Sample records for fish population density

  1. Density regulation in Northeast Atlantic fish populations: Density dependence is stronger in recruitment than in somatic growth.

    PubMed

    Zimmermann, Fabian; Ricard, Daniel; Heino, Mikko

    2018-05-01

    Population regulation is a central concept in ecology, yet in many cases its presence and the underlying mechanisms are difficult to demonstrate. The current paradigm maintains that marine fish populations are predominantly regulated by density-dependent recruitment. While it is known that density-dependent somatic growth can be present too, its general importance remains unknown and most practical applications neglect it. This study aimed to close this gap by for the first time quantifying and comparing density dependence in growth and recruitment over a large set of fish populations. We fitted density-dependent models to time-series data on population size, recruitment and age-specific weight from commercially exploited fish populations in the Northeast Atlantic Ocean and the Baltic Sea. Data were standardized to enable a direct comparison within and among populations, and estimated parameters were used to quantify the impact of density regulation on population biomass. Statistically significant density dependence in recruitment was detected in a large proportion of populations (70%), whereas for density dependence in somatic growth the prevalence of density dependence depended heavily on the method (26% and 69%). Despite age-dependent variability, the density dependence in recruitment was consistently stronger among age groups and between alternative approaches that use weight-at-age or weight increments to assess growth. Estimates of density-dependent reduction in biomass underlined these results: 97% of populations with statistically significant parameters for growth and recruitment showed a larger impact of density-dependent recruitment on population biomass. The results reaffirm the importance of density-dependent recruitment in marine fishes, yet they also show that density dependence in somatic growth is not uncommon. Furthermore, the results are important from an applied perspective because density dependence in somatic growth affects productivity and catch composition, and therefore the benefits of maintaining fish populations at specific densities. © 2018 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

  2. Development of a spatially distributed model of fish population density for habitat assessment of rivers

    NASA Astrophysics Data System (ADS)

    Sui, Pengzhe; Iwasaki, Akito; Ryo, Masahiro; Saavedra, Oliver; Yoshimura, Chihiro

    2013-04-01

    Flow conditions play an important role in sustaining biodiversity of river ecosystem. However, their relations to freshwater fishes, especially to fish population density, have not been clearly described. This study, therefore, aimed to propose a new methodology to quantitatively link habitat conditions, including flow conditions and other physical conditions, to population density of fish species. We developed a basin-scale fish distribution model by integrating the concept of habitat suitability assessment with a distributed hydrological model (DHM) in order to estimate fish population density with particular attention to flow conditions. Generalized linear model (GLM) was employed to evaluate the relationship between population density of fish species and major environmental factors. The target basin was Sagami River in central Japan, where the river reach was divided into 10 sections by estuary, confluences of tributaries, and river-crossing structures (dams, weirs). The DHM was employed to simulate river discharge from 1998 to 2005, which was used to calculate 10 flow indices including mean discharge, 25th and 75th percentile discharge, duration of low and high flows, number of floods. In addition, 5 water quality parameters and 13 other physical conditions (such as basin area, river width, mean diameter of riverbed material, and number of river-crossing structures upstream and downstream) of each river section were considered as environmental variables. In case of Sagami River, 10 habitat variables among them were then selected based on their correlations to avoid multicollinearity. Finally, the best GLM was developed for each species based on Akaike's information criterion. As results, population densities of 16 fish species in Sagami River were modelled, and correlation coefficients between observed and calculated population densities for 10 species were more than 0.70. The key habitat factors for population density varied among fish species. Minimum discharge (MID) was found to be positively correlated to 9 among 16 fish species. For duration of high and low flows (DHF and DLF), longer DHF/DLF was corresponded to lower population density for 7/6 fish species, respectively, such as Rhinogobius kurodai and Plecoglossus altivelis altivelis. Among physical habitat conditions, sinuosity index (SI, the ratio between actual river section length and straight line length) seems to be the most important parameter for fish population density in Sagami River basin, since it affects 12 out of 16 fish species, followed by mean longitudinal slope (S) and number of downstream dams (NLD). Above results demonstrated the applicability of fish distribution model to provide quantitative information on flow conditions required to maintain fish population, which enabled us to evaluate and project ecological consequences of water resource management policy, such as flood management and water withdrawal.

  3. High population density enhances recruitment and survival of a harvested coral reef fish.

    PubMed

    Wormald, Clare L; Steele, Mark A; Forrester, Graham E

    2013-03-01

    A negative relationship between population growth and population density (direct density dependence) is necessary for population regulation and is assumed in most models of harvested populations. Experimental tests for density dependence are lacking for large-bodied, harvested fish because of the difficulty of manipulating population density over large areas. We studied a harvested coral reef fish, Lutjanus apodus (schoolmaster snapper), using eight large, isolated natural reefs (0.4-1.6 ha) in the Bahamas as replicates. An initial observational test for density dependence was followed by a manipulation of population density. The manipulation weakened an association between density and shelter-providing habitat features and revealed a positive effect of population density on recruitment and survival (inverse density dependence), but no effect of density on somatic growth. The snappers on an individual reef were organized into a few shoals, and we hypothesize that large shoals on high-density reefs were less vulnerable to large piscivores (groupers and barracudas) than the small shoals on low-density reefs. Reductions in predation risk for individuals in large social groups are well documented, but because snapper shoals occupied reefs the size of small marine reserves, these ecological interactions may influence the outcome of management actions.

  4. Tropical insular fish assemblages are resilient to flood disturbance

    USGS Publications Warehouse

    Smith, William E.; Kwak, Thomas J.

    2015-01-01

    Periods of stable environmental conditions, favoring development of ecological communities regulated by density-dependent processes, are interrupted by random periods of disturbance that may restructure communities. Disturbance may affect populations via habitat alteration, mortality, or displacement. We quantified fish habitat conditions, density, and movement before and after a major flood disturbance in a Caribbean island tropical river using habitat surveys, fish sampling and population estimates, radio telemetry, and passively monitored PIT tags. Native stream fish populations showed evidence of acute mortality and downstream displacement of surviving fish. All fish species were reduced in number at most life stages after the disturbance, but populations responded with recruitment and migration into vacated upstream habitats. Changes in density were uneven among size classes for most species, indicating altered size structures. Rapid recovery processes at the population level appeared to dampen effects at the assemblage level, as fish assemblage parameters (species richness and diversity) were unchanged by the flooding. The native fish assemblage appeared resilient to flood disturbance, rapidly compensating for mortality and displacement with increased recruitment and recolonization of upstream habitats.

  5. Consequences of cannibalism and competition for food in a smallmouth bass population: An individual-based modeling study

    USGS Publications Warehouse

    Dong, Q.; DeAngelis, D.L.

    1998-01-01

    We used an individual-based modeling approach to study the consequences of cannibalism and competition for food in a freshwater fish population. We simulated the daily foraging, growth, and survival of the age-0 fish and older juvenile individuals of a sample population to reconstruct patterns of density dependence in the age-0 fish during the growth season. Cannibalism occurs as a part of the foraging process. For age-0 fish, older juvenile fish are both potential cannibals and competitors of food. We found that competition and cannibalism produced intraclass and interclass density dependence. Our modeling results suggested the following. (1) With low density of juvenile fish and weak interclass interactions, the age-0 fish recruitment shows a Beverton-Holt type of density dependence. (2) With high density of juvenile fish and strong interclass interactions, the age-0 fish recruitment shows a Ricker type of density dependence, and overcompensation occurs. (3) Interclass competition of food is responsible for much of the overcompensation. (4) Cannibalism intensifies the changes in the recruitment that are brought about by competition. Cannibalism can (a) generally reduce the recruitment, (b) particularly reduce the maximum level of recruitment, (c) cause overcompensation to occur at lower densities, and (d) produce a stronger overcompensation. (5) Growth is also a function of density. Cannibalism generally improves average growth of cannibals. (6) Variation in the lengths of age-0 fish increases with density and with a decreased average growth. These results imply that cannibalism and competition for food could strongly affect recruitment dynamics. Our model also showed that the rate of cannibalism either could be fairly even through the whole season or could vary dramatically. The individual-based modeling approach can help ecologists understand the mechanistic connection between daily behavioral and physiological processes operating at the level of individual organisms and seasonal patterns of population structure and dynamics. ?? Copyright by the American Fisheries Society 1998.

  6. Effects of human population density and proximity to markets on coral reef fishes vulnerable to extinction by fishing.

    PubMed

    Brewer, T D; Cinner, J E; Green, A; Pressey, R L

    2013-06-01

    Coral reef fisheries are crucial to the livelihoods of tens of millions of people; yet, widespread habitat degradation and unsustainable fishing are causing severe depletion of stocks of reef fish. Understanding how social and economic factors, such as human population density, access to external markets, and modernization interact with fishing and habitat degradation to affect fish stocks is vital to sustainable management of coral reef fisheries. We used fish survey data, national social and economic data, and path analyses to assess whether these factors explain variation in biomass of coral reef fishes among 25 sites in Solomon Islands. We categorized fishes into 3 groups on the basis of life-history characteristics associated with vulnerability to extinction by fishing (high, medium, and low vulnerability). The biomass of fish with low vulnerability was positively related to habitat condition. The biomass of fishes with high vulnerability was negatively related to fishing conducted with efficient gear. Use of efficient gear, in turn, was strongly and positively related to both population density and market proximity. This result suggests local population pressure and external markets have additive negative effects on vulnerable reef fish. Biomass of the fish of medium vulnerability was not explained by fishing intensity or habitat condition, which suggests these species may be relatively resilient to both habitat degradation and fishing. © 2012 Society for Conservation Biology.

  7. Fishery-independent data reveal negative effect of human population density on Caribbean predatory fish communities.

    PubMed

    Stallings, Christopher D

    2009-01-01

    Understanding the current status of predatory fish communities, and the effects fishing has on them, is vitally important information for management. However, data are often insufficient at region-wide scales to assess the effects of extraction in coral reef ecosystems of developing nations. Here, I overcome this difficulty by using a publicly accessible, fisheries-independent database to provide a broad scale, comprehensive analysis of human impacts on predatory reef fish communities across the greater Caribbean region. Specifically, this study analyzed presence and diversity of predatory reef fishes over a gradient of human population density. Across the region, as human population density increases, presence of large-bodied fishes declines, and fish communities become dominated by a few smaller-bodied species. Complete disappearance of several large-bodied fishes indicates ecological and local extinctions have occurred in some densely populated areas. These findings fill a fundamentally important gap in our knowledge of the ecosystem effects of artisanal fisheries in developing nations, and provide support for multiple approaches to data collection where they are commonly unavailable.

  8. Fishery-Independent Data Reveal Negative Effect of Human Population Density on Caribbean Predatory Fish Communities

    PubMed Central

    Stallings, Christopher D.

    2009-01-01

    Background Understanding the current status of predatory fish communities, and the effects fishing has on them, is vitally important information for management. However, data are often insufficient at region-wide scales to assess the effects of extraction in coral reef ecosystems of developing nations. Methodology/Principal Findings Here, I overcome this difficulty by using a publicly accessible, fisheries-independent database to provide a broad scale, comprehensive analysis of human impacts on predatory reef fish communities across the greater Caribbean region. Specifically, this study analyzed presence and diversity of predatory reef fishes over a gradient of human population density. Across the region, as human population density increases, presence of large-bodied fishes declines, and fish communities become dominated by a few smaller-bodied species. Conclusions/Significance Complete disappearance of several large-bodied fishes indicates ecological and local extinctions have occurred in some densely populated areas. These findings fill a fundamentally important gap in our knowledge of the ecosystem effects of artisanal fisheries in developing nations, and provide support for multiple approaches to data collection where they are commonly unavailable. PMID:19421312

  9. The influence of density on adults and juveniles of the estuarine fish, the sheepshead minnow (cyprinodon variegatus)

    EPA Science Inventory

    The relationship between population density and demographic rates (e.g. survival, reproduction, growth) is critical to understand population dynamics and has been widely studied in fishes. Estuarine species are regularly exposed to dramatic changes in density with daily, monthly,...

  10. Relationship between snail population density and infection status of snails and fish with zoonotic trematodes in Vietnamese carp nurseries.

    PubMed

    Clausen, Jesper Hedegaard; Madsen, Henry; Murrell, K Darwin; Phan Thi, Van; Nguyen Manh, Hung; Viet, Khue Nguyen; Dalsgaard, Anders

    2012-01-01

    Fish-borne zoonotic trematodes (FZT) are a food safety and health concern in Vietnam. Humans and other final hosts acquire these parasites from eating raw or under-cooked fish with FZT metacercariae. Fish raised in ponds are exposed to cercariae shed by snail hosts that are common in fish farm ponds. Previous risk assessment on FZT transmission in the Red River Delta of Vietnam identified carp nursery ponds as major sites of transmission. In this study, we analyzed the association between snail population density and heterophyid trematode infection in snails with the rate of FZT transmission to juvenile fish raised in carp nurseries. Snail population density and prevalence of trematode (Heterophyidae) infections were determined in 48 carp nurseries producing Rohu juveniles, (Labeo rohita) in the Red River Delta area. Fish samples were examined at 3, 6 and 9 weeks after the juvenile fish were introduced into the ponds. There was a significant positive correlation between prevalence of FZT metacercariae in juvenile fish and density of infected snails. Thus, the odds of infection in juvenile fish were 4.36 and 11.32 times higher for ponds with medium and high density of snails, respectively, compared to ponds where no infected snails were found. Further, the intensity of fish FZT infections increased with the density of infected snails. Interestingly, however, some ponds with no or few infected snails were collected also had high prevalence and intensity of FZT in juvenile fish. This may be due to immigration of cercariae into the pond from external water sources. The total number and density of potential host snails and density of host snails infected with heterophyid trematodes in the aquaculture pond is a useful predictor for infections in juvenile fish, although infection levels in juvenile fish can occur despite low density or absence infected snails. This suggests that intervention programs to control FZT infection of fish should include not only intra-pond snail control, but also include water sources of allochthonous cercariae, i.e. canals supplying water to ponds as well as snail habitats outside the pond such as rice fields and surrounding ponds.

  11. Invasive lionfish had no measurable effect on prey fish community structure across the Belizean Barrier Reef

    PubMed Central

    Valdivia, Abel; Cox, Courtney E.; Silbiger, Nyssa J.; Bruno, John F.

    2017-01-01

    Invasive lionfish are assumed to significantly affect Caribbean reef fish communities. However, evidence of lionfish effects on native reef fishes is based on uncontrolled observational studies or small-scale, unrepresentative experiments, with findings ranging from no effect to large effects on prey density and richness. Moreover, whether lionfish affect populations and communities of native reef fishes at larger, management-relevant scales is unknown. The purpose of this study was to assess the effects of lionfish on coral reef prey fish communities in a natural complex reef system. We quantified lionfish and the density, richness, and composition of native prey fishes (0–10 cm total length) at sixteen reefs along ∼250 km of the Belize Barrier Reef from 2009 to 2013. Lionfish invaded our study sites during this four-year longitudinal study, thus our sampling included fish community structure before and after our sites were invaded, i.e., we employed a modified BACI design. We found no evidence that lionfish measurably affected the density, richness, or composition of prey fishes. It is possible that higher lionfish densities are necessary to detect an effect of lionfish on prey populations at this relatively large spatial scale. Alternatively, negative effects of lionfish on prey could be small, essentially undetectable, and ecologically insignificant at our study sites. Other factors that influence the dynamics of reef fish populations including reef complexity, resource availability, recruitment, predation, and fishing could swamp any effects of lionfish on prey populations. PMID:28560093

  12. Invasive lionfish had no measurable effect on prey fish community structure across the Belizean Barrier Reef.

    PubMed

    Hackerott, Serena; Valdivia, Abel; Cox, Courtney E; Silbiger, Nyssa J; Bruno, John F

    2017-01-01

    Invasive lionfish are assumed to significantly affect Caribbean reef fish communities. However, evidence of lionfish effects on native reef fishes is based on uncontrolled observational studies or small-scale, unrepresentative experiments, with findings ranging from no effect to large effects on prey density and richness. Moreover, whether lionfish affect populations and communities of native reef fishes at larger, management-relevant scales is unknown. The purpose of this study was to assess the effects of lionfish on coral reef prey fish communities in a natural complex reef system. We quantified lionfish and the density, richness, and composition of native prey fishes (0-10 cm total length) at sixteen reefs along ∼250 km of the Belize Barrier Reef from 2009 to 2013. Lionfish invaded our study sites during this four-year longitudinal study, thus our sampling included fish community structure before and after our sites were invaded, i.e., we employed a modified BACI design. We found no evidence that lionfish measurably affected the density, richness, or composition of prey fishes. It is possible that higher lionfish densities are necessary to detect an effect of lionfish on prey populations at this relatively large spatial scale. Alternatively, negative effects of lionfish on prey could be small, essentially undetectable, and ecologically insignificant at our study sites. Other factors that influence the dynamics of reef fish populations including reef complexity, resource availability, recruitment, predation, and fishing could swamp any effects of lionfish on prey populations.

  13. Modeling fish community dynamics in Florida Everglades: Role of temperature variation

    USGS Publications Warehouse

    Al-Rabai'ah, H. A.; Koh, H. L.; DeAngelis, Donald L.; Lee, Hooi-Ling

    2002-01-01

    The model shows that the temperature dependent starvation mortality is an important factor that influences fish population densities. It also shows high fish population densities at some temperature ranges when this consumption need is minimum. Several sensitivity analyses involving variations in temperature terms, food resources and water levels are conducted to ascertain the relative importance of temperature dependence terms.

  14. Intraspecific competition and density dependence of food consumption and growth in Arctic charr.

    PubMed

    Amundsen, Per-Arne; Knudsen, Rune; Klemetsen, Anders

    2007-01-01

    1. Intraspecific competition for restricted food resources is considered to play a fundamental part in density dependence of somatic growth and other population characteristics, but studies simultaneously addressing the interrelationships between population density, food acquisition and somatic growth have been missing. 2. We explored the food consumption and individual growth rates of Arctic charr Salvelinus alpinus in a long-term survey following a large-scale density manipulation experiment in a subarctic lake. 3. Prior to the initiation of the experiment, the population density was high and the somatic growth rates low, revealing a severely overcrowded and stunted fish population. 4. During the 6-year period of stock depletion the population density of Arctic charr was reduced with about 75%, resulting in an almost twofold increase in food consumption rates and enhanced individual growth rates of the fish. 5. Over the decade following the density manipulation experiment, the population density gradually rose to intermediate levels, accompanied by corresponding reductions in food consumption and somatic growth rates. 6. The study revealed negative relationships with population density for both food consumption and individual growth rates, reflecting a strong positive correlation between quantitative food intake and somatic growth rates. 7. Both the growth and consumption rate relationships with population density were well described by negative power curves, suggesting that large density perturbations are necessary to induce improved feeding conditions and growth rates in stunted fish populations. 8. The findings demonstrate that quantitative food consumption represents the connective link between population density and individual growth rates, apparently being highly influenced by intraspecific competition for limited resources.

  15. Using Fish Population Metrics to Compare the Effects of Artificial Reef Density.

    PubMed

    Froehlich, Catheline Y M; Kline, Richard J

    2015-01-01

    Artificial reefs continue to be added as habitat throughout the world, yet questions remain about how reef design affects fish diversity and abundance. In the present study, the effects of reef density were assessed for fish communities and sizes of economically valuable Lutjanus campechanus 13 km off Port Mansfield, Texas, at a reef composed of more than 4000 concrete culverts. The study spanned from May to June in 2013 and 2014, and sites sampled included natural reefs, bare areas, and varying culvert patch density categories, ranging from 1-190 culverts. Abundances of adults and species evenness of juvenile populations differed between the years. Fish communities did not significantly differ among density categories; however, highest species richness and total abundances were observed at intermediate culvert densities and at natural reefs. Whereas the abundance of L. campechanus did not differ among density categories, mean total lengths of L. campechanus were greatest at the lower density. Our findings suggest that reefs should be deployed with intermediate patch density of 71-120 culverts in a 30-m radius to yield the highest fish abundances.

  16. Using Fish Population Metrics to Compare the Effects of Artificial Reef Density

    PubMed Central

    2015-01-01

    Artificial reefs continue to be added as habitat throughout the world, yet questions remain about how reef design affects fish diversity and abundance. In the present study, the effects of reef density were assessed for fish communities and sizes of economically valuable Lutjanus campechanus 13 km off Port Mansfield, Texas, at a reef composed of more than 4000 concrete culverts. The study spanned from May to June in 2013 and 2014, and sites sampled included natural reefs, bare areas, and varying culvert patch density categories, ranging from 1–190 culverts. Abundances of adults and species evenness of juvenile populations differed between the years. Fish communities did not significantly differ among density categories; however, highest species richness and total abundances were observed at intermediate culvert densities and at natural reefs. Whereas the abundance of L. campechanus did not differ among density categories, mean total lengths of L. campechanus were greatest at the lower density. Our findings suggest that reefs should be deployed with intermediate patch density of 71–120 culverts in a 30-m radius to yield the highest fish abundances. PMID:26422472

  17. Facilitation in Caribbean coral reefs: high densities of staghorn coral foster greater coral condition and reef fish composition.

    PubMed

    Huntington, Brittany E; Miller, Margaret W; Pausch, Rachel; Richter, Lee

    2017-05-01

    Recovery of the threatened staghorn coral (Acropora cervicornis) is posited to play a key role in Caribbean reef resilience. At four Caribbean locations (including one restored and three extant populations), we quantified characteristics of contemporary staghorn coral across increasing conspecific densities, and investigated a hypothesis of facilitation between staghorn coral and reef fishes. High staghorn densities in the Dry Tortugas exhibited significantly less partial mortality, higher branch growth, and supported greater fish abundances compared to lower densities within the same population. In contrast, partial mortality, branch growth, and fish community composition did not vary with staghorn density at the three other study locations where staghorn densities were lower overall. This suggests that density-dependent effects between the coral and fish community may only manifest at high staghorn densities. We then evaluated one facilitative mechanism for such density-dependence, whereby abundant fishes sheltering in dense staghorn aggregations deliver nutrients back to the coral, fueling faster coral growth, thereby creating more fish habitat. Indeed, dense staghorn aggregations within the Dry Tortugas exhibited significantly higher growth rates, tissue nitrogen, and zooxanthellae densities than sparse aggregations. Similarly, higher tissue nitrogen was induced in a macroalgae bioassay outplanted into the same dense and sparse aggregations, confirming greater bioavailability of nutrients at high staghorn densities. Our findings inform staghorn restoration efforts, suggesting that the most effective targets may be higher coral densities than previously thought. These coral-dense aggregations may reap the benefits of positive facilitation between the staghorn and fish community, favoring the growth and survivorship of this threatened species.

  18. Scalable population estimates using spatial-stream-network (SSN) models, fish density surveys, and national geospatial database frameworks for streams

    Treesearch

    Daniel J. Isaak; Jay M. Ver Hoef; Erin E. Peterson; Dona L. Horan; David E. Nagel

    2017-01-01

    Population size estimates for stream fishes are important for conservation and management, but sampling costs limit the extent of most estimates to small portions of river networks that encompass 100s–10 000s of linear kilometres. However, the advent of large fish density data sets, spatial-stream-network (SSN) models that benefit from nonindependence among samples,...

  19. Characterizing fishing effort and spatial extent of coastal fisheries.

    PubMed

    Stewart, Kelly R; Lewison, Rebecca L; Dunn, Daniel C; Bjorkland, Rhema H; Kelez, Shaleyla; Halpin, Patrick N; Crowder, Larry B

    2010-12-29

    Biodiverse coastal zones are often areas of intense fishing pressure due to the high relative density of fishing capacity in these nearshore regions. Although overcapacity is one of the central challenges to fisheries sustainability in coastal zones, accurate estimates of fishing pressure in coastal zones are limited, hampering the assessment of the direct and collateral impacts (e.g., habitat degradation, bycatch) of fishing. We compiled a comprehensive database of fishing effort metrics and the corresponding spatial limits of fisheries and used a spatial analysis program (FEET) to map fishing effort density (measured as boat-meters per km²) in the coastal zones of six ocean regions. We also considered the utility of a number of socioeconomic variables as indicators of fishing pressure at the national level; fishing density increased as a function of population size and decreased as a function of coastline length. Our mapping exercise points to intra and interregional 'hotspots' of coastal fishing pressure. The significant and intuitive relationships we found between fishing density and population size and coastline length may help with coarse regional characterizations of fishing pressure. However, spatially-delimited fishing effort data are needed to accurately map fishing hotspots, i.e., areas of intense fishing activity. We suggest that estimates of fishing effort, not just target catch or yield, serve as a necessary measure of fishing activity, which is a key link to evaluating sustainability and environmental impacts of coastal fisheries.

  20. Fishing for lobsters indirectly increases epidemics in sea urchins

    USGS Publications Warehouse

    Lafferty, Kevin D.

    2004-01-01

    Two ecological paradigms, the trophic cascade and the host-density threshold in disease, interact in the kelp-forest ecosystem to structure the community. To investigate what happens when a trophic cascade pushes a host population over a host-threshold density, I analyzed a 20-year data set of kelp forest communities at 16 sites in the region of the Channel Islands National Park, California, USA. Historically, lobsters, and perhaps other predators, kept urchin populations at low levels and kelp forests developed a community-level trophic cascade. In geographic areas where the main predators on urchins were fished, urchin populations increased to the extent that they overgrazed algae and starvation eventually limited urchin-population growth. Despite the limitation of urchin population size by food availability, urchin densities, at times, well exceeded the host-density threshold for epidemics. An urchin-specific bacterial disease entered the region after 1992 and acted as a density-dependent mortality source. Dense populations were more likely to experience epidemics and suffer higher mortality. Disease did not reduce the urchin population at a site to the density that predators previously did. Therefore, disease did not fully replace predators in the trophic cascade. These results indicate how fishing top predators can indirectly favor disease transmission in prey populations.

  1. Indicators of fishing mortality on reef-shark populations in the world's first shark sanctuary: the need for surveillance and enforcement

    NASA Astrophysics Data System (ADS)

    Vianna, Gabriel M. S.; Meekan, Mark G.; Ruppert, Jonathan L. W.; Bornovski, Tova H.; Meeuwig, Jessica J.

    2016-09-01

    Shark sanctuaries are promoted as a management tool to achieve conservation goals following global declines of shark populations. We assessed the status of reef-shark populations and indicators of fishing pressure across the world's first shark sanctuary in Palau. Using underwater surveys and stereophotogrammetry, we documented large differences in abundance and size structure of shark populations across the sanctuary, with a strong negative relationship between shark densities and derelict fishing gear on reefs. Densities of 10.9 ± 4.7 (mean ± SE) sharks ha-1 occurred on reefs adjacent to the most populated islands of Palau, contrasting with lower densities of 1.6 ± 0.8 sharks ha-1 on remote uninhabited reefs, where surveillance and enforcement was limited. Our observations suggest that fishing still remains a major factor structuring shark populations in Palau, demonstrating that there is an urgent need for better enforcement and surveillance that targets both illegal and licensed commercial fisheries to provide effective protection for sharks within the sanctuary.

  2. Impact of minimum catch size on the population viability of Strombus gigas (Mesogastropoda: Strombidae) in Quintana Roo, Mexico.

    PubMed

    Peel, Joanne R; Mandujano, María del Carmen

    2014-12-01

    The queen conch Strombus gigas represents one of the most important fishery resources of the Caribbean but heavy fishing pressure has led to the depletion of stocks throughout the region, causing the inclusion of this species into CITES Appendix II and IUCN's Red-List. In Mexico, the queen conch is managed through a minimum fishing size of 200 mm shell length and a fishing quota which usually represents 50% of the adult biomass. The objectives of this study were to determine the intrinsic population growth rate of the queen conch population of Xel-Ha, Quintana Roo, Mexico, and to assess the effects of a regulated fishing impact, simulating the extraction of 50% adult biomass on the population density. We used three different minimum size criteria to demonstrate the effects of minimum catch size on the population density and discuss biological implications. Demographic data was obtained through capture-mark-recapture sampling, collecting all animals encountered during three hours, by three divers, at four different sampling sites of the Xel-Ha inlet. The conch population was sampled each month between 2005 and 2006, and bimonthly between 2006 and 2011, tagging a total of 8,292 animals. Shell length and lip thickness were determined for each individual. The average shell length for conch with formed lip in Xel-Ha was 209.39 ± 14.18 mm and the median 210 mm. Half of the sampled conch with lip ranged between 200 mm and 219 mm shell length. Assuming that the presence of the lip is an indicator for sexual maturity, it can be concluded that many animals may form their lip at greater shell lengths than 200 mm and ought to be considered immature. Estimation of relative adult abundance and densities varied greatly depending on the criteria employed for adult classification. When using a minimum fishing size of 200 mm shell length, between 26.2% and up to 54.8% of the population qualified as adults, which represented a simulated fishing impact of almost one third of the population. When conch extraction was simulated using a classification criteria based on lip thickness, it had a much smaller impact on the population density. We concluded that the best management strategy for S. gigas is a minimum fishing size based on a lip thickness, since it has lower impact on the population density, and given that selective fishing pressure based on size may lead to the appearance of small adult individuals with reduced fecundity. Furthermore, based on the reproductive biology and the results of the simulated fishing, we suggest a minimum lip thickness of ≥ 15 mm, which ensures the protection of reproductive stages, reduces the risk of overfishing, leading to non-viable density reduction.

  3. Characterizing Fishing Effort and Spatial Extent of Coastal Fisheries

    PubMed Central

    Stewart, Kelly R.; Lewison, Rebecca L.; Dunn, Daniel C.; Bjorkland, Rhema H.; Kelez, Shaleyla; Halpin, Patrick N.; Crowder, Larry B.

    2010-01-01

    Biodiverse coastal zones are often areas of intense fishing pressure due to the high relative density of fishing capacity in these nearshore regions. Although overcapacity is one of the central challenges to fisheries sustainability in coastal zones, accurate estimates of fishing pressure in coastal zones are limited, hampering the assessment of the direct and collateral impacts (e.g., habitat degradation, bycatch) of fishing. We compiled a comprehensive database of fishing effort metrics and the corresponding spatial limits of fisheries and used a spatial analysis program (FEET) to map fishing effort density (measured as boat-meters per km2) in the coastal zones of six ocean regions. We also considered the utility of a number of socioeconomic variables as indicators of fishing pressure at the national level; fishing density increased as a function of population size and decreased as a function of coastline length. Our mapping exercise points to intra and interregional ‘hotspots’ of coastal fishing pressure. The significant and intuitive relationships we found between fishing density and population size and coastline length may help with coarse regional characterizations of fishing pressure. However, spatially-delimited fishing effort data are needed to accurately map fishing hotspots, i.e., areas of intense fishing activity. We suggest that estimates of fishing effort, not just target catch or yield, serve as a necessary measure of fishing activity, which is a key link to evaluating sustainability and environmental impacts of coastal fisheries. PMID:21206903

  4. Do management actions to restore rare habitat benefit native fish conservation? Distribution of juvenile native fish among shoreline habitats of the Colorado River

    USGS Publications Warehouse

    Dodrill, Michael J.; Yackulic, Charles B.; Gerig, Brandon; Pine, William E.; Korman, Josh; Finch, Colton

    2015-01-01

    Many management actions in aquatic ecosystems are directed at restoring or improving specific habitats to benefit fish populations. In the Grand Canyon reach of the Colorado River, experimental flow operations as part of the Glen Canyon Dam Adaptive Management Program have been designed to restore sandbars and associated backwater habitats. Backwaters can have warmer water temperatures than other habitats, and native fish, including the federally endangered humpback chub Gila cypha, are frequently observed in backwaters, leading to a common perception that this habitat is critical for juvenile native fish conservation. However, it is unknown how fish densities in backwaters compare with that in other habitats or what proportion of juvenile fish populations reside in backwaters. Here, we develop and fit multi-species hierarchical models to estimate habitat-specific abundances and densities of juvenile humpback chub, bluehead suckerCatostomus discobolus, flannelmouth sucker Catostomus latipinnis and speckled dace Rhinichthys osculus in a portion of the Colorado River. Densities of all four native fish were greatest in backwater habitats in 2009 and 2010. However, backwaters are rare and ephemeral habitats, so they contain only a small portion of the overall population. For example, the total abundance of juvenile humpback chub in this study was much higher in talus than in backwater habitats. Moreover, when we extrapolated relative densities based on estimates of backwater prevalence directly after a controlled flood, the majority of juvenile humpback chub were still found outside of backwaters. This suggests that the role of controlled floods in influencing native fish population trends may be limited in this section of the Colorado River. 

  5. Spatial distribution of limited resources and local density regulation in juvenile Atlantic salmon.

    PubMed

    Finstad, Anders G; Einum, Sigurd; Ugedal, Ola; Forseth, Torbjørn

    2009-01-01

    1. Spatial heterogeneity of resources may influence competition among individuals and thus have a fundamental role in shaping population dynamics and carrying capacity. In the present study, we identify shelter opportunities as a limiting resource for juvenile Atlantic salmon (Salmo salar L.). Experimental and field studies are combined in order to demonstrate how the spatial distribution of shelters may influence population dynamics on both within and among population scales. 2. In closed experimental streams, fish performance scaled negatively with decreasing shelter availability and increasing densities. In contrast, the fish in open stream channels dispersed according to shelter availability and performance of fish remaining in the streams did not depend on initial density or shelters. 3. The field study confirmed that spatial variation in densities of 1-year-old juveniles was governed both by initial recruit density and shelter availability. Strength of density-dependent population regulation, measured as carrying capacity, increased with decreasing number of shelters. 4. Nine rivers were surveyed for spatial variation in shelter availability and increased shelter heterogeneity tended to decrease maximum observed population size (measured using catch statistics of adult salmon as a proxy). 5. Our studies highlight the importance of small-scale within-population spatial structure in population dynamics and demonstrate that not only the absolute amount of limiting resources but also their spatial arrangement can be an important factor influencing population carrying capacity.

  6. Effects of environmental covariates and density on the catchability of fish populations and interpretation of catch per unit effort trends

    USGS Publications Warehouse

    Korman, Josh; Yard, Mike

    2017-01-01

    Article for outlet: Fisheries Research. Abstract: Quantifying temporal and spatial trends in abundance or relative abundance is required to evaluate effects of harvest and changes in habitat for exploited and endangered fish populations. In many cases, the proportion of the population or stock that is captured (catchability or capture probability) is unknown but is often assumed to be constant over space and time. We used data from a large-scale mark-recapture study to evaluate the extent of spatial and temporal variation, and the effects of fish density, fish size, and environmental covariates, on the capture probability of rainbow trout (Oncorhynchus mykiss) in the Colorado River, AZ. Estimates of capture probability for boat electrofishing varied 5-fold across five reaches, 2.8-fold across the range of fish densities that were encountered, 2.1-fold over 19 trips, and 1.6-fold over five fish size classes. Shoreline angle and turbidity were the best covariates explaining variation in capture probability across reaches and trips. Patterns in capture probability were driven by changes in gear efficiency and spatial aggregation, but the latter was more important. Failure to account for effects of fish density on capture probability when translating a historical catch per unit effort time series into a time series of abundance, led to 2.5-fold underestimation of the maximum extent of variation in abundance over the period of record, and resulted in unreliable estimates of relative change in critical years. Catch per unit effort surveys have utility for monitoring long-term trends in relative abundance, but are too imprecise and potentially biased to evaluate population response to habitat changes or to modest changes in fishing effort.

  7. Density of Trematocranus placodon (Pisces: Cichlidae): a predictor of density of the schistosome intermediate host, Bulinus nyassanus (Gastropoda: Planorbidae), in Lake Malaŵi.

    PubMed

    Madsen, Henry; Stauffer, Jay R

    2011-06-01

    From the mid-1980s, we recorded a significant increase in urinary schistosomiasis infection rate and transmission among inhabitants of lakeshore communities in the southern part of Lake Malaŵi, particularly on Nankumba peninsula in Mangochi District. We suggested that the increase was due to over-fishing, which reduced the density of snail-eating fishes, thereby allowing schistosome intermediate host snails to increase to higher densities. In this article, we collected data to test this hypothesis. The density of both Bulinus nyassanus, the intermediate host of Schistosoma haematobium, and Melanoides spp. was negatively related to density of Trematocranus placodon, the most common of the snail-eating fishes in the shallow water of Lake Malaŵi. Both these snails are consumed by T. placodon. Transmission of S. haematobium through B. nyassanus only occurs in the southern part of the lake and only at villages where high density of the intermediate host is found relatively close to the shore. Thus, we believe that implementation of an effective fish ban up to 100-m offshore along these specific shorelines in front of villages would allow populations of T. placodon to increase in density and this would lead to reduced density of B. nyassanus and possibly schistosome transmission. To reduce dependence on natural fish populations in the lake and still maintain a source of high quality food, culture of indigenous fishes may be a viable alternative.

  8. Water quality, physical habitat, and fish community composition in streams in the Twin Cities metropolitan area, Minnesota, 1997-98

    USGS Publications Warehouse

    Talmage, Philip J.; Lee, Kathy E.; Goldstein, Robert M.; Anderson, Jesse P.; Fallon, James D.

    1999-01-01

    Water quality, physical habitat, and fish-community composition were characterized at 13 Twin Cities metropolitan area streams during low-flow conditions, September 1997. Fish communities were resampled during September 1998. Sites were selected based on a range of human population density. Nutrient concentrations were generally low, rarely exceeding concentrations found in agricultural streams or water-quality criteria. Seventeen pesticides and five pesticide metabolites were detected, with atrazine being the only pesticide detected at all 13 streams. Colony counts of fecal coliform bacteria ranged from 54 to greater than 11,000 colonies per 100 mL. Instream fish habitat was sparse with little woody debris and few boulders, cobble, or other suitable fish habitat. Thirty-eight species and one hybrid from 10 families were collected. Fish communities were characterized by high percentages of omnivores and tolerant species with few intolerant species. Index of Biotic Integrity scores were low, with most streams rating fair to very poor. Percent impervious surface was positively correlated with sodium and chloride concentrations and human population density, but was negatively correlated with fish species richness and diversity. Urban land use and human population density influence fish communities and water quality in Twin Cities metropolitan area streams. Other factors that may influence fish community composition include percent impervious cover, water chemistry, water temperature, geomorphology, substrate, instream habitat, and migration barriers.

  9. Aggressive and foraging behavioral interactions among ruffe

    USGS Publications Warehouse

    Savino, Jacqueline F.; Kostich, Melissa J.

    2000-01-01

    The ruffe, Gymnocephalus cernuus, is a nonindigenous percid in the Great Lakes. Ruffe are aggressive benthivores and forage over soft substrates. Laboratory studies in pools (100 cm in diameter, 15 cm water depth) were conducted to determine whether fish density (low = 2, medium = 4, high = 6 ruffe per pool) changed foraging and aggressive behaviors with a limited food supply of chironomid larvae. All fish densities demonstrated a hierarchy based on aggressive interactions, but ruffe were most aggressive at low and high fish densities. Time spent in foraging was lowest at the low fish density. The best forager at the low fish density was the most aggressive individual, but the second most aggressive fish at the medium and high fish density was the best forager and also the one chased most frequently. A medium fish density offered the best energetic benefits to ruffe by providing the lowest ratio of time spent in aggression to that spent foraging. Based on our results, ruffe should grow best at an intermediate density. With high ruffe densities, we would also expect disparity in size as the more aggressive fish are able to garner a disproportionate amount of the resources. Alternatively, as the Great Lakes are a fairly open system, ruffe could migrate out of one area to colonize another as populations exceed optimal densities.

  10. The Impact of Marine Protected Areas on Reef-Wide Population Structure and Fishing-Induced Phenotypes in Coral-Reef Fishes

    NASA Astrophysics Data System (ADS)

    Fidler, Robert Young, III

    Overfishing and destructive fishing practices threaten the sustainability of fisheries worldwide. In addition to reducing population sizes, anthropogenic fishing effort is highly size-selective, preferentially removing the largest individuals from harvested stocks. Intensive, size-selective mortality induces widespread phenotypic shifts toward the predominance of smaller and earlier-maturing individuals. Fish that reach sexual maturity at smaller size and younger age produce fewer, smaller, and less viable larvae, severely reducing the reproductive capacity of exploited populations. These directional phenotypic alterations, collectively known as "fisheries-induced evolution" (FIE) are among the primary causes of the loss of harvestable fish biomass. Marine protected areas (MPAs) are one of the most widely utilized components of fisheries management programs around the world, and have been proposed as a potential mechanism by which the impacts of FIE may be mitigated. The ability of MPAs to buffer exploited populations against fishing pressure, however, remains debated due to inconsistent results across studies. Additionally, empirical evidence of phenotypic shifts in fishes within MPAs is lacking. This investigation addresses both of these issues by: (1) using a categorical meta-analysis of MPAs to standardize and quantify the magnitude of MPA impacts across studies; and (2) conducting a direct comparison of life-history phenotypes known to be influenced by FIE in six reef-fish species inside and outside of MPAs. The Philippines was used as a model system for analyses due to the country's significance in global marine biodiversity and reliance on MPAs as a fishery management tool. The quantitative impact of Philippine MPAs was assessed using a "reef-wide" meta-analysis. This analysis used pooled visual census data from 39 matched pairs of MPAs and fished reefs surveyed twice over a mean period of 3 years. In 17 of these MPAs, two additional surveys were conducted using size-specific fish counts, allowing for spatiotemporal comparisons of abundance and demographic structure of fish populations across protected and fished areas. Results of the meta-analysis revealed that: (1) although fish density was higher inside MPAs than in fished reefs at each sampling period, reef-wide density often increased or remained stable over time; and (2) increases in large-bodied fish were evident reef-wide between survey periods, indicating that positive demographic shifts occurred simultaneously in both MPAs and adjacent areas. Increases in large-bodied fish were observed across a range of taxa, but were most prominent in families directly targeted by fishermen. These results suggest that over relatively few years of protection, Philippine MPAs promoted beneficial shifts in population structure throughout entire reef systems, rather than simply maintaining stable populations within their borders. Relationships between MPA age and shifts in fish density or demographic structure were rare, but may have been precluded by the relatively short period between replicate surveys. Although increases in fish density inside MPAs were occasionally associated with MPA size, there were no significant relationships between the size of MPAs and reef-wide increases in fish density. The reef-wide framework of MPA assessment used in this study has the advantage of treating MPAs and fished reefs as an integrated system, thus revealing trends that would be indistinguishable in traditional spatial comparisons between MPAs and fished reefs. The impact of MPAs on fishing-induced life-history traits was assessed by comparing growth and maturation patterns exhibited by six reef-fish species inside and outside five MPAs and adjacent, fished reefs in Zambales, Luzon, Philippines. This analysis demonstrated considerable variation in terminal body-sizes (Linf) and growth rates (K) between conspecifics in MPAs and fished reefs. Three of the four experimental species directly targeted for food in the region (Acanthurus nigrofuscus, Ctenochaetus striatus, and Parupeneus multifasciatus) exhibited greater Linf, lower K, or both characteristics inside at least one MPA compared to populations in adjacent, fished reefs. Life-history shifts were concentrated in the oldest and largest MPAs, but occurred at least once in each of the five MPAs that were examined. A fourth species harvested for food (Ctenochaetus binotatus), as well as a species targeted for the aquarium trade (Zebrasoma scopas) and a non-target species (Plectroglyphidodon lacrymatus) did not exhibit differential phenotypes between MPAs and fished reefs. The relatively high frequency of alterations to life-history characteristics across MPAs in harvested species suggests that observed changes in the density and size-structure of harvested fish populations inside MPAs are likely driven by spatial disparities in fishing pressure, and are the result of phenotypic changes rather than increased longevity.

  11. Demographic changes following mechanical removal of exotic brown trout in an Intermountain West (USA), high-elevation stream

    USGS Publications Warehouse

    Saunders, W. Carl; Budy, Phaedra E.; Thiede, Gary P.

    2015-01-01

    Exotic species present a great threat to native fish conservation; however, eradicating exotics is expensive and often impractical. Mechanical removal can be ineffective for eradication, but nonetheless may increase management effectiveness by identifying portions of a watershed that are strong sources of exotics. We used mechanical removal to understand processes driving exotic brown trout (Salmo trutta) populations in the Logan River, Utah. Our goals were to: (i) evaluate the demographic response of brown trout to mechanical removal, (ii) identify sources of brown trout recruitment at a watershed scale and (iii) evaluate whether mechanical removal can reduce brown trout densities. We removed brown trout from 2 km of the Logan River (4174 fish), and 5.6 km of Right Hand Fork (RHF, 15,245 fish), a low-elevation tributary, using single-pass electrofishing. We compared fish abundance and size distributions prior to, and after 2 years of mechanical removal. In the Logan River, immigration to the removal reach and high natural variability in fish abundances limited the response to mechanical removal. In contrast, mechanical removal in RHF resulted in a strong recruitment pulse, shifting the size distribution towards smaller fish. These results suggest that, before removal, density-dependent mortality or emigration of juvenile fish stabilised adult populations and may have provided a source of juveniles to the main stem. Overall, in sites demonstrating strong density-dependent population regulation, or near sources of exotics, short-term mechanical removal has limited effects on brown trout populations but may help identify factors governing populations and inform large-scale management of exotic species.

  12. Effects of Spearfishing on Reef Fish Populations in a Multi-Use Conservation Area

    PubMed Central

    Frisch, Ashley J.; Cole, Andrew J.; Hobbs, Jean-Paul A.; Rizzari, Justin R.; Munkres, Katherine P.

    2012-01-01

    Although spearfishing is a popular method of capturing fish, its ecological effects on fish populations are poorly understood, which makes it difficult to assess the legitimacy and desirability of spearfishing in multi-use marine reserves. Recent management changes within the Great Barrier Reef Marine Park (GBRMP) fortuitously created a unique scenario by which to quantify the effects of spearfishing on fish populations. As such, we employed underwater visual surveys and a before-after-control-impact experimental design to investigate the effects of spearfishing on the density and size structure of target and non-target fishes in a multi-use conservation park zone (CPZ) within the GBRMP. Three years after spearfishing was first allowed in the CPZ, there was a 54% reduction in density and a 27% reduction in mean size of coral trout (Plectropomus spp.), the primary target species. These changes were attributed to spearfishing because benthic habitat characteristics and the density of non-target fishes were stable through time, and the density and mean size of coral trout in a nearby control zone (where spearfishing was prohibited) remained unchanged. We conclude that spearfishing, like other forms of fishing, can have rapid and substantial negative effects on target fish populations. Careful management of spearfishing is therefore needed to ensure that conservation obligations are achieved and that fishery resources are harvested sustainably. This is particularly important both for the GBRMP, due to its extraordinarily high conservation value and world heritage status, and for tropical island nations where people depend on spearfishing for food and income. To minimize the effects of spearfishing on target species and to enhance protection of functionally important fishes (herbivores), we recommend that fishery managers adjust output controls such as size- and catch-limits, rather than prohibit spearfishing altogether. This will preserve the cultural and social importance of spearfishing in coastal communities where it is practised. PMID:23251656

  13. Global effects of local human population density and distance to markets on the condition of coral reef fisheries.

    PubMed

    Cinner, Joshua E; Graham, Nicholas A J; Huchery, Cindy; Macneil, M Aaron

    2013-06-01

    Coral reef fisheries support the livelihoods of millions of people but have been severely and negatively affected by anthropogenic activities. We conducted a systematic review of published data on the biomass of coral reef fishes to explore how the condition of reef fisheries is related to the density of local human populations, proximity of the reef to markets, and key environmental variables (including broad geomorphologic reef type, reef area, and net productivity). When only population density and environmental covariates were considered, high variability in fisheries conditions at low human population densities resulted in relatively weak explanatory models. The presence or absence of human settlements, habitat type, and distance to fish markets provided a much stronger explanatory model for the condition of reef fisheries. Fish biomass remained relatively low within 14 km of markets, then biomass increased exponentially as distance from reefs to markets increased. Our results suggest the need for an increased science and policy focus on markets as both a key driver of the condition of reef fisheries and a potential source of solutions. © 2012 Society for Conservation Biology.

  14. Fundamental population-productivity relationships can be modified through density-dependent feedbacks of life-history evolution.

    PubMed

    Kuparinen, Anna; Stenseth, Nils Christian; Hutchings, Jeffrey A

    2014-12-01

    The evolution of life histories over contemporary time scales will almost certainly affect population demography. One important pathway for such eco-evolutionary interactions is the density-dependent regulation of population dynamics. Here, we investigate how fisheries-induced evolution (FIE) might alter density-dependent population-productivity relationships. To this end, we simulate the eco-evolutionary dynamics of an Atlantic cod (Gadus morhua) population under fishing, followed by a period of recovery in the absence of fishing. FIE is associated with increases in juvenile production, the ratio of juveniles to mature population biomass, and the ratio of the mature population biomass relative to the total population biomass. In contrast, net reproductive rate (R 0 ) and per capita population growth rate (r) decline concomitantly with evolution. Our findings suggest that FIE can substantially modify the fundamental population-productivity relationships that underlie density-dependent population regulation and that form the primary population-dynamical basis for fisheries stock-assessment projections. From a conservation and fisheries-rebuilding perspective, we find that FIE reduces R 0 and r, the two fundamental correlates of population recovery ability and inversely extinction probability.

  15. Natural and anthropogenic influences on the distribution of the threatened Neosho madtom in a midwestern warmwater stream

    USGS Publications Warehouse

    Wildhaber, M.L.; Allert, A.L.; Schmitt, C.J.; Tabor, V.M.; Mulhern, D.; Powell, K.L.; Sowa, S.P.

    2000-01-01

    We attempted to discern the contributions of physical habitat, water chemistry, nutrients, and contaminants from historic lead-zinc mining activities on the riffle-dwelling benthic fish community of the Spring River, a midwestern warmwater stream that originates in Missouri and flows into Kansas and Oklahoma. The Spring River has a fish community that includes the Neosho madtom Noturus placidus, a species federally listed as threatened. Although anthropogenic factors such as contaminants limited populations and densities of fishes, an integrated assessment of natural and anthropogenic factors was necessary to effectively estimate the influence of the latter. Fish populations in the Spring River, especially Neosho madtoms, seem to be limited by the presence of cadmium, lead, and zinc in water and in benthic invertebrate food sources and by physical habitat. The population density and community structure of fish in the Spring River also seem to be related to water chemistry and nutrients. Concurrently, diminished food availability may be limiting fish populations at some sites where Neosho madtoms are not found. Many of the natural factors that may be limiting Neosho madtom and other riffle-dwelling fish populations in the Spring River probably are characteristic of the physiographic region drained by the upper reach and many of the tributaries of the Spring River. Our results indicate that competition between the Neosho madtom and other species within the riffle-dwelling fish community is an unlikely cause of Neosho madtom population limitation in the Spring River.

  16. Modeling the effects of land use and climate change on riverine smallmouth bass

    USGS Publications Warehouse

    Peterson, J.T.; Kwak, T.J.

    1999-01-01

    Anthropogenic changes in temperature and stream flow, associated with watershed land use and climate change, are critical influences on the distribution and abundance of riverine fishes. To project the effects of changing land use and climate, we modeled a smallmouth bass (Micropterus dolomieu) population in a midwestern USA, large river- floodplain ecosystem under historical (1915-1925), present (1977-1990), and future (2060, influenced by climate change) temperature and flow regimes. The age-structured model included parameters for temperature and river discharge during critical seasonal periods, fish population dynamics, and fishing harvest. Model relationships were developed from empirical field data collected over a 13-yr period. Sensitivity analyses indicated that discharge during the spawning/rearing period had a greater effect on adult density and fishing yield than did spawning/rearing temperature or winter discharge. Simulations for 100 years projected a 139% greater mean fish density under a historical flow regime (64.9 fish/ha) than that estimated for the present (27.1 fish/ha) with a sustainable fishing harvest under both flow regimes. Simulations under future climate-change-induced temperature and flow regimes with present land use projected a 69% decrease in mean fish density (8.5 fish/ha) from present and an unstable population that went extinct during 56% of the simulations. However, when simulated under a future climate-altered temperature and flow regime with historical land use, the population increased by 66% (45.0 fish/ha) from present and sustained a harvest. Our findings suggest that land-use changes may be a greater detriment to riverine fishes than projected climate change and that the combined effects of both factors may lead to local species extinction. However, the negative effects of increased temperature and precipitation associated with future global warming could be mitigated by river channel, floodplain, and watershed restoration.

  17. Marine reserves as linked social-ecological systems.

    PubMed

    Pollnac, Richard; Christie, Patrick; Cinner, Joshua E; Dalton, Tracey; Daw, Tim M; Forrester, Graham E; Graham, Nicholas A J; McClanahan, Timothy R

    2010-10-26

    Marine reserves are increasingly recognized as having linked social and ecological dynamics. This study investigates how the ecological performance of 56 marine reserves throughout the Philippines, Caribbean, and Western Indian Ocean (WIO) is related to both reserve design features and the socioeconomic characteristics in associated coastal communities. Ecological performance was measured as fish biomass in the reserve relative to nearby areas. Of the socioeconomic variables considered, human population density and compliance with reserve rules had the strongest effects on fish biomass, but the effects of these variables were region specific. Relationships between population density and the reserve effect on fish biomass were negative in the Caribbean, positive in the WIO, and not detectable in the Philippines. Differing associations between population density and reserve effectiveness defy simple explanation but may depend on human migration to effective reserves, depletion of fish stocks outside reserves, or other social factors that change with population density. Higher levels of compliance reported by resource users was related to higher fish biomass in reserves compared with outside, but this relationship was only statistically significant in the Caribbean. A heuristic model based on correlations between social, cultural, political, economic, and other contextual conditions in 127 marine reserves showed that high levels of compliance with reserve rules were related to complex social interactions rather than simply to enforcement of reserve rules. Comparative research of this type is important for uncovering the complexities surrounding human dimensions of marine reserves and improving reserve management.

  18. Long-term persistence, density dependence and effects of climate change on rosyside dace (Cyprinidae)

    Treesearch

    Gary D. Grossman; Gary Sundin; Robert E. Ratajczak

    2016-01-01

    SummaryWe used long-term population data for rosyside dace (Clinostomus funduloides), a numerically dominant member of a stochastically organised fish assemblage, to evaluate the relative importance of density-dependent and density-independent processes to population...

  19. Effects of stream acidification and habitat on fish populations of a North American river

    USGS Publications Warehouse

    Baldigo, Barry P.; Lawrence, G.B.

    2001-01-01

    Water quality, physical habitat, and fisheries at sixteen reaches in the Neversink River Basin were studied during 1991-95 to identify the effects of acidic precipitation on stream-water chemistry and on selected fish-species populations, and to test the hypothesis that the degree of stream acidification affected the spatial distribution of each fish-species population. Most sites on the East Branch Neversink were strongly to severely acidified, whereas most sites on the West Branch were minimally to moderately acidified. Mean density of fish populations ranged from 0 to 2.15 fish/m2; biomass ranged from 0 to 17.5 g/m2. Where brook trout were present, their population density ranged from 0.04 to 1.09 fish/m2, biomass ranged from 0.76 to 12.2 g/m2, and condition (K) ranged from 0.94 to 1.07. Regression analyses revealed strong relations (r2 ?? 0.41 to 0.99; p ??? 0.05) between characteristics of the two most common species (brook trout and slimy sculpin) populations and mean concentrations of inorganic monomeric aluminum (Alim), pH, Si, K+, NO3/-, NH4/+, DOC, Ca2+, and Na+; acid neutralizing capacity (ANC); and water temperature. Stream acidification may have adversely affected fish populations at most East Branch sites, but in other parts of the Neversink River Basin these effects were masked or mitigated by other physical habitat, geochemical, and biological factors.

  20. The 2005 Project Progress Report for 1987-099-00 Dworshak Kokanee Population and Entrainment Assessment (contract # 16791) is attached to project 1987-099-00, contract # 26850. [POINTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2008-12-18

    During this contract, we continued testing underwater strobe lights to determine their effectiveness at repelling kokanee Oncorhynchus nerka away from Dworshak Dam. We tested one set of nine strobe lights flashing at a rate of 360 flashes/min in front of turbine 3 while operating at higher discharges than previously tested. The density and distribution of fish, (thought to be mostly kokanee), were monitored with a split-beam echo sounder. We then compared fish counts and densities during nights when the lights were flashing to counts and densities during adjacent nights without the lights on. On five nights between January 31 andmore » February 28, 2006, when no lights were present, fish counts near turbine 3 averaged eight fish and densities averaged 91 fish/ha. When strobe lights were turned on during five adjacent nights during the same period, mean counts dropped to four fish and densities dropped to 35 fish/ha. The decline in counts (49%) was not statistically significant (p = 0.182), but decline in densities (62%) was significant (p = 0.049). There appeared to be no tendency for fish to habituate to the lights during the night. Test results indicated that strobe lights were able to reduce fish densities by at least 50% in front of turbines operating at higher discharges, which would be sufficient to improve sportfish harvest. We also used split-beam hydroacoustics to monitor the kokanee population in Dworshak Reservoir during 2005. Estimated abundance of kokanee decreased from the 2004 population estimate. Based on hydroacoustic surveys, we estimated 3,011,626 kokanee (90% CI {+-} 15.2%) in Dworshak Reservoir, July 2005. This included 2,135,986 age-0 (90% CI {+-} 15.9%), 769,175 age-1 (90% CI {+-} 16.0%), and 107,465 age-2 (90% CI {+-} 15.2%). Poor survival of kokanee from age-1 to age-2 continued to keep age-2 densities below the management goal of 30-50 adults/ha. Entrainment sampling was conducted with fixed-site split-beam hydroacoustics a minimum of two days per month for a continuous 24 h period when dam operations permitted. The highest fish detection rates from entrainment assessments were again found during nighttime periods and lowest during the day. Fish detection rates were low during high discharges throughout the spring and summer and highest during low discharges in September and November. High discharge during drawdowns for anadromous fish flows in July and August again resulted in low detection rates and susceptibility to entrainment. Index counts of spawning kokanee in four tributary streams totaled 12,742 fish. This data fits the previously developed relationship between spawner counts and adult kokanee abundance in the reservoir.« less

  1. Energetic and ecological constraints on population density of reef fishes.

    PubMed

    Barneche, D R; Kulbicki, M; Floeter, S R; Friedlander, A M; Allen, A P

    2016-01-27

    Population ecology has classically focused on pairwise species interactions, hindering the description of general patterns and processes of population abundance at large spatial scales. Here we use the metabolic theory of ecology as a framework to formulate and test a model that yields predictions linking population density to the physiological constraints of body size and temperature on individual metabolism, and the ecological constraints of trophic structure and species richness on energy partitioning among species. Our model was tested by applying Bayesian quantile regression to a comprehensive reef-fish community database, from which we extracted density data for 5609 populations spread across 49 sites around the world. Our results indicate that population density declines markedly with increases in community species richness and that, after accounting for richness, energetic constraints are manifested most strongly for the most abundant species, which generally are of small body size and occupy lower trophic groups. Overall, our findings suggest that, at the global scale, factors associated with community species richness are the major drivers of variation in population density. Given that populations of species-rich tropical systems exhibit markedly lower maximum densities, they may be particularly susceptible to stochastic extinction. © 2016 The Author(s).

  2. Energetic and ecological constraints on population density of reef fishes

    PubMed Central

    Barneche, D. R.; Kulbicki, M.; Floeter, S. R.; Friedlander, A. M.; Allen, A. P.

    2016-01-01

    Population ecology has classically focused on pairwise species interactions, hindering the description of general patterns and processes of population abundance at large spatial scales. Here we use the metabolic theory of ecology as a framework to formulate and test a model that yields predictions linking population density to the physiological constraints of body size and temperature on individual metabolism, and the ecological constraints of trophic structure and species richness on energy partitioning among species. Our model was tested by applying Bayesian quantile regression to a comprehensive reef-fish community database, from which we extracted density data for 5609 populations spread across 49 sites around the world. Our results indicate that population density declines markedly with increases in community species richness and that, after accounting for richness, energetic constraints are manifested most strongly for the most abundant species, which generally are of small body size and occupy lower trophic groups. Overall, our findings suggest that, at the global scale, factors associated with community species richness are the major drivers of variation in population density. Given that populations of species-rich tropical systems exhibit markedly lower maximum densities, they may be particularly susceptible to stochastic extinction. PMID:26791611

  3. Host population density as the major determinant of endoparasite species richness in floodplain fishes of the upper Paraná River, Brazil.

    PubMed

    Takemoto, R M; Pavanelli, G C; Lizama, M A P; Luque, J L; Poulin, R

    2005-03-01

    A comparative analysis of parasite species richness was performed across 53 species of fish from the floodplain of the upper Paraná River, Brazil. Values of catch per unit effort, CPUE (number of individuals of a given fish species captured per 1000 m(2) of net during 24 h) were used as a rough measure of population density for each fish species in order to test its influence on endoparasite species richness. The effects of several other host traits (body size, social behaviour, reproductive behaviour, spawning type, trophic category, feeding habits, relative position in the food web, preference for certain habitats and whether the fish species are native or exotic) on metazoan endoparasite species richness were also evaluated. The CPUE was the sole significant predictor of parasite species richness, whether controlling for the confounding influences of host phylogeny and sampling effort or not. The results suggest that in the floodplain of the upper Paraná River (with homogeneous physical characteristics and occurrence of many flood pulses), population density of different host species might be the major determinant of their parasite species richness.

  4. Density-Dependent Growth in Invasive Lionfish (Pterois volitans)

    PubMed Central

    Benkwitt, Cassandra E.

    2013-01-01

    Direct demographic density dependence is necessary for population regulation and is a central concept in ecology, yet has not been studied in many invasive species, including any invasive marine fish. The red lionfish (Pterois volitans) is an invasive predatory marine fish that is undergoing exponential population growth throughout the tropical western Atlantic. Invasive lionfish threaten coral-reef ecosystems, but there is currently no evidence of any natural population control. Therefore, a manipulative field experiment was conducted to test for density dependence in lionfish. Juvenile lionfish densities were adjusted on small reefs and several demographic rates (growth, recruitment, immigration, and loss) were measured throughout an 8-week period. Invasive lionfish exhibited direct density dependence in individual growth rates, as lionfish grew slower at higher densities throughout the study. Individual growth in length declined linearly with increasing lionfish density, while growth in mass declined exponentially with increasing density. There was no evidence, however, for density dependence in recruitment, immigration, or loss (mortality plus emigration) of invasive lionfish. The observed density-dependent growth rates may have implications for which native species are susceptible to lionfish predation, as the size and type of prey that lionfish consume is directly related to their body size. The absence of density-dependent loss, however, contrasts with many native coral-reef fish species and suggests that for the foreseeable future manual removals may be the only effective local control of this invasion. PMID:23825604

  5. Density-dependent growth in invasive Lionfish (Pterois volitans).

    PubMed

    Benkwitt, Cassandra E

    2013-01-01

    Direct demographic density dependence is necessary for population regulation and is a central concept in ecology, yet has not been studied in many invasive species, including any invasive marine fish. The red lionfish (Pterois volitans) is an invasive predatory marine fish that is undergoing exponential population growth throughout the tropical western Atlantic. Invasive lionfish threaten coral-reef ecosystems, but there is currently no evidence of any natural population control. Therefore, a manipulative field experiment was conducted to test for density dependence in lionfish. Juvenile lionfish densities were adjusted on small reefs and several demographic rates (growth, recruitment, immigration, and loss) were measured throughout an 8-week period. Invasive lionfish exhibited direct density dependence in individual growth rates, as lionfish grew slower at higher densities throughout the study. Individual growth in length declined linearly with increasing lionfish density, while growth in mass declined exponentially with increasing density. There was no evidence, however, for density dependence in recruitment, immigration, or loss (mortality plus emigration) of invasive lionfish. The observed density-dependent growth rates may have implications for which native species are susceptible to lionfish predation, as the size and type of prey that lionfish consume is directly related to their body size. The absence of density-dependent loss, however, contrasts with many native coral-reef fish species and suggests that for the foreseeable future manual removals may be the only effective local control of this invasion.

  6. Fish community changes in the St. Louis River estuary, Lake Superior, 1989-1996: Is it ruffe or population dynamics?

    USGS Publications Warehouse

    Bronte, Charles R.; Evrard, Lori M.; Brown, William P.; Mayo, Kathleen R.; Edwards, Andrew J.

    1998-01-01

    Ruffe (Gymnocephalus cernuus) have been implicated in density declines of native species through egg predation and competition for food in some European waters where they were introduced. Density estimates for ruffe and principal native fishes in the St. Louis River estuary (western Lake Superior) were developed for 1989 to 1996 to measure changes in the fish community in response to an unintentional introduction of ruffe. During the study, ruffe density increased and the densities of several native species decreased. The reductions of native stocks to the natural population dynamics of the same species from Chequamegon Bay, Lake Superior (an area with very few ruffe) were developed, where there was a 24-year record of density. Using these data, short- and long-term variations in catch and correlations among species within years were compared, and species-specific distributions were developed of observed trends in abundance of native fishes in Chequamegon Bay indexed by the slopes of densities across years. From these distributions and our observed trend-line slopes from the St. Louis River, probabilities of measuring negative change at the magnitude observed in the St. Louis River were estimated. Compared with trends in Chequamegon Bay, there was a high probability of obtaining the negative slopes measured for most species, which suggests natural population dynamics could explain, the declines rather than interactions with ruffe. Variable recruitment, which was not related to ruffe density, and associated density-dependent changes in mortality likely were responsible for density declines of native species.

  7. Metabolism drives distribution and abundance in extremophile fish

    PubMed Central

    McHugh, Peter A.; Glover, Chris N.; McIntosh, Angus R.

    2017-01-01

    Differences in population density between species of varying size are frequently attributed to metabolic rates which are assumed to scale with body size with a slope of 0.75. This assumption is often criticised on the grounds that 0.75 scaling of metabolic rate with body size is not universal and can vary significantly depending on species and life-history. However, few studies have investigated how interspecific variation in metabolic scaling relationships affects population density in different sized species. Here we predict inter-specific differences in metabolism from niche requirements, thereby allowing metabolic predictions of species distribution and abundance at fine spatial scales. Due to the differences in energetic efficiency required along harsh-benign gradients, an extremophile fish (brown mudfish, Neochanna apoda) living in harsh environments had slower metabolism, and thus higher population densities, compared to a fish species (banded kōkopu, Galaxias fasciatus) in physiologically more benign habitats. Interspecific differences in the intercepts for the relationship between body and density disappeared when species mass-specific metabolic rates, rather than body sizes, were used to predict density, implying population energy use was equivalent between mudfish and kōkopu. Nevertheless, despite significant interspecific differences in the slope of the metabolic scaling relationships, mudfish and kōkopu had a common slope for the relationship between body size and population density. These results support underlying logic of energetic equivalence between different size species implicit in metabolic theory. However, the precise slope of metabolic scaling relationships, which is the subject of much debate, may not be a reliable indicator of population density as expected under metabolic theory. PMID:29176819

  8. Estimating the impact of oyster restoration scenarios on transient fish production

    USGS Publications Warehouse

    McCoy, Elizabeth; Borrett, Stuart R.; LaPeyre, Megan K.; Peterson, Bradley J.

    2017-01-01

    Oyster reef restoration projects are increasing in number both to enhance oyster density and to retain valuable ecosystem services provided by oyster reefs. Although some oyster restoration projects have demonstrated success by increasing density and biomass of transient fish, it still remains a challenge to quantify the effects of oyster restoration on transient fish communities. We developed a bioenergetics model to assess the impact of selected oyster reef restoration scenarios on associated transient fish species. We used the model to analyze the impact of changes in (1) oyster population carrying capacity; (2) oyster population growth rate; and (3) diet preference of transient fish on oyster reef development and associated transient fish species. Our model results indicate that resident fish biomass is directly affected by oyster restoration and oyster biomass, and oyster restoration can have cascading impacts on transient fish biomass. Furthermore, the results highlight the importance of a favorable oyster population growth rate during early restoration years, as it can lead to rapid increases in mean oyster biomass and biomass of transient fish species. The model also revealed that a transient fish's diet solely dependent on oyster reef-derived prey could limit the biomass of transient fish species, emphasizing the importance of habitat connectivity in estuarine areas to enhance transient fish species biomass. Simple bioenergetics models can be developed to understand the dynamics of a system and make qualitative predictions of management and restoration scenarios.

  9. Evaluating a fish monitoring protocol using state-space hierarchical models

    USGS Publications Warehouse

    Russell, Robin E.; Schmetterling, David A.; Guy, Chris S.; Shepard, Bradley B.; McFarland, Robert; Skaar, Donald

    2012-01-01

    Using data collected from three river reaches in Montana, we evaluated our ability to detect population trends and predict fish future fish abundance. Data were collected as part of a long-term monitoring program conducted by Montana Fish, Wildlife and Parks to primarily estimate rainbow (Oncorhynchus mykiss) and brown trout (Salmo trutta) abundance in numerous rivers across Montana. We used a hierarchical Bayesian mark-recapture model to estimate fish abundance over time in each of the three river reaches. We then fit a state-space Gompertz model to estimate current trends and future fish populations. Density dependent effects were detected in 1 of the 6 fish populations. Predictions of future fish populations displayed wide credible intervals. Our simulations indicated that given the observed variation in the abundance estimates, the probability of detecting a 30% decline in fish populations over a five-year period was less than 50%. We recommend a monitoring program that is closely tied to management objectives and reflects the precision necessary to make informed management decisions.

  10. Increased natural mortality at low abundance can generate an Allee effect in a marine fish.

    PubMed

    Kuparinen, Anna; Hutchings, Jeffrey A

    2014-10-01

    Negative density-dependent regulation of population dynamics promotes population growth at low abundance and is therefore vital for recovery following depletion. Inversely, any process that reduces the compensatory density-dependence of population growth can negatively affect recovery. Here, we show that increased adult mortality at low abundance can reverse compensatory population dynamics into its opposite-a demographic Allee effect. Northwest Atlantic cod (Gadus morhua) stocks collapsed dramatically in the early 1990s and have since shown little sign of recovery. Many experienced dramatic increases in natural mortality, ostensibly attributable in some populations to increased predation by seals. Our findings show that increased natural mortality of a magnitude observed for overfished cod stocks has been more than sufficient to fundamentally alter the dynamics of density-dependent population regulation. The demographic Allee effect generated by these changes can slow down or even impede the recovery of depleted populations even in the absence of fishing.

  11. Lake trout (Salvelinus namaycush) suppression for bull trout (Salvelinus confluentus) recovery in Flathead Lake, Montana, North America

    USGS Publications Warehouse

    Hansen, Michael J.; Hansen, Barry S; Beauchamp, David A.

    2016-01-01

    Non-native lake trout Salvelinus namaycush displaced native bull trout Salvelinus confluentus in Flathead Lake, Montana, USA, after 1984, when Mysis diluviana became abundant following its introduction in upstream lakes in 1968–1976. We developed a simulation model to determine the fishing mortality rate on lake trout that would enable bull trout recovery. Model simulations indicated that suppression of adult lake trout by 75% from current abundance would reduce predation on bull trout by 90%. Current removals of lake trout through incentivized fishing contests has not been sufficient to suppress lake trout abundance estimated by mark-recapture or indexed by stratified-random gill netting. In contrast, size structure, body condition, mortality, and maturity are changing consistent with a density-dependent reduction in lake trout abundance. Population modeling indicated total fishing effort would need to increase 3-fold to reduce adult lake trout population density by 75%. We conclude that increased fishing effort would suppress lake trout population density and predation on juvenile bull trout, and thereby enable higher abundance of adult bull trout in Flathead Lake and its tributaries.

  12. The 2006 Project Progress Report for 1987-099-00 Dworshak Kokanee Population and Entrainment Assessment (contract # 26850) is attached to project 2007-003-00, contract #31598. [POINTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2008-12-18

    During this contract, we continued testing underwater strobe lights to determine their effectiveness at repelling kokanee Oncorhynchus nerka away from Dworshak Dam. Strobe light tests were conducted on four nights from April 24-27, 2006, in front of the middle reservoir outlet (RO) 2. The density and distribution of fish, (thought to be mostly kokanee), were monitored with a split-beam echo sounder. We then compared fish counts and densities during nights when the lights were flashing to counts and densities during adjacent nights without the lights on. On two nights, April 25 and 27, 2006, when no lights were present, fishmore » counts near RO 2 averaged 12.4 fish and densities averaged 31.0 fish/ha. When strobe lights were turned on during the nights of April 24 and 26, mean counts dropped to 4.7 fish and densities dropped to 0.5 fish/ha. The decline in counts (62%) and densities (99%) was statistically significant (p = 0.009 and 0.002, respectively). Test results indicated that strobe lights were able to reduce fish densities by at least 50% in front of a discharging reservoir outlet, which would be sufficient to improve sport fish harvest. We also used split-beam hydroacoustics to monitor the kokanee population in Dworshak Reservoir during 2006. Estimated abundance of kokanee increased from the 2005 population estimate. Based on hydroacoustic surveys, we estimated approximately 5,815,000 kokanee (90% CI {+-} 27.6%) in Dworshak Reservoir in August 2006. This included 2,183,000 age-0 (90% CI {+-} 24.2%), 1,509,000 age-1 (90% CI {+-} 29.0%), and 2,124,000 age-2 (90% CI {+-} 27.6%) kokanee. This resulted in a density of age-2 kokanee above the management goal of 30-50 adults/ha. Entrainment sampling was conducted with fixed-site, split-beam hydroacoustics from May through September for a continuous 24 h period when dam operations permitted. The highest fish detection rates from entrainment assessments were found during dawn periods, unlike previous year's results, which were highest during nighttime. The lowest detection rate was found during the day period, which was consistent with previous findings. Fish detection rates were generally low during high discharges throughout the summer and highest during low discharges in May and June. Low detection rates were found during high discharge periods during drawdowns for anadromous fish flows in July and August, which resulted in low susceptibility to entrainment. Counts of spawning kokanee in four tributary streams totaled 29,743 fish. These data fit the previously developed relationship between spawner counts and adult kokanee abundance in the reservoir.« less

  13. Dworshak Kokanee Population and Engrainment Assessment : 2006 Annual Report, March 1, 2006 - February 28, 2007.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stark, Eric J.

    2008-12-18

    During this contract, we continued testing underwater strobe lights to determine their effectiveness at repelling kokanee Oncorhynchus nerka away from Dworshak Dam. Strobe light tests were conducted on four nights from April 24-27, 2006, in front of the middle reservoir outlet (RO) 2. The density and distribution of fish, (thought to be mostly kokanee), were monitored with a split-beam echo sounder. We then compared fish counts and densities during nights when the lights were flashing to counts and densities during adjacent nights without the lights on. On two nights, April 25 and 27, 2006, when no lights were present, fishmore » counts near RO 2 averaged 12.4 fish and densities averaged 31.0 fish/ha. When strobe lights were turned on during the nights of April 24 and 26, mean counts dropped to 4.7 fish and densities dropped to 0.5 fish/ha. The decline in counts (62%) and densities (99%) was statistically significant (p = 0.009 and 0.002, respectively). Test results indicated that strobe lights were able to reduce fish densities by at least 50% in front of a discharging reservoir outlet, which would be sufficient to improve sport fish harvest. We also used split-beam hydroacoustics to monitor the kokanee population in Dworshak Reservoir during 2006. Estimated abundance of kokanee increased from the 2005 population estimate. Based on hydroacoustic surveys, we estimated approximately 5,815,000 kokanee (90% CI {+-} 27.6%) in Dworshak Reservoir in August 2006. This included 2,183,000 age-0 (90% CI {+-} 24.2%), 1,509,000 age-1 (90% CI {+-} 29.0%), and 2,124,000 age-2 (90% CI {+-} 27.6%) kokanee. This resulted in a density of age-2 kokanee above the management goal of 30-50 adults/ha. Entrainment sampling was conducted with fixed-site, split-beam hydroacoustics from May through September for a continuous 24 h period when dam operations permitted. The highest fish detection rates from entrainment assessments were found during dawn periods, unlike previous year's results, which were highest during nighttime. The lowest detection rate was found during the day period, which was consistent with previous findings. Fish detection rates were generally low during high discharges throughout the summer and highest during low discharges in May and June. Low detection rates were found during high discharge periods during drawdowns for anadromous fish flows in July and August, which resulted in low susceptibility to entrainment. Counts of spawning kokanee in four tributary streams totaled 29,743 fish. These data fit the previously developed relationship between spawner counts and adult kokanee abundance in the reservoir.« less

  14. Hydrological disturbance diminishes predator control in wetlands.

    PubMed

    Dorn, Nathan J; Cook, Mark I

    2015-11-01

    Effects of predators on prey populations can be especially strong in aquatic ecosystems, but disturbances may mediate the strength of predator limitation and even allow outbreaks of some prey populations. In a two-year study we investigated the numerical responses of crayfish (Procambarus fallax) and small fishes (Poeciliidae and Fundulidae) to a brief hydrological disturbance in replicated freshwater wetlands with an experimental drying and large predatory fish reduction. The experiment and an in situ predation assay tested the component of the consumer stress model positing that disturbances release prey from predator limitation. In the disturbed wetlands, abundances of large predatory fish were seasonally reduced, similar to dynamics in the Everglades (southern Florida). Densities of small fish were unaffected by the disturbance, but crayfish densities, which were similar across all wetlands before drying, increased almost threefold in the year after the disturbance. Upon re-flooding, juvenile crayfish survival was inversely related to the abundance of large fish across wetlands, but we found no evidence for enhanced algal food quality. At a larger landscape scale (500 km2 of the Everglades), crayfish densities over eight years were positively correlated with the severity of local dry disturbances (up to 99 days dry) during the preceding dry season. In contrast, densities of small-bodied fishes in the same wetlands were seasonally depressed by dry disturbances. The results from our experimental wetland drought and the observations of crayfish densities in the Everglades represent a large-scale example of prey population release following a hydrological disturbance in a freshwater ecosystem. The conditions producing crayfish pulses in the Everglades appear consistent with the mechanics of the consumer stress model, and we suggest crayfish pulses may influence the number of nesting wading birds in the Everglades.

  15. Reduced density of the herbivorous urchin Diadema antillarum inside a Caribbean marine reserve linked to increased predation pressure by fishes

    NASA Astrophysics Data System (ADS)

    Harborne, A. R.; Renaud, P. G.; Tyler, E. H. M.; Mumby, P. J.

    2009-09-01

    Disease has dramatically reduced populations of the herbivorous urchin Diadema antillarum Philippi on Caribbean reefs, contributing to an increased abundance of macroalgae and reduction of coral cover. Therefore, recovery of D. antillarum populations is critically important, but densities are still low on many reefs. Among the many potential factors limiting these densities, the focus of this study is on predation pressure by fishes. Marine reserves provide opportunities to examine large-scale manipulations of predator-prey interactions and, therefore, D. antillarum densities were compared inside and outside a reserve in The Bahamas (Exuma Cays Land and Sea Park; ECLSP). Urchins and their fish predators were surveyed at nine sites inside and outside the ECLSP. Because of lower fishing effort, the total biomass of urchin predators, weighted by their dietary preferences for urchins, was significantly higher inside the ECLSP. Furthermore, fish community structure was significantly different inside the Park because of the increased biomass of the majority of species. No urchins were seen inside the ECLSP and this was significantly lower than the density of 0.04 urchin m-2 outside the Park. Regression analysis indicated that the relationship between the biomass of urchin predators and the proportion of transects containing urchins was non-linear, suggesting that small increases in fish biomass dramatically reduce urchin abundances. The link between lower density of urchins and higher density of their predators inside the ECLSP is strengthened by discounting five alternative primary mechanisms (variations in macroalgal cover, larval supply, environmental setting, density of other urchin species and abundance of predators not surveyed). Caribbean marine reserves have an important conservation role, but increased fish predation appears to reduce densities of D. antillarum. Urchins currently have limited functional significance on Bahamian reefs, but any future recovery of D. antillarum is likely to be limited in reserves, with potentially important ecological consequences.

  16. Evaluating the potential for stock size to limit recruitment in largemouth bass

    USGS Publications Warehouse

    Allen, Michael S.; Rogers, Mark W.; Catalano, Mathew J.; Gwinn, Daniel G.; Walsh, Stephen J.

    2011-01-01

    Compensatory changes in juvenile survival allow fish stocks to maintain relatively constant recruitment across a wide range of stock sizes (and levels of fishing), but few studies have experimentally explored recruitment compensation in fish populations. We evaluated the potential for recruitment compensation in largemouth bass Micropterus salmoides by stocking six 0.4-ha hatchery ponds with adult densities ranging from 6 to 40 fish over 2 years. Ponds were drained in October each year, and the age-0 fish densities were used as a measure of recruitment. We found no relationship between stock abundance and recruitment; ponds with low adult densities produced nearly as many recruits as the higher-density ponds in some cases. Both prey abundance and the growth of age-0 largemouth bass declined with age-0 fish density. Recruit abundance was highly variable both within and among the adult density groups, and thus we were unable to identify a clear stock–recruit relationship for largemouth bass. Our results indicate that reducing the number of effective spawners via angling practices would not reduce recruitment over a relatively large range in stock size.

  17. Microhabitat use, population densities, and size distributions of sulfur cave-dwelling Poecilia mexicana

    PubMed Central

    Bierbach, David; Riesch, Rüdiger; Schießl, Angela; Wigh, Adriana; Arias-Rodriguez, Lenin; Indy, Jeane Rimber; Klaus, Sebastian; Zimmer, Claudia; Plath, Martin

    2014-01-01

    The Cueva del Azufre in Tabasco, Mexico, is a nutrient-rich cave and its inhabitants need to cope with high levels of dissolved hydrogen sulfide and extreme hypoxia. One of the successful colonizers of this cave is the poeciliid fish Poecilia mexicana, which has received considerable attention as a model organism to examine evolutionary adaptations to extreme environmental conditions. Nonetheless, basic ecological data on the endemic cave molly population are still missing; here we aim to provide data on population densities, size class compositions and use of different microhabitats. We found high overall densities in the cave and highest densities at the middle part of the cave with more than 200 individuals per square meter. These sites have lower H2S concentrations compared to the inner parts where most large sulfide sources are located, but they are annually exposed to a religious harvesting ceremony of local Zoque people called La Pesca. We found a marked shift in size/age compositions towards an overabundance of smaller, juvenile fish at those sites. We discuss these findings in relation to several environmental gradients within the cave (i.e., differences in toxicity and lighting conditions), but we also tentatively argue that the annual fish harvest during a religious ceremony (La Pesca) locally diminishes competition (and possibly, cannibalism by large adults), which is followed by a phase of overcompensation of fish densities. PMID:25083351

  18. Microhabitat use, population densities, and size distributions of sulfur cave-dwelling Poecilia mexicana.

    PubMed

    Jourdan, Jonas; Bierbach, David; Riesch, Rüdiger; Schießl, Angela; Wigh, Adriana; Arias-Rodriguez, Lenin; Indy, Jeane Rimber; Klaus, Sebastian; Zimmer, Claudia; Plath, Martin

    2014-01-01

    The Cueva del Azufre in Tabasco, Mexico, is a nutrient-rich cave and its inhabitants need to cope with high levels of dissolved hydrogen sulfide and extreme hypoxia. One of the successful colonizers of this cave is the poeciliid fish Poecilia mexicana, which has received considerable attention as a model organism to examine evolutionary adaptations to extreme environmental conditions. Nonetheless, basic ecological data on the endemic cave molly population are still missing; here we aim to provide data on population densities, size class compositions and use of different microhabitats. We found high overall densities in the cave and highest densities at the middle part of the cave with more than 200 individuals per square meter. These sites have lower H2S concentrations compared to the inner parts where most large sulfide sources are located, but they are annually exposed to a religious harvesting ceremony of local Zoque people called La Pesca. We found a marked shift in size/age compositions towards an overabundance of smaller, juvenile fish at those sites. We discuss these findings in relation to several environmental gradients within the cave (i.e., differences in toxicity and lighting conditions), but we also tentatively argue that the annual fish harvest during a religious ceremony (La Pesca) locally diminishes competition (and possibly, cannibalism by large adults), which is followed by a phase of overcompensation of fish densities.

  19. Approximate sample sizes required to estimate length distributions

    USGS Publications Warehouse

    Miranda, L.E.

    2007-01-01

    The sample sizes required to estimate fish length were determined by bootstrapping from reference length distributions. Depending on population characteristics and species-specific maximum lengths, 1-cm length-frequency histograms required 375-1,200 fish to estimate within 10% with 80% confidence, 2.5-cm histograms required 150-425 fish, proportional stock density required 75-140 fish, and mean length required 75-160 fish. In general, smaller species, smaller populations, populations with higher mortality, and simpler length statistics required fewer samples. Indices that require low sample sizes may be suitable for monitoring population status, and when large changes in length are evident, additional sampling effort may be allocated to more precisely define length status with more informative estimators. ?? Copyright by the American Fisheries Society 2007.

  20. Expectations and Outcomes of Reserve Network Performance following Re-zoning of the Great Barrier Reef Marine Park.

    PubMed

    Emslie, Michael J; Logan, Murray; Williamson, David H; Ayling, Anthony M; MacNeil, M Aaron; Ceccarelli, Daniela; Cheal, Alistair J; Evans, Richard D; Johns, Kerryn A; Jonker, Michelle J; Miller, Ian R; Osborne, Kate; Russ, Garry R; Sweatman, Hugh P A

    2015-04-20

    Networks of no-take marine reserves (NTMRs) are widely advocated for preserving exploited fish stocks and for conserving biodiversity. We used underwater visual surveys of coral reef fish and benthic communities to quantify the short- to medium-term (5 to 30 years) ecological effects of the establishment of NTMRs within the Great Barrier Reef Marine Park (GBRMP). The density, mean length, and biomass of principal fishery species, coral trout (Plectropomus spp., Variola spp.), were consistently greater in NTMRs than on fished reefs over both the short and medium term. However, there were no clear or consistent differences in the structure of fish or benthic assemblages, non-target fish density, fish species richness, or coral cover between NTMR and fished reefs. There was no indication that the displacement and concentration of fishing effort reduced coral trout populations on fished reefs. A severe tropical cyclone impacted many survey reefs during the study, causing similar declines in coral cover and fish density on both NTMR and fished reefs. However, coral trout biomass declined only on fished reefs after the cyclone. The GBRMP is performing as expected in terms of the protection of fished stocks and biodiversity for a developed country in which fishing is not excessive and targets a narrow range of species. NTMRs cannot protect coral reefs directly from acute regional-scale disturbance but, after a strong tropical cyclone, impacted NTMR reefs supported higher biomass of key fishery-targeted species and so should provide valuable sources of larvae to enhance population recovery and long-term persistence. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Generalized fish life-cycle poplulation model and computer program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeAngelis, D. L.; Van Winkle, W.; Christensen, S. W.

    1978-03-01

    A generalized fish life-cycle population model and computer program have been prepared to evaluate the long-term effect of changes in mortality in age class 0. The general question concerns what happens to a fishery when density-independent sources of mortality are introduced that act on age class 0, particularly entrainment and impingement at power plants. This paper discusses the model formulation and computer program, including sample results. The population model consists of a system of difference equations involving age-dependent fecundity and survival. The fecundity for each age class is assumed to be a function of both the fraction of females sexuallymore » mature and the weight of females as they enter each age class. Natural mortality for age classes 1 and older is assumed to be independent of population size. Fishing mortality is assumed to vary with the number and weight of fish available to the fishery. Age class 0 is divided into six life stages. The probability of survival for age class 0 is estimated considering both density-independent mortality (natural and power plant) and density-dependent mortality for each life stage. Two types of density-dependent mortality are included. These are cannibalism of each life stage by older age classes and intra-life-stage competition.« less

  2. Linking removal targets to the ecological effects of invaders: a predictive model and field test.

    PubMed

    Green, Stephanie J; Dulvy, Nicholas K; Brooks, Annabelle M L; Akins, John L; Cooper, Andrew B; Miller, Skylar; Côté, Isabelle M

    Species invasions have a range of negative effects on recipient ecosystems, and many occur at a scale and magnitude that preclude complete eradication. When complete extirpation is unlikely with available management resources, an effective strategy may be to suppress invasive populations below levels predicted to cause undesirable ecological change. We illustrated this approach by developing and testing targets for the control of invasive Indo-Pacific lionfish (Pterois volitans and P. miles) on Western Atlantic coral reefs. We first developed a size-structured simulation model of predation by lionfish on native fish communities, which we used to predict threshold densities of lionfish beyond which native fish biomass should decline. We then tested our predictions by experimentally manipulating lionfish densities above or below reef-specific thresholds, and monitoring the consequences for native fish populations on 24 Bahamian patch reefs over 18 months. We found that reducing lionfish below predicted threshold densities effectively protected native fish community biomass from predation-induced declines. Reductions in density of 25–92%, depending on the reef, were required to suppress lionfish below levels predicted to overconsume prey. On reefs where lionfish were kept below threshold densities, native prey fish biomass increased by 50–70%. Gains in small (<6 cm) size classes of native fishes translated into lagged increases in larger size classes over time. The biomass of larger individuals (>15 cm total length), including ecologically important grazers and economically important fisheries species, had increased by 10–65% by the end of the experiment. Crucially, similar gains in prey fish biomass were realized on reefs subjected to partial and full removal of lionfish, but partial removals took 30% less time to implement. By contrast, the biomass of small native fishes declined by >50% on all reefs with lionfish densities exceeding reef-specific thresholds. Large inter-reef variation in the biomass of prey fishes at the outset of the study, which influences the threshold density of lionfish, means that we could not identify a single rule of thumb for guiding control efforts. However, our model provides a method for setting reef-specific targets for population control using local monitoring data. Our work is the first to demonstrate that for ongoing invasions, suppressing invaders below densities that cause environmental harm can have a similar effect, in terms of protecting the native ecosystem on a local scale, to achieving complete eradication.

  3. Phenotypic plasticity in sex allocation for a simultaneously hermaphroditic coral reef fish

    NASA Astrophysics Data System (ADS)

    Hart, M. K.; Svoboda, A.; Mancilla Cortez, D.

    2011-06-01

    Phenotypic plasticity can facilitate reproductive strategies that maximize mating success in variable environments and lead to differences in sex allocation among populations. For simultaneous hermaphrodites with sperm competition, including Serranus tortugarum a small coral reef fish, proportional male allocation (testis in total gonad) is often greater where local density or mating group size is higher. We tested whether S. tortugarum reduced male allocation when transplanted from a higher density site to a lower density site. After 4 months, transplants mirrored the sex-allocation patterns of the resident population on their new reef. Transplants had significantly lower male allocation than representatives from their source population, largely as a result of reduced testis mass relative to body size.

  4. Establishment of a fish community in the hayden-rhodes and salt-gila aqueducts, Arizona

    USGS Publications Warehouse

    Mueller, G.

    1996-01-01

    Fish populations were studied in the Central Arizona Project's canal system during the first 4 years of aqueduct operation (1986-1989). Ichthyoplankton entering the canal from Lake Havasu averaged 1 larva/m3 during April-June 1987 and 1988. Larval fish densities increased significantly in downstream samples, substantiating diver observations that fish were spawning in the canal system. Of the 16 fish species collected, 14 were assumed to have originated from Lake Havasu and 2 were introduced by anglers from their bait buckets. Initially, the fish community was dominated numerically by threadfin shad Dorosoma petenense (>88%), centrarchids (< 10%), cyprinids (<2%), and striped bass Morone saxatilis (<1%). However, as annual water diversions increased from 13 x 108 m3 in 1986 to 9.4 x 108 m3 in 1989, community composition shifted from clupeids to centrarchids (70%). Fish densities dropped from an estimated 1,260 fish/ha in 1986 to 17 fish/ha in 1989, and biomass dropped from 116 to 73 kg/ha. Declines were attributed to higher operational velocities, associated scour, deprivation, and predation. Although initial populations adjusted downward to planned operational conditions, the fish community continued to represent a potentially valuable, but as yet unused, resource.

