communities across the greater Caribbean region. Specifically, this study analyzed presence and diversity of predatory reef fishes over a gradient of human population density. Across the region, as human population density increases, presence of large-bodied fishes declines, and fish communities become dominated by a few smaller-bodied species. Conclusions/Significance Complete disappearance of several large-bodied fishes indicates ecological and local extinctions have occurred in some densely populated areas. These findings fill a fundamentally important gap in our knowledge of the ecosystem effects of artisanal fisheries in developing nations, and provide support for multiple approaches to data collection where they are commonly unavailable. PMID:19421312
Population Viability Analysis of Riverine Fishes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bates, P.; Chandler, J.; Jager, H.I.
Many utilities face conflkts between two goals: cost-efficient hydropower generation and protecting riverine fishes. Research to develop ecological simulation tools that can evaluate alternative mitigation strategies in terms of their benefits to fish populations is vital to informed decision-making. In this paper, we describe our approach to population viability analysis of riverine fishes in general and Snake River white sturgeon in particular. We are finding that the individual-based modeling approach used in previous in-stream flow applications is well suited to addressing questions about the viability of species of concern for several reasons. Chief among these are: (1) the abiIity tomore » represent the effects of individual variation in life history characteristics on predicted population viabili~, (2) the flexibili~ needed to quanti~ the ecological benefits of alternative flow management options by representing spatial and temporal variation in flow and temperaturty and (3) the flexibility needed to quantifi the ecological benefits of non-flow related manipulations (i.e., passage, screening and hatchery supplementation).« less
Coggins, L.G.; Pine, William E.; Walters, C.J.; Martell, S.J.D.
2006-01-01
We present a new model to estimate capture probabilities, survival, abundance, and recruitment using traditional Jolly-Seber capture-recapture methods within a standard fisheries virtual population analysis framework. This approach compares the numbers of marked and unmarked fish at age captured in each year of sampling with predictions based on estimated vulnerabilities and abundance in a likelihood function. Recruitment to the earliest age at which fish can be tagged is estimated by using a virtual population analysis method to back-calculate the expected numbers of unmarked fish at risk of capture. By using information from both marked and unmarked animals in a standard fisheries age structure framework, this approach is well suited to the sparse data situations common in long-term capture-recapture programs with variable sampling effort. ?? Copyright by the American Fisheries Society 2006.
Managing for desired experiences and site preferences: the case of fee-fishing anglers.
Schuett, Michael A; Pierskalla, Chad D
2007-02-01
Fee-fishing involves paying a fee for the privilege of fishing a body of water where fish populations are enhanced by stocking fish. Past literature on this activity has focused more on the operation of the enterprise and management of the fish than the people and site characteristics. The objectives of the study were to profile anglers and describe their site/management preferences. This study utilized an on-site interview and mail-back questionnaire at fee-fishing establishments in West Virginia (n = 212). Factor analysis of desired recreation experiences yielded five factors: Experience nature & adventure, Stress release & relaxation, Trophy fishing, Escape, and Family time. Cluster analysis showed that these anglers can be segmented into two distinct clusters, differing by sociodemographic characteristics, fishing behavior, and site/management preferences. The findings from this study provide baseline data to aid public resource managers and fee-fishing business owners in determining how to provide satisfying outdoor experiences and deliver desired services on-site. Future research will be needed from additional fee-fishing sites to obtain more detail about this outdoor recreation cohort and be able to generalize to a larger population of participants.
Managing for Desired Experiences and Site Preferences: The Case of Fee-Fishing Anglers
NASA Astrophysics Data System (ADS)
Schuett, Michael A.; Pierskalla, Chad D.
2007-02-01
Fee-fishing involves paying a fee for the privilege of fishing a body of water where fish populations are enhanced by stocking fish. Past literature on this activity has focused more on the operation of the enterprise and management of the fish than the people and site characteristics. The objectives of the study were to profile anglers and describe their site/management preferences. This study utilized an on-site interview and mail-back questionnaire at fee-fishing establishments in West Virginia ( n = 212). Factor analysis of desired recreation experiences yielded five factors: Experience nature & adventure, Stress release & relaxation, Trophy fishing, Escape, and Family time. Cluster analysis showed that these anglers can be segmented into two distinct clusters, differing by sociodemographic characteristics, fishing behavior, and site/management preferences. The findings from this study provide baseline data to aid public resource managers and fee-fishing business owners in determining how to provide satisfying outdoor experiences and deliver desired services on-site. Future research will be needed from additional fee-fishing sites to obtain more detail about this outdoor recreation cohort and be able to generalize to a larger population of participants.
First genealogy for a wild marine fish population reveals multigenerational philopatry.
Salles, Océane C; Pujol, Benoit; Maynard, Jeffrey A; Almany, Glenn R; Berumen, Michael L; Jones, Geoffrey P; Saenz-Agudelo, Pablo; Srinivasan, Maya; Thorrold, Simon R; Planes, Serge
2016-11-15
Natal philopatry, the return of individuals to their natal area for reproduction, has advantages and disadvantages for animal populations. Natal philopatry may generate local genetic adaptation, but it may also increase the probability of inbreeding that can compromise persistence. Although natal philopatry is well documented in anadromous fishes, marine fish may also return to their birth site to spawn. How philopatry shapes wild fish populations is, however, unclear because it requires constructing multigenerational pedigrees that are currently lacking for marine fishes. Here we present the first multigenerational pedigree for a marine fish population by repeatedly genotyping all individuals in a population of the orange clownfish (Amphiprion percula) at Kimbe Island (Papua New Guinea) during a 10-y period. Based on 2927 individuals, our pedigree analysis revealed that longitudinal philopatry was recurrent over five generations. Progeny tended to settle close to their parents, with related individuals often sharing the same colony. However, successful inbreeding was rare, and genetic diversity remained high, suggesting occasional inbreeding does not impair local population persistence. Local reproductive success was dependent on the habitat larvae settled into, rather than the habitat they came from. Our study suggests that longitudinal philopatry can influence both population replenishment and local adaptation of marine fishes. Resolving multigenerational pedigrees during a relatively short period, as we present here, provides a framework for assessing the ability of marine populations to persist and adapt to accelerating climate change.
First genealogy for a wild marine fish population reveals multigenerational philopatry
Salles, Océane C.; Pujol, Benoit; Maynard, Jeffrey A.; Almany, Glenn R.; Berumen, Michael L.; Jones, Geoffrey P.; Saenz-Agudelo, Pablo; Srinivasan, Maya; Thorrold, Simon R.; Planes, Serge
2016-01-01
Natal philopatry, the return of individuals to their natal area for reproduction, has advantages and disadvantages for animal populations. Natal philopatry may generate local genetic adaptation, but it may also increase the probability of inbreeding that can compromise persistence. Although natal philopatry is well documented in anadromous fishes, marine fish may also return to their birth site to spawn. How philopatry shapes wild fish populations is, however, unclear because it requires constructing multigenerational pedigrees that are currently lacking for marine fishes. Here we present the first multigenerational pedigree for a marine fish population by repeatedly genotyping all individuals in a population of the orange clownfish (Amphiprion percula) at Kimbe Island (Papua New Guinea) during a 10-y period. Based on 2927 individuals, our pedigree analysis revealed that longitudinal philopatry was recurrent over five generations. Progeny tended to settle close to their parents, with related individuals often sharing the same colony. However, successful inbreeding was rare, and genetic diversity remained high, suggesting occasional inbreeding does not impair local population persistence. Local reproductive success was dependent on the habitat larvae settled into, rather than the habitat they came from. Our study suggests that longitudinal philopatry can influence both population replenishment and local adaptation of marine fishes. Resolving multigenerational pedigrees during a relatively short period, as we present here, provides a framework for assessing the ability of marine populations to persist and adapt to accelerating climate change. PMID:27799530
Sea lice and salmon population dynamics: effects of exposure time for migratory fish.
Krkosek, Martin; Morton, Alexandra; Volpe, John P; Lewis, Mark A
2009-08-07
The ecological impact of parasite transmission from fish farms is probably mediated by the migration of wild fishes, which determines the period of exposure to parasites. For Pacific salmon and the parasitic sea louse, Lepeophtheirus salmonis, analysis of the exposure period may resolve conflicting observations of epizootic mortality in field studies and parasite rejection in experiments. This is because exposure periods can differ by 2-3 orders of magnitude, ranging from months in the field to hours in experiments. We developed a mathematical model of salmon-louse population dynamics, parametrized by a study that monitored naturally infected juvenile salmon held in ocean enclosures. Analysis of replicated trials indicates that lice suffer high mortality, particularly during pre-adult stages. The model suggests louse populations rapidly decline following brief exposure of juvenile salmon, similar to laboratory study designs and data. However, when the exposure period lasts for several weeks, as occurs when juvenile salmon migrate past salmon farms, the model predicts that lice accumulate to abundances that can elevate salmon mortality and depress salmon populations. The duration of parasite exposure is probably critical to salmon-louse population dynamics, and should therefore be accommodated in coastal planning and management where fish farms are situated on wild fish migration routes.
Berdugo, Gilberto Orozco; Narváez Barandica, Juan C.
2014-01-01
Prochilodus magdalenae is an endemic freshwater fish that occurs in the Magdalena, Sinú and Atrato hydrographic basins. It has an important economic role and is a food resource for the artisanal fishing communities. Its socioeconomic importance contrasts with the current status of its fisheries, where stocks are being depleted. Considering its importance and lack of information on its genetic structure, we used seven microsatellite markers to assess the genetic structure of wild populations of P. magdalenae. The genetic diversity was assessed and the population genetic structure was estimated through Fst, analysis of molecular variance and Bayesian analysis. A total of 290 alleles were found in all loci throughout all population. The high polymorphism contrasts with the levels of observed heterozygosity (Ho = 0.276), which are the lowest values recorded for the family. We found three populations of bocachico coexisting throughout the studied system, contradicting the hypothesis that freshwater migratory fish form panmictic populations. These results on the genetic structure of P. magdalenae constitute tools for a better understanding of the behavior and biology of this species, contributing to fish management and conservation programs. PMID:24688289
Trape, Sébastien
2009-01-01
Four central Sahara mountainous massifs provide habitats for relict populations of fish. In the Adrar of Mauritania all available data on the presence and distribution of fish come from pre-1960 surveys where five fish species were reported: Barbus pobeguini, Barbus macrops, Barbus mirei, Sarotherodon galilaeus, and Clarias anguillaris. Since 1970, drought has had a severe impact in the Adrar where rainfall decreased by 35%. To investigate whether the relict populations of fish have survived the continuing drought, a study was carried out from 2004 to 2008. An inventory of perennial bodies of water was drawn up using a literature review and analysis of topographical and hydrological maps. Field surveys were carried out in order to locate the bodies of water described in the literature, identify the presence of fish, determine which species were present and estimate their abundance. The thirteen sites where the presence of fish was observed in the 1950s -Ksar Torchane, Ilij, Molomhar, Agueni, Tachot, Hamdoun, Terjit, Toungad, El Berbera, Timagazine, Dâyet el Mbârek, Dâyet et-Tefla, Nkedeï- were located and surveyed. The Ksar Torchane spring -type locality and the only known locality of B. mirei- has dried up at the height of the drought in 1984, and any fish populations have since become extinct there. The Timagazine, Dâyet el Mbârek and Dâyet et-Tefla pools have become ephemeral. The Hamdoun guelta appears to be highly endangered. The fish populations at the other sites remain unchanged. Four perennial pools which are home to populations of B. pobeguini are newly recorded. The tropical relict fish populations of the Adrar mountains of Mauritania appear to be highly endangered. Of thirteen previously recorded populations, four have become extinct since the beginning of the drought period. New fish population extinctions may occur should low levels of annual rainfall be repeated.
3D tooth microwear texture analysis in fishes as a test of dietary hypotheses of durophagy
NASA Astrophysics Data System (ADS)
Purnell, Mark A.; Darras, Laurent P. G.
2016-03-01
An understanding of how extinct animals functioned underpins our understanding of past evolutionary events, including adaptive radiations, and the role of functional innovation and adaptation as drivers of both micro- and macroevolution. Yet analysis of function in extinct animals is fraught with difficulty. Hypotheses that interpret molariform teeth in fishes as evidence of durophagous (shell-crushing) diets provide a good example of the particular problems inherent in the methods of functional morphology. This is because the assumed close coupling of form and function upon which the approach is based is weakened by, among other things, behavioural flexibility and the absence of a clear one to one relationship between structures and functions. Here we show that ISO 25178-2 standard parameters for surface texture, derived from analysis of worn surfaces of molariform teeth of fishes, vary significantly between species that differ in the amount of hard-shelled prey they consume. Two populations of the Sheepshead Seabream (Archosargus probatocephalus) were studied. This fish is not a dietary specialist, and one of the populations is known to consume more vegetation and less hard-shelled prey than the other; this is reflected in significant differences in their microwear textures. The Archosargus populations differ significantly in their microwear from the specialist shell-crusher Anarhichas lupus (the Atlantic Wolffish). Multivariate analysis of these three groups of fishes lends further support to the relationship between diet and tooth microwear, and provides robust validation of the approach. Application of the multivariate models derived from microwear texture in Archosargus and Anarhichas to a third fish species—the cichlid Astatoreochromis alluaudi—successfully separates wild caught fish that ate hard-shelled prey from lab-raised fish that did not. This cross-taxon validation demonstrates that quantitative analysis of tooth microwear texture can differentiate between fishes with different diets even when they range widely in size, habitat, and in the structure of their trophic apparatus. The approach thus has great potential as an additional tool for dietary analysis in extant fishes, and for testing dietary hypotheses in ancient and extinct species.
Mchich, Rachid; Brochier, Timothée; Auger, Pierre; Brehmer, Patrice
2016-12-01
This work presents a mathematical model describing the interactions between the cross-shore structure of small pelagic fish population an their exploitation by coastal and offshore fisheries. The complete model is a system of seven ODE's governing three stocks of small pelagic fish population moving and growing between three zones. Two types of fishing fleets are inter-acting with the fish population, industrial boats, constrained to offshore area, and artisanal boats, operating from the shore. Two time scales were considered and we use aggregation methods that allow us to reduce the dimension of the model and to obtain an aggregated model, which is a four dimension one. The analysis of the aggregated model is performed. We discuss the possible equilibriums and their meaning in terms of fishery management. An interesting equilibrium state can be obtained for which we can expect coexistence and a stable equilibrium state between fish stocks and fishing efforts. Some identification parameters are also given in the discussion part of the model.
Lorenzen, Kai
2005-01-29
The population dynamics of fisheries stock enhancement, and its potential for generating benefits over and above those obtainable from optimal exploitation of wild stocks alone are poorly understood and highly controversial. I review pertinent knowledge of fish population biology, and extend the dynamic pool theory of fishing to stock enhancement by unpacking recruitment, incorporating regulation in the recruited stock, and accounting for biological differences between wild and hatchery fish. I then analyse the dynamics of stock enhancement and its potential role in fisheries management, using the candidate stock of North Sea sole as an example and considering economic as well as biological criteria. Enhancement through release of recruits or advanced juveniles is predicted to increase total yield and stock abundance, but reduce abundance of the naturally recruited stock component through compensatory responses or overfishing. Economic feasibility of enhancement is subject to strong constraints, including trade-offs between the costs of fishing and hatchery releases. Costs of hatchery fish strongly influence optimal policy, which may range from no enhancement at high cost to high levels of stocking and fishing effort at low cost. Release of genetically maladapted fish reduces the effectiveness of enhancement, and is most detrimental overall if fitness of hatchery fish is only moderately compromised. As a temporary measure for the rebuilding of depleted stocks, enhancement cannot substitute for effort limitation, and is advantageous as an auxiliary measure only if the population has been reduced to a very low proportion of its unexploited biomass. Quantitative analysis of population dynamics is central to the responsible use of stock enhancement in fisheries management, and the necessary tools are available.
Maynard, George A.; Kinnison, M.T.; Zydlewski, Joseph D.
2017-01-01
The evolutionary effects of harvest on wild fish populations have been documented around the world; however, sublethal selective pressures can also cause evolutionary changes in phenotypes. For migratory fishes, passage facilities may represent instances of nonlethal selective pressure. Our analysis of 6 years of passage data suggests that certain fish passage facilities on the Penobscot River have been exerting selective pressure against large-bodied, anadromous Atlantic salmon (Salmo salar). At the second and third dams in the river, a 91-cm salmon was 21%–27% and 12%–16% less likely to pass than a 45-cm salmon, respectively. Fish size positively influences egg survival and number and is a heritable trait. Therefore, in a wild-reproducing population, exclusion of large fish from spawning areas may have population-level impacts. In the Penobscot River, most returning adults derive from a hatchery program that collects its broodstock after passing the first dam in the river. Analysis of fork lengths of salmon returning to the Penobscot River from 1978 to 2012 provided mixed support for evolution of size at maturity in different age classes in a pattern that may be expected from interactions with conservation hatchery operations. Additionally, slow-maturing and iteroparous individuals that represent the largest salmon size classes were essentially lost from the population during that time, and Penobscot River fish have shorter fork lengths at maturity than Atlantic salmon in undammed systems.
Ganta, Shravani; Nagaraj, Anup; Pareek, Sonia; Sidiq, Mohsin; Singh, Kushpal; Vishnani, Preeti
2015-01-01
Background Fluoride in drinking water is known for both beneficial and detrimental effects on health. The principal sources of fluoride include water, some species of vegetation, certain edible marine animals, dust and industrial processes. The purpose of this study was to evaluate the fluoride retention of most commonly consumed estuarine fishes among fish consuming population of Andhra Pradesh. Materials and Methods A cross-sectional study was conducted to evaluate the amount of fluoride retention due to ten most commonly consumed estuarine fishes as a contributing factor to Fluorosis by SPADNS Spectrophotometric method. The presence and severity of dental fluorosis among fish consuming population was recorded using Community Fluorosis Index. Statistical analysis was done using MedCalc v12.2.1.0 software. Results For Sea water fishes, the fluoride levels in bone were maximum in Indian Sardine (4.22 ppm). Amongst the river water fishes, the fluoride levels in bone were maximum in Catla (1.51 ppm). Also, the mean total fluoride concentrations of all the river fishes in skin, muscle and bone were less (0.86 ppm) as compared to the sea water fishes (2.59 ppm). It was unveiled that sea fishes accumulate relatively large amounts of Fluoride as compared to the river water fishes. The mean Community Fluorosis Index was found to be 1.06 amongst a sampled fish consuming population. Evaluation by Community Index for Dental fluorosis (CFI) suggested that fluorosis is of medium public health importance. Conclusion It was analysed that bone tends to accumulate more amount of fluoride followed by muscle and skin which might be due to the increased permeability and chemical trapping of fluoride inside the tissues. The amount of fluoride present in the fishes is directly related to the severity of fluorosis amongst fish consuming population, suggesting fishes as a contributing factor to fluorosis depending upon the dietary consumption. PMID:26266208
Ganta, Shravani; Yousuf, Asif; Nagaraj, Anup; Pareek, Sonia; Sidiq, Mohsin; Singh, Kushpal; Vishnani, Preeti
2015-06-01
Fluoride in drinking water is known for both beneficial and detrimental effects on health. The principal sources of fluoride include water, some species of vegetation, certain edible marine animals, dust and industrial processes. The purpose of this study was to evaluate the fluoride retention of most commonly consumed estuarine fishes among fish consuming population of Andhra Pradesh. A cross-sectional study was conducted to evaluate the amount of fluoride retention due to ten most commonly consumed estuarine fishes as a contributing factor to Fluorosis by SPADNS Spectrophotometric method. The presence and severity of dental fluorosis among fish consuming population was recorded using Community Fluorosis Index. Statistical analysis was done using MedCalc v12.2.1.0 software. For Sea water fishes, the fluoride levels in bone were maximum in Indian Sardine (4.22 ppm). Amongst the river water fishes, the fluoride levels in bone were maximum in Catla (1.51 ppm). Also, the mean total fluoride concentrations of all the river fishes in skin, muscle and bone were less (0.86 ppm) as compared to the sea water fishes (2.59 ppm). It was unveiled that sea fishes accumulate relatively large amounts of Fluoride as compared to the river water fishes. The mean Community Fluorosis Index was found to be 1.06 amongst a sampled fish consuming population. Evaluation by Community Index for Dental fluorosis (CFI) suggested that fluorosis is of medium public health importance. It was analysed that bone tends to accumulate more amount of fluoride followed by muscle and skin which might be due to the increased permeability and chemical trapping of fluoride inside the tissues. The amount of fluoride present in the fishes is directly related to the severity of fluorosis amongst fish consuming population, suggesting fishes as a contributing factor to fluorosis depending upon the dietary consumption.
Cooke, Steven J.; Martins, Eduardo G; Struthers, Daniel P; Gutowsky, Lee F G; Powers, Michael H.; Doka, Susan E.; Dettmers, John M.; Crook, David A; Lucas, Martyn C.; Holbrook, Christopher; Krueger, Charles C.
2016-01-01
Freshwater fish move vertically and horizontally through the aquatic landscape for a variety of reasons, such as to find and exploit patchy resources or to locate essential habitats (e.g., for spawning). Inherent challenges exist with the assessment of fish populations because they are moving targets. We submit that quantifying and describing the spatial ecology of fish and their habitat is an important component of freshwater fishery assessment and management. With a growing number of tools available for studying the spatial ecology of fishes (e.g., telemetry, population genetics, hydroacoustics, otolith microchemistry, stable isotope analysis), new knowledge can now be generated and incorporated into biological assessment and fishery management. For example, knowing when, where, and how to deploy assessment gears is essential to inform, refine, or calibrate assessment protocols. Such information is also useful for quantifying or avoiding bycatch of imperiled species. Knowledge of habitat connectivity and usage can identify critically important migration corridors and habitats and can be used to improve our understanding of variables that influence spatial structuring of fish populations. Similarly, demographic processes are partly driven by the behavior of fish and mediated by environmental drivers. Information on these processes is critical to the development and application of realistic population dynamics models. Collectively, biological assessment, when informed by knowledge of spatial ecology, can provide managers with the ability to understand how and when fish and their habitats may be exposed to different threats. Naturally, this knowledge helps to better evaluate or develop strategies to protect the long-term viability of fishery production. Failure to understand the spatial ecology of fishes and to incorporate spatiotemporal data can bias population assessments and forecasts and potentially lead to ineffective or counterproductive management actions.
Cooke, Steven J; Martins, Eduardo G; Struthers, Daniel P; Gutowsky, Lee F G; Power, Michael; Doka, Susan E; Dettmers, John M; Crook, David A; Lucas, Martyn C; Holbrook, Christopher M; Krueger, Charles C
2016-04-01
Freshwater fish move vertically and horizontally through the aquatic landscape for a variety of reasons, such as to find and exploit patchy resources or to locate essential habitats (e.g., for spawning). Inherent challenges exist with the assessment of fish populations because they are moving targets. We submit that quantifying and describing the spatial ecology of fish and their habitat is an important component of freshwater fishery assessment and management. With a growing number of tools available for studying the spatial ecology of fishes (e.g., telemetry, population genetics, hydroacoustics, otolith microchemistry, stable isotope analysis), new knowledge can now be generated and incorporated into biological assessment and fishery management. For example, knowing when, where, and how to deploy assessment gears is essential to inform, refine, or calibrate assessment protocols. Such information is also useful for quantifying or avoiding bycatch of imperiled species. Knowledge of habitat connectivity and usage can identify critically important migration corridors and habitats and can be used to improve our understanding of variables that influence spatial structuring of fish populations. Similarly, demographic processes are partly driven by the behavior of fish and mediated by environmental drivers. Information on these processes is critical to the development and application of realistic population dynamics models. Collectively, biological assessment, when informed by knowledge of spatial ecology, can provide managers with the ability to understand how and when fish and their habitats may be exposed to different threats. Naturally, this knowledge helps to better evaluate or develop strategies to protect the long-term viability of fishery production. Failure to understand the spatial ecology of fishes and to incorporate spatiotemporal data can bias population assessments and forecasts and potentially lead to ineffective or counterproductive management actions.
Uren Webster, T M; Bury, N; van Aerle, R; Santos, E M
2013-08-06
Worldwide, a number of viable populations of fish are found in environments heavily contaminated with metals, including brown trout (Salmo trutta) inhabiting the River Hayle in South-West of England. This population is chronically exposed to a water-borne mixture of metals, including copper and zinc, at concentrations lethal to naïve fish. We aimed to investigate the molecular mechanisms employed by the River Hayle brown trout to tolerate high metal concentrations. To achieve this, we combined tissue metal analysis with whole-transcriptome profiling using RNA-seq on an Illumina platform. Metal concentrations in the Hayle trout, compared to fish from a relatively unimpacted river, were significantly increased in the gills, liver and kidney (63-, 34- and 19-fold respectively), but not the gut. This confirms that these fish can tolerate considerable metal accumulation, highlighting the importance of these tissues in metal uptake (gill), storage and detoxification (liver, kidney). We sequenced, assembled and annotated the brown trout transcriptome using a de novo approach. Subsequent gene expression analysis identified 998 differentially expressed transcripts and functional analysis revealed that metal- and ion-homeostasis pathways are likely to be the most important mechanisms contributing to the metal tolerance exhibited by this population.
2013-01-01
Worldwide, a number of viable populations of fish are found in environments heavily contaminated with metals, including brown trout (Salmo trutta) inhabiting the River Hayle in South-West of England. This population is chronically exposed to a water-borne mixture of metals, including copper and zinc, at concentrations lethal to naïve fish. We aimed to investigate the molecular mechanisms employed by the River Hayle brown trout to tolerate high metal concentrations. To achieve this, we combined tissue metal analysis with whole-transcriptome profiling using RNA-seq on an Illumina platform. Metal concentrations in the Hayle trout, compared to fish from a relatively unimpacted river, were significantly increased in the gills, liver and kidney (63-, 34- and 19-fold respectively), but not the gut. This confirms that these fish can tolerate considerable metal accumulation, highlighting the importance of these tissues in metal uptake (gill), storage and detoxification (liver, kidney). We sequenced, assembled and annotated the brown trout transcriptome using a de novo approach. Subsequent gene expression analysis identified 998 differentially expressed transcripts and functional analysis revealed that metal- and ion-homeostasis pathways are likely to be the most important mechanisms contributing to the metal tolerance exhibited by this population. PMID:23834071
DOE Office of Scientific and Technical Information (OSTI.GOV)
Copeland, Timothy; Putnam, Scott
The goal of Idaho Steelhead Monitoring and Evaluation Studies is to collect monitoring data to evaluate wild and natural steelhead populations in the Clearwater and Salmon river drainages. During 2007, intensive population data were collected in Fish Creek (Lochsa River tributary) and Rapid River (Little Salmon River tributary); extensive data were collected in other selected spawning tributaries. Weirs were operated in Fish Creek and Rapid River to estimate adult escapement and to collect samples for age determination and genetic analysis. Snorkel surveys were conducted in Fish Creek, Rapid River, and Boulder Creek (Little Salmon River tributary) to estimate parr density.more » Screw traps were operated in Fish Creek, Rapid River, Secesh River, and Big Creek to estimate juvenile emigrant abundance, to tag fish for survival estimation, and to collect samples for age determination and genetic analysis. The estimated wild adult steelhead escapement in Fish Creek was 81 fish and in Rapid River was 32 fish. We estimate that juvenile emigration was 24,127 fish from Fish Creek; 5,632 fish from Rapid River; and 43,674 fish from Big Creek. The Secesh trap was pulled for an extended period due to wildfires, so we did not estimate emigrant abundance for that location. In cooperation with Idaho Supplementation Studies, trap tenders PIT tagged 25,618 steelhead juveniles at 18 screw trap sites in the Clearwater and Salmon river drainages. To estimate age composition, 143 adult steelhead and 5,082 juvenile steelhead scale samples were collected. At the time of this report, 114 adult and 1,642 juvenile samples have been aged. Project personnel collected genetic samples from 122 adults and 839 juveniles. We sent 678 genetic samples to the IDFG Eagle Fish Genetics Laboratory for analysis. Water temperature was recorded at 37 locations in the Clearwater and Salmon river drainages.« less
Zhu, S-R; Li, J-L; Xie, N; Zhu, L-M; Wang, Q; Yue, G-H
2014-02-13
The snakehead fish Channa argus is an important food fish in China. We identified six microsatellite loci for C. argus. These six microsatellite loci and four other microsatellite markers were used to analyze genetic diversity in four cultured populations of C. argus (SD, JX, HN, and ZJ) and determine their relationships. A total of 154 alleles were detected at the 10 microsatellite loci. The average expected and observed heterozygosities varied from 0.70-0.84 and 0.69-0.83, respectively, and polymorphism information content ranged between 0.66 and 0.82 in the four populations, indicating high genetic diversity. Population JX deviated from mutation-drift equilibrium and may have experienced a recent bottleneck. Analysis of pairwise genetic differentiation revealed FST values that ranged from 0.028 to 0.100, which indicates a moderate level of genetic differentiation. The largest distances were observed between populations HN and SD, whereas the smallest distances were obtained between populations HN and JX. Genetic clustering analysis demonstrated that the ZJ and HN populations probably share the same origin. This information about the genetic diversity within each of the four populations, and their genetic relationships will be useful for future genetic improvement of C. argus through selective breeding.
Cooke, Georgina M; Schlub, Timothy E; Sherwin, William B; Ord, Terry J
2016-01-01
Quantifying the spatial scale of population connectivity is important for understanding the evolutionary potential of ecologically divergent populations and for designing conservation strategies to preserve those populations. For marine organisms like fish, the spatial scale of connectivity is generally set by a pelagic larval phase. This has complicated past estimates of connectivity because detailed information on larval movements are difficult to obtain. Genetic approaches provide a tractable alternative and have the added benefit of estimating directly the reproductive isolation of populations. In this study, we leveraged empirical estimates of genetic differentiation among populations with simulations and a meta-analysis to provide a general estimate of the spatial scale of genetic connectivity in marine environments. We used neutral genetic markers to first quantify the genetic differentiation of ecologically-isolated adult populations of a land dwelling fish, the Pacific leaping blenny (Alticus arnoldorum), where marine larval dispersal is the only probable means of connectivity among populations. We then compared these estimates to simulations of a range of marine dispersal scenarios and to collated FST and distance data from the literature for marine fish across diverse spatial scales. We found genetic connectivity at sea was extensive among marine populations and in the case of A. arnoldorum, apparently little affected by the presence of ecological barriers. We estimated that ~5000 km (with broad confidence intervals ranging from 810-11,692 km) was the spatial scale at which evolutionarily meaningful barriers to gene flow start to occur at sea, although substantially shorter distances are also possible for some taxa. In general, however, such a large estimate of connectivity has important implications for the evolutionary and conservation potential of many marine fish communities.
Quantifying the impact of longline fisheries on adult survival in the black-footed albatross
Veran, S.; Gimenez, O.; Flint, E.; Kendall, W.L.; Doherty, P.F.; Lebreton, J.D.
2007-01-01
1. Industrial longline fishing has been suspected to impact upon black-footed albatross populations Phoebastria nigripes by increasing mortality, but no precise estimates of bycatch mortality are available to ascertain this statement. We present a general framework for quantifying the relationship between albatross population and longline fishing in absence of reliable estimates of bycatch rate. 2. We analysed capture?recapture data of a population of black-footed albatross to obtain estimates of survival probability for this population using several alternative models to adequately take into account heterogeneity in the recapture process. Instead of trying to estimate the number of birds killed by using various extrapolations and unchecked assumptions, we investigate the potential relationship between annual adult survival and several measures of fishing effort. Although we considered a large number of covariates, we used principal component analysis to generate a few uncorrelated synthetic variables from the set and thus we maintained both power and robustness. 3. The average survival for 1997?2002 was 92%, a low value compared to estimates available for other albatross species. We found that one of the synthetic variables used to summarize industrial longline fishing significantly explained more than 40% of the variation in adult survival over 11 years, suggesting an impact by longline fishing on albatross? survival. 4. Our analysis provides some evidence of non-linear variation in survival with fishing effort. This could indicate that below a certain level of fishing effort, deaths due to incidental catch can be partially or totally compensated for by a decrease in natural mortality. Another possible explanation is the existence of a strong interspecific competition for accessing the baits, reducing the risk of being accidentally hooked. 5. Synthesis and applications. The suspicion of a significant impact of longline fishing on the black-footed albatross population was supported by the combination of a low estimate of adult survival for the study period, and a significant relationship between adult survival and a synthetic measure of fishing effort. This study highlights the sensitivity of the black-footed albatross to commercial longline fishing, and should exhort fishery management authorities to find adequate seabirds avoidance methods and to encourage their employment.
Population viability analysis for endangered Roanoke logperch
Roberts, James H.; Angermeier, Paul; Anderson, Gregory B.
2016-01-01
A common strategy for recovering endangered species is ensuring that populations exceed the minimum viable population size (MVP), a demographic benchmark that theoretically ensures low long-term extinction risk. One method of establishing MVP is population viability analysis, a modeling technique that simulates population trajectories and forecasts extinction risk based on a series of biological, environmental, and management assumptions. Such models also help identify key uncertainties that have a large influence on extinction risk. We used stochastic count-based simulation models to explore extinction risk, MVP, and the possible benefits of alternative management strategies in populations of Roanoke logperch Percina rex, an endangered stream fish. Estimates of extinction risk were sensitive to the assumed population growth rate and model type, carrying capacity, and catastrophe regime (frequency and severity of anthropogenic fish kills), whereas demographic augmentation did little to reduce extinction risk. Under density-dependent growth, the estimated MVP for Roanoke logperch ranged from 200 to 4200 individuals, depending on the assumed severity of catastrophes. Thus, depending on the MVP threshold, anywhere from two to all five of the logperch populations we assessed were projected to be viable. Despite this uncertainty, these results help identify populations with the greatest relative extinction risk, as well as management strategies that might reduce this risk the most, such as increasing carrying capacity and reducing fish kills. Better estimates of population growth parameters and catastrophe regimes would facilitate the refinement of MVP and extinction-risk estimates, and they should be a high priority for future research on Roanoke logperch and other imperiled stream-fish species.
Genetic variation in steelhead of Oregon and northern California
Reisenbichler, R.R.; McIntyre, J.D.; Solazzi, M.F.; Landino, S.W
1992-01-01
Steelhead Oncorhynchus mykiss from various sites between the Columbia River and the Mad River, California, were genetically characterized at 10 protein-coding loci or pairs of loci by starch gel electrophoresis. Fish from coastal streams differed from fish east of the Cascade Mountains and from fish of the Willamette River (a tributary of the Columbia River, west of the Cascade Mountains). Coastal steelhead from the northern part of the study area differed from those in the southern part. Genetic differentiation within and among drainages was not statistically significant; however, gene diversity analysis and the life history of steelhead suggested that fish from different drainages should be considered as separate populations. Genetic variation among fish in separate drainages was similar to that reported in northwestern Washington and less than that reported in British Columbia. Allele frequencies varied significantly among year-classes. Genetic variation within samples accounted for 98.3% of the total genetic variation observed in this study. Most hatchery populations differed from wild populations, suggesting that conservation of genetic diversity among and within wild populations could be facilitated by altering hatchery programs.
South Fork Flathead Watershed Westslope Cutthroat Trout Conservation Program, Annual Report 2002.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grisak, Grant; Marotz, Brian
2003-06-01
In 1999, Montana Fish, Wildlife & Parks (MFWP) began a program aimed at conserving the genetically pure populations of westslope cutthroat trout in the South Fork Flathead River drainage. The objective of this program is to eliminate all of the exotic and hybrid trout that threaten the genetically pure westslope cutthroat populations in the South Fork Flathead. The exotic and hybrid trout populations occur in several headwater lakes and their outflow streams. In 2001 MFWP released a draft environmental assessment, pursuant to the Montana Environmental Policy Act (MEPA), that addressed the use of motorized equipment to deliver personnel and materialsmore » to some of these lakes in the Bob Marshall and Great Bear Wildernesses (Grisak 2001). After a 30-day public comment period, MFWP determined that the complexity of issues was too great and warranted a more detailed analysis. These issues included transportation options for personnel, equipment and materials, the use of motorized equipment in wilderness, fish removal methods, fish stocking, and the status and distribution of amphibian populations in the project area. Because the program also involves the U.S. Forest Service (USFS) and Bonneville Power Administration (BPA), the environmental analysis needs to comply with the National Environmental Policy Act (NEPA). In October 2001, pursuant to NEPA, MFWP, along with the USFS and BPA initiated an environmental assessment to address these issues. In June 2002, the three agencies determined that the scope of these issues warranted an Environmental Impact Statement. This specialist report describes the logistical, technical and biological issues associated with this project and provides an analysis of options for fish removal, transportation and fish stocking. It further analyzes issues and concerns associated with amphibian populations and creating new domesticated stocks of westslope cutthroat trout. Finally, this document provides a description of each lake, the best method of fish removal that would achieve the goals of the project, logistics for carrying out the fish removal, and the immediate management direction for each lake following fish removal. The USFS is preparing a specialist report detailing land management issues that relate to National Forest, designated Hiking Areas, and Wilderness. Information from these two documents will be used by BPA to prepare an Environmental Impact Statement.« less
Population dynamics of the sand shiner (notropis stramineus) in non-wadeable rivers of Iowa
Smith, C.D.; Neebling, T.E.; Quist, M.C.
2010-01-01
The sand shiner (Notropis stramineus) is a common cyprinid found throughout the Great Plains region of North America that plays an important ecological role in aquatic systems. This study was conducted to describe population dynamics of sand shiners including age structure, growth, mortality, and recruitment variability in 15 non-wadeable rivers in Iowa. Fish were collected during June-August (2007-2008) using a modified Missouri trawl, a seine, and boat-mounted electrofishing. Scales were removed for age and growth analysis. A total of 3,443 fish was sampled from 15 populations across Iowa, of which 676 were aged. Iowa's sand shiner populations consisted primarily of age-1 fish (53% of all fish sampled), followed by age-2 fish (30%), age-0 fish (15%), and age-3 fish (2%). Sand shiners grew an average of 38.5 mm (SE = 5.7) during their first year, 13.8 mm (4.5) during their second year, and 9.0 mm (6.9) during their third year. Total annual mortality varied from 35.0% to 92.3% among populations with a mean of 77.9% (0.2). Incremental mortality rates were 84.5% (0.2) between age 1 and age 2, and 92.0% (0.1) between age 2 and age 3. Recruitment was highly variable, as indicated by a mean recruitment variation index of-0.12 (0.54). Overall, the sand shiner was characterized by relatively low mean age, fast growth, high mortality, and high recruitment variability. Indices of sand shiner population dynamics were poorly correlated with habitat characteristics.
Using population models to evaluate management alternatives for Gulf Striped Bass
Aspinwall, Alexander P.; Irwin, Elise R.; Lloyd, M. Clint
2017-01-01
Interstate management of Gulf Striped Bass Morone saxatilis has involved a thirty-year cooperative effort involving Federal and State agencies in Georgia, Florida and Alabama (Apalachicola-Chattahoochee-Flint Gulf Striped Bass Technical Committee). The Committee has recently focused on developing an adaptive framework for conserving and restoring Gulf Striped Bass in the Apalachicola, Chattahoochee, and Flint River (ACF) system. To evaluate the consequences and tradeoffs among management activities, population models were used to inform management decisions. Stochastic matrix models were constructed with varying recruitment and stocking rates to simulate effects of management alternatives on Gulf Striped Bass population objectives. An age-classified matrix model that incorporated stock fecundity estimates and survival estimates was used to project population growth rate. In addition, combinations of management alternatives (stocking rates, Hydrilla control, harvest regulations) were evaluated with respect to how they influenced Gulf Striped Bass population growth. Annual survival and mortality rates were estimated from catch-curve analysis, while fecundity was estimated and predicted using a linear least squares regression analysis of fish length versus egg number from hatchery brood fish data. Stocking rates and stocked-fish survival rates were estimated from census data. Results indicated that management alternatives could be an effective approach to increasing the Gulf Striped Bass population. Population abundance was greatest under maximum stocking effort, maximum Hydrilla control and a moratorium. Conversely, population abundance was lowest under no stocking, no Hydrilla control and the current harvest regulation. Stocking rates proved to be an effective management strategy; however, low survival estimates of stocked fish (1%) limited the potential for population growth. Hydrilla control increased the survival rate of stocked fish and provided higher estimates of population abundances than maximizing the stocking rate. A change in the current harvest regulation (50% harvest regulation) was not an effective alternative to increasing the Gulf Striped Bass population size. Applying a moratorium to the Gulf Striped Bass fishery increased survival rates from 50% to 74% and resulted in the largest population growth of the individual management alternatives. These results could be used by the Committee to inform management decisions for other populations of Striped Bass in the Gulf Region.
Intervention analysis of power plant impact on fish populations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madenjian, C.P.
1984-10-01
Intervention analysis was applied to 10 yr (years 1973-1982) of field fish abundance data at the D. C. Cook Nuclear Power Plant, southeastern Lake Michigan. Three log-transformed catch series, comprising monthly observations, were examined for each combination of two species (alewife, Alosa pseudoharenga, or yellow perch, Perca flavescens) and gear (trawl or gill net): catch at the plant discharged transect, catch at the reference transect, and the ratio of plant catch to reference catch. Time series separated by age groups were examined. Based on intervention analysis, no change in the abundance of fish populations could be attributed to plant operation.more » Additionally, a modification of the intervention analysis technique was applied to investigate trends in abundance at both the plant discharge and reference transects. Significant declines were detected for abundance of alewife adults at both of the transects. Results of the trend analysis support the contention that the alewives have undergone a lakewide decrease in abundance during the 1970s.« less
Kohyama, Tetsuo I; Omote, Keita; Nishida, Chizuko; Takenaka, Takeshi; Saito, Keisuke; Fujimoto, Satoshi; Masuda, Ryuichi
2015-01-01
Quantifying intraspecific genetic variation in functionally important genes, such as those of the major histocompatibility complex (MHC), is important in the establishment of conservation plans for endangered species. The MHC genes play a crucial role in the vertebrate immune system and generally show high levels of diversity, which is likely due to pathogen-driven balancing selection. The endangered Blakiston's fish owl (Bubo blakistoni) has suffered marked population declines on Hokkaido Island, Japan, during the past several decades due to human-induced habitat loss and fragmentation. We investigated the spatial and temporal patterns of genetic diversity in MHC class IIβ genes in Blakiston's fish owl, using massively parallel pyrosequencing. We found that the Blakiston's fish owl genome contains at least eight MHC class IIβ loci, indicating recent gene duplications. An analysis of sequence polymorphism provided evidence that balancing selection acted in the past. The level of MHC variation, however, was low in the current fish owl populations in Hokkaido: only 19 alleles were identified from 174 individuals. We detected considerable spatial differences in MHC diversity among the geographically isolated populations. We also detected a decline of MHC diversity in some local populations during the past decades. Our study demonstrated that the current spatial patterns of MHC variation in Blakiston's fish owl populations have been shaped by loss of variation due to the decline and fragmentation of populations, and that the short-term effects of genetic drift have counteracted the long-term effects of balancing selection.
The use of archived tags in retrospective genetic analysis of fish.
Bonanomi, Sara; Therkildsen, Nina Overgaard; Hedeholm, Rasmus Berg; Hemmer-Hansen, Jakob; Nielsen, Einar E
2014-05-01
Collections of historical tissue samples from fish (e.g. scales and otoliths) stored in museums and fisheries institutions are precious sources of DNA for conducting retrospective genetic analysis. However, in some cases, only external tags used for documentation of spatial dynamics of fish populations have been preserved. Here, we test the usefulness of fish tags as a source of DNA for genetic analysis. We extract DNA from historical tags from cod collected in Greenlandic waters between 1950 and 1968. We show that the quantity and quality of DNA recovered from tags is comparable to DNA from archived otoliths from the same individuals. Surprisingly, levels of cross-contamination do not seem to be significantly higher in DNA from external (tag) than internal (otolith) sources. Our study therefore demonstrates that historical tags can be a highly valuable source of DNA for retrospective genetic analysis of fish. © 2013 John Wiley & Sons Ltd.
Characterizing fishing effort and spatial extent of coastal fisheries.
Stewart, Kelly R; Lewison, Rebecca L; Dunn, Daniel C; Bjorkland, Rhema H; Kelez, Shaleyla; Halpin, Patrick N; Crowder, Larry B
2010-12-29
Biodiverse coastal zones are often areas of intense fishing pressure due to the high relative density of fishing capacity in these nearshore regions. Although overcapacity is one of the central challenges to fisheries sustainability in coastal zones, accurate estimates of fishing pressure in coastal zones are limited, hampering the assessment of the direct and collateral impacts (e.g., habitat degradation, bycatch) of fishing. We compiled a comprehensive database of fishing effort metrics and the corresponding spatial limits of fisheries and used a spatial analysis program (FEET) to map fishing effort density (measured as boat-meters per km²) in the coastal zones of six ocean regions. We also considered the utility of a number of socioeconomic variables as indicators of fishing pressure at the national level; fishing density increased as a function of population size and decreased as a function of coastline length. Our mapping exercise points to intra and interregional 'hotspots' of coastal fishing pressure. The significant and intuitive relationships we found between fishing density and population size and coastline length may help with coarse regional characterizations of fishing pressure. However, spatially-delimited fishing effort data are needed to accurately map fishing hotspots, i.e., areas of intense fishing activity. We suggest that estimates of fishing effort, not just target catch or yield, serve as a necessary measure of fishing activity, which is a key link to evaluating sustainability and environmental impacts of coastal fisheries.
VanLandeghem, Matthew M.; Farooqi, Mukhtar; Farquhar, B.; Patino, Reynaldo
2013-01-01
Several reservoirs in the upper Colorado River and Brazos River basins in Texas have experienced toxic blooms of golden alga Prymnesium parvum and associated fish kills since 2001. There is a paucity of information, however, regarding the population-level effects of such kills in large reservoirs, species-specific resistance to or recovery from kills, or potential differences in the patterns of impacts among basins. We used multiple before-after, control-impact analysis to determine whether repeated golden alga blooms have led to declines in the relative abundance and size structure of fish populations. Sustained declines were noted for 9 of 12 fish species surveyed in the upper Colorado River, whereas only one of eight species was impacted by golden alga in the Brazos River. In the upper Colorado River, White Bass Morone chrysops, White Crappie Pomoxis annularis, Largemouth Bass Micropterus salmoides, Bluegill Lepomis macrochirus, River Carpsucker Carpiodes carpio, Freshwater Drum Aplodinotus grunniens, Channel Catfish Ictalurus punctatus, Flathead Catfish Pylodictis olivaris, and Blue Catfish I. furcatus exhibited sustained declines in relative abundance, size structure, or both; Gizzard Shad Dorosoma cepedianum, Longnose Gar Lepisosteus osseus, and Common Carp Cyprinus carpio did not exhibit those declines. In the Brazos River, only the relative abundance of Blue Catfish was impacted. Overall, toxic golden alga blooms can negatively impact fish populations over the long-term, but the patterns of impact can vary considerably among river basins and species. In the Brazos River, populations of most fish species appear to be healthy, suggesting a positive angling outlook for this basin. In the upper Colorado River, fish populations have been severely impacted, and angling opportunities have been reduced. Basin-specific management plans aimed at improving water quality and quantity will likely reduce bloom intensity and allow recovery of fish populations to the abundances and size structures present before golden alga. Received August 26, 2011; accepted November 25, 2012
Trends in the exploitation of South Atlantic shark populations.
Barreto, Rodrigo; Ferretti, Francesco; Flemming, Joanna M; Amorim, Alberto; Andrade, Humber; Worm, Boris; Lessa, Rosangela
2016-08-01
Approximately 25% of globally reported shark catches occur in Atlantic pelagic longline fisheries. Strong declines in shark populations have been detected in the North Atlantic, whereas in the South Atlantic the situation is less clear, although fishing effort has been increasing in this region since the late 1970s. We synthesized information on shark catch rates (based on 871,177 sharks caught on 86,492 longline sets) for the major species caught by multiple fleets in the South Atlantic between 1979 and 2011. We complied records from fishing logbooks of fishing companies, fishers, and onboard observers that were supplied to Brazilian institutions. By using exploratory data analysis and literature sources, we identified 3 phases of exploitation in these data (Supporting Information). From 1979 to 1997 (phase A), 5 fleets (40 vessels) fished mainly for tunas. From 1998 to 2008 (phase B), 20 fleets (100 vessels) fished for tunas, swordfishes, and sharks. From 2008 to 2011 (phase C), 3 fleets (30 vessels) fished for multiple species, but restrictive measures were implemented. We used generalized linear models to standardize catch rates and identify trends in each of these phases. Shark catch rates increased from 1979 to 1997, when fishing effort was low, decreased from 1998 to 2008, when fishing effort increased substantially, and remained stable or increased from 2008 to 2011, when fishing effort was again low. Our results indicate that most shark populations affected by longlines in the South Atlantic are currently depleted, but these populations may recover if fishing effort is reduced accordingly. In this context, it is problematic that comprehensive data collection, monitoring, and management of these fisheries ceased after 2012. Concurrently with the fact that Brazil is newly identified by FAO among the largest (and in fastest expansion) shark sub-products consumer market worldwide. © 2015 Society for Conservation Biology.
Jayasinghe, R P Prabath K; Amarasinghe, Upali S; Newton, Alice
2015-12-01
European marine waters include four regional seas that provide valuable ecosystem services to humans, including fish and other seafood. However, these marine environments are threatened by pressures from multiple anthropogenic activities and climate change. The European Marine Strategy Framework Directive (MSFD) was adopted in 2008 to achieve good environmental status (GEnS) in European Seas by year 2020, using an Ecosystem Approach. GEnS is to be assessed using 11 descriptors and up to 56 indicators. In the present analysis two descriptors namely "commercially exploited fish and shellfish populations" and "food webs" were used to evaluate the status of subareas of FAO 27 area. Data on life history parameters, trophic levels and fisheries related data of cod, haddock, saithe, herring, plaice, whiting, hake and sprat were obtained from the FishBase online database and advisory reports of International Council for the Exploration of the Sea (ICES). Subareas inhabited by r and K strategists were identified using interrelationships of life history parameters of commercially important fish stocks. Mean trophic level (MTL) of fish community each subarea was calculated and subareas with species of high and low trophic level were identified. The Fish in Balance (FiB) index was computed for each subarea and recent trends of FiB indices were analysed. The overall environmental status of each subarea was evaluated considering life history trends, MTL and FiB Index. The analysis showed that subareas I, II, V, VIII and IX were assessed as "good" whereas subareas III, IV, VI and VII were assessed as "poor". The subareas assessed as "good" were subject to lower environmental pressures, (less fishing pressure, less eutrophication and more water circulation), while the areas with "poor" environment experienced excessive fishing pressure, eutrophication and disturbed seabed. The evaluation was based on two qualitative descriptors ("commercially exploited fish and shellfish populations" and "food webs") is therefore more robust. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Fish consumption, fish oil supplements and risk of atherosclerosis in the Tromsø study.
Johnsen, Stein Harald; Jacobsen, Bjarne K; Brækkan, Sigrid K; Hansen, John-Bjarne; Mathiesen, Ellisiv B
2018-05-25
Whether long-chain n-3 PUFAs of marine origin have an anti-atherogenic effect in the general population has hardly been studied. In this population-based study, we hypothesized that fatty fish and fish oil intake protect against development of novel atherosclerotic plaques and is associated with reduced plaque size. We obtained questionnaire-based information on fish consumption and carotid ultrasonography from 3900 persons aged 45-74 years. The questionnaires were validated by measuring serum concentrations of PUFAs and triglycerides in a subgroup. At follow-up seven years later, 2983 (76%) went through a second ultrasound scanning. Logistic regression and general linear models were used to analyze the outcome (plaque presence and plaque area) as a function of fish consumption, including analyses stratified on fish oil supplements. At baseline, lean fish intake < 1 time/week vs. 1-1.9 times/week was associated with risk of plaque (OR 1.34, 95% CI 1.03-1.76). Fatty fish intake and use of fish oil supplements were not statistically significantly associated with atherosclerosis at baseline. In persons without plaque at baseline, total fish consumption ≥3 times/week vs. 1-1.9 times/week was associated with risk of novel plaque (OR 1.32, 95% CI 1.01-1.73) and larger plaque area (1.76 mm 2 vs. 1.46 mm 2 , p = 0.02) at follow-up. Adjustments for use of fish oil supplements had no impact on the associations, and no interactions were seen between total, fatty or lean fish consumption and fish oil intake. We found no protective effect of fatty fish eating or fish oil supplements on atherosclerotic plaque formation or plaque area in a general population. Lean fish consumption was associated with a reduced risk for plaque in cross-sectional analysis, suggesting that the beneficial effects of fish consumption on atherosclerosis may be mediated through other mechanisms than n-3 PUFAs.
Meek, Megan E; Van Dolah, Frances M
2016-05-01
Phytoplankton rarely occur as unialgal populations. Therefore, to study species-specific protein expression, indicative of physiological status in natural populations, methods are needed that will both assay for a protein of interest and identify the species expressing it. Here we describe a protocol for IF-FISH, a dual labeling procedure using immunofluorescence (IF) labeling of a protein of interest followed by fluorescence in situ hybridization (FISH) to identify the species expressing that protein. The protocol was developed to monitor expression of the cell cycle marker proliferating cell nuclear antigen (PCNA) in the red tide dinoflagellate, Karenia brevis, using a large subunit (LSU) rRNA probe to identify K. brevis in a mixed population of morphologically similar Karenia species. We present this protocol as proof of concept that IF-FISH can be successfully applied to phytoplankton cells. This method is widely applicable for the analysis of single-cell protein expression of any protein of interest within phytoplankton communities. Copyright © 2016 Elsevier B.V. All rights reserved.
Characterizing Fishing Effort and Spatial Extent of Coastal Fisheries
Stewart, Kelly R.; Lewison, Rebecca L.; Dunn, Daniel C.; Bjorkland, Rhema H.; Kelez, Shaleyla; Halpin, Patrick N.; Crowder, Larry B.
2010-01-01
Biodiverse coastal zones are often areas of intense fishing pressure due to the high relative density of fishing capacity in these nearshore regions. Although overcapacity is one of the central challenges to fisheries sustainability in coastal zones, accurate estimates of fishing pressure in coastal zones are limited, hampering the assessment of the direct and collateral impacts (e.g., habitat degradation, bycatch) of fishing. We compiled a comprehensive database of fishing effort metrics and the corresponding spatial limits of fisheries and used a spatial analysis program (FEET) to map fishing effort density (measured as boat-meters per km2) in the coastal zones of six ocean regions. We also considered the utility of a number of socioeconomic variables as indicators of fishing pressure at the national level; fishing density increased as a function of population size and decreased as a function of coastline length. Our mapping exercise points to intra and interregional ‘hotspots’ of coastal fishing pressure. The significant and intuitive relationships we found between fishing density and population size and coastline length may help with coarse regional characterizations of fishing pressure. However, spatially-delimited fishing effort data are needed to accurately map fishing hotspots, i.e., areas of intense fishing activity. We suggest that estimates of fishing effort, not just target catch or yield, serve as a necessary measure of fishing activity, which is a key link to evaluating sustainability and environmental impacts of coastal fisheries. PMID:21206903
Fishing amplifies forage fish population collapses.
Essington, Timothy E; Moriarty, Pamela E; Froehlich, Halley E; Hodgson, Emma E; Koehn, Laura E; Oken, Kiva L; Siple, Margaret C; Stawitz, Christine C
2015-05-26
Forage fish support the largest fisheries in the world but also play key roles in marine food webs by transferring energy from plankton to upper trophic-level predators, such as large fish, seabirds, and marine mammals. Fishing can, thereby, have far reaching consequences on marine food webs unless safeguards are in place to avoid depleting forage fish to dangerously low levels, where dependent predators are most vulnerable. However, disentangling the contributions of fishing vs. natural processes on population dynamics has been difficult because of the sensitivity of these stocks to environmental conditions. Here, we overcome this difficulty by collating population time series for forage fish populations that account for nearly two-thirds of global catch of forage fish to identify the fingerprint of fisheries on their population dynamics. Forage fish population collapses shared a set of common and unique characteristics: high fishing pressure for several years before collapse, a sharp drop in natural population productivity, and a lagged response to reduce fishing pressure. Lagged response to natural productivity declines can sharply amplify the magnitude of naturally occurring population fluctuations. Finally, we show that the magnitude and frequency of collapses are greater than expected from natural productivity characteristics and therefore, likely attributed to fishing. The durations of collapses, however, were not different from those expected based on natural productivity shifts. A risk-based management scheme that reduces fishing when populations become scarce would protect forage fish and their predators from collapse with little effect on long-term average catches.
Perry, Russell W.; Plumb, John M.; Fielding, Scott D.; Adams, Noah S.; Rondorf, Dennis W.
2013-01-01
The sensitivity of fish to a transmitter depends on factors such as environmental conditions, fish morphology, life stage, rearing history, and tag design. However, synthesizing general trends across studies is difficult because each study focuses on a particular performance measure, species, life stage, and transmitter model. These differences motivated us to develop simple metrics that allow effects of transmitters to be compared among different species, populations, or studies. First, we describe how multiple regression analysis can be used to quantify the effect of tag burden (transmitter mass relative to fish mass) on measures of physiological performance. Next, we illustrate how the slope and intercept parameters can be used to calculate two summary statistics: θ, which estimates the tag burden threshold above which the performance of tagged fish begins to decline relative to untagged fish; and k, which measures the percentage change in performance per percentage point increase in tag burden. When θ = 0, k provides a single measure of the tag's effect that can be compared among species, populations, or studies. We apply this analysis to two different experiments that measure the critical swimming speed (U crit) of tagged juvenile Chinook Salmon Oncorhynchus tshawytscha. In both experiments, U crit declined as tag burden increased, but we found no significant threshold in swimming performance. Estimates of θ ranged from −0.6% to 2.1% among six unique treatment groups, indicating that swimming performance began to decline at a relatively low tag burden. Estimates of k revealed that U crit of tagged fish declined by −2.68% to −4.86% for each 1% increase in tag burden. Both θ and k varied with the tag's antenna configuration, tag implantation method, and posttagging recovery time. Our analytical approach can be used to gain insights across populations to better understand factors affecting the ability of fish to carry a transmitter.
Ecology and genetic structure of zoonotic Anisakis spp. from adriatic commercial fish species.
Mladineo, Ivona; Poljak, Vedran
2014-02-01
Consumption of raw or thermally inadequately treated fishery products represents a public health risk, with the possibility of propagation of live Anisakis larvae, the causative agent of the zoonotic disease anisakidosis, or anisakiasis. We investigated the population dynamics of Anisakis spp. in commercially important fish-anchovies (Anisakis), sardines (Sardina pilchardus), European hake (Merluccius merluccius), whiting (Merlangius merlangus), chub mackerel (Scomber japonicus), and Atlantic bluefin tuna (Thunnus thynnus)-captured in the main Adriatic Sea fishing ground. We observed a significant difference in the numbers of parasite larvae (1 to 32) in individual hosts and between species, with most fish showing high or very high Anisakis population indices. Phylogenetic analysis confirmed that commercial fish in the Adriatic Sea are parasitized by Anisakis pegreffii (95.95%) and Anisakis simplex sensu stricto (4.05%). The genetic structure of A. pegreffii in demersal, pelagic, and top predator hosts was unstructured, and the highest frequency of haplotype sharing (n = 10) was between demersal and pelagic fish.
Redpath, Tara D; Cooke, Steven J; Arlinghaus, Robert; Wahl, David H; Philipp, David P
2009-08-01
In recreational fisheries, a correlation has been established between fishing-induced selection pressures and the metabolic traits of individual fish. This study used a population of largemouth bass (Micropterus salmoides) with lines of low vulnerability fish (LVF) and high vulnerability fish (HVF) that were previously established through artificial truncation selection experiments. The main objective was to evaluate if differential vulnerability to angling was correlated with growth, energetics and nutritional condition during the sub-adult stage. Absolute growth rate was found to be between 9% and 17% higher for LVF compared with HVF over a 6-month period in three experimental ponds. The gonadosomatic index in females was lower for LVF compared with HVF in one experimental pond. No significant differences in energy stores (measured using body constituent analysis) were observed between LVF and HVF. In addition, both groups were consuming the same prey items as evidenced by stomach content analysis. The inherent reasons behind differential vulnerability to angling are complex, and selection for these opposing phenotypes appears to select for differing growth rates, although the driving factors remain unclear. These traits are important from a life-history perspective, and alterations to their frequency as a result of fishing-induced selection could alter fish population structure. These findings further emphasize the need to incorporate evolutionary principles into fisheries management activities.
Redpath, Tara D; Cooke, Steven J; Arlinghaus, Robert; Wahl, David H; Philipp, David P
2009-01-01
In recreational fisheries, a correlation has been established between fishing-induced selection pressures and the metabolic traits of individual fish. This study used a population of largemouth bass (Micropterus salmoides) with lines of low vulnerability fish (LVF) and high vulnerability fish (HVF) that were previously established through artificial truncation selection experiments. The main objective was to evaluate if differential vulnerability to angling was correlated with growth, energetics and nutritional condition during the sub-adult stage. Absolute growth rate was found to be between 9% and 17% higher for LVF compared with HVF over a 6-month period in three experimental ponds. The gonadosomatic index in females was lower for LVF compared with HVF in one experimental pond. No significant differences in energy stores (measured using body constituent analysis) were observed between LVF and HVF. In addition, both groups were consuming the same prey items as evidenced by stomach content analysis. The inherent reasons behind differential vulnerability to angling are complex, and selection for these opposing phenotypes appears to select for differing growth rates, although the driving factors remain unclear. These traits are important from a life-history perspective, and alterations to their frequency as a result of fishing-induced selection could alter fish population structure. These findings further emphasize the need to incorporate evolutionary principles into fisheries management activities. PMID:25567883
DEVELOPMENT OF A DNA ARCHIVE FOR GENETIC MONITORING OF FISH POPULATIONS
Analysis of intraspecific genetic diversity provides a potentially powerful tool to estimate the impacts of environmental stressors on populations. Genetic responses of populations to novel stressors include dramatic shifts in genotype frequencies at loci under selection (i.e. ad...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Jr., Emmit E.
2004-03-01
This project is a critical component of currently on-going watershed restoration effort in the Lochsa River Drainage, including the Fishing (Squaw) Creek to Legendary Bear (Papoose) Creek Watersheds Analysis Area. In addition, funding for this project allowed expansion of the project into Pete King Creek and Cabin Creek. The goal of this project is working towards the re-establishment of healthy self-sustaining populations of key fisheries species (spring Chinook salmon, steelhead, bull trout, and westslope cutthroat trout) through returning historic habitat in all life stages (spawning, rearing, migration, and over-wintering). This was accomplished by replacing fish barrier road crossing culverts withmore » structures that pass fish and accommodate site conditions.« less
Moffitt, C.M.; Haukenes, A.H.; Williams, C.J.
2005-01-01
Fishery managers and resource conservationists are increasingly interested in understanding the fish health and disease risks of free-ranging fishes and whether propagated fishes or features and practices used at fish culture facilities pose a health risk to free-ranging populations. Disease agents are present in most both captive and all free-ranging fish populations, but the consequences and extent of infections in free-ranging populations are often difficult to measure, control, and understand. Sampling methods, protocols, and assay techniques developed to assess the health of captive populations are not as applicable for assessments of free-ranging fishes. The use of chemicals and therapeutics to control diseases and parasites in propagated fishes likely reduces the risk of introducing specific pathogens into the environment, but control measures may have localized effects on the environment surrounding fish culture facilities. To understand health risks of propagated and free ranging fishes, we must consider fish populations, culture facilities, fish releases, and their interactions within the greater geospatial features of the aquatic environment. ?? 2004 by the American Fisheries Society.
Zhang, J; Temme, E H; Kesteloot, H
2000-08-01
A striking difference in fish consumption and lung cancer mortality (LCM) exists among populations worldwide. This study investigated the relation between fish consumption and LCM at the population level. Sex-specific LCM data, mostly around 1993 and fish consumption data for 10 periods 1961-1994 in 36 countries were obtained from WHO and FAO, respectively. A significant inverse correlation exists between log fish consumption and LCM rate in 9 out of the 10 time periods (r = -0.34 to r = -0.46, P = 0.044 to P = 0.005). After adjusting for smoking and other confounders, log fish consumption (% of total energy [% E]) was inversely and significantly associated with LCM rate (per 100 000 per year) in all 10 time periods (beta = -26.3 to beta = -36.7; P = 0.0039 to P < 0.0001). The stratified analysis showed that this inverse relation was significant only in countries with above median level of smoking (>2437 cigarettes/adult/year) or animal fat minus fish fat consumption (22.4% E). An increase in fish consumption by 1% E was calculated to reduce mean male LCM rate of the populations examined in the age class of 45-74 years by 8.4%. In women, no significant relation between fish consumption and LCM could be established. Fish consumption is associated with a reduced risk from LCM, but this possible protective effect is clear-cut only in men and in countries with high levels of cigarette smoking or animal fat consumption.
Muhlfeld, Clint C.; D'Angelo, Vincent S.; S. T. Kalinowski,; Landguth, Erin L.; C. C. Downs,; J. Tohtz,; Kershner, Jeffrey L.
2012-01-01
Biologists are often faced with the difficult decision in managing native salmonids of where and when to install barriers as a conservation action to prevent upstream invasion of nonnative fishes. However, fine-scale approaches to assess long-term persistence of populations within streams and watersheds chosen for isolation management are often lacking. We employed a spatially-explicit approach to evaluate stream habitat conditions, relative abundance, and genetic diversity of native westslope cutthroat trout (Oncorhynchus clarkii lewisi) within the Akokala Creek watershed in Glacier National Park- a population threatened by introgressive hybridization with nonnative rainbow trout (O. mykiss) from nearby sources. The systematic survey of 24 stream reaches showed broad overlap in fish population and suitable habitat characteristics among reaches and no natural barriers to fish migration were found. Analysis of population structure using 16 microsatellite loci showed modest amounts of genetic diversity among reaches, and that fish from Long Bow Creek were the only moderately distinct genetic group. We then used this information to assess the potential impacts of three barrier placement scenarios on long-term population persistence and genetic diversity. The two barrier placement scenarios in headwater areas generally failed to meet general persistence criteria for minimum population size (2,500 individuals, Ne = 500), maintenance of long-term genetic diversity (He), and no population subdivision. Conversely, placing a barrier near the stream mouth and selectively passing non-hybridized, migratory spawners entering Akokala Creek met all persistence criteria and may offer the best option to conserve native trout populations and life history diversity. Systematic, fine-scale stream habitat, fish distribution, and genetic assessments in streams chosen for barrier installation are needed in conjunction with broader scale assessments to understand the potential impacts of using barriers for conservation of native salmonid populations threatened by nonnative fish invasions.
PROFILES OF GREAT LAKES CRITICAL POLLUTANTS: A SENTINEL ANALYSIS OF HUMAN BLOOD AND URINE
To determine the contaminants that should be studied further in the subsequent population-based study, a profile of Great Lakes (GL) sport fish contaminant residues were studied in human blood and urine specimens from 32 sport fish consumers from three Great Lakes: Lake Michigan ...
Genome-wide association meta-analysis of fish and EPA+DHA consumption in 17 US and European cohorts.
Mozaffarian, Dariush; Dashti, Hassan S; Wojczynski, Mary K; Chu, Audrey Y; Nettleton, Jennifer A; Männistö, Satu; Kristiansson, Kati; Reedik, Mägi; Lahti, Jari; Houston, Denise K; Cornelis, Marilyn C; van Rooij, Frank J A; Dimitriou, Maria; Kanoni, Stavroula; Mikkilä, Vera; Steffen, Lyn M; de Oliveira Otto, Marcia C; Qi, Lu; Psaty, Bruce; Djousse, Luc; Rotter, Jerome I; Harald, Kennet; Perola, Markus; Rissanen, Harri; Jula, Antti; Krista, Fischer; Mihailov, Evelin; Feitosa, Mary F; Ngwa, Julius S; Xue, Luting; Jacques, Paul F; Perälä, Mia-Maria; Palotie, Aarno; Liu, Yongmei; Nalls, Nike A; Ferrucci, Luigi; Hernandez, Dena; Manichaikul, Ani; Tsai, Michael Y; Kiefte-de Jong, Jessica C; Hofman, Albert; Uitterlinden, André G; Rallidis, Loukianos; Ridker, Paul M; Rose, Lynda M; Buring, Julie E; Lehtimäki, Terho; Kähönen, Mika; Viikari, Jorma; Lemaitre, Rozenn; Salomaa, Veikko; Knekt, Paul; Metspalu, Andres; Borecki, Ingrid B; Cupples, L Adrienne; Eriksson, Johan G; Kritchevsky, Stephen B; Bandinelli, Stefania; Siscovick, David; Franco, Oscar H; Deloukas, Panos; Dedoussis, George; Chasman, Daniel I; Raitakari, Olli; Tanaka, Toshiko
2017-01-01
Regular fish and omega-3 consumption may have several health benefits and are recommended by major dietary guidelines. Yet, their intakes remain remarkably variable both within and across populations, which could partly owe to genetic influences. To identify common genetic variants that influence fish and dietary eicosapentaenoic acid plus docosahexaenoic acid (EPA+DHA) consumption. We conducted genome-wide association (GWA) meta-analysis of fish (n = 86,467) and EPA+DHA (n = 62,265) consumption in 17 cohorts of European descent from the CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) Consortium Nutrition Working Group. Results from cohort-specific GWA analyses (additive model) for fish and EPA+DHA consumption were adjusted for age, sex, energy intake, and population stratification, and meta-analyzed separately using fixed-effect meta-analysis with inverse variance weights (METAL software). Additionally, heritability was estimated in 2 cohorts. Heritability estimates for fish and EPA+DHA consumption ranged from 0.13-0.24 and 0.12-0.22, respectively. A significant GWA for fish intake was observed for rs9502823 on chromosome 6: each copy of the minor allele (FreqA = 0.015) was associated with 0.029 servings/day (~1 serving/month) lower fish consumption (P = 1.96x10-8). No significant association was observed for EPA+DHA, although rs7206790 in the obesity-associated FTO gene was among top hits (P = 8.18x10-7). Post-hoc calculations demonstrated 95% statistical power to detect a genetic variant associated with effect size of 0.05% for fish and 0.08% for EPA+DHA. These novel findings suggest that non-genetic personal and environmental factors are principal determinants of the remarkable variation in fish consumption, representing modifiable targets for increasing intakes among all individuals. Genes underlying the signal at rs72838923 and mechanisms for the association warrant further investigation.
Genome-wide association meta-analysis of fish and EPA+DHA consumption in 17 US and European cohorts
Dashti, Hassan S; Wojczynski, Mary K; Chu, Audrey Y; Nettleton, Jennifer A; Männistö, Satu; Kristiansson, Kati; Reedik, Mägi; Lahti, Jari; Houston, Denise K; Cornelis, Marilyn C; van Rooij, Frank J. A; Dimitriou, Maria; Kanoni, Stavroula; Mikkilä, Vera; Steffen, Lyn M; de Oliveira Otto, Marcia C; Qi, Lu; Psaty, Bruce; Djousse, Luc; Rotter, Jerome I; Harald, Kennet; Perola, Markus; Rissanen, Harri; Jula, Antti; Krista, Fischer; Mihailov, Evelin; Feitosa, Mary F; Ngwa, Julius S; Xue, Luting; Jacques, Paul F; Perälä, Mia-Maria; Palotie, Aarno; Liu, Yongmei; Nalls, Nike A; Ferrucci, Luigi; Hernandez, Dena; Manichaikul, Ani; Tsai, Michael Y; Kiefte-de Jong, Jessica C; Hofman, Albert; Uitterlinden, André G; Rallidis, Loukianos; Ridker, Paul M; Rose, Lynda M; Buring, Julie E; Lehtimäki, Terho; Kähönen, Mika; Viikari, Jorma; Lemaitre, Rozenn; Salomaa, Veikko; Knekt, Paul; Metspalu, Andres; Borecki, Ingrid B; Cupples, L. Adrienne; Eriksson, Johan G; Kritchevsky, Stephen B; Bandinelli, Stefania; Siscovick, David; Franco, Oscar H; Deloukas, Panos; Dedoussis, George; Chasman, Daniel I; Raitakari, Olli; Tanaka, Toshiko
2017-01-01
Background Regular fish and omega-3 consumption may have several health benefits and are recommended by major dietary guidelines. Yet, their intakes remain remarkably variable both within and across populations, which could partly owe to genetic influences. Objective To identify common genetic variants that influence fish and dietary eicosapentaenoic acid plus docosahexaenoic acid (EPA+DHA) consumption. Design We conducted genome-wide association (GWA) meta-analysis of fish (n = 86,467) and EPA+DHA (n = 62,265) consumption in 17 cohorts of European descent from the CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) Consortium Nutrition Working Group. Results from cohort-specific GWA analyses (additive model) for fish and EPA+DHA consumption were adjusted for age, sex, energy intake, and population stratification, and meta-analyzed separately using fixed-effect meta-analysis with inverse variance weights (METAL software). Additionally, heritability was estimated in 2 cohorts. Results Heritability estimates for fish and EPA+DHA consumption ranged from 0.13–0.24 and 0.12–0.22, respectively. A significant GWA for fish intake was observed for rs9502823 on chromosome 6: each copy of the minor allele (FreqA = 0.015) was associated with 0.029 servings/day (~1 serving/month) lower fish consumption (P = 1.96x10-8). No significant association was observed for EPA+DHA, although rs7206790 in the obesity-associated FTO gene was among top hits (P = 8.18x10-7). Post-hoc calculations demonstrated 95% statistical power to detect a genetic variant associated with effect size of 0.05% for fish and 0.08% for EPA+DHA. Conclusions These novel findings suggest that non-genetic personal and environmental factors are principal determinants of the remarkable variation in fish consumption, representing modifiable targets for increasing intakes among all individuals. Genes underlying the signal at rs72838923 and mechanisms for the association warrant further investigation. PMID:29236708
NASA Astrophysics Data System (ADS)
Nunnallee, Edmund Pierce, Jr.
1980-03-01
This dissertation consists of an investigation into the empirical scaling of a digital echo integrator for assessment of a population of juvenile sockeye salmon in Cultus Lake, British Columbia, Canada. The scaling technique was developed over the last ten years for use with totally uncalibrated but stabilized data collection and analysis equipment, and has been applied to populations of fish over a wide geographical range. This is the first investigation into the sources of bias and the accuracy of the technique, however, and constitutes a verification of the method. The initial section of the investigation describes hydroacoustic data analysis methods for estimation of effective sampling volume which is necessary for estimation of fish density. The second section consists of a computer simulation of effective sample volume estimation by this empirical method and is used to investigate the degree of bias introduced by electronic and physical parameters such as boat speed -fish depth interaction effects, electronic thresholding and saturation, transducer beam angle, fish depth stratification by size and spread of the target strength distribution of the fish. Comparisons of simulation predictions of sample volume estimation bias to actual survey results are given at the end of this section. A verification of the scaling method is then presented by comparison of a hydroacoustically derived estimation of the Cultus Lake smolt population to an independent and concurrent estimate made by counting the migrant fish as they passed through a weir in the outlet stream of the lake. Finally, the effect on conduct and accuracy of hydroacoustic assessment of juvenile sockeye salmon due to several behavioral traits are discussed. These traits include movements of presmolt fish in a lake just prior to their outmigration, daily vertical migrations and the emergence and dispersal of sockeye fry in Cultus Lake. In addition, a comparison of the summer depth preferences of the fish over their entire geographical distribution on the west coast of the U.S. and Canada are discussed in terms of hydroacoustic accessibility.
Gutierrez, Juan B; Teem, John L
2006-07-21
A novel means of inducing extinction of an exotic fish population is proposed using a genetic approach to shift the ratio of male to females within a population. In the proposed strategy, sex-reversed fish containing two Y chromosomes are introduced into a normal fish population. These YY fish result in the production of a disproportionate number of male fish in subsequent generations. Mathematical modeling of the system following introduction of YY fish at a constant rate reveals that female fish decline in numbers over time, leading to eventual extinction of the population.
Kimirei, Ismael A.; Nagelkerken, Ivan; Mgaya, Yunus D.; Huijbers, Chantal M.
2013-01-01
Mangroves and seagrass beds have long been perceived as important nurseries for many fish species. While there is growing evidence from the Western Atlantic that mangrove habitats are intricately connected to coral reefs through ontogenetic fish migrations, there is an ongoing debate of the value of these coastal ecosystems in the Indo-Pacific. The present study used natural tags, viz. otolith stable carbon and oxygen isotopes, to investigate for the first time the degree to which multiple tropical juvenile habitats subsidize coral reef fish populations in the Indo Pacific (Tanzania). Otoliths of three reef fish species (Lethrinus harak, L. lentjan and Lutjanus fulviflamma) were collected in mangrove, seagrass and coral reef habitats and analyzed for stable isotope ratios in the juvenile and adult otolith zones. δ13C signatures were significantly depleted in the juvenile compared to the adult zones, indicative of different habitat use through ontogeny. Maximum likelihood analysis identified that 82% of adult reef L. harak had resided in either mangrove (29%) or seagrass (53%) or reef (18%) habitats as juveniles. Of adult L. fulviflamma caught from offshore reefs, 99% had passed through mangroves habitats as juveniles. In contrast, L. lentjan adults originated predominantly from coral reefs (65–72%) as opposed to inshore vegetated habitats (28–35%). This study presents conclusive evidence for a nursery role of Indo-Pacific mangrove habitats for reef fish populations. It shows that intertidal habitats that are only temporarily available can form an important juvenile habitat for some species, and that reef fish populations are often replenished by multiple coastal habitats. Maintaining connectivity between inshore vegetated habitats and coral reefs, and conserving habitat mosaics rather than single nursery habitats, is a major priority for the sustainability of various Indo Pacific fish populations. PMID:23776658
Kimirei, Ismael A; Nagelkerken, Ivan; Mgaya, Yunus D; Huijbers, Chantal M
2013-01-01
Mangroves and seagrass beds have long been perceived as important nurseries for many fish species. While there is growing evidence from the Western Atlantic that mangrove habitats are intricately connected to coral reefs through ontogenetic fish migrations, there is an ongoing debate of the value of these coastal ecosystems in the Indo-Pacific. The present study used natural tags, viz. otolith stable carbon and oxygen isotopes, to investigate for the first time the degree to which multiple tropical juvenile habitats subsidize coral reef fish populations in the Indo Pacific (Tanzania). Otoliths of three reef fish species (Lethrinus harak, L. lentjan and Lutjanus fulviflamma) were collected in mangrove, seagrass and coral reef habitats and analyzed for stable isotope ratios in the juvenile and adult otolith zones. δ(13)C signatures were significantly depleted in the juvenile compared to the adult zones, indicative of different habitat use through ontogeny. Maximum likelihood analysis identified that 82% of adult reef L. harak had resided in either mangrove (29%) or seagrass (53%) or reef (18%) habitats as juveniles. Of adult L. fulviflamma caught from offshore reefs, 99% had passed through mangroves habitats as juveniles. In contrast, L. lentjan adults originated predominantly from coral reefs (65-72%) as opposed to inshore vegetated habitats (28-35%). This study presents conclusive evidence for a nursery role of Indo-Pacific mangrove habitats for reef fish populations. It shows that intertidal habitats that are only temporarily available can form an important juvenile habitat for some species, and that reef fish populations are often replenished by multiple coastal habitats. Maintaining connectivity between inshore vegetated habitats and coral reefs, and conserving habitat mosaics rather than single nursery habitats, is a major priority for the sustainability of various Indo Pacific fish populations.
Grand Canyon Humpback Chub Population Improving
Andersen, Matthew E.
2007-01-01
The humpback chub (Gila cypha) is a long-lived, freshwater fish found only in the Colorado River Basin. Physical adaptations-large adult body size, large predorsal hump, and small eyes-appear to have helped humpback chub evolve in the historically turbulent Colorado River. A variety of factors, including habitat alterations and the introduction of nonnative fishes, likely prompted the decline of native Colorado River fishes. Declining numbers propelled the humpback chub onto the Federal list of endangered species in 1967, and the species is today protected under the Endangered Species Act of 1973. Only six populations of humpback chub are currently known to exist, five in the Colorado River Basin above Lees Ferry, Ariz., and one in Grand Canyon, Ariz. The U.S. Geological Survey's Grand Canyon Monitoring and Research Center oversees monitoring and research activities for the Grand Canyon population under the auspices of the Glen Canyon Dam Adaptive Management Program (GCDAMP). Analysis of data collected through 2006 suggests that the number of adult (age 4+ years) humpback chub in Grand Canyon increased to approximately 6,000 fish in 2006, following an approximate 40-50 percent decline between 1989 and 2001. Increasing numbers of adult fish appear to be the result of steadily increasing numbers of juvenile fish reaching adulthood beginning in the mid- to late-1990s and continuing through at least 2002.
Effect of climate change on marine ecosystems
NASA Astrophysics Data System (ADS)
Vikebo, F. B.; Sundby, S.; Aadlandsvik, B.; Fiksen, O.
2003-04-01
As a part of the INTEGRATION project, headed by Potsdam Institute for Climate Impact Research, funded by the German Research Council, the impact of climate change scenarios on marine fish populations will be addressed on a spesific population basis and will focus on fish populations in the northern North Atlantic with special emphasis on cod. The approach taken will mainly be a modelling study supported by analysis of existing data on fish stocks and climate. Through down-scaling and nesting techniques, various climate change scenarios with reduced THC in the North Atlantic will be investigated with higher spatial resolution for selected shelf areas. The hydrodynamical model used for the regional ocean modeling is ROMS (http://marine.rutgers.edu/po/models/roms/). An individual based model will be implemented into the larval drift module to simulate growth of the larvae along the drift paths.
Rocky Mountain Center for Conservation Genetics and Systematics
Oyler-McCance, S.J.; Quinn, T.W.
2005-01-01
The use of molecular genetic tools has become increasingly important in addressing conservation issues pertaining to plants and animals. Genetic information can be used to augment studies of population dynamics and population viability, investigate systematic, refine taxonomic definitions, investigate population structure and gene flow, and document genetic diversity in a variety of plant and animal species. Further, genetic techniques are being used to investigate mating systems through paternity analysis, and analyze ancient DNA samples from museum specimens, and estimate population size and survival rates using DNA as a unique marker. Such information is essential for the sound management of small, isolated populations of concern and is currently being used by universities, zoos, the U.S. Fish and Wildlife Service, and numerous state fish and wildlife agencies.
NASA Astrophysics Data System (ADS)
Williams, Christopher J.; Moffitt, Christine M.
2003-03-01
An important emerging issue in fisheries biology is the health of free-ranging populations of fish, particularly with respect to the prevalence of certain pathogens. For many years, pathologists focused on captive populations and interest was in the presence or absence of certain pathogens, so it was economically attractive to test pooled samples of fish. Recently, investigators have begun to study individual fish prevalence from pooled samples. Estimation of disease prevalence from pooled samples is straightforward when assay sensitivity and specificity are perfect, but this assumption is unrealistic. Here we illustrate the use of a Bayesian approach for estimating disease prevalence from pooled samples when sensitivity and specificity are not perfect. We also focus on diagnostic plots to monitor the convergence of the Gibbs-sampling-based Bayesian analysis. The methods are illustrated with a sample data set.
Monitoring and modeling terrestrial arthropod diversity on the Kenai National Wildlife Refuge
Matthew L. Bowser; John M. Morton
2009-01-01
The primary purpose of the Kenai National Wildlife Refuge (KENWR) is to "conserve fish and wildlife populations in their natural diversity," where "fish and wildlife" explicitly includes arthropods. To this end, we developed a Long Term Ecological Monitoring Program (LTEMP), a collaborative effort with the USDA Forest Inventory and Analysis (FIA)...
Relationship of farm salmon, sea lice, and wild salmon populations.
Marty, Gary D; Saksida, Sonja M; Quinn, Terrance J
2010-12-28
Increased farm salmon production has heightened concerns about the association between disease on farm and wild fish. The controversy is particularly evident in the Broughton Archipelago of Western Canada, where a high prevalence of sea lice (ectoparasitic copepods) was first reported on juvenile wild pink salmon (Oncorhynchus gorbuscha) in 2001. Exposure to sea lice from farmed Atlantic salmon (Salmo salar) was thought to be the cause of the 97% population decline before these fish returned to spawn in 2002, although no diagnostic investigation was done to rule out other causes of mortality. To address the concern that sea lice from fish farms would cause population extinction of wild salmon, we analyzed 10-20 y of fish farm data and 60 y of pink salmon data. We show that the number of pink salmon returning to spawn in the fall predicts the number of female sea lice on farm fish the next spring, which, in turn, accounts for 98% of the annual variability in the prevalence of sea lice on outmigrating wild juvenile salmon. However, productivity of wild salmon is not negatively associated with either farm lice numbers or farm fish production, and all published field and laboratory data support the conclusion that something other than sea lice caused the population decline in 2002. We conclude that separating farm salmon from wild salmon--proposed through coordinated fallowing or closed containment--will not increase wild salmon productivity and that medical analysis can improve our understanding of complex issues related to aquaculture sustainability.
Relationship of farm salmon, sea lice, and wild salmon populations
Marty, Gary D.; Saksida, Sonja M.; Quinn, Terrance J.
2010-01-01
Increased farm salmon production has heightened concerns about the association between disease on farm and wild fish. The controversy is particularly evident in the Broughton Archipelago of Western Canada, where a high prevalence of sea lice (ectoparasitic copepods) was first reported on juvenile wild pink salmon (Oncorhynchus gorbuscha) in 2001. Exposure to sea lice from farmed Atlantic salmon (Salmo salar) was thought to be the cause of the 97% population decline before these fish returned to spawn in 2002, although no diagnostic investigation was done to rule out other causes of mortality. To address the concern that sea lice from fish farms would cause population extinction of wild salmon, we analyzed 10–20 y of fish farm data and 60 y of pink salmon data. We show that the number of pink salmon returning to spawn in the fall predicts the number of female sea lice on farm fish the next spring, which, in turn, accounts for 98% of the annual variability in the prevalence of sea lice on outmigrating wild juvenile salmon. However, productivity of wild salmon is not negatively associated with either farm lice numbers or farm fish production, and all published field and laboratory data support the conclusion that something other than sea lice caused the population decline in 2002. We conclude that separating farm salmon from wild salmon—proposed through coordinated fallowing or closed containment—will not increase wild salmon productivity and that medical analysis can improve our understanding of complex issues related to aquaculture sustainability. PMID:21149706
Takemoto, R M; Pavanelli, G C; Lizama, M A P; Luque, J L; Poulin, R
2005-03-01
A comparative analysis of parasite species richness was performed across 53 species of fish from the floodplain of the upper Paraná River, Brazil. Values of catch per unit effort, CPUE (number of individuals of a given fish species captured per 1000 m(2) of net during 24 h) were used as a rough measure of population density for each fish species in order to test its influence on endoparasite species richness. The effects of several other host traits (body size, social behaviour, reproductive behaviour, spawning type, trophic category, feeding habits, relative position in the food web, preference for certain habitats and whether the fish species are native or exotic) on metazoan endoparasite species richness were also evaluated. The CPUE was the sole significant predictor of parasite species richness, whether controlling for the confounding influences of host phylogeny and sampling effort or not. The results suggest that in the floodplain of the upper Paraná River (with homogeneous physical characteristics and occurrence of many flood pulses), population density of different host species might be the major determinant of their parasite species richness.
Population expansions dominate demographic histories of endemic and widespread Pacific reef fishes.
Delrieu-Trottin, Erwan; Mona, Stefano; Maynard, Jeffrey; Neglia, Valentina; Veuille, Michel; Planes, Serge
2017-01-16
Despite the unique nature of endemic species, their origin and population history remain poorly studied. We investigated the population history of 28 coral reef fish species, close related, from the Gambier and Marquesas Islands, from five families, with range size varying from widespread to small-range endemic. We analyzed both mitochondrial and nuclear sequence data using neutrality test and Bayesian analysis (EBSP and ABC). We found evidence for demographic expansions for most species (24 of 28), irrespective of range size, reproduction strategy or archipelago. The timing of the expansions varied greatly among species, from 8,000 to 2,000,000 years ago. The typical hypothesis for reef fish that links population expansions to the Last Glacial Maximum fit for 14 of the 24 demographic expansions. We propose two evolutionary processes that could lead to expansions older than the LGM: (a) we are retrieving the signature of an old colonization process for widespread, large-range endemic and paleoendemic species or (b) speciation; the expansion reflects the birth of the species for neoendemic species. We show for the first time that the demographic histories of endemic and widespread reef fish are not distinctly different and suggest that a number of processes drive endemism.
Large scale, synchronous variability of marine fish populations driven by commercial exploitation.
Frank, Kenneth T; Petrie, Brian; Leggett, William C; Boyce, Daniel G
2016-07-19
Synchronous variations in the abundance of geographically distinct marine fish populations are known to occur across spatial scales on the order of 1,000 km and greater. The prevailing assumption is that this large-scale coherent variability is a response to coupled atmosphere-ocean dynamics, commonly represented by climate indexes, such as the Atlantic Multidecadal Oscillation and North Atlantic Oscillation. On the other hand, it has been suggested that exploitation might contribute to this coherent variability. This possibility has been generally ignored or dismissed on the grounds that exploitation is unlikely to operate synchronously at such large spatial scales. Our analysis of adult fishing mortality and spawning stock biomass of 22 North Atlantic cod (Gadus morhua) stocks revealed that both the temporal and spatial scales in fishing mortality and spawning stock biomass were equivalent to those of the climate drivers. From these results, we conclude that greater consideration must be given to the potential of exploitation as a driving force behind broad, coherent variability of heavily exploited fish species.
Argentina, Jane E.; Angermeier, Paul L.; Hallerman, Eric M.; Welsh, Stuart A.
2018-01-01
Connectivity among stream fish populations allows for exchange of genetic material and helps maintain genetic diversity, adaptive potential and population stability over time. Changes in species demographics and population connectivity have the potential to permanently alter the genetic patterns of stream fish, although these changes through space and time are variable and understudied in small‐bodied freshwater fish.As a spatially widespread, common species of benthic freshwater fish, the variegate darter (Etheostoma variatum) is a model species for documenting how patterns of genetic structure and diversity respond to increasing isolation due to large dams and how scale of study may shape our understanding of these patterns. We sampled variegate darters from 34 sites across their range in the North American Ohio River basin and examined how patterns of genetic structure and diversity within and between populations responded to historical population changes and dams within and between populations.Spatial scale and configuration of genetic structure varied across the eight identified populations, from tributaries within a watershed, to a single watershed, to multiple watersheds that encompass Ohio River mainstem habitats. This multiwatershed pattern of population structuring suggests genetic dispersal across large distances was and may continue to be common, although some populations remain isolated despite no apparent structural dispersal barriers. Populations with low effective population sizes and evidence of past population bottlenecks showed low allelic richness, but diversity patterns were not related to watershed size, a surrogate for habitat availability. Pairwise genetic differentiation (FST) increased with fluvial distance and was related to both historic and contemporary processes. Genetic diversity changes were influenced by underlying population size and stability, and while instream barriers were not strong determinants of genetic structuring or loss of genetic diversity, they reduce population connectivity and may impact long‐term population persistence.The broad spatial scale of this study demonstrated the large spatial extent of some variegate darter populations and indicated that dispersal is more extensive than expected given the movement patterns typically observed for small‐bodied, benthic fish. Dam impacts depended on underlying population size and stability, with larger populations more resilient to genetic drift and allelic richness loss than smaller populations.Other darters that inhabit large river habitats may show similar patterns in landscape‐scale studies, and large river barriers may impact populations of small‐bodied fish more than previously expected. Estimation of dispersal rates and behaviours is critical to conservation of imperilled riverine species such as darters.
Hightower, Joseph E.; Pollock, Kenneth H.
2013-01-01
Striped bass Morone saxatilis in inland reservoirs play an important role ecologically and in supporting recreational fishing. To manage these populations, biologists need information about abundance and mortality. Abundance estimates can be used to assess the effectiveness of stocking programs that maintain most reservoir striped bass populations. Mortality estimates can indicate the relative impact of fishing versus natural mortality and the need for harvest regulation. The purpose of this chapter is to evaluate tagging studies as a way of obtaining information about abundance and mortality. These approaches can be grouped into three broad categories: tag recapture, tag return, and telemetry. Tag-recapture methods are typically used to estimate population size and other demographic parameters but are often difficult to apply in large systems. A fishing tournament can be an effective way of generating tagging or recapture effort in large systems, compared to using research sampling only. Tag-return methods that rely on angler harvest and catch and release can be used to estimate fishing (F) and natural (M) mortality rates and are a practical approach in large reservoirs. The key to success in tag-return studies is to build in auxiliary studies to estimate short-term tagging mortality, short- and longterm tag loss, reporting rate, and mortality associated with catch and release. F and M can also be estimated using telemetry tags. Advantages of this approach are that angler nonreporting does not bias estimates and fish with transmitters provide useful ecological data. Cost can be a disadvantage of telemetry studies; thus, combining telemetry tags with conventional tag returns in an integrated analysis is often the optimal approach. In summary, tagging methods can be a powerful tool for assessing the effectiveness of inland striped bass stocking programs and the relative impact of fishing versus natural mortality
Luo, X N; Yang, M; Liang, X F; Jin, K; Lv, L Y; Tian, C X; Yuan, Y C; Sun, J
2015-09-25
In this study, 12 polymorphic microsatellites were inves-tigated to determine the genetic diversity and structure of 5 consecu-tive selected populations of golden mandarin fish (Siniperca scherzeri Steindachner). The total numbers of alleles, average heterozyosity, and average polymorphism information content showed that the genetic diversity of these breeding populations was decreasing. Additionally, pairwise fixation index FST values among populations and Da values in-creased from F1 generation to subsequent generations (FST values from 0.0221-0.1408; Da values from 0.0608-0.1951). Analysis of molecular variance indicated that most genetic variations arise from individuals within populations (about 92.05%), while variation among populations accounted for only 7.95%. The allele frequency of the loci SC75-220 and SC101-222 bp changed regularly in the 5 breeding generations. Their frequencies were gradually increased and showed an enrichment trend, indicating that there may be genetic correlations between these 2 loci and breeding traits. Our study indicated that microsatellite markers are effective for assessing the genetic variability in the golden mandarin fish breeding program.
Cleaning up the biogeography of Labroides dimidiatus using phylogenetics and morphometrics
NASA Astrophysics Data System (ADS)
Sims, C. A.; Riginos, C.; Blomberg, S. P.; Huelsken, T.; Drew, J.; Grutter, A. S.
2014-03-01
Cleaner fishes are some of the most conspicuous organisms on coral reefs due to their behaviour and prominent body pattern, consisting of a lateral stripe and blue/yellow colouration. All obligate cleaner fishes share this body stripe pattern, which is an important signal for attracting client fishes. However, variability in the cleaning signal of the cleaner fish Labroides dimidiatus has been documented across its range. Here, we investigate the geographic distribution of cleaner signal polymorphisms in L. dimidiatus and contrast this to phylogeographic variation in mitochondrial (mt) DNA. We used samples from 12 sites for genetic analyses, encompassing much of L. dimidiatus' range from the Red Sea to Fiji. We obtained morphometric measures of the cleaner signal body stripe width from individuals among six of the sites and qualitatively grouped tail stripe shape. mtDNA control region sequences were used for phylogenetic and population genetic analyses. We found that body stripe width was significantly correlated with tail stripe shape and geographical location, with Indian Ocean populations differing in morphology from western Pacific populations. L. dimidiatus haplotypes formed two reciprocally monophyletic clades, although in contrast to morphology, Japanese cleaner fish fell within the same clade as Indian Ocean cleaner fish and both clade types were sympatric in Papua New Guinea. An additional novel finding of our research was that the inclusion of two closely related cleaner fish species, Labroides pectoralis and Labroides bicolor, in the phylogenetic analysis rendered L. dimidiatus polyphyletic. Overall, the findings suggest the diversity within L. dimidiatus is underestimated.
Prevalence and Population Structure of Vibrio vulnificus on Fishes from the Northern Gulf of Mexico
Tao, Zhen; Larsen, Andrea M.; Bullard, Stephen A.; Wright, Anita C.
2012-01-01
The prevalence of Vibrio vulnificus on the external surfaces of fish from the northern Gulf of Mexico was determined in this study. A collection of 242 fish comprising 28 species was analyzed during the course of 12 sampling trips over a 16-month period. The prevalence of V. vulnificus was 37% but increased up to 69% in summer. A positive correlation was found between the percentages of V. vulnificus-positive fish and water temperatures, while salinity and V. vulnificus-positive fish prevalence were inversely correlated. A general lineal model (percent V. vulnificus-positive fish = 0.5930 − 0.02818 × salinity + 0.01406 × water temperature) was applied to best fit the data. Analysis of the population structure was carried out using 244 isolates recovered from fish. Ascription to 16S rRNA gene types indicated that 157 isolates were type A (62%), 72 (29%) were type B, and 22 (9%) were type AB. The percentage of type B isolates, considered to have greater virulence potential, was higher than that previously reported in oyster samples from the northern Gulf of Mexico. Amplified fragment length polymorphism (AFLP) was used to resolve the genetic diversity within the species. One hundred twenty-one unique AFLP profiles were found among all analyzed isolates, resulting in a calculated Simpson's index of diversity of 0.991. AFLP profiles were not grouped on the basis of collection date, fish species, temperature, or salinity, but isolates were clustered into two main groups that correlated precisely with 16S rRNA gene type. The population of V. vulnificus associated with fishes from the northern Gulf of Mexico is heterogeneous and includes strains of great virulence potential. PMID:22923394
Sandanger, T M; Brustad, M; Sandau, C D; Lund, E
2006-05-01
Recent research has again raised the issue regarding the potential health effects of long term exposure to persistent organic pollutants (POPs) in the context of a risk-benefit analysis. There remains clear evidence of the beneficial effects of fish consumption on public health and in particular fatty fish with its essential fatty acids. In addition to providing fatty acids, fish fat constitutes an essential source to vitamin D for the northern Norwegian population. Norwegian Food Control Authorities have recommended that children and women of childbearing age should not consume fish liver due to the risk associated with high intake of POPs. The aim of this study was to assess the influence of fish liver intake on the levels of PCBs and chlorinated pesticides in a rural coastal community (n = 31) in northern Norway, applying a cross-sectional design. The geometric mean plasma levels of sum of PCBs (14 congeners) and p,p'-DDE was found to be 558 microg kg(-1) lipids and 179 microg kg(-1) lipids, respectively. These levels were not significantly affected by the reported intake of fish liver, when age and gender were considered. Age in particular, but also gender were significant predictors for most compounds. When merging the dataset with an urban population with considerable lower intake of fish liver, the intake of cod liver still did not significantly affect the levels of PCBs and p,p'-DDE when adjusted for age and gender. Age and gender remain the strongest predictors of plasma levels of POPs in this study whereas fish liver intake was not significantly associated with the POPs.
Wildhaber, Mark L.; Lamberson, Peter J.
2004-01-01
Various mechanisms of habitat choice in fishes based on food and/or temperature have been proposed: optimal foraging for food alone; behavioral thermoregulation for temperature alone; and behavioral energetics and discounted matching for food and temperature combined. Along with development of habitat choice mechanisms, there has been a major push to develop and apply to fish populations individual-based models that incorporate various forms of these mechanisms. However, it is not known how the wide variation in observed and hypothesized mechanisms of fish habitat choice could alter fish population predictions (e.g. growth, size distributions, etc.). We used spatially explicit, individual-based modeling to compare predicted fish populations using different submodels of patch choice behavior under various food and temperature distributions. We compared predicted growth, temperature experience, food consumption, and final spatial distribution using the different models. Our results demonstrated that the habitat choice mechanism assumed in fish population modeling simulations was critical to predictions of fish distribution and growth rates. Hence, resource managers who use modeling results to predict fish population trends should be very aware of and understand the underlying patch choice mechanisms used in their models to assure that those mechanisms correctly represent the fish populations being modeled.
Larvivorous fish for preventing malaria transmission
Walshe, Deirdre P; Garner, Paul; Abdel-Hameed Adeel, Ahmed A; Pyke, Graham H; Burkot, Tom
2013-01-01
Background Adult anopheline mosquitoes transmit Plasmodium parasites that cause malaria. Some fish species eat mosquito larvae and pupae. In disease control policy documents, the World Health Organization includes biological control of malaria vectors by stocking ponds, rivers, and water collections near where people live with larvivorous fish to reduce Plasmodium parasite transmission. The Global Fund finances larvivorous fish programmes in some countries, and, with increasing efforts in eradication of malaria, policy makers may return to this option. We therefore assessed the evidence base for larvivorous fish programmes in malaria control. Objectives Our main objective was to evaluate whether introducing larvivorous fish to anopheline breeding sites impacts Plasmodium parasite transmission. Our secondary objective was to summarize studies evaluating whether introducing larvivorous fish influences the density and presence of Anopheles larvae and pupae in water sources, to understand whether fish can possibly have an effect. Search methods We attempted to identify all relevant studies regardless of language or publication status (published, unpublished, in press, or ongoing). We searched the following databases: the Cochrane Infectious Diseases Group Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL), published in The Cochrane Library; MEDLINE; EMBASE; CABS Abstracts; LILACS; and the metaRegister of Controlled Trials (mRCT) until 18 June 2013. We checked the reference lists of all studies identified by the above methods. We also examined references listed in review articles and previously compiled bibliographies to look for eligible studies. Selection criteria Randomized controlled trials and non-randomized controlled trials, including controlled before-and-after studies, controlled time series and controlled interrupted time series studies from malaria-endemic regions that introduced fish as a larvicide and reported on malaria in the community or the density of the adult anopheline population. In the absence of direct evidence of an effect on transmission, we carried out a secondary analysis on studies that evaluated the effect of introducing larvivorous fish on the density or presence of immature anopheline mosquitoes (larvae and pupae forms) in community water sources to determine whether this intervention has any potential in further research on control of malaria vectors. Data collection and analysis Three review authors screened abstracts and examined potentially relevant studies by using an eligibility form. Two review authors independently extracted data and assessed risk of bias of included studies. If relevant data were unclear or were not reported, we wrote to the trial authors for clarification. We presented data in tables, and we summarized studies that evaluated the effects of fish introduction on anopheline immature density or presence, or both. We used GRADE to summarize evidence quality. We also examined whether the authors of included studies reported on any possible adverse impact of larvivorous fish introduction on non-target native species. Main results We found no reliable studies that reported the effects of introducing larvivorous fish on malaria infection in nearby communities, on entomological inoculation rate, or on adult Anopheles density. For the secondary analysis, we examined the effects of introducing larvivorous fish on the density and presence of anopheline larvae and pupae in community water sources. We included 12 small studies, with follow-up from 22 days to five years. Studies were conducted in a variety of settings, including localized water bodies (such as wells, domestic water containers, fishponds, and pools; six studies), riverbed pools below dams (two studies), rice field plots (three studies), and water canals (two studies). All studies were at high risk of bias. The research was insufficient to determine whether larvivorous fish reduce the density of Anopheles larvae and pupae (nine studies, unpooled data, very low quality evidence). Some studies with high stocking levels of fish seemed to arrest the increase in immature anopheline populations, or to reduce the number of immature anopheline mosquitoes, compared with controls. However, this finding was not consistent, and in studies that showed a decrease in immature anopheline populations, the effect was not consistently sustained. Larvivorous fish may reduce the number of water sources withAnopheles larvae and pupae (five studies, unpooled data, low quality evidence). None of the included studies reported effects of larvivorous fish on local native fish populations or other species. Authors' conclusions Reliable research is insufficient to show whether introducing larvivorous fish reduces malaria transmission or the density of adult anopheline mosquito populations. In research examining the effects on immature anopheline stages of introducing fish to potential malaria vector breeding sites (localized water bodies such as wells and domestic water sources, rice field plots, and water canals) weak evidence suggests an effect on the density or presence of immature anopheline mosquitoes with high stocking levels of fish, but this finding is by no means consistent. We do not know whether this translates into health benefits, either with fish alone or with fish combined with other vector control measures. Our interpretation of the current evidence is that countries should not invest in fish stocking as a larval control measure in any malaria transmission areas outside the context of carefully controlled field studies or quasi-experimental designs. Research could also usefully examine the effects on native fish and other non-target species. PLAIN LANGUAGE SUMMARY Fish that feed on mosquito larvae for preventing malaria transmission Plasmodium parasites cause malaria and are transmitted by adult Anopheles mosquitoes. Programmes that introduce fish into water sources near where people live have been promoted. The theory is that these fish eat the Anopheles mosquito larvae and pupae, thus decreasing the adult mosquito population and reducing the number of people infected with Plasmodium parasites. In this review, we examined the research that evaluated introducing larvivorous fish to Anopheles mosquito breeding sites in areas where malaria was common, published up to 18 June 2013. We did not find any studies that looked at the effects of larvivorous fish on adult Anopheles mosquito populations or on the number of people infected with Plasmodium parasites. We included 12 studies that examined the effects of larvivorous fish on Anopheles larvae and pupae in different breeding sites, including localized water bodies (such as wells, domestic water containers, fishponds, and pools; six studies), riverbed pools below dams (two studies), rice field plots (three studies), and water canals (two studies). Research evidence is insufficient to show whether introduction of larvivorous fish reduces the number of Anopheles larvae and pupae in water sources (nine studies, unpooled data, very low quality evidence). However, larvivorous fish may reduce the number of water sources withAnopheles mosquito larvae and pupae (five studies, unpooled data, low quality evidence). None of the included studies examined the effects of introducing larvivorous fish on other native species present, but these studies were not designed to do this. Before much is invested in this intervention, better research is needed to determine the effect of introducing larvivorous fish on adult Anopheles populations and on the number of people infected with malaria. Researchers need to use robust controlled designs with an adequate number of sites. Also, researchers should explore whether introducing these fish affects native fish and other non-target species. PMID:24323308
NASA Astrophysics Data System (ADS)
Abesamis, Rene A.; Saenz-Agudelo, Pablo; Berumen, Michael L.; Bode, Michael; Jadloc, Claro Renato L.; Solera, Leilani A.; Villanoy, Cesar L.; Bernardo, Lawrence Patrick C.; Alcala, Angel C.; Russ, Garry R.
2017-09-01
Networks of no-take marine reserves (NTMRs) are a widely advocated strategy for managing coral reefs. However, uncertainty about the strength of population connectivity between individual reefs and NTMRs through larval dispersal remains a major obstacle to effective network design. In this study, larval dispersal among NTMRs and fishing grounds in the Philippines was inferred by conducting genetic parentage analysis on a coral-reef fish ( Chaetodon vagabundus). Adult and juvenile fish were sampled intensively in an area encompassing approximately 90 km of coastline. Thirty-seven true parent-offspring pairs were accepted after screening 1978 juveniles against 1387 adults. The data showed all types of dispersal connections that may occur in NTMR networks, with assignments suggesting connectivity among NTMRs and fishing grounds ( n = 35) far outnumbering those indicating self-recruitment ( n = 2). Critically, half (51%) of the inferred occurrences of larval dispersal linked reefs managed by separate, independent municipalities and constituent villages, emphasising the need for nested collaborative management arrangements across management units to sustain NTMR networks. Larval dispersal appeared to be influenced by wind-driven seasonal reversals in the direction of surface currents. The best-fit larval dispersal kernel estimated from the parentage data predicted that 50% of larvae originating from a population would attempt to settle within 33 km, and 95% within 83 km. Mean larval dispersal distance was estimated to be 36.5 km. These results suggest that creating a network of closely spaced (less than a few tens of km apart) NTMRs can enhance recruitment for protected and fished populations throughout the NTMR network. The findings underscore major challenges for regional coral-reef management initiatives that must be addressed with priority: (1) strengthening management of NTMR networks across political or customary boundaries; and (2) achieving adequate population connectivity via larval dispersal to sustain reef-fish populations within these networks.
Epizootics of wild fish induced by farm fish.
Krkosek, Martin; Lewis, Mark A; Morton, Alexandra; Frazer, L Neil; Volpe, John P
2006-10-17
The continuing decline of ocean fisheries and rise of global fish consumption has driven aquaculture growth by 10% annually over the last decade. The association of fish farms with disease emergence in sympatric wild fish stocks remains one of the most controversial and unresolved threats aquaculture poses to coastal ecosystems and fisheries. We report a comprehensive analysis of the spread and impact of farm-origin parasites on the survival of wild fish populations. We mathematically coupled extensive data sets of native parasitic sea lice (Lepeophtheirus salmonis) transmission and pathogenicity on migratory wild juvenile pink (Oncorhynchus gorbuscha) and chum (Oncorhynchus keta) salmon. Farm-origin lice induced 9-95% mortality in several sympatric wild juvenile pink and chum salmon populations. The epizootics arise through a mechanism that is new to our understanding of emerging infectious diseases: fish farms undermine a functional role of host migration in protecting juvenile hosts from parasites associated with adult hosts. Although the migratory life cycles of Pacific salmon naturally separate adults from juveniles, fish farms provide L. salmonis novel access to juvenile hosts, in this case raising infection rates for at least the first approximately 2.5 months of the salmon's marine life (approximately 80 km of the migration route). Spatial segregation between juveniles and adults is common among temperate marine fishes, and as aquaculture continues its rapid growth, this disease mechanism may challenge the sustainability of coastal ecosystems and economies.
Evaluating a fish monitoring protocol using state-space hierarchical models
Russell, Robin E.; Schmetterling, David A.; Guy, Chris S.; Shepard, Bradley B.; McFarland, Robert; Skaar, Donald
2012-01-01
Using data collected from three river reaches in Montana, we evaluated our ability to detect population trends and predict fish future fish abundance. Data were collected as part of a long-term monitoring program conducted by Montana Fish, Wildlife and Parks to primarily estimate rainbow (Oncorhynchus mykiss) and brown trout (Salmo trutta) abundance in numerous rivers across Montana. We used a hierarchical Bayesian mark-recapture model to estimate fish abundance over time in each of the three river reaches. We then fit a state-space Gompertz model to estimate current trends and future fish populations. Density dependent effects were detected in 1 of the 6 fish populations. Predictions of future fish populations displayed wide credible intervals. Our simulations indicated that given the observed variation in the abundance estimates, the probability of detecting a 30% decline in fish populations over a five-year period was less than 50%. We recommend a monitoring program that is closely tied to management objectives and reflects the precision necessary to make informed management decisions.
Ovenden, J. R.; White, RWG.
1990-01-01
Galaxias truttaceus is found in coastal rivers and streams in south-eastern Australia. It spawns at the head of estuaries in autumn and the larvae spend 3 months of winter at sea before returning to fresh water. In Tasmania there are landlocked populations of G. truttaceus in a cluster of geologically young lakes on the recently glaciated Central Plateau. These populations have no marine larval stage and spawn in the lakes in spring. Speciation due to land locking is thought to be a frequent occurrence within Galaxias. To investigate the nature of the speciation event which may be occurring within lake populations of G. truttaceus we studied the mitochondrial DNA (mtDNA) and allozyme diversity of both lake and stream populations. Using the presence or absence of restriction sites recognized by 13 six-base restriction endonucleases, we found 58 mtDNA haplotypes among 150 fish collected from 13 Tasmanian and one south-east Australian mainland stream populations. The most parsimonious network relating the haplotypes by site loss or gain was starlike in shape. We argue that this arrangement is best explained by selection upon slightly beneficial mutations within the mitochondrial genome. Gene diversity analysis under Wright's island model showed that the populations in each drainage were not genetically subdivided. Only two of these stream haplotypes were found among the 66 fish analyzed from four lake populations. Despite the extreme lack of mtDNA diversity in lake populations, the observed nuclear DNA heterozygosity of 40 lake fish (0.10355) was only slightly less than that of 82 stream fish (0.11635). In the short time (3000-7000 years) that the lake fish have been landlocked, random genetic drift in a finite, stable-sized population was probably not responsible for the lack of mtDNA diversity in the lake populations. We infer the lake populations have probably experienced at least one, severe, but transitory bottleneck possibly induced by natural selection for life-history characters essential for survival in the lacustrine habitat. If speciation is occurring in the landlocked populations of G. truttaceus, then it may be driven by genetic transilience. PMID:2155855
Jaisuk, Chaowalee; Senanan, Wansuk
2018-01-01
Spatial genetic variation of river-dwelling freshwater fishes is typically affected by the historical and contemporary river landscape as well as life-history traits. Tropical river and stream landscapes have endured extended geological change, shaping the existing pattern of genetic diversity, but were not directly affected by glaciation. Thus, spatial genetic variation of tropical fish populations should look very different from the pattern observed in temperate fish populations. These data are becoming important for designing appropriate management and conservation plans, as these aquatic systems are undergoing intense development and exploitation. This study evaluated the effects of landscape features on population genetic diversity of Garra cambodgiensis, a stream cyprinid , in eight tributary streams in the upper Nan River drainage basin ( n = 30-100 individuals/location), Nan Province, Thailand. These populations are under intense fishing pressure from local communities. Based on 11 microsatellite loci, we detected moderate genetic diversity within eight population samples (average number of alleles per locus = 10.99 ± 3.00; allelic richness = 10.12 ± 2.44). Allelic richness within samples and stream order of the sampling location were negatively correlated ( P < 0.05). We did not detect recent bottleneck events in these populations, but we did detect genetic divergence among populations (Global F ST = 0.022, P < 0.01). The Bayesian clustering algorithms (TESS and STRUCTURE) suggested that four to five genetic clusters roughly coincide with sub-basins: (1) headwater streams/main stem of the Nan River, (2) a middle tributary, (3) a southeastern tributary and (4) a southwestern tributary. We observed positive correlation between geographic distance and linearized F ST ( P < 0.05), and the genetic differentiation pattern can be moderately explained by the contemporary stream network (STREAMTREE analysis, R 2 = 0.75). The MEMGENE analysis suggested genetic division between northern (genetic clusters 1 and 2) and southern (clusters 3 and 4) sub-basins. We observed a high degree of genetic admixture in each location, highlighting the importance of natural flooding patterns and possible genetic impacts of supplementary stocking. Insights obtained from this research advance our knowledge of the complexity of a tropical stream system, and guide current conservation and restoration efforts for this species in Thailand.
Widespread mosquito net fishing in the Barotse floodplain: Evidence from qualitative interviews.
Larsen, David A; Welsh, Rick; Mulenga, Angela; Reid, Robert
2018-01-01
The insecticide-treated mosquito net (ITN) is a crucial component of malaria control programs, and has prevented many malaria cases and deaths due to scale up. ITNs also serve effectively as fishing nets and various sources have reported use of ITNs for fishing. This article examines how widespread the practice of mosquito net fishing with ITNs is. We conducted in-depth interviews with fishery personnel and traditional leadership from the Barotse Royal Establishment in Western Province, Zambia, to better understand the presence or absence of the use of ITNs as fishing nets. We then coded the interviews for themes through content analysis. Additionally we conducted a desk review of survey data to show trends in malaria indicators, nutritional status of the population and fish consumption. All those interviewed reported that ITNs are regularly used for fishing in Western Zambia and the misuse is widespread. Concurrently those interviewed reported declines in fish catches both in terms of quantity and quality leading to threatened food security in the area. In addition to unsustainable fishing practices those interviewed referenced drought and population pressure as reasons for fishery decline. Malaria indicators do not show a trend in declining malaria transmission, fish consumption has dropped dramatically and nutritional status has not improved over time. Despite the misuse of the ITNs for fishing all those interviewed maintained that ITN distribution should continue. Donors, control programs and scientists should realize that misuse of ITNs as fishing nets is a current problem for malaria control and potentially for food security that needs to be addressed.
Widespread mosquito net fishing in the Barotse floodplain: Evidence from qualitative interviews
Mulenga, Angela; Reid, Robert
2018-01-01
Background The insecticide-treated mosquito net (ITN) is a crucial component of malaria control programs, and has prevented many malaria cases and deaths due to scale up. ITNs also serve effectively as fishing nets and various sources have reported use of ITNs for fishing. This article examines how widespread the practice of mosquito net fishing with ITNs is. Methods We conducted in-depth interviews with fishery personnel and traditional leadership from the Barotse Royal Establishment in Western Province, Zambia, to better understand the presence or absence of the use of ITNs as fishing nets. We then coded the interviews for themes through content analysis. Additionally we conducted a desk review of survey data to show trends in malaria indicators, nutritional status of the population and fish consumption. Results All those interviewed reported that ITNs are regularly used for fishing in Western Zambia and the misuse is widespread. Concurrently those interviewed reported declines in fish catches both in terms of quantity and quality leading to threatened food security in the area. In addition to unsustainable fishing practices those interviewed referenced drought and population pressure as reasons for fishery decline. Malaria indicators do not show a trend in declining malaria transmission, fish consumption has dropped dramatically and nutritional status has not improved over time. Conclusions Despite the misuse of the ITNs for fishing all those interviewed maintained that ITN distribution should continue. Donors, control programs and scientists should realize that misuse of ITNs as fishing nets is a current problem for malaria control and potentially for food security that needs to be addressed. PMID:29719003
NASA Astrophysics Data System (ADS)
Nyitrai, Daniel; Martinho, Filipe; Dolbeth, Marina; Rito, João; Pardal, Miguel A.
2013-12-01
Large-scale and local climate patterns are known to influence several aspects of the life cycle of marine fish. In this paper, we used a 9-year database (2003-2011) to analyse the populations of two estuarine resident fishes, Pomatoschistus microps and Pomatoschistus minutus, in order to determine their relationships with varying environmental stressors operating over local and large scales. This study was performed in the Mondego estuary, Portugal. Firstly, the variations in abundance, growth, population structure and secondary production were evaluated. These species appeared in high densities in the beginning of the study period, with subsequent occasional high annual density peaks, while their secondary production was lower in dry years. The relationships between yearly fish abundance and the environmental variables were evaluated separately for both species using Spearman correlation analysis, considering the yearly abundance peaks for the whole population, juveniles and adults. Among the local climate patterns, precipitation, river runoff, salinity and temperature were used in the analyses, and North Atlantic Oscillation (NAO) index and sea surface temperature (SST) were tested as large-scale factors. For P. microps, precipitation and NAO were the significant factors explaining abundance of the whole population, the adults and the juveniles as well. Regarding P. minutus, for the whole population, juveniles and adults river runoff was the significant predictor. The results for both species suggest a differential influence of climate patterns on the various life cycle stages, confirming also the importance of estuarine resident fishes as indicators of changes in local and large-scale climate patterns, related to global climate change.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brannon, Ernest L.
1985-12-01
Research on Columbia River white sturgeon has been directed at their early life history as it may apply to production and enhancement strategies for management of the species. The river environment in which sturgeon historically migrated, spawned, and reared has changed through development. Habitat changes are expected to precipitate genetic changes in the fish, as well as reduce the fitness in populations. Genetic analysis of samples taken from various locations over the length of the Columbia River have indicated that observed gene frequencies in all areas sampled were not in Hardy-Weinburg equilibrium, which could suggest that the general population ismore » experiencing perturbation in the system. Analysis thus far has exposed few differences between samples from the lower, middle, and upper portions of the system. Allelic differences were identified in fish from the Roosevelt Lake, which may be evidence of unique characteristics among fish from that general area.« less
Hickman, Gary D; Brown, Mary L
2002-06-07
Two multimetric indices have been developed to help address fish community (reservoir fish assemblage index [RFAI]) and individual population quality (sport fishing index [SFI]) in Tennessee River reservoirs. The RFAI, with characteristics similar to the index of biotic integrity (IBI) used in stream fish community determinations, was developed to monitor the existing condition of resident fish communities. The index, which incorporates standardized electrofishing of littoral areas and experimental gill netting for limnetic bottom-dwelling species, has been used to determine residential fish community response to various anthropogenic impacts in southeastern reservoirs. The SFI is a multimetric index designed to address the quality of the fishery for individual resident sport fish species in a particular lake or reservoir[4]. The SFI incorporates measures of fish population aspects and angler catch and pressure estimates. This paper proposes 70% of the maximum RFAI score and 10% above the average SFI score for individual species as "screening" endpoints for balanced indigenous populations (BIP) or adverse environmental impact (AEI). Endpoints for these indices indicate: (1) communities/populations are obviously balanced indigenous populations (BIP) indicating no adverse environmental impact (AEI), or are "screened out"; (2) communities/populations are considered to be potentially impacted; and (3) where the resident fish community/population should be considered adversely impacted. Suggestions are also made concerning how examination of individual metric scores can help determine the source or cause of the impact.
Quantifying the Human Impacts on Papua New Guinea Reef Fish Communities across Space and Time.
Drew, Joshua A; Amatangelo, Kathryn L; Hufbauer, Ruth A
2015-01-01
Describing the drivers of species loss and of community change are important goals in both conservation and ecology. However, it is difficult to determine whether exploited species decline due to direct effects of harvesting or due to other environmental perturbations brought about by proximity to human populations. Here we quantify differences in species richness of coral reef fish communities along a human population gradient in Papua New Guinea to understand the relative impacts of fishing and environmental perturbation. Using data from published species lists we categorize the reef fishes as either fished or non-fished based on their body size and reports from the published literature. Species diversity for both fished and non-fished groups decreases as the size of the local human population increases, and this relationship is stronger in species that are fished. Additionally, comparison of modern and museum collections show that modern reef communities have proportionally fewer fished species relative to 19th century ones. Together these findings show that the reef fish communities of Papua New Guinea experience multiple anthropogenic stressors and that even at low human population levels targeted species experience population declines across both time and space.
Warren, Dana R; Kraft, Clifford E; Josephson, Daniel C; Driscoll, Charles T
2017-06-01
From the 1970s to 1990s, more stringent air quality regulations were implemented across North America and Europe to reduce chemical emissions that contribute to acid rain. Surface water pH slowly increased during the following decades, but biological recovery lagged behind chemical recovery. Fortunately, this situation is changing. In the past few years, northeastern US fish populations have begun to recover in lakes that were historically incapable of sustaining wild fish due to acidic conditions. As lake ecosystems across the eastern United States recover from acid deposition, the stress to the most susceptible populations of native coldwater fish appears to be shifting from acidification effects to thermal impacts associated with changing climate. Extreme summer temperature events - which are expected to occur with increasing frequency in the coming century - can stress and ultimately kill native coldwater fish in lakes where thermal stratification is absent or highly limited. Based on data from northeastern North America, we argue that recovery from acid deposition has the potential to improve the resilience of coldwater fish populations in some lakes to impacts of climate change. This will occur as the amount of dissolved organic carbon (DOC) in the water increases with increasing lake pH. Increased DOC will reduce water clarity and lead to shallower and more persistent lake thermoclines that can provide larger areas of coldwater thermal refuge habitat. Recovery from acidification will not eliminate the threat of climate change to coldwater fish, but secondary effects of acid recovery may improve the resistance of coldwater fish populations in lakes to the effects of elevated summer temperatures in historically acidified ecosystems. This analysis highlights the importance of considering the legacy of past ecosystem impacts and how recovery or persistence of those effects may interact with climate change impacts on biota in the coming decades. © 2016 John Wiley & Sons Ltd.
Blackhall, Fiona H; Peters, Solange; Bubendorf, Lukas; Dafni, Urania; Kerr, Keith M; Hager, Henrik; Soltermann, Alex; O'Byrne, Kenneth J; Dooms, Christoph; Sejda, Aleksandra; Hernández-Losa, Javier; Marchetti, Antonio; Savic, Spasenija; Tan, Qiang; Thunnissen, Erik; Speel, Ernst-Jan M; Cheney, Richard; Nonaka, Daisuke; de Jong, Jeroen; Martorell, Miguel; Letovanec, Igor; Rosell, Rafael; Stahel, Rolf A
2014-09-01
The prevalence of anaplastic lymphoma kinase (ALK) gene fusion (ALK positivity) in early-stage non-small-cell lung cancer (NSCLC) varies by population examined and detection method used. The Lungscape ALK project was designed to address the prevalence and prognostic impact of ALK positivity in resected lung adenocarcinoma in a primarily European population. Analysis of ALK status was performed by immunohistochemistry (IHC) and fluorescent in situ hybridization (FISH) in tissue sections of 1,281 patients with adenocarcinoma in the European Thoracic Oncology Platform Lungscape iBiobank. Positive patients were matched with negative patients in a 1:2 ratio, both for IHC and for FISH testing. Testing was performed in 16 participating centers, using the same protocol after passing external quality assessment. Positive ALK IHC staining was present in 80 patients (prevalence of 6.2%; 95% CI, 4.9% to 7.6%). Of these, 28 patients were ALK FISH positive, corresponding to a lower bound for the prevalence of FISH positivity of 2.2%. FISH specificity was 100%, and FISH sensitivity was 35.0% (95% CI, 24.7% to 46.5%), with a sensitivity value of 81.3% (95% CI, 63.6% to 92.8%) for IHC 2+/3+ patients. The hazard of death for FISH-positive patients was lower than for IHC-negative patients (P = .022). Multivariable models, adjusted for patient, tumor, and treatment characteristics, and matched cohort analysis confirmed that ALK FISH positivity is a predictor for better overall survival (OS). In this large cohort of surgically resected lung adenocarcinomas, the prevalence of ALK positivity was 6.2% using IHC and at least 2.2% using FISH. A screening strategy based on IHC or H-score could be envisaged. ALK positivity (by either IHC or FISH) was related to better OS. © 2014 by American Society of Clinical Oncology.
Morphological differences in parr of Atlantic salmon Salmo salar from three regions in Norway.
Solem, O; Berg, O K
2011-05-01
Morphological characters were compared in parr (total length 33-166 mm) of Atlantic salmon Salmo salar sampled from eight wild populations in three regions, three in northern, two in the middle and three in southern Norway, covering a distance of 1700 km (from 70° N to 58° N). On the basis of morphological characters 94·6% of the individuals were correctly classified into the three regions. Discrimination between populations within these three regions also had a high degree of correct classification (89·0-95·8%). Principle component analysis identified largest differences to be in head characters, notably eye diameter and jawbone, with the smallest diameter and head size among the northernmost populations. Fish from the southern rivers had a deeper body form whereas fish from the middle region had larger heads and pectoral fins. This illustrates that S. salar already in the early parr stage has morphological traits, which can be used in discrimination between regions and populations and that these differences are discernible in spite of the volume of escaped farmed fish spawning in Norwegian rivers during the past 30 years. © 2011 The Authors. Journal of Fish Biology © 2011 The Fisheries Society of the British Isles.
Ford, Michael J; Murdoch, Andrew; Hughes, Michael
2015-03-01
We used parentage analysis based on microsatellite genotypes to measure rates of homing and straying of Chinook salmon (Oncorhynchus tshawytscha) among five major spawning tributaries within the Wenatchee River, Washington. On the basis of analysis of 2248 natural-origin and 11594 hatchery-origin fish, we estimated that the rate of homing to natal tributaries by natural-origin fish ranged from 0% to 99% depending on the tributary. Hatchery-origin fish released in one of the five tributaries homed to that tributary at a far lower rate than the natural-origin fish (71% compared to 96%). For hatchery-released fish, stray rates based on parentage analysis were consistent with rates estimated using physical tag recoveries. Stray rates among major spawning tributaries were generally higher than stray rates of tagged fish to areas outside of the Wenatchee River watershed. Within the Wenatchee watershed, rates of straying by natural-origin fish were significantly affected by spawning tributary and by parental origin: progeny of naturally spawning hatchery-produced fish strayed at significantly higher rates than progeny whose parents were themselves of natural origin. Notably, none of the 170 offspring that were products of mating by two natural-origin fish strayed from their natal tributary. Indirect estimates of gene flow based on FST statistics were correlated with but higher than the estimates from the parentage data. Tributary-specific estimates of effective population size were also correlated with the number of spawners in each tributary. Published [2015]. This article is a U.S. Government work and is in the public domain in the USA.
Crootof, Africa; Mullabaev, Nodirbek; Saito, Laurel; Atwell, Lisa; Rosen, Michael R.; Bekchonova, Marhabo; Ginatullina, Elena; Scott, Julian; Chandra, Sudeep; Nishonov, Bakhriddin; Lamers, John P.A.; Fayzieva, Dilorom
2015-01-01
With >400 small (<1 ha) lakes, the arid Khorezm Province in Uzbekistan may be well-suited for aquaculture production. Developing water resources to provide a local food supply could increase fish consumption while improving the rural economy. Hydroecological (biological and physical) and chemical characteristics (including legacy pesticides ΣDDT and ΣHCH) of four representative drainage lakes in Khorezm from 2006 to 2008 were analyzed for the lakes’ capability to support healthy fish populations. Lake characteristics were categorized as “optimal” (having little or no effect on growth and development), “tolerable” (corresponding to chronic or sub-lethal toxicity) and “lethal” (corresponding to acute toxicity). Results indicate that three lakes are likely well-suited for raising fish species, with water quality meeting World Bank aquaculture guidelines. However, the fourth lake often had salinity concentrations > optimal levels for local fish species. Pesticide concentrations in water of all four lakes were within tolerable aquaculture ranges. Although water ΣDDT concentrations were >optimal limits, results from chemical analysis of fish tissues and semi-permeable membrane devices indicated that study lake ΣDDT concentrations were not accumulating in fish or posing a human health threat. Land and water management to maintain adequate lake water quality are imperative for sustaining fish populations for human consumption.
D'Costa, Avelyno; Shyama, S K; Praveen Kumar, M K
2017-08-01
The present study reports the genetic damage and the concentrations of trace metals and total petroleum hydrocarbons prevailing in natural populations of an edible fish, Arius arius in different seasons along the coast of Goa, India as an indicator of the pollution status of coastal water. Fish were collected from a suspected polluted site and a reference site in the pre-monsoon, monsoon and post-monsoon seasons. Physico-chemical parameters as well as the concentrations of total petroleum hydrocarbons (TPH) and trace metals in the water and sediment as well as the tissues of fish collected from these sites were recorded. The genotoxicity status of the fish was assessed employing the micronucleus test and comet assay. A positive correlation (p<0.001) was observed between the tail DNA and micronuclei in all the fish collected. Multiple regression analysis revealed that tissue and environmental pollutant concentrations and genotoxicity were positively associated and higher in the tissues of the fish collected from the polluted site. Pollution indicators and genotoxicity tests, combined with other physiological or biochemical parameters represent an essential integrated approach for efficient monitoring of aquatic ecosystems in Goa. Copyright © 2017 Elsevier Inc. All rights reserved.
Perrier, Charles; Guyomard, René; Bagliniere, Jean-Luc; Nikolic, Natacha; Evanno, Guillaume
2013-01-01
While the stocking of captive-bred fish has been occurring for decades and has had substantial immediate genetic and evolutionary impacts on wild populations, its long-term consequences have only been weakly investigated. Here, we conducted a spatiotemporal analysis of 1428 Atlantic salmon sampled from 1965 to 2006 in 25 populations throughout France to investigate the influence of stocking on the neutral genetic structure in wild Atlantic salmon (Salmo salar) populations. On the basis of the analysis of 11 microsatellite loci, we found that the overall genetic structure among populations dramatically decreased over the period studied. Admixture rates among populations were highly variable, ranging from a nearly undetectable contribution from donor stocks to total replacement of the native gene pool, suggesting extremely variable impacts of stocking. Depending on population, admixture rates either increased, remained stable, or decreased in samples collected between 1998 and 2006 compared to samples from 1965 to 1987, suggesting either rising, long-lasting or short-term impacts of stocking. We discuss the potential mechanisms contributing to this variability, including the reduced fitness of stocked fish and persistence of wild locally adapted individuals. PMID:23919174
Clinical methods for the assessment of the effects of environmental stress on fish health
Wedemeyer, Gary A.; Yasutake, William T.
1977-01-01
Clinical methods are presented for biological monitoring of hatchery and native fish populations to assess the effects of environmental stress on fish health. The choice of methods is based on the experience of the authors and the judgment of colleagues at fishery laboratories of the U.S. Fish and Wildlife Service. Detailed analysis methods, together with guidelines for sample collection and for the interpretation of results, are given for tests on blood (cell counts, chloride, cholesterol, clotting time, cortisol, glucose, hematocrit, hemoglobin, lactic acid, methemoglobin, osmolality, and total protein); water (ammonia and nitrite content); and liver and muscle (glycogen content).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heil, T.P.; Lindsay, R.C.
1990-08-01
Extracts from Large Toothed Aspen (Populous grandidenta Michx.) and Jack Pine (Pinus banksiana Lamb.) contained many odor compounds found in flavor-tainted walleye from the Wisconsin River, including alkylphenols. Aspen wood contained 8 ppb of 2-isopropylphenol, and river sediments also contained low ppb levels of many alkylphenols, including 2-isopropylphenol. Thiophenol and thiocresol which sporadically cause offensive sulfury taints in Wisconsin River fish were also found in river sediment. Quantitative analysis of fish for alkylphenols supported a hypothesis involving a food chain-mediated seasonal fluctuation of alkylphenol levels in fish. Thiophenols are postulated to be derived from pulp mill activities on the river.
Hook, Tomas O.; Rutherford, Edward S.; Brines, Shannon J.; Mason, Doran M.; Schwab, David J.; McCormick, Michael; Desorcie, Timothy J.
2003-01-01
The identification and protection of essential habitats for early life stages of fishes are necessary to sustain fish stocks. Essential fish habitat for early life stages may be defined as areas where fish densities, growth, survival, or production rates are relatively high. To identify critical habitats for young-of-year (YOY) alewives (Alosa pseud oharengus) in Lake Michigan, we integrated bioenergetics models with GIS (Geographic Information Systems) to generate spatially explicit estimates of potential population production (an index of habitat quality). These estimates were based upon YOY alewife bioenergetic growth rate potential and their salmonine predators’ consumptive demand. We compared estimates of potential population production to YOY alewife yield (an index of habitat importance). Our analysis suggested that during 1994–1995, YOY alewife habitat quality and yield varied widely throughout Lake Michigan. Spatial patterns of alewife yield were not significantly correlated to habitat quality. Various mechanisms (e.g., predator migrations, lake circulation patterns, alternative strategies) may preclude YOY alewives from concentrating in areas of high habitat quality in Lake Michigan.
Invasive lionfish drive Atlantic coral reef fish declines.
Green, Stephanie J; Akins, John L; Maljković, Aleksandra; Côté, Isabelle M
2012-01-01
Indo-Pacific lionfish (Pterois volitans and P. miles) have spread swiftly across the Western Atlantic, producing a marine predator invasion of unparalleled speed and magnitude. There is growing concern that lionfish will affect the structure and function of invaded marine ecosystems, however detrimental impacts on natural communities have yet to be measured. Here we document the response of native fish communities to predation by lionfish populations on nine coral reefs off New Providence Island, Bahamas. We assessed lionfish diet through stomach contents analysis, and quantified changes in fish biomass through visual surveys of lionfish and native fishes at the sites over time. Lionfish abundance increased rapidly between 2004 and 2010, by which time lionfish comprised nearly 40% of the total predator biomass in the system. The increase in lionfish abundance coincided with a 65% decline in the biomass of the lionfish's 42 Atlantic prey fishes in just two years. Without prompt action to control increasing lionfish populations, similar effects across the region may have long-term negative implications for the structure of Atlantic marine communities, as well as the societies and economies that depend on them.
Invasive Lionfish Drive Atlantic Coral Reef Fish Declines
Green, Stephanie J.; Akins, John L.; Maljković, Aleksandra; Côté, Isabelle M.
2012-01-01
Indo-Pacific lionfish (Pterois volitans and P. miles) have spread swiftly across the Western Atlantic, producing a marine predator invasion of unparalleled speed and magnitude. There is growing concern that lionfish will affect the structure and function of invaded marine ecosystems, however detrimental impacts on natural communities have yet to be measured. Here we document the response of native fish communities to predation by lionfish populations on nine coral reefs off New Providence Island, Bahamas. We assessed lionfish diet through stomach contents analysis, and quantified changes in fish biomass through visual surveys of lionfish and native fishes at the sites over time. Lionfish abundance increased rapidly between 2004 and 2010, by which time lionfish comprised nearly 40% of the total predator biomass in the system. The increase in lionfish abundance coincided with a 65% decline in the biomass of the lionfish's 42 Atlantic prey fishes in just two years. Without prompt action to control increasing lionfish populations, similar effects across the region may have long-term negative implications for the structure of Atlantic marine communities, as well as the societies and economies that depend on them. PMID:22412895
Steelhead Supplementation Studies; Steelhead Supplementation in Idaho Rivers, Annual Report 2002.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byrne, Alan
The Steelhead Supplementation Study (SSS) has two broad objectives: (1) investigate the feasibility of supplementing depressed wild and natural steelhead populations using hatchery populations, and (2) describe the basic life history and genetic characteristics of wild and natural steelhead populations in the Salmon and Clearwater Basins. Idaho Department of Fish and Game (IDFG) personnel stocked adult steelhead from Sawtooth Fish Hatchery into Frenchman and Beaver creeks and estimated the number of age-1 parr produced from the outplants since 1993. On May 2, 2002, both Beaver and Frenchman creeks were stocked with hatchery adult steelhead. A SSS crew snorkeled the creeksmore » in August 2002 to estimate the abundance of age-1 parr from brood year (BY) 2001. I estimated that the yield of age-1 parr per female stocked in 2001 was 7.3 and 6.7 in Beaver and Frenchman creeks, respectively. SSS crews stocked Dworshak hatchery stock fingerlings and smolts from 1993 to 1999 in the Red River drainage to assess which life stage produces more progeny when the adults return to spawn. In 2002, Clearwater Fish Hatchery personnel operated the Red River weir to trap adults that returned from these stockings. Twelve PIT-tagged adults from the smolt releases and one PIT-tagged adult from fingerling releases were detected during their migration up the mainstem Columbia and Snake rivers, but none from either group were caught at the weir. The primary focus of the study has been monitoring and collecting life history information from wild steelhead populations. An adult weir has been operated annually since 1992 in Fish Creek, a tributary of the Lochsa River. The weir was damaged by a rain-on-snow event in April 2002 and although the weir remained intact, some adults were able to swim undetected through the weir. Despite damage to the weir, trap tenders captured 167 adult steelhead, the most fish since 1993. The maximum likelihood estimate of adult steelhead escapement was 242. A screw trap has been operated annually in Fish Creek since 1994 to estimate the number of emigrating parr and smolts. I estimated that 18,687 juvenile steelhead emigrated from Fish Creek in 2002, the lowest number of migrants since 1998. SSS crews snorkeled three streams in the Selway River drainage and 10 streams in the Lochsa River drainage to estimate juvenile steelhead densities. The densities of age-1 steelhead parr declined in all streams compared to the densities observed in 2001. The age-1 densities in Fish Creek and Gedney Creek were the lowest observed since this project began monitoring those populations in 1994. The SSS crews and other cooperators tagged more than 12,000 juvenile steelhead with passive integrated transponder (PIT) tags in 2002. In 2002, technicians mounted and aged steelhead scales that were collected from 1998 to 2001. A consensus was reached among technicians for age of steelhead juveniles from Fish Creek. Scales that were collected in other streams were aged by at least one reader; however, before a final age is assigned to these fish, the age needs to be verified by another reader and any age differences among readers resolved. Dr. Jennifer Nielsen, at the U.S. Geological Survey Alaska Biological Science Center, Anchorage continued the microsatellite analysis of the steelhead tissue samples that were collected from Idaho streams in 2000. Two thousand eighteen samples from 40 populations were analyzed. The analysis of the remaining 39 populations is continuing.« less
Wargo, Andrew R.; Kell, Alison M.; Scott, Robert J.; Thorgaard, Gary H.; Kurath, Gael
2012-01-01
Little is known about the factors that drive the high levels of between-host variation in pathogen burden that are frequently observed in viral infections. Here, two factors thought to impact viral load variability, host genetic diversity and stochastic processes linked with viral entry into the host, were examined. This work was conducted with the aquatic vertebrate virus, Infectious hematopoietic necrosis virus (IHNV), in its natural host, rainbow trout. It was found that in controlled in vivo infections of IHNV, a suggestive trend of reduced between-fish viral load variation was observed in a clonal population of isogenic trout compared to a genetically diverse population of out-bred trout. However, this trend was not statistically significant for any of the four viral genotypes examined, and high levels of fish-to-fish variation persisted even in the isogenic trout population. A decrease in fish-to-fish viral load variation was also observed in virus injection challenges that bypassed the host entry step, compared to fish exposed to the virus through the natural water-borne immersion route of infection. This trend was significant for three of the four virus genotypes examined and suggests host entry may play a role in viral load variability. However, high levels of viral load variation also remained in the injection challenges. Together, these results indicate that although host genetic diversity and viral entry may play some role in between-fish viral load variation, they are not major factors. Other biological and non-biological parameters that may influence viral load variation are discussed.
Fishes in a changing world: learning from the past to promote sustainability of fish populations.
Gordon, T A C; Harding, H R; Clever, F K; Davidson, I K; Davison, W; Montgomery, D W; Weatherhead, R C; Windsor, F M; Armstrong, J D; Bardonnet, A; Bergman, E; Britton, J R; Côté, I M; D'agostino, D; Greenberg, L A; Harborne, A R; Kahilainen, K K; Metcalfe, N B; Mills, S C; Milner, N J; Mittermayer, F H; Montorio, L; Nedelec, S L; Prokkola, J M; Rutterford, L A; Salvanes, A G V; Simpson, S D; Vainikka, A; Pinnegar, J K; Santos, E M
2018-03-01
Populations of fishes provide valuable services for billions of people, but face diverse and interacting threats that jeopardize their sustainability. Human population growth and intensifying resource use for food, water, energy and goods are compromising fish populations through a variety of mechanisms, including overfishing, habitat degradation and declines in water quality. The important challenges raised by these issues have been recognized and have led to considerable advances over past decades in managing and mitigating threats to fishes worldwide. In this review, we identify the major threats faced by fish populations alongside recent advances that are helping to address these issues. There are very significant efforts worldwide directed towards ensuring a sustainable future for the world's fishes and fisheries and those who rely on them. Although considerable challenges remain, by drawing attention to successful mitigation of threats to fish and fisheries we hope to provide the encouragement and direction that will allow these challenges to be overcome in the future. © 2018 The Authors. Journal of Fish Biology published by John Wiley & Sons Ltd on behalf of The Fisheries Society of the British Isles.
Fish Assemblage Response to a Small Dam Removal in the Eightmile River System, Connecticut, USA
NASA Astrophysics Data System (ADS)
Poulos, Helen M.; Miller, Kate E.; Kraczkowski, Michelle L.; Welchel, Adam W.; Heineman, Ross; Chernoff, Barry
2014-11-01
We examined the effects of the Zemko Dam removal on the Eightmile River system in Salem, Connecticut, USA. The objective of this research was to quantify spatiotemporal variation in fish community composition in response to small dam removal. We sampled fish abundance over a 6-year period (2005-2010) to quantify changes in fish assemblages prior to dam removal, during drawdown, and for three years following dam removal. Fish population dynamics were examined above the dam, below the dam, and at two reference sites by indicator species analysis, mixed models, non-metric multidimensional scaling, and analysis of similarity. We observed significant shifts in fish relative abundance over time in response to dam removal. Changes in fish species composition were variable, and they occurred within 1 year of drawdown. A complete shift from lentic to lotic fishes failed to occur within 3 years after the dam was removed. However, we did observe increases in fluvial and transition (i.e., pool head, pool tail, or run) specialist fishes both upstream and downstream from the former dam site. Our results demonstrate the importance of dam removal for restoring river connectivity for fish movement. While the long-term effects of dam removal remain uncertain, we conclude that dam removals can have positive benefits on fish assemblages by enhancing river connectivity and fluvial habitat availability.
Fish assemblage response to a small dam removal in the Eightmile River system, Connecticut, USA.
Poulos, Helen M; Miller, Kate E; Kraczkowski, Michelle L; Welchel, Adam W; Heineman, Ross; Chernoff, Barry
2014-11-01
We examined the effects of the Zemko Dam removal on the Eightmile River system in Salem, Connecticut, USA. The objective of this research was to quantify spatiotemporal variation in fish community composition in response to small dam removal. We sampled fish abundance over a 6-year period (2005-2010) to quantify changes in fish assemblages prior to dam removal, during drawdown, and for three years following dam removal. Fish population dynamics were examined above the dam, below the dam, and at two reference sites by indicator species analysis, mixed models, non-metric multidimensional scaling, and analysis of similarity. We observed significant shifts in fish relative abundance over time in response to dam removal. Changes in fish species composition were variable, and they occurred within 1 year of drawdown. A complete shift from lentic to lotic fishes failed to occur within 3 years after the dam was removed. However, we did observe increases in fluvial and transition (i.e., pool head, pool tail, or run) specialist fishes both upstream and downstream from the former dam site. Our results demonstrate the importance of dam removal for restoring river connectivity for fish movement. While the long-term effects of dam removal remain uncertain, we conclude that dam removals can have positive benefits on fish assemblages by enhancing river connectivity and fluvial habitat availability.
The genomic landscape of rapid repeated evolutionary adaptation to toxic pollution in wild fish
Atlantic killifish populations have rapidly adapted to normally lethal levels of pollution in four urban estuaries. Through analysis of 384 whole killifish genome sequences and comparative transcriptomics in four pairs of sensitive and tolerant populations, we identify the aryl h...
2012-04-23
organic matter) can be a nutritional source (US Army Corps of Engineers, 2002; Benson & Raikow, 2012). When food resources are limiting, intraspecific...Food and Agriculture Organization of the United Nations mainly for the analysis of fish population length-frequency data (Gayanilo, Sparre, & Pauly... fish kill. The organically -rich sediments at all these reservoirs would place a high sediment-oxygen demand on the drawn down reservoir over the
Brewer, T D; Cinner, J E; Green, A; Pressey, R L
2013-06-01
Coral reef fisheries are crucial to the livelihoods of tens of millions of people; yet, widespread habitat degradation and unsustainable fishing are causing severe depletion of stocks of reef fish. Understanding how social and economic factors, such as human population density, access to external markets, and modernization interact with fishing and habitat degradation to affect fish stocks is vital to sustainable management of coral reef fisheries. We used fish survey data, national social and economic data, and path analyses to assess whether these factors explain variation in biomass of coral reef fishes among 25 sites in Solomon Islands. We categorized fishes into 3 groups on the basis of life-history characteristics associated with vulnerability to extinction by fishing (high, medium, and low vulnerability). The biomass of fish with low vulnerability was positively related to habitat condition. The biomass of fishes with high vulnerability was negatively related to fishing conducted with efficient gear. Use of efficient gear, in turn, was strongly and positively related to both population density and market proximity. This result suggests local population pressure and external markets have additive negative effects on vulnerable reef fish. Biomass of the fish of medium vulnerability was not explained by fishing intensity or habitat condition, which suggests these species may be relatively resilient to both habitat degradation and fishing. © 2012 Society for Conservation Biology.
Larvivorous fish for preventing malaria transmission
Walshe, Deirdre P; Garner, Paul; Adeel, Ahmed A; Pyke, Graham H; Burkot, Thomas R
2017-01-01
Background Adult female Anopheles mosquitoes can transmit Plasmodium parasites that cause malaria. Some fish species eat mosquito larvae and pupae. In disease control policy documents, the World Health Organization (WHO) includes biological control of malaria vectors by stocking ponds, rivers, and water collections near where people live with larvivorous fish to reduce Plasmodium parasite transmission. In the past, the Global Fund has financed larvivorous fish programmes in some countries, and, with increasing efforts in eradication of malaria, policymakers may return to this option. Therefore, we assessed the evidence base for larvivorous fish programmes in malaria control. Objectives To evaluate whether introducing larvivorous fish to anopheline larval habitats impacts Plasmodium parasite transmission. We also sought to summarize studies that evaluated whether introducing larvivorous fish influences the density and presence of Anopheles larvae and pupae in water sources. Search methods We searched the Cochrane Infectious Diseases Group Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL), published in the Cochrane Library; MEDLINE (PubMed); Embase (Ovid); CABS Abstracts; LILACS; and the metaRegister of Controlled Trials (mRCT) up to 6 July 2017. We checked the reference lists of all studies identified by the search. We examined references listed in review articles and previously compiled bibliographies to look for eligible studies. Also we contacted researchers in the field and the authors of studies that met the inclusion criteria for additional information regarding potential studies for inclusion and ongoing studies. This is an update of a Cochrane Review published in 2013. Selection criteria Randomized controlled trials (RCTs) and non-RCTs, including controlled before-and-after studies, controlled time series, and controlled interrupted time series studies from malaria-endemic regions that introduced fish as a larvicide and reported on malaria in the community or the density of the adult anopheline population. In the absence of direct evidence of an effect on transmission, we performed a secondary analysis on studies that evaluated the effect of introducing larvivorous fish on the density or presence of immature anopheline mosquitoes (larvae and pupae forms) in water sources to determine whether this intervention has any potential that may justify further research in the control of malaria vectors. Data collection and analysis Two review authors independently screened each article by title and abstract, and examined potentially relevant studies for inclusion using an eligibility form. At least two review authors independently extracted data and assessed risk of bias of included studies. If relevant data were unclear or were not reported, we contacted the study authors for clarification. We presented data in tables, and we summarized studies that evaluated the effects of introducing fish on anopheline immature density or presence, or both. We used the GRADE approach to summarize the certainty of the evidence. We also examined whether the included studies reported any possible adverse impact of introducing larvivorous fish on non-target native species. Main results We identified no studies that reported the effects of introducing larvivorous fish on the primary outcomes of this review: malaria infection in nearby communities, entomological inoculation rate, or on adult Anopheles density. For the secondary analysis, we examined the effects of introducing larvivorous fish on the density and presence of anopheline larvae and pupae in community water sources, and found 15 small studies with a follow-up period between 22 days and five years. These studies were undertaken in Sri Lanka (two studies), India (three studies), Ethiopia (one study), Kenya (two studies), Sudan (one study), Grande Comore Island (one study), Korea (two studies), Indonesia (one study), and Tajikistan (two studies). These studies were conducted in a variety of settings, including localized water bodies (such as wells, domestic water containers, fishponds, and pools (seven studies); riverbed pools below dams (two studies)); rice field plots (five studies); and water canals (two studies). All included studies were at high risk of bias. The research was insufficient to determine whether larvivorous fish reduce the density of Anopheles larvae and pupae (12 studies, unpooled data, very low certainty evidence). Some studies with high stocking levels of fish seemed to arrest the increase in immature anopheline populations, or to reduce the number of immature anopheline mosquitoes, compared with controls. However, this finding was not consistent, and in studies that showed a decrease in immature anopheline populations, the effect was not always consistently sustained. In contrast, some studies reported larvivorous fish reduced the number of water sources withAnopheles larvae and pupae (five studies, unpooled data, low certainty evidence). None of the included studies reported effects of larvivorous fish on local native fish populations or other species. Authors' conclusions We do not know whether introducing larvivorous fish reduces malaria transmission or the density of adult anopheline mosquito populations. In research studies that examined the effects on immature anopheline stages of introducing fish to potential malaria vector larval habitats, high stocking levels of fish may reduce the density or presence of immature anopheline mosquitoes in the short term. We do not know whether this translates into impact on malaria transmission. Our interpretation of the current evidence is that countries should not invest in fish stocking as a stand alone or supplementary larval control measure in any malaria transmission areas outside the context of research using carefully controlled field studies or quasi-experimental designs. Such research should examine the effects on native fish and other non-target species. Fish that feed on mosquito larvae for preventing malaria transmission What is the aim of this review? Adult female Anopheles mosquitoes transmit the Plasmodium parasites that cause malaria. The aim of this Cochrane Review was to evaluate whether introducing fish that eat mosquito larvae and pupae (early life stages of mosquitoes) into water sources near where people live will decrease the adult Anopheles mosquito population and thus the number of people infected with Plasmodium parasites. Key messages We do not know if introducing fish that eat mosquito larvae and pupae has an impact on the number of people with malaria or on the adult Anopheles mosquito population. What was studied in the review? The review authors examined the available research that evaluated introducing fish that eat larvae ('larvivorous') to Anopheles mosquito larval habitats in areas where malaria was common. Fifteen small studies looked at the effects of larvivorous fish on Anopheles larvae and pupae in different larval habitats, including localized water bodies (such as wells, domestic water containers, fishponds, and pools; seven studies), riverbed pools below dams (two studies), rice field plots (four studies), and water canals (two studies). These studies were undertaken in Sri Lanka (two studies), India (three studies), Ethiopia (one study), Kenya (two studies), Sudan (one study), Grande Comore Island (one study), Korea (two studies), Indonesia (one study), and Tajikistan (two studies). This is an update of a 2013 Cochrane Review and includes some older unpublished studies from Tajikistan and a new trial from India. What are the main results of the review? In our main analysis, we found no studies that looked at the effects of larvivorous fish on adult Anopheles mosquito populations or on the number of people infected with Plasmodium parasites. In our analysis exploring the effect of fish introduction on the number of Anopheles larvae and pupae in water collections, these studies produced inconsistent results on immature mosquito density (12 studies, unpooled data, very low certainty evidence). Some studies that measured the number of water sources withAnopheles larvae and pupae reported a reduction in the number of sites with Anopheles larvae and pupae after introducing fish (five studies, unpooled data, low certainty evidence). None of the included studies examined the effects of introducing larvivorous fish on other native species present, but these studies were not designed to do this. All included studies were at high risk of bias. Before much is invested in this intervention, we need better research to determine the effect of introducing larvivorous fish on the number of people infected with malaria, and on adult Anopheles populations. Researchers need to use robust controlled designs with an adequate number of sites. In addition, researchers should explore the potential harms from introducing these fish on native fish and other non-Anopheles species. How up-to-date is this review? The review authors searched for studies published up to 6 July 2017. PMID:29226959
Colihueque, Nelson; Araneda, Cristian
2014-01-01
Appearance traits in fish, those external body characteristics that influence consumer acceptance at point of sale, have come to the forefront of commercial fish farming, as culture profitability is closely linked to management of these traits. Appearance traits comprise mainly body shape and skin pigmentation. Analysis of the genetic basis of these traits in different fish reveals significant genetic variation within populations, indicating potential for their genetic improvement. Work into ascertaining the minor or major genes underlying appearance traits for commercial fish is emerging, with substantial progress in model fish in terms of identifying genes that control body shape and skin colors. In this review, we describe research progress to date, especially with regard to commercial fish, and discuss genomic findings in model fish in order to better address the genetic basis of the traits. Given that appearance traits are important in commercial fish, the genomic information related to this issue promises to accelerate the selection process in coming years. PMID:25140172
Projected entrainment of fish resulting from aggregate dredging.
Drabble, Ray
2012-02-01
Previous research to assess impacts from aggregate dredging has focussed on infaunal species with few studies made of fish entrainment. Entrainment evidence from hydraulic dredging studies is reviewed to develop a sensitivity index for benthic fish. Environmental monitoring attendant with the granting of new licences in the Eastern Channel Region (ECR) in 2006 offers a unique opportunity to assess the effects of dredging upon fish. Projected theoretical fish entrainment rates are calculated based upon: abundance data from 4m beam trawl sampling of fish species over the period 2005-2008; sensitivity data; and dredging activity and footprint derived from Electronic monitoring System (EMS) data. Results have been compared with actual entrainment rates and also against summary results from independent analysis of the changes in fish population over the period 2005-2008 (Drabble, 2012). The case is made for entrainment surveys to form part of impact monitoring for marine aggregate dredging. Copyright © 2011 Elsevier Ltd. All rights reserved.
Lloyd, M. Clint; Lai, Quan; Sammons, Steve; Irwin, Elise R.
2017-01-01
The stocking of fish in riverine systems to re-establish stocks for conservation and management appears limited to a few species and often occurs in reaches impacted by impoundments. Stocking of sport fish species such as centrarchids and ictalurids is often restricted to lentic environments, although stocking in lotic environments is feasible with variable success. R. L. Harris Dam on the Tallapoosa River, Alabama is the newest and uppermost dam facility on the river (operating since 1983); flows from the dam have been managed adaptively for multiple stakeholder objectives since 2005. One of the stakeholders’ primary objectives is to provide quality sport fisheries in the Tallapoosa River in the managed area below the dam. Historically, ictalurids and cyprinids dominated the river above Lake Martin. However, investigations after Harris Dam closed have detected a shift in community structure to domination by centrarchids. Flow management (termed the Green Plan) has been occurring since March 2005; however, sport fish populations as measured by recruitment of age-1 sport fishes below the dam has not responded adequately to flow management. The objectives of this research were to: (1) determine if stocking Channel Catfish Ictalurus punctatus and Redbreast Sunfish Lepomis auritus influences year-class strength; (2) estimate vital rates (i.e. growth, mortality, and recruitment) for Channel Catfish populations for use in an age-based population model; and (3) identify age-specific survivorship and fecundity rates contributing to Channel Catfish population stability. No marked Redbreast Sunfish were recaptured due to poor marking efficacy and therefore no further analysis was conducted with this species. Stocked Channel Catfish, similarly, were not recaptured, leaving reasons for non-recapture unknown. Matrix models exploring vital rates illustrated survival to age-1 for Channel Catfish to be less than 0.03% and that survival through ages 2 – 4 had equal contribution to overall population growth, indicating recruitment limitation may impact population size and stability. Results from this study indicate stock enhancement of sport fish populations below Harris Dam may not be an effective management technique at this time.
Frantine-Silva, W; Ferreira, D G; Nascimento, R H C; Fracasso, J F; Conte, J E; Ramos, F P; Carvalho, S; Galindo, B A
2015-12-29
Most studies of diversity and genetic structure in neotropical fish have focused on commercial species from large rivers or their reservoirs. However, smaller tributaries have been identified as an important alternative migratory route, with independent pools of genetic diversity. In this context, the present study aimed to evaluate genetic diversity and structure in five neotropical fish species from a region of Laranjinha River in the upper Paraná River basin. PCR-RAPD (random amplified polymorphic DNA) markers were used to characterize around 40 individuals of each species distributed upstream and downstream of Corredeira Dam that interrupts the river. The descriptive index of genetic diversity (P = 30.5-82%; HE 0.122-0.312) showed that the populations have acceptable levels of genetic diversity. The values for Nei's genetic distance (DN min 0.0110 and max 0.0306) as well as the genetic structure index and the analysis of molecular variance (AMOVA, ϕST min 0.0132 and max 0.0385) demonstrated low, but significant levels of genetic structure. Bayesian analysis of assignment found two k clusters, including several individuals with mixed ancestry for all populations from the five species analyzed. These findings along with historical data on rainfall and the low dimensions of the dam studied here support the hypothesis that periodic floods enable the transit of individuals between different localities mitigating the differentiation process between populations.
Optimal harvesting policy of predator-prey model with free fishing and reserve zones
NASA Astrophysics Data System (ADS)
Toaha, Syamsuddin; Rustam
2017-03-01
The present paper deals with an optimal harvesting of predator-prey model in an ecosystem that consists of two zones, namely the free fishing and prohibited zones. The dynamics of prey population in the ecosystem can migrate from the free fishing to the prohibited zone and vice versa. The predator and prey populations in the free fishing zone are then harvested with constant efforts. The existence of the interior equilibrium point is analyzed and its stability is determined using Routh-Hurwitz stability test. The stable interior equilibrium point is then related to the problem of maximum profit and the problem of present value of net revenue. We follow the Pontryagin's maximal principle to get the optimal harvesting policy of the present value of the net revenue. From the analysis, we found a critical point of the efforts that makes maximum profit. There also exists certain conditions of the efforts that makes the present value of net revenue becomes maximal. In addition, the interior equilibrium point is locally asymptotically stable which means that the optimal harvesting is reached and the unharvested prey, harvested prey, and harvested predator populations remain sustainable. Numerical examples are given to verify the analytical results.
Spatial structuring within a reservoir fish population: implications for management
Stewart, David R.; Long, James M.; Shoup, Daniel E.
2014-01-01
Spatial structuring in reservoir fish populations can exist because of environmental gradients, species-specific behaviour, or even localised fishing effort. The present study investigated whether white crappie exhibited evidence of improved population structure where the northern more productive half of a lake is closed to fishing to provide waterfowl hunting opportunities. Population response to angling was modelled for each substock of white crappie (north (protected) and south (unprotected) areas), the entire lake (single-stock model) and by combining simulations of the two independent substock models (additive model). White crappie in the protected area were more abundant, consisting of larger, older individuals, and exhibited a lower total annual mortality rate than in the unprotected area. Population modelling found that fishing mortality rates between 0.1 and 0.3 resulted in sustainable populations (spawning potential ratios (SPR) >0.30). The population in the unprotected area appeared to be more resilient (SPR > 0.30) at the higher fishing intensities (0.35–0.55). Considered additively, the whole-lake fishery appeared more resilient than when modelled as a single-panmictic stock. These results provided evidence of spatial structuring in reservoir fish populations, and we recommend model assessments used to guide management decisions should consider those spatial differences in other populations where they exist.
Vonlanthen, P; Excoffier, L; Bittner, D; Persat, H; Neuenschwander, S; Largiadèr, C R
2007-11-01
Natural colonizations across watersheds have been frequently proposed to explain the present distributions of many freshwater fish species. However, detailed studies of such potential watershed crossings are still missing. Here, we investigated potential postglacial watershed crossings of the widely distributed European bullhead (Cottus gobio L.) in two different areas along the Rhine-Rhône watershed using detailed genetic analysis. The main advantage of studying bullheads vs. other freshwater fish species is that their distribution has been lightly influenced by human activities and as such, interpretations of colonization history are not confounded by artificial transplantations. The genetic analyses of eight microsatellite loci revealed strong genetic similarities between populations of both sides of the Rhine-Rhône watershed in the Lake Geneva area, giving strong evidence for a natural watershed crossing of bullheads from the upper Rhine drainage into the Rhône drainage in the Lake Geneva area likely facilitated by the retreat of the glaciers after the last glacial maximum some 20,000 years ago. Populations from the Lake Geneva basin were genetically more similar to populations from across the watershed in the upper Rhine drainage than to populations further downstream in the lower Rhône. In contrast, populations from Belfort, an area, which was not covered by ice during the last glacial maximum, showed strong genetic differentiation between populations of the upper Rhine and Rhône drainages. Based on our results on the bullhead, we propose that glacial retreat may have eased the dispersal of numerous European freshwater fish species across several geological boundaries.
Waterfalls drive parallel evolution in a freshwater goby
Kano, Yuichi; Nishida, Shin; Nakajima, Jun
2012-01-01
Waterfalls may affect fish distribution and genetic structure within drainage networks even to the extent of leading evolutionary events. Here, parallel evolution was studied by focusing on waterfall and the landlocked freshwater goby Rhinogobius sp. YB (YB), which evolved from amphidromous R. brunneus (BR). The fish fauna was surveyed at 30 sites in 11 rivers on Iriomote Island, Japan, the geography of which was characterized by terraces/tablelands with many waterfalls. We found that all YB individuals were distributed only above waterfalls (height 6.8–58.7 m), whereas BR, and other fishes, were mostly distributed below waterfalls. Mitochondrial DNA analysis showed that every YB local population above the waterfall was independently evolved from BR. In contrast, cluster analysis of nine morphological characters, such as fin color and body pattern, showed that the morphology of YB individuals held a similarity beyond the genetic divergence, suggesting parallel evolution has occurred relating to their morphology. Genetic distance between each YB local population and BR was significantly correlated with waterfall height (r2 = 0.94), suggesting that the waterfalls have been heightened due to the constant geological erosion and that their height represents the isolation period of YB local populations from BR (ca. 11,000–88,000 years). Each local population of BR was once landlocked in upstream by waterfall formation, consequently evolving to YB in each site. Although the morphology of YB had a high degree of similarity among local populations, finer scale analysis showed that the morphology of YB was significantly correlated with the genetic distance from BR. Consequently, there could be simultaneous multiple phases of allopatric/parallel evolution of the goby due to variations in waterfall height on this small island. PMID:22957183
Leino, O; Karjalainen, A K; Tuomisto, J T
2013-04-01
Fish contains both beneficial substances e.g. docosahexaenoic acids but also harmful compounds e.g. methylmercury. Importantly, the health effects caused by these two substances can be evaluated in one common end point, intelligence quotient (IQ), providing a more transparent analysis. We estimated health effects of maternal fish consumption on child's central nervous system by creating a model with three alternative maternal fish consumption scenarios (lean fish, fatty fish, and current fish consumption). Additionally, we analyzed impacts of both regular fish consumption and extreme fish consumption habits. At the individual level, the simulated net effects were small, encompassing a range of one IQ point in all scenarios. Fatty fish consumption, however, clearly generated a beneficial net IQ effect, and lean fish consumption evoked an adverse net IQ effect. In view of the current fish consumption pattern of Finnish mothers the benefits and risks seem to more or less compensate each other. This study clearly shows the significance of which fish species are consumed during pregnancy and lactation, and the results can be generalized to apply to typical western population fish consumption habits. Copyright © 2011 Elsevier Ltd. All rights reserved.
Simić, Vladica; Simić, Snežana; Paunović, Momir; Radojković, Nataša; Petrović, Ana; Talevski, Trajče; Milošević, Djuradj
2016-01-01
In this study, we aimed to assess the population status of bleak (Alburnus spp.) over the Western Balkan Peninsula in terms of its sustainable use. A second objective was to determine key factors important for fishery management planning. Two different basins, continental (the Danube Basin and the Sava River sub-basin) and marine (the Adriatic and the Aegean Sea Basins) were examined. A sustainability assessment and factor analysis were conducted using the adjusted ESHIPPOfishing model, extended with additional socio-economic sub-elements, and the categorical principal components analysis (CATPCA), respectively. The results of the assessment revealed the bleak populations in the Danube Basin and the Sava River sub-basin to be highly sustainable. The population characteristics with abiotic and biotic factors were responsible for this status, while the influence of socio-economic factors was insignificant. The sustainability status of the bleak populations of the Mediterranean basin varied, with the populations from Ohrid and Skadar Lakes showing a high and those from Prespa and Dojran Lakes a medium status. Socio-economic factors with traditional fishing were the most important for the Mediterranean bleak populations. Copyright © 2015 Elsevier B.V. All rights reserved.