  5. Larvivorous fish for preventing malaria transmission

    PubMed Central

    Walshe, Deirdre P; Garner, Paul; Abdel-Hameed Adeel, Ahmed A; Pyke, Graham H; Burkot, Tom

    2013-01-01

    Background Adult anopheline mosquitoes transmit Plasmodium parasites that cause malaria. Some fish species eat mosquito larvae and pupae. In disease control policy documents, the World Health Organization includes biological control of malaria vectors by stocking ponds, rivers, and water collections near where people live with larvivorous fish to reduce Plasmodium parasite transmission. The Global Fund finances larvivorous fish programmes in some countries, and, with increasing efforts in eradication of malaria, policy makers may return to this option. We therefore assessed the evidence base for larvivorous fish programmes in malaria control. Objectives Our main objective was to evaluate whether introducing larvivorous fish to anopheline breeding sites impacts Plasmodium parasite transmission. Our secondary objective was to summarize studies evaluating whether introducing larvivorous fish influences the density and presence of Anopheles larvae and pupae in water sources, to understand whether fish can possibly have an effect. Search methods We attempted to identify all relevant studies regardless of language or publication status (published, unpublished, in press, or ongoing). We searched the following databases: the Cochrane Infectious Diseases Group Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL), published in The Cochrane Library; MEDLINE; EMBASE; CABS Abstracts; LILACS; and the metaRegister of Controlled Trials (mRCT) until 18 June 2013. We checked the reference lists of all studies identified by the above methods. We also examined references listed in review articles and previously compiled bibliographies to look for eligible studies. Selection criteria Randomized controlled trials and non-randomized controlled trials, including controlled before-and-after studies, controlled time series and controlled interrupted time series studies from malaria-endemic regions that introduced fish as a larvicide and reported on malaria in the community or the density of the adult anopheline population. In the absence of direct evidence of an effect on transmission, we carried out a secondary analysis on studies that evaluated the effect of introducing larvivorous fish on the density or presence of immature anopheline mosquitoes (larvae and pupae forms) in community water sources to determine whether this intervention has any potential in further research on control of malaria vectors. Data collection and analysis Three review authors screened abstracts and examined potentially relevant studies by using an eligibility form. Two review authors independently extracted data and assessed risk of bias of included studies. If relevant data were unclear or were not reported, we wrote to the trial authors for clarification. We presented data in tables, and we summarized studies that evaluated the effects of fish introduction on anopheline immature density or presence, or both. We used GRADE to summarize evidence quality. We also examined whether the authors of included studies reported on any possible adverse impact of larvivorous fish introduction on non-target native species. Main results We found no reliable studies that reported the effects of introducing larvivorous fish on malaria infection in nearby communities, on entomological inoculation rate, or on adult Anopheles density. For the secondary analysis, we examined the effects of introducing larvivorous fish on the density and presence of anopheline larvae and pupae in community water sources. We included 12 small studies, with follow-up from 22 days to five years. Studies were conducted in a variety of settings, including localized water bodies (such as wells, domestic water containers, fishponds, and pools; six studies), riverbed pools below dams (two studies), rice field plots (three studies), and water canals (two studies). All studies were at high risk of bias. The research was insufficient to determine whether larvivorous fish reduce the density of Anopheles larvae and pupae (nine studies, unpooled data, very low quality evidence). Some studies with high stocking levels of fish seemed to arrest the increase in immature anopheline populations, or to reduce the number of immature anopheline mosquitoes, compared with controls. However, this finding was not consistent, and in studies that showed a decrease in immature anopheline populations, the effect was not consistently sustained. Larvivorous fish may reduce the number of water sources withAnopheles larvae and pupae (five studies, unpooled data, low quality evidence). None of the included studies reported effects of larvivorous fish on local native fish populations or other species. Authors' conclusions Reliable research is insufficient to show whether introducing larvivorous fish reduces malaria transmission or the density of adult anopheline mosquito populations. In research examining the effects on immature anopheline stages of introducing fish to potential malaria vector breeding sites (localized water bodies such as wells and domestic water sources, rice field plots, and water canals) weak evidence suggests an effect on the density or presence of immature anopheline mosquitoes with high stocking levels of fish, but this finding is by no means consistent. We do not know whether this translates into health benefits, either with fish alone or with fish combined with other vector control measures. Our interpretation of the current evidence is that countries should not invest in fish stocking as a larval control measure in any malaria transmission areas outside the context of carefully controlled field studies or quasi-experimental designs. Research could also usefully examine the effects on native fish and other non-target species. PLAIN LANGUAGE SUMMARY Fish that feed on mosquito larvae for preventing malaria transmission Plasmodium parasites cause malaria and are transmitted by adult Anopheles mosquitoes. Programmes that introduce fish into water sources near where people live have been promoted. The theory is that these fish eat the Anopheles mosquito larvae and pupae, thus decreasing the adult mosquito population and reducing the number of people infected with Plasmodium parasites. In this review, we examined the research that evaluated introducing larvivorous fish to Anopheles mosquito breeding sites in areas where malaria was common, published up to 18 June 2013. We did not find any studies that looked at the effects of larvivorous fish on adult Anopheles mosquito populations or on the number of people infected with Plasmodium parasites. We included 12 studies that examined the effects of larvivorous fish on Anopheles larvae and pupae in different breeding sites, including localized water bodies (such as wells, domestic water containers, fishponds, and pools; six studies), riverbed pools below dams (two studies), rice field plots (three studies), and water canals (two studies). Research evidence is insufficient to show whether introduction of larvivorous fish reduces the number of Anopheles larvae and pupae in water sources (nine studies, unpooled data, very low quality evidence). However, larvivorous fish may reduce the number of water sources withAnopheles mosquito larvae and pupae (five studies, unpooled data, low quality evidence). None of the included studies examined the effects of introducing larvivorous fish on other native species present, but these studies were not designed to do this. Before much is invested in this intervention, better research is needed to determine the effect of introducing larvivorous fish on adult Anopheles populations and on the number of people infected with malaria. Researchers need to use robust controlled designs with an adequate number of sites. Also, researchers should explore whether introducing these fish affects native fish and other non-target species. PMID:24323308

  6. Larvivorous fish for preventing malaria transmission.

    PubMed

    Walshe, Deirdre P; Garner, Paul; Abdel-Hameed Adeel, Ahmed A; Pyke, Graham H; Burkot, Tom

    2013-12-10

    Adult anopheline mosquitoes transmit Plasmodium parasites that cause malaria. Some fish species eat mosquito larvae and pupae. In disease control policy documents, the World Health Organization includes biological control of malaria vectors by stocking ponds, rivers, and water collections near where people live with larvivorous fish to reduce Plasmodium parasite transmission. The Global Fund finances larvivorous fish programmes in some countries, and, with increasing efforts in eradication of malaria, policy makers may return to this option. We therefore assessed the evidence base for larvivorous fish programmes in malaria control. Our main objective was to evaluate whether introducing larvivorous fish to anopheline breeding sites impacts Plasmodium parasite transmission. Our secondary objective was to summarize studies evaluating whether introducing larvivorous fish influences the density and presence of Anopheles larvae and pupae in water sources, to understand whether fish can possibly have an effect. We attempted to identify all relevant studies regardless of language or publication status (published, unpublished, in press, or ongoing). We searched the following databases: the Cochrane Infectious Diseases Group Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL), published in The Cochrane Library; MEDLINE; EMBASE; CABS Abstracts; LILACS; and the metaRegister of Controlled Trials (mRCT) until 18 June 2013. We checked the reference lists of all studies identified by the above methods. We also examined references listed in review articles and previously compiled bibliographies to look for eligible studies. Randomized controlled trials and non-randomized controlled trials, including controlled before-and-after studies, controlled time series and controlled interrupted time series studies from malaria-endemic regions that introduced fish as a larvicide and reported on malaria in the community or the density of the adult anopheline population. In the absence of direct evidence of an effect on transmission, we carried out a secondary analysis on studies that evaluated the effect of introducing larvivorous fish on the density or presence of immature anopheline mosquitoes (larvae and pupae forms) in community water sources to determine whether this intervention has any potential in further research on control of malaria vectors. Three review authors screened abstracts and examined potentially relevant studies by using an eligibility form. Two review authors independently extracted data and assessed risk of bias of included studies. If relevant data were unclear or were not reported, we wrote to the trial authors for clarification. We presented data in tables, and we summarized studies that evaluated the effects of fish introduction on anopheline immature density or presence, or both. We used GRADE to summarize evidence quality. We also examined whether the authors of included studies reported on any possible adverse impact of larvivorous fish introduction on non-target native species. We found no reliable studies that reported the effects of introducing larvivorous fish on malaria infection in nearby communities, on entomological inoculation rate, or on adult Anopheles density.For the secondary analysis, we examined the effects of introducing larvivorous fish on the density and presence of anopheline larvae and pupae in community water sources. We included 12 small studies, with follow-up from 22 days to five years. Studies were conducted in a variety of settings, including localized water bodies (such as wells, domestic water containers, fishponds, and pools; six studies), riverbed pools below dams (two studies), rice field plots (three studies), and water canals (two studies). All studies were at high risk of bias.The research was insufficient to determine whether larvivorous fish reduce the density of Anopheles larvae and pupae (nine studies, unpooled data, very low quality evidence). Some studies with high stocking levels of fish seemed to arrest the increase in immature anopheline populations, or to reduce the number of immature anopheline mosquitoes, compared with controls. However, this finding was not consistent, and in studies that showed a decrease in immature anopheline populations, the effect was not consistently sustained. Larvivorous fish may reduce the number of water sources with Anopheles larvae and pupae (five studies, unpooled data, low quality evidence).None of the included studies reported effects of larvivorous fish on local native fish populations or other species. Reliable research is insufficient to show whether introducing larvivorous fish reduces malaria transmission or the density of adult anopheline mosquito populations.In research examining the effects on immature anopheline stages of introducing fish to potential malaria vector breeding sites (localized water bodies such as wells and domestic water sources, rice field plots, and water canals) weak evidence suggests an effect on the density or presence of immature anopheline mosquitoes with high stocking levels of fish, but this finding is by no means consistent. We do not know whether this translates into health benefits, either with fish alone or with fish combined with other vector control measures. Our interpretation of the current evidence is that countries should not invest in fish stocking as a larval control measure in any malaria transmission areas outside the context of carefully controlled field studies or quasi-experimental designs. Research could also usefully examine the effects on native fish and other non-target species.

  7. Influences on Bythotrephes longimanus life-history characteristics in the Great Lakes

    USGS Publications Warehouse

    Pothoven, Steven A.; Vanderploeg, Henry A.; Warner, David M.; Schaeffer, Jeffrey S.; Ludsin, Stuart A.; Claramunt, Randall M.; Nalepa, Thomas F.

    2012-01-01

    We compared Bythotrephes population demographics and dynamics to predator (planktivorous fish) and prey (small-bodied crustacean zooplankton) densities at a site sampled through the growing season in Lakes Michigan, Huron, and Erie. Although seasonal average densities of Bythotrephes were similar across lakes (222/m2 Erie, 247/m2 Huron, 162/m2 Michigan), temporal trends in abundance differed among lakes. In central Lake Erie where Bythotrephes' prey assemblage was dominated by small individuals (60%), where planktivorous fish densities were high (14,317/ha), and where a shallow water column limited availability of a deepwater refuge, the Bythotrephes population was characterized by a small mean body size, large broods with small neonates, allocation of length increases mainly to the spine rather than to the body, and a late summer population decline. By contrast, in Lake Michigan where Bythotrephes' prey assemblage was dominated by large individuals (72%) and planktivorous fish densities were lower (5052/ha), the Bythotrephes population was characterized by a large mean body size (i.e., 37–55% higher than in Erie), small broods with large neonates, nearly all growth in body length occurring between instars 1 and 2, and population persistence into fall. Life-history characteristics in Lake Huron tended to be intermediate to those found in Lakes Michigan and Erie, reflecting lower overall prey and predator densities (1224/ha) relative to the other lakes. Because plasticity in life history can affect interactions with other species, our findings point to the need to understand life-history variation among Great Lakes populations to improve our ability to model the dynamics of these ecosystems.

  8. Environmental Assessment: Lake Yankton Fish Population Renovation Project Yankton County, South Dakota and Cedar County, Nebraska

    DTIC Science & Technology

    2014-08-01

    2013 for largemouth bass only. Year Largemouth bass CPUE1 (Total no/hr) PSD2 RSD -P3 1994 61 80 43 1995 61 49 9 1996 84 57 17 1997 59 95 15 1998...of 50-80 for bass is desirable for a pond manager with trophy bass goals. 3 RSD (relative stock density) - The relative stock density is the...percentage of fish of any designated length-group in a sample of fish. Within that sample the RSD -P is the percentage of those fish that are of preferred

  9. Sampling characteristics and calibration of snorkel counts to estimate stream fish populations

    USGS Publications Warehouse

    Weaver, D.; Kwak, Thomas J.; Pollock, Kenneth

    2014-01-01

    Snorkeling is a versatile technique for estimating lotic fish population characteristics; however, few investigators have evaluated its accuracy at population or assemblage levels. We evaluated the accuracy of snorkeling using prepositioned areal electrofishing (PAE) for estimating fish populations in a medium-sized Appalachian Mountain river during fall 2008 and summer 2009. Strip-transect snorkel counts were calibrated with PAE counts in identical locations among macrohabitats, fish species or taxa, and seasons. Mean snorkeling efficiency (i.e., the proportion of individuals counted from the true population) among all taxa and seasons was 14.7% (SE, 2.5%), and the highest efficiencies were for River Chub Nocomis micropogon at 21.1% (SE, 5.9%), Central Stoneroller Campostoma anomalum at 20.3% (SE, 9.6%), and darters (Percidae) at 17.1% (SE, 3.7%), whereas efficiencies were lower for shiners (Notropis spp., Cyprinella spp., Luxilus spp.) at 8.2% (SE, 2.2%) and suckers (Catostomidae) at 6.6% (SE, 3.2%). Macrohabitat type, fish taxon, or sampling season did not significantly explain variance in snorkeling efficiency. Mean snorkeling detection probability (i.e., probability of detecting at least one individual of a taxon) among fish taxa and seasons was 58.4% (SE, 6.1%). We applied the efficiencies from our calibration study to adjust snorkel counts from an intensive snorkeling survey conducted in a nearby reach. Total fish density estimates from strip-transect counts adjusted for snorkeling efficiency were 7,288 fish/ha (SE, 1,564) during summer and 15,805 fish/ha (SE, 4,947) during fall. Precision of fish density estimates is influenced by variation in snorkeling efficiency and sample size and may be increased with additional sampling effort. These results demonstrate the sampling properties and utility of snorkeling to characterize lotic fish assemblages with acceptable efficiency and detection probability, less effort, and no mortality, compared with traditional sampling methods.

  10. Empirical assessment of fish introductions in a subtropical wetland: An evaluation of contrasting views

    USGS Publications Warehouse

    Trexler, J.C.; Loftus, W.F.; Jordan, F.; Lorenz, J.J.; Chick, J.H.; Kobza, Robert M.

    2000-01-01

    We summarized data from eight quantitative fish surveys conducted in southern Florida to evaluate the distribution and relative abundance of introduced fishes across a variety of habitats. These surveys encompassed marsh and canal habitats throughout most of the Everglades region, including the mangrove fringe of Florida Bay. Two studies provided systematically collected density information over a 20-year period, and documented the first local appearance of four introduced fishes based on their repeated absence in prior surveys. Those species displayed a pattern of rapid population growth followed by decline, then persistence at lower densities. Estuarine areas in the southern Everglades, characterized by natural tidal creeks surrounded by mangrove-dominated marshes, and canals held the largest introduced-fish populations. Introduced fishes were also common, at times exceeding 50% of the fish community, in solution holes that serve as dry-season refuges in short-hydroperiod rockland habitats of the eastern Everglades. Wet prairies and alligator ponds distant from canals generally held few individuals of introduced fishes. These patterns suggest that the introduced fishes in southern Florida at present may not be well-adapted to persist in freshwater marshes of the Everglades, possibly because of an interaction of periodic cold-temperature stress and hydrologic fluctuation. Our analyses indicated low densities of these fishes in central or northern Everglades wet-prairie communities, and, in the absence of experimental data, little evidence of biotic effects in this spatially extensive habitat. There is no guarantee that this condition will be maintained, especially under the cumulative effects of future invasions or environmental change.

  11. Assessing three fish species ecological status in Colorado River, Grand Canyon based on physical habitat and population models.

    PubMed

    Yao, Weiwei; Chen, Yuansheng

    2018-04-01

    Colorado River is a unique ecosystem and provides important ecological services such as habitat for fish species as well as water power energy supplies. River management for this ecosystem requires assessment and decision support tools for fish which involves protecting, restoring as well as forecasting of future conditions. In this paper, a habitat and population model was developed and used to determine the levels of fish habitat suitability and population density in Colorado River between Lees Ferry and Lake Mead. The short term target fish populations are also predicted based on native fish recovery strategy. This model has been developed by combining hydrodynamics, heat transfer and sediment transport models with a habitat suitability index model and then coupling with habitat model into life stage population model. The fish were divided into four life stages according to the fish length. Three most abundant and typical native and non-native fish were selected as target species, which are rainbow trout (Oncorhynchus mykiss), brown trout (Salmo trutta) and flannelmouth sucker (Catostomus latipinnis). Flow velocity, water depth, water temperature and substrates were used as the suitability indicators in habitat model and overall suitability index (OSI) as well as weight usable area (WUA) was used as an indicator in population model. A comparison was made between simulated fish population alteration and surveyed fish number fluctuation during 2000 to 2009. The application of this habitat and population model indicates that this model can be accurate present habitat situation and targets fish population dynamics of in the study areas. The analysis also indicates the flannelmouth sucker population will steadily increase while the rainbow trout will decrease based on the native fish recovery scheme. Copyright © 2018. Published by Elsevier Inc.

  12. The dynamics of fish populations in the Palancar stream,a small tributary of the river Guadalquivir, Spain

    NASA Astrophysics Data System (ADS)

    Bravo, Ramón; Soriguer, Mila C.; Villar, Noelia; Hernando, José A.

    2001-02-01

    The relationship between flooding and changes in the size distribution of fish populations in the Palancar stream confirms observations in other rivers. On average, density decreased by 36.2 % and biomass increased by 14.5 %, passing from a period of severe drought to one of heavier than normal rains. Precipitation is the most important of the many factors affecting the populations of the Palancar stream; the most evident changes all occurred after the drought. During the drought period, the marked seasonal fluctuation in flow was the most important factor regulating the population dynamics. Fish density and biomass varied in proportion to the water volume. During the rainy period, the studied section of the river was found to be an important reproduction and nursery area, with juveniles and individuals of reproduction age dominating. The presence of Micropterus salmoides, an introduced piscivorous species, is another factor affecting the population dynamics in the Palancar stream. The observed absence of age 0+ individuals of the dominant populations is considered a direct effect of predation.

  13. Inter-decadal patterns of population and dietary change in sea otters at Amchitka Island, Alaska

    USGS Publications Warehouse

    Watt, J.; Siniff, D.B.; Estes, J.A.

    2000-01-01

    After having been hunted to near-extinction in the Pacific maritime fur trade, the sea otter population at Amchitka Island, Alaska increased from very low numbers in the early 1900s to near equilibrium density by the 1940s. The population persisted at or near equilibrium through the 1980s, but declined sharply in the 1990s in apparent response to increased killer whale predation. Sea otter diet and foraging behavior were studied at Amchitka from August 1992 to March 1994 and the data compared with similar information obtained during several earlier periods. In contrast with dietary patterns in the 1960s and 1970s, when the sea otter population was at or near equilibrium density and kelp-forest fishes were the dietary mainstay, these fishes were rarely eaten in the 1990s. Benthic invertebrates, particularly sea urchins, dominated the otter's diet from early summer to midwinter, then decreased in importance during late winter and spring when numerous Pacific smooth lumpsuckers (a large and easily captured oceanic fish) were eaten. The occurrence of spawning lumpsuckers in coastal waters apparently is episodic on a scale of years to decades. The otters' recent dietary shift away from kelp-forest fishes is probably a response to the increased availability of lumpsuckers and sea urchins (both high-preference prey). Additionally, increased urchin densities have reduced kelp beds, thus further reducing the availability of kelp-forest fishes. Our findings suggest that dietary patterns reflect changes in population status and show how an ecosystem normally under top-down control and limited by coastal zone processes can be significantly perturbed by exogenous events.

  14. Forecasting fish biomasses, densities, productions, and bioaccumulation potentials of mid-atlantic wadeable streams.

    PubMed

    Barber, M Craig; Rashleigh, Brenda; Cyterski, Michael J

    2016-01-01

    Regional fishery conditions of Mid-Atlantic wadeable streams in the eastern United States are estimated using the Bioaccumulation and Aquatic System Simulator (BASS) bioaccumulation and fish community model and data collected by the US Environmental Protection Agency's Environmental Monitoring and Assessment Program (EMAP). Average annual biomasses and population densities and annual productions are estimated for 352 randomly selected streams. Realized bioaccumulation factors (BAF) and biomagnification factors (BMF), which are dependent on these forecasted biomasses, population densities, and productions, are also estimated by assuming constant water exposures to methylmercury and tetra-, penta-, hexa-, and hepta-chlorinated biphenyls. Using observed biomasses, observed densities, and estimated annual productions of total fish from 3 regions assumed to support healthy fisheries as benchmarks (eastern Tennessee and Catskill Mountain trout streams and Ozark Mountains smallmouth bass streams), 58% of the region's wadeable streams are estimated to be in marginal or poor condition (i.e., not healthy). Using simulated BAFs and EMAP Hg fish concentrations, we also estimate that approximately 24% of the game fish and subsistence fishing species that are found in streams having detectable Hg concentrations would exceed an acceptable human consumption criterion of 0.185 μg/g wet wt. Importantly, such streams have been estimated to represent 78.2% to 84.4% of the Mid-Atlantic's wadeable stream lengths. Our results demonstrate how a dynamic simulation model can support regional assessment and trends analysis for fisheries. © 2015 SETAC.

  15. Evaluating factors driving population densities of mayfly nymphs in Western Lake Erie

    USGS Publications Warehouse

    Stapanian, Martin A.; Kocovsky, Patrick; Bodamer Scarbro, Betsy L.

    2017-01-01

    Mayfly (Hexagenia spp.) nymphs have been widely used as indicators of water and substrate quality in lakes. Thermal stratification and the subsequent formation of benthic hypoxia may result in nymph mortality. Our goal was to identify potential associations between recent increases in temperature and eutrophication, which exacerbate hypoxic events in lakes, and mayfly populations in Lake Erie. Nymphs were collected during April–May 1999–2014. We used wind and temperature data to calculate four measures of thermal stratification, which drives hypoxic events, during summers of 1998–2013. Bottom trawl data collected during August 1998–2013 were used to estimate annual biomass of fishes known to be predators of mayfly nymphs. We used Akaike's Information Criterion to identify the best one- and two-predictor regression models of annual population densities (N/m2) of age-1 and age-2 nymphs, in which candidate predictors included the four measures of stratification, predator fish biomass, competition, and population densities of age-2 (for age-1) and age-1 (for age-2) nymphs from the previous year. Densities of both age classes of nymphs declined over the time series. Population densities of age-1 and age-2 nymphs from the previous year best predicted annual population densities of nymphs of both age classes. However, hypoxic conditions (indicated by stratification) and predation both had negative effects on annual population density of mayflies. Compared with predation, hypoxia had an inconsistent effect on annual nymph density. The increases in temperature and eutrophication in Lake Erie, which exacerbate hypoxic events, may have drastic effects on the mayfly populations.

  16. Biotic and abiotic influences on abundance and distribution of nonnative Chinook salmon and native ESA-listed steelhead in the Wind River, Washington

    USGS Publications Warehouse

    Jezorek, Ian G.; Connolly, Patrick J.

    2015-01-01

    Biotic and abiotic factors influence fish populations and distributions. Concerns have been raised about the influence of hatchery fish on wild populations. Carson National Fish Hatchery produces spring Chinook salmon Oncorhynchus tshawytscha in the Wind River, Washington, and some spawn in the river. Managers were concerned that Chinook salmon could negatively affect wild steelhead O. mykiss and that a self-sustaining population of Chinook salmon may develop. Our objectives were to assess: 1) the distribution and populations of juvenile spring Chinook salmon and juvenile steelhead in the upper Wind River; 2) the influence of stream flow and of each population on the other; and 3) if Chinook salmon populations were self-sustaining. We snorkeled to determine distribution and abundance. Flow in the fall influenced upstream distribution and abundance of juvenile Chinook salmon. Juvenile Chinook salmon densities were consistently low (range 0.0 to 5.7 fish 100 m-2) and not influenced by number of spawners, winter flow magnitude, or steelhead abundance. Juvenile steelhead were distributed through the study section each year. Age-0 and age-1 steelhead densities (age-0 range: 0.04 to 37.0 fish 100 m-2; age-1 range: 0.02 to 6.21 fish 100 m-2) were consistently higher than for juvenile Chinook salmon. Steelhead spawner abundance positively influenced juvenile steelhead abundance. During this study, Chinook salmon in the Wind River appear to have had little effect on steelhead. Low juvenile Chinook salmon abundance and a lack of a spawner-to-juvenile relationship suggest Chinook salmon are not self-sustaining and potential for such a population is low under current conditions.

  17. Dynamics of an introduced and unexploited Lake Whitefish population in Lake Pend Oreille, Idaho

    USGS Publications Warehouse

    Hosack, Michael A.; Hansen, Michael J.; Horner, Ned J.

    2014-01-01

    To evaluate biological potential of a commercial fishery for an unexploited Lake Whitefish Coregonus clupeaformis population in Lake Pend Oreille, Idaho, we estimated population parameters related to production and yield. The length frequency based on trap-netting in autumn 2005 was normal with a mean of 448 mm TL, whereas the length frequency based on gillnetting in spring 2006 was bimodal with a mean of 390 mm TL. Sex composition was skewed toward females (0.66) during autumn trap-netting. Shape parameters β of weight–length models for females (β = 3.38) and males (β = 3.45) were similar to those of other unexploited populations. Instantaneous growth rates K for females (K = 0.144 per year) and males (K = 0.153 per year) were among the lowest for unexploited populations across the species’ range. Age at 50% maturity (females: 6.5 years; males: 6.0 years) and length at 50% maturity (females: 390 mm TL; males: 378 mm TL) were high for unexploited populations. The natural mortality rate M (0.149 per year, ages 11–36) was among the lowest observed for unexploited populations. Adult population density was lower than that of other populations based on total surface area (mean = 1.35 fish/ha; 95% confidence interval [CI] = 1.11–1.78 fish/ha) but was average based on lake area shallower than 70 m (4.07 fish/ha; 95% CI = 3.35–5.35 fish/ha). Population density of juveniles and adults averaged 84 fish/ha (95% CI = 52–143 fish/ha) over the entire surface area and 278 fish/ha (95% CI = 173–474 fish/ha) over depths shallower than 70 m. The difference between the low M of the unexploited population in Lake Pend Oreille (M = 0.149 per year; annual mortality rate A = 14%) and the high sustainable total mortality Z of exploited stocks in the Laurentian Great Lakes (Z = 1.204; A = 70%) suggests a large scope for sustainable fishing mortality F (1.055 per year; exploitation rate u = 61%) that is equivalent to a sustainable Lake Whitefish harvest of 55,000 individuals (50,000–60,000 individuals) and 49,000 kg (45,000–54,000 kg) from Lake Pend Oreille.

  18. Linking social and ecological systems to sustain coral reef fisheries.

    PubMed

    Cinner, Joshua E; McClanahan, Timothy R; Daw, Tim M; Graham, Nicholas A J; Maina, Joseph; Wilson, Shaun K; Hughes, Terence P

    2009-02-10

    The ecosystem goods and services provided by coral reefs are critical to the social and economic welfare of hundreds of millions of people, overwhelmingly in developing countries [1]. Widespread reef degradation is severely eroding these goods and services, but the socioeconomic factors shaping the ways that societies use coral reefs are poorly understood [2]. We examine relationships between human population density, a multidimensional index of socioeconomic development, reef complexity, and the condition of coral reef fish populations in five countries across the Indian Ocean. In fished sites, fish biomass was negatively related to human population density, but it was best explained by reef complexity and a U-shaped relationship with socioeconomic development. The biomass of reef fishes was four times lower at locations with intermediate levels of economic development than at locations with both low and high development. In contrast, average biomass inside fishery closures was three times higher than in fished sites and was not associated with socioeconomic development. Sustaining coral reef fisheries requires an integrated approach that uses tools such as protected areas to quickly build reef resources while also building capacities and capital in societies over longer time frames to address the complex underlying causes of reef degradation.

  19. Fish population dynamics in a seasonally varying wetland

    USGS Publications Warehouse

    DeAngelis, Donald L.; Trexler, Joel C.; Cosner, Chris; Obaza, Adam; Jopp, Fred

    2010-01-01

    Small fishes in seasonally flooded environments such as the Everglades are capable of spreading into newly flooded areas and building up substantial biomass. Passive drift cannot account for the rapidity of observed population expansions. To test the reaction-diffusion mechanism for spread of the fish, we estimated their diffusion coefficient and applied a reaction-diffusion model. This mechanism was also too weak to account for the spatial dynamics. Two other hypotheses were tested through modeling. The first--the 'refuge mechanism--hypothesizes that small remnant populations of small fishes survive the dry season in small permanent bodies of water (refugia), sites where the water level is otherwise below the surface. The second mechanism, which we call the 'dynamic ideal free distribution mechanism' is that consumption by the fish creates a prey density gradient and that fish taxis along this gradient can lead to rapid population expansion in space. We examined the two alternatives and concluded that although refugia may play an important role in recolonization by the fish population during reflooding, only the second, taxis in the direction of the flooding front, seems capable of matching empirical observations. This study has important implications for management of wetlands, as fish biomass is an essential support of higher trophic levels.

  20. Changes in fish communities following recolonization of the Cedar river, Wa, USA by Pacific salmon after 103 years of local extirpation

    USGS Publications Warehouse

    Kiffney, P.M.; Pess, G.R.; Anderson, J.H.; Faulds, P.; Burton, Kenneth; Riley, S.C.

    2009-01-01

    Migration barriers are a major reason for species loss and population decline of freshwater organisms. Significant efforts have been made to remove or provide passage around these barriers; however, our understanding of the ecological effects of these efforts is minimal. Installation of a fish passage facility at the Landsburg Dam, WA, USA provided migratory fish access to habitat from which they had been excluded for over 100 years. Relying on voluntary recruitment, we examined the effectiveness of this facility in restoring coho (Oncorhynchus kisutch) salmon populations above the diversion, and whether reintroduction of native anadromous species affected the distribution and abundance of resident trout (O. mykiss and O. clarki). Before the ladder, late summer total salmonid (trout only) density increased with distance from the dam. This pattern was reversed after the ladder was opened, as total salmonid density (salmon {thorn} trout) approximately doubled in the three reaches closest to the dam. These changes were primarily due to the addition of coho, but small trout density also increased in lower reaches and decreased in upper reaches. A nearby source population, dispersal by adults and juveniles, low density of resident trout and high quality habitat above the barrier likely promoted rapid colonization of targeted species. Our results suggest that barrier removal creates an opportunity for migratory species to re-establish populations leading to range expansion and potentially to increased population size. ?? 2008 John Wiley & Sons, Ltd.

  1. Ups and Downs of Burbot and their predator Lake Trout in Lake Superior, 1953-2011

    USGS Publications Warehouse

    Gorman, Owen T.; Sitar, Shawn P.

    2013-01-01

    The fish community of Lake Superior has undergone a spectacular cycle of decline and recovery over the past 60 years. A combination of Sea Lamprey Petromyzon marinus depredation and commercial overfishing resulted in severe declines in Lake Trout Salvelinus namaycush, which served as the primary top predator of the community. Burbot Lota lota populations also declined as a result of Sea Lamprey depredation, largely owing to the loss of adult fish. After Sea Lamprey control measures were instituted in the early 1960s, Burbot populations rebounded rapidly but Lake Trout populations recovered more slowly and recovery was not fully evident until the mid-1980s. As Lake Trout populations recovered, Burbot populations began to decline, and predation on small Burbot was identified as the most likely cause. By 2000, Burbot densities had dropped below their nadir in the early 1960s and have continued to decline, with the densities of juveniles and small adults falling below that of large adults. Although Burbot populations are at record lows in Lake Superior, the density of large reproductive adults remains stable and a large reserve of adult Burbot is present in deep offshore waters. The combination of the Burbot's early maturation, long life span, and high fecundity provides the species with the resiliency to remain a viable member of the Lake Superior fish community into the foreseeable future.

  2. Microhabitat use, not temperature, regulates intensity of Gyrodactylus cichlidarum long-term infection on farmed tilapia--are parasites evading competition or immunity?

    PubMed

    Rubio-Godoy, Miguel; Muñoz-Córdova, Germán; Garduño-Lugo, Mario; Salazar-Ulloa, Martha; Mercado-Vidal, Gabriel

    2012-02-10

    Gyrodactylids (Monogenea) are ectoparasites of fish, some of which negatively affect commercially valuable fishes. Temperature strongly regulates population dynamics of these viviparous flatworms in farmed and wild fish populations, with most gyrodactylid species showing positive temperature-abundance associations. In agreement with epidemiological theory, numerous laboratory studies demonstrate that these parasites cannot persist in confined fish populations without periodic introduction of susceptible hosts. Extinction of gyrodactylid populations is due to host immunity, which develops in several fish species. In this one-year study, we followed populations of the recognized pathogen Gyrodactylus cichlidarum infecting four genetic groups of confined tilapia (wild type Nile tilapia Oreochromis niloticus niloticus, red O. n. niloticus, Mozambique tilapia O. mossambicus and a red synthetic population called Pargo-UNAM) kept under farming conditions and subject to natural environmental fluctuations. Based on the antecedents given, we postulated the following three hypotheses: (1) parasite abundance will be regulated by water temperature; (2) parasites will induce host mortality, particularly during periods of rapid infrapopulation growth; and (3) gyrodactylid populations will eventually become extinct on confined fish hosts. We disproved the three hypotheses: (1) parasite numbers fluctuated independently of temperature but were associated to changes in microhabitat use; (2) although gyrodactylid populations exhibited considerable growth, no evidence was found of negative effects on the hosts; and (3) infections persisted for one year on confined fish. Microhabitat use changed over time, with most worms apparently migrating anteriorly from the caudal fin and ending on the pectoral fins. Gyrodactylid populations followed similar trajectories in all fish, aggregating and dispersing repeatedly. Several instances were found where increased parasite dispersion coincided with increased intensity of infection; as well as the opposite, where increased aggregation coincided with parasite population declines. Three alternative explanations could account for these observations: that parasites (1) experience differential mortality on different anatomical regions of the fish; (2) migrate to avoid intraspecific competition; and (3) migrate to escape localized immune responses induced by infection. Our data do not allow us to demonstrate which of these alternatives is correct, so we discuss the merits of each. We provide circumstantial evidence in support of the third explanation, because as shown in other fish host-gyrodactylid interactions where immune responses have been characterized, in this study worms progressively moved away from fins with high mucus cell density to those with low density - what would be anticipated if immune defenses occur and reach the fish surface through mucus. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Work Element B: 157. Sampling in Fish-Bearing Reaches [Variation in Productivity in Headwater Reaches of the Wenatchee Subbasin], Final Report for PNW Research Station.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polivka, Karl; Bennett, Rita L.

    2009-03-31

    We studied variation in productivity in headwater reaches of the Wenatchee subbasin for multiple field seasons with the objective that we could develop methods for monitoring headwater stream conditions at the subcatchment and stream levels, assign a landscape-scale context via the effects of geoclimatic parameters on biological productivity (macroinvertebrates and fish) and use this information to identify how variability in productivity measured in fishless headwaters is transmitted to fish communities in downstream habitats. In 2008, we addressed this final objective. In collaboration with the University of Alaska Fairbanks we found some broad differences in the production of aquatic macroinvertebrates andmore » in fish abundance across categories that combine the effects of climate and management intensity within the subbasin (ecoregions). From a monitoring standpoint, production of benthic macroinvertebrates was not a good predictor of drifting macroinvertebrates and therefore might be a poor predictor of food resources available to fish. Indeed, there is occasionally a correlation between drifting macroinvertebrate abundance and fish abundance which suggests that headwater-derived resources are important. However, fish in the headwaters appeared to be strongly food-limited and there was no evidence that fishless headwaters provided a consistent subsidy to fish in reaches downstream. Fish abundance and population dynamics in first order headwaters may be linked with similar metrics further down the watershed. The relative strength of local dynamics and inputs into productivity may be constrained or augmented by large-scale biogeoclimatic control. Headwater streams are nested within watersheds, which are in turn nested within ecological subregions; thus, we hypothesized that local effects would not necessarily be mutually exclusive from large-scale influence. To test this we examined the density of primarily salmonid fishes at several spatial and temporal scales within a major sub-basin of the Columbia River and associations of density with ecoregion and individuals drainages within the sub-basin. We further examined habitat metrics that show positive associations with fish abundance to see if these relationships varied at larger spatial scales. We examined the extent to which headwater fish density and temporal variation in density were correlated between the headwaters and the main tributaries of the sub-basin, and the influence of ecoregion influence on density differences, particularly at wider temporal scales. Finally, we examined demographic parameters such as growth and emigration to determine whether density-dependence differs among ecoregions or whether responses were more strongly influenced by the demography of the local fish population.« less

  4. Taylor's law and body size in exploited marine ecosystems.

    PubMed

    Cohen, Joel E; Plank, Michael J; Law, Richard

    2012-12-01

    Taylor's law (TL), which states that variance in population density is related to mean density via a power law, and density-mass allometry, which states that mean density is related to body mass via a power law, are two of the most widely observed patterns in ecology. Combining these two laws predicts that the variance in density is related to body mass via a power law (variance-mass allometry). Marine size spectra are known to exhibit density-mass allometry, but variance-mass allometry has not been investigated. We show that variance and body mass in unexploited size spectrum models are related by a power law, and that this leads to TL with an exponent slightly <2. These simulated relationships are disrupted less by balanced harvesting, in which fishing effort is spread across a wide range of body sizes, than by size-at-entry fishing, in which only fish above a certain size may legally be caught.

  5. Taylor's law and body size in exploited marine ecosystems

    PubMed Central

    Cohen, Joel E; Plank, Michael J; Law, Richard

    2012-01-01

    Taylor's law (TL), which states that variance in population density is related to mean density via a power law, and density-mass allometry, which states that mean density is related to body mass via a power law, are two of the most widely observed patterns in ecology. Combining these two laws predicts that the variance in density is related to body mass via a power law (variance-mass allometry). Marine size spectra are known to exhibit density-mass allometry, but variance-mass allometry has not been investigated. We show that variance and body mass in unexploited size spectrum models are related by a power law, and that this leads to TL with an exponent slightly <2. These simulated relationships are disrupted less by balanced harvesting, in which fishing effort is spread across a wide range of body sizes, than by size-at-entry fishing, in which only fish above a certain size may legally be caught. PMID:23301181

  6. Effect of small versus large clusters of fish school on the yield of a purse-seine small pelagic fishery including a marine protected area.

    PubMed

    Hieu, Nguyen Trong; Brochier, Timothée; Tri, Nguyen-Huu; Auger, Pierre; Brehmer, Patrice

    2014-09-01

    We consider a fishery model with two sites: (1) a marine protected area (MPA) where fishing is prohibited and (2) an area where the fish population is harvested. We assume that fish can migrate from MPA to fishing area at a very fast time scale and fish spatial organisation can change from small to large clusters of school at a fast time scale. The growth of the fish population and the catch are assumed to occur at a slow time scale. The complete model is a system of five ordinary differential equations with three time scales. We take advantage of the time scales using aggregation of variables methods to derive a reduced model governing the total fish density and fishing effort at the slow time scale. We analyze this aggregated model and show that under some conditions, there exists an equilibrium corresponding to a sustainable fishery. Our results suggest that in small pelagic fisheries the yield is maximum for a fish population distributed among both small and large clusters of school.

  7. Developing recreational harvest regulations for an unexploited lake trout population

    USGS Publications Warehouse

    Lenker, Melissa A; Weidel, Brian C.; Jensen, Olaf P.; Solomon, Christopher T.

    2016-01-01

    Developing fishing regulations for previously unexploited populations presents numerous challenges, many of which stem from a scarcity of baseline information about abundance, population productivity, and expected angling pressure. We used simulation models to test the effect of six management strategies (catch and release; trophy, minimum, and maximum length limits; and protected and exploited slot length limits) on an unexploited population of Lake Trout Salvelinus namaycush in Follensby Pond, a 393-ha lake located in New York State’s Adirondack Park. We combined field and literature data and mark–recapture abundance estimates to parameterize an age-structured population model and used the model to assess the effects of each management strategy on abundance, catch per unit effort (CPUE), and harvest over a range of angler effort (0–2,000 angler-days/year). Lake Trout density (3.5 fish/ha for fish ≥ age 13, the estimated age at maturity) was similar to densities observed in other unexploited systems, but growth rate was relatively slow. Maximum harvest occurred at levels of effort ≤ 1,000 angler-days/year in all the scenarios considered. Regulations that permitted harvest of large postmaturation fish, such as New York’s standard Lake Trout minimum size limit or a trophy size limit, resulted in low harvest and high angler CPUE. Regulations that permitted harvest of small and sometimes immature fish, such as a protected slot or maximum size limit, allowed high harvest but resulted in low angler CPUE and produced rapid declines in harvest with increases in effort beyond the effort consistent with maximum yield. Management agencies can use these results to match regulations to management goals and to assess the risks of different management options for unexploited Lake Trout populations and other fish species with similar life history traits.

  8. Mangroves Enhance Reef Fish Abundance at the Caribbean Regional Scale.

    PubMed

    Serafy, Joseph E; Shideler, Geoffrey S; Araújo, Rafael J; Nagelkerken, Ivan

    2015-01-01

    Several studies conducted at the scale of islands, or small sections of continental coastlines, have suggested that mangrove habitats serve to enhance fish abundances on coral reefs, mainly by providing nursery grounds for several ontogenetically-migrating species. However, evidence of such enhancement at a regional scale has not been reported, and recently, some researchers have questioned the mangrove-reef subsidy effect. In the present study, using two different regression approaches, we pursued two questions related to mangrove-reef connectivity at the Caribbean regional scale: (1) Are reef fish abundances limited by mangrove forest area?; and (2) Are mean reef fish abundances proportional to mangrove forest area after taking human population density and latitude into account? Specifically, we tested for Caribbean-wide mangrove forest area effects on the abundances of 12 reef fishes that have been previously characterized as "mangrove-dependent". Analyzed were data from an ongoing, long-term (20-year) citizen-scientist fish monitoring program; coastal human population censuses; and several wetland forest information sources. Quantile regression results supported the notion that mangrove forest area limits the abundance of eight of the 12 fishes examined. Linear mixed-effects regression results, which considered potential human (fishing and habitat degradation) and latitudinal influences, suggested that average reef fish densities of at least six of the 12 focal fishes were directly proportional to mangrove forest area. Recent work questioning the mangrove-reef fish subsidy effect likely reflects a failure to: (1) focus analyses on species that use mangroves as nurseries, (2) consider more than the mean fish abundance response to mangrove forest extent; and/or (3) quantitatively account for potentially confounding human impacts, such as fishing pressure and habitat degradation. Our study is the first to demonstrate at a large regional scale (i.e., the Wider Caribbean) that greater mangrove forest size generally functions to increase the densities on neighboring reefs of those fishes that use these shallow, vegetated habitats as nurseries.

  9. Mangroves Enhance Reef Fish Abundance at the Caribbean Regional Scale

    PubMed Central

    Serafy, Joseph E.; Shideler, Geoffrey S.; Araújo, Rafael J.; Nagelkerken, Ivan

    2015-01-01

    Several studies conducted at the scale of islands, or small sections of continental coastlines, have suggested that mangrove habitats serve to enhance fish abundances on coral reefs, mainly by providing nursery grounds for several ontogenetically-migrating species. However, evidence of such enhancement at a regional scale has not been reported, and recently, some researchers have questioned the mangrove-reef subsidy effect. In the present study, using two different regression approaches, we pursued two questions related to mangrove-reef connectivity at the Caribbean regional scale: (1) Are reef fish abundances limited by mangrove forest area?; and (2) Are mean reef fish abundances proportional to mangrove forest area after taking human population density and latitude into account? Specifically, we tested for Caribbean-wide mangrove forest area effects on the abundances of 12 reef fishes that have been previously characterized as “mangrove-dependent”. Analyzed were data from an ongoing, long-term (20-year) citizen-scientist fish monitoring program; coastal human population censuses; and several wetland forest information sources. Quantile regression results supported the notion that mangrove forest area limits the abundance of eight of the 12 fishes examined. Linear mixed-effects regression results, which considered potential human (fishing and habitat degradation) and latitudinal influences, suggested that average reef fish densities of at least six of the 12 focal fishes were directly proportional to mangrove forest area. Recent work questioning the mangrove-reef fish subsidy effect likely reflects a failure to: (1) focus analyses on species that use mangroves as nurseries, (2) consider more than the mean fish abundance response to mangrove forest extent; and/or (3) quantitatively account for potentially confounding human impacts, such as fishing pressure and habitat degradation. Our study is the first to demonstrate at a large regional scale (i.e., the Wider Caribbean) that greater mangrove forest size generally functions to increase the densities on neighboring reefs of those fishes that use these shallow, vegetated habitats as nurseries. PMID:26536478

  10. Neosho madtom and other ictalurid populations in relation to hydrologic characteristics of an impounded Midwestern warmwater stream: Update

    USGS Publications Warehouse

    Bryan, Janice L.; Wildhaber, Mark L.; William B. Leeds, William B.; Dey, Rima

    2010-01-01

    The Neosho madtom, Noturus placidus, is a small (less than 75 millimeters in total length) ictalurid that is native to the main stems of the Neosho and Cottonwood Rivers in Kansas and Oklahoma and the Spring River in Kansas and Missouri. The Neosho madtom was federally listed as threatened by the U.S. Fish and Wildlife Service in May 1990. The U.S. Fish and Wildlife Service has been monitoring Neosho madtoms since 1991, and questioned whether or not Neosho madtom densities were affected by other catfish species, reservoirs, and hydrologic characteristics. Using the first 8 years of U.S. Fish and Wildlife Service monitoring data, Wildhaber and others (2000) analyzed whether or not Neosho madtom densities were related to these environmental characteristics. The goal of this report is to update these results with data from 1999 to 2008. The trends of Neosho madtom densities in respect to John Redmond Reservoir and other catfish species remains consistent with the previous report. In both the Neosho and Spring Rivers, Neosho madtoms had a significant positive association with all catfish species. Of those species tested, only in the population of Neosho madtoms were significantly different in density above verses below the John Redmond Reservoir after accounting for the yearly variation. The average density of Neosho madtoms at the streamgage immediately below the reservoir had the second lowest density compared to the other streamgages. The positive associations with Neosho madtoms that remained consistent from the previous report included the 1-, 3-, and 7-day minima discharges and the annual minimum discharge from the previous water year (water year prior to when the fish were sampled) and the 1-, 3-, 7-, and 30-day minima discharges from the current water year (same water year fish were sampled).

  11. Body armour and lateral-plate reduction in freshwater three-spined stickleback Gasterosteus aculeatus: adaptations to a different buoyancy regime?

    PubMed

    Myhre, F; Klepaker, T

    2009-11-01

    Several factors related to buoyancy were compared between one marine and two freshwater populations of three-spined stickleback Gasterosteus aculeatus. Fish from all three populations had buoyancy near to neutral to the ambient water. This showed that neither marine nor freshwater G. aculeatus used swimming and hydrodynamic lift to prevent sinking. Comparing the swimbladder volumes showed that freshwater completely plated G. aculeatus had a significantly larger swimbladder volume than both completely plated marine and low-plated freshwater G. aculeatus. Furthermore, body tissue density was lower in low-plated G. aculeatus than in the completely plated marine and freshwater fish. The results show that G. aculeatus either reduce tissue density or increase swimbladder volume to adapt to lower water density. Mass measurements of lateral plates and pelvis showed that loss of body armour in low-plated G. aculeatus could explain the tissue density difference between low-plated and completely plated G. aculeatus. This suggests that the common occurrence of plate and armour reduction in freshwater G. aculeatus populations can be an adaptation to a lower water density.

  12. Larvivorous fish for preventing malaria transmission.

    PubMed

    Walshe, Deirdre P; Garner, Paul; Adeel, Ahmed A; Pyke, Graham H; Burkot, Thomas R

    2017-12-11

    Adult female Anopheles mosquitoes can transmit Plasmodium parasites that cause malaria. Some fish species eat mosquito larvae and pupae. In disease control policy documents, the World Health Organization (WHO) includes biological control of malaria vectors by stocking ponds, rivers, and water collections near where people live with larvivorous fish to reduce Plasmodium parasite transmission. In the past, the Global Fund has financed larvivorous fish programmes in some countries, and, with increasing efforts in eradication of malaria, policymakers may return to this option. Therefore, we assessed the evidence base for larvivorous fish programmes in malaria control. To evaluate whether introducing larvivorous fish to anopheline larval habitats impacts Plasmodium parasite transmission. We also sought to summarize studies that evaluated whether introducing larvivorous fish influences the density and presence of Anopheles larvae and pupae in water sources. We searched the Cochrane Infectious Diseases Group Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL), published in the Cochrane Library; MEDLINE (PubMed); Embase (Ovid); CABS Abstracts; LILACS; and the metaRegister of Controlled Trials (mRCT) up to 6 July 2017. We checked the reference lists of all studies identified by the search. We examined references listed in review articles and previously compiled bibliographies to look for eligible studies. Also we contacted researchers in the field and the authors of studies that met the inclusion criteria for additional information regarding potential studies for inclusion and ongoing studies. This is an update of a Cochrane Review published in 2013. Randomized controlled trials (RCTs) and non-RCTs, including controlled before-and-after studies, controlled time series, and controlled interrupted time series studies from malaria-endemic regions that introduced fish as a larvicide and reported on malaria in the community or the density of the adult anopheline population. In the absence of direct evidence of an effect on transmission, we performed a secondary analysis on studies that evaluated the effect of introducing larvivorous fish on the density or presence of immature anopheline mosquitoes (larvae and pupae forms) in water sources to determine whether this intervention has any potential that may justify further research in the control of malaria vectors. Two review authors independently screened each article by title and abstract, and examined potentially relevant studies for inclusion using an eligibility form. At least two review authors independently extracted data and assessed risk of bias of included studies. If relevant data were unclear or were not reported, we contacted the study authors for clarification. We presented data in tables, and we summarized studies that evaluated the effects of introducing fish on anopheline immature density or presence, or both. We used the GRADE approach to summarize the certainty of the evidence. We also examined whether the included studies reported any possible adverse impact of introducing larvivorous fish on non-target native species. We identified no studies that reported the effects of introducing larvivorous fish on the primary outcomes of this review: malaria infection in nearby communities, entomological inoculation rate, or on adult Anopheles density.For the secondary analysis, we examined the effects of introducing larvivorous fish on the density and presence of anopheline larvae and pupae in community water sources, and found 15 small studies with a follow-up period between 22 days and five years. These studies were undertaken in Sri Lanka (two studies), India (three studies), Ethiopia (one study), Kenya (two studies), Sudan (one study), Grande Comore Island (one study), Korea (two studies), Indonesia (one study), and Tajikistan (two studies). These studies were conducted in a variety of settings, including localized water bodies (such as wells, domestic water containers, fishponds, and pools (seven studies); riverbed pools below dams (two studies)); rice field plots (five studies); and water canals (two studies). All included studies were at high risk of bias. The research was insufficient to determine whether larvivorous fish reduce the density of Anopheles larvae and pupae (12 studies, unpooled data, very low certainty evidence). Some studies with high stocking levels of fish seemed to arrest the increase in immature anopheline populations, or to reduce the number of immature anopheline mosquitoes, compared with controls. However, this finding was not consistent, and in studies that showed a decrease in immature anopheline populations, the effect was not always consistently sustained. In contrast, some studies reported larvivorous fish reduced the number of water sources withAnopheles larvae and pupae (five studies, unpooled data, low certainty evidence).None of the included studies reported effects of larvivorous fish on local native fish populations or other species. We do not know whether introducing larvivorous fish reduces malaria transmission or the density of adult anopheline mosquito populations.In research studies that examined the effects on immature anopheline stages of introducing fish to potential malaria vector larval habitats, high stocking levels of fish may reduce the density or presence of immature anopheline mosquitoes in the short term. We do not know whether this translates into impact on malaria transmission. Our interpretation of the current evidence is that countries should not invest in fish stocking as a stand alone or supplementary larval control measure in any malaria transmission areas outside the context of research using carefully controlled field studies or quasi-experimental designs. Such research should examine the effects on native fish and other non-target species.

  13. Persistence and diversity of directional landscape connectivity improves biomass pulsing in expanding and contracting wetlands

    USGS Publications Warehouse

    Yurek, Simeon; DeAngelis, Donald L.; Trexler, Joel C.; Klassen, Stephen; Larsen, Laurel G.

    2016-01-01

    In flood-pulsed ecosystems, hydrology and landscape structure mediate transfers of energy up the food chain by expanding and contracting in area, enabling spatial expansion and growth of fish populations during rising water levels, and subsequent concentration during the drying phase. Connectivity of flooded areas is dynamic as waters rise and fall, and is largely determined by landscape geomorphology and anisotropy. We developed a methodology for simulating fish dispersal and concentration on spatially-explicit, dynamic floodplain wetlands with pulsed food web dynamics, to evaluate how changes in connectivity through time contribute to the concentration of fish biomass that is essential for higher trophic levels. The model also tracks a connectivity index (DCI) over different compass directions to see if fish biomass dynamics can be related in a simple way to topographic pattern. We demonstrate the model for a seasonally flood-pulsed, oligotrophic system, the Everglades, where flow regimes have been greatly altered. Three dispersing populations of functional fish groups were simulated with empirically-based dispersal rules on two landscapes, and two twelve-year time series of managed water levels for those areas were applied. The topographies of the simulations represented intact and degraded ridge-and-slough landscapes (RSL). Simulation results showed large pulses of biomass concentration forming during the onset of the drying phase, when water levels were falling and fish began to converge into the sloughs. As water levels fell below the ridges, DCI declined over different directions, closing down dispersal lanes, and fish density spiked. Persistence of intermediate levels of connectivity on the intact RSL enabled persistent concentration events throughout the drying phase. The intact landscape also buffered effects of wet season population growth. Water level reversals on both landscapes negatively affected fish densities by depleting fish populations without allowing enough time for them to regenerate. Testable, spatiotemporal predictions of the timing, location, duration, and magnitude of fish concentration pulses were produced by the model, and can be applied to restoration planning.

  14. Capturing ecology in modeling approaches applied to environmental risk assessment of endocrine active chemicals in fish.

    PubMed

    Mintram, Kate S; Brown, A Ross; Maynard, Samuel K; Thorbek, Pernille; Tyler, Charles R

    2018-02-01

    Endocrine active chemicals (EACs) are widespread in freshwater environments and both laboratory and field based studies have shown reproductive effects in fish at environmentally relevant exposures. Environmental risk assessment (ERA) seeks to protect wildlife populations and prospective assessments rely on extrapolation from individual-level effects established for laboratory fish species to populations of wild fish using arbitrary safety factors. Population susceptibility to chemical effects, however, depends on exposure risk, physiological susceptibility, and population resilience, each of which can differ widely between fish species. Population models have significant potential to address these shortfalls and to include individual variability relating to life-history traits, demographic and density-dependent vital rates, and behaviors which arise from inter-organism and organism-environment interactions. Confidence in population models has recently resulted in the EU Commission stating that results derived from reliable models may be considered when assessing the relevance of adverse effects of EACs at the population level. This review critically assesses the potential risks posed by EACs for fish populations, considers the ecological factors influencing these risks and explores the benefits and challenges of applying population modeling (including individual-based modeling) in ERA for EACs in fish. We conclude that population modeling offers a way forward for incorporating greater environmental relevance in assessing the risks of EACs for fishes and for identifying key risk factors through sensitivity analysis. Individual-based models (IBMs) allow for the incorporation of physiological and behavioral endpoints relevant to EAC exposure effects, thus capturing both direct and indirect population-level effects.

  15. Response of seabirds to fluctuations in forage fish density

    USGS Publications Warehouse

    Piatt, John F.

    2002-01-01

    Following the Exxon Valdez Oil Spill (EVOS), one concern was that prevailing ecological conditions in the Gulf of Alaska (GOA) would not favor recovery of damaged seabird populations. To address this issue, we examined relationships between oceanography, forage fish and seabirds near three seabird colonies in lower Cook Inlet (LCI) in 1995-1999 (some colony work continued until 2001). Upwelling of cold, nutrient-rich GOA waters at the entrance to the shallow LCI estuary supports a high density of juvenile pollock, sand lance, and capelin; which in turn are exploited by high densities of breeding seabirds (murres, kittiwakes, puffins, etc.) on the east side of LCI. Waters on the west side of LCI are oceanographically distinct (warmer, less saline, outflowing), and much less productive for forage fish and seabirds. Patterns of seabird foraging behavior, productivity and population change reflected patterns of forage fish abundance and distribution, which in turn depended on local oceanography. Most seabird parameters varied with forage fish density in a non-linear (e.g., sigmoidal, exponential) fashion, and in some areas and years, productivity was limited by food availability.  Current and projected ecological conditions favor recovery of seabirds from the EVOS at some colonies. In 14 chapters, this report summarizes data and compiles it into 247 tables, figures and appendices. Chapter 14 provides a thorough synthesis of overall project findings. Final analyses and interpretations of data will be published later in peer-reviewed journals (in addition to 61 articles already completed).

  16. Expansion of Dreissena into offshore waters of Lake Michigan and potential impacts on fish populations

    USGS Publications Warehouse

    Bunnell, D.B.; Madenjian, C.P.; Holuszko, J.D.; Adams, J.V.; French, J. R. P.

    2009-01-01

    Lake Michigan was invaded by zebra mussels (Dreissena polymorpha) in the late 1980s and then followed by quagga mussels (D. bugensis) around 1997. Through 2000, both species (herein Dreissena) were largely restricted to depths less than 50??m. Herein, we provide results of an annual lake-wide bottom trawl survey in Lake Michigan that reveal the relative biomass and depth distribution of Dreissena between 1999 and 2007 (although biomass estimates from a bottom trawl are biased low). Lake-wide mean biomass density (g/m2) and mean depth of collection revealed no trend between 1999 and 2003 (mean = 0.7??g/m2 and 37??m, respectively). Between 2004 and 2007, however, mean lake-wide biomass density increased from 0.8??g/m2 to 7.0??g/m2, because of increased density at depths between 30 and 110??m, and mean depth of collection increased from 42 to 77??m. This pattern was confirmed by a generalized additive model. Coincident with the Dreissena expansion that occurred beginning in 2004, fish biomass density (generally planktivores) declined 71% between 2003 and 2007. Current understanding of fish population dynamics, however, indicates that Dreissena expansion is not the primary explanation for the decline of fish, and we provide a species-specific account for more likely underlying factors. Nonetheless, future sampling and research may reveal a better understanding of the potential negative interactions between Dreissena and fish in Lake Michigan and elsewhere.

  17. Human, Oceanographic and Habitat Drivers of Central and Western Pacific Coral Reef Fish Assemblages

    PubMed Central

    Williams, Ivor D.; Baum, Julia K.; Heenan, Adel; Hanson, Katharine M.; Nadon, Marc O.; Brainard, Russell E.

    2015-01-01

    Coral reefs around US- and US-affiliated Pacific islands and atolls span wide oceanographic gradients and levels of human impact. Here we examine the relative influence of these factors on coral reef fish biomass, using data from a consistent large-scale ecosystem monitoring program conducted by scientific divers over the course of >2,000 hours of underwater observation at 1,934 sites, across ~40 islands and atolls. Consistent with previous smaller-scale studies, our results show sharp declines in reef fish biomass at relatively low human population density, followed by more gradual declines as human population density increased further. Adjusting for other factors, the highest levels of oceanic productivity among our study locations were associated with more than double the biomass of reef fishes (including ~4 times the biomass of planktivores and piscivores) compared to islands with lowest oceanic productivity. Our results emphasize that coral reef areas do not all have equal ability to sustain large reef fish stocks, and that what is natural varies significantly amongst locations. Comparisons of biomass estimates derived from visual surveys with predicted biomass in the absence of humans indicated that total reef fish biomass was depleted by 61% to 69% at populated islands in the Mariana Archipelago; by 20% to 78% in the Main Hawaiian islands; and by 21% to 56% in American Samoa. PMID:25831196

  18. Trace elements and organic compounds in streambed sediment and fish tissue of coastal New England streams, 1998-99

    USGS Publications Warehouse

    Chalmers, Ann

    2002-01-01

    Streambed sediment and fish tissue were collected at 14 river sites in eastern New England during low-flow conditions in 1998 and 1999 as part of the New England Coastal Basins (NECB) study of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program. Sampling sites were selected over a range of urban settings. Population densities at selected sites ranged from 26 to 3,585 people per square mile, and urban land use ranged from 1 to 68 percent. The streambed sediment samples were analyzed for a total of 141 contaminants, including 45 trace elements, 32 organochlorine compounds, and 64 semi-volatile organic compounds. The fish tissue samples were analyzed for 22 trace elements and 28 organochlorine compounds. Concentrations of selected contaminants in both streambed sediment and fish tissue correlated more strongly with population density than with other watershed characteristics. Cadmium, copper, lead, mercury, zinc, total polycyclic aromatic hydrocarbons (PAHs), total polychlorinated biphenyls (PCBs), dichloro diphenyl trichloroethane and metabolites (DDTM), and total chlordane in streambed sediment all showed strong positive correlations with population density (rho = 0.71 to 0.85, p value = 0.005 to <0.001). Correlations between population density and selected contaminants in fish tissue were less significant than with streambed sediment (rho = 0.62 to 0.72, p value = 0.03 to 0.008). Organic carbon concentrations were correlated with concentrations of arsenic, selenium, total PAHs, total PCBs, and DDTM in streambed sediment. The relation between concentrations of contaminants in streambed sediment and fish tissue was stronger for organochlorine compounds (rho = 0.75 to 0.55, p = 0.005 to 0.065) than for trace elements (rho = 0.63 to 0.53, p = 0.029 to 0.069). The NECB study area had the highest median concentrations of lead, mercury, total PAHs, total PCBs, and DDTM in streambed sediment and the highest median concentration of PCBs in fish tissue compared to 45 other NAWQA study units across the Nation. Concentrations of many of these constituents in streambed sediment also were frequently above the consensus-based Sediment-Quality Guidelines for the protection of wildlife, suggesting they are a threat to the health of aquatic biota in New England.

  19. Shallow rocky nursery habitat for fish: Spatial variability of juvenile fishes among this poorly protected essential habitat.

    PubMed

    Cheminée, Adrien; Rider, Mary; Lenfant, Philippe; Zawadzki, Audrey; Mercière, Alexandre; Crec'hriou, Romain; Mercader, Manon; Saragoni, Gilles; Neveu, Reda; Ternon, Quentin; Pastor, Jérémy

    2017-06-15

    Coastal nursery habitats are essential for the renewal of adult fish populations. We quantified the availability of a coastal nursery habitat (shallow heterogeneous rocky bottoms) and the spatial variability of its juvenile fish populations along 250km of the Catalan coastline (France and Spain). Nurseries were present in 27% of the coastline, but only 2% of them benefited from strict protection status. For nine taxa characteristic of this habitat, total juvenile densities varied significantly between nursery sites along the coastline, with the highest densities being found on the northern sites. Recruitment level (i.e. a proxy of nursery value) was not explained by protection level, but it was moderately and positively correlated with an anthropization index. Patterns of spatial variations were taxa-specific. Exceptional observations of four juveniles of the protected grouper Epinephelus marginatus were recorded. Our data on habitat availability and recruitment levels provides important informations which help to focus MPA management efforts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Drought survival is a threshold function of habitat size and population density in a fish metapopulation.

    PubMed

    White, Richard S A; McHugh, Peter A; McIntosh, Angus R

    2016-10-01

    Because smaller habitats dry more frequently and severely during droughts, habitat size is likely a key driver of survival in populations during climate change and associated increased extreme drought frequency. Here, we show that survival in populations during droughts is a threshold function of habitat size driven by an interaction with population density in metapopulations of the forest pool dwelling fish, Neochanna apoda. A mark-recapture study involving 830 N. apoda individuals during a one-in-seventy-year extreme drought revealed that survival during droughts was high for populations occupying pools deeper than 139 mm, but declined steeply in shallower pools. This threshold was caused by an interaction between increasing population density and drought magnitude associated with decreasing habitat size, which acted synergistically to increase physiological stress and mortality. This confirmed two long-held hypotheses, firstly concerning the interactive role of population density and physiological stress, herein driven by habitat size, and secondly, the occurrence of drought survival thresholds. Our results demonstrate how survival in populations during droughts will depend strongly on habitat size and highlight that minimum habitat size thresholds will likely be required to maximize survival as the frequency and intensity of droughts are projected to increase as a result of global climate change. © 2016 John Wiley & Sons Ltd.

  1. Species richness and patterns of invasion in plants, birds, and fishes in the United States

    USGS Publications Warehouse

    Stohlgren, Thomas J.; Barnett, David; Flather, Curtis; Fuller, Pamela L.; Peterjohn, Bruce G.; Kartesz, John; Master, Lawrence L.

    2006-01-01

    We quantified broad-scale patterns of species richness and species density (mean # species/km2) for native and non-indigenous plants, birds, and fishes in the continental USA and Hawaii. We hypothesized that the species density of native and non-indigenous taxa would generally decrease in northern latitudes and higher elevations following declines in potential evapotranspiration, mean temperature, and precipitation. County data on plants (n = 3004 counties) and birds (n=3074 counties), and drainage (6 HUC) data on fishes (n = 328 drainages) showed that the densities of native and non-indigenous species were strongly positively correlated for plant species (r = 0.86, P < 0.0001), bird species (r = 0.93, P<0.0001), and fish species (r = 0.41, P<0.0001). Multiple regression models showed that the densities of native plant and bird species could be strongly predicted (adj. R2 = 0.66 in both models) at county levels, but fish species densities were less predictable at drainage levels (adj. R2 = 0.31,P<0.0001). Similarly, non-indigenous plant and bird species densities were strongly predictable (adj. R2 = 0.84 and 0.91 respectively), but non-indigenous fish species density was less predictable (adj. R2 = 0.38). County level hotspots of native and non-indigenous plants, birds, and fishes were located in low elevation areas close to the coast with high precipitation and productivity (vegetation carbon). We show that (1) native species richness can be moderately well predicted with abiotic factors; (2) human populations have tended to settle in areas rich in native species; and (3) the richness and density of non-indigenous plant, bird, and fish species can be accurately predicted from biotic and abiotic factors largely because they are positively correlated to native species densities. We conclude that while humans facilitate the initial establishment, invasions of non-indigenous species, the spread and subsequent distributions of non-indigenous species may be controlled largely by environmental factors.

  2. Effects of Fishing and Fishing Closures on Beach Clams: Experimental Evaluation across Commercially Fished and Non-Fished Beaches before and during Harvesting

    PubMed Central

    Gray, Charles A.

    2016-01-01

    Management responses to reconcile declining fisheries typically include closed areas and times to fishing. This study evaluated this strategy for a beach clam fishery by testing the hypothesis that changes in the densities and size compositions of clams from before to during harvesting would differ between commercially fished and non-fished beaches. Sampling was spatially stratified across the swash and dry sand habitats on each of two commercially fished and two non-fished beaches, and temporally stratified across three six-week blocks: before, early and late harvesting. Small-scale spatio-temporal variability in the densities and sizes of clams was prevalent across both habitats and the components of variation were generally greatest at the lowest levels examined. Despite this, differences in the densities and sizes of clams among individual beaches were evident, but there were few significant differences across the commercially fished versus non-fished beaches from before to during harvesting. There was no evidence of reduced densities or truncated size compositions of clams on fished compared to non-fished beaches, contrasting reports of some other organisms in protected areas. This was probably due to a combination of factors, including the current levels of commercial harvests, the movements and other local-scale responses of clams to ecological processes acting independently across individual beaches. The results identify the difficulties in detecting fishing-related impacts against inherent levels of variability in clam populations. Nevertheless, continued experimental studies that test alternate management arrangements may help refine and determine the most suitable strategies for the sustainable harvesting of beach clams, ultimately enhancing the management of sandy beaches. PMID:26731102

  3. Effects of Fishing and Fishing Closures on Beach Clams: Experimental Evaluation across Commercially Fished and Non-Fished Beaches before and during Harvesting.

    PubMed

    Gray, Charles A

    2016-01-01

    Management responses to reconcile declining fisheries typically include closed areas and times to fishing. This study evaluated this strategy for a beach clam fishery by testing the hypothesis that changes in the densities and size compositions of clams from before to during harvesting would differ between commercially fished and non-fished beaches. Sampling was spatially stratified across the swash and dry sand habitats on each of two commercially fished and two non-fished beaches, and temporally stratified across three six-week blocks: before, early and late harvesting. Small-scale spatio-temporal variability in the densities and sizes of clams was prevalent across both habitats and the components of variation were generally greatest at the lowest levels examined. Despite this, differences in the densities and sizes of clams among individual beaches were evident, but there were few significant differences across the commercially fished versus non-fished beaches from before to during harvesting. There was no evidence of reduced densities or truncated size compositions of clams on fished compared to non-fished beaches, contrasting reports of some other organisms in protected areas. This was probably due to a combination of factors, including the current levels of commercial harvests, the movements and other local-scale responses of clams to ecological processes acting independently across individual beaches. The results identify the difficulties in detecting fishing-related impacts against inherent levels of variability in clam populations. Nevertheless, continued experimental studies that test alternate management arrangements may help refine and determine the most suitable strategies for the sustainable harvesting of beach clams, ultimately enhancing the management of sandy beaches.

  4. Benthic status of near-shore fishing grounds in the central Philippines and associated seahorse densities.

    PubMed

    Marcus, J E; Samoilys, M A; Meeuwig, J J; Villongco, Z A D; Vincent, A C J

    2007-09-01

    Benthic status of 28 near-shore, artisanal, coral reef fishing grounds in the central Philippines was assessed (2000-2002) together with surveys of the seahorse, Hippocampus comes. Our measures of benthic quality and seahorse densities reveal some of the most degraded coral reefs in the world. Abiotic structure dominated the fishing grounds: 69% of the benthos comprised rubble (32%), sand/silt (28%) and dead coral (9%). Predominant biotic structure included live coral (12%) and Sargassum (11%). Rubble cover increased with increasing distance from municipal enforcement centers and coincided with substantial blast fishing in this region of the Philippines. Over 2 years, we measured a significant decrease in benthic 'heterogeneity' and a 16% increase in rubble cover. Poor benthic quality was concomitant with extremely low seahorse densities (524 fish per km(2)). Spatial management, such as marine reserves, may help to minimize habitat damage and to rebuild depleted populations of seahorses and other reef fauna.

  5. Fishing diseased abalone to promote yield and conservation

    PubMed Central

    Ben-Horin, Tal; Bidegain, Gorka; Lenihan, Hunter S.

    2016-01-01

    Past theoretical models suggest fishing disease-impacted stocks can reduce parasite transmission, but this is a good management strategy only when the exploitation required to reduce transmission does not overfish the stock. We applied this concept to a red abalone fishery so impacted by an infectious disease (withering syndrome) that stock densities plummeted and managers closed the fishery. In addition to the non-selective fishing strategy considered by past disease-fishing models, we modelled targeting (culling) infected individuals, which is plausible in red abalone because modern diagnostic tools can determine infection without harming landed abalone and the diagnostic cost is minor relative to the catch value. The non-selective abalone fishing required to eradicate parasites exceeded thresholds for abalone sustainability, but targeting infected abalone allowed the fishery to generate yield and reduce parasite prevalence while maintaining stock densities at or above the densities attainable if the population was closed to fishing. The effect was strong enough that stock and yield increased even when the catch was one-third uninfected abalone. These results could apply to other fisheries as the diagnostic costs decline relative to catch value. PMID:26880843

  6. Fishing diseased abalone to promote yield and conservation.

    PubMed

    Ben-Horin, Tal; Lafferty, Kevin D; Bidegain, Gorka; Lenihan, Hunter S

    2016-03-05

    Past theoretical models suggest fishing disease-impacted stocks can reduce parasite transmission, but this is a good management strategy only when the exploitation required to reduce transmission does not overfish the stock. We applied this concept to a red abalone fishery so impacted by an infectious disease (withering syndrome) that stock densities plummeted and managers closed the fishery. In addition to the non-selective fishing strategy considered by past disease-fishing models, we modelled targeting (culling) infected individuals, which is plausible in red abalone because modern diagnostic tools can determine infection without harming landed abalone and the diagnostic cost is minor relative to the catch value. The non-selective abalone fishing required to eradicate parasites exceeded thresholds for abalone sustainability, but targeting infected abalone allowed the fishery to generate yield and reduce parasite prevalence while maintaining stock densities at or above the densities attainable if the population was closed to fishing. The effect was strong enough that stock and yield increased even when the catch was one-third uninfected abalone. These results could apply to other fisheries as the diagnostic costs decline relative to catch value. © 2016 The Author(s).

  7. Fishing diseased abalone to promote yield and conservation

    USGS Publications Warehouse

    Ben-Horin, Tal; Lafferty, Kevin D.; Bidegain, Gorka; Lenihan, Hunter S.

    2016-01-01

    Past theoretical models suggest fishing disease-impacted stocks can reduce parasite transmission, but this is a good management strategy only when the exploitation required to reduce transmission does not overfish the stock. We applied this concept to a red abalone fishery so impacted by an infectious disease (withering syndrome) that stock densities plummeted and managers closed the fishery. In addition to the non-selective fishing strategy considered by past disease-fishing models, we modelled targeting (culling) infected individuals, which is plausible in red abalone because modern diagnostic tools can determine infection without harming landed abalone and the diagnostic cost is minor relative to the catch value. The non-selective abalone fishing required to eradicate parasites exceeded thresholds for abalone sustainability, but targeting infected abalone allowed the fishery to generate yield and reduce parasite prevalence while maintaining stock densities at or above the densities attainable if the population was closed to fishing. The effect was strong enough that stock and yield increased even when the catch was one-third uninfected abalone. These results could apply to other fisheries as the diagnostic costs decline relative to catch value.

  8. Larvivorous fish for preventing malaria transmission

    PubMed Central

    Walshe, Deirdre P; Garner, Paul; Adeel, Ahmed A; Pyke, Graham H; Burkot, Thomas R

    2017-01-01

    Background Adult female Anopheles mosquitoes can transmit Plasmodium parasites that cause malaria. Some fish species eat mosquito larvae and pupae. In disease control policy documents, the World Health Organization (WHO) includes biological control of malaria vectors by stocking ponds, rivers, and water collections near where people live with larvivorous fish to reduce Plasmodium parasite transmission. In the past, the Global Fund has financed larvivorous fish programmes in some countries, and, with increasing efforts in eradication of malaria, policymakers may return to this option. Therefore, we assessed the evidence base for larvivorous fish programmes in malaria control. Objectives To evaluate whether introducing larvivorous fish to anopheline larval habitats impacts Plasmodium parasite transmission. We also sought to summarize studies that evaluated whether introducing larvivorous fish influences the density and presence of Anopheles larvae and pupae in water sources. Search methods We searched the Cochrane Infectious Diseases Group Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL), published in the Cochrane Library; MEDLINE (PubMed); Embase (Ovid); CABS Abstracts; LILACS; and the metaRegister of Controlled Trials (mRCT) up to 6 July 2017. We checked the reference lists of all studies identified by the search. We examined references listed in review articles and previously compiled bibliographies to look for eligible studies. Also we contacted researchers in the field and the authors of studies that met the inclusion criteria for additional information regarding potential studies for inclusion and ongoing studies. This is an update of a Cochrane Review published in 2013. Selection criteria Randomized controlled trials (RCTs) and non-RCTs, including controlled before-and-after studies, controlled time series, and controlled interrupted time series studies from malaria-endemic regions that introduced fish as a larvicide and reported on malaria in the community or the density of the adult anopheline population. In the absence of direct evidence of an effect on transmission, we performed a secondary analysis on studies that evaluated the effect of introducing larvivorous fish on the density or presence of immature anopheline mosquitoes (larvae and pupae forms) in water sources to determine whether this intervention has any potential that may justify further research in the control of malaria vectors. Data collection and analysis Two review authors independently screened each article by title and abstract, and examined potentially relevant studies for inclusion using an eligibility form. At least two review authors independently extracted data and assessed risk of bias of included studies. If relevant data were unclear or were not reported, we contacted the study authors for clarification. We presented data in tables, and we summarized studies that evaluated the effects of introducing fish on anopheline immature density or presence, or both. We used the GRADE approach to summarize the certainty of the evidence. We also examined whether the included studies reported any possible adverse impact of introducing larvivorous fish on non-target native species. Main results We identified no studies that reported the effects of introducing larvivorous fish on the primary outcomes of this review: malaria infection in nearby communities, entomological inoculation rate, or on adult Anopheles density. For the secondary analysis, we examined the effects of introducing larvivorous fish on the density and presence of anopheline larvae and pupae in community water sources, and found 15 small studies with a follow-up period between 22 days and five years. These studies were undertaken in Sri Lanka (two studies), India (three studies), Ethiopia (one study), Kenya (two studies), Sudan (one study), Grande Comore Island (one study), Korea (two studies), Indonesia (one study), and Tajikistan (two studies). These studies were conducted in a variety of settings, including localized water bodies (such as wells, domestic water containers, fishponds, and pools (seven studies); riverbed pools below dams (two studies)); rice field plots (five studies); and water canals (two studies). All included studies were at high risk of bias. The research was insufficient to determine whether larvivorous fish reduce the density of Anopheles larvae and pupae (12 studies, unpooled data, very low certainty evidence). Some studies with high stocking levels of fish seemed to arrest the increase in immature anopheline populations, or to reduce the number of immature anopheline mosquitoes, compared with controls. However, this finding was not consistent, and in studies that showed a decrease in immature anopheline populations, the effect was not always consistently sustained. In contrast, some studies reported larvivorous fish reduced the number of water sources withAnopheles larvae and pupae (five studies, unpooled data, low certainty evidence). None of the included studies reported effects of larvivorous fish on local native fish populations or other species. Authors' conclusions We do not know whether introducing larvivorous fish reduces malaria transmission or the density of adult anopheline mosquito populations. In research studies that examined the effects on immature anopheline stages of introducing fish to potential malaria vector larval habitats, high stocking levels of fish may reduce the density or presence of immature anopheline mosquitoes in the short term. We do not know whether this translates into impact on malaria transmission. Our interpretation of the current evidence is that countries should not invest in fish stocking as a stand alone or supplementary larval control measure in any malaria transmission areas outside the context of research using carefully controlled field studies or quasi-experimental designs. Such research should examine the effects on native fish and other non-target species. Fish that feed on mosquito larvae for preventing malaria transmission What is the aim of this review? Adult female Anopheles mosquitoes transmit the Plasmodium parasites that cause malaria. The aim of this Cochrane Review was to evaluate whether introducing fish that eat mosquito larvae and pupae (early life stages of mosquitoes) into water sources near where people live will decrease the adult Anopheles mosquito population and thus the number of people infected with Plasmodium parasites. Key messages We do not know if introducing fish that eat mosquito larvae and pupae has an impact on the number of people with malaria or on the adult Anopheles mosquito population. What was studied in the review? The review authors examined the available research that evaluated introducing fish that eat larvae ('larvivorous') to Anopheles mosquito larval habitats in areas where malaria was common. Fifteen small studies looked at the effects of larvivorous fish on Anopheles larvae and pupae in different larval habitats, including localized water bodies (such as wells, domestic water containers, fishponds, and pools; seven studies), riverbed pools below dams (two studies), rice field plots (four studies), and water canals (two studies). These studies were undertaken in Sri Lanka (two studies), India (three studies), Ethiopia (one study), Kenya (two studies), Sudan (one study), Grande Comore Island (one study), Korea (two studies), Indonesia (one study), and Tajikistan (two studies). This is an update of a 2013 Cochrane Review and includes some older unpublished studies from Tajikistan and a new trial from India. What are the main results of the review? In our main analysis, we found no studies that looked at the effects of larvivorous fish on adult Anopheles mosquito populations or on the number of people infected with Plasmodium parasites. In our analysis exploring the effect of fish introduction on the number of Anopheles larvae and pupae in water collections, these studies produced inconsistent results on immature mosquito density (12 studies, unpooled data, very low certainty evidence). Some studies that measured the number of water sources withAnopheles larvae and pupae reported a reduction in the number of sites with Anopheles larvae and pupae after introducing fish (five studies, unpooled data, low certainty evidence). None of the included studies examined the effects of introducing larvivorous fish on other native species present, but these studies were not designed to do this. All included studies were at high risk of bias. Before much is invested in this intervention, we need better research to determine the effect of introducing larvivorous fish on the number of people infected with malaria, and on adult Anopheles populations. Researchers need to use robust controlled designs with an adequate number of sites. In addition, researchers should explore the potential harms from introducing these fish on native fish and other non-Anopheles species. How up-to-date is this review? The review authors searched for studies published up to 6 July 2017. PMID:29226959

  9. Steelhead Supplementation Studies; Steelhead Supplementation in Idaho Rivers, Annual Report 2002.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byrne, Alan

    The Steelhead Supplementation Study (SSS) has two broad objectives: (1) investigate the feasibility of supplementing depressed wild and natural steelhead populations using hatchery populations, and (2) describe the basic life history and genetic characteristics of wild and natural steelhead populations in the Salmon and Clearwater Basins. Idaho Department of Fish and Game (IDFG) personnel stocked adult steelhead from Sawtooth Fish Hatchery into Frenchman and Beaver creeks and estimated the number of age-1 parr produced from the outplants since 1993. On May 2, 2002, both Beaver and Frenchman creeks were stocked with hatchery adult steelhead. A SSS crew snorkeled the creeksmore » in August 2002 to estimate the abundance of age-1 parr from brood year (BY) 2001. I estimated that the yield of age-1 parr per female stocked in 2001 was 7.3 and 6.7 in Beaver and Frenchman creeks, respectively. SSS crews stocked Dworshak hatchery stock fingerlings and smolts from 1993 to 1999 in the Red River drainage to assess which life stage produces more progeny when the adults return to spawn. In 2002, Clearwater Fish Hatchery personnel operated the Red River weir to trap adults that returned from these stockings. Twelve PIT-tagged adults from the smolt releases and one PIT-tagged adult from fingerling releases were detected during their migration up the mainstem Columbia and Snake rivers, but none from either group were caught at the weir. The primary focus of the study has been monitoring and collecting life history information from wild steelhead populations. An adult weir has been operated annually since 1992 in Fish Creek, a tributary of the Lochsa River. The weir was damaged by a rain-on-snow event in April 2002 and although the weir remained intact, some adults were able to swim undetected through the weir. Despite damage to the weir, trap tenders captured 167 adult steelhead, the most fish since 1993. The maximum likelihood estimate of adult steelhead escapement was 242. A screw trap has been operated annually in Fish Creek since 1994 to estimate the number of emigrating parr and smolts. I estimated that 18,687 juvenile steelhead emigrated from Fish Creek in 2002, the lowest number of migrants since 1998. SSS crews snorkeled three streams in the Selway River drainage and 10 streams in the Lochsa River drainage to estimate juvenile steelhead densities. The densities of age-1 steelhead parr declined in all streams compared to the densities observed in 2001. The age-1 densities in Fish Creek and Gedney Creek were the lowest observed since this project began monitoring those populations in 1994. The SSS crews and other cooperators tagged more than 12,000 juvenile steelhead with passive integrated transponder (PIT) tags in 2002. In 2002, technicians mounted and aged steelhead scales that were collected from 1998 to 2001. A consensus was reached among technicians for age of steelhead juveniles from Fish Creek. Scales that were collected in other streams were aged by at least one reader; however, before a final age is assigned to these fish, the age needs to be verified by another reader and any age differences among readers resolved. Dr. Jennifer Nielsen, at the U.S. Geological Survey Alaska Biological Science Center, Anchorage continued the microsatellite analysis of the steelhead tissue samples that were collected from Idaho streams in 2000. Two thousand eighteen samples from 40 populations were analyzed. The analysis of the remaining 39 populations is continuing.« less

  10. Effects of local and large-scale climate patterns on estuarine resident fishes: The example of Pomatoschistus microps and Pomatoschistus minutus

    NASA Astrophysics Data System (ADS)

    Nyitrai, Daniel; Martinho, Filipe; Dolbeth, Marina; Rito, João; Pardal, Miguel A.

    2013-12-01

    Large-scale and local climate patterns are known to influence several aspects of the life cycle of marine fish. In this paper, we used a 9-year database (2003-2011) to analyse the populations of two estuarine resident fishes, Pomatoschistus microps and Pomatoschistus minutus, in order to determine their relationships with varying environmental stressors operating over local and large scales. This study was performed in the Mondego estuary, Portugal. Firstly, the variations in abundance, growth, population structure and secondary production were evaluated. These species appeared in high densities in the beginning of the study period, with subsequent occasional high annual density peaks, while their secondary production was lower in dry years. The relationships between yearly fish abundance and the environmental variables were evaluated separately for both species using Spearman correlation analysis, considering the yearly abundance peaks for the whole population, juveniles and adults. Among the local climate patterns, precipitation, river runoff, salinity and temperature were used in the analyses, and North Atlantic Oscillation (NAO) index and sea surface temperature (SST) were tested as large-scale factors. For P. microps, precipitation and NAO were the significant factors explaining abundance of the whole population, the adults and the juveniles as well. Regarding P. minutus, for the whole population, juveniles and adults river runoff was the significant predictor. The results for both species suggest a differential influence of climate patterns on the various life cycle stages, confirming also the importance of estuarine resident fishes as indicators of changes in local and large-scale climate patterns, related to global climate change.

  11. Selective fishing induces density-dependent growth.

    PubMed

    Svedäng, Henrik; Hornborg, Sara

    2014-06-12

    Over the last decades, views on fisheries management have oscillated between alarm and trust in management progress. The predominant policy for remedying the world fishing crisis aims at maximum sustainable yield (MSY) by adjusting gear selectivity and fishing effort. Here we report a case study on how striving for higher yields from the Eastern Baltic cod stock by increasing selectivity has become exceedingly detrimental for its productivity. Although there is a successive increase in numbers of undersized fish, growth potential is severely reduced, and fishing mortality in fishable size has increased. Once density-dependent growth is introduced, the process is self-enforcing as long as the recruitment remains stable. Our findings suggest that policies focusing on maximum yield while targeting greater sizes are risky and should instead prioritize catch rates over yield. Disregarding the underlying population structure may jeopardize stock productivity, with dire consequences for the fishing industry and ecosystem structure and function.

  12. Modeling fish dynamics and effects of stress in a hydrologically pulsed ecosystem

    USGS Publications Warehouse

    DeAngelis, Donald L.; Loftus, William F.; Trexler, Joel C.; Ulanowicz, Robert E.

    1997-01-01

    Many wetlands undergo seasonal cycles in precipitation and water depth.This environmental seasonality is echoed in patterns of production of fishbiomass, which, in turn, influence the phenology of other components of thefood web, including wading birds. Human activities, such as drainage orother alterations of the hydrology, can exacerbate these natural cycles andresult in detrimental stresses on fish production and the higher trophic levels dependent on this production. In this paper we model theseasonal pattern of fish production in a freshwater marsh, with specialreference to the Everglades/Big Cypress region of southern Florida.The model illustrates the temporal pattern of production through theyear, which can result in very high densities of fish at the end of ahydroperiod (period of flooding), aswell as the importance of ponds and other deep depressions, both as refugia and sinks during dry periods. The model predicts that: (1) there is an effective threshold in the length of the hydroperiod that must beexceeded for high fish-population densities to be produced, (2) large,piscivorous fishes do not appear tohave a major impact on smaller fishes in the marsh habitat, and (3) therecovery of small-fish populations in the marsh following a major droughtmay require up to a year. The last of these results is relevant toassessing anthropogenic impacts on marsh production, as these effectsmay increase the severity and frequency of droughts.

  13. Removal of nonnative fish results in population expansion of a declining amphibian (mountain yellow-legged frog, Rana muscosa)

    PubMed Central

    KNAPP, Roland A.; BOIANO, Daniel M.; VREDENBURG, Vance T.

    2007-01-01

    The mountain yellow-legged frog (Rana muscosa) was once a common inhabitant of the Sierra Nevada (California, USA), but has declined precipitously during the past century due in part to the introduction of nonnative fish into naturally fishless habitats. The objectives of the current study were to describe (1) the effect of fish removal from three lakes (located in two watersheds) on the small, remnant R. muscosa populations inhabiting those lakes, and (2) the initial development of metapopulation structure in each watershed as R. muscosa from expanding populations in fish-removal lakes dispersed to adjacent habitats. At all three fish-removal lakes, R. muscosa population densities increased significantly following the removal of predatory fish. The magnitude of these increases was significantly greater than that observed over the same time period in R. muscosa populations inhabiting control lakes that remained in their natural fishless condition. Following these population increases, R. muscosa dispersed to adjacent suitable (but unoccupied) sites, moving between 200 and 900 m along streams or across dry land. Together, these results suggest that large-scale removal of introduced fish could result in at least partial reversal of the decline of R. muscosa. Continued monitoring of R. muscosa at the fish-removal sites will be necessary to determine whether the positive effects of fish eradication are sustained over the long-term, especially in light of the increasingly important role played by an emerging infectious disease (chytridiomycosis, caused by Batrachochytrium dendrobatidis) in influencing R. muscosa populations. PMID:17396156

  14. Effects of hatchery fish density on emigration, growth, survival, and predation risk of natural steelhead parr in an experimental stream channel

    USGS Publications Warehouse

    Tatara, Christopher P.; Riley, Stephen C.; Berejikian, Barry A.

    2011-01-01

    Hatchery supplementation of steelhead Oncorhynchus mykiss raises concerns about the impacts on natural populations, including reduced growth and survival, displacement, and increased predation. The potential risks may be density dependent.We examined how hatchery stocking density and the opportunity to emigrate affect the responses of natural steelhead parr in an experimental stream channel and after 15 d found no density-dependent effects on growth, emigration, or survival at densities ranging from 1-6 hatchery parr/m2. The opportunity for steelhead parr to emigrate reduced predation by coastal cutthroat trout O. clarkii clarkii on both hatchery and natural steelhead parr. The cutthroat trout exhibited a type-I functional response (constant predation rate with increased prey density) for the hatchery and composite populations. In contrast, the predation rate on natural parr decreased as hatchery stocking density increased. Supplementation with hatchery parr at any experimental stocking density reduced the final natural parr density. This decline was explained by increased emigration fromthe supplemented groups. Natural parr had higher mean instantaneous growth rates than hatchery parr. The proportion of parr emigrating decreased as parr size increased over successive experimental trials. Smaller parr had lower survival and suffered higher predation. The final density of the composite population, a measure of supplementation effectiveness, increased with the hatchery steelhead stocking rate. Our results indicate that stocking larger hatchery parr (over 50 d postemergence) at densities within the carrying capacity would have low short-term impact on the growth, survival, and emigration of natural parr while increasing the density of the composite population; in addition, a stocking density greater than 3 fish/m2 might be a good starting point for the evaluation of parr stocking in natural streams.

  15. Abundance, stock origin, and length of marked and unmarked juvenile Chinook salmon in the surface waters of greater Puget Sound

    USGS Publications Warehouse

    Rice, C.A.; Greene, C.M.; Moran, P.; Teel, D.J.; Kuligowski, D.R.; Reisenbichler, R.R.; Beamer, E.M.; Karr, J.R.; Fresh, K.L.

    2011-01-01

    This study focuses on the use by juvenile Chinook salmon Oncorhynchus tshawytscha of the rarely studied neritic environment (surface waters overlaying the sublittoral zone) in greater Puget Sound. Juvenile Chinook salmon inhabit the sound from their late estuarine residence and early marine transition to their first year at sea. We measured the density, origin, and size of marked (known hatchery) and unmarked (majority naturally spawned) juveniles by means of monthly surface trawls at six river mouth estuaries in Puget Sound and the areas in between. Juvenile Chinook salmon were present in all months sampled (April-November). Unmarked fish in the northern portion of the study area showed broader seasonal distributions of density than did either marked fish in all areas or unmarked fish in the central and southern portions of the sound. Despite these temporal differences, the densities of marked fish appeared to drive most of the total density estimates across space and time. Genetic analysis and coded wire tag data provided us with documented individuals from at least 16 source populations and indicated that movement patterns and apparent residence time were, in part, a function of natal location and time passed since the release of these fish from hatcheries. Unmarked fish tended to be smaller than marked fish and had broader length frequency distributions. The lengths of unmarked fish were negatively related to the density of both marked and unmarked Chinook salmon, but those of marked fish were not. These results indicate more extensive use of estuarine environments by wild than by hatchery juvenile Chinook salmon as well as differential use (e.g., rearing and migration) of various geographic regions of greater Puget Sound by juvenile Chinook salmon in general. In addition, the results for hatchery-generated timing, density, and length differences have implications for the biological interactions between hatchery and wild fish throughout Puget Sound. ?? American Fisheries Society 2011.

  16. Long-term trends in naturalized rainbow trout (Oncorhynchus mykiss) populations in the upper Esopus Creek, Ulster County, New York, 2009–15

    USGS Publications Warehouse

    George, Scott D.; Baldigo, Barry P.

    2016-05-13

    The U.S. Geological Survey, in cooperation with Cornell Cooperative Extension of Ulster County, New York State Energy Research and Development Authority, the New York State Department of Environmental Conservation, and the New York City Department of Environmental Protection, surveyed fish communities annually on the main stem and tributaries of the upper Esopus Creek, Ulster County, New York, from 2009 to 2015. This report summarizes the density, biomass, and size structure of rainbow trout (Oncorhynchus mykiss) and brown trout (Salmo trutta) populations from the 2015 surveys along with data from the preceding 6 years. The mean density of rainbow trout populations in 2015 was 98 fish per 0.1 hectare, which was the highest value observed since 2010, and the mean biomass of rainbow trout populations in 2015 was 864 grams per 0.1 hectare, which was the highest value observed since 2012.

  17. Assessing prey fish populations in Lake Michigan: Comparison of simultaneous acoustic-midwater trawling with bottom trawling

    USGS Publications Warehouse

    Fabrizio, Mary C.; Adams, Jean V.; Curtis, Gary L.

    1997-01-01

    The Lake Michigan fish community has been monitored since the 1960s with bottom trawls, and since the late 1980s with acoustics and midwater trawls. These sampling tools are limited to different habitats: bottom trawls sample fish near bottom in areas with smooth substrates, and acoustic methods sample fish throughout the water column above all substrate types. We compared estimates of fish densities and species richness from daytime bottom trawling with those estimated from night-time acoustic and midwater trawling at a range of depths in northeastern Lake Michigan in summer 1995. We examined estimates of total fish density as well as densities of alewife Alosa pseudoharengus (Wilson), bloater Coregonus hoyi (Gill), and rainbow smelt Osmerus mordax (Mitchell) because these three species are the dominant forage of large piscivores in Lake Michigan. In shallow water (18 m), we detected more species but fewer fish (in fish/ha and kg/ha) with bottom trawls than with acoustic-midwater trawling. Large aggregations of rainbow smelt were detected by acoustic-midwater trawling at 18 m and contributed to the differences in total fish density estimates between gears at this depth. Numerical and biomass densitites of bloaters from all depths were significantly higher when based on bottom trawl samples than on acoustic-midwater trawling, and this probably contributed to the observed significant difference between methods for total fish densities (kg/ha) at 55 m. Significantly fewer alewives per ha were estimated from bottom trawling than from acoustics-midwater trawling at 55 m, and in deeper waters, no alewives were taken by bottom trawling. The differences detected between gears resulted from alewife, bloater, and rainbow smelt vertical distributions, which varied with lake depth and time of day. Because Lake Michigan fishes are both demersal and pelagic, a single sampling method cannot be used to completely describe characteristics of the fish community.

  18. Environmental heterogeneity associated with European perch (Perca fluviatilis) predation on invasive round goby (Neogobius melanostomus).

    PubMed

    Liversage, Kiran; Nurkse, Kristiina; Kotta, Jonne; Järv, Leili

    2017-12-01

    Spatiotemporal environmental variation affects fish feeding behaviour and capacity for piscivorous control of prey populations, which is important for management when prey include invasive species causing ecosystem impacts. We assessed gut-contents of an important piscivore (European perch Perca fluviatilis) over two years, and analysed variables affecting initiation and amounts of feeding, focusing on an important invasive prey species, round goby (Neogobius melanostomus). We show that predation is primarily controlled by variation of physical and habitat characteristics surrounding perch. Fish prey began being incorporated in diets of perch that were >150 mm, with temperature conditions controlling initiation of their feeding. Total amounts of fish in perch diets, and amounts of round goby individually, were strongly affected by macrophyte cover; seldom were fish present in perch stomachs when macrophyte cover was >40%. Environmental densities of round goby were related to multivariate diet composition in ways that suggest predation of some native species may be relaxed in areas of dense round goby populations. There was evidence that perch predation is unlikely to limit populations of the invader, as there was only a weak relationship between round goby densities and amounts in gut contents. The results have ecosystem management implications, because some variables found to be important could be manipulated to control round goby or other similar invaders e.g. fisheries management of native piscivore stock-density and body-size, or modification of benthic environment structure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Habitat and fish population in the deep-sea Oculina coral ecosystem of the western Atlantic

    USGS Publications Warehouse

    2005-01-01

    In this paper, we describe results from mapping studies conducted in 2001 and improvements to reef fish populations that have occurred in the last few years. We find that less than 10% of the area contains intact Oculina coral thickets, which we continue to attribute primarily to trawling. In addition, we find increased grouper density and male abundance inside the protected area, suggesting population recovery, and the appearance of juvenile speckled hind Epinephelus drummondhayi (family Serranidae), suggesting nursery function for this and possibly other commercially important species.