Liu, Ming; McCann, Molly; Lewis-Michl, Elizabeth; Hwang, Syni-An
2018-06-01
Refugees from Burma who consume fish caught from local waterbodies have increased risk of exposure to environmental contaminants. We used respondent driven sampling (RDS) to sample this hard-to-reach population for the first Biomonitoring of Great Lakes Populations program. In the current study, we examined the interview data and assessed the effectiveness of RDS to sample the unique population. In 2013, we used RDS to sample 205 Burmese refugees and immigrants residing in Buffalo, New York who consumed fish caught from Great Lakes waters. RDS-adjusted population estimates of sociodemographic characteristics, residential history, fish consumption related behaviors, and awareness of fish advisories were obtained. We also examined sample homophily and equilibrium to assess how well the RDS assumptions were met in the study. Our sample was diverse with respect to sex, age, years residing in Buffalo, years lived in a refugee camp, education, employment, and fish consumption behaviors, and each of these variables reached equilibrium by the end of recruitment. Burmese refugees in Buffalo consumed Great Lakes fish throughout the year; a majority of them consumed the fish more than two times per week during summer, and about one third ate local fish more than once per week in winter. An estimated 60% of Burmese refugees in Buffalo had heard about local fish advisories. RDS has the potential to be an effective methodology for sampling refugees and immigrants in conducting biomonitoring and environmental exposure assessment. Due to high fish consumption and limited awareness and knowledge of fish advisories, some refugee and immigrant populations are more susceptible to environmental contaminants. Increased awareness on local fish advisories is needed among these populations. Published by Elsevier GmbH.
Many aquatic species, including the estuarine fish Fundulus heteroclitus (mummichogs), adapt to local environmental conditions. We conducted studies to evaluate whether highly exposed populations of mummichogs adapt to toxic environmental contaminants. These fish populations are ...
Organotin intake through fish consumption in Finland
DOE Office of Scientific and Technical Information (OSTI.GOV)
Airaksinen, Riikka, E-mail: Riikka.Airaksinen@thl.fi; Rantakokko, Panu; Turunen, Anu W.
Background: Organotin compounds (OTCs) are a large class of synthetic chemicals with widely varying properties. Due to their potential adverse health effects, their use has been restricted in many countries. Humans are exposed to OTCs mostly through fish consumption. Objectives: The aim of this study was to describe OTC exposure through fish consumption and to assess the associated potential health risks in a Finnish population. Methods: An extensive sampling of Finnish domestic fish was carried out in the Baltic Sea and freshwater areas in 2005-2007. In addition, samples of imported seafood were collected in 2008. The chemical analysis was performedmore » in an accredited testing laboratory during 2005-2008. Average daily intake of the sum of dibutyltin (DBT), tributyltin (TBT), triphenyltin (TPhT) and dioctyltin (DOT) ({Sigma}OTCs) for the Finnish population was calculated on the basis of the measured concentrations and fish consumption rates. Results: The average daily intake of {Sigma}OTCs through fish consumption was 3.2 ng/kg bw day{sup -1}, which is 1.3% from the Tolerable Daily Intake (TDI) of 250 ng/kg bw day{sup -1} set by the European Food Safety Authority. In total, domestic wild fish accounted for 61% of the {Sigma}OTC intake, while the intake through domestic farmed fish was 4.0% and the intake through imported fish was 35%. The most important species were domestic perch and imported salmon and rainbow trout. Conclusions: The Finnish consumers are not likely to exceed the threshold level for adverse health effects due to OTC intake through fish consumption.« less
Tropical insular fish assemblages are resilient to flood disturbance
Smith, William E.; Kwak, Thomas J.
2015-01-01
Periods of stable environmental conditions, favoring development of ecological communities regulated by density-dependent processes, are interrupted by random periods of disturbance that may restructure communities. Disturbance may affect populations via habitat alteration, mortality, or displacement. We quantified fish habitat conditions, density, and movement before and after a major flood disturbance in a Caribbean island tropical river using habitat surveys, fish sampling and population estimates, radio telemetry, and passively monitored PIT tags. Native stream fish populations showed evidence of acute mortality and downstream displacement of surviving fish. All fish species were reduced in number at most life stages after the disturbance, but populations responded with recruitment and migration into vacated upstream habitats. Changes in density were uneven among size classes for most species, indicating altered size structures. Rapid recovery processes at the population level appeared to dampen effects at the assemblage level, as fish assemblage parameters (species richness and diversity) were unchanged by the flooding. The native fish assemblage appeared resilient to flood disturbance, rapidly compensating for mortality and displacement with increased recruitment and recolonization of upstream habitats.
NASA Astrophysics Data System (ADS)
Le Pichon, C.; Belliard, J.; Talès, E.; Gorges, G.; Clément, F.
2009-12-01
Most of the rivers of the Ile de France region, intimately linked with the megalopolis of Paris, are severely altered and freshwater fishes are exposed to habitat alteration, reduced connectivity and pollution. Several species thus present fragmented distributions and decreasing densities. In this context, the European Water Framework Directive (2000) has goals of hydrosystems rehabilitation and no further damage. In particular, the preservation and restoration of ecological connectivity of river networks is a key element for fish populations. These goals require the identification of natural and anthropological factors which influence the spatial distribution of species. We have proposed a riverscape approach, based on landscape ecology concepts, combined with a set of spatial analysis methods to assess the multiscale relationships between the spatial pattern of fish habitats and processes depending on fish movements. In particular, we used this approach to test the relative roles of spatial arrangement of fish habitats and the presence of physical barriers in explaining fish spatial distributions in a small rural watershed (106 km2). We performed a spatially continuous analysis of fish-habitat relationships. Fish habitats and physical barriers were mapped along the river network (33 km) with a GPS and imported into a GIS. In parallel, a longitudinal electrofishing survey of the distribution and abundance of fishes was made using a point abundance sampling scheme. Longitudinal arrangement of fish habitats were evaluated using spatial analysis methods: patch/distance metrics and moving window analysis. Explanatory models were developed to test the relative contribution of local environmental variables and spatial context in explaining fish presence. We have recorded about 100 physical barriers, on average one every 330 meters; most artificial barriers were road pipe culverts, falls associated with ponds and sluice gates. Contrasted fish communities and densities were observed in the different areas of the watershed, related to various land use (riparian forest or agriculture). The first results of fish-habitat association analysis on a 5 km stream are that longitudinal distribution of fish species was mainly impacted by falls associated with ponds. The impact was both due to the barrier effect and to the modification of aquatic habitats. Abundance distribution of Salmo trutta and Cottus gobio was particularly affected. Spatially continuous analysis of fish-habitat relationships allowed us to identify the relative impacts of habitat alteration and presence of physical barriers to fish movements. These techniques could help prioritize preservation and restoration policies in human-impacted watersheds, in particular, identifying the key physical barriers to remove.
Impacts of the Deepwater Horizon oil spill evaluated using an end-to-end ecosystem model.
Ainsworth, Cameron H; Paris, Claire B; Perlin, Natalie; Dornberger, Lindsey N; Patterson, William F; Chancellor, Emily; Murawski, Steve; Hollander, David; Daly, Kendra; Romero, Isabel C; Coleman, Felicia; Perryman, Holly
2018-01-01
We use a spatially explicit biogeochemical end-to-end ecosystem model, Atlantis, to simulate impacts from the Deepwater Horizon oil spill and subsequent recovery of fish guilds. Dose-response relationships with expected oil concentrations were utilized to estimate the impact on fish growth and mortality rates. We also examine the effects of fisheries closures and impacts on recruitment. We validate predictions of the model by comparing population trends and age structure before and after the oil spill with fisheries independent data. The model suggests that recruitment effects and fishery closures had little influence on biomass dynamics. However, at the assumed level of oil concentrations and toxicity, impacts on fish mortality and growth rates were large and commensurate with observations. Sensitivity analysis suggests the biomass of large reef fish decreased by 25% to 50% in areas most affected by the spill, and biomass of large demersal fish decreased even more, by 40% to 70%. Impacts on reef and demersal forage caused starvation mortality in predators and increased reliance on pelagic forage. Impacts on the food web translated effects of the spill far away from the oiled area. Effects on age structure suggest possible delayed impacts on fishery yields. Recovery of high-turnover populations generally is predicted to occur within 10 years, but some slower-growing populations may take 30+ years to fully recover.
Impacts of the Deepwater Horizon oil spill evaluated using an end-to-end ecosystem model
Paris, Claire B.; Perlin, Natalie; Dornberger, Lindsey N.; Patterson, William F.; Chancellor, Emily; Murawski, Steve; Hollander, David; Daly, Kendra; Romero, Isabel C.; Coleman, Felicia; Perryman, Holly
2018-01-01
We use a spatially explicit biogeochemical end-to-end ecosystem model, Atlantis, to simulate impacts from the Deepwater Horizon oil spill and subsequent recovery of fish guilds. Dose-response relationships with expected oil concentrations were utilized to estimate the impact on fish growth and mortality rates. We also examine the effects of fisheries closures and impacts on recruitment. We validate predictions of the model by comparing population trends and age structure before and after the oil spill with fisheries independent data. The model suggests that recruitment effects and fishery closures had little influence on biomass dynamics. However, at the assumed level of oil concentrations and toxicity, impacts on fish mortality and growth rates were large and commensurate with observations. Sensitivity analysis suggests the biomass of large reef fish decreased by 25% to 50% in areas most affected by the spill, and biomass of large demersal fish decreased even more, by 40% to 70%. Impacts on reef and demersal forage caused starvation mortality in predators and increased reliance on pelagic forage. Impacts on the food web translated effects of the spill far away from the oiled area. Effects on age structure suggest possible delayed impacts on fishery yields. Recovery of high-turnover populations generally is predicted to occur within 10 years, but some slower-growing populations may take 30+ years to fully recover. PMID:29370187
NASA Astrophysics Data System (ADS)
Sui, Pengzhe; Iwasaki, Akito; Ryo, Masahiro; Saavedra, Oliver; Yoshimura, Chihiro
2013-04-01
Flow conditions play an important role in sustaining biodiversity of river ecosystem. However, their relations to freshwater fishes, especially to fish population density, have not been clearly described. This study, therefore, aimed to propose a new methodology to quantitatively link habitat conditions, including flow conditions and other physical conditions, to population density of fish species. We developed a basin-scale fish distribution model by integrating the concept of habitat suitability assessment with a distributed hydrological model (DHM) in order to estimate fish population density with particular attention to flow conditions. Generalized linear model (GLM) was employed to evaluate the relationship between population density of fish species and major environmental factors. The target basin was Sagami River in central Japan, where the river reach was divided into 10 sections by estuary, confluences of tributaries, and river-crossing structures (dams, weirs). The DHM was employed to simulate river discharge from 1998 to 2005, which was used to calculate 10 flow indices including mean discharge, 25th and 75th percentile discharge, duration of low and high flows, number of floods. In addition, 5 water quality parameters and 13 other physical conditions (such as basin area, river width, mean diameter of riverbed material, and number of river-crossing structures upstream and downstream) of each river section were considered as environmental variables. In case of Sagami River, 10 habitat variables among them were then selected based on their correlations to avoid multicollinearity. Finally, the best GLM was developed for each species based on Akaike's information criterion. As results, population densities of 16 fish species in Sagami River were modelled, and correlation coefficients between observed and calculated population densities for 10 species were more than 0.70. The key habitat factors for population density varied among fish species. Minimum discharge (MID) was found to be positively correlated to 9 among 16 fish species. For duration of high and low flows (DHF and DLF), longer DHF/DLF was corresponded to lower population density for 7/6 fish species, respectively, such as Rhinogobius kurodai and Plecoglossus altivelis altivelis. Among physical habitat conditions, sinuosity index (SI, the ratio between actual river section length and straight line length) seems to be the most important parameter for fish population density in Sagami River basin, since it affects 12 out of 16 fish species, followed by mean longitudinal slope (S) and number of downstream dams (NLD). Above results demonstrated the applicability of fish distribution model to provide quantitative information on flow conditions required to maintain fish population, which enabled us to evaluate and project ecological consequences of water resource management policy, such as flood management and water withdrawal.
Calvez, Ségolène; Fournel, Catherine; Douet, Diane-Gaëlle; Daniel, Patrick
2015-06-23
Yersinia ruckeri is a pathogen that has an impact on aquaculture worldwide. The disease caused by this bacterial species, yersiniosis or redmouth disease, generates substantial economic losses due to the associated mortality and veterinary costs. For predicting outbreaks and improving control strategies, it is important to characterize the population structure of the bacteria. The phenotypic and genetic homogeneities described previously indicate a clonal population structure as observed in other fish bacteria. In this study, the pulsed-field gel electrophoresis (PFGE) and multi locus sequence typing (MLST) methods were used to describe a population of isolates from outbreaks on French fish farms. For the PFGE analysis, two enzymes (NotI and AscI) were used separately and together. Results from combining the enzymes showed the great homogeneity of the outbreak population with a similarity > 80.0% but a high variability within the cluster (cut-off value = 80.0%) with a total of 43 pulsotypes described and an index of diversity = 0.93. The dominant pulsotypes described with NotI (PtN4 and PtN7) have already been described in other European countries (Finland, Germany, Denmark, Spain and Italy). The MLST approach showed two dominant sequence types (ST31 and ST36), an epidemic structure of the French Y. ruckeri population and a preferentially clonal evolution for rainbow trout isolates. Our results point to multiple types of selection pressure on the Y. ruckeri population attributable to geographical origin, ecological niche specialization and movements of farmed fish.
Breyta, R.; Jones, Amelia; Kurath, Gael
2014-01-01
A significant emergence of trout-adapted MD subgroup infectious hematopoietic necrosis virus (IHNV) began in the coastal region of Washington State, USA, in 2007. This emergence event lasted until 2011 and caused both asymptomatic adult fish infection and symptomatic epidemic disease and mortality in juvenile fish. Incidence of virus during this emergence demonstrated a heterogeneous distribution among rivers of the coastal region, leaving fish populations of some rivers apparently untouched while others suffered significant and recurrent infection and mortality (Breyta et. al. 2013; Dis Aquat Org 104:179-195). In this study, we examined the possible contribution of variations in susceptibility of fish populations, age-related resistance, and virus virulence to the observed landscape heterogeneity. We found that the most significant variable was host susceptibility: by controlled experimental challenge studies steelhead trout populations with no history of IHNV infection were 1 to 3 orders of magnitude more sensitive than a fish population with a long history of IHNV infection. In addition, 2 fish populations from the same river, which descended relatively recently from a common ancestral population, demonstrated 1 to 2 orders of magnitude difference in susceptibility. Fish age-related development of resistance was most evident in the more susceptible of 2 related fish populations. Finally, the strain of virus involved in the 2007 coastal Washington emergence had high virulence but was within the range of other known M group viruses tested. These results suggest that one major driver of landscape heterogeneity in the 2007 coastal Washington IHNV emergence was variation in fish population susceptibility and that this trait may have a heritable component.
Assignment of sockeye salmon (Oncorhynchus nerka) to spawning sites using DNA markers.
Corley-Smith, Graham E; Wennerberg, Liv; Schembri, Joy A; Lim, Chinten J; Cooper, Karen L; Brandhorst, Bruce P
2005-01-01
Randomly amplified polymorphic DNA (RAPD) markers were used to assign individual adult sockeye salmon to their spawning sites using a genotype assignment test. Six primers were selected for use by screening bulked DNA samples for markers missing in fish from one or more of 5 sites in British Columbia or Alaska. Of 73 markers scored, 54 showed variation between or within sites among the sampled fish. Thirty-seven of the variable markers were not detected in any fish from one or more sites; 18 variable markers were detected in all fish from one or more other sites. Thus 25% of markers scored were found in all fish of some sites and in no fish of some other sites. An assignment test placed all 70 fish tested into their correct populations. Principal coordinate analysis of genetic variation produced clusters of fish corresponding to each sampling site. No sex-specific RAPD markers were detected among more than 1300 screened.
Don't bet against the natal homing abilities of marine fishes.
Bentzen, Paul; Bradbury, Ian R
2016-06-01
Whether marine fishes are capable of homing to their natal areas has long been something of an enigma. For some estuarine species or sharks (which have extended nondispersal juvenile stages or are born as relatively large, fully formed juveniles), the answer is clearly 'yes' (Thorrold et al. ; Feldheim et al. ), but for most marine fishes, the issue is much more mysterious. Many species have free-floating eggs, and most have pelagic, passively dispersing larvae. It is challenging to imagine how adult fish might navigate to a region of the ocean they experienced only as eggs or larvae, and easier to assume that such dispersal leads inexorably to high gene flow, and even panmixia. One way to resolve the conundrum would be to track fish from hatching to reproduction, but for marine fishes with tiny eggs and drifting larvae, this is notoriously difficult to do (Bradbury & Laurel ). In this issue of Molecular Ecology, Bonanomi et al. () use a creative approach to solve this challenge for Atlantic cod (Gadus morhua) populations that mingle in the vicinity of Greenland. They show that cod that disperse more than a 1000 km away from Iceland as eggs and larvae, then spend years growing on the far side of Greenland, while mixing with two local populations, return as adults to spawning areas near Iceland - and further, that this behaviour has remained stable over more than six decades. They manage this feat with a clever use of historical cod tracking data, modern genomic data and genetic analysis of decades-old DNA obtained from archived materials. Their results have important implications for our view of the biocomplexity of marine fish populations, and how we should manage them. © 2016 John Wiley & Sons Ltd.
Jimenez, Miguel; Goodchild, Shawn C; Stockwell, Craig A; Lema, Sean C
2017-08-30
The Pahrump poolfish (Empetrichthys latos) and White River springfish (Crenichthys baileyi) are small-bodied teleost fishes (order Cyprinodontiformes) endemic to the arid Great Basin and Mojave Desert regions of western North America. These taxa survive as small, isolated populations in remote streams and springs and evolved to tolerate extreme conditions of high temperature and low dissolved oxygen. Both species have experienced severe population declines over the last 50-60years that led to some subspecies being categorized with protected status under the U.S. Endangered Species Act. Here we report the first sequencing of the complete mitochondrial DNA genomes for both E. l. latos and the moapae subspecies of C. baileyi. Complete mitogenomes of 16,546bp nucleotides were obtained from two E. l. latos individuals collected from introduced populations at Spring Mountain Ranch State Park and Shoshone Ponds Natural Area, Nevada, USA, while a single mitogenome of 16,537bp was sequenced for C. b. moapae. The mitogenomes of both species contain 13 protein-encoding genes, twenty-two tRNAs, and two rRNAs (12S and 18S) following the syntenic arrangement typical of Actinopterygiian fish mitogenomes, as well as D-loop control regions of 858bp for E. latos and 842bp for C. baileyi moapae. The two E. latos individuals exhibited only 0.0181% nucleotide sequence divergence across the entire mitogenome, implying little intraspecific mtDNA genetic variation. Comparative phylogenetic analysis of the poolfish and springfish mitochondrial genomes to available mitogenomes of other Cyprinodontoid fishes confirmed the close relationship of these oviparous Empetrichthys and Crenichthys genera to the viviparous goodeid fishes of central Mexico, and showed the combined clade of these fishes to be a sister group to the Profundulidae killifishes. Despite several significant life history and morphological differences between the Empetrichthyinae and Goodienae, estimates of evolutionary genetic distances using two partial regions of mtDNA point to inclusion of the Empetrichthys and Crenichthys genera within the family Goodeidae along with the goodeid fishes of central Mexico. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kopp, Dorothée; Le Bris, Hervé; Grimaud, Lucille; Nérot, Caroline; Brind'Amour, Anik
2013-08-01
Coastal and estuarine systems provide nursery grounds for many marine fish species. Their productivity has been correlated with terrigeneous inputs entering the coastal-estuarine benthic food web, thereby favouring the establishment of fish juveniles. Studies in these ecosystems often describe the nursery as a single large habitat without verifying nor considering the presence of contiguous habitats. Our study aimed at identifying different habitats based on macrozoobenthic communities and morpho-sedimentary characteristics and assessing the trophic interactions between fish juveniles and their benthic preys within these habitats. It included 43 sampling sites covering 5 habitats in which we described taxonomically and quantitatively the invertebrates and fish communities with stable isotopes and gut contents. It suggested that the benthic common sole Solea solea displayed feeding plasticity at the population level, separating the juveniles (G0) from the older fish (G1) into different "feeding sub-populations". Size-based feeding plasticity was also observable in the spatial occupancy of that species in the studied bay. The demersal pouting, Trisopterus luscus, equally used the different habitats but displayed low feeding plasticity across and inside each habitat. Stable isotopes proved to be powerful tools to study the spatial distribution of trophic interactions in complex ecosystems like the bay of Vilaine and to define optimal habitats for fish that use the coastal-estuarine ecosystem as nursery grounds.
Authman, Mohammad M N; Abbas, Hossam H H
2007-07-01
This study was carried out on Lake Qarun, Fayoum Province, Egypt throughout four seasons, spring 2004 to winter 2005. The concentration of Zn in water as well as in fish organs was always higher than Cu. Correlations between concentration of heavy metals in water and fish organs were elucidated. The concentrations of heavy metals in fish samples indicated that Tilapia zillii were higher than those of Mugil cephalus, which is attributed to their feeding behavior. It was found that these metals have been accumulated in fish organs in different concentrations, which were much higher, several times in some cases, than those found in the surrounding water. The analysis of variance (ANOVA, 1-way analysis) for heavy metals in water and fish organs indicated significant difference. Bioaccumulation factor values showed that the trend of accumulation of metals in fish organs was apparent in liver, gills and muscle, respectively. Lesions deformations were detected and analyzed to clarify the possible role of water pollution on the efficiency of fish and hence the declining fish production of Lake Qarun. The results suggest that the Lake Qarun system is contaminated with heavy metals and the consumption of fishes of the Lake could pose health damage to the local population whose diet consists mainly of fish. A recommendation is given to rescue Lake Qarun from these serious ecological problems.
Large-scale absence of sharks on reefs in the greater-Caribbean: a footprint of human pressures.
Ward-Paige, Christine A; Mora, Camilo; Lotze, Heike K; Pattengill-Semmens, Christy; McClenachan, Loren; Arias-Castro, Ery; Myers, Ransom A
2010-08-05
In recent decades, large pelagic and coastal shark populations have declined dramatically with increased fishing; however, the status of sharks in other systems such as coral reefs remains largely unassessed despite a long history of exploitation. Here we explore the contemporary distribution and sighting frequency of sharks on reefs in the greater-Caribbean and assess the possible role of human pressures on observed patterns. We analyzed 76,340 underwater surveys carried out by trained volunteer divers between 1993 and 2008. Surveys were grouped within one km2 cells, which allowed us to determine the contemporary geographical distribution and sighting frequency of sharks. Sighting frequency was calculated as the ratio of surveys with sharks to the total number of surveys in each cell. We compared sighting frequency to the number of people in the cell vicinity and used population viability analyses to assess the effects of exploitation on population trends. Sharks, with the exception of nurse sharks occurred mainly in areas with very low human population or strong fishing regulations and marine conservation. Population viability analysis suggests that exploitation alone could explain the large-scale absence; however, this pattern is likely to be exacerbated by additional anthropogenic stressors, such as pollution and habitat degradation, that also correlate with human population. Human pressures in coastal zones have lead to the broad-scale absence of sharks on reefs in the greater-Caribbean. Preventing further loss of sharks requires urgent management measures to curb fishing mortality and to mitigate other anthropogenic stressors to protect sites where sharks still exist. The fact that sharks still occur in some densely populated areas where strong fishing regulations are in place indicates the possibility of success and encourages the implementation of conservation measures.
Janney, E.C.; Shively, R.S.; Hayes, B.S.; Barry, P.M.; Perkins, D.
2008-01-01
We used 13 years (1995-2007) of capture-mark-recapture data to assess population dynamics of endangered Lost River suckers Deltistes luxatus and shortnose suckers Chasmistes brevirostris in Upper Klamath Lake, Oregon. The Cormack-Jolly-Seber method was used to estimate survival, and information theoretic modeling was used to assess variation due to time, gender, species, and spawning subpopulations. Length data were used to detect multiple year-class failures and events of high recruitment into adult spawning populations. Average annual survival probability was 0.88 for Lost River suckers and 0.76 for shortnose suckers. Mean life span estimates based on these survival rates indicated that Lost River suckers survived long enough on average to attempt reproduction eight times, whereas shortnose suckers only survived to spawn three to four times. Shortnose sucker survival was not only poor in years of fish kills (1995-1997) but also was low in years without fish kills (i.e., 2002 and 2004). This suggests that high mortality occurs in some years but is not necessarily associated with fish kills. Annual survival probabilities were not only different between the two species but also differed between two spawning subpopulations of Lost River suckers. Length composition data indicated that recruitment into spawning populations only occurred intermittently. Populations of both species transitioned from primarily old individuals with little size diversity and consistently poor recruitment in the late 1980s and early 1990s to mostly small, recruit-sized fish by the late 1990s. A better understanding of the factors influencing adult survival and recruitment into spawning populations is needed. Monitoring these vital parameters will provide a quantitative means to evaluate population status and assess the effectiveness of conservation and recovery efforts.
Probabilistic risk analysis of mercury intake via food consumption in Spain.
Moreno-Ortega, Alicia; Moreno-Rojas, Rafael; Martínez-Álvarez, Jesús Román; González Estecha, Montserrat; Castro González, Numa Pompilio; Amaro López, Manuel Ángel
2017-09-01
In Spain, recently, the public institutions have given information to the population in relation to fish consumption and the risk that it poses to health from the ingestion of mercury supposedly contained in the fish. At the same time, several scientific societies have published various works in this direction. All this without there being, up to now, any study on the evaluation of a probabilistic risk from mercury due to fish and seafood intake in Spain, which is the objective of this present work. For that purpose, we took individual data from a survey of the total diet of 3000 people, whose consumption of the principal fish and seafood species (49) was estimated. We compiled individualized data (2000) on the total mercury content of those species, which were completed and validated with bibliographic statistical data. After estimating the distributions of each fish and seafood species, both of their consumption and their mercury content, a simulation was made of the distribution of mercury ingestion from fish and seafood offered by 2.6% of the Spanish population at risk of exceeding total mercury recommendations, and between 12.2% and 21.2% of those exceeding methylmercury ones. The main species responsible were tuna fish, swordfish and hake, and significant differences were identified in fish consumption between sexes and ages, although, in the risk percentage, what stands out is an increase in the latter with an increase in age. Copyright © 2017 Elsevier GmbH. All rights reserved.
Abundance trends and status of the Little Colorado River population of humpback chub
Coggins, L.G.; Pine, William E.; Walters, C.J.; Van Haverbeke, D. R.; Ward, D.; Johnstone, H.C.
2006-01-01
The abundance of the Little Colorado River population of federally listed humpback chub Gila cypha in Grand Canyon has been monitored since the late 1980s by means of catch rate indices and capture-recapture-based abundance estimators. Analyses of data from all sources using various methods are consistent and indicate that the adult population has declined since monitoring began. Intensive tagging led to a high proportion (>80%) of the adult population being marked by the mid-1990s. Analysis of these data using both closed and open abundance estimation models yields results that agree with catch rate indices about the extent of the decline. Survival rates for age-2 and older fish are age dependent but apparently not time dependent. Back-calculation of recruitment using the apparent 1990s population age structure implies periods of higher recruitment in the late 1970s to early 1980s than is now the case. Our analyses indicate that the U.S. Fish and Wildlife Service recovery criterion of stable abundance is not being met for this population. Also, there is a critical need to develop new abundance indexing and tagging methods so that early, reliable, and rapid estimates of humpback chub recruitment can be obtained to evaluate population responses to management actions designed to facilitate the restoration of Colorado River native fish communities. ?? Copyright by the American Fisheries Society 2006.
PROJECTING THE RESPONSE OF FISH POPULATION GROWTH RATE TO SEDIMENT EXPOSURE
Sediment is one of the main stressors on stream fish populations in Georgia. Here, a quantitative approach relating sediment exposure to stream fish population dynamics is presented, where equations characterize sediment exposure to vital rates, then vital rates are used in a mat...
Wildhaber, Mark L.; Albers, Janice; Green, Nicholas; Moran, Edward H.
2017-01-01
We develop a fully-stochasticized, age-structured population model suitable for population viability analysis (PVA) of fish and demonstrate its use with the endangered pallid sturgeon (Scaphirhynchus albus) of the Lower Missouri River as an example. The model incorporates three levels of variance: parameter variance (uncertainty about the value of a parameter itself) applied at the iteration level, temporal variance (uncertainty caused by random environmental fluctuations over time) applied at the time-step level, and implicit individual variance (uncertainty caused by differences between individuals) applied within the time-step level. We found that population dynamics were most sensitive to survival rates, particularly age-2+ survival, and to fecundity-at-length. The inclusion of variance (unpartitioned or partitioned), stocking, or both generally decreased the influence of individual parameters on population growth rate. The partitioning of variance into parameter and temporal components had a strong influence on the importance of individual parameters, uncertainty of model predictions, and quasiextinction risk (i.e., pallid sturgeon population size falling below 50 age-1+ individuals). Our findings show that appropriately applying variance in PVA is important when evaluating the relative importance of parameters, and reinforce the need for better and more precise estimates of crucial life-history parameters for pallid sturgeon.
Climate change effects on North American inland fish populations and assemblages
Lynch, Abigail J.; Myers, Bonnie; Chu, Cindy; Eby, Lisa A.; Falke, Jeffrey A.; Kovach, Ryan P.; Krabbenhoft, Trevor J.; Kwak, Thomas J.; Lyons, John; Paukert, Craig P.; Whitney, James E.
2016-01-01
Climate is a critical driver of many fish populations, assemblages, and aquatic communities. However, direct observational studies of climate change impacts on North American inland fishes are rare. In this synthesis, we (1) summarize climate trends that may influence North American inland fish populations and assemblages, (2) compile 31 peer-reviewed studies of documented climate change effects on North American inland fish populations and assemblages, and (3) highlight four case studies representing a variety of observed responses ranging from warmwater systems in the southwestern and southeastern United States to coldwater systems along the Pacific Coast and Canadian Shield. We conclude by identifying key data gaps and research needs to inform adaptive, ecosystem-based approaches to managing North American inland fishes and fisheries in a changing climate.
Effects of trawl selectivity and genetic parameters on fish body length under long-term trawling
NASA Astrophysics Data System (ADS)
Yu, Yang; Sun, Peng; Cui, He; Sheng, Huaxiang; Zhao, Fenfang; Tang, Yanli; Chen, Zelin
2015-10-01
Long-term fishing pressure affects the biological characteristics of exploited fish stocks. The biological characteristics of hairtail ( Trichiurus lepturus) in the East China Sea are unable to recover because of long-term trawling. Fishing induces evolutionary effects on the fish's biological characteristics. Evidence of these changes includes small size at age, a shift to earlier age structure, and early maturation. Natural and artificial selection usually affect the fish's life history. Selection can induce different chances of reproduction, and individual fish can give a different genetic contribution to the next generation. In this study, analysis of time-dependent probability of significance and test of sensitivity were used to explore the effects of fish exploitation rate, mesh size, and heritability with long-term trawling. Results showed that fishing parameters were important drivers to exploited fish population. However, genetic traits altered by fishing were slow, and the changes in biological characteristics were weaker than those caused by fishing selection. Exploitation rate and mesh size exhibited similar evolutionary trend tendency under long-term fishing. The time-dependent probability of significance trend showed a gradual growth and tended to be stable. Therefore, the direction of fishing-induced evolution and successful management of fish species require considerable attention to contribute to sustainable fisheries in China.
Effects of a model polycyclic aromatic hydrocarbon (PAH) were compared in populations of the estuarine fish Fundulus heteroclitus indigenous to a reference site and one highly contaminated with polychlorinated biphenyls (PCBs) and other compounds. The fish population resident to ...
COST AND BENEFITS OF ALTERED BENZO(A)PYRENE METABOLISM IN A PCB-ADAPTED FISH POPULATION
We examined populations of an estuarine fish species (Fundulus heteroclitus) resident to a highly contaminated site and a reference site for their ability to metabolize an important environmental pollutant. In previous work, we characterized the fish population resident to this h...
Gregg, J.L.; Grady, C.A.; Friedman, C.S.; Hershberger, P.K.
2012-01-01
The parasite Ichthyophonus is enzootic in many marine fish populations of the northern Atlantic and Pacific Oceans. Forage fishes are a likely source of infection for higher trophic level predators; however, the processes that maintain Ichthyophonus in forage fish populations (primarily clupeids) are not well understood. Lack of an identified intermediate host has led to the convenient hypothesis that the parasite can be maintained within populations of schooling fishes by waterborne fish-to-fish transmission. To test this hypothesis we established Ichthyophonus infections in Age-1 and young-of-the-year (YOY) Pacific herring Clupea pallasii (Valenciennes) via intraperitoneal (IP) injection and cohabitated these donors with naïve conspecifics (sentinels) in the laboratory. IP injections established infection in 75 to 84% of donor herring, and this exposure led to clinical disease and mortality in the YOY cohort. However, after cohabitation for 113 d no infections were detected in naïve sentinels. These data do not preclude the possibility of fish-to-fish transmission, but they do suggest that other transmission processes are necessary to maintain Ichthyophonus in wild Pacific herring populations.
A resilience approach can improve anadromous fish restoration
Waldman, John R.; Wilson, Karen A.; Mather, Martha E.; Snyder, Noah P.
2016-01-01
Most anadromous fish populations remain at low levels or are in decline despite substantial investments in restoration. We explore whether a resilience perspective (i.e., a different paradigm for understanding populations, communities, and ecosystems) is a viable alternative framework for anadromous fish restoration. Many life history traits have allowed anadromous fish to thrive in unimpacted ecosystems but have become contemporary curses as anthropogenic effects increase. This contradiction creates a significant conservation challenge but also makes these fish excellent candidates for a resilience approach. A resilience approach recognizes the need to maintain life history, population, and habitat characteristics that increase the ability of a population to withstand and recover from multiple disturbances. To evaluate whether a resilience approach represents a viable strategy for anadromous fish restoration, we review four issues: (1) how resilience theory can inform anadromous fish restoration, (2) how a resilience-based approach is fundamentally different than extant anadromous fish restoration strategies, (3) ecological characteristics that historically benefited anadromous fish persistence, and (4) examples of how human impacts harm anadromous fish and how a resilience approach might produce more successful outcomes. We close by suggesting new research and restoration directions for implementation of a resilience-based approach.
Peacock, Mary M; Gustin, Mae S; Kirchoff, Veronica S; Robinson, Morgan L; Hekkala, Evon; Pizzarro-Barraza, Claudia; Loux, Tim
2016-09-01
In-stream structures are recognized as significant impediments to movement for freshwater fishes. Apex predators such as salmonids have been the focus of much research on the impacts of such barriers to population dynamics and population viability however much less research has focused on native fishes, where in-stream structures may have a greater impact on long term population viability of these smaller, less mobile species. Patterns of genetic structure on a riverscape can provide information on which structures represent real barriers to movement for fish species and under what specific flow conditions. Here we characterize the impact of 41 dam and diversion structures on movement dynamics under varying flow conditions for a suite of six native fishes found in the Truckee River of California and Nevada. Microsatellite loci were used to estimate total allelic diversity, effective population size and assess genetic population structure. Although there is spatial overlap among species within the river there are clear differences in species distributions within the watershed. Observed population genetic structure was associated with in-stream structures, but only under low flow conditions. High total discharge in 2006 allowed fish to move over potential barriers resulting in no observed population genetic structure for any species in 2007. The efficacy of in-stream structures to impede movement and isolate fish emerged only after multiple years of low flow conditions. Our results suggest that restricted movement of fish species, as a result of in-stream barriers, can be mitigated by flow management. However, as flow dynamics are likely to be altered under global climate change, fragmentation due to barriers could isolate stream fishes into small subpopulations susceptible to both demographic losses and losses of genetic variation. Copyright © 2016 Elsevier B.V. All rights reserved.
Fish population dynamics in a seasonally varying wetland
DeAngelis, Donald L.; Trexler, Joel C.; Cosner, Chris; Obaza, Adam; Jopp, Fred
2010-01-01
Small fishes in seasonally flooded environments such as the Everglades are capable of spreading into newly flooded areas and building up substantial biomass. Passive drift cannot account for the rapidity of observed population expansions. To test the reaction-diffusion mechanism for spread of the fish, we estimated their diffusion coefficient and applied a reaction-diffusion model. This mechanism was also too weak to account for the spatial dynamics. Two other hypotheses were tested through modeling. The first--the 'refuge mechanism--hypothesizes that small remnant populations of small fishes survive the dry season in small permanent bodies of water (refugia), sites where the water level is otherwise below the surface. The second mechanism, which we call the 'dynamic ideal free distribution mechanism' is that consumption by the fish creates a prey density gradient and that fish taxis along this gradient can lead to rapid population expansion in space. We examined the two alternatives and concluded that although refugia may play an important role in recolonization by the fish population during reflooding, only the second, taxis in the direction of the flooding front, seems capable of matching empirical observations. This study has important implications for management of wetlands, as fish biomass is an essential support of higher trophic levels.
Ren, Weizheng; Hu, Liangliang; Guo, Liang; Zhang, Jian; Tang, Lu; Zhang, Entao; Zhang, Jiaen; Luo, Shiming; Tang, Jianjun; Chen, Xin
2018-01-01
We examined how traditional farmers preserve the genetic diversity of a local common carp (Cyprinus carpio), which is locally referred to as “paddy field carp” (PF-carp), in a “globally important agricultural heritage system” (GIAHS), i.e., the 1,200-y-old rice–fish coculture system in Zhejiang Province, China. Our molecular and morphological analysis showed that the PF-carp has changed into a distinct local population with higher genetic diversity and diverse color types. Within this GIAHS region, PF-carps exist as a continuous metapopulation, although three genetic groups could be identified by microsatellite markers. Thousands of small farmer households interdependently obtained fry and parental carps for their own rice–fish production, resulting in a high gene flow and large numbers of parent carps distributing in a mosaic pattern in the region. Landscape genetic analysis indicated that farmers’ connectivity was one of the major factors that shaped this genetic pattern. Population viability analysis further revealed that the numbers of these interconnected small farmer households and their connection intensity affect the carps’ inherent genetic diversity. The practice of mixed culturing of carps with diverse color types helped to preserve a wide range of genetic resources in the paddy field. This widespread traditional practice increases fish yield and resource use, which, in return, encourages famers to continue their practice of selecting and conserving diverse color types of PF-carp. Our results suggested that traditional farmers secure the genetic diversity of PF-carp and its viability over generations in this region through interdependently incubating and mixed-culturing practices within the rice−fish system. PMID:29295926
KNAPP, Roland A.; BOIANO, Daniel M.; VREDENBURG, Vance T.
2007-01-01
The mountain yellow-legged frog (Rana muscosa) was once a common inhabitant of the Sierra Nevada (California, USA), but has declined precipitously during the past century due in part to the introduction of nonnative fish into naturally fishless habitats. The objectives of the current study were to describe (1) the effect of fish removal from three lakes (located in two watersheds) on the small, remnant R. muscosa populations inhabiting those lakes, and (2) the initial development of metapopulation structure in each watershed as R. muscosa from expanding populations in fish-removal lakes dispersed to adjacent habitats. At all three fish-removal lakes, R. muscosa population densities increased significantly following the removal of predatory fish. The magnitude of these increases was significantly greater than that observed over the same time period in R. muscosa populations inhabiting control lakes that remained in their natural fishless condition. Following these population increases, R. muscosa dispersed to adjacent suitable (but unoccupied) sites, moving between 200 and 900 m along streams or across dry land. Together, these results suggest that large-scale removal of introduced fish could result in at least partial reversal of the decline of R. muscosa. Continued monitoring of R. muscosa at the fish-removal sites will be necessary to determine whether the positive effects of fish eradication are sustained over the long-term, especially in light of the increasingly important role played by an emerging infectious disease (chytridiomycosis, caused by Batrachochytrium dendrobatidis) in influencing R. muscosa populations. PMID:17396156
Effective size of a wild salmonid population is greatly reduced by hatchery supplementation
Christie, M R; Marine, M L; French, R A; Waples, R S; Blouin, M S
2012-01-01
Many declining and commercially important populations are supplemented with captive-born individuals that are intentionally released into the wild. These supplementation programs often create large numbers of offspring from relatively few breeding adults, which can have substantial population-level effects. We examined the genetic effects of supplementation on a wild population of steelhead (Oncorhynchus mykiss) from the Hood River, Oregon, by matching 12 run-years of hatchery steelhead back to their broodstock parents. We show that the effective number of breeders producing the hatchery fish (broodstock parents; Nb) was quite small (harmonic mean Nb=25 fish per brood-year vs 373 for wild fish), and was exacerbated by a high variance in broodstock reproductive success among individuals within years. The low Nb caused hatchery fish to have decreased allelic richness, increased average relatedness, more loci in linkage disequilibrium and substantial levels of genetic drift in comparison with their wild-born counterparts. We also documented a substantial Ryman–Laikre effect whereby the additional hatchery fish doubled the total number of adult fish on the spawning grounds each year, but cut the effective population size of the total population (wild and hatchery fish combined) by nearly two-thirds. We further demonstrate that the Ryman–Laikre effect is most severe in this population when (1) >10% of fish allowed onto spawning grounds are from hatcheries and (2) the hatchery fish have high reproductive success in the wild. These results emphasize the trade-offs that arise when supplementation programs attempt to balance disparate goals (increasing production while maintaining genetic diversity and fitness). PMID:22805657
Curtis, Janelle M R; Vincent, Amanda C J
2008-10-01
Achieving multiple conservation objectives can be challenging, particularly under high uncertainty. Having agreed to limit seahorse (Hippocampus) exports to sustainable levels, signatories to the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) were offered the option of a single 10-cm minimum size limit (MSL) as an interim management measure for all Hippocampus species (> or =34). Although diverse stakeholders supported the recommended MSL, its biological and socioeconomic implications were not assessed quantitatively. We combined population viability analysis, model sensitivity analysis, and economic information to evaluate the trade-off between conservation threat to and long-term cumulative income from these exploited marine fishes of high conservation concern. We used the European long-snouted seahorse (Hippocampus guttulatus) as a representative species to compare the performance of MSLs set at alternative biological reference points. Our sensitivity analyses showed that in most of our scenarios, setting the MSL just above size at maturity (9.7 cm in H. guttulatus) would not prevent exploited populations from becoming listed as vulnerable. By contrast, the relative risk of decline and extinction were almost halved--at a cost of only a 5.6% reduction in long-term catches--by increasing the MSL to the size reached after at least one full reproductive season. On the basis of our analysis, a precautionary increase in the MSL could be compatible with sustaining fishers' livelihoods and international trade. Such management tactics that aid species conservation and have minimal effects on long term catch trends may help bolster the case for CITES trade management of other valuable marine fishes.
George-Nascimento, Mario; Oliva, Marcelo
2015-01-01
Research using parasites in fish population studies in the South Eastern Pacific (SEP) is summarized. There are 27 such studies (snapshots mainly) in single host species sampled at different geographic localities and at somewhat similar times. They have been devoted mainly to economically important species, though others on coastal and intertidal fish or on less- or non-commercial species provide insights on scales of temporal and spatial variation of parasite infracommunities. Later, we assess whether the probability of harbouring parasites depends on the host species body size. Our results indicate that a stronger tool for fish population studies may be developed under regular (long term) scrutiny of parasite communities, especially of small fish host species, due to their larger variability in richness, abundance and total biomass, than in large fish species. Finally, it might also be necessary to consider the effects of fishing on parasite communities as well as the natural oscillations (coupled or not) of host and parasite populations.
Wildhaber, M.L.; Holan, S.H.; Bryan, J.L.; Gladish, D.W.; Ellersieck, M.
2011-01-01
In 2003, the US Army Corps of Engineers initiated the Pallid Sturgeon Population Assessment Program (PSPAP) to monitor pallid sturgeon and the fish community of the Missouri River. The power analysis of PSPAP presented here was conducted to guide sampling design and effort decisions. The PSPAP sampling design has a nested structure with multiple gear subsamples within a river bend. Power analyses were based on a normal linear mixed model, using a mixed cell means approach, with variance estimates from the original data. It was found that, at current effort levels, at least 20 years for pallid and 10 years for shovelnose sturgeon is needed to detect a 5% annual decline. Modified bootstrap simulations suggest power estimates from the original data are conservative due to excessive zero fish counts. In general, the approach presented is applicable to a wide array of animal monitoring programs.
Soeun Ahn; Joseph E. de Steiguer; Raymond B. Palmquist; Thomas P. Holmes
2000-01-01
Global warming due to the enhanced greenhouse effect through human activities has become a major public policy issue in recent years. The present study focuses on the potential economic impact of climate change on recreational trout fishing in the Southern Appalachian Mountains of North Carolina. Significant reductions in trout habitat and/or populations are...
Estimating the Worldwide Extent of Illegal Fishing
Agnew, David J.; Pearce, John; Pramod, Ganapathiraju; Peatman, Tom; Watson, Reg; Beddington, John R.; Pitcher, Tony J.
2009-01-01
Illegal and unreported fishing contributes to overexploitation of fish stocks and is a hindrance to the recovery of fish populations and ecosystems. This study is the first to undertake a world-wide analysis of illegal and unreported fishing. Reviewing the situation in 54 countries and on the high seas, we estimate that lower and upper estimates of the total value of current illegal and unreported fishing losses worldwide are between $10 bn and $23.5 bn annually, representing between 11 and 26 million tonnes. Our data are of sufficient resolution to detect regional differences in the level and trend of illegal fishing over the last 20 years, and we can report a significant correlation between governance and the level of illegal fishing. Developing countries are most at risk from illegal fishing, with total estimated catches in West Africa being 40% higher than reported catches. Such levels of exploitation severely hamper the sustainable management of marine ecosystems. Although there have been some successes in reducing the level of illegal fishing in some areas, these developments are relatively recent and follow growing international focus on the problem. This paper provides the baseline against which successful action to curb illegal fishing can be judged. PMID:19240812
Almstrand, Robert; Daims, Holger; Persson, Frank; Sörensson, Fred
2013-01-01
In biofilms, microbial activities form gradients of substrates and electron acceptors, creating a complex landscape of microhabitats, often resulting in structured localization of the microbial populations present. To understand the dynamic interplay between and within these populations, quantitative measurements and statistical analysis of their localization patterns within the biofilms are necessary, and adequate automated tools for such analyses are needed. We have designed and applied new methods for fluorescence in situ hybridization (FISH) and digital image analysis of directionally dependent (anisotropic) multispecies biofilms. A sequential-FISH approach allowed multiple populations to be detected in a biofilm sample. This was combined with an automated tool for vertical-distribution analysis by generating in silico biofilm slices and the recently developed Inflate algorithm for coaggregation analysis of microbial populations in anisotropic biofilms. As a proof of principle, we show distinct stratification patterns of the ammonia oxidizers Nitrosomonas oligotropha subclusters I and II and the nitrite oxidizer Nitrospira sublineage I in three different types of wastewater biofilms, suggesting niche differentiation between the N. oligotropha subclusters, which could explain their coexistence in the same biofilms. Coaggregation analysis showed that N. oligotropha subcluster II aggregated closer to Nitrospira than did N. oligotropha subcluster I in a pilot plant nitrifying trickling filter (NTF) and a moving-bed biofilm reactor (MBBR), but not in a full-scale NTF, indicating important ecophysiological differences between these phylogenetically closely related subclusters. By using high-resolution quantitative methods applicable to any multispecies biofilm in general, the ecological interactions of these complex ecosystems can be understood in more detail. PMID:23892743
Jaramillo, Diana; Dürr, Salome; Hick, Paul; Whittington, Richard
2016-01-01
Diagnosis of nervous necrosis virus (NNV) infection in susceptible fish species is mostly performed post-mortem due to the neurotropism of the causative agent and the only validated diagnostic assays require samples from brain and retinal tissue. However, a non-lethal alternative to test for exposure of fish to NNV is needed. An indirect ELISA for the detection of anti-NNV antibodies in was recently developed and evaluated to detect responses in the sera from immunized fish. For this study, we assessed the accuracy of the assay at detecting specific antibodies from naturally exposed fish using field samples from populations with differing infection status. We applied a Bayesian model, using RTqPCR as a second test. Median estimates of the diagnostic sensitivity and specificity of the VNN ELISA were 81.8% and 86.7%, respectively. We concluded that the assay was fit for the purpose of identifying animals in naturally exposed populations. With further evaluation in larger populations the test might be used to inform implementation of control measures, and for estimating infection prevalence to facilitate risk analysis. To our knowledge this is the first report on the diagnostic accuracy of an antibody ELISA for an infectious disease in finfish. Copyright © 2015 Elsevier B.V. All rights reserved.
Ayad, Essam; Mansy, Mina; Elwi, Dalal; Salem, Mostafa; Salama, Mohamed; Kayser, Klaus
2015-01-01
Optimization of workflow for breast cancer samples with equivocal human epidermal growth factor receptors 2 (HER2)/neu score 2(+) results in routine practice, remains to be a central focus of the on-going efforts to assess HER2 status. According to the College of American Pathologists/American Society of Clinical Oncology guidelines equivocal HER2/neu score 2(+) cases are subject for further testing, usually by fluorescence in situ hybridization (FISH) investigations. It still remains on open question, whether quantitative digital image analysis of HER2 immunohistochemistry (IHC) stained slides can assist in further refining the HER2 score 2(+). To assess utility of quantitative digital analysis of IHC stained slides and compare its performance to FISH in cases of breast cancer with equivocal HER2 score 2(+). Fifteen specimens (previously diagnosed as breast cancer and was evaluated as HER 2(-) score 2(+)) represented the study population. Contemporary new cuts were prepared for re-evaluation of HER2 immunohistochemical studies and FISH examination. All the cases were digitally scanned by iScan (Produced by BioImagene [Now Roche-Ventana]). The IHC signals of HER2 were measured using an automated image analyzing system (MECES, www.Diagnomx.eu/meces). Finally, a comparative study was done between the results of the FISH and the quantitative analysis of the virtual slides. Three out of the 15 cases with equivocal HER2 score 2(+), turned out to be positive (3(+)) by quantitative digital analysis, and 12 were found to be negative in FISH too. Two of these three positive cases proved to be positive with FISH, and only one was negative. Quantitative digital analysis is highly sensitive and relatively specific when compared to FISH in detecting HER2/neu overexpression. Therefore, it represents a potential reliable substitute for FISH in breast cancer cases, which desire further refinement of equivocal IHC results.
Díaz, Noelia; Ribas, Laia; Piferrer, Francesc
2014-01-01
Background Food supply is a major factor influencing growth rates in animals. This has important implications for both natural and farmed fish populations, since food restriction may difficult reproduction. However, a study on the effects of food supply on the development of juvenile gonads has never been transcriptionally described in fish. Methods and Findings This study investigated the consequences of growth on gonadal transcriptome of European sea bass in: 1) 4-month-old sexually undifferentiated fish, comparing the gonads of fish with the highest vs. the lowest growth, to explore a possible link between transcriptome and future sex, and 2) testis from 11-month-old juveniles where growth had been manipulated through changes in food supply. The four groups used were: i) sustained fast growth, ii) sustained slow growth, iii) accelerated growth, iv) decelerated growth. The transcriptome of undifferentiated gonads was not drastically affected by initial natural differences in growth. Further, changes in the expression of genes associated with protein turnover were seen, favoring catabolism in slow-growing fish and anabolism in fast-growing fish. Moreover, while fast-growing fish took energy from glucose, as deduced from the pathways affected and the analysis of protein-protein interactions examined, in slow-growing fish lipid metabolism and gluconeogenesis was favored. Interestingly, the highest transcriptomic differences were found when forcing initially fast-growing fish to decelerate their growth, while accelerating growth of initially slow-growing fish resulted in full transcriptomic convergence with sustained fast-growing fish. Conclusions Food availability during sex differentiation shapes the juvenile testis transcriptome, as evidenced by adaptations to different energy balances. Remarkably, this occurs in absence of major histological changes in the testis. Thus, fish are able to recover transcriptionally their testes if they are provided with enough food supply during sex differentiation; however, an initial fast growth does not represent any advantage in terms of transcriptional fitness if later food becomes scarce. PMID:25340342
Díaz, Noelia; Ribas, Laia; Piferrer, Francesc
2014-01-01
Food supply is a major factor influencing growth rates in animals. This has important implications for both natural and farmed fish populations, since food restriction may difficult reproduction. However, a study on the effects of food supply on the development of juvenile gonads has never been transcriptionally described in fish. This study investigated the consequences of growth on gonadal transcriptome of European sea bass in: 1) 4-month-old sexually undifferentiated fish, comparing the gonads of fish with the highest vs. the lowest growth, to explore a possible link between transcriptome and future sex, and 2) testis from 11-month-old juveniles where growth had been manipulated through changes in food supply. The four groups used were: i) sustained fast growth, ii) sustained slow growth, iii) accelerated growth, iv) decelerated growth. The transcriptome of undifferentiated gonads was not drastically affected by initial natural differences in growth. Further, changes in the expression of genes associated with protein turnover were seen, favoring catabolism in slow-growing fish and anabolism in fast-growing fish. Moreover, while fast-growing fish took energy from glucose, as deduced from the pathways affected and the analysis of protein-protein interactions examined, in slow-growing fish lipid metabolism and gluconeogenesis was favored. Interestingly, the highest transcriptomic differences were found when forcing initially fast-growing fish to decelerate their growth, while accelerating growth of initially slow-growing fish resulted in full transcriptomic convergence with sustained fast-growing fish. Food availability during sex differentiation shapes the juvenile testis transcriptome, as evidenced by adaptations to different energy balances. Remarkably, this occurs in absence of major histological changes in the testis. Thus, fish are able to recover transcriptionally their testes if they are provided with enough food supply during sex differentiation; however, an initial fast growth does not represent any advantage in terms of transcriptional fitness if later food becomes scarce.
Deletion of the SHOX gene in patients with short stature of unknown cause.
Morizio, E; Stuppia, L; Gatta, V; Fantasia, D; Guanciali Franchi, P; Rinaldi, M M; Scarano, G; Concolino, D; Giannotti, A; Verrotti, A; Chiarelli, F; Calabrese, G; Palka, G
2003-06-15
A fluorescence in situ hybridization (FISH) study was performed in 56 patients with short stature of unknown cause in order to establish the role of deletion of the SHOX gene in this population. FISH analysis was carried out on metaphase spreads and interphase lymphocytes from blood smears using a probe specific for the SHOX gene. Deletion of SHOX was found in four patients (7.1%). No skeletal abnormalities were detected in these patients either at the physical examination or at X-rays of the upper and lower limbs. Present results indicate that SHOX plays an important role also in short stature of unknown cause, and FISH analysis appears as an easy, appropriate, and inexpensive method for the detection of SHOX deletion. Copyright 2003 Wiley-Liss, Inc.
Jason B. Dunham; Michael K. Young; Robert E. Gresswell; Bruce E. Rieman
2003-01-01
Our limited understanding of the short and long-term effects of fire on fish contributes to considerable uncertainty in assessments of the risks and benefits of fire management alternatives. A primary concern among the many potential effects of fire is the effects of fire and fire management on persistence of native fish populations. Limited evidence suggests...
Learning and robustness to catch-and-release fishing in a shark social network
Brown, Culum; Planes, Serge
2017-01-01
Individuals can play different roles in maintaining connectivity and social cohesion in animal populations and thereby influence population robustness to perturbations. We performed a social network analysis in a reef shark population to assess the vulnerability of the global network to node removal under different scenarios. We found that the network was generally robust to the removal of nodes with high centrality. The network appeared also highly robust to experimental fishing. Individual shark catchability decreased as a function of experience, as revealed by comparing capture frequency and site presence. Altogether, these features suggest that individuals learnt to avoid capture, which ultimately increased network robustness to experimental catch-and-release. Our results also suggest that some caution must be taken when using capture–recapture models often used to assess population size as assumptions (such as equal probabilities of capture and recapture) may be violated by individual learning to escape recapture. PMID:28298593
Allen, M. Brady; Burkhardt, Jeanette; Munz, Carrie; Connolly, Patrick J.
2012-01-01
We assessed the physical and biotic conditions in the part of Buck Creek, Washington, potentially accessible to anadromous fishes. This creek is a major tributary to the White Salmon River upstream of Condit Dam, which was breached in October 2011. Habitat and fish populations were characterized in four stream reaches. Reach breaks were based on stream gradient, water withdrawals, and fish barriers. Buck Creek generally was confined, with a single straight channel and low sinuosity. Boulders and cobble were the dominant stream substrate, with limited gravel available for spawning. Large-cobble riffles were 83 percent of the available fish habitat. Pools, comprising 15 percent of the surface area, mostly were formed by bedrock with little instream cover and low complexity. Instream wood averaged 6—10 pieces per 100 meters, 80 percent of which was less than 50 centimeters in diameter. Water temperature in Buck Creek rarely exceeded 16 degrees Celsius and did so for only 1 day at river kilometer (rkm) 3 and 11 days at rkm 0.2 in late July and early August 2009. The maximum temperature recorded was 17.2 degrees Celsius at rkm 0.2 on August 2, 2009. Minimum summer discharge in Buck Creek was 3.3 cubic feet per second downstream of an irrigation diversion (rkm 3.1) and 7.7 cubic feet per second at its confluence with the White Salmon River. Rainbow trout (Oncorhynchus mykiss) was the dominant fish species in all reaches. The abundance of age-1 or older rainbow trout was similar between reaches. However, in 2009 and 2010, the greatest abundance of age-0 rainbow trout (8 fish per meter) was in the most downstream reach. These analyses in Buck Creek are important for understanding the factors that may limit fish abundance and productivity, and they will help identify and prioritize potential restoration actions. The data collected constitute baseline information of pre-dam removal conditions that will allow assessment of changes in fish populations now that Condit Dam has been removed and anadromous fish have an opportunity to recolonize Buck Creek.
Yang, Yong-Hong; Yang, Jun-Xing; Pan, Xiao-Fu; Zhou, Wei; Yang, Mei-Lin
2011-04-01
Hydroelectric developments can result in a number of negative environmental consequences. Conservation aquaculture is a branch of science derived from conservation and population recovery studies on endangered fishes. Here we discuss the impacts on fishes caused by hydropower projects in Lixianjiang, and evaluate effects and problems on the propagation of Parazacco spilurus, Hemibagrus pluriradiatus, Neolissochilus benasi and Semilabeo obscurus. A successful propagation project includes foraging ecology in fields, pond cultivation, juvenile fish raising, prevention and curing on fish disease, genetic management, artificial releasing and population monitoring. Artificial propagation is the practicable act on genetic intercommunication, preventing population deterioration for fishes in upper and lower reaches of the dam. For long-term planning, fish stocks are not suitable for many kind of fishes, but can prevent fishes from going extinct in the wild. Basic data collection on fish ecology, parent fish hunting, prevention on fish disease are the most important factors on artificial propagation. Strengthening the genetic management of stock population for keeping a higher genetic diversity can increase the success of stock enhancement. The works on Lixianjiang provide a new model for river fish protection. To make sure the complicated project works well, project plans, commission contracts, base line monitoring and techniques on artificial reproduction must be considered early. Last, fishery conservation should be considered alongside location development.
Thermodynamic and Mechanic Consideration on the stability of Anti-symmetric Schaefer’s equation
NASA Astrophysics Data System (ADS)
Suriamihardja, D. A.; Amiruddin; Saaduddin
2018-03-01
Schaefer’s equation relates an interaction between population of fishes and the number of units of fishing effort. The population growth of fishes is reduced by the number of units of fishing effort, while the population growth of units of fishing effort depends on the existence of fishes. This paper aims to examine the stability of an anti-symmetric Schaefer’s equation through thermodynamic and mechanic procedure using a formula of entropy production near equilibrium which is recognized as Onsager’s relation. The results confirm that entropic approach (thermodynamics) and dissipative approach (mechanics) are usable to be applied as Lyapunov’s procedure in examining the stability of systems of differential equations.
Assessing connectivity of estuarine fishes based on stable isotope ratio analysis
NASA Astrophysics Data System (ADS)
Herzka, Sharon Z.
2005-07-01
Assessing connectivity is fundamental to understanding the population dynamics of fishes. I propose that isotopic analyses can greatly contribute to studies of connectivity in estuarine fishes due to the high diversity of isotopic signatures found among estuarine habitats and the fact that variations in isotopic composition at the base of a food web are reflected in the tissues of consumers. Isotopic analysis can be used for identifying nursery habitats and estimating their contribution to adult populations. If movement to a new habitat is accompanied by a shift to foods of distinct isotopic composition, recent immigrants and residents can be distinguished based on their isotopic ratios. Movement patterns thus can be reconstructed based on information obtained from individuals. A key consideration is the rate of isotopic turnover, which determines the length of time that an immigrant to a given habitat will be distinguishable from a longtime resident. A literature survey indicated that few studies have measured turnover rates in fishes and that these have focused on larvae and juveniles. These studies reveal that biomass gain is the primary process driving turnover rates, while metabolic turnover is either minimal or undetectable. Using a simple dilution model and biomass-specific growth rates, I estimated that young fishes with fast growth rates will reflect the isotopic composition of a new diet within days or weeks. Older or slower-growing individuals may take years or never fully equilibrate. Future studies should evaluate the factors that influence turnover rates in fishes during various stages of the life cycle and in different tissues, as well as explore the potential for combining stable isotope and otolith microstructure analyses to examine the relationship between demographic parameters, movement and connectivity.
Skuland, Silje Elisabeth
2015-09-01
The article examines the constraints on healthy eating by exploring whether barriers such as taste, competence, time, price, quality and limited selection reduce consumption of vegetables and fish among Norwegians. In order to understand the socio-economic gradient of healthy diets, the study examines how these barriers are related to specific class positions. Regular consumption of both fish and vegetables are recommended by health authorities, and they are broadly perceived as healthy foods by Norwegians. Nevertheless, more than half of the population consumes vegetables less frequently than daily, and the average consumption of fish is far below the recommended two to three dinner portions of fish on a weekly basis. Informed by Bourdieu's theories of social class, this article argues for two overarching barriers related to food consumption, food knowledge and perceived food quality by consumers, and it finds that barriers are tied to scarcity of cultural, economic and social capital. A survey of 2000 respondents subjected to multiple linear regression analysis and factor analysis (PCA) provides the evidence for this study. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Santl, Saso; Carf, Masa; Preseren, Tanja; Jenic, Aljaz
2013-04-01
Water withdrawals and consequently reduction of discharges in river streams for different water uses (hydro power, irrigation, etc.) usually impoverish habitat suitability for naturally present river fish fauna. In Slovenia reduction of suitable habitats resulting from water abstractions frequently impacts local brown trout (Salmo truta) populations. This is the reason for establishment of habitat modeling which can qualitatively and quantitatively support decision making for determination of the environmental flow and other mitigation measures. Paper introduces applied methodology for habitat modeling where input data preparation and elaboration with required accuracy has to be considered. For model development four (4) representative and heterogeneous sampling sites were chosen. Two (2) sampling sections were located within the sections with small hydropower plants and were considered as sections affected by water abstractions. The other two (2) sampling sections were chosen where there are no existing water abstractions. Precise bathymetric mapping for chosen river sections has been performed. Topographic data and series of discharge and water level measurements enabled establishment of calibrated hydraulic models, which provide data on water velocities and depths for analyzed discharges. Brief field measurements were also performed to gather required data on dominant and subdominant substrate size and cover type. Since the accuracy of fish distribution on small scale is very important for habitat modeling, a fish sampling method had to be selected and modified for existing river microhabitats. The brown trout specimen's locations were collected with two (2) different sampling methods. A method of riverbank observation which is suitable for adult fish in pools and a method of electro fishing for locating small fish and fish in riffles or hiding in cover. Ecological and habitat requirements for fish species vary regarding different fish populations as well as eco and hydro morphological types of streams. Therefore, if habitat modeling for brown trout in Slovenia should be applied, it is necessary to determine preference requirements for the locally present brown trout populations. For efficient determination of applied preference functions and linked fuzzy sets/rules, beside expert determination, calibration according to field sampling must also be performed. After this final step a model is prepared for the analysis to support decision making in the field of environmental flow and other mitigation measures determination.
Plumb, Jason J.; Bell, Joanne; Stuckey, David C.
2001-01-01
Fluorescent in situ hybridization (FISH) using 16S and 23S rRNA-targeted probes together with construction of an archaeal 16S ribosomal DNA (rDNA) clone library was used to characterize the microbial populations of an anaerobic baffled reactor successfully treating industrial dye waste. Wastewater produced during the manufacture of food dyes containing several different azo and other dye compounds was decolorized and degraded under sulfidogenic and methanogenic conditions. Use of molecular methods to describe microbial populations showed that a diverse group of Bacteria and Archaea was involved in this treatment process. FISH enumeration showed that members of the gamma subclass of the class Proteobacteria and bacteria in the Cytophaga-Flexibacter-Bacteroides phylum, together with sulfate-reducing bacteria, were prominent members of a mixed bacterial population. A combination of FISH probing and analysis of 98 archaeal 16S rDNA clone inserts revealed that together with the bacterial population, a methanogenic population dominated by Methanosaeta species and containing species of Methanobacterium and Methanospirillum and a relatively unstudied methanogen, Methanomethylovorans hollandica, contributed to successful anaerobic treatment of the industrial waste. We suggest that sulfate reducers, or more accurately sulfidogenic bacteria, together with M. hollandica contribute considerably to the treatment process through metabolism of dye-associated sulfonate groups and subsequent conversion of sulfur compounds to carbon dioxide and methane. PMID:11425746
NASA Astrophysics Data System (ADS)
Murphy, B. P.; Czuba, J. A.; Belmont, P.; Budy, P.; Finch, C.
2017-12-01
Episodic events in steep landscapes, such as wildfire and mass wasting, contribute large pulses of sediment to rivers and can significantly alter the quality and connectivity of fish habitat. Understanding where these sediment inputs occur, how they are transported and processed through the watershed, and their geomorphic effect on the river network is critical to predicting the impact on ecological aquatic communities. The Tushar Mountains of southern Utah experienced a severe wildfire in 2010, resulting in numerous debris flows and the extirpation of trout populations. Following many years of habitat and ecological monitoring in the field, we have developed a modeling framework that links post-wildfire debris flows, fluvial sediment routing, and population ecology in order to evaluate the impact and response of trout to wildfire. First, using the Tushar topographic and wildfire parameters, as well as stochastic precipitation generation, we predict the post-wildfire debris flow probabilities and volumes of mainstem tributaries using the Cannon et al. [2010] model. This produces episodic hillslope sediment inputs, which are delivered to a fluvial sediment, river-network routing model (modified from Czuba et al. [2017]). In this updated model, sediment transport dynamics are driven by time-varying discharge associated with the stochastic precipitation generation, include multiple grain sizes (including gravel), use mixed-size transport equations (Wilcock & Crowe [2003]), and incorporate channel slope adjustments with aggradation and degradation. Finally, with the spatially explicit adjustments in channel bed elevation and grain size, we utilize a new population viability analysis (PVA) model to predict the impact and recovery of fish populations in response to these changes in habitat. Our model provides a generalizable framework for linking physical and ecological models and for evaluating the extirpation risk of isolated fish populations throughout the Intermountain West to the increasing threat of wildfire.
Santos, Angélica Rossotti Dos; Usso, Mariana Campaner; Gouveia, Juceli Gonzalez; Araya-Jaime, Cristian; Frantine-Silva, Wilson; Giuliano-Caetano, Lucia; Foresti, Fausto; Dias, Ana Lúcia
2017-06-01
The mapping of repetitive DNA sites by fluorescence in situ hybridization has been widely used for karyotype studies in different species of fish, especially when dealing with related species or even genera presenting high chromosome variability. This study analyzed three populations of Bryconamericus, with diploid number preserved, but with different karyotype formulae. Bryconamericus ecai, from the Forquetinha river/RS, presented three new cytotypes, increasing the number of karyotype forms to seven in this population. Other two populations of Bryconamericus sp. from the Vermelho stream/PR and Cambuta river/PR exhibited interpopulation variation. The chromosome mapping of rDNA sites revealed unique markings among the three populations, showing inter- and intrapopulation variability located in the terminal region. The molecular analysis using DNA barcoding complementing the cytogenetic analysis also showed differentiation among the three populations. The U2 small nuclear DNA repetitive sequence exhibited conserved features, being located in the interstitial region of a single chromosome pair. This is the first report on its occurrence in the genus Bryconamericus. Data obtained revealed a karyotype variability already assigned to the genus, along with polymorphism of ribosomal sites, demonstrating that this group of fish can be undergoing a divergent evolutionary process, constituting a substantive model for studies of chromosomal evolution.
The dynamics of a fish stock exploited in two fishing zones.
Mchich, R; Auger, P; Raïss, N
2000-12-01
This work presents a specific stock-effort dynamical model. The stocks correspond to two populations of fish moving and growing between two fishery zones. They are harvested by two different fleets. The effort represents the number of fishing boats of the two fleets that operate in the two fishing zones. The bioeconomical model is a set of four ODE's governing the fishing efforts and the stocks in the two fishing areas. Furthermore, the migration of the fish between the two patches is assumed to be faster than the growth of the harvested stock. The displacement of the fleets is also faster than the variation in the number of fishing boats resulting from the investment of the fishing income. So, there are two time scales: a fast one corresponding to the migration between the two patches, and a slow time scale corresponding to growth. We use aggregation methods that allow us to reduce the dimension of the model and to obtain an aggregated model for the total fishing effort and fish stock of the two fishing zones. The mathematical analysis of the model is shown. Under some conditions, we obtain a stable equilibrium, which is a desired situation, as it leads to a sustainable harvesting equilibrium, keeping the stock at exploitable densities.
Application of environmental DNA analysis to inform invasive fish eradication operations
NASA Astrophysics Data System (ADS)
Davison, Phillip I.; Copp, Gordon H.; Créach, Véronique; Vilizzi, Lorenzo; Britton, J. R.
2017-04-01
Environmental DNA (eDNA) detection of non-native species has considerable potential to inform management decisions, including identifying the need for population control and/or eradication. An invasive species of European concern is the Asian cyprinid fish, topmouth gudgeon ( Pseudorasbora parva) . Here, eDNA analyses were applied at a commercial angling venue in southern England to inform operations aiming to eradicate P. parva, which had only ever been observed in one of the venue's seven unconnected angling ponds. Eradication of P. parva was initially attempted by repeated depletion of the population using fish traps (crayfish traps fitted with 5 mm mesh netting) and the introduction of native predators over a 4-year period. The very low number of P. parva captured following these eradication efforts suggested a possible population crash. Conventional PCR analysis of water samples using species-specific primers was applied to all seven ponds to confirm that P. parva was present in only one pond, that the eradication attempt had indeed failed and that the species' distribution in the pond appeared to be restricted to three bankside locations. The continued presence of P. parva at these locations was confirmed by subsequent trapping. Water samples from an adjacent, unconnected stream were also analysed using the eDNA methodology, but no DNA of P. parva was detected. The results suggest that further management action to eradicate P. parva be focused on the pond shown to contain the isolated P. parva population and thereby eliminate the risk of further dispersal. This study is the first to apply eDNA analysis to assess the efficacy of an eradication attempt and to provide evidence that the species was unlikely to be present in the other ponds, thus reducing the resources needed to control the species.
Application of environmental DNA analysis to inform invasive fish eradication operations.
Davison, Phillip I; Copp, Gordon H; Créach, Véronique; Vilizzi, Lorenzo; Britton, J R
2017-04-01
Environmental DNA (eDNA) detection of non-native species has considerable potential to inform management decisions, including identifying the need for population control and/or eradication. An invasive species of European concern is the Asian cyprinid fish, topmouth gudgeon (Pseudorasbora parva). Here, eDNA analyses were applied at a commercial angling venue in southern England to inform operations aiming to eradicate P. parva, which had only ever been observed in one of the venue's seven unconnected angling ponds. Eradication of P. parva was initially attempted by repeated depletion of the population using fish traps (crayfish traps fitted with 5 mm mesh netting) and the introduction of native predators over a 4-year period. The very low number of P. parva captured following these eradication efforts suggested a possible population crash. Conventional PCR analysis of water samples using species-specific primers was applied to all seven ponds to confirm that P. parva was present in only one pond, that the eradication attempt had indeed failed and that the species' distribution in the pond appeared to be restricted to three bankside locations. The continued presence of P. parva at these locations was confirmed by subsequent trapping. Water samples from an adjacent, unconnected stream were also analysed using the eDNA methodology, but no DNA of P. parva was detected. The results suggest that further management action to eradicate P. parva be focused on the pond shown to contain the isolated P. parva population and thereby eliminate the risk of further dispersal. This study is the first to apply eDNA analysis to assess the efficacy of an eradication attempt and to provide evidence that the species was unlikely to be present in the other ponds, thus reducing the resources needed to control the species.
Approximate sample sizes required to estimate length distributions
Miranda, L.E.
2007-01-01
The sample sizes required to estimate fish length were determined by bootstrapping from reference length distributions. Depending on population characteristics and species-specific maximum lengths, 1-cm length-frequency histograms required 375-1,200 fish to estimate within 10% with 80% confidence, 2.5-cm histograms required 150-425 fish, proportional stock density required 75-140 fish, and mean length required 75-160 fish. In general, smaller species, smaller populations, populations with higher mortality, and simpler length statistics required fewer samples. Indices that require low sample sizes may be suitable for monitoring population status, and when large changes in length are evident, additional sampling effort may be allocated to more precisely define length status with more informative estimators. ?? Copyright by the American Fisheries Society 2007.
Fishing-induced life-history changes degrade and destabilize harvested ecosystems.
Kuparinen, Anna; Boit, Alice; Valdovinos, Fernanda S; Lassaux, Hélène; Martinez, Neo D
2016-02-26
Fishing is widely known to magnify fluctuations in targeted populations. These fluctuations are correlated with population shifts towards young, small, and more quickly maturing individuals. However, the existence and nature of the mechanistic basis for these correlations and their potential ecosystem impacts remain highly uncertain. Here, we elucidate this basis and associated impacts by showing how fishing can increase fluctuations in fishes and their ecosystem, particularly when coupled with decreasing body sizes and advancing maturation characteristic of the life-history changes induced by fishing. More specifically, using an empirically parameterized network model of a well-studied lake ecosystem, we show how fishing may both increase fluctuations in fish abundances and also, when accompanied by decreasing body size of adults, further decrease fish abundance and increase temporal variability of fishes' food resources and their ecosystem. In contrast, advanced maturation has relatively little effect except to increase variability in juvenile populations. Our findings illustrate how different mechanisms underlying life-history changes that may arise as evolutionary responses to intensive, size-selective fishing can rapidly and continuously destabilize and degrade ecosystems even after fishing has ceased. This research helps better predict how life-history changes may reduce fishes' resilience to fishing and ecosystems' resistance to environmental variations.
Population Dynamics and Production of the Amphipod Corophium salmonis in Grays Harbor, Washington,
1981-09-01
biomass ratios of bivalve and gastropod population in an eastern Canadian estuary. J. Fish. Res. Bd. Can. 31: 167-177. Casablanca, M. -L., de. 1975...analysis was adapted from "Standards Methods for the Examination of Water and Wastewater," 14th Edition, APHA, AWWA, and WPCF, Washington, D.C., 1975, pp
Recovery of a wild fish population from whole-lake additions of a synthetic estrogen.
Blanchfield, Paul J; Kidd, Karen A; Docker, Margaret F; Palace, Vince P; Park, Brad J; Postma, Lianne D
2015-03-03
Despite widespread recognition that municipal wastewaters contain natural and synthetic estrogens, which interfere with development and reproduction of fishes in freshwaters worldwide, there are limited data on the extent to which natural populations of fish can recover from exposure to these compounds. We conducted whole-lake additions of an active component of the birth control pill (17α-ethynylestradiol; EE2) that resulted in the collapse of the fathead minnow (Pimephales promelas) population. Here we quantify physiological, population, and genetic characteristics of this population over the 7 years after EE2 additions stopped to determine if complete recovery was possible. By 3 years post-treatment, whole-body vitellogenin concentrations in male fathead minnow had returned to baseline, and testicular abnormalities were absent. In the spring of the fourth year, adult size-frequency distribution and abundance had returned to pretreatment levels. Microsatellite analyses clearly showed that postrecovery fish were descendants of the original EE2-treated population. Results from this whole-lake experiment demonstrate that fish can recover from EE2 exposure at the biochemical through population levels, although the timelines to do so are long for multigenerational exposures. These results suggest that wastewater treatment facilities that reduce discharges of estrogens and their mimics can improve the health of resident fish populations in their receiving environments.
Development of standard weight equations for Caribbean and Gulf of Mexico amphidromous fishes
Cooney, Patrick B.; Kwak, Thomas J.
2010-01-01
We collected and compiled length and weight information from four countries and one commonwealth to develop standard weight (Ws) equations for three amphidromous fish species native to the Caribbean and Gulf of Mexico regions: mountain mullet Agonostomus monticola (N = 9,768 individuals, 52 populations), river goby Awaous banana (N = 1,847 individuals, 62 populations), and bigmouth sleeper Gobiomorus dormitor (N = 2,983 individuals, 53 populations). Linear and quadratic Ws equations for three quartiles (25%, median, 75%) are presented for these three species. The length-weight relationship from eight lentic bigmouth sleeper populations was significantly different from that of lotic populations, reflecting higher weights of juvenile fish (< 70 mm total length) in lentic environments. Thus, independent W(s) equations were developed for lotic populations of bigmouth sleepers. W(s) equations were not developed from lentic bigmouth sleeper populations alone due to the low number of applicable populations caused by life history constraints; the equation from combined lentic and lotic populations is suggested for application to lentic bigmouth sleeper populations. These morphometric relationships for amphidromous fishes may improve the ability to assess existing and potential sport fisheries and allow ecological assessment based on fish condition.
Fish population losses from Adirondack Lakes: The role of surface water acidity and acidification
NASA Astrophysics Data System (ADS)
Baker, Joan P.; Warren-Hicks, William J.; Gallagher, James; Christensen, Sigurd W.
1993-04-01
Changes over time in the species composition of fish communities in Adirondack lakes were assessed to determine (1) the approximate numbers offish populations that have been lost and (2) the degree to which fish population losses may have resulted from surface water acidification and acidic deposition. Information on the present-day status offish communities was obtained by the Adirondack Lakes Survey Corporation, which surveyed 1469 Adirondack lakes in 1984-1987 (53% of the total ponded waters in the Adirondack ecological zone). Two hundred and ninety-five of these lakes had been surveyed in 1929-1934 during the first statewide biological survey; 720 had been surveyed in one or more years prior to 1970. Sixteen to 19% of the lakes with adequate historical data appeared to have lost one or more fish populations as a result of acidification. Brook trout and acid-sensitive minnow species had experienced the most widespread effects. Populations of brook trout and acid-sensitive minnows had been lost apparently as a result of acidification from 11% and 19%, respectively, of the lakes with confirmed historical occurrence of these taxa. By contrast, fish species that tend to occur primarily in lower elevation and larger lakes, such as largemouth and smallmouth bass and brown trout, have experienced little to no documented adverse effects. Lakes that were judged to have lost fish populations as a result of acidification had significantly lower; pH and, in most cases, also had higher estimated concentrations of inorganic aluminum and occurred at higher elevations than did lakes with the fish species still present. No other lake characteristics were consistently associated with fish population losses attributed to acidification. The exact numbers and proportions of fish populations affected could not be determined because of limitations on the quantity and quality of historical data. Lakes for which we had adequate historical data to assess long-term trends in fish communities were significantly larger and deeper and have higher pH than do Adirondack lakes in general; thus, fish communities adversely affected by acidification and acidic deposition may be underrepresented in this study.
Wildhaber, Mark L.; Yang, Wen-Hsi; Arab, Ali
2016-01-01
A baseline assessment of the Missouri River fish community and species-specific habitat use patterns conducted from 1996 to 1998 provided the first comprehensive analysis of Missouri River benthic fish population trends and habitat use in the Missouri and Lower Yellowstone rivers, exclusive of reservoirs, and provided the foundation for the present Pallid Sturgeon Population Assessment Program (PSPAP). Data used in such studies are frequently zero inflated. To address this issue, the zero-inflated Poisson (ZIP) model was applied. This follow-up study is based on PSPAP data collected up to 15 years later along with new understanding of how habitat characteristics among and within bends affect habitat use of fish species targeted by PSPAP, including pallid sturgeon. This work demonstrated that a large-scale, large-river, PSPAP-type monitoring program can be an effective tool for assessing population trends and habitat usage of large-river fish species. Using multiple gears, PSPAP was effective in monitoring shovelnose and pallid sturgeons, sicklefin, shoal and sturgeon chubs, sand shiner, blue sucker and sauger. For all species, the relationship between environmental variables and relative abundance differed, somewhat, among river segments suggesting the importance of the overall conditions of Upper and Middle Missouri River and Lower Missouri and Kansas rivers on the habitat usage patterns exhibited. Shoal and sicklefin chubs exhibited many similar habitat usage patterns; blue sucker and shovelnose sturgeon also shared similar responses. For pallid sturgeon, the primary focus of PSPAP, relative abundance tended to increase in Upper and Middle Missouri River paralleling stocking efforts, whereas no evidence of an increasing relative abundance was found in the Lower Missouri River despite stocking.
Understanding and managing fish populations: keeping the toolbox fit for purpose.
Paris, J R; Sherman, K D; Bell, E; Boulenger, C; Delord, C; El-Mahdi, M B M; Fairfield, E A; Griffiths, A M; Gutmann Roberts, C; Hedger, R D; Holman, L E; Hooper, L H; Humphries, N E; Katsiadaki, I; King, R A; Lemopoulos, A; Payne, C J; Peirson, G; Richter, K K; Taylor, M I; Trueman, C N; Hayden, B; Stevens, J R
2018-03-01
Wild fish populations are currently experiencing unprecedented pressures, which are projected to intensify in the coming decades. Developing a thorough understanding of the influences of both biotic and abiotic factors on fish populations is a salient issue in contemporary fish conservation and management. During the 50th Anniversary Symposium of The Fisheries Society of the British Isles at the University of Exeter, UK, in July 2017, scientists from diverse research backgrounds gathered to discuss key topics under the broad umbrella of 'Understanding Fish Populations'. Below, the output of one such discussion group is detailed, focusing on tools used to investigate natural fish populations. Five main groups of approaches were identified: tagging and telemetry; molecular tools; survey tools; statistical and modelling tools; tissue analyses. The appraisal covered current challenges and potential solutions for each of these topics. In addition, three key themes were identified as applicable across all tool-based applications. These included data management, public engagement, and fisheries policy and governance. The continued innovation of tools and capacity to integrate interdisciplinary approaches into the future assessment and management of fish populations is highlighted as an important focus for the next 50 years of fisheries research. © 2018 The Fisheries Society of the British Isles.
Lovy, Jan; Friend, Sarah E.