  20. How many fish? Comparison of two underwater visual sampling methods for monitoring fish communities

    PubMed Central

    Sini, Maria; Vatikiotis, Konstantinos; Katsoupis, Christos

    2018-01-01

    Background Underwater visual surveys (UVSs) for monitoring fish communities are preferred over fishing surveys in certain habitats, such as rocky or coral reefs and seagrass beds and are the standard monitoring tool in many cases, especially in protected areas. However, despite their wide application there are potential biases, mainly due to imperfect detectability and the behavioral responses of fish to the observers. Methods The performance of two methods of UVSs were compared to test whether they give similar results in terms of fish population density, occupancy, species richness, and community composition. Distance sampling (line transects) and plot sampling (strip transects) were conducted at 31 rocky reef sites in the Aegean Sea (Greece) using SCUBA diving. Results Line transects generated significantly higher values of occupancy, species richness, and total fish density compared to strip transects. For most species, density estimates differed significantly between the two sampling methods. For secretive species and species avoiding the observers, the line transect method yielded higher estimates, as it accounted for imperfect detectability and utilized a larger survey area compared to the strip transect method. On the other hand, large-scale spatial patterns of species composition were similar for both methods. Discussion Overall, both methods presented a number of advantages and limitations, which should be considered in survey design. Line transects appear to be more suitable for surveying secretive species, while strip transects should be preferred at high fish densities and for species of high mobility. PMID:29942703

  1. Hypoxic areas, density-dependence and food limitation drive the body condition of a heavily exploited marine fish predator

    PubMed Central

    Käll, Filip; Hansson, Martin; Baranova, Tatjana; Karlsson, Olle; Lundström, Karl; Neuenfeldt, Stefan; Hjelm, Joakim

    2016-01-01

    Investigating the factors regulating fish condition is crucial in ecology and the management of exploited fish populations. The body condition of cod (Gadus morhua) in the Baltic Sea has dramatically decreased during the past two decades, with large implications for the fishery relying on this resource. Here, we statistically investigated the potential drivers of the Baltic cod condition during the past 40 years using newly compiled fishery-independent biological data and hydrological observations. We evidenced a combination of different factors operating before and after the ecological regime shift that occurred in the Baltic Sea in the early 1990s. The changes in cod condition related to feeding opportunities, driven either by density-dependence or food limitation, along the whole period investigated and to the fivefold increase in the extent of hypoxic areas in the most recent 20 years. Hypoxic areas can act on cod condition through different mechanisms related directly to species physiology, or indirectly to behaviour and trophic interactions. Our analyses found statistical evidence for an effect of the hypoxia-induced habitat compression on cod condition possibly operating via crowding and density-dependent processes. These results furnish novel insights into the population dynamics of Baltic Sea cod that can aid the management of this currently threatened population. PMID:27853557

  2. Ocean Acidification Effects on Atlantic Cod Larval Survival and Recruitment to the Fished Population

    PubMed Central

    Stiasny, Martina H.; Mittermayer, Felix H.; Sswat, Michael; Voss, Rüdiger; Jutfelt, Fredrik; Chierici, Melissa; Puvanendran, Velmurugu; Mortensen, Atle; Reusch, Thorsten B. H.; Clemmesen, Catriona

    2016-01-01

    How fisheries will be impacted by climate change is far from understood. While some fish populations may be able to escape global warming via range shifts, they cannot escape ocean acidification (OA), an inevitable consequence of the dissolution of anthropogenic carbon dioxide (CO2) emissions in marine waters. How ocean acidification affects population dynamics of commercially important fish species is critical for adapting management practices of exploited fish populations. Ocean acidification has been shown to impair fish larvae’s sensory abilities, affect the morphology of otoliths, cause tissue damage and cause behavioural changes. Here, we obtain first experimental mortality estimates for Atlantic cod larvae under OA and incorporate these effects into recruitment models. End-of-century levels of ocean acidification (~1100 μatm according to the IPCC RCP 8.5) resulted in a doubling of daily mortality rates compared to present-day CO2 concentrations during the first 25 days post hatching (dph), a critical phase for population recruitment. These results were consistent under different feeding regimes, stocking densities and in two cod populations (Western Baltic and Barents Sea stock). When mortality data were included into Ricker-type stock-recruitment models, recruitment was reduced to an average of 8 and 24% of current recruitment for the two populations, respectively. Our results highlight the importance of including vulnerable early life stages when addressing effects of climate change on fish stocks. PMID:27551924

  3. Ocean Acidification Effects on Atlantic Cod Larval Survival and Recruitment to the Fished Population.

    PubMed

    Stiasny, Martina H; Mittermayer, Felix H; Sswat, Michael; Voss, Rüdiger; Jutfelt, Fredrik; Chierici, Melissa; Puvanendran, Velmurugu; Mortensen, Atle; Reusch, Thorsten B H; Clemmesen, Catriona

    2016-01-01

    How fisheries will be impacted by climate change is far from understood. While some fish populations may be able to escape global warming via range shifts, they cannot escape ocean acidification (OA), an inevitable consequence of the dissolution of anthropogenic carbon dioxide (CO2) emissions in marine waters. How ocean acidification affects population dynamics of commercially important fish species is critical for adapting management practices of exploited fish populations. Ocean acidification has been shown to impair fish larvae's sensory abilities, affect the morphology of otoliths, cause tissue damage and cause behavioural changes. Here, we obtain first experimental mortality estimates for Atlantic cod larvae under OA and incorporate these effects into recruitment models. End-of-century levels of ocean acidification (~1100 μatm according to the IPCC RCP 8.5) resulted in a doubling of daily mortality rates compared to present-day CO2 concentrations during the first 25 days post hatching (dph), a critical phase for population recruitment. These results were consistent under different feeding regimes, stocking densities and in two cod populations (Western Baltic and Barents Sea stock). When mortality data were included into Ricker-type stock-recruitment models, recruitment was reduced to an average of 8 and 24% of current recruitment for the two populations, respectively. Our results highlight the importance of including vulnerable early life stages when addressing effects of climate change on fish stocks.

  4. Inter-class competition in stage-structured populations: effects of adult density on life-history traits of adult and juvenile common lizards.

    PubMed

    San-Jose, Luis M; Peñalver-Alcázar, Miguel; Huyghe, Katleen; Breedveld, Merel C; Fitze, Patrick S

    2016-12-01

    Ecological and evolutionary processes in natural populations are largely influenced by the population's stage-structure. Commonly, different classes have different competitive abilities, e.g., due to differences in body size, suggesting that inter-class competition may be important and largely asymmetric. However, experimental evidence states that inter-class competition, which is important, is rare and restricted to marine fish. Here, we manipulated the adult density in six semi-natural populations of the European common lizard, Zootoca vivipara, while holding juvenile density constant. Adult density affected juveniles, but not adults, in line with inter-class competition. High adult density led to lower juvenile survival and growth before hibernation. In contrast, juvenile survival after hibernation was higher in populations with high adult density, pointing to relaxed inter-class competition. As a result, annual survival was not affected by adult density, showing that differences in pre- and post-hibernation survival balanced each other out. The intensity of inter-class competition affected reproduction, performance, and body size in juveniles. Path analyses unravelled direct treatment effects on early growth (pre-hibernation) and no direct treatment effects on the parameters measured after hibernation. This points to allometry of treatment-induced differences in early growth, and it suggests that inter-class competition mainly affects the early growth of the competitively inferior class and thereby their future performance and reproduction. These results are in contrast with previous findings and, together with results in marine fish, suggest that the strength and direction of density dependence may depend on the degree of inter-class competition, and thus on the availability of resources used by the competing classes.

  5. Hydropower impacts on reservoir fish populations are modified by environmental variation.

    PubMed

    Eloranta, Antti P; Finstad, Anders G; Helland, Ingeborg P; Ugedal, Ola; Power, Michael

    2018-03-15

    Global transition towards renewable energy production has increased the demand for new and more flexible hydropower operations. Before management and stakeholders can make informed choices on potential mitigations, it is essential to understand how the hydropower reservoir ecosystems respond to water level regulation (WLR) impacts that are likely modified by the reservoirs' abiotic and biotic characteristics. Yet, most reservoir studies have been case-specific, which hampers large-scale planning, evaluation and mitigation actions across various reservoir ecosystems. Here, we investigated how the effect of the magnitude, frequency and duration of WLR on fish populations varies along environmental gradients. We used biomass, density, size, condition and maturation of brown trout (Salmo trutta L.) in Norwegian hydropower reservoirs as a measure of ecosystem response, and tested for interacting effects of WLR and lake morphometry, climatic conditions and fish community structure. Our results showed that environmental drivers modified the responses of brown trout populations to different WLR patterns. Specifically, brown trout biomass and density increased with WLR magnitude particularly in large and complex-shaped reservoirs, but the positive relationships were only evident in reservoirs with no other fish species. Moreover, increasing WLR frequency was associated with increased brown trout density but decreased condition of individuals within the populations. WLR duration had no significant impacts on brown trout, and the mean weight and maturation length of brown trout showed no significant response to any WLR metrics. Our study demonstrates that local environmental characteristics and the biotic community strongly modify the hydropower-induced WLR impacts on reservoir fishes and ecosystems, and that there are no one-size-fits-all solutions to mitigate environmental impacts. This knowledge is vital for sustainable planning, management and mitigation of hydropower operations that need to meet the increasing worldwide demand for both renewable energy and ecosystem services delivered by freshwaters. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Energy density of bloaters in the upper Great Lakes

    USGS Publications Warehouse

    Pothoven, Steven A.; Bunnell, David B.; Madenjian, Charles P.; Gorman, Owen T.; Roseman, Edward F.

    2012-01-01

    We evaluated the energy density of bloaters Coregonus hoyi as a function of fish size across Lakes Michigan, Huron, and Superior in 2008–2009 and assessed how differences in energy density are related to factors such as biomass density of bloaters and availability of prey. Additional objectives were to compare energy density between sexes and to compare energy densities of bloaters in Lake Michigan between two time periods (1998–2001 and 2008–2009). For the cross-lake comparisons in 2008, energy density increased with fish total length (TL) only in Lake Michigan. Mean energy density adjusted for fish size was 8% higher in bloaters from Lake Superior than in bloaters from Lake Huron. Relative to fish in these two lakes, small (175 mm TL) bloaters had higher energy density. In 2009, energy density increased with bloater size, and mean energy density adjusted for fish size was about 9% higher in Lake Michigan than in Lake Huron (Lake Superior was not sampled during 2009). Energy density of bloaters in Lake Huron was generally the lowest among lakes, reflecting the relatively low densities of opossum shrimp Mysis diluviana and the relatively high biomass of bloaters reported for that lake. Other factors, such as energy content of prey, growing season, or ontogenetic differences in energy use strategies, may also influence cross-lake variation in energy density. Mean energy density adjusted for length was 7% higher for female bloaters than for male bloaters in Lakes Michigan and Huron. In Lake Superior, energy density did not differ between males and females. Finally, energy density of bloaters in Lake Michigan was similar between the periods 2008–2009 and 1998–2001, possibly due to a low population abundance of bloaters, which could offset food availability changes linked to the loss of prey such as the amphipods Diporeia spp.

  7. Fish community dynamics following dam removal in a fragmented agricultural stream

    USGS Publications Warehouse

    Kornis, Matthew; Weidel, Brian C.; Powers, Stephens; Diebel, Matthew W.; Cline, Timpthy; Fox, Justin; Kitchell, James F.

    2014-01-01

    Habitat fragmentation impedes dispersal of aquatic fauna, and barrier removal is increasingly used to increase stream network connectivity and facilitate fish dispersal. Improved understanding of fish community response to barrier removal is needed, especially in fragmented agricultural streams where numerous antiquated dams are likely destined for removal. We examined post-removal responses in two distinct fish communities formerly separated by a small aging mill dam. The dam was removed midway through the 6 year study, enabling passage for downstream fishes affiliated with a connected reservoir into previously inaccessible habitat, thus creating the potential for taxonomic homogenization between upstream and downstream communities. Both communities changed substantially post-removal. Two previously excluded species (white sucker, yellow perch) established substantial populations upstream of the former dam, contributing to a doubling of total fish biomass. Meanwhile, numerical density of pre-existing upstream fishes declined. Downstream, largemouth bass density was inversely correlated with prey fish density throughout the study, while post-removal declines in bluegill density coincided with cooler water temperature and increased suspended and benthic fine sediment. Upstream and downstream fish communities became more similar post-removal, represented by a shift in Bray-Curtis index from 14 to 41 % similarity. Our findings emphasize that barrier removal in highly fragmented stream networks can facilitate the unintended and possibly undesirable spread of species into headwater streams, including dispersal of species from remaining reservoirs. We suggest that knowledge of dispersal patterns for key piscivore and competitor species in both the target system and neighboring systems may help predict community outcomes following barrier removal.

  8. Lake trout population dynamics at Drummond Island Refuge in Lake Huron: Implications for future rehabilitation

    USGS Publications Warehouse

    Madenjian, C.P.; Ebener, M.P.; Desorcie, T.J.

    2008-01-01

    The Drummond Island Refuge (DIR) was established in 1985 as part of the rehabilitation effort for lake trout Salvelinus namaycush in Lake Huron. Since then, several strains of hatchery-reared lake trout have been stocked annually at the DIR. An intensive lampricide treatment of the St. Marys River during 1998-2001 was expected to lower the abundance of sea lamprey Petromyzon marinus within the DIR by 2000. We conducted annual gill-net surveys during spring and fall to evaluate the performance of each of the strains of lake trout as well as that of the entire lake trout population (all strains pooled) in the DIR during 1991-2005. The criteria to evaluate performance included the proportion of "wild" fish within the population, spawner density, adult survival, growth, maturity, and wounding rate by sea lampreys. Wild lake trout did not recruit to the adult population to any detectable degree. During 1991-2005, the average density of spawning lake trout appeared to be marginally sufficient to initiate a self-sustaining population. Survival of the Seneca Lake (SEN) strain of lake trout was significantly higher than that of the Superior-Marquette (SUP) strain, in part because of the higher sea-lamprey-induced mortality suffered by the SUP strain. However, other factors were also involved. Apparently SUP fish were more vulnerable to fishing conducted in waters near the refuge boundaries than SEN fish. The St. Marys River treatment appeared to be effective in reducing the sea lamprey wounding rate on SEN fish. We recommend that the stocking of SEN lake trout in the DIR, control of sea lampreys in the St. Marys River, and reduction of commercial fishery effort in waters near the DIR be maintained. ?? Copyright by the American Fisheries Society 2008.

  9. [Density, size structure and reproductive activity of the pink conch Eustrombus gigas (Mesogastropoda: Strombidae) in Banco Chinchorro, Mexico].

    PubMed

    Cala, Yuself R; Navarrete, Alberto de Jesús; Ocaña, Frank A; Rivera, José Oliva

    2013-12-01

    The pink conch Eustrombus gigas is an important fisheries resource. At the regional level in the Caribbean, over-exploitation and habitat destruction have caused a decrease in the abundance of this resource. In order to provide necessary information for the species management in Mexico, this work aimed to analyze the total density, adult density, size structure and reproductive behavior of pink conch population at Banco Chinchorro during 2009-2010. Data from three seasons were obtained (rainy, dry and cold fronts periods) in three areas: Norte (North), Centro (Center) and Sur (South). The organisms were separated into two groups: (a) the criteria based upon legal harvest in Mexico: legal size conchs (siphonal length > 200 mm) and illegal size conchs (siphonal length < 200 mm), and (b) the criteria based upon sexual maturity using the 15 mm lip thickness standard: lip < 15 mm as juvenile conch and lip > or = 15 mm as adult conch. Copulation, spawning, egg masses and aggregations were evaluated as reproductive evidences. The highest total density was observed during the dry season with 384ind./ha, and the lowest during the rainy season with 127ind./ha. The highest density was reported at Sur (385ind./ha) and the lowest at Norte (198ind./ ha). The highest adult density was observed during the rainy season (8.33ind./ha), and the lowest occurred in the dry season (6.1 ind./ha). Adult density values were 5.55, 7.05 and 8.33ind./ha for Centro, Sur and Norte areas, respectively. Adult densities were lower than the threshold needed for reproduction, and 42% of the population may be vulnerable to fishing, as they had the minimum size for catch (Lsi 200 mm). Furthermore, only 2.2% of the population reached a Gl > 15 mm as sexual maturity indicator. During the study period, only six evidences of reproductive activity were observed. The smaller densities reported at Banco Chinchorro may cause reproduction events to be almost absent which in turn is sufficient evidence to show that the Allee Effect is acting on the queen conch population and there is an urgent need of fishery closure. Three important points were proposed for management of queen conch at Banco Chinchorro: total closure of fishing, systematic assessment of the conch population and the implementation of conch fishing refuge.

  10. Density of the Waterborne Parasite Ceratomyxa shasta and Its Biological Effects on Salmon

    PubMed Central

    Ray, R. Adam; Hurst, Charlene N.; Holt, Richard A.; Buckles, Gerri R.; Atkinson, Stephen D.

    2012-01-01

    The myxozoan parasite Ceratomyxa shasta is a significant pathogen of juvenile salmonids in the Pacific Northwest of North America and is limiting recovery of Chinook (Oncorhynchus tshawytscha) and coho (O. kisutch) salmon populations in the Klamath River. We conducted a 5-year monitoring program that comprised concurrent sentinel fish exposures and water sampling across 212 river kilometers of the Klamath River. We used percent mortality and degree-days to death to measure disease severity in fish. We analyzed water samples using quantitative PCR and Sanger sequencing, to determine total parasite density and relative abundance of C. shasta genotypes, which differ in their pathogenicity to salmonids. We detected the parasite throughout the study zone, but parasite density and genetic composition fluctuated spatially and temporally. Chinook and coho mortality increased with density of their specific parasite genotype, but mortality-density thresholds and time to death differed. A lethality threshold of 40% mortality was reached with 10 spores liter−1 for Chinook but only 5 spores liter−1 for coho. Parasite density did not affect degree-days to death for Chinook but was negatively correlated for coho, and there was wider variation among coho individuals. These differences likely reflect the different life histories and genetic heterogeneity of the salmon populations. Direct quantification of the density of host-specific parasite genotypes in water samples offers a management tool for predicting host population-level impacts. PMID:22407689

  11. Predator density and dissolved oxygen affect body condition of Stenonema tripunctatum (Ephemeroptera, Heptageniidae) from intermittent streams

    Treesearch

    Joseph W. Love; Christopher M. Taylor; Melvin L. Warren

    2005-01-01

    The effects of population density, fish density, and dissolved oxygen on body condition of late-instar nymphs of Stenonema tripunctatum (Ephemeroptera, Heptageniidae) were investigated using nymphs sampled from isolated, upland stream pools over summer in central Arkansas, USA. All three factors exhibited high variation among pools. Body condition...

  12. Remote Sensing of Marine Life and Submerged Target Motions with Ocean Waveguide Acoustics

    NASA Astrophysics Data System (ADS)

    Gong, Zheng

    Many species of fish that inhabit the continental shelf waters can cause significant acoustic scattering at low- to mid-frequencies due to the large impedance contrast between their air-filled swimbladders and the surrounding water. In this thesis, we investigate the acoustic resonance scattering response from distributed fish groups both experimentally and theoretically including the effects of multiple scattering, attenuation, and dispersion in a random range-dependent ocean waveguide using an instantaneous wide-area imaging system. In navy sonar operations, the biological organisms can cause high false alarm rates or missed target detections since the biological scattering can be confused with or camouflage the returns from other discrete and distributed objects, such as underwater vehicles and geologic features. From an ecological perspective, the ability to instantaneously survey fish populations distributed over wide areas is important for fisheries management. The low-frequency target strength of shoaling Atlantic herring ( Clupea harengus) in the Gulf of Maine during their Autumn 2006 spawning season is estimated from experimental data acquired simultaneously at multiple frequencies in the 300 to 1200 Hz range using (1) a low-frequency ocean acoustic waveguide remote sensing (OAWRS) system, (2) areal population density calibration with several conventional fish finding sonar (CFFS) systems, and (3) low-frequency transmission loss measurements. The OAWRS system's instantaneous imaging diameter of 100 km and regular updating enabled unaliased monitoring of fish populations over ecosystem scales including shoals of Atlantic herring containing as many as 200 million individuals, as estimated based on single scattering assumption and confirmed by concurrent trawl and CFFS sampling. The mean scattering cross-section of an individual shoaling herring is found to consistently exhibit a strong, roughly 20 dB/octave roll-off with decreasing frequency over all days of the roughly 2-week experiment, consistent with the steep roll-offs expected for sub-resonance scattering from fish with air-filled swimbladders. A numerical Monte-Carlo model is developed to determine the statistical moments of the broadband matched filtered scattered returns from fish groups spanning over multiple range and cross-range resolution cells of a waveguide remote sensing system. It uses the parabolic equation to simulate acoustic field propagation in a random range-dependent ocean waveguide. The effects of (1) multiple scattering, (2) attenuation due to scattering, and (3) fish group 3D spatial configuration on fish population density imaging are examined. The model is applied to investigate (a) population density imaging of shoaling Atlantic herring during the 2006 Gulf of Maine Experiment (GOME06) and (b) examine the wide-area imaging of sparse aggregation of ground fish species, such as Atlantic Cod, in Ipswich Bay continental shelf environment using the waveguide remote sensing system. Incoherent intensities are shown to dominate the total scattered returns from distributed fish groups making single scattering assumption valid for inferring fish areal population densities from their matched filtered scattered intensities. Multiple scattering, attenuation, fish group 3D spatial configuration, and coherent effects, such as resonance shift, sub- and super-local-maxima are found to be negligible at the imaging frequencies employed and for the herring densities observed. Similar results are obtained for the sparsely aggregated cod, but coherent effects such as the double-peak in school resonance can be prominent at much lower fish densities. Attenuation due to scattering can be significant when the fish flesh viscosity is high, especially true for cod. We also investigate approaches for instantaneous long-range passive source localization and tracking with a towed horizontal line-array in a random range-dependent ocean waveguide using passive waveguide acoustics. This is very important for many sonar applications, such as localizing and tracking underwater vehicles and vocalizing marine mammal populations. Instantaneous passive source localization applying the (1) synthetic aperture tracking, (2) array invariant, (3) bearings-only target motion analysis in modified polar coordinates via the extended Kalman filter, and (4) bearings-migration minimum mean-square error methods using measurements made on a single towed horizontal receiver array in a random range-dependent ocean waveguide are examined. These methods are employed to localize and track a vertical source array deployed in the far-field of a towed horizontal receiver array during the Gulf of Maine 2006 Experiment. The source transmitted intermittent broadband pulses in the 300--1200 Hz frequency range. All four methods are found to be comparable with average errors of between 9% to 13% in estimating the mean source positions in a wide variety of source-receiver geometries and range separations up to 20 km. In the case of a relatively stationary source, the synthetic aperture tracking outperformed the other three methods by a factor of two with only 4% error. For a moving source, the Kalman filter method yielded the best performance with 8% error. The array invariant was the best approach for localizing sources within the endfire beam of the receiver array with less than 10% error.

  13. Minimum Pool and Bull Trout Prey Base Investigations at Beulah Reservoir - Final Report for 2008

    USGS Publications Warehouse

    Rose, Brien P.; Mesa, Matthew G.

    2009-01-01

    Beulah Reservoir in southeastern Oregon provides irrigation water to nearby farms and supports an adfluvial population of threatened bull trout (Salvelinus confluentus). Summer drawdowns in the reservoir could affect forage fish production and overwintering bull trout. To assess the impacts of drawdown, we sampled fish, invertebrates, and water-quality variables seasonally during 2006-08. In 2006, the summer drawdown was about 68 percent of full pool, which was less than a typical drawdown of 85 percent. We detected few changes in pelagic invertebrate densities, and catch rates, abundance, and sizes of fish when comparing values from spring to values from fall. We did note that densities of benthic insects in areas that were dewatered annually were lower than those from areas that were not dewatered annually. In 2007, the drawdown was 100 percent (to run-of-river level) and resulted in decreases in abundance of invertebrates as much as 96 percent, decreases in catch rates of fish as much as 80 percent, decreases in abundance of redside shiners (Richardsonius balteatus) and northern pikeminnow (Ptychocheilus oregonensis) as much as 93 percent, and decreased numbers of small fish in catches. In the fall 2007, we estimated the total biomass of forage fish to be 76 kilograms, or about one-quarter of total biomass of forage fish in 2006. Bioenergetics modeling suggested that ample forage for about 1,000 bull trout would exist after a moderate drawdown, but that forage remaining after a complete dewatering would not be sufficient for a population one-fifth the size. Our results indicate that drawdowns in Beulah Reservoir affect the aquatic community and perhaps the health and well-being of bull trout. The severity of effects depends on the extent of drawdown, population size of bull trout, and perhaps other factors.

  14. The Potential for Spatial Distribution Indices to Signal Thresholds in Marine Fish Biomass

    PubMed Central

    Reuchlin-Hugenholtz, Emilie

    2015-01-01

    The frequently observed positive relationship between fish population abundance and spatial distribution suggests that changes in distribution can be indicative of trends in abundance. If contractions in spatial distribution precede declines in spawning stock biomass (SSB), spatial distribution reference points could complement the SSB reference points that are commonly used in marine conservation biology and fisheries management. When relevant spatial distribution information is integrated into fisheries management and recovery plans, risks and uncertainties associated with a plan based solely on the SSB criterion would be reduced. To assess the added value of spatial distribution data, we examine the relationship between SSB and four metrics of spatial distribution intended to reflect changes in population range, concentration, and density for 10 demersal populations (9 species) inhabiting the Scotian Shelf, Northwest Atlantic. Our primary purpose is to assess their potential to serve as indices of SSB, using fisheries independent survey data. We find that metrics of density offer the best correlate of spawner biomass. A decline in the frequency of encountering high density areas is associated with, and in a few cases preceded by, rapid declines in SSB in 6 of 10 populations. Density-based indices have considerable potential to serve both as an indicator of SSB and as spatially based reference points in fisheries management. PMID:25789624

  15. Environmental Factors Affecting Large-Bodied Coral Reef Fish Assemblages in the Mariana Archipelago

    PubMed Central

    Richards, Benjamin L.; Williams, Ivor D.; Vetter, Oliver J.; Williams, Gareth J.

    2012-01-01

    Large-bodied reef fishes represent an economically and ecologically important segment of the coral reef fish assemblage. Many of these individuals supply the bulk of the reproductive output for their population and have a disproportionate effect on their environment (e.g. as apex predators or bioeroding herbivores). Large-bodied reef fishes also tend to be at greatest risk of overfishing, and their loss can result in a myriad of either cascading (direct) or indirect trophic and other effects. While many studies have investigated habitat characteristics affecting populations of small-bodied reef fishes, few have explored the relationship between large-bodied species and their environment. Here, we describe the distribution of the large-bodied reef fishes in the Mariana Archipelago with an emphasis on the environmental factors associated with their distribution. Of the factors considered in this study, a negative association with human population density showed the highest relative influence on the distribution of large-bodied reef fishes; however, depth, water temperature, and distance to deep water also were important. These findings provide new information on the ecology of large-bodied reef fishes can inform discussions concerning essential fish habitat and ecosystem-based management for these species and highlight important knowledge gaps worthy of additional research. PMID:22384014

  16. Environmental factors affecting large-bodied coral reef fish assemblages in the Mariana Archipelago.

    PubMed

    Richards, Benjamin L; Williams, Ivor D; Vetter, Oliver J; Williams, Gareth J

    2012-01-01

    Large-bodied reef fishes represent an economically and ecologically important segment of the coral reef fish assemblage. Many of these individuals supply the bulk of the reproductive output for their population and have a disproportionate effect on their environment (e.g. as apex predators or bioeroding herbivores). Large-bodied reef fishes also tend to be at greatest risk of overfishing, and their loss can result in a myriad of either cascading (direct) or indirect trophic and other effects. While many studies have investigated habitat characteristics affecting populations of small-bodied reef fishes, few have explored the relationship between large-bodied species and their environment. Here, we describe the distribution of the large-bodied reef fishes in the Mariana Archipelago with an emphasis on the environmental factors associated with their distribution. Of the factors considered in this study, a negative association with human population density showed the highest relative influence on the distribution of large-bodied reef fishes; however, depth, water temperature, and distance to deep water also were important. These findings provide new information on the ecology of large-bodied reef fishes can inform discussions concerning essential fish habitat and ecosystem-based management for these species and highlight important knowledge gaps worthy of additional research.

  17. Hankin and Reeves' approach to estimating fish abundance in small streams: Limitations and alternatives

    USGS Publications Warehouse

    Thompson, W.L.

    2003-01-01

    Hankin and Reeves' (1988) approach to estimating fish abundance in small streams has been applied in stream fish studies across North America. However, their population estimator relies on two key assumptions: (1) removal estimates are equal to the true numbers of fish, and (2) removal estimates are highly correlated with snorkel counts within a subset of sampled stream units. Violations of these assumptions may produce suspect results. To determine possible sources of the assumption violations, I used data on the abundance of steelhead Oncorhynchus mykiss from Hankin and Reeves' (1988) in a simulation composed of 50,000 repeated, stratified systematic random samples from a spatially clustered distribution. The simulation was used to investigate effects of a range of removal estimates, from 75% to 100% of true fish abundance, on overall stream fish population estimates. The effects of various categories of removal-estimates-to-snorkel-count correlation levels (r = 0.75-1.0) on fish population estimates were also explored. Simulation results indicated that Hankin and Reeves' approach may produce poor results unless removal estimates exceed at least 85% of the true number of fish within sampled units and unless correlations between removal estimates and snorkel counts are at least 0.90. A potential modification to Hankin and Reeves' approach is the inclusion of environmental covariates that affect detection rates of fish into the removal model or other mark-recapture model. A potential alternative approach is to use snorkeling combined with line transect sampling to estimate fish densities within stream units. As with any method of population estimation, a pilot study should be conducted to evaluate its usefulness, which requires a known (or nearly so) population of fish to serve as a benchmark for evaluating bias and precision of estimators.

  18. Response of fish populations to natural channel design restoration in streams of the Catskill Mountains, New York

    USGS Publications Warehouse

    Baldigo, Barry P.; Warren, D.R.; Ernst, A.G.; Mulvihill, C.I.

    2008-01-01

    Many streams and rivers throughout North America have been extensively straightened, widened, and hardened since the middle 1800s, but related effects on aquatic ecosystems have seldom been monitored, described, or published. Beginning in the early 1990s, reach-level restoration efforts began to base projects on natural channel design (NCD) techniques and Rosgen's (1994b, 1996) river classification system in an effort to duplicate or mimic stable reference reach geomorphology. Four reaches in three streams of the Catskill Mountains, New York, were restored from 2000 to 2002 using NCD techniques to decrease bed and bank erosion rates, decrease sediment loads, and improve water quality. The effects of restoration on the health of fish assemblages were assessed through a before-after, control-impact (BACI) study design to quantify the net changes in population and community indices at treatment reaches relative to index changes at unaltered reference reaches from 1999 to 2004. After restoration, community richness and biomass at treatment reaches increased by more than one-third. Changes in fish communities were caused mainly by shifts in dominant species populations; fish community biomass and total fish abundance were generally dominated by daces or daces and sculpins before restoration and by one or more salmonid species after restoration. Density and biomass of eastern blacknose dace Rhinichthys atratulus, longnose dace R. cataractae, and slimy sculpin Cottus cognatus did not change appreciably, whereas net salmonid density and biomass increased substantially after restoration. These changes were driven primarily by large increases in populations of brown trout Salmo trutta. The findings demonstrate that the structure, function, and ultimately the health of resident fish populations and communities can be improved, at least over the short term, through NCD restoration in perturbed streams of the Catskill Mountains. ?? Copyright by the American Fisheries Society 2008.

  19. Assessing the roles of population density and predation risk in the evolution of offspring size in populations of a placental fish

    PubMed Central

    Schrader, Matthew; Travis, Joseph

    2012-01-01

    Population density is an ecological variable that is hypothesized to be a major agent of selection on offspring size. In high-density populations, high levels of intraspecific competition are expected to favor the production of larger offspring. In contrast, lower levels of intraspecific competition and selection for large offspring should be weaker and more easily overridden by direct selection for increased fecundity in low-density populations. Some studies have found associations between population density and offspring size consistent with this hypothesis. However, their interpretations are often clouded by a number of issues. Here, we use data from a 10-year study of nine populations of the least killifish, Heterandria formosa, to describe the associations of offspring size with habitat type, population density, and predation risk. We found that females from spring populations generally produced larger offspring than females from ponds; however, the magnitude of this difference varied among years. Across all populations, larger offspring were associated with higher densities and lower risks of predation. Interestingly, the associations between the two ecological variables (density and predation risk) and offspring size were largely independent of one another. Our results suggest that previously described genetic differences in offspring size are due to density-dependent natural selection. PMID:22957156

  20. Overview on the effects of parasites on fish health

    USGS Publications Warehouse

    Iwanowicz, D.D.; Cipriano, R.C.; Bruckner, A.W.; Shchelkunov, I.S.

    2011-01-01

    It is believed by many that parasites are only as important as the fish they infect. Parasites are ubiquitous, primarily surviving in a dynamic equilibrium with their host(s) and they are often overlooked in fish health assessments. Changes in the environment, both anthropogenic and environmental, can alter the parasite/host equilibrium and cause disease or mortality in fish. Therefore it is imperative that we have knowledge of both parasites and parasitic communities within a given population. When fish kills occur, it can often be associated with changes in parasite density and community composition. Often the damage associated with these fish is relative to the rate of infestation with the parasite; a fish that is lightly infected will show few signs of the parasite, while a heavily infected fish may become physiologically impaired and even die. Parasites can cause mechanical damage (fusion of gill lamellae, tissue replacement), physiological damage (cell proliferation, immunomodulation, detrimental behavioral responses, altered growth) and reproductive damage. As parasitism is the most common lifestyle on the planet, understanding its role in the environment may help researchers understand changes in a given fish population or stream ecosystem.

  1. Fish assemblages in the Upper Esopus Creek, NY: Current status, variability, and controlling factors

    USGS Publications Warehouse

    Baldigo, Barry P.; George, Scott D.; Keller, Walter T

    2015-01-01

    The Upper Esopus Creek receives water diversions from a neighboring basin through the Shandaken Tunnel (the portal) from the Schoharie Reservoir. Although the portal is closed during floods, mean flows and turbidity of portal waters are generally greater than in Esopus Creek above their confluence. These conditions could potentially affect local fish assemblages, yet such effects have not been assessed in this highly regulated stream. We studied water quality, hydrology, temperature, and fish assemblages at 18 sites in the Upper Esopus Creek during 2009–2011 to characterize the effects of the portal input on resident-fish assemblages and to document the status of the fishery resource. In general, fish-community richness increased by 2–3 species at mainstem sites near the portal, and median density and biomass of fish communities at sites downstream of the portal were significantly lower than they were at sites upstream of the portal. Median densities of Salmo trutta (Brown Trout) and all trout species were significantly lower than at mainstem sites downstream from the portal—25.1 fish/0.1 ha and 148.9 fish/0.1 ha, respectively—than at mainstem sites upstream from the portal—68.8 fish/0.1 ha and 357.7 fish/0.1 ha, respectively—yet median biomass for Brown Trout and all trout did not differ between sites from both reaches. The median density of young-of-year Brown Trout at downstream sites (9.3 fish/0.1 ha) was significantly lower than at upstream sites (33.9 fish/0.1 ha). Waters from the portal appeared to adversely affect the density and biomass of young-of-year Brown Trout, but lower temperatures and increased flows also improved habitat quality for mature trout at downstream sites during summer. These findings, and those from companion studies, indicate that moderately turbid waters from the portal had few if any adverse impacts on trout populations and overall fish communities in the Upper Esopus Creek during this study.

  2. Status and trends of prey fish populations in Lake Superior, 2008

    USGS Publications Warehouse

    Gorman, Owen T.; Evrard, Lori M.; Cholwek, Gary A.; Falck, Jill M.; Yule, Daniel

    2009-01-01

    The Great Lakes Science Center has conducted annual daytime bottom trawl surveys of the Lake Superior nearshore (15-80 m bathymetric depth zone) every spring since 1978 to provide a long-term index of relative abundance and biomass of the fish community. Between May 5 and June 14, 2008, 58 stations were sampled around the perimeter of the lake with 12-m wide bottom trawls. Trawls were deployed cross-contour at median start and end depths of 17 and 55 m, respectively. The lakewide mean relative biomass estimate for the entire fish community was 4.61 kg/ha which was similar to that measured in 2007, 4.81 kg/ha. Dominant species in the catch were lake whitefish, rainbow smelt, longnose sucker and cisco, which represented 49, 18, 11, and 7 % of the total community biomass, respectively. Compared to 2007 levels, lake whitefish and cisco biomass increased 35% and 55%, respectively, while bloater and rainbow smelt biomass declined 69% and 41%, respectively. Increased biomass of lake whitefish and decreased biomass in bloater represent trends observed since 2007; however, reversed trends in biomass were observed for cisco and rainbow smelt. Year-class strength for the 2007 cisco cohort (0.20 fish/ha) was below the long-term (1977-2007) average (73.31 fish/ha), as was year-class strength for the 2007 bloater cohort (0.33 fish/ha) compared to the long-term average (11.11 fish/ha). Smelt year class strength (226.26 fish/ha) continues a trend of increasing strength from a 31-year low of 56.75 fish/ha in 2001 and was above the long-term average of 193.81 fish/ha. The 2008 cisco age structure was dominated by age 5 and older fish, which accounted for 82% of the mean relative density. Wisconsin waters continue to be the most productive (mean total community biomass of 17.09 kg/ha), followed by western Ontario (5.40 kg/ha), eastern Ontario (3.08 kg/ha), Michigan (2.82 kg/ha), and Minnesota (0.89 kg/ha).Densities of small (400 mm) hatchery lake trout continued a pattern of decline observed since 1993-1996 to 0.04, 0.03 and 0.01 fish/ha in 2008, respectively. Densities of small and large wild (lean) lake trout continued a decreasing trend observed since 1996-1998. From 2007 to 2008, density of small lean lake trout declined from 0.29 to 0.15 fish/ha, the lowest value since 1978. Density of large lean lake trout has been relatively stable since 1986 but more recently density declined from 0.43 fish/ha in 2006 to 0.10 fish/ha in 2008. Density of intermediate size lean lake trout showed a small increase from 0.31 in 2007 to 0.41 fish/ha in 2008. Siscowet lake trout have shown a pattern of variable but increasing density since 1980. Since 2006, densities of small and intermediate size siscowet lake trout have increased from 0.10 to 0.12 and 0.08 to 0.15 fish/ha, respectively. Densities of large siscowet lake trout have fluctuated between 0.10 and 0.07 fish/ha since 2000. In 2008 the proportions of total lake trout density that were hatchery, lean and siscowet were 8, 60, and 32%, respectively.

  3. Use of black carp (Mylopharyngodon piceus) in biological control of intermediate host snails of fish-borne zoonotic trematodes in nursery ponds in the Red River Delta, Vietnam

    PubMed Central

    2013-01-01

    Background The risks of fish-borne zoonotic trematodes (FZT) to human health constitute an important problem in Vietnam. The infection of humans with these trematodes, such as small liver trematodes (Clonorchis sinensis and Opisthorchis viverrini), intestinal trematodes (Heterophyidae) and others is often thought to be linked to fish culture in areas where the habit of eating raw fish is common. Juvenile fish produced in nurseries are often heavily infected with FZT and since fishes are sold to aquaculture facilities for growth, control of FZT in these fishes should be given priority. Controlling the first intermediate host (i.e., freshwater gastropods), would be an attractive approach, if feasible. The black carp, Mylopharyngodon piceus, is a well-known predator of freshwater snails and is already used successfully for biological control of snails in various parts of the world including Vietnam. Here we report the first trials using it for biological control of intermediate host snails in nursery ponds stocked with 1-week old fry (10–12 mm in length) of Indian carp, Labeo rohita. Methods Semi-field and field experiments were set up to test the effect of black carp on snail populations. In the semi-field experiment a known quantity of snails was initially introduced into a pond which was subsequently stocked with black carp. In the field trial in nursery ponds, density of snails was estimated prior to a nursing cycle and at the end of the cycle (after 9 weeks). Results The results showed that black carp affect the density of snail populations in both semi-field and field conditions. The standing crop of snails in nursery ponds, however, was too high for 2 specimens to greatly reduce snail density within the relatively short nursing cycle. Conclusions We conclude that the black carp can be used in nursery ponds in Northern Vietnam for snail control. Juvenile black carp weighing 100 - 200g should be used because this size primarily prey on intermediate hosts of FZT and other studies have shown that it does not prey on fish fry of other species. It may be necessary to use a high stocking density of black carp or to reduce snail density in the nursery ponds using other measures (e.g. mud removal) prior to stocking fry in order for the black carp to keep the density of intermediate host snails at a very low level. PMID:23680382

  4. Habitat selection by breeding waterbirds at ponds with size-structured fish populations

    NASA Astrophysics Data System (ADS)

    Kloskowski, Janusz; Nieoczym, Marek; Polak, Marcin; Pitucha, Piotr

    2010-07-01

    Fish may significantly affect habitat use by birds, either as their prey or as competitors. Fish communities are often distinctly size-structured, but the consequences for waterbird assemblages remain poorly understood. We examined the effects of size structure of common carp ( Cyprinus carpio) cohorts together with other biotic and abiotic pond characteristics on the distribution of breeding waterbirds in a seminatural system of monocultured ponds, where three fish age classes were separately stocked. Fish age corresponded to a distinct fish size gradient. Fish age and total biomass, macroinvertebrate and amphibian abundance, and emergent vegetation best explained the differences in bird density between ponds. Abundance of animal prey other than fish (aquatic macroinvertebrates and larval amphibians) decreased with increasing carp age in the ponds. Densities of ducks and smaller grebes were strongly negatively associated with fish age/size gradient. The largest of the grebes, the piscivorous great crested grebe ( Podiceps cristatus), was the only species that preferred ponds with medium-sized fish and was positively associated with total fish biomass. Habitat selection by bitterns and most rallids was instead strongly influenced by the relative amount of emergent vegetation cover in the ponds. Our results show that fish size structure may be an important cue for breeding habitat choice and a factor affording an opportunity for niche diversification in avian communities.

  5. Parasite transmission in social interacting hosts: Monogenean epidemics in guppies

    USGS Publications Warehouse

    Johnson, M.B.; Lafferty, K.D.; van, Oosterhout C.; Cable, J.

    2011-01-01

    Background: Infection incidence increases with the average number of contacts between susceptible and infected individuals. Contact rates are normally assumed to increase linearly with host density. However, social species seek out each other at low density and saturate their contact rates at high densities. Although predicting epidemic behaviour requires knowing how contact rates scale with host density, few empirical studies have investigated the effect of host density. Also, most theory assumes each host has an equal probability of transmitting parasites, even though individual parasite load and infection duration can vary. To our knowledge, the relative importance of characteristics of the primary infected host vs. the susceptible population has never been tested experimentally. Methodology/Principal Findings: Here, we examine epidemics using a common ectoparasite, Gyrodactylus turnbulli infecting its guppy host (Poecilia reticulata). Hosts were maintained at different densities (3, 6, 12 and 24 fish in 40 L aquaria), and we monitored gyrodactylids both at a population and individual host level. Although parasite population size increased with host density, the probability of an epidemic did not. Epidemics were more likely when the primary infected fish had a high mean intensity and duration of infection. Epidemics only occurred if the primary infected host experienced more than 23 worm days. Female guppies contracted infections sooner than males, probably because females have a higher propensity for shoaling. Conclusions/Significance: These findings suggest that in social hosts like guppies, the frequency of social contact largely governs disease epidemics independent of host density. ?? 2011 Johnson et al.

  6. Parasite transmission in social interacting hosts: Monogenean epidemics in guppies

    USGS Publications Warehouse

    Johnson, Mirelle B.; Lafferty, Kevin D.; van Oosterhout, Cock; Cable, Joanne

    2011-01-01

    Background Infection incidence increases with the average number of contacts between susceptible and infected individuals. Contact rates are normally assumed to increase linearly with host density. However, social species seek out each other at low density and saturate their contact rates at high densities. Although predicting epidemic behaviour requires knowing how contact rates scale with host density, few empirical studies have investigated the effect of host density. Also, most theory assumes each host has an equal probability of transmitting parasites, even though individual parasite load and infection duration can vary. To our knowledge, the relative importance of characteristics of the primary infected host vs. the susceptible population has never been tested experimentally. Methodology/Principal Findings Here, we examine epidemics using a common ectoparasite, Gyrodactylus turnbulli infecting its guppy host (Poecilia reticulata). Hosts were maintained at different densities (3, 6, 12 and 24 fish in 40 L aquaria), and we monitored gyrodactylids both at a population and individual host level. Although parasite population size increased with host density, the probability of an epidemic did not. Epidemics were more likely when the primary infected fish had a high mean intensity and duration of infection. Epidemics only occurred if the primary infected host experienced more than 23 worm days. Female guppies contracted infections sooner than males, probably because females have a higher propensity for shoaling. Conclusions/Significance These findings suggest that in social hosts like guppies, the frequency of social contact largely governs disease epidemics independent of host density.

  7. Habitat dynamics, marine reserve status, and the decline and recovery of coral reef fish communities.

    PubMed

    Williamson, David H; Ceccarelli, Daniela M; Evans, Richard D; Jones, Geoffrey P; Russ, Garry R

    2014-02-01

    Severe climatic disturbance events often have major impacts on coral reef communities, generating cycles of decline and recovery, and in some extreme cases, community-level phase shifts from coral-to algal-dominated states. Benthic habitat changes directly affect reef fish communities, with low coral cover usually associated with low fish diversity and abundance. No-take marine reserves (NTRs) are widely advocated for conserving biodiversity and enhancing the sustainability of exploited fish populations. Numerous studies have documented positive ecological and socio-economic benefits of NTRs; however, the ability of NTRs to ameliorate the effects of acute disturbances on coral reefs has seldom been investigated. Here, we test these factors by tracking the dynamics of benthic and fish communities, including the important fishery species, coral trout (Plectropomus spp.), over 8 years in both NTRs and fished areas in the Keppel Island group, Great Barrier Reef, Australia. Two major disturbances impacted the reefs during the monitoring period, a coral bleaching event in 2006 and a freshwater flood plume in 2011. Both disturbances generated significant declines in coral cover and habitat complexity, with subsequent declines in fish abundance and diversity, and pronounced shifts in fish assemblage structure. Coral trout density also declined in response to the loss of live coral, however, the approximately 2:1 density ratio between NTRs and fished zones was maintained over time. The only post-disturbance refuges for coral trout spawning stocks were within the NTRs that escaped the worst effects of the disturbances. Although NTRs had little discernible effect on the temporal dynamics of benthic or fish communities, it was evident that the post-disturbance refuges for coral trout spawning stocks within some NTRs may be critically important to regional-scale population persistence and recovery.

  8. Habitat dynamics, marine reserve status, and the decline and recovery of coral reef fish communities

    PubMed Central

    Williamson, David H; Ceccarelli, Daniela M; Evans, Richard D; Jones, Geoffrey P; Russ, Garry R

    2014-01-01

    Severe climatic disturbance events often have major impacts on coral reef communities, generating cycles of decline and recovery, and in some extreme cases, community-level phase shifts from coral-to algal-dominated states. Benthic habitat changes directly affect reef fish communities, with low coral cover usually associated with low fish diversity and abundance. No-take marine reserves (NTRs) are widely advocated for conserving biodiversity and enhancing the sustainability of exploited fish populations. Numerous studies have documented positive ecological and socio-economic benefits of NTRs; however, the ability of NTRs to ameliorate the effects of acute disturbances on coral reefs has seldom been investigated. Here, we test these factors by tracking the dynamics of benthic and fish communities, including the important fishery species, coral trout (Plectropomus spp.), over 8 years in both NTRs and fished areas in the Keppel Island group, Great Barrier Reef, Australia. Two major disturbances impacted the reefs during the monitoring period, a coral bleaching event in 2006 and a freshwater flood plume in 2011. Both disturbances generated significant declines in coral cover and habitat complexity, with subsequent declines in fish abundance and diversity, and pronounced shifts in fish assemblage structure. Coral trout density also declined in response to the loss of live coral, however, the approximately 2:1 density ratio between NTRs and fished zones was maintained over time. The only post-disturbance refuges for coral trout spawning stocks were within the NTRs that escaped the worst effects of the disturbances. Although NTRs had little discernible effect on the temporal dynamics of benthic or fish communities, it was evident that the post-disturbance refuges for coral trout spawning stocks within some NTRs may be critically important to regional-scale population persistence and recovery. PMID:24634720

  9. Fishing-induced changes in adult length are mediated by skipped-spawning.

    PubMed

    Wang, Hui-Yu; Chen, Ying-Shiuan; Hsu, Chien-Chung; Shen, Sheng-Feng

    2017-01-01

    Elucidating fishing effects on fish population dynamics is a critical step toward sustainable fisheries management. Despite previous studies that have suggested age or size truncation in exploited fish populations, other aspects of fishing effects on population demography, e.g., via altering life histories and density, have received less attention. Here, we investigated the fishing effects altering adult demography via shifting reproductive trade-offs in the iconic, overexploited, Pacific bluefin tuna Thunnus orientalis. We found that, contrary to our expectation, mean lengths of catch increased over time in longline fisheries. On the other hand, mean catch lengths for purse seine fisheries did not show such increasing trends. We hypothesized that the size-dependent energetic cost of the spawning migration and elevated fishing mortality on the spawning grounds potentially drive size-dependent skipped spawning for adult tuna, mediating the observed changes in the catch lengths. Using eco-genetic individual-based modeling, we demonstrated that fishing-induced evolution of skipped spawning and size truncation interacted to shape the observed temporal changes in mean catch lengths for tuna. Skipped spawning of the small adults led to increased mean catch lengths for the longline fisheries, while truncation of small adults by the purse seines could offset such a pattern. Our results highlight the eco-evolutionary dynamics of fishing effects on population demography and caution against using demographic traits as a basis for fisheries management of the Pacific bluefin tuna as well as other migratory species. © 2016 by the Ecological Society of America.

  10. Faunal and vegetation monitoring in response to harbor dredging in the Port of Miami

    USGS Publications Warehouse

    Daniels, Andre; Stevenson, Rachael; Smith, Erin; Robblee, Michael

    2018-04-11

    Seagrasses are highly productive ecosystems. A before-after-control-impact (BACI) design was used to examine effects of dredging on seagrasses and the animals that inhabit them. The control site North Biscayne Bay and the affected site Port of Miami had seagrass densities decrease during both the before, Fish and Invertebrate Assessment Network 2006-2011, and after, Faunal Monitoring in Response to Harbor Dredging 2014-2016, studies. Turbidity levels increased at North Biscayne Bay and Port of Miami basins during the Faunal Monitoring in Response to Harbor Dredging study, especially in 2016. Animal populations decreased significantly in North Biscayne Bay and Port of Miami in the Faunal Monitoring in Response to Harbor Dredging study compared to the Fish and Invertebrate Assessment Network study. Predictive modeling shows that numbers of animal populations will likely continue to decrease if the negative trends in seagrass densities continue unabated. There could be effects on several fisheries vital to the south Florida economy. Additional research could determine if animal populations and seagrass densities have rebounded or continued to decrease.

  11. Growth rates of rainbow smelt in Lake Champlain: Effects of density and diet

    USGS Publications Warehouse

    Stritzel, Thomson J.L.; Parrish, D.L.; Parker-Stetter, S. L.; Rudstam, L. G.; Sullivan, P.J.

    2011-01-01

    Stritzel Thomson JL, Parrish DL, Parker-Stetter SL, Rudstam LG, Sullivan PJ. Growth rates of rainbow smelt in Lake Champlain: effects of density and diet. Ecology of Freshwater Fish 2010. ?? 2010 John Wiley & Sons A/S Abstract- We estimated the densities of rainbow smelt (Osmerus mordax) using hydroacoustics and obtained specimens for diet analysis and groundtruthed acoustics data from mid-water trawl sampling in four areas of Lake Champlain, USA-Canada. Densities of rainbow smelt cohorts alternated during the 2-year study; age-0 rainbow smelt were very abundant in 2001 (up to 6fish per m2) and age-1 and older were abundant (up to 1.2fish per m2) in 2002. Growth rates and densities varied among areas and years. We used model selection on eight area-year-specific variables to investigate biologically plausible predictors of rainbow smelt growth rates. The best supported model of growth rates of age-0 smelt indicated a negative relationship with age-0 density, likely associated with intraspecific competition for zooplankton. The next best-fit model had age-1 density as a predictor of age-0 growth. The best supported models (N=4) of growth rates of age-1 fish indicated a positive relationship with availability of age-0 smelt and resulting levels of cannibalism. Other plausible models were contained variants of these parameters. Cannibalistic rainbow smelt consumed younger conspecifics that were up to 53% of their length. Prediction of population dynamics for rainbow smelt requires an understanding of the relationship between density and growth as age-0 fish outgrow their main predators (adult smelt) by autumn in years with fast growth rates, but not in years with slow growth rates. ?? 2011 John Wiley & Sons A/S.

  12. Molecular markers for genetic diversity, gene flow and genetic population structure of freshwater mussel species.

    PubMed

    Choupina, A B; Martins, I M

    2014-08-01

    Freshwater mussel species are in global decline. Anthropogenic changes of river channels and the decrease of autochthonous fish population, the natural hosts of mussels larval stages (glochidia), are the main causes. Therefore, the conservation of mussel species depends not only on habitat conservation, but also on the availability of the fish host. In Portugal, information concerning most of the mussel species is remarkably scarce. One of the most known species, Unio pictorum is also in decline however, in the basins of the rivers Tua and Sabor (Northeast of Portugal), there is some indication of relatively large populations. The aforementioned rivers can be extremely important for this species conservation not only in Portugal, but also in the remaining Iberian Peninsula. Thus, it is important to obtain data concerning Unio pictorum bioecology (distribution, habitat requirements, population structure, genetic variability, reproductive cycle and recruitment rates), as well as the genetic variability and structure of the population. Concomitantly, information concerning fish population structure, the importance of the different fish species as "glochidia" hosts and their appropriate density to allow effective mussel recruitment, will also be assessed. The achieved data is crucial to obtain information to develop effective management measures in order to promote the conservation of this bivalve species, the conservation of autochthonous fish populations, and consequently the integrity of the river habitats.

  13. Toxic materials, fishing, and environmental variation: simulated effects on striped bass population trends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodyear, C.P.

    1985-01-01

    Decreased survival of larval striped bass Morone saxatilis resulting from toxic chemicals in the environment and decreased survival of adults caused by fishing both are suspected as agents contributing to the decline in the Chesapeake Bay stock since the mid-1970s. The relative power of each type of mortality to cause population declines was evaluated with simulation techniques. Equivalent levels of added mortality induced qualitatively identical and quantitatively similar trends in population simulations for all conditions examined except if strong density-dependent mortality preceded the contaminant toxicity. In this case the contaminant effect caused a greater reduction in yield, but the populationmore » did not tend toward extinction. The results indicate that the observed downward trend in the Chesapeake Bay population can be halted or reversed by a reduction in fishing mortality, even if contaminant toxicity is the proximate cause for the decline. 28 references, 1 figure, 1 table.« less

  14. Simulating mechanisms for dispersal, production and stranding of small forage fish in temporary wetland habitats

    USGS Publications Warehouse

    Yurek, Simeon; DeAngelis, Donald L.; Trexler, Joel C.; Jopp, Fred; Donalson, Douglas D.

    2013-01-01

    Movement strategies of small forage fish (<8 cm total length) between temporary and permanent wetland habitats affect their overall population growth and biomass concentrations, i.e., availability to predators. These fish are often the key energy link between primary producers and top predators, such as wading birds, which require high concentrations of stranded fish in accessible depths. Expansion and contraction of seasonal wetlands induce a sequential alternation between rapid biomass growth and concentration, creating the conditions for local stranding of small fish as they move in response to varying water levels. To better understand how landscape topography, hydrology, and fish behavior interact to create high densities of stranded fish, we first simulated population dynamics of small fish, within a dynamic food web, with different traits for movement strategy and growth rate, across an artificial, spatially explicit, heterogeneous, two-dimensional marsh slough landscape, using hydrologic variability as the driver for movement. Model output showed that fish with the highest tendency to invade newly flooded marsh areas built up the largest populations over long time periods with stable hydrologic patterns. A higher probability to become stranded had negative effects on long-term population size, and offset the contribution of that species to stranded biomass. The model was next applied to the topography of a 10 km × 10 km area of Everglades landscape. The details of the topography were highly important in channeling fish movements and creating spatiotemporal patterns of fish movement and stranding. This output provides data that can be compared in the future with observed locations of fish biomass concentrations, or such surrogates as phosphorus ‘hotspots’ in the marsh.

  15. Ictalurid populations in relation to the presence of a main-stem reservoir in a midwestern warmwater stream with emphasis on the threatened Neosho madtom

    USGS Publications Warehouse

    Wildhaber, M.L.; Tabor, V.M.; Whitaker, J.E.; Allert, A.L.; Mulhern, D.W.; Lamberson, Peter J.; Powell, K.L.

    2000-01-01

    Ictalurid populations, including those of the Neosho madtom Noturus placidus, have been monitored in the Neosho River basin since the U.S. Fish and Wildlife Service listed the Neosho madtom as threatened in 1991. The Neosho madtom presently occurs only in the Neosho River basin, whose hydrologic regime, physical habitat, and water quality have been altered by the construction and operation of reservoirs. Our objective was to assess changes in ictalurid densities, habitat, water quality, and hydrology in relation to the presence of a main-stem reservoir in the Neosho River basin. Study sites were characterized using habitat quality as measured by substrate size, water quality as measured by standard physicochemical measures, and indicators of hydrologic alteration (IHA) as calculated from stream gauge information from the U.S. Geological Survey. Site estimates of ictalurid densities were collected by the U.S. Fish and Wildlife Service annually from 1991 to 1998, with the exception of 1993. Water quality and habitat measurements documented reduced turbidity and altered substrate composition in the Neosho River basin below John Redmond Dam. The effects of the dam on flow were indicated by changes in the short- and long-term minimum and maximum flows. Positive correlations between observed Neosho madtom densities and increases in minimum flow suggest that increased minimum flows could be used to enhance Neosho madtom populations. Positive correlations between Neosho madtom densities and increased flows in the winter and spring months as well as the date of the 1-d annual minimum flow indicate the potential importance of the timing of increased flows to Neosho madtoms. Because of the positive relationships that we found between the densities of Neosho madtoms and those of channel catfish Ictalurus punctatus, stonecats Noturus flavus, and other catfishes, alterations in flow that benefit Neosho madtom populations will probably benefit other members of the benthic fish community of the Neosho River.

  16. Effects of water quality and trophic status on helminth infections in the cyprinid fish, Schizothorax niger Heckel, 1838 from three lakes in the Kashmir Himalayas.

    PubMed

    Zargar, U R; Yousuf, A R; Chishti, M Z; Ahmed, F; Bashir, H; Ahmed, F

    2012-03-01

    Water quality greatly influences the population density of aquatic biota, including parasites. In order to evaluate the relationship between fish parasites and water quality in Kashmir Himalayas, we assessed helminth parasite densities in Schizothorax niger Heckel, 1838 (an endemic cyprinid fish of Kashmir) from three lakes, namely Anchar, Manasbal and Dal, which reflected the varied stages of eutrophication. The overall prevalence of helminth infections was higher in the hypertrophic Anchar Lake (prevalence = 18.6%) compared to Manasbal Lake, which was the least eutrophied (prevalence = 6.4%). Furthermore, mean prevalence of monoxenous and heteroxenous parasites was higher in lakes containing higher levels of water degradation (Anchar and Dal). The mean number of helminth species per fish host was the highest in the hypertrophic lake (1.3 ± 0.3) in comparison to the least eutrophic lake (0.2 ± 1.5). Variability of calculated infection indices (prevalence, mean intensity and mean abundance) revealed that helminth parasite composition in the fish was affected by the lakes' environmental stress (degraded water quality). Therefore, data on the density of helminth parasites in fish can provide supplementary information on the pollution status of a water body.

  17. Survival of adult murres and kittiwakes in relation to forage fish abundance

    USGS Publications Warehouse

    Piatt, John F.

    2000-01-01

    Some seabird populations damaged by the Exxon Valdez oil spill continue to decline or are not recovering. In order to understand the ultimate cause of seabird population fluctuations, we must measure productivity, recruitment, and adult survival. Recent APEX studies focused on measuring productivity only. Recruitment measurement demands an unrealistic study duration. We propose to augment current studies in lower Cook Inlet that relate breeding success and foraging effort to fluctuations in forage fish density by using banding and resighting to quantify the survival of adult common murres and black-legged kittiwakes.

  18. Testicular oocytes in smallmouth bass in northeastern Minnesota in relation to varying levels of human activity.

    PubMed

    Kadlec, Sarah M; Johnson, Rodney D; Mount, David R; Olker, Jennifer H; Borkholder, Brian D; Schoff, Patrick K

    2017-12-01

    Testicular oocytes (TOs) have been found in black bass (Micropterus spp.) from many locations in North America. The presence of TOs is often assumed to imply exposure to estrogenic endocrine disrupting compounds (EDCs); however, a definitive causal relationship has yet to be established, and TO prevalence is not consistently low in fish from areas lacking evident EDC sources. This might indicate any of a number of situations: 1) unknown or unidentified EDCs or EDC sources, 2) induction of TOs by other stressors, or 3) testicular oocytes occurring spontaneously during normal development. In the present study, we analyzed TO occurrence in smallmouth bass (Micropterus dolomieu) from 8 populations in northeastern Minnesota watersheds with differing degrees of human development and, hence, presumed likelihood of exposure to anthropogenic chemicals. Three watersheds were categorized as moderately developed, based on the presence of municipal wastewater discharges and higher human population density (4-81 per km 2 ), and 5 watersheds were minimally developed, with very low human population density (0-1 per km 2 ) and minimal built environment. Testicular tissues from mature fish were evaluated using a semiquantitative method that estimated TO density, normalized by cross-sectional area. Testicular oocyte prevalence and density among populations from moderately developed watersheds was higher than in populations from minimally developed watersheds. However, TO prevalence was unexpectedly high and variable (7-43%) in some populations from minimally developed watersheds, and only weak evidence was found for a relationship between TO density and watershed development, suggesting alternative or more complex explanations for TO presence in smallmouth bass from this region. Environ Toxicol Chem 2017;36:3424-3435. © 2017 SETAC. © 2017 SETAC.

  19. Differences in Ichthyophonus prevalence and infection severity between upper Yukon River and Tanana River chinook salmon, Oncorhynchus tshawytscha (Walbaum), stocks

    USGS Publications Warehouse

    Kocan, R.; Hershberger, P.

    2006-01-01

    Two genetically distinct populations of chinook salmon, Oncorhynchus tshawytscha (Walbaum), were simultaneously sampled at the confluence of the Yukon and Tanana rivers in 2003. Upper Yukon-Canadian fish had significantly higher infection prevalence as well as more severe infections (higher parasite density in heart tissue) than the lower Yukon-Tanana River fish. Both populations had migrated the same distance from the mouth of the Yukon River at the time of sampling but had significantly different distances remaining to swim before reaching their respective spawning grounds. Multiple working hypotheses are proposed to explain the differences between the two stocks: (1) the two genetically distinct populations have different inherent resistance to infection, (2) genetically influenced differences in feeding behaviour resulted in temporal and/or spatial differences in exposure, (3) physiological differences resulting from different degrees of sexual maturity influenced the course of disease, and (4) the most severely infected Tanana River fish either died en route or fatigued and were unable to complete their migration to the Tanana River, thus leaving a population of apparently healthier fish. ?? 2006 Blackwell Publishing Ltd.

  20. Influence of throat configuration and fish density on escapement of channel catfish from hoop nets

    USGS Publications Warehouse

    Porath, Mark T.; Pape, Larry D.; Richters, Lindsey K.

    2011-01-01

    In recent years, several state agencies have adopted the use of baited, tandemset hoop nets to assess lentic channel catfish Ictalurus punctatus populations. Some level of escapement from the net is expected because an opening exists in each throat of the net, although factors influencing rates of escapement from hoop nets have not been quantified. We conducted experiments to quantify rates of escapement and to determine the influence of throat configuration and fish density within the net on escapement rates. An initial experiment to determine the rate of escapement from each net compartment utilized individually tagged channel catfish placed within the entrance (between the two throats) and cod (within the second throat) compartments of a single hoop net for overnight sets. From this experiment, the mean rate (±SE) of channel catfish escaping was 4.2% (±1.5) from the cod (cod throat was additionally restricted from the traditionally manufactured product), and 74% (±4.2) from the entrance compartments. In a subsequent experiment, channel catfish were placed only in the cod compartment with different throat configurations (restricted or unrestricted) and at two densities (low [6 fish per net] and high [60 fish per net]) for overnight sets to determine the influence of fish density and throat configuration on escapement rates. Escapement rates between throat configurations were doubled at low fish density (13.3 ± 5.4% restricted versus 26.7 ± 5.6% unrestricted) and tripled at high fish density (14.3 ± 4.9% restricted versus 51.9 ± 5.0% unrestricted). These results suggest that retention efficiency is high from cod compartments with restricted throat entrances. However, managers and researchers need to be aware that modification to the cod throats (restrictions) is needed for hoop nets ordered from manufacturers. Managers need to be consistent in their use and reporting of cod end throat configurations when using this gear.

  1. Amount and type of forest cover and edge are important predictorsof golden-cheeked warbler density

    Treesearch

    Rebecca G. Peak; Frank R. III. Thompson

    2013-01-01

    Considered endangered by the U.S. Fish and Wildlife Service, the Golden-cheeked Warbler (Setophaga chrysoparia) breeds exclusively in the juniper--oak (Juniperus ashei--Quercus spp.) woodlands of central Texas. Large-scale, spatially explicit models that predict population density as a function of habitat and landscape variables...

  2. Efficacy of environmental DNA to detect and quantify Brook Trout populations in headwater streams of the Adirondack Mountains, New York

    USGS Publications Warehouse

    Baldigo, Barry P.; Sporn, Lee Ann; George, Scott D.; Ball, Jacob

    2016-01-01

    Environmental DNA (eDNA) analysis is rapidly evolving as a tool for monitoring the distributions of aquatic species. Detection of species’ populations in streams may be challenging because the persistence time for intact DNA fragments is unknown and because eDNA is diluted and dispersed by dynamic hydrological processes. During 2015, the DNA of Brook Trout Salvelinus fontinalis was analyzed from water samples collected at 40 streams across the Adirondack region of upstate New York, where Brook Trout populations were recently quantified. Study objectives were to evaluate different sampling methods and the ability of eDNA to accurately predict the presence and abundance of resident Brook Trout populations. Results from three-pass electrofishing surveys indicated that Brook Trout were absent from 10 sites and were present in low (<100 fish/0.1 ha), moderate (100–300 fish/0.1 ha), and high (>300 fish/0.1 ha) densities at 9, 11, and 10 sites, respectively. The eDNA results correctly predicted the presence and confirmed the absence of Brook Trout at 85.0–92.5% of the study sites; eDNA also explained 44% of the variability in Brook Trout population density and 24% of the variability in biomass. These findings indicate that eDNA surveys will enable researchers to effectively characterize the presence and abundance of Brook Trout and other species’ populations in headwater streams across the Adirondack region and elsewhere.

  3. Composition of fish communities in relation to stream acidification and habitat in the Neversink River, New York

    USGS Publications Warehouse

    Baldigo, Barry P.; Lawrence, G.B.

    2000-01-01

    The effects of acidification in lotic systems are not well documented. Spatial and temporal variability of habitat and water quality complicate the evaluation of acidification effects in streams and river. The Neversink River in the Catskill Mountains of southeastern New York, the tributaries of which vary from well buffered to severely acidified, provided an opportunity to investigate the external and magnitude of acidification effects on fish communities of headwater systems. Composition of fish communities, water quality, stream hydrology, stream habitat, and physiographic factors were characterized from 1991 to 1995 at 16 first- to fourth-order sites in the basin. Correlation and regression analyses were used to develop empirical models and to assess the relations among fish species richness, total fish density, and total biomass and environmental variables. Chronic and episodic acidification and elevated concentrations of inorganic monomeric aluminum were common, and fish populations were rare or absent from several sites in the upper reaches of the basin; as many as six fish species were collected from sites in the lower reaches of the basin. Species distribution and species richness were most highly related to stream pH, acid-neutralizing capacity (ANC), inorganic monomeric aluminum (Al(im)), calcium (Ca)2+, and potassium (K)+ concentrations, site elevation, watershed drainage area, and water temperature. Fish density was most highly related to stream pH, Al(im), ANC, K+, Ca2+, and magnesium (Mg)2+ concentrations. Fish biomass, unlike species richness and fish density, was most highly related to physical habitat characteristics, water temperature, and concentrations of Mg2+ and silicon. Acidity characteristics were of secondary importance to fish biomass at all but the most severely acidified sites. Our results indicate that (1) the total biomass of fish communities was not seriously affected at moderately to strongly acidified sites; (2) species richness and total density of fish were adversely affected at strongly to severely acidified sites; and (3) possible changes in competitive interactions may mitigate negative effects of acidification on fish communities in parts of the Neversink River Basin.

  4. Influences of spatial and temporal variation on fish-habitat relationships defined by regression quantiles

    USGS Publications Warehouse

    Dunham, J.B.; Cade, B.S.; Terrell, J.W.

    2002-01-01

    We used regression quantiles to model potentially limiting relationships between the standing crop of cutthroat trout Oncorhynchus clarki and measures of stream channel morphology. Regression quantile models indicated that variation in fish density was inversely related to the width:depth ratio of streams but not to stream width or depth alone. The spatial and temporal stability of model predictions were examined across years and streams, respectively. Variation in fish density with width:depth ratio (10th-90th regression quantiles) modeled for streams sampled in 1993-1997 predicted the variation observed in 1998-1999, indicating similar habitat relationships across years. Both linear and nonlinear models described the limiting relationships well, the latter performing slightly better. Although estimated relationships were transferable in time, results were strongly dependent on the influence of spatial variation in fish density among streams. Density changes with width:depth ratio in a single stream were responsible for the significant (P < 0.10) negative slopes estimated for the higher quantiles (>80th). This suggests that stream-scale factors other than width:depth ratio play a more direct role in determining population density. Much of the variation in densities of cutthroat trout among streams was attributed to the occurrence of nonnative brook trout Salvelinus fontinalis (a possible competitor) or connectivity to migratory habitats. Regression quantiles can be useful for estimating the effects of limiting factors when ecological responses are highly variable, but our results indicate that spatiotemporal variability in the data should be explicitly considered. In this study, data from individual streams and stream-specific characteristics (e.g., the occurrence of nonnative species and habitat connectivity) strongly affected our interpretation of the relationship between width:depth ratio and fish density.

  5. Experimental whole-lake dissolved organic carbon increase alters fish diet and density but not growth or productivity

    USGS Publications Warehouse

    Koizumi, Shuntaro; Craig, Nicola; Zwart, Jacob A.; Kelly, Patrick T.; Ziegler, Jacob P.; Weidel, Brian C.; Jones, Stuart E.; Solomon, Christopher T.

    2018-01-01

    Negative relationships between dissolved organic carbon (DOC) concentration and fish productivity have been reported from correlative studies across lakes, but to date there have not been experimental tests of these relationships. We increased the DOC concentration in a lake by 3.4 mg L-1, using a before-after control-impact (BACI) design, to quantify the effects on the productivity and population structure of Largemouth Bass (Micropterus salmoides). Greater DOC reduced the volume of the epilimnion, the preferred habitat of Largemouth Bass, resulting in increased bass density. The likelihood that adult bass had empty diets decreased despite this increase in bass density; diet composition also changed. There was no apparent change in bass growth or condition. Overall, there was no net change in Largemouth Bass productivity. However, changes in YOY and juvenile recruitment and feeding success suggest the possibility that future effects could occur. Our results are the first to examine the effects of an increase in DOC on fish productivity through a five-year temporal lens, which demonstrates that the relationship between DOC and fish productivity is multi-dimensional and complex.

  6. Electrofishing capture probability of smallmouth bass in streams

    USGS Publications Warehouse

    Dauwalter, D.C.; Fisher, W.L.

    2007-01-01

    Abundance estimation is an integral part of understanding the ecology and advancing the management of fish populations and communities. Mark-recapture and removal methods are commonly used to estimate the abundance of stream fishes. Alternatively, abundance can be estimated by dividing the number of individuals sampled by the probability of capture. We conducted a mark-recapture study and used multiple repeated-measures logistic regression to determine the influence of fish size, sampling procedures, and stream habitat variables on the cumulative capture probability for smallmouth bass Micropterus dolomieu in two eastern Oklahoma streams. The predicted capture probability was used to adjust the number of individuals sampled to obtain abundance estimates. The observed capture probabilities were higher for larger fish and decreased with successive electrofishing passes for larger fish only. Model selection suggested that the number of electrofishing passes, fish length, and mean thalweg depth affected capture probabilities the most; there was little evidence for any effect of electrofishing power density and woody debris density on capture probability. Leave-one-out cross validation showed that the cumulative capture probability model predicts smallmouth abundance accurately. ?? Copyright by the American Fisheries Society 2007.

  7. Luminous Enteric Bacteria of Marine Fishes: a Study of Their Distribution, Densities, and Dispersion †

    PubMed Central

    Ruby, E. G.; Morin, J. G.

    1979-01-01

    Three taxa of luminous bacteria (Photobacterium fischeri, P. phosphoreum, and Beneckea spp.) were found in the enteric microbial populations of 22 species of surface- and midwater-dwelling fishes. These bacteria often occurred in concentrations ranging between 105 and 107 colony-forming units per ml of enteric contents. By using a genetically marked strain, it was determined that luminous cells entering the fish during ingestion of seawater or contaminated particles traversed the alimentary tract and survived the digestive processes. After excretion, luminous bacteria proliferated extensively on the fecal material and became distributed into the surrounding seawater. Thus, this enteric habitat may serve as an enrichment of viable cells entering the planktonic luminous population. PMID:16345429

  8. Determining individual variation in growth and its implication for life-history and population processes using the empirical Bayes method.

    PubMed

    Vincenzi, Simone; Mangel, Marc; Crivelli, Alain J; Munch, Stephan; Skaug, Hans J

    2014-09-01

    The differences in demographic and life-history processes between organisms living in the same population have important consequences for ecological and evolutionary dynamics. Modern statistical and computational methods allow the investigation of individual and shared (among homogeneous groups) determinants of the observed variation in growth. We use an Empirical Bayes approach to estimate individual and shared variation in somatic growth using a von Bertalanffy growth model with random effects. To illustrate the power and generality of the method, we consider two populations of marble trout Salmo marmoratus living in Slovenian streams, where individually tagged fish have been sampled for more than 15 years. We use year-of-birth cohort, population density during the first year of life, and individual random effects as potential predictors of the von Bertalanffy growth function's parameters k (rate of growth) and L∞ (asymptotic size). Our results showed that size ranks were largely maintained throughout marble trout lifetime in both populations. According to the Akaike Information Criterion (AIC), the best models showed different growth patterns for year-of-birth cohorts as well as the existence of substantial individual variation in growth trajectories after accounting for the cohort effect. For both populations, models including density during the first year of life showed that growth tended to decrease with increasing population density early in life. Model validation showed that predictions of individual growth trajectories using the random-effects model were more accurate than predictions based on mean size-at-age of fish.

  9. Consequences of extreme life history traits on population persistence: do short-lived gobies face demographic bottlenecks?

    NASA Astrophysics Data System (ADS)

    Lefèvre, Carine D.; Nash, Kirsty L.; González-Cabello, Alonso; Bellwood, David R.

    2016-06-01

    The majority of coral reef goby species are short-lived, with some highly abundant species living less than 100 d. To understand the role and consequences of this extreme life history in shaping coral reef fish populations, we quantitatively documented the structure of small reef fish populations over a 26-month period (>14 short-lived fish generations) at an inshore reef on the Great Barrier Reef, Australia. Most species with life spans >1 yr, such as pomacentrids, exhibited a peak in recruitment during the austral summer, driving seasonal changes in the small fish community composition. In contrast, there were no clear changes in goby community composition, despite the abundance of short-lived, high turnover species. Species of Eviota, the most abundant gobiid genus observed, showed remarkably similar demographic profiles year-round, with consistent densities of adults as well as recently recruited juveniles. Our results demonstrate ongoing recruitment of these small cryptic fishes, which appears to compensate for an exceptionally short life span on the reef. Our results suggest that gobiid populations are able to overcome demographic limitations, and by maintaining reproduction, larval survival and recruitment throughout the year, they may avoid population bottlenecks. These findings also underline the potential trophodynamic importance of these small species; because of this constant turnover, Eviota species and other short-lived fishes may be particularly valuable contributors to the flow of energy on coral reefs, underpinning the year-round trophic structure.

  10. Comparison of sampling methodologies and estimation of population parameters for a temporary fish ectoparasite.

    PubMed

    Artim, J M; Sikkel, P C

    2016-08-01

    Characterizing spatio-temporal variation in the density of organisms in a community is a crucial part of ecological study. However, doing so for small, motile, cryptic species presents multiple challenges, especially where multiple life history stages are involved. Gnathiid isopods are ecologically important marine ectoparasites, micropredators that live in substrate for most of their lives, emerging only once during each juvenile stage to feed on fish blood. Many gnathiid species are nocturnal and most have distinct substrate preferences. Studies of gnathiid use of habitat, exploitation of hosts, and population dynamics have used various trap designs to estimate rates of gnathiid emergence, study sensory ecology, and identify host susceptibility. In the studies reported here, we compare and contrast the performance of emergence, fish-baited and light trap designs, outline the key features of these traps, and determine some life cycle parameters derived from trap counts for the Eastern Caribbean coral-reef gnathiid, Gnathia marleyi. We also used counts from large emergence traps and light traps to estimate additional life cycle parameters, emergence rates, and total gnathiid density on substrate, and to calibrate the light trap design to provide estimates of rate of emergence and total gnathiid density in habitat not amenable to emergence trap deployment.

  11. Random and systematic sampling error when hooking fish to monitor skin fluke (Benedenia seriolae) and gill fluke (Zeuxapta seriolae) burden in Australian farmed yellowtail kingfish (Seriola lalandi).

    PubMed

    Fensham, J R; Bubner, E; D'Antignana, T; Landos, M; Caraguel, C G B

    2018-05-01

    The Australian farmed yellowtail kingfish (Seriola lalandi, YTK) industry monitor skin fluke (Benedenia seriolae) and gill fluke (Zeuxapta seriolae) burden by pooling the fluke count of 10 hooked YTK. The random and systematic error of this sampling strategy was evaluated to assess potential impact on treatment decisions. Fluke abundance (fluke count per fish) in a study cage (estimated 30,502 fish) was assessed five times using the current sampling protocol and its repeatability was estimated the repeatability coefficient (CR) and the coefficient of variation (CV). Individual body weight, fork length, fluke abundance, prevalence, intensity (fluke count per infested fish) and density (fluke count per Kg of fish) were compared between 100 hooked and 100 seined YTK (assumed representative of the entire population) to estimate potential selection bias. Depending on the fluke species and age category, CR (expected difference in parasite count between 2 sampling iterations) ranged from 0.78 to 114 flukes per fish. Capturing YTK by hooking increased the selection of fish of a weight and length in the lowest 5th percentile of the cage (RR = 5.75, 95% CI: 2.06-16.03, P-value = 0.0001). These lower end YTK had on average an extra 31 juveniles and 6 adults Z. seriolae per Kg of fish and an extra 3 juvenile and 0.4 adult B. seriolae per Kg of fish, compared to the rest of the cage population (P-value < 0.05). Hooking YTK on the edge of the study cage biases sampling towards the smallest and most heavily infested fish in the population, resulting in poor repeatability (more variability amongst sampled fish) and an overestimation of parasite burden in the population. In this particular commercial situation these finding supported that health management program, where the finding of an underestimation of parasite burden could provide a production impact on the study population. In instances where fish populations and parasite burdens are more homogenous, sampling error may be less severe. Sampling error when capturing fish from sea cage is difficult to predict. The amplitude and direction of this error should be investigated for a given cultured fish species across a range of parasite burden and fish profile scenarios. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Lake whitefish and lake herring population structure and niche in ten south-central Ontario lakes

    USGS Publications Warehouse

    Carl, Leon M.; McGuiness, Fiona

    2006-01-01

    This study compares simple fish communities of ten oligotrophic lakes in south-central Ontario. Species densities and population size structure vary significantly among these lake communities depending on fish species present beyond the littoral zone. Lake whitefish are fewer and larger in the presence of lake herring than in their absence. Diet analysis indicates that lake whitefish shift from feeding on both plankton and benthic prey when lake herring are absent to a primarily benthic feeding niche in the presence of lake herring. When benthic round whitefish are present, lake whitefish size and density decline and they move lower in the lake compared to round whitefish. Burbot are also fewer and larger in lakes with lake herring than in lakes without herring. Burbot, in turn, appear to influence the population structure of benthic coregonine species. Lower densities of benthic lake whitefish and round whitefish are found in lakes containing large benthic burbot than in lakes with either small burbot or where burbot are absent. Predation on the pelagic larvae of burbot and lake whitefish by planktivorous lake herring alters the size and age structure of these populations. As life history theory predicts, those species with poor larval survival appear to adopt a bet-hedging life history strategy of long-lived individuals as a reproductive reserve.

  13. Temperature-driven regime shifts in the dynamics of size-structured populations.

    PubMed

    Ohlberger, Jan; Edeline, Eric; Vøllestad, Leif Asbjørn; Stenseth, Nils C; Claessen, David

    2011-02-01

    Global warming impacts virtually all biota and ecosystems. Many of these impacts are mediated through direct effects of temperature on individual vital rates. Yet how this translates from the individual to the population level is still poorly understood, hampering the assessment of global warming impacts on population structure and dynamics. Here, we study the effects of temperature on intraspecific competition and cannibalism and the population dynamical consequences in a size-structured fish population. We use a physiologically structured consumer-resource model in which we explicitly model the temperature dependencies of the consumer vital rates and the resource population growth rate. Our model predicts that increased temperature decreases resource density despite higher resource growth rates, reflecting stronger intraspecific competition among consumers. At a critical temperature, the consumer population dynamics destabilize and shift from a stable equilibrium to competition-driven generation cycles that are dominated by recruits. As a consequence, maximum age decreases and the proportion of younger and smaller-sized fish increases. These model predictions support the hypothesis of decreasing mean body sizes due to increased temperatures. We conclude that in size-structured fish populations, global warming may increase competition, favor smaller size classes, and induce regime shifts that destabilize population and community dynamics.

  14. Ecological energetics of forage fish from the Mediterranean Sea: Seasonal dynamics and interspecific differences

    NASA Astrophysics Data System (ADS)

    Albo-Puigserver, M.; Muñoz, A.; Navarro, J.; Coll, M.; Pethybridge, H.; Sánchez, S.; Palomera, I.

    2017-06-01

    Small and medium pelagic fishes play a central role in marine food webs by transferring energy from plankton to top predators. In this study, direct calorimetry was used to analyze the energy density of seven pelagic species collected over four seasons from the western Mediterranean Sea: anchovy Engraulis encrasicolus, sardine Sardina pilchardus, round sardinella Sardinella aurita, horse mackerels Trachurus trachurus and T. mediterraneus, and mackerels Scomber scombrus and S. colias. Inter-specific differences in energy density were linked to spawning period, energy allocation strategies for reproduction and growth, and feeding ecologies. Energy density of each species varied over time, with the exception of S. colias, likely due to its high energetic requirements related to migration throughout the year. In general, higher energy density was observed in spring for all species, regardless of their breeding strategy, probably as a consequence of the late-winter phytoplankton bloom. These results provide new insights into the temporal availability of energy in the pelagic ecosystem of the Mediterranean Sea, which are pivotal for understanding how the population dynamics of small and medium pelagic fishes and their predators may respond to environmental changes and fishing impacts. In addition, the differences found in energy density between species highlighted the importance of using species specific energy-values in ecosystem assessment tools such as bioenergetic and food web models.

  15. Parrotfish Size: A Simple yet Useful Alternative Indicator of Fishing Effects on Caribbean Reefs?

    PubMed Central

    Vallès, Henri; Oxenford, Hazel A.

    2014-01-01

    There is great need to identify simple yet reliable indicators of fishing effects within the multi-species, multi-gear, data-poor fisheries of the Caribbean. Here, we investigate links between fishing pressure and three simple fish metrics, i.e. average fish weight (an estimate of average individual fish size), fish density and fish biomass, derived from (1) the parrotfish family, a ubiquitous herbivore family across the Caribbean, and (2) three fish groups of “commercial” carnivores including snappers and groupers, which are widely-used as indicators of fishing effects. We hypothesize that, because most Caribbean reefs are being heavily fished, fish metrics derived from the less vulnerable parrotfish group would exhibit stronger relationships with fishing pressure on today’s Caribbean reefs than those derived from the highly vulnerable commercial fish groups. We used data from 348 Atlantic and Gulf Rapid Reef Assessment (AGRRA) reef-surveys across the Caribbean to assess relationships between two independent indices of fishing pressure (one derived from human population density data, the other from open to fishing versus protected status) and the three fish metrics derived from the four aforementioned fish groups. We found that, although two fish metrics, average parrotfish weight and combined biomass of selected commercial species, were consistently negatively linked to the indices of fishing pressure across the Caribbean, the parrotfish metric consistently outranked the latter in the strength of the relationship, thus supporting our hypothesis. Overall, our study highlights that (assemblage-level) average parrotfish size might be a useful alternative indicator of fishing effects over the typical conditions of most Caribbean shallow reefs: moderate-to-heavy levels of fishing and low abundance of highly valued commercial species. PMID:24466009

  16. Parrotfish size: a simple yet useful alternative indicator of fishing effects on Caribbean reefs?

    PubMed

    Vallès, Henri; Oxenford, Hazel A

    2014-01-01

    There is great need to identify simple yet reliable indicators of fishing effects within the multi-species, multi-gear, data-poor fisheries of the Caribbean. Here, we investigate links between fishing pressure and three simple fish metrics, i.e. average fish weight (an estimate of average individual fish size), fish density and fish biomass, derived from (1) the parrotfish family, a ubiquitous herbivore family across the Caribbean, and (2) three fish groups of "commercial" carnivores including snappers and groupers, which are widely-used as indicators of fishing effects. We hypothesize that, because most Caribbean reefs are being heavily fished, fish metrics derived from the less vulnerable parrotfish group would exhibit stronger relationships with fishing pressure on today's Caribbean reefs than those derived from the highly vulnerable commercial fish groups. We used data from 348 Atlantic and Gulf Rapid Reef Assessment (AGRRA) reef-surveys across the Caribbean to assess relationships between two independent indices of fishing pressure (one derived from human population density data, the other from open to fishing versus protected status) and the three fish metrics derived from the four aforementioned fish groups. We found that, although two fish metrics, average parrotfish weight and combined biomass of selected commercial species, were consistently negatively linked to the indices of fishing pressure across the Caribbean, the parrotfish metric consistently outranked the latter in the strength of the relationship, thus supporting our hypothesis. Overall, our study highlights that (assemblage-level) average parrotfish size might be a useful alternative indicator of fishing effects over the typical conditions of most Caribbean shallow reefs: moderate-to-heavy levels of fishing and low abundance of highly valued commercial species.

  17. The fish community of a small impoundment in upstate New York

    USGS Publications Warehouse

    McCoy, C. Mead; Madenjian, Charles P.; Adams, Jean V.; Harman, Willard N.

    2001-01-01

    Moe Pond is a dimictic impoundment with surface area of 15.6 ha, a mean depth of 1.8 m, and an unexploited fish community of only two species: brown bullhead (Ameiurus nebulosus) and golden shiner (Notemigonus crysoleucas). The age-1 and older brown bullhead population was estimated to be 4,057 individuals, based on the Schnabel capture-recapture method of population estimation. Density and biomass were respectively estimated at 260 individuals/ha and 13 kg/ha. Annual survival rate of age-2 through age-5 brown bullheads was estimated at 48%. The golden shiner length-frequency distribution was unimodal with modal length of 80 mm and maximum total length of 115 m. The golden shiner population estimate was 7,154 individuals, based on seven beach seine haul replicate samples; the density and biomass were 686 shiners/ha and 5 kg/ha, respectively. This study provides an information baseline that may be useful in understanding food web interactions and whole-pond nutrient flux.

  18. Mud crab ecology encourages site-specific approaches to fishery management

    NASA Astrophysics Data System (ADS)

    Dumas, P.; Léopold, M.; Frotté, L.; Peignon, C.

    2012-01-01

    Little is known about the effects of mud crabs population patterns on their exploitation. We used complementary approaches (experimental, fisher-based) to investigate how small-scale variations in density, size and sex-ratio related to the ecology of S. serrata may impact fishing practices in New Caledonia. Crabs were measured/sexed across 9 stations in contrasted mangrove systems between 2007 and 2009. Stations were described and classified in different kinds of mangrove forests (coastal, riverine, and estuarine); vegetation cover was qualitatively described at station scale. Annual catch was used as an indicator of fishing pressure. Middle-scale environmental factors (oceanic influence, vegetation cover) had significant contributions to crab density (GLM, 84.8% of variance), crab size and sex-ratio (< 30%). While small-scale natural factors contributed significantly to population structure, current fishing levels had no impacts on mud crabs. The observed, ecologically-driven heterogeneity of crab resource has strong social implications in the Pacific area, where land tenure system and traditional access rights prevent most fishers from freely selecting their harvest zones. This offers a great opportunity to encourage site-specific management of mud crab fisheries.

  19. Bioeconomic modeling for a small-scale sea cucumber fishery in Yucatan, Mexico

    PubMed Central

    Hernández-Flores, Alvaro; Cuevas-Jiménez, Alfonso; Condal, Alfonso; Espinoza-Méndez, Juan Carlos

    2018-01-01

    Due to the heavy exploitation of holothurians over the last few decades, it is necessary to implement fishing regulations aimed at reversing this situation. Holothurians require specific regulations that take into account their biology and ecology. Their behavior to group and form patches as a strategy for feeding, defense and reproduction, makes them vulnerable to overfishing. The higher the population density, the higher the catchability coefficient, and because they are sedentary organisms, the catchability does not change significantly until the density is very low. Hence, the stock assessment of holothurians can be improved by analyzing their spatial distribution. This paper proposes a stock assessment technique that considers the spatial distribution pattern of the sea cucumber Isostichopus badionotus from Yucatan, Mexico. A bioeconomic spatial model was developed to explain the interactions between fishing effort allocation, quasi-profits and the population in the short term. Because of the high price of the species and the low production costs, artisanal fishers preferred to maximize short-term quasi-profits, rather than the long-term benefits they could gain with low fishing mortality rates. PMID:29315339

  20. Bioeconomic modeling for a small-scale sea cucumber fishery in Yucatan, Mexico.

    PubMed

    Hernández-Flores, Alvaro; Cuevas-Jiménez, Alfonso; Poot-Salazar, Alicia; Condal, Alfonso; Espinoza-Méndez, Juan Carlos

    2018-01-01

    Due to the heavy exploitation of holothurians over the last few decades, it is necessary to implement fishing regulations aimed at reversing this situation. Holothurians require specific regulations that take into account their biology and ecology. Their behavior to group and form patches as a strategy for feeding, defense and reproduction, makes them vulnerable to overfishing. The higher the population density, the higher the catchability coefficient, and because they are sedentary organisms, the catchability does not change significantly until the density is very low. Hence, the stock assessment of holothurians can be improved by analyzing their spatial distribution. This paper proposes a stock assessment technique that considers the spatial distribution pattern of the sea cucumber Isostichopus badionotus from Yucatan, Mexico. A bioeconomic spatial model was developed to explain the interactions between fishing effort allocation, quasi-profits and the population in the short term. Because of the high price of the species and the low production costs, artisanal fishers preferred to maximize short-term quasi-profits, rather than the long-term benefits they could gain with low fishing mortality rates.

  1. Intra-lake variation in maturity, fecundity, and spawning of slimy sculpins (Cottus cognatus) in southern Lake Ontario

    USGS Publications Warehouse

    Owens, Randall W.; Noguchi, George E.

    1998-01-01

    Knowledge of the spawning cycle and factors affecting fecundity of slimy sculpins (Cottus cognatus) are important in understanding the population dynamics of this species in large lake systems, like Lake Ontario. Fecundity and the spawning cycle of slimy sculpins were described from samples of slimy sculpins and their egg masses collected with bottom trawls during four annual surveys, April to October, 1988 to 1994. Incidence of gravid females and collections of their egg masses indicated that spawning by slimy sculpins likely occurred from late April to mid October in Lake Ontario. Protracted spawning by slimy sculpins in Lake Ontario is probably a function of the annual water temperature cycle at various depths. Mean length of gravid females was inversely related to density of slimy sculpins. Fecundity ranged from 55 to 1,157 eggs among fish 55 to 127 mm long, and for similar-sized fish, fecundity was inversely related to density of slimy sculpins. Fecundity was about 50% higher at Olcott, where population indices of slimy sculpins were low, compared with Nine Mile Point where indices were much higher. Somatic weight or total length were both good predictors of fecundity. Lipid content of slimy sculpins was lower in an area of high sculpin abundance than in an area of low sculpin abundance, suggesting that fecundity was a function of density-dependent food availability. In large aquatic ecosystems, samples from more than one area may be necessary to describe fecundity of a sedentary species like slimy sculpin, especially if fish densities vary considerably among geographic areas. Large geographic variations in fecundity may be an indicator of spatial imbalance of a species with its prey. Low fecundity may be a compensatory response to slimy sculpins to low food supplies, thereby limiting population growth.

  2. Life-history plasticity and sustainable exploitation: a theory of growth compensation applied to walleye management.

    PubMed

    Lester, Nigel P; Shuter, Brian J; Venturelli, Paul; Nadeau, Daniel

    2014-01-01

    A simple population model was developed to evaluate the role of plastic and evolutionary life-history changes on sustainable exploitation rates. Plastic changes are embodied in density-dependent compensatory adjustments to somatic growth rate and larval/juvenile survival, which can compensate for the reductions in reproductive lifetime and mean population fecundity that accompany the higher adult mortality imposed by exploitation. Evolutionary changes are embodied in the selective pressures that higher adult mortality imposes on age at maturity, length at maturity, and reproductive investment. Analytical development, based on a biphasic growth model, led to simple equations that show explicitly how sustainable exploitation rates are bounded by each of these effects. We show that density-dependent growth combined with a fixed length at maturity and fixed reproductive investment can support exploitation-driven mortality that is 80% of the level supported by evolutionary changes in maturation and reproductive investment. Sustainable fishing mortality is proportional to natural mortality (M) times the degree of density-dependent growth, as modified by both the degree of density-dependent early survival and the minimum harvestable length. We applied this model to estimate sustainable exploitation rates for North American walleye populations (Sander vitreus). Our analysis of demographic data from walleye populations spread across a broad latitudinal range indicates that density-dependent variation in growth rate can vary by a factor of 2. Implications of this growth response are generally consistent with empirical studies suggesting that optimal fishing mortality is approximately 0.75M for teleosts. This approach can be adapted to the management of other species, particularly when significant exploitation is imposed on many, widely distributed, but geographically isolated populations.

  3. Predator effects on reef fish settlement depend on predator origin and recruit density.

    PubMed

    Benkwitt, Cassandra E

    2017-04-01

    During major life-history transitions, animals often experience high mortality rates due to predation, making predator avoidance particularly advantageous during these times. There is mixed evidence from a limited number of studies, however, regarding how predator presence influences settlement of coral-reef fishes and it is unknown how other potentially mediating factors, including predator origin (native vs. nonnative) or interactions among conspecific recruits, mediate the non-consumptive effects of predators on reef fish settlement. During a field experiment in the Caribbean, approximately 52% fewer mahogany snapper (Lutjanus mahogoni) recruited to reefs with a native predator (graysby grouper, Cephalopholis cruentata) than to predator-free control reefs and reefs with an invasive predator (red lionfish, Pterois volitans) regardless of predator diet. These results suggest that snapper recruits do not recognize nonnative lionfish as a threat. However, these effects depended on the density of conspecific recruits, with evidence that competition may limit the response of snapper to even native predators at the highest recruit densities. In contrast, there was no effect of predator presence or conspecific density on the recruitment of bicolor damselfish (Stegastes partitus). These context-dependent responses of coral-reef fishes to predators during settlement may influence individual survival and shape subsequent population and community dynamics. © 2017 by the Ecological Society of America.

  4. Acoustic estimates of abundance and distribution of spawning lake trout on Sheboygan Reef in Lake Michigan

    USGS Publications Warehouse

    Warner, D.M.; Claramunt, R.M.; Janssen, J.; Jude, D.J.; Wattrus, N.

    2009-01-01

    Efforts to restore self-sustaining lake trout (Salvelinus namaycush) populations in the Laurentian Great Lakes have had widespread success in Lake Superior; but in other Great Lakes, populations of lake trout are maintained by stocking. Recruitment bottlenecks may be present at a number of stages of the reproduction process. To study eggs and fry, it is necessary to identify spawning locations, which is difficult in deep water. Acoustic sampling can be used to rapidly locate aggregations of fish (like spawning lake trout), describe their distribution, and estimate their abundance. To assess these capabilities for application to lake trout, we conducted an acoustic survey covering 22 km2 at Sheboygan Reef, a deep reef (<40 m summit) in southern Lake Michigan during fall 2005. Data collected with remotely operated vehicles (ROV) confirmed that fish were large lake trout, that lake trout were 1–2 m above bottom, and that spawning took place over specific habitat. Lake trout density exhibited a high degree of spatial structure (autocorrelation) up to a range of ~190 m, and highest lake trout and egg densities occurred over rough substrates (rubble and cobble) at the shallowest depths sampled (36–42 m). Mean lake trout density in the area surveyed (~2190 ha) was 5.8 fish/ha and the area surveyed contained an estimated 9500–16,000 large lake trout. Spatial aggregation in lake trout densities, similarity of depths and substrates at which high lake trout and egg densities occurred, and relatively low uncertainty in the lake trout density estimate indicate that acoustic sampling can be a useful complement to other sampling tools used in lake trout restoration research.

  5. Status and trends of the rainbow trout population in the Lees Ferry reach of the Colorado River downstream from Glen Canyon Dam, Arizona, 1991–2009

    USGS Publications Warehouse

    Makinster, Andrew S.; Persons, William R.; Avery, Luke A.

    2011-01-01

    The Lees Ferry reach of the Colorado River, a 25-kilometer segment of river located immediately downstream from Glen Canyon Dam, has contained a nonnative rainbow trout (Oncorhynchus mykiss) sport fishery since it was first stocked in 1964. The fishery has evolved over time in response to changes in dam operations and fish management. Long-term monitoring of the rainbow trout population downstream of Glen Canyon Dam is an essential component of the Glen Canyon Dam Adaptive Management Program. A standardized sampling design was implemented in 1991 and has changed several times in response to independent, external scientific-review recommendations and budget constraints. Population metrics (catch per unit effort, proportional stock density, and relative condition) were estimated from 1991 to 2009 by combining data collected at fixed sampling sites during this time period and at random sampling sites from 2002 to 2009. The validity of combining population metrics for data collected at fixed and random sites was confirmed by a one-way analysis of variance by fish-length class size. Analysis of the rainbow trout population metrics from 1991 to 2009 showed that the abundance of rainbow trout increased from 1991 to 1997, following implementation of a more steady flow regime, but declined from about 2000 to 2007. Abundance in 2008 and 2009 was high compared to previous years, which was likely the result of increased early survival caused by improved habitat conditions following the 2008 high-flow experiment at Glen Canyon Dam. Proportional stock density declined between 1991 and 2006, reflecting increased natural reproduction and large numbers of small fish in samples. Since 2001, the proportional stock density has been relatively stable. Relative condition varied with size class of rainbow trout but has been relatively stable since 1991 for fish smaller than 152 millimeters (mm), except for a substantial decrease in 2009. Relative condition was more variable for larger size classes, and substantial decreases were observed for the 152-304-mm size class in 2009 and 305-405-mm size class in 2008 that persisted into 2009.

  6. Results of a survey of U.S. Fish and Wildlife Service Endangered Species and Ecological Services Field Offices, Refuges, Hatcheries, and Research Centers

    USGS Publications Warehouse

    Gladwin, Douglas N.; Asherin, Duane A.; Manci, Karen M.

    1988-01-01

    The National Ecology Research Center (Center), as part of an ongoing research study on the effects of low altitude aircraft operations on fish and wildlife, conducted a survey in January 1987 of all U.S. Fish and Wildlife Service (Service) regional directors, research center directors, Ecological Services and Endangered Species field offices supervisors, refuge manager, and hatchery manager. The objective of the survey was to determine the nature and extent of aircraft-induced impacts on fish and wildlife species, populations, and habitat utilization. The field installation managers and biologists were asked to provide background information or data on fish and wildlife reactions to low-altitude aircraft disturbances, including physiological, behavioral, and reproductive/population effects. Specifically, the survey asked for information such as: (1) observations of animal reaction(s) to aircraft operations, e.g., desert bighorn sheep scare behavior in response to aircraft overflights and hatchery fish seizures and death following intense sonic booms; and instances of areas where aircraft noise is known or believed to be responsible for reduced population size, e.g. areas along heavily used aircraft flight corridors where breeding waterfowl densities are lower than in similar habitat away from the noise area.

  7. [Effective size of subpopulation of the early run sockeye salmon Oncorhynchus nerka from Azabach's Lake (Kamchatka): effect of density on variance of reproductive success].

    PubMed

    Efremov, V V; Parenskiĭ, V A

    2004-04-01

    Using Parensky's approach for estimating the number of breeding pairs, we determined effective subpopulation size Ne in early-run sockeye salmon Oncorhynchus nerka from Azabach'e Lake (Kamchatka) in 1977 through 1981. On average (over years and populations), biased sex ratio decreased Ne by 7% as compared to the number of fish on the spawning sites (Ni). High density reduced the Ne/Ni ratio by 62-66% because some fish were excluded from spawning. Dominance polygyny as compared to monogamy and random union of gametes could reduce Ne by about 17%.

  8. Benthic prey fish assessment, Lake Ontario 2013

    USGS Publications Warehouse

    Weidel, Brian C.; Walsh, Maureen; Connerton, Michael J.

    2014-01-01

    The 2013 benthic fish assessment was delayed and shortened as a result of the U.S. Government shutdown, however the assessment collected 51 of the 62 planned bottom trawls. Over the past 34 years, Slimy Sculpin abundance in Lake Ontario has fluctuated, but ultimately decreased by two orders of magnitude, with a substantial decline occurring in the past 10 years. The 2013 Slimy Sculpin mean bottom trawl catch density (0.001 ind.·m-2, s.d.= 0.0017, n = 52) and mean biomass density (0.015 g·m-2 , s.d.= 0.038, n = 52) were the lowest recorded in the 27 years of sampling using the original bottom trawl design. From 2011-2013, the Slimy Sculpin density and biomass density has decreased by approximately 50% each year. Spring bottom trawl catches illustrate Slimy Sculpin and Round Goby Neogobius melanostoma winter habitat overlaps for as much as 7 months out of a year, providing opportunities for competition and predation. Invasive species, salmonid piscivory, and declines in native benthic invertebrates are likely all important drivers of Slimy Sculpin population dynamics in Lake Ontario. Deepwater Sculpin Myoxocephalus thompsonii, considered rare or absent from Lake Ontario for 30 years, have generally increased over the past eight years. For the first time since they were caught in this assessment, Deepwater Sculpin density and biomass density estimates declined from the previous year. The 2013 abundance and density estimates for trawls covering the standard depths from 60m to 150m was 0.0001 fish per square meter and 0.0028 grams per square meter. In 2013, very few small (< 80 mm) Deepwater Sculpin were caught and most sculpin were at sites of 150 meters or greater, which is in contrast to previous years when juvenile fish were caught around 80-100 meters. The reduced effort and late seasonal timing of the 2013 assessment make it difficult to have high confidence in declines observed in 2013, however observed Alewife Alosa psuedoharengus abundance increases and reduced juvenile Deepwater Sculpin catches are consistent with the hypothesis that Alewife negatively influence Deepwater Sculpin recruitment. Nonnative Round Gobies were first detected in the USGS/NYSDEC Lake Ontario spring Alewife assessment in 2002. Since that assessment, observations indicate their population has expanded and they are now found along the entire south shore of Lake Ontario, with the highest densities in U.S. waters just east of the Niagara River confluence. In the 2013 spring-based assessment, both the abundance and weight indices increased slightly as compared to 2012. The number index value of 16.6 was 30% of the maximum number observed in 2008 when the number index was 95.2. Round Goby density estimates from the 2013 fall benthic prey fish survey were 33 times greater than fall Slimy Sculpin density, indicating Round Goby are now the dominant Lake Ontario benthic prey fish.

  9. Using ecology to inform physiology studies: implications of high population density in the laboratory.

    PubMed

    Newman, Amy E M; Edmunds, Nicholas B; Ferraro, Shannon; Heffell, Quentin; Merritt, Gillian M; Pakkala, Jesse J; Schilling, Cory R; Schorno, Sarah

    2015-03-15

    Conspecific density is widely recognized as an important ecological factor across the animal kingdom; however, the physiological impacts are less thoroughly described. In fact, population density is rarely mentioned as a factor in physiological studies on captive animals and, when it is infrequently addressed, the animals used are reared and housed at densities far above those in nature, making the translation of results from the laboratory to natural systems difficult. We survey the literature to highlight this important ecophysiological gap and bring attention to the possibility that conspecific density prior to experimentation may be a critical factor influencing results. Across three taxa: mammals, birds, and fish, we present evidence from ecology that density influences glucocorticoid levels, immune function, and body condition with the intention of stimulating discussion and increasing consideration of population density in physiology studies. We conclude with several directives to improve the applicability of insights gained in the laboratory to organisms in the natural environment. Copyright © 2015 the American Physiological Society.

  10. Indirect food web interactions: Sea otters and kelp forest fishes in the Aleutian archipelago

    USGS Publications Warehouse

    Reisewitz, S.E.; Estes, J.A.; Simenstad, C.A.

    2006-01-01

    Although trophic cascades - the effect of apex predators on progressively lower trophic level species through top-down forcing - have been demonstrated in diverse ecosystems, the broader potential influences of trophic cascades on other species and ecosystem processes are not well studied. We used the overexploitation, recovery and subsequent collapse of sea otter (Enhydra lutris) populations in the Aleutian archipelago to explore if and how the abundance and diet of kelp forest fishes are influenced by a trophic cascade linking sea otters with sea urchins and fleshy macroalgae. We measured the abundance of sea urchins (biomass density), kelp (numerical density) and fish (Catch per unit effort) at four islands in the mid-1980s (when otters were abundant at two of the islands and rare at the two others) and in 2000 (after otters had become rare at all four islands). Our fish studies focused on rock greenling (Hexagrammos lagocephalus), the numerically dominant species in this region. In the mid-1980s, the two islands with high-density otter populations supported dense kelp forests, relatively few urchins, and abundant rock greenling whereas the opposite pattern (abundant urchins, sparse kelp forests, and relatively few rock greenling) occurred at islands where otters were rare. In the 2000, the abundances of urchins, kelp and greenling were grossly unchanged at islands where otters were initially rare but had shifted to the characteristic pattern of otter-free systems at islands where otters were initially abundant. Significant changes in greenling diet occurred between the mid-1980s and the 2000 although the reasons for these changes were difficult to assess because of strong island-specific effects. Whereas urchin-dominated communities supported more diverse fish assemblages than kelp-dominated communities, this was not a simple effect of the otter-induced trophic cascade because all islands supported more diverse fish assemblages in 2000 than in the mid-1980s. ?? Springer-Verlag 2005.

  11. Influence of habitat degradation on fish replenishment

    NASA Astrophysics Data System (ADS)

    McCormick, M. I.; Moore, J. A. Y.; Munday, P. L.

    2010-09-01

    Temperature-induced coral bleaching is a major threat to the biodiversity of coral reef ecosystems. While reductions in species diversity and abundance of fish communities have been documented following coral bleaching, the mechanisms that underlie these changes are poorly understood. The present study examined the impacts of coral bleaching on the early life-history processes of coral reef fishes. Daily monitoring of fish settlement patterns found that ten times as many fish settled to healthy coral than sub-lethally bleached coral. Species diversity of settling fishes was least on bleached coral and greatest on dead coral, with healthy coral having intermediate levels of diversity. Laboratory experiments using light-trap caught juveniles showed that different damselfish species chose among healthy, bleached and dead coral habitats using different combinations of visual and olfactory cues. The live coral specialist, Pomacentrus moluccensis, preferred live coral and avoided bleached and dead coral, using mostly visual cues to inform their habitat choice. The habitat generalist, Pomacentrus amboinensis, also preferred live coral and avoided bleached and dead coral but selected these habitats using both visual and olfactory cues. Trials with another habitat generalist, Dischistodus sp., suggested that vision played a significant role. A 20 days field experiment that manipulated densities of P. moluccensis on healthy and bleached coral heads found an influence of fish density on juvenile weight and growth, but no significant influence of habitat quality. These results suggests that coral bleaching will affect settlement patterns and species distributions by influencing the visual and olfactory cues that reef fish larvae use to make settlement choices. Furthermore, increased fish density within the remaining healthy coral habitats could play an important role in influencing population dynamics.

  12. Ecological comparisons of Lake Erie tributaries with elevated incidence of fish tumors

    USGS Publications Warehouse

    Smith, Stephen B.; Blouin, Marc A.; Mac, Michael J.

    1994-01-01

    Ecological comparisons were made between two Lake Erie tributaries (Black and Cuyahoga rivers) with contaminated sediments and elevated rates of tumors in fish populations and a third, relatively unpolluted, reference tributary, the Huron River. Fish populations, benthic invertebrates, and sediments were evaluated in all three Ohio rivers. Community structure analyses indicated similar total densities but lower species diversity for fish and benthic invertebrates in the contaminated rivers when compared with the reference river. Growth rates in fish from the contaminated areas were either similar to or higher than those offish from the reference site. Brown bullhead (Ameiurus nebulosus) from the two contaminated tributaries exhibited 51% (Black River) and 45% (Cuyahoga River) incidence of liver lesions (neoplastic and preneoplastic) as compared with a 4% incidence of liver lesions in brown bullhead from the reference river (Huron River). Incidence of external abnormalities on brown bullhead was 54% (Black River) and 73% (Cuyahoga River) as compared with a 14% incidence on fish from the Huron River. On a regional basis, incidence of external abnormalities on particular benthic fish species may be an effective method to quickly indicate areas for more intensive contaminant studies.

  13. Larval gizzard shad characteristics in Lake Oahe, South Dakota: A species at the northern edge of its range

    USGS Publications Warehouse

    Fincel, Mark J.; Chipps, Steven R.; Graeb, Brian D. S.; Edwards, Kris R.

    2013-01-01

    Gizzard shad, Dorosoma cepedianum, have generally been restricted to the lower Missouri River impoundments in South Dakota. In recent years, gizzard shad numbers have increased in Lake Oahe, marking the northern-most natural population. These increases could potentially affect recreational fishes. Specifically, questions arise about larval gizzard shad growth dynamics and if age-0 gizzard shad in Lake Oahe will exhibit fast or slow growth, both of which can have profound effects on piscivore populations in this reservoir. In this study, we evaluated larval gizzard shad hatch timing, growth, and density in Lake Oahe. We collected larval gizzard shad from six sites from May to July 2008 and used sagittal otoliths to estimate the growth and back-calculate the hatch date. We found that larval gizzard shad hatched earlier in the upper part of the reservoir compared to the lower portion and that hatch date appeared to correspond to warming water temperatures. The peak larval gizzard shad density ranged from 0.6 to 33.6 (#/100 m3) and varied significantly among reservoir sites. Larval gizzard shad growth ranged from 0.24 to 0.57 (mm/d) and differed spatially within the reservoir. We found no relationship between the larval gizzard shad growth or density and small- or large-bodied zooplankton density (p > 0.05). As this population exhibits slow growth and low densities, gizzard shad should remain a suitable forage option for recreational fishes in Lake Oahe.

  14. Overestimating Fish Counts by Non-Instantaneous Visual Censuses: Consequences for Population and Community Descriptions

    PubMed Central

    Ward-Paige, Christine; Mills Flemming, Joanna; Lotze, Heike K.

    2010-01-01

    Background Increasingly, underwater visual censuses (UVC) are used to assess fish populations. Several studies have demonstrated the effectiveness of protected areas for increasing fish abundance or provided insight into the natural abundance and structure of reef fish communities in remote areas. Recently, high apex predator densities (>100,000 individuals·km−2) and biomasses (>4 tonnes·ha−1) have been reported for some remote islands suggesting the occurrence of inverted trophic biomass pyramids. However, few studies have critically evaluated the methods used for sampling conspicuous and highly mobile fish such as sharks. Ideally, UVC are done instantaneously, however, researchers often count animals that enter the survey area after the survey has started, thus performing non-instantaneous UVC. Methodology/Principal Findings We developed a simulation model to evaluate counts obtained by divers deploying non-instantaneous belt-transect and stationary-point-count techniques. We assessed how fish speed and survey procedure (visibility, diver speed, survey time and dimensions) affect observed fish counts. Results indicate that the bias caused by fish speed alone is huge, while survey procedures had varying effects. Because the fastest fishes tend to be the largest, the bias would have significant implications on their biomass contribution. Therefore, caution is needed when describing abundance, biomass, and community structure based on non-instantaneous UVC, especially for highly mobile species such as sharks. Conclusions/Significance Based on our results, we urge that published literature state explicitly whether instantaneous counts were made and that survey procedures be accounted for when non-instantaneous counts are used. Using published density and biomass values of communities that include sharks we explore the effect of this bias and suggest that further investigation may be needed to determine pristine shark abundances and the existence of inverted biomass pyramids. Because such studies are used to make important management and conservation decisions, incorrect estimates of animal abundance and biomass have serious and significant implications. PMID:20661304

  15. Determining Individual Variation in Growth and Its Implication for Life-History and Population Processes Using the Empirical Bayes Method

    PubMed Central

    Vincenzi, Simone; Mangel, Marc; Crivelli, Alain J.; Munch, Stephan; Skaug, Hans J.

    2014-01-01

    The differences in demographic and life-history processes between organisms living in the same population have important consequences for ecological and evolutionary dynamics. Modern statistical and computational methods allow the investigation of individual and shared (among homogeneous groups) determinants of the observed variation in growth. We use an Empirical Bayes approach to estimate individual and shared variation in somatic growth using a von Bertalanffy growth model with random effects. To illustrate the power and generality of the method, we consider two populations of marble trout Salmo marmoratus living in Slovenian streams, where individually tagged fish have been sampled for more than 15 years. We use year-of-birth cohort, population density during the first year of life, and individual random effects as potential predictors of the von Bertalanffy growth function's parameters k (rate of growth) and (asymptotic size). Our results showed that size ranks were largely maintained throughout marble trout lifetime in both populations. According to the Akaike Information Criterion (AIC), the best models showed different growth patterns for year-of-birth cohorts as well as the existence of substantial individual variation in growth trajectories after accounting for the cohort effect. For both populations, models including density during the first year of life showed that growth tended to decrease with increasing population density early in life. Model validation showed that predictions of individual growth trajectories using the random-effects model were more accurate than predictions based on mean size-at-age of fish. PMID:25211603

  16. The effects of regional angling effort, angler behavior, and harvesting efficiency on landscape patterns of overfishing.

    PubMed

    Hunt, Len M; Arlinghaus, Robert; Lester, Nigel; Kushneriuk, Rob

    2011-10-01

    We used a coupled social-ecological model to study the landscape-scale patterns emerging from a mobile population of anglers exploiting a spatially structured walleye (Sander vitreus) fishery. We systematically examined how variations in angler behaviors (i.e., relative importance of walleye catch rate in guiding fishing site choices), harvesting efficiency (as implied by varying degrees of inverse density-dependent catchability of walleye), and angler population size affected the depletion of walleye stocks across 157 lakes located near Thunder Bay (Ontario, Canada). Walleye production biology was calibrated using lake-specific morphometric and edaphic features, and angler fishing site choices were modeled using an empirically grounded multi-attribute utility function. We found support for the hypothesis of sequential collapses of walleye stocks across the landscape in inverse proportionality of travel cost from the urban residence of anglers. This pattern was less pronounced when the regional angler population was low, density-dependent catchability was absent or low, and angler choices of lakes in the landscape were strongly determined by catch rather than non-catch-related attributes. Thus, our study revealed a systematic pattern of high catch importance reducing overfishing potential at low and aggravating overfishing potential at high angler population sizes. The analyses also suggested that density-dependent catchability might have more serious consequences for regional overfishing states than variations in angler behavior. We found little support for the hypotheses of systematic overexploitation of the most productive walleye stocks and homogenized catch-related qualities among lakes sharing similar access costs to anglers. Therefore, one should not expect anglers to systematically exploit the most productive fisheries or to equalize catch rates among lakes through their mobility and other behaviors. This study underscores that understanding landscape overfishing dynamics involves a careful appreciation of angler population size and how it interacts with the attributes that drive angler behaviors and depensatory mechanisms such as inverse density-dependent catchability. Only when all of these ingredients are considered and understood can one derive reasonably predictable patterns of overfishing in the landscape. These patterns range from self-regulating systems with low levels of regional fishing pressure to sequential collapse of walleye fisheries from the origin of angling effort.

  17. Correlation Between Existence of Reef Sharks with Abundance of Reef Fishes in South Waters of Morotai Island (North Moluccas)

    NASA Astrophysics Data System (ADS)

    Mukharror, Darmawan Ahmad; Tiara Baiti, Isnaini; Ichsan, Muhammad; Pridina, Niomi; Triutami, Sanny

    2017-10-01

    Despite increasing academic research citation on biology, abundance, and the behavior of the blacktip reef sharks, the influence of reef fish population on the density of reef sharks: Carcharhinus melanopterus and Triaenodon obesus population in its habitat were largely unassessed. This present study examined the correlation between abundance of reef fishes family/species with the population of reef sharks in Southern Waters of Morotai Island. The existence of reef sharks was measured with the Audible Stationary Count (ASC) methods and the abundance of reef fishes was surveyed using Underwater Visual Census (UVC) combined with Diver Operated Video (DOV) census. The coefficient of Determination (R2) was used to investigate the degree of relationships between sharks and the specific reef fishes species. The research from 8th April to 4th June 2015 showed the strong positive correlations between the existence of reef sharks with abundance of reef fishes. The correlation values between Carcharhinus melanopterus/Triaenodon obesus with Chaetodon auriga was 0.9405, blacktip/whitetip reef sharks versus Ctenochaetus striatus was 0.9146, and Carcharhinus melanopterus/Triaenodon obesus to Chaetodon kleinii was 0.8440. As the shark can be worth more alive for shark diving tourism than dead in a fish market, the abundance of these reef fishes was important as an early indication parameter of shark existence in South Water of Morotai Island. In the long term, this highlights the importance of reef fishes abundance management in Morotai Island’s Waters to enable the establishment of appropriate and effective reef sharks conservation.

  18. Modelling the Influence of Long-Term Hydraulic Conditions on Juvenile Salmon Habitats in AN Upland Scotish River

    NASA Astrophysics Data System (ADS)

    Fabris, L.; Malcolm, I.; Millidine, K. J.; Buddendorf, B.; Tetzlaff, D.; Soulsby, C.

    2015-12-01

    Wild Atlantic salmon populations in Scottish rivers constitute an important economic and recreational resource, as well as being a key component of biodiversity. Salmon have very specific habitat requirements at different life stages and their distribution is therefore strongly influenced by a complex suite of biological and physical controls. Previous research has shown that stream hydrodynamics and channel morphology have a strong influence on the distribution and density of juvenile salmon. Here, we utilise a unique 20 year data set of spatially distributed juvenile salmon densities derived from annual electro-fishing surveys in an upland Scottish river. We examine to what extent the spatial and temporal variability of in-stream hydraulics regulates the spatial and temporal variability in the performance and density of juvenile salmon. A 2-D hydraulic model (River2D) is used to simulate water velocity and water depth under different flow conditions for seven different electro-fishing sites. The selected sites represent different hydromorphological environments including plane-bed, step-pool and pool riffle reaches. The bathymetry of each site was characterised using a total station providing an accurate DTM of the bed, and hydraulic simulations were driven by 20 year stream flow records. Habitat suitability curves, based on direct observations during electro-fishing surveys, were produced for a range of hydraulic indices for juvenile salmon. The hydraulic simulations showed marked spatial differences in juvenile habitat quality both within and between reaches. They also showed marked differences both within and between years. This is most evident in extreme years with wet summers when salmon feeding opportunities may be constrained. Integration of hydraulic habitat models, with fish preference curves and the long term hydrological data allows us to assess whether long-term changes in hydroclimate may be affecting juvenile salmonid populations in the study stream.Wild Atlantic salmon populations in Scottish rivers constitute an important economic and recreational resource, as well as being a key component of biodiversity. Salmon have very specific habitat requirements at different life stages and their distribution is therefore strongly influenced by a complex suite of biological and physical controls. Previous research has shown that stream hydrodynamics and channel morphology have a strong influence on the distribution and density of juvenile salmon. Here, we utilise a unique 20 year data set of spatially distributed juvenile salmon densities derived from annual electro-fishing surveys in an upland Scottish river. We examine to what extent the spatial and temporal variability of in-stream hydraulics regulates the spatial and temporal variability in the performance and density of juvenile salmon. A 2-D hydraulic model (River2D) is used to simulate water velocity and water depth under different flow conditions for seven different electro-fishing sites. The selected sites represent different hydromorphological environments including plane-bed, step-pool and pool riffle reaches. The bathymetry of each site was characterised using a total station providing an accurate DTM of the bed, and hydraulic simulations were driven by 20 year stream flow records. Habitat suitability curves, based on direct observations during electro-fishing surveys, were produced for a range of hydraulic indices for juvenile salmon. The hydraulic simulations showed marked spatial differences in juvenile habitat quality both within and between reaches. They also showed marked differences both within and between years. This is most evident in extreme years with wet summers when salmon feeding opportunities may be constrained. Integration of hydraulic habitat models, with fish preference curves and the long term hydrological data allows us to assess whether long-term changes in hydroclimate may be affecting juvenile salmonid populations in the study stream.

  19. Population ecology and habitat preferences of juvenile flounder Platichthys flesus (Actinopterygii: Pleuronectidae) in a temperate estuary

    NASA Astrophysics Data System (ADS)

    Souza, Allan T.; Dias, Ester; Nogueira, Ana; Campos, Joana; Marques, João C.; Martins, Irene

    2013-05-01

    The European flounder Platichthys flesus is a widely distributed epibenthic species and an important component of demersal fish assemblages in the European Atlantic coastal waters. In Portuguese estuaries, this species reaches high densities, especially in Minho estuary (NW Iberian Peninsula, Europe), potentially playing an important role in the system's ecology. In this context, the population structure, production and the habitat use of juvenile P. flesus were investigated. Sampling took place monthly, from February 2009 until July 2010 along the entire estuarine gradient (5 sampling stations distributed in the first 29 km from the river mouth, with S1 located near the river mouth, S2 inside a salt marsh, S3 in a salinity transition zone, while S4 and S5 were located in the upper estuary). Flounder's density varied significantly among sampling stations and seasons (two-way PERMANOVA: p < 0.001), with the majority of the individuals being found during the spring (30.1%) and in S3 and S4 (72.6%). Males and females presented an even distribution, with a higher proportion of males observed during summer. Fish length also differed among sampling stations and seasons (two-way PERMANOVA: p < 0.001), with larger fishes being found in S1 during the autumn (168.50 ± 59.50 mm) and the smallest in S4 during the spring (33.80 ± 3.12 mm). Size classes associated differently with environmental variables, with larger juveniles being more abundant in the downstream areas of the estuary, whereas smaller juveniles were related to higher water temperatures, suggesting a habitat segregation of P. flesus of different sizes. The fish condition of P. flesus in Minho estuary was higher than in other systems, probably due to the dominance of juveniles on the population. Also, the densities found in this estuary were up to 32 times higher than in other locations, suggesting that Minho estuary is an important nursery area for the species. The estimated secondary production of P. flesus was lower than previous studies acknowledged in the system (0.037 g.WWm- 2.year- 1), indicating that the production estimates of this species in estuaries can vary considerably depending on of several factors such as the sampling year and strategy, population and fish size.

  20. Habitat-Specific Density and Diet of Rapidly Expanding Invasive Red Lionfish, Pterois volitans, Populations in the Northern Gulf of Mexico

    PubMed Central

    Dahl, Kristen A.; Patterson, William F.

    2014-01-01

    Invasive Indo-Pacific red lionfish, Pterois volitans, were first reported in the northern Gulf of Mexico (nGOM) in summer 2010. To examine potential impacts on native reef fish communities, lionfish density and size distributions were estimated from fall 2010 to fall 2013 with a remotely operated vehicle at natural (n = 16) and artificial (n = 22) reef sites. Lionfish (n = 934) also were sampled via spearfishing to examine effects of habitat type, season, and fish size on their diet and trophic ecology. There was an exponential increase in lionfish density at both natural and artificial reefs over the study period. By fall 2013, mean lionfish density at artificial reefs (14.7 fish 100 m−2) was two orders of magnitude higher than at natural reefs (0.49 fish 100 m−2), and already was among the highest reported in the western Atlantic. Lionfish diet was significantly different among habitats, seasons, and size classes, with smaller (<250 mm total length) fish consuming more benthic invertebrates and the diet of lionfish sampled from artificial reefs being composed predominantly of non-reef associated prey. The ontogenetic shift in lionfish feeding ecology was consistent with δ15N values of white muscle tissue that were positively related to total length. Overall, diet results indicate lionfish are generalist mesopredators in the nGOM that become more piscivorous at larger size. However, lionfish diet was much more varied at artificial reef sites where they clearly were foraging on open substrates away from reef structure. These results have important implications for tracking the lionfish invasion in the nGOM, as well as estimating potential direct and indirect impacts on native reef fish communities in this region. PMID:25170922

  1. Habitat-specific density and diet of rapidly expanding invasive red lionfish, Pterois volitans, populations in the northern Gulf of Mexico.

    PubMed

    Dahl, Kristen A; Patterson, William F

    2014-01-01

    Invasive Indo-Pacific red lionfish, Pterois volitans, were first reported in the northern Gulf of Mexico (nGOM) in summer 2010. To examine potential impacts on native reef fish communities, lionfish density and size distributions were estimated from fall 2010 to fall 2013 with a remotely operated vehicle at natural (n = 16) and artificial (n = 22) reef sites. Lionfish (n = 934) also were sampled via spearfishing to examine effects of habitat type, season, and fish size on their diet and trophic ecology. There was an exponential increase in lionfish density at both natural and artificial reefs over the study period. By fall 2013, mean lionfish density at artificial reefs (14.7 fish 100 m(-2)) was two orders of magnitude higher than at natural reefs (0.49 fish 100 m(-2)), and already was among the highest reported in the western Atlantic. Lionfish diet was significantly different among habitats, seasons, and size classes, with smaller (<250 mm total length) fish consuming more benthic invertebrates and the diet of lionfish sampled from artificial reefs being composed predominantly of non-reef associated prey. The ontogenetic shift in lionfish feeding ecology was consistent with δ15N values of white muscle tissue that were positively related to total length. Overall, diet results indicate lionfish are generalist mesopredators in the nGOM that become more piscivorous at larger size. However, lionfish diet was much more varied at artificial reef sites where they clearly were foraging on open substrates away from reef structure. These results have important implications for tracking the lionfish invasion in the nGOM, as well as estimating potential direct and indirect impacts on native reef fish communities in this region.

  2. Invasion and Colonisation of a Tropical Stream by an Exotic Loricariid Fish: Indices of Gradual Displacement of the Native Common Pleco (Hypostomus punctatus) by the Red Fin Dwarf Pleco (Parotocinclus maculicauda) over Fifteen Years

    PubMed Central

    Mazzoni, Rosana; Costa da Silva, Raquel; Pinto, Míriam Plaza

    2015-01-01

    The introduction of invasive species represents a major threat to the integrity of stream-dwelling fish populations worldwide, and this issue is receiving increasing attention from scientists, in particular because of potential impact on biodiversity. In this study, we analysed the dispersal of an exotic loricariid fish the red fin dwarf pleco (Parotocinclus maculicauda) in a stream of the Atlantic Forest biome in coastal south-eastern Brazil and evaluated the effects of this invasion on the native loricariid common pleco (Hypostomus punctatus). Specimens were collected at eight sites located along the course of the stream over a 15-year period. The distribution and density of the two species were determined by the Successive Removal Method. The introduction of P. maculicauda occurred in the medium sector of the stream, and during the course of the study, the species dispersed to new sites further upstream. By the end of the study, it was found at all points upstream from the original site. Hypostomus punctatus was registered at all sample sites both before and after the introduction of P. maculicauda, but its density decreased at all upstream sites after the arrival of the exotic species. Our analysis shows that colonisation by P. maculicauda seems to have a negative effect on H. punctatus densities. The maintenance of H. punctatus densities at the sites not colonised by P. maculicauda reinforces the conclusion that the colonisation of the stream by the exotic species had deleterious effects on the density of the resident H. punctatus populations, either by direct or indirect action. PMID:26440412

  3. Impact of entrainment and impingement on fish populations in the Hudson River Estuary. Volume II. Impingement impact analyses, evaluations of alternative screening devices, and critiques of utility testimony relating to density-dependent growth, the age-composition of the striped bass spawning stock, and the LMS real-time life cycle model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnthouse, L. W.; Van Winkle, W.; Golumbek, J.

    1982-04-01

    This volume includes a series of four exhibits relating to impacts of impingement on fish populations, together with a collection of critical evaluations of testimony prepared for the utilities by their consultants. The first exhibit is a quantitative evaluation of four sources of bias (collection efficiency, reimpingement, impingement on inoperative screens, and impingement survival) affecting estimates of the number of fish killed at Hudson River power plants. The two following exhibits contain, respectively, a detailed assessment of the impact of impingement on the Hudson River white perch population and estimates of conditional impingement mortality rates for seven Hudson River fishmore » populations. The fourth exhibit is an evaluation of the engineering feasibility and potential biological effectiveness of several types of modified intake structures proposed as alternatives to cooling towers for reducing impingement impacts. The remainder of Volume II consists of critical evaluations of the utilities' empirical evidence for the existence of density-dependent growth in young-of-the-year striped bass and white perch, of their estimate of the age-composition of the striped bass spawning stock in the Hudson River, and of their use of the Lawler, Matusky, and Skelly (LMS) Real-Time Life Cycle Model to estimate the impact of entrainment and impingement on the Hudson River striped bass population.« less

  4. Rapid evolution leads to differential population dynamics and top-down control in resurrected Daphnia populations.

    PubMed

    Goitom, Eyerusalem; Kilsdonk, Laurens J; Brans, Kristien; Jansen, Mieke; Lemmens, Pieter; De Meester, Luc

    2018-01-01

    There is growing evidence of rapid genetic adaptation of natural populations to environmental change, opening the perspective that evolutionary trait change may subsequently impact ecological processes such as population dynamics, community composition, and ecosystem functioning. To study such eco-evolutionary feedbacks in natural populations, however, requires samples across time. Here, we capitalize on a resurrection ecology study that documented rapid and adaptive evolution in a natural population of the water flea Daphnia magna in response to strong changes in predation pressure by fish, and carry out a follow-up mesocosm experiment to test whether the observed genetic changes influence population dynamics and top-down control of phytoplankton. We inoculated populations of the water flea D. magna derived from three time periods of the same natural population known to have genetically adapted to changes in predation pressure in replicate mesocosms and monitored both Daphnia population densities and phytoplankton biomass in the presence and absence of fish. Our results revealed differences in population dynamics and top-down control of algae between mesocosms harboring populations from the time period before, during, and after a peak in fish predation pressure caused by human fish stocking. The differences, however, deviated from our a priori expectations. An S-map approach on time series revealed that the interactions between adults and juveniles strongly impacted the dynamics of populations and their top-down control on algae in the mesocosms, and that the strength of these interactions was modulated by rapid evolution as it occurred in nature. Our study provides an example of an evolutionary response that fundamentally alters the processes structuring population dynamics and impacts ecosystem features.

  5. Population viability analysis for endangered Roanoke logperch

    USGS Publications Warehouse

    Roberts, James H.; Angermeier, Paul; Anderson, Gregory B.

    2016-01-01

    A common strategy for recovering endangered species is ensuring that populations exceed the minimum viable population size (MVP), a demographic benchmark that theoretically ensures low long-term extinction risk. One method of establishing MVP is population viability analysis, a modeling technique that simulates population trajectories and forecasts extinction risk based on a series of biological, environmental, and management assumptions. Such models also help identify key uncertainties that have a large influence on extinction risk. We used stochastic count-based simulation models to explore extinction risk, MVP, and the possible benefits of alternative management strategies in populations of Roanoke logperch Percina rex, an endangered stream fish. Estimates of extinction risk were sensitive to the assumed population growth rate and model type, carrying capacity, and catastrophe regime (frequency and severity of anthropogenic fish kills), whereas demographic augmentation did little to reduce extinction risk. Under density-dependent growth, the estimated MVP for Roanoke logperch ranged from 200 to 4200 individuals, depending on the assumed severity of catastrophes. Thus, depending on the MVP threshold, anywhere from two to all five of the logperch populations we assessed were projected to be viable. Despite this uncertainty, these results help identify populations with the greatest relative extinction risk, as well as management strategies that might reduce this risk the most, such as increasing carrying capacity and reducing fish kills. Better estimates of population growth parameters and catastrophe regimes would facilitate the refinement of MVP and extinction-risk estimates, and they should be a high priority for future research on Roanoke logperch and other imperiled stream-fish species.

  6. How could discharge management affect Florida spring fish assemblage structure?

    PubMed

    Work, Kirsten; Codner, Keneil; Gibbs, Melissa

    2017-08-01

    Freshwater bodies are increasingly affected by reductions in water quantity and quality and by invasions of exotic species. To protect water quantity and maintain the ecological integrity of many water bodies in central Florida, a program of adopting Minimum Flows and Levels (MFLs) has begun for both lentic and lotic waters. The purpose of this study was to determine whether there were relationships between discharge and stage, water quality, and biological parameters for Volusia Blue Spring, a first magnitude spring (discharge > 380,000 m 3 day -1 or 100 mgd) for which an MFL program was adopted in 2006. Over the course of fourteen years, we assessed fish density and diversity weekly, monthly, or seasonally with seine and snorkel counts. We evaluated annual changes in the assemblages for relationships with water quantity and quality. Low discharge and dissolved oxygen combined with high stage and conductivity produced a fish population with a lower density and diversity in 2014 than in previous years. Densities of fish taxonomic/functional groups also were low in 2014 and measures of water quantity were significant predictors of fish assemblage structure. As a result of the strong relationships between variation in discharge and an array of chemical and biological characteristics of the spring, we conclude that maintaining the historical discharge rate is important for preserving the ecological integrity of Volusia Blue Spring. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Evidence for predatory control of the invasive round goby

    USGS Publications Warehouse

    Madenjian, C.P.; Stapanian, M.A.; Witzel, L.D.; Einhouse, D.W.; Pothoven, S.A.; Whitford, H.L.

    2011-01-01

    We coupled bioenergetics modeling with bottom trawl survey results to evaluate the capacity of piscivorous fish in eastern Lake Erie to exert predatory control of the invading population of round goby Neogobius melanostomus. In the offshore (>20 m deep) waters of eastern Lake Erie, burbot Lota lota is a native top predator, feeding on a suite of prey fishes. The round goby invaded eastern Lake Erie during the late 1990s, and round goby population size increased dramatically during 1999–2004. According to annual bottom trawl survey results, round goby abundance in offshore waters peaked in 2004, but then declined during 2004–2008. Coincidentally, round goby became an important component of burbot diet beginning in 2003. Using bottom trawling and gill netting, we estimated adult burbot abundance and age structure in eastern Lake Erie during 2007. Diet composition and energy density of eastern Lake Erie burbot were also determined during 2007. This information, along with estimates of burbot growth, burbot mortality, burbot water temperature regime, and energy densities of prey fish from the literature, were incorporated into a bioenergetics model application to estimate annual consumption of round goby by the adult burbot population. Results indicated that the adult burbot population in eastern Lake Erie annually consumed 1,361 metric tons of round goby. Based on the results of bottom trawling, we estimated the biomass of yearling and older round goby in offshore waters eastern Lake Erie during 2007–2008 to be 2,232 metric tons. Thus, the adult burbot population was feeding on round goby at an annual rate equal to 61% of the estimated round goby standing stock. We concluded that the burbot population had high potential to exert predatory control on round goby in offshore waters of eastern Lake Erie.

  8. Spatially explicit measures of production of young alewives in Lake Michigan: Linkage between essential fish habitat and recruitment

    USGS Publications Warehouse

    Hook, Tomas O.; Rutherford, Edward S.; Brines, Shannon J.; Mason, Doran M.; Schwab, David J.; McCormick, Michael; Desorcie, Timothy J.

    2003-01-01

    The identification and protection of essential habitats for early life stages of fishes are necessary to sustain fish stocks. Essential fish habitat for early life stages may be defined as areas where fish densities, growth, survival, or production rates are relatively high. To identify critical habitats for young-of-year (YOY) alewives (Alosa pseud oharengus) in Lake Michigan, we integrated bioenergetics models with GIS (Geographic Information Systems) to generate spatially explicit estimates of potential population production (an index of habitat quality). These estimates were based upon YOY alewife bioenergetic growth rate potential and their salmonine predators’ consumptive demand. We compared estimates of potential population production to YOY alewife yield (an index of habitat importance). Our analysis suggested that during 1994–1995, YOY alewife habitat quality and yield varied widely throughout Lake Michigan. Spatial patterns of alewife yield were not significantly correlated to habitat quality. Various mechanisms (e.g., predator migrations, lake circulation patterns, alternative strategies) may preclude YOY alewives from concentrating in areas of high habitat quality in Lake Michigan.

  9. [Changes in fish communities of coral reefs at Sabana-Camagüey Archipelago, Cuba].

    PubMed

    Claro, Rodolfo; Cantelar, Karel; Amargós, Fabián Pina; García-Arteaga, Juan P

    2007-06-01

    A comparison of fish community structure in the Sabana-Camagüey Archipelago (1988-1989 and 2000) using visual census surveys (eight belt transects 2x50 m in each site) suggests a notable decrease on species richness, and a two thirds reduction in fish density and biomass on coral reefs. This decrease in fish populations may be related to the alarming decrease of scleractinian coral cover, and an enormous proliferation of algae, which currently covers 70-80% of the hard substrate, impeding the recovery of corals and other benthic organisms. High coral mortalities occurred between the study periods, which correlate with the high temperatures caused by the ENSO events of 1995, 1997 and 1998. These events caused massive bleaching of corals and subsequent algae overgrowth. Evidence of nutrient enrichment from the inner lagoons and overfishing are also present. Collectively, these effects have provoked a marked degradation of reef habitats. These changes appear to have affected the availability of refuges and food for fishes, and may be constraining individual growth potential and population size.

  10. Marine reserves and reproductive biomass: a case study of a heavily targeted reef fish.

    PubMed

    Taylor, Brett M; McIlwain, Jennifer L; Kerr, Alexander M

    2012-01-01

    Recruitment overfishing (the reduction of a spawning stock past a point at which the stock can no longer replenish itself) is a common problem which can lead to a rapid and irreversible fishery collapse. Averting this disaster requires maintaining a sufficient spawning population to buffer stochastic fluctuations in recruitment of heavily harvested stocks. Optimal strategies for managing spawner biomass are well developed for temperate systems, yet remain uncertain for tropical fisheries, where the danger of collapse from recruitment overfishing looms largest. In this study, we explored empirically and through modeling, the role of marine reserves in maximizing spawner biomass of a heavily exploited reef fish, Lethrinus harak around Guam, Micronesia. On average, spawner biomass was 16 times higher inside the reserves compared with adjacent fished sites. Adult density and habitat-specific mean fish size were also significantly greater. We used these data in an age-structured population model to explore the effect of several management scenarios on L. harak demography. Under minimum-size limits, unlimited extraction and all rotational-closure scenarios, the model predicts that preferential mortality of larger and older fish prompt dramatic declines in spawner biomass and the proportion of male fish, as well as considerable declines in total abundance. For rotational closures this occurred because of the mismatch between the scales of recovery and extraction. Our results highlight how alternative management scenarios fall short in comparison to marine reserves in preserving reproductively viable fish populations on coral reefs.

  11. Fishes and aquatic habitats of the Orinoco River Basin: diversity and conservation.

    PubMed

    Lasso, C A; Machado-Allison, A; Taphorn, D C

    2016-07-01

    About 1000 freshwater fishes have been found so far in the Orinoco River Basin of Venezuela and Colombia. This high ichthyological diversity reflects the wide range of landscapes and aquatic ecosystems included in the basin. Mountain streams descend from the high Andes to become rapid-flowing foothill rivers that burst out upon vast savannah flatlands where they slowly make their way to the sea. These white-water rivers are heavily laden with sediments from the geologically young Andes. Because their sediment deposits have formed the richest soils of the basin, they have attracted the highest density of human populations, along with the greatest levels of deforestation, wildfires, agricultural biocides and fertilizers, sewage and all the other impacts associated with urban centres, agriculture and cattle ranching. In the southern portion of the basin, human populations are much smaller, where often the only inhabitants are indigenous peoples. The ancient rocks and sands of the Guiana Shield yield clear and black water streams of very different quality. Here, sediment loads are miniscule, pH is very acid and fish biomass is only a fraction of that observed in the rich Andean tributaries to the north. For each region of the basin, the current state of knowledge about fish diversity is assessed, fish sampling density evaluated, the presence of endemic species and economically important species (for human consumption or ornamental purposes) described and gaps in knowledge are pointed out. Current trends in the fishery for human consumption are analysed, noting that stocks of many species are in steep decline, and that current fishing practices are not sustainable. Finally, the major impacts and threats faced by the fishes and aquatic ecosystems of the Orinoco River Basin are summarized, and the creation of bi-national commissions to promote standardized fishing laws in both countries is recommended. © 2016 The Fisheries Society of the British Isles.

  12. Population viability of the Snake River chinook salmon (Oncorhynchus tshawytscha)

    USGS Publications Warehouse

    Emlen, John M.

    1995-01-01

    In the presence of historical data, population viability models of intermediate complexity can be parameterized and utilized to project the consequences of various management actions for endangered species. A general stochastic population dynamics model with density feedback, age structure, and autocorrelated environmental fluctuations was constructed and parameterized for best fit over 36 years of spring chinook salmon (Oncorhynchus tshawytscha) redd count data in five Idaho index streams. Simulations indicate that persistence of the Snake River spring chinook salmon population depends primarily on density-independent mortality. Improvement of rearing habitat, predator control, reduced fishing pressure, and improved dam passage all would alleviate density-independent mortality. The current value of the Ricker α should provide for a continuation of the status quo. A recovery of the population to 1957–1961 levels within 100 years would require an approximately 75% increase in survival and (or) fecundity. Manipulations of the Ricker β are likely to have little or no effect on persistence versus extinction, but considerable influence on population size.

  13. Ecosystem experiment reveals benefits of natural and simulated beaver dams to a threatened population of steelhead (Oncorhynchus mykiss)

    PubMed Central

    Bouwes, Nicolaas; Weber, Nicholas; Jordan, Chris E.; Saunders, W. Carl; Tattam, Ian A.; Volk, Carol; Wheaton, Joseph M.; Pollock, Michael M.

    2016-01-01

    Beaver have been referred to as ecosystem engineers because of the large impacts their dam building activities have on the landscape; however, the benefits they may provide to fluvial fish species has been debated. We conducted a watershed-scale experiment to test how increasing beaver dam and colony persistence in a highly degraded incised stream affects the freshwater production of steelhead (Oncorhynchus mykiss). Following the installation of beaver dam analogs (BDAs), we observed significant increases in the density, survival, and production of juvenile steelhead without impacting upstream and downstream migrations. The steelhead response occurred as the quantity and complexity of their habitat increased. This study is the first large-scale experiment to quantify the benefits of beavers and BDAs to a fish population and its habitat. Beaver mediated restoration may be a viable and efficient strategy to recover ecosystem function of previously incised streams and to increase the production of imperiled fish populations. PMID:27373190

  14. Ocean acidification alters the otoliths of a pantropical fish species with implications for sensory function.

    PubMed

    Bignami, Sean; Enochs, Ian C; Manzello, Derek P; Sponaugle, Su; Cowen, Robert K

    2013-04-30

    Ocean acidification affects a wide diversity of marine organisms and is of particular concern for vulnerable larval stages critical to population replenishment and connectivity. Whereas it is well known that ocean acidification will negatively affect a range of calcareous taxa, the study of fishes is more limited in both depth of understanding and diversity of study species. We used new 3D microcomputed tomography to conduct in situ analysis of the impact of ocean acidification on otolith (ear stone) size and density of larval cobia (Rachycentron canadum), a large, economically important, pantropical fish species that shares many life history traits with a diversity of high-value, tropical pelagic fishes. We show that 2,100 μatm partial pressure of carbon dioxide (pCO2) significantly increased not only otolith size (up to 49% greater volume and 58% greater relative mass) but also otolith density (6% higher). Estimated relative mass in 800 μatm pCO2 treatments was 14% greater, and there was a similar but nonsignificant trend for otolith size. Using a modeling approach, we demonstrate that these changes could affect auditory sensitivity including a ∼50% increase in hearing range at 2,100 μatm pCO2, which may alter the perception of auditory information by larval cobia in a high-CO2 ocean. Our results indicate that ocean acidification has a graded effect on cobia otoliths, with the potential to substantially influence the dispersal, survival, and recruitment of a pelagic fish species. These results have important implications for population maintenance/replenishment, connectivity, and conservation efforts for other valuable fish stocks that are already being deleteriously impacted by overfishing.

  15. Ocean acidification alters the otoliths of a pantropical fish species with implications for sensory function

    PubMed Central

    Bignami, Sean; Enochs, Ian C.; Manzello, Derek P.; Sponaugle, Su; Cowen, Robert K.

    2013-01-01

    Ocean acidification affects a wide diversity of marine organisms and is of particular concern for vulnerable larval stages critical to population replenishment and connectivity. Whereas it is well known that ocean acidification will negatively affect a range of calcareous taxa, the study of fishes is more limited in both depth of understanding and diversity of study species. We used new 3D microcomputed tomography to conduct in situ analysis of the impact of ocean acidification on otolith (ear stone) size and density of larval cobia (Rachycentron canadum), a large, economically important, pantropical fish species that shares many life history traits with a diversity of high-value, tropical pelagic fishes. We show that 2,100 μatm partial pressure of carbon dioxide (pCO2) significantly increased not only otolith size (up to 49% greater volume and 58% greater relative mass) but also otolith density (6% higher). Estimated relative mass in 800 μatm pCO2 treatments was 14% greater, and there was a similar but nonsignificant trend for otolith size. Using a modeling approach, we demonstrate that these changes could affect auditory sensitivity including a ∼50% increase in hearing range at 2,100 μatm pCO2, which may alter the perception of auditory information by larval cobia in a high-CO2 ocean. Our results indicate that ocean acidification has a graded effect on cobia otoliths, with the potential to substantially influence the dispersal, survival, and recruitment of a pelagic fish species. These results have important implications for population maintenance/replenishment, connectivity, and conservation efforts for other valuable fish stocks that are already being deleteriously impacted by overfishing. PMID:23589887

  16. Total mercury and methylmercury in fish fillets, water, and bed sediments from selected streams in the Delaware River basin, New Jersery, New York, and Pennsylvania, 1998-2001

    USGS Publications Warehouse

    Brightbill, Robin A.; Riva-Murray, Karen; Bilger, Michael D.; Byrnes, John D.

    2004-01-01

    Within the Delaware River Basin, fish-tissue samples were analyzed for total mercury (tHg). Water and bed-sediment samples were analyzed for tHg and methylmercury (MeHg), and methylation efficiencies were calculated. This study was part of a National Mercury Pilot Program conducted by the U.S. Geological Survey (USGS). The Delaware River Basin was chosen because it is part of the USGS National Water-Quality Assessment Program that integrates physical, chemical, and biological sampling efforts to determine status and trends in surface-water and ground-water resources. Of the 35 sites in the study, 31 were sampled for fish. The species sampled at these sites include smallmouth bass (Micropterus dolomieu), the target species, and where smallmouth bass could not be collected, brown trout (Salmo trutta), chain pickerel (Esox niger), largemouth bass (Micropterus salmoides), and rock bass (Ambloplites rupestris). There were a total of 32 fish samples; 7 of these exceeded the 0.3 ?g/g (micrograms per gram) wet-weight mercury (Hg) concentration set for human health by the U.S. Environmental Protection Agency and 27 of these exceeded the U.S. Fish and Wildlife Service criteria of 0.1 ?g/g wet weight for the protection of fish-eating birds and wildlife. Basinwide analysis of Hg in fish, water, and bed sediment showed tHg concentration in fillets correlated positively with population density, urban land cover, and impervious land surface. Negative correlations included wetland land cover, septic density, elevation, and latitude. Smallmouth bass from the urban sites had a higher median concentration of tHg than fish from agricultural, low intensity-agricultural, or forested sites. Concentrations of tHg and MeHg in water were higher in samples from the more urbanized areas of the basin and were positively correlated with urbanization and negatively correlated with forested land cover. Methylation efficiency of water was negatively correlated with urbanization. Bed-sediment patterns were similar to those observed in water. Concentrations of tHg were higher in samples from the urbanized areas. In the more forested areas, MeHg concentrations were higher than in other land-use areas. Concentrations of tHg in bed sediment were positively correlated with urbanization factors (population, urban land cover, and impervious land surface) and negatively correlated with forested land cover and elevation. Forested land cover and latitude were positively correlated with concentrations of MeHg. The methylation efficiency was higher in samples from the forested areas and was negatively correlated with urbanization. Analyses within land-use groups showed that tHg concentrations in fish fillets from the urban sites were positively correlated with forested land cover and wetland cover. Urbanization factors within the agricultural group were positively correlated with tHg in fish; concentrations of tHg in fish from sites in the low intensity-agricultural group were negatively correlated with urbanization factors. Within the agricultural land-use group, tHg concentrations in water were negatively correlated with septic density, and MeHg concentrations were negatively correlated with elevation. In the forested and low intensity-agricultural groups, MeHg in water was negatively correlated with forested and agricultural land cover. Methylation efficiency in water also was negatively correlated with forested land cover but positively correlated with agricultural land cover. Bed sediment concentrations of tHg in the forested and low-agricultural groups were positively correlated with agricultural land cover and negatively correlated with forested land cover. Concentrations of MeHg in bed sediment were positively correlated with septic density and drainage area and negatively correlated with forested land cover. Methylation efficiency was negatively correlated with population density, a

  17. Population density-dependent hair cortisol concentrations in rhesus monkeys (Macaca mulatta)

    PubMed Central

    Dettmer, A.M.; Novak, M.A.; Meyer, J.S.; Suomi, S.J.

    2014-01-01

    Summary Population density is known to influence acute measures of hypothalamic-pituitary-adrenal (HPA) axis activity in a variety of species, including fish, deer, birds, and humans. However, the effects of population density on levels of chronic stress are unknown. Given the fact that exposure to chronically elevated levels of circulating glucocorticoids results in a host of health disparities in animals and humans alike, it is important to understand how population density may impact chronic stress. We assessed hair cortisol concentrations (HCCs), which are reliable indicators of chronic HPA axis activity, in rhesus monkeys (Macaca mulatta) to determine the influence of population density on these values. In Experiment 1, we compared HCCs of monkeys living in high-density (HD; 1 monkey/0.87m2) and low-density (LD; 1 monkey/63.37m2) environments (N=236 hair samples) and found that HD monkeys exhibited higher hair cortisol across all age categories (infant, juvenile, young adult, adult, and aged) except infancy and aged (F(5)=4.240, p=0.001), for which differences were nearly significant. HD monkeys also received more severe fight wounds than LD monkeys (χ2=26.053, p<0.001), though no effects of dominance status emerged. In Experiment 2, we examined how HCCs change with fluctuating population levels across five years in the adult LD monkeys (N=155 hair samples) and found that increased population density was significantly positively correlated with HCCs in this semi-naturalistic population (r(s)=0.975, p=0.005). These are the first findings to demonstrate that increased population density is associated with increased chronic, endogenous glucocorticoid exposure in a nonhuman primate species. We discuss the implications of these findings with respect to laboratory research, population ecology, and human epidemiology. PMID:24636502

  18. Population density-dependent hair cortisol concentrations in rhesus monkeys (Macaca mulatta).

    PubMed

    Dettmer, A M; Novak, M A; Meyer, J S; Suomi, S J

    2014-04-01

    Population density is known to influence acute measures of hypothalamic-pituitary-adrenal (HPA) axis activity in a variety of species, including fish, deer, birds, and humans. However, the effects of population density on levels of chronic stress are unknown. Given the fact that exposure to chronically elevated levels of circulating glucocorticoids results in a host of health disparities in animals and humans alike, it is important to understand how population density may impact chronic stress. We assessed hair cortisol concentrations (HCCs), which are reliable indicators of chronic HPA axis activity, in rhesus monkeys (Macaca mulatta) to determine the influence of population density on these values. In Experiment 1, we compared HCCs of monkeys living in high-density (HD; 1 monkey/0.87m(2)) and low-density (LD; 1 monkey/63.37m(2)) environments (N=236 hair samples) and found that HD monkeys exhibited higher hair cortisol across all age categories (infant, juvenile, young adult, adult, and aged) except infancy and aged (F(5)=4.240, p=0.001), for which differences were nearly significant. HD monkeys also received more severe fight wounds than LD monkeys (χ(2)=26.053, p<0.001), though no effects of dominance status emerged. In Experiment 2, we examined how HCCs change with fluctuating population levels across 5 years in the adult LD monkeys (N=155 hair samples) and found that increased population density was significantly positively correlated with HCCs in this semi-naturalistic population (r(s)=0.975, p=0.005). These are the first findings to demonstrate that increased population density is associated with increased chronic, endogenous glucocorticoid exposure in a nonhuman primate species. We discuss the implications of these findings with respect to laboratory research, population ecology, and human epidemiology. Published by Elsevier Ltd.

  19. Use of a storm water retention system for conservation of regionally endangered fishes

    USGS Publications Warehouse

    Schaeffer, Jeffrey S.; Bland, James K.; Janssen, John

    2012-01-01

    Maintaining aquatic biodiversity in urban or suburban areas can be problematic because urban landscapes can be nearly devoid of aquatic habitats other than engineered basins for storm water management. These areas are usually of questionable value for fish, but we examined a case study in which five regionally imperiled fish species were reintroduced into an artificial storm water detention pond and subsequently thrived. Although not a formal experiment, postintroduction survey data suggested that three of the five species maintained high population densities for 10 years after initial stocking, and two persisted in lower numbers. Success was likely due to a combination of unique design features and prior habitat preparation that resulted in clear water conditions that supported dense vegetation. Stocked fish persisted despite occasional bouts of low dissolved oxygen and increased chloride levels resulting from road salt application within the watershed. Transplanted fish served as a source population for both research and further reintroduction experiments. We suggest that, for some fish species, habitat preservation has a middle ground between natural habitats and completely artificial environments that require constant husbandry and that storm water systems could be used to create engineered sanctuaries within the human landscape that have many potential benefits for both humans and fish.

  20. A dynamic landscape model for fish in the Everglades and its application to restoration

    USGS Publications Warehouse

    Gaff, H.D.; DeAngelis, D.L.; Gross, L.J.; Salinas, R.; Shorrosh, M.

    2000-01-01

    A model (ALFISH) for fish functional groups in freshwater marshes of the greater Everglades area of southern Florida has been developed. Its main objective is to assess the spatial pattern of fish densities through time across freshwater marshes. This model has the capability of providing a dynamic measure of the spatially-explicit food resources available to wading birds. ALFISH simulates two functional groups, large and small fish, where the larger ones can prey on the small fish type. Both functional groups are size-structured. The marsh landscape is modeled as 500×500 m spatial cells on a grid across southern Florida. A hydrology model predicts water levels in the spatial cells on 5-day time steps. Fish populations spread across the marsh during flooded conditions and either retreat into refugia (alligator ponds), move to other spatial cells, or die if their cell dries out. ALFISH has been applied to the evaluation of alternative water regulation scenarios under the Central and South Florida Comprehensive Project Review Study. The objective of this Review Study is to compare alternative methods for restoring historical ecological conditions in southern Florida. ALFISH has provided information on which plans are most are likely to increase fish biomass and its availability to wading bird populations.

  1. Examining indirect effects of lake trout recovery

    EPA Science Inventory

    With the recovery of lake trout populations in Lake Superior, there are indications of decreased forage fish abundance and density-dependence in lake trout. In Lake Superior, lean lake trout historically occupied depths < 60 m, and siscowet lake trout occupied depths > 60 m...

  2. An assessment of oil-spill effects on pink salmon populations following the Exxon Valdez oil spill. Part 2: Adults and escapement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maki, A.W.; Brannon, E.J.; Gilbertson, L.G.

    1995-12-31

    This paper presents results of a field program designed to monitor the status of wildstock pink salmon populations in Prince William Sound following the Exxon Valdez oil spill. Field counts of spawning salmon were conducted each year from 1989 through 1992 to test for spill effects o the distribution nd abundance of pink salmon adults spawning in selected streams in the southwestern portion of Prince William Sound, including streams from the most heavily oiled areas. Counts of whole-stream and intertidal escapement density were statistically compared for 40 study streams in 1989 and for a subset of those streams in successivemore » years. Measurements of residual hydrocarbons were made from stream-bed sediments to test for correlations with spawning behavior. Adult pink salmon in the postspill years of 1990 and 1991, progeny of the year classes considered most vulnerable to the oil spill, returned in high numbers, with the wildstock spawners exceeding their parent year returns. In 1989, adult returns reflected the relatively weak run for that year with a mean spawner density of 0.68 fish/m{sup 2} in reference streams and 0.69 fish/m{sup 2} in oiled streams. In 1990, mean escapement density for reference streams was 1.40 fish/m{sup 2} and 1.55 fish/m{sup 2} for oiled streams, indicating the strongest run of the four study years. Trends in polycyclic aromatic hydrocarbon (PAH) concentrations for the majority of oiled streams show a general decline from 1989 to background levels by 1990. 45 refs., 14 figs., 5 tabs.« less

  3. Egg buoyancy variability in local populations of Atlantic cod (Gadus morhua).

    PubMed

    Jung, Kyung-Mi; Folkvord, Arild; Kjesbu, Olav Sigurd; Agnalt, Ann Lisbeth; Thorsen, Anders; Sundby, Svein

    2012-01-01

    Previous studies have found strong evidences for Atlantic cod ( Gadus morhua ) egg retention in fjords, which are caused by the combination of vertical salinity structure, estuarine circulation, and egg specific gravity, supporting small-scaled geographical differentiations of local populations. Here, we assess the variability in egg specific gravity for selected local populations of this species, that is, two fjord-spawning populations and one coastal-spawning population from Northern Norway (66-71°N/10-25°E). Eggs were naturally spawned by raised broodstocks (March to April 2009), and egg specific gravity was measured by a density-gradient column. The phenotype of egg specific gravity was similar among the three local populations. However, the associated variability was greater at the individual level than at the population level. The noted gradual decrease in specific gravity from gastrulation to hatching with an increase just before hatching could be a generic pattern in pelagic marine fish eggs. This study provides needed input to adequately understand and model fish egg dispersal.

  4. Effects of Microcystis on development of early life stage Japanese medaka (Oryzias latipes): Comparative toxicity of natural blooms, cultured Microcystis and microcystin-LR.

    PubMed

    Saraf, Spencer R; Frenkel, Amy; Harke, Matthew J; Jankowiak, Jennifer G; Gobler, Christopher J; McElroy, Anne E

    2018-01-01

    Freshwater cyanobacterial harmful algal blooms (CyanoHABs) caused by algae in the genus Microcystis have been increasing in frequency and severity in recent decades. Microcystis blooms threaten aquatic organisms through effects associated with the rapid increase of biomass and the production of the hepatotoxin microcystin (MC) by toxic strains. Among fish, effects of blooms are likely to be more severe for early life stages, and physiological impacts on this life stage could significantly impact recruitment and fish populations. This study explores the effects of Microcystis blooms on the development of fish using the model organism, the Japanese medaka (Oryzias latipes), under realistic exposure conditions. Medaka embryos were exposed to natural blooms collected from New York City (USA) lakes, lab cultures of Microcystis, and MC-LR solutions. Field collected samples were more toxic than lab cultures (even when compared at the same algal density or MC concentration), causing decreased survival, premature time to hatch, reduced body length, yolk sac edema, and decreased heart rate, while lab culture exposures only resulted in bradycardia. Heart rate was the most sensitive endpoint measured, being depressed in embryos exposed to both lab cultures and field collected blooms. Generalized linear model analysis indicated bradycardia was statistically associated with both cell densities of blooms and MC concentrations, while single factor analysis indicated that MC concentrations had a stronger correlation compared to cell densities. However, MC exposure could not fully explain the effects observed, as exposures to MC-LR solutions alone were not able to reduce heart rate as severely as algal exposures. Collectively, these experiments indicate that factors beyond exposure to MC or even isolated Microcystis strains influence heart rate of fish exposed to Microcystis blooms. Enhanced mortality, depressed heart rate, and abnormal development observed in response to environmentally realistic exposures of Microcystis blooms could affect success of fish at both individual or population levels. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Variation in Assemblages of Small Fishes and Microcrustaceans After Inundation of Rarely Flooded Wetlands of the Lower Okavango Delta, Botswana

    NASA Astrophysics Data System (ADS)

    Siziba, Nqobizitha; Chimbari, Moses J.; Masundire, Hillary; Mosepele, Ketlhatlogile; Ramberg, Lars

    2013-12-01

    Water extraction from floodplain river systems may alter patterns of inundation of adjacent wetlands and lead to loss of aquatic biodiversity. Water reaching the Okavango Delta (Delta), Botswana, may decrease due to excessive water extraction and climate change. However, due to poor understanding of the link between inundation of wetlands and biological responses, it is difficult to assess the impacts of these future water developments on aquatic biota. Large floods from 2009 to 2011 inundated both rarely and frequently flooded wetlands in the Delta, creating an opportunity to examine the ecological significance of flooding of wetlands with widely differing hydrological characteristics. We studied the assemblages of small fishes and microcrustaceans, together with their trophic relationships, in temporary wetlands of the lower Delta. Densities of microcrustaceans in temporary wetlands were generally lower than previously recorded in these habitats. Microcrustacean density varied with wetland types and hydrological phase of inundation. High densities of microcrustaceans were recorded in the 2009 to 2010 flooding season after inundation of rarely flooded sites. Large numbers of small fishes were observed during this study. Community structure of small fishes differed significantly across the studied wetlands, with poeciliids predominant in frequently flooded wetlands and juvenile cichlids most abundant in rarely flooded wetlands (analysis of similarity, P < 0.05). Small fishes of <20 mm fed largely on microcrustaceans and may have led to low microcrustacean densities within the wetlands. This result matched our prediction that rarely flooded wetlands would be more productive; hence, they supported greater populations of microcrustaceans and cichlids, which are aggressive feeders. However, the predominance of microcrustaceans in the guts of small fishes (<20 mm) suggests that predation by fishes may also be an important regulatory mechanism of microcrustacean assemblages during large floods when inundated terrestrial patches of wetlands are highly accessible by fish. We predict that a decline in the amount of water reaching the Delta will negatively affect fish recruitment, particularly the cichlids that heavily exploited the rarely flooded wetlands. Cichlids are an important human food source, and their decline in fish catches will negatively affect livelihoods. Hence, priority in the management of the Delta's ecological functioning should be centred on minimising natural water-flow modifications because any changes may be detrimental to fish-recruitment processes of the system.

  6. Variation in assemblages of small fishes and microcrustaceans after inundation of rarely flooded wetlands of the lower Okavango Delta, Botswana.

    PubMed

    Siziba, Nqobizitha; Chimbari, Moses J; Masundire, Hillary; Mosepele, Ketlhatlogile; Ramberg, Lars

    2013-12-01

    Water extraction from floodplain river systems may alter patterns of inundation of adjacent wetlands and lead to loss of aquatic biodiversity. Water reaching the Okavango Delta (Delta), Botswana, may decrease due to excessive water extraction and climate change. However, due to poor understanding of the link between inundation of wetlands and biological responses, it is difficult to assess the impacts of these future water developments on aquatic biota. Large floods from 2009 to 2011 inundated both rarely and frequently flooded wetlands in the Delta, creating an opportunity to examine the ecological significance of flooding of wetlands with widely differing hydrological characteristics. We studied the assemblages of small fishes and microcrustaceans, together with their trophic relationships, in temporary wetlands of the lower Delta. Densities of microcrustaceans in temporary wetlands were generally lower than previously recorded in these habitats. Microcrustacean density varied with wetland types and hydrological phase of inundation. High densities of microcrustaceans were recorded in the 2009 to 2010 flooding season after inundation of rarely flooded sites. Large numbers of small fishes were observed during this study. Community structure of small fishes differed significantly across the studied wetlands, with poeciliids predominant in frequently flooded wetlands and juvenile cichlids most abundant in rarely flooded wetlands (analysis of similarity, P < 0.05). Small fishes of <20 mm fed largely on microcrustaceans and may have led to low microcrustacean densities within the wetlands. This result matched our prediction that rarely flooded wetlands would be more productive; hence, they supported greater populations of microcrustaceans and cichlids, which are aggressive feeders. However, the predominance of microcrustaceans in the guts of small fishes (<20 mm) suggests that predation by fishes may also be an important regulatory mechanism of microcrustacean assemblages during large floods when inundated terrestrial patches of wetlands are highly accessible by fish. We predict that a decline in the amount of water reaching the Delta will negatively affect fish recruitment, particularly the cichlids that heavily exploited the rarely flooded wetlands. Cichlids are an important human food source, and their decline in fish catches will negatively affect livelihoods. Hence, priority in the management of the Delta's ecological functioning should be centred on minimising natural water-flow modifications because any changes may be detrimental to fish-recruitment processes of the system.

  7. Monoxenic liquid culture with Escherichia coli of the free-living nematode Panagrolaimus sp. (strain NFS 24-5), a potential live food candidate for marine fish and shrimp larvae.

    PubMed

    Ayub, Farhana; Seychelles, Laurent; Strauch, Olaf; Wittke, Martina; Ehlers, Ralf-Udo

    2013-09-01

    The free-living, bacterial-feeding nematode Panagrolaimus sp. (strain NFS 24-5) has potential for use as live food for marine shrimp and fish larvae. Mass production in liquid culture is a prerequisite for its commercial exploitation. Panagrolaimus sp. was propagated in monoxenic liquid culture on Escherichia coli and parameters, like nematode density, population dynamics and biomass were recorded and compared with life history table data. A mean maximum nematode density of 174,278 mL(-1) and a maximum of 251,000 mL(-1) were recorded on day 17 after inoculation. Highest average biomass was 40 g L(-1) at day 13. The comparison with life history table data indicated that the hypothetical potential of liquid culture is much higher than documented during this investigation. Nematode development is delayed in liquid culture and egg production per female is more than five times lower than reported from life history trait analysis. The latter assessed a nematode generation time of 7.1 days, whereas the process time at maximum nematode density in liquid culture was 16 days indicating that a reduction of the process time can be achieved by further investigating the influence of nematode inoculum density on population development. The results challenge future research to reduce process time and variability and improve population dynamics also during scale-up of the liquid culture process.

  8. Deepwater sculpin status and recovery in Lake Ontario

    USGS Publications Warehouse

    Weidel, Brian C.; Walsh, Maureen; Connerton, Michael J.; Lantry, Brian F.; Lantry, Jana R.; Holden, Jeremy P.; Yuille, Michael J.; Hoyle, James A.

    2017-01-01

    Deepwater sculpin are important in oligotrophic lakes as one of the few fishes that use deep profundal habitats and link invertebrates in those habitats to piscivores. In Lake Ontario the species was once abundant, however drastic declines in the mid-1900s led some to suggest the species had been extirpated and ultimately led Canadian and U.S. agencies to elevate the species' conservation status. Following two decades of surveys with no captures, deepwater sculpin were first caught in low numbers in 1996 and by the early 2000s there were indications of population recovery. We updated the status of Lake Ontario deepwater sculpin through 2016 to inform resource management and conservation. Our data set was comprised of 8431 bottom trawls sampled from 1996 to 2016, in U.S. and Canadian waters spanning depths from 5 to 225 m. Annual density estimates generally increased from 1996 through 2016, and an exponential model estimated the rate of population increase was ~ 59% per year. The mean total length and the proportion of fish greater than the estimated length at maturation (~ 116 mm) generally increased until a peak in 2013. In addition, the mean length of all deepwater sculpin captured in a trawl significantly increased with depth. Across all years examined, deepwater sculpin densities generally increased with depth, increasing sharply at depths > 150 m. Bottom trawl observations suggest the Lake Ontario deepwater sculpin population has recovered and current densities and biomass densities may now be similar to the other Great Lakes.

  9. An Ecological Study on the Introduction of the Banded Sculpin Into a Coal Flyash Impacted Stream

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrico, B.A.; Ryon, M.G.

    1996-02-01

    A number of banded sculpins [Cottus carolinae (Gill)] were obtained from a population in a reference stream, marked with subcutaneous acrylic paint injections, and introduced into McCoy Branch, a small second-order stream located on the Oak Ridge Reservation in eastern Tennessee, which was inhabited by only a few banded sculpins prior to the study. McCoy Branch had received deposits of coal ash slurry for a prolonged period, however, there were some indications of recovery in the macroinvertebrate community due to improvements in water quality. Stream habitat characteristics and water chemistry parameters were monitored in McCoy Branch and a reference streammore » for a three-year period. Feeding patterns and reproductive activities of the banded sculpins were also monitored during the study. Sculpin population parameters including density, condition factor, and young-of-year (YOY) abundance and survival were studied. The results of the study show that the introduced fish have survived and appear to be in good condition. The sculpins have maintained a density of approximately 0.12 fish per square meter of stream, a figure similar to that found in other headwater streams located in the region. Colonization rates and sculpin densities in McCoy Branch were lower than expected, perhaps due to physical habitat degradation and reduced macroinvertebrate abundance. Evidence of sculpin reproduction in McCoy Branch was seen in the presence of gravid female sculpins (1994 and 1995) and YOY fish (1993 through 1995 year classes). This study indicates that McCoy Branch continues to recover from past perturbations to the point where it can now support a viable population of banded sculpins.« less

  10. Fish abundances in shoreline habitats and submerged aquatic vegetation in a tidal freshwater embayment of the Potomac River.

    PubMed

    Kraus, Richard T; Jones, R Christian

    2012-05-01

    Submerged aquatic vegetation (SAV) is considered an important habitat for juvenile and small forage fish species, but many long-term recruitment surveys do not effectively monitor fish communities in SAV. To better understand the impact of recent large increases of SAV on the fish community in tidal freshwater reaches of the Potomac River, we compared traditional seine sampling from shore with drop ring sampling of SAV beds (primarily Hydrilla) in a shallow water (depths, <1.5 m) embayment, Gunston Cove. To accomplish this, we developed species-specific catch efficiency values for the seine gear and calculated area-based density in both shoreline and SAV habitats in late summer of three different years (2007, 2008, and 2009). For the dominant species (Fundulus diaphanus, Lepomis macrochirus, Etheostoma olmstedi, Morone americana, Lepomis gibbosus, and Fundulus heteroclitus), density was nearly always higher in SAV, but overall, species richness was highest in shoreline habitats sampled with seines. Although historical monitoring of fish in Gunston Cove (and throughout Chesapeake Bay) is based upon seine sampling (and trawl sampling in deeper areas), the high densities of fish and larger areal extent of SAV indicated that complementary sampling of SAV habitats would produce more accurate trends in abundances of common species. Because drop ring samples cover much less area than seines and may miss rare species, a combination of methods that includes seine sampling is needed for biodiversity assessment. The resurgence of SAV in tidal freshwater signifies improving water quality, and methods we evaluated here support improved inferences about population trends and fish community structure as indicators of ecosystem condition.

  11. A log-linear model approach to estimation of population size using the line-transect sampling method

    USGS Publications Warehouse

    Anderson, D.R.; Burnham, K.P.; Crain, B.R.

    1978-01-01

    The technique of estimating wildlife population size and density using the belt or line-transect sampling method has been used in many past projects, such as the estimation of density of waterfowl nestling sites in marshes, and is being used currently in such areas as the assessment of Pacific porpoise stocks in regions of tuna fishing activity. A mathematical framework for line-transect methodology has only emerged in the last 5 yr. In the present article, we extend this mathematical framework to a line-transect estimator based upon a log-linear model approach.

  12. Modeling the relations between flow regime components, species traits, and spawning success of fishes in warmwater streams

    USGS Publications Warehouse

    Craven, S.W.; Peterson, J.T.; Freeman, Mary C.; Kwak, T.J.; Irwin, E.

    2010-01-01

    Modifications to stream hydrologic regimes can have a profound influence on the dynamics of their fish populations. Using hierarchical linear models, we examined the relations between flow regime and young-of-year fish density using fish sampling and discharge data from three different warmwater streams in Illinois, Alabama, and Georgia. We used an information theoretic approach to evaluate the relative support for models describing hypothesized influences of five flow regime components representing: short-term high and low flows; short-term flow stability; and long-term mean flows and flow stability on fish reproductive success during fish spawning and rearing periods. We also evaluated the influence of ten fish species traits on fish reproductive success. Species traits included spawning duration, reproductive strategy, egg incubation rate, swimming locomotion morphology, general habitat preference, and food habits. Model selection results indicated that young-of-year fish density was positively related to short-term high flows during the spawning period and negatively related to flow variability during the rearing period. However, the effect of the flow regime components varied substantially among species, but was related to species traits. The effect of short-term high flows on the reproductive success was lower for species that broadcast their eggs during spawning. Species with cruiser swimming locomotion morphologies (e.g., Micropterus) also were more vulnerable to variable flows during the rearing period. Our models provide insight into the conditions and timing of flows that influence the reproductive success of warmwater stream fishes and may guide decisions related to stream regulation and management. ?? 2010 US Government.

  13. Global Human Footprint on the Linkage between Biodiversity and Ecosystem Functioning in Reef Fishes

    PubMed Central

    Mora, Camilo; Aburto-Oropeza, Octavio; Ayala Bocos, Arturo; Ayotte, Paula M.; Banks, Stuart; Bauman, Andrew G.; Beger, Maria; Bessudo, Sandra; Booth, David J.; Brokovich, Eran; Brooks, Andrew; Chabanet, Pascale; Cinner, Joshua E.; Cortés, Jorge; Cruz-Motta, Juan J.; Cupul Magaña, Amilcar; DeMartini, Edward E.; Edgar, Graham J.; Feary, David A.; Ferse, Sebastian C. A.; Friedlander, Alan M.; Gaston, Kevin J.; Gough, Charlotte; Graham, Nicholas A. J.; Green, Alison; Guzman, Hector; Hardt, Marah; Kulbicki, Michel; Letourneur, Yves; López Pérez, Andres; Loreau, Michel; Loya, Yossi; Martinez, Camilo; Mascareñas-Osorio, Ismael; Morove, Tau; Nadon, Marc-Olivier; Nakamura, Yohei; Paredes, Gustavo; Polunin, Nicholas V. C.; Pratchett, Morgan S.; Reyes Bonilla, Héctor; Rivera, Fernando; Sala, Enric; Sandin, Stuart A.; Soler, German; Stuart-Smith, Rick; Tessier, Emmanuel; Tittensor, Derek P.; Tupper, Mark; Usseglio, Paolo; Vigliola, Laurent; Wantiez, Laurent; Williams, Ivor; Wilson, Shaun K.; Zapata, Fernando A.

    2011-01-01

    Difficulties in scaling up theoretical and experimental results have raised controversy over the consequences of biodiversity loss for the functioning of natural ecosystems. Using a global survey of reef fish assemblages, we show that in contrast to previous theoretical and experimental studies, ecosystem functioning (as measured by standing biomass) scales in a non-saturating manner with biodiversity (as measured by species and functional richness) in this ecosystem. Our field study also shows a significant and negative interaction between human population density and biodiversity on ecosystem functioning (i.e., for the same human density there were larger reductions in standing biomass at more diverse reefs). Human effects were found to be related to fishing, coastal development, and land use stressors, and currently affect over 75% of the world's coral reefs. Our results indicate that the consequences of biodiversity loss in coral reefs have been considerably underestimated based on existing knowledge and that reef fish assemblages, particularly the most diverse, are greatly vulnerable to the expansion and intensity of anthropogenic stressors in coastal areas. PMID:21483714

  14. Genetic diversity affects the strength of population regulation in a marine fish.

    PubMed

    Johnson, D W; Freiwald, J; Bernardi, G

    2016-03-01

    Variation is an essential feature of biological populations, yet much of ecological theory treats individuals as though they are identical. This simplifying assumption is often justified by the perception that variation among individuals does not have significant effects on the dynamics of whole populations. However, this perception may be skewed by a historic focus on studying single populations. A true evaluation of the extent to which among-individual variation affects the dynamics of populations requires the study of multiple populations. In this study, we examined variation in the dynamics of populations of a live-bearing, marine fish (black surfperch; Embiotoca jacksoni). In collaboration with an organization of citizen scientists (Reef Check California), we were able to examine the dynamics of eight populations that were distributed throughout approximately 700 km of coastline, a distance that encompasses much of this species' range. We hypothesized that genetic variation within a local population would be related to the intensity of competition and to the strength of population regulation. To test this hypothesis, we examined whether genetic diversity (measured by the diversity of mitochondrial DNA haplotypes) was related to the strength of population regulation. Low-diversity populations experienced strong density dependence in population growth rates and population sizes were regulated much more tightly than they were in high-diversity populations. Mechanisms that contributed to this pattern include links between genetic diversity, habitat use, and spatial crowding. On average, low-diversity populations used less of the available habitat and exhibited greater spatial clustering (and more intense competition) for a given level of density (measured at the scale of the reef). Although the populations we studied also varied with respect to exogenous characteristics (habitat complexity, densities of predators, and interspecific competitors), none of these characteristics was significantly related to the strength of population regulation. In contrast, an endogenous characteristic of the population (genetic diversity) explained 77% of the variation in the strength of population regulation (95% CI: 27-94%). Our results suggest that the genetic and phenotypic composition of populations can play a major role in their dynamics.

  15. Fish community structure and dynamics in a coastal hypersaline lagoon: Rio Lagartos, Yucatan, Mexico

    NASA Astrophysics Data System (ADS)

    Vega-Cendejas, Ma. Eugenia; Hernández de Santillana, Mireya

    2004-06-01

    Rio Lagartos, a tropical coastal lagoon in northern Yucatan Peninsula of Mexico, is characterized by high salinity during most of the year (55 psu annual average). Even though the area has been designated as a wetland of international importance because of its great biodiversity, fish species composition and distribution are unknown. To determine whether the salinity gradient was influencing fish assemblages or not, fish populations were sampled seasonally by seine and trawl from 1992 to 1993 and bimonthly during 1997. We identified 81 fish species, eight of which accounted for 53.1% considering the Importance Value Index ( Floridichthys polyommus, Sphoeroides testudineus, Eucinostomus argenteus, Eucinostomus gula, Fundulus majalis, Strongylura notata, Cyprinodon artifrons and Elops saurus). Species richness and density declined from the mouth to the inner zone where extreme salinity conditions are prominent (>80) and competitive interactions decreased. However, in Coloradas basin (53 average sanity) and in the inlet of the lagoon, the highest fish density and number of species were observed. Greater habitat heterogeneity and fish immigration were considered as the best explanation. Multivariate analysis found three zones distinguished by fish occurrence, abundance and distribution. Ichthyofaunal spatial differences were attributed to selective recruitment from the Gulf of Mexico due to salinity gradient and to changing climatic periods. Estuarine and euryhaline marine species are abundant, with estuarine dependent ones entering the system according to environmental preferences. This knowledge will contribute to the management of the Special Biosphere Reserve through baseline data to evaluate environmental and anthropogenic changes.

  16. Estimation and modeling of electrofishing capture efficiency for fishes in wadeable warmwater streams

    USGS Publications Warehouse

    Price, A.; Peterson, James T.

    2010-01-01

    Stream fish managers often use fish sample data to inform management decisions affecting fish populations. Fish sample data, however, can be biased by the same factors affecting fish populations. To minimize the effect of sample biases on decision making, biologists need information on the effectiveness of fish sampling methods. We evaluated single-pass backpack electrofishing and seining combined with electrofishing by following a dual-gear, mark–recapture approach in 61 blocknetted sample units within first- to third-order streams. We also estimated fish movement out of unblocked units during sampling. Capture efficiency and fish abundances were modeled for 50 fish species by use of conditional multinomial capture–recapture models. The best-approximating models indicated that capture efficiencies were generally low and differed among species groups based on family or genus. Efficiencies of single-pass electrofishing and seining combined with electrofishing were greatest for Catostomidae and lowest for Ictaluridae. Fish body length and stream habitat characteristics (mean cross-sectional area, wood density, mean current velocity, and turbidity) also were related to capture efficiency of both methods, but the effects differed among species groups. We estimated that, on average, 23% of fish left the unblocked sample units, but net movement varied among species. Our results suggest that (1) common warmwater stream fish sampling methods have low capture efficiency and (2) failure to adjust for incomplete capture may bias estimates of fish abundance. We suggest that managers minimize bias from incomplete capture by adjusting data for site- and species-specific capture efficiency and by choosing sampling gear that provide estimates with minimal bias and variance. Furthermore, if block nets are not used, we recommend that managers adjust the data based on unconditional capture efficiency.

  17. Characteristics of Settling Coral Reef Fish Are Related to Recruitment Timing and Success

    PubMed Central

    Rankin, Tauna L.; Sponaugle, Su

    2014-01-01

    Many marine populations exhibit high variability in the recruitment of young into the population. While environmental cycles and oceanography explain some patterns of replenishment, the role of other growth-related processes in influencing settlement and recruitment is less clear. Examination of a 65-mo. time series of recruitment of a common coral reef fish, Stegastes partitus, to the reefs of the upper Florida Keys revealed that during peak recruitment months, settlement stage larvae arriving during dark lunar phases grew faster as larvae and were larger at settlement compared to those settling during the light lunar phases. However, the strength and direction of early trait-mediated selective mortality also varied by settlement lunar phase such that the early life history traits of 2–4 week old recruit survivors that settled across the lunar cycle converged to more similar values. Similarly, within peak settlement periods, early life history traits of settling larvae and selective mortality of recruits varied by the magnitude of the settlement event: larvae settling in larger events had longer PLDs and consequently were larger at settlement than those settling in smaller pulses. Traits also varied by recruitment habitat: recruits surviving in live coral habitat (vs rubble) or areas with higher densities of adult conspecifics were those that were larger at settlement. Reef habitats, especially those with high densities of territorial conspecifics, are more challenging habitats for young fish to occupy and small settlers (due to lower larval growth and/or shorter PLDs) to these habitats have a lower chance of survival than they do in rubble habitats. Settling reef fish are not all equal and the time and location of settlement influences the likelihood that individuals will survive to contribute to the population. PMID:25250964

  18. Inter-habitat variation in density and size composition of reef fishes from the Cuban Northwestern shelf.

    PubMed

    Aguilar, Consuelo; González-Sansón, Gaspar; Cabrera, Yureidy; Ruiz, Alexei; Curry, R Allen

    2014-06-01

    Movement and exchange of individuals among habitats is critical for the dynamics and success of reef fish populations. Size segregation among habitats could be taken as evidence for habitat connectivity, and this would be a first step to formulate hypotheses about ontogenetic inter-habitat migrations. The primary goal of our research was to find evidence of inter-habitat differences in size distributions and density of reef fish species that can be classified a priori as habitat-shifters in an extensive (-600km2) Caribbean shelf area in NW Cuba. We sampled the fish assemblage of selected species using visual census (stationary and transect methods) in 20 stations (sites) located in mangrove roots, patch reefs, inner zone of the crest and fore reef (12-16m depth). In each site, we performed ten censuses for every habitat type in June and September 2009. A total of 11 507 individuals of 34 species were counted in a total of 400 censuses. We found significant differences in densities and size compositions among reef and mangrove habitats, supporting the species-specific use of coastal habitats. Adults were found in all habitats. Reef habitats, mainly patch reefs, seem to be most important for juvenile fish of most species. Mangroves were especially important for two species of snappers (Lutjanus apodus and L. griseus), providing habitat for juveniles. These species also displayed well defined gradients in length composition across the shelf.

  19. The IUCN Red List of Threatened Species: an assessment of coral reef fishes in the US Pacific Islands

    NASA Astrophysics Data System (ADS)

    Zgliczynski, B. J.; Williams, I. D.; Schroeder, R. E.; Nadon, M. O.; Richards, B. L.; Sandin, S. A.

    2013-09-01

    Widespread declines among many coral reef fisheries have led scientists and managers to become increasingly concerned over the extinction risk facing some species. To aid in assessing the extinction risks facing coral reef fishes, large-scale censuses of the abundance and distribution of individual species are critically important. We use fisheries-independent data collected as part of the NOAA Pacific Reef Assessment and Monitoring Program from 2000 to 2009 to describe the range and density across the US Pacific of coral reef fishes included on The International Union for the Conservation of Nature's (IUCN) 2011 Red List of Threatened Species. Forty-five species, including sharks, rays, groupers, humphead wrasse ( Cheilinus undulatus), and bumphead parrotfish ( Bolbometopon muricatum), included on the IUCN List, were recorded in the US Pacific Islands. Most species were generally rare in the US Pacific with the exception of a few species, principally small groupers and reef sharks. The greatest diversity and densities of IUCN-listed fishes were recorded at remote and uninhabited islands of the Pacific Remote Island Areas; in general, lower densities were observed at reefs of inhabited islands. Our findings complement IUCN assessment efforts, emphasize the efficacy of large-scale assessment and monitoring efforts in providing quantitative data on reef fish assemblages, and highlight the importance of protecting populations at remote and uninhabited islands where some species included on the IUCN Red List of Threatened Species can be observed in abundance.

  20. Inferred fish behavior its implications for hydroacoustic surveys in nearshore habitats

    USGS Publications Warehouse

    DuFour, Mark R.; Mayer, Christine M.; Qian, Song S.; Vandergoot, Christopher; Kraus, Richard T.; Kocovsky, Patrick; Warner, David M.

    2018-01-01

    Population availability and vessel avoidance effects on hydroacoustic abundance estimates may be scale dependent; therefore, it is important to evaluate these biases across systems. We performed an inter-ship comparison survey to determine the effect of vessel size, day-night period, depth, and environmental gradients on walleye (Sander vitreus) density estimates in Lake Erie, an intermediate-scaled system. Consistent near-bottom depth distributions coupled with horizontal fish movements relative to vessel paths indicated avoidance behavior contributed to higher walleye densities from smaller vessels in shallow water (i.e., <15 m), although the difference decreased with increasing depth. Diel bank migrations in response to seasonally varying onshore-to-offshore environmental gradients likely contributed to day-night differences in densities between sampling locations and seasons. Spatial and unexplained variation accounted for a high proportion of total variation; however, increasing sampling intensity can mitigate effects on precision. Therefore, researchers should minimize systematic avoidance and availability related biases (i.e., vessel and day-night period) to improve population abundance estimates. Quantifying availability and avoidance behavior effects and partitioning sources of variation provides informed flexibility for designing future hydroacoustic surveys in shallow-water nearshore environments.

  1. Influences of summer water temperatures on the movement, distribution, and resources use of fluvial Westslope Cutthroat Trout in the South Fork Clearwater River basin

    USGS Publications Warehouse

    Dobos, Marika E.; Corsi, Matthew P.; Schill, Daniel J.; DuPont, Joseph M.; Quist, Michael C.