2015-01-01
Anadromous alewives, Alosa pseudoharengus, have experienced significant population level declines caused by factors including habitat destruction. Alewives occur in two different life histories, anadromous and landlocked forms. The landlocked alewife evolved from ancestral anadromous populations, resulting in an exclusively freshwater and phenotypically unique form. The occurrence of parasites in a host is linked to the environment, making alewives an ideal model to compare parasitology within a single species with contrasting life histories. Currently, little information exists on the presence and impacts of parasites in these fish populations; the present study sets out to better understand coccidiosis in the threatened anadromous populations and to understand how coccidian parasites compare in both life history forms. The intestinal coccidian, Goussia ameliae n. sp., was described infecting the pyloric cecum of 76% and 86% of young-of-the-year and adult anadromous alewives, respectively, from the Maurice River, New Jersey, USA. The coccidian was found in landlocked alewife populations with a prevalence of 92% and 34% in YOY and adult fish, respectively. An analysis of the small subunit 18S ribosomal RNA gene of G. ameliae from both life history forms demonstrated that the coccidian had 100% sequence identity, confirming the same parasite species in both forms. Though genetic analysis demonstrated G. ameliae to be identical, some differences were observed in sporulation and morphology of the parasite within the two populations. The sporocysts in anadromous populations were shorter and wider, and sporulation timing differed from that of landlocked fish. These differences may either be attributed to differences in the host type or to the sporulation environment. Lastly, alewives from landlocked populations were frequently co-infected with a second coccidian species in the posterior intestine, which occurred at a lower prevalence. This species, G. alosii n. sp., was described based on morphological characters of the sporulated oocysts in fresh parasitological preparations. PMID:25853050
Desert tortoise annotated bibliography, 1991-2015
Berry, Kristin H.; Lyren, Lisa M.; Mack, Jeremy S.; Brand, L. Arriana; Wood, Dustin A.
2016-03-01
Agassiz’s Desert Tortoise (hereinafter called desert tortoise) is a state- and federally-listed threatened species (U.S. Fish and Wildlife Service, 1990; California Department of Fish and Game, 2015). The first population federally listed as threatened occurred on the Beaver Dam Slope, Utah (U.S. Fish and Wildlife Service, 1980). In 1990, the entire geographic range north and west of the Colorado River was federally listed as threatened (U.S. Fish and Wildlife Service, 1990), with the exception being a small population in northwestern Arizona. The purpose of this annotated bibliography is to support recovery efforts for the species, because populations have continued to decline in spite of designation of critical habitat and publication of a recovery plan (U.S. Fish and Wildlife Service, 1994). For example, between 2005 and 2014, populations in critical habitats declined about 50% (U.S. Fish and Wildlife Service, 2015).
Hacon, Sandra S; Dórea, José G; Fonseca, Márlon de F; Oliveira, Beatriz A; Mourão, Dennys S; Ruiz, Claudia M V; Gonçalves, Rodrigo A; Mariani, Carolina F; Bastos, Wanderley R
2014-02-26
In the Amazon Basin, naturally occurring methylmercury bioaccumulates in fish, which is a key source of protein consumed by riverine populations. The hydroelectric power-plant project at Santo Antônio Falls allows us to compare the Hg exposure of riverine populations sparsely distributed on both sides of the Madeira river before the area is to be flooded. From 2009 to 2011, we concluded a population survey of the area (N = 2,008; representing circa 80% of community residents) that estimated fish consumption and mercury exposure of riverine populations with different degrees of lifestyle related to fish consumption. Fish samples from the Madeira river (N = 1,615) and 110 species were analyzed for Hg. Hair-Hg was significantly lower (p < 0.001) in less isolated communities near to the capital of Porto Velho (median 2.32 ppm) than in subsistence communities in the Cuniã Lake, 180 km from Porto Velho city (median 6.3 ppm). Fish Hg concentrations ranged from 0.01 to 6.06 µg/g, depending on fish size and feeding behavior. Currently available fish in the Madeira river show a wide variability in Hg concentrations. Despite cultural similarities, riparians showed hair-Hg distribution patterns that reflect changes in fish-eating habits driven by subsistence characteristics.
[Overview of the artificial enhancement and release of endemic freshwater fish in China].
Yang, Jun-Xing; Pan, Xiao-Fu; Chen, Xiao-Yong; Wang, Xiao-Ai; Zhao, Ya-Peng; Li, Jian-You; Li, Zai-Yun
2013-08-01
Due to declining fishery resources and the growing development of conservation aquaculture, artificial freshwater fish enhancement and releasing have begun to replace traditional means of recovering endemic and rare fish populations. Artificial proliferation can be beneficial both to endemic fish conservation and technical bottleneck breakthroughs. This overview presents a review of the latest research and the underlying principles behind the conservation implementation processes, as well as the research status of artificial enhancement and release of endangered freshwater fish species in China, such as Mylopharyngodon piceus, Ctenopharyngodon idellus, Hypophthalmichthys molitrix, H. nobilis, Acipenser sinensis, Myxocyprinus asiaticus, and Sinocyclocheilus grahami. The overview also presents evolutionarily significant units, sperm and egg quality, and cryopreservation technologies and cell cultures used in artificial enhancement and release, which help standardize genetic management and minimize the genetic differences between hatched and wild populations. Monitoring fish from cultivation to release is essential to evaluating wild population recovery and adjusting recovery plans. Moreover, the remaining problems of artificial releases are discussed in-depth, touching on issues such as the limitations of domestic hatching, the base number of wild populations necessary to the environment, the proper size at which to release juveniles' into the environment, the geographic confusion of populations, the contradictions in commercial fish selection and fish conservation, and "exotic species" invasion.
Rimmer, Anneke E; Becker, Joy A; Tweedie, Alison; Lintermans, Mark; Landos, Matthew; Stephens, Fran; Whittington, Richard J
2015-11-01
The movement of ornamental fish through international trade is a major factor for the transboundary spread of pathogens. In Australia, ornamental fish which may carry dwarf gourami iridovirus (DGIV), a strain of Infectious spleen and kidney necrosis virus (ISKNV), have been identified as a biosecurity risk despite relatively stringent import quarantine measures being applied. In order to gain knowledge of the potential for DGIV to enter Australia, imported ornamental fish were sampled prior to entering quarantine, during quarantine, and post quarantine from wholesalers and aquatic retail outlets in Australia. Samples were tested by quantitative polymerase chain reaction (qPCR) for the presence of megalocytivirus. Farmed and wild ornamental fish were also tested. Megalocytivirus was detected in ten of fourteen species or varieties of ornamental fish. Out of the 2086 imported gourami tested prior to entering quarantine, megalocytivirus was detected in 18.7% of fish and out of the 51 moribund/dead ornamental fish tested during the quarantine period, 68.6% were positive for megalocytivirus. Of fish from Australian wholesalers and aquatic retail outlets 14.5% and 21.9%, respectively, were positive. Out of 365 farmed ornamental fish, ISKNV-like megalocytivirus was detected in 1.1%; these were Platy (Xiphophorus maculatus). Megalocytivirus was not detected in free-living breeding populations of Blue gourami (Trichopodus trichopterus) caught in Queensland. This study showed that imported ornamental fish are vectors for DGIV and it was used to support an import risk analysis completed by the Australian Department of Agriculture. Subsequently, the national biosecurity policy was revised and from 1 March 2016, a health certification is required for susceptible families of fish to be free of this virus prior to importation. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.
Eberts, Rebecca L.; Wissel, Bjorn; Simpson, Gavin L.; Crawford, Stephen S.; Stott, Wendylee; Hanner, Robert H.; Manzon, Richard G.; Wilson, Joanna Y.; Boreham, Douglas R.; Somers, Christopher M.
2017-01-01
Lake Whitefish Coregonus clupeaformis is the most commercially valuable species in Lake Huron. The fishery for this species has historically been managed based on 25 management units (17 in Canada, 8 in the USA). However, congruence between the contemporary population structure of Lake Whitefish and management units is poorly understood. We used stable isotopes of carbon (δ13C) and nitrogen (δ15N), food web markers that reflect patterns in resource use (i.e., prey, location, habitat), to assess the population structure of spawning-phase Lake Whitefish collected from 32 sites (1,474 fish) across Lake Huron. We found large isotopic variation among fish from different sites (ranges: δ13C = 10.2‰, δ15N = 5.5‰) and variable niche size and levels of overlap (standard ellipse area = 1.0–4.3‰2). Lake Huron contained spawning-phase fish from four major isotopic clusters largely defined by extensive variation in δ13C, and the isotopic composition of fish sampled was spatially structured both within and between lake basins. Based on cluster compositions, we identified six putative regional groups, some of which represented sites of high diversity (three to four clusters) and others with less (one to two clusters). Analysis of isotopic values from Lake Whitefish collected from summer feeding locations and baseline prey items showed similar isotopic variation and established spatial linkage between spawning-phase and summer fish. Our results show that summer feeding location contributes strongly to the isotopic structure we observed in spawning-phase fish. One of the regional groups we identified in northern Georgian Bay is highly distinct based on isotopic composition and possibly ecologically unique within Lake Huron. Our findings are congruent with several previous studies using different markers (genetics, mark–recapture), and we conclude that current management units are generally too small and numerous to reflect the population structure of Lake Whitefish in Lake Huron.
Aquatic environmental DNA detects seasonal fish abundance and habitat preference in an urban estuary
Soboleva, Lyubov; Charlop-Powers, Zachary
2017-01-01
The difficulty of censusing marine animal populations hampers effective ocean management. Analyzing water for DNA traces shed by organisms may aid assessment. Here we tested aquatic environmental DNA (eDNA) as an indicator of fish presence in the lower Hudson River estuary. A checklist of local marine fish and their relative abundance was prepared by compiling 12 traditional surveys conducted between 1988–2015. To improve eDNA identification success, 31 specimens representing 18 marine fish species were sequenced for two mitochondrial gene regions, boosting coverage of the 12S eDNA target sequence to 80% of local taxa. We collected 76 one-liter shoreline surface water samples at two contrasting estuary locations over six months beginning in January 2016. eDNA was amplified with vertebrate-specific 12S primers. Bioinformatic analysis of amplified DNA, using a reference library of GenBank and our newly generated 12S sequences, detected most (81%) locally abundant or common species and relatively few (23%) uncommon taxa, and corresponded to seasonal presence and habitat preference as determined by traditional surveys. Approximately 2% of fish reads were commonly consumed species that are rare or absent in local waters, consistent with wastewater input. Freshwater species were rarely detected despite Hudson River inflow. These results support further exploration and suggest eDNA will facilitate fine-scale geographic and temporal mapping of marine fish populations at relatively low cost. PMID:28403183
Ford, Michael J; Murdoch, Andrew R; Hughes, Michael S; Seamons, Todd R; LaHood, Eric S
2016-01-01
We used genetic parentage analysis of 6200 potential parents and 5497 juvenile offspring to evaluate the relative reproductive success of hatchery and natural steelhead (Onchorhynchus mykiss) when spawning in the wild between 2008 and 2011 in the Wenatchee River, Washington. Hatchery fish originating from two prior generation hatchery parents had <20% of the reproductive success of natural origin spawners. In contrast, hatchery females originating from a cross between two natural origin parents of the prior generation had equivalent or better reproductive success than natural origin females. Males originating from such a cross had reproductive success of 26-93% that of natural males. The reproductive success of hatchery females and males from crosses consisting of one natural origin fish and one hatchery origin fish was 24-54% that of natural fish. The strong influence of hatchery broodstock origin on reproductive success confirms similar results from a previous study of a different population of the same species and suggests a genetic basis for the low reproductive success of hatchery steelhead, although environmental factors cannot be entirely ruled out. In addition to broodstock origin, fish size, return time, age, and spawning location were significant predictors of reproductive success. Our results indicate that incorporating natural fish into hatchery broodstock is clearly beneficial for improving subsequent natural spawning success, even in a population that has a decades-long history of hatchery releases, as is the case in the Wenatchee River.
[New view on the population genetic structure of marine fish].
Salmenkova, E A
2011-11-01
The view on homogeneous population genetic structure in many marine fish with high mobility has changed significantly during the last ten years. Molecular genetic population studies over the whole ranges of such species as Atlantic herring and Atlantic cod showed a complex picture of spatial differentiation both on the macrogeographic and, in many areas, on the microgeographic scale, although the differentiation for neutral molecular markers was low. It was established that the migration activity of such fish is constrained in many areas of the species range by hydrological and physicochemical transition zones (environmental gradients), as well as gyres in the spawning regions. Natal homing was recorded in a number of marine fish species. Existing in marine fish constraints of gene migration and a very high variance of reproductive success determine a significantly smaller proportion of effective reproductive size of their populations in the total population size, which generates more complex abundance dynamics than assumed earlier. The various constraints on gene migration and natal homing in marine fish promote the formation of local adaptations at ecologically important phenotypic traits. Effects of selection underlying adaptations are actively investigated in marine fish on the genomic level, using approaches of population genomics. The knowledge of adaptive intraspecific structure enables understanding the ecological and evolutionary processes, that influence biodiversity and providing spatial frames for conservation of genetic resources under commercial exploitation. Contemporary views on the population genetic and adaptive structures or biocomplexity in marine fish support and develop the main principles of the conception of systemic organization of the species and its regional populations, which were advanced by Yu.P. Altukhov and Yu.G. Rychkov.
Downer, Mary K; Martínez-González, Miguel A; Gea, Alfredo; Stampfer, Meir; Warnberg, Julia; Ruiz-Canela, Miguel; Salas-Salvadó, Jordi; Corella, Dolores; Ros, Emilio; Fitó, Montse; Estruch, Ramon; Arós, Fernando; Fiol, Miquel; Lapetra, José; Serra-Majem, Lluís; Bullo, Monica; Sorli, Jose V; Muñoz, Miguel A; García-Rodriguez, Antonio; Gutierrez-Bedmar, Mario; Gómez-Gracia, Enrique
2017-01-05
Substantial evidence suggests that consuming 1-2 servings of fish per week, particularly oily fish (e.g., salmon, herring, sardines) is beneficial for cardiovascular health due to its high n-3 polyunsaturated fatty acid content. However, there is some concern that the mercury content in fish may increase cardiovascular disease risk, but this relationship remains unclear. The PREDIMED trial included 7477 participants who were at high risk for cardiovascular disease at baseline. In this study, we evaluated associations between mercury exposure, fish consumption and cardiovascular disease. We randomly selected 147 of the 288 cases diagnosed with cardiovascular disease during follow-up and matched them on age and sex to 267 controls. Instrumental neutron activation analysis was used to assess toenail mercury concentration. In-person interviews, medical record reviews and validated questionnaires were used to assess fish consumption and other covariates. Information was collected at baseline and updated yearly during follow-up. We used conditional logistic regression to evaluate associations in the total nested case-control study, and unconditional logistic regression for population subsets. Mean (±SD) toenail mercury concentrations (μg per gram) did not significantly differ between cases (0.63 (±0.53)) and controls (0.67 (±0.49)). Mercury concentration was not associated with cardiovascular disease in any analysis, and neither was fish consumption or n-3 fatty acids. The fully-adjusted relative risks for the highest versus lowest quartile of mercury concentration were 0.71 (95% Confidence Interval [CI], 0.34, 1.14; p trend = 0.37) for the nested case-control study, 0.74 (95% CI, 0.32, 1.76; p trend = 0.43) within the Mediterranean diet intervention group, and 0.50 (95% CI, 0.13, 1.96; p trend = 0.41) within the control arm of the trial. Associations remained null when mercury was jointly assessed with fish consumption at baseline and during follow-up. Results were similar in different sensitivity analyses. We found no evidence that mercury exposure from regular fish consumption increases cardiovascular disease risk in a population of Spanish adults with high cardiovascular disease risk and high fish consumption. This implies that the mercury content in fish does not detract from the already established cardiovascular benefits of fish consumption. ISRCTN35739639 .
Michel, Christian; Pelletier, Claire; Boussaha, Mekki; Douet, Diane-Gaëlle; Lautraite, Armand; Tailliez, Patrick
2007-05-01
Lactic acid bacteria have become a major source of concern for aquaculture in recent decades. In addition to true pathogenic species of worldwide significance, such as Streptococcus iniae and Lactococcus garvieae, several species have been reported to produce occasional fish mortalities in limited geographic areas, and many unidentifiable or ill-defined isolates are regularly isolated from fish or fish products. To clarify the nature and prevalence of different fish-associated bacteria belonging to the lactic acid bacterium group, a collection of 57 isolates of different origins was studied and compared with a set of 22 type strains, using amplified rRNA gene restriction analysis (ARDRA). Twelve distinct clusters were delineated on the basis of ARDRA profiles and were confirmed by sequencing of sodA and 16S rRNA genes. These clusters included the following: Lactococcus raffinolactis, L. garvieae, Lactococcus l., S. iniae, S. dysgalactiae, S. parauberis, S. agalactiae, Carnobacterium spp., the Enterococcus "faecium" group, a heterogeneous Enterococcus-like cluster comprising indiscernible representatives of Vagococcus fluvialis or the recently recognized V. carniphilus, V. salmoninarum, and Aerococcus spp. Interestingly, the L. lactis and L. raffinolactis clusters appeared to include many commensals of fish, so opportunistic infections caused by these species cannot be disregarded. The significance for fish populations and fish food processing of three or four genetic clusters of uncertain or complex definition, namely, Aerococcus and Enterococcus clusters, should be established more accurately.
Králová-Hromadová, Ivica; Minárik, Gabriel; Bazsalovicsová, Eva; Mikulíček, Peter; Oravcová, Alexandra; Pálková, Lenka; Hanzelová, Vladimíra
2015-02-01
Caryophyllaeus laticeps (Pallas 1781) (Cestoda: Caryophyllidea) is a monozoic tapeworm of cyprinid fishes with a distribution area that includes Europe, most of the Palaearctic Asia and northern Africa. Broad geographic distribution, wide range of definitive fish hosts and recently revealed high morphological plasticity of the parasite, which is not in an agreement with molecular findings, make this species to be an interesting model for population biology studies. Microsatellites (short tandem repeat (STR) markers), as predominant markers for population genetics, were designed for C. laticeps using a next-generation sequencing (NGS) approach. Out of 165 marker candidates, 61 yielded PCR products of the expected size and in 25 of the candidates a declared repetitive motif was confirmed by Sanger sequencing. After the fragment analysis, six loci were proved to be polymorphic and tested for heterozygosity, Hardy-Weinberg equilibrium and the presence of null alleles on 59 individuals coming from three geographically widely separated populations (Slovakia, Russia and UK). The number of alleles in particular loci and populations ranged from two to five. Significant deficit of heterozygotes and the presence of null alleles were found in one locus in all three populations. Other loci showed deviations from Hardy-Weinberg equilibrium and the presence of null alleles only in some populations. In spite of relatively low polymorphism and the potential presence of null alleles, newly developed microsatellites may be applied as suitable markers in population genetic studies of C. laticeps.
Social-ecological interactions, management panaceas, and the future of wild fish populations
van Poorten, Brett T.; Arlinghaus, Robert; Daedlow, Katrin; Haertel-Borer, Susanne S.
2011-01-01
We explored the social and ecological outcomes associated with emergence of a management panacea designed to govern a stochastic renewable natural resource. To that end, we constructed a model of a coupled social-ecological system of recreational fisheries in which a manager supports naturally fluctuating stocks by stocking fish in response to harvest-driven satisfaction of resource users. The realistic assumption of users remembering past harvest experiences when exploiting a stochastically fluctuating fish population facilitates the emergence of a stocking-based management panacea over time. The social benefits of panacea formation involve dampening natural population fluctuations and generating stability of user satisfaction. It also maintains the resource but promotes the eventual replacement of wild fish by hatchery-descended fish. Our analyses show this outcome is particularly likely when hatchery-descended fish are reasonably fit (e.g., characterized by similar survival relative to wild fish) and/or when natural recruitment of the wild population is low (e.g., attributable to habitat deterioration), which leaves the wild population with little buffer against competition by stocked fish. The potential for release-based panacea formation is particularly likely under user-based management regimes and should be common in a range of social-ecological systems (e.g., fisheries, forestry), whenever user groups are entitled to engage in release or replanting strategies. The net result will be the preservation of a renewable resource through user-based incentives, but the once natural populations are likely to be altered and to host nonnative genotypes. This risks other ecosystem services and the future of wild populations. PMID:21742983
Population maintenance among tropical reef fishes: Inferences from small-island endemics
Robertson, D. Ross
2001-01-01
To what extent do local populations of tropical reef fishes persist through the recruitment of pelagic larvae to their natal reef? Endemics from small, isolated islands can help answer that question by indicating whether special biological attributes are needed for long-term survival under enforced localization in high-risk situations. Taxonomically and biologically, the endemics from seven such islands are broadly representative of their regional faunas. As natal-site recruitment occurs among reef fishes in much less isolated situations, these characteristics of island endemics indicate that a wide range of reef fishes could have persistent self-sustaining local populations. Because small islands regularly support substantial reef fish faunas, regional systems of small reserves could preserve much of the diversity of these fishes. PMID:11331752
An indigenous religious ritual selects for resistance to a toxicant in a livebearing fish.
Tobler, M; Culumber, Z W; Plath, M; Winemiller, K O; Rosenthal, G G
2011-04-23
Human-induced environmental change can affect the evolutionary trajectory of populations. In Mexico, indigenous Zoque people annually introduce barbasco, a fish toxicant, into the Cueva del Azufre to harvest fish during a religious ceremony. Here, we investigated tolerance to barbasco in fish from sites exposed and unexposed to the ritual. We found that barbasco tolerance increases with body size and differs between the sexes. Furthermore, fish from sites exposed to the ceremony had a significantly higher tolerance. Consequently, the annual ceremony may not only affect population structure and gene flow among habitat types, but the increased tolerance in exposed fish may indicate adaptation to human cultural practices in a natural population on a very small spatial scale.
An indigenous religious ritual selects for resistance to a toxicant in a livebearing fish
Tobler, M.; Culumber, Z. W.; Plath, M.; Winemiller, K. O.; Rosenthal, G. G.
2011-01-01
Human-induced environmental change can affect the evolutionary trajectory of populations. In Mexico, indigenous Zoque people annually introduce barbasco, a fish toxicant, into the Cueva del Azufre to harvest fish during a religious ceremony. Here, we investigated tolerance to barbasco in fish from sites exposed and unexposed to the ritual. We found that barbasco tolerance increases with body size and differs between the sexes. Furthermore, fish from sites exposed to the ceremony had a significantly higher tolerance. Consequently, the annual ceremony may not only affect population structure and gene flow among habitat types, but the increased tolerance in exposed fish may indicate adaptation to human cultural practices in a natural population on a very small spatial scale. PMID:20826470
Effect of fishing effort on catch rate and catchability of largemouth bass in small impoundments
Wegener, M. G.; Schramm, Harold; Neal, J. W.; Gerard, P.D.
2018-01-01
Largemouth bass Micropterus salmoides (Lacepède) catch rates decline with sustained fishing effort, even without harvest. It is unclear why declines in catch rate occur, and little research has been directed at how to improve catch rate. Learning has been proposed as a reason for declining catch rate, but has never been tested on largemouth bass. If catch rate declines because fish learn to avoid lures, periods of no fishing could be a management tool for increasing catch rate. In this study, six small impoundments with established fish populations were fished for two May to October fishing seasons to evaluate the effect of fishing effort on catch rate. Closed seasons were implemented to test whether a 2‐month period of no fishing improved catch rates and to determine whether conditioning from factors other than being captured reduced catch rate. Mixed‐model analysis indicated catch rate and catchability declined throughout the fishing season. Catch rate and catchability increased after a 2‐month closure but soon declined to the lowest levels of the fishing season. These changes in catch rate and catchability support the conclusion of learned angler avoidance, but sustained catchability of fish not previously caught does not support that associative or social learning affected catchability.
A physiological perspective on fisheries-induced evolution.
Hollins, Jack; Thambithurai, Davide; Koeck, Barbara; Crespel, Amelie; Bailey, David M; Cooke, Steven J; Lindström, Jan; Parsons, Kevin J; Killen, Shaun S
2018-06-01
There is increasing evidence that intense fishing pressure is not only depleting fish stocks but also causing evolutionary changes to fish populations. In particular, body size and fecundity in wild fish populations may be altered in response to the high and often size-selective mortality exerted by fisheries. While these effects can have serious consequences for the viability of fish populations, there are also a range of traits not directly related to body size which could also affect susceptibility to capture by fishing gears-and therefore fisheries-induced evolution (FIE)-but which have to date been ignored. For example, overlooked within the context of FIE is the likelihood that variation in physiological traits could make some individuals within species more vulnerable to capture. Specifically, traits related to energy balance (e.g., metabolic rate), swimming performance (e.g., aerobic scope), neuroendocrinology (e.g., stress responsiveness) and sensory physiology (e.g., visual acuity) are especially likely to influence vulnerability to capture through a variety of mechanisms. Selection on these traits could produce major shifts in the physiological traits within populations in response to fishing pressure that are yet to be considered but which could influence population resource requirements, resilience, species' distributions and responses to environmental change.
Restoring depleted coral-reef fish populations through recruitment enhancement: a proof of concept.
Heenan, A; Simpson, S D; Meekan, M G; Healy, S D; Braithwaite, V A
2009-11-01
To determine whether enhancing the survival of new recruits is a sensible target for the restorative management of depleted coral-reef fish populations, settlement-stage ambon damsel fish Pomacentrus amboinensis were captured, tagged and then either released immediately onto small artificial reefs or held in aquaria for 1 week prior to release. Holding conditions were varied to determine whether they affected survival of fish: half the fish were held in bare tanks (non-enriched) and the other half in tanks containing coral and sand (enriched). Holding fish for this short period had a significantly positive effect on survivorship relative to the settlement-stage treatment group that were released immediately. The enrichment of holding conditions made no appreciable difference on the survival of fish once released onto the reef. It did, however, have a positive effect on the survival of fish while in captivity, thus supporting the case for the provision of simple environmental enrichment in fish husbandry. Collecting and holding settlement-stage fish for at least a week before release appear to increase the short-term survival of released fish; whether it is an effective method for longer-term enhancement of locally depleted coral-reef fish populations will require further study.
Panek, Frank M.; Atkinson, James; Coll, John
2008-01-01
Restrictive fish stocking policies in National Parks were developed as early as 1936 in order to preserve native fish assemblages and historic genetic diversity. Despite recent efforts to understand the effects of non-native or exotic fish introductions, park managers have limited information regarding the effects of these introductions on native fish communities. Shenandoah National Park was established in 1936 and brook trout (Salvelinus fontinalis) restoration within selected streams in the park began in 1937 in collaboration with the Virginia Department of Game and Inland Fisheries (VDGIF). An analysis of tissue samples from brook, brown (Salmo trutta), and rainbow trout (Oncorhynchus mykiss) from 29 streams within the park from 1998–2002 revealed the presence of Renibacterium salmoninarum, Yersinia ruckeri, and infectious pancreatic necrosis virus (IPNv). In order to investigate the relationships of the occurrence of fish pathogens with stocking histories we classified the streams into three categories: 1) streams with no record of stocking, 2) streams that are known to have been stocked historically, and 3) streams that were historically stocked within the park and continue to be stocked downstream of the park boundary. The occurrences of pathogens were summarized relative to this stocking history. Renibacterium salmoninarum, the causative agent of bacterial kidney disease, was the most prevalent pathogen found, occurring in all three species and stream stocking categories, and appears to be endemic to the park. Two other pathogens, Yersinia ruckeri and infectious pancreatic necrosis virus were also described from brook trout populations within the park. IPNv was only found in brook trout populations in streams with prior stocking histories. Yersinia ruckeri was only found in brook trout in steams that have never been stocked and like R. salmoninarum, is likely endemic.
Larvivorous fish for preventing malaria transmission.
Walshe, Deirdre P; Garner, Paul; Abdel-Hameed Adeel, Ahmed A; Pyke, Graham H; Burkot, Tom
2013-12-10
Adult anopheline mosquitoes transmit Plasmodium parasites that cause malaria. Some fish species eat mosquito larvae and pupae. In disease control policy documents, the World Health Organization includes biological control of malaria vectors by stocking ponds, rivers, and water collections near where people live with larvivorous fish to reduce Plasmodium parasite transmission. The Global Fund finances larvivorous fish programmes in some countries, and, with increasing efforts in eradication of malaria, policy makers may return to this option. We therefore assessed the evidence base for larvivorous fish programmes in malaria control. Our main objective was to evaluate whether introducing larvivorous fish to anopheline breeding sites impacts Plasmodium parasite transmission. Our secondary objective was to summarize studies evaluating whether introducing larvivorous fish influences the density and presence of Anopheles larvae and pupae in water sources, to understand whether fish can possibly have an effect. We attempted to identify all relevant studies regardless of language or publication status (published, unpublished, in press, or ongoing). We searched the following databases: the Cochrane Infectious Diseases Group Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL), published in The Cochrane Library; MEDLINE; EMBASE; CABS Abstracts; LILACS; and the metaRegister of Controlled Trials (mRCT) until 18 June 2013. We checked the reference lists of all studies identified by the above methods. We also examined references listed in review articles and previously compiled bibliographies to look for eligible studies. Randomized controlled trials and non-randomized controlled trials, including controlled before-and-after studies, controlled time series and controlled interrupted time series studies from malaria-endemic regions that introduced fish as a larvicide and reported on malaria in the community or the density of the adult anopheline population. In the absence of direct evidence of an effect on transmission, we carried out a secondary analysis on studies that evaluated the effect of introducing larvivorous fish on the density or presence of immature anopheline mosquitoes (larvae and pupae forms) in community water sources to determine whether this intervention has any potential in further research on control of malaria vectors. Three review authors screened abstracts and examined potentially relevant studies by using an eligibility form. Two review authors independently extracted data and assessed risk of bias of included studies. If relevant data were unclear or were not reported, we wrote to the trial authors for clarification. We presented data in tables, and we summarized studies that evaluated the effects of fish introduction on anopheline immature density or presence, or both. We used GRADE to summarize evidence quality. We also examined whether the authors of included studies reported on any possible adverse impact of larvivorous fish introduction on non-target native species. We found no reliable studies that reported the effects of introducing larvivorous fish on malaria infection in nearby communities, on entomological inoculation rate, or on adult Anopheles density.For the secondary analysis, we examined the effects of introducing larvivorous fish on the density and presence of anopheline larvae and pupae in community water sources. We included 12 small studies, with follow-up from 22 days to five years. Studies were conducted in a variety of settings, including localized water bodies (such as wells, domestic water containers, fishponds, and pools; six studies), riverbed pools below dams (two studies), rice field plots (three studies), and water canals (two studies). All studies were at high risk of bias.The research was insufficient to determine whether larvivorous fish reduce the density of Anopheles larvae and pupae (nine studies, unpooled data, very low quality evidence). Some studies with high stocking levels of fish seemed to arrest the increase in immature anopheline populations, or to reduce the number of immature anopheline mosquitoes, compared with controls. However, this finding was not consistent, and in studies that showed a decrease in immature anopheline populations, the effect was not consistently sustained. Larvivorous fish may reduce the number of water sources with Anopheles larvae and pupae (five studies, unpooled data, low quality evidence).None of the included studies reported effects of larvivorous fish on local native fish populations or other species. Reliable research is insufficient to show whether introducing larvivorous fish reduces malaria transmission or the density of adult anopheline mosquito populations.In research examining the effects on immature anopheline stages of introducing fish to potential malaria vector breeding sites (localized water bodies such as wells and domestic water sources, rice field plots, and water canals) weak evidence suggests an effect on the density or presence of immature anopheline mosquitoes with high stocking levels of fish, but this finding is by no means consistent. We do not know whether this translates into health benefits, either with fish alone or with fish combined with other vector control measures. Our interpretation of the current evidence is that countries should not invest in fish stocking as a larval control measure in any malaria transmission areas outside the context of carefully controlled field studies or quasi-experimental designs. Research could also usefully examine the effects on native fish and other non-target species.
Naish, Kerry A; Taylor, Joseph E; Levin, Phillip S; Quinn, Thomas P; Winton, James R; Huppert, Daniel; Hilborn, Ray
2007-01-01
The historical, political and scientific aspects of salmon hatchery programmes designed to enhance fishery production, or to recover endangered populations, are reviewed. We start by pointing out that the establishment of hatcheries has been a political response to societal demands for harvest and conservation; given this social context, we then critically examined the levels of activity, the biological risks, and the economic analysis associated with salmon hatchery programmes. A rigorous analysis of the impacts of hatchery programmes was hindered by the lack of standardized data on release sizes and survival rates at all ecological scales, and since hatchery programme objectives are rarely defined, it was also difficult to measure their effectiveness at meeting release objectives. Debates on the genetic effects of hatchery programmes on wild fish have been dominated by whether correct management practices can reduce negative outcomes, but we noted that there has been an absence of programmatic research approaches addressing this important issue. Competitive interactions between hatchery and wild fish were observed to be complex, but studies researching approaches to reduce these interactions at all ecological scales during the entire salmon life history have been rare, and thus are not typically considered in hatchery management. Harvesting of salmon released from fishery enhancement hatcheries likely impacts vulnerable wild populations; managers have responded to this problem by mass marking hatchery fish, so that fishing effort can be directed towards hatchery populations. However, we noted that the effectiveness of this approach is dependant on accurate marking and production of hatchery fish with high survival rates, and it is not yet clear whether selective fishing will prevent overharvest of wild populations. Finally, research demonstrating disease transmission from hatchery fish to wild populations was observed to be equivocal; evidence in this area has been constrained by the lack of effective approaches to studying the fate of pathogens in the wild. We then reviewed several approaches to studying the economic consequences of hatchery activities intended to inform the social decisions surrounding programmes, but recognized that placing monetary value on conservation efforts or on hatcheries that mitigate cultural groups' loss of historical harvest opportunities may complicate these analyses. We noted that economic issues have rarely been included in decision making on hatchery programmes. We end by identifying existing major knowledge gaps, which, if filled, could contribute towards a fuller understanding of the role that hatchery programmes could play in meeting divergent goals. However, we also recognized that many management recommendations arising from such research may involve trade-offs between different risks, and that decisions about these trade-offs must occur within a social context. Hatcheries have played an important role in sustaining some highly endangered populations, and it is possible that reform of practices will lead to an increase in the number of successful programmes. However, a serious appraisal of the role of hatcheries in meeting broader needs is urgently warranted and should take place at the scientific, but more effectively, at the societal level.
Naish, Kerry A.; Taylor, Joseph E.; Levin, Phillip S.; Quinn, Thomas P.; Winton, James R.; Huppert , Daniel; Hilborn , Ray
2007-01-01
The historical, political and scientific aspects of salmon hatchery programmes designed to enhance fishery production, or to recover endangered populations, are reviewed. We start by pointing out that the establishment of hatcheries has been a political response to societal demands for harvest and conservation; given this social context, we then critically examined the levels of activity, the biological risks, and the economic analysis associated with salmon hatchery programmes. A rigorous analysis of the impacts of hatchery programmes was hindered by the lack of standardized data on release sizes and survival rates at all ecological scales, and since hatchery programme objectives are rarely defined, it was also difficult to measure their effectiveness at meeting release objectives. Debates on the genetic effects of hatchery programmes on wild fish have been dominated by whether correct management practices can reduce negative outcomes, but we noted that there has been an absence of programmatic research approaches addressing this important issue. Competitive interactions between hatchery and wild fish were observed to be complex, but studies researching approaches to reduce these interactions at all ecological scales during the entire salmon life history have been rare, and thus are not typically considered in hatchery management. Harvesting of salmon released from fishery enhancement hatcheries likely impacts vulnerable wild populations; managers have responded to this problem by mass marking hatchery fish, so that fishing effort can be directed towards hatchery populations. However, we noted that the effectiveness of this approach is dependant on accurate marking and production of hatchery fish with high survival rates, and it is not yet clear whether selective fishing will prevent overharvest of wild populations. Finally, research demonstrating disease transmission from hatchery fish to wild populations was observed to be equivocal; evidence in this area has been constrained by the lack of effective approaches to studying the fate of pathogens in the wild. We then reviewed several approaches to studying the economic consequences of hatchery activities intended to inform the social decisions surrounding programmes, but recognized that placing monetary value on conservation efforts or on hatcheries that mitigate cultural groups’ loss of historical harvest opportunities may complicate these analyses. We noted that economic issues have rarely been included in decision making on hatchery programmes. We end by identifying existing major knowledge gaps, which, if filled, could contribute towards a fuller understanding of the role that hatchery programmes could play in meeting divergent goals. However, we also recognized that many management recommendations arising from such research may involve trade-offs between different risks, and that decisions about these trade-offs must occur within a social context. Hatcheries have played an important role in sustaining some highly endangered populations, and it is possible that reform of practices will lead to an increase in the number of successful programmes. However, a serious appraisal of the role of hatcheries in meeting broader needs is urgently warranted and should take place at the scientific, but more effectively, at the societal level.
Underwood, Zachary E.; Mandeville, Elizabeth G.; Walters, Annika W.
2016-01-01
Burbot (Lota lota) occur in the Wind River Basin in central Wyoming, USA, at the southwestern extreme of the species’ native range in North America. The most stable and successful of these populations occur in six glacially carved mountain lakes on three different tributary streams and one large main stem impoundment (Boysen Reservoir) downstream from the tributary populations. Burbot are rarely found in connecting streams and rivers, which are relatively small and high gradient, with a variety of potential barriers to upstream movement of fish. We used high-throughput genomic sequence data for 11,197 SNPs to characterize the genetic diversity, population structure, and connectivity among burbot populations on the Wind River system. Fish from Boysen Reservoir and lower basin tributary populations were genetically differentiated from those in the upper basin tributary populations. In addition, fish within the same tributary streams fell within the same genetic clusters, suggesting there is movement of fish between lakes on the same tributaries but that populations within each tributary system are isolated and genetically distinct from other populations. Observed genetic differentiation corresponded to natural and anthropogenic barriers, highlighting the importance of barriers to fish population connectivity and gene flow in human-altered linked lake-stream habitats.
Wildhaber, M.L.; Allert, A.L.; Schmitt, C.J.; Tabor, V.M.; Mulhern, D.; Powell, K.L.; Sowa, S.P.
2000-01-01
We attempted to discern the contributions of physical habitat, water chemistry, nutrients, and contaminants from historic lead-zinc mining activities on the riffle-dwelling benthic fish community of the Spring River, a midwestern warmwater stream that originates in Missouri and flows into Kansas and Oklahoma. The Spring River has a fish community that includes the Neosho madtom Noturus placidus, a species federally listed as threatened. Although anthropogenic factors such as contaminants limited populations and densities of fishes, an integrated assessment of natural and anthropogenic factors was necessary to effectively estimate the influence of the latter. Fish populations in the Spring River, especially Neosho madtoms, seem to be limited by the presence of cadmium, lead, and zinc in water and in benthic invertebrate food sources and by physical habitat. The population density and community structure of fish in the Spring River also seem to be related to water chemistry and nutrients. Concurrently, diminished food availability may be limiting fish populations at some sites where Neosho madtoms are not found. Many of the natural factors that may be limiting Neosho madtom and other riffle-dwelling fish populations in the Spring River probably are characteristic of the physiographic region drained by the upper reach and many of the tributaries of the Spring River. Our results indicate that competition between the Neosho madtom and other species within the riffle-dwelling fish community is an unlikely cause of Neosho madtom population limitation in the Spring River.
Hieu, Nguyen Trong; Brochier, Timothée; Tri, Nguyen-Huu; Auger, Pierre; Brehmer, Patrice
2014-09-01
We consider a fishery model with two sites: (1) a marine protected area (MPA) where fishing is prohibited and (2) an area where the fish population is harvested. We assume that fish can migrate from MPA to fishing area at a very fast time scale and fish spatial organisation can change from small to large clusters of school at a fast time scale. The growth of the fish population and the catch are assumed to occur at a slow time scale. The complete model is a system of five ordinary differential equations with three time scales. We take advantage of the time scales using aggregation of variables methods to derive a reduced model governing the total fish density and fishing effort at the slow time scale. We analyze this aggregated model and show that under some conditions, there exists an equilibrium corresponding to a sustainable fishery. Our results suggest that in small pelagic fisheries the yield is maximum for a fish population distributed among both small and large clusters of school.
Liu, Dongqi; Hou, Feixia; Liu, Qin; Zhang, Xiuyue; Yan, Taiming; Song, Zhaobin
2015-02-01
The Tibetan Plateau underwent dramatic geological and climatic changes, which had important implications for genetic divergence and population dynamics of freshwater fish populations. Fluctuations of the ecogeographical environment and major hydrographic formations might have promoted the formation of new subspecies or species. In order to understand the impact of plateau uplift on freshwater fish evolutionary history, we estimated the genetic diversity and population structure in two subspecies of Schizopygopsis chengi (S. c. chengi and S. c. baoxingensis) in upper Yangtze River in Tibetan Plateau area using mitochondrial DNA control region and eight microsatellite markers, which suggested that there was a close genetic relationship. S. chengi showed some significant genetic structure that did not correlate with geographic distance. Bayesian assignment tests indicated that S. chengi samples in the study could be divided into four populations: upstream population, midstream population, tributary population and S. c. baoxingensis population. S. c. chengi and S. c. baoxingensis showed significant genetic divergence. However, phylogenetic analysis, population structure analysis and historical gene flow estimation suggested that there was close genetic relationship between S. c. baoxingensis and the Dawei population which belongs to populations of S. c. chengi. The time that Dawei population suffered from a bottleneck and S. c. baoxingensis underwent population expansion was congruent with the last glacial period on the Tibetan Plateau. The results confirmed the hypothesis that the Dawei River and Baoxing River were once connected, and the Dawei and Baoxing populations originated from a single population, but were isolated into separate populations because of crustal movements and the Baoxing population evolved as S. c. baoxingensis.
Bosch-Belmar, Mar; Giomi, Folco; Rinaldi, Alessandro; Mandich, Alberta; Fuentes, Verónica; Mirto, Simone; Sarà, Gianluca; Piraino, Stefano
2016-01-01
The increasing frequency of jellyfish outbreaks in coastal areas has led to multiple ecological and socio-economic issues, including mass mortalities of farmed fish. We investigated the sensitivity of the European sea bass (Dicentrarchus labrax), a widely cultured fish in the Mediterranean Sea, to the combined stressors of temperature, hypoxia and stings from the jellyfish Pelagia noctiluca, through measurement of oxygen consumption rates (MO2), critical oxygen levels (PO2crit), and histological analysis of tissue damage. Higher levels of MO2, PO2crit and gill damage in treated fish demonstrated that the synergy of environmental and biotic stressors dramatically impair farmed fish metabolic performances and increase their health vulnerability. As a corollary, in the current scenario of ocean warming, these findings suggest that the combined effects of recurrent hypoxic events and jellyfish blooms in coastal areas might also threaten wild fish populations. PMID:27301314
Wand, Taylor; Fang, Mike; Chen, Christina; Hardy, Nathan; McCoy, J Philip; Dumitriu, Bogdan; Young, Neal S; Biancotto, Angélique
2016-10-01
Abnormal telomere lengths have been linked to cancer and other hematologic disorders. Determination of mean telomere content (MTC) is traditionally performed by Southern blotting and densitometry, giving a mean telomere restriction fragment (TRF) value for the total cell population studied. Here, we compared a quantitative Polymerase Chain Reaction approach (qPCR) and a flow cytometric approach, fluorescence in situ hybridization (Flow-FISH), to evaluate telomere content distribution in total patient peripheral blood mononuclear cells or specific cell populations. Flow-FISH is based on in situ hybridization using a fluorescein-labeled peptide nucleic acid (PNA) (CCCTAA) 3 probe and DNA staining with propidium iodide. We showed that both qPCR and Flow-FISH provide a robust measurement, with Flow-FISH measuring a relative content longer than qPCR at a single cell approach and that TRF2 fluorescence intensity did not correlate with MTC. Both methods showed comparable telomere content reduction with age, and the rate of relative telomere loss was similar. Published 2016 Wiley Periodicals Inc. This article is a US government work and, as such, is in the public domain in the United States of America. Published 2016 Wiley Periodicals Inc. This article is a US government work and, as such, is in the public domain in the United States of America.
PCR-RFLP analysis of mitochondrial DNA cytochrome b gene among Haruan (Channa striatus) in Malaysia.
Rahim, Mohamamd Hafiz Abdul; Ismail, Patimah; Alias, Rozila; Muhammad, Norwati; Mat Jais, Abdul Manan
2012-02-15
Haruan (Channa striatus) is in great demand in the Malaysian domestic fish market. In the present study, mtDNA cyt b was used to investigate genetic variation of C. striatus among populations in Peninsular Malaysia. The overall population of C. striatus demonstrated a high level of haplotype diversity (h) and a low-to-moderate level of nucleotide diversity (π). Analysis of molecular variance (AMOVA) results showed a significantly different genetic differentiation among 6 populations (F(ST)=0.37566, P=0.01). Gene flow (Nm) was high and ranged from 0.32469 to infinity (∞). No significant relationship between genetic distance and geographic distance was detected. A UPGMA tree based on the distance matrix of net interpopulation nucleotide divergence (d(A)) and haplotype network of mtDNA cyt b revealed that C. striatus is divided into 2 major clades. The neutrality and mismatch distribution tests for all populations suggested that C. striatus in the study areas had undergone population expansion. The estimated time of population expansion in the mtDNA cyt b of C. striatus populations occurred 0.72-6.19 million years ago. Genetic diversity of mtDNA cyt b and population structure among Haruan populations in Peninsular Malaysia will be useful in fisheries management for standardization for Good Agriculture Practices (GAP) in fish-farming technology, as well as providing the basis for Good Manufacturing Practices (GMP). Copyright © 2011 Elsevier B.V. All rights reserved.
Thompson, W.L.
2003-01-01
Hankin and Reeves' (1988) approach to estimating fish abundance in small streams has been applied in stream fish studies across North America. However, their population estimator relies on two key assumptions: (1) removal estimates are equal to the true numbers of fish, and (2) removal estimates are highly correlated with snorkel counts within a subset of sampled stream units. Violations of these assumptions may produce suspect results. To determine possible sources of the assumption violations, I used data on the abundance of steelhead Oncorhynchus mykiss from Hankin and Reeves' (1988) in a simulation composed of 50,000 repeated, stratified systematic random samples from a spatially clustered distribution. The simulation was used to investigate effects of a range of removal estimates, from 75% to 100% of true fish abundance, on overall stream fish population estimates. The effects of various categories of removal-estimates-to-snorkel-count correlation levels (r = 0.75-1.0) on fish population estimates were also explored. Simulation results indicated that Hankin and Reeves' approach may produce poor results unless removal estimates exceed at least 85% of the true number of fish within sampled units and unless correlations between removal estimates and snorkel counts are at least 0.90. A potential modification to Hankin and Reeves' approach is the inclusion of environmental covariates that affect detection rates of fish into the removal model or other mark-recapture model. A potential alternative approach is to use snorkeling combined with line transect sampling to estimate fish densities within stream units. As with any method of population estimation, a pilot study should be conducted to evaluate its usefulness, which requires a known (or nearly so) population of fish to serve as a benchmark for evaluating bias and precision of estimators.
Fensham, J R; Bubner, E; D'Antignana, T; Landos, M; Caraguel, C G B
2018-05-01
The Australian farmed yellowtail kingfish (Seriola lalandi, YTK) industry monitor skin fluke (Benedenia seriolae) and gill fluke (Zeuxapta seriolae) burden by pooling the fluke count of 10 hooked YTK. The random and systematic error of this sampling strategy was evaluated to assess potential impact on treatment decisions. Fluke abundance (fluke count per fish) in a study cage (estimated 30,502 fish) was assessed five times using the current sampling protocol and its repeatability was estimated the repeatability coefficient (CR) and the coefficient of variation (CV). Individual body weight, fork length, fluke abundance, prevalence, intensity (fluke count per infested fish) and density (fluke count per Kg of fish) were compared between 100 hooked and 100 seined YTK (assumed representative of the entire population) to estimate potential selection bias. Depending on the fluke species and age category, CR (expected difference in parasite count between 2 sampling iterations) ranged from 0.78 to 114 flukes per fish. Capturing YTK by hooking increased the selection of fish of a weight and length in the lowest 5th percentile of the cage (RR = 5.75, 95% CI: 2.06-16.03, P-value = 0.0001). These lower end YTK had on average an extra 31 juveniles and 6 adults Z. seriolae per Kg of fish and an extra 3 juvenile and 0.4 adult B. seriolae per Kg of fish, compared to the rest of the cage population (P-value < 0.05). Hooking YTK on the edge of the study cage biases sampling towards the smallest and most heavily infested fish in the population, resulting in poor repeatability (more variability amongst sampled fish) and an overestimation of parasite burden in the population. In this particular commercial situation these finding supported that health management program, where the finding of an underestimation of parasite burden could provide a production impact on the study population. In instances where fish populations and parasite burdens are more homogenous, sampling error may be less severe. Sampling error when capturing fish from sea cage is difficult to predict. The amplitude and direction of this error should be investigated for a given cultured fish species across a range of parasite burden and fish profile scenarios. Copyright © 2018 Elsevier B.V. All rights reserved.
Mueller, Gordon A.; Wydoski, Richard; Best, Eric; Hiebert, Steve; Lantow, Jeff; Santee, Mark; Goettlicher, Bill; Millosovich, Joe
2008-01-01
Trammel netting is generally the accepted method of monitoring razorback sucker in reservoirs, but this method is ineffective for monitoring this fish in rivers. Trammel nets set in the current become fouled with debris, and nets set in backwaters capture high numbers of nontarget species. Nontargeted fish composed 97 percent of fish captured in previous studies (1999-2005). In 2005, discovery of a large spawning aggregation of razorback sucker in midchannel near Needles, Calif., prompted the development of more effective methods to monitor this and possibly other riverine fish populations. This study examined the effectiveness of four methods of monitoring razorback sucker in a riverine environment. Hoop netting, electrofishing, boat surveys, and aerial photography were evaluated in terms of data accuracy, costs, stress on targeted fish, and effect on nontargeted fish as compared with trammel netting. Trammel netting in the riverine portion of the Colorado River downstream of Davis Dam, Arizona-Nevada yielded an average of 43 razorback suckers a year (1999 to 2005). Capture rates averaged 0.5 razorback suckers per staff day effort, at a cost exceeding $1,100 per fish. Population estimates calculated for 2003-2005 were 3,570 (95 percent confidence limits [CL] = 1,306i??i??i??-8,925), 1,768 (CL = 878-3,867) and 1,652 (CL = 706-5,164); wide confidence ranges reflect the small sample size. By-catch associated with trammel netting included common carp, game fish and, occasionally, shorebirds, waterfowl, and muskrats. Hoop nets were prone to downstream drift owing to design and anchoring problems aggravated by hydropower ramping. Tests were dropped after the 2006 field season and replaced with electrofishing. Electrofishing at night during low flow and when spawning razorback suckers moved to the shoreline proved extremely effective. In 2006 and 2007, 263 and 299 (respectively) razorback suckers were taken. Capture rates averaged 8.3 razorback suckers per staff day at a cost of $62 per fish. The adult population was estimated at 1,196 (925-1,546) fish. Compared with trammel netting, confidence limits narrowed substantially, from +or- 500 percent to +or- 30 percent, reflecting more precise estimates. By-catch was limited to two common carp. No recreational game fish, waterfowl, or mammals were captured or handled during use of electrofishing. Aerial photography (2006 and 2007) suggested an annual average of 580 fish detected on imagery. Identification of species was not possible; carp commonly have been mistaken for razorback sucker. Field verification determined that the proportion of razorback suckers to other fish was 3:1. On that basis, we estimated 435 razorback suckers were photographed, which equals 8.4 razorback suckers per staff day at a cost of $78 per fish. The data did not lend itself to population estimates. Fish were more easily identified from boats, where their lateral rather than their dorsal aspect is visible. On average, 888 razorback suckers were positively identified each year. Observation rates averaged 29.6 razorback suckers per staff day at a cost less than $18 per fish observed. Sucker densities averaged 20.5 and 9.6 fish/hectare which equated to an average spawning population at Needles, Calif., of 2,520 in 2006 and 1152 in 2007. The lower 2007 estimate reflected a refinement in sampling approach which removed a sampling bias. Electrofishing and boat surveys were more cost effective than other methods tested, and they provided more accurate information without the by-catch associated with trammel netting. However, they provided different types of data. Handling fish may be necessary for research purposes but unnecessary for general trend analysis. Electrofishing was extremely effective but can harm fish if not used with caution. Unnecessary electrofishing increases the likelihood of spinal damage and possible damage to eggs and potential young, and it may alter spawning behavior or duration. B
Rubio-Godoy, Miguel; Muñoz-Córdova, Germán; Garduño-Lugo, Mario; Salazar-Ulloa, Martha; Mercado-Vidal, Gabriel
2012-02-10
Gyrodactylids (Monogenea) are ectoparasites of fish, some of which negatively affect commercially valuable fishes. Temperature strongly regulates population dynamics of these viviparous flatworms in farmed and wild fish populations, with most gyrodactylid species showing positive temperature-abundance associations. In agreement with epidemiological theory, numerous laboratory studies demonstrate that these parasites cannot persist in confined fish populations without periodic introduction of susceptible hosts. Extinction of gyrodactylid populations is due to host immunity, which develops in several fish species. In this one-year study, we followed populations of the recognized pathogen Gyrodactylus cichlidarum infecting four genetic groups of confined tilapia (wild type Nile tilapia Oreochromis niloticus niloticus, red O. n. niloticus, Mozambique tilapia O. mossambicus and a red synthetic population called Pargo-UNAM) kept under farming conditions and subject to natural environmental fluctuations. Based on the antecedents given, we postulated the following three hypotheses: (1) parasite abundance will be regulated by water temperature; (2) parasites will induce host mortality, particularly during periods of rapid infrapopulation growth; and (3) gyrodactylid populations will eventually become extinct on confined fish hosts. We disproved the three hypotheses: (1) parasite numbers fluctuated independently of temperature but were associated to changes in microhabitat use; (2) although gyrodactylid populations exhibited considerable growth, no evidence was found of negative effects on the hosts; and (3) infections persisted for one year on confined fish. Microhabitat use changed over time, with most worms apparently migrating anteriorly from the caudal fin and ending on the pectoral fins. Gyrodactylid populations followed similar trajectories in all fish, aggregating and dispersing repeatedly. Several instances were found where increased parasite dispersion coincided with increased intensity of infection; as well as the opposite, where increased aggregation coincided with parasite population declines. Three alternative explanations could account for these observations: that parasites (1) experience differential mortality on different anatomical regions of the fish; (2) migrate to avoid intraspecific competition; and (3) migrate to escape localized immune responses induced by infection. Our data do not allow us to demonstrate which of these alternatives is correct, so we discuss the merits of each. We provide circumstantial evidence in support of the third explanation, because as shown in other fish host-gyrodactylid interactions where immune responses have been characterized, in this study worms progressively moved away from fins with high mucus cell density to those with low density - what would be anticipated if immune defenses occur and reach the fish surface through mucus. Copyright © 2011 Elsevier B.V. All rights reserved.
Effects of stream acidification and habitat on fish populations of a North American river
Baldigo, Barry P.; Lawrence, G.B.
2001-01-01
Water quality, physical habitat, and fisheries at sixteen reaches in the Neversink River Basin were studied during 1991-95 to identify the effects of acidic precipitation on stream-water chemistry and on selected fish-species populations, and to test the hypothesis that the degree of stream acidification affected the spatial distribution of each fish-species population. Most sites on the East Branch Neversink were strongly to severely acidified, whereas most sites on the West Branch were minimally to moderately acidified. Mean density of fish populations ranged from 0 to 2.15 fish/m2; biomass ranged from 0 to 17.5 g/m2. Where brook trout were present, their population density ranged from 0.04 to 1.09 fish/m2, biomass ranged from 0.76 to 12.2 g/m2, and condition (K) ranged from 0.94 to 1.07. Regression analyses revealed strong relations (r2 ?? 0.41 to 0.99; p ??? 0.05) between characteristics of the two most common species (brook trout and slimy sculpin) populations and mean concentrations of inorganic monomeric aluminum (Alim), pH, Si, K+, NO3/-, NH4/+, DOC, Ca2+, and Na+; acid neutralizing capacity (ANC); and water temperature. Stream acidification may have adversely affected fish populations at most East Branch sites, but in other parts of the Neversink River Basin these effects were masked or mitigated by other physical habitat, geochemical, and biological factors.
Free, Christopher M; Jensen, Olaf P; Mendsaikhan, Bud
2015-01-01
Illegal harvest is recognized as a widespread problem in natural resource management. The use of multiple methods for quantifying illegal harvest has been widely recommended yet infrequently applied. We used a mixed-method approach to evaluate the extent, character, and motivations of illegal gillnet fishing in Lake Hovsgol National Park, Mongolia and its impact on the lake's fish populations, especially that of the endangered endemic Hovsgol grayling (Thymallus nigrescens). Surveys for derelict fishing gear indicate that gillnet fishing is widespread and increasing and that fishers generally use 3-4 cm mesh gillnet. Interviews with resident herders and park rangers suggest that many residents fish for subsistence during the spring grayling spawning migration and that some residents fish commercially year-round. Interviewed herders and rangers generally agree that fish population sizes are decreasing but are divided on the causes and solutions. Biological monitoring indicates that the gillnet mesh sizes used by fishers efficiently target Hovsgol grayling. Of the five species sampled in the monitoring program, only burbot (Lota lota) showed a significant decrease in population abundance from 2009-2013. However, grayling, burbot, and roach (Rutilus rutilus) all showed significant declines in average body size, suggesting a negative fishing impact. Data-poor stock assessment methods suggest that the fishing effort equivalent to each resident family fishing 50-m of gillnet 11-15 nights per year would be sufficient to overexploit the grayling population. Results from the derelict fishing gear survey and interviews suggest that this level of effort is not implausible. Overall, we demonstrate the ability for a mixed-method approach to effectively describe an illegal fishery and suggest that these methods be used to assess illegal fishing and its impacts in other protected areas.
A Mixed-Method Approach for Quantifying Illegal Fishing and Its Impact on an Endangered Fish Species
Free, Christopher M.; Jensen, Olaf P.; Mendsaikhan, Bud
2015-01-01
Illegal harvest is recognized as a widespread problem in natural resource management. The use of multiple methods for quantifying illegal harvest has been widely recommended yet infrequently applied. We used a mixed-method approach to evaluate the extent, character, and motivations of illegal gillnet fishing in Lake Hovsgol National Park, Mongolia and its impact on the lake’s fish populations, especially that of the endangered endemic Hovsgol grayling (Thymallus nigrescens). Surveys for derelict fishing gear indicate that gillnet fishing is widespread and increasing and that fishers generally use 3–4 cm mesh gillnet. Interviews with resident herders and park rangers suggest that many residents fish for subsistence during the spring grayling spawning migration and that some residents fish commercially year-round. Interviewed herders and rangers generally agree that fish population sizes are decreasing but are divided on the causes and solutions. Biological monitoring indicates that the gillnet mesh sizes used by fishers efficiently target Hovsgol grayling. Of the five species sampled in the monitoring program, only burbot (Lota lota) showed a significant decrease in population abundance from 2009–2013. However, grayling, burbot, and roach (Rutilus rutilus) all showed significant declines in average body size, suggesting a negative fishing impact. Data-poor stock assessment methods suggest that the fishing effort equivalent to each resident family fishing 50-m of gillnet 11–15 nights per year would be sufficient to overexploit the grayling population. Results from the derelict fishing gear survey and interviews suggest that this level of effort is not implausible. Overall, we demonstrate the ability for a mixed-method approach to effectively describe an illegal fishery and suggest that these methods be used to assess illegal fishing and its impacts in other protected areas. PMID:26625154
Mercury in fish from the Madeira River and health risk to Amazonian and riverine populations.
Soares, José Maria; Gomes, José M; Anjos, Marcelo R; Silveira, Josianne N; Custódio, Flavia B; Gloria, M Beatriz A
2018-07-01
The objective of this study was to quantify total mercury in highly popular Amazonian fish pacu, curimatã, jaraqui, and sardinha from the Madeira River and to estimate the exposure to methylmercury from fish consumption. The samples were obtained from two locations - Puruzinho Igarapé and Santa Rosa - near Humaitá, Amazonia, Brazil in two seasons of 2015 (high and low waters). The fish were identified, weighed and measured, and lipids were quantified. Total mercury was determined by gold amalgamation-atomic absorption spectrometry. Mean levels were used to calculate exposure of Amazonian and riverine populations. There was significant correlation (p < 0.05) between length × weight for all fish; length × lipid and weight × lipid were significant only for pacu. Total mercury levels varied along muscle tissue for the fish, except for sardinha; therefore muscle from the dorsal area along the fish were sampled, homogenized and used for analysis. The levels of total mercury varied from 0.01 to 0.46 mg/kg, with higher median levels in sardinha (0.24 mg/kg), followed by curimatã (0.16 mg/kg), jaraqui (0.13 mg/kg) and pacu (0.04 mg/kg), corresponding with the respective feeding habits along the trophic chain. Total mercury levels were not affected by the location of fish capture and by high and low waters seasons. Total mercury correlated significantly with length and weight for jaraqui and with length for sardinha (negative correlation). Total mercury levels in fish complied with legislation; however, exposures to methylmercury from fish consumption overpassed the safe intake reference dose for sardinha for Amazonians; however, for the riverine communities, all of the fish would cause potential health risk, mainly for children and women of childbearing age. Copyright © 2018 Elsevier Ltd. All rights reserved.
Mattiucci, S; Cimmaruta, R; Cipriani, P; Abaunza, P; Bellisario, B; Nascetti, G
2015-01-01
The unique environment of the Mediterranean Sea makes fish stock assessment a major challenge. Stock identification of Mediterranean fisheries has been based mostly from data on biology, morphometrics, artificial tags, otolith shape and fish genetics, with less effort on the use of parasites as biomarkers. Here we use some case studies comparing Mediterranean vs Atlantic fish stocks in a multidisciplinary framework. The generalized Procrustes Rotation (PR) was used to assess the association between host genetics and larval Anisakis spp. datasets on demersal (hake) and pelagic (horse mackerel, swordfish) species. When discordant results emerged, they were due to the different features of the data. While fish population genetics can detect changes over an evolutionary timescale, providing indications on the cohesive action of gene flow, parasites are more suitable biomarkers when considering fish stocks over smaller temporal and spatial scales, hence giving information of fish movements over their lifespan. Future studies on the phylogeographic analysis of parasites suitable as biomarkers, and that of their fish host, performed on the same genes, will represent a further tool to be included in multidisciplinary studies on fish stock structure.
Fish assemblages and habitat relationships in a small northern Great Plains stream
Barfoot, C.A.; White, R.G.
1999-01-01
We examined fish populations and environmental characteristics of pool and riffle habitats of Little Beaver Creek, Montana, a small northern Great Plains stream. We collected 4,980 fishes representing 20 species in eight families. The most abundant and species-rich family was Cyprinidae. Nearly 88% (4,369) of all fishes were collected in pools. Pools also supported greater numbers ofspecies (x = 6.3, SO = 2.6, n = 58) than did riffles ( x = 2.2, SO = 1.9, n = 47). Most species showed distinct patterns of relative abundance along the stream gradient. Community changes were primarily reflected by the downstream addition of species; species replacement was of less importance. A multivariate analysis of fish relative abundance identified two relatively well-defined pool fish assemblages: a downstream assemblage comprised largely of native fluvial cyprinids, and a more diverse midstream-upstream assemblage comprised of fishes from several families. No well-defined assemblages were identified in riffle habitats. Environmental measures of stream size, substrate characteristics, water clarity, and banks ide conditions appeared to be associated with differences in fish assemblage structure. However, correlations between habitat conditions and fish assemblages were weak, possibly because a complex of factors act conculTently to shape assemblages.
Raymundo, L J; Maypa, A P; Gomez, E D; Cadiz, Pablina
2007-07-01
Throughout Southeast Asia, blast fishing creates persistent rubble fields with low coral cover and depauperate fish communities. We stabilized a 20-year-old rubble field in a Marine Protected Area in the Philippines, using plastic mesh and rock piles in replicated 17.5m(2) plots, thereby increasing topographic complexity, fish habitat, and recruitment substrate surface area. Multivariate analysis revealed fish community shifts within the rehabilitated area from that characteristic of rubble fields to one similar to the adjacent healthy reef within three years, as measured by changes in fish abundance and body size. Coral recruitment and percent cover increased over time, with 63.5% recruit survivorship within plots, compared with 6% on rubble. Our low-cost approach created a stable substrate favoring natural recovery processes. Both rehabilitation and the elimination of poaching were integral to success, emphasizing the synergism between the two and the need to incorporate both when considering mitigation.
Barry, Patrick M.; Janney, Eric C.; Hewitt, David A.; Hayes, Brian S.; Scott, Alta C.
2009-01-01
We report results from ongoing research into the population dynamics of endangered Lost River and shortnose suckers in Clear Lake Reservoir, California. Results are included for sampling that occurred from fall 2006 to spring 2008. We summarize catches and passive integrated transponder tagging efforts from trammel net sampling in fall 2006 and fall 2007, and report on detections of tagged suckers on remote antennas in the primary spawning tributary, Willow Creek, in spring 2007 and spring 2008. Results from trammel net sampling were similar to previous years, although catches of suckers in fall 2006 were lower than in 2007 and past years. Lost River and shortnose suckers combined made up about 80 percent of the sucker catch in each year, and more than 2,000 new fish were tagged across the 2 years. Only a small number of the suckers captured in fall sampling were recaptures of previously tagged fish, reinforcing the importance of remote detections of fish for capture-recapture analysis. Detections of tagged suckers in Willow Creek were low in spring 2007, presumably because of low flows. Nonetheless, the proportions of tagged fish that were detected were reasonably high and capture-recapture analyses should be possible after another year of data collection. Run timing for Lost River and shortnose suckers was well described by first detections of individuals by antennas in Willow Creek, although we may not have installed the antennas early enough in 2008 to monitor the earliest portion of the Lost River sucker migration. The duration and magnitude of the spawning runs for both species were influenced by flows and water temperature. Flows in Willow Creek were much higher in 2008 than in 2007, and far more detections were recorded in 2008 and the migrations were more protracted. In both years and for both species, migrations began in early March at water temperatures between 5 and 6 deg C and peaks were related to periods of increasing water temperature. The sex ratio of Lost River suckers detected in Willow Creek was skewed toward males, despite consistently more females having been tagged in fall sampling. This pattern indicates that some tagged female Lost River suckers may be spawning elsewhere in the system, and we intend to investigate this possibility to verify or alter the representativeness of our spring monitoring. Length frequency analysis of fall trammel net catches showed that the populations of both species in Clear Lake Reservoir have undergone major demographic transitions during the last 15 years. In the mid-1990s, the populations were dominated by larger fish and showed little evidence of recent recruitment. These larger fish apparently disappeared in the late 1990s and early 2000s, and the populations are now dominated by fish that recruited into the adult populations in the late 1990s. The length frequencies from the last 4 years provide evidence of consistent recruitment into the Lost River sucker population, but provide no such evidence for the shortnose sucker population. Overall, annual growth rates for both species in Clear Lake were 2-4 times greater than growth rates for conspecifics in Upper Klamath Lake. However, little or no growth occurred for either species in Clear Lake between 2006 and 2007. Based on available evidence, we are unable to fully explain differences in growth rates between systems or among years within Clear Lake.
Fishing-induced life-history changes degrade and destabilize harvested ecosystems
NASA Astrophysics Data System (ADS)
Kuparinen, Anna; Boit, Alice; Valdovinos, Fernanda S.; Lassaux, Hélène; Martinez, Neo D.
2016-02-01
Fishing is widely known to magnify fluctuations in targeted populations. These fluctuations are correlated with population shifts towards young, small, and more quickly maturing individuals. However, the existence and nature of the mechanistic basis for these correlations and their potential ecosystem impacts remain highly uncertain. Here, we elucidate this basis and associated impacts by showing how fishing can increase fluctuations in fishes and their ecosystem, particularly when coupled with decreasing body sizes and advancing maturation characteristic of the life-history changes induced by fishing. More specifically, using an empirically parameterized network model of a well-studied lake ecosystem, we show how fishing may both increase fluctuations in fish abundances and also, when accompanied by decreasing body size of adults, further decrease fish abundance and increase temporal variability of fishes’ food resources and their ecosystem. In contrast, advanced maturation has relatively little effect except to increase variability in juvenile populations. Our findings illustrate how different mechanisms underlying life-history changes that may arise as evolutionary responses to intensive, size-selective fishing can rapidly and continuously destabilize and degrade ecosystems even after fishing has ceased. This research helps better predict how life-history changes may reduce fishes’ resilience to fishing and ecosystems’ resistance to environmental variations.
Management of fish populations in large rivers: a review of tools and approaches
Petts, Geoffrey E.; Imhoff, Jack G.; Manny, Bruce A.; Maher, John F. B.; Weisberg, Stephen B.
1989-01-01
In common with most branches of science, the management of riverine fish populations is characterised by reductionist and isolationist philosophies. Traditional fish management focuses on stocking and controls on fishing. This paper presents a concensus of scientists involved in the LARS workshop on the management of fish populations in large rivers. A move towards a more holistic philosophy is advocated, with fish management forming an integral part of sustainable river development. Based upon a questionnaire survey of LARS members, with wide-ranging expertise and experience from all parts of the world, lists of management tools currently in use are presented. Four categories of tools are described: flow, water-quality, habitat, and biological. The potential applications of tools for fish management in large rivers is discussed and research needs are identified. The lack of scientific evaluations of the different tools remains the major constraint to their wider application.
Hacon, Sandra S.; Dórea, José G.; Fonseca, Márlon de F.; Oliveira, Beatriz A.; Mourão, Dennys S.; Ruiz, Claudia M. V.; Gonçalves, Rodrigo A.; Mariani, Carolina F.; Bastos, Wanderley R.
2014-01-01
In the Amazon Basin, naturally occurring methylmercury bioaccumulates in fish, which is a key source of protein consumed by riverine populations. The hydroelectric power-plant project at Santo Antônio Falls allows us to compare the Hg exposure of riverine populations sparsely distributed on both sides of the Madeira river before the area is to be flooded. From 2009 to 2011, we concluded a population survey of the area (N = 2,008; representing circa 80% of community residents) that estimated fish consumption and mercury exposure of riverine populations with different degrees of lifestyle related to fish consumption. Fish samples from the Madeira river (N = 1,615) and 110 species were analyzed for Hg. Hair-Hg was significantly lower (p < 0.001) in less isolated communities near to the capital of Porto Velho (median 2.32 ppm) than in subsistence communities in the Cuniã Lake, 180 km from Porto Velho city (median 6.3 ppm). Fish Hg concentrations ranged from 0.01 to 6.06 µg/g, depending on fish size and feeding behavior. Currently available fish in the Madeira river show a wide variability in Hg concentrations. Despite cultural similarities, riparians showed hair-Hg distribution patterns that reflect changes in fish-eating habits driven by subsistence characteristics. PMID:24577285
Current ecological understanding of fungal-like pathogens of fish: what lies beneath?
Gozlan, Rodolphe E.; Marshall, Wyth L.; Lilje, Osu; Jessop, Casey N.; Gleason, Frank H.; Andreou, Demetra
2014-01-01
Despite increasingly sophisticated microbiological techniques, and long after the first discovery of microbes, basic knowledge is still lacking to fully appreciate the ecological importance of microbial parasites in fish. This is likely due to the nature of their habitats as many species of fish suffer from living beneath turbid water away from easy recording. However, fishes represent key ecosystem services for millions of people around the world and the absence of a functional ecological understanding of viruses, prokaryotes, and small eukaryotes in the maintenance of fish populations and of their diversity represents an inherent barrier to aquatic conservation and food security. Among recent emerging infectious diseases responsible for severe population declines in plant and animal taxa, fungal and fungal-like microbes have emerged as significant contributors. Here, we review the current knowledge gaps of fungal and fungal-like parasites and pathogens in fish and put them into an ecological perspective with direct implications for the monitoring of fungal fish pathogens in the wild, their phylogeography as well as their associated ecological impact on fish populations. With increasing fish movement around the world for farming, releases into the wild for sport fishing and human-driven habitat changes, it is expected, along with improved environmental monitoring of fungal and fungal-like infections, that the full extent of the impact of these pathogens on wild fish populations will soon emerge as a major threat to freshwater biodiversity. PMID:24600442
Working with, not against, coral-reef fisheries
NASA Astrophysics Data System (ADS)
Birkeland, Charles
2017-03-01
The fisheries policies of some Pacific island nations are more appropriate to the biology of their resources than are some of the fisheries policies of more industrialized countries. Exclusive local ownership of natural resources in Palau encourages adjustive management on biologically relevant scales of time and space and promotes responsibility by reducing the tragedy of the commons. The presence of large individuals in fish populations and adequate size of spawning aggregations are more efficient and meaningful cues for timely management than are surveys of abundance or biomass. Taking fish from populations more than halfway to their carrying capacity is working favorably with the fishery because removing fish potentially increases resource stability by negative feedback between stock size and population production. Taking the same amount of fish from a population below half its carrying capacity is working against the fishery, making the population unstable, because reducing the reproductive stock potentially accelerates reduction of the population production by positive feedback. Reef fish are consumed locally, while Palauan laws ban the export of reef resources. This is consistent with the high gross primary production with little excess net production from undisturbed coral-reef ecosystems. The relatively rapid growth rates, short life spans, reliable recruitment and wide-ranging movements of open-ocean fishes such as scombrids make them much more productive than coral-reef fishes. The greater fisheries yield per square kilometer in the open ocean multiplied by well over a thousand times the area of the exclusive economic zone than that of Palau's coral reefs should encourage Palauans to keep reef fishes for subsistence and to feed tourists open-ocean fishes. Fisheries having only artisanal means should be encouraged to increase the yield and sustainability by moving away from coral reefs to bulk harvesting of nearshore pelagics.
Roark, Shaun A; Kelble, Mary A; Nacci, Diane; Champlin, Denise; Coiro, Laura; Guttman, Sheldon I
2005-03-01
The present study was conducted to evaluate evidence of genetic adaptation to local contaminants in populations of the migratory marine fish Menidia menidia residing seasonally in reference sites or an industrial harbor contaminated with dioxin-like compounds (DLCs). For this purpose, we compared DLC sensitivity and genetic patterns of populations sampled from sites both inside and outside New Bedford Harbor (NBH; MA, USA), a U.S. Environmental Protection Agency Superfund site with extreme polychlorinated biphenyl (PCB) contamination. Offspring of M. menidia collected from NBH were significantly less sensitive regarding embryonic exposure to the dioxin-like PCB congener 3,3',4,4',5-pentachlorobiphenyl (PCB 126) than offspring of M. menidia from a reference site. Analysis of 10 polymorphic enzymatic loci indicated little genetic differentiation among populations in the study area. However, genotype frequencies of juveniles from both NBH and an adjacent site in Massachusetts exhibited significant deviations from Hardy-Weinberg equilibrium expectations at one locus, phosphoglucomutase (PGM*). Genetic analysis of survivors of embryonic laboratory exposure to PCB 126 indicated that genotypes at PGM* were related to survivorship. Although a relationship was identified between DLC tolerance and PGM* genotype, regional mixing of M. menidia populations during migration and absence of multigeneration exposure at contaminated sites may limit localized adaptation.
Eble, Jeff A.; Rocha, Luiz A.; Craig, Matthew T.; Bowen, Brian W.
2014-01-01
Recent reports of localized larval recruitment in predominately small-range fishes are countered by studies that show high genetic connectivity across large oceanic distances. This discrepancy may result from the different timescales over which genetic and demographic processes operate or rather may indicate regular long-distance dispersal in some species. Here, we contribute an analysis of mtDNA cytochrome b diversity in the widely distributed Brown Surgeonfish (Acanthurus nigrofuscus; N = 560), which revealed significant genetic structure only at the extremes of the range (ΦCT = 0.452; P < .001). Collections from Hawaii to the Eastern Indian Ocean comprise one large, undifferentiated population. This pattern of limited genetic subdivision across reefs of the central Indo-Pacific has been observed in a number of large-range reef fishes. Conversely, small-range fishes are often deeply structured over the same area. These findings demonstrate population connectivity differences among species at biogeographic and evolutionary timescales, which likely translates into differences in dispersal ability at ecological and demographic timescales. While interspecific differences in population connectivity complicate the design of management strategies, the integration of multiscale connectivity patterns into marine resource planning will help ensure long-term ecosystem stability by preserving functionally diverse communities. PMID:25505914
Geographical variation in sound production in the anemonefish Amphiprion akallopisos.
Parmentier, E; Lagardère, J P; Vandewalle, P; Fine, M L
2005-08-22
Because of pelagic-larval dispersal, coral-reef fishes are distributed widely with minimal genetic differentiation between populations. Amphiprion akallopisos, a clownfish that uses sound production to defend its anemone territory, has a wide but disjunct distribution in the Indian Ocean. We compared sounds produced by these fishes from populations in Madagascar and Indonesia, a distance of 6500 km. Differentiation of agonistic calls into distinct types indicates a complexity not previously recorded in fishes' acoustic communication. Moreover, various acoustic parameters, including peak frequency, pulse duration, number of peaks per pulse, differed between the two populations. The geographic comparison is the first to demonstrate 'dialects' in a marine fish species, and these differences in sound parameters suggest genetic divergence between these two populations. These results highlight the possible approach for investigating the role of sounds in fish behaviour in reproductive divergence and speciation.
Dynamics of an introduced and unexploited Lake Whitefish population in Lake Pend Oreille, Idaho
Hosack, Michael A.; Hansen, Michael J.; Horner, Ned J.
2014-01-01
To evaluate biological potential of a commercial fishery for an unexploited Lake Whitefish Coregonus clupeaformis population in Lake Pend Oreille, Idaho, we estimated population parameters related to production and yield. The length frequency based on trap-netting in autumn 2005 was normal with a mean of 448 mm TL, whereas the length frequency based on gillnetting in spring 2006 was bimodal with a mean of 390 mm TL. Sex composition was skewed toward females (0.66) during autumn trap-netting. Shape parameters β of weight–length models for females (β = 3.38) and males (β = 3.45) were similar to those of other unexploited populations. Instantaneous growth rates K for females (K = 0.144 per year) and males (K = 0.153 per year) were among the lowest for unexploited populations across the species’ range. Age at 50% maturity (females: 6.5 years; males: 6.0 years) and length at 50% maturity (females: 390 mm TL; males: 378 mm TL) were high for unexploited populations. The natural mortality rate M (0.149 per year, ages 11–36) was among the lowest observed for unexploited populations. Adult population density was lower than that of other populations based on total surface area (mean = 1.35 fish/ha; 95% confidence interval [CI] = 1.11–1.78 fish/ha) but was average based on lake area shallower than 70 m (4.07 fish/ha; 95% CI = 3.35–5.35 fish/ha). Population density of juveniles and adults averaged 84 fish/ha (95% CI = 52–143 fish/ha) over the entire surface area and 278 fish/ha (95% CI = 173–474 fish/ha) over depths shallower than 70 m. The difference between the low M of the unexploited population in Lake Pend Oreille (M = 0.149 per year; annual mortality rate A = 14%) and the high sustainable total mortality Z of exploited stocks in the Laurentian Great Lakes (Z = 1.204; A = 70%) suggests a large scope for sustainable fishing mortality F (1.055 per year; exploitation rate u = 61%) that is equivalent to a sustainable Lake Whitefish harvest of 55,000 individuals (50,000–60,000 individuals) and 49,000 kg (45,000–54,000 kg) from Lake Pend Oreille.
The Novel Application of Non-Lethal Citizen Science Tissue Sampling in Recreational Fisheries.
Williams, Samuel M; Holmes, Bonnie J; Pepperell, Julian G
2015-01-01
Increasing fishing pressure and uncertainty surrounding recreational fishing catch and effort data promoted the development of alternative methods for conducting fisheries research. A pilot investigation was undertaken to engage the Australian game fishing community and promote the non-lethal collection of tissue samples from the black marlin Istiompax indica, a valuable recreational-only species in Australian waters, for the purpose of future genetic research. Recruitment of recreational anglers was achieved by publicizing the project in magazines, local newspapers, social media, blogs, websites and direct communication workshops at game fishing tournaments. The Game Fishing Association of Australia and the Queensland Game Fishing Association were also engaged to advertise the project and recruit participants with a focus on those anglers already involved in the tag-and-release of marlin. Participants of the program took small tissue samples using non-lethal methods which were stored for future genetic analysis. The program resulted in 165 samples from 49 participants across the known distribution of I. indica within Australian waters which was a sufficient number to facilitate a downstream population genetic analysis. The project demonstrated the potential for the development of citizen science sampling programs to collect tissue samples using non-lethal methods in order to achieve targeted research objects in recreationally caught species.
2011-01-01
Background The two homologous iron-binding lobes of transferrins are thought to have evolved by gene duplication of an ancestral monolobal form, but any conserved synteny between bilobal and monolobal transferrin loci remains unexplored. The important role played by transferrin in the resistance to invading pathogens makes this polymorphic gene a highly valuable candidate for studying adaptive divergence among local populations. Results The Atlantic cod genome was shown to harbour two tandem duplicated serum transferrin genes (Tf1, Tf2), a melanotransferrin gene (MTf), and a monolobal transferrin gene (Omp). Whereas Tf1 and Tf2 were differentially expressed in liver and brain, the Omp transcript was restricted to the otoliths. Fish, chicken and mammals showed highly conserved syntenic regions in which monolobal and bilobal transferrins reside, but contrasting with tetrapods, the fish transferrin genes are positioned on three different linkage groups. Sequence alignment of cod Tf1 cDNAs from Northeast (NE) and Northwest (NW) Atlantic populations revealed 22 single nucleotide polymorphisms (SNP) causing the replacement of 16 amino acids, including eight surface residues revealed by the modelled 3D-structures, that might influence the binding of pathogens for removal of iron. SNP analysis of a total of 375 individuals from 14 trans-Atlantic populations showed that the Tf1-NE variant was almost fixed in the Baltic cod and predominated in the other NE Atlantic populations, whereas the NW Atlantic populations were more heterozygous and showed high frequencies of the Tf-NW SNP alleles. Conclusions The highly conserved synteny between fish and tetrapod transferrin loci infers that the fusion of tandem duplicated Omp-like genes gave rise to the modern transferrins. The multiple nonsynonymous substitutions in cod Tf1 with putative structural effects, together with highly divergent allele frequencies among different cod populations, strongly suggest evidence for positive selection and local adaptation in trans-Atlantic cod populations. PMID:21612617
Andersen, Øivind; De Rosa, Maria Cristina; Pirolli, Davide; Tooming-Klunderud, Ave; Petersen, Petra E; André, Carl
2011-05-25
The two homologous iron-binding lobes of transferrins are thought to have evolved by gene duplication of an ancestral monolobal form, but any conserved synteny between bilobal and monolobal transferrin loci remains unexplored. The important role played by transferrin in the resistance to invading pathogens makes this polymorphic gene a highly valuable candidate for studying adaptive divergence among local populations. The Atlantic cod genome was shown to harbour two tandem duplicated serum transferrin genes (Tf1, Tf2), a melanotransferrin gene (MTf), and a monolobal transferrin gene (Omp). Whereas Tf1 and Tf2 were differentially expressed in liver and brain, the Omp transcript was restricted to the otoliths. Fish, chicken and mammals showed highly conserved syntenic regions in which monolobal and bilobal transferrins reside, but contrasting with tetrapods, the fish transferrin genes are positioned on three different linkage groups. Sequence alignment of cod Tf1 cDNAs from Northeast (NE) and Northwest (NW) Atlantic populations revealed 22 single nucleotide polymorphisms (SNP) causing the replacement of 16 amino acids, including eight surface residues revealed by the modelled 3D-structures, that might influence the binding of pathogens for removal of iron. SNP analysis of a total of 375 individuals from 14 trans-Atlantic populations showed that the Tf1-NE variant was almost fixed in the Baltic cod and predominated in the other NE Atlantic populations, whereas the NW Atlantic populations were more heterozygous and showed high frequencies of the Tf-NW SNP alleles. The highly conserved synteny between fish and tetrapod transferrin loci infers that the fusion of tandem duplicated Omp-like genes gave rise to the modern transferrins. The multiple nonsynonymous substitutions in cod Tf1 with putative structural effects, together with highly divergent allele frequencies among different cod populations, strongly suggest evidence for positive selection and local adaptation in trans-Atlantic cod populations.
Baldigo, Barry P.; Sporn, Lee Ann; George, Scott D.; Ball, Jacob
2016-01-01
Environmental DNA (eDNA) analysis is rapidly evolving as a tool for monitoring the distributions of aquatic species. Detection of species’ populations in streams may be challenging because the persistence time for intact DNA fragments is unknown and because eDNA is diluted and dispersed by dynamic hydrological processes. During 2015, the DNA of Brook Trout Salvelinus fontinalis was analyzed from water samples collected at 40 streams across the Adirondack region of upstate New York, where Brook Trout populations were recently quantified. Study objectives were to evaluate different sampling methods and the ability of eDNA to accurately predict the presence and abundance of resident Brook Trout populations. Results from three-pass electrofishing surveys indicated that Brook Trout were absent from 10 sites and were present in low (<100 fish/0.1 ha), moderate (100–300 fish/0.1 ha), and high (>300 fish/0.1 ha) densities at 9, 11, and 10 sites, respectively. The eDNA results correctly predicted the presence and confirmed the absence of Brook Trout at 85.0–92.5% of the study sites; eDNA also explained 44% of the variability in Brook Trout population density and 24% of the variability in biomass. These findings indicate that eDNA surveys will enable researchers to effectively characterize the presence and abundance of Brook Trout and other species’ populations in headwater streams across the Adirondack region and elsewhere.
Role of egg predation by haddock in the decline of an Atlantic herring population
Richardson, David E.; Hare, Jonathan A.; Fogarty, Michael J.; Link, Jason S.
2011-01-01
Theoretical studies suggest that the abrupt and substantial changes in the productivity of some fisheries species may be explained by predation-driven alternate stable states in their population levels. With this hypothesis, an increase in fishing or a natural perturbation can drive a population from an upper to a lower stable-equilibrium population level. After fishing is reduced or the perturbation ended, this low population level can persist due to the regulatory effect of the predator. Although established in theoretical studies, there is limited empirical support for predation-driven alternate stable states in exploited marine fish populations. We present evidence that egg predation by haddock (Melanogrammus aeglefinus) can cause alternate stable population levels in Georges Bank Atlantic herring (Clupea harengus). Egg predation by haddock explains a substantial decoupling of herring spawning stock biomass (an index of egg production) from observed larval herring abundance (an index of egg hatching). Estimated egg survival rates ranged from <2–70% from 1971 to 2005. A population model incorporating egg predation and herring fishing explains the major population trends of Georges Bank herring over four decades and predicts that, when the haddock population is high, seemingly conservative levels of fishing can still precipitate a severe decline in the herring population. These findings illustrate how efforts to rebuild fisheries can be undermined by not incorporating ecological interactions into fisheries models and management plans. PMID:21825166
Archived DNA reveals fisheries and climate induced collapse of a major fishery.
Bonanomi, Sara; Pellissier, Loïc; Therkildsen, Nina Overgaard; Hedeholm, Rasmus Berg; Retzel, Anja; Meldrup, Dorte; Olsen, Steffen Malskær; Nielsen, Anders; Pampoulie, Christophe; Hemmer-Hansen, Jakob; Wisz, Mary Susanne; Grønkjær, Peter; Nielsen, Einar Eg
2015-10-22
Fishing and climate change impact the demography of marine fishes, but it is generally ignored that many species are made up of genetically distinct locally adapted populations that may show idiosyncratic responses to environmental and anthropogenic pressures. Here, we track 80 years of Atlantic cod (Gadus morhua) population dynamics in West Greenland using DNA from archived otoliths in combination with fish population and niche based modeling. We document how the interacting effects of climate change and high fishing pressure lead to dramatic spatiotemporal changes in the proportions and abundance of different genetic populations, and eventually drove the cod fishery to a collapse in the early 1970s. Our results highlight the relevance of fisheries management at the level of genetic populations under future scenarios of climate change.
Archived DNA reveals fisheries and climate induced collapse of a major fishery
Bonanomi, Sara; Pellissier, Loïc; Therkildsen, Nina Overgaard; Hedeholm, Rasmus Berg; Retzel, Anja; Meldrup, Dorte; Olsen, Steffen Malskær; Nielsen, Anders; Pampoulie, Christophe; Hemmer-Hansen, Jakob; Wisz, Mary Susanne; Grønkjær, Peter; Nielsen, Einar Eg
2015-01-01
Fishing and climate change impact the demography of marine fishes, but it is generally ignored that many species are made up of genetically distinct locally adapted populations that may show idiosyncratic responses to environmental and anthropogenic pressures. Here, we track 80 years of Atlantic cod (Gadus morhua) population dynamics in West Greenland using DNA from archived otoliths in combination with fish population and niche based modeling. We document how the interacting effects of climate change and high fishing pressure lead to dramatic spatiotemporal changes in the proportions and abundance of different genetic populations, and eventually drove the cod fishery to a collapse in the early 1970s. Our results highlight the relevance of fisheries management at the level of genetic populations under future scenarios of climate change. PMID:26489934
Archived DNA reveals fisheries and climate induced collapse of a major fishery
NASA Astrophysics Data System (ADS)
Bonanomi, Sara; Pellissier, Loïc; Therkildsen, Nina Overgaard; Hedeholm, Rasmus Berg; Retzel, Anja; Meldrup, Dorte; Olsen, Steffen Malskær; Nielsen, Anders; Pampoulie, Christophe; Hemmer-Hansen, Jakob; Wisz, Mary Susanne; Grønkjær, Peter; Nielsen, Einar Eg
2015-10-01
Fishing and climate change impact the demography of marine fishes, but it is generally ignored that many species are made up of genetically distinct locally adapted populations that may show idiosyncratic responses to environmental and anthropogenic pressures. Here, we track 80 years of Atlantic cod (Gadus morhua) population dynamics in West Greenland using DNA from archived otoliths in combination with fish population and niche based modeling. We document how the interacting effects of climate change and high fishing pressure lead to dramatic spatiotemporal changes in the proportions and abundance of different genetic populations, and eventually drove the cod fishery to a collapse in the early 1970s. Our results highlight the relevance of fisheries management at the level of genetic populations under future scenarios of climate change.
NASA Astrophysics Data System (ADS)
Moiseenko, T. I.; Morgunov, B. A.; Gashkina, N. A.; Megorskiy, V. V.; Pesiakova, A. A.
2018-06-01
Throughout the Euro-Arctic region of Russia (Murmansk region), there is a substantial increase of metal concentrations in water, which are related to local discharges from the metallurgical and mining industry, transboundary pollution, as well as indirect leaching of elements by acid precipitation. This study collates data to investigate the relationship between surface water contamination by metals, and fish and human health. Fish are used as a biological indicator to show the impact of water pollution by metals on the ecosystem’s health. The etiology of fish and human diseases are related to the water pollution and accumulation of metals in organisms. High concentrations of Ni and Cd in water drives an accumulation of these elements in organs and tissues of fish, especially in kidneys. The relation between the accumulation of Ni in kidneys and the development of fish nephrocalcinosis and fibroelastosis was established. Statistical analysis demonstrated that human populations in cities close in proximity to smelters show the highest incidence of disease. The results of histological, clinical, and post-mortem examination of patients shows the highest content of toxic metals, especially Cd, in livers and kidneys. Our complex investigation of a set of disorders observed in fish and human populations indicates that there is a high probability that the negative impact on human health is caused by prolonged water contamination by heavy metals. As a novel finding, this paper shows that based on the similarity of pathological processes and bioaccumulation of metals in fish and humans, examining the content of heavy metals in fish can be used to confirm etiology and evaluate the potential risk to human health by pollution of surface waters.
Makinster, Andrew S.; Persons, William R.; Avery, Luke A.
2011-01-01
The Lees Ferry reach of the Colorado River, a 25-kilometer segment of river located immediately downstream from Glen Canyon Dam, has contained a nonnative rainbow trout (Oncorhynchus mykiss) sport fishery since it was first stocked in 1964. The fishery has evolved over time in response to changes in dam operations and fish management. Long-term monitoring of the rainbow trout population downstream of Glen Canyon Dam is an essential component of the Glen Canyon Dam Adaptive Management Program. A standardized sampling design was implemented in 1991 and has changed several times in response to independent, external scientific-review recommendations and budget constraints. Population metrics (catch per unit effort, proportional stock density, and relative condition) were estimated from 1991 to 2009 by combining data collected at fixed sampling sites during this time period and at random sampling sites from 2002 to 2009. The validity of combining population metrics for data collected at fixed and random sites was confirmed by a one-way analysis of variance by fish-length class size. Analysis of the rainbow trout population metrics from 1991 to 2009 showed that the abundance of rainbow trout increased from 1991 to 1997, following implementation of a more steady flow regime, but declined from about 2000 to 2007. Abundance in 2008 and 2009 was high compared to previous years, which was likely the result of increased early survival caused by improved habitat conditions following the 2008 high-flow experiment at Glen Canyon Dam. Proportional stock density declined between 1991 and 2006, reflecting increased natural reproduction and large numbers of small fish in samples. Since 2001, the proportional stock density has been relatively stable. Relative condition varied with size class of rainbow trout but has been relatively stable since 1991 for fish smaller than 152 millimeters (mm), except for a substantial decrease in 2009. Relative condition was more variable for larger size classes, and substantial decreases were observed for the 152-304-mm size class in 2009 and 305-405-mm size class in 2008 that persisted into 2009.
Madenjian, Charles P.; Farrell, Anthony P.
2011-01-01
A bioenergetics model for a fish can be defined as a quantitative description of the fish’s energy budget. Bioenergetics modeling can be applied to a fish population in a lake, river, or ocean to estimate the annual consumption of food by the fish population; such applications have proved to be useful in managing fisheries. In addition, bioenergetics models have been used to better understand fish growth and consumption in ecosystems, to determine the importance of the role of fish in cycling nutrients within ecosystems, and to identify the important factors regulating contaminant accumulation in fish from lakes, rivers, and oceans.
Study on polychlorobiphenyl serum levels in French consumers of freshwater fish.
Desvignes, Virginie; Volatier, Jean-Luc; de Bels, Frédéric; Zeghnoun, Abdelkrim; Favrot, Marie-Christine; Marchand, Philippe; Le Bizec, Bruno; Rivière, Gilles; Leblanc, Jean-Charles; Merlo, Mathilde
2015-02-01
Polychlorobiphenyls (PCBs) are persistent pollutants that are widespread in the environment and in foodstuffs, particularly in freshwater fish, which frequently exceed the maximum levels set by European regulations. First, we describe the consumption of freshwater fish and serum PCB levels in French anglers, a population expected to have the highest level of dietary PCB exposure. Second, we investigated whether there is a statistical relationship between serum PCB levels and the angler consumption of freshwater fish with high PCB bioaccumulation potential (PCB-BP(+) freshwater fish) in order to make recommendations with regard to safe consumption of freshwater fish. We conducted a survey of anglers from six sites with contrasting PCB contamination levels. The survey included a food consumption frequency questionnaire and blood samples were taken to assess serum PCB levels. We used a regression model to determine the main factors contributing to serum PCB levels. Consumption of PCB-BP(+) freshwater fish was relatively infrequent. Serum PCB levels of the study population and of women of childbearing age were in the same range as those observed in the French population and in neighbouring European countries, but higher than in the North American population. The two factors with the highest positive association with serum PCB levels were age (R(2)=61%) and the consumption of PCB-BP(+) freshwater fish (R(2)=2%). Using the regression model, we calculated, for several scenarios depending on the age and gender of the population, the maximum annual frequencies for PCB-BP(+) freshwater fish consumption that do not exceed the critical body burden threshold. Following the results of this study, the French agency for food, environmental and occupational health and safety (ANSES) issued an opinion and recommended some specific maximum freshwater fish consumption frequencies to protect the French general population. Copyright © 2014 Elsevier B.V. All rights reserved.
Ocean Acidification Effects on Atlantic Cod Larval Survival and Recruitment to the Fished Population
Stiasny, Martina H.; Mittermayer, Felix H.; Sswat, Michael; Voss, Rüdiger; Jutfelt, Fredrik; Chierici, Melissa; Puvanendran, Velmurugu; Mortensen, Atle; Reusch, Thorsten B. H.; Clemmesen, Catriona
2016-01-01
How fisheries will be impacted by climate change is far from understood. While some fish populations may be able to escape global warming via range shifts, they cannot escape ocean acidification (OA), an inevitable consequence of the dissolution of anthropogenic carbon dioxide (CO2) emissions in marine waters. How ocean acidification affects population dynamics of commercially important fish species is critical for adapting management practices of exploited fish populations. Ocean acidification has been shown to impair fish larvae’s sensory abilities, affect the morphology of otoliths, cause tissue damage and cause behavioural changes. Here, we obtain first experimental mortality estimates for Atlantic cod larvae under OA and incorporate these effects into recruitment models. End-of-century levels of ocean acidification (~1100 μatm according to the IPCC RCP 8.5) resulted in a doubling of daily mortality rates compared to present-day CO2 concentrations during the first 25 days post hatching (dph), a critical phase for population recruitment. These results were consistent under different feeding regimes, stocking densities and in two cod populations (Western Baltic and Barents Sea stock). When mortality data were included into Ricker-type stock-recruitment models, recruitment was reduced to an average of 8 and 24% of current recruitment for the two populations, respectively. Our results highlight the importance of including vulnerable early life stages when addressing effects of climate change on fish stocks. PMID:27551924
Stiasny, Martina H; Mittermayer, Felix H; Sswat, Michael; Voss, Rüdiger; Jutfelt, Fredrik; Chierici, Melissa; Puvanendran, Velmurugu; Mortensen, Atle; Reusch, Thorsten B H; Clemmesen, Catriona
2016-01-01
How fisheries will be impacted by climate change is far from understood. While some fish populations may be able to escape global warming via range shifts, they cannot escape ocean acidification (OA), an inevitable consequence of the dissolution of anthropogenic carbon dioxide (CO2) emissions in marine waters. How ocean acidification affects population dynamics of commercially important fish species is critical for adapting management practices of exploited fish populations. Ocean acidification has been shown to impair fish larvae's sensory abilities, affect the morphology of otoliths, cause tissue damage and cause behavioural changes. Here, we obtain first experimental mortality estimates for Atlantic cod larvae under OA and incorporate these effects into recruitment models. End-of-century levels of ocean acidification (~1100 μatm according to the IPCC RCP 8.5) resulted in a doubling of daily mortality rates compared to present-day CO2 concentrations during the first 25 days post hatching (dph), a critical phase for population recruitment. These results were consistent under different feeding regimes, stocking densities and in two cod populations (Western Baltic and Barents Sea stock). When mortality data were included into Ricker-type stock-recruitment models, recruitment was reduced to an average of 8 and 24% of current recruitment for the two populations, respectively. Our results highlight the importance of including vulnerable early life stages when addressing effects of climate change on fish stocks.
Modelling the effects of stranding on the Atlantic salmon population in the Dale River, Norway.
Sauterleute, Julian F; Hedger, Richard D; Hauer, Christoph; Pulg, Ulrich; Skoglund, Helge; Sundt-Hansen, Line E; Bakken, Tor Haakon; Ugedal, Ola
2016-12-15
Rapid dewatering in rivers as a consequence of hydropower operations may cause stranding of juvenile fish and have a negative impact on fish populations. We implemented stranding into an Atlantic salmon population model in order to evaluate long-term effects on the population in the Dale River, Western Norway. Furthermore, we assessed the sensitivity of the stranding model to dewatered area in comparison to biological parameters, and compared different methods for calculating wetted area, the main abiotic input parameter to the population model. Five scenarios were simulated dependent on fish life-stage, season and light level. Our simulation results showed largest negative effect on the population abundance for hydropeaking during winter daylight. Salmon smolt production had highest sensitivity to the stranding mortality of older juvenile fish, suggesting that stranding of fish at these life-stages is likely to have greater population impacts than that of earlier life-stages. Downstream retention effects on the ramping velocity were found to be negligible in the stranding model, but are suggested to be important in the context of mitigation measure design. Copyright © 2016 Elsevier B.V. All rights reserved.
An Integrated Ecological Modeling System for Assessing ...
We demonstrate a novel, spatially explicit assessment of the current condition of aquatic ecosystem services, with limited sensitivity analysis for the atmospheric contaminant mercury. The Integrated Ecological Modeling System (IEMS) forecasts water quality and quantity, habitat suitability for aquatic biota, fish biomasses, population densities, productivities, and contamination by methylmercury across headwater watersheds. We applied this IEMS to the Coal River Basin (CRB), West Virginia (USA), an 8-digit hydrologic unit watershed, by simulating a network of 97 stream segments using the SWAT watershed model, a watershed mercury loading model, the WASP water quality model, the PiSCES fish community estimation model, a fish habitat suitability model, the BASS fish community and bioaccumulation model, and an ecoservices post-processer. Model application was facilitated by automated data retrieval and model setup and updated model wrappers and interfaces for data transfers between these models from a prior study. This companion study evaluates baseline predictions of ecoservices provided for 1990 – 2010 for the population of streams in the CRB and serves as a foundation for future model development. Published in the journal, Ecological Modeling. Highlights: • Demonstrate a spatially-explicit IEMS for multiple scales. • Design a flexible IEMS for
Elliott, D.G.; Pascho, R.J.
2001-01-01
Binary coded wire tags (CWTs) are used extensively for identification and management of anadromous salmonid populations. A study of bacterial kidney disease (BKD) in two brood year groups of hatchery-reared spring chinook salmon Oncorhynchus tshawytscha provided strong evidence that horizontal transmission of Renibacterium salmoninarum, the causative agent of BKD, might be enhanced by CWT-marking procedures. About 4 months after CWTs were implanted in the snouts of juvenile fish, 14-16 different tissues were sampled from each of 60 fish per brood year group for histological analysis. Of the fish that were positive for R. salmoninarum by histological examination, 41% (7 of 17) of the 1988 brood year fish and 24% (10 of 42) of the 1989 brood year fish had BKD lesions confined to the head near the site of tag implantation. These lesions often resulted in the destruction of tissues of one or both olfactory organs. No focal snout infections were observed in fish that had not been marked with CWTs. Further data obtained from tissue analyses by use of an enzyme-linked immunosorbent assay and a fluorescent antibody test for detection of R. salmoninarum supported the hypothesis that infections of R. salmoninarum can be initiated in the snout tissues of CWT-marked fish and then spread to other organs. The tagging procedures might promote transmission of the pathogen among fish via contaminated tagging needles, by facilitating the entry of pathogens through the injection wound, or both. Limited evidence from this study suggested that implantation of passive integrated transponder tags in the peritoneal cavities of fish might also promote the transmission of R. salmoninarum or exacerbate existing infections. The results indicated a need for strict sanitary procedures during the tagging of fish in populations positive for R. salmoninarum to reduce the probability of enhanced horizontal transmission of the pathogen.
Valdivia, Abel; Cox, Courtney E.; Silbiger, Nyssa J.; Bruno, John F.
2017-01-01
Invasive lionfish are assumed to significantly affect Caribbean reef fish communities. However, evidence of lionfish effects on native reef fishes is based on uncontrolled observational studies or small-scale, unrepresentative experiments, with findings ranging from no effect to large effects on prey density and richness. Moreover, whether lionfish affect populations and communities of native reef fishes at larger, management-relevant scales is unknown. The purpose of this study was to assess the effects of lionfish on coral reef prey fish communities in a natural complex reef system. We quantified lionfish and the density, richness, and composition of native prey fishes (0–10 cm total length) at sixteen reefs along ∼250 km of the Belize Barrier Reef from 2009 to 2013. Lionfish invaded our study sites during this four-year longitudinal study, thus our sampling included fish community structure before and after our sites were invaded, i.e., we employed a modified BACI design. We found no evidence that lionfish measurably affected the density, richness, or composition of prey fishes. It is possible that higher lionfish densities are necessary to detect an effect of lionfish on prey populations at this relatively large spatial scale. Alternatively, negative effects of lionfish on prey could be small, essentially undetectable, and ecologically insignificant at our study sites. Other factors that influence the dynamics of reef fish populations including reef complexity, resource availability, recruitment, predation, and fishing could swamp any effects of lionfish on prey populations. PMID:28560093
Hackerott, Serena; Valdivia, Abel; Cox, Courtney E; Silbiger, Nyssa J; Bruno, John F
2017-01-01
Invasive lionfish are assumed to significantly affect Caribbean reef fish communities. However, evidence of lionfish effects on native reef fishes is based on uncontrolled observational studies or small-scale, unrepresentative experiments, with findings ranging from no effect to large effects on prey density and richness. Moreover, whether lionfish affect populations and communities of native reef fishes at larger, management-relevant scales is unknown. The purpose of this study was to assess the effects of lionfish on coral reef prey fish communities in a natural complex reef system. We quantified lionfish and the density, richness, and composition of native prey fishes (0-10 cm total length) at sixteen reefs along ∼250 km of the Belize Barrier Reef from 2009 to 2013. Lionfish invaded our study sites during this four-year longitudinal study, thus our sampling included fish community structure before and after our sites were invaded, i.e., we employed a modified BACI design. We found no evidence that lionfish measurably affected the density, richness, or composition of prey fishes. It is possible that higher lionfish densities are necessary to detect an effect of lionfish on prey populations at this relatively large spatial scale. Alternatively, negative effects of lionfish on prey could be small, essentially undetectable, and ecologically insignificant at our study sites. Other factors that influence the dynamics of reef fish populations including reef complexity, resource availability, recruitment, predation, and fishing could swamp any effects of lionfish on prey populations.
Losses of seabirds in gill nets in the North Pacific
DeGange, Anthony R.; Day, Robert H.; Takekawa, Jean E.; Mendenhall, Vivian M.; Vermeer, Kees; Briggs, K.T.; Morgan, K.H.; Siegel-Causey, D.
1993-01-01
Existing knowledge on high-seas and coastal gillnet fisheries known to kill seabirds in the North Pacific is summarized. Recent estimates suggest that high-seas gillnet fisheries may have taken more than 500,000 seabirds in 1990. The majority of birds taken in those fisheries were Sooty Puffinus griseus or Short-tailed P. tenuirostris shearwaters. A recent analysis of impacts of those fisheries suggests that both shearwater populations may be declining slightly, although overall populations remain large. Impacts on seabirds of gillnet fishing in coastal waters are poorly known, except in California. Incidental mortality of seabirds in coastal gillnet fisheries may be adding additional stress to populations already compromised by habitat destruction and oil spills. Local populations of Marbled Murrelets Brachyramphus marmoratus, Common Murres Uria aalge, and Japanese Murrelets Synthliboramphus wumizusume may be particularly vulnerable to coastal gillnet fisheries. United National General Assembly Resolution 44/225 called for a moratorium on high-seas gillnet fishing by 30 June 1992. Japan has complied and Korea and Taiwan will comply with the moratorium.
Barber, M Craig; Rashleigh, Brenda; Cyterski, Michael J
2016-01-01
Regional fishery conditions of Mid-Atlantic wadeable streams in the eastern United States are estimated using the Bioaccumulation and Aquatic System Simulator (BASS) bioaccumulation and fish community model and data collected by the US Environmental Protection Agency's Environmental Monitoring and Assessment Program (EMAP). Average annual biomasses and population densities and annual productions are estimated for 352 randomly selected streams. Realized bioaccumulation factors (BAF) and biomagnification factors (BMF), which are dependent on these forecasted biomasses, population densities, and productions, are also estimated by assuming constant water exposures to methylmercury and tetra-, penta-, hexa-, and hepta-chlorinated biphenyls. Using observed biomasses, observed densities, and estimated annual productions of total fish from 3 regions assumed to support healthy fisheries as benchmarks (eastern Tennessee and Catskill Mountain trout streams and Ozark Mountains smallmouth bass streams), 58% of the region's wadeable streams are estimated to be in marginal or poor condition (i.e., not healthy). Using simulated BAFs and EMAP Hg fish concentrations, we also estimate that approximately 24% of the game fish and subsistence fishing species that are found in streams having detectable Hg concentrations would exceed an acceptable human consumption criterion of 0.185 μg/g wet wt. Importantly, such streams have been estimated to represent 78.2% to 84.4% of the Mid-Atlantic's wadeable stream lengths. Our results demonstrate how a dynamic simulation model can support regional assessment and trends analysis for fisheries. © 2015 SETAC.
Fish sauce, soy sauce, and vegetable oil fortification in Cambodia: where do we stand to date?
Theary, Chan; Panagides, Dora; Laillou, Arnaud; Vonthanak, Saphoon; Kanarath, Chheng; Chhorvann, Chhea; Sambath, Pol; Sowath, Sol; Moench-Pfanner, Regina
2013-06-01
The prevalence of micronutrient deficiencies in Cambodia is among the highest in Southeast Asia. Fortification of staple foods and condiments is considered to be one of the most cost-effective strategies for addressing micronutrient deficiencies at the population level. The Government of Cambodia has recognized the importance of food fortification as one strategy for improving the nutrition security of its population. This paper describes efforts under way in Cambodia for the fortification of fish sauce, soy sauce, and vegetable oil. Data were compiled from a stability test of Cambodian fish sauces fortified with sodium iron ethylenediaminetetraacetate (NaFeEDTA); analysis of fortified vegetable oils in the Cambodian market; a Knowledge, Attitudes, and Practices (KAP) study of fortified products; and food fortification program monitoring documents. At different levels of fortification of fish sauce with NaFeEDTA, sedimentation and precipitation were observed. This was taken into consideration in the government-issued standards for the fortification of fish sauce. All major brands of vegetable oil found in markets at the village and provincial levels are imported, and most are nonfortified. Fish sauce, soy sauce, and vegetable oil are widely consumed throughout Cambodia and are readily available in provincial and village markets. Together with an effective regulatory monitoring system, the government can guarantee that these commodities, whether locally produced or imported, are adequately fortified. A communications campaign would be worthwhile, once fortified commodities are available, as the KAP study found that Cambodians had a positive perception of fortified sauces.
Murdoch, Andrew R.; Hughes, Michael S.; Seamons, Todd R.; LaHood, Eric S.
2016-01-01
We used genetic parentage analysis of 6200 potential parents and 5497 juvenile offspring to evaluate the relative reproductive success of hatchery and natural steelhead (Onchorhynchus mykiss) when spawning in the wild between 2008 and 2011 in the Wenatchee River, Washington. Hatchery fish originating from two prior generation hatchery parents had <20% of the reproductive success of natural origin spawners. In contrast, hatchery females originating from a cross between two natural origin parents of the prior generation had equivalent or better reproductive success than natural origin females. Males originating from such a cross had reproductive success of 26–93% that of natural males. The reproductive success of hatchery females and males from crosses consisting of one natural origin fish and one hatchery origin fish was 24–54% that of natural fish. The strong influence of hatchery broodstock origin on reproductive success confirms similar results from a previous study of a different population of the same species and suggests a genetic basis for the low reproductive success of hatchery steelhead, although environmental factors cannot be entirely ruled out. In addition to broodstock origin, fish size, return time, age, and spawning location were significant predictors of reproductive success. Our results indicate that incorporating natural fish into hatchery broodstock is clearly beneficial for improving subsequent natural spawning success, even in a population that has a decades-long history of hatchery releases, as is the case in the Wenatchee River. PMID:27737000
Predation Risk Shapes Social Networks in Fission-Fusion Populations
Kelley, Jennifer L.; Morrell, Lesley J.; Inskip, Chloe; Krause, Jens; Croft, Darren P.
2011-01-01
Predation risk is often associated with group formation in prey, but recent advances in methods for analysing the social structure of animal societies make it possible to quantify the effects of risk on the complex dynamics of spatial and temporal organisation. In this paper we use social network analysis to investigate the impact of variation in predation risk on the social structure of guppy shoals and the frequency and duration of shoal splitting (fission) and merging (fusion) events. Our analyses revealed that variation in the level of predation risk was associated with divergent social dynamics, with fish in high-risk populations displaying a greater number of associations with overall greater strength and connectedness than those from low-risk sites. Temporal patterns of organisation also differed according to predation risk, with fission events more likely to occur over two short time periods (5 minutes and 20 minutes) in low-predation fish and over longer time scales (>1.5 hours) in high-predation fish. Our findings suggest that predation risk influences the fine-scale social structure of prey populations and that the temporal aspects of organisation play a key role in defining social systems. PMID:21912627
NASA Technical Reports Server (NTRS)
1975-01-01
The potential application of SEASAT data with regard to ocean fisheries is discussed. Tracking fish populations, indirect assistance in forecasting expected populations and assistance to fishing fleets in avoiding costs incurred due to adverse weather through improved ocean conditions forecasts were investigated. Case studies on fisheries in the United States and Canada are cited.
Lake Michigan: Man's effects on native fish stocks and other biota
Wells, LaRue; McLain, Alberton L.
1973-01-01
Exploitation was largely responsible for the changes in Lake Michigan fish stocks before the invasion of the smelt, and probably before the invasion of the sea lamprey. The lamprey and alewife, however, have exerted a greater impact than the fishery on native fish populations in recent decades. Accelerated eutrophication and other pollution, although important, have not equalled the other factors in causing changes in native fish populations.
Geographical variation in sound production in the anemonefish Amphiprion akallopisos
Parmentier, E; Lagardère, J.P; Vandewalle, P; Fine, M.L
2005-01-01
Because of pelagic-larval dispersal, coral-reef fishes are distributed widely with minimal genetic differentiation between populations. Amphiprion akallopisos, a clownfish that uses sound production to defend its anemone territory, has a wide but disjunct distribution in the Indian Ocean. We compared sounds produced by these fishes from populations in Madagascar and Indonesia, a distance of 6500 km. Differentiation of agonistic calls into distinct types indicates a complexity not previously recorded in fishes' acoustic communication. Moreover, various acoustic parameters, including peak frequency, pulse duration, number of peaks per pulse, differed between the two populations. The geographic comparison is the first to demonstrate ‘dialects’ in a marine fish species, and these differences in sound parameters suggest genetic divergence between these two populations. These results highlight the possible approach for investigating the role of sounds in fish behaviour in reproductive divergence and speciation. PMID:16087425
A major challenge of evaluating restoration progress is establishing a cause-effect relationship between observed changes in fish abundance and ongoing aquatic habitat restoration. Since 1979, fish populations within the St. Louis River Area of Concern, which were severely degrad...
Fish abundance and population stability in a reservoir tailwater and an unregulated headwater stream
Jacobs, K.E.; Swink, W.D.
1983-01-01
Fish abundance and population stability were compared in the tailwater and in an unregulated tributary of Barren River Lake, a flood control reservoir in south central Kentucky. Fish abundance was greater in the tailwater near the dam and was dominated by three species common in the reservoir: gizzard shad (Dorosoma cepedianum), bluegills (Lepomis macrochirus), and white crappies (Pomoxis annularis). Three riverine suckers were less abundant in the tailwater than in the unregulated stream: northern hog suckers (Hypentelium nigricans), black redhorse (Moxostoma duquesnei), and golden redhorse (Moxostoma erythrurum). The fish populations in the tailwater, particularly common carp (Cyprinus carpio), northern hog suckers, black redhorse, and golden redhorse, were less stable than those in the unregulated stream. Population stability is defined as the extent to which fish remain in a stream section. This study suggests that the occurrence of reservoir species in the tailwater was the result of fish passage from the reservoir during high discharges in fall and winter. Reservoir operations (altered flow, low summer water temperature, and poor summer water quality) probably were responsible for the unstable populations of common carp and riverine suckers in the tailwater.
Morphological variation of siscowet lake trout in Lake Superior
Bronte, C.R.; Moore, S.A.
2007-01-01
Historically, Lake Superior has contained many morphologically distinct forms of the lake trout Salvelinus namaycush that have occupied specific depths and locations and spawned at specific times of the year. Today, as was probably the case historically, the siscowet morphotype is the most abundant. Recent interest in harvesting siscowets to extract oil containing omega-3 fatty acids will require additional knowledge of the biology and stock structure of these lightly exploited populations. The objective of this study was to determine whether shape differences exist among siscowet populations across Lake Superior and whether these shape differences can be used to infer stock structure. Morphometric analysis (truss protocol) was used to differentiate among siscowets sampled from 23 locations in Lake Superior. We analyzed 31 distance measurements among 14 anatomical landmarks taken from digital images of fish recorded in the field. Cluster analysis of size-corrected data separated fish into three geographic groups: The Isle Royale, eastern (Michigan), and western regions (Michigan). Finer scales of stock structure were also suggested. Discriminant function analysis demonstrated that head measurements contributed to most of the observed variation. Cross-validation classification rates indicated that 67–71% of individual fish were correctly classified to their region of capture. This is the first study to present shape differences associated with location within a lake trout morphotype in Lake Superior.
Phylogeography of infectious haematopoietic necrosis virus in North America
Kurath, Gael; Garver, Kyle A.; Troyer, Ryan M.; Emmenegger, Eveline J.; Einer-Jensen, Katja; Anderson, Eric D.
2003-01-01
Infectious hematopoietic necrosis virus (IHNV) is a rhabdoviral pathogen that infects wild and cultured salmonid fish throughout the Pacific Northwest of North America. IHNV causes severe epidemics in young fish and can cause disease or occur asymptomatically in adults. In a broad survey of 323 IHNV field isolates, sequence analysis of a 303 nucleotide variable region within the glycoprotein gene revealed a maximum nucleotide diversity of 8.6 %, indicating low genetic diversity overall for this virus. Phylogenetic analysis revealed three major virus genogroups, designated U, M and L, which varied in topography and geographical range. Intragenogroup genetic diversity measures indicated that the M genogroup had three- to fourfold more diversity than the other genogroups and suggested relatively rapid evolution of the M genogroup and stasis within the U genogroup. We speculate that factors influencing IHNV evolution may have included ocean migration ranges of their salmonid host populations and anthropogenic effects associated with fish culture.
Randall, Michael T.; Colvin, Michael E.; Steffensen, Kirk D.; Welker, Timothy L.; Pierce, Landon L.; Jacobson, Robert B.
2017-10-11
During spring 2015, Nebraska Game and Parks Commission (NGPC) biologists noted that pallid sturgeon (Scaphirhynchus albus) were in poor condition during sampling associated with the Pallid Sturgeon Population Assessment Project and NGPC’s annual pallid sturgeon broodstock collection effort. These observations prompted concerns that reduced fish condition could compromise reproductive health and population growth of pallid sturgeon. There was a further concern that compromised condition could possibly be linked to U.S. Army Corps of Engineers management actions and increase jeopardy to the species. An evaluation request was made to the Missouri River Recovery Program and the Effects Analysis Team was chartered to evaluate the issue. Data on all Missouri River pallid sturgeon captures were requested and received from the National Pallid Sturgeon Database. All data were examined for completeness and accuracy; 12,053 records of captures between 200 millimeters fork length (mm FL) and 1,200 mm FL were accepted. We analyzed condition using (1) the condition formula (Kn) from Shuman and others (2011); (2) a second Kn formulation derived from the 12,053 records (hereafter referred to as “Alternative Kn”); and (3) an analysis of covariance (ANCOVA) approach that did not rely on a Kn formulation. The Kn data were analyzed using group (average annual Kn) and individual (percentage in low, normal, and robust conditions) approaches. Using the Shuman Kn formulation, annual mean Kn was fairly static from 2005 to 2011 (although always higher in the upper basin), declined from 2012 to 2015, then remained either static (lower basin) or increasing (upper basin) in 2016. Under the Alternative Kn formulation, the upper basin showed no decline in Kn, whereas the lower basin displayed the same trend as the Shuman Kn formulation. Using both formulations, the individual approach revealed a more complex situation; at the same times and locations that there are fish in poor condition, there are nearby fish in normal or robust condition. The ANCOVA approach revealed that fish condition at size changed between 400 and 600 mm and that some of the apparent trend in low condition was caused by differences in sample size across the size range of the population (that is, greater catch of intermediate-sized fish compared to large fish). We examined basin, year, origin (hatchery compared to wild), segment, and size class for effects on condition and concluded that, since 2012, there has been an increase in the percentage of pallid sturgeon in low condition. There are basin, year, and segment effects; origin and size class do not seem to have an effect. The lower basin, in particular segment 9 (Platte River to Kansas River), had a high percentage of low-condition fish. Within the segment, there were bend-level effects, but the bend effect was not spatially contiguous. We concluded that existing data confirm concerns about declining fish condition, especially in the segments between Sioux City, Iowa, and Kansas City, Missouri. Although the evidence is strong that fish condition has been in decline from 2011 to 2015, additional analysis of individual fish histories may provide more confidence in this conclusion; such analysis was beyond the scope of this effort but is part of our recommendations. The most recent data in 2016 indicate that decline of condition may have leveled off; however, the length of record is insufficient to determine whether recent declines are within the background range of variation. We recommend that monitoring of fish condition should be increased and enhanced with additional health metrics. We also recommend that, should condition continue to decline, processes are deployed to bring low-condition adult fish into the hatchery to improve nutrition and condition. We could not determine the cause of declining fish condition with available data, but we compiled information on several dominant hypotheses in two main categories: inter- or intraspecific competition for resources and habitat conditions. Data are insufficient to indicate a specific causation or solution, and it is possible that multiple causes apply. We make recommendations for additional research that can be pursued to address uncertainties in trends in fish health as well as potential causes.
Yurek, Simeon; DeAngelis, Donald L.; Trexler, Joel C.; Jopp, Fred; Donalson, Douglas D.
2013-01-01
Movement strategies of small forage fish (<8 cm total length) between temporary and permanent wetland habitats affect their overall population growth and biomass concentrations, i.e., availability to predators. These fish are often the key energy link between primary producers and top predators, such as wading birds, which require high concentrations of stranded fish in accessible depths. Expansion and contraction of seasonal wetlands induce a sequential alternation between rapid biomass growth and concentration, creating the conditions for local stranding of small fish as they move in response to varying water levels. To better understand how landscape topography, hydrology, and fish behavior interact to create high densities of stranded fish, we first simulated population dynamics of small fish, within a dynamic food web, with different traits for movement strategy and growth rate, across an artificial, spatially explicit, heterogeneous, two-dimensional marsh slough landscape, using hydrologic variability as the driver for movement. Model output showed that fish with the highest tendency to invade newly flooded marsh areas built up the largest populations over long time periods with stable hydrologic patterns. A higher probability to become stranded had negative effects on long-term population size, and offset the contribution of that species to stranded biomass. The model was next applied to the topography of a 10 km × 10 km area of Everglades landscape. The details of the topography were highly important in channeling fish movements and creating spatiotemporal patterns of fish movement and stranding. This output provides data that can be compared in the future with observed locations of fish biomass concentrations, or such surrogates as phosphorus ‘hotspots’ in the marsh.
Steelhead Supplementation in Idaho Rivers : 2001 Project Progress Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byrne, Alan
In 2001, Idaho Department of Fish and Game (IDFG) continued an assessment of the Sawtooth Hatchery steelhead Oncorhynchus mykiss stock to reestablish natural populations in Beaver and Frenchman creeks in the upper Salmon River. Crews stocked both streams with 20 pair of hatchery adults, and I estimated the potential smolt production from the 2000 adult outplants. n the Red River drainage, IDFG stocked Dworshak hatchery stock fingerlings and smolts from 1993 to 1999 to assess which life stage produces more progeny when the adults return to spawn. In 2001, IDFG operated the Red River weir to trap adults that returnedmore » from these stockings, but none were caught from either group. Wild steelhead populations in the Lochsa and Selway river drainages were assessed and the chinook salmon Oncorhynchus tshawytscha escapement was enumerated in Fish Creek. I estimated that 75 wild adult steelhead and 122 adult chinook salmon returned to Fish Creek in 2001. I estimated that slightly more than 30,000 juvenile steelhead migrated out of Fish Creek. This is the largest number of steelhead to migrate out of Fish Creek in a single year since I began estimating the yearly migration in 1994. Juvenile steelhead densities in Lochsa and Selway tributaries were somewhat higher in 2001 than those observed in 2000. Crews from IDFG collected over 4,800 fin samples from wild steelhead in 74 streams of the Clearwater, Snake, and Salmon river drainages and from five hatchery stocks during the summer of 2000 for a DNA analysis to assess Idaho's steelhead stock structure. The DNA analysis was subcontracted to Dr. Jennifer Nielsen, Alaska Biological Science Center, Anchorage. Her lab developed protocols to use for the analysis in 2001 and is continuing to analyze the samples. Dr. Nielsen plans to have the complete set of wild and hatchery stocks analyzed in 2002.« less
Behavioural responses to human-induced change: Why fishing should not be ignored.
Diaz Pauli, Beatriz; Sih, Andrew
2017-03-01
Change in behaviour is usually the first response to human-induced environmental change and key for determining whether a species adapts to environmental change or becomes maladapted. Thus, understanding the behavioural response to human-induced changes is crucial in the interplay between ecology, evolution, conservation and management. Yet the behavioural response to fishing activities has been largely ignored. We review studies contrasting how fish behaviour affects catch by passive (e.g., long lines, angling) versus active gears (e.g., trawls, seines). We show that fishing not only targets certain behaviours, but it leads to a multitrait response including behavioural, physiological and life-history traits with population, community and ecosystem consequences. Fisheries-driven change (plastic or evolutionary) of fish behaviour and its correlated traits could impact fish populations well beyond their survival per se , affecting predation risk, foraging behaviour, dispersal, parental care, etc., and hence numerous ecological issues including population dynamics and trophic cascades . In particular, we discuss implications of behavioural responses to fishing for fisheries management and population resilience. More research on these topics, however, is needed to draw general conclusions, and we suggest fruitful directions for future studies.
Moya, Jacqueline; Itkin, Cheryl; Selevan, Sherry G; Rogers, John W; Clickner, Robert P
2008-09-15
Fish consumption rates derived from national surveys may not accurately reflect consumption rates in a particular population such as recreational anglers. Many state and local health agencies in the U.S. have conducted area-specific surveys to study fish consumption patterns in local populations, assess exposure to environmental contaminants, or evaluate compliance with fish advisories. The U.S. Environmental Protection Agency (EPA) has analyzed the raw data from fish consumption surveys in Florida, Connecticut, Minnesota, and North Dakota for the purpose of deriving distributions of fish consumption rates and studying the variables that may be more predictive of high-end consumers. Distributions of fish consumption for different age cohorts, ethnic groups, socioeconomic statuses, types of fish (i.e., freshwater, marine, estuarine), and source of fish (i.e., store-bought versus self-caught) were derived. Consumption of fish and shellfish for those who consume both caught and bought fish is higher than those who reported eating only bought or only self-caught. Mean fish consumption per kilogram of body weight ranged from 0.11 g/kg-day to 2.3 g/kg-day. The highest values were observed in Florida for children 1<6 years of age. The Florida data show a statistically significant increase in the percentage of the population reporting fish and shellfish consumption with an increase in household income and education. This trend was not observed in the other states.
Glover, Kevin A.; Quintela, María; Wennevik, Vidar; Besnier, François; Sørvik, Anne G. E.; Skaala, Øystein
2012-01-01
Each year, hundreds of thousands of domesticated farmed Atlantic salmon escape into the wild. In Norway, which is the world’s largest commercial producer, many native Atlantic salmon populations have experienced large numbers of escapees on the spawning grounds for the past 15–30 years. In order to study the potential genetic impact, we conducted a spatio-temporal analysis of 3049 fish from 21 populations throughout Norway, sampled in the period 1970–2010. Based upon the analysis of 22 microsatellites, individual admixture, FST and increased allelic richness revealed temporal genetic changes in six of the populations. These changes were highly significant in four of them. For example, 76% and 100% of the fish comprising the contemporary samples for the rivers Vosso and Opo were excluded from their respective historical samples at P = 0.001. Based upon several genetic parameters, including simulations, genetic drift was excluded as the primary cause of the observed genetic changes. In the remaining 15 populations, some of which had also been exposed to high numbers of escapees, clear genetic changes were not detected. Significant population genetic structuring was observed among the 21 populations in the historical (global FST = 0.038) and contemporary data sets (global FST = 0.030), although significantly reduced with time (P = 0.008). This reduction was especially distinct when looking at the six populations displaying temporal changes (global FST dropped from 0.058 to 0.039, P = 0.006). We draw two main conclusions: 1. The majority of the historical population genetic structure throughout Norway still appears to be retained, suggesting a low to modest overall success of farmed escapees in the wild; 2. Genetic introgression of farmed escapees in native salmon populations has been strongly population-dependent, and it appears to be linked with the density of the native population. PMID:22916215
Maroso, Francesco; Franch, Rafaella; Dalla Rovere, Giulia; Arculeo, Marco; Bargelloni, Luca
2016-08-01
Dolphinfish is an important fish species for both commercial and sport fishing, but so far limited information is available on genetic variability and pattern of differentiation of dolphinfish populations in the Mediterranean basin. Recently developed techniques allow genome-wide identification of genetic markers for better understanding of population structure in species with limited genome information. Using restriction-site associated DNA analysis we successfully genotyped 140 individuals of dolphinfish from eight locations in the Mediterranean Sea at 3324 SNP loci. We identified 311 sex-related loci that were used to assess sex-ratio in dolphinfish populations. In addition, we identified a weak signature of genetic differentiation of the population closer to Gibraltar Strait in comparison to other Mediterranean populations, which might be related to introgression of individuals from Atlantic. No further genetic differentiation could be detected in the other populations sampled, as expected considering the known highly mobility of the species. The results obtained improve our knowledge of the species and can help managing dolphinfish stock in the future. Copyright © 2016 Elsevier B.V. All rights reserved.
Kwak, T.J.; Pine, William E.; Waters, D.S.
2006-01-01
Knowledge of individual growth and mortality rates of an introduced fish population is required to determine the success and degree of establishment as well as to predict the fish's impact on native fauna. The age and growth of flathead catfish Pylodictis olivaris have been studied extensively in the species' native and introduced ranges, and estimates have varied widely. We quantified individual growth rates and age structure of three introduced flathead catfish populations in North Carolina's Atlantic slope rivers using sagittal otoliths, determined trends in growth rates over time, compared these estimates among rivers in native and introduced ranges, and determined total mortality rates for each population. Growth was significantly faster in the Northeast Cape Fear River (NECFR) than in the Lumber and Neuse rivers. Fish in the NECFR grew to a total length of 700 mm by age 7, whereas fish in the Neuse and Lumber river populations reached this length by 8 and 10 years, respectively. The growth rates of fish in all three rivers were consistently higher than those of native riverine populations, similar to those of native reservoir populations, and slower than those of other introduced riverine populations. In general, recent cohorts (1998-2001 year-classes) in these three rivers exhibited slower growth among all ages than did cohorts previous to the 1998 year-class. The annual total mortality rate was similar among the three rivers, ranging from 0.16 to 0.20. These mortality estimates are considerably lower than those from the Missouri and Mississippi rivers, suggesting relatively low fishing mortality for these introduced populations. Overall, flathead catfish populations in reservoirs grow faster than those in rivers, the growth rates of introduced populations exceed those of native populations, and eastern United States populations grow faster than those in western states. Such trends constitute critical information for understanding and managing local populations.
K. J. Carim; Y. Vindenes; L. A. Eby; C. Barfoot; L. A. Vollestad
2017-01-01
Habitat loss and fragmentation have caused population decline across taxa through impacts on life history diversity, dispersal patterns, and gene flow. Yet, intentional isolation of native fish populations is a frequently used management strategy to protect against negative interactions with invasive fish species. We evaluated the population viability and genetic...
Estimating the impact of oyster restoration scenarios on transient fish production
McCoy, Elizabeth; Borrett, Stuart R.; LaPeyre, Megan K.; Peterson, Bradley J.
2017-01-01
Oyster reef restoration projects are increasing in number both to enhance oyster density and to retain valuable ecosystem services provided by oyster reefs. Although some oyster restoration projects have demonstrated success by increasing density and biomass of transient fish, it still remains a challenge to quantify the effects of oyster restoration on transient fish communities. We developed a bioenergetics model to assess the impact of selected oyster reef restoration scenarios on associated transient fish species. We used the model to analyze the impact of changes in (1) oyster population carrying capacity; (2) oyster population growth rate; and (3) diet preference of transient fish on oyster reef development and associated transient fish species. Our model results indicate that resident fish biomass is directly affected by oyster restoration and oyster biomass, and oyster restoration can have cascading impacts on transient fish biomass. Furthermore, the results highlight the importance of a favorable oyster population growth rate during early restoration years, as it can lead to rapid increases in mean oyster biomass and biomass of transient fish species. The model also revealed that a transient fish's diet solely dependent on oyster reef-derived prey could limit the biomass of transient fish species, emphasizing the importance of habitat connectivity in estuarine areas to enhance transient fish species biomass. Simple bioenergetics models can be developed to understand the dynamics of a system and make qualitative predictions of management and restoration scenarios.
Winton, J.R.; Mesa, M.; Kurath, G.; Elliot, D.
2005-01-01
Infectious diseases are increasingly recognized as an important component of the ecology of fish in the wild. Many of the viral, bacterial, protozoan and fungal pathogens of fish that were initially discovered in captive fish have their origin among wild populations; however, the impact of disease among these free-ranging stocks has been difficult to study. At the WFRC, combinations of field and laboratory investigations, aided by the tools of molecular biology, have begun to provide information on the ecology of infectious diseases among natural populations of fish in both freshwater and marine ecosystems.
Migration and spawning of radio-tagged zulega Prochilodus argenteus in a dammed Brazilian river
Godinho, Alexandre L.; Kynard, B.
2006-01-01
It is difficult for agencies to evaluate the impacts of the many planned dams on Sa??o Francisco River, Brazil, migratory fishes because fish migrations are poorly known. We conducted a study on zulega Prochilodus argenteus, an important commercial and recreational fish in the Sa??o Francisco River, to identify migrations and spawning areas and to determine linear home range. During two spawning seasons (2001-2003), we radio-tagged fish in three main-stem reaches downstream of Tre??s Marias Dam (TMD), located at river kilometer (rkm) 2,109. We tagged 10 fish at Tre??s Marias (TM), which is 5 km downstream of TMD; 12 fish at Pontal, which is 28 km downstream of TMD and which includes the mouth of the Abaete?? River, and 10 fish at Cilga, which is 45 km downstream of TMD. Late-stage (ripe) adults tagged in each area during the spawning season remained at or near the tagging site, except for four Cilga fish that went to Pontal and probably spawned. The Pontal area at the Abaete?? River mouth was the most important spawning site we found. Prespawning fish moved back and forth between main-stem staging areas upstream of the Abaete?? River mouth and Pontal for short visits. These multiple visits were probably needed as ripe fish waited for spawning cues from a flooding Abaete?? River. Some fish homed to prespaw ning staging areas, spawning areas, and nonspawning areas. The migratory style of zulega was dualistic, with resident and migratory fish. Total linear home range was also dualistic, with small (<26-km) and large (53-127-km) ranges. The locations of spawning areas and home ranges suggest that the Pontal group (which includes Cilga fish) is one population that occupies about 110 km. The Pontal population overlaps a short distance with a population located downstream of Cilga. Movements of late-stage TM adults suggest that the TM group is a separate population, possibly with connections to populations upstream of TMD. ?? Copyright by the American Fisheries Society 2006.
Sampling characteristics and calibration of snorkel counts to estimate stream fish populations
Weaver, D.; Kwak, Thomas J.; Pollock, Kenneth
2014-01-01
Snorkeling is a versatile technique for estimating lotic fish population characteristics; however, few investigators have evaluated its accuracy at population or assemblage levels. We evaluated the accuracy of snorkeling using prepositioned areal electrofishing (PAE) for estimating fish populations in a medium-sized Appalachian Mountain river during fall 2008 and summer 2009. Strip-transect snorkel counts were calibrated with PAE counts in identical locations among macrohabitats, fish species or taxa, and seasons. Mean snorkeling efficiency (i.e., the proportion of individuals counted from the true population) among all taxa and seasons was 14.7% (SE, 2.5%), and the highest efficiencies were for River Chub Nocomis micropogon at 21.1% (SE, 5.9%), Central Stoneroller Campostoma anomalum at 20.3% (SE, 9.6%), and darters (Percidae) at 17.1% (SE, 3.7%), whereas efficiencies were lower for shiners (Notropis spp., Cyprinella spp., Luxilus spp.) at 8.2% (SE, 2.2%) and suckers (Catostomidae) at 6.6% (SE, 3.2%). Macrohabitat type, fish taxon, or sampling season did not significantly explain variance in snorkeling efficiency. Mean snorkeling detection probability (i.e., probability of detecting at least one individual of a taxon) among fish taxa and seasons was 58.4% (SE, 6.1%). We applied the efficiencies from our calibration study to adjust snorkel counts from an intensive snorkeling survey conducted in a nearby reach. Total fish density estimates from strip-transect counts adjusted for snorkeling efficiency were 7,288 fish/ha (SE, 1,564) during summer and 15,805 fish/ha (SE, 4,947) during fall. Precision of fish density estimates is influenced by variation in snorkeling efficiency and sample size and may be increased with additional sampling effort. These results demonstrate the sampling properties and utility of snorkeling to characterize lotic fish assemblages with acceptable efficiency and detection probability, less effort, and no mortality, compared with traditional sampling methods.
Putting pharmaceuticals into the wider context of challenges to fish populations in rivers
Johnson, Andrew C.; Sumpter, John P.
2014-01-01
The natural range of fish species in our rivers is related to flow, elevation, temperature, local habitat and connectivity. For over 2000 years, humans have altered to varying degrees the river habitat. In the past 200 years, we added to the environmental disruption by discharging poorly treated sewage, nutrients and industrial waste into our rivers. For many rivers, the low point arrived during the period of 1950s–1970s, when rapid economic development overrode environmental concerns and dissolved oxygen concentrations dropped to zero. In these more enlightened times, gross river pollution is a thing of the past in the Developed World. However, persistent legacy chemical contaminants can be found in fish long after their discharge ceased. Changes in habitat quality and morphology caused and continue to cause the disappearance of fish species. The range of fish stressors has now increased as temperatures rise, and non-native fish introductions bring new diseases. The threat from pharmaceuticals to fish populations remains hypothetical, and no studies have yet linked change in fish populations to exposure. PMID:25405969
Estimating the hatchery fraction of a natural population: a Bayesian approach
Barber, Jarrett J.; Gerow, Kenneth G.; Connolly, Patrick J.; Singh, Sarabdeep
2011-01-01
There is strong and growing interest in estimating the proportion of hatchery fish that are in a natural population (the hatchery fraction). In a sample of fish from the relevant population, some are observed to be marked, indicating their origin as hatchery fish. The observed proportion of marked fish is usually less than the actual hatchery fraction, since the observed proportion is determined by the proportion originally marked, differential survival (usually lower) of marked fish relative to unmarked hatchery fish, and rates of mark retention and detection. Bayesian methods can work well in a setting such as this, in which empirical data are limited but for which there may be considerable expert judgment regarding these values. We explored a Bayesian estimation of the hatchery fraction using Monte Carlo–Markov chain methods. Based on our findings, we created an interactive Excel tool to implement the algorithm, which we have made available for free.
Hargrove, John S; Weyl, Olaf L F; Allen, Micheal S; Deacon, Neil R
2015-01-01
Fishes are one of the most commonly introduced aquatic taxa worldwide, and invasive fish species pose threats to biodiversity and ecosystem function in recipient waters. Considerable research efforts have focused on predicting the invasibility of different fish taxa; however, accurate records detailing the establishment and spread of invasive fishes are lacking for large numbers of fish around the globe. In response to these data limitations, a low-cost method of cataloging and quantifying the temporal and spatial status of fish invasions was explored. Specifically, angler catch data derived from competitive bass angling tournaments was used to document the distribution of 66 non-native populations of black bass (Micropterus spp.) in southern Africa. Additionally, catch data from standardized tournament events were used to assess the abundance and growth of non-native bass populations in southern Africa relative to their native distribution (southern and eastern United States). Differences in metrics of catch per unit effort (average number of fish retained per angler per day), daily bag weights (the average weight of fish retained per angler), and average fish weight were assessed using catch data from 14,890 angler days of tournament fishing (11,045 days from South Africa and Zimbabwe; 3,845 days from the United States). No significant differences were found between catch rates, average daily bag weight, or the average fish weight between countries, suggesting that bass populations in southern Africa reach comparable sizes and numbers relative to waters in their native distribution. Given the minimal cost associated with data collection (i.e. records are collected by tournament organizers), the standardized nature of the events, and consistent bias (i.e. selection for the biggest fish in a population), the use of angler catch data represents a novel approach to infer the status and distribution of invasive sport fish.
Hargrove, John S.; Weyl, Olaf L. F.; Allen, Micheal S.; Deacon, Neil R.
2015-01-01
Fishes are one of the most commonly introduced aquatic taxa worldwide, and invasive fish species pose threats to biodiversity and ecosystem function in recipient waters. Considerable research efforts have focused on predicting the invasibility of different fish taxa; however, accurate records detailing the establishment and spread of invasive fishes are lacking for large numbers of fish around the globe. In response to these data limitations, a low-cost method of cataloging and quantifying the temporal and spatial status of fish invasions was explored. Specifically, angler catch data derived from competitive bass angling tournaments was used to document the distribution of 66 non-native populations of black bass (Micropterus spp.) in southern Africa. Additionally, catch data from standardized tournament events were used to assess the abundance and growth of non-native bass populations in southern Africa relative to their native distribution (southern and eastern United States). Differences in metrics of catch per unit effort (average number of fish retained per angler per day), daily bag weights (the average weight of fish retained per angler), and average fish weight were assessed using catch data from 14,890 angler days of tournament fishing (11,045 days from South Africa and Zimbabwe; 3,845 days from the United States). No significant differences were found between catch rates, average daily bag weight, or the average fish weight between countries, suggesting that bass populations in southern Africa reach comparable sizes and numbers relative to waters in their native distribution. Given the minimal cost associated with data collection (i.e. records are collected by tournament organizers), the standardized nature of the events, and consistent bias (i.e. selection for the biggest fish in a population), the use of angler catch data represents a novel approach to infer the status and distribution of invasive sport fish. PMID:26047487
Threshold-dependent sample sizes for selenium assessment with stream fish tissue
Hitt, Nathaniel P.; Smith, David R.
2015-01-01
Natural resource managers are developing assessments of selenium (Se) contamination in freshwater ecosystems based on fish tissue concentrations. We evaluated the effects of sample size (i.e., number of fish per site) on the probability of correctly detecting mean whole-body Se values above a range of potential management thresholds. We modeled Se concentrations as gamma distributions with shape and scale parameters fitting an empirical mean-to-variance relationship in data from southwestern West Virginia, USA (63 collections, 382 individuals). We used parametric bootstrapping techniques to calculate statistical power as the probability of detecting true mean concentrations up to 3 mg Se/kg above management thresholds ranging from 4 to 8 mg Se/kg. Sample sizes required to achieve 80% power varied as a function of management thresholds and Type I error tolerance (α). Higher thresholds required more samples than lower thresholds because populations were more heterogeneous at higher mean Se levels. For instance, to assess a management threshold of 4 mg Se/kg, a sample of eight fish could detect an increase of approximately 1 mg Se/kg with 80% power (given α = 0.05), but this sample size would be unable to detect such an increase from a management threshold of 8 mg Se/kg with more than a coin-flip probability. Increasing α decreased sample size requirements to detect above-threshold mean Se concentrations with 80% power. For instance, at an α-level of 0.05, an 8-fish sample could detect an increase of approximately 2 units above a threshold of 8 mg Se/kg with 80% power, but when α was relaxed to 0.2, this sample size was more sensitive to increasing mean Se concentrations, allowing detection of an increase of approximately 1.2 units with equivalent power. Combining individuals into 2- and 4-fish composite samples for laboratory analysis did not decrease power because the reduced number of laboratory samples was compensated for by increased precision of composites for estimating mean conditions. However, low sample sizes (<5 fish) did not achieve 80% power to detect near-threshold values (i.e., <1 mg Se/kg) under any scenario we evaluated. This analysis can assist the sampling design and interpretation of Se assessments from fish tissue by accounting for natural variation in stream fish populations.
Yin, C Cameron; Tang, Guilin; Lu, Gary; Feng, Xiaoli; Keating, Michael J; Medeiros, L Jeffrey; Abruzzo, Lynne V
2015-08-01
Deletion 20q (Del(20q)), a common cytogenetic abnormality in myeloid neoplasms, is rare in chronic lymphocytic leukemia. We report 64 patients with chronic lymphocytic leukemia and del(20q), as the sole abnormality in 40, a stemline abnormality in 21, and a secondary abnormality in 3 cases. Fluorescence in situ hybridization (FISH) analysis revealed an additional high-risk abnormality, del(11q) or del(17p), in 25/64 (39%) cases. In most cases, the leukemic cells showed atypical cytologic features, unmutated IGHV (immunoglobulin heavy-chain variable region) genes, and ZAP70 positivity. The del(20q) was detected only after chemotherapy in all 27 cases with initial karyotypes available. With a median follow-up of 90 months, 30 patients (47%) died, most as a direct consequence of chronic lymphocytic leukemia. Eight patients developed a therapy-related myeloid neoplasm, seven with a complex karyotype. Combined morphologic and FISH analysis for del(20q) performed in 12 cases without morphologic evidence of a myeloid neoplasm localized the del(20q) to the chronic lymphocytic leukemia cells in 5 (42%) cases, and to myeloid/erythroid cells in 7 (58)% cases. The del(20q) was detected in myeloid cells in all 4 cases of myelodysplastic syndrome. In aggregate, these data indicate that chronic lymphocytic leukemia with del(20q) acquired after therapy is heterogeneous. In cases with morphologic evidence of dysplasia, the del(20q) likely resides in the myeloid lineage. However, in cases without morphologic evidence of dysplasia, the del(20q) may represent clonal evolution and disease progression. Combining morphologic analysis with FISH for del(20q) or performing FISH on immunomagnetically selected sub-populations to localize the cell population with this abnormality may help guide patient management.
Yamamoto, F Y; Pereira, M V M; Lottermann, E; Santos, G S; Stremel, T R O; Doria, H B; Gusso-Choueri, P; Campos, S X; Ortolani-Machado, C F; Cestari, M M; Neto, F Filipak; Azevedo, J C R; Ribeiro, C A Oliveira
2016-09-01
The Iguaçu River, located at the Southern part of Brazil, has a great socioeconomic and environmental importance due to its high endemic fish fauna and its potential to generate hydroelectric power. However, Iguaçu River suffers intense discharge of pollutants in the origin of the river. In a previous report, the local environmental agency described water quality to improve along the river course. However, no study with integrated evaluation of chemical analysis and biological responses has been reported so far for the Iguaçu River. In the current study, three different Brazilian fish species (Astyanax bifasciatus, Chrenicicla iguassuensis, and Geophagus brasiliensis) were captured in the five cascading reservoirs of Iguaçu River for a multi-biomarker study. Chemical analysis in water, sediment, and muscle indicated high levels of bioavailable metals in all reservoirs. Polycyclic aromatic hydrocarbons (PAHs) were detected in the bile of the three fish species. Integration of the data through a FA/PCA analysis demonstrated the poorest environmental quality of the reservoir farthest from river's source, which is the opposite of what has been reported by the environmental agency. The presence of hazardous chemicals in the five reservoirs of Iguaçu River, their bioaccumulation in the muscle of fish, and the biological responses showed the impacts of human activities to this area and did not confirm a gradient of pollution between the five reservoirs, from the source toward Iguaçu River's mouth. Therefore, diffuse source of pollutants present along the river course are increasing the risk of exposure to biota and human populations.
Rivero-Wendt, C L G; Miranda-Vilela, A L; Ferreira, M F N; Amorim, F S; da Silva, V A G; Louvandini, H; Grisolia, C K
2013-10-24
17α-Methyltestosterone (MT) is widely used in fish hatcheries of many countries to produce male monosex populations. Its genotoxic risk to fish species is not well known and studies in other in vivo models are still inconclusive. MT was tested for genotoxicity in the fish species Oreochromis niloticus (tilapia), a target species, and Astyanax bimaculatus (lambari), a native non-target species. Genotoxicity was evaluated by the micronucleus test (MN), nuclear abnormalities (NA), and comet assay using peripheral erythrocytes of both species after a 96-h exposure to MT at concentrations of 0.01, 0.1, and 1.0 mg/L in the water. At the lowest exposure level of 0.01 mg/L, MT induced MN in both species and NA only in O. niloticus. These effects were not observed in the comet assay. Chromatographic analysis of water samples collected from aquariums at the beginning and end of each experiment showed that MT was consumed during the 96-h exposure. At the highest level of exposure (1.0 mg/L), 81.69% of the hormone was consumed during the exposure period. The chromatogram showed that at the lowest concentration level of 0.01 mg/L, 99.56% MT was consumed by the end of the exposure period. Thus, exposure to MT did not cause genotoxicity in either fish species.
Project Objective: To identify at-risk populations, particularly women of child bearing years and young children, for consumption of contaminated fish and seafood via the use of geographically and demographically defined seafood consumption patterns and fish/seafood contaminatio...
Christensen, Krista Y; Thompson, Brooke A; Werner, Mark; Malecki, Kristen; Imm, Pamela; Anderson, Henry A
2016-03-01
Fish are an important source of nutrients which may reduce risk of adverse health outcomes such as cardiovascular disease; however, fish may also contain significant amounts of environmental pollutants such as mercury, polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and perfluorinated compounds (PFCs, also called perfluoroalkyl compounds), which confer increased risk for adverse health effects. The Wisconsin Departments of Health Services and Natural Resources developed a survey instrument, along with a strategy to collect human biological samples to assess the risks and benefits associated with long-term fish consumption among older male anglers in Wisconsin. The target population was men aged 50 years and older, who fish Wisconsin waters and live in the state of Wisconsin. Participants provided blood and hair samples and completed a detailed (paper) questionnaire, which included questions on basic demographics, health status, location of catch and species of fish caught/eaten, consumption of locally caught and commercially purchased fish, and awareness and source of information for local and statewide consumption guidelines. Biological samples were used to assess levels of PCBs, PBDEs, PFCs (blood), and mercury (hair and blood). Quantile regression analysis was used to investigate the associations between biomarker levels and self-reported consumption of fish from the Great Lakes and other areas of concern, other locally caught fish, and commercially purchased fish (meals per year). Respondents had a median age of 60.5 (interquartile range: 56, 67) years. The median fish consumption was 54.5 meals per year, with most fish meals coming from locally-caught fish. Participants had somewhat higher mercury levels compared with the US general population, while levels of other contaminants were similar or lower. Multivariate regression models showed that consumption of fish from the Great Lakes and areas of concern was associated with higher levels of each of the contaminants with the exception of PBDEs, as was consumption of locally caught fish from other water bodies. All commercial fish consumption was also associated with both hair and blood mercury. When looking at specific PCB, PBDE and PFC analytes, consumption of fish from the Great Lakes and areas of concern was associated with higher levels of each of the individual PCB congeners examined, as well as higher levels of all of the PFCs examined, with the exception of PFHxS. Among the PFCs, locally caught fish from other water bodies was also associated with higher levels of each of the congeners examined except PFHxS. Finally, all commercial fish was associated with higher levels of PFHxS. Published by Elsevier GmbH.
Belenguer, Vicent; Martinez-Capel, Francisco; Masiá, Ana; Picó, Yolanda
2014-01-30
The Júcar River, in a typical Mediterranean Basin, is expected to suffer a decline in water quality and quantity as a consequence of the climate change. This study is focused on the presence and distribution of pesticides in water and fish, using the first extensive optimization and application of the QuEChERS method to determine pesticides in freshwater fish. Majority pesticides in water - in terms of presence and concentration - were dichlofenthion, chlorfenvinphos, imazalil, pyriproxyfen and prochloraz (associated with a frequent use in farming activities), as well as buprofezin, chlorpyriphos and hexythiazox. In fish, the main compounds were azinphos-ethyl, chlorpyriphos, diazinon, dimethoate and ethion. The analysis of bio-concentration in fish indicated differences by species. The maximum average concentration was detected in European eel (a critically endangered fish species). The wide presence of pesticides in water and fish suggests potential severe effects on fish populations and other biota in future scenarios of climate change, in a river basin with several endemic and endangered fish species. The potential effects of pesticides in combination with multiple stressors require further research to prioritize the management of specific chemicals and suggest effective restoration actions at the basin scale. Copyright © 2013 Elsevier B.V. All rights reserved.
Mercury concentrations in Maine sport fishes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stafford, C.P.; Haines, T.A.
1997-01-01
To assess mercury contamination of fish in Maine, fish were collected from 120 randomly selected lakes. The collection goal for each lake was five fish of the single most common sport fish species within the size range commonly harvested by anglers. Skinless, boneless fillets of fish from each lake were composited, homogenized, and analyzed for total mercury. The two most abundant species, brook trout Salvelinus fontinalis and smallmouth bass Micropterus dolomieu, were also analyzed individually. The composite fish analyses indicate high concentrations of mercury, particularly in large and long-lived nonsalmonid species. Chain pickerel Esox niger, smallmouth bass, largemouth bass Micropterusmore » salmoides, and white perch Morone americana had the highest average mercury concentrations, and brook trout and yellow perch Perca flavescens had the lowest. The mean species composite mercury concentration was positively correlated with a factor incorporating the average size and age of the fish. Lakes containing fish with high mercury concentrations were not clustered near known industrial or population centers but were commonest in the area within 150 km of the seacoast, reflecting the geographical distribution of species that contained higher mercury concentrations. Stocked and wild brook trout were not different in length or weight, but wild fish were older and had higher mercury concentrations. Fish populations maintained by frequent introductions of hatchery-produced fish and subject to high angler exploitation rates may consist of younger fish with lower exposure to environmental mercury and thus contain lower concentrations than wild populations.« less
Investigating the effect of chemical stress and resource ...
Modeling exposure and recovery of fish and wildlife populations after stressor mitigation serves as a basis for evaluating population status and remediation success. The Atlantic killifish (Fundulus heteroclitus) is an important and well-studied model organism for understanding the effects of pollutants and other stressors in estuarine and marine ecosystems. Herein, we develop a density dependent matrix population model for Atlantic killifish that analyzes both size-structure and age class-structure of the population so that we could readily incorporate output from a dynamic energy budget (DEB) model currently under development. This population modeling approach emphasizes application in conjunction with field monitoring efforts (e.g., through effects-based monitoring programs) and/or laboratory analysis to link effects due to chemical stress to adverse outcomes in whole organisms and populations. We applied the model using data for killifish exposed to dioxin-like compounds, taken from a previously published study. Specifically, the model was used to investigate population trajectories for Atlantic killifish with dietary exposures to 112, 296, and 875 pg/g of dioxin with effects on fertility and survival rates. All effects were expressed relative to control fish. Further, the population model was employed to examine age and size distributions of a population exposed to resource limitation in addition to chemical stress. For each dietary exposure concentration o
Length-Based Assessment of Coral Reef Fish Populations in the Main and Northwestern Hawaiian Islands
Nadon, Marc O.; Ault, Jerald S.; Williams, Ivor D.; Smith, Steven G.; DiNardo, Gerard T.
2015-01-01
The coral reef fish community of Hawaii is composed of hundreds of species, supports a multimillion dollar fishing and tourism industry, and is of great cultural importance to the local population. However, a major stock assessment of Hawaiian coral reef fish populations has not yet been conducted. Here we used the robust indicator variable “average length in the exploited phase of the population (L¯)”, estimated from size composition data from commercial fisheries trip reports and fishery-independent diver surveys, to evaluate exploitation rates for 19 Hawaiian reef fishes. By and large, the average lengths obtained from diver surveys agreed well with those from commercial data. We used the estimated exploitation rates coupled with life history parameters synthesized from the literature to parameterize a numerical population model and generate stock sustainability metrics such as spawning potential ratios (SPR). We found good agreement between predicted average lengths in an unfished population (from our population model) and those observed from diver surveys in the largely unexploited Northwestern Hawaiian Islands. Of 19 exploited reef fish species assessed in the main Hawaiian Islands, 9 had SPRs close to or below the 30% overfishing threshold. In general, longer-lived species such as surgeonfishes, the redlip parrotfish (Scarus rubroviolaceus), and the gray snapper (Aprion virescens) had the lowest SPRs, while short-lived species such as goatfishes and jacks, as well as two invasive species (Lutjanus kasmira and Cephalopholis argus), had SPRs above the 30% threshold. PMID:26267473
Hershberger, P.K.; Gregg, J.L.; Grady, C.A.; Hart, L.M.; Roon, S.R.; Winton, J.R.
2011-01-01
Viral haemorrhagic septicaemia virus, Genogroup IVa (VHSV), was highly infectious to Pacific herring, Clupea pallasii (Valenciennes), even at exposure doses occurring below the threshold of sensitivity for a standard viral plaque assay; however, further progression of the disease to a population-level epizootic required viral amplification and effective fish-to-fish transmission. Among groups of herring injected with VHSV, the prevalence of infection was dose-dependent, ranging from 100%, 75% and 38% after exposure to 19, 0.7 and 0.07 plaque-forming units (PFU)/fish, respectively. Among Pacific herring exposed to waterborne VHSV (140PFUmL-1), the prevalence of infection, geometric mean viral tissue titre and cumulative mortality were greater among cohabitated herring than among cohorts that were held in individual aquaria, where fish-to-fish transmission was prevented. Fish-to-fish transmission among cohabitated herring probably occurred via exposure to shed virus which peaked at 680PFUmL-1; shed virus was not detected in the tank water from any isolated individuals. The results provide insights into mechanisms that initiate epizootic cascades in populations of wild herring and have implications for the design of VHSV surveys in wild fish populations. ?? Published 2011. This article is a US Government work and is in the public domain in the USA.
HIV/AIDS, artisanal fishing and food security in the Okavango Delta, Botswana
NASA Astrophysics Data System (ADS)
Ngwenya, B. N.; Mosepele, K.
Generally, rural households pursue all year round natural and non-natural resource-based livelihood systems to diversify these options in order to cope with risks emanating from a range of shocks and stressors. Artisanal fishing in the Delta is not only a major livelihood option but also a source of food security. This paper is based on analysis of primary data collected from a survey of 248 subsistence fishers’ households through simple random sampling in 22 villages in the Delta. The overall objectives of the survey were to assess the general prevalence of HIV/AIDS in the Ngamiland district of Botswana, to investigate potential effects of AIDS-related stressors, particularly chronic illness on artisanal fishing activities, and to assess implications towards food security. Results from this study indicate that HIV prevalence rates for pregnant women attending antenatal clinics in the Delta are approximately 30% and are related to factors such as marriage, education, and employment. Despite this relatively high prevalence percentage, most of the affected households do not have adequate access to HIV/AIDS support facilities. Support services are provided on the basis of population size and/or status of the settlement (i.e. urban, urban village, rural or remote). Therefore, since about 50% of the Delta’s population lives in settlements of less than 500 people, they receive health services indirectly through major population centres whose capacity to deliver timely HIV/AIDS services is limited. This disproportionate access to HIV/AIDS services disadvantages the majority of fishing communities in the Delta, and may affect their ability to fish. Moreover, about 53% of sampled households had cared for a continuously ill person/s (CIP’s) in the last 5 years, out of which approximately 29% felt that this seriously impacted fishing activities. These serious impacts included sale of family assets, depletion of savings, and switching or abandoning fishing activities. Subsequently, household food security is seriously affected because fish provides a significant proportion of food to CIP households where approximately 55% of households get their food from fish products. During food shortages, CIP households resorted to a hierarchy of strategies which included cutting down on meals or reducing meal portions, looking for paid work, gathering wild fruit, asking for food from relatives, selling livestock, and getting social assistance. In conclusion, artisanal fishing is a natural safety net which constitutes an important buffer for households affected by HIV/AIDS-related stressors in the Okavango Delta. Access to fish helps these households mitigate potentially adverse impacts such as deterioration into chronic poverty.
Korman, Josh; Kaplinski, Matthew; Melis, Theodore S.
2011-01-01
Hourly fluctuations in flow from Glen Canyon Dam were increased in an attempt to limit the population of nonnative rainbow trout Oncorhynchus mykiss in the Colorado River, Arizona, due to concerns about negative effects of nonnative trout on endangered native fishes. Controlled floods have also been conducted to enhance native fish habitat. We estimated that rainbow trout incubation mortality rates resulting from greater fluctuations in flow were 23-49% (2003 and 2004) compared with 5-11% under normal flow fluctuations (2006-2010). Effects of this mortality were apparent in redd excavations but were not seen in hatch date distributions or in the abundance of the age-0 population. Multiple lines of evidence indicated that a controlled flood in March 2008, which was intended to enhance native fish habitat, resulted in a large increase in early survival rates of age-0 rainbow trout. Age-0 abundance in July 2008 was over fourfold higher than expected given the number of viable eggs that produced these fish. A hatch date analysis indicated that early survival rates were much higher for cohorts that hatched about 1 month after the controlled flood (~April 15) relative to those that hatched before this date. The cohorts that were fertilized after the flood were not exposed to high flows and emerged into better-quality habitat with elevated food availability. Interannual differences in age-0 rainbow trout growth based on otolith microstructure supported this hypothesis. It is likely that strong compensation in survival rates shortly after emergence mitigated the impact of incubation losses caused by increases in flow fluctuations. Control of nonnative fish populations will be most effective when additional mortality is applied to older life stages after the majority of density-dependent mortality has occurred. Our study highlights the need to rigorously assess instream flow decisions through the evaluation of population-level responses.
Perdiguero-Alonso, Diana; Montero, Francisco E; Kostadinova, Aneta; Raga, Juan Antonio; Barrett, John
2008-10-01
Due to the complexity of host-parasite relationships, discrimination between fish populations using parasites as biological tags is difficult. This study introduces, to our knowledge for the first time, random forests (RF) as a new modelling technique in the application of parasite community data as biological markers for population assignment of fish. This novel approach is applied to a dataset with a complex structure comprising 763 parasite infracommunities in population samples of Atlantic cod, Gadus morhua, from the spawning/feeding areas in five regions in the North East Atlantic (Baltic, Celtic, Irish and North seas and Icelandic waters). The learning behaviour of RF is evaluated in comparison with two other algorithms applied to class assignment problems, the linear discriminant function analysis (LDA) and artificial neural networks (ANN). The three algorithms are used to develop predictive models applying three cross-validation procedures in a series of experiments (252 models in total). The comparative approach to RF, LDA and ANN algorithms applied to the same datasets demonstrates the competitive potential of RF for developing predictive models since RF exhibited better accuracy of prediction and outperformed LDA and ANN in the assignment of fish to their regions of sampling using parasite community data. The comparative analyses and the validation experiment with a 'blind' sample confirmed that RF models performed more effectively with a large and diverse training set and a large number of variables. The discrimination results obtained for a migratory fish species with largely overlapping parasite communities reflects the high potential of RF for developing predictive models using data that are both complex and noisy, and indicates that it is a promising tool for parasite tag studies. Our results suggest that parasite community data can be used successfully to discriminate individual cod from the five different regions of the North East Atlantic studied using RF.
Parasites as biological tags of fish stocks: a meta-analysis of their discriminatory power.
Poulin, Robert; Kamiya, Tsukushi
2015-01-01
The use of parasites as biological tags to discriminate among marine fish stocks has become a widely accepted method in fisheries management. Here, we first link this approach to its unstated ecological foundation, the decay in the similarity of the species composition of assemblages as a function of increasing distance between them, a phenomenon almost universal in nature. We explain how distance decay of similarity can influence the use of parasites as biological tags. Then, we perform a meta-analysis of 61 uses of parasites as tags of marine fish populations in multivariate discriminant analyses, obtained from 29 articles. Our main finding is that across all studies, the observed overall probability of correct classification of fish based on parasite data was about 71%. This corresponds to a two-fold improvement over the rate of correct classification expected by chance alone, and the average effect size (Zr = 0·463) computed from the original values was also indicative of a medium-to-large effect. However, none of the moderator variables included in the meta-analysis had a significant effect on the proportion of correct classification; these moderators included the total number of fish sampled, the number of parasite species used in the discriminant analysis, the number of localities from which fish were sampled, the minimum and maximum distance between any pair of sampling localities, etc. Therefore, there are no clear-cut situations in which the use of parasites as tags is more useful than others. Finally, we provide recommendations for the future usage of parasites as tags for stock discrimination, to ensure that future applications of the method achieve statistical rigour and a high discriminatory power.
Kock, Tobias J.; Perry, Russell W.; Gleizes, Chris; Dammers, Wolf; Liedtke, Theresa L.
2016-01-01
Hatchery ‘recycling’ programs have been used to increase angling opportunities by re-releasing fish into a river after they returned to a hatchery or fish trap. Recycling is intended to increase opportunities for fishermen, but this strategy could affect wild fish populations if some recycled fish remain in the river and interact with wild fish populations. To quantify hatchery return and angler harvest rates of recycled steelhead, we conducted a 2-year study on the Cowlitz River, Washington. A total of 1051 steelhead were recycled, including 218 fish that were radio-tagged. Fates of recycled steelhead were similar between years: 48.4% returned to the hatchery, 19.2% were reported captured by anglers, and 32.4% remained in the river. A multistate model quantified the effects of covariates on hatchery return and angler harvest rates, which were positively affected by river discharge and negatively affected by time since release. However, hatchery return rates increased and angler harvest rates decreased during periods of increasing discharge. A total of 21.1% (46 fish) of the radio-tagged steelhead failed to return to the hatchery or be reported by anglers, but nearly half of those fish (20 fish) appeared to be harvested and not reported. The remaining tagged fish (11.9% of the radio-tagged population) were monitored into the spawning period, but only five fish (2.3% of the radio-tagged population) entered tributaries where wild steelhead spawning occurs. Future research focused on straying behaviour, and spawning success of recycled steelhead may further advance the understanding of the effects of recycling as a management strategy.