    2016-01-01

    Although many Westslope Cutthroat Trout Oncorhynchus clarkii lewisi populations in Idaho are robust and stable, population densities in some systems remain below management objectives. In many of those systems, such as in the South Fork Clearwater River (SFCR) system, environmental conditions (e.g., summer temperatures) are hypothesized to limit populations of Westslope Cutthroat Trout. Radiotelemetry and snorkeling methods were used to describe seasonal movement patterns, distribution, and habitat use of Westslope Cutthroat Trout in the SFCR during the summers of 2013 and 2014. Sixty-six radio transmitters were surgically implanted into Westslope Cutthroat Trout (170–405 mm TL) from May 30–June 25, 2013, and June 20–July 6, 2014. Sedentary and mobile summer movement patterns by Westslope Cutthroat Trout were observed in the SFCR. Westslope Cutthroat Trout were generally absent from the lower SFCR. In the upper region of the SFCR, fish generally moved from the main-stem SFCR into tributaries as water temperatures increased during the summer. Fish remained in the middle region of the SFCR where water temperatures were cooler than in the upper or lower regions of the SFCR. A spatially explicit water temperature model indicated that the upper and lower regions of the SFCR exceeded thermal tolerance levels of Westslope Cutthroat Trout throughout the summer. During snorkeling, 23 Westslope Cutthroat Trout were observed in 13 sites along the SFCR and at low density (mean ± SD, 0.0003 ± 0.0001 fish/m2). The distribution of fish observed during snorkeling was consistent with the distribution of radio-tagged fish in the SFCR during the summer. Anthropogenic activities (i.e., grazing, mining, road construction, and timber harvest) in the SFCR basin likely altered the natural flow dynamics and temperature regime and thereby limited stream habitat in the SFCR system for Westslope Cutthroat Trout.

  2. Sustainability in single-species population models.

    PubMed

    Quinn, Terrance J; Collie, Jeremy S

    2005-01-29

    In this paper, we review the concept of sustainability with regard to a single-species, age-structured fish population with density dependence at some stage of its life history. We trace the development of the view of sustainability through four periods. The classical view of sustainability, prevalent in the 1970s and earlier, developed from deterministic production models, in which equilibrium abundance or biomass is derived as a function of fishing mortality. When there is no fishing mortality, the population equilibrates about its carrying capacity. We show that carrying capacity is the result of reproductive and mortality processes and is not a fixed constant unless these processes are constant. There is usually a fishing mortality, F(MSY), which results in MSY, and a higher value, F(ext), for which the population is eventually driven to extinction. For each F between 0 and F(ext), there is a corresponding sustainable population. From this viewpoint, the primary tool for achieving sustainability is the control of fishing mortality. The neoclassical view of sustainability, developed in the 1980s, involved population models with depensation and stochasticity. This view point is in accord with the perception that a population at a low level is susceptible to collapse or to a lack of rebuilding regardless of fishing. Sustainability occurs in a more restricted range from that in the classical view and includes an abundance threshold. A variety of studies has suggested that fishing mortality should not let a population drop below a threshold at 10-20% of carrying capacity. The modern view of sustainability in the 1990s moves further in the direction of precaution. The fishing mortality limit is the former target of F(MSY) (or some proxy), and the target fishing mortality is set lower. This viewpoint further reduces the range of permissible fishing mortalities and resultant desired population sizes. The objective has shifted from optimizing long-term catch to preserving spawning biomass and egg production for the future. The use of discount rates in objective functions involving catch is not a suitable alternative to protecting reproductive value. As we move into the post-modern time period, new definitions of sustainability will attempt to incorporate he economic and social aspects of fisheries and/or ecosystem and habitat requirements. These definitions now involve "warm and fuzzy" notions (healthy ecosystems and fishing communities, the needs of future generations, diverse fish communities) and value judgements of desired outcomes. Additional work is needed to make these definitions operational and to specify quantitative objectives to be achieved. In addition, multiple objectives may be incompatible, so trade-offs in what constitutes sustainability must be made. The advances made under the single-species approach should not be abandoned in the post-modern era, but rather enhanced and combined with new approaches in the multi-species and economic realms.

  3. Sustainability in single-species population models

    PubMed Central

    Quinn, Terrance J.; Collie, Jeremy S.

    2005-01-01

    In this paper, we review the concept of sustainability with regard to a single-species, age-structured fish population with density dependence at some stage of its life history. We trace the development of the view of sustainability through four periods. The classical view of sustainability, prevalent in the 1970s and earlier, developed from deterministic production models, in which equilibrium abundance or biomass is derived as a function of fishing mortality. When there is no fishing mortality, the population equilibrates about its carrying capacity. We show that carrying capacity is the result of reproductive and mortality processes and is not a fixed constant unless these processes are constant. There is usually a fishing mortality, FMSY, which results in MSY, and a higher value, Fext, for which the population is eventually driven to extinction. For each F between 0 and Fext, there is a corresponding sustainable population. From this viewpoint, the primary tool for achieving sustainability is the control of fishing mortality. The neoclassical view of sustainability, developed in the 1980s, involved population models with depensation and stochasticity. This viewpoint is in accord with the perception that a population at a low level is susceptible to collapse or to a lack of rebuilding regardless of fishing. Sustainability occurs in a more restricted range from that in the classical view and includes an abundance threshold. A variety of studies has suggested that fishing mortality should not let a population drop below a threshold at 10–20% of carrying capacity. The modern view of sustainability in the 1990s moves further in the direction of precaution. The fishing mortality limit is the former target of FMSY (or some proxy), and the target fishing mortality is set lower. This viewpoint further reduces the range of permissible fishing mortalities and resultant desired population sizes. The objective has shifted from optimizing long-term catch to preserving spawning biomass and egg production for the future. The use of discount rates in objective functions involving catch is not a suitable alternative to protecting reproductive value. As we move into the post-modern time period, new definitions of sustainability will attempt to incorporate the economic and social aspects of fisheries and/or ecosystem and habitat requirements. These definitions now involve ‘warm and fuzzy’ notions (healthy ecosystems and fishing communities, the needs of future generations, diverse fish communities) and value judgements of desired outcomes. Additional work is needed to make these definitions operational and to specify quantitative objectives to be achieved. In addition, multiple objectives may be incompatible, so trade-offs in what constitutes sustainability must be made. The advances made under the single-species approach should not be abandoned in the post-modern era, but rather enhanced and combined with new approaches in the multi-species and economic realms. PMID:15713594

  4. Judging a salmon by its spots: environmental variation is the primary determinant of spot patterns in Salmo salar.

    PubMed

    Jørgensen, Katarina M; Solberg, Monica F; Besnier, Francois; Thorsen, Anders; Fjelldal, Per Gunnar; Skaala, Øystein; Malde, Ketil; Glover, Kevin A

    2018-04-12

    In fish, morphological colour changes occur from variations in pigment concentrations and in the morphology, density, and distribution of chromatophores in the skin. However, the underlying mechanisms remain unresolved in most species. Here, we describe the first investigation into the genetic and environmental basis of spot pattern development in one of the world's most studied fishes, the Atlantic salmon. We reared 920 salmon from 64 families of domesticated, F1-hybrid and wild origin in two contrasting environments (Hatchery; tanks for the freshwater stage and sea cages for the marine stage, and River; a natural river for the freshwater stage and tanks for the marine stage). Fish were measured, photographed and spot patterns evaluated. In the Hatchery experiment, significant but modest differences in spot density were observed among domesticated, F1-hybrid (1.4-fold spottier than domesticated) and wild salmon (1.7-fold spottier than domesticated). A heritability of 6% was calculated for spot density, and a significant QTL on linkage group SSA014 was detected. In the River experiment, significant but modest differences in spot density were also observed among domesticated, F1-hybrid (1.2-fold spottier than domesticated) and wild salmon (1.8-fold spottier than domesticated). Domesticated salmon were sevenfold spottier in the Hatchery vs. River experiment. While different wild populations were used for the two experiments, on average, these were 6.2-fold spottier in the Hatchery vs. River experiment. Fish in the Hatchery experiment displayed scattered to random spot patterns while fish in the River experiment displayed clustered spot patterns. These data demonstrate that while genetics plays an underlying role, environmental variation represents the primary determinant of spot pattern development in Atlantic salmon.

  5. Density dependence in a recovering osprey population: demographic and behavioural processes.

    PubMed

    Bretagnolle, V; Mougeot, F; Thibault, J-C

    2008-09-01

    1. Understanding how density-dependent and independent processes influence demographic parameters, and hence regulate population size, is fundamental within population ecology. We investigated density dependence in growth rate and fecundity in a recovering population of a semicolonial raptor, the osprey Pandion haliaetus [Linnaeus, 1758], using 31 years of count and demographic data in Corsica. 2. The study population increased from three pairs in 1974 to an average of 22 pairs in the late 1990s, with two distinct phases during the recovery (increase followed by stability) and contrasted trends in breeding parameters in each phase. 3. We show density dependence in population growth rate in the second phase, indicating that the stabilized population was regulated. We also show density dependence in productivity (fledging success between years and hatching success within years). 4. Using long-term data on behavioural interactions at nest sites, and on diet and fish provisioning rate, we evaluated two possible mechanisms of density dependence in productivity, food depletion and behavioural interference. 5. As density increased, both provisioning rate and the size of prey increased, contrary to predictions of a food-depletion mechanism. In the time series, a reduction in fledging success coincided with an increase in the number of non-breeders. Hatching success decreased with increasing local density and frequency of interactions with conspecifics, suggesting that behavioural interference was influencing hatching success. 6. Our study shows that, taking into account the role of non-breeders, in particular in species or populations where there are many floaters and where competition for nest sites is intense, can improve our understanding of density-dependent processes and help conservation actions.

  6. Population control of exotic rainbow trout in streams of a natural area park

    NASA Astrophysics Data System (ADS)

    Moore, Stephen E.; Larson, Gary L.; Ridley, Bromfield

    1986-03-01

    Expansion of the distribution of exotic rainbow trout is thought to be a leading cause for the decline of native brook trout since the 1930s in Great Smoky Mountains National Park, USA. An experimental rehabilitation project was conducted from 1976 to 1981 using backpack electrofish shockers on four remnant brook trout populations sympatric with rainbow trout. The objectives were to evaluate the effectiveness of the technique to remove the exotic rainbow trout, to determine the population responses by native brook trout, and to evaluate the usefulness of the technique for trout management in the park. Rainbow trout populations were greatly reduced in density after up to six years of electrofishing, but were not eradicated. Rainbow trout recruitment, however, was essentially eliminated. Brook trout populations responded by increasing in density (including young-of-the-year), but rates of recovery differed among streams. The maximum observed densities ir each stream occurred at the end of the project. The findings suggest that electrofishing had a major negative impact on the exotic species, which was followed by positive responses from the native species in the second and third order study streams. The technique would probably be less effective in larger (fourth-order) park streams, but as an eradication tool the technique may have its highest potential in small first order streams. Nonetheless, the technique appears useful for population control without causing undue impacts on native aquatic species, although it is labor intensive, and capture efficiency is greatly influenced by fish size and stream morphology. To completely remove the exotic fish from selected streams, different technologies will have to be explored and developed.

  7. Lake whitefish diet, condition, and energy density in Lake Champlain and the lower four Great Lakes following dreissenid invasions

    USGS Publications Warehouse

    Herbst, Seth J.; Marsden, J. Ellen; Lantry, Brian F.

    2013-01-01

    Lake Whitefish Coregonus clupeaformis support some of the most valuable commercial freshwater fisheries in North America. Recent growth and condition decreases in Lake Whitefish populations in the Great Lakes have been attributed to the invasion of the dreissenid mussels, zebra mussels Dreissena polymorpha and quagga mussels D. bugensis, and the subsequent collapse of the amphipod, Diporeia, a once-abundant high energy prey source. Since 1993, Lake Champlain has also experienced the invasion and proliferation of zebra mussels, but in contrast to the Great Lakes, Diporeia were not historically abundant. We compared the diet, condition, and energy density of Lake Whitefish from Lake Champlain after the dreissenid mussel invasion to values for those of Lake Whitefish from Lakes Michigan, Huron, Erie, and Ontario. Lake Whitefish were collected using gill nets and bottom trawls, and their diets were quantified seasonally. Condition was estimated using Fulton's condition factor (K) and by determining energy density. In contrast to Lake Whitefish from some of the Great Lakes, those from Lake Champlain Lake Whitefish did not show a dietary shift towards dreissenid mussels, but instead fed primarily on fish eggs in spring, Mysis diluviana in summer, and gastropods and sphaeriids in fall and winter. Along with these dietary differences, the condition and energy density of Lake Whitefish from Lake Champlain were high compared with those of Lake Whitefish from Lakes Michigan, Huron, and Ontario after the dreissenid invasion, and were similar to Lake Whitefish from Lake Erie; fish from Lakes Michigan, Huron, and Ontario consumed dreissenids, whereas fish from Lake Erie did not. Our comparisons of Lake Whitefish populations in Lake Champlain to those in the Great Lakes indicate that diet and condition of Lake Champlain Lake Whitefish were not negatively affected by the dreissenid mussel invasion.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Copeland, Timothy; Putnam, Scott

    The goal of Idaho Steelhead Monitoring and Evaluation Studies is to collect monitoring data to evaluate wild and natural steelhead populations in the Clearwater and Salmon river drainages. During 2007, intensive population data were collected in Fish Creek (Lochsa River tributary) and Rapid River (Little Salmon River tributary); extensive data were collected in other selected spawning tributaries. Weirs were operated in Fish Creek and Rapid River to estimate adult escapement and to collect samples for age determination and genetic analysis. Snorkel surveys were conducted in Fish Creek, Rapid River, and Boulder Creek (Little Salmon River tributary) to estimate parr density.more » Screw traps were operated in Fish Creek, Rapid River, Secesh River, and Big Creek to estimate juvenile emigrant abundance, to tag fish for survival estimation, and to collect samples for age determination and genetic analysis. The estimated wild adult steelhead escapement in Fish Creek was 81 fish and in Rapid River was 32 fish. We estimate that juvenile emigration was 24,127 fish from Fish Creek; 5,632 fish from Rapid River; and 43,674 fish from Big Creek. The Secesh trap was pulled for an extended period due to wildfires, so we did not estimate emigrant abundance for that location. In cooperation with Idaho Supplementation Studies, trap tenders PIT tagged 25,618 steelhead juveniles at 18 screw trap sites in the Clearwater and Salmon river drainages. To estimate age composition, 143 adult steelhead and 5,082 juvenile steelhead scale samples were collected. At the time of this report, 114 adult and 1,642 juvenile samples have been aged. Project personnel collected genetic samples from 122 adults and 839 juveniles. We sent 678 genetic samples to the IDFG Eagle Fish Genetics Laboratory for analysis. Water temperature was recorded at 37 locations in the Clearwater and Salmon river drainages.« less

  9. Evaluating analytical approaches for estimating pelagic fish biomass using simulated fish communities

    USGS Publications Warehouse

    Yule, Daniel L.; Adams, Jean V.; Warner, David M.; Hrabik, Thomas R.; Kocovsky, Patrick M.; Weidel, Brian C.; Rudstam, Lars G.; Sullivan, Patrick J.

    2013-01-01

    Pelagic fish assessments often combine large amounts of acoustic-based fish density data and limited midwater trawl information to estimate species-specific biomass density. We compared the accuracy of five apportionment methods for estimating pelagic fish biomass density using simulated communities with known fish numbers that mimic Lakes Superior, Michigan, and Ontario, representing a range of fish community complexities. Across all apportionment methods, the error in the estimated biomass generally declined with increasing effort, but methods that accounted for community composition changes with water column depth performed best. Correlations between trawl catch and the true species composition were highest when more fish were caught, highlighting the benefits of targeted trawling in locations of high fish density. Pelagic fish surveys should incorporate geographic and water column depth stratification in the survey design, use apportionment methods that account for species-specific depth differences, target midwater trawling effort in areas of high fish density, and include at least 15 midwater trawls. With relatively basic biological information, simulations of fish communities and sampling programs can optimize effort allocation and reduce error in biomass estimates.

  10. Idaho Habitat/Natural Production Monitoring Part I, 1995 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall-Griswold, J.A.; Petrosky, C.E.

    The Idaho Department of Fish and Game (IDFG) has been monitoring trends in juvenile spring and summer chinook salmon, Oncorhynchus tshawytscha, and steelhead trout, O. mykiss, populations in the Salmon, Clearwater, and lower Snake River drainages for the past 12 years. This work is the result of a program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric power plants on the Columbia River. Project 91-73, Idaho Natural Production Monitoring, consists of two subprojects: General Monitoring and Intensive Monitoring. This report updates and summarizes data through 1995 for the General Parr Monitoring (GPM)more » database to document status and trends of classes of wild and natural chinook salmon and steelhead trout populations. A total of 281 stream sections were sampled in 1995 to monitor trends in spring and summer chinook salmon Oncorhynchus tshawytscha and steelhead trout O. mykiss parr populations in Idaho. Percent carrying capacity and density estimates were summarized for 1985--1995 by different classes of fish: wild A-run steelhead trout, wild B-run steelhead trout, natural A-run steelhead trout, natural B-run steelhead trout, wild spring and summer chinook salmon, and natural spring and summer chinook salmon. The 1995 data were also summarized by subbasins as defined in Idaho Department of Fish and Game`s 1992--1996 Anadromous Fish Management Plan.« less

  11. Prey life-history and bioenergetic responses across a predation gradient.

    PubMed

    Rennie, M D; Purchase, C F; Shuter, B J; Collins, N C; Abrams, P A; Morgan, G E

    2010-10-01

    To evaluate the importance of non-consumptive effects of predators on prey life histories under natural conditions, an index of predator abundance was developed for naturally occurring populations of a common prey fish, the yellow perch Perca flavescens, and compared to life-history variables and rates of prey energy acquisition and allocation as estimated from mass balance models. The predation index was positively related to maximum size and size at maturity in both male and female P. flavescens, but not with life span or reproductive investment. The predation index was positively related to size-adjusted specific growth rates and growth efficiencies but negatively related to model estimates of size-adjusted specific consumption and activity rates in both vulnerable (small) and invulnerable (large) size classes of P. flavescens. These observations suggest a trade-off between growth and activity rates, mediated by reduced activity in response to increasing predator densities. Lower growth rates and growth efficiencies in populations with fewer predators, despite increased consumption suggests either 1) a reduction in prey resources at lower predator densities or 2) an intrinsic cost of rapid prey growth that makes it unfavourable unless offset by a perceived threat of predation. This study provides evidence of trade-offs between growth and activity rates induced by predation risk in natural prey fish populations and illustrates how behavioural modification induced through predation can shape the life histories of prey fish species. © 2010 The Authors. Journal compilation © 2010 The Fisheries Society of the British Isles.

  12. Ecology and management of the invasive lionfish Pterois volitans/miles complex (Perciformes: Scorpaenidae) in Southern Costa Rica.

    PubMed

    Sandel, Vera; Martínez-Fernández, Damián; Wangpraseurt, Daniel; Sierra, Luis

    2015-03-01

    Invasive species alter ecosystem integrity and functioning and are considered one of the major threats to biodiversity on a global scale. The indopacific lionfish (Plerois volitans [Linnaeus, 1758] / miles [Bennet, 1882] complex) is the first non-native marine fish that has established itself in the Western Atlantic. It was first reported in Florida in the 1980s and then spread across the entire Caribbean in subsequent years. In Costa Rica, lionfish were first sighted by the end of 2008 and are now present in all South Caribbean reefs. Lionfish are a major problem for local fisherman by displacing native fish species. The aim of this study was to determine population density, size and diet of lionfish populations at four study sites along the Southern Caribbean coast of Costa Rica. Two of the sites were located inside the National Park Cahuita where regular lionfish removal occurs, whereas the other two study sides do not experiment this kind of management. Total length and wet weight of >450 lionfish individuals were determined between March and June 2011. Three relative metrics of prey quantity (percent number, percent frequency, and percent weight) were compared from approximately 300 lionfish caught with the polespear in shallow waters (<7 m depth). Population density was assessed weekly through visual transect surveys. Our results showed that lionfish preyed mostly upon teleosts and crustaceans. Teleosts dominated lionfish diet in percent frequency (71%) and percent weight (85%), whereas crustaceans had the highest percent number (58%). The top five teleost families of dietary importance were Pomacentridae, Acanthuridae, Blennidae, Labridae and Serranidae. The average total length (+/- SD) of lionfish was 18.7 (+/- 5.7)cm and varied significantly between sites (p<0.001). Mean density of lionfish was 92fish/ha with no significant differences between sites. Smallest fish and lowest densities were found at the two sites inside the National Park Cahuita. Despite management efforts on a regional scale, nationwide efforts are ineffective and lionfish control activities are poorly implemented. We conclude that there is an urgent need to develop an improved institutional framework for local lionfish control that promotes effective coordination among the relevant stakeholders in order to deal with invasive lionfish in Costa Rica.

  13. Can schooling regulate marine populations and ecosystems?

    NASA Astrophysics Data System (ADS)

    Maury, Olivier

    2017-08-01

    Schools, shoals and swarms are pervasive in the oceans. They have to provide very strong advantages to have been selected and generalized in the course of evolution. Auto-organized groups are usually assumed to provide facilitated encounters of reproduction partners, improved protection against predation, better foraging efficiency, and hydrodynamic gains. However, present theories regarding their evolutionary advantages do not provide an unambiguous explanation to their universality. In particular, the mechanisms commonly proposed to explain grouping provide little support to the formation of very large groups that are common in the sea (e.g. Rieucau et al., 2014). From literature review, data analysis and using a simple mathematical model, I show that large auto-organized groups appear at high population density while only small groups or dispersed individuals remain at low population density. Following, an analysis of tuna tagging data and simple theoretical developments show that large groups are likely to expose individuals to a dramatic decrease of individual foraging success and simultaneous increase of predatory and disease mortality, while small groups avoid those adverse feedbacks and provide maximum foraging success and protection against predation, as it is usually assumed. This would create an emergent density-dependent regulation of marine populations, preventing them from outbursts at high density, and protecting them at low density. This would be a major contribution to their resilience and a crucial process of ecosystems dynamics. A two-step evolutionary process acting at the individual level is proposed to explain how this apparently suicidal behaviour could have been selected and generalized. It explains how grouping would have permitted the emergence of extremely high fecundity life histories, despite their notorious propensity to destabilize populations. The potential implications of the ;grouping feedback; on population resilience, ecosystem stability and the persistence of marine biodiversity are discussed. The risk of harvesting marine species with fishing gears that enable catching dispersed individuals (such as longline, gillnet, trawl or using fishing aggregative devices for instance) is underlined. Finally, tropical tunas are used to exemplify the potential importance of schooling in shaping complex life histories and species interaction.

  14. Predation on exotic zebra mussels by native fishes: Effects on predator and prey

    USGS Publications Warehouse

    Magoulick, D.D.; Lewis, L.C.

    2002-01-01

    1. Exotic zebra mussels, Dreissena polymorpha, occur in southern U.S. waterways in high densities, but little is known about the interaction between native fish predators and zebra mussels. Previous studies have suggested that exotic zebra mussels are low profitability prey items and native vertebrate predators are unlikely to reduce zebra mussel densities. We tested these hypotheses by observing prey use of fishes, determining energy content of primary prey species of fishes, and conducting predator exclusion experiments in Lake Dardanelle, Arkansas. 2. Zebra mussels were the primary prey eaten by 52.9% of blue catfish, Ictalurus furcatus; 48.2% of freshwater drum, Aplodinotus grunniens; and 100% of adult redear sunfish, Lepomis microlophus. Blue catfish showed distinct seasonal prey shifts, feeding on zebra mussels in summer and shad, Dorosoma spp., during winter. Energy content (joules g-1) of blue catfish prey (threadfin shad, Dorosoma petenense; gizzard shad, D. cepedianum; zebra mussels; and asiatic clams, Corbicula fluminea) showed a significant species by season interaction, but shad were always significantly greater in energy content than bivalves examined as either ash-free dry mass or whole organism dry mass. Fish predators significantly reduced densities of large zebra mussels (>5 mm length) colonising clay tiles in the summers of 1997 and 1998, but predation effects on small zebra mussels (???5 mm length) were less clear. 3. Freshwater drum and redear sunfish process bivalve prey by crushing shells and obtain low amounts of higher-energy food (only the flesh), whereas blue catfish lack a shell-crushing apparatus and ingest large amounts of low-energy food per unit time (bivalves with their shells). Blue catfish appeared to select the abundant zebra mussel over the more energetically rich shad during summer, then shifted to shad during winter when shad experienced temperature-dependent stress and mortality. Native fish predators can suppress adult zebra mussel colonisation, but are ultimately unlikely to limit population density because of zebra mussel reproductive potential.

  15. Assessing Brook Trout populations in headwater streams of the Adirondack Mountains using environmental DNA -- Summary report

    USGS Publications Warehouse

    Baldigo, Barry P.; George, Scott D.; Sporn, Lee Ann; Ball, Jacob

    2016-01-01

    This project evaluated standard fish-survey and environmental DNA (eDNA) sampling methods to determine the ability of eDNA to accurately predict the presence and abundance of resident Brook Trout populations in 40 headwater streams mainly in the western Adirondack Mountains during 2014–2015 (Figure 2). Standard 3-pass electrofishing surveys found that Brook Trout were absent from about 25 percent of study sites, and at low densities in 25 percent of sites, moderate densities in 25 percent of sites, and high densities in 25 percent of sites. Environmental DNA results correctly predicted the presence/absence of Brook Trout in 85.0 to 92.5 percent of study sites and explained 44.0 percent of the variability in density and 24 percent of the variability in biomass of their populations. The findings indicate that eDNA surveys will enable researchers to effectively characterize the presence as well as the abundance of Brook Trout and other species populations in headwater streams across the Adirondack Mountains and elsewhere.

  16. Fish assemblage responses to urban intensity gradients in contrasting metropolitan areas: Birmingham, Alabama and Boston, Massachusetts

    USGS Publications Warehouse

    Meador, M.R.; Coles, J.F.; Zappia, H.

    2005-01-01

    We examined fish assemblage responses to urban intensify gradients in two contrasting metropolitan areas: Birmingham, Alabama (BIR) and Boston, Massachusetts (BOS). Urbanization was quantified by using an urban intensity index (UII) that included multiple stream buffers and basin land uses, human population density, and road density variables. We evaluated fish assemblage responses by using species richness metrics and detrended correspondence analyses (DCA). Fish species richness metrics included total fish species richness, and percentages of endemic species richness, alien species, and fluvial specialist species. Fish species richness decreased significantly with increasing urbanization in BIR (r = -0.82, P = 0.001) and BOS (r = -0.48, P = 0.008). Percentages of endemic species richness decreased significantly with increasing urbanization only in BIR (r = - 0.71, P = 0.001), whereas percentages of fluvial specialist species decreased significantly with increasing urbanization only in BOS (r = -0.56, P = 0.002). Our DCA results for BIR indicate that highly urbanized fish assemblages are composed primarily of largescale stoneroller Campostoma oligolepis, largemouth bass Micropterus salmoides, and creek chub Semotilus atromaculatus, whereas the highly urbanized fish assemblages in BOS are dominated by yellow perch Perca flavescens, bluegill Lefomis macrochirus, yellow bullhead Ameiurus natalis, largemouth bass, pumpkinseed L. gibbosus, brown bullhead A. nebulosus, and redfin pickerel Esox americanus. Differences in fish assemblage responses to urbanization between the two areas appear to be related to differences in nutrient enrichment, habitat alterations, and invasive species. Because species richness can increase or decrease with increasing urbanization, a general response model is not applicable. Instead, response models based on species' life histories, behavior, and autecologies offer greater potential for understanding fish assemblage responses to urbanization. ?? 2005 by the American Fisheries Society.

  17. Assessing effects of stocked trout on nongame fish assemblages in southern Appalachian Mountain streams

    USGS Publications Warehouse

    Weaver, D.; Kwak, Thomas J.

    2013-01-01

    Fisheries managers are faced with the challenge of balancing the management of recreational fisheries with that of conserving native species and preserving ecological integrity. The negative effects that nonnative trout species exert on native trout are well documented and include alteration of competitive interactions, habitat use, and production. However, the effects that nonnative trout may exert on nongame fish assemblages are poorly understood. Our objectives were to quantify the effects of trout stocking on native nongame fish assemblages intensively on one newly stocked river, the North Toe River, North Carolina, and extensively on other southern Appalachian Mountain streams that are annually stocked with trout. In the intensive study, we adopted a before-after, control-impact (BACI) experimental design to detect short-term effects on the nongame fish assemblage and found no significant differences in fish density, species richness, species diversity, or fish microhabitat use associated with trout stocking. We observed differences in fish microhabitat use between years, however, which suggests there is a response to environmental changes, such as the flow regime, which influence available habitat. In the extensive study, we sampled paired stocked and unstocked stream reaches to detect long-term effects from trout stocking; however, we detected no differences in nongame fish density, species richness, species diversity, or population size structure between paired sites. Our results revealed high inherent system variation caused by natural and anthropogenic factors that appear to overwhelm any acute or chronic effect of stocked trout. Furthermore, hatchery-reared trout may be poor competitors in a natural setting and exert a minimal or undetectable impact on native fish assemblages in these streams. These findings provide quantitative results necessary to assist agencies in strategic planning and decision making associated with trout fisheries, stream management, and conservation of native fishes.

  18. Population densities of painted buntings in the southeastern United States

    USGS Publications Warehouse

    Meyers, J. Michael

    2011-01-01

    The eastern population trend of Passerina ciris (Painted Bunting) declined 3.5% annually during the first 30 yrs of the Breeding Bird Survey (BBS, 1966–1996). Recently, the US Fish and Wildlife Service listed Painted Buntings as a focal species. Surveys for this focal species for the next 10 yrs (BBS, 1997–2007), however, are too low (2 in young pine plantations to 42 per km2 in maritime shrub. Effective detection radii for habitats varied from 64 to 90 m and were slightly higher in developed than in undeveloped habitats. Distance sampling is recommended to determine densities of Painted Buntings; however, large sample sizes (70–100 detections/habitat type) are required to monitor Painted Bunting densities in most habitats in the Atlantic coastal region of the southeastern United States. Special attention should be given to maritime shrub habitats, which may be important to maintaining the Painted Bunting population in the southeastern US.

  19. Ongoing removals of invasive lionfish in Honduras and their effect on native Caribbean prey fishes.

    PubMed

    Peiffer, Friederike; Bejarano, Sonia; Palavicini de Witte, Giacomo; Wild, Christian

    2017-01-01

    The invasion of Indo-Pacific lionfish is one of the most pressing concerns in the context of coral reef conservation throughout the Caribbean. Invasive lionfish threaten Caribbean fish communities by feeding on a wide range of native prey species, some of which have high ecological and economic value. In Roatan (Honduras) a local non-governmental organisation (i.e. Roatan Marine Park) trains residents and tourists in the use of spears to remove invasive lionfish. Here, we assess the effectiveness of local removal efforts in reducing lionfish populations. We ask whether reefs subject to relatively frequent removals support more diverse and abundant native fish assemblages compared to sites were no removals take place. Lionfish biomass, as well as density and diversity of native prey species were quantified on reefs subject to regular and no removal efforts. Reefs subject to regular lionfish removals (two to three removals month -1 ) with a mean catch per unit effort of 2.76 ± 1.72 lionfish fisher -1 h -1 had 95% lower lionfish biomass compared to non-removal sites. Sites subject to lionfish removals supported 30% higher densities of native prey-sized fishes compared to sites subject to no removal efforts. We found no evidence that species richness and diversity of native fish communities differ between removal and non-removal sites. We conclude that opportunistic voluntary removals are an effective management intervention to reduce lionfish populations locally and might alleviate negative impacts of lionfish predation. We recommend that local management and the diving industry cooperate to cost-effectively extend the spatial scale at which removal regimes are currently sustained.

  20. Ongoing removals of invasive lionfish in Honduras and their effect on native Caribbean prey fishes

    PubMed Central

    Palavicini de Witte, Giacomo; Wild, Christian

    2017-01-01

    The invasion of Indo-Pacific lionfish is one of the most pressing concerns in the context of coral reef conservation throughout the Caribbean. Invasive lionfish threaten Caribbean fish communities by feeding on a wide range of native prey species, some of which have high ecological and economic value. In Roatan (Honduras) a local non-governmental organisation (i.e. Roatan Marine Park) trains residents and tourists in the use of spears to remove invasive lionfish. Here, we assess the effectiveness of local removal efforts in reducing lionfish populations. We ask whether reefs subject to relatively frequent removals support more diverse and abundant native fish assemblages compared to sites were no removals take place. Lionfish biomass, as well as density and diversity of native prey species were quantified on reefs subject to regular and no removal efforts. Reefs subject to regular lionfish removals (two to three removals month−1) with a mean catch per unit effort of 2.76 ± 1.72 lionfish fisher−1 h−1 had 95% lower lionfish biomass compared to non-removal sites. Sites subject to lionfish removals supported 30% higher densities of native prey-sized fishes compared to sites subject to no removal efforts. We found no evidence that species richness and diversity of native fish communities differ between removal and non-removal sites. We conclude that opportunistic voluntary removals are an effective management intervention to reduce lionfish populations locally and might alleviate negative impacts of lionfish predation. We recommend that local management and the diving industry cooperate to cost-effectively extend the spatial scale at which removal regimes are currently sustained. PMID:29062597

  1. A statistical analysis of the distribution of a larval nematode (Anisakis sp.) in the musculature of chum salmon (Oncorhynchus keta - Walbaum)

    USGS Publications Warehouse

    Novotny, A.J.

    1960-01-01

    The one factor which probably contributes the greatest effect on distributional patterns of Anisakis within chum salmon musculature is the total intensity of infection (or population density of Anisakis) in each fish.

  2. Factors controlling the abundance of rainbow trout in the Colorado River in Grand Canyon in a reach utilized by endangered humpback chub

    USGS Publications Warehouse

    Korman, Josh; Yard, Michael D.; Yackulic, Charles B.

    2015-01-01

    We estimated the abundance, survival, movement, and recruitment of non-native rainbow trout in the Colorado River in Grand Canyon to determine what controls their abundance near the Little Colorado River (LCR) confluence where endangered humpback chub rear. Over a 3-year period, we tagged more than 70,000 trout and recovered over 8,200 tagged fish. Trout density was highest (10,000-25,000 fish/km) in the reach closest to Glen Canyon Dam where the majority of trout recruitment occurs, and was 30-50-fold lower (200-800 fish/km) in reaches near the LCR confluence ~100 km downstream. The extent of rainbow trout movement was limited with less than 1% of recaptures making movements greater than 20 km. However, due to high trout densities in upstream source areas, this small dispersal rate was sufficient to explain the 3-fold increase in the relatively small population near the LCR. Reducing dispersal rates of trout from upstream sources is the most feasible solution to maintain low densities near the LCR to minimize negative effects of competition and predation on humpback chub.

  3. Consumer depletion alters seagrass resistance to an invasive macroalga.

    PubMed

    Caronni, Sarah; Calabretti, Chiara; Delaria, Maria Anna; Bernardi, Giuseppe; Navone, Augusto; Occhipinti-Ambrogi, Anna; Panzalis, Pieraugusto; Ceccherelli, Giulia

    2015-01-01

    Few field studies have investigated how changes at one trophic level can affect the invasibility of other trophic levels. We examined the hypothesis that the spread of an introduced alga in disturbed seagrass beds with degraded canopies depends on the depletion of large consumers. We mimicked the degradation of seagrass canopies by clipping shoot density and reducing leaf length, simulating natural and anthropogenic stressors such as fish overgrazing and water quality. Caulerpa racemosa was transplanted into each plot and large consumers were excluded from half of them using cages. Potential cage artifacts were assessed by measuring irradiance, scouring by leaf movement, water flow, and sedimentation. Algal invasion of the seagrass bed differed based on the size of consumers. The alga had higher cover and size under the cages, where the seagrass was characterized by reduced shoot density and canopy height. Furthermore, canopy height had a significant effect depending on canopy density. The alteration of seagrass canopies increased the spread of C. racemosa only when large consumers were absent. Our results suggest that protecting declining habitats and/or restoring fish populations will limit the expansion of C. racemosa. Because MPAs also enhance the abundance and size of fish consuming seagrass they can indirectly promote algal invasion. The effects of MPAs on invasive species are context dependent and require balancing opposing forces, such as the conservation of seagrass canopy structure and the protection of fish grazing the seagrass.

  4. Predicting Fish Densities in Lotic Systems: a Simple Modeling Approach

    EPA Science Inventory

    Fish density models are essential tools for fish ecologists and fisheries managers. However, applying these models can be difficult because of high levels of model complexity and the large number of parameters that must be estimated. We designed a simple fish density model and te...

  5. Stochastic von Bertalanffy models, with applications to fish recruitment.

    PubMed

    Lv, Qiming; Pitchford, Jonathan W

    2007-02-21

    We consider three individual-based models describing growth in stochastic environments. Stochastic differential equations (SDEs) with identical von Bertalanffy deterministic parts are formulated, with a stochastic term which decreases, remains constant, or increases with organism size, respectively. Probability density functions for hitting times are evaluated in the context of fish growth and mortality. Solving the hitting time problem analytically or numerically shows that stochasticity can have a large positive impact on fish recruitment probability. It is also demonstrated that the observed mean growth rate of surviving individuals always exceeds the mean population growth rate, which itself exceeds the growth rate of the equivalent deterministic model. The consequences of these results in more general biological situations are discussed.

  6. Walleye population and fishery responses after elimination of legal harvest on Escanaba Lake, Wisconsin

    USGS Publications Warehouse

    Haglund, Justin M.; Isermann, Daniel A.; Sass, Greg G.

    2016-01-01

    Implementing harvest regulations to eliminate or substantially reduce (≥90%) the exploitation of Walleyes Sander vitreus in recreational fisheries may increase population size structure, but these measures also could reduce angler effort because many Walleye anglers are harvest oriented. We analyzed data collected during 1995–2015 to determine whether Walleye population and fishery metrics in Escanaba Lake, Wisconsin, changed after a minimum TL limit of 71 cm with a one-fish daily bag limit was implemented in 2003. This change eliminated the legal harvest of Walleyes after several decades during which annual exploitation averaged 34%. We detected a significant increase in the loge density of adult females after the regulation change, but the loge density of all adults and adult males did not differ between periods. Mean TL of adult males was significantly greater after the regulation change, but the mean TL of females and the proportional size distribution of preferred-length fish (≥51 cm TL) were similar between periods. Sex-specific mean TLs at age 5 did not differ between periods. Loge density of age-0 Walleyes did not change after 2003, but variation in age-0 density was lower. Total angler effort and the effort for anglers targeting Walleyes were significantly lower (35% and 60% declines, respectively) after the regulation change, whereas catch rates for both angler categories did not differ between periods. Our results suggest that implementing highly restrictive regulations that greatly reduce or eliminate legal harvest will not always increase angler catch rates and population size structure. Highly restrictive regulations may also deter anglers from using a fishery when many other fisheries are available. Our findings are useful for fishery managers who may work with anglers holding the belief that lower exploitation is a potential remedy for low Walleye size structure, even when density and growth suggest that there is limited potential for improvement.

  7. Posthodiplostomum cuticola (Digenea: Diplostomatidae) in intermediate fish hosts: factors contributing to the parasite infection and prey selection by the definitive bird host.

    PubMed

    Ondracková, M; Simková, A; Gelnar, M; Jurajda, P

    2004-12-01

    Infection parameters of Posthodiplostomum cuticola, a digenean parasite with a complex life-cycle, were investigated in fish (the second intermediate host) from 6 floodplain water bodies over 2 years. A broad range of factors related to abiotic characteristics of localities, density of the first intermediate (planorbid snails) and definitive (wading birds) hosts and fish community structure were tested for their effects on P. cuticola infection in juvenile and adult fish. Characters of the littoral zone and flood duration were found to be important factors for the presence of the first intermediate and definitive hosts. Visitation time of definitive bird hosts was also related to adult fish host density. Localities with P. cuticola infected fish were visited by a higher number of bird species. Infection of P. cuticola in fish and similarities in infection among fish host assemblages were correlated with fish host density and fish species composition. Parasite infection in both adult and juvenile fishes was associated with the slope of the bank and the bottom type, in particular in juvenile fish assemblages with snail host density. We conclude that habitat characteristics, snail host density and fish community structure contribute significantly to P. cuticola infection in fish hosts.

  8. Modeling Parasite Dynamics on Farmed Salmon for Precautionary Conservation Management of Wild Salmon

    PubMed Central

    Rogers, Luke A.; Peacock, Stephanie J.; McKenzie, Peter; DeDominicis, Sharon; Jones, Simon R. M.; Chandler, Peter; Foreman, Michael G. G.; Revie, Crawford W.; Krkošek, Martin

    2013-01-01

    Conservation management of wild fish may include fish health management in sympatric populations of domesticated fish in aquaculture. We developed a mathematical model for the population dynamics of parasitic sea lice (Lepeophtheirus salmonis) on domesticated populations of Atlantic salmon (Salmo salar) in the Broughton Archipelago region of British Columbia. The model was fit to a seven-year dataset of monthly sea louse counts on farms in the area to estimate population growth rates in relation to abiotic factors (temperature and salinity), local host density (measured as cohort surface area), and the use of a parasiticide, emamectin benzoate, on farms. We then used the model to evaluate management scenarios in relation to policy guidelines that seek to keep motile louse abundance below an average three per farmed salmon during the March–June juvenile wild Pacific salmon (Oncorhynchus spp.) migration. Abiotic factors mediated the duration of effectiveness of parasiticide treatments, and results suggest treatment of farmed salmon conducted in January or early February minimized average louse abundance per farmed salmon during the juvenile wild salmon migration. Adapting the management of parasites on farmed salmon according to migrations of wild salmon may therefore provide a precautionary approach to conserving wild salmon populations in salmon farming regions. PMID:23577082

  9. Measurements of spatial population synchrony: influence of time series transformations.

    PubMed

    Chevalier, Mathieu; Laffaille, Pascal; Ferdy, Jean-Baptiste; Grenouillet, Gaël

    2015-09-01

    Two mechanisms have been proposed to explain spatial population synchrony: dispersal among populations, and the spatial correlation of density-independent factors (the "Moran effect"). To identify which of these two mechanisms is driving spatial population synchrony, time series transformations (TSTs) of abundance data have been used to remove the signature of one mechanism, and highlight the effect of the other. However, several issues with TSTs remain, and to date no consensus has emerged about how population time series should be handled in synchrony studies. Here, by using 3131 time series involving 34 fish species found in French rivers, we computed several metrics commonly used in synchrony studies to determine whether a large-scale climatic factor (temperature) influenced fish population dynamics at the regional scale, and to test the effect of three commonly used TSTs (detrending, prewhitening and a combination of both) on these metrics. We also tested whether the influence of TSTs on time series and population synchrony levels was related to the features of the time series using both empirical and simulated time series. For several species, and regardless of the TST used, we evidenced a Moran effect on freshwater fish populations. However, these results were globally biased downward by TSTs which reduced our ability to detect significant signals. Depending on the species and the features of the time series, we found that TSTs could lead to contradictory results, regardless of the metric considered. Finally, we suggest guidelines on how population time series should be processed in synchrony studies.

  10. Mesopelagic fish assemblages across oceanic fronts: A comparison of three frontal systems in the southern California Current Ecosystem

    NASA Astrophysics Data System (ADS)

    Netburn, Amanda N.; Koslow, J. Anthony

    2018-04-01

    With strong horizontal gradients in physical properties, oceanic frontal regions can lead to disproportionately high biological productivity. We examined cross-frontal changes in mesopelagic fish assemblages at three separate frontal systems in the southern California Current Ecosystem (CCE) as part of the CCE Long Term Ecological Research program: the A-Front sampled in October 2008, the C-Front in June/July 2011, and the E-Front in July/August 2012. We analyzed the differential effects of front-associated regions on density and species composition of adult migratory and non-migratory fishes and larvae, and the larval to adult ratio (as a possible index of a population growth potential) for migratory and non-migratory species. The fronts did not have a strong effect on densities of any subset of the mesopelagic fish assemblage. The species composition of the vertical migratory fishes (and their larvae) was typically altered across fronts, with different assemblages present on either side of each front. The migratory assemblages at the fronts themselves were indistinguishable from those at the more productive side of the frontal system. In contrast, the assemblage composition of the non-migratory fishes was indistinguishable between regions across all three of the fronts. The differences between the Northern and Southern assemblages at the A-Front were primarily based on biogeographic provinces, while the assemblages at the E-Front were largely distinguishable by their oceanic or coastal-upwelling zone associations. These results generally confirm those of previous studies on frontal systems in the California Current Ecosystem and elsewhere. The ratio of larvae to adults, a potential index of population growth potential, was altered across two of the fronts for migratory species, elevated on the colder side of the A-Front and the warmer side of the E-Front. This finding suggests that fronts may be regions of enhanced reproduction. The larvae to adult ratio was indistinguishable for non-migratory species at all three frontal systems. The non-migratory component of the community was little influenced by the presence of a front, apparently because the regions of strongest horizontal spatial gradients were too shallow to be experienced directly. We speculate that there was no change in larval community composition and population growth index at the most dynamic frontal system (C-Front) compared to the other fronts surveyed because the frontal feature was short-lived relative to the time scale for population growth of the fish. However, the difference in results of the C-Front may also be due to a change in methodology used in this study. If mesoscale features such as fronts increase in frequency off the California coast in the future as predicted, they have the potential to alter population growth potential and restructure mesopelagic fish assemblages, which are dominated by migratory species.

  11. A comparison of linear demographic models and fraction of lifetime egg production for assessing sustainability in sharks.

    PubMed

    Chapple, Taylor K; Botsford, Louis W

    2013-06-01

    Conventional methods for management of data-rich fisheries maintain sustainable populations by assuring that lifetime reproduction is adequate for individuals to replace themselves and accounting for density-dependent recruitment. Fishing is not allowed to reduce relative lifetime reproduction, the fraction of current egg production relative to unfished egg production (FLEP), below a sustainable level. Because most shark fisheries are data poor, other representations of persistence status have been used, including linear demographic models, which incorporate life-history characteristics in age-structured models with no density dependence. We tested how well measures of sustainability from 3 linear demographic methods (rebound potential, stochastic growth rate, and potential population increase) reflect actual population persistence by comparing values of these measures with FLEP for 26 shark species. We also calculated the value of fishing mortality (F) that would allow all 26 species to maintain an accepted precautionary threshold for sharks of FLEP = 60%, expressing F as a fraction of natural mortality (M). Values of stochastic growth rate and potential population growth did not covary in rank order with FLEP (p = 0.057 and p = 0.077, respectively) and neither was significantly correlated with FLEP. Ordinal ranking of rebound potential positively covaried with FLEP (p = 0.00013), but the relative rankings of some species were substantially out of order. Adopting a sustainable limit of F = 0.16M would maintain all 26 species above the precautionary minimum value of FLEP (60%). We concluded that shark-fishery and conservation policies should rely on calculation of replacement (i.e., FLEP), and that sharks should be fished at a precautionary level that would protect all stocks (i.e., F< 0.16M). © 2013 Society for Conservation Biology.

  12. Episodic acidification of small streams in the northeastern united states: Effects on fish populations

    USGS Publications Warehouse

    Baker, J.P.; Van Sickle, J.; Gagen, C.J.; DeWalle, David R.; Sharpe, W.E.; Carline, R.F.; Baldigo, Barry P.; Murdoch, Peter S.; Bath, D.W.; Kretser, W.A.; Simonin, H.A.; Wigington, P.J.

    1996-01-01

    As part of the Episodic Response Project (ERP), we studied the effects of episodic acidification on fish in 13 small streams in the northeastern United States: four streams in the Adirondack region of New York, four streams in the Catskills, New York, and five streams in the northern Appalachian Plateau, Pennsylvania. In situ bioassays with brook trout (Salvelinus fontinalis) and a forage fish species (blacknose dace (Rhinichthys atratulus], mottled sculpin (Cottus bairdi), or slimy sculpin (Cottus cognatus), depending on the region) measured direct toxicity. Movements of individual brook trout, in relation to stream chemistry, were monitored using radiotelemetry. Electrofishing surveys assessed fish community status and the density and biomass of brook trout in each stream. During low flow, all streams except one had chemical conditions considered suitable for the survival and reproduction of most fish species (median pH 6.0-7.2 during low flow; inorganic Al 100-200 ??g/L. We conclude that episodic acidification can have long-term effects on fish communities in small streams.

  13. The dynamics of a fish stock exploited in two fishing zones.

    PubMed

    Mchich, R; Auger, P; Raïss, N

    2000-12-01

    This work presents a specific stock-effort dynamical model. The stocks correspond to two populations of fish moving and growing between two fishery zones. They are harvested by two different fleets. The effort represents the number of fishing boats of the two fleets that operate in the two fishing zones. The bioeconomical model is a set of four ODE's governing the fishing efforts and the stocks in the two fishing areas. Furthermore, the migration of the fish between the two patches is assumed to be faster than the growth of the harvested stock. The displacement of the fleets is also faster than the variation in the number of fishing boats resulting from the investment of the fishing income. So, there are two time scales: a fast one corresponding to the migration between the two patches, and a slow time scale corresponding to growth. We use aggregation methods that allow us to reduce the dimension of the model and to obtain an aggregated model for the total fishing effort and fish stock of the two fishing zones. The mathematical analysis of the model is shown. Under some conditions, we obtain a stable equilibrium, which is a desired situation, as it leads to a sustainable harvesting equilibrium, keeping the stock at exploitable densities.

  14. Eastern mosquitofish resists invasion by nonindigenous poeciliids through agonistic behaviors

    USGS Publications Warehouse

    Thompson, Kevin A.; Hill, Jeffrey E.; Nico, Leo G.

    2012-01-01

    Florida is a hotspot for nonindigenous fishes with over 30 species established, although few of these are small-bodied species. One hypothesis for this pattern is that biotic resistance of native species is reducing the success of small-bodied, introduced fishes. The eastern mosquitofish Gambusia holbrooki is common in many freshwater habitats in Florida and although small-bodied (<50 mm), it is a predator and aggressive competitor. We conducted four mesocosm experiments to examine the potential for biotic resistance by eastern mosquitofish to two small-bodied nonindigenous fishes, variable platyfish (Xiphophorus variatus) and swordtail (X. hellerii). Experiments tested: (1) effect of eastern mosquitofish density on adult survival, (2) effect of eastern mosquitofish on a stage-structured population, (3) role of habitat structural complexity on nonindigenous adult survival, and (4) behavioral effects of eastern mosquitofish presence and habitat complexity. Eastern mosquitofish attacked and killed non-native poeciliids with especially strong effects on juveniles of both species. Higher eastern mosquitofish density resulted in greater effects. Predation on swordtails increased with increasing habitat complexity. Eastern mosquitofish also actively drove swordtails from cover, which could expose non-native fish to other predators under field conditions. Our results suggest that eastern mosquitofish may limit invasion success.

  15. Shape variation in the least killifish: ecological associations of phenotypic variation and the effects of a common garden.

    PubMed

    Landy, J Alex; Travis, Joseph

    2015-12-01

    Studies of the adaptive significance of variation among conspecific populations often focus on a single ecological factor. However, habitats rarely differ in only a single ecological factor, creating a challenge for identifying the relative importance of the various ecological factors that might be maintaining local adaptation. Here we investigate the ecological factors associated with male body shape variation among nine populations of the poeciliid fish, Heterandria formosa, from three distinct habitats and combine those results with a laboratory study of three of those populations to assess the contributions of genetic and environmental influences to shape variation. Field-collected animals varied principally in three ways: the orientation of the gonopodium, the intromittent organ; the degree of body depth and streamlining; and the shape of the tail musculature. Fish collected in the spring season were larger and had a more anteriorly positioned gonopodium than fish collected in autumn. Fish collected from lotic springs were larger and more streamlined than those collected from lentic ponds or tidal marshes. Some of the variation in male shape among populations within habitats was associated with population-level variation in species richness, adult density, vegetative cover, predation risk, and female standard length. Population-level differences among males in body size, position of the gonopodium, and shape of the tail musculature were maintained among males reared in a common environment. In contrast, population variation in the degree of streamlining was eliminated when males were reared in a common environment. These results illustrate the complicated construction of multivariate phenotypic variation and suggest that different agents of selection have acted on different components of shape.

  16. Historic changes in length distributions of three Baltic cod (Gadus morhua) stocks: Evidence of growth retardation.

    PubMed

    Svedäng, Henrik; Hornborg, Sara

    2017-08-01

    Understanding how combinations of fishing effort and selectivity affect productivity is central to fisheries research. We investigate the roles of fishing regulation in comparison with ecosystem status for Baltic Sea cod stock productivity, growth performance, and population stability. This case study is interesting because three cod populations with different exploitation patterns and stock status are located in three adjacent but partially, ecologically different areas. In assessing stock status, growth, and productivity, we use survey information and rather basic stock parameters without relying on age readings. Because there is an urgent interest of better understanding of the current development of the Eastern Baltic cod stock, we argue that our approach represents partly a novel way of interpreting monitoring information together with catch data in a simplified yet more informative way. Our study reports how the Eastern and Western Baltic cod have gone toward more truncated size structures between 1991 and 2016, in particular for the Eastern Baltic cod, whereas the Öresund cod show no trend. We suggest that selective fishing may disrupt fish population dynamic stability and that lower natural productivity might amplify the effects of selective fishing. In support of earlier findings on a density-dependent growth of Eastern Baltic cod, management is advised to acknowledge that sustainable exploitation levels for Eastern Baltic cod are much more limited than perceived in regular assessments. Of more general importance, our results emphasize the need to embrace a more realistic view on what ecosystems can produce regarding tractable fish biomass to facilitate a more ecosystem-based fisheries management.

  17. Population regulation in Gyrodactylus salaris - Atlantic salmon (Salmo salar L.) interactions: testing the paradigm.

    PubMed

    Ramírez, Raúl; Bakke, Tor A; Harris, Philip D

    2015-07-25

    Gyrodactylus salaris is a directly transmitted ectoparasite that reproduces in situ on its fish host. Wild Norwegian (East Atlantic) salmon stocks are thought to be especially susceptible to the parasite due to lack of co-adaptation, contrary to Baltic salmon stocks. This study i) identifies whether time- and density-dependent mechanisms in gyrodactylid population growth exist in G. salaris-Atlantic salmon interactions and ii) based on differences between Norwegian and Baltic stocks, determines whether the 'Atlantic susceptible, Baltic resistant' paradigm holds as an example of local adaptation. A total of 18 datasets of G. salaris population growth on individually isolated Atlantic salmon (12 different stocks) infected with three parasite strains were re-analysed using a Bayesian approach. Datasets included over 2000 observations of 388 individual fish. The best fitting model of population growth was time-limited; parasite population growth rate declined consistently from the beginning of infection. We found no evidence of exponential population growth in any dataset. In some stocks, a density dependence in the size of the initial inoculum limited the maximum rate of parasite population growth. There is no evidence to support the hypothesis that all Norwegian and Scottish Atlantic salmon stocks are equally susceptible to G. salaris, while Baltic stocks control and limit infections due to co-evolution. Northern and Western Norwegian as well as the Scottish Shin stocks, support higher initial parasite population growth rates than Baltic, South-eastern Norwegian, or the Scottish Conon stocks, and several Norwegian stocks tested (Akerselva, Altaelva, Lierelva, Numedalslågen), and the Scottish stocks (i.e. Conon, Shin), were able to limit infections after 40-50 days. No significant differences in performance of the three parasite strains (Batnfjordselva, Figga, and Lierelva), or the two parasite mitochondrial haplotypes (A and F) were observed. Our study shows a spectrum of growth rates, with some fish of the South-eastern Norwegian stocks sustaining parasite population growth rates overlapping those seen on Baltic Neva and Indalsälv stocks. This observation is inconsistent with the 'Baltic-resistant, Atlantic-susceptible' hypothesis, but suggests heterogeneity, perhaps linked to other host resistance genes driven by selection for local disease syndromes.

  18. Effects of fish density and river fertilization on algal standing stocks, invertebrates communities, and fish production in an Arctic River

    USGS Publications Warehouse

    Deegan, Linda A.; Peterson, B.J.; Golden, H.; McIvor, C.C.; Miller, M.C.

    1997-01-01

    This study examined the relative importance of bottom-up and top-down controls of an arctic stream food web by simultaneous manipulation of the top predator and nutrient availability. We created a two-step trophic system (algae to insects) by removal of the top predator (Arctic grayling, Thymallus arcticus) in fertilized and control stream reaches. Fish abundance was also increased 10 times to examine the effect of high fish density on stream ecosystem dynamics and fish. We measured the response of epilithic algae, benthic and drifting insects, and fish to nutrient enrichment and to changes in fish density. Insect grazers had little effect on algae and fish had little effect on insects. In both the control and fertilized reaches, fish growth, energy storage, and reproductive response of females declined with increased fish density. Fish growth and energy storage were more closely correlated with per capita insect availability than with per capita algal standing stock

  19. Differing Mechanisms Underlie Sexual Size-Dimorphism in Two Populations of a Sex-Changing Fish

    PubMed Central

    McCormick, Mark I.; Ryen, Christopher A.; Munday, Philip L.; Walker, Stefan P. W.

    2010-01-01

    Variability in the density of groups within a patchy environment lead to differences in interaction rates, growth dynamics and social organization. In protogynous hermaphrodites there are hypothesised trade-offs among sex-specific growth, reproductive output and mortality. When differences in density lead to changes to social organization the link between growth and the timing of sex-change is predicted to change. The present study explores this prediction by comparing the social organisation and sex-specific growth of two populations of a protogynous tropical wrasse, Halichoeres miniatus, which differ in density. At a low density population a strict harem structure was found, where males maintained a tight monopoly of access and spawning rights to females. In contrast, at a high density population a loosely organised system prevailed, where females could move throughout multiple male territories. Otolith microstructure revealed the species to be annual and deposit an otolith check associated with sex-change. Growth trajectories suggested that individuals that later became males in both populations underwent a growth acceleration at sex-change. Moreover, in the high density population, individuals that later became males were those individuals that had the largest otolith size at hatching and consistently deposited larger increments throughout early larval, juvenile and female life. This study demonstrates that previous growth history and growth rate changes associated with sex change can be responsible for the sexual dimorphism typically found in sex-changing species, and that the relative importance of these may be socially constrained. PMID:20485547

  20. Big Spring spinedace and associated fish populations and habitat conditions in Condor Canyon, Meadow Valley Wash, Nevada

    USGS Publications Warehouse

    Jezorek, Ian G.; Connolly, Patrick J.; Munz, Carrie S.; Dixon, Chris

    2011-01-01

    Executive Summary: This project was designed to document habitat conditions and populations of native and non-native fish within the 8-kilometer Condor Canyon section of Meadow Valley Wash, Nevada, with an emphasis on Big Spring spinedace (Lepidomeda mollispinis pratensis). Other native fish present were speckled dace (Rhinichthys osculus) and desert sucker (Catostomus clarki). Big Spring spinedace were known to exist only within this drainage and were known to have been extirpated from a portion of their former habitat located downstream of Condor Canyon. Because of this extirpation and the limited distribution of Big Spring spinedace, the U.S. Fish and Wildlife Service listed this species as threatened under the Endangered Species Act in 1985. Prior to our effort, little was known about Big Spring spinedace populations or life histories and habitat associations. In 2008, personnel from the U.S. Geological Survey's Columbia River Research Laboratory began surveys of Meadow Valley Wash in Condor Canyon. Habitat surveys characterized numerous variables within 13 reaches, thermologgers were deployed at 9 locations to record water temperatures, and fish populations were surveyed at 22 individual sites. Additionally, fish were tagged with Passive Integrated Transponder (PIT) tags, which allowed movement and growth information to be collected on individual fish. The movements of tagged fish were monitored with a combination of recapture events and stationary in-stream antennas, which detected tagged fish. Meadow Valley Wash within Condor Canyon was divided by a 12-meter (m) waterfall known as Delmue Falls. About 6,100 m of stream were surveyed downstream of the falls and about 2,200 m of stream were surveyed upstream of the falls. Although about three-quarters of the surveyed stream length was downstream of Delmue Falls, the highest densities and abundance of native fish were upstream of the falls. Big Spring spinedace and desert sucker populations were highest near the upper end of Condor Canyon, where a tributary known as Kill Wash, and several springs, contribute flow and moderate high and low water temperature. Kill Wash and the area around its confluence with Meadow Valley Wash appeared important for spawning of all three native species. Detections of PIT-tagged fish indicated that there were substantial movements to this area during the spring. Our surveys included about 700 m of Meadow Valley Wash upstream of Kill Wash. A small falls about 2 m high was about 560 m upstream of Kill Wash. This falls is likely a barrier to upstream fish movement at most flows. Populations of all three native species were found upstream of this small falls. Age-0 fish of all three species were present, indicating successful spawning. The maximum upstream extent of native fish within Meadow Valley Wash was not determined. Our surveys included about 700 m of Meadow Valley Wash upstream of Kill Wash. A small falls about 2 m high was about 560 m upstream of Kill Wash. This falls is likely a barrier to upstream fish movement at most flows. Populations of all three native species were found upstream of this small falls. Age-0 fish of all three species were present, indicating successful spawning. The maximum upstream extent of native fish within Meadow Valley Wash was not determined. A population of non-native rainbow trout (Oncorhynchus mykiss) was found within the 2,000 m of stream immediately downstream of Delmue Falls. Non-native crayfish were very common both upstream and downstream of Delmue Falls. We were not able to quantify crayfish populations, but they compose a significant portion of the biomass of aquatic species in Condor Canyon. There were some distinctive habitat features that may have favored native fish upstream of Delmue Falls. Upstream of the falls, water temperatures were moderated by inputs from springs, turbidity was lower, pool habitat was more prevalent, substrate heterogeneity was higher, and there was less fine sediment than

  1. Combined effects of hydrologic alteration and cyprinid fish in mediating biogeochemical processes in a Mediterranean stream.

    PubMed

    Rubio-Gracia, Francesc; Almeida, David; Bonet, Berta; Casals, Frederic; Espinosa, Carmen; Flecker, Alexander S; García-Berthou, Emili; Martí, Eugènia; Tuulaikhuu, Baigal-Amar; Vila-Gispert, Anna; Zamora, Lluis; Guasch, Helena

    2017-12-01

    Flow regimes are important drivers of both stream community and biogeochemical processes. However, the interplay between community and biogeochemical responses under different flow regimes in streams is less understood. In this study, we investigated the structural and functional responses of periphyton and macroinvertebrates to different densities of the Mediterranean barbel (Barbus meridionalis, Cyprinidae) in two stream reaches differing in flow regime. The study was conducted in Llémena Stream, a small calcareous Mediterranean stream with high nutrient levels. We selected a reach with permanent flow (permanent reach) and another subjected to flow regulation (regulated reach) with periods of flow intermittency. At each reach, we used in situ cages to generate 3 levels of fish density. Cages with 10 barbels were used to simulate high fish density (>7indm -2 ); cages with open sides were used as controls (i.e. exposed to actual fish densities of each stream reach) thus having low fish density; and those with no fish were used to simulate the disappearance of fish that occurs with stream drying. Differences in fish density did not cause significant changes in periphyton biomass and macroinvertebrate density. However, phosphate uptake by periphyton was enhanced in treatments lacking fish in the regulated reach with intermittent flow but not in the permanent reach, suggesting that hydrologic alteration hampers the ability of biotic communities to compensate for the absence of fish. This study indicates that fish density can mediate the effects of anthropogenic alterations such as flow intermittence derived from hydrologic regulation on stream benthic communities and associated biogeochemical processes, at least in eutrophic streams. Copyright © 2017. Published by Elsevier B.V.

  2. Population density of Sotalia guianensis (Cetacea: Delphinidae) in the Cananéia region, Southeastern Brazil.

    PubMed

    Havukainen, Liisa; Monteiro, Emygdio Leite de Araujo Fiho; Filla, Gislaine de Fatima

    2011-09-01

    Population density in cetaceans can be estimated through photo-identification, mark-recapture, land-based observations and visual estimative. We the aim to contribute with conservation strategies, we used line transects (distance method) to estimate the population density of the river dolphin, S. guianensis, in the estuarine region of Cananéia, Southeastern Brazil. The study, developed from May 2003 until April 2004, during dry and rainy seasons and different times of the day, included a sampling area divided into three sectors according to their proximity to the open sea: Sector I (the closest to the open sea); Sector II (with a large flow of fresh water and a salient declivity); and Sector III (with a large flow of fresh water and non salient declivity). Onboard random sampling was carried out in all three sectors, and dolphins seen from the bow to 90 degrees on both port and starboard sides, were registered along with their position and distance from the boat. The total density found was 12.41 ind/km2 (CV = 25.53%) with an average of 2.2 individuals per group for both periods of the day, morning and afternoon. Densities also varied between dry and rainy seasons, being lower in the first with 5.77 ind/km2 (CV = 27.87%) than in the second 20.28 ind/km2 (CV = 31.95%), respectively. Regarding the three sectors, a non-causal heterogeneous distribution was found: Sector I was the most populated (D = 33.10 ind/km2, CV = 13.34%), followed by Sector II (D = 7.8 ind/km2, CV = 21.07%) and Sector III (D = 3.04 ind/km2, CV = 34.04%). The aforementioned area, due to its proximity to the open sea, has the highest salinity level and therefore has the greatest chance of holding most of the marine fish schools which can be cornered by dolphins on high declivity areas during fishing activities. This suggests that food availability may be the most important factor on the river dolphin's distribution in the estuary. Similar studies will contribute to a better understanding of these populations and are essential for future conservation strategies.

  3. Local habitat conditions explain the variation in the strength of self-thinning in a stream salmonid

    PubMed Central

    Myrvold, Knut Marius; Kennedy, Brian P

    2015-01-01

    Self-thinning patterns are frequently used to describe density dependence in populations on timescales shorter than the organism's life span and have been used to infer carrying capacity of the environment. Among mobile animals, this concept has been used to document density dependence in stream salmonids, which compete over access to food and space. The carrying capacity, growth conditions, and initial cohort sizes often vary between streams and stream sections, which would influence the onset and strength of the density dependence. Despite much effort in describing habitat relationships in stream fishes, few studies have explicitly tested how the physical environment affects the slope of the thinning curves. Here, we investigate the prevalence and strength of self-thinning in juvenile stages of a steelhead (Oncorhynchus mykiss) population in Idaho, USA. Further, we investigate the roles of local physical habitat and metabolic constraints in explaining the variation in thinning curves among study sites in the watershed. Only yearling steelhead exhibited an overall significant thinning trend, but the slope of the mass–density relationship (−0.53) was shallower than predicted by theory and reported from empirical studies. There was no detectable relationship in subyearling steelhead. Certain abiotic factors explained a relatively large portion of the variation in the strength of the self-thinning among the study reaches. For subyearling steelhead, the slopes were negatively associated with the average water depth and flow velocity in the study sites, whereas slopes in yearlings were steeper in sites that incurred a higher metabolic cost. Our results show that the prevalence and strength of density dependence in natural fish populations can vary across heterogeneous watersheds and can be more pronounced during certain stages of a species' life history, and that environmental factors can mediate the extent to which density dependence is manifested in predictable ways. PMID:26380659

  4. Population characteristics of a recovering US Virgin Islands red hind spawning aggregation following protection

    PubMed Central

    Nemeth, Richard S.

    2006-01-01

    Many species of groupers form spawning aggregations, dramatic events where 100s to 1000s of individuals gather annually at specific locations for reproduction. Spawning aggregations are often targeted by local fishermen, making them extremely vulnerable to over fishing. The Red Hind Bank Marine Conservation District located in St. Thomas, United States Virgin Islands, was closed seasonally in 1990 and closed permanently in 1999 to protect an important red hind Epinephelus guttatus spawning site. This study provides some of the first information on the population response of a spawning aggregation located within a marine protected area. Tag-and-release fishing and fish transects were used to evaluate population characteristics and habitat utilization patterns of a red hind spawning aggregation between 1999 and 2004. Compared with studies conducted before the permanent closure, the average size of red hind increased mostly during the seasonal closure period (10 cm over 12 yr), but the maximum total length of male red hind increased by nearly 7 cm following permanent closure. Average density and biomass of spawning red hind increased by over 60% following permanent closure whereas maximum spawning density more than doubled. Information from tag returns indicated that red hind departed the protected area following spawning and migrated 6 to 33 km to a ca. 500 km2 area. Protection of the spawning aggregation site may have also contributed to an overall increase in the size of red hind caught in the commercial fishery, thus increasing the value of the grouper fishery for local fishermen. PMID:16612415

  5. Lake Ontario benthic prey fish assessment, 2015

    USGS Publications Warehouse

    Weidel, Brian C.; Walsh, Maureen; Holden, Jeremy P.; Connerton, Michael J.

    2016-01-01

    Benthic prey fishes are a critical component of the Lake Ontario food web, serving as energy vectors from benthic invertebrates to native and introduced piscivores. Since the late 1970’s, Lake Ontario benthic prey fish status was primarily assessed using bottom trawl observations confined to the lake’s south shore, in waters from 8 – 150 m (26 – 492 ft). In 2015, the Benthic Prey Fish Survey was cooperatively adjusted and expanded to address resource management information needs including lake-wide benthic prey fish population dynamics. Effort increased from 55 bottom trawl sites to 135 trawl sites collected in depths from 8 - 225m (26 – 738 ft). The spatial coverage of sampling was also expanded and occurred in all major lake basins. The resulting distribution of tow depths more closely matched the available lake depth distribution. The additional effort illustrated how previous surveys were underestimating lake-wide Deepwater Sculpin, Myoxocephalus thompsonii, abundance by not sampling in areas of highest density. We also found species richness was greater in the new sampling sites relative to the historic sites with 11 new fish species caught in the new sites including juvenile Round Whitefish, Prosopium cylindraceum, and Mottled sculpin, Cottus bairdii. Species-specific assessments found Slimy Sculpin, Cottus cognatus abundance increased slightly in 2015 relative to 2014, while Deepwater Sculpin and Round Goby, Neogobius melanostomus, dramatically increased in 2015, relative to 2014. The cooperative, lake-wide Benthic Prey Fish Survey expanded our understanding of benthic fish population dynamics and habitat use in Lake Ontario. This survey’s data and interpretations influence international resource management decision making, such as informing the Deepwater Sculpin conservation status and assessing the balance between sport fish consumption and prey fish populations. Additionally a significant Lake Ontario event occurred in May 2015 when a single juvenile Bloater Coregonus hoyi, was captured during the spring bottom trawl survey at 95m (312 ft) near Oswego, NY. This native, deep-water prey fish, last captured in Lake Ontario survey trawls in 1983, is part of an international, collaborative coregonid restoration effort in the Great Lakes.

  6. Fleet dynamics of the commercial lake trout fishery in Michigan waters of Lake Superior during 1929-1961

    USGS Publications Warehouse

    Wilberg, Michael J.; Bronte, Charles R.; Hansen, Michael J.

    2004-01-01

    Understanding fishing fleet dynamics is important when using fishery dependent data to infer the status of fish stocks. We analyzed data from mandatory catch reports from the commercial lake trout (Salvelinus namaycush) fishery in Michigan waters of Lake Superior during 1929-1961, a period when lake trout populations collapsed through the combined effects of overfishing and sea lamprey (Petromyzon marinus) predation. The number of full-time fishermen increased during 1933-1943 and then decreased during 1943-1957. Addition of new fishermen was related to past yield, market prices, World War II draft exemptions, and lost fishing opportunities in Lake Huron and Lake Michigan. Loss of existing fishermen was related to declining lake trout density. Large mesh (a?Y 114-mm stretch-measure) gill net effort increased during 1929-1951 because fishermen fished more net inshore as lake trout density declined, even though catch per effort (CPE) was often higher in deeper waters. The most common gill net mesh size increased from 114-mm to 120-mm stretch-measure during 1929-1957, as lake trout growth increased. More effort was fished inshore than offshore and the amount of inshore effort was less variable over time than offshore effort. Relatively stable yield was maintained by increasing gill net effort and by moving some effort to better grounds. Because fishing-up caused yield and CPE to remain high despite declining lake trout abundance, caution must be used when basing goals for lake trout restoration on historical fishery indices.

  7. Temporal changes in fishing motivation among fishing club anglers in the United States

    USGS Publications Warehouse

    Schramm, H.L.; Gerard, P.D.

    2004-01-01

    Responses from freshwater anglers (n = 4287) to a nationwide survey of the US fishing club members were used to assess differences in the importance of 16 fishing motivation items between 1987 and 1997, dates that preceded and followed a period of substantial decline in recreational fishing participation in the US. Comparison of respondents' motivations for fishing in 1997 and 10 years earlier indicated consistency in the paramount importance of being outdoors, relaxation and the experience of the catch. However, the importance of family recreation and being with friends in 1987 were replaced by escape items in 1997. Anglers with fewer dependents and living in areas with higher population density were more likely to decrease the importance of family recreation. Younger anglers were more likely to decrease the importance of being with friends. Anglers who had higher household income, fished more and had higher fishing expenditures were more likely to decrease the importance of obtaining fish to eat. The results of this study suggest that managers should be less concerned about angler opposition to liberal regulations that allow anglers to harvest fish, and that heightened efforts to recruit and retain recreational anglers, which presently focus on family recreation, should be broadened to include outdoor experience, relaxation and escape aspects of fishing. ?? 2004 Blackwell Publishing Ltd.

  8. Effects of introduced crayfish on selected native fishes of Arizona

    USGS Publications Warehouse

    Carpenter, J.

    2000-01-01

    The virile crayfish (Orconectes virilis), an aggressive polytrophic species, has been introduced into many Arizona streams. I investigated competition and predation between this crayfish and several native Arizona fishes. I conducted field experiments to assess competition for food between crayfish and fish, and laboratory experiments to examine competition for shelter and food, and predation. In Sabino Creek, I manipulated crayfish densities in isolated pools to examine effects of crayfish on growth, mortality, and recruitment of Gila chub (Gila intermedia). Regardless of crayfish density, Gila chub declined slightly in weight and condition. Mortality and recruitment did not differ between densities of crayfish. I examined crayfish effects on benthic macroinvertebrates, a submerged aquatic macrophyte and associated invertebrates, and three fish species in a small stream in the White Mountains by fencing eight stream sections to prevent movement. The three fishes were speckled dace (Rhinichthys osculus), Sonora sucker (Catostomus insignis), and desert sucker (C. clarki). Molluscs > 10 mm and macrophytes were less abundant at sites with a high density of crayfish than at sites with low crayfish densities. Insect diversity was lower in high- vs. low-density sites. No treatment effect was observed on growth or condition of individually marked fish. Short-term laboratory experiments demonstrated predatory interactions and competition for shelter between crayfish and Gila chub, desert sucker, and speckled dace. Crayfish used shelter more than fish, displaced fish from shelter, and frequently attacked fish. Fish never attacked crayfish, and only once displaced crayfish from shelter. In predation experiments, crayfish preyed upon all species, but preyed most heavily upon desert suckers. Fish never altered use of the water column in the presence of crayfish. Density manipulation experiments in a laboratory measured food competition between crayfish and two native fishes. Growth of Gila chub was less affected by crayfish than by increased density of Gila chub. Thus crayfish are not strong competitors with Gila chub for food. However, growth of flannelmouth sucker (Catostomus latipinnis) was negatively impacted by presence of crayfish. These laboratory experiments provide evidence that introduced crayfish can reduce fish growth by competition for food, and that native fishes are vulnerable to crayfish predation.

  9. Population-regulating processes during the adult phase in flatfish

    NASA Astrophysics Data System (ADS)

    Rijnsdorp, A. D.

    Flatfish support major fisheries and the study of regulatory processes are of paramount importance for evaluating the resilience of the resource to exploitation. This paper reviews the evidence for processes operating during the adult phase that may 1. generate interannual variability in recruitment; 2. contribute to population regulation through density-dependent growth, density-dependent ripening of adults and density-dependent egg production. With regard to (1), there is evidence that in the adult phase processes do occur that may generate recruitment variability through variation in size-specific fecundity, contraction of spawning season, reduction in egg quality, change in sex ratio and size composition of the adult population. However, time series of recruitment do not provide support for this hypothesis. With regard to (2), there is ample evidence that exploitation of flatfish coincides with an increase in growth, although the mechanisms involved are not always clear. The presence of density-dependent growth in the adult phase of unexploited populations appears to be the most likely explanation in some cases. From the early years of exploitation of flatfish stocks inhabiting cold waters, evidence exists that adult fish do not spawn each year. Fecundity schedules show annual variations, but the available information suggests that size-specific fecundity is stable over a broad range of population abundance and may only decrease at high population abundance. The analysis is complicated by the possibility of a trade-off between egg numbers and egg size. Nevertheless, a density-dependent decrease in growth will automatically result in a decrease in absolute fecundity because of the reduced body size. The potential contribution of these regulatory effects on population regulation is explored. Results indicate that density-dependent ripening and absolute fecundity, mediated through density-dependent growth, may control recruitment at high levels of population abundance. The effect of a density-dependent decrease in size-specific fecundity seems to play a minor role, although this role may become important at extremely high levels of population abundance.

  10. Application of AN Empirically Scaled Digital Echo Integrator for Assessment of Juvenile Sockeye Salmon (oncorhynchus Nerka Walbaum) Populations.

    NASA Astrophysics Data System (ADS)

    Nunnallee, Edmund Pierce, Jr.

    1980-03-01

    This dissertation consists of an investigation into the empirical scaling of a digital echo integrator for assessment of a population of juvenile sockeye salmon in Cultus Lake, British Columbia, Canada. The scaling technique was developed over the last ten years for use with totally uncalibrated but stabilized data collection and analysis equipment, and has been applied to populations of fish over a wide geographical range. This is the first investigation into the sources of bias and the accuracy of the technique, however, and constitutes a verification of the method. The initial section of the investigation describes hydroacoustic data analysis methods for estimation of effective sampling volume which is necessary for estimation of fish density. The second section consists of a computer simulation of effective sample volume estimation by this empirical method and is used to investigate the degree of bias introduced by electronic and physical parameters such as boat speed -fish depth interaction effects, electronic thresholding and saturation, transducer beam angle, fish depth stratification by size and spread of the target strength distribution of the fish. Comparisons of simulation predictions of sample volume estimation bias to actual survey results are given at the end of this section. A verification of the scaling method is then presented by comparison of a hydroacoustically derived estimation of the Cultus Lake smolt population to an independent and concurrent estimate made by counting the migrant fish as they passed through a weir in the outlet stream of the lake. Finally, the effect on conduct and accuracy of hydroacoustic assessment of juvenile sockeye salmon due to several behavioral traits are discussed. These traits include movements of presmolt fish in a lake just prior to their outmigration, daily vertical migrations and the emergence and dispersal of sockeye fry in Cultus Lake. In addition, a comparison of the summer depth preferences of the fish over their entire geographical distribution on the west coast of the U.S. and Canada are discussed in terms of hydroacoustic accessibility.

  11. Fish and land use influence Gammarus lacustris and Hyalella azteca (Amphipoda) densities in large wetlands across the upper Midwest

    USGS Publications Warehouse

    Anteau, M.J.; Afton, A.D.; Anteau, A.C.E.; Moser, E.B.

    2010-01-01

    Gammarus lacustris and Hyalella azteca (hereafter G. lacustris and H. azteca, respectively) are important components of secondary production in wetlands and shallow lakes of the upper Midwest, USA. Within the past 50 years, amphipod densities have decreased while occurrences of fish and intensity of agricultural land use have increased markedly across this landscape. We investigated influences of fish, sedimentation, and submerged aquatic vegetation (SAV) on densities of G. lacustris and H. azteca in semipermanent and permanent wetlands and shallow lakes (n = 283) throughout seven eco-physiographic regions of Iowa, Minnesota, and North Dakota during 2004-2005. G. lacustris and H. azteca densities were positively correlated with densities of SAV (P<0.001 and P<0.001, respectively). Both species were negatively correlated with densities of large fish (non-Cyprinidae; P = 0.01 and P = 0.013, respectively) and with high densities of fathead minnows (Pimephales promelas; P<0.001 and P = 0.033, respectively). H. azteca densities also were negatively correlated with densities of small fish (e.g., other minnows [Cyprinidae] and sticklebacks [Gasterosteidae]; P = 0.048) and common carp (Cyprinus spp.; P = 0.022). G. lacustris densities were negatively correlated with high levels of suspended solids (an index for sedimentation; P<0.001). H. azteca densities were positively correlated with the width of upland-vegetation buffers (P = 0.004). Our results indicate that sedimentation and fish reduce amphipod densities and may contribute to the current low densities of amphipods in the upper Midwest. Thus, removing/excluding fish, and providing a thick buffer of upland vegetation around wetlands may help restore amphipod densities and wetland and water quality within this landscape. ?? Springer Science+Business Media B.V. (outside the USA) 2011.

  12. Human-mediated loss of phylogenetic and functional diversity in coral reef fishes.

    PubMed

    D'agata, Stéphanie; Mouillot, David; Kulbicki, Michel; Andréfouët, Serge; Bellwood, David R; Cinner, Joshua E; Cowman, Peter F; Kronen, Mecki; Pinca, Silvia; Vigliola, Laurent

    2014-03-03

    Beyond the loss of species richness, human activities may also deplete the breadth of evolutionary history (phylogenetic diversity) and the diversity of roles (functional diversity) carried out by species within communities, two overlooked components of biodiversity. Both are, however, essential to sustain ecosystem functioning and the associated provision of ecosystem services, particularly under fluctuating environmental conditions. We quantified the effect of human activities on the taxonomic, phylogenetic, and functional diversity of fish communities in coral reefs, while teasing apart the influence of biogeography and habitat along a gradient of human pressure across the Pacific Ocean. We detected nonlinear relationships with significant breaking points in the impact of human population density on phylogenetic and functional diversity of parrotfishes, at 25 and 15 inhabitants/km(2), respectively, while parrotfish species richness decreased linearly along the same population gradient. Over the whole range, species richness decreased by 11.7%, while phylogenetic and functional diversity dropped by 35.8% and 46.6%, respectively. Our results call for caution when using species richness as a benchmark for measuring the status of ecosystems since it appears to be less responsive to variation in human population densities than its phylogenetic and functional counterparts, potentially imperiling the functioning of coral reef ecosystems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Shelters and Their Use by Fishes on Fringing Coral Reefs

    PubMed Central

    Ménard, Alexandre; Turgeon, Katrine; Roche, Dominique G.; Binning, Sandra A.; Kramer, Donald L.

    2012-01-01

    Coral reef fish density and species richness are often higher at sites with more structural complexity. This association may be due to greater availability of shelters, but surprisingly little is known about the size and density of shelters and their use by coral reef fishes. We quantified shelter availability and use by fishes for the first time on a Caribbean coral reef by counting all holes and overhangs with a minimum entrance diameter ≥3 cm in 30 quadrats (25 m2) on two fringing reefs in Barbados. Shelter size was highly variable, ranging from 42 cm3 to over 4,000,000 cm3, with many more small than large shelters. On average, there were 3.8 shelters m−2, with a median volume of 1,200 cm3 and a total volume of 52,000 cm3m−2. The number of fish per occupied shelter ranged from 1 to 35 individual fishes belonging to 66 species, with a median of 1. The proportion of shelters occupied and the number of occupants increased strongly with shelter size. Shelter density and total volume increased with substrate complexity, and this relationship varied among reef zones. The density of shelter-using fish was much more strongly predicted by shelter density and median size than by substrate complexity and increased linearly with shelter density, indicating that shelter availability is a limiting resource for some coral reef fishes. The results demonstrate the importance of large shelters for fish density and support the hypothesis that structural complexity is associated with fish abundance, at least in part, due to its association with shelter availability. This information can help identify critical habitat for coral reef fishes, predict the effects of reductions in structural complexity of natural reefs and improve the design of artificial reefs. PMID:22745664

  14. An Integrated Ecological Modeling System for Assessing ...

    EPA Pesticide Factsheets

    We demonstrate a novel, spatially explicit assessment of the current condition of aquatic ecosystem services, with limited sensitivity analysis for the atmospheric contaminant mercury. The Integrated Ecological Modeling System (IEMS) forecasts water quality and quantity, habitat suitability for aquatic biota, fish biomasses, population densities, productivities, and contamination by methylmercury across headwater watersheds. We applied this IEMS to the Coal River Basin (CRB), West Virginia (USA), an 8-digit hydrologic unit watershed, by simulating a network of 97 stream segments using the SWAT watershed model, a watershed mercury loading model, the WASP water quality model, the PiSCES fish community estimation model, a fish habitat suitability model, the BASS fish community and bioaccumulation model, and an ecoservices post-processer. Model application was facilitated by automated data retrieval and model setup and updated model wrappers and interfaces for data transfers between these models from a prior study. This companion study evaluates baseline predictions of ecoservices provided for 1990 – 2010 for the population of streams in the CRB and serves as a foundation for future model development. Published in the journal, Ecological Modeling. Highlights: • Demonstrate a spatially-explicit IEMS for multiple scales. • Design a flexible IEMS for

  15. Consumption dynamics of the adult piscivorous fish community in Spirit Lake, Iowa

    USGS Publications Warehouse

    Liao, H.; Pierce, C.L.; Larscheid, J.G.

    2004-01-01

    At Spirit Lake, one of Iowa's most important fisheries, walleye Sander vitreus (formerly Stizostedion vitreum) is one of the most popular species with anglers. Despite a century of walleye stocking and management in Spirit Lake, walleye growth rate, size structure, and angler harvest continue to decline. Our purpose was to determine the magnitude and dynamics of walleye population consumption relative to those of other piscivorous species in Spirit Lake, which would allow managers to judge the feasibility of increasing the abundance, growth rate, and size structure of the walleye population. We quantified food consumption by the adult piscivorous fish community in Spirit Lake over a 3-year period. Data on population dynamics, diet, energy density, and water temperature from 1995 to 1997 were used in bioenergetics models to estimate total consumption by walleye, yellow perch Perca flavescens, smallmouth bass Micropterus dolomieu, largemouth bass Micropterus salmoides, black crappie Pomoxis nigromaculatus, and northern pike Esox lucius. Estimated annual consumption by the piscivorous community varied roughly fourfold, ranging from 154,752 kg in 1995 to 662,776 kg in 1997. Walleyes dominated total consumption, accounting for 68, 73, and 90% (1995-1997, respectively) of total food consumption. Walleyes were also the dominant consumers of fish, accounting for 76, 86, and 97% of piscivorous consumption; yellow perch followed, accounting for 16% of piscivorous consumption in 1995 and 12% in 1996. Yellow perch were the predominant fish prey species in all 3 years, accounting for 68, 52, and 36% of the total prey consumed. Natural reproduction is weak, so high walleye densities are maintained by intensive stocking. Walleye stocking drives piscivorous consumption in Spirit Lake, and yearly variation in the cannibalism of stocked walleye fry may be an important determinant of walleye year-class strength and angler success. Reducing walleye stocking intensity, varying stocking intensity from year to year, and attempting to match stocking intensity with the abundance of prey species other than walleye may improve the walleye fishery in Spirit Lake.

  16. Introducing a Novel Media to Improve the Recovery of Culturable Bacteria from the Fish Parasite Anisakis spp. larvae (Nematoda: Anisakidae).

    PubMed

    Svanevik, Cecilie S; Lunestad, Bjørn T

    2017-09-01

    This paper describes a cultivation method to increase the recovery of bacteria from the marine muscle-invading parasitic nematode larvae of Anisakis spp. These larvae hold a high and complex population of accumulated bacteria, originating from seawater, crustaceans, fish, and marine mammals, all involved in the lifecycle of Anisakis. Two in-house agars based on fish juice prepared by either mechanical or enzymatic degradation of the fish tissue, were made. The Anisakis larvae were homogenised prior to cultivation on the in-house fish juice agars and the bacterial numbers and diversity were compared to those obtained applying the commercially available Marine Agar and Iron Agar Lyngby. Bacterial colonies of unique appearance were subcultured and identified by 16S rRNA gene sequencing. Totally three of twenty identified taxa were found on the in-house fish juice agars only. Fish juice agar prepared enzymatically would be the best supplementary agar, as this agar gave significantly higher heterotrophic plate counts, compared to mechanical preparation. The enzymatically prepared fish juice gave more suitable agar quality, was more resource efficient, and had apparently increased nutrient density and availability.

  17. Invasive fishes generate biogeochemical hotspots in a nutrient-limited system.

    PubMed

    Capps, Krista A; Flecker, Alexander S

    2013-01-01

    Fishes can play important functional roles in the nutrient dynamics of freshwater systems. Aggregating fishes have the potential to generate areas of increased biogeochemical activity, or hotspots, in streams and rivers. Many of the studies documenting the functional role of fishes in nutrient dynamics have focused on native fish species; however, introduced fishes may restructure nutrient storage and cycling freshwater systems as they can attain high population densities in novel environments. The purpose of this study was to examine the impact of a non-native catfish (Loricariidae: Pterygoplichthys) on nitrogen and phosphorus remineralization and estimate whether large aggregations of these fish generate measurable biogeochemical hotspots within nutrient-limited ecosystems. Loricariids formed large aggregations during daylight hours and dispersed throughout the stream during evening hours to graze benthic habitats. Excretion rates of phosphorus were twice as great during nighttime hours when fishes were actively feeding; however, there was no diel pattern in nitrogen excretion rates. Our results indicate that spatially heterogeneous aggregations of loricariids can significantly elevate dissolved nutrient concentrations via excretion relative to ambient nitrogen and phosphorus concentrations during daylight hours, creating biogeochemical hotspots and potentially altering nutrient dynamics in invaded systems.

  18. Invasive Fishes Generate Biogeochemical Hotspots in a Nutrient-Limited System

    PubMed Central

    Capps, Krista A.; Flecker, Alexander S.

    2013-01-01

    Fishes can play important functional roles in the nutrient dynamics of freshwater systems. Aggregating fishes have the potential to generate areas of increased biogeochemical activity, or hotspots, in streams and rivers. Many of the studies documenting the functional role of fishes in nutrient dynamics have focused on native fish species; however, introduced fishes may restructure nutrient storage and cycling freshwater systems as they can attain high population densities in novel environments. The purpose of this study was to examine the impact of a non-native catfish (Loricariidae: Pterygoplichthys) on nitrogen and phosphorus remineralization and estimate whether large aggregations of these fish generate measurable biogeochemical hotspots within nutrient-limited ecosystems. Loricariids formed large aggregations during daylight hours and dispersed throughout the stream during evening hours to graze benthic habitats. Excretion rates of phosphorus were twice as great during nighttime hours when fishes were actively feeding; however, there was no diel pattern in nitrogen excretion rates. Our results indicate that spatially heterogeneous aggregations of loricariids can significantly elevate dissolved nutrient concentrations via excretion relative to ambient nitrogen and phosphorus concentrations during daylight hours, creating biogeochemical hotspots and potentially altering nutrient dynamics in invaded systems. PMID:23342083

  19. Rapid Effects of Marine Reserves via Larval Dispersal

    PubMed Central

    Cudney-Bueno, Richard; Lavín, Miguel F.; Marinone, Silvio G.; Raimondi, Peter T.; Shaw, William W.

    2009-01-01

    Marine reserves have been advocated worldwide as conservation and fishery management tools. It is argued that they can protect ecosystems and also benefit fisheries via density-dependent spillover of adults and enhanced larval dispersal into fishing areas. However, while evidence has shown that marine reserves can meet conservation targets, their effects on fisheries are less understood. In particular, the basic question of if and over what temporal and spatial scales reserves can benefit fished populations via larval dispersal remains unanswered. We tested predictions of a larval transport model for a marine reserve network in the Gulf of California, Mexico, via field oceanography and repeated density counts of recently settled juvenile commercial mollusks before and after reserve establishment. We show that local retention of larvae within a reserve network can take place with enhanced, but spatially-explicit, recruitment to local fisheries. Enhancement occurred rapidly (2 yrs), with up to a three-fold increase in density of juveniles found in fished areas at the downstream edge of the reserve network, but other fishing areas within the network were unaffected. These findings were consistent with our model predictions. Our findings underscore the potential benefits of protecting larval sources and show that enhancement in recruitment can be manifested rapidly. However, benefits can be markedly variable within a local seascape. Hence, effects of marine reserve networks, positive or negative, may be overlooked when only focusing on overall responses and not considering finer spatially-explicit responses within a reserve network and its adjacent fishing grounds. Our results therefore call for future research on marine reserves that addresses this variability in order to help frame appropriate scenarios for the spatial management scales of interest. PMID:19129910

  20. Some potentials and limits of the leucocrit test as a fish health assessment method

    USGS Publications Warehouse

    Wedemeyer, G.A.; Gould, R.W.; Yasutake, W.T.

    1983-01-01

    The sensitivity of the leucocrit as a stress tolerance and fish health assessment method was evaluated by subjecting juvenile coho salmon, Oncorhynchus kisutch, or steelhead trout, Salmo gairdneri, to standardized crowding, handling, temperature and disease challenges. The leucocrit was a sensitive indicator of the physiological stress resulting from crowding at population densities of 0·2–0·4 kg l−1, and to the stress of handling and to temperature changes. It was relatively insensitive to physiological sampling procedures which supports its continued development as a stress assessment method.In the case of fish diseases, subclinical or active Renibacterium salmoninarum and Yersinia ruckeriinfections had essentially no effect on leucocrit values. In contrast, active Aeromonas salmonicidainfections significantly depressed the leucocrit. However, no change was seen during the subclinical (incubation) phase prior to the development of an epizootic. Thus, the potential of the leucocrit as a fish health assessment method appears limited.

  1. Density vs. disease: Crustaceans in a temperate marine protected area

    NASA Astrophysics Data System (ADS)

    Davies, C. E.; Johnson, A. F.; Wootton, E. C.; Greenwood, S.; Clark, K. F.; Vogan, C. L.; Rowley, A. F.

    2016-02-01

    Since the move towards an ecosystem-based approach in fisheries management, marine protected areas (MPAs) have become increasingly popular. Implementation, however, is somewhat contentious and as a result of their short history, effects are still widely unknown and understudied. Here, we investigated the health of brown crab Cancer pagurus and European lobster Homarus gammarus populations in the Lundy Island MPA after 7 years of no-take protection. Population parameters (size, sex, abundance), disease (shell disease, Hematodinium spp., gaffkaemia) and injury presence (a known precursor to disease) were assessed over two years in both an un-fished no-take zone (NTZ) and a fished refuge zone (RZ). There was a higher lobster density and larger lobsters in the NTZ compared with the RZ, but an opposite trend for crabs. The probability of shell disease increased notably in lobsters over the minimum landing size (MLS), in those displaying injury, and in males. Injury presence was higher in lobsters in the NTZ compared with the RZ and in those above the MLS. Gaffkaemia was detected in <1% of lobsters. The number of injured crabs increased significantly over the two years surveyed (12%), as did the prevalence of shell disease (15%). The probability of shell disease increased significantly for male crabs and for those missing limbs. Crabs below the MLS had an increased probability of being injured. Overall, the study demonstrates both positive and potentially negative effects of long-term NTZs. Recovering populations in NTZs may be more susceptible to disease as a result of increased injury through density-dependent interaction. This in turn may lead to increased disease infection. The findings highlight the necessity for long-term MPA management to include monitoring of population abundance, as well as secondary community change effects such as disease increase, both before and after implementation.

  2. Food resource effects on diel movements and body size of cisco in north-temperate lakes.

    PubMed

    Ahrenstorff, Tyler D; Hrabik, Thomas R; Jacobson, Peter C; Pereira, Donald L

    2013-12-01

    The movement patterns and body size of fishes are influenced by a host of physical and biological conditions, including temperature and oxygen, prey densities and foraging potential, growth optimization, and predation risk. Our objectives were to (1) investigate variability in vertical movement patterns of cisco (Coregonus artedi) in a variety of inland lakes using hydroacoustics, (2) explore the causal mechanisms influencing movements through the use of temperature/oxygen, foraging, growth, and predation risk models, and (3) examine factors that may contribute to variations in cisco body size by considering all available information. Our results show that cisco vertical movements vary substantially, with different populations performing normal diel vertical migrations (DVM), no DVM, and reverse DVM in lakes throughout Minnesota and northern Wisconsin, USA. Cisco populations with the smallest body size were found in lakes with lower zooplankton densities. These smaller fish showed movements to areas of highest foraging or growth potential during the day and night, despite moving out of preferred temperature and oxygen conditions and into areas of highest predation risk. In lakes with higher zooplankton densities, cisco grew larger and had movements more consistent with behavioral thermoregulation and predator avoidance, while remaining in areas with less than maximum foraging and growth potential. Furthermore, the composition of potential prey items present in each lake was also important. Cisco that performed reverse DVM consumed mostly copepods and cladocerans, while cisco that exhibited normal DVM or no migration consumed proportionally more macro-zooplankton species. Overall, our results show previously undocumented variation in migration patterns of a fish species, the mechanisms underlying those movements, and the potential impact on their growth potential.

  3. Partitioning no-take marine reserve (NTMR) and benthic habitat effects on density of small and large-bodied tropical wrasses

    PubMed Central

    Rizzari, Justin R.; Bergseth, Brock J.; Alcala, Angel C.

    2017-01-01

    No-take marine reserves (NTMRs) are increasingly implemented for fisheries management and biodiversity conservation. Yet, assessing NTMR effectiveness depends on partitioning the effects of NTMR protection and benthic habitat on protected species. Such partitioning is often difficult, since most studies lack well-designed sampling programs (i.e. Before-After-Control-Impact-Pair designs) spanning long-term time scales. Spanning 31 years, this study quantifies the effects of NTMR protection and changes to benthic habitat on the density of tropical wrasses (F. Labridae) at Sumilon and Apo Islands, Philippines. Five species of wrasse were studied: two species of large-bodied (40–50 cm TL) Hemigymnus that were vulnerable to fishing, and three species of small-bodied (10–25 cm TL) Thalassoma and Cirrhilabrus that were not targeted by fishing. NTMR protection had no measurable effect on wrasse density, irrespective of species or body size, over 20 (Sumilon) and 31 (Apo) years of protection. However, the density of wrasses was often affected strongly by benthic cover. Hemigymnus spp. had a positive association with hard coral cover, while Thalassoma spp. and Cirrhilabrus spp. had strong positive associations with cover of rubble and dead substratum. These associations were most apparent after environmental disturbances (typhoons, coral bleaching, crown of thorns starfish (COTS) outbreaks, use of explosives and drive nets) reduced live hard coral cover and increased cover of rubble, dead substratum and sand. Disturbances that reduced hard coral cover often reduced the density of Hemigymnus spp. and increased the density of Thalassoma spp. and Cirrhilabrus spp. rapidly (1–2 years). As hard coral recovered, density of Hemigymnus spp. often increased while density of Thalassoma spp. and Cirrhilabrus spp. often decreased, often on scales of 5–10 years. This study demonstrates that wrasse population density was influenced more by changes to benthic cover than by protection from fishing. PMID:29216194

  4. Economic values of growth and feed efficiency for fish farming in recirculating aquaculture system with density and nitrogen output limitations: a case study with African catfish (Clarias gariepinus).

    PubMed

    Besson, M; Komen, H; Aubin, J; de Boer, I J M; Poelman, M; Quillet, E; Vancoillie, C; Vandeputte, M; van Arendonk, J A M

    2014-12-01

    In fish farming, economic values (EV) of breeding goal traits are lacking, even though they are key parameters when defining selection objectives. The aim of this study was to develop a bioeconomic model to estimate EV of 2 traits representing production performances in fish farming: the thermal growth coefficient (TGC) and the feed conversion ratio (FCR). This approach was applied to a farm producing African catfish (Clarias gariepinus) in a recirculating aquaculture system (RAS). In the RAS, 2 factors could limit production level: the nitrogen treatment capacity of the biofilter or the fish density in rearing tanks at harvest. Profit calculation includes revenue from fish sales, cost of juveniles, cost of feed, cost of waste water treatment, and fixed costs. In the reference scenario, profit was modeled to zero. EV were calculated as the difference in profit per kilogram of fish between the current population mean for both traits (µt) and the next generation of selective breeding (µt+Δt) for either TGC or FCR. EV of TGC and FCR were calculated for three generations of hypothetical selection on either TGC or FCR (respectively 6.8% and 7.6% improvement per generation). The results show that changes in TGC and FCR can affect both the number of fish that can be stocked (number of batches per year and number of fish per batch) and the factor limiting production. The EV of TGC and FCR vary and depend on the limiting factors. When dissolved NH3-N is the limiting factor for both µt and µt+Δt, increasing TGC decreases the number of fish that can be stocked but increases the number of batches that can be grown. As a result, profit remains constant and EVTGC is zero. Increasing FCR, however, increases the number of fish stocked and the ratio of fish produced per kilogram of feed consumed ("economic efficiency"). The EVFCR is 0.14 €/kg of fish, and profit per kilogram of fish increases by about 10%. When density is the limiting factor for both µt and µt+Δt, the number of fish stocked per batch is fixed; therefore, extra profit is obtained by increasing either TGC, which increases the annual number of batches, or by decreasing FCR, which decreases annual feed consumption. EVTGC is 0.03 €/kg of fish and EVFCR is 0.05-0.06 €/kg of fish. These results emphasize the importance of calculating economic values in the right context to develop efficient future breeding programs in aquaculture.

  5. Ecological effects of full and partial protection in the crowded Mediterranean Sea: a regional meta-analysis.

    PubMed

    Giakoumi, Sylvaine; Scianna, Claudia; Plass-Johnson, Jeremiah; Micheli, Fiorenza; Grorud-Colvert, Kirsten; Thiriet, Pierre; Claudet, Joachim; Di Carlo, Giuseppe; Di Franco, Antonio; Gaines, Steven D; García-Charton, José A; Lubchenco, Jane; Reimer, Jessica; Sala, Enric; Guidetti, Paolo

    2017-08-21

    Marine protected areas (MPAs) are a cornerstone of marine conservation. Globally, the number and coverage of MPAs are increasing, but MPA implementation lags in many human-dominated regions. In areas with intense competition for space and resources, evaluation of the effects of MPAs is crucial to inform decisions. In the human-dominated Mediterranean Sea, fully protected areas occupy only 0.04% of its surface. We evaluated the impacts of full and partial protection on biomass and density of fish assemblages, some commercially important fishes, and sea urchins in 24 Mediterranean MPAs. We explored the relationships between the level of protection and MPA size, age, and enforcement. Results revealed significant positive effects of protection for fisheries target species and negative effects for urchins as their predators benefited from protection. Full protection provided stronger effects than partial protection. Benefits of full protection for fish biomass were only correlated with the level of MPA enforcement; fish density was higher in older, better enforced, and -interestingly- smaller MPAs. Our finding that even small, well-enforced, fully protected areas can have significant ecological effects is encouraging for "crowded" marine environments. However, more data are needed to evaluate sufficient MPA sizes for protecting populations of species with varying mobility levels.

  6. Abundance of litter on Condor seamount (Azores, Portugal, Northeast Atlantic)

    NASA Astrophysics Data System (ADS)

    Pham, C. K.; Gomes-Pereira, J. N.; Isidro, E. J.; Santos, R. S.; Morato, T.

    2013-12-01

    Marine litter is an emerging problem for the world's ocean health but little is known on its distribution and abundance on seamounts and how it affects deep-sea ecosystems. The scientific underwater laboratory set up on Condor seamount offered an ideal case study for the first documentation of litter distribution on a shallow seamount with historical fishing. A total of 48 video transects deployed on the summit (n=45) and the northern flank (n=3) covered an area of 0.031 and 0.025km2, respectively, revealing 55 litter items. Litter density on the summit was 1439 litter items km-2, whilst on the deeper northern flank, estimates indicate densities of 397 litter items km-2. Lost fishing line was the dominant litter item encountered on both areas (73% of total litter on the summit and 50% on northern flank), all being entirely or partly entangled in the locally abundant gorgonians Dentomuricea cf. meteor and Viminella flagellum. Other items included lost weights, anchors and glass bottles. The predominance of lost fishing gear identifies the source of litter on Condor seamount as exclusively ocean-based and related to fishing activities. Abundance of litter on the Condor seamount was much lower than that reported from other locations closer to populated areas.

  7. Unusual megafaunal assemblages on the continental slope off Cape Hatteras

    NASA Astrophysics Data System (ADS)

    Hecker, Barbara

    Megafaunal assemblages were studied in August-September 1992 using a towed camera sled along seven cross-isobath transects on the continental slope off Cape Hatteras. A total of 20,722 megafaunal organisms were observed on 10,918 m 2 of the sea floor between the depths of 157 and 1 924 m. These data were compared with data previously collected off Cape Hatteras in 1985 and at other locations along the eastern U.S. coast between 1981 and 1987. Megafaunal populations on the upper and lower slopes off Cape Hatteras were fouond to be similar, in terms of density and species composition, to those observed at the other locations. In contrast, megafaunal abundances were found to be elevated (0.88 and 2.65 individuals per m 2 during 1985 and 1992, respectively) on the middle slope off Cape Hatteras when compared to most other slope locations (<0.5individuals per m 2). These elevated abundances mainly reflect dense populations of three demersal fish, two eel pouts ( Lysenchelys verrilli and Lycodes atlanticus) and the witch flounder Glyptocephalus cynoglossus, and a large anemone ( Actinauge verrilli). These four species dominated the megafauna off Cape Hatteras, whereas they represented only a minor component of megafaunal populations found at other slope locations. Additionally, numerous tubes of the foraminiferan Bathysiphon filiformis were observed off Cape Hatteras, but not elsewhere. The high density of demersal fish found off Cape Hatteras appears to be related to the high densities of infaunal prey reported from this area. The high densities of A. verrilli and B. fuliformis may be related to the same factors responsible for the high infaunal densities, namely enhanced nutrient inputs in the form of fine particles. Extreme patchiness also was observed in the distributions of the middle slope taxa off Cape Hatteras. This patchiness may reflect the habitat heterogeneity of this exceptionally rugged slope and the sedentary nature of the organisms inhabiting it.

  8. Resilience of predators to fishing pressure on coral patch reefs

    USGS Publications Warehouse

    Schroeder, R.E.; Parrish, J.D.

    2005-01-01

    Numbers and biomass of piscivorous fish and their predation on other fish may often be high in undisturbed coral reef communities. The effects of such predation have sometimes been studied by removal of piscivores (either experimentally or by fishermen). Such perturbations have usually involved removal of large, highly vulnerable, mobile piscivores that are often actively sought in fisheries. The effects of fishing on smaller, demersal, semi-resident piscivores have been little studied. We studied such effects on the fish communities of patch reefs at Midway atoll by experimentally removing major resident, demersal, piscivorous fishes. First, four control reefs and four experimental reefs were selected, their dimensions and habitats mapped, and their visible fish communities censused repeatedly over 1 year. Census of all control and experimental reefs was continued for the following 39 months, during which known piscivores were collected repeatedly by hand spearing. Records were kept of catch and effort to calculate CPUE as an index of predator density. Spearfishing on the experimental reefs removed 2504 piscivorous fish from 12 families and 43 taxa (mostly species). The species richness of the catch did not show an overall change over the duration of the experiment. Spearman rank correlation analysis showed some unexpected positive correlations for density in numbers and biomass of major fished piscivorous groups (especially lizardfish) over the experiment. Only two relatively minor fished piscivorous taxa declined in abundance over the experiment, while the overall abundance of piscivores increased. Visual censuses of fish on the experimental reefs also failed to show reduction of total piscivores over the full experimental period. No significant trend in the abundance of lizardfish censused over the full period was apparent on any of the control reefs. The high resilience of piscivores on these experimental reefs to relatively intense fishing pressure could result from their protracted recruitment seasons, high immigration rates, cryptic habits, or naturally high abundances. A major factor was the high immigration rates of lizardfish, replacing lizardfish and other less mobile piscivores removed from the reefs by spearing. On the fished reefs, the removed lizardfish population replaced itself >20 times during the experiment; other piscivorous taxa replaced themselves only 5 times.

  9. Immigration Rates during Population Density Reduction in a Coral Reef Fish

    PubMed Central

    Turgeon, Katrine; Kramer, Donald L.

    2016-01-01

    Although the importance of density-dependent dispersal has been recognized in theory, few empirical studies have examined how immigration changes over a wide range of densities. In a replicated experiment using a novel approach allowing within-site comparison, we examined changes in immigration rate following the gradual removal of territorial damselfish from a limited area within a much larger patch of continuous habitat. In all sites, immigration occurred at intermediate densities but did not occur before the start of removals and only rarely as density approached zero. In the combined data and in 5 of 7 sites, the number of immigrants was a hump-shaped function of density. This is the first experimental evidence for hump-shaped, density-dependent immigration. This pattern may be more widespread than previously recognized because studies over more limited density ranges have identified positive density dependence at low densities and negative density dependence at high densities. Positive density dependence at low density can arise from limits to the number of potential immigrants and from behavioral preferences for settling near conspecifics. Negative density dependence at high density can arise from competition for resources, especially high quality territories. The potential for non-linear effects of local density on immigration needs to be recognized for robust predictions of conservation reserve function, harvest impacts, pest control, and the dynamics of fragmented populations. PMID:27271081

  10. Are most samples of animals systematically biased? Consistent individual trait differences bias samples despite random sampling.

    PubMed

    Biro, Peter A

    2013-02-01

    Sampling animals from the wild for study is something nearly every biologist has done, but despite our best efforts to obtain random samples of animals, 'hidden' trait biases may still exist. For example, consistent behavioral traits can affect trappability/catchability, independent of obvious factors such as size and gender, and these traits are often correlated with other repeatable physiological and/or life history traits. If so, systematic sampling bias may exist for any of these traits. The extent to which this is a problem, of course, depends on the magnitude of bias, which is presently unknown because the underlying trait distributions in populations are usually unknown, or unknowable. Indeed, our present knowledge about sampling bias comes from samples (not complete population censuses), which can possess bias to begin with. I had the unique opportunity to create naturalized populations of fish by seeding each of four small fishless lakes with equal densities of slow-, intermediate-, and fast-growing fish. Using sampling methods that are not size-selective, I observed that fast-growing fish were up to two-times more likely to be sampled than slower-growing fish. This indicates substantial and systematic bias with respect to an important life history trait (growth rate). If correlations between behavioral, physiological and life-history traits are as widespread as the literature suggests, then many animal samples may be systematically biased with respect to these traits (e.g., when collecting animals for laboratory use), and affect our inferences about population structure and abundance. I conclude with a discussion on ways to minimize sampling bias for particular physiological/behavioral/life-history types within animal populations.

  11. Changes in fish diets and food web mercury bioaccumulation induced by an invasive planktivorous fish

    USGS Publications Warehouse

    Eagles-Smith, Collin A.; Suchanek, Thomas H.; Colwell, Arthur E.; Anderson, Norman L.; Moyle, Peter B.

    2008-01-01

    The invasion, boom, collapse, and reestablishment of a population of the planktivorous threadfin shad in Clear Lake, California, USA, were documented over a 20-year period, as were the effects of changing shad populations on diet and mercury (Hg) bioaccumulation in nearshore fishes. Threadfin shad competitively displaced other planktivorous fish in the lake, such as inland silversides, young-of-year (YOY) largemouth bass, and YOY bluegill, by reducing zooplankton abundance. As a result, all three species shifted from a diet that was dominated by zooplankton to one that was almost entirely zoobenthos. Stable carbon isotopes corroborated this pattern with each species becoming enriched in δ13C, which is elevated in benthic vs. pelagic organisms. Concomitant with these changes, Hg concentrations increased by ∼50% in all three species. In contrast, obligate benthivores such as prickly sculpin showed no relationship between diet or δ13C and the presence of threadfin shad, suggesting that effects of the shad were not strongly linked to the benthic fish community. There were also no changes in Hg concentrations of prickly sculpin. The temporary extirpation of threadfin shad from the lake resulted in zooplankton densities, foraging patterns, isotope ratios, and Hg concentrations in pelagic fishes returning to pre-shad values. These results indicate that even transient perturbations of the structure of freshwater food webs can result in significant alterations in the bioaccumulation of Hg and that food webs in lakes can be highly resilient.

  12. Investigating the effect of chemical stress and resource ...

    EPA Pesticide Factsheets

    Modeling exposure and recovery of fish and wildlife populations after stressor mitigation serves as a basis for evaluating population status and remediation success. The Atlantic killifish (Fundulus heteroclitus) is an important and well-studied model organism for understanding the effects of pollutants and other stressors in estuarine and marine ecosystems. Herein, we develop a density dependent matrix population model for Atlantic killifish that analyzes both size-structure and age class-structure of the population so that we could readily incorporate output from a dynamic energy budget (DEB) model currently under development. This population modeling approach emphasizes application in conjunction with field monitoring efforts (e.g., through effects-based monitoring programs) and/or laboratory analysis to link effects due to chemical stress to adverse outcomes in whole organisms and populations. We applied the model using data for killifish exposed to dioxin-like compounds, taken from a previously published study. Specifically, the model was used to investigate population trajectories for Atlantic killifish with dietary exposures to 112, 296, and 875 pg/g of dioxin with effects on fertility and survival rates. All effects were expressed relative to control fish. Further, the population model was employed to examine age and size distributions of a population exposed to resource limitation in addition to chemical stress. For each dietary exposure concentration o

  13. Ecology of the brain trematode Euhaplorchis californiensis and its host, the California Killifish (Fundulus parvipinnis)

    USGS Publications Warehouse

    Shaw, J.C.; Hechinger, R.F.; Lafferty, Kevin D.; Kuris, Armand M.

    2010-01-01

    We describe the distribution and abundance of the brain-encysting trematode Euhaplorchis californiensis and its second intermediate host, the California killifish (Fundulus parvipinnis), in 3 estuaries in southern California and Baja California. We quantified the density of fish and metacercariae at 13–14 sites per estuary and dissected 375 killifish. Density (numbers and biomass) was examined at 3 spatial scales, i.e., small replicate sites, habitats, and entire estuaries. At those same scales, factors that might influence metacercaria prevalence, abundance, and aggregation in host individuals and populations were also examined. Metacercaria prevalence was 94–100% among the estuaries. Most fish were infected with 100s to 1,000s of E. californiensis metacercariae, with mean abundance generally increasing with host size. Although body condition of fish did not vary among sites or estuaries, the abundance of metacercariae varied significantly among sites, habitats, estuaries, and substantially with host size and gender. Metacercariae were modestly aggregated in killifish (k > 1), with aggregation decreasing in larger hosts. Across the 3 estuaries, the total populations of killifish ranged from 9,000–12,000 individuals/ha and from 7–43 kg/ha. The component populations of E. californiensis metacercariae ranged from 78–200 million individuals/ha and from 0.1–0.3 kg/ha. Biomass of E. californiensis metacercariae constituted 0.5–1.7% of the killifish biomass in the estuaries. Our findings, in conjunction with previously documented effects of E. californiensis, suggest a strong influence of this parasite on the size, distribution, biomass, and abundance of its killifish host.

  14. Spatial distribution of marine fishes along a cross-shelf gradient containing a continuum of mangrove seagrass coral reefs off southwestern Puerto Rico

    NASA Astrophysics Data System (ADS)

    Aguilar-Perera, Alfonso; Appeldoorn, Richard S.

    2008-01-01

    Despite an extensive study of the fish community off southwestern Puerto Rico, little information is available on the fish spatial distribution along an inshore-offshore, cross-shelf gradient containing a continuum of mangrove-seagrass-coral reefs. We investigated the spatial distribution of reef-associated fish species using a stratified sampling procedure. A total of 52,138 fishes were recorded, representing 102 species belonging to 32 families. Significant differences in mean fish density were evident among strata. Mean densities at shallow fore reefs and deep fore reefs (Romero key) were significantly higher compared to the rest of strata along the gradient. Mean densities of fishes in mangroves and seagrass (Montalva Bay) were comparable to those at shallow back reefs and deep fore reefs offshore (Turrumote), but lower to those inshore (Romero); the lowest fish densities were found in mangroves and seagrass (Montalva Bay) and seagrass (Romero and Corral). At least 17 species, in 7 families, were among the most common in terms of relative abundance representing 76% of the total individuals sampled. A detrended correspondence analysis (DCA) applied to more abundant fish species showed a spatial pattern in density distribution. Three major groupings were evident corresponding to mangroves and seagrass (Montalva Bay), shallow and deep reefs (Romero), and shallow and deep reefs (Corral and Turrumote). A cluster analysis on mean fish densities of the more abundant species revealed a consistent spatial distribution according to biotope by separating the ichthyofauna associated with mangroves, seagrass and that of shallow (back and fore) reefs, and deep fore reefs.

  15. Assessment of different protocols for the isolation and purification of gut associated lymphoid cells from the gilthead seabream (Sparus aurata L.)

    PubMed Central

    2007-01-01

    Teleost gut associated lymphoid tissue (GALT) consists of leucocyte populations located both intraepithelially and in the lamina propria with no structural organization. The present study aims to assess different protocols for the isolation of GALT cells from an important fish species in the Mediterranean aquaculture, the gilthead seabream. Mechanical, chemical and enzymatic treatments were assayed. Nylon wool columns and continuous density gradients were used for further separation of cell subpopulations. Light microscopy and flow cytometry showed that the highest density band (HD) consisted of a homogeneous lymphocytic population, whereas the intermediate density band (ID) corresponded to epithelial and secretory cells and some lymphocytes. Respiratory burst activity of total cell suspensions revealed very low numbers of potential phagocytic cells, reflecting results from light microscopy and reports in other teleost species. The present data set up the basis for future functional characterization of GALT in seabream. PMID:18213363

  16. Climatic forcing and larval dispersal capabilities shape the replenishment of fishes and their habitat-forming biota on a tropical coral reef.

    PubMed

    Wilson, Shaun K; Depcyznski, Martial; Fisher, Rebecca; Holmes, Thomas H; Noble, Mae M; Radford, Ben T; Rule, Michael; Shedrawi, George; Tinkler, Paul; Fulton, Christopher J

    2018-02-01

    Fluctuations in marine populations often relate to the supply of recruits by oceanic currents. Variation in these currents is typically driven by large-scale changes in climate, in particular ENSO (El Nino Southern Oscillation). The dependence on large-scale climatic changes may, however, be modified by early life history traits of marine taxa. Based on eight years of annual surveys, along 150 km of coastline, we examined how ENSO influenced abundance of juvenile fish, coral spat, and canopy-forming macroalgae. We then investigated what traits make populations of some fish families more reliant on the ENSO relationship than others. Abundance of juvenile fish and coral recruits was generally positively correlated with the Southern Oscillation Index (SOI), higher densities recorded during La Niña years, when the ENSO-influenced Leeuwin Current is stronger and sea surface temperature higher. The relationship is typically positive and stronger among fish families with shorter pelagic larval durations and stronger swimming abilities. The relationship is also stronger at sites on the coral back reef, although the strongest of all relationships were among the lethrinids ( r  = .9), siganids ( r  = .9), and mullids ( r  = .8), which recruit to macroalgal meadows in the lagoon. ENSO effects on habitat seem to moderate SOI-juvenile abundance relationship. Macroalgal canopies are higher during La Niña years, providing more favorable habitat for juvenile fish and strengthening the SOI effect on juvenile abundance. Conversely, loss of coral following a La Niña-related heat wave may have compromised postsettlement survival of coral dependent species, weakening the influence of SOI on their abundance. This assessment of ENSO effects on tropical fish and habitat-forming biota and how it is mediated by functional ecology improves our ability to predict and manage changes in the replenishment of marine populations.

  17. Energy density of lake whitefish Coregonus clupeaformis in Lakes Huron and Michigan

    USGS Publications Warehouse

    Pothoven, S.A.; Nalepa, T.F.; Madenjian, C.P.; Rediske, R.R.; Schneeberger, P.J.; He, J.X.

    2006-01-01

    We collected lake whitefish Coregonus clupeaformis off Alpena and Tawas City, Michigan, USA in Lake Huron and off Muskegon, Michigan USA in Lake Michigan during 2002–2004. We determined energy density and percent dry weight for lake whitefish from both lakes and lipid content for Lake Michigan fish. Energy density increased with increasing fish weight up to 800 g, and then remained relatively constant with further increases in fish weight. Energy density, adjusted for weight, was lower in Lake Huron than in Lake Michigan for both small (≤800 g) and large fish (>800 g). Energy density did not differ seasonally for small or large lake whitefish or between adult male and female fish. Energy density was strongly correlated with percent dry weight and percent lipid content. Based on data from commercially caught lake whitefish, body condition was lower in Lake Huron than Lake Michigan during 1981–2003, indicating that the dissimilarity in body condition between the lakes could be long standing. Energy density and lipid content in 2002–2004 in Lake Michigan were lower than data for comparable sized fish collected in 1969–1971. Differences in energy density between lakes were attributed to variation in diet and prey energy content as well as factors that affect feeding rates such as lake whitefish density and prey abundance.

  18. Effects of rearing density and dietary fat content on burst-swim performance and oxygen transport capacity in juvenile Atlantic salmon Salmo salar.

    PubMed

    Hammenstig, D; Sandblom, E; Axelsson, M; Johnsson, J I

    2014-10-01

    The effects of hatchery rearing density (conventional or one third of conventional density) and feeding regime (high or reduced dietary fat levels) on burst-swim performance and oxygen transport capacity were studied in hatchery-reared Atlantic salmon Salmo salar, using wild fish as a reference group. There was no effect of rearing density or food regime on swimming performance in parr and smolts. The maximum swimming speed of wild parr was significantly higher than that of hatchery-reared conspecifics, while no such difference remained at the smolt stage. In smolts, relative ventricle mass was higher in wild S. salar compared with hatchery-reared fish. Moreover, wild S. salar had lower maximum oxygen consumption following a burst-swim challenge than hatchery fish. There were no effects of hatchery treatment on maximum oxygen consumption or relative ventricle mass. Haemoglobin and haematocrit levels, however, were lower in low-density fish than in fish reared at conventional density. Furthermore, dorsal-fin damage, an indicator of aggression, was similar in low-density reared and wild fish and lower than in S. salar reared at conventional density. Together, these results suggest that reduced rearing density is more important than reduced dietary fat levels in producing an S. salar smolt suitable for supplementary release. © 2014 The Fisheries Society of the British Isles.

  19. Effects of nutrient enrichment on Prymnesium parvum population dynamics and toxicity: Results from field experiments, Lake Possum Kingdom, USA

    USGS Publications Warehouse

    Roelke, D.L.; Errera, R.M.; Riesling, R.; Brooks, B.W.; Grover, J.P.; Schwierzke, L.; Urena-Boeck, F.; Baker, J.; Pinckney, J.L.

    2007-01-01

    Large fish kills associated with toxic populations of the haptophyte Prymnesium parvum occur worldwide. In the past 5 yr, incidences of P. parvum blooms in inland water bodies of Texas (USA) have increased dramatically, where cell densities in excess of 1 ?? 107 cells l-1 are typically observed. We conducted field experiments (Lake Possum Kingdom) during the fall and early spring of 28 d duration using 24 enclosures of 1.57 m 3 each. The experiments investigated the effect of nutrient enrichment, immigration of P. parvum and addition of barley straw extract on phytoplankton biomass and assemblage structure, P. parvum population density, zooplankton biomass and assemblage structure, bacteria, and toxicity. Nutrient enrichment stimulated P. parvum population growth beyond bloom proportions (>1 ?? 107 cells l-1). However, P. parvum did not dominate the assemblage under these conditions, as it does during natural blooms. Instead, euglenophytes and chlorophytes dominated. Toxicity, estimated using fish (Pimephales promelas) and cladoceran (Daphnia magna) bioassays and which is linked to P. parvum's allelopathic and mixotrophic effectiveness, was greatly reduced (eliminated in many cases) under conditions of nutrient enrichment. The suppression of toxicity by nutrient addition suggested that targeted and time-limited nutrient manipulations might be used to mitigate the effects of P. parvum blooms. Immigration of P. parvum into natural assemblages and addition of barley straw extract had no significant effect on plankton dynamics. ?? Inter-Research 2007.

  20. Variability of kokanee and rainbow trout food habits, distribution, and population dynamics, in an ultraoligotrophic lake with no manipulative management

    USGS Publications Warehouse

    Buktenica, M.W.; Girdner, S.F.; Larson, G.L.; McIntire, C.D.

    2007-01-01

    Crater Lake is a unique environment to evaluate the ecology of introduced kokanee and rainbow trout because of its otherwise pristine state, low productivity, absence of manipulative management, and lack of lotic systems for fish spawning. Between 1986 and 2004, kokanee displayed a great deal of variation in population demographics with a pattern that reoccurred in about 10 years. We believe that the reoccurring pattern resulted from density dependent growth, and associated changes in reproduction and abundance, driven by prey resource limitation that resulted from low lake productivity exacerbated by prey consumption when kokanee were abundant. Kokanee fed primarily on small-bodied prey from the mid-water column; whereas rainbow trout fed on large-bodied prey from the benthos and lake surface. Cladoceran zooplankton abundance may be regulated by kokanee. And kokanee growth and reproductive success may be influenced by the availability of Daphnia pulicaria, which was absent in zooplankton samples collected annually from 1990 to 1995, and after 1999. Distribution and diel migration of kokanee varied over the duration of the study and appeared to be most closely associated with prey availability, maximization of bioenergetic efficiency, and fish density. Rainbow trout were less abundant than were kokanee and exhibited less variation in population demographics, distribution, and food habits. There is some evidence that the population dynamics of rainbow trout were in-part related to the availability of kokanee as prey. ?? 2007 Springer Science+Business Media B.V.

  1. Fish intake, cooking practices, and risk of prostate cancer: results from a multi-ethnic case-control study.

    PubMed

    Joshi, Amit D; John, Esther M; Koo, Jocelyn; Ingles, Sue A; Stern, Mariana C

    2012-03-01

    Studies conducted to assess the association between fish consumption and prostate cancer (PCA) risk are inconclusive. However, few studies have distinguished between fatty and lean fish, and no studies have considered the role of different cooking practices, which may lead to differential accumulation of chemical carcinogens. In this study, we investigated the association between fish intake and localized and advanced PCA taking into account fish types (lean vs. fatty) and cooking practices. We analyzed data for 1,096 controls, 717 localized and 1,140 advanced cases from the California Collaborative Prostate Cancer Study, a multiethnic, population-based case-control study. We used multivariate conditional logistic regression to estimate odds ratios using nutrient density converted variables of fried fish, tuna, dark fish and white fish consumption. We tested for effect modification by cooking methods (high- vs. low-temperature methods) and levels of doneness. We observed that high white fish intake was associated with increased risk of advanced PCA among men who cooked with high-temperature methods (pan-frying, oven-broiling and grilling) until fish was well done (p (trend) = 0.001). No associations were found among men who cooked fish at low temperature and/or just until done (white fish x cooking method p (interaction) = 0.040). Our results indicate that consideration of fish type (oily vs. lean), specific fish cooking practices and levels of doneness of cooked fish helps elucidate the association between fish intake and PCA risk and suggest that avoiding high-temperature cooking methods for white fish may lower PCA risk.

  2. The role of density dependence in growth patterns of ceded territory walleye populations of northern Wisconsin: Effects of changing management regimes

    USGS Publications Warehouse

    Sass, G.G.; Hewett, S.W.; Beard, T.D.; Fayram, A.H.; Kitchell, J.F.

    2004-01-01

    We assessed density-related changes in growth of walleye Sander vitreus in the ceded territory of northern Wisconsin from 1977 to 1999. We used asymptotic length (Lz), growth rate near t0 (??), and body condition as measures of walleye growth to determine the relationship between growth and density. Among lakes, there was weak evidence of density-dependent growth: adult density explained only 0-6% of the variability in the growth metrics. Within lakes, growth was density dependent. Lz, ??, and body condition of walleyes changing with density for 69, 28, and 62% of the populations examined, respectively. Our results suggest that walleye growth was density dependent within individual lakes. However, growth was not coherently density dependent among lakes, which was possibly due to inherent differences in the productivity, surface area, forage base, landscape position, species composition, and management regime of lakes in the ceded territory. Densities of adult walleyes averaged 8.3 fish/ha and did not change significantly during 1990-1999. Mean Lz and body condition of walleyes were signilicantly higher before 1990 than after 1990, which may indicate an increase in density due to changes in management regimes. The observed growth changes do not appear to be a consequence of the statewide 15-in minimum size limit adopted in 1990 but rather a response to the treaty rights management regime. We conclude that walleye growth has the potential to predict regional-scale adult walleye densities if lake-specific variables are included in a model to account for regional-scale differences among walleye populations and lakes.

  3. Natural bounds on herbivorous coral reef fishes

    PubMed Central

    Hoey, Andrew S.; Williams, Gareth J.; Williams, Ivor D.

    2016-01-01

    Humans are an increasingly dominant driver of Earth's biological communities, but differentiating human impacts from natural drivers of ecosystem state is crucial. Herbivorous fish play a key role in maintaining coral dominance on coral reefs, and are widely affected by human activities, principally fishing. We assess the relative importance of human and biophysical (habitat and oceanographic) drivers on the biomass of five herbivorous functional groups among 33 islands in the central and western Pacific Ocean. Human impacts were clear for some, but not all, herbivore groups. Biomass of browsers, large excavators, and of all herbivores combined declined rapidly with increasing human population density, whereas grazers, scrapers, and detritivores displayed no relationship. Sea-surface temperature had significant but opposing effects on the biomass of detritivores (positive) and browsers (negative). Similarly, the biomass of scrapers, grazers, and detritivores correlated with habitat structural complexity; however, relationships were group specific. Finally, the biomass of browsers and large excavators was related to island geomorphology, both peaking on low-lying islands and atolls. The substantial variability in herbivore populations explained by natural biophysical drivers highlights the need for locally appropriate management targets on coral reefs. PMID:27881745

  4. Relations between introduced fish and environmental conditions at large geographic scales

    USGS Publications Warehouse

    Meador, M.R.; Brown, L.R.; Short, T.

    2003-01-01

    Data collected from 20 major river basins between 1993 and 1995 as part of the US Geological Survey's (USGS) National Water-Quality Assessment (NAWQA) Program were analyzed to assess patterns in introduced and native fish species richness and abundance relative to watershed characteristics and stream physicochemistry. Sites (N = 157) were divided into three regions-northeast, southeast, and west- to account for major longitudinal differences in precipitation/runoff and latitudinal limits of glaciation that affect zoogeographic patterns in fish communities. Common carp (Cyprinus carpio) and largemouth bass (Micropterus salmoides) were the most frequently collected introduced fish species across all river basins combined. Based on the percentage of introduced fish species, the fish communities most altered by the presence of introduced fish occurred in the western and northeastern parts of the US. Native fish species richness was not an indicator of introduced fish species richness for any of the three regions. However, in the west, introduced fish species richness was an indicator of total fish species richness and the abundance of introduced fish was negatively related to native fish species richness. Some relations between introduced fish species and environmental conditions were common between regions. Increased introduced fish species richness was related to increased population density in the northeast and southeast; increased total nitrogen in the northeast and west; and increased total phosphorous and water temperature in the southeast and west. These results suggest that introduced fish species tend to be associated with disturbance at large geographic scales, though specific relations may vary regionally. ?? 2003 Elsevier Science Ltd. All rights reserved.

  5. Variability in energy density of forage fishes from the Bay of Biscay (north-east Atlantic Ocean): reliability of functional grouping based on prey quality.

    PubMed

    Spitz, J; Jouma'a, J

    2013-06-01

    Energy densities of 670 fishes belonging to nine species were measured to evaluate intraspecific variability. Functional groups based on energy density appeared to be sufficiently robust to individual variability to provide a classification of forage fish quality applicable in a variety of ecological fields including ecosystem modelling. © 2013 The Authors. Journal of Fish Biology © 2013 The Fisheries Society of the British Isles.

  6. Maturation and fecundity of a stock-enhanced population of striped bass in the Savannah River Estuary, U.S.A.

    USGS Publications Warehouse

    Will, T.A.; Reinert, T.R.; Jennings, C.A.

    2002-01-01

    The striped bass Morone saxatilis population in the Savannah River (south-eastern U.S.A.) collapsed in the 1980s, and recent efforts to restore the population have resulted in increased catch-per-unit-effort (CPUE) of striped bass in the Savannah River Estuary (SRE). The abundance of eggs and larvae, however, remain well below historic levels. The primary cause of the population decline was remedied, and environmental conditions seem suitable for striped bass spawning. Regression analysis of data derived from ultrasonic imaging of 31 striped bass resulted in a statistical model that predicted ovary volume well (r2=0.95). The enumeration of oocytes from ovarian tissue samples and the prediction of ovary volume allowed fecundity to be estimated without sacrificing the fish. Oocyte maturation in Savannah River striped bass seemed to progress normally, with oocytes developing to final stages of maturity in larger fish (>750 mm LT). Additionally, fecundity estimates were comparable to a neighbouring striped bass population. The environmental cues needed to trigger development and release of striped bass oocytes into the SRE appeared to be present. If most of the striped bass females in the SRE are still young (<7 years), the ability to produce large numbers of eggs will be limited. As these young fish mature, egg production probably will increase and the density of striped bass eggs eventually will approach historic levels, provided suitable habitat and water quality are maintained. ?? 2002 The Fisheries Society of the British Isles.

  7. Application of food waste based diets in polyculture of low trophic level fish: effects on fish growth, water quality and plankton density.

    PubMed

    Mo, Wing Yin; Cheng, Zhang; Choi, Wai Ming; Man, Yu Bon; Liu, Yihui; Wong, Ming Hung

    2014-08-30

    Food waste was collected from local hotels and fish feed pellets were produced for a 6 months long field feeding trial. Three types of fish feed pellets (control diet: Jinfeng® 613 formulated feed, contains mainly fish meal, plant product and fish oil; Diet A: food waste based diet without meat and 53% cereal; Diet B: food waste based diet with 25% meat and 28% cereal) were used in polyculture fish ponds to investigate the growth of fish (grass carp, bighead and mud carp), changes in water quality and plankton density. No significant differences in the levels of nitrogen and phosphorous compounds of water body were observed between 3 fish ponds after the half-year feeding trial, while pond receiving Diet A had the highest density of plankton. The food waste combination of Diet B seems to be a better formulation in terms of the overall performance on fish growth. Copyright © 2014. Published by Elsevier Ltd.

  8. Alterations in the skin of Labeo rohita exposed to an azo dye, Eriochrome black T: a histopathological and enzyme biochemical investigation.

    PubMed

    Srivastava, Ayan; Verma, Neeraj; Mistri, Arup; Ranjan, Brijesh; Nigam, Ashwini Kumar; Kumari, Usha; Mittal, Swati; Mittal, Ajay Kumar

    2017-03-01

    Histopathological changes and alterations in the activity of certain metabolic and antioxidant enzymes were analyzed in the head skin of Labeo rohita, exposed to sublethal test concentrations of the azo dye, Eriochrome black T for 4 days, using 24 h renewal bioassay method. Hypertrophied epithelial cells, increased density of mucous goblet cells, and profuse mucous secretion at the surface were considered to protect the skin from toxic impact of the azo dye. Degenerative changes including vacuolization, shrinkage, decrease in dimension, and density of club cells with simultaneous release of their contents in the intercellular spaces were associated to plug them, preventing indiscriminate entry of foreign matter. On exposure of fish to the dye, significant decline in the activity of enzymes-alkaline phosphatase, acid phosphatase, carboxylesterase, succinate dehydrogenase, catalase, and peroxidase-was associated with the binding of dye to the enzymes. Gradual increase in the activity of lactate dehydrogenase was considered to reflect a shift from aerobic to anaerobic metabolism. On transfer of azo dye exposed fish to freshwater, skin gradually recovers and, by 8 days, density and area of mucous goblet cells, club cells, and activity of the enzymes appear similar to that of controls. Alteration in histopathology and enzyme activity could be considered beneficial tool in monitoring environmental toxicity, valuable in the sustenance of fish populations.

  9. Potential Population Consequences of Active Sonar Disturbance in Atlantic Herring: Estimating the Maximum Risk.

    PubMed

    Sivle, Lise Doksæter; Kvadsheim, Petter Helgevold; Ainslie, Michael

    2016-01-01

    Effects of noise on fish populations may be predicted by the population consequence of acoustic disturbance (PCAD) model. We have predicted the potential risk of population disturbance when the highest sound exposure level (SEL) at which adult herring do not respond to naval sonar (SEL(0)) is exceeded. When the population density is low (feeding), the risk is low even at high sonar source levels and long-duration exercises (>24 h). With densely packed populations (overwintering), a sonar exercise might expose the entire population to levels >SEL(0) within a 24-h exercise period. However, the disturbance will be short and the response threshold used here is highly conservative. It is therefore unlikely that naval sonar will significantly impact the herring population.

  10. Fish-protection devices at unscreened water diversions can reduce entrainment: evidence from behavioural laboratory investigations

    PubMed Central

    Poletto, Jamilynn B.; Cocherell, Dennis E.; Mussen, Timothy D.; Ercan, Ali; Bandeh, Hossein; Kavvas, M. Levent; Cech, Joseph J.; Fangue, Nann A.

    2015-01-01

    Diversion (i.e. extraction) of water from rivers and estuaries can potentially affect native wildlife populations if operation is not carefully managed. For example, open, unmodified water diversions can act as a source of injury or mortality to resident or migratory fishes from entrainment and impingement, and can cause habitat degradation and fragmentation. Fish-protection devices, such as exclusion screens, louvres or sensory deterrents, can physically or behaviourally deter fish from approaching or being entrained into water diversions. However, empirical assessment of their efficacy is often lacking or is investigated only for particular economically or culturally important fishes, such as salmonids. The Southern population of anadromous green sturgeon (Acipenser medirostris) is listed as threatened in California, and there is a high density of water diversions located within their native range (the Sacramento–San Joaquin watershed). Coupled with their unique physiology and behaviour compared with many other fishes native to California, the green sturgeon is susceptible to entrainment into diversions and is an ideal species with which to study the efficacy of mitigation techniques. Therefore, we investigated juvenile green sturgeon (188–202 days post-hatch) in the presence of several fish-protection devices to assess behaviour and entrainment risk. Using a large experimental flume (∼500 kl), we found that compared with an open diversion pipe (control), the addition of a trash-rack box, louvre box, or perforated cylinder on the pipe inlet all significantly reduced the proportion of fish that were entrained through the pipe (P = 0.03, P = 0.028, and P = 0.028, respectively). Likewise, these devices decreased entrainment risk during a single movement past the pipe by between 60 and 96%. These fish-protection devices should decrease the risk of fish entrainment during water-diversion activities. PMID:27293725

  11. Buoyancy compensation of juvenile chinook salmon implanted with two different size dummy transmitters

    USGS Publications Warehouse

    Perry, R.W.; Adams, N.S.; Rondorf, D.W.

    2001-01-01

    We investigated the effect of two different sizes of surgically implanted transmitters on the buoyancy compensation of juvenile chinook salmon Oncorhynchus tshawytscha. We determined buoyancy by measuring the density of fish with a filled air bladder in graded salinity baths. In addition, we examined the effect of pressure changes on buoyancy by measuring the pressure reduction (PR) at which fish became neutrally buoyant. We found no significant difference between the density of control and tagged groups, indicating that fish were able to compensate for the transmitter by filling their air bladders. However, both groups of tagged fish had significantly lower PR than control fish. Regression analysis of fish density on PR indicated that density of the tagged groups changed at a higher rate than that of the controls. As a result, tagged fish attained neutral buoyancy with less pressure reduction even though the tagged and control groups exhibited similar densities. This relation was confirmed by using Boyle's law to simulate buoyancy changes with change in depth. Although fish compensated for the transmitter, changes in depth affected the buoyancy of tagged fish more than that of untagged fish. Reduced buoyancy at depth may affect the behavior and physiology of tagged juvenile salmonids, and researchers should be aware of this potential bias in telemetry data. In addition, there was little difference in PR or the slope of the density - PR regression lines between tagged groups. This was caused by the small difference in excess mass (i.e., weight in water) of the two transmitters. Thus, although two transmitters may not weigh the same, their effects on buoyancy may be similar depending on the excess mass.

  12. Life cycle ecophysiology of small pelagic fish and climate-driven changes in populations

    NASA Astrophysics Data System (ADS)

    Peck, Myron A.; Reglero, Patricia; Takahashi, Motomitsu; Catalán, Ignacio A.

    2013-09-01

    Due to their population characteristics and trophodynamic role, small pelagic fishes are excellent bio-indicators of climate-driven changes in marine systems world-wide. We argue that making robust projections of future changes in the productivity and distribution of small pelagics will require a cause-and-effect understanding of historical changes based upon physiological principles. Here, we reviewed the ecophysiology of small pelagic (clupeiform) fishes including a matrix of abiotic and biotic extrinsic factors (e.g., temperature, salinity, light, and prey characteristics) and stage-specific vital rates: (1) adult spawning, (2) survival and development of eggs and yolk sac larvae, and (3) feeding and growth of larvae, post-larvae and juveniles. Emphasis was placed on species inhabiting Northwest Pacific and Northeast Atlantic (European) waters for which summary papers are particularly scarce compared to anchovy and sardine in upwelling systems. Our review revealed that thermal niches (optimal and sub-optimal ranges in temperatures) were species- and stage-specific but that temperature effects only partly explained observed changes in the distribution and/or productivity of populations in the Northwest Pacific and Northeast Atlantic; changes in temperature may be necessary but not sufficient to induce population-level shifts. Prey availability during the late larval and early juvenile period was a common, density-dependent mechanism linked to fluctuations in populations but recruitment mechanisms were system-specific suggesting that generalizations of climate drivers across systems should be avoided. We identified gaps in knowledge regarding basic elements of the growth physiology of each life stage that will require additional field and laboratory study. Avenues of research are recommended that will aid the development of models that provide more robust, physiological-based projections of the population dynamics of these and other small pelagic fish. In our opinion, the continued development of biophysical models that close the life cycle (depict all life stages) offers the best chance of revealing processes causing historical fluctuations on the productivity and distribution of small pelagic fishes and to project future climate-driven impacts. Correctly representing physiological-based mechanisms will increase confidence in the outcomes of models simulating the potential impacts of bottom-up processes, a first step towards evaluating the mixture of factors and processes (e.g. intra-guild dynamics, predation, fisheries exploitation) which interact with climate to affect populations of small pelagic fishes. Understand the impacts of reduced growth rates during the juvenile stage on the process of maturation and spawning condition of small pelagic fishes. Examine the effects of changes in prey quality on the duration and magnitude of spawning by small pelagic fishes to capture how climate-driven changes in zooplankton species composition might act as a “bottom-up” regulator of fish productivity. Identify the drivers for spawning location and timing to better understand how spawning dynamics may be influenced by climate change (e.g. changes in water salinity or turbidity resulting from changes in river discharges or wind-driven turbulence, respectively).

  13. Coral reef degradation is not correlated with local human population density

    NASA Astrophysics Data System (ADS)

    Bruno, John F.; Valdivia, Abel

    2016-07-01

    The global decline of reef-building corals is understood to be due to a combination of local and global stressors. However, many reef scientists assume that local factors predominate and that isolated reefs, far from human activities, are generally healthier and more resilient. Here we show that coral reef degradation is not correlated with human population density. This suggests that local factors such as fishing and pollution are having minimal effects or that their impacts are masked by global drivers such as ocean warming. Our results also suggest that the effects of local and global stressors are antagonistic, rather than synergistic as widely assumed. These findings indicate that local management alone cannot restore coral populations or increase the resilience of reefs to large-scale impacts. They also highlight the truly global reach of anthropogenic warming and the immediate need for drastic and sustained cuts in carbon emissions.

  14. Coral reef degradation is not correlated with local human population density.

    PubMed

    Bruno, John F; Valdivia, Abel

    2016-07-20

    The global decline of reef-building corals is understood to be due to a combination of local and global stressors. However, many reef scientists assume that local factors predominate and that isolated reefs, far from human activities, are generally healthier and more resilient. Here we show that coral reef degradation is not correlated with human population density. This suggests that local factors such as fishing and pollution are having minimal effects or that their impacts are masked by global drivers such as ocean warming. Our results also suggest that the effects of local and global stressors are antagonistic, rather than synergistic as widely assumed. These findings indicate that local management alone cannot restore coral populations or increase the resilience of reefs to large-scale impacts. They also highlight the truly global reach of anthropogenic warming and the immediate need for drastic and sustained cuts in carbon emissions.

  15. Coral reef degradation is not correlated with local human population density

    PubMed Central

    Bruno, John F.; Valdivia, Abel

    2016-01-01

    The global decline of reef-building corals is understood to be due to a combination of local and global stressors. However, many reef scientists assume that local factors predominate and that isolated reefs, far from human activities, are generally healthier and more resilient. Here we show that coral reef degradation is not correlated with human population density. This suggests that local factors such as fishing and pollution are having minimal effects or that their impacts are masked by global drivers such as ocean warming. Our results also suggest that the effects of local and global stressors are antagonistic, rather than synergistic as widely assumed. These findings indicate that local management alone cannot restore coral populations or increase the resilience of reefs to large-scale impacts. They also highlight the truly global reach of anthropogenic warming and the immediate need for drastic and sustained cuts in carbon emissions. PMID:27435659

  16. Differences in ecological structure, function, and native species abundance between native and invaded Hawaiian streams.

    PubMed

    Holitzki, Tara M; MacKenzie, Richard A; Wiegner, Tracy N; McDermid, Karla J

    2013-09-01

    Poeciliids, one of the most invasive species worldwide, are found on almost every continent and have been identified as an "invasive species of concern" in the United States, New Zealand, and Australia. Despite their global prevalence, few studies have quantified their impacts on tropical stream ecosystem structure, function, and biodiversity. Utilizing Hawaiian streams as model ecosystems, we documented how ecological structure, function, and native species abundance differed between poeciliid-free and poeciliid-invaded tropical streams. Stream nutrient yields, benthic biofilm biomass, densities of macroinvertebrates and fish, and community structures of benthic algae, macroinvertebrates, and fish were compared between streams with and without established poeciliid populations on the island of Hawai'i, Hawaii, USA. Sum nitrate (sigmaNO3(-) = NO3(-) + NO2(-)), total nitrogen, and total organic carbon yields were eight times, six times, and five times higher, respectively, in poeciliid streams than in poeciliid-free streams. Benthic biofilm ash-free dry mass was 1.5x higher in poeciliid streams than in poeciliid-free streams. Percentage contributions of chironomids and hydroptilid caddisflies to macroinvertebrate densities were lower in poeciliid streams compared to poeciliid-free streams, while percentage contributions of Cheumatopsyche analis caddisflies, Dugesia sp. flatworms, and oligochaetes were higher. Additionally, mean densities of native gobies were two times lower in poeciliid streams than in poeciliid-free ones, with poeciliid densities being approximately eight times higher than native fish densities. Our results, coupled with the wide distribution of invasive poeciliids across Hawaii and elsewhere in the tropics, suggest that poeciliids may negatively impact the ecosystem structure, function, and native species abundance of tropical streams they invade. This underscores the need for increased public awareness to prevent future introductions and for developing and implementing effective eradication and restoration strategies.

  17. Marine protected areas increase temporal stability of community structure, but not density or diversity, of tropical seagrass fish communities

    PubMed Central

    Jiddawi, Narriman S.; Eklöf, Johan S.

    2017-01-01

    Marine protected areas (MPAs) have been shown to increase long-term temporal stability of fish communities and enhance ecosystem resilience to anthropogenic disturbance. Yet, the potential ability of MPAs to buffer effects of environmental variability at shorter time scales remains widely unknown. In the tropics, the yearly monsoon cycle is a major natural force affecting marine organisms in tropical regions, and its timing and severity are predicted to change over the coming century, with potentially severe effects on marine organisms, ecosystems and ecosystem services. Here, we assessed the ability of MPAs to buffer effects of monsoon seasonality on seagrass-associated fish communities, using a field survey in two MPAs (no-take zones) and two unprotected (open-access) sites around Zanzibar (Tanzania). We assessed the temporal stability of fish density and community structure within and outside MPAs during three monsoon seasons in 2014–2015, and investigated several possible mechanisms that could regulate temporal stability. Our results show that MPAs did not affect fish density and diversity, but that juvenile fish densities were temporally more stable within MPAs. Second, fish community structure was more stable within MPAs for juvenile and adult fish, but not for subadult fish or the total fish community. Third, the observed effects may be due to a combination of direct and indirect (seagrass-mediated) effects of seasonality and, potentially, fluctuating fishing pressure outside MPAs. In summary, these MPAs may not have the ability to enhance fish density and diversity and to buffer effects of monsoon seasonality on the whole fish community. However, they may increase the temporal stability of certain groups, such as juvenile fish. Consequently, our results question whether MPAs play a general role in the maintenance of biodiversity and ecosystem functioning under changing environmental conditions in tropical seagrass fish communities. PMID:28854231

  18. Status and trends of pelagic prey fishes in Lake Huron, 2012

    USGS Publications Warehouse

    Warner, David M.; O'Brien, Timothy P.; Farha, Steve A.; Schaeffer, Jeff; Lenart, Stephen

    2012-01-01

    The USGS Great Lakes Science Center (GLSC) conducted acoustic/midwater trawl surveys of Lake Huron during 1997 and annually during 2004-2012. The 2012 survey was conducted during September and October, and included transects in Lake Huron’s Main Basin, Georgian Bay, and North Channel. Pelagic fish density (638 fish/ha) was lower in 2012 compared to 2011, with density in 2012 only 34% of 2011. Total biomass in 2012 was 74% of the 2011 value. Alewife Alosa pseudoharengus remained nearly absent, and only one cisco Coregonus artedi was captured. Rainbow smelt Osmerus mordax density was only 31% of the 2011 density. Bloater Coregonus hoyi density was less than half the 2011 density, mostly as a result of lower density of small bloater. Density and biomass of large bloater in 2012 were similar to 2011 levels. During 2012 we observed significantly higher fish biomass in North Channel than in the Main Basin or Georgian Bay. Prey availability during 2013 will likely be similar to 2012. Lake Huron now has pelagic fish biomass similar to that observed in recent lakewide acoustic surveys of Lake Michigan and Lake Superior, but species composition differs in the three lakes. There is an increasing diversity and prevalence of native species gradient from Lake Michigan to Lake Superior, with Lake Huron being intermediate in the prevalence of native fish species like coregonines and emerald shiner Notropis atherinoides.

  19. Status and trends of pelagic prey fishes in Lake Huron, 2012

    USGS Publications Warehouse

    Warner, David M.; O'Brien, Timothy P.; Farha, Steve A.; Schaeffer, Jeff; Lenart, Stephen

    2013-01-01

    The USGS Great Lakes Science Center (GLSC) conducted acoustic/midwater trawl surveys of Lake Huron during 1997 and annually during 2004-2012. The 2012 survey was conducted during September and October, and included transects in Lake Huron’s Main Basin, Georgian Bay, and North Channel. Pelagic fish density (638 fish/ha) was lower in 2012 compared to 2011, with density in 2012 only 34% of 2011. Total biomass in 2012 was 74% of the 2011 value. Alewife Alosa pseudoharengus remained nearly absent, and only one cisco Coregonus artedi was captured. Rainbow smelt Osmerus mordax density was only 31% of the 2011 density. Bloater Coregonus hoyi density was less than half the 2011 density, mostly as a result of lower density of small bloater. Density and biomass of large bloater in 2012 were similar to 2011 levels. During 2012 we observed significantly higher fish biomass in North Channel than in the Main Basin or Georgian Bay. Prey availability during 2013 will likely be similar to 2012. Lake Huron now has pelagic fish biomass similar to that observed in recent lakewide acoustic surveys of Lake Michigan and Lake Superior, but species composition differs in the three lakes. There is an increasing diversity and prevalence of native species gradient from Lake Michigan to Lake Superior, with Lake Huron being intermediate in the prevalence of native fish species like coregonines and emerald shiner Notropis atherinoides.

  20. Fishing amplifies forage fish population collapses.

    PubMed

    Essington, Timothy E; Moriarty, Pamela E; Froehlich, Halley E; Hodgson, Emma E; Koehn, Laura E; Oken, Kiva L; Siple, Margaret C; Stawitz, Christine C

    2015-05-26

    Forage fish support the largest fisheries in the world but also play key roles in marine food webs by transferring energy from plankton to upper trophic-level predators, such as large fish, seabirds, and marine mammals. Fishing can, thereby, have far reaching consequences on marine food webs unless safeguards are in place to avoid depleting forage fish to dangerously low levels, where dependent predators are most vulnerable. However, disentangling the contributions of fishing vs. natural processes on population dynamics has been difficult because of the sensitivity of these stocks to environmental conditions. Here, we overcome this difficulty by collating population time series for forage fish populations that account for nearly two-thirds of global catch of forage fish to identify the fingerprint of fisheries on their population dynamics. Forage fish population collapses shared a set of common and unique characteristics: high fishing pressure for several years before collapse, a sharp drop in natural population productivity, and a lagged response to reduce fishing pressure. Lagged response to natural productivity declines can sharply amplify the magnitude of naturally occurring population fluctuations. Finally, we show that the magnitude and frequency of collapses are greater than expected from natural productivity characteristics and therefore, likely attributed to fishing. The durations of collapses, however, were not different from those expected based on natural productivity shifts. A risk-based management scheme that reduces fishing when populations become scarce would protect forage fish and their predators from collapse with little effect on long-term average catches.

  1. Intermediate Pond Sizes Contain the Highest Density, Richness, and Diversity of Pond-Breeding Amphibians

    PubMed Central

    Semlitsch, Raymond D.; Peterman, William E.; Anderson, Thomas L.; Drake, Dana L.; Ousterhout, Brittany H.

    2015-01-01

    We present data on amphibian density, species richness, and diversity from a 7140-ha area consisting of 200 ponds in the Midwestern U.S. that represents most of the possible lentic aquatic breeding habitats common in this region. Our study includes all possible breeding sites with natural and anthropogenic disturbance processes that can be missing from studies where sampling intensity is low, sample area is small, or partial disturbance gradients are sampled. We tested whether pond area was a significant predictor of density, species richness, and diversity of amphibians and if values peaked at intermediate pond areas. We found that in all cases a quadratic model fit our data significantly better than a linear model. Because small ponds have a high probability of pond drying and large ponds have a high probability of fish colonization and accumulation of invertebrate predators, drying and predation may be two mechanisms driving the peak of density and diversity towards intermediate values of pond size. We also found that not all intermediate sized ponds produced many larvae; in fact, some had low amphibian density, richness, and diversity. Further analyses of the subset of ponds represented in the peak of the area distribution showed that fish, hydroperiod, invertebrate density, and canopy are additional factors that drive density, richness and diversity of ponds up or down, when extremely small or large ponds are eliminated. Our results indicate that fishless ponds at intermediate sizes are more diverse, produce more larvae, and have greater potential to recruit juveniles into adult populations of most species sampled. Further, hylid and chorus frogs are found predictably more often in ephemeral ponds whereas bullfrogs, green frogs, and cricket frogs are found most often in permanent ponds with fish. Our data increase understanding of what factors structure and maintain amphibian diversity across large landscapes. PMID:25906355

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ford, Michael J.; Williamson, Kevin S.

    We investigated differences in the statistical power to assign parentage between an artificially propagated and wild salmon population. The propagated fish were derived from the wild population, and are used to supplement its abundance. Levels of genetic variation were similar between the propagated and wild groups at 11 microsatellite loci, and exclusion probabilities were >0.999999 for both groups. The ability to unambiguously identify a pair of parents for each sampled progeny was much lower than expected, however. Simulations demonstrated that the proportion of cases the most likely pair of parents were the true parents was lower for propagated parents thanmore » for wild parents. There was a clear relationship between parentage assignment ability and the degree of linkage disequilibrium, the estimated effective number of breeders that produced the parents, and the size of the largest family within the potential parents. If a stringent threshold for parentage assignment was used, estimates of relative fitness were biased downward for the propagated fish. The bias appeared to be largely eliminated by either fractionally assigning progeny among parents in proportion to their likelihood of parentage, or by assigning progeny to the most likely set of parents without using a statistical threshold. We used a DNA-based parentage analysis to measure the relative reproductive success of hatchery- and natural-origin spring Chinook salmon in the natural environment. Both male and female hatchery-origin fish produced far fewer juvenile progeny per parent when spawning naturally than did natural origin fish. Differences in age structure, spawning location, weight and run timing were responsible for some of the difference in fitness. Male size and age had a large influence on fitness, with larger and older males producing more offspring than smaller or younger individuals. Female size had a significant effect on fitness, but the effect was much smaller than the effect of size on male fitness. For both sexes, run time had a smaller but still significant effect on fitness, with earlier returning fish favored. Spawning location within the river had a significant effect on fitness for both males and females, and for females explained most of the reduced fitness observed for hatchery fish in this population. While differences have been reported in the relative reproductive success of hatchery and naturally produced salmonids Oncorhynchus spp., factors explaining the differences are often confounded. We examined the spawning site habitat and redd structure variables of hatchery and naturally produced spring Chinook salmon O. tshawytscha of known size that spawned in two tributaries of the Wenatchee River. We controlled for variability in spawning habitat by limiting our analysis to redds found within four selected reaches. No difference in the instantaneous spawner density or location of the redd in the stream channel was detected between reaches. Within each reach, no difference in the fork length or weight of hatchery and naturally produced fish was detected. While most variables differed between reaches, we found no difference in redd characteristics within a reach between hatchery and naturally produced females. Correlation analysis of fish size and redd characteristics found several weak but significant relationships suggesting larger fish contract larger redds in deeper water. Spawner density was inversely related to several redd structure variables suggesting redd size may decrease as spawner density increases. Results should be considered preliminary until samples size and statistical power goals are reached in future years. Trends in relative reproductive success of hatchery and naturally produced spring Chinook salmon Oncorhynchus tshawytscha in the Wenatchee Basins suggest females that spawn in the upper reaches of the tributaries produced a great number of offspring compared to females that spawn in the lower reaches of the tributaries. To better understand this trend, redd microhabitat data was collected from spring Chinook salmon that spawned in the Chiwawa River and Nason Creek, the primary spawning tributaries in the Wenatchee Basin. The objective of the study was to examine the influence of habitat and spawner density on spawning site and redd structure characteristics. We analyzed 27 variables of redd microhabitat data collected from the upper and lower most reaches of each study stream. In both streams, we found redds in the upper most reaches to be significantly larger (length and width) and deeper (bowl depth). Spawner density was significantly greater in the lower Chiwawa River compared to the upper reach. No difference in spawner density was detected between reaches in Nason Creek (P = 0.54). Data should be considered preliminary until sample size goals are achieved.« less

  3. Increased Disease Calls for a Cost-Benefits Review of Marine Reserves

    PubMed Central

    Wootton, Emma C.; Woolmer, Andrew P.; Vogan, Claire L.; Pope, Edward C.; Hamilton, Kristina M.; Rowley, Andrew F.

    2012-01-01

    Marine reserves (or No-Take Zones) are implemented to protect species and habitats, with the aim of restoring a balanced ecosystem. Although the benefits of marine reserves are commonly monitored, there is a lack of insight into the potential detriments of such highly protected waters. High population densities attained within reserves may induce negative impacts such as unfavourable trophic cascades and disease outbreaks. Hence, we investigated the health of lobster populations in the UK’s Marine Conservation Zone (MCZ) at Lundy Island. Comparisons were made between the fished, Refuge Zone (RZ) and the un-fished, No-Take Zone (NTZ; marine reserve). We show ostensibly positive effects such as increased lobster abundance and size within the NTZ; however, we also demonstrate apparent negative effects such as increased injury and shell disease. Our findings suggest that robust cost-benefit analyses of marine reserves could improve marine reserve efficacy and subsequent management strategies. PMID:23240047

  4. Age-class structure and variability of two populations of the bluemask darter etheostoma (Doration) sp.

    USGS Publications Warehouse

    Simmons, J.W.; Layzer, J.B.; Smith, D.D.

    2008-01-01

    The bluemask darter Etheostoma (Doration) sp. is an endangered fish endemic to the upper Caney Fork system in the Cumberland River drainage in central Tennessee. Darters (Etheostoma spp.) are typically short-lived and exhibit rapid growth that quickly decreases with age. Consequently, estimating age of darters from length-frequency distributions can be difficult and subjective. We used a nonparametric kernel density estimator to reduce subjectivity in estimating ages of bluemask darters. Data were collected from a total of 2926 bluemask darters from the Collins River throughout three growing seasons. Additionally, data were collected from 842 bluemask darters from the Rocky River during one growing season. Analysis of length-frequencies indicated the presence of four age classes in both rivers. In each river, the majority of the population was comprised of fish 0.05). In both rivers, females were more abundant than males.

  5. Life history trade-offs and community dynamics of small fishes in a seasonally pulsed wetland

    USGS Publications Warehouse

    DeAngelis, D.L.; Trexler, J.C.; Loftus, W.F.

    2005-01-01

    We used a one-dimensional, spatially explicit model to simulate the community of small fishes in the freshwater wetlands of southern Florida, USA. The seasonality of rainfall in these wetlands causes annual fluctuations in the amount of flooded area. We modeled fish populations that differed from each other only in efficiency of resource utilization and dispersal ability. The simulations showed that these trade-offs, along with the spatial and temporal variability of the environment, allow coexistence of several species competing exploitatively for a common resource type. This mechanism, while sharing some characteristics with other mechanisms proposed for coexistence of competing species, is novel in detail. Simulated fish densities resembled patterns observed in Everglades empirical data. Cells with hydroperiods less than 6 months accumulated negligible fish biomass. One unique model result was that, when multiple species coexisted, it was possible for one of the coexisting species to have both lower local resource utilization efficiency and lower dispersal ability than one of the other species. This counterintuitive result is a consequence of stronger effects of other competitors on the superior species. ?? 2005 NRC.

  6. Evolution of Space Dependent Growth in the Teleost Astyanax mexicanus

    PubMed Central

    Gallo, Natalya D.; Jeffery, William R.

    2012-01-01

    The relationship between growth rate and environmental space is an unresolved issue in teleosts. While it is known from aquaculture studies that stocking density has a negative relationship to growth, the underlying mechanisms have not been elucidated, primarily because the growth rate of populations rather than individual fish were the subject of all previous studies. Here we investigate this problem in the teleost Astyanax mexicanus, which consists of a sighted surface-dwelling form (surface fish) and several blind cave-dwelling (cavefish) forms. Surface fish and cavefish are distinguished by living in spatially contrasting environments and therefore are excellent models to study the effects of environmental size on growth. Multiple controlled growth experiments with individual fish raised in confined or unconfined spaces showed that environmental size has a major impact on growth rate in surface fish, a trait we have termed space dependent growth (SDG). In contrast, SDG has regressed to different degrees in the Pachón and Tinaja populations of cavefish. Mating experiments between surface and Pachón cavefish show that SDG is inherited as a dominant trait and is controlled by multiple genetic factors. Despite its regression in blind cavefish, SDG is not affected when sighted surface fish are raised in darkness, indicating that vision is not required to perceive and react to environmental space. Analysis of plasma cortisol levels showed that an elevation above basal levels occurred soon after surface fish were exposed to confined space. This initial cortisol peak was absent in Pachón cavefish, suggesting that the effects of confined space on growth may be mediated partly through a stress response. We conclude that Astyanax reacts to confined spaces by exhibiting SDG, which has a genetic component and shows evolutionary regression during adaptation of cavefish to confined environments. PMID:22870223

  7. Occupancy and abundance of the endangered yellowcheek darter in Arkansas

    USGS Publications Warehouse

    Magoulick, Daniel D.; Lynch, Dustin T.

    2015-01-01

    The Yellowcheek Darter (Etheostoma moorei) is a rare fish endemic to the Little Red River watershed in the Boston Mountains of northern Arkansas. Remaining populations of this species are geographically isolated and declining, and the species was listed in 2011 as federally endangered. Populations have declined, in part, due to intense seasonal stream drying and inundation of lower reaches by a reservoir. We used a kick seine sampling approach to examine distribution and abundance of Yellowcheek Darter populations in the Middle Fork and South Fork Little Red River. We used presence data to estimate occupancy rates and detection probability and examined relationships between Yellowcheek Darter density and environmental variables. The species was found at five Middle Fork and South Fork sites where it had previously been present in 2003–2004. Occupancy rates were >0.6 but with wide 95% CI, and where the darters occurred, densities were typical of other Ozark darters but highly variable. Detection probability and density were positively related to current velocity. Given that stream drying has become more extreme over the past 30 years and anthropogenic threats have increased, regular monitoring and active management may be required to reduce extinction risk of Yellowcheek Darter populations.

  8. Abiotic and biotic controls of cryptobenthic fish assemblages across a Caribbean seascape

    USGS Publications Warehouse

    Harborne, A.R.; Jelks, H.L.; Smith-Vaniz, W.F.; Rocha, L.A.

    2012-01-01

    The majority of fish studies on coral reefs consider only non-cryptic species and, despite their functional importance, data on cryptic species are scarce. This study investigates inter-habitat variation in Caribbean cryptobenthic fishes by re-analysing a comprehensive data set from 58 rotenone stations around Buck Island, U.S. Virgin Islands. Boosted regression trees were used to associate the density and diversity of non-piscivorous cryptobenthic fishes, both in the entire data set and on reef habitats alone, with 14 abiotic and biotic variables. The study also models the habitat requirements of the three commonest species. Dead coral cover was the first or second most important variable in six of the eight models constructed. For example, within the entire data set, the number of species and total fish density increased approximately linearly with increasing dead coral cover. Dead coral was also important in multivariate analyses that discriminated 10 assemblages within the entire data set. On reef habitats, the number of species and total fish density increased dramatically when dead coral exceeded ~55 %. Live coral cover was typically less important for explaining variance in fish assemblages than dead coral, but live corals were important for maintaining high fish diversity. Coral species favoured by cryptobenthic species may be particularly susceptible to mortality, but dead coral may also provide abundant food and shelter for many fishes. Piscivore density was a key variable in the final models, but typically increased with increasing cryptobenthic fish diversity and abundance, suggesting both groups of fishes are responding to the same habitat variables. The density of territorial damselfishes reduced the number of cryptobenthic fish species on reef habitats. Finally, habitats delineated by standard remote sensing techniques supported distinct cryptobenthic fish assemblages, suggesting that such maps can be used as surrogates of general patterns of cryptic fish biodiversity in conservation planning.

  9. Report of Flood, Oil Sheen, and fish Kill Incidents on East Fork Poplar Creek at the Oak Ridge Y-12 Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skaggs, B.E.

    1997-09-01

    Water quality and plant opemtion irriiormation provided by the Y-12 Plant strongly suggest that a dechlorinating agent, applied to the raw water released below the North-South Pipes was responsible for the toxicity resulting in the fish kill of July 24. Dissolved oxygen (DO) measurements in upper EFPC indicai e that low oxygen levels (3-5 ppm) occurred for a period of up to 30 min. This slug of low DO water traveling down EFPC to the lake could easily explain the massive fish kill and the resulting observations. Dissolved oxygen levels of 5.2 ppm or lower are documented as causing problemsmore » for warmwater fish species (Heath 1995). The presence of other stressors, including a range of petrochemicals, tends to lower resistance to low oxygen conditions. Given the sequence of events in upper EFPC in the few days prior to July 24, where extremely high flows were followed by inputs of a wide range of low concentrations of oils, the sensitivity to low DO conditions might be heightened. The possible toxic impact of ::he oils and other contaminants reaching EFPC as a result of the heavy rainfidl on July 22 doesn't appear significant enough to be the sole cause of the kill on July 24. Even during the height of the kill, a large school of fish remained immediately downstream of the North-South Pipes. If the toxicity of waters flowing through this outlet were the primary cause of the kill, then it would be expected that this school of fish would not have been present immediately below the pipes. Any impact of waters entering from other sources, such as pumping of basements WOUIC1 have produced a staggered pattern of mortality, with fishing dying in different localities at different times and rates. Further, it would be expected that the morta.lhy observed would have continued over several days at least, as more resistant individuals succumbed slowly to the toxic exposure. This would have provided freshly dead or dying fish for the surveys of July 25 and 28. In previous fish kills in this stream section, the impact on the fish community has been judged to be short-term only, with no significant long-term ecological effects. In fact, the numerous fish kills over the past 7 years do not appear to have dampened the growth of the stream fish populations. The magnit~de of these kills was far less than that of the July 24 kill; maximum mortality of 10-20o/0 of th{~ total population above Lake Reality. Because the current kill has tiected a much larger proportion of the resident population, the impacts are expected to extend for a longer period in this situation, perhaps up to a year. Decreased population levels should be evident through the fhll 1997 and spring 1998 samples. Depending on the success rate of reproduction during the summer cf 1998, the recovery of fish populations should be observed in the fdl 1998 population sample. However, complete recovery may take several reproductive seasons to reach the densities seen in 1997. The cyprinid species occurring in upper EFPC have tremendous reproductive capacities and should be able to repopulate this area with little or no long-term ecological impact. Even the redbreast sunfish should, at the worst, only endure a narrowing of its available gene pool, with little if any long-term impacts.« less

  10. Population trends of smallmouth bass in the upper Colorado River basin with an evaluation of removal effects

    USGS Publications Warehouse

    Breton, André R.; Winkelman, Dana L.; Hawkins, John A.; Bestgen, Kevin R.

    2014-01-01

    Smallmouth bass Micropterus dolomieu were rare in the upper Colorado River basin until the early 1990’s when their abundance dramatically increased in the Yampa River sub-basin. Increased abundance was due primarily to colonization from Elkhead Reservoir, which was rapidly drawn down twice, first to make improvements to the dam (1992) and a second time for reservoir expansion (2005), and allowed escapement of resident bass to the river through an unscreened outlet. Elkhead Reservoir is located on Elkhead Creek, a tributary of the Yampa River. The rapid Elkhead Reservoir drawdown in 1992 was followed by a period of drought years with low, early runoff in the Yampa River sub-basin that benefitted smallmouth bass reproduction. This combination of factors allowed smallmouth bass to establish a self-sustaining population in the Yampa River. Subsequently, successful recruitment allowed smallmouth bass to disperse upstream and downstream in the Yampa River and eventually move into the downstream Green River. Smallmouth bass were also likely introduced, by unknown means, into the upper Colorado River and have since dispersed in this sub-basin. The rapid increase of smallmouth bass in the upper Colorado River basin overlapped with significant reductions in native fish populations in some locations. The threat to these native fishes initiated intensive mechanical removal of smallmouth bass by the Upper Colorado River Endangered Fish Recovery Program.In general, three factors explain fluctuating patterns in smallmouth bass density in the upper Colorado River basin in the last decade: reductions due to electrofishing removal, bass recovery after exploitation due to recruitment and immigration, and changes due to environmental factors not related to electrofishing and other management actions. Our analyses indicated that smallmouth bass densities were substantially reduced in most years by 7 electrofishing removal efforts. Less often, but dramatically in some cases, environmental effects were also responsible for significant declines in smallmouth bass densities in some reaches. Abundant year classes of young smallmouth bass produced in low flow and warm years such as 2007 have potential to overwhelm removal efforts, and the year class persists for one or more years. Nonetheless, it appears that increased electrofishing removal efforts from 2007 to 2011 resulted in sustained reductions in density of smallmouth bass sub-adults and adults throughout the upper basin despite environmental conditions that favored smallmouth bass reproduction in some years (e.g. 2007 and 2009), subsequent recruitment into sub-adult and adult age classes, and movement of smallmouth bass which previously (prior to increases in electrofishing removal efforts) allowed densities to recover in some reaches.We recommend that removal efforts continue in most areas of the upper basin but that the Recovery Program consider allocating effort based on population trends and suspected areas of highest smallmouth bass reproduction. For instance, reproduction, recruitment, and movement of smallmouth bass allowed densities to recover in some reaches, particularly Little Yampa Canyon. Smallmouth bass population recovery implies that areas such as Little Yampa Canyon itself or adjacent reaches (especially upstream), may provide important habitat for age-0 production. We recommend continued assessment of smallmouth bass populations in reaches where reproduction or age-1 nurseries are suspected, such as Little Yampa Canyon and the adjacent upstream reach. It may also be necessary to expand monitoring to areas surrounding suspected sources of smallmouth bass reproduction and increase electrofishing removal effort in these reaches.

  11. Potential estrogenic effects of wastewaters on gene expression in Pimephales promelas and fish assemblages in streams of southeastern New York

    USGS Publications Warehouse

    Baldigo, Barry P.; George, Scott D.; Phillips, Patrick J.; Hemming, Joceyln D. C.; Denslow, Nancy D.; Kroll, Kevin J.

    2015-01-01

    Direct linkages between endocrine-disrupting compounds (EDCs) from municipal and industrial wastewaters and impacts on wild fish assemblages are rare. The levels of plasma vitellogenin (Vtg) and Vtg messenger ribonucleic acid (mRNA) in male fathead minnows (Pimephales promelas) exposed to wastewater effluents and dilutions of 17α-ethinylestradiol (EE2), estrogen activity, and fish assemblages in 10 receiving streams were assessed to improve understanding of important interrelations. Results from 4-d laboratory assays indicate that EE2, plasma Vtg concentration, and Vtg gene expression in fathead minnows, and 17β-estradiol equivalents (E2Eq values) were highly related to each other (R2 = 0.98–1.00). Concentrations of E2Eq in most effluents did not exceed 2.0 ng/L, which was possibly a short-term exposure threshold for Vtg gene expression in male fathead minnows. Plasma Vtg in fathead minnows only increased significantly (up to 1136 μg/mL) in 2 wastewater effluents. Fish assemblages were generally unaffected at 8 of 10 study sites, yet the density and biomass of 79% to 89% of species populations were reduced (63–68% were reduced significantly) in the downstream reach of 1 receiving stream. These results, and moderate to high E2Eq concentrations (up to 16.1 ng/L) observed in effluents during a companion study, suggest that estrogenic wastewaters can potentially affect individual fish, their populations, and entire fish communities in comparable systems across New York, USA. 

  12. Evaluating and understanding fish health risks and their consequences in propagated and free-ranging fish populations

    USGS Publications Warehouse

    Moffitt, C.M.; Haukenes, A.H.; Williams, C.J.

    2005-01-01

    Fishery managers and resource conservationists are increasingly interested in understanding the fish health and disease risks of free-ranging fishes and whether propagated fishes or features and practices used at fish culture facilities pose a health risk to free-ranging populations. Disease agents are present in most both captive and all free-ranging fish populations, but the consequences and extent of infections in free-ranging populations are often difficult to measure, control, and understand. Sampling methods, protocols, and assay techniques developed to assess the health of captive populations are not as applicable for assessments of free-ranging fishes. The use of chemicals and therapeutics to control diseases and parasites in propagated fishes likely reduces the risk of introducing specific pathogens into the environment, but control measures may have localized effects on the environment surrounding fish culture facilities. To understand health risks of propagated and free ranging fishes, we must consider fish populations, culture facilities, fish releases, and their interactions within the greater geospatial features of the aquatic environment. ?? 2004 by the American Fisheries Society.

  13. Effects of fluctuating flows and a controlled flood on incubation success and early survival rates and growth of age-0 rainbow trout in a large regulated river

    USGS Publications Warehouse

    Korman, Josh; Kaplinski, Matthew; Melis, Theodore S.

    2011-01-01

    Hourly fluctuations in flow from Glen Canyon Dam were increased in an attempt to limit the population of nonnative rainbow trout Oncorhynchus mykiss in the Colorado River, Arizona, due to concerns about negative effects of nonnative trout on endangered native fishes. Controlled floods have also been conducted to enhance native fish habitat. We estimated that rainbow trout incubation mortality rates resulting from greater fluctuations in flow were 23-49% (2003 and 2004) compared with 5-11% under normal flow fluctuations (2006-2010). Effects of this mortality were apparent in redd excavations but were not seen in hatch date distributions or in the abundance of the age-0 population. Multiple lines of evidence indicated that a controlled flood in March 2008, which was intended to enhance native fish habitat, resulted in a large increase in early survival rates of age-0 rainbow trout. Age-0 abundance in July 2008 was over fourfold higher than expected given the number of viable eggs that produced these fish. A hatch date analysis indicated that early survival rates were much higher for cohorts that hatched about 1 month after the controlled flood (~April 15) relative to those that hatched before this date. The cohorts that were fertilized after the flood were not exposed to high flows and emerged into better-quality habitat with elevated food availability. Interannual differences in age-0 rainbow trout growth based on otolith microstructure supported this hypothesis. It is likely that strong compensation in survival rates shortly after emergence mitigated the impact of incubation losses caused by increases in flow fluctuations. Control of nonnative fish populations will be most effective when additional mortality is applied to older life stages after the majority of density-dependent mortality has occurred. Our study highlights the need to rigorously assess instream flow decisions through the evaluation of population-level responses.

  14. Seasonal variability of rocky reef fish assemblages: Detecting functional and structural changes due to fishing effects

    NASA Astrophysics Data System (ADS)

    Henriques, Sofia; Pais, Miguel Pessanha; Costa, Maria José; Cabral, Henrique Nogueira

    2013-05-01

    The present study analyzed the effects of seasonal variation on the stability of fish-based metrics and their capability to detect changes in fish assemblages, which is yet poorly understood despite the general idea that guilds are more resilient to natural variability than species abundances. Three zones subject to different levels of fishing pressure inside the Arrábida Marine Protected Area (MPA) were sampled seasonally. The results showed differences between warm (summer and autumn) and cold (winter and spring) seasons, with the autumn clearly standing out. In general, the values of the metrics density of juveniles, density of invertebrate feeders and density of omnivores increased in warm seasons, which can be attributed to differences in recruitment patterns, spawning migrations and feeding activity among seasons. The density of generalist/opportunistic individuals was sensitive to the effect of fishing, with higher values at zones with the lowest level of protection, while the density of individuals with high commercial value only responded to fishing in the autumn, due to a cumulative result of both juveniles and adults abundances during this season. Overall, this study showed that seasonal variability affects structural and functional features of the fish assemblage and that might influence the detection of changes as a result of anthropogenic pressures. The choice of a specific season, during warm sea conditions after the spawning period (July-October), seems to be more adequate to assess changes on rocky-reef fish assemblages.

  15. Growth changes in plaice, cod, haddock and saithe in the North Sea: a comparison of (post-)medieval and present-day growth rates based on otolith measurements

    NASA Astrophysics Data System (ADS)

    Bolle, Loes J.; Rijnsdorp, Adriaan D.; van Neer, Wim; Millner, Richard S.; van Leeuwen, Piet I.; Ervynck, Anton; Ayers, Richard; Ongenae, Ellen

    2004-05-01

    Fishing effort has strongly increased in the North Sea since the mid-19th century, causing a substantial reduction in the population size of exploited fish stocks. As fisheries research has developed simultaneously with the industrialisation of the fisheries, our knowledge of population dynamics at low levels of exploitations is limited. Otoliths retrieved from archaeological excavations offer a unique opportunity to study growth rates in the past. This study compares historical and present-day growth rates for four commercially important demersal fish species. A total of 2532 modern otoliths (AD 1984-1999) and 1286 historical otoliths (AD 1200-1925) obtained from archaeological excavations in Belgium and Scotland were analysed. Comparison of the growth patterns between eras revealed a major increase in growth rate of haddock, whereas growth changes were not observed in saithe and only in the smaller size classes of plaice and cod. Comparison of our results with literature data indicates that the observed growth rate changes in plaice and cod occurred within the 20th century. Apparently the onset of industrialised fisheries has not greatly affected the growth of plaice, cod and saithe populations in the North Sea. This result contradicts the expectation of density-dependent limitation of growth during the era of pre-industrialised fishing, but is in agreement with the concentration hypothesis of Beverton (Neth. J. Sea Res. 34 (1995) 1) stating that species which concentrate spatially into nursery grounds during their early life-history may 'saturate' the carrying capacity of the juvenile habitat even though the adult part of the population is not limited by the adult habitat.

  16. Density-dependent habitat selection and performance by a large mobile reef fish.

    PubMed

    Lindberg, William J; Frazer, Thomas K; Portier, Kenneth M; Vose, Frederic; Loftin, James; Murie, Debra J; Mason, Doran M; Nagy, Brian; Hart, Mary K

    2006-04-01

    Many exploited reef fish are vulnerable to overfishing because they concentrate over hard-bottom patchy habitats. How mobile reef fish use patchy habitat, and the potential consequences on demographic parameters, must be known for spatially explicit population dynamics modeling, for discriminating essential fish habitat (EFH), and for effectively planning conservation measures (e.g., marine protected areas, stock enhancement, and artificial reefs). Gag, Mycteroperca microlepis, is an ecologically and economically important warm-temperate grouper in the southeastern United States, with behavioral and life history traits conducive to large-scale field experiments. The Suwannee Regional Reef System (SRRS) was built of standard habitat units (SHUs) in 1991-1993 to manipulate and control habitat patchiness and intrinsic habitat quality, and thereby test predictions from habitat selection theory. Colonization of the SRRS by gag over the first six years showed significant interactions of SHU size, spacing, and reef age; with trajectories modeled using a quadratic function for closely spaced SHUs (25 m) and a linear model for widely spaced SHUs (225 m), with larger SHUs (16 standardized cubes) accumulating significantly more gag faster than smaller 4-cube SHUs (mean = 72.5 gag/16-cube SHU at 225-m spacing by year 6, compared to 24.2 gag/4-cube SHU for same spacing and reef age). Residency times (mean = 9.8 mo), indicative of choice and measured by ultrasonic telemetry (1995-1998), showed significant interaction of SHU size and spacing consistent with colonization trajectories. Average relative weight (W(r)) and incremental growth were greater on smaller than larger SHUs (mean W(r) = 104.2 vs. 97.7; incremental growth differed by 15%), contrary to patterns of abundance and residency. Experimental manipulation of shelter on a subset of SRRS sites (2000-2001) confirmed our hypothesis that shelter limits local densities of gag, which, in turn, regulates their growth and condition. Density-dependent habitat selection for shelter and individual growth dynamics were therefore interdependent ecological processes that help to explain how patchy reef habitat sustains gag production. Moreover, gag selected shelter at the expense of maximizing their growth. Thus, mobile reef fishes could experience density-dependent effects on growth, survival, and/or reproduction (i.e., demographic parameters) despite reduced stock sizes as a consequence of fishing.

  17. A model describing the effect of sex-reversed YY fish in an established wild population: The use of a Trojan Y chromosome to cause extinction of an introduced exotic species.

    PubMed

    Gutierrez, Juan B; Teem, John L

    2006-07-21

    A novel means of inducing extinction of an exotic fish population is proposed using a genetic approach to shift the ratio of male to females within a population. In the proposed strategy, sex-reversed fish containing two Y chromosomes are introduced into a normal fish population. These YY fish result in the production of a disproportionate number of male fish in subsequent generations. Mathematical modeling of the system following introduction of YY fish at a constant rate reveals that female fish decline in numbers over time, leading to eventual extinction of the population.

  18. High macroalgal cover and low coral recruitment undermines the potential resilience of the world's southernmost coral reef assemblages.

    PubMed

    Hoey, Andrew S; Pratchett, Morgan S; Cvitanovic, Christopher

    2011-01-01

    Coral reefs are under increasing pressure from anthropogenic and climate-induced stressors. The ability of reefs to reassemble and regenerate after disturbances (i.e., resilience) is largely dependent on the capacity of herbivores to prevent macroalgal expansion, and the replenishment of coral populations through larval recruitment. Currently there is a paucity of this information for higher latitude, subtropical reefs. To assess the potential resilience of the benthic reef assemblages of Lord Howe Island (31°32'S, 159°04'E), the worlds' southernmost coral reef, we quantified the benthic composition, densities of juvenile corals (as a proxy for coral recruitment), and herbivorous fish communities. Despite some variation among habitats and sites, benthic communities were dominated by live scleractinian corals (mean cover 37.4%) and fleshy macroalgae (20.9%). Live coral cover was higher than in most other subtropical reefs and directly comparable to lower latitude tropical reefs. Juvenile coral densities (0.8 ind.m(-2)), however, were 5-200 times lower than those reported for tropical reefs. Overall, macroalgal cover was negatively related to the cover of live coral and the density of juvenile corals, but displayed no relationship with herbivorous fish biomass. The biomass of herbivorous fishes was relatively low (204 kg.ha(-1)), and in marked contrast to tropical reefs was dominated by macroalgal browsing species (84.1%) with relatively few grazing species. Despite their extremely low biomass, grazing fishes were positively related to both the density of juvenile corals and the cover of bare substrata, suggesting that they may enhance the recruitment of corals through the provision of suitable settlement sites. Although Lord Howe Islands' reefs are currently coral-dominated, the high macroalgal cover, coupled with limited coral recruitment and low coral growth rates suggest these reefs may be extremely susceptible to future disturbances.

  19. High Macroalgal Cover and Low Coral Recruitment Undermines the Potential Resilience of the World's Southernmost Coral Reef Assemblages

    PubMed Central

    Hoey, Andrew S.; Pratchett, Morgan S.; Cvitanovic, Christopher

    2011-01-01

    Coral reefs are under increasing pressure from anthropogenic and climate-induced stressors. The ability of reefs to reassemble and regenerate after disturbances (i.e., resilience) is largely dependent on the capacity of herbivores to prevent macroalgal expansion, and the replenishment of coral populations through larval recruitment. Currently there is a paucity of this information for higher latitude, subtropical reefs. To assess the potential resilience of the benthic reef assemblages of Lord Howe Island (31°32′S, 159°04′E), the worlds' southernmost coral reef, we quantified the benthic composition, densities of juvenile corals (as a proxy for coral recruitment), and herbivorous fish communities. Despite some variation among habitats and sites, benthic communities were dominated by live scleractinian corals (mean cover 37.4%) and fleshy macroalgae (20.9%). Live coral cover was higher than in most other subtropical reefs and directly comparable to lower latitude tropical reefs. Juvenile coral densities (0.8 ind.m−2), however, were 5–200 times lower than those reported for tropical reefs. Overall, macroalgal cover was negatively related to the cover of live coral and the density of juvenile corals, but displayed no relationship with herbivorous fish biomass. The biomass of herbivorous fishes was relatively low (204 kg.ha−1), and in marked contrast to tropical reefs was dominated by macroalgal browsing species (84.1%) with relatively few grazing species. Despite their extremely low biomass, grazing fishes were positively related to both the density of juvenile corals and the cover of bare substrata, suggesting that they may enhance the recruitment of corals through the provision of suitable settlement sites. Although Lord Howe Islands' reefs are currently coral-dominated, the high macroalgal cover, coupled with limited coral recruitment and low coral growth rates suggest these reefs may be extremely susceptible to future disturbances. PMID:21991366

  20. Aquacultured Rainbow Trout (Oncorhynchus mykiss) Possess a Large Core Intestinal Microbiota That Is Resistant to Variation in Diet and Rearing Density

    PubMed Central

    Wong, Sandi; Waldrop, Thomas; Summerfelt, Steven; Davidson, John; Barrows, Frederic; Kenney, P. Brett; Welch, Timothy; Wiens, Gregory D.; Snekvik, Kevin

    2013-01-01

    As global aquaculture fish production continues to expand, an improved understanding of how environmental factors interact in fish health and production is needed. Significant advances have been made toward economical alternatives to costly fishmeal-based diets, such as grain-based formulations, and toward defining the effect of rearing density on fish health and production. Little research, however, has examined the effects of fishmeal- and grain-based diets in combination with alterations in rearing density. Moreover, it is unknown whether interactions between rearing density and diet impact the composition of the fish intestinal microbiota, which might in turn impact fish health and production. We fed aquacultured adult rainbow trout (Oncorhynchus mykiss) fishmeal- or grain-based diets, reared them under high- or low-density conditions for 10 months in a single aquaculture facility, and evaluated individual fish growth, production, fin indices, and intestinal microbiota composition using 16S rRNA gene sequencing. We found that the intestinal microbiotas were dominated by a shared core microbiota consisting of 52 bacterial lineages observed across all individuals, diets, and rearing densities. Variations in diet and rearing density resulted in only minor changes in intestinal microbiota composition despite significant effects of these variables on fish growth, performance, fillet quality, and welfare. Significant interactions between diet and rearing density were observed only in evaluations of fin indices and the relative abundance of the bacterial genus Staphylococcus. These results demonstrate that aquacultured rainbow trout can achieve remarkable consistency in intestinal microbiota composition and suggest the possibility of developing novel aquaculture strategies without overtly altering intestinal microbiota composition. PMID:23770898

  1. Effects of dietary live and heat-inactive baker's yeast on growth, gut health, and disease resistance of Nile tilapia under high rearing density.