Fishing-induced changes in adult length are mediated by skipped-spawning.
Wang, Hui-Yu; Chen, Ying-Shiuan; Hsu, Chien-Chung; Shen, Sheng-Feng
2017-01-01
Elucidating fishing effects on fish population dynamics is a critical step toward sustainable fisheries management. Despite previous studies that have suggested age or size truncation in exploited fish populations, other aspects of fishing effects on population demography, e.g., via altering life histories and density, have received less attention. Here, we investigated the fishing effects altering adult demography via shifting reproductive trade-offs in the iconic, overexploited, Pacific bluefin tuna Thunnus orientalis. We found that, contrary to our expectation, mean lengths of catch increased over time in longline fisheries. On the other hand, mean catch lengths for purse seine fisheries did not show such increasing trends. We hypothesized that the size-dependent energetic cost of the spawning migration and elevated fishing mortality on the spawning grounds potentially drive size-dependent skipped spawning for adult tuna, mediating the observed changes in the catch lengths. Using eco-genetic individual-based modeling, we demonstrated that fishing-induced evolution of skipped spawning and size truncation interacted to shape the observed temporal changes in mean catch lengths for tuna. Skipped spawning of the small adults led to increased mean catch lengths for the longline fisheries, while truncation of small adults by the purse seines could offset such a pattern. Our results highlight the eco-evolutionary dynamics of fishing effects on population demography and caution against using demographic traits as a basis for fisheries management of the Pacific bluefin tuna as well as other migratory species. © 2016 by the Ecological Society of America.
Will, T.A.; Reinert, T.R.; Jennings, C.A.
2002-01-01
The striped bass Morone saxatilis population in the Savannah River (south-eastern U.S.A.) collapsed in the 1980s, and recent efforts to restore the population have resulted in increased catch-per-unit-effort (CPUE) of striped bass in the Savannah River Estuary (SRE). The abundance of eggs and larvae, however, remain well below historic levels. The primary cause of the population decline was remedied, and environmental conditions seem suitable for striped bass spawning. Regression analysis of data derived from ultrasonic imaging of 31 striped bass resulted in a statistical model that predicted ovary volume well (r2=0.95). The enumeration of oocytes from ovarian tissue samples and the prediction of ovary volume allowed fecundity to be estimated without sacrificing the fish. Oocyte maturation in Savannah River striped bass seemed to progress normally, with oocytes developing to final stages of maturity in larger fish (>750 mm LT). Additionally, fecundity estimates were comparable to a neighbouring striped bass population. The environmental cues needed to trigger development and release of striped bass oocytes into the SRE appeared to be present. If most of the striped bass females in the SRE are still young (<7 years), the ability to produce large numbers of eggs will be limited. As these young fish mature, egg production probably will increase and the density of striped bass eggs eventually will approach historic levels, provided suitable habitat and water quality are maintained. ?? 2002 The Fisheries Society of the British Isles.
Yi, Yujun; Tang, Caihong; Yi, Tieci; Yang, Zhifeng; Zhang, Shanghong
2017-11-01
This study aims to concern the distribution of As, Cr, Cd, Hg, Cu, Zn, Pb and Fe in surface sediment, zoobenthos and fishes, and quantify the accumulative ecological risk and human health risk of metals in river ecological system based on the field investigation in the upper Yangtze River. The results revealed high ecological risk of As, Cd, Cu, Hg, Zn and Pb in sediment. As and Cd in fish presented potential human health risk of metals by assessing integrated target hazard quotient results based on average and maximum concentrations, respectively. No detrimental health effects of heavy metals on humans were found by daily fish consumption. While, the total target hazard quotient (1.659) exceeding 1, it meant that the exposed population might experience noncarcinogenic health risks from the accumulative effect of metals. Ecological network analysis model was established to identify the transfer routes and quantify accumulative effects of metals on river ecosystem. Control analysis between compartments showed large predator fish firstly depended on the omnivorous fish. Accumulative ecological risk of metals indicated that zoobenthos had the largest metal propagation risk and compartments located at higher trophic levels were not easier affected by the external environment pollution. A potential accumulative ecological risk of heavy metal in the food web was quantified, and the noncarcinogenic health risk of fish consumption was revealed for the upper reach of the Yangtze River. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Green, Benjamin C.; Smith, David J.; Earley, Sarah E.; Hepburn, Leanne J.; Underwood, Graham J. C.
2009-11-01
European intertidal salt marshes are important nursery sites for juvenile fish and crustaceans. Due to the increasing threat of habitat loss, the seasonal changes of salt marsh fish communities need to be understood in order to appreciate the ecological and economic importance of the saltmarsh habitat. This study was the first in Great Britain to investigate the seasonal changes of salt marsh fish communities and the variation in community structure between closely located marsh habitats. Between February 2007 and March 2008, five marshes on three estuaries of the Essex coastline were sampled using flume nets to block off intertidal creeks at high tide. Fourteen fish species were caught. The community overall was dominated by three species that made up 91.6% of the total catch: the common goby Pomatoschistus microps (46.2% of the total catch), juvenile herring Clupea harengus (24.3%), and juvenile and larval sea bass Dicentrarchus labrax (21.2%). Cluster analysis demonstrated clear seasonal patterns, with some community structures unique to specific marshes or estuaries. The marsh fish community shifts from a highly diverse community during spring, to a community dominated by D. labrax and P. microps in autumn, and low diversity during winter months. Gravimetric stomach content analysis of fish community identified three main trophic guilds; macroinvertivores, planktivores and omnivores. The macroinvertivore feeding guild contained D. labrax and P. microps, the two most frequently occurring species. This investigation demonstrates the importance of British salt marshes as nursery habitats for commercial fish species.
Jezorek, Ian G.; Connolly, Patrick J.; Munz, Carrie S.; Dixon, Chris
2011-01-01
Executive Summary: This project was designed to document habitat conditions and populations of native and non-native fish within the 8-kilometer Condor Canyon section of Meadow Valley Wash, Nevada, with an emphasis on Big Spring spinedace (Lepidomeda mollispinis pratensis). Other native fish present were speckled dace (Rhinichthys osculus) and desert sucker (Catostomus clarki). Big Spring spinedace were known to exist only within this drainage and were known to have been extirpated from a portion of their former habitat located downstream of Condor Canyon. Because of this extirpation and the limited distribution of Big Spring spinedace, the U.S. Fish and Wildlife Service listed this species as threatened under the Endangered Species Act in 1985. Prior to our effort, little was known about Big Spring spinedace populations or life histories and habitat associations. In 2008, personnel from the U.S. Geological Survey's Columbia River Research Laboratory began surveys of Meadow Valley Wash in Condor Canyon. Habitat surveys characterized numerous variables within 13 reaches, thermologgers were deployed at 9 locations to record water temperatures, and fish populations were surveyed at 22 individual sites. Additionally, fish were tagged with Passive Integrated Transponder (PIT) tags, which allowed movement and growth information to be collected on individual fish. The movements of tagged fish were monitored with a combination of recapture events and stationary in-stream antennas, which detected tagged fish. Meadow Valley Wash within Condor Canyon was divided by a 12-meter (m) waterfall known as Delmue Falls. About 6,100 m of stream were surveyed downstream of the falls and about 2,200 m of stream were surveyed upstream of the falls. Although about three-quarters of the surveyed stream length was downstream of Delmue Falls, the highest densities and abundance of native fish were upstream of the falls. Big Spring spinedace and desert sucker populations were highest near the upper end of Condor Canyon, where a tributary known as Kill Wash, and several springs, contribute flow and moderate high and low water temperature. Kill Wash and the area around its confluence with Meadow Valley Wash appeared important for spawning of all three native species. Detections of PIT-tagged fish indicated that there were substantial movements to this area during the spring. Our surveys included about 700 m of Meadow Valley Wash upstream of Kill Wash. A small falls about 2 m high was about 560 m upstream of Kill Wash. This falls is likely a barrier to upstream fish movement at most flows. Populations of all three native species were found upstream of this small falls. Age-0 fish of all three species were present, indicating successful spawning. The maximum upstream extent of native fish within Meadow Valley Wash was not determined. Our surveys included about 700 m of Meadow Valley Wash upstream of Kill Wash. A small falls about 2 m high was about 560 m upstream of Kill Wash. This falls is likely a barrier to upstream fish movement at most flows. Populations of all three native species were found upstream of this small falls. Age-0 fish of all three species were present, indicating successful spawning. The maximum upstream extent of native fish within Meadow Valley Wash was not determined. A population of non-native rainbow trout (Oncorhynchus mykiss) was found within the 2,000 m of stream immediately downstream of Delmue Falls. Non-native crayfish were very common both upstream and downstream of Delmue Falls. We were not able to quantify crayfish populations, but they compose a significant portion of the biomass of aquatic species in Condor Canyon. There were some distinctive habitat features that may have favored native fish upstream of Delmue Falls. Upstream of the falls, water temperatures were moderated by inputs from springs, turbidity was lower, pool habitat was more prevalent, substrate heterogeneity was higher, and there was less fine sediment than
Mesa, M. G.; Schreck, C.B.
1989-01-01
We examined the behavioral and physiological responses of wild and hatchery-reared cutthroat trout Oncorhynchus clarki subjected to a single electroshock, electroshock plus marking, and multiple electroshocks in natural and artificial streams. In a natural stream, cutthroat trout released after capture by electrofishing and marking showed distinct behavioral changes: fish immediately sought cover, remained relatively inactive, did not feed, and were easily approached by a diver. An average of 3–4 h was required for 50% of the fish to return to a seemingly normal mode of behavior, although responses varied widely among collection sites. Using the depletion method, we observed little change in normal behavior offish remaining in the stream section (i.e., uncaptured fish) after successive passes with electrofishing gear. In an artificial stream, hatchery-reared and wild cutthroat trout immediately decreased their rates of feeding and aggression after they were electroshocked and marked. Hatchery fish generally recovered in 2–3 h; wild fish required at least 24 h to recover. Analysis of feeding and aggression data by hierarchical rank revealed no distinct recovery trends among hatchery fish of different ranks; among wild cutthroat trout, however, socially dominant fish seemed to recover faster than intermediate and subordinate fish. Physiological indicators of stress (plasma cortisol and blood lactic acid) increased significantly in cutthroat trout subjected to electroshock plus marking or single or multiple electroshocks. As judged by the magnitude of the greatest change in cortisol and lactate, multiple electroshocks elicited the most severe stress response; however, plasma concentrations of both substances had returned to unstressed control levels by 6 h after treatment. It was evident that electrofishing and the procedures involved with estimating fish population size elicited a general stress response that was manifested not only physiologically but also behaviorally. These responses may affect the accuracy of population size estimates by violating key assumptions of the methods, especially the assumption of equal catchability offish.
Manek, Aditya K.; Ferrari, Maud C. O.; Pollock, Robyn J.; Vicente, Daniel; Weber, Lynn P.; Chivers, Douglas P.
2013-01-01
Many prey fishes possess large club cells in their epidermis. The role of these cells has garnered considerable attention from evolutionary ecologists. These cells likely form part of the innate immune system of fishes, however, they also have an alarm function, releasing chemical cues that serve to warn nearby conspecifics of danger. Experiments aimed at understanding the selection pressures leading to the evolution of these cells have been hampered by a surprisingly large intraspecific variation in epidermal club cell (ECC) investment. The goal of our current work was to explore the magnitude and nature of this variation in ECC investment. In a field survey, we documented large differences in ECC investment both within and between several populations of minnows. We then tested whether we could experimentally reduce variation in mean ECC number by raising fish under standard laboratory conditions for 4 weeks. Fish from different populations responded very differently to being held under standard laboratory conditions; some populations showed an increase in ECC investment while others remained unchanged. More importantly, we found some evidence that we could reduce within population variation in ECC investment through time, but could not reduce among-population variation in mean ECC investment. Given the large variation we observed in wild fish and our limited ability to converge mean cell number by holding the fish under standard conditions, we caution that future studies may be hard pressed to find subtle effects of various experimental manipulations; this will make elucidating the selection pressures leading to the evolution of the cells challenging. PMID:23469175
2016-01-01
Historically, it has been difficult to balance conservation goals and yield objectives when managing multispecies fisheries that include stocks with various vulnerabilities to fishing. As managers try to maximize yield in mixed-stock fisheries, exploitation rates can lead to less productive stocks becoming overfished. In the late 1990s, population declines of several U.S. West Coast groundfish species caused the U.S. Pacific Fishery Management Council to create coast-wide fishery closures, known as Rockfish Conservation Areas, to rebuild overfished species. The fishery closures and other management measures successfully reduced fishing mortality of these species, but constrained fishing opportunities on abundant stocks. Restrictive regulations also caused the unintended consequence of reducing fishery-dependent data available to assess population status of fished species. As stocks rebuild, managers are faced with the challenge of increasing fishing opportunities while minimizing fishing mortality on rebuilding species. We designed a camera system to evaluate fishes in coastal habitats and used experimental gear and fishing techniques paired with video surveys to determine if abundant species could be caught in rocky habitats with minimal catches of co-occurring rebuilding species. We fished a total of 58 days and completed 741 sets with vertical hook-and-line fishing gear. We also conducted 299 video surveys in the same locations where fishing occurred. Comparison of fishing and stereo-video surveys indicated that fishermen could fish with modified hook-and-line gear to catch abundant species while limiting bycatch of rebuilding species. As populations of overfished species continue to recover along the U.S. West Coast, it is important to improve data collection, and video and fishing surveys may be key to assessing species that occur in rocky habitats. PMID:28002499
Starr, Richard M; Gleason, Mary G; Marks, Corina I; Kline, Donna; Rienecke, Steve; Denney, Christian; Tagini, Anne; Field, John C
2016-01-01
Historically, it has been difficult to balance conservation goals and yield objectives when managing multispecies fisheries that include stocks with various vulnerabilities to fishing. As managers try to maximize yield in mixed-stock fisheries, exploitation rates can lead to less productive stocks becoming overfished. In the late 1990s, population declines of several U.S. West Coast groundfish species caused the U.S. Pacific Fishery Management Council to create coast-wide fishery closures, known as Rockfish Conservation Areas, to rebuild overfished species. The fishery closures and other management measures successfully reduced fishing mortality of these species, but constrained fishing opportunities on abundant stocks. Restrictive regulations also caused the unintended consequence of reducing fishery-dependent data available to assess population status of fished species. As stocks rebuild, managers are faced with the challenge of increasing fishing opportunities while minimizing fishing mortality on rebuilding species. We designed a camera system to evaluate fishes in coastal habitats and used experimental gear and fishing techniques paired with video surveys to determine if abundant species could be caught in rocky habitats with minimal catches of co-occurring rebuilding species. We fished a total of 58 days and completed 741 sets with vertical hook-and-line fishing gear. We also conducted 299 video surveys in the same locations where fishing occurred. Comparison of fishing and stereo-video surveys indicated that fishermen could fish with modified hook-and-line gear to catch abundant species while limiting bycatch of rebuilding species. As populations of overfished species continue to recover along the U.S. West Coast, it is important to improve data collection, and video and fishing surveys may be key to assessing species that occur in rocky habitats.
Small-scale fisheries, population dynamics, and resource use in Africa: the case of Moree, Ghana.
Marquette, Catherine M; Koranteng, Kwame A; Overå, Ragnhild; Aryeetey, Ellen Bortei-Doku
2002-06-01
We consider population dynamics and sustainable use and development of fishery resources in Moree, a small-scale fishing and coastal community of 20,000 people in the Central Region of Ghana near Cape Coast. Moree suggests that relationships between population dynamics and fishery resources are more complex than the concept of Malthusian overfishing implies. Reasons include changing biophysical characteristics of the upwelling system along the coast of West Africa; qualitative as well as quantitative changes in fishing activity throughout the year; the market nature of fishing activity and nonlocal demands for fish; regular fishery migration; and institutions regulating fishery resource access at home and at migration destinations. Population and resource relationships in Moree may be the effects of fishery resource and economic changes on migration rather than population pressure on fishery resources. Fisheries management policies must take into account processes that lie beyond the influence of local fishermen.
Fatal Asphyxiation in Bottlenose Dolphins (Tursiops truncatus) from the Indian River Lagoon.
Stolen, Megan; St Leger, Judy; Durden, Wendy Noke; Mazza, Teresa; Nilson, Erika
2013-01-01
Multiple single case reports of asphyxiation in dolphins caused by fish lodged in the esophagus exist. However, the significance of this cause of mortality in a single population has not been documented. We performed a retrospective evaluation of pathology records from stranded bottlenose dolphins (Tursiops truncatus) from the Indian River Lagoon to evaluate the impact of this cause of death on this population. From 1997 to 2011, asphyxiation due to choking was identified as the cause of death in 14 of 350 cases (4%). Sampling of an unrelated but adjacent population over this same period yielded 186 necropsy cases of bottlenose dolphins with no cases of asphyxiation. Asphyxiated animals presented with a fish lodged in the cranial esophagus associated with a dislocated and obstructed or compressed larynx. There was no clear sex predilection. Affected animals included 12 adults and two juveniles. The fish species involved included sheepshead, black chin tilapia and striped mojarra. In five cases, recreational fishing gear was also present. Cetacean choking is related to selection of prey fish species with strong dorsal spines and may be secondarily associated with fish attached to fishing gear. Prey abundance and dolphin behavior may influence these selections. Environmental alterations leading to changes in prey availability or increased interactions with fishing gear may change the significance of fatal choking in dolphin populations.
Outzen, Malene; Tjønneland, Anne; Larsen, Erik H.; Andersen, Klaus K.; Christensen, Jane; Overvad, Kim; Olsen, Anja
2015-01-01
Selenium status of the Danish population is below that assumed optimal for the suggested protective effects against chronic diseases, including certain cancers. Fish and shellfish are important dietary sources of selenium in Denmark. We investigated the effect of increased fish and mussel intake on selenium blood concentrations in a population with relatively low habitual dietary selenium intake. We randomly assigned 102 healthy men and women (all non-smokers) aged 48–76 years to an intervention group (n = 51) or a control group (n = 51). Intervention participants received 1000 g fish and mussels/week for 26 weeks (~50 μg selenium/day). Controls received no intervention. Non-fasting blood samples were taken and whole blood selenium was determined using inductively coupled plasma-mass spectrometry (ICP-MS), and plasma selenoprotein P (SelP) was determined by high performance liquid chromatography coupled to ICP-MS. All available observations were included in linear multiple regression analysis to evaluate the effect of the intervention. The difference in mean change for intervention compared with control persons was 14.9 ng/mL (95% CI: 10.2, 19.7) for whole blood selenium, and 7.0 ng/mL (95% CI: 3.1, 10.9) for plasma SelP (Weeks 0–26). Selenium concentrations were significantly increased after 26 weeks of intervention, albeit to a lower degree than expected. PMID:25599275
Martins, Ana Paula Barbosa; Feitosa, Leonardo Manir; Lessa, Rosangela Paula; Almeida, Zafira Silva; Heupel, Michelle; Silva, Wagner Macedo; Tchaicka, Ligia; Nunes, Jorge Luiz Silva
2018-01-01
Increasing fishing effort has caused declines in shark populations worldwide. Understanding biological and ecological characteristics of sharks is essential to effectively implement management measures, but to fully understand drivers of fishing pressure social factors must be considered through multidisciplinary and integrated approaches. The present study aimed to use fisher and trader knowledge to describe the shark catch and product supply chain in Northeastern Brazil, and evaluate perceptions regarding the regional conservation status of shark species. Non-systematic observations and structured individual interviews were conducted with experienced fishers and traders. The demand and economic value of shark fins has reportedly decreased over the last 10 years while the shark meat trade has increased slightly, including a small increase in the average price per kilogram of meat. Several threatened shark species were reportedly often captured off shore and traded at local markets. This reported and observed harvest breaches current Brazilian environmental laws. Fishing communities are aware of population declines of several shark species, but rarely take action to avoid capture of sharks. The continuing capture of sharks is mainly due to a lack of knowledge of environmental laws, lack of enforcement by responsible authorities, and difficulties encountered by fishers in finding alternative income streams. National and regional conservation measures are immediately required to reduce overfishing on shark populations in Northeastern Brazil. Social and economic improvements for poor fishing communities must also be implemented to achieve sustainable fisheries.
Adult seafood allergy in the Texas Medical Center: A 13-year experience
Khan, Faria; Orson, Frank; Ogawa, Yoshiko; Parker, Crystal
2011-01-01
There is a paucity of data regarding prevalence and characteristics of adult seafood allergy in United States cohorts. This study was designed to determine the characteristics of patient-reported seafood allergy in a large allergy referral adult population. Retrospective analysis was performed of laboratory and clinical characteristics of seafood-allergic patients in three allergy clinics in the Texas Medical Center between January 1, 1997 and January 30, 2010. Of 5162 patients seen in this adult allergy referral population, 159 had physician-diagnosed seafood allergy with an average age of diagnosis of 50.2 (18–81 years) years. Shellfish allergy (59.1%) was more frequent than fish allergy (13.8%). Crustacean allergy (82.6%) was more frequent than mollusk allergy (7.2%). Shrimp (72.5%), crab (34.8%), and lobster (17.4%) were the most common shellfish allergies and tuna (28.6%), catfish (23.8%), and salmon (23.8%) were the most common fish allergies. One-third of seafood-allergic patients reported reactions to more than one seafood. Shellfish-allergic adults were more likely to experience respiratory symptoms than fish-allergic adults (p < 0.05). The likelihood of having anaphylaxis (32%) was not statistically different between shellfish- and fish-allergic subjects. Severe reactions were 12.9 times more likely to occur within the 1st hour of ingestion compared with nonsevere reactions (p < 0.005). The percentage of seafood allergy in this adult allergy referral population was 3.08%. PMID:22852122
Almeida, Zafira Silva; Heupel, Michelle; Silva, Wagner Macedo; Tchaicka, Ligia
2018-01-01
Increasing fishing effort has caused declines in shark populations worldwide. Understanding biological and ecological characteristics of sharks is essential to effectively implement management measures, but to fully understand drivers of fishing pressure social factors must be considered through multidisciplinary and integrated approaches. The present study aimed to use fisher and trader knowledge to describe the shark catch and product supply chain in Northeastern Brazil, and evaluate perceptions regarding the regional conservation status of shark species. Non-systematic observations and structured individual interviews were conducted with experienced fishers and traders. The demand and economic value of shark fins has reportedly decreased over the last 10 years while the shark meat trade has increased slightly, including a small increase in the average price per kilogram of meat. Several threatened shark species were reportedly often captured off shore and traded at local markets. This reported and observed harvest breaches current Brazilian environmental laws. Fishing communities are aware of population declines of several shark species, but rarely take action to avoid capture of sharks. The continuing capture of sharks is mainly due to a lack of knowledge of environmental laws, lack of enforcement by responsible authorities, and difficulties encountered by fishers in finding alternative income streams. National and regional conservation measures are immediately required to reduce overfishing on shark populations in Northeastern Brazil. Social and economic improvements for poor fishing communities must also be implemented to achieve sustainable fisheries. PMID:29534100
NASA Astrophysics Data System (ADS)
Hayakawa, Hideki; Le, Quang Dung; Kinoshita, Masato; Takehana, Yusuke; Sakuma, Kei; Takeshima, Hirohiko; Kojima, Shigeaki; Naruse, Kiyoshi; Inoue, Koji
2015-06-01
Ricefishes of the genus Oryzias, including Japanese medaka ( O. latipes), are known as excellent model organisms for studies in various fields of science. Some species of the genus inhabit brackish water, and such species are recognized to be useful to investigate physiological phenomena in seawater. However, only a limited number of species have been recorded from brackish waters. In addition, there is no information about the genetic relationship among populations inhabiting sites with different salinities. Here we report the discovery of Oryzias fish in two locations near Haiphong, northern Vietnam, a brackish mangrove planting area and a freshwater pond. A phylogenetic analysis using mitochondrial 12S and 16S ribosomal RNA (rRNA) gene sequences indicated that the fish from the two localities are the same species, Hainan medaka, O. curvinotus. Population genetic analysis using the mitochondrial 12S and 16S rRNA gene sequences revealed a close genetic relationship between the two populations. These results suggest that O. curvinotus is adaptable to both hyperosmotic and hypoosmotic environments. Due to its osmotic adaptability and ease of rearing in the laboratory, this species is expected to become a model for marine environmental and toxicological studies, as well as for studies of osmotic adaptation mechanisms.
2018-01-01
Qualitative risk assessment frameworks, such as the Productivity Susceptibility Analysis (PSA), have been developed to rapidly evaluate the risks of fishing to marine populations and prioritize management and research among species. Despite being applied to over 1,000 fish populations, and an ongoing debate about the most appropriate method to convert biological and fishery characteristics into an overall measure of risk, the assumptions and predictive capacity of these approaches have not been evaluated. Several interpretations of the PSA were mapped to a conventional age-structured fisheries dynamics model to evaluate the performance of the approach under a range of assumptions regarding exploitation rates and measures of biological risk. The results demonstrate that the underlying assumptions of these qualitative risk-based approaches are inappropriate, and the expected performance is poor for a wide range of conditions. The information required to score a fishery using a PSA-type approach is comparable to that required to populate an operating model and evaluating the population dynamics within a simulation framework. In addition to providing a more credible characterization of complex system dynamics, the operating model approach is transparent, reproducible and can evaluate alternative management strategies over a range of plausible hypotheses for the system. PMID:29856869
Zimmermann, Fabian; Ricard, Daniel; Heino, Mikko
2018-05-01
Population regulation is a central concept in ecology, yet in many cases its presence and the underlying mechanisms are difficult to demonstrate. The current paradigm maintains that marine fish populations are predominantly regulated by density-dependent recruitment. While it is known that density-dependent somatic growth can be present too, its general importance remains unknown and most practical applications neglect it. This study aimed to close this gap by for the first time quantifying and comparing density dependence in growth and recruitment over a large set of fish populations. We fitted density-dependent models to time-series data on population size, recruitment and age-specific weight from commercially exploited fish populations in the Northeast Atlantic Ocean and the Baltic Sea. Data were standardized to enable a direct comparison within and among populations, and estimated parameters were used to quantify the impact of density regulation on population biomass. Statistically significant density dependence in recruitment was detected in a large proportion of populations (70%), whereas for density dependence in somatic growth the prevalence of density dependence depended heavily on the method (26% and 69%). Despite age-dependent variability, the density dependence in recruitment was consistently stronger among age groups and between alternative approaches that use weight-at-age or weight increments to assess growth. Estimates of density-dependent reduction in biomass underlined these results: 97% of populations with statistically significant parameters for growth and recruitment showed a larger impact of density-dependent recruitment on population biomass. The results reaffirm the importance of density-dependent recruitment in marine fishes, yet they also show that density dependence in somatic growth is not uncommon. Furthermore, the results are important from an applied perspective because density dependence in somatic growth affects productivity and catch composition, and therefore the benefits of maintaining fish populations at specific densities. © 2018 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.
Dicker, Frank; Schnittger, Susanne; Haferlach, Torsten; Kern, Wolfgang; Schoch, Claudia
2006-11-01
Compared with fluorescence in situ hybridization (FISH), conventional metaphase cytogenetics play only a minor prognostic role in chronic lymphocytic leukemia (CLL) so far, due to technical problems resulting from limited proliferation of CLL cells in vitro. Here, we present a simple method for in vitro stimulation of CLL cells that overcomes this limitation. In our unselected patient population, 125 of 132 cases could be successfully stimulated for metaphase generation by culture with the immunostimulatory CpG-oligonucleotide DSP30 plus interleukin 2. Of 125 cases, 101 showed chromosomal aberrations. The aberration rate is comparable to the rate detected by parallel interphase FISH. In 47 patients, conventional cytogenetics detected additional aberrations not detected by FISH analysis. A complex aberrant karyotype, defined as one having at least 3 aberrations, was detected in 30 of 125 patients, compared with only one such case as defined by FISH. Conventional cytogenetics frequently detected balanced and unbalanced translocations. A significant correlation of the poor-prognosis unmutated IgV(H) status with unbalanced translocations and of the likewise poor-prognosis CD38 expression to balanced translocations and complex aberrant karyotype was found. We demonstrate that FISH analysis underestimates the complexity of chromosomal aberrations in CLL. Therefore, conventional cytogenetics may define subgroups of patients with high risk of progression.
Models to compare management options for a protogynous fish.
Heppell, Selina S; Heppell, Scott A; Coleman, Felicia C; Koenig, Christopher C
2006-02-01
Populations of gag (Mycteroperca microlepis), a hermaphroditic grouper, have experienced a dramatic shift in sex ratio over the past 25 years due to a decline in older age classes. The highly female-skewed sex ratio can be predicted as a consequence of increased fishing mortality that truncates the age distribution, and raises some concern about the overall fitness of the population. Management efforts may need to be directed toward maintenance of sex ratio as well as stock size, with evaluations of recruitment based on sex ratio or male stock size in addition to the traditional female-based stock-recruitment relationship. We used two stochastic, age-structured models to heuristically compare the effects of reducing fishing mortality on different life history stages and the relative impact of reductions in fertilization rates that may occur with highly skewed sex ratios. Our response variables included population size, sex ratio, lost egg fertility, and female spawning stock biomass. Population growth rates were highest for scenarios that reduced mortality for female gag (nearshore closure), while improved sex ratios were obtained most quickly with spawning reserves. The effect of reduced fertility through sex ratio bias was generally low but depended on the management scenario employed. Our results demonstrate the utility of evaluation of fishery management scenarios through model analysis and simulation, the synergistic interaction of life history and response to changes in mortality rates, and the importance of defining management goals.
Evolution of Space Dependent Growth in the Teleost Astyanax mexicanus
Gallo, Natalya D.; Jeffery, William R.
2012-01-01
The relationship between growth rate and environmental space is an unresolved issue in teleosts. While it is known from aquaculture studies that stocking density has a negative relationship to growth, the underlying mechanisms have not been elucidated, primarily because the growth rate of populations rather than individual fish were the subject of all previous studies. Here we investigate this problem in the teleost Astyanax mexicanus, which consists of a sighted surface-dwelling form (surface fish) and several blind cave-dwelling (cavefish) forms. Surface fish and cavefish are distinguished by living in spatially contrasting environments and therefore are excellent models to study the effects of environmental size on growth. Multiple controlled growth experiments with individual fish raised in confined or unconfined spaces showed that environmental size has a major impact on growth rate in surface fish, a trait we have termed space dependent growth (SDG). In contrast, SDG has regressed to different degrees in the Pachón and Tinaja populations of cavefish. Mating experiments between surface and Pachón cavefish show that SDG is inherited as a dominant trait and is controlled by multiple genetic factors. Despite its regression in blind cavefish, SDG is not affected when sighted surface fish are raised in darkness, indicating that vision is not required to perceive and react to environmental space. Analysis of plasma cortisol levels showed that an elevation above basal levels occurred soon after surface fish were exposed to confined space. This initial cortisol peak was absent in Pachón cavefish, suggesting that the effects of confined space on growth may be mediated partly through a stress response. We conclude that Astyanax reacts to confined spaces by exhibiting SDG, which has a genetic component and shows evolutionary regression during adaptation of cavefish to confined environments. PMID:22870223
Sustainability in single-species population models.
Quinn, Terrance J; Collie, Jeremy S
2005-01-29
In this paper, we review the concept of sustainability with regard to a single-species, age-structured fish population with density dependence at some stage of its life history. We trace the development of the view of sustainability through four periods. The classical view of sustainability, prevalent in the 1970s and earlier, developed from deterministic production models, in which equilibrium abundance or biomass is derived as a function of fishing mortality. When there is no fishing mortality, the population equilibrates about its carrying capacity. We show that carrying capacity is the result of reproductive and mortality processes and is not a fixed constant unless these processes are constant. There is usually a fishing mortality, F(MSY), which results in MSY, and a higher value, F(ext), for which the population is eventually driven to extinction. For each F between 0 and F(ext), there is a corresponding sustainable population. From this viewpoint, the primary tool for achieving sustainability is the control of fishing mortality. The neoclassical view of sustainability, developed in the 1980s, involved population models with depensation and stochasticity. This view point is in accord with the perception that a population at a low level is susceptible to collapse or to a lack of rebuilding regardless of fishing. Sustainability occurs in a more restricted range from that in the classical view and includes an abundance threshold. A variety of studies has suggested that fishing mortality should not let a population drop below a threshold at 10-20% of carrying capacity. The modern view of sustainability in the 1990s moves further in the direction of precaution. The fishing mortality limit is the former target of F(MSY) (or some proxy), and the target fishing mortality is set lower. This viewpoint further reduces the range of permissible fishing mortalities and resultant desired population sizes. The objective has shifted from optimizing long-term catch to preserving spawning biomass and egg production for the future. The use of discount rates in objective functions involving catch is not a suitable alternative to protecting reproductive value. As we move into the post-modern time period, new definitions of sustainability will attempt to incorporate he economic and social aspects of fisheries and/or ecosystem and habitat requirements. These definitions now involve "warm and fuzzy" notions (healthy ecosystems and fishing communities, the needs of future generations, diverse fish communities) and value judgements of desired outcomes. Additional work is needed to make these definitions operational and to specify quantitative objectives to be achieved. In addition, multiple objectives may be incompatible, so trade-offs in what constitutes sustainability must be made. The advances made under the single-species approach should not be abandoned in the post-modern era, but rather enhanced and combined with new approaches in the multi-species and economic realms.
Sustainability in single-species population models
Quinn, Terrance J.; Collie, Jeremy S.
2005-01-01
In this paper, we review the concept of sustainability with regard to a single-species, age-structured fish population with density dependence at some stage of its life history. We trace the development of the view of sustainability through four periods. The classical view of sustainability, prevalent in the 1970s and earlier, developed from deterministic production models, in which equilibrium abundance or biomass is derived as a function of fishing mortality. When there is no fishing mortality, the population equilibrates about its carrying capacity. We show that carrying capacity is the result of reproductive and mortality processes and is not a fixed constant unless these processes are constant. There is usually a fishing mortality, FMSY, which results in MSY, and a higher value, Fext, for which the population is eventually driven to extinction. For each F between 0 and Fext, there is a corresponding sustainable population. From this viewpoint, the primary tool for achieving sustainability is the control of fishing mortality. The neoclassical view of sustainability, developed in the 1980s, involved population models with depensation and stochasticity. This viewpoint is in accord with the perception that a population at a low level is susceptible to collapse or to a lack of rebuilding regardless of fishing. Sustainability occurs in a more restricted range from that in the classical view and includes an abundance threshold. A variety of studies has suggested that fishing mortality should not let a population drop below a threshold at 10–20% of carrying capacity. The modern view of sustainability in the 1990s moves further in the direction of precaution. The fishing mortality limit is the former target of FMSY (or some proxy), and the target fishing mortality is set lower. This viewpoint further reduces the range of permissible fishing mortalities and resultant desired population sizes. The objective has shifted from optimizing long-term catch to preserving spawning biomass and egg production for the future. The use of discount rates in objective functions involving catch is not a suitable alternative to protecting reproductive value. As we move into the post-modern time period, new definitions of sustainability will attempt to incorporate the economic and social aspects of fisheries and/or ecosystem and habitat requirements. These definitions now involve ‘warm and fuzzy’ notions (healthy ecosystems and fishing communities, the needs of future generations, diverse fish communities) and value judgements of desired outcomes. Additional work is needed to make these definitions operational and to specify quantitative objectives to be achieved. In addition, multiple objectives may be incompatible, so trade-offs in what constitutes sustainability must be made. The advances made under the single-species approach should not be abandoned in the post-modern era, but rather enhanced and combined with new approaches in the multi-species and economic realms. PMID:15713594
Despite great strides to reduce sulfur dioxide emissions over the last decade, acid precipitation remains a persistent threat to North American fish communities. A demographic analysis of white suckers in an experimentally acidified oligotrophic lake in northwest Ontario demonst...
Early detection of nonnative alleles in fish populations: When sample size actually matters
Croce, Patrick Della; Poole, Geoffrey C.; Payne, Robert A.; Gresswell, Bob
2017-01-01
Reliable detection of nonnative alleles is crucial for the conservation of sensitive native fish populations at risk of introgression. Typically, nonnative alleles in a population are detected through the analysis of genetic markers in a sample of individuals. Here we show that common assumptions associated with such analyses yield substantial overestimates of the likelihood of detecting nonnative alleles. We present a revised equation to estimate the likelihood of detecting nonnative alleles in a population with a given level of admixture. The new equation incorporates the effects of the genotypic structure of the sampled population and shows that conventional methods overestimate the likelihood of detection, especially when nonnative or F-1 hybrid individuals are present. Under such circumstances—which are typical of early stages of introgression and therefore most important for conservation efforts—our results show that improved detection of nonnative alleles arises primarily from increasing the number of individuals sampled rather than increasing the number of genetic markers analyzed. Using the revised equation, we describe a new approach to determining the number of individuals to sample and the number of diagnostic markers to analyze when attempting to monitor the arrival of nonnative alleles in native populations.
Johnson, Melissa J.; Hansen, Michael J.; Seider, Michael J.
2015-01-01
The Gull Island Shoal Refuge was created in 1976 in response to overfishing of the Lake Trout Salvelinus namaycush population in the Apostle Islands region of western Lake Superior. Our objective was to evaluate effectiveness of the refuge by determining whether Lake Trout abundance, growth, maturity, and mortality differed inside and outside the refuge. We compared abundance of wild and stocked fish captured inside and outside the refuge during spring large-mesh gill-net and summer graded-mesh gill-net surveys. We compared growth and mortality during four periods corresponding to four generations of wild Lake Trout, including the last generation that hatched before the refuge was instituted (sampled in 1981–1984) and three generations that were protected by the refuge (sampled in 1985–1992, 1993–2000, and 2001–2010). Maturity of wild fish inside and outside the refuge was compared only for the latter period (2001–2010) because maturity was not assessed earlier. After the refuge was created, wild Lake Trout abundance increased and stocked Lake Trout abundance decreased. Wild adults and juveniles were more abundant inside than outside the refuge, and stocked adults were less abundant inside than outside the refuge. Growth of wild fish did not differ inside versus outside the refuge before 2001, but wild fish grew faster to a shorter asymptotic length inside than outside the refuge during 2001–2010. Wild fish matured at a similar length but an older age inside than outside the refuge during 2001–2010. Survival of wild fish did not differ inside versus outside the refuge before 1993, but mortality was lower inside than outside the refuge during later periods (1993–2000 and 2001–2010). We conclude that the Gull Island Shoal Refuge enhanced the population growth of wild Lake Trout in the Apostle Islands region and should be retained in the future to sustain conditions that favor population growth.
Diamond, J M; Serveiss, V B
2001-12-15
The free-flowing Clinch and Powell River Basin, located in southwestern Virginia, United States, historically had one of the richest assemblages of native fish and freshwater mussels in the world. Nearly half of the species once residing here are now extinct, threatened, or endangered. The United States Environmental Protection Agency's framework for conducting an ecological risk assessment was used to structure a watershed-scale analysis of human land use, in-stream habitat quality, and their relationship to native fish and mussel populations in order to develop future management strategies and prioritize areas in need of enhanced protection. Our analyses indicate that agricultural and urban land uses as well as proximity to mining activities and transportation corridors are inversely related to fish index of biotic integrity (IBI) and mussel species diversity. Forward stepwise multiple regression analyses indicated that coal mining had the most impact on fish IBI followed by percent cropland and urban area in the riparian corridor (R2 = 0.55, p = 0.02); however, these analyses suggest that other site-specific factors are important. Habitat quality measures accounted for as much as approximately half of the variability in fish IBI values if the analysis was limited to sites within a relatively narrow elevation range. These results, in addition to other data collected in this watershed, suggest that nonhabitat-related stressors (e.g., accidental chemical spills) also have significant effects on biota in this basin. The number of co-occurring human land uses was inversely related to fish IBI (r = -0.49, p < 0.01). Sites with > or = 2 co-occurring land uses had >90% probability of having <2 mussel species present. Our findings predict that many mussel concentration sites are vulnerable to future extirpation. In addition, our results suggest that protection and enhancement of naturally vegetated riparian corridors, better controls of mine effluents and urban runoff, and increased safeguards against accidental chemical spills, as well as reintroduction or augmentation of threatened and endangered species, may help sustain native fish and mussel populations in this watershed.
Larval export from marine reserves and the recruitment benefit for fish and fisheries.
Harrison, Hugo B; Williamson, David H; Evans, Richard D; Almany, Glenn R; Thorrold, Simon R; Russ, Garry R; Feldheim, Kevin A; van Herwerden, Lynne; Planes, Serge; Srinivasan, Maya; Berumen, Michael L; Jones, Geoffrey P
2012-06-05
Marine reserves, areas closed to all forms of fishing, continue to be advocated and implemented to supplement fisheries and conserve populations. However, although the reproductive potential of important fishery species can dramatically increase inside reserves, the extent to which larval offspring are exported and the relative contribution of reserves to recruitment in fished and protected populations are unknown. Using genetic parentage analyses, we resolve patterns of larval dispersal for two species of exploited coral reef fish within a network of marine reserves on the Great Barrier Reef. In a 1,000 km(2) study area, populations resident in three reserves exported 83% (coral trout, Plectropomus maculatus) and 55% (stripey snapper, Lutjanus carponotatus) of assigned offspring to fished reefs, with the remainder having recruited to natal reserves or other reserves in the region. We estimate that reserves, which account for just 28% of the local reef area, produced approximately half of all juvenile recruitment to both reserve and fished reefs within 30 km. Our results provide compelling evidence that adequately protected reserve networks can make a significant contribution to the replenishment of populations on both reserve and fished reefs at a scale that benefits local stakeholders. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gitschlag, G.
2016-02-01
Population estimates were calculated for four fish species occurring at offshore oil and gas structures in water depths of 14-32 m off the Louisiana and upper Texas coasts in the US Gulf of Mexico. From 1993-1999 sampling was conducted at eight offshore platforms in conjunction with explosive salvage of the structures. To estimate fish population size prior to detonation of explosives, a fish mark-recapture study was conducted. Fish were captured on rod and reel using assorted hook sizes. Traps were occasionally used to supplement catches. Fish were tagged below the dorsal fin with plastic t-bar tags using tagging guns. Only fish that were alive and in good condition were released. Recapture sampling was conducted after explosives were detonated during salvage operations. Personnel operating from inflatable boats used dip nets to collect all dead fish that floated to the surface. Divers collected representative samples of dead fish that sank to the sea floor. Data provided estimates for red snapper (Lutjanus campechanus), Atlantic spadefish (Chaetodipterus faber), gray triggerfish (Balistes capriscus), and blue runner (Caranx crysos) at one or more of the eight platforms studied. At seven platforms, population size for red snapper was calculated at 503-1,943 with a 95% CI of 478. Abundance estimates for Atlantic spadefish at three platforms ranged from 1,432-1,782 with a 95% CI of 473. At three platforms, population size of gray triggerfish was 63-129 with a 95% CI of 82. Blue runner abundance at one platform was 558. Unlike the other three species which occur close to the platforms, blue runner range widely and recapture of this species was dependent on fish schools being in close proximity to the platform at the time explosives were detonated. Tag recapture was as high as 73% for red snapper at one structure studied.
Analysis of intraspecific patterns in genetic diversity of stream fishes provides a potentially powerful method for assessing the status and trends in the condition of aquatic ecosystems. We analyzed mitochondrial DNA (mtDNA) sequences (590 bases of cytochrome B) and nuclear DNA...
Pecoraro, Carlo; Babbucci, Massimiliano; Villamor, Adriana; Franch, Rafaella; Papetti, Chiara; Leroy, Bruno; Ortega-Garcia, Sofia; Muir, Jeff; Rooker, Jay; Arocha, Freddy; Murua, Hilario; Zudaire, Iker; Chassot, Emmanuel; Bodin, Nathalie; Tinti, Fausto; Bargelloni, Luca; Cariani, Alessia
2016-02-01
Global population genetic structure of yellowfin tuna (Thunnus albacares) is still poorly understood despite its relevance for the tuna fishery industry. Low levels of genetic differentiation among oceans speak in favour of the existence of a single panmictic population worldwide of this highly migratory fish. However, recent studies indicated genetic structuring at a much smaller geographic scales than previously considered, pointing out that YFT population genetic structure has not been properly assessed so far. In this study, we demonstrated for the first time, the utility of 2b-RAD genotyping technique for investigating population genetic diversity and differentiation in high gene-flow species. Running de novo pipeline in Stacks, a total of 6772 high-quality genome-wide SNPs were identified across Atlantic, Indian and Pacific population samples representing all major distribution areas. Preliminary analyses showed shallow but significant population structure among oceans (FST=0.0273; P-value<0.01). Discriminant Analysis of Principal Components endorsed the presence of genetically discrete yellowfin tuna populations among three oceanic pools. Although such evidence needs to be corroborated by increasing sample size, these results showed the efficiency of this genotyping technique in assessing genetic divergence in a marine fish with high dispersal potential. Copyright © 2015 Elsevier B.V. All rights reserved.
Kirczuk, Lucyna; Rymaszewska, Anna; Pilecka-Rapacz, Malgorzata; Domagala, Jozef
The European cisco (Coregonus albula L.) is a species with high environmental requirements. The deterioration of environmental conditions in recent decades has decreased its distribution. Currently the species is conserved by stocking, and the few existing natural populations are at risk of extinction. Therefore, contemporary studies involve not only reporting phenotypic parameters, but also determining the genetic structure of the population. This is an important aspect monitored in the C. albula population, which provides information valuable for proper fishing economy. This study included valuable populations from lakes located in Drawa National Park (DNP) and Wigry National Park (WNP), as well as lakes used for commercial fishing. In order to molecularly characterize the European cisco, the control region and NDl gene were sequenced from 48 individuals from 9 populations from lakes throughout northern Poland. Analysis revealed that populations from two park lakes (Marta, Ostrowieckie) are unique. This was also the case for some sequences originating from Lake Wigry. The mean value of genetic diversity was 0.2% within each region and 0.1-0.3% between the investigated regions. The obtained results demonstrated the necessity to strengthen and protect natural populations of the European cisco, which constitute a valuable element of the European ichthyofauna.
Electronic tagging of green sturgeon reveals population structure and movement among estuaries
Lindley, S.T.; Erickson, D.L.; Moser, M.L.; Williams, G.; Langness, O.P.; McCovey, B.W.; Belchik, M.; Vogel, D.; Pinnix, W.; Kelly, J.T.; Heublein, J.C.; Klimley, A.P.
2011-01-01
Green sturgeon Acipenser medirostris spend much of their lives outside of their natal rivers, but the details of their migrations and habitat use are poorly known, which limits our understanding of how this species might be affected by human activities and habitat degradation.We tagged 355 green sturgeon with acoustic transmitters on their spawning grounds and in known nonspawning aggregation sites and examined their movement among these sites and other potentially important locations using automated data-logging hydrophones. We found that green sturgeon inhabit a number of estuarine and coastal sites over the summer, including the Columbia River estuary, Willapa Bay, Grays Harbor, and the estuaries of certain smaller rivers in Oregon, especially the Umpqua River estuary. Green sturgeon from different natal rivers exhibited different patterns of habitat use; most notably, San Francisco Bay was used only by Sacramento River fish, while the Umpqua River estuary was used mostly by fish from the Klamath and Rogue rivers. Earlier work, based on analysis of microsatellite markers, suggested that the Columbia River mixed stock was mainly composed of fish from the Sacramento River, but our results indicate that fish from the Rogue and Klamath River populations frequently use the Columbia River as well. We also found evidence for the existence of migratory contingentswithin spawning populations.Our findings have significant implications for the management of the threatened Sacramento River population of green sturgeon, which migrates to inland waters outside of California where anthropogenic impacts, including fisheries bycatch and water pollution, may be a concern. Our results also illustrate the utility of acoustic tracking to elucidate the migratory behavior of animals that are otherwise difficult to observe. ?? American Fisheries Society 2011.
Whittington, R J; Chong, R
2007-09-14
Over 1 billion ornamental fish comprising more than 4000 freshwater and 1400 marine species are traded internationally each year, with 8-10 million imported into Australia alone. Compared to other commodities, the pathogens and disease translocation risks associated with this pattern of trade have been poorly documented. The aim of this study was to conduct an appraisal of the effectiveness of risk analysis and quarantine controls as they are applied according to the Sanitary and Phytosanitary (SPS) agreement in Australia. Ornamental fish originate from about 100 countries and hazards are mostly unknown; since 2000 there have been 16-fold fewer scientific publications on ornamental fish disease compared to farmed fish disease, and 470 fewer compared to disease in terrestrial species (cattle). The import quarantine policies of a range of countries were reviewed and classified as stringent or non-stringent based on the levels of pre-border and border controls. Australia has a stringent policy which includes pre-border health certification and a mandatory quarantine period at border of 1-3 weeks in registered quarantine premises supervised by government quarantine staff. Despite these measures there have been many disease incursions as well as establishment of significant exotic viral, bacterial, fungal, protozoal and metazoan pathogens from ornamental fish in farmed native Australian fish and free-living introduced species. Recent examples include Megalocytivirus and Aeromonas salmonicida atypical strain. In 2006, there were 22 species of alien ornamental fish with established breeding populations in waterways in Australia and freshwater plants and molluscs have also been introduced, proving a direct transmission pathway for establishment of pathogens in native fish species. Australia's stringent quarantine policies for imported ornamental fish are based on import risk analysis under the SPS agreement but have not provided an acceptable level of protection (ALOP) consistent with government objectives to prevent introduction of pests and diseases, promote development of future aquaculture industries or maintain biodiversity. It is concluded that the risk analysis process described by the Office International des Epizooties under the SPS agreement cannot be used in a meaningful way for current patterns of ornamental fish trade. Transboundary disease incursions will continue and exotic pathogens will become established in new regions as a result of the ornamental fish trade, and this will be an international phenomenon. Ornamental fish represent a special case in live animal trade where OIE guidelines for risk analysis need to be revised. Alternatively, for countries such as Australia with implied very high ALOP, the number of species traded and the number of sources permitted need to be dramatically reduced to facilitate hazard identification, risk assessment and import quarantine controls.
NASA Astrophysics Data System (ADS)
Santos, Rita; Parsons, Daniel; Cowx, Ian
2016-04-01
The Mekong River is the 10th largest freshwater river in the world, with the second highest biodiversity wealth, behind the much larger Amazon basin. The fisheries activity in the Lower Mekong countries counts for 2.7 million tons of fish per year, with an estimated value worth up to US 7 billion. For the 60 million people living in the basin, fish represent their primary source of economic income and protein intake, with an average per capita consumption estimated at 45.4 Kg. The proposed hydropower development in the basin is threatening its sustainability and resilience. Such developments affect fish migration patterns, hydrograph flood duration and magnitudes and sediment flux. Climate change is also likely to impact the basin, exacerbating the issues created by development. As a monsoonal system, the Mekong River's pronounced annual flood pulse cycle is important in creating variable habitat for fish productivity. Moreover, the annual flood also triggers fish migration and provides vital nutrients carried by the sediment flux. This paper examines the interactions between both dam development and climate change scenarios on fish habitat and habitat connectivity, with the aim of predicting how these will affect fish species composition and fisheries catch. The project will also employ Environmental DNA (eDNA) to quantify and understand the species composition of this complex and large freshwater system. By applying molecular analysis, it is possible to trace species abundance and migration patterns of fish and evaluate the ecological networks establish between an inland system. The aim of this work is to estimate, using process-informed models, the impacts of the proposed dam development and climate change scenarios on the hydrological and hydraulic conditions of habitat availability for fish. Furthermore, it will evaluate the connectivity along the Mekong and its tributaries, and the importance of maintaining these migration pathways, used by a great diversity of fish species. It will also present the preliminary findings on eDNA analysis for species composition and the ecological networks established along the river and particularly on the fish hotspot place for biodiversity, the Tonle Sap system in Cambodia. Keywords: Mekong River, climate change, fish production, dams, eDNA analysis, numerical modelling.
Fishing degrades size structure of coral reef fish communities.
Robinson, James P W; Williams, Ivor D; Edwards, Andrew M; McPherson, Jana; Yeager, Lauren; Vigliola, Laurent; Brainard, Russell E; Baum, Julia K
2017-03-01
Fishing pressure on coral reef ecosystems has been frequently linked to reductions of large fishes and reef fish biomass. Associated impacts on overall community structure are, however, less clear. In size-structured aquatic ecosystems, fishing impacts are commonly quantified using size spectra, which describe the distribution of individual body sizes within a community. We examined the size spectra and biomass of coral reef fish communities at 38 US-affiliated Pacific islands that ranged in human presence from near pristine to human population centers. Size spectra 'steepened' steadily with increasing human population and proximity to market due to a reduction in the relative biomass of large fishes and an increase in the dominance of small fishes. Reef fish biomass was substantially lower on inhabited islands than uninhabited ones, even at inhabited islands with the lowest levels of human presence. We found that on populated islands size spectra exponents decreased (analogous to size spectra steepening) linearly with declining biomass, whereas on uninhabited islands there was no relationship. Size spectra were steeper in regions of low sea surface temperature but were insensitive to variation in other environmental and geomorphic covariates. In contrast, reef fish biomass was highly sensitive to oceanographic conditions, being influenced by both oceanic productivity and sea surface temperature. Our results suggest that community size structure may be a more robust indicator than fish biomass to increasing human presence and that size spectra are reliable indicators of exploitation impacts across regions of different fish community compositions, environmental drivers, and fisheries types. Size-based approaches that link directly to functional properties of fish communities, and are relatively insensitive to abiotic variation across biogeographic regions, offer great potential for developing our understanding of fishing impacts in coral reef ecosystems. © 2016 John Wiley & Sons Ltd.
Mulcahy, D.; Pascho, R.J.; Jenes, C.K.
1983-01-01
Infectious haematopoietic mecrosis virus (IHNV) is enzootic in virtually all populations of sockeye salmon, Oncorhynchus nerka (Walbaum), and in populations of chinook salmon, O. tshawytscha (Walbaum), of the Sacramento River drainage in California. This disease is an obstacle in hatcheries using brood stocks from these populations. However, naturally spawning sockeye salmon are highly successful and are the most important commercially fished salmon species in the United States. Most of the commercial landings of sockeye salmon are of feral fish originating in Alaska. The success of natural populations of salmon in which IHNV is enzootic, and the recurrent outbreaks of the disease in hatchery fish, led us to compare IHNW prevalence rates in hatchery and feral salmon populations.
Teixeira, Sara; Assis, Jorge; Serrão, Ester A.; Gonçalves, Emanuel J.; Borges, Rita
2016-01-01
Adults of most marine benthic and demersal fish are site-attached, with the dispersal of their larval stages ensuring connectivity among populations. In this study we aimed to infer spatial and temporal variation in population connectivity and dispersal of a marine fish species, using genetic tools and comparing these with oceanographic transport. We focused on an intertidal rocky reef fish species, the shore clingfish Lepadogaster lepadogaster, along the southwest Iberian Peninsula, in 2011 and 2012. We predicted high levels of self-recruitment and distinct populations, due to short pelagic larval duration and because all its developmental stages have previously been found near adult habitats. Genetic analyses based on microsatellites countered our prediction and a biophysical dispersal model showed that oceanographic transport was a good explanation for the patterns observed. Adult sub-populations separated by up to 300 km of coastline displayed no genetic differentiation, revealing a single connected population with larvae potentially dispersing long distances over hundreds of km. Despite this, parentage analysis performed on recruits from one focal site within the Marine Park of Arrábida (Portugal), revealed self-recruitment levels of 2.5% and 7.7% in 2011 and 2012, respectively, suggesting that both long- and short-distance dispersal play an important role in the replenishment of these populations. Population differentiation and patterns of dispersal, which were highly variable between years, could be linked to the variability inherent in local oceanographic processes. Overall, our measures of connectivity based on genetic and oceanographic data highlight the relevance of long-distance dispersal in determining the degree of connectivity, even in species with short pelagic larval durations. PMID:27911952
Nielsen, J.L.; Heine, Erika L.; Gan, Christina A.; Fountain, Monique C.
2000-01-01
Mitochondrial DNA (mtDNA) sequence and allelic frequency data for 12 microsatellite loci were used to analyze population genetic structure and recolonization by rainbow trout, Oncorhynchus mykiss, following the 1991 Cantara spill on the upper Sacramento River, California. Genetic analyses were performed on 1,016 wild rainbow trout collected between 1993 and 1996 from the mainstem and in 8 tributaries. Wild trout genotypes were compared to genotypes for 79 Mount Shasta Hatchery rainbow trout. No genetic heterogeneity was found 2 years after the spill (1993) between tributary populations and geographically proximate mainstem fish, suggesting recolonization of the upper mainstem directly from adjacent tributaries. Trout collections made in 1996 showed significant year-class genetic variation for mtDNA and microsatellites when compared to fish from the same locations in 1993. Five years after the spill, mainstem populations appeared genetically mixed with no significant allelic frequency differences between mainstem populations and geographically proximate tributary trout. In our 1996 samples, we found no significant genetic differences due to season of capture (summer or fall) or sampling technique used to capture rainbow trout, with the exception of trout collected by electrofishing and hook and line near Prospect Avenue. Haplotype and allelic frequencies in wild rainbow trout populations captured in the upper Sacramento River and its tributaries were found to differ genetically from Mount Shasta Hatchery trout for both years, with the notable exception of trout collected in the lower mainstem river near Shasta Lake, where mtDNA and microsatellite data both suggested upstream colonization by hatchery fish from the reservoir. These data suggest that the chemical spill in the upper Sacramento River produced significant effects over time on the genetic population structure of rainbow trout throughout the entire upper river basin.
Predator-induced morphological plasticity across local populations of a freshwater snail.
Brönmark, Christer; Lakowitz, Thomas; Hollander, Johan
2011-01-01
The expression of anti-predator adaptations may vary on a spatial scale, favouring traits that are advantageous in a given predation regime. Besides, evolution of different developmental strategies depends to a large extent on the grain of the environment and may result in locally canalized adaptations or, alternatively, the evolution of phenotypic plasticity as different predation regimes may vary across habitats. We investigated the potential for predator-driven variability in shell morphology in a freshwater snail, Radix balthica, and whether found differences were a specialized ecotype adaptation or a result of phenotypic plasticity. Shell shape was quantified in snails from geographically separated pond populations with and without molluscivorous fish. Subsequently, in a common garden experiment we investigated reaction norms of snails from populations' with/without fish when exposed to chemical cues from tench (Tinca tinca), a molluscivorous fish. We found that snails from fish-free ponds had a narrow shell with a well developed spire, whereas snails that coexisted with fish had more rotund shells with a low spire, a shell morphology known to increase survival rate from shell-crushing predators. The common garden experiment mirrored the results from the field survey and showed that snails had similar reaction norms in response to chemical predator cues, i.e. the expression of shell shape was independent of population origin. Finally, we found significant differences for the trait means among populations, within each pond category (fish/fish free), suggesting a genetic component in the determination of shell morphology that has evolved independently across ponds.
Fish Intake in Pregnancy and Child Growth
Stratakis, Nikos; Roumeliotaki, Theano; Oken, Emily; Barros, Henrique; Basterrechea, Mikel; Charles, Marie-Aline; Eggesbø, Merete; Forastiere, Francesco; Gaillard, Romy; Gehring, Ulrike; Govarts, Eva; Hanke, Wojciech; Heude, Barbara; Iszatt, Nina; Jaddoe, Vincent W.; Kelleher, Cecily; Mommers, Monique; Murcia, Mario; Oliveira, Andreia; Pizzi, Costanza; Polańska, Kinga; Porta, Daniela; Richiardi, Lorenzo; Rifas-Shiman, Sheryl L.; Schoeters, Greet; Sunyer, Jordi; Thijs, Carel; Viljoen, Karien; Vrijheid, Martine; Vrijkotte, Tanja G. M.; Wijga, Alet H.; Zeegers, Maurice P.; Kogevinas, Manolis; Chatzi, Leda
2016-01-01
IMPORTANCE Maternal fish intake in pregnancy has been shown to influence fetal growth. The extent to which fish intake affects childhood growth and obesity remains unclear. OBJECTIVE To examine whether fish intake in pregnancy is associated with offspring growth and the risk of childhood overweight and obesity. DESIGN, SETTING, AND PARTICIPANTS Multicenter, population-based birth cohort study of singleton deliveries from 1996 to 2011 in Belgium, France, Greece, Ireland, Italy, the Netherlands, Norway, Poland, Portugal, Spain, and Massachusetts. A total of 26 184 pregnant women and their children were followed up at 2-year intervals until the age of 6 years. EXPOSURES Consumption of fish during pregnancy. MAIN OUTCOMES AND MEASURES We estimated offspring body mass index percentile trajectories from 3 months after birth to 6 years of age. We defined rapid infant growth as a weight gain z score greater than 0.67 from birth to 2 years and childhood overweight/obesity at 4 and 6 years as body mass index in the 85th percentile or higher for age and sex. We calculated cohort-specific effect estimates and combined them by random-effects meta-analysis. RESULTS This multicenter, population-based birth cohort study included the 26 184 pregnant women and their children. The median fish intake during pregnancy ranged from 0.5 times/week in Belgium to 4.45 times/week in Spain. Women who ate fish more than 3 times/week during pregnancy gave birth to offspring with higher body mass index values from infancy through middle childhood compared with women with lower fish intake (3 times/week or less). High fish intake during pregnancy (>3 times/week) was associated with increased risk of rapid infant growth, with an adjusted odds ratio (aOR) of 1.22 (95% CI, 1.05–1.42) and increased risk of offspring overweight/obesity at 4 years (aOR, 1.14 [95% CI, 0.99–1.32]) and 6 years (aOR, 1.22 [95% CI, 1.01–1.47]) compared with an intake of once per week or less. Interaction analysis showed that the effect of high fish intake during pregnancy on rapid infant growth was greater among girls (aOR, 1.31 [95% CI, 1.08–1.59]) than among boys (aOR, 1.11 [95% CI, 0.92–1.34]; P = .02 for interaction). CONCLUSIONS AND RELEVANCE High maternal fish intake during pregnancy was associated with increased risk of rapid growth in infancy and childhood obesity. Our findings are in line with the fish intake limit proposed by the US Food and Drug Administration and Environmental Protection Agency. PMID:26882542
Blood mercury concentrations in CHARGE Study children with and without autism.
Hertz-Picciotto, Irva; Green, Peter G; Delwiche, Lora; Hansen, Robin; Walker, Cheryl; Pessah, Isaac N
2010-01-01
Some authors have reported higher blood mercury (Hg) levels in persons with autism, relative to unaffected controls. We compared blood total Hg concentrations in children with autism or autism spectrum disorder (AU/ASD) and typically developing (TD) controls in population-based samples, and determined the role of fish consumption in differences observed. The Childhood Autism Risk from Genetics and the Environment (CHARGE) Study enrolled children 2-5 years of age. After diagnostic evaluation, we analyzed three groups: AU/ASD, non-AU/ASD with developmental delay (DD), and population-based TD controls. Mothers were interviewed about household, medical, and dietary exposures. Blood Hg was measured by inductively coupled plasma mass spectrometry. Multiple linear regression analysis was conducted (n = 452) to predict blood Hg from diagnostic status controlling for Hg sources. Fish consumption strongly predicted total Hg concentration. AU/ASD children ate less fish. After adjustment for fish and other Hg sources, blood Hg levels in AU/ASD children were similar to those of TD children (p = 0.75); this was also true among non-fish eaters (p = 0.73). The direct effect of AU/ASD diagnosis on blood Hg not through the indirect pathway of altered fish consumption was a 12% reduction. DD children had lower blood Hg concentrations in all analyses. Dental amalgams in children with gum-chewing or teeth-grinding habits predicted higher levels. After accounting for dietary and other differences in Hg exposures, total Hg in blood was neither elevated nor reduced in CHARGE Study preschoolers with AU/ASD compared with unaffected controls, and resembled those of nationally representative samples.
Mercury contamination of fish and shrimp samples available in markets of Mashhad, Iran.
Vahabzadeh, Maryam; Balali-Mood, Mahdi; Mousavi, Seyed-Reza; Moradi, Valiollah; Mokhtari, Mehrangiz; Riahi-Zanjani, Bamdad
2013-09-01
Fish and shrimp are common healthy sources of protein to a large percentage of the world's population. Hence, it is vital to evaluate the content of possible contamination of these marine-foods. Six species of fishes and two species of shrimps were collected from the local markets of Mashhad, Iran. The mercury (Hg) concentration of samples was determined by atomic absorption spectrophotometry using a mercuric hydride system (MHS 10). High concentration of total Hg was found in Clupeonella cultriventris caspia (0.93 ± 0.14 μg/g) while the lowest level was detected in Penaeus indicus (0.37 ± 0.03 μg/g). Mean Hg levels in fish and shrimp samples were 0.77 ± 0.08 μg/g and 0.51 ± 0.05 μg/g, respectively. Farmed species (except for P. indicus) and all samples from Persian Gulf and the Caspian Sea had mean mercury concentrations above 0.5 μg/g, which is the maximum standard level recommended by Joint FAO/WHO/Expert Committee on Food Additives (JECFA). All samples had also mean Hg concentrations that exceeded EPA's established safety level of 0.3 μg/g. A little more extensive analysis of data showed that weekly intake of mercury for the proportion of the Iranian population consuming Hg contaminated fish and shrimp is not predicted to exceed the respective provisional tolerable weekly intakes recommended by JECFA. However, the Iranian health and environmental authorities should monitor Hg contamination of the fishes and shrimps before marketing.
Winckler, K; Fidhiany, L
1996-04-01
In a previous study we observed that a constant sublethal UVA (320-400 nm) irradiation had a significant effect on the general metabolism in the Convict-cichlid fish (Cichlasoma nigrofasciatum) [Winckler, K. and Fidhiany, L. (1996) J. Photochem. Photobiol. B. Biol. (In press)]. In the present study we show that sublethal UVA irradiation in combination with elevated environmental temperature has a deleterious effect on the same population. The threshold temperature for a sudden increase in mortality of fish receiving an additional sublethal UVA irradiation was 32 degrees C. Prior to the increased mortality, the fish started to avoid the UV light source when the water temperature increased to 31.5 degrees C. Mortality decreased when the temperature declined below 31.5 degrees C. As soon as the temperature changed to normal (adapted) condition (27-29 degrees C) mortality returned to normal levels. In contrast, no changes of fish behavior or mortality were observed at elevated temperature in the nonirradiated reference population. The percentages of fish surviving the high temperature stress were 21.9% for the UVA population and 96.8% for the reference population. The specific oxygen consumption (SOC, average +/- SD) of the survivors from the UVA population during temperature stress was 0.21 +/- 0.05 mg O2 h-1 g body weight (BW)-1, while it was 0.54 +/- 0.11 mg O2 h-1 g BW-1 in the reference population. After the environmental temperature returned below the apparent upper temperature tolerance limit, the oxygen consumption of the UVA population gradually normalized. The SOC measured at different temperature levels--after after the fish passed the temperature stress--showed no significant differences between the UVA population and its reference at 23, 25, 27 and 29 degrees C. However, the SOC at 31 degrees C was significantly (P < 0.05) lower than reference, while at 33 degrees C it was higher (P < 0.10).
40 CFR 35.1640-1 - Application review criteria.
Code of Federal Regulations, 2011 CFR
2011-07-01
... improvement in fish and wildlife habitat and associated beneficial effects on specific fish populations of... economic structure of the population residing near the lake which would use the improved lake for... freshwater lakes within 80 kilometer radius already adequately serve the population; and (v) Whether the...
40 CFR 35.1640-1 - Application review criteria.
Code of Federal Regulations, 2012 CFR
2012-07-01
... improvement in fish and wildlife habitat and associated beneficial effects on specific fish populations of... economic structure of the population residing near the lake which would use the improved lake for... freshwater lakes within 80 kilometer radius already adequately serve the population; and (v) Whether the...
Populations of the non-migratory estuarine fish Fundulus heteroclitus were collected from New Bedford Harbor and distant clean sites to investigate whether indigenous populations have adapted genetically to the harbor's contamination. New Bedford Harbor, a major port in southe...
Recovery of a US endangered fish.
Bain, Mark B; Haley, Nancy; Peterson, Douglas L; Arend, Kristin K; Mills, Kathy E; Sullivan, Patrick J
2007-01-24
More fish have been afforded US Endangered Species Act protection than any other vertebrate taxonomic group, and none has been designated as recovered. Shortnose sturgeon (Acipenser brevirostrum) occupy large rivers and estuaries along the Atlantic coast of North America, and the species has been protected by the US Endangered Species Act since its enactment. Data on the shortnose sturgeon in the Hudson River (New York to Albany, NY, USA) were obtained from a 1970s population study, a population and fish distribution study we conducted in the late 1990s, and a fish monitoring program during the 1980s and 1990s. Population estimates indicate a late 1990s abundance of about 60,000 fish, dominated by adults. The Hudson River population has increased by more than 400% since the 1970s, appears healthy, and has attributes typical for a long-lived species. Our population estimates exceed the government and scientific population recovery criteria by more than 500%, we found a positive trend in population abundance, and key habitats have remained intact despite heavy human river use. Scientists and legislators have called for changes in the US Endangered Species Act, the Act is being debated in the US Congress, and the Act has been characterized as failing to recover species. Recovery of the Hudson River population of shortnose sturgeon suggests the combination of species and habitat protection with patience can yield successful species recovery, even near one of the world's largest human population centers.
Eye fluke-induced cataracts in natural fish populations: is there potential for host manipulation?
Seppälä, O; Karvonen, A; Valtonen, E T
2011-02-01
Manipulation of host phenotype (e.g. behaviour, appearance) is suggested to be a common strategy to enhance transmission in trophically transmitted parasites. However, in many systems, evidence of manipulation comes exclusively from laboratory studies and its occurrence in natural host populations is poorly understood. Here, we examined the potential for host manipulation by Diplostomum eye flukes indirectly by quantifying the physiological effects of parasites on fish. Earlier laboratory studies have shown that Diplostomum infection predisposes fish to predation by birds (definitive hosts of the parasites) by reducing fish vision through cataract formation. However, occurrence of cataracts and the subsequent potential for host manipulation in natural fish populations has remained poorly explored. We studied the occurrence of eye fluke-induced cataracts from 7 common fish species (Gymnocephalus cernuus, Rutilus rutilus, Leuciscus leuciscus, Alburnus alburnus, Osmerus eperlanus, Coregonus lavaretus and Gasterosteus aculeatus) from the Bothnian Bay in the Baltic Sea. We found that the parasite-induced cataracts were common in fish and they also reached high levels which are likely to predispose fish to predation. However, we observed such cataracts only in species with the highest parasite abundances, which suggests that only certain hosts may be strongly affected by the infection.
Factors for improved fish passage waterway construction.
DOT National Transportation Integrated Search
2011-06-01
Streambeds are important fish passageways in Oregon; they provide for the necessary habitats and spawning cycles of a healthy fish population. Oregon state law requires that hydraulic structures located in water properly provide fish passage. Increas...
Environmental Factors Affecting Large-Bodied Coral Reef Fish Assemblages in the Mariana Archipelago
Richards, Benjamin L.; Williams, Ivor D.; Vetter, Oliver J.; Williams, Gareth J.
2012-01-01
Large-bodied reef fishes represent an economically and ecologically important segment of the coral reef fish assemblage. Many of these individuals supply the bulk of the reproductive output for their population and have a disproportionate effect on their environment (e.g. as apex predators or bioeroding herbivores). Large-bodied reef fishes also tend to be at greatest risk of overfishing, and their loss can result in a myriad of either cascading (direct) or indirect trophic and other effects. While many studies have investigated habitat characteristics affecting populations of small-bodied reef fishes, few have explored the relationship between large-bodied species and their environment. Here, we describe the distribution of the large-bodied reef fishes in the Mariana Archipelago with an emphasis on the environmental factors associated with their distribution. Of the factors considered in this study, a negative association with human population density showed the highest relative influence on the distribution of large-bodied reef fishes; however, depth, water temperature, and distance to deep water also were important. These findings provide new information on the ecology of large-bodied reef fishes can inform discussions concerning essential fish habitat and ecosystem-based management for these species and highlight important knowledge gaps worthy of additional research. PMID:22384014
Environmental factors affecting large-bodied coral reef fish assemblages in the Mariana Archipelago.
Richards, Benjamin L; Williams, Ivor D; Vetter, Oliver J; Williams, Gareth J
2012-01-01
Large-bodied reef fishes represent an economically and ecologically important segment of the coral reef fish assemblage. Many of these individuals supply the bulk of the reproductive output for their population and have a disproportionate effect on their environment (e.g. as apex predators or bioeroding herbivores). Large-bodied reef fishes also tend to be at greatest risk of overfishing, and their loss can result in a myriad of either cascading (direct) or indirect trophic and other effects. While many studies have investigated habitat characteristics affecting populations of small-bodied reef fishes, few have explored the relationship between large-bodied species and their environment. Here, we describe the distribution of the large-bodied reef fishes in the Mariana Archipelago with an emphasis on the environmental factors associated with their distribution. Of the factors considered in this study, a negative association with human population density showed the highest relative influence on the distribution of large-bodied reef fishes; however, depth, water temperature, and distance to deep water also were important. These findings provide new information on the ecology of large-bodied reef fishes can inform discussions concerning essential fish habitat and ecosystem-based management for these species and highlight important knowledge gaps worthy of additional research.
The role of fish in a globally changing food system
Lynch, Abigail J.; MacMillan, J. Randy
2017-01-01
Though humans have been fishing for food since they first created tools to hunt, modern food systems are predominately terrestrial focused and fish are frequently overlooked. Yet, within the global food system, fish play an important role in meeting current and future food needs. Capture fisheries are the last large-scale “wild” food, and aquaculture is the fastest growing food production sector in the world. Currently, capture fisheries and aquaculture provide 4.3 billion people with at least 15% of their animal protein. In addition to providing protein and calories, fish are important sources of critical vitamins and vital nutrients that are difficult to acquire through other food sources. As the climate changes, human populations will continue to grow, cultural tastes will evolve, and fish populations will respond. Sustainable fisheries and aquaculture are poised to fill demand for food not met by terrestrial food systems. Climate change and other global changes will increase, decrease, or modify many wild fish populations and aquaculture systems. Understanding the knowledge gaps around these implications for global change on fish production is critical. Applied research and adaptive management techniques can assist with the necessary evolution of sustainable food systems to include a stronger emphasis on fish and other aquatic organisms.
Larvivorous fish for preventing malaria transmission.
Walshe, Deirdre P; Garner, Paul; Adeel, Ahmed A; Pyke, Graham H; Burkot, Thomas R
2017-12-11
Adult female Anopheles mosquitoes can transmit Plasmodium parasites that cause malaria. Some fish species eat mosquito larvae and pupae. In disease control policy documents, the World Health Organization (WHO) includes biological control of malaria vectors by stocking ponds, rivers, and water collections near where people live with larvivorous fish to reduce Plasmodium parasite transmission. In the past, the Global Fund has financed larvivorous fish programmes in some countries, and, with increasing efforts in eradication of malaria, policymakers may return to this option. Therefore, we assessed the evidence base for larvivorous fish programmes in malaria control. To evaluate whether introducing larvivorous fish to anopheline larval habitats impacts Plasmodium parasite transmission. We also sought to summarize studies that evaluated whether introducing larvivorous fish influences the density and presence of Anopheles larvae and pupae in water sources. We searched the Cochrane Infectious Diseases Group Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL), published in the Cochrane Library; MEDLINE (PubMed); Embase (Ovid); CABS Abstracts; LILACS; and the metaRegister of Controlled Trials (mRCT) up to 6 July 2017. We checked the reference lists of all studies identified by the search. We examined references listed in review articles and previously compiled bibliographies to look for eligible studies. Also we contacted researchers in the field and the authors of studies that met the inclusion criteria for additional information regarding potential studies for inclusion and ongoing studies. This is an update of a Cochrane Review published in 2013. Randomized controlled trials (RCTs) and non-RCTs, including controlled before-and-after studies, controlled time series, and controlled interrupted time series studies from malaria-endemic regions that introduced fish as a larvicide and reported on malaria in the community or the density of the adult anopheline population. In the absence of direct evidence of an effect on transmission, we performed a secondary analysis on studies that evaluated the effect of introducing larvivorous fish on the density or presence of immature anopheline mosquitoes (larvae and pupae forms) in water sources to determine whether this intervention has any potential that may justify further research in the control of malaria vectors. Two review authors independently screened each article by title and abstract, and examined potentially relevant studies for inclusion using an eligibility form. At least two review authors independently extracted data and assessed risk of bias of included studies. If relevant data were unclear or were not reported, we contacted the study authors for clarification. We presented data in tables, and we summarized studies that evaluated the effects of introducing fish on anopheline immature density or presence, or both. We used the GRADE approach to summarize the certainty of the evidence. We also examined whether the included studies reported any possible adverse impact of introducing larvivorous fish on non-target native species. We identified no studies that reported the effects of introducing larvivorous fish on the primary outcomes of this review: malaria infection in nearby communities, entomological inoculation rate, or on adult Anopheles density.For the secondary analysis, we examined the effects of introducing larvivorous fish on the density and presence of anopheline larvae and pupae in community water sources, and found 15 small studies with a follow-up period between 22 days and five years. These studies were undertaken in Sri Lanka (two studies), India (three studies), Ethiopia (one study), Kenya (two studies), Sudan (one study), Grande Comore Island (one study), Korea (two studies), Indonesia (one study), and Tajikistan (two studies). These studies were conducted in a variety of settings, including localized water bodies (such as wells, domestic water containers, fishponds, and pools (seven studies); riverbed pools below dams (two studies)); rice field plots (five studies); and water canals (two studies). All included studies were at high risk of bias. The research was insufficient to determine whether larvivorous fish reduce the density of Anopheles larvae and pupae (12 studies, unpooled data, very low certainty evidence). Some studies with high stocking levels of fish seemed to arrest the increase in immature anopheline populations, or to reduce the number of immature anopheline mosquitoes, compared with controls. However, this finding was not consistent, and in studies that showed a decrease in immature anopheline populations, the effect was not always consistently sustained. In contrast, some studies reported larvivorous fish reduced the number of water sources withAnopheles larvae and pupae (five studies, unpooled data, low certainty evidence).None of the included studies reported effects of larvivorous fish on local native fish populations or other species. We do not know whether introducing larvivorous fish reduces malaria transmission or the density of adult anopheline mosquito populations.In research studies that examined the effects on immature anopheline stages of introducing fish to potential malaria vector larval habitats, high stocking levels of fish may reduce the density or presence of immature anopheline mosquitoes in the short term. We do not know whether this translates into impact on malaria transmission. Our interpretation of the current evidence is that countries should not invest in fish stocking as a stand alone or supplementary larval control measure in any malaria transmission areas outside the context of research using carefully controlled field studies or quasi-experimental designs. Such research should examine the effects on native fish and other non-target species.
Mulcahy, Daniel M.; Pascho, Ron
1986-01-01
The incidence and titer distribution of infectious hematopoietic necrosis virus in cavity fluid from spent female sockeye salmon (Oncorhynchus nerka) varied little when fish from a naturally spawning population were sampled three times on alternate days. However, when prespawning female sockeye salmon from a second population were individually tagged, penned, and sampled daily, the incidence and proportion of fish with high virus titer rose over a 6-d period. In 10 instances, consecutive cavity fluid samples from the same fish reverted from virus-positive to virus-negative. We suggest that spent fish should be sampled when accurate and quantitative data on the incidence and level of the virus are required.
Mohr, Peter G; Moody, Nicholas J G; Williams, Lynette M; Hoad, John; Cummins, David M; Davies, Kelly R; StJ Crane, Mark
2015-10-16
Viruses of the genus Megalocytivirus have not been detected in wild populations of fish in Australia but circulate in imported ornamental fish. In 2012, detection of a megalocytivirus in healthy platys Xiphophorus maculatus was reported from a farm in Australia during surveillance testing as part of a research project undertaken at the University of Sydney. Confirmatory testing of the original samples at the AAHL Fish Diseases Laboratory verified the presence of an infectious spleen and kidney necrosis virus (ISKNV)-like virus. Additional sampling at the positive farm confirmed the persistence of the virus in the platys, with 39 of 265 (14.7%) samples testing positive. Comparison of 3 separate gene regions of the virus with those of ISKNV confirmed the detection of a virus indistinguishable from ISKNV. Subsequently, ISKNV was also detected in a range of imported ornamental fish from several countries between 2013 and 2014, by screening with real-time PCR and confirmation by conventional PCR and sequence analysis. Accordingly, the current importation of live ornamental fish acts as a potential perpetual source for the establishment of ISKNV viruses within Australia. The testing of the farmed and imported ornamental fish verified the utility of the probe-based real-time PCR assay for screening of ornamental fish for Megalocytivirus.
Fish stranding in freshwater systems: sources, consequences, and mitigation.
Nagrodski, Alexander; Raby, Graham D; Hasler, Caleb T; Taylor, Mark K; Cooke, Steven J
2012-07-30
Fish can become stranded when water levels decrease, often rapidly, as a result of anthropogenic (e.g., canal drawdown, hydropeaking, vessel wakes) and natural (e.g., floods, drought, winter ice dynamics) events. We summarize existing research on stranding of fish in freshwater, discuss the sources, consequences, and mitigation options for stranding, and report current knowledge gaps. Our literature review revealed that ∼65.5% of relevant peer-reviewed articles were found to focus on stranding associated with hydropower operations and irrigation projects. In fact, anthropogenic sources of fish stranding represented 81.8% of available literature compared to only 19.9% attributed to natural fish stranding events. While fish mortality as a result of stranding is well documented, our analysis revealed that little is known about the sublethal and long-term consequences of stranding on growth and population dynamics. Furthermore, the contribution of stranding to annual mortality rates is poorly understood as are the potential ecosystem-scale impacts. Mitigation strategies available to deal with stranding include fish salvage, ramping rate limitations, and physical habitat works (e.g., to contour substrate to minimize stranding). However, a greater knowledge of the factors that cause fish stranding would promote the development and refinement of mitigation strategies that are economically and ecologically sustainable. Copyright © 2012 Elsevier Ltd. All rights reserved.
Habitat degradation and fishing effects on the size structure of coral reef fish communities.
Wilson, S K; Fisher, R; Pratchett, M S; Graham, N A J; Dulvy, N K; Turner, R A; Cakacaka, A; Polunin, N V C
2010-03-01
Overfishing and habitat degradation through climate change pose the greatest threats to sustainability of marine resources on coral reefs. We examined how changes in fishing pressure and benthic habitat composition influenced the size spectra of island-scale reef fish communities in Lau, Fiji. Between 2000 and 2006 fishing pressure declined in the Lau Islands due to declining human populations and reduced demand for fresh fish. At the same time, coral cover declined and fine-scale architectural complexity eroded due to coral bleaching and outbreaks of crown-of-thorns starfish, Acanthaster planci. We examined the size distribution of reef fish communities using size spectra analysis, the linearized relationship between abundance and body size class. Spatial variation in fishing pressure accounted for 31% of the variation in the slope of the size spectra in 2000, higher fishing pressure being associated with a steeper slope, which is indicative of fewer large-bodied fish and/or more small-bodied fish. Conversely, in 2006 spatial variation in habitat explained 53% of the variation in the size spectra slopes, and the relationship with fishing pressure was much weaker (approximately 12% of variation) than in 2000. Reduced cover of corals and lower structural complexity was associated with less steep size spectra slopes, primarily due to reduced abundance of fish < 20 cm. Habitat degradation will compound effects of fishing on coral reefs as increased fishing reduces large-bodied target species, while habitat loss results in fewer small-bodied juveniles and prey that replenish stocks and provide dietary resources for predatory target species. Effective management of reef resources therefore depends on both reducing fishing pressure and maintaining processes that encourage rapid recovery of coral habitat.