    PubMed

    Ran, Chao; Huang, Lu; Hu, Jun; Tacon, Philippe; He, Suxu; Li, Zhimin; Wang, Yibing; Liu, Zhi; Xu, Li; Yang, Yalin; Zhou, Zhigang

    2016-09-01

    In this study, the effects of baker's yeast as probiotics was evaluated in Nile tilapia reared at high density. Juvenile tilapia were distributed to tanks at high density (436 fish/m(3)) and fed with basal diet (CK) or diets supplemented with live (LY) or heat-inactivated yeast (HIY). Another group of fish reared at low density (218 fish/m(3)) and fed with basal diet was also included (LowCK). After 8 weeks of feeding, growth, feed utilization, gut microvilli morphology, digestive enzymes, and expressions of hsp70 and inflammation-related cytokines in the intestine were assessed. Intestinal microbiota was investigated using 16S rRNA gene pyrosequencing. Fish were challenged with Aeromonas hydrophila to evaluate disease resistance. High rearing density significantly decreased the growth, feed utilization, microvilli length, and disease resistance of fish (CK versus LowCK). Moreover, the intestinal hsp70 expression was increased in fish reared at high density, supporting a stress condition. Compared to CK group, supplementation of live yeast significantly increased gut microvilli length and trypsin activity, decreased intestinal hsp70 expression, and enhanced resistance of fish against A. hydrophila (reflected by reduced intestinal alkaline phosphatase activity 24 h post infection). The gut microbiota was not markedly influenced by either rearing density or yeast supplementation. Heat-inactivated yeast (HIY) didn't display the beneficial effects observed in LY except an increase in gut trypsin activity, suggesting the importance of yeast viability and thus secretory metabolites of yeast. In conclusion, live baker's yeast may alleviate the negative effects induced by crowding stress, and has the potential to be used as probiotics for tilapia reared at high density. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Lake Ontario benthic prey fish assessment, 2014

    USGS Publications Warehouse

    Weidel, Brian C.; Walsh, Maureen

    2015-01-01

    Benthic prey fishes are an important component of the Lake Ontario fish community and serve as vectors that move energy from benthic invertebrates into native and introduced sport fishes. Since the 1970’s, the USGS Lake Ontario Biological Station has assessed benthic fish populations and community dynamics with bottom trawls at depths ranging from 8 m out to depths of 150-225 m along the south and eastern shores of Lake Ontario. From the late 1970’s through the early 2000’s the benthic fish community was dominated by Slimy Sculpin Cottus cognatus, but in 2004 non-native Round Goby Neogobius melanostomus abundance increased and, since then Round Goby have generally been the dominant benthic species. Over the past 10 years the native Deepwater Sculpin Myoxocephalus thompsonii, once considered absent from the lake, have increased. Presently their lake-wide biomass density is equal to, or larger than, Slimy Sculpin. Species-specific assessments found Slimy and Deepwater Sculpin abundance increased slightly in 2014 relative to 2013, while changes in Round Goby abundance differed between spring and fall survey. Recent survey modifications have increased our understanding of benthic prey fish abundance and behavior in Lake Ontario. For instance, increasing the maximum tow depth to 225 m in 2014 improved our understanding of Deepwater Sculpin distribution in this rarely sampled lake habitat.

  3. Relative impacts of the fragmentation and spatial structure of habitats on freshwater fish distributions: application on French watersheds (Invited)

    NASA Astrophysics Data System (ADS)

    Le Pichon, C.; Belliard, J.; Talès, E.; Gorges, G.; Clément, F.

    2009-12-01

    Most of the rivers of the Ile de France region, intimately linked with the megalopolis of Paris, are severely altered and freshwater fishes are exposed to habitat alteration, reduced connectivity and pollution. Several species thus present fragmented distributions and decreasing densities. In this context, the European Water Framework Directive (2000) has goals of hydrosystems rehabilitation and no further damage. In particular, the preservation and restoration of ecological connectivity of river networks is a key element for fish populations. These goals require the identification of natural and anthropological factors which influence the spatial distribution of species. We have proposed a riverscape approach, based on landscape ecology concepts, combined with a set of spatial analysis methods to assess the multiscale relationships between the spatial pattern of fish habitats and processes depending on fish movements. In particular, we used this approach to test the relative roles of spatial arrangement of fish habitats and the presence of physical barriers in explaining fish spatial distributions in a small rural watershed (106 km2). We performed a spatially continuous analysis of fish-habitat relationships. Fish habitats and physical barriers were mapped along the river network (33 km) with a GPS and imported into a GIS. In parallel, a longitudinal electrofishing survey of the distribution and abundance of fishes was made using a point abundance sampling scheme. Longitudinal arrangement of fish habitats were evaluated using spatial analysis methods: patch/distance metrics and moving window analysis. Explanatory models were developed to test the relative contribution of local environmental variables and spatial context in explaining fish presence. We have recorded about 100 physical barriers, on average one every 330 meters; most artificial barriers were road pipe culverts, falls associated with ponds and sluice gates. Contrasted fish communities and densities were observed in the different areas of the watershed, related to various land use (riparian forest or agriculture). The first results of fish-habitat association analysis on a 5 km stream are that longitudinal distribution of fish species was mainly impacted by falls associated with ponds. The impact was both due to the barrier effect and to the modification of aquatic habitats. Abundance distribution of Salmo trutta and Cottus gobio was particularly affected. Spatially continuous analysis of fish-habitat relationships allowed us to identify the relative impacts of habitat alteration and presence of physical barriers to fish movements. These techniques could help prioritize preservation and restoration policies in human-impacted watersheds, in particular, identifying the key physical barriers to remove.

  4. Restoration and colonization of freshwater mussels and fish in a southeastern United States tailwater

    USGS Publications Warehouse

    Layzer, J.B.; Scott, E.M.

    2006-01-01

    The French Broad River originates in North Carolina, flows west into Tennessee and at its confluence with the Holston River forms the Tennessee River. Douglas Dam, located on the French Broad River 52 km above its mouth, is operated primarily for peaking hydroelectric power and flood control. Prior to completion of the dam in 1943, the lower French Broad River contained about 53 species of freshwater mussels and 100 species of fish. By 1977, the fauna in the 52-km-long tailwater was reduced to 12 species of mussels and 42 native species of fish. Improvements in tailwater conditions occurred following initiation of minimum flows in 1987, and consistent reaeration of discharge in 1993. From 1988 to 2002, we sampled three sites (4, 28, and 39 km downstream of the dam) to monitor the fish assemblage. Each year since 1988, we have collected one or more additional species, indicating continued immigration. We collected 82 native and 9 exotic species of fish overall, but the maximum of 67 species in 1 year suggests that some species reside in the tailwater at low densities or all immigrants may not successfully colonize the tailwater. There is limited potential for most extirpated species of mussels to naturally recolonize the tailwater because source populations are isolated. Consequently, 19 754 adult mussels of 19 species were introduced between 1997 and 2000. Survival of translocated mussels has been high, and successful reproduction of at least one translocated species has occurred. Additionally, four mussel species are naturally colonizing the tailwater. Colonization and recruitment of additional mussel species is expected as populations of their host fishes increase. We believe that the improved conditions of the tailwater may allow for the re-establishment of sustaining populations of 30 mussel species of historic occurrence, but the continued operation of Douglas Dam as a peaking hydroelectric project will reduce the probability of successfully reintroducing some species.

  5. Trophic Cascades Induced by Lobster Fishing Are Not Ubiquitous in Southern California Kelp Forests

    PubMed Central

    Guenther, Carla M.; Lenihan, Hunter S.; Grant, Laura E.; Lopez-Carr, David; Reed, Daniel C.

    2012-01-01

    Fishing can trigger trophic cascades that alter community structure and dynamics and thus modify ecosystem attributes. We combined ecological data of sea urchin and macroalgal abundance with fishery data of spiny lobster (Panulirus interruptus) landings to evaluate whether: (1) patterns in the abundance and biomass among lobster (predator), sea urchins (grazer), and macroalgae (primary producer) in giant kelp forest communities indicated the presence of top-down control on urchins and macroalgae, and (2) lobster fishing triggers a trophic cascade leading to increased sea urchin densities and decreased macroalgal biomass. Eight years of data from eight rocky subtidal reefs known to support giant kelp forests near Santa Barbara, CA, USA, were analyzed in three-tiered least-squares regression models to evaluate the relationships between: (1) lobster abundance and sea urchin density, and (2) sea urchin density and macroalgal biomass. The models included reef physical structure and water depth. Results revealed a trend towards decreasing urchin density with increasing lobster abundance but little evidence that urchins control the biomass of macroalgae. Urchin density was highly correlated with habitat structure, although not water depth. To evaluate whether fishing triggered a trophic cascade we pooled data across all treatments to examine the extent to which sea urchin density and macroalgal biomass were related to the intensity of lobster fishing (as indicated by the density of traps pulled). We found that, with one exception, sea urchins remained more abundant at heavily fished sites, supporting the idea that fishing for lobsters releases top-down control on urchin grazers. Macroalgal biomass, however, was positively correlated with lobster fishing intensity, which contradicts the trophic cascade model. Collectively, our results suggest that factors other than urchin grazing play a major role in controlling macroalgal biomass in southern California kelp forests, and that lobster fishing does not always catalyze a top-down trophic cascade. PMID:23209573

  6. Socializing makes thick-skinned individuals: on the density of epidermal alarm substance cells in cyprinid fish, the crucian carp (Carassius carassius).

    PubMed

    Stabell, Ole B; Vegusdal, Anne

    2010-09-01

    In cyprinid fish, density of epidermal club cells (i.e. alarm substance cells) has been found to vary between lakes with different predator fauna. Because predators can be labelled with chemical cues from prey, we questioned if club cell density could be controlled indirectly by predators releasing prey cues. In particular, we suspected a possible feedback mechanism between chemical alarm signals and their cellular source. We raised crucian carp singly and in groups of four. For both rearing types, fish were exposed to skin extracts of either conspecifics or brown trout (without club cells), and provided either low or high food rations. Independent of rearing type, condition factor and club cell density increased with food ration size, but no change was found in club cell density following exposure to conspecific alarm signals. However, the density of club cells was found significantly higher for fish raised in groups than for fish raised alone. We conclude that an increased condition factor results in more club cells, but crucian carp may also possess an awareness of conspecific presence, given by higher club cell densities when raised in groups. This increase in club cell density may be induced by unknown chemical factors released by conspecifics.

  7. Mitigation of acidified salmon rivers - effects of liming on young brown trout Salmo trutta.

    PubMed

    Hesthagen, T; Larsen, B M; Bolstad, G; Fiske, P; Jonsson, B

    2017-11-01

    In southern Norway, 22 acidified rivers supporting anadromous salmonids were mitigated with lime to improve water quality and restore fish populations. In 13 of these rivers, effects on Salmo trutta and Salmo salar densities were monitored over 10-12 years, grouped into age 0 and age ≥ 1 year fish. These rivers had a mean annual discharge of between 4·9 and 85·5 m 3  s -1 , and six of them were regulated for hydro-power production. Salmo salar were lost in six of these rivers prior to liming, and highly reduced in the remaining seven rivers. Post-liming, S. salar became re-established in all six rivers with lost populations, and recovered in the seven other rivers. Salmo trutta occurred in all 13 study rivers prior to liming. Despite the improved water quality, both age 0 and age ≥ 1 year S. trutta densities decreased as S. salar density increased, with an average reduction of >50% after 10 years of liming. For age 0 year S. trutta this effect was less strong in rivers where S. salar were present prior to liming. In contrast, densities of S. trutta increased in unlimed streams above the anadromous stretches in two of the rivers following improved water quality due to natural recovery. Density increases of both age 0 and age ≥ 1 year S. salar showed a positive effect of river discharge. The results suggest that the decline in S. trutta density after liming is related to interspecific resource competition due to the recovery of S. salar. Thus, improved water quality through liming may not only sustain susceptible species, but can have a negative effect on species that are more tolerant prior to the treatment, such as S. trutta. © 2017 The Fisheries Society of the British Isles.

  8. The development of a preliminary rock reef fish multimetric index for assessing thermal and urban impacts in a tropical bay.

    PubMed

    Teixeira-Neves, Tatiana Pires; Neves, Leonardo Mitrano; Araújo, Francisco Gerson

    2016-08-15

    We developed a multimetric index for assessing ecological conditions in rocky reefs areas to evaluate thermal and urban influences on fish community. Eight metrics were selected to assess thermal influence: (1) total number of species; (2) number of water column species; (3) number of transient species; (4) density of individuals with low resilience; (5) density of omnivores; (6) density of carnivores; (7) number of cryptic species; (8) density of herbivores. For urban influence, six metrics were selected: (1) total density; (2) ratio between the number of rare species and the total number of species; (3) density of individuals with heavy fishing pressure; (4) number of resident species; (5) number of cryptic species; (6) density of herbivores. This preliminary index succeed in discriminating control/impacted sites and proved to be an important tool to assess impacts that alter fish community and have potential to be used in tropical rock reef coastal areas. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Spatial synchrony in cisco recruitment

    USGS Publications Warehouse

    Myers, Jared T.; Yule, Daniel L.; Jones, Michael L.; Ahrenstorff, Tyler D.; Hrabik, Thomas R.; Claramunt, Randall M.; Ebener, Mark P.; Berglund, Eric K.

    2015-01-01

    We examined the spatial scale of recruitment variability for disparate cisco (Coregonus artedi) populations in the Great Lakes (n = 8) and Minnesota inland lakes (n = 4). We found that the scale of synchrony was approximately 400 km when all available data were utilized; much greater than the 50-km scale suggested for freshwater fish populations in an earlier global analysis. The presence of recruitment synchrony between Great Lakes and inland lake cisco populations supports the hypothesis that synchronicity is driven by climate and not dispersal. We also found synchrony in larval densities among three Lake Superior populations separated by 25–275 km, which further supports the hypothesis that broad-scale climatic factors are the cause of spatial synchrony. Among several candidate climate variables measured during the period of larval cisco emergence, maximum wind speeds exhibited the most similar spatial scale of synchrony to that observed for cisco. Other factors, such as average water temperatures, exhibited synchrony on broader spatial scales, which suggests they could also be contributing to recruitment synchrony. Our results provide evidence that abiotic factors can induce synchronous patterns of recruitment for populations of cisco inhabiting waters across a broad geographic range, and show that broad-scale synchrony of recruitment can occur in freshwater fish populations as well as those from marine systems.

  10. Introduced species and their missing parasites

    USGS Publications Warehouse

    Torchin, Mark E.; Lafferty, Kevin D.; Dobson, Andrew P.; McKenzie, Valerie J.; Kuris, Armand M.

    2003-01-01

    Damage caused by introduced species results from the high population densities and large body sizes that they attain in their new location. Escape from the effects of natural enemies is a frequent explanation given for the success of introduced species. Because some parasites can reduce host density and decrease body size, an invader that leaves parasites behind and encounters few new parasites can experience a demographic release and become a pest. To test whether introduced species are less parasitized, we have compared the parasites of exotic species in their native and introduced ranges, using 26 host species of molluscs, crustaceans, fishes, birds, mammals, amphibians and reptiles. Here we report that the number of parasite species found in native populations is twice that found in exotic populations. In addition, introduced populations are less heavily parasitized (in terms of percentage infected) than are native populations. Reduced parasitization of introduced species has several causes, including reduced probability of the introduction of parasites with exotic species (or early extinction after host establishment), absence of other required hosts in the new location, and the host-specific limitations of native parasites adapting to new hosts.

  11. Understanding environmental DNA detection probabilities: A case study using a stream-dwelling char Salvelinus fontinalis

    USGS Publications Warehouse

    Wilcox, Taylor M; Mckelvey, Kevin S.; Young, Michael K.; Sepulveda, Adam; Shepard, Bradley B.; Jane, Stephen F; Whiteley, Andrew R.; Lowe, Winsor H.; Schwartz, Michael K.

    2016-01-01

    Environmental DNA sampling (eDNA) has emerged as a powerful tool for detecting aquatic animals. Previous research suggests that eDNA methods are substantially more sensitive than traditional sampling. However, the factors influencing eDNA detection and the resulting sampling costs are still not well understood. Here we use multiple experiments to derive independent estimates of eDNA production rates and downstream persistence from brook trout (Salvelinus fontinalis) in streams. We use these estimates to parameterize models comparing the false negative detection rates of eDNA sampling and traditional backpack electrofishing. We find that using the protocols in this study eDNA had reasonable detection probabilities at extremely low animal densities (e.g., probability of detection 0.18 at densities of one fish per stream kilometer) and very high detection probabilities at population-level densities (e.g., probability of detection > 0.99 at densities of ≥ 3 fish per 100 m). This is substantially more sensitive than traditional electrofishing for determining the presence of brook trout and may translate into important cost savings when animals are rare. Our findings are consistent with a growing body of literature showing that eDNA sampling is a powerful tool for the detection of aquatic species, particularly those that are rare and difficult to sample using traditional methods.

  12. Physiological response of juvenile coho salmon (Oncorhynchus kisutch) and rainbow trout (Salmo gairdneri) to handling and crowding stress in intensive fish culture

    USGS Publications Warehouse

    Wedemeyer, Gary A.

    1976-01-01

    Moving 4–5-in. coho salmon (Oncorhynchus kisutch) held in soft (20 ppm CaCO3) water from the relatively light loading density of 0.5 lb/ft3 to 1, 2, or 4 lb/ft3 (density index, DI = 0.1, 0.2, 0.4, 0.8) caused significant stress as indicated by loss of feeding behavior, but only minimal physiological disturbances, as indicated by lack of hyperglycemia or hypochloremia. However, moving them to 6 or 12 lb/ft3 (DI = 1.2, 2.4) caused significant physiological stress which required at least a week for recovery. Smolting coho salmon were physiologically stressed by population densities of 1 lb/ft3 or more and a subclinical corynebacterial kidney infection was activated. Rainbow trout (Salmo gairdneri) (4–5 in.) were physiologically stressed when moved and held at 1 lb/ft3 or more but retained normal feeding behavior. This indicates that handling and crowding stress will be minimized in softwater areas if densities in fish distribution trucks or in ponds or raceways during disease treatments are held to 0.1–0.5 lb/gal.

  13. Direct evidence that density-dependent regulation underpins the temporal stability of abundant species in a diverse animal community

    PubMed Central

    Henderson, Peter A.; Magurran, Anne E.

    2014-01-01

    To understand how ecosystems are structured and stabilized, and to identify when communities are at risk of damage or collapse, we need to know how the abundances of the taxa in the entire assemblage vary over ecologically meaningful timescales. Here, we present an analysis of species temporal variability within a single large vertebrate community. Using an exceptionally complete 33-year monthly time series following the dynamics of 81 species of fishes, we show that the most abundant species are least variable in terms of temporal biomass, because they are under density-dependent (negative feedback) regulation. At the other extreme, a relatively large number of low abundance transient species exhibit the greatest population variability. The high stability of the consistently common high abundance species—a result of density-dependence—is reflected in the observation that they consistently represent over 98% of total fish biomass. This leads to steady ecosystem nutrient and energy flux irrespective of the changes in species number and abundance among the large number of low abundance transient species. While the density-dependence of the core species ensures stability under the existing environmental regime, the pool of transient species may support long-term stability by replacing core species should environmental conditions change. PMID:25100702

  14. Lake sturgeon response to a spawning reef constructed in the Detroit river

    USGS Publications Warehouse

    Roseman, Edward F.; Manny, B.; Boase, J.; Child, M.; Kennedy, G.; Craig, J.; Soper, K.; Drouin, R.

    2011-01-01

    Prior to the First World War, the bi-national Detroit River provided vast areas of functional fish spawning and nursery habitat. However, ongoing conflicting human uses of these waters for activities such as waste disposal, water withdrawals, shoreline development, shipping, recreation, and fishing have altered many of the chemical, physical, and biological processes of the Detroit River. Of particular interest and concern to resource managers and stakeholders is the significant loss and impairment of fish spawning and nursery habitat that led to the decline in abundance of most fish species using this ecosystem. Lake sturgeon (Acipenser fulvescens) populations for example, were nearly extirpated by the middle of the 20th century, leaving only a small fraction of their former population. Fisheries managers recognized that the loss of suitable fish spawning habitat is a limiting factor in lake sturgeon population rehabilitation in the Detroit River. In efforts to remediate this beneficial water use impairment, a reef consisting of a mixture of natural rock and limestone was constructed at the upstream end of Fighting Island in 2008. This paper focuses on the response by lake sturgeon to the different replicates of suitable natural materials used to construct the fish spawning habitat at Fighting Island in the Detroit River. Pre-construction fisheries assessment during 2006–2008 showed that along with the presence of adult lake sturgeon, spawning conditions were favorable. However, no eggs were found in assessments conducted prior to reef construction. The 3300 m2 Fighting Island reef was placed at the upstream end of the island in October of 2008. The construction design included 12 spawning beds of three replicates each consisting of either round rock, small or large (shot-rock) diameter limestone or a mixture thereof. An observed response by spawning lake sturgeon occurred the following year when spawning-ready adults (ripe), viable eggs, and larvae were collected during May and June 2009. Additional eggs and spawning-ready adults were found in 2010 (no larval sampling occurred in 2010) as well as collection of three age-0 juvenile lake sturgeon in bottom trawls fished downstream of the reef during July 2010. Spawning lake sturgeon showed no repeatable preference for any of the four particular substrate types but showed a high degree of preference for the island side of the channel, where faster water current velocities occurred. In 2009, overall lake sturgeon egg densities across all replicates averaged 102 m-2 and seven larvae were found in night drift-net samples. In 2010, average lake sturgeon egg density was 12 m-2 and three age-0 lake sturgeon averaging 120 mm TL were collected in bottom trawls in deepwater (∼8 m depth) downstream from the constructed reef. These results demonstrated successful reproduction by lake sturgeon on a man-made reef and suggested that additions and improvements to fish spawning habitat could enhance reproduction and early life history survival of lake sturgeon in the Detroit River.

  15. The use of annual killifish in the biocontrol of the aquatic stages of mosquitoes in temporary bodies of fresh water; a potential new tool in vector control

    PubMed Central

    2010-01-01

    Background Mosquitoes that breed in temporary pools in remote areas that dry up seasonally are especially difficult to control through chemical or biological means. The annual killifish has been suggested as a means of eradicating the aquatic stages of mosquitoes in transient pools because they can maintain permanent populations in such habitats by undergoing suspended animation or diapause during the embryonic stages to survive periodic drought. However, very little is known about the predatory activity of annual killifish and their usefulness in mosquito control. Results The annual killifish, Nothobranchius guentheri, native to Tanzania, was used in this investigation. Food preference was tested under laboratory conditions by feeding juvenile killifish with 2nd instar mosquito larvae of Culex quinquefasciatus in the presence of alternative food sources, such as rotifers and chironomid larvae. Semi-field tests were conducted by introduction of hibernating killifish embryos and juvenile fish to artificial ponds in an outdoor open environment that allowed natural oviposition of Cx. quinquefasciatus. Food preference studies show that N. guentheri preferred to prey on mosquito larvae than either chironomid or rotifers. When hibernating killifish embryos were added to ponds simultaneously with the addition of freshwater, the embryos hatched and fed on mosquito larval population resulting in complete elimination of the immature stages. The introduction of juvenile fish to ponds with high density of mosquito larvae resulted in total eradication of the mosquito population due to predation by fish. Complete biocontrol of the mosquito larval population was achieved in the presence of 3 fish per m2 of pond surface area. Conclusions The annual killifish provides yet another tool that may be employed in the eradication diseases carried by mosquitoes through vector control, particularly in temporary bodies of freshwater. The fish can be conveniently transported in the absence of water in the form of hibernating embryos. Once introduced either as embryos or juveniles in ponds, the annual killifish can effectively reduce the larval population because of its aggressive predatory activity. PMID:20492714

  16. Status and trends in the Lake Superior fish community, 2014

    USGS Publications Warehouse

    Vinson, Mark; Evrard, Lori M.; Gorman, Owen T.; Yule, Daniel

    2015-01-01

    In 2014, the Lake Superior fish community was sampled with daytime bottom trawls at 73 nearshore and 30 offshore stations. Spring and summer water temperatures were the coldest measured for the period of records for the surveys. In the nearshore zone, a total of 15,372 individuals from 28 species or morphotypes were collected. Nearshore lakewide mean biomass was 6.9 kg/ha, which was higher than that observed in the past few years, but below the long-term average of 9.2 kg/ha. In the offshore zone, a total 12,462 individuals from 11 species were collected lakewide. Offshore lakewide mean biomass was 6.6 kg/ha. The mean of the three previous years was 8.6 kg/ha. We collected larval Coregonus in surface trawls at 94 locations and estimated a lakewide average density of 577 fish/ha with a total lakewide population estimate of 14.2 billion (standard error + 30 million).

  17. Bacterioplankton communities of Crater Lake, OR: Dynamic changes with euphotic zone food web structure and stable deep water populations

    USGS Publications Warehouse

    Urbach, E.; Vergin, K.L.; Larson, G.L.; Giovannoni, S.J.

    2007-01-01

    The distribution of bacterial and archaeal species in Crater Lake plankton varies dramatically over depth and with time, as assessed by hybridization of group-specific oligonucleotides to RNA extracted from lakewater. Nonmetric, multidimensional scaling (MDS) analysis of relative bacterial phylotype densities revealed complex relationships among assemblages sampled from depth profiles in July, August and September of 1997 through 1999. CL500-11 green nonsulfur bacteria (Phylum Chloroflexi) and marine Group I crenarchaeota are consistently dominant groups in the oxygenated deep waters at 300 and 500 m. Other phylotypes found in the deep waters are similar to surface and mid-depth populations and vary with time. Euphotic zone assemblages are dominated either by ??-proteobacteria or CL120-10 verrucomicrobia, and ACK4 actinomycetes. MDS analyses of euphotic zone populations in relation to environmental variables and phytoplankton and zooplankton population structures reveal apparent links between Daphnia pulicaria zooplankton population densities and microbial community structure. These patterns may reflect food web interactions that link kokanee salmon population densities to community structure of the bacterioplankton, via fish predation on Daphnia with cascading consequences to Daphnia bacterivory and predation on bacterivorous protists. These results demonstrate a stable bottom-water microbial community. They also extend previous observations of food web-driven changes in euphotic zone bacterioplankton community structure to an oligotrophic setting. ?? 2007 Springer Science+Business Media B.V.

  18. The status and management of the lionfish, Pterois sp. in Trinidad and Tobago.

    PubMed

    Alemu I, Jahson B

    2016-08-15

    Trinidad and Tobago was the last Caribbean island to be invaded by the lionfish and since its invasion in 2012 they have spread to most coral reef and hard bottom environments. Standard reef fish surveys were used to assess lionfish population densities and size distributions from 2013-2015. Total lengths ranged between 6.2-40.4cm and 2.2-950g in weight. The length-weight relationship was described by W=0.0002L(2.5654). Fish densities were highest in the northeast Tobago at 326lionfish/ha and the lowest in the southwest Tobago at 10.5lionfish/ha. In order to curtail the spread of this invasive species, a culling programme was initiated at selected reefs to regularly remove lionfish at monthly intervals. On the selected reefs 26-30% reduction in mean lionfish biomass and 25-27% reduction in abundance was noted compared to control sites (p<0.05). Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. A watershed-based spatially-explicit demonstration of an integrated environmental modeling framework for ecosystem services in the Coal River Basin (WV, USA)

    Treesearch

    John M. Johnston; Mahion C. Barber; Kurt Wolfe; Mike Galvin; Mike Cyterski; Rajbir Parmar; Luis Suarez

    2016-01-01

    We demonstrate a spatially-explicit regional assessment of current condition of aquatic ecoservices in the Coal River Basin (CRB), with limited sensitivity analysis for the atmospheric contaminant mercury. The integrated modeling framework (IMF) forecasts water quality and quantity, habitat suitability for aquatic biota, fish biomasses, population densities, ...

  20. Directional selection by fisheries and the timing of sockeye salmon (Oncorhynchus nerka) migrations.

    PubMed

    Quinn, Thomas P; Hodgson, Sayre; Flynn, Lucy; Hilborn, Ray; Rogers, Donald E

    2007-04-01

    The timing of migration from feeding to breeding areas is a critical link between the growth and survival of adult animals, their reproduction, and the fitness of their progeny. Commercial fisheries often catch a large fraction of the migrants (e.g., salmon), and exploitation rates can vary systematically over the fishing season. We examined daily records of sockeye salmon (Oncorhynchus nerka) in the Egegik and Ugashik management districts in Bristol Bay, Alaska (USA), for evidence of such temporally selective fishing. In recent years, the early migrants have experienced lower fishing rates than later migrants, especially in the Egegik district, and the median migration date of the fish escaping the fisheries has been getting progressively earlier in both districts. Moreover, the overall runs (catch and escapement) in the Egegik district and, to a lesser extent the Ugashik district, have been getting earlier, as predicted in response to the selection on timing. The trends in timing were not correlated with sea surface temperature in the region of the North Pacific Ocean where the salmon tend to concentrate, but the trends in the two districts were correlated with each other, indicating that there may be some common environmental influence in addition to the effect of selection. Despite the selection, both groups of salmon have remained productive. We hypothesize that this resilience may result from representation of all component populations among the early and late migrants, so that the fisheries have not eliminated entire populations, and from density-dependent processes that may have helped maintain the productivity of these salmon populations.

  1. Spatial and temporal Brook Trout density dynamics: Implications for conservation, management, and monitoring

    USGS Publications Warehouse

    Wagner, Tyler; Jefferson T. Deweber,; Jason Detar,; Kristine, David; John A. Sweka,

    2014-01-01

    Many potential stressors to aquatic environments operate over large spatial scales, prompting the need to assess and monitor both site-specific and regional dynamics of fish populations. We used hierarchical Bayesian models to evaluate the spatial and temporal variability in density and capture probability of age-1 and older Brook Trout Salvelinus fontinalis from three-pass removal data collected at 291 sites over a 37-year time period (1975–2011) in Pennsylvania streams. There was high between-year variability in density, with annual posterior means ranging from 2.1 to 10.2 fish/100 m2; however, there was no significant long-term linear trend. Brook Trout density was positively correlated with elevation and negatively correlated with percent developed land use in the network catchment. Probability of capture did not vary substantially across sites or years but was negatively correlated with mean stream width. Because of the low spatiotemporal variation in capture probability and a strong correlation between first-pass CPUE (catch/min) and three-pass removal density estimates, the use of an abundance index based on first-pass CPUE could represent a cost-effective alternative to conducting multiple-pass removal sampling for some Brook Trout monitoring and assessment objectives. Single-pass indices may be particularly relevant for monitoring objectives that do not require precise site-specific estimates, such as regional monitoring programs that are designed to detect long-term linear trends in density.

  2. Status and trends of prey fish populations in Lake Michigan, 2013

    USGS Publications Warehouse

    Madenjian, Charles P.; Bunnell, David B.; Desorcie, Timothy J.; Kostich, Melissa Jean; Armenio, Patricia M.; Adams, Jean V.

    2015-01-01

    The U.S. Geological Survey Great Lakes Science Center has conducted lake-wide surveys of the fish community in Lake Michigan each fall since 1973 using standard 12-m bottom trawls towed along contour at depths of 9 to 110 m at each of seven index transects. The resulting data on relative abundance, size and age structure, and condition of individual fishes are used to estimate various population parameters that are in turn used by state and tribal agencies in managing Lake Michigan fish stocks. All seven established index transects of the survey were completed in 2013. The survey provides relative abundance and biomass estimates between the 5-m and 114-m depth contours of the lake (herein, lake-wide) for prey fish populations, as well as burbot, yellow perch, and the introduced dreissenid mussels. Lake-wide biomass of alewives in 2013 was estimated at 29 kilotonnes (kt, 1 kt = 1000 metric tonnes), which was more than three times the 2012 estimate. However, the unusually high standard error associated with the 2013 estimate indicated no significant increase in lake-wide biomass between 2012 and 2013. Moreover, the age distribution of alewives remained truncated with no alewife exceeding an age of 5. The population of age-1 and older alewives was dominated (i.e., 88%) by the 2010 and 2012 year-classes. Record low biomass was observed for deepwater sculpin (1.3 kt) and ninespine stickleback (0.004 kt) in 2013, while bloater (1.6 kt) and rainbow smelt (0.2 kt) biomasses remained at low levels. Slimy sculpin lake-wide biomass was 0.32 kt in 2013, marking the fourth consecutive year of a decline. The 2013 biomass of round goby was estimated at 10.9 kt, which represented the peak estimate to date. Burbot lake-wide biomass (0.4 kt in 2013) has remained below 3 kt since 2001. Numeric density of age-0 yellow perch (i.e., < 100 mm) was only 1 fish per ha, which is indicative of a relatively poor year-class. Lake-wide biomass estimate of dreissenid mussels in 2013 was 23.2 kt. Overall, the total lake-wide prey fish biomass estimate (sum of alewife, bloater, rainbow smelt, deepwater sculpin, slimy sculpin, round goby, and ninespine stickleback) in 2013 was 43 kt, with alewives and round gobies constituting 92% of this total.

  3. Techniques for Monitoring Razorback Sucker in the Lower Colorado River, Hoover to Parker Dams, 2006-2007, Final Report

    USGS Publications Warehouse

    Mueller, Gordon A.; Wydoski, Richard; Best, Eric; Hiebert, Steve; Lantow, Jeff; Santee, Mark; Goettlicher, Bill; Millosovich, Joe

    2008-01-01

    Trammel netting is generally the accepted method of monitoring razorback sucker in reservoirs, but this method is ineffective for monitoring this fish in rivers. Trammel nets set in the current become fouled with debris, and nets set in backwaters capture high numbers of nontarget species. Nontargeted fish composed 97 percent of fish captured in previous studies (1999-2005). In 2005, discovery of a large spawning aggregation of razorback sucker in midchannel near Needles, Calif., prompted the development of more effective methods to monitor this and possibly other riverine fish populations. This study examined the effectiveness of four methods of monitoring razorback sucker in a riverine environment. Hoop netting, electrofishing, boat surveys, and aerial photography were evaluated in terms of data accuracy, costs, stress on targeted fish, and effect on nontargeted fish as compared with trammel netting. Trammel netting in the riverine portion of the Colorado River downstream of Davis Dam, Arizona-Nevada yielded an average of 43 razorback suckers a year (1999 to 2005). Capture rates averaged 0.5 razorback suckers per staff day effort, at a cost exceeding $1,100 per fish. Population estimates calculated for 2003-2005 were 3,570 (95 percent confidence limits [CL] = 1,306i??i??i??-8,925), 1,768 (CL = 878-3,867) and 1,652 (CL = 706-5,164); wide confidence ranges reflect the small sample size. By-catch associated with trammel netting included common carp, game fish and, occasionally, shorebirds, waterfowl, and muskrats. Hoop nets were prone to downstream drift owing to design and anchoring problems aggravated by hydropower ramping. Tests were dropped after the 2006 field season and replaced with electrofishing. Electrofishing at night during low flow and when spawning razorback suckers moved to the shoreline proved extremely effective. In 2006 and 2007, 263 and 299 (respectively) razorback suckers were taken. Capture rates averaged 8.3 razorback suckers per staff day at a cost of $62 per fish. The adult population was estimated at 1,196 (925-1,546) fish. Compared with trammel netting, confidence limits narrowed substantially, from +or- 500 percent to +or- 30 percent, reflecting more precise estimates. By-catch was limited to two common carp. No recreational game fish, waterfowl, or mammals were captured or handled during use of electrofishing. Aerial photography (2006 and 2007) suggested an annual average of 580 fish detected on imagery. Identification of species was not possible; carp commonly have been mistaken for razorback sucker. Field verification determined that the proportion of razorback suckers to other fish was 3:1. On that basis, we estimated 435 razorback suckers were photographed, which equals 8.4 razorback suckers per staff day at a cost of $78 per fish. The data did not lend itself to population estimates. Fish were more easily identified from boats, where their lateral rather than their dorsal aspect is visible. On average, 888 razorback suckers were positively identified each year. Observation rates averaged 29.6 razorback suckers per staff day at a cost less than $18 per fish observed. Sucker densities averaged 20.5 and 9.6 fish/hectare which equated to an average spawning population at Needles, Calif., of 2,520 in 2006 and 1152 in 2007. The lower 2007 estimate reflected a refinement in sampling approach which removed a sampling bias. Electrofishing and boat surveys were more cost effective than other methods tested, and they provided more accurate information without the by-catch associated with trammel netting. However, they provided different types of data. Handling fish may be necessary for research purposes but unnecessary for general trend analysis. Electrofishing was extremely effective but can harm fish if not used with caution. Unnecessary electrofishing increases the likelihood of spinal damage and possible damage to eggs and potential young, and it may alter spawning behavior or duration. B

  4. Influence of landscape-scale factors in limiting brook trout populations in Pennsylvania streams

    USGS Publications Warehouse

    Kocovsky, P.M.; Carline, R.F.

    2006-01-01

    Landscapes influence the capacity of streams to produce trout through their effect on water chemistry and other factors at the reach scale. Trout abundance also fluctuates over time; thus, to thoroughly understand how spatial factors at landscape scales affect trout populations, one must assess the changes in populations over time to provide a context for interpreting the importance of spatial factors. We used data from the Pennsylvania Fish and Boat Commission's fisheries management database to investigate spatial factors that affect the capacity of streams to support brook trout Salvelinus fontinalis and to provide models useful for their management. We assessed the relative importance of spatial and temporal variation by calculating variance components and comparing relative standard errors for spatial and temporal variation. We used binary logistic regression to predict the presence of harvestable-length brook trout and multiple linear regression to assess the mechanistic links between landscapes and trout populations and to predict population density. The variance in trout density among streams was equal to or greater than the temporal variation for several streams, indicating that differences among sites affect population density. Logistic regression models correctly predicted the absence of harvestable-length brook trout in 60% of validation samples. The r 2-value for the linear regression model predicting density was 0.3, indicating low predictive ability. Both logistic and linear regression models supported buffering capacity against acid episodes as an important mechanistic link between landscapes and trout populations. Although our models fail to predict trout densities precisely, their success at elucidating the mechanistic links between landscapes and trout populations, in concert with the importance of spatial variation, increases our understanding of factors affecting brook trout abundance and will help managers and private groups to protect and enhance populations of wild brook trout. ?? Copyright by the American Fisheries Society 2006.

  5. Natural bounds on herbivorous coral reef fishes.

    PubMed

    Heenan, Adel; Hoey, Andrew S; Williams, Gareth J; Williams, Ivor D

    2016-11-30

    Humans are an increasingly dominant driver of Earth's biological communities, but differentiating human impacts from natural drivers of ecosystem state is crucial. Herbivorous fish play a key role in maintaining coral dominance on coral reefs, and are widely affected by human activities, principally fishing. We assess the relative importance of human and biophysical (habitat and oceanographic) drivers on the biomass of five herbivorous functional groups among 33 islands in the central and western Pacific Ocean. Human impacts were clear for some, but not all, herbivore groups. Biomass of browsers, large excavators, and of all herbivores combined declined rapidly with increasing human population density, whereas grazers, scrapers, and detritivores displayed no relationship. Sea-surface temperature had significant but opposing effects on the biomass of detritivores (positive) and browsers (negative). Similarly, the biomass of scrapers, grazers, and detritivores correlated with habitat structural complexity; however, relationships were group specific. Finally, the biomass of browsers and large excavators was related to island geomorphology, both peaking on low-lying islands and atolls. The substantial variability in herbivore populations explained by natural biophysical drivers highlights the need for locally appropriate management targets on coral reefs. © 2016 The Authors.

  6. Invasive aquarium fish transform ecosystem nutrient dynamics

    PubMed Central

    Capps, Krista A.; Flecker, Alexander S.

    2013-01-01

    Trade of ornamental aquatic species is a multi-billion dollar industry responsible for the introduction of myriad fishes into novel ecosystems. Although aquarium invaders have the potential to alter ecosystem function, regulation of the trade is minimal and little is known about the ecosystem-level consequences of invasion for all but a small number of aquarium species. Here, we demonstrate how ecological stoichiometry can be used as a framework to identify aquarium invaders with the potential to modify ecosystem processes. We show that explosive growth of an introduced population of stoichiometrically unique, phosphorus (P)-rich catfish in a river in southern Mexico significantly transformed stream nutrient dynamics by altering nutrient storage and remineralization rates. Notably, changes varied between elements; the P-rich fish acted as net sinks of P and net remineralizers of nitrogen. Results from this study suggest species-specific stoichiometry may be insightful for understanding how invasive species modify nutrient dynamics when their population densities and elemental composition differ substantially from native organisms. Risk analysis for potential aquarium imports should consider species traits such as body stoichiometry, which may increase the likelihood that an invasion will alter the structure and function of ecosystems. PMID:23966642

  7. Restoration of Rio Grande cutthroat trout Oncorhynchus clarkii virginalis to the Mescalero Apache Reservation

    USGS Publications Warehouse

    Kalb, Bradley W.; Caldwell, Colleen A.

    2014-01-01

    Rio Grande Cutthroat trout Oncorhynchus clarkii virginalis (RGCT) represents the most southern subspecies of cutthroat trout, endemic to Rio Grande, Canadian, and Pecos basins of New Mexico and southern Colorado. The subspecies currently occupies less than 12% of its historic range. The Mescalero Apache Tribe has partnered with U.S. Geological Survey-New Mexico Cooperative Fish and Wildlife Research Unit, New Mexico State University, U.S. Fish and Wildlife Service, and New Mexico Department of Game and Fish to meet mutually shared goals of restoring and maintaining a Pecos strain of RGCT to Tribal lands. The goal of this project was to assess the suitability of the Rio Ruidoso within the Mescalero Apache Reservation to support a self-sustaining RGCT population by conducting a systematic and comprehensive survey. We conducted three surveys (fall 2010, spring 2011 and 2012) to characterize water quality, macroinvertebrate assemblages, fish communities, and physical habitat (stream size, channel gradient, channel substrate, habitat complexity, riparian vegetation cover and structure, migration barriers to movement).Seven-100 m reaches throughout three major tributaries of the Rio Ruidoso within the Tribal lands were sampled during baseflow conditions October 2010, May 2011, and June 2012. Despite the onset of severe drought in 2011, water quality, physical habitat, and fish populations revealed that the Rio Ruidoso and its three tributaries would most likely support a self-sustaining RGCT population. Pools were abundant (mean, 8.9 pools/100 m), instream woody debris was present (range, 3.8-45.6 pieces/100 m), and instream dataloggers revealed daily maximum stream temperatures rarely exceeded criteria established in New Mexico for coldwater fishes, however, presence of frazil and anchor ice may limit fish distribution in the winter. Aquatic macroinvertebrate samples revealed a community of benthic invertebrates reflective of high quality cool to cold water. Overall densities of brown trout, rainbow trout and brook trout were high (overall mean, 0.23 fish/m2) and in relatively good condition (range of mean relative weight, 84-117).Should the Mescalero Apache Tribe decide to introduce RGCT, prior to chemical treatment, a barrier placed below the confluence of Middle and South forks of the Rio Ruidoso would create approximately 12 km of perennial flow and help protect against invasion of non-native fishes. The North Fork of the Rio Ruidoso is not a good candidate for reintroduction because of easy access by the public to reintroduce non-native fishes into the watershed. Lastly, an annual, long-term monitoring program of RGCT would help document that there was no subsequent incursion of non-native fishes.

  8. High-levels of microplastic pollution in a large, remote, mountain lake.

    PubMed

    Free, Christopher M; Jensen, Olaf P; Mason, Sherri A; Eriksen, Marcus; Williamson, Nicholas J; Boldgiv, Bazartseren

    2014-08-15

    Despite the large and growing literature on microplastics in the ocean, little information exists on microplastics in freshwater systems. This study is the first to evaluate the abundance, distribution, and composition of pelagic microplastic pollution in a large, remote, mountain lake. We quantified pelagic microplastics and shoreline anthropogenic debris in Lake Hovsgol, Mongolia. With an average microplastic density of 20,264 particles km(-2), Lake Hovsgol is more heavily polluted with microplastics than the more developed Lakes Huron and Superior in the Laurentian Great Lakes. Fragments and films were the most abundant microplastic types; no plastic microbeads and few pellets were observed. Household plastics dominated the shoreline debris and were comprised largely of plastic bottles, fishing gear, and bags. Microplastic density decreased with distance from the southwestern shore, the most populated and accessible section of the park, and was distributed by the prevailing winds. These results demonstrate that without proper waste management, low-density populations can heavily pollute freshwater systems with consumer plastics. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Factors associated with stocked cutthroat trout populations in high-mountain lakes

    USGS Publications Warehouse

    Bailey, Paul E.; Hubert, W.A.

    2003-01-01

    High-mountain lakes provide important fisheries in the Rocky Mountains; therefore we sought to gain an understanding of the relationships among environmental factors, accessibility to anglers, stocking rates, and features of stocks of cutthroat trout Oncorhynchus clarki in high-mountain lakes of the Bighorn Mountains, Wyoming. We sampled fish with experimental gill nets, measured lake habitat features, and calculated factors affecting angler access among 19 lakes that lacked sufficient natural reproduction to support salmonid fisheries and that were stocked at 1-, 2-, or 4-year intervals with fingerling cutthroat trout. We found that angler accessibility was probably the primary factor affecting stock structure, whereas stocking rates affected the densities of cutthroat trout among lakes. The maximum number of years survived after stocking appeared to have the greatest affect on biomass and population structure. Our findings suggest that control of harvest and manipulation of stocking densities can affect the density, biomass, and structure of cutthroat trout stocks in high-elevation lakes.

  10. Is the lionfish invasion waning? Evidence from The Bahamas

    NASA Astrophysics Data System (ADS)

    Benkwitt, Cassandra E.; Albins, Mark A.; Buch, Kevin L.; Ingeman, Kurt E.; Kindinger, Tye L.; Pusack, Timothy J.; Stallings, Christopher D.; Hixon, Mark A.

    2017-12-01

    Indo-Pacific lionfishes ( Pterois volitans/ miles) have undergone rapid population growth and reached extremely high densities in parts of the invaded Atlantic. However, their long-term population trends in areas without active management programs are unknown. Since 2005, we have monitored lionfish abundance in the Exuma Cays of the central Bahamas on 64 reefs ranging in size from 1 to 4000 m2. Lionfish densities increased from the first sighting in 2005 through 2009, leveled off between 2010 and 2011, and then began to decrease. By 2015, densities had noticeably declined on most of these reefs, despite a lack of culling or fishing efforts in this part of The Bahamas. There was no consistent change in lionfish size structure through time. We discuss possible causes of the decline, including reductions in larval supply or survival, hurricanes, interactions with native species, and intraspecific interactions. Further studies are required to determine whether the declines will persist. In the meantime, we recommend that managers continue efforts to control invasive lionfish abundances locally.

  11. Structure of Mesophotic Reef Fish Assemblages in the Northwestern Hawaiian Islands

    PubMed Central

    Kosaki, Randall K.; Wagner, Daniel; Kane, Corinne

    2016-01-01

    Mesophotic coral ecosystems (MCEs) support diverse communities of marine organisms with changes in community structure occurring along a depth gradient. In recent years, MCEs have gained attention due to their depths that provide protection from natural and anthropogenic stressors and their relative stability over evolutionary time periods, yet ecological structures of fish assemblages in MCEs remain largely un-documented. Here, we investigated composition and trophic structure of reef fish assemblages in the Northwestern Hawaiian Islands (NWHI) along a depth gradient from 1 to 67 m. The structure of reef fish assemblages as a whole showed a clear gradient from shallow to mesophotic depths. Fish assemblages at mesophotic depths had higher total densities than those in shallower waters, and were characterized by relatively high densities of planktivores and invertivores and relatively low densities of herbivores. Fishes that typified assemblages at mesophotic depths included six species that are endemic to the Hawaiian Islands. The present study showed that mesophotic reefs in the NWHI support unique assemblages of fish that are characterized by high endemism and relatively high densities of planktivores. Our findings underscore the ecological importance of these undersurveyed ecosystems and warrant further studies of MCEs. PMID:27383614

  12. Effects of rearing density and raceway conformation on growth, food conversion, and survival of juvenile spring chinook salmon

    USGS Publications Warehouse

    Ewing, R.D.; Sheahan, J.E.; Lewis, M.A.; Palmisano, Aldo N.

    2000-01-01

    Four brood years of juvenile spring chinook salmon Oncorhynchus tshawytscha were reared in conventional and baffled raceways at various rearing densities and loads at Willamette Hatchery, Oregon. A period of rapid linear growth occurred from August to November, but there was little or no growth from November to March when the fish were released. Both fall and winter growth rates were inversely related to rearing density. Final weight and length were also inversely related to rearing density. No significant relationship between load and any growth variable was observed. Fish reared at lower densities in conventional raceways tended to develop bimodal length distributions in winter and early spring. Fish reared in conventional raceways showed significantly larger growth rates and final lengths and weights than those reared in baffled raceways. Food conversions and average delivery times for feed were significantly greater in baffled than in conventional raceways. No significant relationships were observed between either rearing density or load and condition factor, food conversion, or mortality. Mortality was not significantly different between the two raceway types. When fish were transported to seawater for further rearing, there were no significant relationships between mortality in seawater and rearing density or load, but fish reared in baffled raceways had significantly higher mortality than those reared in conventional raceways.

  13. Status and trends of prey fish populations in Lake Michigan, 2012

    USGS Publications Warehouse

    Bunnell, David B.; Madenjian, Charles P.; Desorcie, Timothy J.; Kostich, Melissa Jean; Smith, Kelley R.; Adams, Jean V.

    2012-01-01

    The U.S. Geological Survey Great Lakes Science Center has conducted lake-wide surveys of the fish community in Lake Michigan each fall since 1973 using standard 12-m bottom trawls towed along contour at depths of 9 to 110 m at each of seven index transects. The resulting data on relative abundance, size and age structure, and condition of individual fishes are used to estimate various population parameters that are in turn used by state and tribal agencies in managing Lake Michigan fish stocks. All seven established index transects of the survey were completed in 2012. The survey provides relative abundance and biomass estimates between the 5-m and 114-m depth contours of the lake (herein, lake-wide) for prey fish populations, as well as burbot, yellow perch, and the introduced dreissenid mussels. Lake-wide biomass of alewives in 2012 was estimated at 9 kilotonnes (kt, 1 kt = 1000 metric tonnes), which continues the trend of unusually low alewife biomass since 2004 but represented a 20% increase from the 2011 estimate. The age distribution of alewives larger than 100 mm was dominated (i.e., 84%) by age-2. Record low biomass was observed for several species, including bloater (0.4 kt), rainbow smelt (0.1 kt), deepwater sculpin (1.5 kt), and ninespine stickleback (0.01 kt). Slimy sculpin lake-wide biomass was 0.73 kt in 2012, which was the third consecutive year revealing a decline. Estimated biomass of round goby increased by 79% to 3 kt. Burbot lake-wide biomass (0.5 kt in 2012) has remained below 3 kt since 2001. Numeric density of age-0 yellow perch (i.e., < 100 mm) was only 2 fish per ha, which is indicative of a relatively poor year-class. Lake-wide biomass estimates of dreissenid mussels have continued to increase from 2010, from 12 to 95 kt in 2012. Overall, the total lake-wide prey fish biomass estimate (sum of alewife, bloater, rainbow smelt, deepwater sculpin, slimy sculpin, round goby, and ninespine stickleback) in 2012 was 15 kt, which represented the lowest total biomass of the time series.

  14. The release rate of environmental DNA from juvenile and adult fish.

    PubMed

    Maruyama, Atsushi; Nakamura, Keisuke; Yamanaka, Hiroki; Kondoh, Michio; Minamoto, Toshifumi

    2014-01-01

    The environmental DNA (eDNA) technique is expected to become a powerful, non-invasive tool for estimating the distribution and biomass of organisms. This technique was recently shown to be applicable to aquatic vertebrates by collecting extraorganismal DNA floating in the water or absorbed onto suspended particles. However, basic information on eDNA release rate is lacking, despite it being essential for practical applications. In this series of experiments with bluegill sunfish (Lepomis macrochirus), we examined the effect of fish developmental stage on eDNA release rate. eDNA concentration reached equilibrium 3 days after the individual fish were introduced into the separate containers, enabling calculation of the eDNA release rate (copies h-1) from individual fish on the assumption that the number of eDNA released from the fish per unit time equals total degradation in the container (copies h-1). The eDNA release rate was 3-4 times higher in the adult (body weight: 30-75 g) than in the juvenile group (0.5-2.0 g). Such positive relationship between fish size and eDNA release rate support the possibility of biomass rather than density estimation using eDNA techniques. However, the eDNA release rate per fish body weight (copies h-1 g-1) was slightly higher in the juvenile than the adult group, which is likely because of the ontogenetic reduction in metabolic activity. Therefore, quantitative eDNA data should be carefully interpreted to avoid overestimating biomass when the population is dominated by juveniles, because the age structure of the focal population is often variable and unseen in the field. eDNA degradation rates (copies l-1 h-1), calculated by curve fitting of time-dependent changes in eDNA concentrations after fish removal, were 5.1-15.9% per hour (half-life: 6.3 h). This suggests that quantitative eDNA data should be corrected using a degradation curve attained in the target field.

  15. Variable responses of fish assemblages, habitat, and stability to natural-channel-design restoration in Catskill Mountain streams

    USGS Publications Warehouse

    Baldigo, Barry P.; Ernst, Anne G.; Warren, Dana R.; Miller, Sarah J.

    2010-01-01

    Natural-channel-design (NCD) restorations were recently implemented within large segments of five first- and second-order streams in the Catskill Mountains of New York in an attempt to increase channel stability, reduce bed and bank erosion, and sustain water quality. In conjunction with these efforts, 54 fish and habitat surveys were done from 1999 to 2007 at six restored reaches and five stable control reaches to evaluate the effects of NCD restoration on fish assemblages, habitat, and bank stability. A before–after–control–impact study design and two-factor analysis of variance were used to quantify the net changes in habitat and fish population and community indices at treatment reaches relative to those at unaltered control reaches. The density and biomass of fish communities were often dominated by one or two small prey species and no or few predator species before restoration and by one or more trout (Salmonidae) species after restoration. Significant increases in community richness (30%), diversity (40%), species or biomass equitability (32%), and total biomass (up to 52%) in at least four of the six restored reaches demonstrate that NCD restorations can improve the health and sustainability of fish communities in geomorphically unstable Catskill Mountain streams over the short to marginally long term. Bank stability, stream habitat, and trout habitat suitability indices (HSIs) generally improved significantly at the restored reaches, but key habitat features and trout HSIs did not change or decreased at two of them. Fish communities and trout populations at these two reaches were not positively affected by NCD restorations. Though NCD restorations often had a positive effect on habitat and fish communities, our results show that the initial habitat conditions limit the relative improvements than can be achieved, habitat quality and stability do not necessarily respond in unison, and biotic and abiotic responses cannot always be generalized.

  16. Simulated effects of YY-male stocking and manual suppression for eradicating nonnative Brook Trout populations

    USGS Publications Warehouse

    Schill, Daniel J.; Meyer, Kevin A.; Hansen, Michael J.

    2017-01-01

    Eradication of nonnative Brook Trout Salvelinus fontinalis populations is difficult to achieve with standard techniques, such as electrofishing removal or piscicides; new approaches are needed. A novel concept is to stock “supermale” hatchery fish with wild conspecifics. Supermales (MYY) have two Y-chromosomes, resulting in offspring that are all males; over time, successful supermale reproduction could eradicate the wild population. We constructed an age-structured stochastic model to investigate the effects of manually suppressing wild fish and stocking MYY fingerlings on the long-term viability of hypothetical nonnative Brook Trout populations. In streams, an annual stocking rate of supermales equivalent to 50% of wild age-0 Brook Trout density combined with an annual selective suppression rate equivalent to 50% of wild Brook Trout density resulted in a time to extirpation of only 2–4 years if supermale fitness was equivalent to wild male fitness. However, time to extirpation in streams was 5–15 years if supermale fitness was 80% lower than wild male fitness. In alpine lakes, higher supermale stocking rates and nonselective gillnetting were required to eradicate Brook Trout populations. If supermales were assumed to be as fit as wild males, however, any supermale stocking rate greater than 49% in alpine lakes or 60% in streams achieved eradication in 10 years or less, regardless of the suppression rate. Because manual suppression and the stocking of MYY fingerlings can readily be conducted at the levels assumed in our simulations, use of such an integrated pest management (IPM) approach could extirpate undesirable Brook Trout populations within reasonably short periods of time. Given the recent successful development of an MYY Brook Trout broodstock capable of producing large numbers of MYY fingerlings and given the positive results of the present simulations for both streams and alpine lakes, field testing of MYY stocking is warranted within an IPM program that includes manual suppression for eradicating undesirable Brook Trout populations.

  17. Bigger Is Better: Characteristics of Round Gobies Forming an Invasion Front in the Danube River

    PubMed Central

    Brandner, Joerg; Cerwenka, Alexander F.; Schliewen, Ulrich K.; Geist, Juergen

    2013-01-01

    Few studies have systematically investigated differences in performance, morphology and parasitic load of invaders at different stages of an invasion. This study analyzed phenotype-environment correlations in a fish invasion from initial absence until establishment in the headwater reach of the second largest European river, the Danube. Here, the round goby (Neogobius melanostomus) formed 73% of the fish abundance and 58% of the fish biomass in rip-rap bank habitats after establishment. The time from invasion until establishment was only about two years, indicating rapid expansion. Founder populations from the invasion front were different from longer established round goby populations in demography, morphology, feeding behaviour, sex ratio and parasitic load, indicating that plasticity in these traits determines invasion success. Competitive ability was mostly dependent on growth/size-related traits rather than on fecundity. As revealed by stable isotope analyses, specimens at the invasion front had a higher trophic position in the food web and seem to benefit from lower food competition. Somatic performance seems to be more important than investment in reproduction during the early stages of the invasion process and upstream-directed range expansion is not caused by out-migrating weak or juvenile individuals that were forced to leave high density areas due to high competition. This mechanism might be true for downstream introductions via drift. Greater abundance and densities of acanthocephalan endoparasites were observed at the invasion front, which contradicts the expectation that invasion success is determined by lower parasitic pressure in newly invaded areas. Overall, the pronounced changes in fish and invertebrate communities with a dominance of alien species suggest invasional meltdown and a shift of the upper Danube River towards a novel ecosystem with species that have greater resistance to goby predation. This seems to contribute to overcoming biological resistance and improve rapidity of dispersal. PMID:24039854

  18. Lake Ontario benthic prey fish assessment, 2016

    USGS Publications Warehouse

    Weidel, Brian C.; Walsh, Maureen; Holden, Jeremy P.; Connerton, Michael J.

    2017-01-01

    Benthic prey fishes are a critical component of the Lake Ontario food web, serving as energy vectors from benthic invertebrates to native and introduced piscivores. Beginning in 1978, Lake Ontario benthic prey fishes were assessed using bottom trawls collected from the lake’s south shore (depth range: 8 – 150 m). Historically, the survey targeted the then dominant species, Slimy Sculpin, however in 2015, the Benthic Prey Fish Survey was cooperatively expanded to a whole-lake survey, to address resource management information needs related to Round Goby, Deepwater Sculpin, and nearshore native fishes. In 2016, 142 trawls were collected at 18 transects, and spanned depths from 6 – 225 m. Trawl catches indicated the benthic and demersal prey fish community was dominated by Round Goby, however the proportional importance of native Deepwater Sculpin is increasing. Species-specific assessments found lake-wide Round Goby density (~600 fish per hectare) was slightly lower in 2016 relative to 2015. Deepwater Sculpin density has generally increased since 2004. In 2016 their estimated density was greater than 100 fish per hectare. Slimy Sculpin density (15 fish/ha) was similar to the past 3 years. Catches of juvenile Slimy Sculpin continue to be low relative to historic catches and the timing of their decline coincides with the proliferation of Round Goby. Additionally, we found a strong negative relationship between trawl catches of Round Goby and near-shore native benthic and demersal fishes such as Trout-perch, Johnny Darter and Spottail Shiner. The introduction of Round Goby and the reappearance of native Deepwater Sculpin have shaped the Lake Ontario benthic prey fish community.

  19. Individual movements and population density estimates for moray eels on a Caribbean coral reef

    NASA Astrophysics Data System (ADS)

    Abrams, R. W.; Schein, M. W.

    1986-12-01

    Observations of moray eel (Muraenidae) distribution made on a Caribbean coral reef are discussed in the context of long term population trends. Observations of eel distribution made using SCUBA during 1978, 1979 1980, and 1984 are compared and related to the occurrence of a hurricane in 1979. An estimate of the mean standing stock of moray eels is presented. The degree of site attachment is discussed for spotted morays ( Gymnothorax moringa) and goldentail morays ( Muraena miliaris). The repeated non-aggressive association of moray eels with large aggregations of potential prey fishes is detailed.

  20. MERGANSER: an empirical model to predict fish and loon mercury in New England lakes.

    PubMed

    Shanley, James B; Moore, Richard; Smith, Richard A; Miller, Eric K; Simcox, Alison; Kamman, Neil; Nacci, Diane; Robinson, Keith; Johnston, John M; Hughes, Melissa M; Johnston, Craig; Evers, David; Williams, Kate; Graham, John; King, Susannah

    2012-04-17

    MERGANSER (MERcury Geo-spatial AssessmeNtS for the New England Region) is an empirical least-squares multiple regression model using mercury (Hg) deposition and readily obtainable lake and watershed features to predict fish (fillet) and common loon (blood) Hg in New England lakes. We modeled lakes larger than 8 ha (4404 lakes), using 3470 fish (12 species) and 253 loon Hg concentrations from 420 lakes. MERGANSER predictor variables included Hg deposition, watershed alkalinity, percent wetlands, percent forest canopy, percent agriculture, drainage area, population density, mean annual air temperature, and watershed slope. The model returns fish or loon Hg for user-entered species and fish length. MERGANSER explained 63% of the variance in fish and loon Hg concentrations. MERGANSER predicted that 32-cm smallmouth bass had a median Hg concentration of 0.53 μg g(-1) (root-mean-square error 0.27 μg g(-1)) and exceeded EPA's recommended fish Hg criterion of 0.3 μg g(-1) in 90% of New England lakes. Common loon had a median Hg concentration of 1.07 μg g(-1) and was in the moderate or higher risk category of >1 μg g(-1) Hg in 58% of New England lakes. MERGANSER can be applied to target fish advisories to specific unmonitored lakes, and for scenario evaluation, such as the effect of changes in Hg deposition, land use, or warmer climate on fish and loon mercury.

  1. MERGANSER: an empirical model to predict fish and loon mercury in New England lakes

    USGS Publications Warehouse

    Shanley, James B.; Moore, Richard; Smith, Richard A.; Miller, Eric K.; Simcox, Alison; Kamman, Neil; Nacci, Diane; Robinson, Keith; Johnston, John M.; Hughes, Melissa M.; Johnston, Craig; Evers, David; Williams, Kate; Graham, John; King, Susannah

    2012-01-01

    MERGANSER (MERcury Geo-spatial AssessmeNtS for the New England Region) is an empirical least-squares multiple regression model using mercury (Hg) deposition and readily obtainable lake and watershed features to predict fish (fillet) and common loon (blood) Hg in New England lakes. We modeled lakes larger than 8 ha (4404 lakes), using 3470 fish (12 species) and 253 loon Hg concentrations from 420 lakes. MERGANSER predictor variables included Hg deposition, watershed alkalinity, percent wetlands, percent forest canopy, percent agriculture, drainage area, population density, mean annual air temperature, and watershed slope. The model returns fish or loon Hg for user-entered species and fish length. MERGANSER explained 63% of the variance in fish and loon Hg concentrations. MERGANSER predicted that 32-cm smallmouth bass had a median Hg concentration of 0.53 μg g-1 (root-mean-square error 0.27 μg g-1) and exceeded EPA's recommended fish Hg criterion of 0.3 μg g-1 in 90% of New England lakes. Common loon had a median Hg concentration of 1.07 μg g-1 and was in the moderate or higher risk category of >1 μg g-1 Hg in 58% of New England lakes. MERGANSER can be applied to target fish advisories to specific unmonitored lakes, and for scenario evaluation, such as the effect of changes in Hg deposition, land use, or warmer climate on fish and loon mercury.

  2. Changes in reproductive life-history strategies in response to nest density in a shell-brooding cichlid, Telmatochromis vittatus

    NASA Astrophysics Data System (ADS)

    Ota, Kazutaka; Hori, Michio; Kohda, Masanori

    2012-01-01

    To determine whether the appearance of a reproductively parasitic tactic varies, and how this variation affects territorial males of the Lake Tanganyika cichlid fish Telmatochromis vittatus, we examined the reproductive ecology of territorial males in Mtondwe and compared it with that of a neighboring Wonzye population, where nest density differs from that at Mtondwe. In Wonzye, with high nest density, male tactics change with their body size from a territorial to a non-territorial parasitic tactic called piracy in which they conquer several nests defended by territorial males and take over the nests while females are spawning. These "pirate" males could decrease the costs incurred by travelling among nests by exclusively targeting aggregations of nests in close proximity while avoiding separate nests. Territorial males in Wonzye sacrifice the potential higher attractiveness offered by large nests and instead compete for nests farther from neighbors on which pirates less frequently intrude. In contrast, the Mtondwe population had lower nest density and piracy was absent. Given that the success of piracy depends on the close proximity of nests, nest density is likely responsible for the observed variation in the occurrence of piracy between the two populations. Furthermore, in Mtondwe, territorial males competed for larger nests and were smaller than the territorial males in Wonzye. Thus, this lower nest density may free territorial males from the selection pressures for increased size caused by both defense against nest piracy and the need to develop into pirates as they grow.

  3. Spatio-temporal dynamics of a fish predator: Density-dependent and hydrographic effects on Baltic Sea cod population

    PubMed Central

    Bartolino, Valerio; Tian, Huidong; Bergström, Ulf; Jounela, Pekka; Aro, Eero; Dieterich, Christian; Meier, H. E. Markus; Cardinale, Massimiliano; Bland, Barbara

    2017-01-01

    Understanding the mechanisms of spatial population dynamics is crucial for the successful management of exploited species and ecosystems. However, the underlying mechanisms of spatial distribution are generally complex due to the concurrent forcing of both density-dependent species interactions and density-independent environmental factors. Despite the high economic value and central ecological importance of cod in the Baltic Sea, the drivers of its spatio-temporal population dynamics have not been analytically investigated so far. In this paper, we used an extensive trawl survey dataset in combination with environmental data to investigate the spatial dynamics of the distribution of the Eastern Baltic cod during the past three decades using Generalized Additive Models. The results showed that adult cod distribution was mainly affected by cod population size, and to a minor degree by small-scale hydrological factors and the extent of suitable reproductive areas. As population size decreases, the cod population concentrates to the southern part of the Baltic Sea, where the preferred more marine environment conditions are encountered. Using the fitted models, we predicted the Baltic cod distribution back to the 1970s and a temporal index of cod spatial occupation was developed. Our study will contribute to the management and conservation of this important resource and of the ecosystem where it occurs, by showing the forces shaping its spatial distribution and therefore the potential response of the population to future exploitation and environmental changes. PMID:28207804

  4. Prevalence of Clonorchis sinensis Metacercariae in Fish from Water Systems of Seomjin-gang (River).

    PubMed

    Sohn, Woon-Mok; Na, Byoung-Kuk; Cho, Shin-Hyeong; Park, Mi-Yeoun; Kim, Cheon-Hyeon; Hwang, Min-Ah; No, Kyeong-Woo; Yoon, Ki-Bok; Lim, Hyun-Cheol

    2017-06-01

    The prevalence of Clonorchis sinensis metacercariae ( Cs Mc) was examined in freshwater fish from the water systems of Seomjin-gang (River), the Republic of Korea. Total 1,604 fish from 7 local sites of Seomjin-gang were examined by artificial digestion methods. The metacercariae of C. sinensis were detected in 102 (39.8%) out of 256 fish (14 species) from the upper reaches of Seomjin-gang, i.e., Osucheon (22.3% in 6 fish species) in Imsil-gun, and Seomjin-gang (63.9% in 9 fish species) in Sunchang-gun, Jeollabuk-do. Their average density was 9.0 per infected fish. They were also found in 132 (48.0%) out of 275 fish (12 spp.) from the middle reaches of Seomjin-gang, i.e., Songdaecheon (58.9% in 4 fish species) in Namwon-si, Jeollabuk-do, and Seomjin-gang (45.2% in 10 fish species) in Gokseong-gun, Jeollanam-do. Their average density was 21.0 per infected fish. Cs Mc were detected in 77 (56.6%) out of 136 fish (11 species) from the lower reaches of Seomjin-gang, i.e., Seomjin-gang (73.3% in 11 fish species) in Gurye-gun, Jeollanam-do, and Namsancheon (8.6% in 1 fish species) in Hadong-gun, Gyeongsangnam-do. Their average density was 64.9 per infected fish. The metacercariae of Metorchis orientalis were also detected in 6 fish species from 4 sites of Seomjin-gang. Conclusively, it has been confirmed that Cs Mc are more or less prevalent in fish from some water systems of Seomjin-gang in Korea.

  5. Prevalence of Clonorchis sinensis Metacercariae in Fish from Water Systems of Seomjin-gang (River)

    PubMed Central

    Sohn, Woon-Mok; Na, Byoung-Kuk; Cho, Shin-Hyeong; Park, Mi-Yeoun; Kim, Cheon-Hyeon; Hwang, Min-Ah; No, Kyeong-Woo; Yoon, Ki-Bok; Lim, Hyun-Cheol

    2017-01-01

    The prevalence of Clonorchis sinensis metacercariae (CsMc) was examined in freshwater fish from the water systems of Seomjin-gang (River), the Republic of Korea. Total 1,604 fish from 7 local sites of Seomjin-gang were examined by artificial digestion methods. The metacercariae of C. sinensis were detected in 102 (39.8%) out of 256 fish (14 species) from the upper reaches of Seomjin-gang, i.e., Osucheon (22.3% in 6 fish species) in Imsil-gun, and Seomjin-gang (63.9% in 9 fish species) in Sunchang-gun, Jeollabuk-do. Their average density was 9.0 per infected fish. They were also found in 132 (48.0%) out of 275 fish (12 spp.) from the middle reaches of Seomjin-gang, i.e., Songdaecheon (58.9% in 4 fish species) in Namwon-si, Jeollabuk-do, and Seomjin-gang (45.2% in 10 fish species) in Gokseong-gun, Jeollanam-do. Their average density was 21.0 per infected fish. CsMc were detected in 77 (56.6%) out of 136 fish (11 species) from the lower reaches of Seomjin-gang, i.e., Seomjin-gang (73.3% in 11 fish species) in Gurye-gun, Jeollanam-do, and Namsancheon (8.6% in 1 fish species) in Hadong-gun, Gyeongsangnam-do. Their average density was 64.9 per infected fish. The metacercariae of Metorchis orientalis were also detected in 6 fish species from 4 sites of Seomjin-gang. Conclusively, it has been confirmed that CsMc are more or less prevalent in fish from some water systems of Seomjin-gang in Korea. PMID:28719955

  6. Parasites of fish larvae: do they follow metabolic energetic laws?

    PubMed

    Muñoz, Gabriela; Landaeta, Mauricio F; Palacios-Fuentes, Pamela; George-Nascimento, Mario

    2015-11-01

    Eumetazoan parasites in fish larvae normally exhibit large body sizes relative to their hosts. This observation raises a question about the potential effects that parasites might have on small fish. We indirectly evaluated this question using energetic metabolic laws based on body volume and the parasite densities. We compared the biovolume as well as the numeric and volumetric densities of parasites over the host body volume of larval and juvenile-adult fish and the average of these parasitological descriptors for castrator parasites and the parasites found in the fish studied here. We collected 5266 fish larvae using nearshore zooplankton sampling and 1556 juveniles and adult fish from intertidal rocky pools in central Chile. We considered only the parasitized hosts: 482 fish larvae and 629 juvenile-adult fish. We obtained 31 fish species; 14 species were in both plankton and intertidal zones. Fish larvae exhibited a significantly smaller biovolume but larger numeric and volumetric densities of parasites than juvenile-adult fish. Therefore, fish larvae showed a large proportion of parasite biovolume per unit of body host (cm(3)). However, the general scaling of parasitological descriptors and host body volume were similar between larvae and juvenile-adult fish. The ratio between the biovolume of parasites and the host body volume in fish larvae was similar to the proportion observed in castrator parasites. Furthermore, the ratios were different from those of juvenile-adult fish, which suggests that the presence of parasites implies a high energetic cost for fish larvae that would diminish the fitness of these small hosts.

  7. Quantitative species-level ecology of reef fish larvae via metabarcoding.

    PubMed

    Kimmerling, Naama; Zuqert, Omer; Amitai, Gil; Gurevich, Tamara; Armoza-Zvuloni, Rachel; Kolesnikov, Irina; Berenshtein, Igal; Melamed, Sarah; Gilad, Shlomit; Benjamin, Sima; Rivlin, Asaph; Ohavia, Moti; Paris, Claire B; Holzman, Roi; Kiflawi, Moshe; Sorek, Rotem

    2018-02-01

    The larval pool of coral reef fish has a crucial role in the dynamics of adult fish populations. However, large-scale species-level monitoring of species-rich larval pools has been technically impractical. Here, we use high-throughput metabarcoding to study larval ecology in the Gulf of Aqaba, a region that is inhabited by >500 reef fish species. We analysed 9,933 larvae from 383 samples that were stratified over sites, depth and time. Metagenomic DNA extracted from pooled larvae was matched to a mitochondrial cytochrome c oxidase subunit I barcode database compiled for 77% of known fish species within this region. This yielded species-level reconstruction of the larval community, allowing robust estimation of larval spatio-temporal distributions. We found significant correlations between species abundance in the larval pool and in local adult assemblages, suggesting a major role for larval supply in determining local adult densities. We documented larval flux of species whose adults were never documented in the region, suggesting environmental filtering as the reason for the absence of these species. Larvae of several deep-sea fishes were found in shallow waters, supporting their dispersal over shallow bathymetries, potentially allowing Lessepsian migration into the Mediterranean Sea. Our method is applicable to any larval community and could assist coral reef conservation and fishery management efforts.

  8. Biodiversity inventories and conservation of the marine fishes of Bootless Bay, Papua New Guinea

    PubMed Central

    2012-01-01

    Background The effective management and conservation of biodiversity is predicated on clearly defined conservation targets. Species number is frequently used as a metric for conservation prioritization and monitoring changes in ecosystem health. We conducted a series of synoptic surveys focusing on the fishes of the Bootless Bay region of Papua New Guinea to generate a checklist of fishes of the region. Bootless Bay lies directly south of Port Moresby, the capital of Papua New Guinea, and experiences the highest human population density of any marine area in the country. Our checklist will set a baseline against which future environmental changes can be tracked. Results We generated a checklist of 488 fish species in 72 families found in Bootless Bay during a two-week sampling effort. Using incident-based methods of species estimation, we extrapolate there to be approximately 940 fish species in Bootless Bay, one of the lowest reported numbers in Papua New Guinea. Conclusions Our data suggest that the Bootless Bay ecosystem of Papua New Guinea, while diverse in absolute terms, has lower fish biodiversity compared to other shallow marine areas within the country. These differences in faunal diversity are most likely a combination of unequal sampling effort as well as biophysical factors within Bootless Bay compounded by historical and/or contemporary anthropogenic disturbances. PMID:22849436

  9. Human Stressors Are Driving Coastal Benthic Long-Lived Sessile Fan Mussel Pinna nobilis Population Structure More than Environmental Stressors.

    PubMed

    Deudero, Salud; Vázquez-Luis, Maite; Álvarez, Elvira

    2015-01-01

    Coastal degradation and habitat disruption are severely compromising sessile marine species. The fan shell Pinna nobilis is an endemic, vulnerable species and the largest bivalve in the Mediterranean basin. In spite of species legal protection, fan shell populations are declining. Models analyzed the contributions of environmental (mean depth, wave height, maximum wave height, period of waves with high energy and mean direction of wave source) versus human-derived stressors (anchoring, protection status, sewage effluents, fishing activity and diving) as explanatory variables depicting Pinna nobilis populations at a mesoscale level. Human stressors were explaining most of the variability in density spatial distribution of fan shell, significantly disturbing benthic communities. Habitat protection affected P. nobilis structure and physical aggression by anchoring reveals a high impact on densities. Environmental variables instead played a secondary role, indicating that global change processes are not so relevant in coastal benthic communities as human-derived impacts.

  10. The Effect of Different Feed and Stocking Densities on Growth And Survival Rate Of Blue Swimming Crablets (Portunus pelagicus)

    NASA Astrophysics Data System (ADS)

    Ariyati, R. W.; Rejeki, S.; Bosma, R. H.

    2018-02-01

    Blue swimming crab is targeted by commercial fisheries because of the high economic value, good taste, and attractive colors. As a result, the stock is overexploited and fisherman catch market also juveniles. The most sustainable solution would be to stop fishing for commercial trade and to culture this crab from brood to market size. This study aimed to find the best feed and stocking density for the on-growing of crablets. In 20 tanks juvenile crabs with a carapace width±1 cm were stocked in three densities; 40, 60 and 80 crablets / m2, and fed ad-libitum twice a day with either trash fish or pellets of shrimp feed, for 8 weeks. The circular (ᴓ 1.6 m x 1 m) tanks with 1 m3 of water were aerated, and temperature, salinity, dissolved oxygen and pH recorded daily. In the end, growth and survival rates were determined. In general, feeding the crablets at a density of 40 m-2 gave the highest growth. For crablest fed with pellets, the density of 40 m-2 gave significantly better growth than 80 m-2. The crablets at a density 40 m-2 having a fish diet with the density 40 m-2 grew better than 60 and 80 m-2. There was no significant difference between fed used among different densities. The lower densities resulted in higher survival, either on crablets fed with pellets or fish. But, crablets fed the fish diet and cultured in the lowest density (40 m-2) had the highest survival rate.

  11. Fine-scale population dynamics in a marine fish species inferred from dynamic state-space models.

    PubMed

    Rogers, Lauren A; Storvik, Geir O; Knutsen, Halvor; Olsen, Esben M; Stenseth, Nils C

    2017-07-01

    Identifying the spatial scale of population structuring is critical for the conservation of natural populations and for drawing accurate ecological inferences. However, population studies often use spatially aggregated data to draw inferences about population trends and drivers, potentially masking ecologically relevant population sub-structure and dynamics. The goals of this study were to investigate how population dynamics models with and without spatial structure affect inferences on population trends and the identification of intrinsic drivers of population dynamics (e.g. density dependence). Specifically, we developed dynamic, age-structured, state-space models to test different hypotheses regarding the spatial structure of a population complex of coastal Atlantic cod (Gadus morhua). Data were from a 93-year survey of juvenile (age 0 and 1) cod sampled along >200 km of the Norwegian Skagerrak coast. We compared two models: one which assumes all sampled cod belong to one larger population, and a second which assumes that each fjord contains a unique population with locally determined dynamics. Using the best supported model, we then reconstructed the historical spatial and temporal dynamics of Skagerrak coastal cod. Cross-validation showed that the spatially structured model with local dynamics had better predictive ability. Furthermore, posterior predictive checks showed that a model which assumes one homogeneous population failed to capture the spatial correlation pattern present in the survey data. The spatially structured model indicated that population trends differed markedly among fjords, as did estimates of population parameters including density-dependent survival. Recent biomass was estimated to be at a near-record low all along the coast, but the finer scale model indicated that the decline occurred at different times in different regions. Warm temperatures were associated with poor recruitment, but local changes in habitat and fishing pressure may have played a role in driving local dynamics. More generally, we demonstrated how state-space models can be used to test evidence for population spatial structure based on survey time-series data. Our study shows the importance of considering spatially structured dynamics, as the inferences from such an approach can lead to a different ecological understanding of the drivers of population declines, and fundamentally different management actions to restore populations. © 2017 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

  12. Vast assembly of vocal marine mammals from diverse species on fish spawning ground.

    PubMed

    Wang, Delin; Garcia, Heriberto; Huang, Wei; Tran, Duong D; Jain, Ankita D; Yi, Dong Hoon; Gong, Zheng; Jech, J Michael; Godø, Olav Rune; Makris, Nicholas C; Ratilal, Purnima

    2016-03-17

    Observing marine mammal (MM) populations continuously in time and space over the immense ocean areas they inhabit is challenging but essential for gathering an unambiguous record of their distribution, as well as understanding their behaviour and interaction with prey species. Here we use passive ocean acoustic waveguide remote sensing (POAWRS) in an important North Atlantic feeding ground to instantaneously detect, localize and classify MM vocalizations from diverse species over an approximately 100,000 km(2) region. More than eight species of vocal MMs are found to spatially converge on fish spawning areas containing massive densely populated herring shoals at night-time and diffuse herring distributions during daytime. We find the vocal MMs divide the enormous fish prey field into species-specific foraging areas with varying degrees of spatial overlap, maintained for at least two weeks of the herring spawning period. The recorded vocalization rates are diel (24 h)-dependent for all MM species, with some significantly more vocal at night and others more vocal during the day. The four key baleen whale species of the region: fin, humpback, blue and minke have vocalization rate trends that are highly correlated to trends in fish shoaling density and to each other over the diel cycle. These results reveal the temporospatial dynamics of combined multi-species MM foraging activities in the vicinity of an extensive fish prey field that forms a massive ecological hotspot, and would be unattainable with conventional methodologies. Understanding MM behaviour and distributions is essential for management of marine ecosystems and for accessing anthropogenic impacts on these protected marine species.

  13. Importance of the habitat choice behavior assumed when modeling the effects of food and temperature on fish populations

    USGS Publications Warehouse

    Wildhaber, Mark L.; Lamberson, Peter J.

    2004-01-01

    Various mechanisms of habitat choice in fishes based on food and/or temperature have been proposed: optimal foraging for food alone; behavioral thermoregulation for temperature alone; and behavioral energetics and discounted matching for food and temperature combined. Along with development of habitat choice mechanisms, there has been a major push to develop and apply to fish populations individual-based models that incorporate various forms of these mechanisms. However, it is not known how the wide variation in observed and hypothesized mechanisms of fish habitat choice could alter fish population predictions (e.g. growth, size distributions, etc.). We used spatially explicit, individual-based modeling to compare predicted fish populations using different submodels of patch choice behavior under various food and temperature distributions. We compared predicted growth, temperature experience, food consumption, and final spatial distribution using the different models. Our results demonstrated that the habitat choice mechanism assumed in fish population modeling simulations was critical to predictions of fish distribution and growth rates. Hence, resource managers who use modeling results to predict fish population trends should be very aware of and understand the underlying patch choice mechanisms used in their models to assure that those mechanisms correctly represent the fish populations being modeled.

  14. Mapping Reef Fish and the Seascape: Using Acoustics and Spatial Modeling to Guide Coastal Management

    PubMed Central

    Costa, Bryan; Taylor, J. Christopher; Kracker, Laura; Battista, Tim; Pittman, Simon

    2014-01-01

    Reef fish distributions are patchy in time and space with some coral reef habitats supporting higher densities (i.e., aggregations) of fish than others. Identifying and quantifying fish aggregations (particularly during spawning events) are often top priorities for coastal managers. However, the rapid mapping of these aggregations using conventional survey methods (e.g., non-technical SCUBA diving and remotely operated cameras) are limited by depth, visibility and time. Acoustic sensors (i.e., splitbeam and multibeam echosounders) are not constrained by these same limitations, and were used to concurrently map and quantify the location, density and size of reef fish along with seafloor structure in two, separate locations in the U.S. Virgin Islands. Reef fish aggregations were documented along the shelf edge, an ecologically important ecotone in the region. Fish were grouped into three classes according to body size, and relationships with the benthic seascape were modeled in one area using Boosted Regression Trees. These models were validated in a second area to test their predictive performance in locations where fish have not been mapped. Models predicting the density of large fish (≥29 cm) performed well (i.e., AUC = 0.77). Water depth and standard deviation of depth were the most influential predictors at two spatial scales (100 and 300 m). Models of small (≤11 cm) and medium (12–28 cm) fish performed poorly (i.e., AUC = 0.49 to 0.68) due to the high prevalence (45–79%) of smaller fish in both locations, and the unequal prevalence of smaller fish in the training and validation areas. Integrating acoustic sensors with spatial modeling offers a new and reliable approach to rapidly identify fish aggregations and to predict the density large fish in un-surveyed locations. This integrative approach will help coastal managers to prioritize sites, and focus their limited resources on areas that may be of higher conservation value. PMID:24454886

  15. Large-scale associations between macroalgal cover and grazer biomass on mid-depth reefs in the Caribbean

    NASA Astrophysics Data System (ADS)

    Williams, I.; Polunin, N.

    2001-05-01

    Since the 1970s, macroalgae have become considerably more abundant on many Caribbean reefs and overfishing of grazing fishes has been implicated as a contributory factor. We explored relationships between algal cover and grazers (biomass of herbivorous fishes and abundance of the sea-urchin Diadema antillarum) on mid-depth reefs (12-15 m) in 19 areas at seven locations in Jamaica, Barbados, Belize, Grand Cayman and Cuba, between April 1997 and April 1998. Diadema antillarum density was never >0.01 m-2, while herbivorous fish biomass (acanthurids and scarids ≥12 cm total length) varied from 2-5 g m-2 in Jamaica to 17.1 g m-2 in Barbados, and was strongly correlated, negatively with macroalgal cover and positively with 'cropped' substratum (sum of 'bare', turf and crustose-coralline substrata) cover. However, overfishing of herbivorous fishes alone cannot explain the widespread abundance of macroalgae, as even on lightly fished reefs, macroalgal cover was mostly >20%. Herbivorous fish populations on those reefs were apparently only able to maintain approximately 40-60% of reef substratum in cropped states, but due to low space-occupation by coral and other invertebrates, 70-90% of substratum was available to algae. The abundance of macroalgae on lightly fished reefs may therefore be a symptom of low coral cover in combination with the continuing absence of Diadema antillarum.

  16. The distribution of seabirds and fish in relation to ocean currents in the southeastern Chukchi Sea

    USGS Publications Warehouse

    Piatt, John F.; Wells, John L.; MacCharles, Andrea; Fadely, Brian S.; Montevecchi, W.A.; Gaston, A.J.

    1991-01-01

    In late August 1988, we studied the distribution of seabirds in the southeastern Chukchi Sea, particularly in waters near a major seabird colony at Cape Thompson. Foraging areas were characterized using hydrographic data obtained from hydroacoustic surveys for fish. Murres (Uria spp.) and Black-legged Kitttiwakes Rissa tridactyla breeding at Cape Thompson fed mostly on Arctic cod, which are known from previous studies to be the most abundant pelagic fish in the region. Our hydroacoustic surveys revealed that pelagic fish were distributed widely, but densities were estimated to be low (e.g., 0.1-10 g∙m-3) throughout the study area and a few schools were recorded. Large feeding flocks of murres and kittiwakes were observed over fish schools with densities estimated to exceed 15 g∙m-3. Fish densities were higher in shallow Alaska Coastal Current waters than offshore in Bering Sea waters, and most piscivorous seabirds foraged in coastal waters. Poor kittiwake breeding success and a low frequency of fish in murre and kittiwake stomachs in late August suggested that fish densities were marginal for sustaining breeding seabirds at that time. Planktivorous Least Auklets Aethia pusilla and Parakeet Auklets Cyclorrhynchus psittacula foraged almost exclusively in Bering Sea waters. Short-tailed Shearwaters Puffinus tenuirostris and Tufted Puffins Fratercula cirrhata foraged in transitional waters at the front between Coastal and Bering Sea currents.

  17. Life stage and species identity affect whether habitat subsidies enhance or simply redistribute consumer biomass.

    PubMed

    Keller, Danielle A; Gittman, Rachel K; Bouchillon, Rachel K; Fodrie, F Joel

    2017-10-01

    Quantifying the response of mobile consumers to changes in habitat availability is essential for determining the degree to which population-level productivity is habitat limited rather than regulated by other, potentially density-independent factors. Over landscape scales, this can be explored by monitoring changes in density and foraging as habitat availability varies. As habitat availability increases, densities may: (1) decrease (unit-area production decreases; weak habitat limitation); (2) remain stable (unit-area production remains stable; habitat limitation) or (3) increase (unit-area production increases; strong habitat limitation). We tested the response of mobile estuarine consumers over 5 months to changes in habitat availability in situ by comparing densities and feeding rates on artificial reefs that were or were not adjacent to neighbouring artificial reefs or nearby natural reefs. Using either constructed or natural reefs to manipulate habitat availability, we documented threefold density decreases among juvenile stone crabs as habitat increased (i.e. weak habitat imitation). However, for adult stone crabs, density remained stable across treatments, demonstrating that habitat limitation presents a bottleneck in this species' later life history. Oyster toadfish densities also did not change with increasing habitat availability (i.e. habitat limitation), but densities of other cryptic fishes decreased as habitat availability increased (i.e. weak limitation). Feeding and abundance data suggested that some mobile fishes experience habitat limitation, or, potentially in one case, strong limitation across our habitat manipulations. These findings of significant, community-level habitat limitation provide insight into how global declines in structurally complex estuarine habitats may have reduced the fishery production of coastal ecosystems. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  18. Dynamic hypoxic zones in Lake Erie compress fish habitat, altering vulnerability to fishing gears

    USGS Publications Warehouse

    Kraus, Richard T.; Knight, Carey T.; Farmer, Troy M.; Gorman, Ann Marie; Collingsworth, Paris D.; Warren, Glenn J.; Kocovsky, Patrick M.; Conroy, Joseph D.

    2015-01-01

    Seasonal degradation of aquatic habitats from hypoxia occurs in numerous freshwater and coastal marine systems and can result in direct mortality or displacement of fish. Yet, fishery landings from these systems are frequently unresponsive to changes in the severity and extent of hypoxia, and population-scale effects have been difficult to measure except in extreme hypoxic conditions with hypoxia-sensitive species. We investigated fine-scale temporal and spatial variability in dissolved oxygen in Lake Erie as it related to fish distribution and catch efficiencies of both active (bottom trawls) and passive (trap nets) fishing gears. Temperature and dissolved oxygen loggers placed near the edge of the hypolimnion exhibited much higher than expected variability. Hypoxic episodes of variable durations were frequently punctuated by periods of normoxia, consistent with high-frequency internal waves. High-resolution interpolations of water quality and hydroacoustic surveys suggest that fish habitat is compressed during hypoxic episodes, resulting in higher fish densities near the edges of hypoxia. At fixed locations with passive commercial fishing gear, catches with the highest values occurred when bottom waters were hypoxic for intermediate proportions of time. Proximity to hypoxia explained significant variation in bottom trawl catches, with higher catch rates near the edge of hypoxia. These results emphasize how hypoxia may elevate catch rates in various types of fishing gears, leading to a lack of association between indices of hypoxia and fishery landings. Increased catch rates of fish at the edges of hypoxia have important implications for stock assessment models that assume catchability is spatially homogeneous.

  19. The effect of cod liver oil in two populations with low and high intake of dietary fish.

    PubMed

    Simonsen, T; Nordøy, A; Sjunneskog, C; Lyngmo, V

    1988-01-01

    Two subgroups of healthy males from an inland and a coastal community in Norway with a traditionally low and high consumption of dietary fish were given a dietary supplement of 20 ml cod liver oil rich in n-3 polyunsaturated fatty acids for 3 weeks. Cod liver oil induced an increase in serum high density lipoprotein (HDL) cholesterol in men from the inland. Both groups showed a prolonged primary bleeding time, whereas platelet aggregation and thromboxane A2 production induced by collagen were mainly unaffected. Platelet phospholipid fatty acids showed similar changes in both groups with a decrease in n-6 and an increase in n-3 polyunsaturated fatty acids. No changes were observed in total cholesterol or platelet phospholipid content. This study shows that dietary supplement with cod liver oil induces changes in serum lipids and platelets that may reduce the tendency to thrombosis both in subjects with a low and in those with a high intake of dietary fish. The effects were more pronounced in the subjects with a traditionally low fish consumption.

  20. Effect of stocking density and different diets on growth of Percula Clownfish, Amphiprion percula (Lacepede, 1802).

    PubMed

    Chambel, João; Severiano, Vera; Baptista, Teresa; Mendes, Susana; Pedrosa, Rui

    2015-01-01

    The aim of this study was to evaluate the influence of stocking density (0.5, 1, 2 and 3 fishL(-1)) and commercial marine fish diets (diet A, B, C and D) over four months on specific growth rate, condition factor, percentage without anomalous pigmentation (partial or total lack of white bands -miss-band) and survival of juvenile Amphiprion percula. Results showed that at 0.5 fishL(-1) densities induced the best survival (100%) and also the maximum percentage of fish without miss-band (58.33 +/-4.417%). The maximum SGR was obtained for the 0.5 fishL(-1) (0.459 ± 0.023% cm/day). However, the best condition factor (2.53 +/- 0.27) was achieved for 2 fishL(-1) densities. There were no significant differences in survival (68.9 to 84.5%), fish without miss-bands (18.03 to 26.92%) and condition factor (1.92 to 2.1) among diets during the experimental period. On the other hand, diet C (with 41% crude protein) supported the best SGR (0.485 ± 0.001% cmday(-1)). The results suggested that stocking density are critical and more relevant when compared with the different diet tested, namely on specific growth rate, condition factor, the miss-band and survival of juvenile percula clownfish. This study has particular significance with regards to anemonefishes husbandry in terms of survival and production efficiency.

  1. Consumptive effects of fish reduce wetland crayfish recruitment and drive species turnover.

    PubMed

    Kellogg, Christopher M; Dorn, Nathan J

    2012-04-01

    Predators and dry-disturbances have pronounced effects on invertebrate communities and can deterministically affect compositional turnover between discrete aquatic habitats. We examined the effect of sunfish (Lepomis spp.) predators on two native crayfish, Procambarus alleni and P. fallax, that regionally coexist in an expansive connected wetland in order to test the hypotheses that sunfish predation limits crayfish recruitment (both species) and that it disproportionately affects P. alleni, the species inhabiting temporary wetlands. In replicate vegetated wetlands (18.6 m(2)), we quantified summertime crayfish recruitment and species composition across an experimental gradient of sunfish density. Separately, we quantified effects of sunfish on crayfish growth, conducted a complimentary predation assay in mesocosms, and compared behavior of the two crayfish. Sunfish reduced P. alleni summertime recruitment by >99% over the full sunfish gradient, and most of the effect was caused by low densities of sunfish (0.22-0.43 m(-2)). P. alleni dominated wetlands with few or no sunfish, but the composition shifted towards P. fallax dominance in wetlands with abundant sunfish. P. fallax survived better than P. alleni over 40 h in smaller mesocosms stocked with warmouth. Sunfish reduced P. fallax recruitment 62% in a second wetland experiment, but growth rates of caged crayfish (both species) were unaffected by sunfish presence, suggesting predatory effects were primarily consumptive. Consistent with life histories of relatively fish-sensitive invertebrates, P. alleni engaged in more risky behaviors in the laboratory. Our results indicate that sunfish predators limit recruitment of both species, but disproportionately remove the more active and competitively dominant P. alleni. Spatially and temporally variable dry-disturbances negatively co-varying with sunfish populations allow for regional coexistence of these two crayfish and may release populations of either species from control by predatory fishes.

  2. Population dynamics in an intermittent refuge

    NASA Astrophysics Data System (ADS)

    Colombo, E. H.; Anteneodo, C.

    2016-10-01

    Population dynamics is constrained by the environment, which needs to obey certain conditions to support population growth. We consider a standard model for the evolution of a single species population density, which includes reproduction, competition for resources, and spatial spreading, while subject to an external harmful effect. The habitat is spatially heterogeneous, there existing a refuge where the population can be protected. Temporal variability is introduced by the intermittent character of the refuge. This scenario can apply to a wide range of situations, from a laboratory setting where bacteria can be protected by a blinking mask from ultraviolet radiation, to large-scale ecosystems, like a marine reserve where there can be seasonal fishing prohibitions. Using analytical and numerical tools, we investigate the asymptotic behavior of the total population as a function of the size and characteristic time scales of the refuge. We obtain expressions for the minimal size required for population survival, in the slow and fast time scale limits.