Villegas, R; Takata, Y; Murff, H; Blot, WJ
2015-01-01
Background We examined associations between fish and n-3 LCFA and mortality in a prospective study with a large proportion of blacks with low socio-economic status. Methods and Results We observed 6,914 deaths among 77,604 participants with dietary data (follow-up time 5.5 years). Of these, 77,100 participants had available time-to-event data. We investigated associations between mortality with fish and n-3 LCFA intake, adjusting for age, race, sex, kcals/day, body mass index (BMI), smoking, alcohol consumption, physical activity, income, education, chronic disease, insurance coverage, and meat intake. Intakes of fried fish, baked/grilled fish and total fish, but not tuna, were associated with lower mortality among all participants. Analysis of trends in overall mortality by quintiles of intake showed that intakes of fried fish, baked/grilled fish and total fish, but not tuna, were associated with lower risk of total mortality among all participants. When participants with chronic disease were excluded, the observed association remained only between intakes of baked/grilled fish, while fried fish was associated with lower risk of mortality in participants with prevalent chronic disease. The association between n-3 LCFA intake and lower risk of mortality was significant among those with diabetes at baseline. There was an inverse association of mortality with fried fish intake in men, but not women. Total fish and baked/grilled fish intakes were associated with lower mortality among blacks while fried fish intake was associated with lower mortality among whites. Effect modifications were not statistically significant. Conclusion Our findings suggest a modest benefit of fish consumption on mortality. PMID:26026210
Villegas, R; Takata, Y; Murff, H; Blot, W J
2015-07-01
We examined associations between fish and n-3 LCFA and mortality in a prospective study with a large proportion of blacks with low socio-economic status. We observed 6914 deaths among 77,604 participants with dietary data (follow-up time 5.5 years). Of these, 77,100 participants had available time-to-event data. We investigated associations between mortality with fish and n-3 LCFA intake, adjusting for age, race, sex, kcal/day, body mass index (BMI), smoking, alcohol consumption, physical activity, income, education, chronic disease, insurance coverage, and meat intake. Intakes of fried fish, baked/grilled fish and total fish, but not tuna, were associated with lower mortality among all participants. Analysis of trends in overall mortality by quintiles of intake showed that intakes of fried fish, baked/grilled fish and total fish, but not tuna, were associated with lower risk of total mortality among all participants. When participants with chronic disease were excluded, the observed association remained only between intakes of baked/grilled fish, while fried fish was associated with lower risk of mortality in participants with prevalent chronic disease. The association between n-3 LCFA intake and lower risk of mortality was significant among those with diabetes at baseline. There was an inverse association of mortality with fried fish intake in men, but not women. Total fish and baked/grilled fish intakes were associated with lower mortality among blacks while fried fish intake was associated with lower mortality among whites. Effect modifications were not statistically significant. Our findings suggest a modest benefit of fish consumption on mortality. Copyright © 2015 Elsevier B.V. All rights reserved.
Dunlap, Paul V; Davis, Kimberly M; Tomiyama, Shinichi; Fujino, Misato; Fukui, Atsushi
2008-12-01
Many marine fish harbor luminous bacteria as bioluminescent symbionts. Despite the diversity, abundance, and ecological importance of these fish and their apparent dependence on luminous bacteria for survival and reproduction, little is known about developmental and microbiological events surrounding the inception of their symbioses. To gain insight on these issues, we examined wild-caught larvae of the leiognathid fish Nuchequula nuchalis, a species that harbors Photobacterium leiognathi as its symbiont, for the presence, developmental state, and microbiological status of the fish's internal, supraesophageal light organ. Nascent light organs were evident in the smallest specimens obtained, flexion larvae of 6.0 to 6.5 mm in notochord length (NL), a developmental stage at which the stomach had not yet differentiated and the nascent gasbladder had not established an interface with the light organ. Light organs of certain of the specimens in this size range apparently lacked bacteria, whereas light organs of other specimens of 6.5 mm in NL and of all larger specimens harbored large populations of bacteria, representatives of which were identified as P. leiognathi. Bacteria identified as Vibrio harveyi were also present in the light organ of one larval specimen. Light organ populations were composed typically of two or three genetically distinct strain types of P. leiognathi, similar to the situation in adult fish, and the same strain type was only rarely found in light organs of different larval, juvenile, or adult specimens. Light organs of larvae carried a smaller proportion of strains merodiploid for the lux-rib operon, 79 of 249 strains, than those of adults (75 of 91 strains). These results indicate that light organs of N. nuchalis flexion and postflexion larvae of 6.0 to 6.7 mm in NL are at an early stage of development and that inception of the symbiosis apparently occurs in flexion larvae of 6.0 to 6.5 mm in NL. Ontogeny of the light organ therefore apparently precedes acquisition of the symbiotic bacteria. Furthermore, bacterial populations in larval light organs near inception of the symbiosis are genetically diverse, like those of adult fish.
Dunlap, Paul V.; Davis, Kimberly M.; Tomiyama, Shinichi; Fujino, Misato; Fukui, Atsushi
2008-01-01
Many marine fish harbor luminous bacteria as bioluminescent symbionts. Despite the diversity, abundance, and ecological importance of these fish and their apparent dependence on luminous bacteria for survival and reproduction, little is known about developmental and microbiological events surrounding the inception of their symbioses. To gain insight on these issues, we examined wild-caught larvae of the leiognathid fish Nuchequula nuchalis, a species that harbors Photobacterium leiognathi as its symbiont, for the presence, developmental state, and microbiological status of the fish's internal, supraesophageal light organ. Nascent light organs were evident in the smallest specimens obtained, flexion larvae of 6.0 to 6.5 mm in notochord length (NL), a developmental stage at which the stomach had not yet differentiated and the nascent gasbladder had not established an interface with the light organ. Light organs of certain of the specimens in this size range apparently lacked bacteria, whereas light organs of other specimens of 6.5 mm in NL and of all larger specimens harbored large populations of bacteria, representatives of which were identified as P. leiognathi. Bacteria identified as Vibrio harveyi were also present in the light organ of one larval specimen. Light organ populations were composed typically of two or three genetically distinct strain types of P. leiognathi, similar to the situation in adult fish, and the same strain type was only rarely found in light organs of different larval, juvenile, or adult specimens. Light organs of larvae carried a smaller proportion of strains merodiploid for the lux-rib operon, 79 of 249 strains, than those of adults (75 of 91 strains). These results indicate that light organs of N. nuchalis flexion and postflexion larvae of 6.0 to 6.7 mm in NL are at an early stage of development and that inception of the symbiosis apparently occurs in flexion larvae of 6.0 to 6.5 mm in NL. Ontogeny of the light organ therefore apparently precedes acquisition of the symbiotic bacteria. Furthermore, bacterial populations in larval light organs near inception of the symbiosis are genetically diverse, like those of adult fish. PMID:18978090
Modeling the effects of land use and climate change on riverine smallmouth bass
Peterson, J.T.; Kwak, T.J.
1999-01-01
Anthropogenic changes in temperature and stream flow, associated with watershed land use and climate change, are critical influences on the distribution and abundance of riverine fishes. To project the effects of changing land use and climate, we modeled a smallmouth bass (Micropterus dolomieu) population in a midwestern USA, large river- floodplain ecosystem under historical (1915-1925), present (1977-1990), and future (2060, influenced by climate change) temperature and flow regimes. The age-structured model included parameters for temperature and river discharge during critical seasonal periods, fish population dynamics, and fishing harvest. Model relationships were developed from empirical field data collected over a 13-yr period. Sensitivity analyses indicated that discharge during the spawning/rearing period had a greater effect on adult density and fishing yield than did spawning/rearing temperature or winter discharge. Simulations for 100 years projected a 139% greater mean fish density under a historical flow regime (64.9 fish/ha) than that estimated for the present (27.1 fish/ha) with a sustainable fishing harvest under both flow regimes. Simulations under future climate-change-induced temperature and flow regimes with present land use projected a 69% decrease in mean fish density (8.5 fish/ha) from present and an unstable population that went extinct during 56% of the simulations. However, when simulated under a future climate-altered temperature and flow regime with historical land use, the population increased by 66% (45.0 fish/ha) from present and sustained a harvest. Our findings suggest that land-use changes may be a greater detriment to riverine fishes than projected climate change and that the combined effects of both factors may lead to local species extinction. However, the negative effects of increased temperature and precipitation associated with future global warming could be mitigated by river channel, floodplain, and watershed restoration.
Understanding the response of fish populations to habitat change mediated by sea level rise (SLR) is a key component of ecosystem-based management. Yet, no direct link has been established between habitat change due to SLR and fish population production. Here we take a coupled ...
Large-Scale Paraphrasing for Natural Language Understanding
2018-04-01
to manufacture , use, or sell any patented invention that may relate to them. This report is the result of contracted fundamental research deemed...station contaminated local fish populations Atomic power generation in Springfield polluted indigenous seafood stocks Radioactive power generation...from PPDB. Springfield’s nuclear power plant contaminated local fish populations nuclear power station nuclear plant power plant fish stocks
Modeling fish community dynamics in Florida Everglades: Role of temperature variation
Al-Rabai'ah, H. A.; Koh, H. L.; DeAngelis, Donald L.; Lee, Hooi-Ling
2002-01-01
The model shows that the temperature dependent starvation mortality is an important factor that influences fish population densities. It also shows high fish population densities at some temperature ranges when this consumption need is minimum. Several sensitivity analyses involving variations in temperature terms, food resources and water levels are conducted to ascertain the relative importance of temperature dependence terms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jude, D.J.; Mansfield, P.J.; Schneeberger, P.J.
1987-05-01
This study comprises an extensive literature review, critical evaluations of case histories, and considered recommendations for future research on the mechanisms and extent of compensation by various fish species subject to catastrophic impacts. ''Catastrophic impact'' was defined as an event which removes some limitation (such as food or space) on a fish population. Those events studied included new species introduction, toxic spills, exploitation of specific fish populations, and drawdown. The fish studied each had more than one compensatory mechanism available, and thus were able to respond to a catastrophic event even if an option was removed. Predation, overfishing, competition, disease,more » and parasitism are all potential catastrophies, but were found not to cause a catastrophic impact (except in special cases). In general, compensatory responses were determined to vary widely, even for species which perform fairly similar functions in an ecosystem. The extensive nature of this study, however, pointed up the many data gaps in the existing literature; recommendations are therefore made for followup research and expansion of ongoing monitoring programs, based on an evaluation of their relative importance.« less
Bryce Rickel
2005-01-01
This volume addresses the wildlife and fish of the grasslands in the Southwestern Region of the USDA Forest Service. Our intent is to provide information that will help resource specialists and decisionmakers manage wildlife populations within grassland ecosystems in the Southwestern United States. The information and analysis presented is at a Regional scale.
Wildhaber, M.L.; Gladish, D.W.; Arab, A.
2011-01-01
Past and present Missouri River management practices have resulted in native fishes being identified as in jeopardy. In 1995, the Missouri River Benthic Fishes Study was initiated to provide improved information on Missouri River fish populations and how alterations might affect them. The study produced a baseline against which to evaluate future changes in Missouri River operating criteria. The objective was to evaluate population structure and habitat use of benthic fishes along the entire mainstem Missouri River, exclusive of reservoirs. Here we use the data from this study to provide a recent-past baseline for on-going Missouri River fish population monitoring programmes along with a more powerful method for analysing data containing large percentages of zero values. This is carried out by describing the distribution and habitat use of 21 species of Missouri River benthic fishes based on catch-per-unit area data from multiple gears. We employ a Bayesian zero-inflated Poisson model expanded to include continuous measures of habitat quality (i.e. substrate composition, depth, velocity, temperature, turbidity and conductivity). Along with presenting the method, we provide a relatively complete picture of the Missouri River benthic fish community and the relationship between their relative population numbers and habitat conditions. We demonstrate that our single model provides all the information that is often obtained by a myriad of analytical techniques. An important advantage of the present approach is reliable inference for patterns of relative abundance using multiple gears without using gear efficiencies.
40 CFR 125.70 - Purpose and scope.
Code of Federal Regulations, 2010 CFR
2010-07-01
... propagation of a balanced, indigenous population of shellfish, fish and wildlife in and on the body of water... assure the protection and propagation of a balanced indigenous population of shellfish, fish and wildlife...
40 CFR 125.70 - Purpose and scope.
Code of Federal Regulations, 2012 CFR
2012-07-01
... propagation of a balanced, indigenous population of shellfish, fish and wildlife in and on the body of water... assure the protection and propagation of a balanced indigenous population of shellfish, fish and wildlife...
40 CFR 125.70 - Purpose and scope.
Code of Federal Regulations, 2011 CFR
2011-07-01
... propagation of a balanced, indigenous population of shellfish, fish and wildlife in and on the body of water... assure the protection and propagation of a balanced indigenous population of shellfish, fish and wildlife...
40 CFR 125.70 - Purpose and scope.
Code of Federal Regulations, 2013 CFR
2013-07-01
... propagation of a balanced, indigenous population of shellfish, fish and wildlife in and on the body of water... assure the protection and propagation of a balanced indigenous population of shellfish, fish and wildlife...
40 CFR 125.70 - Purpose and scope.
Code of Federal Regulations, 2014 CFR
2014-07-01
... propagation of a balanced, indigenous population of shellfish, fish and wildlife in and on the body of water... assure the protection and propagation of a balanced indigenous population of shellfish, fish and wildlife...
St-Jules, David E; Watters, Corilee A; Novotny, Rachel
2014-04-01
Fish is an important source of long-chain n-3 fatty acids in the diets of female adolescents, which may affect adipose tissue deposition. The purpose of this study was to evaluate fish intake in Asian and white female adolescents, and to determine whether fish intake was associated with changes in body fatness and body fat distribution in this population. A cross-sectional analysis of fish intake using 3-day food records (n=200), and a prospective analysis of baseline fish intake on anthropometric measurements 2 years later was conducted (n=103). Participants included female adolescents (aged 9 to 14 years) who were recruited from the Kaiser Permanente Oahu membership database in 2000-2001 as part of the Female Adolescent Maturation study (N=349). Fish intake and the proportion of participants eating 8 oz fish per week was compared between Asian, white, and mixed Asian/white ethnic groups using Kruskal-Wallis test, Wilcoxon rank sum test, and χ(2) test, respectively. The effect of fish intake on anthropometric measurements was assessed using Spearman's rank correlation coefficient and linear regression analyses, adjusting for demographic, pubertal, anthropometric, activity, and dietary parameters. Asians consumed more fish (0.85 oz/wk [range=0.00 to 4.74 oz/wk]) than whites (0.00 oz/wk [0.00 to 0.40 oz/wk]; P=0.0001), and were more likely to eat 8 oz fish per week (13 of 68 vs 2 of 51, respectively; P=0.014). Greater fish intake corresponded to smaller changes in waist circumference when controlling for age, ethnicity, puberty, activity, energy intake, and baseline waist circumference (P=0.026), but not after adjusting for parental and additional dietary parameters (P>0.10). Most female adolescents did not consume the recommended amount of fish, a problem that was more common in whites than Asians. The protective effect of fish intake on abdominal obesity warrants further study. Copyright © 2014 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.
Haas, Robert C.; Fabrizio, Mary C.; Todd, Thomas N.
1988-01-01
The harvest of walleye by sport and commercial fisheries in lakes St. Clair and Erie is under a cooperative management program involving several states and two countries. In this report we present the results of a long-term tag-recapture study as well as corroborative evidence of stock discreteness fromstudies of population characteristics such as growth and allelic frequencies of walleye in these waters. Walleye were tagged in the spring from 1975-87 in lakes St. Clair and Erie. Tag-recapture data indicate a general tendency for walleye to move northward after tagging. Walleye tagged in Lake St. Clair had higher recovery rates and lower survival rates than walleye tagged in Lake Erie. A reward-tag study in Lake St. Clair provided an estimate of a non-reporting rate of approximately 33% which is comparable to rates in the literature for other species. Data from the Ontario commercial (gill-net) fishery, Michigan Department of Natural Resources trap-net surveys, and sport fisheries from western Lake Erie and Lake St. Clair were analyzed with a catch-at-age model which permitted estimation of population abundance (12.2 to 34.5 million fish), fishing mortality rate (0.19 to 0.37), and annual survival rate (0.57 to 0.68). It appears that exploitation rates for the sport fishery in the western basin exceeded those of the commercial fishery from 1978-82. In recent years (1983-87), exploitation rates were comparable. Average abundance and catch of walleye in the western basin were 12.2 million and 3.4 million fish in 1978-82; average abundance and catch in 1983-87 were 34.5 and 5.2 million fish. We found good agreement between the estimate of the harvest from creel surveys and that from the catch-at-age model for Lake Erie. Walleye abundance and harvest in Lake St. Clair were 10% of the values for the western basin of Lake Erie. Two discrete stocks were delineated be analysis of allelic frequencies of samples from Lake St. Clair and Lake Erie spawning populations. These two stocks are the western basin of Lake Erie and Lake St. Clair stocks. No further subdivision of stocks was possible based on the genetic analysis of 21 loci. These genetically different stocks intermix in the northern waters of this system. Based on a consideration of the results of the genetic analysis, catch-at-age analysis, and tag-recapture study we recommend independent but coordinated management of the walleye populations in Lake St. Clair and Lake Erie.
Vitamin D and parathyroid hormone status in a representative population living in Macau, China.
Ke, L; Mason, R S; Mpofu, E; Dibley, M; Li, Y; Brock, K E
2015-04-01
Associations between documented sun-exposure, exercise patterns and fish and supplement intake and 25-hydroxyvitamin D (25OHD) and parathyroid hormone (PTH) were investigated in a random household survey of Macau residents (aged 18-93). Blood samples (566) taken in summer were analyzed for 25OHD and PTH. In this Chinese population, 55% were deficient (25OHD <50nmol/L: median (interquartile range)=47.7 (24.2) nmol/L). Vitamin D deficiency was greatest in those aged <50 years: median (interquartile range)=43.3 (18.2) nmol/L, females: median (interquartile range)=45.5 (19.4) nmol/L and those with higher educational qualifications: median (interquartile range)=43.1 (18.7) nmol/L. In the total Macau population, statistically significant (p<0.01) modifiable associations with lower 25OHD levels were sunlight exposure (β=0.06), physical activity (PA) (measured as hours(hrs)/day: β=0.08), sitting (measured as hrs/day β=-0.20), intake of fish (β=0.08) and calcium (Ca) supplement intake (β=0.06) [linear regression analysis adjusting for demographic risk factors]. On similar analysis, and after adjustment for 25OHD, the only significant modifiable associations in the total population with PTH were sitting (β=-0.17), Body Mass Index (β=0.07) and Ca supplement intake (β=-0.06). In this Macau population less documented sun exposure, fish and Ca supplement intake and exercise were associated with lower 25OHD levels, especially in the younger population, along with the interesting finding that more sitting was associated with both lower 25OHD and high PTH blood levels. In conclusion, unlike findings from Caucasian populations, younger participants were significantly more vitamin D deficient, in particular highly educated single females. This may indicate the desire of young females to be pale and avoid the sun. There are also big differences in lifestyle between the older generation and the younger, in particular with respect to sun exposure and PA. This article is part of a Special Issue entitled '17th Vitamin D Workshop'. Copyright © 2015 Elsevier Ltd. All rights reserved.
Modeling exposure and recovery of fish and wildlife populations after stressor mitigation serves as a basis for evaluating population status and remediation success. The Atlantic killifish (Fundulus heteroclitus) is an important and well-studied model organism for understanding t...
Methods for assessing fish populations
Kevin L. Pope; Steve E. Lochmann; Michael K. Young
2010-01-01
Fisheries managers are likely to assess fish populations at some point during the fisheries management process. Managers that follow the fisheries management process (see Chapter 5) might find their knowledge base insufficient during the steps of problem identification or management action and must assess a population before appropriate actions can be taken. Managers...
Endangered river fish: factors hindering conservation and restoration
Cooke, Steven J.; Paukert, Craig P.; Hogan, Zeb
2012-01-01
Globally, riverine fish face many anthropogenic threats including riparian and flood plain habitat degradation, altered hydrology, migration barriers, fisheries exploitation, environmental (climate) change, and introduction of invasive species. Collectively, these threats have made riverine fishes some of the most threatened taxa on the planet. Although much effort has been devoted to identifying the threats faced by river fish, there has been less effort devoted to identifying the factors that may hinder our ability to conserve and restore river fish populations and their watersheds. Therefore, we focus our efforts on identifying and discussing 10 general factors (can also be viewed as research and implementation needs) that constrain or hinder effective conservation action for endangered river fish: (1) limited basic natural history information; (2) limited appreciation for the scale/extent of migrations and the level of connectivity needed to sustain populations; (3) limited understanding of fish/river-flow relationships; (4) limited understanding of the seasonal aspects of river fish biology, particularly during winter and/or wet seasons; (5) challenges in predicting the response of river fish and river ecosystems to both environmental change and various restoration or management actions; (6) limited understanding of the ecosystem services provided by river fish; (7) the inherent difficulty in studying river fish; (8) limited understanding of the human dimension of river fish conservation and management; (9) limitations of single species approaches that often fail to address the broader-scale problems; and (10) limited effectiveness of governance structures that address endangered river fish populations and rivers that cross multiple jurisdictions. We suggest that these issues may need to be addressed to help protect, restore, or conserve river fish globally, particularly those that are endangered.
Araújo, Cristiano V M; Silva, Daniel C V R; Gomes, Luiz E T; Acayaba, Raphael D; Montagner, Cassiana C; Moreira-Santos, Matilde; Ribeiro, Rui; Pompêo, Marcelo L M
2018-02-01
Information on how atrazine can affect the spatial distribution of organisms is non-existent. As this effect has been observed for some other contaminants, we hypothesized that atrazine-containing leachates/discharges could trigger spatial avoidance by the fish Poecilia reticulata and form a chemical barrier isolating upstream and downstream populations. Firstly, guppies were exposed to an atrazine gradient in a non-forced exposure system, in which organisms moved freely among the concentrations, to assess their ability to avoid atrazine. Secondly, a chemical barrier formed by atrazine, separating two clean habitats (extremities of the non-forced system), was simulated to assess whether the presence of the contaminant could prevent guppies from migrating to the other side of the system. Fish were able to avoid atrazine contamination at environmentally relevant concentrations (0.02 μg L -1 ), below those described to cause sub-lethal effects. The AC 50 (atrazine concentration causing avoidance to 50% of the population) was 0.065 μg L -1 . The chemical barrier formed by atrazine at 150 μg L -1 (concentration that should produce an avoidance around 82%) caused a reduction in the migratory potential of the fish by 47%; while the chemical barrier at 1058 μg L -1 (concentration that produces torpidity) caused a reduction in the migratory potential of the fish by 91%. Contamination by atrazine, besides driving the spatial distribution of fish populations, has potential to act as a chemical barrier by isolating fish populations. This study includes a novel approach to be integrated in environmental risk assessment schemes to assess high-tier contamination effects such as habitat fragmentation and population displacement and isolation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hess, Maureen A; Rabe, Craig D; Vogel, Jason L; Stephenson, Jeff J; Nelson, Doug D; Narum, Shawn R
2012-01-01
While supportive breeding programmes strive to minimize negative genetic impacts to populations, case studies have found evidence for reduced fitness of artificially produced individuals when they reproduce in the wild. Pedigrees of two complete generations were tracked with molecular markers to investigate differences in reproductive success (RS) of wild and hatchery-reared Chinook salmon spawning in the natural environment to address questions regarding the demographic and genetic impacts of supplementation to a natural population. Results show a demographic boost to the population from supplementation. On average, fish taken into the hatchery produced 4.7 times more adult offspring, and 1.3 times more adult grand-offspring than naturally reproducing fish. Of the wild and hatchery fish that successfully reproduced, we found no significant differences in RS between any comparisons, but hatchery-reared males typically had lower RS values than wild males. Mean relative reproductive success (RRS) for hatchery F1 females and males was 1.11 (P = 0.84) and 0.89 (P = 0.56), respectively. RRS of hatchery-reared fish (H) that mated in the wild with either hatchery or wild-origin (W) fish was generally equivalent to W × W matings. Mean RRS of H × W and H × H matings was 1.07 (P = 0.92) and 0.94 (P = 0.95), respectively. We conclude that fish chosen for hatchery rearing did not have a detectable negative impact on the fitness of wild fish by mating with them for a single generation. Results suggest that supplementation following similar management practices (e.g. 100% local, wild-origin brood stock) can successfully boost population size with minimal impacts on the fitness of salmon in the wild. PMID:23025818
Evangelista, Charlotte; Britton, Robert J; Cucherousset, Julien
2015-06-01
Exploitation can modify the characteristics of fish populations through the selective harvesting of individuals, with this potentially leading to rapid ecological and evolutionary changes. Despite the well-known effects of invasive fishes on aquatic ecosystems generally, the potential effects of their selective removal through angling, a strategy commonly used to manage invasive fish, are poorly understood. The aim of this field-based study was to use the North American pumpkinseed Lepomis gibbosus as the model species to investigate the consequences of selective removal on their population characteristics and juvenile growth rates across 10 populations in artificial lakes in southern France. We found that the maximal individual mass in populations decreased as removal pressure through angling increased, whereas we did not observed any changes in the maximal individual length in populations as removal pressure increased. Total population abundance did not decrease as removal pressure increased; instead, here was a U-shaped relationship between removal pressure and the abundance of medium-bodied individuals. In addition, population biomass had a U-shaped curve response to removal pressure, implying that invasive fish populations can modulate their characteristics to compensate for the negative effects of selective removals. In addition, individual lengths at age 2 and juvenile growth rates decreased as removal pressure through angling increased, suggesting a shift toward an earlier size at maturity and an overall slower growing phenotype. Therefore, these outputs challenge the efficiency of selective management methods, suggesting the use of more proactive strategies to control invasive populations, and the need to investigate the potential ecological and evolutionary repercussions of nonrandom removal.
Evangelista, Charlotte; Britton, Robert J; Cucherousset, Julien
2015-01-01
Exploitation can modify the characteristics of fish populations through the selective harvesting of individuals, with this potentially leading to rapid ecological and evolutionary changes. Despite the well-known effects of invasive fishes on aquatic ecosystems generally, the potential effects of their selective removal through angling, a strategy commonly used to manage invasive fish, are poorly understood. The aim of this field-based study was to use the North American pumpkinseed Lepomis gibbosus as the model species to investigate the consequences of selective removal on their population characteristics and juvenile growth rates across 10 populations in artificial lakes in southern France. We found that the maximal individual mass in populations decreased as removal pressure through angling increased, whereas we did not observed any changes in the maximal individual length in populations as removal pressure increased. Total population abundance did not decrease as removal pressure increased; instead, here was a U-shaped relationship between removal pressure and the abundance of medium-bodied individuals. In addition, population biomass had a U-shaped curve response to removal pressure, implying that invasive fish populations can modulate their characteristics to compensate for the negative effects of selective removals. In addition, individual lengths at age 2 and juvenile growth rates decreased as removal pressure through angling increased, suggesting a shift toward an earlier size at maturity and an overall slower growing phenotype. Therefore, these outputs challenge the efficiency of selective management methods, suggesting the use of more proactive strategies to control invasive populations, and the need to investigate the potential ecological and evolutionary repercussions of nonrandom removal. PMID:26078856
Bronte, Charles R.; Schram, Stephen T.; Selgeby, James H.; Swanson, Bruce L.
2002-01-01
Fertilized eggs from lake trout Salvelinus namaycush were placed in artificial turf incubators and deployed on Devils Island Shoal, Lake Superior, in an attempt to reestablish a spawning population on this once important spawning area. Efficacy was measured by the changes in catch rates, age composition, and origin of adult lake trout returning to the shoal in the fall in subsequent years. The abundance of lake trout spawners without fin clips, which implies that these fish hatched in the lake, increased throughout the sampling period, whereas the abundance of hatchery-reared fish (indicated by one or more fin clips) stocked for restoration purposes remained low. Year-class-specific stock-recruitment analysis suggested that the recruitment of unclipped spawners was related to the number of eggs planted in previous years rather than to spawning by the few adult lake trout visiting the reef. Increases in adult fish at Devils Island Shoal were independent of trends at adjacent sites, where unclipped spawner abundances remained low. Enhanced survival to hatch and apparent site imprinting of young lake trout make this technique a viable alternative to stocking fingerling and yearling lake trout to reestablish spawning populations on specific sites in the Great Lakes.
Biological communities in San Francisco Bay track large-scale climate forcing over the North Pacific
NASA Astrophysics Data System (ADS)
Cloern, James E.; Hieb, Kathryn A.; Jacobson, Teresa; Sansó, Bruno; Di Lorenzo, Emanuele; Stacey, Mark T.; Largier, John L.; Meiring, Wendy; Peterson, William T.; Powell, Thomas M.; Winder, Monika; Jassby, Alan D.
2010-11-01
Long-term observations show that fish and plankton populations in the ocean fluctuate in synchrony with large-scale climate patterns, but similar evidence is lacking for estuaries because of shorter observational records. Marine fish and invertebrates have been sampled in San Francisco Bay since 1980 and exhibit large, unexplained population changes including record-high abundances of common species after 1999. Our analysis shows that populations of demersal fish, crabs and shrimp covary with the Pacific Decadal Oscillation (PDO) and North Pacific Gyre Oscillation (NPGO), both of which reversed signs in 1999. A time series model forced by the atmospheric driver of NPGO accounts for two-thirds of the variability in the first principal component of species abundances, and generalized linear models forced by PDO and NPGO account for most of the annual variability of individual species. We infer that synchronous shifts in climate patterns and community variability in San Francisco Bay are related to changes in oceanic wind forcing that modify coastal currents, upwelling intensity, surface temperature, and their influence on recruitment of marine species that utilize estuaries as nursery habitat. Ecological forecasts of estuarine responses to climate change must therefore consider how altered patterns of atmospheric forcing across ocean basins influence coastal oceanography as well as watershed hydrology.
Liu, Yiying; Zachow, Christin; Raaijmakers, Jos M.; de Bruijn, Irene
2016-01-01
Animals and plants are increasingly threatened by emerging fungal and oomycete diseases. Amongst oomycetes, Saprolegnia species cause population declines in aquatic animals, especially fish and amphibians, resulting in significant perturbation in biodiversity, ecological balance and food security. Due to the prohibition of several chemical control agents, novel sustainable measures are required to control Saprolegnia infections in aquaculture. Previously, fungal community analysis by terminal restriction fragment length polymorphism (T-RFLP) revealed that the Ascomycota, specifically the genus Microdochium, was an abundant fungal phylum associated with salmon eggs from a commercial fish farm. Here, phylogenetic analyses showed that most fungal isolates obtained from salmon eggs were closely related to Microdochium lycopodinum/Microdochium phragmitis and Trichoderma viride species. Phylogenetic and quantitative PCR analyses showed both a quantitative and qualitative difference in Trichoderma population between diseased and healthy salmon eggs, which was not the case for the Microdochium population. In vitro antagonistic activity of the fungi against Saprolegnia diclina was isolate-dependent; for most Trichoderma isolates, the typical mycoparasitic coiling around and/or formation of papilla-like structures on S. diclina hyphae were observed. These results suggest that among the fungal community associated with salmon eggs, Trichoderma species may play a role in Saprolegnia suppression in aquaculture. PMID:26805821
Liu, Yiying; Zachow, Christin; Raaijmakers, Jos M; de Bruijn, Irene
2016-01-21
Animals and plants are increasingly threatened by emerging fungal and oomycete diseases. Amongst oomycetes, Saprolegnia species cause population declines in aquatic animals, especially fish and amphibians, resulting in significant perturbation in biodiversity, ecological balance and food security. Due to the prohibition of several chemical control agents, novel sustainable measures are required to control Saprolegnia infections in aquaculture. Previously, fungal community analysis by terminal restriction fragment length polymorphism (T-RFLP) revealed that the Ascomycota, specifically the genus Microdochium, was an abundant fungal phylum associated with salmon eggs from a commercial fish farm. Here, phylogenetic analyses showed that most fungal isolates obtained from salmon eggs were closely related to Microdochium lycopodinum/Microdochium phragmitis and Trichoderma viride species. Phylogenetic and quantitative PCR analyses showed both a quantitative and qualitative difference in Trichoderma population between diseased and healthy salmon eggs, which was not the case for the Microdochium population. In vitro antagonistic activity of the fungi against Saprolegnia diclina was isolate-dependent; for most Trichoderma isolates, the typical mycoparasitic coiling around and/or formation of papilla-like structures on S. diclina hyphae were observed. These results suggest that among the fungal community associated with salmon eggs, Trichoderma species may play a role in Saprolegnia suppression in aquaculture.
Ecology of the Sand Roller (Percopsis transmontana) in a lower Snake River Reservoir, Washington
Tiffan, Kenneth F.; Erhardt, John M.; Rhodes, Tobyn N.; Hemingway, Rulon J.
2017-01-01
The Sand Roller (Percopsis transmontana), has not been abundant in the Snake River since it was first found in the system in the 1950s, but its population has apparently increased in recent years. As a result, we initiated a study to better understand its ecology in habitats of Lower Granite Reservoir. From November 2014 to October 2015, Sand Rollers were present along shorelines, with peak abundance being observed during spring months. Logistic regression analyses showed that Sand Rollers were more likely to be present in shoreline habitats at temperatures ≤18.4°C. Fish were found over a range of substrates, with the lowest odds of fish presence being associated with riprap, which is common in hydropower reservoirs. From length-frequency analysis, we suggest that Sand Roller spawning occurs primarily in May and early June. Assessment of Sand Roller diets found dipteran (chironomid) larvae and pupae were the most important prey consumed by all sizes of Sand Rollers, but Opossum Shrimp (Neomysis mercedis) were also prominent in diets of larger fish in shoreline and offshore habitats. At a time when the populations of so many native species are in decline, the increase of the Sand Roller population in the lower Snake River represents a positive, yet curious occurrence.
DNA barcoding of Cuban freshwater fishes: evidence for cryptic species and taxonomic conflicts.
Lara, Ariagna; Ponce de León, José Luis; Rodríguez, Rodet; Casane, Didier; Côté, Guillaume; Bernatchez, Louis; García-Machado, Erik
2010-05-01
Despite ongoing efforts to protect species and ecosystems in Cuba, habitat degradation, overuse and introduction of alien species have posed serious challenges to native freshwater fish species. In spite of the accumulated knowledge on the systematics of this freshwater ichthyofauna, recent results suggested that we are far from having a complete picture of the Cuban freshwater fish diversity. It is estimated that 40% of freshwater Cuban fish are endemic; however, this number may be even higher. Partial sequences (652 bp) of the mitochondrial gene COI (cytochrome c oxidase subunit I) were used to barcode 126 individuals, representing 27 taxonomically recognized species in 17 genera and 10 families. Analysis was based on Kimura 2-parameter genetic distances, and for four genera a character-based analysis (population aggregation analysis) was also used. The mean conspecific, congeneric and confamiliar genetic distances were 0.6%, 9.1% and 20.2% respectively. Molecular species identification was in concordance with current taxonomical classification in 96.4% of cases, and based on the neighbour-joining trees, in all but one instance, members of a given genera clustered within the same clade. Within the genus Gambusia, genetic divergence analysis suggests that there may be at least four cryptic species. In contrast, low genetic divergence and a lack of diagnostic sites suggest that Rivulus insulaepinorum may be conspecific with Rivulus cylindraceus. Distance and character-based analysis were completely concordant, suggesting that they complement species identification. Overall, the results evidenced the usefulness of the DNA barcodes for cataloguing Cuban freshwater fish species and for identifying those groups that deserve further taxonomic attention. © 2009 Blackwell Publishing Ltd.
Pérez-Del-Olmo, A; Montero, F E; Fernández, M; Barrett, J; Raga, J A; Kostadinova, A
2010-10-01
We address the effect of spatial scale and temporal variation on model generality when forming predictive models for fish assignment using a new data mining approach, Random Forests (RF), to variable biological markers (parasite community data). Models were implemented for a fish host-parasite system sampled along the Mediterranean and Atlantic coasts of Spain and were validated using independent datasets. We considered 2 basic classification problems in evaluating the importance of variations in parasite infracommunities for assignment of individual fish to their populations of origin: multiclass (2-5 population models, using 2 seasonal replicates from each of the populations) and 2-class task (using 4 seasonal replicates from 1 Atlantic and 1 Mediterranean population each). The main results are that (i) RF are well suited for multiclass population assignment using parasite communities in non-migratory fish; (ii) RF provide an efficient means for model cross-validation on the baseline data and this allows sample size limitations in parasite tag studies to be tackled effectively; (iii) the performance of RF is dependent on the complexity and spatial extent/configuration of the problem; and (iv) the development of predictive models is strongly influenced by seasonal change and this stresses the importance of both temporal replication and model validation in parasite tagging studies.
Status and trends in the fish community of Lake Superior, 2012
Gorman, Owen T.; Evrard, Lori M.; Cholwek, Gary A.; Vinson, Mark
2012-01-01
Due to ship mechanical failures, nearshore sampling was delayed from mid-May to mid-June to mid-June to late August. The shift to summer sampling when the lake was stratified may have affected our estimates, thus our estimates of status and trends for the nearshore fish community in 2012 are tentative, pending results of future surveys. However, the results of the 2012 survey are comparable with those during 2009 and 2010 when lake-wide fish biomass declined to < 1.40 kg/ha. Declines in prey fish biomass since the late 1990s can be attributed to a combination of increased predation by recovered lake trout populations and infrequent and weak recruitment by the principal prey fishes, cisco and bloater. In turn declines in lake trout biomass since the mid-2000s are likely linked to declines in prey fish biomass. If lean and siscowet lake trout populations in nearshore waters continue to remain at current levels, predation mortality will likely maintain the relatively low prey fish biomass observed in recent years. Alternatively, if lake trout populations show a substantial decline in abundance in upcoming years, prey fish populations may rebound in a fashion reminiscent to what occurred in the late 1970s to mid-1980s. However, this scenario depends on substantial increases in harvest of lake trout, which seems unlikely given that levels of lake trout harvest have been flat or declining in many regions of Lake Superior since 2000.
Choupina, A B; Martins, I M
2014-08-01
Freshwater mussel species are in global decline. Anthropogenic changes of river channels and the decrease of autochthonous fish population, the natural hosts of mussels larval stages (glochidia), are the main causes. Therefore, the conservation of mussel species depends not only on habitat conservation, but also on the availability of the fish host. In Portugal, information concerning most of the mussel species is remarkably scarce. One of the most known species, Unio pictorum is also in decline however, in the basins of the rivers Tua and Sabor (Northeast of Portugal), there is some indication of relatively large populations. The aforementioned rivers can be extremely important for this species conservation not only in Portugal, but also in the remaining Iberian Peninsula. Thus, it is important to obtain data concerning Unio pictorum bioecology (distribution, habitat requirements, population structure, genetic variability, reproductive cycle and recruitment rates), as well as the genetic variability and structure of the population. Concomitantly, information concerning fish population structure, the importance of the different fish species as "glochidia" hosts and their appropriate density to allow effective mussel recruitment, will also be assessed. The achieved data is crucial to obtain information to develop effective management measures in order to promote the conservation of this bivalve species, the conservation of autochthonous fish populations, and consequently the integrity of the river habitats.
The cumulative MeHg and PCBs exposure and risk of tribal ...
Studies have shown that the U.S. population continues to be exposed to methyl mercury (MeHg) and polychlorinated biphenyls (PCBs) due to the long half-life of those environmental contaminants. Fish intake of Tribal populations is much higher than the U.S. general population due to dietary habits and unique cultural practices. Large fish tissue concentration data sets from the Environmental Protections Agency’s (EPA’s) Office of Water, USGS’s EMMMA program, and other data sources, were integrated, analyzed, and combined with recent tribal fish intake data for exposure analyses using the dietary module within EPA’s SHEDS-Multimedia model. SHEDS-Multimedia is a physically-based, probabilistic model, which can simulate cumulative (multiple chemicals) or aggregate (single chemical) exposures over time for a population via various pathways of exposure for a variety of multimedia, multipathway environmental chemicals. Our results show that MeHg and total PCBs exposure of tribal populations from fish are about 3 to 10 and 5 to 15 times higher than the US general population, respectively, and that the estimated exposures pose potential health risks. The cumulative exposures of MeHg and total PCBs will be assessed to generate the joint exposure profiles for Tribal and US general populations. Model sensitivity analyses will identify the important contributions of the cumulative exposures of MeHg and total PCBs such as fish types, locations, and size, and key expos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leathe, Stephen A.; Enk, Michael D.
This study was designed to develop and apply methods to evaluate the cumulative effects of 20 proposed small hydro projects on the fisheries resources of the Swan River drainage located in northwestern Montana. Fish population and reach classification information was used to estimate total populations of 107,000 brook trout, 65,000 cut-throat trout and 31,000 juvenile bull trout within the tributary system. Distribution, abundance, and life history of fish species in the drainage and their contribution to the sport fishery were considered in the cumulative impact analysis. Bull trout were chosen as the primary species of concern because of their extensivemore » use of project areas, sensitivity to streambed sedimentation, and their importance to the lake and river sport fisheries. Dewatering of hydroelectric diversion zones and streambed sedimentation (resulting from forest and small hydro development) were the major impacts considered. The developer proposed to divert up to the entire streamflow during low flow months because maintenance of recommended minimum bypass flows would not allow profitable project operation. Dewatering was assumed to result in a total loss of fish production in these areas. 105 refs., 19 figs., 38 tabs.« less
Contaminant effects on Great Lakes' fish-eating birds: a population perspective
Heinz, G.H.; Kendall, Ronald J.; Dickerson, Richard L.; Giesy, John P.; Suk, William P.
1998-01-01
Preventing environmental contaminants from reducing wildlife populations is the greatest concern in wildlife toxicology. In the Great Lakes, environmental contaminants have a history of reducing populations of many species of fish-eating birds. Endocrine effects may have contributed to declines in fish-eating bird populations, but the overriding harm was caused by DDE-induced eggshell thinning. Toxic effects may still be occurring today, but apparently they are not of a sufficient magnitude to depress populations of most fish-eating birds. Once DDE levels in the Great Lakes declined, eggshells of birds began to get thicker and reproductive success improved. Populations of double-crested cormorants (Phalacrocorax auritus) and ring-billed gulls (Larus delawarensis) have increased dramatically since the bans on DDT and other organochlorine pesticides. Bald eagles (Haliaeetus leucocephalus) are still not reproducing at a normal rate along the shores of the Great Lakes, but success is much improved compared to earlier records when eggshell thinning was worse. Other species, such as herring gulls (Larus argentatus) and black-crowned night-herons (Nycticorax nycticorax), seem to be having improved reproductive success, but data on Great Lakes'-wide population changes are incomplete. Reproductive success of common terns (Sterna hirundo), Caspian terns (Sterna caspia), and Forster's terns (Sterna forsteri) seems to have improved in recent years, but, again, data on population changes are not very complete, and these birds face many habitat related problems as well as contaminant problems. Although contaminants are still producing toxic effects, and these effects may include endocrine disfunction, fish-eating birds in the Great Lakes seem to be largely weathering these effects, at least as far as populations are concerned. A lack of obvious contaminant effects on populations of fish-eating birds in the Great Lakes, however, should not be equated with a lack of any harm to these birds or with a conclusion that certain contaminants do not need additional control.
Guber, Alexander; Greif, Joel; Rona, Roni; Fireman, Elizabeth; Madi, Lea; Kaplan, Tal; Yemini, Zipi; Gottfried, Maya; Katz, Ruth L; Daniely, Michal
2010-10-25
Lung cancer results from a multistep process, whereby genetic and epigenetic alterations lead to a malignant phenotype. Somatic mutations, deletions, and amplifications can be detected in the tumor itself, but they can also be found in histologically normal bronchial epithelium as a result of field cancerization. The present feasibility study describes a computer-assisted analysis of induced sputum employing morphology and fluorescence in situ hybridization (target-FISH), using 2 biomarkers located at chromosomes 3p22.1 and 10q22.3. Induced sputum samples were collected using a standardized protocol from 12 patients with lung cancer and from 15 healthy, nonsmoking controls. We used an automated scanning system that allows consecutive scans of morphology and FISH of the same slide. Cells derived for the lower airways were analyzed for the presence of genetic alterations in the 3p22.1 and 10q22.3 loci. The cutoff for a positive diagnosis was defined as >4% of cells showing genetic alterations. Eleven of 12 lung cancer patients and 12 of 15 controls were identified correctly, giving an overall sensitivity and specificity of 91.66% and 80%, respectively. This study describes a new technology for detecting lung cancer noninvasively in induced sputum via a combination of morphology and FISH analysis (target-FISH) using computer-assisted technology. This approach may potentially be utilized for mass screening of high-risk populations. © 2010 American Cancer Society.
NASA Astrophysics Data System (ADS)
Svirgsden, Roland; Albert, Anu; Rohtla, Mehis; Taal, Imre; Saks, Lauri; Verliin, Aare; Kesler, Martin; Hubel, Kalvi; Vetemaa, Markus; Saat, Toomas
2015-09-01
Egg characteristics of teleost fishes are affected by various abiotic and biotic factors. In order to reproduce successfully, freshwater fishes inhabiting brackish environments must alter their reproductive characteristics, including egg properties, to increased osmotic pressure. Ruffe Gymnocephalus cernua was used as a model species to compare egg characteristics between fish populations inhabiting brackish and freshwater environments. Fish from the brackish environment had larger eggs with higher energy content than the individuals originating from freshwater. In freshwater, eggs from the first batch were larger than from the second. Female size correlated positively with egg size in the brackish water population. In freshwater, this correlation was evident only with eggs from the first batch. Only a weak positive correlation was found between fish condition and egg size in females from the brackish water population. Egg size variation did not differ between sites, nor was it correlated with mean egg size or any other maternal traits within populations. These results indicate significant modifications in reproductive strategies between brackish and freshwater ruffe populations. Additionally, results show that at least in freshwater, the first batch of eggs is of the highest quality and therefore more important for reproduction.
So long to genetic diversity, and thanks for all the fish.
Allendorf, Fred W; Berry, Oliver; Ryman, Nils
2014-01-01
The world faces a global fishing crisis. Wild marine fisheries comprise nearly 15% of all animal protein in the human diet, but, according to the U.N. Food and Agriculture Organization, nearly 60% of all commercially important marine fish stocks are overexploited, recovering, or depleted (FAO 2012; Fig. 1). Some authors have suggested that the large population sizes of harvested marine fish make even collapsed populations resistant to the loss of genetic variation by genetic drift (e.g. Beverton 1990). In contrast, others have argued that the loss of alleles because of overfishing may actually be more dramatic in large populations than in small ones (Ryman et al. 1995). In this issue, Pinsky & Palumbi (2014) report that overfished populations have approximately 2% lower heterozygosity and 12% lower allelic richness than populations that are not overfished. They also performed simulations which suggest that their estimates likely underestimate the actual loss of rare alleles by a factor of three or four. This important paper shows that the harvesting of marine fish can have genetic effects that threaten the long-term sustainability of this valuable resource. © 2013 John Wiley & Sons Ltd.
Meeting the Needs for More Fish Through Aquaculture
NASA Astrophysics Data System (ADS)
Giap, D. H.; Lam, T. J.
2015-10-01
Fish is one of the major sources of animal protein. Due to rising world populations, increasing income and urbanization, demand for fish has been increasing. In order to meet the need for more fish, aquaculture has become increasingly important as wild populations and production from capture fisheries have declined due to overfishing and poor management. In recent years, production from aquaculture has increased rapidly to address the shortfalls in capture fisheries, especially in Asia where aquaculture production accounts for about 90% of world aquaculture production by volume. This paper reviews the status of the world’s fish production, provides an update on Asian aquaculture, and highlights developments that are contributing to sustainable fish production, particularly integrated multi-trophic aquaculture and aquaponics.
RECENT ECOLOGICAL DIVERGENCE DESPITE MIGRATION IN SOCKEYE SALMON (ONCORHYNCHUS NERKA)
Pavey, Scott A; Nielsen, Jennifer L; Hamon, Troy R
2010-01-01
Ecological divergence may result when populations experience different selection regimes, but there is considerable discussion about the role of migration at the beginning stages of divergence before reproductive isolating mechanisms have evolved. However, detection of past migration is difficult in current populations and tools to differentiate genetic similarities due to migration versus recent common ancestry are only recently available. Using past volcanic eruption times as a framework, we combine morphological analyses of traits important to reproduction with a coalescent-based genetic analysis of two proximate sockeye salmon (Oncorhynchus nerka) populations. We find that this is the most recent (∼500 years, 100 generations) natural ecological divergence recorded in a fish species, and report that this divergence is occurring despite migration. Although studies of fish divergence following the retreat of glaciers (10,000–15,000 years ago) have contributed extensively to our understanding of speciation, the Aniakchak system of sockeye salmon provides a rare example of the initial stages of ecological divergence following natural colonization. Our results show that even in the face of continued migration, populations may diverge in the absence of a physical barrier. PMID:20030707
Recent ecological divergence despite migration in sockeye salmon (Oncorhynchus nerka).
Pavey, Scott A; Nielsen, Jennifer L; Hamon, Troy R
2010-06-01
Ecological divergence may result when populations experience different selection regimes, but there is considerable discussion about the role of migration at the beginning stages of divergence before reproductive isolating mechanisms have evolved. However, detection of past migration is difficult in current populations and tools to differentiate genetic similarities due to migration versus recent common ancestry are only recently available. Using past volcanic eruption times as a framework, we combine morphological analyses of traits important to reproduction with a coalescent-based genetic analysis of two proximate sockeye salmon (Oncorhynchus nerka) populations. We find that this is the most recent (approximately 500 years, 100 generations) natural ecological divergence recorded in a fish species, and report that this divergence is occurring despite migration. Although studies of fish divergence following the retreat of glaciers (10,000-15,000 years ago) have contributed extensively to our understanding of speciation, the Aniakchak system of sockeye salmon provides a rare example of the initial stages of ecological divergence following natural colonization. Our results show that even in the face of continued migration, populations may diverge in the absence of a physical barrier.
Recent ecological divergence despite migration in sockeye salmon (Oncorhynchus nerka)
Pavey, Scott A.; Nielsen, Jennifer L.; Hamon, Troy R.
2010-01-01
Ecological divergence may result when populations experience different selection regimes, but there is considerable discussion about the role of migration at the beginning stages of divergence before reproductive isolating mechanisms have evolved. However, detection of past migration is difficult in current populations and tools to differentiate genetic similarities due to migration versus recent common ancestry are only recently available. Using past volcanic eruption times as a framework, we combine morphological analyses of traits important to reproduction with a coalescent-based genetic analysis of two proximate sockeye salmon (Oncorhynchus nerka) populations. We find that this is the most recent (~500 years, 100 generations) natural ecological divergence recorded in a fish species, and report that this divergence is occurring despite migration. Although studies of fish divergence following the retreat of glaciers (10,000–15,000 years ago) have contributed extensively to our understanding of speciation, the Aniakchak system of sockeye salmon provides a rare example of the initial stages of ecological divergence following natural colonization. Our results show that even in the face of continued migration, populations may diverge in the absence of a physical barrier.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Gary E.; Ploskey, Gene R.; Hedgepeth, J.
2008-07-29
Dams impact the survival of juvenile anadromous fishes by obstructing migration corridors, lowering water quality, delaying migrations, and entraining fish in turbine discharge. To reduce these impacts, structural and operational modifications to dams— such as voluntary spill discharge, turbine intake guidance screens, and surface flow outlets—are instituted. Over the last six years, we have used acoustic imaging technology to evaluate the effects of these modifications on fish behavior, passage rates, entrainment zones, and fish/flow relationships at hydroelectric projects on the Columbia River. The imaging technique has evolved from studies documenting simple movement patterns to automated tracking of images to mergingmore » and analysis with concurrent hydraulic data. This chapter chronicles this evolution and shows how the information gleaned from the scientific evaluations has been applied to improve passage conditions for juvenile salmonids. We present data from Bonneville and The Dalles dams that document fish behavior and entrainment zones at sluiceway outlets (14 to 142 m3/s), fish passage rates through a gap at a turbine intake screen, and the relationship between fish swimming effort and hydraulic conditions. Dam operators and fisheries managers have applied these data to support decisions on operational and structural changes to the dams for the benefit of anadromous fish populations in the Columbia River basin.« less
Management of oil spill contamination in the Gulf of Patras caused by an accidental subsea blowout.
Makatounis, Panagiotis Eleftherios; Skancke, Jørgen; Florou, Evanthia; Stamou, Anastasios; Brandvik, Per Johan
2017-12-01
A methodology is presented and applied to assess the oil contamination probability in the Gulf of Patras and the environmental impacts on the environmentally sensitive area of Mesolongi - Aitoliko coastal lagoons, and to examine the effectiveness of response systems. The procedure consists of the following steps: (1) Determination of the computational domain and the main areas of interest, (2) determination of the drilling sites and oil release characteristics, (3) selection of the simulation periods and collection of environmental data, (4) identification of the species of interest and their characteristics, (5) performance of stochastic calculations and oil contamination probability analysis, (6) determination of the worst-cases, (7) determination of the characteristics of response systems, (8) performance of deterministic calculations, and (9) assessment of the impact of oil spill in the areas of interest. Stochastic calculations that were performed for three typical seasonal weather variations of the year 2015, three oil release sites and specific oil characteristics, showed that there is a considerable probability of oil pollution that reaches 30% in the Mesolongi - Aitoliko lagoons. Based on a simplified approach regarding the characteristic of the sensitive birds and fish in the lagoons, deterministic calculations showed that 78-90% of the bird population and 2-4% of the fish population are expected to be contaminated in the case of an oil spill without any intervention. The use of dispersants reduced the amount of stranded oil by approximately 16-21% and the contaminated bird population of the lagoons to approximately 70%; however, the affected fish population increased to 6-8.5% due to the higher oil concentration in the water column. Mechanical recovery with skimmers "cleaned" almost 10% of the released oil quantity, but it did not have any noticeable effect on the stranded oil and the impacted bird and fish populations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Coral reef fishes exhibit beneficial phenotypes inside marine protected areas
Carroll, Jessica; Rynerson, Kristen W.; Matthews, Danielle F.; Turingan, Ralph G.
2018-01-01
Human fishing effort is size-selective, preferentially removing the largest individuals from harvested stocks. Intensive, size-specific fishing mortality induces directional shifts in phenotypic frequencies towards the predominance of smaller and earlier-maturing individuals, which are among the primary causes of declining fish biomass. Fish that reproduce at smaller size and younger age produce fewer, smaller, and less viable larvae, severely reducing the reproductive capacity of harvested populations. Marine protected areas (MPAs) are extensively utilized in coral reefs for fisheries management, and are thought to mitigate the impacts of size-selective fishing mortality and supplement fished stocks through larval export. However, empirical evidence of disparities in fitness-relevant phenotypes between MPAs and adjacent fished reefs is necessary to validate this assertion. Here, we compare key life-history traits in three coral-reef fishes (Acanthurus nigrofuscus, Ctenochaetus striatus, and Parupeneus multifasciatus) between MPAs and fished reefs in the Philippines. Results of our analyses support previous hypotheses regarding the impacts of MPAs on phenotypic traits. Asymptotic length (Linf) and growth rates (K) differed between conspecifics in MPAs and fished reefs, with protected populations exhibiting phenotypes that are known to confer higher fecundity. Additionally, populations demonstrated increases in length at 50% maturity (L50) inside MPAs compared to adjacent areas, although age at 50% maturity (A50) did not appear to be impacted by MPA establishment. Shifts toward advantageous phenotypes were most common in the oldest and largest MPAs, but occurred in all of the MPAs examined. These results suggest that MPAs may provide protection against the impacts of size-selective harvest on life-history traits in coral-reef fishes. PMID:29470525
40 CFR 125.57 - Law governing issuance of a section 301(h) modified permit.
Code of Federal Regulations, 2014 CFR
2014-07-01
... propagation of a balanced indigenous population of shellfish, fish, and wildlife, and allows recreational... application do not support a balanced indigenous population of shellfish, fish, and wildlife, or allow...
Fish Commoditization: Sustainability Strategies to Protect Living Fish
ERIC Educational Resources Information Center
Lam, Mimi E.; Pitcher, Tony J.
2012-01-01
The impacts of early fishing on aquatic ecosystems were minimal, as primitive technologies were used to harvest fish primarily for food. As fishing technology grew more sophisticated and human populations dispersed and expanded, local economies transitioned from subsistence to barter and trade. Expanded trade networks and mercantilization led to…
Baldigo, Barry P.; Ernst, Anne G.; Warren, Dana R.; Miller, Sarah J.
2010-01-01
Natural-channel-design (NCD) restorations were recently implemented within large segments of five first- and second-order streams in the Catskill Mountains of New York in an attempt to increase channel stability, reduce bed and bank erosion, and sustain water quality. In conjunction with these efforts, 54 fish and habitat surveys were done from 1999 to 2007 at six restored reaches and five stable control reaches to evaluate the effects of NCD restoration on fish assemblages, habitat, and bank stability. A before–after–control–impact study design and two-factor analysis of variance were used to quantify the net changes in habitat and fish population and community indices at treatment reaches relative to those at unaltered control reaches. The density and biomass of fish communities were often dominated by one or two small prey species and no or few predator species before restoration and by one or more trout (Salmonidae) species after restoration. Significant increases in community richness (30%), diversity (40%), species or biomass equitability (32%), and total biomass (up to 52%) in at least four of the six restored reaches demonstrate that NCD restorations can improve the health and sustainability of fish communities in geomorphically unstable Catskill Mountain streams over the short to marginally long term. Bank stability, stream habitat, and trout habitat suitability indices (HSIs) generally improved significantly at the restored reaches, but key habitat features and trout HSIs did not change or decreased at two of them. Fish communities and trout populations at these two reaches were not positively affected by NCD restorations. Though NCD restorations often had a positive effect on habitat and fish communities, our results show that the initial habitat conditions limit the relative improvements than can be achieved, habitat quality and stability do not necessarily respond in unison, and biotic and abiotic responses cannot always be generalized.
NASA Astrophysics Data System (ADS)
Priest, Mark A.; Halford, Andrew R.; Clements, Kendall D.; Douglas, Emily; Abellana, Sheena L.; McIlwain, Jennifer L.
2016-12-01
Processes acting during the early stages of coral reef fish life cycles have a disproportionate influence on their adult abundance and community structure. Higher growth rates, for example, confer a major fitness advantage in larval and juvenile fishes, with larger fish undergoing significantly less mortality. The role of dietary resources in the size-structuring process has not been well validated, especially at the early post-settlement phase, where competition and predation are seen as preeminent drivers of juvenile fish assemblage structure. Here, we report on a size differential of 10-20% between recently settled Siganus spinus rabbitfish recruits from different bays around the Pacific island of Guam. This difference was maintained across multiple recruitment events within and between years. After confirming the validity of our observations through otolith increment analysis, subsequent investigation into the drivers of this variation revealed significant differences in the structure of algal assemblages between bays, congruent with the observed differences in size of the recently settled fish. Gut analyses showed a greater presence of algal types with higher levels of nitrogen and phosphorus in the stomachs of fish from Tanguisson, the bay with the largest observed recruits. To ensure this mechanism was one of causation and not correlation, we conducted a fully factorial experiment in which S. spinus recruits sampled from different bays were reared on all combinations of algal diets representative of the different bays. Recruits on the `Tanguisson' diet grew faster than recruits on other diets, regardless of their origin. We propose that the greater availability of high-quality dietary resources at this location is likely conferring benefits that impact on the population-level dynamics of this species. The spatial and temporal extent of this process clearly implicates food as a limiting resource, capable of mediating fish population dynamics at multiple spatial scales and ontogenetic phases.
Mattiucci, Simonetta; Garcia, Alexandra; Cipriani, Paolo; Santos, Miguel Neves; Nascetti, Giuseppe; Cimmaruta, Roberta
2014-01-01
Thirteen parasite taxa were identified in the Mediterranean swordfish by morphological and genetic/molecular methods. The comparison of the identified parasite taxa and parasitic infection values observed in the Mediterranean swordfish showed statistically significant differences with respect to those reported for its Atlantic populations. A stepwise Linear Discriminant Analysis of the individual fish examined showed a separation among three groups: one including fish from the Mediterranean Sea (CTS, STS, and IOS); one consisting of fish from the Central South (CS), Eastern Tropical (ET), and Equatorial (TEQ) Atlantic; and a third comprising the fish sampled from the North-West Atlantic (NW); the CN Atlantic sample was more similar to the first group rather than to the other Atlantic ones. The nematodes Hysterothylacium petteri and Anisakis pegreffii were the species that contributed most to the characterization of the Mediterranean swordfish samples with respect to these Atlantic ones. Anisakis brevispiculata, A. physeteris, A. paggiae, Anisakis sp. 2, Hysterothylacium incurvum, Hepatoxylon trichiuri, Sphyriocephalus viridis, and their high infection levels were associated with the swordfish from the Central and the Southern Atlantic areas. Finally, H. corrugatum, A. simplex (s.s.), Rhadinorhynchus pristis, and Bolbosoma vasculosum were related to the fish from the North-West (NW) Atlantic area. These results indicate that some parasites, particularly Anisakis spp. larvae identified by genetic markers, could be used as “biological tags” and support the existence of a Mediterranean swordfish stock. PMID:25057787
Status of rainbow smelt in the U.S. waters of Lake Ontario, 2013
Weidel, Brian C.; Connerton, Michael J.
2014-01-01
Rainbow Smelt Osmerus mordax are the second most abundant pelagic prey fish in Lake Ontario after Alewife Alosa psuedoharengus. The 2013, USGS/NYSDEC bottom trawl assessment indicated the abundance of Lake Ontario age-1 and older Rainbow Smelt decreased by 69% relative to 2012. Length frequency-based age analysis indicated that age-1 Rainbow Smelt constituted approximately 50% of the population, which is similar to recent trends where the proportion of age-1 has ranged from 95% to 42% of the population. While they constituted approximately half of the catch, the overall abundance index for age 1 was one of the lowest observed in the time series, potentially a result of cannibalism from the previous year class. Combined data from all bottom trawl assessments along the southern shore and eastern basin indicate the proportion of the fish community that is Rainbow Smelt has declined over the past 30 years. In 2013 the proportion of the pelagic fish catch (only pelagic species) that was Rainbow Smelt was the second lowest in the time series at 3.1%. Community diversity indices, based on bottom trawl catches, indicate that Lake Ontario fish community diversity, as assessed by bottom trawls, has sharply declined over the past 36 years and in 2013 the index was the lowest value in the time series. Much of this community diversity decline is driven by changes in the pelagic fish community and dominance of Alewife.
Shin, Eun-su; Kim, Jongchul; Choi, Sung-Deuk; Kang, Young-Woon; Chang, Yoon-Seok
2016-03-01
We analyzed 17 polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), and 12 dioxin-like polychlorinated biphenyls (DL-PCBs) in samples from various fish species available at food markets in nine Korean cities. The estimated dietary intake of these chemicals was calculated from the raw concentrations of PCDD/Fs and DL-PCBs in each sample and from the food consumption of the Korean general population, and a comparison was made with the provisional tolerable monthly intake (PTMI). The average daily dietary exposure and the 95th percentile of intake of PCDD/Fs and DL-PCBs were 0.21 and 0.49 pg WHO05-toxic equivalents (TEQ) kg(-1) body weight d(-1) representing 5.27% and 12.26%, respectively, of the Korean tolerable daily intake (TDI). We applied the monthly fish consumption limits to the evaluation of improved risk assessment and concluded that unlimited consumption of most fish species does not contribute to the elevated cancer risk. This investigation was the first such large-scale study in Korea, and incorporated 37 species, including a species of whale, and 480 samples. The major aims of this study were to demonstrate the health risks associated with fish intake and to ensure food safety through total analysis of PCDD/Fs and DL-PCBs using gas chromatography/high-resolution mass spectrometry (GC-HRMS). Copyright © 2015 Elsevier Ltd. All rights reserved.
The offshore benthic fish community
Lantry, Brian F.; Lantry, Jana R.; Weidel, Brian C.; Walsh, Maureen; Hoyle, James A.; Schaner, Teodore; Neave, Fraser B.; Keir, Michael
2014-01-01
The offshore benthic fish community will be composed of self-sustaining native fishes characterized by lake trout as the top predator, a population expansion of lake whitefish from northeastern waters to other areas of the lake, and rehabilitated native prey fishes.
Standard methods for sampling North American freshwater fishes
Bonar, Scott A.; Hubert, Wayne A.; Willis, David W.
2009-01-01
This important reference book provides standard sampling methods recommended by the American Fisheries Society for assessing and monitoring freshwater fish populations in North America. Methods apply to ponds, reservoirs, natural lakes, and streams and rivers containing cold and warmwater fishes. Range-wide and eco-regional averages for indices of abundance, population structure, and condition for individual species are supplied to facilitate comparisons of standard data among populations. Provides information on converting nonstandard to standard data, statistical and database procedures for analyzing and storing standard data, and methods to prevent transfer of invasive species while sampling.
Structure and variation of the mitochondrial genome of fishes.
Satoh, Takashi P; Miya, Masaki; Mabuchi, Kohji; Nishida, Mutsumi
2016-09-07
The mitochondrial (mt) genome has been used as an effective tool for phylogenetic and population genetic analyses in vertebrates. However, the structure and variability of the vertebrate mt genome are not well understood. A potential strategy for improving our understanding is to conduct a comprehensive comparative study of large mt genome data. The aim of this study was to characterize the structure and variability of the fish mt genome through comparative analysis of large datasets. An analysis of the secondary structure of proteins for 250 fish species (248 ray-finned and 2 cartilaginous fishes) illustrated that cytochrome c oxidase subunits (COI, COII, and COIII) and a cytochrome bc1 complex subunit (Cyt b) had substantial amino acid conservation. Among the four proteins, COI was the most conserved, as more than half of all amino acid sites were invariable among the 250 species. Our models identified 43 and 58 stems within 12S rRNA and 16S rRNA, respectively, with larger numbers than proposed previously for vertebrates. The models also identified 149 and 319 invariable sites in 12S rRNA and 16S rRNA, respectively, in all fishes. In particular, the present result verified that a region corresponding to the peptidyl transferase center in prokaryotic 23S rRNA, which is homologous to mt 16S rRNA, is also conserved in fish mt 16S rRNA. Concerning the gene order, we found 35 variations (in 32 families) that deviated from the common gene order in vertebrates. These gene rearrangements were mostly observed in the area spanning the ND5 gene to the control region as well as two tRNA gene cluster regions (IQM and WANCY regions). Although many of such gene rearrangements were unique to a specific taxon, some were shared polyphyletically between distantly related species. Through a large-scale comparative analysis of 250 fish species mt genomes, we elucidated various structural aspects of the fish mt genome and the encoded genes. The present results will be important for understanding functions of the mt genome and developing programs for nucleotide sequence analysis. This study demonstrated the significance of extensive comparisons for understanding the structure of the mt genome.
Faugeras, Blaise; Maury, Olivier
2005-10-01
We develop an advection-diffusion size-structured fish population dynamics model and apply it to simulate the skipjack tuna population in the Indian Ocean. The model is fully spatialized, and movements are parameterized with oceanographical and biological data; thus it naturally reacts to environment changes. We first formulate an initial-boundary value problem and prove existence of a unique positive solution. We then discuss the numerical scheme chosen for the integration of the simulation model. In a second step we address the parameter estimation problem for such a model. With the help of automatic differentiation, we derive the adjoint code which is used to compute the exact gradient of a Bayesian cost function measuring the distance between the outputs of the model and catch and length frequency data. A sensitivity analysis shows that not all parameters can be estimated from the data. Finally twin experiments in which pertubated parameters are recovered from simulated data are successfully conducted.
Yang, M; Tian, C; Liang, X-F; Zheng, H; Zhao, C; Zhu, K
2015-05-18
The Chinese perch, or mandarin fish (Siniperca chuatsi), is a freshwater fish that is endemic to East Asia. In this study, we investigated the genetic diversity and structure of nine natural mandarin fish populations (from the Yangtze River and Amur River basins) and six hatchery stocks (from central and south China) using microsatellite markers. The results show that the genetic diversity of the Yangtze River populations was high and stable, and genetic differences between them were not significant. In contrast, a low level of genetic diversity and strong genetic structure were detected in the Amur River population. These results suggest that the Yangtze River region and the Amur River region should be treated as two separate units in conservation programs. The hatchery stocks exhibited low genetic diversity and significant genetic differentiation compared to natural populations; this may result in a significant impact on the species if escape events occur. Therefore, a scientific aquaculture management strategy is necessary for the long-term development of hatcheries.
Novotny, A.J.
1960-01-01
The one factor which probably contributes the greatest effect on distributional patterns of Anisakis within chum salmon musculature is the total intensity of infection (or population density of Anisakis) in each fish.
The genomic landscape of rapid, repeated evolutionary rescue from toxic pollution in wild fish
USDA-ARS?s Scientific Manuscript database
Here we describe evolutionary rescue from intense pollution via multiple modes of selection in killifish populations from 4 urban estuaries of the US eastern seaboard. Comparative transcriptomics and analysis of 384 whole genome sequences show that the functioning of a receptor-based signaling pathw...
Long-term survival despite low genetic diversity in the critically endangered Madagascar fish-eagle
Johnson, J.A.; Tingay, R.E.; Culver, M.; Hailer, F.; Clarke, M.L.; Mindell, D.P.
2009-01-01
The critically endangered Madagascar fish-eagle (Haliaeetus vociferoides) is considered to be one of the rarest birds of prey globally and at significant risk of extinction. In the most recent census, only 222 adult individuals were recorded with an estimated total breeding population of no more than 100-120 pairs. Here, levels of Madagascar fish-eagle population genetic diversity based on 47 microsatellite loci were compared with its sister species, the African fish-eagle (Haliaeetus vocifer), and 16 of these loci were also characterized in the white-tailed eagle (Haliaeetus albicilla) and the bald eagle (Haliaeetus leucocephalus). Overall, extremely low genetic diversity was observed in the Madagascar fish-eagle compared to other surveyed Haliaeetus species. Determining whether this low diversity is the result of a recent bottleneck or a more historic event has important implications for their conservation. Using a Bayesian coalescent-based method, we show that Madagascar fish-eagles have maintained a small effective population size for hundreds to thousands of years and that its low level of neutral genetic diversity is not the result of a recent bottleneck. Therefore, efforts made to prevent Madagascar fish-eagle extinction should place high priority on maintenance of habitat requirements and reducing direct and indirect human persecution. Given the current rate of deforestation in Madagascar, we further recommend that the population be expanded to occupy a larger geographical distribution. This will help the population persist when exposed to stochastic factors (e.g. climate and disease) that may threaten a species consisting of only 200 adult individuals while inhabiting a rapidly changing landscape. ?? 2008 The Authors.
Saunders, W. Carl; Budy, Phaedra E.; Thiede, Gary P.
2015-01-01
Exotic species present a great threat to native fish conservation; however, eradicating exotics is expensive and often impractical. Mechanical removal can be ineffective for eradication, but nonetheless may increase management effectiveness by identifying portions of a watershed that are strong sources of exotics. We used mechanical removal to understand processes driving exotic brown trout (Salmo trutta) populations in the Logan River, Utah. Our goals were to: (i) evaluate the demographic response of brown trout to mechanical removal, (ii) identify sources of brown trout recruitment at a watershed scale and (iii) evaluate whether mechanical removal can reduce brown trout densities. We removed brown trout from 2 km of the Logan River (4174 fish), and 5.6 km of Right Hand Fork (RHF, 15,245 fish), a low-elevation tributary, using single-pass electrofishing. We compared fish abundance and size distributions prior to, and after 2 years of mechanical removal. In the Logan River, immigration to the removal reach and high natural variability in fish abundances limited the response to mechanical removal. In contrast, mechanical removal in RHF resulted in a strong recruitment pulse, shifting the size distribution towards smaller fish. These results suggest that, before removal, density-dependent mortality or emigration of juvenile fish stabilised adult populations and may have provided a source of juveniles to the main stem. Overall, in sites demonstrating strong density-dependent population regulation, or near sources of exotics, short-term mechanical removal has limited effects on brown trout populations but may help identify factors governing populations and inform large-scale management of exotic species.
Long-term survival despite low genetic diversity in the critically endangered Madagascar fish-eagle.
Johnson, Jeff A; Tingay, Ruth E; Culver, Melanie; Hailer, Frank; Clarke, Michèle L; Mindell, David P
2009-01-01
The critically endangered Madagascar fish-eagle (Haliaeetus vociferoides) is considered to be one of the rarest birds of prey globally and at significant risk of extinction. In the most recent census, only 222 adult individuals were recorded with an estimated total breeding population of no more than 100-120 pairs. Here, levels of Madagascar fish-eagle population genetic diversity based on 47 microsatellite loci were compared with its sister species, the African fish-eagle (Haliaeetus vocifer), and 16 of these loci were also characterized in the white-tailed eagle (Haliaeetus albicilla) and the bald eagle (Haliaeetus leucocephalus). Overall, extremely low genetic diversity was observed in the Madagascar fish-eagle compared to other surveyed Haliaeetus species. Determining whether this low diversity is the result of a recent bottleneck or a more historic event has important implications for their conservation. Using a Bayesian coalescent-based method, we show that Madagascar fish-eagles have maintained a small effective population size for hundreds to thousands of years and that its low level of neutral genetic diversity is not the result of a recent bottleneck. Therefore, efforts made to prevent Madagascar fish-eagle extinction should place high priority on maintenance of habitat requirements and reducing direct and indirect human persecution. Given the current rate of deforestation in Madagascar, we further recommend that the population be expanded to occupy a larger geographical distribution. This will help the population persist when exposed to stochastic factors (e.g. climate and disease) that may threaten a species consisting of only 200 adult individuals while inhabiting a rapidly changing landscape.
2013-06-01
to short-term behavioral responses and no effects that would be measurable at a population level have been documented. Fish in their native...the sustainable multipurpose use of natural resources (hunting, fishing , trapping, and non- consumptive uses) on military lands, subject to safety...support fish populations year-round, as they freeze in winter or when iced over and lack sufficient dissolved oxygen for fish to survive (USARAK 2004-1
Code of Federal Regulations, 2014 CFR
2014-07-01
... of a balanced indigenous population of shellfish, fish and wildlife. (3) For the purposes of listing... propagation of a balanced, indigenous population of shellfish, fish and wildlife. Such estimates shall take... water quality criteria for protection and propagation of a balanced, indigenous population of shellfish...
Code of Federal Regulations, 2013 CFR
2013-07-01
... of a balanced indigenous population of shellfish, fish and wildlife. (3) For the purposes of listing... propagation of a balanced, indigenous population of shellfish, fish and wildlife. Such estimates shall take... water quality criteria for protection and propagation of a balanced, indigenous population of shellfish...
Code of Federal Regulations, 2012 CFR
2012-07-01
... of a balanced indigenous population of shellfish, fish and wildlife. (3) For the purposes of listing... propagation of a balanced, indigenous population of shellfish, fish and wildlife. Such estimates shall take... water quality criteria for protection and propagation of a balanced, indigenous population of shellfish...
NASA Astrophysics Data System (ADS)
Vianna, Gabriel M. S.; Meekan, Mark G.; Ruppert, Jonathan L. W.; Bornovski, Tova H.; Meeuwig, Jessica J.
2016-09-01
Shark sanctuaries are promoted as a management tool to achieve conservation goals following global declines of shark populations. We assessed the status of reef-shark populations and indicators of fishing pressure across the world's first shark sanctuary in Palau. Using underwater surveys and stereophotogrammetry, we documented large differences in abundance and size structure of shark populations across the sanctuary, with a strong negative relationship between shark densities and derelict fishing gear on reefs. Densities of 10.9 ± 4.7 (mean ± SE) sharks ha-1 occurred on reefs adjacent to the most populated islands of Palau, contrasting with lower densities of 1.6 ± 0.8 sharks ha-1 on remote uninhabited reefs, where surveillance and enforcement was limited. Our observations suggest that fishing still remains a major factor structuring shark populations in Palau, demonstrating that there is an urgent need for better enforcement and surveillance that targets both illegal and licensed commercial fisheries to provide effective protection for sharks within the sanctuary.
Horodysky, Andrij Z.; Cooke, Steven J.; Graves, John E.; Brill, Richard W.
2016-01-01
Populations of tunas, billfishes and pelagic sharks are fished at or over capacity in many regions of the world. They are captured by directed commercial and recreational fisheries (the latter of which often promote catch and release) or as incidental catch or bycatch in commercial fisheries. Population assessments of pelagic fishes typically incorporate catch-per-unit-effort time-series data from commercial and recreational fisheries; however, there have been notable changes in target species, areas fished and depth-specific gear deployments over the years that may have affected catchability. Some regional fisheries management organizations take into account the effects of time- and area-specific changes in the behaviours of fish and fishers, as well as fishing gear, to standardize catch-per-unit-effort indices and refine population estimates. However, estimates of changes in stock size over time may be very sensitive to underlying assumptions of the effects of oceanographic conditions and prey distribution on the horizontal and vertical movement patterns and distribution of pelagic fishes. Effective management and successful conservation of pelagic fishes requires a mechanistic understanding of their physiological and behavioural responses to environmental variability, potential for interaction with commercial and recreational fishing gear, and the capture process. The interdisciplinary field of conservation physiology can provide insights into pelagic fish demography and ecology (including environmental relationships and interspecific interactions) by uniting the complementary expertise and skills of fish physiologists and fisheries scientists. The iterative testing by one discipline of hypotheses generated by the other can span the fundamental–applied science continuum, leading to the development of robust insights supporting informed management. The resulting species-specific understanding of physiological abilities and tolerances can help to improve stock assessments, develop effective bycatch-reduction strategies, predict rates of post-release mortality, and forecast the population effects of environmental change. In this synthesis, we review several examples of these interdisciplinary collaborations that currently benefit pelagic fisheries management. PMID:27382467
Peel, Joanne R; Mandujano, María del Carmen
2014-12-01
The queen conch Strombus gigas represents one of the most important fishery resources of the Caribbean but heavy fishing pressure has led to the depletion of stocks throughout the region, causing the inclusion of this species into CITES Appendix II and IUCN's Red-List. In Mexico, the queen conch is managed through a minimum fishing size of 200 mm shell length and a fishing quota which usually represents 50% of the adult biomass. The objectives of this study were to determine the intrinsic population growth rate of the queen conch population of Xel-Ha, Quintana Roo, Mexico, and to assess the effects of a regulated fishing impact, simulating the extraction of 50% adult biomass on the population density. We used three different minimum size criteria to demonstrate the effects of minimum catch size on the population density and discuss biological implications. Demographic data was obtained through capture-mark-recapture sampling, collecting all animals encountered during three hours, by three divers, at four different sampling sites of the Xel-Ha inlet. The conch population was sampled each month between 2005 and 2006, and bimonthly between 2006 and 2011, tagging a total of 8,292 animals. Shell length and lip thickness were determined for each individual. The average shell length for conch with formed lip in Xel-Ha was 209.39 ± 14.18 mm and the median 210 mm. Half of the sampled conch with lip ranged between 200 mm and 219 mm shell length. Assuming that the presence of the lip is an indicator for sexual maturity, it can be concluded that many animals may form their lip at greater shell lengths than 200 mm and ought to be considered immature. Estimation of relative adult abundance and densities varied greatly depending on the criteria employed for adult classification. When using a minimum fishing size of 200 mm shell length, between 26.2% and up to 54.8% of the population qualified as adults, which represented a simulated fishing impact of almost one third of the population. When conch extraction was simulated using a classification criteria based on lip thickness, it had a much smaller impact on the population density. We concluded that the best management strategy for S. gigas is a minimum fishing size based on a lip thickness, since it has lower impact on the population density, and given that selective fishing pressure based on size may lead to the appearance of small adult individuals with reduced fecundity. Furthermore, based on the reproductive biology and the results of the simulated fishing, we suggest a minimum lip thickness of ≥ 15 mm, which ensures the protection of reproductive stages, reduces the risk of overfishing, leading to non-viable density reduction.
Araújo, Márcio S; Perez, S Ivan; Magazoni, Maria Julia C; Petry, Ana C
2014-12-04
Phenotypic diversity among populations may result from divergent natural selection acting directly on traits or via correlated responses to changes in other traits. One of the most frequent patterns of correlated response is the proportional change in the dimensions of anatomical traits associated with changes in growth or absolute size, known as allometry. Livebearing fishes subject to predation gradients have been shown to repeatedly evolve larger caudal peduncles and smaller cranial regions under high predation regimes. Poecilia vivipara is a livebearing fish commonly found in coastal lagoons in the north of the state of Rio de Janeiro, Brazil. Similar to what is observed in other predation gradients, lagoons inhabited by P. vivipara vary in the presence of piscivorous fishes; contrary to other poeciliid systems, populations of P. vivipara vary greatly in body size, which opens the possibility of strong allometric effects on shape variation. Here we investigated body shape diversification among six populations of P. vivipara along a predation gradient and its relationship with allometric trajectories within and among populations. We found substantial body size variation and correlated shape changes among populations. Multivariate regression analysis showed that size variation among populations accounted for 66% of shape variation in females and 38% in males, suggesting that size is the most important dimension underlying shape variation among populations of P. vivipara in this system. Changes in the relative sizes of the caudal peduncle and cranial regions were only partly in line with predictions from divergent natural selection associated with predation regime. Our results suggest the possibility that adaptive shape variation among populations has been partly constrained by allometry in P. vivipara. Processes governing body size changes are therefore important in the diversification of this species. We conclude that in species characterized by substantial among-population differences in body size, ignoring allometric effects when investigating divergent natural selection's role in phenotypic diversification might not be warranted.
Bull Trout Forage Investigations in Beulah Reservoir, Oregon - Annual Report for 2006
Rose, Brien P.; Mesa, Mathew G.
2009-01-01
Beulah Reservoir on the north fork of the Malheur River in northeastern Oregon provides irrigation water to nearby farms and ranches and supports an adfluvial population of bull trout (Salvelinus confluentus), which are listed as threatened under the Endangered Species Act. Water management in Beulah Reservoir results in seasonal and annual fluctuations of water volume that may affect forage availability for bull trout. Because no minimum pool requirements currently exist, the reservoir is occasionally reduced to run-of-river levels, which may decimate forage fish populations and ultimately affect bull trout. We sampled fish and aquatic insects in Beulah Reservoir in the spring, before the annual drawdown of 2006, and afterward, in the late fall. We also collected samples 1.5 years after the reservoir was dewatered for three consecutive summers. Overall, the moderate drawdown of 2006 (32 percent of full pool) did not drastically alter the fish community in Beulah Reservoir. We did document, however, decreases in abundance and sizes of chironomids in areas of the reservoir that were frequently dewatered, increased catch rates of fish with gillnets, and decreases in population estimates for smaller fishes after drawdown. In 2006, after the dewaterings of 2002-04, species composition was similar to that prior to the dewaterings, but the size distributions of most species were biased toward small juvenile or subyearling fishes and larger fishes were rare. Our results indicate that repeated reservoir drawdown reduces aquatic insect forage for bull trout and probably affects forage fish populations at least temporarily. The high catch rates of juvenile fishes 1.5 years after consecutive dewaterings suggests good reproductive success for any remaining adult fish, and shows that the fish community in Beulah Reservoir is resilient to such disturbances. There is, however, a period of time after serious drawdowns before significant numbers of juvenile fishes start to appear in the reservoir. Because Beulah Reservoir experiences a wide variety of drawdown scenarios in consecutive years, the forage fish community may never reach a state of equilibrium.
Brustad, M; Parr, C L; Melhus, M; Lund, E
2008-02-01
The purpose of this work was to identify dietary patterns in the past using cluster analysis of reported diet in childhood, and to assess predictors for dietary patterns in relation to ethnicity in the population in the Sámi core areas in Norway. The Sámis are an indigenous population living in the border areas of Norway, Sweden, Finland and Russia. Population-based, cross-sectional study, using self-administered questionnaires. A food-frequency questionnaire covering selected food items eaten in childhood was used. The questionnaire also provided data on ethnicity. This study was based on data collected from 7614 subjects participating in The Population Based Study of Health and Living Conditions in Areas with a Mixed Sámi and Norwegian Population (the SAMINOR study) who grew up in the SAMINOR geographical areas, i.e. areas with mixed Sámi and Norwegian populations in Norway. Four dietary clusters were identified: a reindeer meat cluster; a cluster with high intakes of fish, traditional fish products and mutton, in addition to food sources from the local environment; a Westernised food cluster with high intakes of meat balls and sausages; and a cluster with a high intake of fish, but not any other foods in the questionnaire. The cluster distribution differed by ethnicity, but the effect of ethnicity on diet differed by coastal and inland residence. Our study has shown that data gathered through the limited questionnaire could be used to group the study sample into different dietary clusters, which we believe will be useful for further research on relationships between diet in childhood and health in the Sámi core areas in Norway.
Modeling tribal exposures to methyl mercury from fish consumption
Exposure assessment and risk management considerations for tribal fish consumption are different than for the general U.S. population because of higher fish intake from subsistence fishing and/or from unique cultural practices. This research summarizes analyses of available data ...
NASA Astrophysics Data System (ADS)
Compaire, Jesus C.; Cabrera, Remedios; Gómez-Cama, Carmen; Soriguer, Milagrosa C.
2016-06-01
This paper describes the use of resources and diet of nine resident fish species in the rocky intertidal zone of the Gulf of Cadiz and examines whether their populations are affected by trophic competition. A stomach content analysis of the nine species revealed that only one was herbivorous (Parablennius sanguinolentus), while the rest were mainly carnivorous (Gobius bucchichi, Gobius cobitis, Gobius paganellus, Zebrus zebrus, Salaria pavo, Lepadogaster lepadogaster, Scorpaena porcus and Tripterygion tripteronotum). The most frequently consumed prey were amphipods, isopods, polychaetes, decapods, chironomids, tanaidaceans, gastropods, copepods, cumaceans and ostracods. In most species, the occurrence of polychaetes and molluscs was higher in the cold season, whereas that of isopods, decapods, chironomids and fish increased in the warm season. In general, larger specimens consumed larger prey, with an increase in the occurrence of isopods, decapods and fish. An analysis of trophic niche breadth defined G. cobitis as generalist, G. bucchichi as opportunist and S. porcus as specialist, whereas the values obtained for the other species did not indicate a clearly defined strategy. Low diet overlap values and the segregation observed in several analyses indicated an adequate distribution of resources.
Recruitment success of different fish stocks in the North Sea in relation to climate variability
NASA Astrophysics Data System (ADS)
Dippner, Joachim W.
1997-09-01
Long-term data of year class strengths of different commercially harvested fish stocks based on a virtual population analysis (VPA) are available from ICES. The anomalies of these long-term data sets of year class strength are analyzed using Empirical Orthogonal Functions (EOFs) and are related to climate variability: the anomalies of the sea surface temperature (SST) in the northern North Sea and the North Atlantic Oscillation (NAO) index. A Canonical Correlation Analysis (CCA) between the leading eigenmodes is performed. The results suggest that the variability in the fish recruitment of western mackerel and three gadoids, namely North Sea cod, North Sea saithe, and North Sea whiting is highly correlated to the variability of the North Sea SST which is directly influenced by the NAO. For North Sea haddock and herring no meaningful correlation exists to North Sea SST and NAO. The results allow the conclusion that is seems possible to predict long-term changes in the fish recruitment from climate change scenarios for North Sea cod, North Sea saithe and western mackerel. Furthermore, the results indicate the possibility of recruitment failure for North Sea cod, North Sea whiting, and western mackerel in the case of global warming.
Jezorek, Ian G.; Connolly, Patrick J.
2015-01-01
Biotic and abiotic factors influence fish populations and distributions. Concerns have been raised about the influence of hatchery fish on wild populations. Carson National Fish Hatchery produces spring Chinook salmon Oncorhynchus tshawytscha in the Wind River, Washington, and some spawn in the river. Managers were concerned that Chinook salmon could negatively affect wild steelhead O. mykiss and that a self-sustaining population of Chinook salmon may develop. Our objectives were to assess: 1) the distribution and populations of juvenile spring Chinook salmon and juvenile steelhead in the upper Wind River; 2) the influence of stream flow and of each population on the other; and 3) if Chinook salmon populations were self-sustaining. We snorkeled to determine distribution and abundance. Flow in the fall influenced upstream distribution and abundance of juvenile Chinook salmon. Juvenile Chinook salmon densities were consistently low (range 0.0 to 5.7 fish 100 m-2) and not influenced by number of spawners, winter flow magnitude, or steelhead abundance. Juvenile steelhead were distributed through the study section each year. Age-0 and age-1 steelhead densities (age-0 range: 0.04 to 37.0 fish 100 m-2; age-1 range: 0.02 to 6.21 fish 100 m-2) were consistently higher than for juvenile Chinook salmon. Steelhead spawner abundance positively influenced juvenile steelhead abundance. During this study, Chinook salmon in the Wind River appear to have had little effect on steelhead. Low juvenile Chinook salmon abundance and a lack of a spawner-to-juvenile relationship suggest Chinook salmon are not self-sustaining and potential for such a population is low under current conditions.
Talmage, Philip J.; Lee, Kathy E.; Goldstein, Robert M.; Anderson, Jesse P.; Fallon, James D.
1999-01-01
Water quality, physical habitat, and fish-community composition were characterized at 13 Twin Cities metropolitan area streams during low-flow conditions, September 1997. Fish communities were resampled during September 1998. Sites were selected based on a range of human population density. Nutrient concentrations were generally low, rarely exceeding concentrations found in agricultural streams or water-quality criteria. Seventeen pesticides and five pesticide metabolites were detected, with atrazine being the only pesticide detected at all 13 streams. Colony counts of fecal coliform bacteria ranged from 54 to greater than 11,000 colonies per 100 mL. Instream fish habitat was sparse with little woody debris and few boulders, cobble, or other suitable fish habitat. Thirty-eight species and one hybrid from 10 families were collected. Fish communities were characterized by high percentages of omnivores and tolerant species with few intolerant species. Index of Biotic Integrity scores were low, with most streams rating fair to very poor. Percent impervious surface was positively correlated with sodium and chloride concentrations and human population density, but was negatively correlated with fish species richness and diversity. Urban land use and human population density influence fish communities and water quality in Twin Cities metropolitan area streams. Other factors that may influence fish community composition include percent impervious cover, water chemistry, water temperature, geomorphology, substrate, instream habitat, and migration barriers.
Dodrill, Michael J.; Yackulic, Charles B.; Gerig, Brandon; Pine, William E.; Korman, Josh; Finch, Colton
2015-01-01
Many management actions in aquatic ecosystems are directed at restoring or improving specific habitats to benefit fish populations. In the Grand Canyon reach of the Colorado River, experimental flow operations as part of the Glen Canyon Dam Adaptive Management Program have been designed to restore sandbars and associated backwater habitats. Backwaters can have warmer water temperatures than other habitats, and native fish, including the federally endangered humpback chub Gila cypha, are frequently observed in backwaters, leading to a common perception that this habitat is critical for juvenile native fish conservation. However, it is unknown how fish densities in backwaters compare with that in other habitats or what proportion of juvenile fish populations reside in backwaters. Here, we develop and fit multi-species hierarchical models to estimate habitat-specific abundances and densities of juvenile humpback chub, bluehead suckerCatostomus discobolus, flannelmouth sucker Catostomus latipinnis and speckled dace Rhinichthys osculus in a portion of the Colorado River. Densities of all four native fish were greatest in backwater habitats in 2009 and 2010. However, backwaters are rare and ephemeral habitats, so they contain only a small portion of the overall population. For example, the total abundance of juvenile humpback chub in this study was much higher in talus than in backwater habitats. Moreover, when we extrapolated relative densities based on estimates of backwater prevalence directly after a controlled flood, the majority of juvenile humpback chub were still found outside of backwaters. This suggests that the role of controlled floods in influencing native fish population trends may be limited in this section of the Colorado River.
Coexistence in streams: Do source-sink dynamics allow salamanders to persist with fish predators?
Sepulveda, A.J.; Lowe, W.H.
2011-01-01
Theory suggests that source-sink dynamics can allow coexistence of intraguild predators and prey, but empirical evidence for this coexistence mechanism is limited. We used capture-mark-recapture, genetic methods, and stable isotopes to test whether source-sink dynamics promote coexistence between stream fishes, the intraguild predator, and stream salamanders (Dicamptodon aterrimus), the intraguild prey. Salamander populations from upstream reaches without fish were predicted to maintain or supplement sink populations in downstream reaches with fish. We found instead that downstream reaches with fish were not sinks even though fish consumed salamander larvae-apparent survival, recruitment, and population growth rate did not differ between upstream and downstream reaches. There was also no difference between upstream and downstream reaches in net emigration. We did find that D. aterrimus moved frequently along streams, but believe that this is a response to seasonal habitat changes rather than intraguild predation. Our study provides empirical evidence that local-scale mechanisms are more important than dispersal dynamics to coexistence of streams salamanders and fish. More broadly, it shows the value of empirical data on dispersal and gene flow for distinguishing between local and spatial mechanisms of coexistence. ?? 2011 Springer-Verlag.
Bryan, Janice L.; Wildhaber, Mark L.; Gladish, Dan; Holan, Scott; Ellerseick, Mark
2010-01-01
As with all large rivers in the United States, the Missouri River has been altered, with approximately 32.5 percent of the main stem length impounded and 32.5 percent channelized. These physical alterations to the environment have had effects on the fisheries, but studies examining the effects of alterations have been localized and for short periods of time. In response to the U.S. Fish and Wildlife Service biological opinion, the U.S. Army Corps of Engineers initiated monitoring of the fish community of the Missouri River in 2003. The goal of the Pallid Sturgeon Population Assessment Program is to provide information to detect changes in populations and habitat preferences with time for pallid sturgeon (Scaphirhynchus albus) and native target species in the Missouri River Basin. To determine statistical power of the Pallid Sturgeon Population Assessment Program, a power analysis was conducted using a normal linear mixed model with variance component estimates based on the first 3 years of data (2003 to 2005). In cases where 3 years of data were unavailable, estimates were obtained using those data. It was determined that at least 20 years of data, sampling 12 bends with 8 subsamples per bend, would be required to detect a 5 percent annual decline in most of the target fish populations. Power varied between Zones. Zone 1 (upstream from Lake Sakakawea) did not have any species/gear type combinations with adequate power, whereas Zone 3 (downstream from Gavins Point Dam) had 19 species/gear type combinations with adequate power. With a slight increase in the sampling effort to 12 subsamples per bend, the Pallid Sturgeon Population Assessment Program has adequate power to detect declines in shovelnose sturgeon (S. platorynchus) throughout the entire Missouri River because of large catch rates. The lowest level of non-occurrence (in other words, zero catches) at the bend level for pallid sturgeon was 0.58 using otter trawls in Zone 1. Consequently, the power of the pallid sturgeon models was not as high as other species at the current level of sampling, but an increase in the sampling effort to 16 subsamples for each of 24 bends for 20 years would generate adequate power for the pallid sturgeon in all Zones. Since gear types are selective in their species efficiency, the strength of the Pallid Sturgeon Population Assessment Program approach is using multiple gears that have statistical power to detect population trends at the same time in different fish species within the Missouri River. As often is the case with monitoring studies involving endangered species, the data used to conduct the analyses exhibit some departures from the parametric model assumptions; however, preliminary simulations indicate that the results of this study are appropriate.
Spatial organization and Synchronization in collective swimming of Hemigrammus bleheri
NASA Astrophysics Data System (ADS)
Ashraf, Intesaaf; Ha, Thanh-Tung; Godoy-Diana, Ramiro; Thiria, Benjamin; Halloy, Jose; Collignon, Bertrand; Laboratoire de Physique et Mécanique des Milieux Hétérogènes (PMMH) Team; Laboratoire Interdisciplinaire des Energies de Demain (LIED) Team
2016-11-01
In this work, we study the collective swimming of Hemigrammus bleheri fish using experiments in a shallow swimming channel. We use high-speed video recordings to track the midline kinematics and the spatial organization of fish pairs and triads. Synchronizations are characterized by observance of "out of phase" and "in phase" configurations. We show that the synchronization state is highly correlated to swimming speed. The increase in synchronization led to efficient swimming based on Strouhal number. In case of fish pairs, the collective swimming is 2D and the spatial organization is characterized by two characteristic lengths: the lateral and longitudinal separation distances between fish pairs.For fish triads, different swimming patterns or configurations are observed having three dimensional structures. We performed 3D kinematic analysis by employing 3D reconstruction using the Direct Linear Transformation (DLT). We show that fish still keep their nearest neighbor distance (NND) constant irrespective of swimming speeds and configuration. We also point out characteristic angles between neighbors, hence imposing preferred patterns. At last we will give some perspectives on spatial organization for larger population. Sorbonne Paris City College of Doctoral Schools. European Union Information and Communication Technologies project ASSISIbf, FP7-ICT-FET-601074.
Minor, Agata; Harmer, Karynn; Peters, Nicole; Yuen, Basil Ho; Ma, Sai
2006-01-01
Although earlier studies on pregnancies derived through intracytoplasmic sperm injection (ICSI) reported increased non-mosaic aneuploidy among ICSI children, undetected mosaicism, such as confined placental mosaicism (CPM) has not been evaluated. We investigated the incidence of CPM in post-delivery placentas derived from ICSI, evaluated whether CPM was increased and whether it was a contributing factor to negative pregnancy outcome. [Fifty-one post-delivery placentas were collected from patients who underwent ICSI with a normal or negative pregnancy outcome]. Trophoblast and chorionic stroma from three sites were analyzed by comparative genomic hybridization (CGH) and flow cytometry. Detected abnormalities were confirmed by fluorescence in situ hybridization (FISH). The incidence of CPM in the ICSI population was compared to the general population from published data. We detected three cases of CPM in our study. One abnormality was found by CGH analysis; partial trisomy 7q and a partial monosomy Xp limited to the trophoblast at two sites. The abnormality was associated with a child affected by spina bifida. Two cases of mosaic tetraploidy were observed by flow cytometry in pregnancies with a normal outcome. All three abnormalities were confirmed by FISH analysis. The incidence of CPM in the ICSI study population was 5.88% (3/51), which was not statistically different from published reports in the general population (5.88% (42/714), Chi square, P > 0.05). The post-ICSI population was not at risk for CPM in this study. (c) 2005 Wiley-Liss, Inc.
Roseman, E.F.; Tomichek, C.A.; Maynard, T.; Burton, J.A.
2005-01-01
Grubby (Myoxocephalus aenaeus, Cottidae) is a common benthic fish of inshore waters and estuaries of eastern Long Island Sound; however, little information exists on their life history or population demographics. This study utilised a long-term data series (1976-2002) to assess grubby life history and population demographics and explores trends in the Niantic River and Niantic Bay populations. In addition, we examined the age, size, and fecundity of adult grubby in 2001-02 to determine the population characteristics in the region. Mean grubby catch per unit effort (CPUE) in Niantic Bay ranged from 0.4 per trawl in 1976 to 2.9 per trawl in 1984 while river CPUE ranged from 0.4 per trawl in 1977 to 7.6 per trawl in 1989. Catch of grubby in bottom trawls varied seasonally with highest CPUE occurring in winter. Highest entrainment of grubby larvae occurred in 2001 while the lowest entrainment observed was in 1991. Four age classes, 0+ through III+, were derived from otolith analysis (N = 51) although length frequency analysis suggested the possibility of older fish in the population. The total number of eggs in ovaries ranged from 286 to 16 451 for grubby (N = 64) between 52 mm and 155 mm TL. Results of this study indicated a decline in abundance of adult grubby over the 26-year period, possibly related to concurrent declines in eelgrass (Zostera marina) abundance and/or increased water temperature. ?? 2005 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Roseman, Edward F.; Tomichek, Christine A.; Maynard, Tracy; Burton, Jennifer A.
2005-04-01
Grubby ( Myoxocephalus aenaeus, Cottidae) is a common benthic fish of inshore waters and estuaries of eastern Long Island Sound; however, little information exists on their life history or population demographics. This study utilised a long-term data series (1976-2002) to assess grubby life history and population demographics and explores trends in the Niantic River and Niantic Bay populations. In addition, we examined the age, size, and fecundity of adult grubby in 2001-02 to determine the population characteristics in the region. Mean grubby catch per unit effort (CPUE) in Niantic Bay ranged from 0.4 per trawl in 1976 to 2.9 per trawl in 1984 while river CPUE ranged from 0.4 per trawl in 1977 to 7.6 per trawl in 1989. Catch of grubby in bottom trawls varied seasonally with highest CPUE occurring in winter. Highest entrainment of grubby larvae occurred in 2001 while the lowest entrainment observed was in 1991. Four age classes, 0+ through III+, were derived from otolith analysis (N = 51) although length frequency analysis suggested the possibility of older fish in the population. The total number of eggs in ovaries ranged from 286 to 16 451 for grubby (N = 64) between 52 mm and 155 mm TL. Results of this study indicated a decline in abundance of adult grubby over the 26-year period, possibly related to concurrent declines in eelgrass ( Zostera marina) abundance and/or increased water temperature.
Modeling Tribal Exposures to PCBs from Fish Consumption
Studies have shown that U.S. population continues to be exposed to polychlorinated biphenyls (PCBs), despite the ban ~40 years ago. Fish intake is a major pathway, especially, for high fish-consumption groups. Exposure assessment and risk management considerations for tribal fish...
Daniel J. Isaak; Jay M. Ver Hoef; Erin E. Peterson; Dona L. Horan; David E. Nagel
2017-01-01
Population size estimates for stream fishes are important for conservation and management, but sampling costs limit the extent of most estimates to small portions of river networks that encompass 100sâ10 000s of linear kilometres. However, the advent of large fish density data sets, spatial-stream-network (SSN) models that benefit from nonindependence among samples,...
NASA Astrophysics Data System (ADS)
Thorman, Staffan; Wiederholm, Anne-Marie
1984-09-01
A nearshore fish assemblage inhabiting a shallow bay in the southern Bothnian Sea, Sweden, with demanding environmental conditions (c. 5‰; >15°C during 4 months 1980 and 1 month 1981) was studied during a two-year period, in 1980 and 1981. Seasonal distribution patterns, dietary relationships, and growth rates were studied in Pungitius pungitius (L.), Pomatoschistus minutus (Pallas.), Gasterosteus aculeatus (L.), Phoxinus phoxinus (L.), Pomatoschistus microps (Krøyer) and Gobius niger L. The structure of the juvenile populations changed both over seasons and years but the adult populations remained constant. Lower water temperature, fewer individuals, lower and delayed fish growth, and lower interspecific food overlaps were found in 1981 compared to 1980. Few significant correlations were found in both years between the following community parameters: diversity, niche width, food overlap, and the proportion of each species in the fish assemblage. According to these results it is suggested that food competition and resource partitioning were of minor importance for the structuring of the fish community in the present area. Rather, the extreme salinity and the fluctuations in temperature regulated the fish populations. One may conclude that the populations of juveniles were more influenced by short-term changes in the environment than those of the adults.
Individual determinants of fish choosing in open-air street markets from Santo André, SP/Brazil.
Vasconcellos, Juliana Parreira; Vasconcellos, Silvio Arruda; Pinheiro, Sonia Regina; de Oliveira, Thaís Helena Nishikata; Ribeiro, Naassom Almeida Souza; Martins, Cassia Neves; Porfírio, Bruno Augusti; Sanches, Sandra Abelardo; de Souza, Orlando Bispo; Telles, Evelise Oliveira; Balian, Simone de Carvalho
2013-09-01
The objective of this study was to identify the determinants of fish consumption in the population that attends open-air street markets in the city of Santo André, SP, Brazil.We performed a survey, covering approximately 482 people in 49 street markets.It consisted of free-answer questions, half open choice and half multiple-choice options, for the identification and evaluation of socioeconomic factors that facilitate and hinder fish consumption.A descriptive analysis of the data and further tests were used to determine the association between variables and linearity with consumption, with a significance level of 5%. The most commonly cited types of fish consumed were hake, sardine and dogfish. The factors that facilitate the purchase and consumption of fish are listed as follows: a preference for purchasing fish at street markets, appearance, firmness, fresh presentation, frozen presentation, as well as the respondent's education and individual monthly income. Limiting factors were identified as the price and the presence of spines. Perishability, odour, ethnicity, proximity to points of sale of residence and work, gender, age, number of people in the household, presence of children and acquisition supermarket were not characteristics that influenced decisions about fish consumption. Copyright © 2013 Elsevier Ltd. All rights reserved.
Bignami, Sean; Enochs, Ian C; Manzello, Derek P; Sponaugle, Su; Cowen, Robert K
2013-04-30
Ocean acidification affects a wide diversity of marine organisms and is of particular concern for vulnerable larval stages critical to population replenishment and connectivity. Whereas it is well known that ocean acidification will negatively affect a range of calcareous taxa, the study of fishes is more limited in both depth of understanding and diversity of study species. We used new 3D microcomputed tomography to conduct in situ analysis of the impact of ocean acidification on otolith (ear stone) size and density of larval cobia (Rachycentron canadum), a large, economically important, pantropical fish species that shares many life history traits with a diversity of high-value, tropical pelagic fishes. We show that 2,100 μatm partial pressure of carbon dioxide (pCO2) significantly increased not only otolith size (up to 49% greater volume and 58% greater relative mass) but also otolith density (6% higher). Estimated relative mass in 800 μatm pCO2 treatments was 14% greater, and there was a similar but nonsignificant trend for otolith size. Using a modeling approach, we demonstrate that these changes could affect auditory sensitivity including a ∼50% increase in hearing range at 2,100 μatm pCO2, which may alter the perception of auditory information by larval cobia in a high-CO2 ocean. Our results indicate that ocean acidification has a graded effect on cobia otoliths, with the potential to substantially influence the dispersal, survival, and recruitment of a pelagic fish species. These results have important implications for population maintenance/replenishment, connectivity, and conservation efforts for other valuable fish stocks that are already being deleteriously impacted by overfishing.
Eckert, Carly; Baker, Torie; Cherry, Debra
2018-01-01
The purpose of this study is to evaluate chronic health risks before and during the fishing season in a sample of commercial fishermen, addressing the NIOSH priority of Total Worker Health TM . Gillnet license holders in Cordova, Alaska (n = 607) were contacted to participate in a preseason survey (March 2015) assessing health behaviors. A mid-season survey (July 2015) was also conducted. Physical exams and additional assessments were performed on a subset of these fishermen. Sixty-six fishermen participated in the preseason survey and 38 participated in the mid-season survey. The study population was overwhelmingly white males with an average age of 49. The average BMI was 27 with 70% of the participants overweight or obese. Nearly 80% of the sample considered their health good or better. Participants reported longer working hours, less sleep, and less aerobic exercise during the fishing season (P < .05). FitBit TM monitoring (n = 8) confirmed less sleep and fewer steps during fishing season. In one exam (n = 20), 80% of participants showed measured hearing loss at 4 kz (conversation range), and 70% had one or more upper extremity disorders, including 40% with rotator cuff tendonitis. The prevalence of hearing loss, upper extremity disorders, and sleep apnea risk factors were higher than in the general population both before and during the fishing season. Occupational factors including exposure to noise, the upper extremity demands of gillnetting, and long working hours while fishing exacerbate these chronic health conditions. Health promotion programs targeted toward these conditions may present opportunities for improving total worker health.
Bignami, Sean; Enochs, Ian C.; Manzello, Derek P.; Sponaugle, Su; Cowen, Robert K.
2013-01-01
Ocean acidification affects a wide diversity of marine organisms and is of particular concern for vulnerable larval stages critical to population replenishment and connectivity. Whereas it is well known that ocean acidification will negatively affect a range of calcareous taxa, the study of fishes is more limited in both depth of understanding and diversity of study species. We used new 3D microcomputed tomography to conduct in situ analysis of the impact of ocean acidification on otolith (ear stone) size and density of larval cobia (Rachycentron canadum), a large, economically important, pantropical fish species that shares many life history traits with a diversity of high-value, tropical pelagic fishes. We show that 2,100 μatm partial pressure of carbon dioxide (pCO2) significantly increased not only otolith size (up to 49% greater volume and 58% greater relative mass) but also otolith density (6% higher). Estimated relative mass in 800 μatm pCO2 treatments was 14% greater, and there was a similar but nonsignificant trend for otolith size. Using a modeling approach, we demonstrate that these changes could affect auditory sensitivity including a ∼50% increase in hearing range at 2,100 μatm pCO2, which may alter the perception of auditory information by larval cobia in a high-CO2 ocean. Our results indicate that ocean acidification has a graded effect on cobia otoliths, with the potential to substantially influence the dispersal, survival, and recruitment of a pelagic fish species. These results have important implications for population maintenance/replenishment, connectivity, and conservation efforts for other valuable fish stocks that are already being deleteriously impacted by overfishing. PMID:23589887
Walleser, Liza R.; Sandheinrich, Mark B.; Howard, David R.; Gaikowski, Mark P.; Amberg, Jon J.
2014-01-01
Improved management of invasive Silver Carp Hypophthalmichthys molitrix in the upper Mississippi River basin may be possible by better understanding the feeding abilities of this population. Food collection for filter-feeding fishes, such as Silver Carp, is influenced by the species-specific structure of their gill rakers. To investigate structural variation in gill rakers of Silver Carp, the morphology of gill rakers was quantified and compared with that of a native filter-feeding fish species which may compete with Silver Carp for food resources, Gizzard Shad Dorosoma cepedianum. Intra- and interspecies variation of gill rakers was examined in both species collected from three locations among four months. Interspecies analysis indicated the size of pores in gill rakers of Silver Carp were much larger than the interraker spacings of Gizzard Shad (95% CI ranged from 80.69 to 185.75 μm versus 16.72 to 47.36 μm, respectively). Intraspecies variation of gill rakers from Silver Carp was related to the overall size of fish and occurred only among sites where dissimilar sizes of fish were collected. This suggested the size of particles filtered by Silver Carp may be dependent upon ontogenic development rather than phenotypic plasticity in response to spatial or temporal factors. Intraspecies variation of gill rakers from Gizzard Shad occurred among site and monthly sampling data; however, variation was only attributable to overall size of fish for monthly sampling data. This suggested ontogeny may influence the filter-feeding ability of this species within a habitat. However, variation noted among sites, which was not attributable to size of fish, may indicate gill rakers are phenotypically plastic among Gizzard Shad populations of various river systems of the upper Mississippi River basin.
Tobler, Michael
2009-01-01
Immigrant inviability, where individuals from foreign, ecologically divergent habitats are less likely to survive, can restrict gene flow among diverging populations and result in speciation. I investigated whether a predatory aquatic insect (Belostoma sp.) selects against migrants between cave and surface populations of a fish (Poecilia mexicana). Cavefish were more susceptible to attacks in the light, whereas surface fish were more susceptible in darkness. Environmentally dependent susceptibility to attacks may thus contribute to genetic and phenotypic differentiation between the populations. This study highlights how predation—in this case in conjunction with differences in other environmental factors—can be an important driver in speciation. PMID:19443506
Petrenya, Natalia; Dobrodeeva, Liliya; Brustad, Magritt; Bichkaeva, Fatima; Menshikova, Elena; Lutfalieva, Gulnara; Poletaeva, Anna; Repina, Veronika; Cooper, Marie; Odland, Jon Øyvind
2011-02-01
The urban Russian and the rural Indigenous populations in the Russian European North have different lifestyles, living conditions and food supplies. The objective of this study was to investigate and compare fish consumption in relation to the socio-economic characteristics of 2 communities in Arkhangelsk County. A cross-sectional study. In total, 166 adults (83.1% women) from Arkhangelsk city and 134 adults (80.6% women) from the village of Nelmin-Nos (of which 88.9% are Indigenous people, Nenets), in the Nenets Autonomous Area (NAO), attended a health screening. The screening included a physical examination, blood sampling and a questionnaire. The populations studied had different socio-economic characteristics. In the rural NAO group, education levels were lower, the number of full-time employees was less, the percentage of persons with low monthly income was higher and the number of children per household was higher when compared to the Arkhangelsk group. The median total fish intake was 48.8 g/day for Arkhangelsk city and 27.1 g/day for Nelmin-Nos (p=0.009). Locally caught whitefish constituted a major part of the total fish consumption in Nelmin-Nos, while lean marine fish species were rarely eaten. Cod and cod-family fish species were often consumed by residents of Arkhangelsk city (p < 0.001). Fish consumption was positively related to monthly income. The frequency of fishing in the respondents from the Nelmin-Nos group predicted their fish consumption. Monthly income had a significant influence on fish intake in both study populations from Northern Russia. Fishing seems to be an important factor for predicting fish consumption in the residents of the rural NAO.
Mitochondrial and morphological variation of Tilapia zillii in Israel.
Szitenberg, Amir; Goren, Menachem; Huchon, Dorothée
2012-04-02
Tilapia zillii is widespread in the East Levant inland aquatic systems as well as in artificial water reservoirs. In this study we explore the genetic and morphological variation of this widespread species, using mitochondrial control region sequences and meristic characters. We examine the hypothesis that T. zillii's population structure corresponds to the four Israeli aquatic systems. Out of seven natural water bodies, only two were found to possess genetically divergent populations of T. zillii. In addition to its presence in fish farms, the species was found in two artificial recreational ponds which were supposed to have been stocked only with other fish species. In these two artificial habitats, the haplotype frequencies diverged significantly from those of natural populations. Finally, fish from the Dead Sea springs of Ne'ot HaKikar appear to differ both genetically and morphologically from fish of the same aquatic system but not from fish of other water systems. Our results show that the population structure of T. zillii does not match the geography of the Israeli water-basins, with the exception of the Dead Sea and Kishon River, when considering natural populations only. The absence of a significant divergence between basins is discussed. Our results and observations suggest that the Ne'ot HaKikar Dead Sea population and those of artificial ponds could have originated from the "hitchhiking" of T. zillii, at the expense of some other cultivated tilapiine species.
We evaluated a population of migratory fish (Menidia menidia) that spawn in New Bedford Harbor (NBH), MA, USA, a U.S. EPA Superfund site with extreme polychlorinated biphenyl (PCB) for evidence of pollution tolerance and population genetic changes. We selected this site because ...
Which Fish Should I Eat? Perspectives Influencing Fish Consumption Choices
Choi, Anna L.; Karagas, Margaret R.; Mariën, Koenraad; Rheinberger, Christoph M.; Schoeny, Rita; Sunderland, Elsie; Korrick, Susan
2012-01-01
Background: Diverse perspectives have influenced fish consumption choices. Objectives: We summarized the issue of fish consumption choice from toxicological, nutritional, ecological, and economic points of view; identified areas of overlap and disagreement among these viewpoints; and reviewed effects of previous fish consumption advisories. Methods: We reviewed published scientific literature, public health guidelines, and advisories related to fish consumption, focusing on advisories targeted at U.S. populations. However, our conclusions apply to groups having similar fish consumption patterns. Discussion: There are many possible combinations of matters related to fish consumption, but few, if any, fish consumption patterns optimize all domains. Fish provides a rich source of protein and other nutrients, but because of contamination by methylmercury and other toxicants, higher fish intake often leads to greater toxicant exposure. Furthermore, stocks of wild fish are not adequate to meet the nutrient demands of the growing world population, and fish consumption choices also have a broad economic impact on the fishing industry. Most guidance does not account for ecological and economic impacts of different fish consumption choices. Conclusion: Despite the relative lack of information integrating the health, ecological, and economic impacts of different fish choices, clear and simple guidance is necessary to effect desired changes. Thus, more comprehensive advice can be developed to describe the multiple impacts of fish consumption. In addition, policy and fishery management inter-ventions will be necessary to ensure long-term availability of fish as an important source of human nutrition. PMID:22534056
Fish distribution during smolt migration in the Penobscot Estuary, ME
NASA Astrophysics Data System (ADS)
Volkel, S. L.
2016-02-01
Estuaries are complex and dynamic ecosystems. The Penobscot Estuary is particularly important because it harbors a suite of imperiled diadromous fish species. In order to properly manage these populations, it is imperative to understand their distribution and ecology. My study focuses on May because endangered Atlantic salmon migrate seaward then. Successful emigration of these smolts is important to the population's overall fitness. One potential way to increase the likelihood of migratory success (survival) is to decrease their risk of predation. Assuming that predators in this system are generalists, overall smolt predation may be reduced by having a larger selection of alternative prey (other fish species). We hypothesize that diadromous fish abundance is increasing as a result of recent (2012-2013) dam removals. To explore this hypothesis, I used hydroacoustic methods to characterize the distribution patterns of alternative prey (TL=10-30 cm). I found that peak fish abundances occurred in the mid-estuary, especially during mid-May, and depth distribution patterns varied weekly. By understanding these seasonal, longitudinal, and vertical distribution patterns, I explored potential interactions of other fish populations as prey buffers to emigrating smolts.
Spatial synchrony in cisco recruitment
Myers, Jared T.; Yule, Daniel L.; Jones, Michael L.; Ahrenstorff, Tyler D.; Hrabik, Thomas R.; Claramunt, Randall M.; Ebener, Mark P.; Berglund, Eric K.
2015-01-01
We examined the spatial scale of recruitment variability for disparate cisco (Coregonus artedi) populations in the Great Lakes (n = 8) and Minnesota inland lakes (n = 4). We found that the scale of synchrony was approximately 400 km when all available data were utilized; much greater than the 50-km scale suggested for freshwater fish populations in an earlier global analysis. The presence of recruitment synchrony between Great Lakes and inland lake cisco populations supports the hypothesis that synchronicity is driven by climate and not dispersal. We also found synchrony in larval densities among three Lake Superior populations separated by 25–275 km, which further supports the hypothesis that broad-scale climatic factors are the cause of spatial synchrony. Among several candidate climate variables measured during the period of larval cisco emergence, maximum wind speeds exhibited the most similar spatial scale of synchrony to that observed for cisco. Other factors, such as average water temperatures, exhibited synchrony on broader spatial scales, which suggests they could also be contributing to recruitment synchrony. Our results provide evidence that abiotic factors can induce synchronous patterns of recruitment for populations of cisco inhabiting waters across a broad geographic range, and show that broad-scale synchrony of recruitment can occur in freshwater fish populations as well as those from marine systems.
Ke, Liang; Ho, Jacky; Feng, Jianzhang; Mpofu, Elias; Dibley, Michael J; Feng, Xiuhua; Van, Florance; Leong, Sokman; Lau, Winne; Lueng, Petra; Kowk, Carrie; Li, Yan; Mason, Rebecca S; Brock, Kaye E
2014-10-01
Chinese populations are known to be at risk for vitamin D deficiency, with some evidence that this is due to lack of exposure to sunlight. Vitamin D deficiency and/or low sun exposure have been associated with higher incidence of hypertension in Caucasians. Thus, we investigated these associations in a Chinese population with a high rate of hypertension. From a random household survey of 1410 residents aged ≥18 years, height, weight and blood pressure were measured and demographic, exercise and dietary data were collected, as well as estimated hours of sunlight exposure on weekdays and weekends (in winter and summer). Modifiable predictors of hypertension in these data were lack of sunlight exposure and low intake of fish as well as smoking, obesity and lack of exercise. When investigated in a linear model, sunlight exposure was negatively associated with hypertension (β=-0.072, p<0.001) as was physical activity (β=-0.021, p<0.001) and fish consumption (β=-0.177, p<0.001). In contrast body mass index (weight/height(2)) was positively associated with hypertension (β=+0.62, p<0.001), as were pack-years of smoking (β=+0.27, p<0.001). On multivariate categorical analysis taking into account demographic risk factors in these data (age, gender and occupation) having more than half an hour's sun exposure per day compared to none was associated with less hypertension (OR=0.6, 95% CI: 0.4-0.8). Similarly, consuming either oily fish or seafood more than four times per week compared to less was also associated with less hypertension (oily fish (OR=0.4, 95% CI: 0.3-0.5); seafood consumption (OR=0.8, 95% CI: 0.7-0.9)). Having daily moderate physical activity compared to none was also associated with a lower risk of hypertension (OR=0.8, 95% CI: 0.7-0.9). In contrast, being obese compared to normal weight and having more than five pack-years of smoking compared to none were associated with a higher risk of hypertension (OR=4.6, 95% CI: 3.7-5.7; OR=1.4, 95% CI: 1.0-1.8, respectively). The major new findings of this study are that more sun exposure and high weekly fish consumption (especially oily fish) may be potentially modifiable independent factors for protecting against risk of hypertension in this population. This article is part of a Special Issue entitled '16th Vitamin D Workshop'. Copyright © 2013 Elsevier Ltd. All rights reserved.
Wallin, Alice; Di Giuseppe, Daniela; Orsini, Nicola; Åkesson, Agneta; Forouhi, Nita G; Wolk, Alicja
2017-03-01
Epidemiological evidence on the association between fish consumption and risk of type 2 diabetes is heterogeneous across geographical regions. Differences related to fish consumption pattern could possibly help explain the discrepancy between the findings. We therefore aimed to investigate the association between fish consumption (total, fried, specific fish items) and type 2 diabetes incidence, taking exposure to contaminants present in fish (polychlorinated biphenyls and methyl mercury) into consideration. The population-based Cohort of Swedish Men, including 35,583 men aged 45-79 years, was followed from 1998 to 2012. We estimated hazard ratios (HRs) with 95 % confidence intervals (CIs) using Cox proportional hazards models. During 15 years of follow-up, 3624 incident cases were identified. Total fish consumption (≥4 servings/week vs. <1 serving/week) was not associated with type 2 diabetes in multivariable-adjusted analysis (HR 1.00; 95 % CI 0.85-1.18); however, a statistically non-significant inverse association was observed after adjustment for dietary contaminant exposures (HR 0.79; 95 % CI 0.60-1.04). Fried fish (≥6 servings/month vs. ≤1 servings/month) and shellfish consumption (≥1 serving/week vs. never/seldom) were associated with HRs of 1.14 (95 % CI 1.03-1.31) and 1.21 (95 % CI 1.07-1.36), respectively. We observed no overall association between total fish consumption and type 2 diabetes. The results indicated that dietary contaminants in fish may influence the relationship. Fried fish and shellfish consumption were associated with higher type 2 diabetes incidence. These findings suggest that more specific advice on fish species sub-types (varying in contamination) and preparation methods may be warranted.
Harris, M. P.; Henke, K.; Hawkins, M. B.; Witten, P. E.
2014-01-01
Summary Fishes are wonderfully diverse. This variety is a result of the ability of ray-finned fishes to adapt to a wide range of environments, and has made them more specious than the rest of vertebrates combined. With such diversity it is easy to dismiss comparisons between distantly related fishes in efforts to understand the biology of a particular fish species. However, shared ancestry and the conservation of developmental mechanisms, morphological features and physiology provide the ability to use comparative analyses between different organisms to understand mechanisms of development and physiology. The use of species that are amenable to experimental investigation provides tools to approach questions that would not be feasible in other ‘non-model’ organisms. For example, the use of small teleost fishes such as zebrafish and medaka has been powerful for analysis of gene function and mechanisms of disease in humans, including skeletal diseases. However, use of these fish to aid in understanding variation and disease in other fishes has been largely unexplored. This is especially evident in aquaculture research. Here we highlight the utility of these small laboratory fishes to study genetic and developmental factors that underlie skeletal malformations that occur under farming conditions. We highlight several areas in which model species can serve as a resource for identifying the causes of variation in economically important fish species as well as to assess strategies to alleviate the expression of the variant phenotypes in farmed fish. We focus on genetic causes of skeletal deformities in the zebrafish and medaka that closely resemble phenotypes observed both in farmed as well as natural populations of fishes. PMID:25221374
Saraf, Spencer R; Frenkel, Amy; Harke, Matthew J; Jankowiak, Jennifer G; Gobler, Christopher J; McElroy, Anne E
2018-01-01
Freshwater cyanobacterial harmful algal blooms (CyanoHABs) caused by algae in the genus Microcystis have been increasing in frequency and severity in recent decades. Microcystis blooms threaten aquatic organisms through effects associated with the rapid increase of biomass and the production of the hepatotoxin microcystin (MC) by toxic strains. Among fish, effects of blooms are likely to be more severe for early life stages, and physiological impacts on this life stage could significantly impact recruitment and fish populations. This study explores the effects of Microcystis blooms on the development of fish using the model organism, the Japanese medaka (Oryzias latipes), under realistic exposure conditions. Medaka embryos were exposed to natural blooms collected from New York City (USA) lakes, lab cultures of Microcystis, and MC-LR solutions. Field collected samples were more toxic than lab cultures (even when compared at the same algal density or MC concentration), causing decreased survival, premature time to hatch, reduced body length, yolk sac edema, and decreased heart rate, while lab culture exposures only resulted in bradycardia. Heart rate was the most sensitive endpoint measured, being depressed in embryos exposed to both lab cultures and field collected blooms. Generalized linear model analysis indicated bradycardia was statistically associated with both cell densities of blooms and MC concentrations, while single factor analysis indicated that MC concentrations had a stronger correlation compared to cell densities. However, MC exposure could not fully explain the effects observed, as exposures to MC-LR solutions alone were not able to reduce heart rate as severely as algal exposures. Collectively, these experiments indicate that factors beyond exposure to MC or even isolated Microcystis strains influence heart rate of fish exposed to Microcystis blooms. Enhanced mortality, depressed heart rate, and abnormal development observed in response to environmentally realistic exposures of Microcystis blooms could affect success of fish at both individual or population levels. Copyright © 2017 Elsevier B.V. All rights reserved.
Applications of bioenergetics models to fish ecology and management: where do we go from here?
Hansen, Michael J.; Boisclair, Daniel; Brandt, Stephen B.; Hewett, Steven W.; Kitchell, James F.; Lucas, Martyn C.; Ney, John J.
1993-01-01
Papers and panel discussions given during a 1992 symposium on bioenergetics models are summarized. Bioenergetics models have been applied to a variety of research and management questions related to fish stocks, populations, food webs, and ecosystems. Applications include estimates of the intensity and dynamics of predator-prey interactions, nutrient cycling within aquatic food webs of varying trophic structure, and food requirements of single animals, whole populations, and communities of fishes. As tools in food web and ecosystem applications, bioenergetics models have been used to compare forage consumption by salmonid predators across the Laurentian Great Lakes for single populations and whole communities, and to estimate the growth potential of pelagic predators in Chesapeake Bay and Lake Ontario. Some critics say that bioenergetics models lack sufficient detail to produce reliable results in such field applications, whereas others say that the models are too complex to be useful tools for fishery managers. Nevertheless, bioenergetics models have achieved notable predictive successes. Improved estimates are needed for model parameters such as metabolic costs of activity, and more complete studies are needed of the bioenergetics of larval and juvenile fishes. Future research on bioenergetics should include laboratory and field measurements of key model parameters such as weight-dependent maximum consumption, respiration and activity, and thermal habitats actually occupied by fish. Future applications of bioenergetics models to fish populations also depend on accurate estimates of population sizes and survival rates.
NASA Astrophysics Data System (ADS)
Lefèvre, Carine D.; Nash, Kirsty L.; González-Cabello, Alonso; Bellwood, David R.
2016-06-01
The majority of coral reef goby species are short-lived, with some highly abundant species living less than 100 d. To understand the role and consequences of this extreme life history in shaping coral reef fish populations, we quantitatively documented the structure of small reef fish populations over a 26-month period (>14 short-lived fish generations) at an inshore reef on the Great Barrier Reef, Australia. Most species with life spans >1 yr, such as pomacentrids, exhibited a peak in recruitment during the austral summer, driving seasonal changes in the small fish community composition. In contrast, there were no clear changes in goby community composition, despite the abundance of short-lived, high turnover species. Species of Eviota, the most abundant gobiid genus observed, showed remarkably similar demographic profiles year-round, with consistent densities of adults as well as recently recruited juveniles. Our results demonstrate ongoing recruitment of these small cryptic fishes, which appears to compensate for an exceptionally short life span on the reef. Our results suggest that gobiid populations are able to overcome demographic limitations, and by maintaining reproduction, larval survival and recruitment throughout the year, they may avoid population bottlenecks. These findings also underline the potential trophodynamic importance of these small species; because of this constant turnover, Eviota species and other short-lived fishes may be particularly valuable contributors to the flow of energy on coral reefs, underpinning the year-round trophic structure.
Spatial fishing restrictions benefit demersal stocks in the northeastern Mediterranean Sea.
Dimarchopoulou, Donna; Dogrammatzi, Aikaterini; Karachle, Paraskevi K; Tsikliras, Athanassios C
2018-04-13
The multi-level benefits that marine organisms gain when protected from fishing are well acknowledged. Here, we investigated the effects of a 40-year trawling ban on the status of targeted and non-targeted marine species within a major fishing ground in the northeastern Mediterranean Sea (Thermaikos Gulf, Aegean Sea). Biomass and somatic length of fish and invertebrates (six commercial and three non-commercial demersal species) were measured in three areas of varying fishing pressure, depending on the temporal and spatial operational regimes of fishing vessels. The positive effects of fishing restrictions on the studied demersal stocks were clearly revealed, as the commercial fish species exhibited higher biomass in the intermediate and low pressure areas, as well as increasing maximum and mean total length (and other length indicators) with decreasing fishing effort. The mean total length of non-commercial species generally did not differ among areas, except for species caught and discarded at high rates. The present study shows that fishing does alter the population structure and biomass of commercial demersal species, and that fishing restrictions greatly contribute to improving the status of demersal populations within the restricted areas by providing a refuge for large individuals and their important contribution to the gene pool.
Lohner, T W; Reash, R J; Willet, V E; Rose, L A
2001-11-01
Sunfish were collected from coal ash effluent-receiving streams and Ohio River watershed reference sites to assess the effects of exposure to low-level selenium concentrations. Selenium, copper, and arsenic concentrations were statistically higher in tissue samples from exposed fish than in reference fish. Leukopenia, lymphocytosis, and neutropenia were evident in exposed fish and were indicative of metal exposure and effect. White blood cell counts and percent lymphocyte values were significantly correlated with liver selenium concentrations. Plasma protein levels were significantly lower in exposed fish than in fish from the Ohio River, indicating that exposed fish may have been nutritionally stressed. Condition factors for fish from the ash pond-receiving streams were the same as, or lower than, those of fish from the reference sites. There was no evidence that the growth rate of fish in the receiving streams differed from that of fish in the reference streams. Despite liver selenium concentrations which exceeded reported toxicity thresholds and evidence of significant hematological changes, there were no significant differences in fish condition factors, liver-somatic indices, or length-weight regressions related to selenium.
Distribution of the Luminous Bacterium Beneckea harveyi in a Semitropical Estuarine Environment
O'Brien, Catherine H.; Sizemore, Ronald K.
1979-01-01
Bioluminescent bacteria were found in the water column, sediment, shrimp, and gastrointestinal tract of marine fishes from the semitropical estuarine environment of the East Lagoon, Galveston Island, Tex. Populations in the water column decreased during cold weather while sedimentary populations persisted. The highest percentages of luminous organisms were isolated from the gastrointestinal tract of marine fishes, where they persisted during 5 days of starvation. The presence of chitin temporarily increased intestinal populations. All isolates were Beneckea harveyi, whose natural habitat appears to be the gut of fishes and whose free-living reservoir appears to be marine sediments. PMID:16345465
Dambacher, Jeffrey M; Brewer, David T; Dennis, Darren M; Macintyre, Martha; Foale, Simon
2007-01-15
Inhabitants of Lihir Island, Papua New Guinea, have traditionally relied on reef fishing and rotational farming of slash-burn forest plots for a subsistence diet. However, a new gold mine has introduced a cash economy to the island's socioeconomic system and impacted the fringing coral reef through sedimentation from the near-shore dumping of mine wastes. Studies of the Lihirian people have documented changes in population size, local customs, health, education, and land use; studies of the reef have documented impacts to fish populations in mine affected sites. Indirect effects from these impacts are complex and indecipherable when viewed only from isolated studies. Here, we use qualitative modelling to synthesize the social and biological research programs in order to understand the interaction of the human and ecological systems. Initial modelling results appear to be consistent with differences in fish and macroalgae populations in sites with and without coral degradation due to sedimentation. A greater cash flow from mine expansion is predicted to increase the human population, the intensity of the artisanal fishery, and the rate of sewage production and land clearing. Modelling results are being used to guide ongoing research projects, such as monitoring fish populations and artisanal catch and patterns and intensity of land clearing.
Evolutionary Responses to Invasion: Cane Toad Sympatric Fish Show Enhanced Avoidance Learning
Caller, Georgina; Brown, Culum
2013-01-01
The introduced cane toad (Bufo marinus) poses a major threat to biodiversity due to its lifelong toxicity. Several terrestrial native Australian vertebrates are adapting to the cane toad’s presence and lab trials have demonstrated that repeated exposure to B. marinus can result in learnt avoidance behaviour. Here we investigated whether aversion learning is occurring in aquatic ecosystems by comparing cane toad naïve and sympatric populations of crimson spotted rainbow fish (Melanotaenia duboulayi). The first experiment indicated that fish from the sympatric population had pre-existing aversion to attacking cane toad tadpoles but also showed reduced attacks on native tadpoles. The second experiment revealed that fish from both naïve and sympatric populations learned to avoid cane toad tadpoles following repeated, direct exposure. Allopatric fish also developed a general aversion to tadpoles. The aversion learning abilities of both groups was examined using an experiment involving novel distasteful prey items. While both populations developed a general avoidance of edible pellets in the presence of distasteful pellets, only the sympatric population significantly reduced the number of attacks on the novel distasteful prey item. These results indicate that experience with toxic prey items over multiple generations can enhance avoidance leaning capabilities via natural selection. PMID:23372788
Young, Shuh-Sen; Yang, Hsi-Nan; Huang, Da-Ji; Liu, Su-Miao; Huang, Yueh-Han; Chiang, Chung-Ting; Liu, Jin-Wei
2014-07-14
After decades of strict pollution control and municipal sewage treatment, the water quality of the Tanshui River increased significantly after pollution mitigation as indicated by the River Pollution Index (RPI). The pollution level of the estuarine region decreased from severe pollution to mostly moderately impaired. The most polluted waters are presently restricted to a flow track length between 15-35 km relative to the river mouth. From July 2011 to September 2012, four surveys of fish and benthic macroinvertebrates were conducted at 45 sampling sites around the Tanshui River basin. The pollution level of all the study area indicated by the RPI could also be explained by the Family Biotic Index (FBI) and Biotic Index (BI) from the benthic macroinvertebrate community, and the Index of Biotic Integrity (IBI) of the fish community. The result of canonical correlation analysis between aquatic environmental factors and community structure indicated that the community structure was closely related to the level of water pollution. Fish species richness in the estuarine area has increased significantly in recent years. Some catadromous fish and crustaceans could cross the moderate polluted water into the upstream freshwater, and have re-colonized their populations. The benthic macroinvertebrate community relying on the benthic substrate of the estuarine region is still very poor, and the water layer was still moderately polluted.
Sakaris, Peter C; Irwin, Elise R
2010-03-01
We developed stochastic matrix models to evaluate the effects of hydrologic alteration and variable mortality on the population dynamics of a lotic fish in a regulated river system. Models were applied to a representative lotic fish species, the flathead catfish (Pylodictis olivaris), for which two populations were examined: a native population from a regulated reach of the Coosa River (Alabama, USA) and an introduced population from an unregulated section of the Ocmulgee River (Georgia, USA). Size-classified matrix models were constructed for both populations, and residuals from catch-curve regressions were used as indices of year class strength (i.e., recruitment). A multiple regression model indicated that recruitment of flathead catfish in the Coosa River was positively related to the frequency of spring pulses between 283 and 566 m3/s. For the Ocmulgee River population, multiple regression models indicated that year class strength was negatively related to mean March discharge and positively related to June low flow. When the Coosa population was modeled to experience five consecutive years of favorable hydrologic conditions during a 50-year projection period, it exhibited a substantial spike in size and increased at an overall 0.2% annual rate. When modeled to experience five years of unfavorable hydrologic conditions, the Coosa population initially exhibited a decrease in size but later stabilized and increased at a 0.4% annual rate following the decline. When the Ocmulgee River population was modeled to experience five years of favorable conditions, it exhibited a substantial spike in size and increased at an overall 0.4% annual rate. After the Ocmulgee population experienced five years of unfavorable conditions, a sharp decline in population size was predicted. However, the population quickly recovered, with population size increasing at a 0.3% annual rate following the decline. In general, stochastic population growth in the Ocmulgee River was more erratic and variable than population growth in the Coosa River. We encourage ecologists to develop similar models for other lotic species, particularly in regulated river systems. Successful management of fish populations in regulated systems requires that we are able to predict how hydrology affects recruitment and will ultimately influence the population dynamics of fishes.
Gila River Basin Native Fishes Conservation Program
Doug Duncan; Robert W. Clarkson
2013-01-01
The Gila River Basin Native Fishes Conservation Program was established to conserve native fishes and manage against nonnative fishes in response to several Endangered Species Act biological opinions between the Bureau of Reclamation and the U.S. Fish and Wildlife Service on Central Arizona Project (CAP) water transfers to the Gila River basin. Populations of some Gila...
Perfluoroalkyl substances and fish consumption.
Christensen, Krista Y; Raymond, Michelle; Blackowicz, Michael; Liu, Yangyang; Thompson, Brooke A; Anderson, Henry A; Turyk, Mary
2017-04-01
Perfluoroalkyl substances (PFAS) are an emerging class of contaminants. Certain PFAS are regulated or voluntarily limited due to concern about environmental persistence and adverse health effects, including thyroid disease and dyslipidemia. The major source of PFAS exposure in the general population is thought to be consumption of seafood. In this analysis we examine PFAS levels and their determinants, as well as associations between PFAS levels and self-reported fish and shellfish consumption, using a representative sample of the U.S. Data on PFAS levels and self-reported fish consumption over the past 30 days were collected from the 2007-2008, 2009-2010, 2011-2012, and 2013-2014 cycles of the National Health and Nutrition Examination Survey. Twelve different PFAS were measured in serum samples from participants. Ordinary least squares regression models were used to identify factors (demographic characteristics and fish consumption habits) associated with serum PFAS concentrations. Additional models were further adjusted for other potential exposures including military service and consumption of ready-to-eat and fast foods. Seven PFAS were detected in at least 30% of participants and were examined in subsequent analyses (PFDA, PFOA, PFOS, PFHxS, MPAH, PFNA, PFUA). The PFAS with the highest concentrations were PFOS, followed by PFOA, PFHxS and PFNA (medians of 8.3, 2.7, 1.5 and 1.0ng/mL). Fish consumption was generally low, with a median of 1.2 fish meals and 0.14 shellfish meals, reported over the past 30 days. After adjusting for demographic characteristics, total fish consumption was associated with reduced MPAH, and with elevated PFDE, PFNA and PFuDA. Shellfish consumption was associated with elevations of all PFAS examined except MPAH. Certain specific fish and shellfish types were also associated with specific PFAS. Adjustment for additional exposure variables resulted in little to no change in effect estimates for seafood variables. PFAS are emerging contaminants with widespread exposure, persistence, and potential for adverse health effects. In the general population, fish and shellfish consumption are associated with PFAS levels, which may indicate an avenue for education and outreach. Copyright © 2017 Elsevier Inc. All rights reserved.
Dunham, J.B.; Young, M.; Gresswell, Robert E.; Rieman, B.
2003-01-01
Our limited understanding of the short and long-term effects of fire on fish contributes to considerable uncertainty in assessments of the risks and benefits of fire management alternatives. A primary concern among the many potential effects of fire is the effects of fire and fire management on persistence of native fish populations. Limited evidence suggests vulnerability of fish to fire is contingent upon the quality of affected habitats, the amount and distribution of habitat (habitat fragmentation), and habitat specificity of the species in question. Species with narrow habitat requirements in highly degraded and fragmented systems are likely to be most vulnerable to fire and fire-related disturbance. In addition to effects of fire on native fish, there are growing concerns about the effects of fire on nonnative fish invasions. The role of fire in facilitating invasions by nonnative fishes is unknown, but experience with other species suggests some forms of disturbance associated with fire may facilitate invasion. Management efforts to promote persistence of fishes in fire-prone landscapes can take the form of four basic alternatives: (1) pre-fire management; (2) post-fire management; (3) managing fire itself (e.g. fire fighting); and (4) monitoring and adaptive management. Among these alternatives, pre-fire management is likely to be most effective. Effective pre-fire management activities will address factors that may render fish populations more vulnerable to the effects of fire (e.g. habitat degradation, fragmentation, and nonnative species). Post-fire management is also potentially important, but suffers from being a reactive approach that may not address threats in time to avert them. Managing fire itself can be important in some contexts, but negative consequences for fish populations are possible (e.g. toxicity of fire fighting chemicals to fish). Monitoring and adaptive management can provide important new information for evaluating alternatives, but proper implementation is often hampered by inadequate study designs and inconsistent financial and institutional support. The challenge for providing better management guidelines will be to add solid empirical data and models to assess the relevance of emerging concepts and theories, and provide a sense of where and when fires pose significant risks and/or benefits to fishes.
NASA Astrophysics Data System (ADS)
Chalde, T.; Fernández, D. A.
2017-12-01
Established populations of chinook salmon (Oncorhynchus tshawytscha) have recently been reported in South America, at both Atlantic and Pacific basins. Several studies have evaluated different aspects of their life histories; however, little is known about the use of the estuaries by the juveniles of these populations. We examined spawning time, seaward migration timing, growth rate, scale patterns, diet, and geometric morphometric, contrasting the early life history during freshwater and estuary residence of a chinook population established in Lapataia Basin. Fall run spawning took place in March-April and the parr emerged in September. Two distinct seaward migration patterns were identified from sein net fishing records: one population segment migrating earlier to the estuary in October and a second group migrating later in February. The growth rate of fish captured at the estuary was significantly higher than the fish captured in freshwater. In addition, higher scale intercirculi distances were observed in estuary fish showing differences in growth rate. The feeding habitat in fish captured in both environments changed through time from bottom feeding to surface feeding and from significant diet overlap to no overlap. The morphology of the fish captured at the estuary was associated with the elongation of the caudal peduncle and a decrease in the condition factor index, both changes related to smolt transformation. The earlier migration and the higher growth rate of juveniles in the estuary together with fish of 1 + yo captured in this environment reveal that the estuary of Lapataia Basin is not only a stopover for the chinook salmon, but also a key habitat to reside and feed previous to the final seaward migration.
Nurdalila, A’wani Aziz; Bunawan, Hamidun; Kumar, Subbiah Vijay; Rodrigues, Kenneth Francis; Baharum, Syarul Nataqain
2015-01-01
Taxonomic confusion exists within the genus Epinephelus due to the lack of morphological specializations and the overwhelming number of species reported in several studies. The homogenous nature of the morphology has created confusion in the Malaysian Marine fish species Epinephelus fuscoguttatus and Epinephelus hexagonatus. In this study, the partial DNA sequence of the 16S gene and mitochondrial nucleotide sequences of two gene regions, Cytochrome Oxidase Subunit I and III were used to investigate the phylogenetic relationship between them. In the phylogenetic trees, E. fuscoguttatus was monophyletic with E. hexagonatus species and morphology examination shows that no significant differences were found in the morphometric features between these two taxa. This suggests that E. fuscoguttatus is not distinguishable from E. hexagonatus species, and that E. fuscoguttatus have been identified to be E. hexagonatus species is likely attributed to differences in environment and ability to camouflage themselves under certain conditions. Interestingly, this finding was also supported by Principal Component Analysis on Attenuated Total Reflectance–Fourier-transform Infrared (ATR-FTIR) data analysis. Molecular, morphological and meristic characteristics were combined with ATR-FTIR analysis used in this study offer new perspectives in fish species identification. To our knowledge, this is the first report of an extensive genetic population study of E. fuscoguttatus in Malaysia and this understanding will play an important role in informing genetic stock-specific strategies for the management and conservation of this highly valued fish. PMID:26147421
Nurdalila, A'wani Aziz; Bunawan, Hamidun; Kumar, Subbiah Vijay; Rodrigues, Kenneth Francis; Baharum, Syarul Nataqain
2015-07-02
Taxonomic confusion exists within the genus Epinephelus due to the lack of morphological specializations and the overwhelming number of species reported in several studies. The homogenous nature of the morphology has created confusion in the Malaysian Marine fish species Epinephelus fuscoguttatus and Epinephelus hexagonatus. In this study, the partial DNA sequence of the 16S gene and mitochondrial nucleotide sequences of two gene regions, Cytochrome Oxidase Subunit I and III were used to investigate the phylogenetic relationship between them. In the phylogenetic trees, E. fuscoguttatus was monophyletic with E. hexagonatus species and morphology examination shows that no significant differences were found in the morphometric features between these two taxa. This suggests that E. fuscoguttatus is not distinguishable from E. hexagonatus species, and that E. fuscoguttatus have been identified to be E. hexagonatus species is likely attributed to differences in environment and ability to camouflage themselves under certain conditions. Interestingly, this finding was also supported by Principal Component Analysis on Attenuated Total Reflectance-Fourier-transform Infrared (ATR-FTIR) data analysis. Molecular, morphological and meristic characteristics were combined with ATR-FTIR analysis used in this study offer new perspectives in fish species identification. To our knowledge, this is the first report of an extensive genetic population study of E. fuscoguttatus in Malaysia and this understanding will play an important role in informing genetic stock-specific strategies for the management and conservation of this highly valued fish.
Dong, Q.; DeAngelis, D.L.
1998-01-01
We used an individual-based modeling approach to study the consequences of cannibalism and competition for food in a freshwater fish population. We simulated the daily foraging, growth, and survival of the age-0 fish and older juvenile individuals of a sample population to reconstruct patterns of density dependence in the age-0 fish during the growth season. Cannibalism occurs as a part of the foraging process. For age-0 fish, older juvenile fish are both potential cannibals and competitors of food. We found that competition and cannibalism produced intraclass and interclass density dependence. Our modeling results suggested the following. (1) With low density of juvenile fish and weak interclass interactions, the age-0 fish recruitment shows a Beverton-Holt type of density dependence. (2) With high density of juvenile fish and strong interclass interactions, the age-0 fish recruitment shows a Ricker type of density dependence, and overcompensation occurs. (3) Interclass competition of food is responsible for much of the overcompensation. (4) Cannibalism intensifies the changes in the recruitment that are brought about by competition. Cannibalism can (a) generally reduce the recruitment, (b) particularly reduce the maximum level of recruitment, (c) cause overcompensation to occur at lower densities, and (d) produce a stronger overcompensation. (5) Growth is also a function of density. Cannibalism generally improves average growth of cannibals. (6) Variation in the lengths of age-0 fish increases with density and with a decreased average growth. These results imply that cannibalism and competition for food could strongly affect recruitment dynamics. Our model also showed that the rate of cannibalism either could be fairly even through the whole season or could vary dramatically. The individual-based modeling approach can help ecologists understand the mechanistic connection between daily behavioral and physiological processes operating at the level of individual organisms and seasonal patterns of population structure and dynamics. ?? Copyright by the American Fisheries Society 1998.
Yurek, Simeon; DeAngelis, Donald L.; Trexler, Joel C.; Klassen, Stephen; Larsen, Laurel G.
2016-01-01
In flood-pulsed ecosystems, hydrology and landscape structure mediate transfers of energy up the food chain by expanding and contracting in area, enabling spatial expansion and growth of fish populations during rising water levels, and subsequent concentration during the drying phase. Connectivity of flooded areas is dynamic as waters rise and fall, and is largely determined by landscape geomorphology and anisotropy. We developed a methodology for simulating fish dispersal and concentration on spatially-explicit, dynamic floodplain wetlands with pulsed food web dynamics, to evaluate how changes in connectivity through time contribute to the concentration of fish biomass that is essential for higher trophic levels. The model also tracks a connectivity index (DCI) over different compass directions to see if fish biomass dynamics can be related in a simple way to topographic pattern. We demonstrate the model for a seasonally flood-pulsed, oligotrophic system, the Everglades, where flow regimes have been greatly altered. Three dispersing populations of functional fish groups were simulated with empirically-based dispersal rules on two landscapes, and two twelve-year time series of managed water levels for those areas were applied. The topographies of the simulations represented intact and degraded ridge-and-slough landscapes (RSL). Simulation results showed large pulses of biomass concentration forming during the onset of the drying phase, when water levels were falling and fish began to converge into the sloughs. As water levels fell below the ridges, DCI declined over different directions, closing down dispersal lanes, and fish density spiked. Persistence of intermediate levels of connectivity on the intact RSL enabled persistent concentration events throughout the drying phase. The intact landscape also buffered effects of wet season population growth. Water level reversals on both landscapes negatively affected fish densities by depleting fish populations without allowing enough time for them to regenerate. Testable, spatiotemporal predictions of the timing, location, duration, and magnitude of fish concentration pulses were produced by the model, and can be applied to restoration planning.
Hisano, Mizue; Connolly, Sean R; Robbins, William D
2011-01-01
Overfishing of sharks is a global concern, with increasing numbers of species threatened by overfishing. For many sharks, both catch rates and underwater visual surveys have been criticized as indices of abundance. In this context, estimation of population trends using individual demographic rates provides an important alternative means of assessing population status. However, such estimates involve uncertainties that must be appropriately characterized to credibly and effectively inform conservation efforts and management. Incorporating uncertainties into population assessment is especially important when key demographic rates are obtained via indirect methods, as is often the case for mortality rates of marine organisms subject to fishing. Here, focusing on two reef shark species on the Great Barrier Reef, Australia, we estimated natural and total mortality rates using several indirect methods, and determined the population growth rates resulting from each. We used bootstrapping to quantify the uncertainty associated with each estimate, and to evaluate the extent of agreement between estimates. Multiple models produced highly concordant natural and total mortality rates, and associated population growth rates, once the uncertainties associated with the individual estimates were taken into account. Consensus estimates of natural and total population growth across multiple models support the hypothesis that these species are declining rapidly due to fishing, in contrast to conclusions previously drawn from catch rate trends. Moreover, quantitative projections of abundance differences on fished versus unfished reefs, based on the population growth rate estimates, are comparable to those found in previous studies using underwater visual surveys. These findings appear to justify management actions to substantially reduce the fishing mortality of reef sharks. They also highlight the potential utility of rigorously characterizing uncertainty, and applying multiple assessment methods, to obtain robust estimates of population trends in species threatened by overfishing.
Hisano, Mizue; Connolly, Sean R.; Robbins, William D.
2011-01-01
Overfishing of sharks is a global concern, with increasing numbers of species threatened by overfishing. For many sharks, both catch rates and underwater visual surveys have been criticized as indices of abundance. In this context, estimation of population trends using individual demographic rates provides an important alternative means of assessing population status. However, such estimates involve uncertainties that must be appropriately characterized to credibly and effectively inform conservation efforts and management. Incorporating uncertainties into population assessment is especially important when key demographic rates are obtained via indirect methods, as is often the case for mortality rates of marine organisms subject to fishing. Here, focusing on two reef shark species on the Great Barrier Reef, Australia, we estimated natural and total mortality rates using several indirect methods, and determined the population growth rates resulting from each. We used bootstrapping to quantify the uncertainty associated with each estimate, and to evaluate the extent of agreement between estimates. Multiple models produced highly concordant natural and total mortality rates, and associated population growth rates, once the uncertainties associated with the individual estimates were taken into account. Consensus estimates of natural and total population growth across multiple models support the hypothesis that these species are declining rapidly due to fishing, in contrast to conclusions previously drawn from catch rate trends. Moreover, quantitative projections of abundance differences on fished versus unfished reefs, based on the population growth rate estimates, are comparable to those found in previous studies using underwater visual surveys. These findings appear to justify management actions to substantially reduce the fishing mortality of reef sharks. They also highlight the potential utility of rigorously characterizing uncertainty, and applying multiple assessment methods, to obtain robust estimates of population trends in species threatened by overfishing. PMID:21966402
Population characteristics and the influence of discharge on Bluehead Sucker and Flannelmouth Sucker
Klein, Zachary B.; Breen, Matthew J.; Quist, Michael C.
2017-01-01
Rivers are among some of the most complex and important ecosystems in the world. Unfortunately, many fishes endemic to rivers have suffered declines in abundance and distribution suggesting that alterations to lotic environments have negatively influenced native fish populations. Of the 35 fishes native to the Colorado River basin (CRB), seven are considered either endangered, threatened, or species of special concern. As such, the conservation of fishes native to the CRB is a primary interest for natural resource management agencies. One of the major factors limiting the conservation and management of fishes endemic to the CRB is the lack of basic information on their ecology and population characteristics. We sought to describe the population dynamics and demographics of three populations of Bluehead Suckers (Catostomus discobolus) and Flannelmouth Suckers (C. latipinnis) in Utah. Additionally, we evaluated the potential influence of altered flow regimes on the recruitment and growth of Bluehead Suckers and Flannelmouth Suckers. Mortality of Bluehead Suckers and Flannelmouth Suckers from the Green, Strawberry, and White rivers was comparable to other populations. Growth of Bluehead Suckers and Flannelmouth Suckers was higher in the Green, Strawberry, and White rivers when compared to other populations in the CRB. Similarly, recruitment indices suggested that Bluehead Suckers and Flannelmouth Suckers in the Green, Strawberry, and White rivers had more stable recruitment than other populations in the CRB. Models relating growth and recruitment to hydrological indices provided little explanatory power. Notwithstanding, our results indicate that Bluehead Suckers and Flannelmouth Suckers in the Green, Strawberry, and White rivers represent fairly stable populations and provide baseline information that will be valuable for the effective management and conservation of the species.
Canela, Andrés; Vera, Elsa; Klatt, Peter; Blasco, María A
2007-03-27
A major limitation of studies of the relevance of telomere length to cancer and age-related diseases in human populations and to the development of telomere-based therapies has been the lack of suitable high-throughput (HT) assays to measure telomere length. We have developed an automated HT quantitative telomere FISH platform, HT quantitative FISH (Q-FISH), which allows the quantification of telomere length as well as percentage of short telomeres in large human sample sets. We show here that this technique provides the accuracy and sensitivity to uncover associations between telomere length and human disease.
Fish mycobacteriosis (Tuberculosis)
Parisot, T.J.; Wood, J.W.
1959-01-01
The etiologic agent for the bacterial disease, "fish tuberculosis" (more correctly "mycobacteriosis"), was first observed in carp in 189& from a pond in France. Subsequently similar agents have been isolated from or observed in fish in fresh water, salt water, and brackish water, in fish in aquaria, hatcheries, and natural habitat~ (wild populations of fish). The disease has been recognized as an important infection among hatchery reared salmonid fishes on the West Coast of the United States, and in aquarium fishes such as the neon tetra, the Siamese fighting fish, and in salt water fish held in zoological displays.
ENVIRONMENTAL INFLUENCES ON GENETIC DIVERSITY OF CREEK CHUBS IN THE MID-ATLANTIC REGION OF THE USA
Analysis of genetic diversity within and among populations of stream fishes may provide a powerful method for assessing the status and trends in the condition of aquatic ecosystems. We analyzed mitochondrial DNA sequences (590 bases of cytochrome B) and nuclear DNA loci (109 amp...
One Fish, Two Fish, Redfish, You Fish!
ERIC Educational Resources Information Center
White, Katherine; Timmons, Maryellen; Medders, Paul
2011-01-01
The recreational fishing activity presented in this article provides a hands-on, problem-based experience for students; it unites biology, math, economics, environmental policy, and population dynamics concepts. In addition, the activity allows students to shape environmental policy in a realistic setting and evaluate their peers' work. By…
Overview on the effects of parasites on fish health
Iwanowicz, D.D.; Cipriano, R.C.; Bruckner, A.W.; Shchelkunov, I.S.
2011-01-01
It is believed by many that parasites are only as important as the fish they infect. Parasites are ubiquitous, primarily surviving in a dynamic equilibrium with their host(s) and they are often overlooked in fish health assessments. Changes in the environment, both anthropogenic and environmental, can alter the parasite/host equilibrium and cause disease or mortality in fish. Therefore it is imperative that we have knowledge of both parasites and parasitic communities within a given population. When fish kills occur, it can often be associated with changes in parasite density and community composition. Often the damage associated with these fish is relative to the rate of infestation with the parasite; a fish that is lightly infected will show few signs of the parasite, while a heavily infected fish may become physiologically impaired and even die. Parasites can cause mechanical damage (fusion of gill lamellae, tissue replacement), physiological damage (cell proliferation, immunomodulation, detrimental behavioral responses, altered growth) and reproductive damage. As parasitism is the most common lifestyle on the planet, understanding its role in the environment may help researchers understand changes in a given fish population or stream ecosystem.
Occurrence of antibiotics in water from fish hatcheries
Thurman, Earl M.; Dietze, Julie E.; Scribner, Elisabeth A.
2002-01-01
The recent discovery of pharmaceuticals in streams across the United States (Kolpin and others, 2002) has raised the visibility and need for monitoring of antibiotics in the environment. Possible sources of antibiotics and other pharmaceuticals in streams may include fish hatcheries. This fact sheet presents the results from a preliminary study of fish hatcheries across the United States for the occurrence and concentration of antibiotics present in fish hatchery water. The study examines both sufonamides and tetracyclines. Sulfonamides are synthetic compounds, and tetracyclines are naturally occurring compounds. The use of antibiotics added to specially formulated feed is a common practice in fish hatcheries to treat and prevent bacterial infections in large fish populations. U.S. Food and Drug Administration (FDA) approved antibiotics are oxytetracycline-HCI, sulfamerazine, and a combination drug containing ormetoprim and sulfadiamethoxine (U.S. Food and Drug Administration, 2003). During January 2001?June 2002, the U.S. Geological Survey (USGS) Organic Geochemistry Research Laboratory (OGRL), Lawrence, Kansas, cooperatively collected water samples from 13 fish hatcheries across the United States (fig. 1) with the assistance of hatchery operators. A method for the analysis of antibiotics was developed and used to identify and quantify these compounds in fish hatchery water (Lindsey and others, 2001). This study was completed to determine if trace levels of antibiotics [approximately 1 microgram per liter (?g/L) or 1 part per billion or greater occurred] in which water associated with fish hatcheries, which are a potential source of these compounds in surface water.
Using a Web-Based Diary Method to Estimate Risks and Benefits from Fish Consumption.
Connelly, Nancy A; Lauber, T Bruce; Niederdeppe, Jeff; Knuth, Barbara A
2018-06-01
Accurate estimates of the amount and type of fish people eat are necessary to determine the health benefits and risks of consuming fish, and to assess compliance with fish consumption guidelines issued for fish affected by chemical contaminants. We developed a web-based and mobile-phone-enabled diary methodology to collect detailed fish consumption information for two 16-week periods in the summers of 2014 and 2015. We recruited study participants from two populations living in the Great Lakes region-women of childbearing age (WCBA) and urban residents who had purchased fishing licenses. In this article, we describe the methodology in detail and provide evidence related to participation rates, the representativeness of our sample over time, and both convergent validity and reliability of the data collection methods. Overall, 56% of WCBA and 50% of urban anglers provided complete data across both data collection periods. Among those who provided information at the beginning of Year 2, 97% of both audiences provided information throughout the entire 16-week period. Those who participated throughout the two-year period were slightly older on average (1.9-2.5 years) than other members of our original samples. We conclude that using diaries with web and smartphone technology, combined with incentives and persistent communication, has strong potential for assessing fish consumption in other areas of the country or for situations where the potential risks associated with fish consumption are substantial and the cost can be justified. © 2017 Society for Risk Analysis.
Binder, Thomas; Marsden, J. Ellen; Riley, Stephen; Johnson, James E.; Johnson, Nicholas; He, Ji; Ebener, Mark P.; Holbrook, Christopher; Bergstedt, Roger A.; Bronte, Charles R.; Hayden, Todd A.; Krueger, Charles C.
2017-01-01
Movement ecology is an important component of life history and population dynamics, and consequently its understanding can inform successful fishery management decision-making. While lake trout populations in Lake Huron have shown signs of recovery from near extinction in recent years, knowledge of their movement behavior remains incomplete. We used acoustic telemetry to describe and compare movement patterns of two Lake Huron lake trout populations: Drummond Island and Thunder Bay. Both populations showed high spawning site fidelity, with no evidence of co-mingling during non-spawning season. Detections between spawning periods were mainly limited to receivers within 100 km of spawning locations, and suggested that the two populations likely remained segregated throughout the year. Drummond Island fish, which spawn inside the Drummond Island Refuge, primarily dispersed east into Canadian waters of Lake Huron, with 79–92% of fish being detected annually on receivers outside the refuge. In contrast, Thunder Bay fish tended to disperse south towards Saginaw Bay. Large proportions (i.e., > 80%) of both populations were available to fisheries outside the management zone containing their spawning location. Thunder Bay fish moved relatively quickly to overwinter habitat after spawning, and tended to repeat the same post-spawning movement behavior each year. The consistent, predictable movement of both populations across management zones highlights the importance of understanding population dynamics to effective management of Lake Huron lake trout.
Traditional and market food access in Arctic Canada is affected by economic factors.
Lambden, Jill; Receveur, Olivier; Marshall, Joan; Kuhnlein, Harriet V
2006-09-01
This study aimed to evaluate the access that Indigenous women have to traditional and market foods in 44 communities across Arctic Canada. This secondary data analysis used a cross-sectional survey of 1771 Yukon First Nations, Dene/Métis and Inuit women stratified by age. Socio-cultural questionnaires were used to investigate food access and chi-square testing was used to ascertain the distribution of subject responses by age and region. There was considerable regional variation in the ability to afford adequate food, with between 40% and 70% saying they could afford enough food. Similarly, regional variation was reflected in the percentage of the population who could afford, or had access to, hunting or fishing equipment. Up to 50% of the responses indicated inadequate access to fishing and hunting equipment, and up to 46% of participants said they could not afford to go hunting or fishing. Affordability of market food and accessibility to hunting and fishing in Arctic Canada were major barriers to Indigenous women's food security.
Karimi, Hamideh; Sabbaghian, Marjan; Haratian, Kaveh; Vaziri Nasab, Hamed; Farrahi, Faramarz; Moradi, Shabnam Zari; Tavakolzadeh, Tayebeh; Beheshti, Zahra; Gourabi, Hamid; Meybodi, Anahita Mohseni
2014-01-01
Klinefelter syndrome (KS) is the most common sex chromosomal disorder in men. Most of these patients show the 47,XXY karyotype, whereas approximately 15% of them are mosaics with variable phenotype. A 39-year-old male investigated for primary infertility, was clinically normal with small firm testes and elevated levels of FSH, LH and low level of testosterone. Total azoospermia was confirmed on semen analysis. Testicular histopathology revealed no spermatogenesis and absence of germ cells. Karyotype from whole blood culture showed cells with 47,XXY/46,XX/ 45,X/48,XXXY/ 46,XY mosaicism. The predominant cell line was 47,XXY (83.67%). This was confirmed by fluorescence in situ hybridization (FISH). Also the presence of a small population of cells with the 48,XXXY and 45,X karyotypes was detected by FISH. This case illustrates the utility of FISH as an adjunct to conventional cytogenetics in assess the chromosome copy number in each cell line of a mosaic. PMID:25083188
Karimi, Hamideh; Sabbaghian, Marjan; Haratian, Kaveh; Vaziri Nasab, Hamed; Farrahi, Faramarz; Moradi, Shabnam Zari; Tavakolzadeh, Tayebeh; Beheshti, Zahra; Gourabi, Hamid; Meybodi, Anahita Mohseni
2014-07-01
Klinefelter syndrome (KS) is the most common sex chromosomal disorder in men. Most of these patients show the 47,XXY karyotype, whereas approximately 15% of them are mosaics with variable phenotype. A 39-year-old male investigated for primary infertility, was clinically normal with small firm testes and elevated levels of FSH, LH and low level of testosterone. Total azoospermia was confirmed on semen analysis. Testicular histopathology revealed no spermatogenesis and absence of germ cells. Karyotype from whole blood culture showed cells with 47,XXY/46,XX/ 45,X/48,XXXY/ 46,XY mosaicism. The predominant cell line was 47,XXY (83.67%). This was confirmed by fluorescence in situ hybridization (FISH). Also the presence of a small population of cells with the 48,XXXY and 45,X karyotypes was detected by FISH. This case illustrates the utility of FISH as an adjunct to conventional cytogenetics in assess the chromosome copy number in each cell line of a mosaic.
Assessment of Telomere Length, Phenotype, and DNA Content
Kelesidis, Theodoros; Schmid, Ingrid
2017-01-01
Telomere sequences at the end of chromosomes control somatic cell division; therefore, telomere length in a given cell population provides information about its replication potential. This unit describes a method for flow cytometric measurement of telomere length in subpopulations using fluorescence in situ hybridization of fluorescently-labeled probes (Flow-FISH) without prior cell separation. After cells are stained for surface immunofluorescence, antigen-antibody complexes are covalently cross-linked onto cell membranes before FISH with a telomere-specific probe. Cells with long telomeres are included as internal standards. Addition of a DNA dye permits exclusion of proliferating cells during data analysis. DNA ploidy measurements of cells of interest and internal standard are performed on separate aliquots in parallel to Flow-FISH. Telomere fluorescence of G0/1 cells of subpopulations and internal standards obtained from Flow-FISH are normalized for DNA ploidy, and telomere length in subsets of interest is expressed as a fraction of the internal standard telomere length. PMID:28055113