  3. Trematode Metacercariae in Freshwater Fish from Water Systems of Hantangang and Imjingang in Republic of Korea

    PubMed Central

    Sohn, Woon-Mok; Na, Byoung-Kuk; Cho, Shin-Hyeong; Lee, Soon-Won; Choi, Seung-Bong; Seok, Won-Seok

    2015-01-01

    The infection status of freshwater fish with digenetic trematode metacercariae was examined in water systems of Hantangang and Imjingang (River), the Republic of Korea. A total of 877 (594 from Hantangang and 283 from Imjingang) fishes were examined by the artificial digestion methods. Clonorchis sinensis metacercariae were detected in 7 (1.2%) fishes (in 3 spp.) from Hantangang in Cheorwon-gun, Gangwon-do, and 40 (14.1%) fishes (in 7 spp.) from Munsancheon in Paju-si, Gyeonggi-do. The average densities were 1.9 and 35.6 per fish infected, respectively. Metagonimus spp. metacercariae were detected in 312 (52.5%) and 113 (39.9%) fishes from Hantangang and Imjingang, and their average densities were 47.5 and 9.6 per fish infected, respectively. Centrocestus armatus metacercariae were found in 161 (27.1%) and 70 (24.7%) fishes from Hantangang and Imjingang, and their average number per fish infected was 694 and 82, respectively. Echinostoma spp. metacercariae were detected in 50 (8.4%) and 94 (33.2%) fishes from Hantangang and Imjingang, and their average densities were 9.6 and 23.1 per fish infected, respectively. The infection status of fishes with metacercariae of Stephanoprora spp., Diplostomum spp., Clinostomum complanatum, Metorchis orientalis, and Metorchis taiwanensis were analyzed by surveyed regions. Conclusively, it was confirmed that C. sinensis metacercariae were quite commonly detected in fishes from Munsancheon but rarely from other localities, whereas the metacercariae of other digenetic trematodes were relatively prevalent in fishes from water systems of Hantangang and Imjingang in Korea. PMID:26174822

  4. Consumption estimates of walleye stocked as fry to suppress fathead minnow populations in west-central Minnesota wetlands

    USGS Publications Warehouse

    Ward, M.C.; Willis, D.W.; Herwig, B.R.; Chipps, S.R.; Parsons, B.G.; Reed, J.R.; Hanson, M.A.

    2008-01-01

    Fisheries managers throughout the Prairie Pothole Region of Minnesota often use semi-permanent and permanent wetland basins to extensively culture walleye Sander vitreus fry. Waterfowl managers have expressed concern over this practice because of the potential influence that fish have on food resources used by waterfowl during development and migration. It is well known that native fathead minnows Pimephales promelas can have detrimental effects on macroinvertebrates, zooplankton, water clarity, epiphyton, and macrophytes in wetlands. Because walleye commonly become piscivorous as soon as mouth gape allows, walleye fry may suppress fathead minnow populations and improve wetland conditions for waterfowl. In this study, we quantify consumption estimates, specifically predation on fathead minnows, by age-0 and age-1 walleye reared in natural wetland basins. Six wetlands were stocked in mid-May 2001 and 2002 at a rate of 12,000 walleye fry ha-1. Age-0 walleye were sampled bi-weekly from mid-June through mid-September 2001. Age-0 and age-1 walleye were sampled monthly from mid-May through mid-September 2002. A generalised diet shift from zooplankton to fish to macroinvertebrates was observed in 2001, whereas diets of juvenile walleye contained primarily macroinvertebrates in 2002. Stocked walleye quickly reduced fathead minnow populations in 2001 and suppression was maintained throughout 2002. Although walleye consumed primarily macroinvertebrates once prey fish populations became suppressed, consumption estimates of invertebrates by walleye were substantially less than those documented for fathead minnow populations. Thus, stocking age-0 walleye was an effective biomanipulation tool that substantially reduced fathead minnow densities and influenced lower trophic levels in these aquatic communities. ?? 2007 Blackwell Munksgaard.

  5. Proximate composition and energy density of some North Pacific forage fishes

    USGS Publications Warehouse

    van Pelt, Thomas I.; Piatt, John F.; Lance, Brian K.; Roby, Daniel D.

    1997-01-01

    Mature pelagic forage fish species (capelin, sand lance, squid) had greater lipid concentrations than juvenile age-classes of large demersal and pelagic fish species (walleye pollock, Pacific cod, Atka mackerel, greenling, prowfish, rockfish, sablefish). Myctophids preyed on by puffins have at least twice as much lipid per gram compared to mature capelin, sand lance and squid, and an order of magnitude greater lipid concentrations than juvenile forage fish. Energy density of forage fishes was positively correlated with lipid content, and negatively correlated with water, ash-free lean dry mass (mostly protein), and ash contents.

  6. Proposed methods and endpoints for defining and assessing adverse environmental impact (AEI) on fish communities/populations in Tennessee River reservoirs.

    PubMed

    Hickman, Gary D; Brown, Mary L

    2002-06-07

    Two multimetric indices have been developed to help address fish community (reservoir fish assemblage index [RFAI]) and individual population quality (sport fishing index [SFI]) in Tennessee River reservoirs. The RFAI, with characteristics similar to the index of biotic integrity (IBI) used in stream fish community determinations, was developed to monitor the existing condition of resident fish communities. The index, which incorporates standardized electrofishing of littoral areas and experimental gill netting for limnetic bottom-dwelling species, has been used to determine residential fish community response to various anthropogenic impacts in southeastern reservoirs. The SFI is a multimetric index designed to address the quality of the fishery for individual resident sport fish species in a particular lake or reservoir[4]. The SFI incorporates measures of fish population aspects and angler catch and pressure estimates. This paper proposes 70% of the maximum RFAI score and 10% above the average SFI score for individual species as "screening" endpoints for balanced indigenous populations (BIP) or adverse environmental impact (AEI). Endpoints for these indices indicate: (1) communities/populations are obviously balanced indigenous populations (BIP) indicating no adverse environmental impact (AEI), or are "screened out"; (2) communities/populations are considered to be potentially impacted; and (3) where the resident fish community/population should be considered adversely impacted. Suggestions are also made concerning how examination of individual metric scores can help determine the source or cause of the impact.

  7. Biotic and abiotic correlates with black bullhead population characteristics in Nebraska sandhill lakes

    USGS Publications Warehouse

    Phelps, Q.E.; Ward, M.J.; Paukert, C.P.; Chipps, S.R.; Willis, D.W.

    2005-01-01

    We explored relationships among black bullhead (Ameiurus melas) population characteristics and physicochemical attributes in shallow lakes and quantified relationships between population characteristics of black bullhead and sport fishes. Lake characteristics and fisheries survey data were collected from the Sandhills region of northcentral Nebraska from May through June, 1998 and 1999. Relative abundance of black bullheads was inversely related to proportional stock density (r=-0.672, df=15, P=0.004); however, neither relative weight nor growth was significantly (P ??? 0.20) related to black bullhead relative abundance. Population characteristics of common panfish species such as bluegill (Lepomis macrochirus), green sunfish (L. cyanellus), pumpkinseed (L. gibbosus), and yellow perch (Perca flavescens) were not correlated with black bullhead relative abundance or size structure. Rather, proportional stock density (r=0.655, df=10, P=0.029) and growth (r=0.59, df=11, P=0.04) of black bullhead were positively related to relative abundance of largemouth bass (Micropterus salmoides). Similarly, black bullhead relative abundance was inversely related to largemouth bass size structure (r=-0.51, df=14, P= 0.05). Black bullhead mean length at age 3 was positively related to total phosphorous concentration (r=0.65, df=16, P=0.004), and bullhead relative abundance was positively related to shoreline development index (r=0.46, df=22, P=0.03). Population characteristics of black bullhead appeared to have little influence on panfish communities. Rather, black bullhead abundance, predator density, and lake productivity exhibited stronger relationships with black bullhead population characteristics.

  8. Quantifying the Human Impacts on Papua New Guinea Reef Fish Communities across Space and Time.

    PubMed

    Drew, Joshua A; Amatangelo, Kathryn L; Hufbauer, Ruth A

    2015-01-01

    Describing the drivers of species loss and of community change are important goals in both conservation and ecology. However, it is difficult to determine whether exploited species decline due to direct effects of harvesting or due to other environmental perturbations brought about by proximity to human populations. Here we quantify differences in species richness of coral reef fish communities along a human population gradient in Papua New Guinea to understand the relative impacts of fishing and environmental perturbation. Using data from published species lists we categorize the reef fishes as either fished or non-fished based on their body size and reports from the published literature. Species diversity for both fished and non-fished groups decreases as the size of the local human population increases, and this relationship is stronger in species that are fished. Additionally, comparison of modern and museum collections show that modern reef communities have proportionally fewer fished species relative to 19th century ones. Together these findings show that the reef fish communities of Papua New Guinea experience multiple anthropogenic stressors and that even at low human population levels targeted species experience population declines across both time and space.

  9. Hydroacoustics for the discovery and quantification of Nassau grouper ( Epinephelus striatus) spawning aggregations

    NASA Astrophysics Data System (ADS)

    Egerton, J. P.; Johnson, A. F.; Le Vay, L.; McCoy, C. M.; Semmens, B. X.; Heppell, S. A.; Turner, J. R.

    2017-06-01

    Fish spawning aggregations (FSAs) are vital life-history events that need to be monitored to determine the health of aggregating populations; this is especially true of the endangered Nassau grouper ( Epinephelus striatus). Hydroacoustics were used to locate Nassau grouper FSAs at sites on the west end of Little Cayman (LCW), and east ends of Grand Cayman (GCE) and Cayman Brac (CBE). Fish abundance and biomass at each FSA were estimated via echo integration and FSA extent. Acoustic mean fish abundance estimates (±SE) on the FSA at LCW (893 ± 459) did not differ significantly from concurrent SCUBA estimates (1150 ± 75). Mean fish densities (number 1000 m-3) were significantly higher at LCW (33.13 ± 5.62) than at the other sites (GCE: 7.01 ± 2.1, CBE: 4.61 ± 1.16). We investigate different acoustic post-processing options to obtain target strength (TS), and we examine the different TS to total length (TL) formulas available. The SCUBA surveys also provided measures of TL through the use of laser callipers allowing development of an in situ TS to TL formula for Nassau grouper at the LCW FSA. Application of this formula revealed mean fish TL was significantly higher at LCW (65.4 ± 0.7 cm) than GCE (60.7 ± 0.4 cm), but not CBE (61.1 ± 2.5 cm). Use of the empirical TS to TL formula resulted in underestimation of fish length in comparison with diver measurements, highlighting the benefits of secondary length data and deriving specific TS to TL formulas for each population. FSA location examined with reference to seasonal marine protected areas (Designated Grouper Spawning Areas) showed FSAs were partially outside these areas at GCE and very close to the boundary at CBE. As FSAs often occur at the limits of safe diving operations, hydroacoustic technology provides an alternative method to monitor and inform future management of aggregating fish species.

  10. Assessment of fish communities in a Mediterranean MPA: Can a seasonal no-take zone provide effective protection?

    NASA Astrophysics Data System (ADS)

    Dimitriadis, Charalampos; Sini, Maria; Trygonis, Vasilis; Gerovasileiou, Vasilis; Sourbès, Laurent; Koutsoubas, Drosos

    2018-07-01

    The efficacy of a Mediterranean Marine Protected Area (National Marine Park of Zakynthos - NMPZ, Ionian Sea, Greece) that implements a seasonal no-take zone as part of its management scheme was assessed using fish data collected in situ with underwater visual census. Sampling was conducted at two habitat types (Posidonia oceanica meadows and rocky reefs) that occur at sites of different protection level with respect to fisheries (high protection: seasonal no-take zone within the MPA; intermediate: zones within the MPA where small-scale fishing is allowed; none: areas outside the MPA, where all types of fishing are allowed, including trawlers, purse seiners, and recreational fishing). The data were used to examine the effects of protection level and habitat type on community parameters, trophic structure and functional diversity of fish populations that occupy the upper sublittoral zone. Overall, habitat type had a more pronounced effect than protection level on all investigated parameters. Biomass, density and number of fish species with low commercial value were higher in sites of intermediate protection, but no substantial fisheries-related ecological benefits were detected for targeted fish in the seasonal no-take zone. Conducted 8 years after the initial implementation of the seasonal no-take management scheme, our study suggests that existing fishing regulations in the NMPZ provide some measurable effects, but fall short of maintaining sufficient protection for the recovery of apex predators or other commercially important fish species. A revision of the existing zoning system to include permanent no-take zones, alongside the regulation of professional fishing and all extractive activities in the rest of the MPA, are strongly encouraged in order to enhance the effectiveness of fisheries management.

  11. Development of a foraging model framework to reliably estimate daily food consumption by young fishes

    USGS Publications Warehouse

    Deslauriers, David; Rosburg, Alex J.; Chipps, Steven R.

    2017-01-01

    We developed a foraging model for young fishes that incorporates handling and digestion rate to estimate daily food consumption. Feeding trials were used to quantify functional feeding response, satiation, and gut evacuation rate. Once parameterized, the foraging model was then applied to evaluate effects of prey type, prey density, water temperature, and fish size on daily feeding rate by age-0 (19–70 mm) pallid sturgeon (Scaphirhynchus albus). Prey consumption was positively related to prey density (for fish >30 mm) and water temperature, but negatively related to prey size and the presence of sand substrate. Model evaluation results revealed good agreement between observed estimates of daily consumption and those predicted by the model (r2 = 0.95). Model simulations showed that fish feeding on Chironomidae or Ephemeroptera larvae were able to gain mass, whereas fish feeding solely on zooplankton lost mass under most conditions. By accounting for satiation and digestive processes in addition to handling time and prey density, the model provides realistic estimates of daily food consumption that can prove useful for evaluating rearing conditions for age-0 fishes.

  12. Centrarchid assemblages in Mississippi state-operated fishing lakes

    USGS Publications Warehouse

    Olive, J.A.; Miranda, L.E.; Hubbard, W.D.

    2005-01-01

    We evaluated electrofishing catch per effort in 27 state-operated fishing lakes in Mississippi to identify patterns of centrarchid community composition and to determine whether those patterns were related to selected environmental characteristics and to artificial nutrient enrichment. Ordination with detrended correspondence analysis recognized two major axes accounting for 77% of the variability in species ordination. Axis 1 showed a distinct separation between the body sizes of various species. A notable exception was the density of small (<30 cm) largemouth bass Micropterus salmoides, which aligned with the large individuals of other centrarchid species. This pattern suggested that through predation, high densities of small largemouth bass exerted significant control over the size structure of fish communities. Axis 2 separated species of crappies Pomoxis spp., suggesting that conditions other than strong species interactions also moderated the composition of crappies in the assemblages. However, neither lake morphometry nor watershed composition exhibited a major influence over axes 1 or 2. In small, intensively managed lakes with low habitat complexity, the regulatory importance of biotic interactions may overwhelm that of abiotic factors. Nutrient enrichment influenced community structure by changing the densities of bluegill Lepomis macrochirus and largemouth bass substantially but had a minor or no effect on other species. The management techniques used in these state-operated lakes are usually targeted toward a particular species without adequately considering the other species within the community. Our results show that attention to community-level interactions could provide valuable insight into factors that affect the quality of the fishery, insight that is not available through traditional population-level assessments. ?? Copyright by the American Fisheries Society 2005.

  13. Terrestrial bird population trends on Aguiguan (Goat Island), Mariana Islands

    USGS Publications Warehouse

    Amidon, Fred; Camp, Richard J.; Marshall, Ann P.; Pratt, Thane K.; Williams, Laura; Radley, Paul; Cruz, Justine B.

    2014-01-01

    The island of Aguiguan is part of the Mariana archipelago and currently supports populations of four endemic species, including one endemic genus, Cleptornis. Bird population trends since 1982 were recently assessed on the neighbouring islands of Saipan, Tinian, and Rota indicating declines in some native species. Point-transect surveys were conducted in 2008 by the U.S. Fish and Wildlife Service to assess population densities and trends on Aguiguan. Densities for six of the nine native birds—White-throated Ground-dove Gallicolumba xanthonura, Collared Kingfisher Todiramphus chloris, Rufous Fantail Rhipidura rufifrons, Golden White-eye Cleptornis marchei, Bridled White-eye Zosterops conspicillatus and Micronesian Starling Aplonis opaca—and the non-native bird—Island Collared-dove Streptopelia bitorquata—were significantly greater in 2008 than in 1982. No differences in densities were detected among the surveys for Mariana Fruit-dove Ptilinopus roseicapilla, and Micronesian MyzomelaMyzomela rubratra. Three federally and locally listed endangered birds—Nightingale Reed-warbler Acrocephalus luscinius, Mariana Swiftlet Collocalia bartschi, and Micronesian Megapode Megapodius laperous)—were either not detected during the point-transect counts, the surveys were not appropriate for the species, or the numbers of birds detected were too small to estimate densities. The factors behind the increasing trends for some species are unknown but may be related to increased forest cover on the island since 1982. With declining trends for some native species on neighbouring islands, the increasing and stable trends on Aguiguan is good news for forest bird populations in the region, as Aguiguan populations can help support conservation efforts on other islands in the archipelago.

  14. Distribution, behavior, and condition of herbivorous fishes on coral reefs track algal resources.

    PubMed

    Tootell, Jesse S; Steele, Mark A

    2016-05-01

    Herbivore distribution can impact community structure and ecosystem function. On coral reefs, herbivores are thought to play an important role in promoting coral dominance, but how they are distributed relative to algae is not well known. Here, we evaluated whether the distribution, behavior, and condition of herbivorous fishes correlated with algal resource availability at six sites in the back reef environment of Moorea, French Polynesia. Specifically, we tested the hypotheses that increased algal turf availability would coincide with (1) increased biomass, (2) altered foraging behavior, and (3) increased energy reserves of herbivorous fishes. Fish biomass and algal cover were visually estimated along underwater transects; behavior of herbivorous fishes was quantified by observations of focal individuals; fish were collected to assess their condition; and algal turf production rates were measured on standardized tiles. The best predictor of herbivorous fish biomass was algal turf production, with fish biomass increasing with algal production. Biomass of herbivorous fishes was also negatively related to sea urchin density, suggesting competition for limited resources. Regression models including both algal turf production and urchin density explained 94 % of the variation in herbivorous fish biomass among sites spread over ~20 km. Behavioral observations of the parrotfish Chlorurus sordidus revealed that foraging area increased as algal turf cover decreased. Additionally, energy reserves increased with algal turf production, but declined with herbivorous fish density, implying that algal turf is a limited resource for this species. Our findings support the hypothesis that herbivorous fishes can spatially track algal resources on coral reefs.

  15. Density-independent survival of wild lake trout in the Apostle Islands area of Lake Superior

    USGS Publications Warehouse

    Bronte, Charles R.; Schram, Stephen T.; Selgeby, James H.; Swanson, Bruce L.

    1995-01-01

    The lake trout (Salvelinus namaycush) stock at Gull Island Shoal in western Lake Superior was one of only a few stocks of lean lake trout in the Great Lakes that survived overfishing and predation by the sea lamprey (Petromyzon marinus). Since the mid 1960s, the abundance of wild recruits measured at age 0 and the number of age-7 to -11 wild fish recruited to the fishable stock have increased. We used the Varley-Gradwell method to test for density-dependent survival between these life stages. Survival from age-0 to ages 7–11 was not affected by increasing density, which suggests that further increases in recruitment and stock size are still possible. We suggest that testing for the existence of density-dependent survival can be used to indicate when lake trout populations are rehabilitated.

  16. Effects of stream enclosures on drifting invertebrates and fish growth

    USGS Publications Warehouse

    Zimmerman, J.K.H.; Vondracek, B.

    2006-01-01

    Stream ecologists often use enclosure experiments to investigate predator-prey interactions and competition within and among fish species. The design of enclosures, manipulation of species densities, and method of replication may influence experimental results. We designed an experiment with enclosure cages (1 m2, 6-mm mesh) to examine the relative influence of fish size, density, and prey availability on growth of brown trout (Salmo trutta), brook trout (Salvelinus fontinalis), and slimy sculpin (Cottus cognatus) within enclosures in Valley Creek, Minnesota. In addition, we examined water flow and invertebrate drift entering enclosures and in open riffles to investigate whether enclosures reduced the supply of invertebrate prey. Growth of small (age-0) brook and brown trout was not influenced by fish density, but growth of larger (age-1) trout generally decreased as density increased. Sculpin growth was not related to fish size or density, but increased with mean size of invertebrates in the drift. Enclosures reduced water flow and tended to reduce invertebrate drift rate, although total drift rate (ind./min), total drift density (ind./m3), and mean size of invertebrates were not significantly different inside enclosures compared to adjacent stream riffles. Enclosures had no effect on drift rate or size of Gammarus pseudolimnaeus, the main prey item for trout and sculpin in Valley Creek. Overall, our analyses indicated that reductions of prey availability by enclosures did not influence fish growth. Trout growth may have been limited at larger sizes and densities because of increased activity costs of establishing and defending territories, whereas sculpin growth was related to availability of large prey, a factor not influenced by enclosures. ?? 2006 by The North American Benthological Society.

  17. Conifer density within lake catchments predicts fish mercury concentrations in remote subalpine lakes

    USGS Publications Warehouse

    Eagles-Smith, Collin A.; Herring, Garth; Johnson, Branden L.; Graw, Rick

    2016-01-01

    Remote high-elevation lakes represent unique environments for evaluating the bioaccumulation of atmospherically deposited mercury through freshwater food webs, as well as for evaluating the relative importance of mercury loading versus landscape influences on mercury bioaccumulation. The increase in mercury deposition to these systems over the past century, coupled with their limited exposure to direct anthropogenic disturbance make them useful indicators for estimating how changes in mercury emissions may propagate to changes in Hg bioaccumulation and ecological risk. We evaluated mercury concentrations in resident fish from 28 high-elevation, sub-alpine lakes in the Pacific Northwest region of the United States. Fish total mercury (THg) concentrations ranged from 4 to 438 ng/g wet weight, with a geometric mean concentration (±standard error) of 43 ± 2 ng/g ww. Fish THg concentrations were negatively correlated with relative condition factor, indicating that faster growing fish that are in better condition have lower THg concentrations. Across the 28 study lakes, mean THg concentrations of resident salmonid fishes varied as much as 18-fold among lakes. We used a hierarchal statistical approach to evaluate the relative importance of physiological, limnological, and catchment drivers of fish Hg concentrations. Our top statistical model explained 87% of the variability in fish THg concentrations among lakes with four key landscape and limnological variables: catchment conifer density (basal area of conifers within a lake's catchment), lake surface area, aqueous dissolved sulfate, and dissolved organic carbon. Conifer density within a lake's catchment was the most important variable explaining fish THg concentrations across lakes, with THg concentrations differing by more than 400 percent across the forest density spectrum. These results illustrate the importance of landscape characteristics in controlling mercury bioaccumulation in fish.

  18. Top–down effects of a grazing, omnivorous minnow ( Campostoma anomalum) on stream microbial communities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veach, Allison M.; Troia, Matthew; Jumpponen, Ari

    We report top–down control exerted by macroconsumers can strongly affect lower trophic levels and ecosystem processes. Studies of effects on primary consumers in streams have been focused on algae, and effects on bacteria are largely unknown. We manipulated the density of an omnivorous, grazing minnow, the central stoneroller (Campostoma anomalum), in experimental stream mesocosms (treatments with 0, 1, 2, 3, 4, 5, 6, or 7 individuals) to understand consumer effects on algal and bacterial abundance (chlorophyll a [Chl a] extraction, bacterial cell counts, biomass measurements) and bacterial diversity and community composition (via Illumina MiSeq sequencing of the V4 region ofmore » the 16S ribosomal RNA gene). Increasing C. anomalum density reduced algal biomass until density reached ~2 fish (5 g fish biomass/m 2), and higher fish densities did not affect algal biomass. Fish biomass did not affect bacterial cell counts. Biofilm organic matter decreased with increasing C. anomalum biomass. Bacterial community composition was not affected by fish biomass, but variation in community composition was correlated with shifts in bacterial abundances. Evenness of bacterial operational taxonomic units (OTUs) decreased with increasing C. anomalum biomass, indicating that bacterial communities exhibited a greater degree of OTU dominance when fish biomass was higher. These findings suggest that this grazing fish species reduces algal abundance and organic matter in low-nutrient streams until a threshold of moderate fish abundance is reached and that it reduces evenness of benthic bacterial communities but not bacterial biomass. Finally, given the importance of biofilm bacteria for ecosystem processes and the ubiquity of grazing fishes in streams, future researchers should explore both top–down and bottom–up interactions in alternative environmental contexts and with other grazing fish species.« less

  19. Top–down effects of a grazing, omnivorous minnow ( Campostoma anomalum) on stream microbial communities

    DOE PAGES

    Veach, Allison M.; Troia, Matthew; Jumpponen, Ari; ...

    2017-12-21

    We report top–down control exerted by macroconsumers can strongly affect lower trophic levels and ecosystem processes. Studies of effects on primary consumers in streams have been focused on algae, and effects on bacteria are largely unknown. We manipulated the density of an omnivorous, grazing minnow, the central stoneroller (Campostoma anomalum), in experimental stream mesocosms (treatments with 0, 1, 2, 3, 4, 5, 6, or 7 individuals) to understand consumer effects on algal and bacterial abundance (chlorophyll a [Chl a] extraction, bacterial cell counts, biomass measurements) and bacterial diversity and community composition (via Illumina MiSeq sequencing of the V4 region ofmore » the 16S ribosomal RNA gene). Increasing C. anomalum density reduced algal biomass until density reached ~2 fish (5 g fish biomass/m 2), and higher fish densities did not affect algal biomass. Fish biomass did not affect bacterial cell counts. Biofilm organic matter decreased with increasing C. anomalum biomass. Bacterial community composition was not affected by fish biomass, but variation in community composition was correlated with shifts in bacterial abundances. Evenness of bacterial operational taxonomic units (OTUs) decreased with increasing C. anomalum biomass, indicating that bacterial communities exhibited a greater degree of OTU dominance when fish biomass was higher. These findings suggest that this grazing fish species reduces algal abundance and organic matter in low-nutrient streams until a threshold of moderate fish abundance is reached and that it reduces evenness of benthic bacterial communities but not bacterial biomass. Finally, given the importance of biofilm bacteria for ecosystem processes and the ubiquity of grazing fishes in streams, future researchers should explore both top–down and bottom–up interactions in alternative environmental contexts and with other grazing fish species.« less

  20. Conifer density within lake catchments predicts fish mercury concentrations in remote subalpine lakes.

    PubMed

    Eagles-Smith, Collin A; Herring, Garth; Johnson, Branden; Graw, Rick

    2016-05-01

    Remote high-elevation lakes represent unique environments for evaluating the bioaccumulation of atmospherically deposited mercury through freshwater food webs, as well as for evaluating the relative importance of mercury loading versus landscape influences on mercury bioaccumulation. The increase in mercury deposition to these systems over the past century, coupled with their limited exposure to direct anthropogenic disturbance make them useful indicators for estimating how changes in mercury emissions may propagate to changes in Hg bioaccumulation and ecological risk. We evaluated mercury concentrations in resident fish from 28 high-elevation, sub-alpine lakes in the Pacific Northwest region of the United States. Fish total mercury (THg) concentrations ranged from 4 to 438 ng/g wet weight, with a geometric mean concentration (±standard error) of 43 ± 2 ng/g ww. Fish THg concentrations were negatively correlated with relative condition factor, indicating that faster growing fish that are in better condition have lower THg concentrations. Across the 28 study lakes, mean THg concentrations of resident salmonid fishes varied as much as 18-fold among lakes. We used a hierarchal statistical approach to evaluate the relative importance of physiological, limnological, and catchment drivers of fish Hg concentrations. Our top statistical model explained 87% of the variability in fish THg concentrations among lakes with four key landscape and limnological variables: catchment conifer density (basal area of conifers within a lake's catchment), lake surface area, aqueous dissolved sulfate, and dissolved organic carbon. Conifer density within a lake's catchment was the most important variable explaining fish THg concentrations across lakes, with THg concentrations differing by more than 400 percent across the forest density spectrum. These results illustrate the importance of landscape characteristics in controlling mercury bioaccumulation in fish. Published by Elsevier Ltd.

  1. Hematology and plasma chemistry reference intervals for cultured tilapia (Oreochromis hybrid).

    PubMed

    Hrubec, Terry C.; Cardinale, Jenifer L.; Smith, Stephen A.

    2000-01-01

    Tilapia are a commonly aquacultured fish yet little is known about their normal physiology and response to disease. In this study we determined the results of complete hematologic (n=40) and plasma biochemical profiles (n=63) in production tilapia (Oreochromis hybrids). The fish were raised in recirculating systems with a high stocking density (120 g/L), and were in the middle of a 15-month production cycle. Blood was analyzed using standard techniques, and reference intervals were determined using nonparametric methods. Non-production tilapia (n=15) from low-density tanks (4 g/L) also were sampled; the clinical chemistry results were compared to reference intervals from the fish raised in high-density tanks. Differences were noted in plasma protein, calcium and phosphorus concentrations, such that reference intervals for high-density production tilapia were not applicable to fish raised under different environmental and management conditions.

  2. Spatial structure and distribution of small pelagic fish in the northwestern Mediterranean Sea.

    PubMed

    Saraux, Claire; Fromentin, Jean-Marc; Bigot, Jean-Louis; Bourdeix, Jean-Hervé; Morfin, Marie; Roos, David; Van Beveren, Elisabeth; Bez, Nicolas

    2014-01-01

    Understanding the ecological and anthropogenic drivers of population dynamics requires detailed studies on habitat selection and spatial distribution. Although small pelagic fish aggregate in large shoals and usually exhibit important spatial structure, their dynamics in time and space remain unpredictable and challenging. In the Gulf of Lions (north-western Mediterranean), sardine and anchovy biomasses have declined over the past 5 years causing an important fishery crisis while sprat abundance rose. Applying geostatistical tools on scientific acoustic surveys conducted in the Gulf of Lions, we investigated anchovy, sardine and sprat spatial distributions and structures over 10 years. Our results show that sardines and sprats were more coastal than anchovies. The spatial structure of the three species was fairly stable over time according to variogram outputs, while year-to-year variations in kriged maps highlighted substantial changes in their location. Support for the McCall's basin hypothesis (covariation of both population density and presence area with biomass) was found only in sprats, the most variable of the three species. An innovative method to investigate species collocation at different scales revealed that globally the three species strongly overlap. Although species often co-occurred in terms of presence/absence, their biomass density differed at local scale, suggesting potential interspecific avoidance or different sensitivity to local environmental characteristics. Persistent favourable areas were finally detected, but their environmental characteristics remain to be determined.

  3. Comparison of visual survey and seining methods for estimating abundance of an endangered, benthic stream fish

    USGS Publications Warehouse

    Jordan, F.; Jelks, H.L.; Bortone, S.A.; Dorazio, R.M.

    2008-01-01

    We compared visual survey and seining methods for estimating abundance of endangered Okaloosa darters, Etheostoma okaloosae, in 12 replicate stream reaches during August 2001. For each 20-m stream reach, two divers systematically located and marked the position of darters and then a second crew of three to five people came through with a small-mesh seine and exhaustively sampled the same area. Visual surveys required little extra time to complete. Visual counts (24.2 ?? 12.0; mean ?? one SD) considerably exceeded seine captures (7.4 ?? 4.8), and counts from the two methods were uncorrelated. Visual surveys, but not seines, detected the presence of Okaloosa darters at one site with low population densities. In 2003, we performed a depletion removal study in 10 replicate stream reaches to assess the accuracy of the visual survey method. Visual surveys detected 59% of Okaloosa darters present, and visual counts and removal estimates were positively correlated. Taken together, our comparisons indicate that visual surveys more accurately and precisely estimate abundance of Okaloosa darters than seining and more reliably detect presence at low population densities. We recommend evaluation of visual survey methods when designing programs to monitor abundance of benthic fishes in clear streams, especially for threatened and endangered species that may be sensitive to handling and habitat disturbance. ?? 2007 Springer Science+Business Media, Inc.

  4. Effects of activity and energy budget balancing algorithm on laboratory performance of a fish bioenergetics model

    USGS Publications Warehouse

    Madenjian, Charles P.; David, Solomon R.; Pothoven, Steven A.

    2012-01-01

    We evaluated the performance of the Wisconsin bioenergetics model for lake trout Salvelinus namaycush that were fed ad libitum in laboratory tanks under regimes of low activity and high activity. In addition, we compared model performance under two different model algorithms: (1) balancing the lake trout energy budget on day t based on lake trout energy density on day t and (2) balancing the lake trout energy budget on day t based on lake trout energy density on day t + 1. Results indicated that the model significantly underestimated consumption for both inactive and active lake trout when algorithm 1 was used and that the degree of underestimation was similar for the two activity levels. In contrast, model performance substantially improved when using algorithm 2, as no detectable bias was found in model predictions of consumption for inactive fish and only a slight degree of overestimation was detected for active fish. The energy budget was accurately balanced by using algorithm 2 but not by using algorithm 1. Based on the results of this study, we recommend the use of algorithm 2 to estimate food consumption by fish in the field. Our study results highlight the importance of accurately accounting for changes in fish energy density when balancing the energy budget; furthermore, these results have implications for the science of evaluating fish bioenergetics model performance and for more accurate estimation of food consumption by fish in the field when fish energy density undergoes relatively rapid changes.

  5. Pelagic larval duration and settlement size of a reef fish are spatially consistent, but post-settlement growth varies at the reef scale

    NASA Astrophysics Data System (ADS)

    Leahy, Susannah M.; Russ, Garry R.; Abesamis, Rene A.

    2015-12-01

    Recent research has demonstrated that, despite a pelagic larval stage, many coral reef fishes disperse over relatively small distances, leading to well-connected populations on scales of 0-30 km. Although variation in key biological characteristics has been explored on the scale of 100-1000 s of km, it has rarely been explored at the scale relevant to actual larval dispersal and population connectivity on ecological timescales. In this study, we surveyed the habitat and collected specimens ( n = 447) of juvenile butterflyfish, Chaetodon vagabundus, at nine sites along an 80-km stretch of coastline in the central Philippines to identify variation in key life history parameters at a spatial scale relevant to population connectivity. Mean pelagic larval duration (PLD) was 24.03 d (SE = 0.16 d), and settlement size was estimated to be 20.54 mm total length (TL; SE = 0.61 mm). Both traits were spatially consistent, although this PLD is considerably shorter than that reported elsewhere. In contrast, post-settlement daily growth rates, calculated from otolith increment widths from 1 to 50 d post-settlement, varied strongly across the study region. Elevated growth rates were associated with rocky habitats that this species is known to recruit to, but were strongly negatively correlated with macroalgal cover and exhibited negative density dependence with conspecific juveniles. Larger animals had lower early (first 50 d post-settlement) growth rates than smaller animals, even after accounting for seasonal variation in growth rates. Both VBGF and Gompertz models provided good fits to post-settlement size-at-age data ( n = 447 fish), but the VBGF's estimate of asymptotic length ( L ∞ = 168 mm) was more consistent with field observations of maximum fish length. Our findings indicate that larval characteristics are consistent at the spatial scale at which populations are likely well connected, but that site-level biological differences develop post-settlement, most likely as a result of key differences in quality of recruitment habitat.

  6. The effect of predation on stunted and nonstunted white perch

    USGS Publications Warehouse

    Gosch, N.J.C.; Pierce, L.L.; Pope, K.L.

    2010-01-01

    Predation is widely regarded as a means to prevent or minimise the establishment of a stunted (high density of slow growing individuals) population. We investigated the effect of predation on two different white perch Morone americana populations (stunted and nonstunted) by examining the stomach contents of piscivorous fishes. White perch and gizzard shad dominated piscivore diets in Branched Oak Lake, whereas white perch dominated piscivore diets in Pawnee Lake. White perch consumed in the stunted population (Branched Oak Lake) were larger and older than white perch consumed in the nonstunted population (Pawnee Lake). Many of the consumed white perch in the stunted population were sexually mature and had the opportunity to spawn at least once. In contrast, all of the consumed white perch in the nonstunted population were sexually immature. Predation may have reinforced the stunting of white perch in Branched Oak Lake through removal of the largest, oldest individuals. ?? 2010 John Wiley & Sons A/S.

  7. Fishes in a changing world: learning from the past to promote sustainability of fish populations.

    PubMed

    Gordon, T A C; Harding, H R; Clever, F K; Davidson, I K; Davison, W; Montgomery, D W; Weatherhead, R C; Windsor, F M; Armstrong, J D; Bardonnet, A; Bergman, E; Britton, J R; Côté, I M; D'agostino, D; Greenberg, L A; Harborne, A R; Kahilainen, K K; Metcalfe, N B; Mills, S C; Milner, N J; Mittermayer, F H; Montorio, L; Nedelec, S L; Prokkola, J M; Rutterford, L A; Salvanes, A G V; Simpson, S D; Vainikka, A; Pinnegar, J K; Santos, E M

    2018-03-01

    Populations of fishes provide valuable services for billions of people, but face diverse and interacting threats that jeopardize their sustainability. Human population growth and intensifying resource use for food, water, energy and goods are compromising fish populations through a variety of mechanisms, including overfishing, habitat degradation and declines in water quality. The important challenges raised by these issues have been recognized and have led to considerable advances over past decades in managing and mitigating threats to fishes worldwide. In this review, we identify the major threats faced by fish populations alongside recent advances that are helping to address these issues. There are very significant efforts worldwide directed towards ensuring a sustainable future for the world's fishes and fisheries and those who rely on them. Although considerable challenges remain, by drawing attention to successful mitigation of threats to fish and fisheries we hope to provide the encouragement and direction that will allow these challenges to be overcome in the future. © 2018 The Authors. Journal of Fish Biology published by John Wiley & Sons Ltd on behalf of The Fisheries Society of the British Isles.

  8. Coexistence of behavioural types in an aquatic top predator: a response to resource limitation?

    PubMed

    Kobler, Alexander; Klefoth, Thomas; Mehner, Thomas; Arlinghaus, Robert

    2009-10-01

    Intra-population variation in behaviour unrelated to sex, size or age exists in a variety of species. The mechanisms behind behavioural diversification have only been partly understood, but density-dependent resource availability may play a crucial role. To explore the potential coexistence of different behavioural types within a natural fish population, we conducted a radio telemetry study, measuring habitat use and swimming activity patterns of pike (Esox lucius), a sit-and-wait predatory fish. Three behavioural types co-occurred in the study lake. While two types of fish only selected vegetated littoral habitats, the third type opportunistically used all habitats and increased its pelagic occurrence in response to decreasing resource biomasses. There were no differences in size, age or lifetime growth between the three behavioural types. However, habitat-opportunistic pike were substantially more active than the other two behavioural types, which is energetically costly. The identical growth rates exhibited by all behavioural types indicate that these higher activity costs of opportunistic behaviour were compensated for by increased prey consumption in the less favourable pelagic habitat resulting in approximately equal fitness of all pike groups. We conclude that behavioural diversification in habitat use and activity reduces intraspecific competition in preferred littoral habitats. This may facilitate the emergence of an ideal free distribution of pike along resource gradients.

  9. Response of fish communities to cropland density and natural environmental setting in the Eastern Highland Rim Ecoregion of the lower Tennessee River basin, Alabama and Tennessee, 1999

    USGS Publications Warehouse

    Powell, Jeffrey R.

    2003-01-01

    Response of fish communities to cropland density and natural environmental setting were evaluated at 20 streams in the Eastern Highland Rim Ecoregion of the lower Tennessee River Basin during the spring of 1999. Sites were selected to represent a gradient of cropland densities in basins draining about 30 to 100 square miles. Fish communities were sampled by using a combination of seining and electrofishing techniques. A total of 10,550 individual fish, representing 63 species and 15 families, were collected during the study and included the families Cyprinidae (minnows), 18 species; Percidae (perch and darters), 12 species; and Centrarchidae (sunfish), 12 species. Assessments of environmental characteristics, including instream and terrestrial data and land-cover data, were conducted for each site. Instream measurements, such as depth, velocity, substrate type, and embeddedness, were recorded at 3 points across 11 equidistant transects at each site. Terrestrial measurements, such as bank angle, canopy angle, and canopy closure percentage, were made along the stream bank and midchannel areas. Water-quality data collected included pH, dissolved oxygen, specific conductivity, water temperature, nutrients, and fecal-indicator bacteria. Substrate embeddedness was the only variable correlated with both cropland density and fish communities (as characterized by ordination scores and several community level metrics). Multivariate and nonparametric correlation techniques were used to evaluate fish-community responses to physical and chemical factors associated with a cropland-density gradient, where the gradient was defined as the percentage of the basin in row crops. Principal component analysis and correspondence analysis suggest that the Eastern Highland Rim Ecoregion is composed of three subgroups of sites based on inherent physical and biological differences. Data for the subgroup containing the largest number of sites were then re-analyzed, revealing that several environmental variables, such as nutrient concentrations, stream gradient, bankfull width, and substrate embeddedness, were related to cropland density; however, only a subset of those variables (substrate embeddedness, elevation, and streamflow) were related to fish communities. Results from this analysis suggest that although many water-quality and habitat variables are covariant with cropland density, most of the variables do not significantly affect fish-community composition; instead, fish communities primarily respond to the cumulative effects of sedimentation.

  10. In situ experiments to assess effects of constraints linked to caging on ecotoxicity biomarkers of the three-spined stickleback (Gasterosteus aculeatus L.).

    PubMed

    Le Guernic, Antoine; Sanchez, Wilfried; Palluel, Olivier; Bado-Nilles, Anne; Turies, Cyril; Chadili, Edith; Cavalié, Isabelle; Adam-Guillermin, Christelle; Porcher, Jean-Marc; Geffard, Alain; Betoulle, Stéphane; Gagnaire, Béatrice

    2016-04-01

    The aim of this study was to evaluate the effects of caging constraints on multiple fish biomarkers used during ecotoxicological studies (biometric data, immune and antioxidant systems, and energetic status). Two of these constraints were linked to caging: starvation and fish density in cages, and one in relation to the post-caging handling: a short transport. Three in situ experiments were conducted with three-spined sticklebacks (Gasterosteus aculeatus). The first experiment compared the effects of three densities (low, medium, and high). The second experiment compared effects of starvation in fish fed every two days with fish that were not fed. Finally comparisons between sticklebacks which have suffered a short car transport after caging and sticklebacks killed without preliminary transport were made. The lack of food had no effect on fish energetic reserves but negatively affected their condition index and their immune system. Transport and high density induced oxidative stress, defined as an overproduction of reactive oxygen species and a stimulation of the antioxidant system. These two constraints also harmed the leucocyte viability. In order not to have any impact on ecotoxicity biomarkers during in situ experiments, it is preferable to decrease fish density in cages, prevent transport before dissections, and feed fish when the caging lasts more than two weeks.

  11. Relationships among predatory fish, sea urchins and barrens in Mediterranean rocky reefs across a latitudinal gradient.

    PubMed

    Guidetti, P; Dulcić, J

    2007-03-01

    Previous studies conducted on a local scale emphasised the potential of trophic cascades in Mediterranean rocky reefs (involving predatory fish, sea urchins and macroalgae) in affecting the transition between benthic communities dominated by erected macroalgae and barrens (i.e., bare rock with partial cover of encrusting algae). Distribution patterns of fish predators of sea urchins (Diplodus sargus sargus, Diplodus vulgaris, Coris julis and Thalassoma pavo), sea urchins (Paracentrotus lividus and Arbacia lixula) and barrens, and fish predation rates upon sea urchins, were assessed in shallow (3-6m depth) sublittoral rocky reefs in the northern, central and southern sectors of the eastern Adriatic Sea, i.e., on a large spatial scale of hundreds of kilometres. No dramatic differences were observed in predatory fish density across latitude, except for a lower density of small D. sargus sargus in the northern Adriatic and an increasing density of T. pavo from north to south. P. lividus did not show any significant difference across latitude, whereas A. lixula was more abundant in the southern than in the central Adriatic. Barrens were more extended in the southern than in the central and northern sectors, and were related with sea urchin density. Fish predation upon adult sea urchins did not change on a large scale, whereas it was slightly higher in the southern sector for juveniles when predation rates of both urchins were pooled. Results show that: (1) assemblages of predatory fish and sea urchins, and barren extent change across latitude in the eastern Adriatic Sea, (2) the weak relations between predatory fish density and predation rates on urchins reveal that factors other than top-down control can be important over large scale (with the caveat that the study was conducted in fished areas) and (3) patterns of interaction among strongly interacting taxa could change on large spatial scales and the number of species involved.

  12. Behavior of steelhead fry in a laboratory stream is affected by fish density but not rearing environment

    USGS Publications Warehouse

    Riley, Stephen C.; Tatara, Christopher P.; Berejikian, Barry A.; Flagg, Thomas A.

    2009-01-01

    We quantified the aggression, feeding, dominance, position choice, and territory size of naturally reared steelhead Oncorhynchus mykiss fry stocked with two types of hatchery-reared fry (from conventional and enriched rearing environments) at two densities in experimental flumes to determine how rearing environment and fish density affect the behavior of steelhead fry. We found that fry density had a significant effect on most response variables but that rearing treatment did not. The rates of threats and attacks were positively correlated with fry density, but the overall feeding rate was negatively correlated. Naturally reared fry were dominant more often at low densities, and hatchery-reared fry were dominant more often at high densities. There were no significant effects of hatchery rearing treatment on aggression, feeding, dominance, or territory size. The only significant effect of rearing treatment was on the position of naturally reared fry, which occupied more upstream positions when stocked with conventional than with enriched hatchery-reared fry. Overall, rearing environment had relatively little influence on the behavior of steelhead fry. Our results indicate that stocking hatchery-reared steelhead fry at low densities may have effects on similar-size wild fish comparable to an equivalent increase in the density of wild fish. We suggest that releasing hatchery-reared steelhead fry as a supplementation strategy may have few direct negative ecological effects on wild fry.

  13. Effects of mining-derived metals on riffle-dwelling benthic fishes in Southeast Missouri, USA

    USGS Publications Warehouse

    Allert, A.L.; Fairchild, J.F.; Schmitt, C.J.; Besser, J.M.; Brumbaugh, W.G.; Olson, S.J.

    2009-01-01

    We studied the ecological effects of mining-derived metals on riffle-dwelling benthic fishes at 16 sites in the Viburnum Trend lead-zinc mining district of southeast Missouri. Fish community attributes were compared to watershed features and to physical and chemical variables including metal concentrations in sediment pore water and fish. Ozark sculpin (Cottus hypselurus), rainbow darter (Etheostoma caeruleum), Ozark madtom (Noturus albater), and banded sculpin (Cottus carolinae) were the most abundant fishes collected. Species richness and density of riffle-dwelling benthic fishes were negatively correlated with metal concentrations in pore water and in fish. Sculpin densities were also negatively correlated with metal concentrations in pore water and in fish, but positively correlated with distance from mines and upstream watershed area. These findings indicate that metals associated with active lead-zinc mining adversely affect riffle-dwelling benthic fishes downstream of mining areas in the Viburnum Trend. Sculpins may be useful as a sentinel species for assessing mining-related impacts on fish communities.

  14. Planktivory by alewife (Alosa pseudoharengus) and rainbow smelt (Osmerus mordax) on microcrustacean zooplankton and dreissenid (Bivalvia: Dreissenidae) veligers in southern Lake Ontario

    USGS Publications Warehouse

    Mills, Edward L.; O'Gorman, Robert; Roseman, Edward F.; Adams, Connie; Owens, Randall W.

    1995-01-01

    The objective of this study was to describe the diet of young-of-the-year and adult alewife (Alosa pseudoharengus) and rainbow smelt (Osmerus mordax) in nearshore waters coincident with the colonization of Lake Ontario by Dreissena. Laboratory experiments and field observations indicated that alewife and rainbow smelt consumed dreissenid veligers and that the veligers remained intact and identifiable in the digestive tract for several hours. Dreissenid larvae were found in field-caught alewife and rainbow smelt in August 1992, even though veliger densities were low (<0.1/L). Zooplankton dominated the diet of all fish and veliger larvae were <0.1% of the biomass of prey eaten by these fish. Density of veligers and the distribution of settled dreissenids declined from west to east along the south shore of Lake Ontario. Based on veliger consumption rates we measured and the abundance of veligers and planktivores, we conclude that planktivory by alewife and smelt in the nearshore waters of Lake Ontario did not substantially reduce the number of veligers during 1991–1993. However, our results indicate that if the density of veligers in Lake Ontario decreases, and if planktivores remain abundant, planktivory on veliger populations could be significant.

  15. Quantification of eDNA shedding rates from invasive bighead carp Hypophthalmichthys nobilis and silver carp Hypophthalmichthys molitrix

    USGS Publications Warehouse

    Klymus, Katy E.; Richter, Catherine A.; Chapman, Duane C.; Paukert, Craig P.

    2015-01-01

    Wildlife managers can more easily mitigate the effects of invasive species if action takes place before a population becomes established. Such early detection requires sensitive survey tools that can detect low numbers of individuals. Due to their high sensitivity, environmental DNA (eDNA) surveys hold promise as an early detection method for aquatic invasive species. Quantification of eDNA amounts may also provide data on species abundance and timing of an organism’s presence, allowing managers to successfully combat the spread of ecologically damaging species. To better understand the link between eDNA and an organism’s presence, it is crucial to know how eDNA is shed into the environment. Our study used quantitative PCR (qPCR) and controlled laboratory experiments to measure the amount of eDNA that two species of invasive bigheaded carps (Hypophthalmichthys nobilis and Hypophthalmichthys molitrix) shed into the water. We first measured how much eDNA a single fish sheds and the variability of these measurements. Then, in a series of manipulative lab experiments, we studied how temperature, biomass (grams of fish), and diet affect the shedding rate of eDNA by these fish. We found that eDNA amounts exhibit a positive relationship with fish biomass, and that feeding could increase the amount of eDNA shed by ten-fold, whereas water temperature did not have an effect. Our results demonstrate that quantification of eDNA may be useful for predicting carp density, as well as densities of other rare or invasive species.

  16. Age and growth of alewives in the changing pelagia of Lake Ontario, 1978-1992

    USGS Publications Warehouse

    O'Gorman, Robert; Johannsson, Ora E.; Schneider, Clifford P.

    1997-01-01

    We documented the age and growth of alewives Alosa pseudoharenqus in Lake Ontario during 1978-1992 and determined if growth was affected by intraspecific competition for epilimnetic zooplankton, lake temperature, or demand of salmonine piscivores for prey. Ages of juvenile alewives were determined from scales during 1978-1983, and ages of juvenile and adult alewives were determined from otoliths during 1984-1992. Indices of abundance for alewives were calculated from spring bottom trawl catches in 1978-1992; zooplankton density and epilimnetic temperature were monitored at two stations during 1981-1991; and salmonine demand each year during 1978-1992 was calculated with a simulation model. Although we encountered 11-year-old alewives, few fish lived longer than 7 years, and most fish in the population were younger than 6 years. Mean sizes at ages 1, 2, and 3 in spring averaged 93 mm (5.1 g), 133 mm (17 g), and 149 mm (22 g), but from age 3 to age 8, mean size increased by only 5-7 mm and 2-3 g per year. Female alewives lived longer than male alewives and were always longer than male alewives at age 4 and older. Epilimnetic temperatures were suitable for rapid growth of juvenile alewives each year. Lake temperature had the potential to affect growth of adults but adult growth was not correlated with temperature suitability indices perhaps because temperature regimes differed among lake regions and alewives were mobile. Growth of alewives was not correlated with salmonine demand for prey. Competition for zooplankton among the two youngest alewife cohorts affected growth of age-1 alewives. Zooplankton density declined sharply in 1986, and should it decline again, growth of age-1 alewives will slow, unless numbers of age-0 alewives fall. Whether growth of age-1 fish declines or numbers of age-0 fish fall, the result of another decline in zooplankton density will be a reduction in the production of alewives needed to support piscivores.

  17. The Impact of Epifaunal Predation on the Structure of Macroinfaunal Invertebrate Communities of Tidal Saltmarsh Creeks

    NASA Astrophysics Data System (ADS)

    Sardá, R.; Foreman, K.; Werme, C. E.; Valiela, I.

    1998-05-01

    The impact of epibenthic predators foraging on macroinfaunal communities was analysed in Great Sippewissett salt marsh (MA, U.S.A.) by installing experimental cages in the most productive sediments of the marsh (77 g dry weight m -2year -1). The most productive macroinfaunal species in these sediments were Marenzelleria viridis(43·1 g dry weight m -2year -1) Heteromastus filiformis(13·7 g dry weight m -2year -1) and Neanthes arenaceodonta(7·6 g dry weight m -2year -1). Macroinfaunal densities peaked in June following the spring recruitment. Density and biomass inside the cages were significantly higher during the growing season, however, density declined in July and August following the seasonal cycle observed outside cages, while biomass did not suffer this decline. The absence of epibenthic predators favored growth and accumulation of larger organisms, especially M. viridis, and included higher presence of predaceous infauna ( Glycera americana, Neanthes succinea, Neanthes virens, Eteone heteropodaand Nemerteans). At the end of the experiment, there was 22·2 g dry weight m -2more macroinfaunal biomass in the complete cages than in ambient sediments. The absence of epibenthic predators also increased secondary production; M. viridisdoubled production in the sediments inside cages compared with outside cages. The most common benthic predaceous fishes in the marsh were the killifishes, Fundulus heteroclitusand Fundulus majalis, and some seasonal invasive fishes ( Gasterosteus aculeatus, Tautoga onitis, Centropristes striatusand Pleuronectes americanus). While invasive fishes preyed mainly on benthic invertebrates and grew faster, resident fishes shifted their diets through the season. The values of macroinfaunal secondary production obtained in these sediments can support the energy requirements of the predators of the marsh; in this way the pulse of secondary production created by the macroinfaunal populations travels up the saltmarsh food web.

  18. Relationships among walleye population characteristics and genetic diversity in northern Wisconsin Lakes

    USGS Publications Warehouse

    Waterhouse, Matthew D.; Sloss, Brian L.; Isermann, Daniel A.

    2014-01-01

    The maintenance of genetic integrity is an important goal of fisheries management, yet little is known regarding the effects of management actions (e.g., stocking, harvest regulations) on the genetic diversity of many important fish species. Furthermore, relationships between population characteristics and genetic diversity remain poorly understood. We examined relationships among population demographics (abundance, recruitment, sex ratio, and mean age of the breeding population), stocking intensity, and genetic characteristics (heterozygosity, effective number of alleles, allelic richness, Wright's inbreeding coefficient, effective population size [Ne], mean d2 [a measure of inbreeding], mean relatedness, and pairwise population ΦST estimates) for 15 populations of Walleye Sander vitreus in northern Wisconsin. We also tested for potential demographic and genetic influences on Walleye body condition and early growth. Combinations of demographic variables explained 47.1–79.8% of the variation in genetic diversity. Skewed sex ratios contributed to a reduction in Ne and subsequent increases in genetic drift and relatedness among individuals within populations; these factors were correlated to reductions in allelic richness and early growth rate. Levels of inbreeding were negatively related to both age-0 abundance and mean age, suggesting Ne was influenced by recruitment and generational overlap. A negative relationship between the effective number of alleles and body condition suggests stocking affected underlying genetic diversity of recipient populations and the overall productivity of the population. These relationships may result from poor performance of stocked fish, outbreeding depression, or density-dependent factors. An isolation-by-distance pattern of genetic diversity was apparent in nonstocked populations, but was disrupted in stocked populations, suggesting that stocking affected genetic structure. Overall, demographic factors were related to genetic diversity and stocking appeared to alter allelic frequencies and the genetic structure of Walleye populations in Wisconsin, possibly resulting in disruption of local adaptation.

  19. Food webs and fishing affect parasitism of the sea urchin Eucidaris galapagensis in the Galápagos

    USGS Publications Warehouse

    Sonnenholzner, Jorge I.; Lafferty, Kevin D.; Ladah, Lydia B.

    2011-01-01

    In the Galápagos Islands, two eulimid snails parasitize the common pencil sea urchin, Eucidaris galapagensis. Past work in the Galápagos suggests that fishing reduces lobster and fish densities and, due to this relaxation of predation pressure, indirectly increases urchin densities, creating the potential for complex indirect interactions between fishing and parasitic snails. To measure indirect effects of fishing on these parasitic snails, we investigated the spatial relationships among urchins, parasitic snails, commensal crabs, and large urchin predators (hogfish and lobsters). Parasitic snails had higher densities at sites where urchins were abundant, probably due to increased resource availability. Commensal crabs that shelter under urchin spines, particularly the endemic Mithrax nodosus, preyed on the parasitic snails in aquaria, and snails were less abundant at field sites where these crabs were common. In aquaria, hogfish and lobsters readily ate crabs, but crabs were protected from predation under urchin spines, leading to a facultative mutualism between commensal crabs and urchins. In the field, fishing appeared to indirectly increase the abundance of urchins and their commensal crabs by reducing predation pressure from fish and lobsters. Fished sites had fewer snails per urchin, probably due to increased predation from commensal crabs. However, because fished sites also tended to have more urchins, there was no significant net effect of fishing on the number of snails per square meter. These results suggest that fishing can have complex indirect effects on parasites by altering food webs.

  20. Spatial structuring within a reservoir fish population: implications for management

    USGS Publications Warehouse

    Stewart, David R.; Long, James M.; Shoup, Daniel E.

    2014-01-01

    Spatial structuring in reservoir fish populations can exist because of environmental gradients, species-specific behaviour, or even localised fishing effort. The present study investigated whether white crappie exhibited evidence of improved population structure where the northern more productive half of a lake is closed to fishing to provide waterfowl hunting opportunities. Population response to angling was modelled for each substock of white crappie (north (protected) and south (unprotected) areas), the entire lake (single-stock model) and by combining simulations of the two independent substock models (additive model). White crappie in the protected area were more abundant, consisting of larger, older individuals, and exhibited a lower total annual mortality rate than in the unprotected area. Population modelling found that fishing mortality rates between 0.1 and 0.3 resulted in sustainable populations (spawning potential ratios (SPR) >0.30). The population in the unprotected area appeared to be more resilient (SPR > 0.30) at the higher fishing intensities (0.35–0.55). Considered additively, the whole-lake fishery appeared more resilient than when modelled as a single-panmictic stock. These results provided evidence of spatial structuring in reservoir fish populations, and we recommend model assessments used to guide management decisions should consider those spatial differences in other populations where they exist.

  1. Drivers of protogynous sex change differ across spatial scales.

    PubMed

    Taylor, Brett M

    2014-01-22

    The influence of social demography on sex change schedules in protogynous reef fishes is well established, yet effects across spatial scales (in particular, the magnitude of natural variation relative to size-selective fishing effects) are poorly understood. Here, I examine variation in timing of sex change for exploited parrotfishes across a range of environmental, anthropogenic and geographical factors. Results were highly dependent on spatial scale. Fishing pressure was the most influential factor determining length at sex change at the within-island scale where a wide range of anthropogenic pressure existed. Sex transition occurred at smaller sizes where fishing pressure was high. Among islands, however, differences were overwhelmingly predicted by reefal-scale structural features, a pattern evident for all species examined. For the most abundant species, Chlorurus spilurus, length at sex change increased at higher overall densities and greater female-to-male sex ratios at all islands except where targeted by fishermen; here the trend was reversed. This implies differing selective pressures on adult individuals can significantly alter sex change dynamics, highlighting the importance of social structure, demography and the selective forces structuring populations. Considerable life-history responses to exploitation were observed, but results suggest potential fishing effects on demography may be obscured by natural variation at biogeographic scales.

  2. Assessing Potential Conservation and Restoration Areas of Freshwater Fish Fauna in the Indian River Basins

    NASA Astrophysics Data System (ADS)

    Bhatt, Jay P.; Manish, Kumar; Mehta, Rajender; Pandit, Maharaj K.

    2016-05-01

    Conservation efforts globally are skewed toward terrestrial ecosystems. To date, conservation of aquatic ecosystems, in particular fish fauna, is largely neglected. We provide a country-wide assessment of Indian river ecosystems in order to identify and prioritize areas for protection and restoration of freshwater fish fauna. Using various biodiversity and anthropogenic attributes, coupled with tools of ecological modeling, we delineated areas for fish fauna conservation and restoration in the 20 major river basins of India. To do this, we used prioritization analyses and reserve selection algorithms to derive conservation value index (CVI) and vulnerability index (VI) of the river basins. CVI was estimated using endemicity, rarity, conservation value, and taxonomic singularity, while VI was estimated using a disturbance index derived from percent geographic area of the basin under human settlements, human population density, predominant land use, and total number of exotic fish species in each basin. The two indices, CVI and VI, were converted into geo-referenced maps, and each map was super-imposed onto species richness and forest cover maps, respectively. After superimposition, areas with high CVI and low VI shade intensities were delineated for conservation, while areas with high CVI and high VI shade intensities were demarcated for restoration. In view of the importance of freshwater fish for human livelihoods and consumption, and ecosystems of India's rivers, we call for urgent attention to the conservation of their fish fauna along with restoration of their degraded habitats.

  3. Assessing Potential Conservation and Restoration Areas of Freshwater Fish Fauna in the Indian River Basins.

    PubMed

    Bhatt, Jay P; Manish, Kumar; Mehta, Rajender; Pandit, Maharaj K

    2016-05-01

    Conservation efforts globally are skewed toward terrestrial ecosystems. To date, conservation of aquatic ecosystems, in particular fish fauna, is largely neglected. We provide a country-wide assessment of Indian river ecosystems in order to identify and prioritize areas for protection and restoration of freshwater fish fauna. Using various biodiversity and anthropogenic attributes, coupled with tools of ecological modeling, we delineated areas for fish fauna conservation and restoration in the 20 major river basins of India. To do this, we used prioritization analyses and reserve selection algorithms to derive conservation value index (CVI) and vulnerability index (VI) of the river basins. CVI was estimated using endemicity, rarity, conservation value, and taxonomic singularity, while VI was estimated using a disturbance index derived from percent geographic area of the basin under human settlements, human population density, predominant land use, and total number of exotic fish species in each basin. The two indices, CVI and VI, were converted into geo-referenced maps, and each map was super-imposed onto species richness and forest cover maps, respectively. After superimposition, areas with high CVI and low VI shade intensities were delineated for conservation, while areas with high CVI and high VI shade intensities were demarcated for restoration. In view of the importance of freshwater fish for human livelihoods and consumption, and ecosystems of India's rivers, we call for urgent attention to the conservation of their fish fauna along with restoration of their degraded habitats.

  4. Impact of climate change on the relict tropical fish fauna of central sahara: threat for the survival of adrar mountains fishes, mauritania.

    PubMed

    Trape, Sébastien

    2009-01-01

    Four central Sahara mountainous massifs provide habitats for relict populations of fish. In the Adrar of Mauritania all available data on the presence and distribution of fish come from pre-1960 surveys where five fish species were reported: Barbus pobeguini, Barbus macrops, Barbus mirei, Sarotherodon galilaeus, and Clarias anguillaris. Since 1970, drought has had a severe impact in the Adrar where rainfall decreased by 35%. To investigate whether the relict populations of fish have survived the continuing drought, a study was carried out from 2004 to 2008. An inventory of perennial bodies of water was drawn up using a literature review and analysis of topographical and hydrological maps. Field surveys were carried out in order to locate the bodies of water described in the literature, identify the presence of fish, determine which species were present and estimate their abundance. The thirteen sites where the presence of fish was observed in the 1950s -Ksar Torchane, Ilij, Molomhar, Agueni, Tachot, Hamdoun, Terjit, Toungad, El Berbera, Timagazine, Dâyet el Mbârek, Dâyet et-Tefla, Nkedeï- were located and surveyed. The Ksar Torchane spring -type locality and the only known locality of B. mirei- has dried up at the height of the drought in 1984, and any fish populations have since become extinct there. The Timagazine, Dâyet el Mbârek and Dâyet et-Tefla pools have become ephemeral. The Hamdoun guelta appears to be highly endangered. The fish populations at the other sites remain unchanged. Four perennial pools which are home to populations of B. pobeguini are newly recorded. The tropical relict fish populations of the Adrar mountains of Mauritania appear to be highly endangered. Of thirteen previously recorded populations, four have become extinct since the beginning of the drought period. New fish population extinctions may occur should low levels of annual rainfall be repeated.

  5. Status of lake trout rehabilitation on Six Fathom Bank and Yankee Reef in Lake Huron

    USGS Publications Warehouse

    Madenjian, Charles P.; DeSorcie, Timothy J.; McClain, Jerry R.; Woldt, Aaron P.; Holuszko, Jeffrey D.; Bowen, Charles A.

    2004-01-01

    Six Fathom Bank, an offshore reef in the central region of Lake Huron's main basin, was stocked annually with hatchery-reared lake trout Salvelinus namaycush during 1985–1998, and nearby Yankee Reef was stocked with hatchery-reared lake trout in 1992, 1997, and annually during 1999–2001. We conducted gill-net surveys during spring and fall to evaluate performances of each of the various strains of lake trout, as well as the performance of the entire lake trout population (all strains pooled), on these two offshore reefs during 1992–2000. Criteria to evaluate performance included the proportion of “wild” fish within the population, spawner density, adult survival, growth, maturity, and wounding rate by sea lamprey Petromyzon marinus. Although naturally reproduced age-0 lake trout fry were caught on Six Fathom Bank and Yankee Reef, wild lake trout did not recruit to the adult population to any detectable degree. The density of spawning lake trout on Six Fathom Bank (>100 fish/305 m of gill net) during 1995–1998 appeared to be sufficiently high to initiate a self-sustaining population. However, annual mortality estimates for all lake trout strains pooled from catch curve analyses ranged from 0.48 to 0.62, well exceeding the target level of 0.40 suggested for lake trout rehabilitation. Annual mortality rate for the Seneca Lake strain (0.34) was significantly lower than that for the Superior–Marquette (0.69) and Lewis Lake (0.69) strains. This disparity in survival among strains was probably attributable to the lower sea-lamprey-induced mortality experienced by the Seneca Lake strain. The relatively high mortality experienced by adult lake trout partly contributed to the lack of successful natural recruitment to the adult population on these offshore reefs, but other factors were probably also involved. We recommend that both stocking of the Seneca Lake strain and enhanced efforts to reduce sea lamprey abundance in Lake Huron be continued.

  6. Great Lakes prey fish populations: A cross-basin overview of status and trends in 2008

    USGS Publications Warehouse

    Gorman, Owen T.; Bunnell, David B.

    2009-01-01

    Assessments of prey fishes in the Great Lakes have been conducted annually since the 1970s by the Great Lakes Science Center, sometimes assisted by partner agencies. Prey fish assessments differ among lakes in the proportion of a lake covered, seasonal timing, bottom trawl gear used, sampling design, and the manner in which the trawl is towed (across or along bottom contours). Because each assessment is unique in one or more important aspects, a direct comparison of prey fish catches among lakes is problematic. All of the assessments, however, produce indices of abundance or biomass that can be standardized to facilitate comparisons of trends among lakes and to illustrate present status of the populations. We present indices of abundance for important prey fishes in the Great Lakes standardized to the highest value for a time series within each lake: cisco (Coregonus artedi), bloater (C. hoyi), rainbow smelt (Osmerus mordax), and alewife (Alosa pseudoharengus). We also provide indices for round goby (Neogobius melanostomus), an invasive fish presently spreading throughout the basin. Our intent is to provide a short, informal report emphasizing data presentation rather than synthesis; for this reason we intentionally avoid use of tables and cited references.For each lake, standardized relative indices for annual biomass and density estimates of important prey fishes were calculated as the fraction relative to the largest value observed in the times series. To determine whether basin-wide trends were apparent for each species, we first ranked standardized index values within each lake. When comparing ranked index values from three or more lakes, we calculated the Kendall coefficient of concordance (W), which can range from 0 (complete discordance or disagreement among trends) to 1 (complete concordance or agreement among trends). The P-value for W provides the probability of agreement across the lakes. When comparing ranked index values from two lakes, we calculated the Kendall correlation coefficient (τ), which ranges from -1 (inverse association, perfect disagreement) to 1 (direct association, perfect agreement). Here, the P-value for τ provides the probability of either inverse or direct association between the lakes. First, we present trends in relative biomass of age-1 and older prey fishes to show changes in populations within each lake. Then, we present standardized indices of numerical abundance of a single age class to show changes in relative year-class strength within each lake. Indices of year-class strength reliably reflect the magnitude of the cohort size at subsequent ages. However, because of differences in survey timing across lakes, the age class that is used for each species to index year-class strength varies across lakes and, just as surveys differ among lakes, methods for determining fish age-class differ also. For Lake Superior cisco, bloater, smelt, and Lake Michigan alewife, year- class strengths are based on aged fish and age-length keys, and for all other combinations of lakes and species, age-classes are assigned based on fish length cut-offs. Our intent with this report is to provide a cross-lakes view of population trends but not to propose reasons for those trends.

  7. Population dynamics and angler exploitation of the unique muskellunge population in Shoepack Lake, Voyageurs National Park, Minnesota

    USGS Publications Warehouse

    Frohnauer, N.K.; Pierce, C.L.; Kallemeyn, L.W.

    2007-01-01

    A unique population of muskellunge Esox masquinongy inhabits Shoepack Lake in Voyageurs National Park, Minnesota. Little is known about its status, dynamics, and angler exploitation, and there is concern for the long-term viability of this population. We used intensive sampling and mark-recapture methods to quantify abundance, survival, growth, condition, age at maturity and fecundity and angler surveys to quantify angler pressure, catch rates, and exploitation. During our study, heavy rain washed out a dam constructed by beavers Castor canadensis which regulates the water level at the lake outlet, resulting in a nearly 50% reduction in surface area. We estimated a population size of 1,120 adult fish at the beginning of the study. No immediate reduction in population size was detected in response to the loss of lake area, although there was a gradual, but significant, decline in population size over the 2-year study. Adults grew less than 50 mm per year, and relative weight (W r) averaged roughly 80. Anglers were successful in catching, on average, two fish during a full day of angling, but harvest was negligible. Shoepack Lake muskellunge exhibit much slower growth rates and lower condition, but much higher densities and angler catch per unit effort (CPUE), than other muskellunge populations. The unique nature, limited distribution, and location of this population in a national park require special consideration for management. The results of this study provide the basis for assessing the long-term viability of the Shoepack Lake muskellunge population through simulations of long-term population dynamics and genetically effective population size. ?? Copyright by the American Fisheries Society 2007.

  8. Effects of cold-water corals on fish diversity and density (European continental margin: Arctic, NE Atlantic and Mediterranean Sea): Data from three baited lander systems

    NASA Astrophysics Data System (ADS)

    Linley, T. D.; Lavaleye, M.; Maiorano, P.; Bergman, M.; Capezzuto, F.; Cousins, N. J.; D'Onghia, G.; Duineveld, G.; Shields, M. A.; Sion, L.; Tursi, A.; Priede, I. G.

    2017-11-01

    Autonomous photographic landers are a low-impact survey method for the assessment of mobile fauna in situations where methods such as trawling are not feasible or ethical. Three institutions collaborated through the CoralFISH project, each using differing lander systems, to assess the effects of cold-water corals on fish diversity and density. The Biogenic Reef Ichthyofauna Lander (BRIL, Oceanlab), Autonomous Lander for Biological Experiments (ALBEX, NIOZ) and the Marine Environment MOnitoring system (MEMO, CoNISMa) were deployed in four CoralFISH European study regions covering the Arctic, NE Atlantic and Mediterranean, namely Northern Norway (275-310 m depth), Belgica Mound Province (686-1025 m depth), the Bay of Biscay (623-936 m depth), and Santa Maria di Leuca (547-670 m depth). A total of 33 deployments were carried out in the different regions. Both the time of first arrival (Tarr) and the maximum observed number of fish (MaxN) were standardised between the different lander systems and compared between coral and reference stations as indicators of local fish density. Fish reached significantly higher MaxN at the coral stations than at the reference stations. Fish were also found to have significantly lower Tarr in the coral areas in data obtained from the BRIL and MEMO landers. All data indicated that fish abundance is higher within the coral areas. Fish species diversity was higher within the coral areas of Atlantic Ocean while in Northern Norway and Santa Maria di Leuca coral areas, diversity was similar at coral and reference stations but a single dominant species (Brosme brosme and Conger conger respectively) showed much higher density within the coral areas. Indicating that, while cold-water coral reefs have a positive effect on fish diversity and/or abundance, this effect varies across Europe's reefs.

  9. Respondent driven sampling in a biomonitoring study of refugees from Burma in Buffalo, New York who eat Great Lakes fish.

    PubMed

    Liu, Ming; McCann, Molly; Lewis-Michl, Elizabeth; Hwang, Syni-An

    2018-06-01

    Refugees from Burma who consume fish caught from local waterbodies have increased risk of exposure to environmental contaminants. We used respondent driven sampling (RDS) to sample this hard-to-reach population for the first Biomonitoring of Great Lakes Populations program. In the current study, we examined the interview data and assessed the effectiveness of RDS to sample the unique population. In 2013, we used RDS to sample 205 Burmese refugees and immigrants residing in Buffalo, New York who consumed fish caught from Great Lakes waters. RDS-adjusted population estimates of sociodemographic characteristics, residential history, fish consumption related behaviors, and awareness of fish advisories were obtained. We also examined sample homophily and equilibrium to assess how well the RDS assumptions were met in the study. Our sample was diverse with respect to sex, age, years residing in Buffalo, years lived in a refugee camp, education, employment, and fish consumption behaviors, and each of these variables reached equilibrium by the end of recruitment. Burmese refugees in Buffalo consumed Great Lakes fish throughout the year; a majority of them consumed the fish more than two times per week during summer, and about one third ate local fish more than once per week in winter. An estimated 60% of Burmese refugees in Buffalo had heard about local fish advisories. RDS has the potential to be an effective methodology for sampling refugees and immigrants in conducting biomonitoring and environmental exposure assessment. Due to high fish consumption and limited awareness and knowledge of fish advisories, some refugee and immigrant populations are more susceptible to environmental contaminants. Increased awareness on local fish advisories is needed among these populations. Published by Elsevier GmbH.

  10. ADAPTIONS OF WILD POPULATIONS OF THE ESTUARINE FISH FUNDULUS HETEROCLITUS TO PERSISTENT ENVIRONMENTAL CONTAMINANTS

    EPA Science Inventory

    Many aquatic species, including the estuarine fish Fundulus heteroclitus (mummichogs), adapt to local environmental conditions. We conducted studies to evaluate whether highly exposed populations of mummichogs adapt to toxic environmental contaminants. These fish populations are ...

  11. Influence of body condition on the population dynamics of Atlantic salmon with consideration of the potential impact of sea lice.

    PubMed

    Susdorf, R; Salama, N K G; Lusseau, D

    2017-11-21

    Atlantic salmon Salmo salar is an iconic species of high conservation and economic importance. At sea, individuals typically are subject to sea lice infestation, which can have detrimental effects on their host. Over recent decades, the body condition and marine survival in NE Atlantic stocks have generally decreased, reflected in fewer adults returning to rivers, which is partly attributable to sea lice. We developed a deterministic stage-structured population model to assess condition-mediated population dynamics resulting in changing fecundity, age at sexual maturation and marine survival rate. The model is parameterized using data from the North Esk system, north-east Scotland. Both constant and density-dependent juvenile survival rates are considered. We show that even small sea lice-mediated changes in mean body condition of MSW can cause substantial population declines, whereas 1SW condition is less influential. Density dependence alleviates the condition-mediated population effect. The resilience of the population to demographic perturbations declines as adult condition is reduced. Indirect demographic changes in salmonid life-history traits (e.g., body condition) are often considered unimportant for population trajectory. The model shows that Atlantic salmon population dynamics can be highly responsive to sea lice-mediated effects on adult body condition, thus highlighting the importance of non-lethal parasitic long-term effects. © 2017 The Authors Journal of Fish Diseases Published by John Wiley & Sons Ltd.

  12. Fish community responses to green tides in shallow estuarine and coastal areas

    NASA Astrophysics Data System (ADS)

    Le Luherne, E.; Réveillac, E.; Ponsero, A.; Sturbois, A.; Ballu, S.; Perdriau, M.; Le Pape, O.

    2016-06-01

    All over the world, numerous bays and estuarine systems that are known to shelter essential fish habitats are experiencing proliferations of green macroalgae known as green tides. Although the processes that enhance green tides in response to nutrient enrichment are well known, their consequences for ecological communities -especially for ichthyofauna- remain poorly studied. To estimate these consequences, this analysis focused on the two types of shallow systems that are experiencing green tides: sandy beaches and estuarine mudflats. In these two systems, macroalgae proliferation and fish community were surveyed along seasonal cycles at control and impacted sites that shared similar physico-chemical parameters and sediment structure. To analyse the consequences of green tides on the fish community, a Before-After Control-Impact approach was used. This approach reveals no difference between fish communities at the control and impacted sites before the macroalgal bloom. Then, it underlines an influence of green tides on the fish community, and this influence varies according to the composition, density and duration of the macroalgal bloom. Indeed, when intertidal systems experienced short proliferation and/or weak density, green tides did not seem to impact the fish community. However, when green macroalgae proliferated in large quantities and/or when the proliferation lasted for long periods, the fish community was significantly affected. These modifications in the fish community led to a significant decrease in fish species diversity and density until fish disappeared from impacted sites at high proliferations. Furthermore, the response of fish species to green tides differed according to their functional guilds. Negative consequences for benthic and marine juvenile fish species were beginning at low proliferations, whereas for pelagic fish species they occurred only at high proliferations. Thus, green tides significantly affect fish habitat suitability because they lead to changes in the composition of the fish community and eventually to the local disappearance of fish at high proliferations.

  13. Tooth microwear formation rate in Gasterosteus aculeatus.

    PubMed

    Baines, D C; Purnell, M A; Hart, P J B

    2014-05-01

    Tooth microwear feature densities were significantly increased in a population of laboratory-reared three-spined stickleback Gasterosteus aculeatus in four days, after they were transferred from a limnetic feeding regime to a benthic feeding regime. These results show that even in aquatic vertebrates with non-occluding teeth, changes in feeding can cause changes in tooth microwear in just a few days, as in mammals. © 2014 The Authors. Journal of Fish Biology published by John Wiley & Sons Ltd on behalf of The Fisheries Society of the British Isles.

  14. Differences in electrosensory anatomy and social behavior in an area of sympatry between two species of mormyrid electric fishes.

    PubMed

    Carlson, Bruce A

    2016-01-01

    Sensory systems play a key role in social behavior by mediating the detection and analysis of communication signals. In mormyrid fishes, electric signals are processed within a dedicated sensory pathway, providing a unique opportunity to relate sensory biology to social behavior. Evolutionary changes within this pathway led to new perceptual abilities that have been linked to increased rates of signal evolution and species diversification in a lineage called 'clade A'. Previous field observations suggest that clade-A species tend to be solitary and territorial, whereas non-clade-A species tend to be clustered in high densities suggestive of schooling or shoaling. To explore behavioral differences between species in these lineages in greater detail, I studied population densities, social interactions, and electric signaling in two mormyrid species, Gnathonemus victoriae (clade A) and Petrocephalus degeni (non-clade A), from Lwamunda Swamp, Uganda. Petrocephalus degeni was found at higher population densities, but intraspecific diversity in electric signal waveform was greater in G. victoriae. In the laboratory, G. victoriae exhibited strong shelter-seeking behavior and competition for shelter, whereas P. degeni were more likely to abandon shelter in the presence of conspecifics as well as electric mimics of signaling conspecifics. In other words, P. degeni exhibited social affiliation whereas G. victoriae exhibited social competition. Further, P. degeni showed correlated electric signaling behavior whereas G. victoriae showed anti-correlated signaling behavior. These findings extend previous reports of social spacing, territoriality, and habitat preference among mormyrid species, suggesting that evolutionary divergence in electrosensory processing relates to differences in social behavior. © 2016. Published by The Company of Biologists Ltd.

  15. Differential susceptibility in steelhead trout populations to an emergent MD strain of infectious hematopoietic necrosis virus

    USGS Publications Warehouse

    Breyta, R.; Jones, Amelia; Kurath, Gael

    2014-01-01

    A significant emergence of trout-adapted MD subgroup infectious hematopoietic necrosis virus (IHNV) began in the coastal region of Washington State, USA, in 2007. This emergence event lasted until 2011 and caused both asymptomatic adult fish infection and symptomatic epidemic disease and mortality in juvenile fish. Incidence of virus during this emergence demonstrated a heterogeneous distribution among rivers of the coastal region, leaving fish populations of some rivers apparently untouched while others suffered significant and recurrent infection and mortality (Breyta et. al. 2013; Dis Aquat Org 104:179-195). In this study, we examined the possible contribution of variations in susceptibility of fish populations, age-related resistance, and virus virulence to the observed landscape heterogeneity. We found that the most significant variable was host susceptibility: by controlled experimental challenge studies steelhead trout populations with no history of IHNV infection were 1 to 3 orders of magnitude more sensitive than a fish population with a long history of IHNV infection. In addition, 2 fish populations from the same river, which descended relatively recently from a common ancestral population, demonstrated 1 to 2 orders of magnitude difference in susceptibility. Fish age-related development of resistance was most evident in the more susceptible of 2 related fish populations. Finally, the strain of virus involved in the 2007 coastal Washington emergence had high virulence but was within the range of other known M group viruses tested. These results suggest that one major driver of landscape heterogeneity in the 2007 coastal Washington IHNV emergence was variation in fish population susceptibility and that this trait may have a heritable component.

  16. Effects of dredging operations on the demersal fish fauna of a South American tropical-subtropical transition estuary.

    PubMed

    Barletta, M; Cysneiros, F J A; Lima, A R A

    2016-07-01

    Changes in the environment and in the composition of fish assemblages in the Paranaguá Estuary (South Brazil) were assessed by comparisons made before, during and after dredging operations, in the same months and areas studied in the previous year. Interactions between year and month were observed for salinity. During the dredging year fish total density was 2 individuals m(-2) and with a total biomass of 104 g m(-2) (among 31 species captured). For the same period the year before, 0·3 individuals m(-2) and 3 g m(-2) were captured (38 species). The number of species showed significant time v. month interactions, assuming that fish species composition varied for both year and month. Total mean density and biomass showed significant differences for interaction time v. month, and density and biomass in the dredging month September 2001 in the main channel were scientifically different from other months. Interaction times v. area were significant for Cathorops spixii (increased biomass), Aspistor luniscutis (increased density), Menticirrhus americanus (decreased biomass) and Cynoscion leiarchus (decreased density and biomass). This suggests that during the dredging process there is a change in the structure of the demersal fish assemblage. The impact (damage and mortality) induced by dredging on the macrobenthic animals along the dredge path attracted adults of C. spixii that reached densities 10 times greater than in the year before. On the other hand, sciaenid species practically disappeared. To contribute to the conservation of the estuarine fish fauna, and maintain fisheries production of the Paranaguá Estuary and surrounding areas, it is recommended that, dredging should be done from the late rainy season to the early dry season. Decisions must take into account the ecological cycles of socio-economically important fish species and prioritize the safe disposal of dredged spoils. © 2016 The Fisheries Society of the British Isles.

  17. Changes in fish communities following concrete lining of the Coachella Canal, southeastern California

    USGS Publications Warehouse

    Mueller, Gordon; Bryant, Gary; Burke, Tom

    1989-01-01

    The fish community of a 3.4-km section of the concrete-lined Coachella Canal, Imperial County, California, was comprised of six species, with an absolute density of 0.039 fish/m2 and estimated biomass of 4.367 g/m2. When compared to studies conducted in the canal prior to lining, or in other unlined areas, these data suggest reductions in species diversity (-14.3 to -62.5%), density (+8.9 to =83.8%), and biomass (-30.1 to -91.2%). These data support speculations that numbers of river-adapted fish would remain relatively high in a concrete-lined canal, but lentic and cover-oriented fishes such as centrarchis would decline.

  18. Synchronous cycling of Ichthyophoniasis with Chinook salmon density revealed during the annual Yukon River spawning migration

    USGS Publications Warehouse

    Zuray, Stanley; Kocan, Richard; Hershberger, Paul

    2012-01-01

    Populations of Chinook salmon Oncorhynchus tshawytscha in the Yukon River declined by more than 57% between 2003 and 2010, probably the result of a combination of anthropogenic and environmental factors. One possible contributor to this decline is Ichthyophonus, a mesomycetozoan parasite that has previously been implicated in significant losses of fish, including Chinook salmon. A multiyear epidemiological study of ichthyophoniasis in the Yukon River revealed that disease prevalence and Chinook salmon population abundance increased and decreased simultaneously (i.e., were concordant) from 1999 to 2010. The two values rose and fell synchronously 91% of the time for female Chinook salmon and 82% of the time for males; however, there was no significant correlation between Ichthyophonus prevalence and population abundance. This synchronicity might be explained by a single factor, such as a prey item that is critical to Chinook salmon survival as well as a source of Ichthyophonus infection. The host–parasite relationship between Ichthyophonus and migrating Chinook salmon from 2004 to 2010 was similar to that reported for the previous 5 years. During 2004–2010, overall disease prevalence was significantly higher among females (21%) than among males (8%), increased linearly with fish length for both males and females, and increased in both sexes as the fish progressed upriver. These regularly occurring features of host–parasite dynamics confirm a stable base of transmission for Ichthyophonus. However, from 2003 to 2010, disease prevalence decreased from 30% to just 8% in males and from 45% to 9% in females, paralleling a similar decline in Chinook salmon abundance during the same period. These findings may help clarify questions regarding the complex host–parasite dynamics that occur in marine species such as herrings Clupea spp., which have less well-defined population structures.

  19. Yakima/Klickitat Fisheries Project: Short Project Overview of Spring Chinook Salmon Supplementation in the Upper Yakima Basin; Washington Department of Fish and Wildlife Policy/Technical Involvement and Planning, 2004-2005 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fast, David E.; Bosch, William J.

    2005-09-01

    The Yakima/Klickitat Fisheries Project (YKFP) is on schedule to ascertain whether new artificial production techniques can be used to increase harvest and natural production of spring Chinook salmon while maintaining the long-term genetic fitness of the fish population being supplemented and keeping adverse genetic and ecological interactions with non-target species or stocks within acceptable limits. The Cle Elum Supplementation and Research Facility (CESRF) collected its first spring chinook brood stock in 1997, released its first fish in 1999, and age-4 adults have been returning since 2001. In these initial years of CESRF operation, recruitment of hatchery origin fish has exceededmore » that of fish spawning in the natural environment, but early indications are that hatchery origin fish are not as successful at spawning in the natural environment as natural origin fish when competition is relatively high. When competition is reduced, hatchery fish produced similar numbers of progeny as their wild counterparts. Most demographic variables are similar between natural and hatchery origin fish, however hatchery origin fish were smaller-at-age than natural origin fish. Long-term fitness of the target population is being evaluated by a large-scale test of domestication. Slight changes in predation vulnerability and competitive dominance, caused by domestication, were documented. Distribution of spawners has increased as a result of acclimation site location and salmon homing fidelity. Semi-natural rearing and predator avoidance training have not resulted in significant increases in survival of hatchery fish. However, growth manipulations in the hatchery appear to be reducing the number of precocious males produced by the YKFP and consequently increasing the number of migrants. Genetic impacts to non-target populations appear to be low because of the low stray rates of YKFP fish. Ecological impacts to valued non-target taxa were within containment objectives or impacts that were outside of containment objectives were not caused by supplementation activities. Some fish and bird piscivores have been estimated to consume large numbers of salmonids in the Yakima Basin. Natural production of Chinook salmon in the upper Yakima Basin appears to be density dependent under current conditions and may constrain the benefits of supplementation. However, such constraints (if they exist) could be countered by YKFP habitat actions that have resulted in: the protection of over 900 acres of prime floodplain habitat, reconnection and screening of over 15 miles of tributary habitat, substantial water savings through irrigation improvements, and restoration of over 80 acres of floodplain and side channels. Harvest opportunities for tribal and non-tribal fishers have also been enhanced, but are variable among years. The YKFP is still in the early stages of evaluation, and as such the data and findings presented in this report should be considered preliminary until further data is collected and analyses completed. Nonetheless, the YKFP has produced significant findings, and produced methodologies that can be used to evaluate and improve supplementation. A summary table of topical area performance is presented.« less

  20. Parasitism and a shortage of refuges jointly mediate the strength of density dependence in a reef fish.

    PubMed

    Forrester, Graham E; Finley, Rachel J

    2006-05-01

    Various predator-prey, host-pathogen, and competitive interactions can combine to cause density dependence in population growth. Despite this possibility, most empirical tests for density-dependent interactions have focused on single mechanisms. Here we tested the hypothesis that two mechanisms of density dependence, parasitism and a shortage of refuges, jointly influence the strength of density-dependent mortality. We used mark-recapture analysis to estimate mortality of the host species, the bridled goby (Coryphopterus glaucofraenum). Sixty-three marked gobies were infected with a copepod gill parasite (Pharodes tortugensis), and 188 were uninfected. We used the spatial scale at which gobies were clustered naturally (approximately 4 m2) as an ecologically relevant neighborhood and measured goby density and the availability of refuges from predators within each goby's neighborhood. Goby survival generally declined with increasing density, and this decline was steeper for gobies with access to few refuges than for gobies in neighborhoods where refuges were common. The negative effects of high density and refuge shortage were also more severe for parasitized gobies than for gobies free of parasites. This parasite has characteristics typical of emerging diseases and appears to have altered the strength of a preexisting density-dependent interaction.

  1. Effects of a test flood on fishes of the Colorado River in Grand Canyon, Arizona

    USGS Publications Warehouse

    Valdez, R.A.; Hoffnagle, T.L.; McIvor, C.C.; McKinney, T.; Leibfried, W.C.

    2001-01-01

    A beach/habitat-building flow (i.e., test flood) of 1274 m3/s, released from Glen Canyon Dam down the Colorado River through Grand Canyon, had little effect on distribution, abundance, or movement of native fishes, and only short-term effects on densities of some nonnative species Shoreline and backwater catch rates of native fishes, including juvenile humpback chub (Gila cypha), flannelmouth suckers (Catostomus latipinnis), and bluehead suckers (C. discobolus), and all ages of speckled dace (Rhinichthys osculus), were not significantly different before and after the flood. Annual spring spawning migrations of flannelmouth suckers into the Paria River and endangered humpback chub into the Little Colorado River (LCR) took place during and after the flood, indicating no impediment to fish migrations. Pre-spawning adults staged in large slack water pools formed at the mouths of these tributaries during the flood. Net movement and habitat used by nine radio-tagged adult humpback chub during the flood were not significantly different from prior observations. Diet composition of adult humpback chub varied, but total biomass did not differ significantly before, during, and after the flood, indicating opportunistic feeding for a larger array of available food items displaced by the flood. Numbers of nonnative rainbow trout (Oncorhynchus mykiss) <152 mm total length decreased by ???8% in electrofishing samples from the dam tailwaters (0-25 km downstream of the dam) during the flood. Increased catch rates in the vicinity of the LCR (125 km downstream of the dam) and Hell's Hollow (314 km downstream of the dam) suggest that these young trout were displaced downstream by the flood, although displacement distance was unknown since some fish could have originated from local populations associated with intervening tributaries. Abundance, catch rate, body condition, and diet of adult rainbow trout in the dam tailwaters were not significantly affected by the flood, and the flood did not detrimentally affect spawning success; catch of young-of-year increased by 20% in summer following the flood. Post-flood catch rates of nonnative fathead minnows (Pimephales promelas) in shorelines and backwaters, and plains killifish (Fundulus zebrinus) in backwaters decreased in the vicinity of the LCR, and fathead minnows increased near Hell's Hollow, suggesting that the flood displaced this nonnative species. Densities of rainbow trout and fathead minnows recovered to pre-flood levels eight months after the flood by reinvasion from tributaries and reproduction in backwaters. We concluded that the flood was of insufficient magnitude to substantially reduce populations of nonnative fishes, but that similar managed floods can disadvantage alien predators and competitors and enhance survival of native fishes.

  2. Stable isotopes and mercury in a model estuarine fish: multibasin comparisons with water quality, community structure, and available prey base.

    PubMed

    Adams, Douglas H; Paperno, Richard

    2012-01-01

    Stable-isotope ratios (δ(13)C and δ(15)N) and mercury in a model predator, and associated prey community assessments were used to make inferences regarding food web relationships and how these relationships are influenced by habitat variability and anthropogenic factors. Although interconnected, the three major basins of the Indian River Lagoon system on the Atlantic coast of Florida comprise noticeably different available habitat types with spatially distinct faunal communities and available prey for spotted seatrout, Cynoscion nebulosus, a model predatory fish species. Water quality, degree of urbanization, human population density, and levels of nitrogen enrichment clearly differ between these representative estuarine basins. The differences can influence feeding ecology and therefore result in different mercury concentrations and different stable-isotope signatures of spotted seatrout between basins. Mercury concentrations in spotted seatrout were greatest in Mosquito Lagoon (ML) and least in the Indian River Lagoon proper (IRL), although concentrations were low for all basins. Spotted seatrout from IRL were carbon-depleted and nitrogen-enriched compared with those from the other basins; this suggests either that the fish's primary source of carbon in IRL is an algae- or phytoplankton-based food web or that the pathway through the food web is shorter there. The δ(15)N values of IRL spotted seatrout were greater than those in the Banana River Lagoon or ML, suggesting slightly different trophic positioning of fish in these basins. The greater δ(15)N values in IRL spotted seatrout may also reflect the greater human population density and resultant anthropogenic inputs (e.g., observed higher total nitrogen levels) in IRL compared with the other more pristine basins examined. Understanding species' responses to broad-scale habitat heterogeneity in estuaries and knowing basin-specific differences in stable isotopes, mercury, prey communities, and comprehensive food web relationships will be useful in the future for long-term monitoring of impacts of anthropogenic disturbances and of recovery from restoration efforts. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Trypanosomatids (Protozoa: Kinetoplastida) in three species of Armored Catfish from Mogi-Guaçu river, Pirassununga, São Paulo, Brazil.

    PubMed

    Molina, Julia Pereira; Madi, Rubens Riscala; Solferini, Vera Nisaka; Ceccarelli, Paulo Sérgio; Pinheiro, Hildete Prisco; Ueta, Marlene Tiduko

    2016-06-07

    Trypanosome infections have been reported in several species of fish, in majority of cases described on the basis of morphological characteristics. Trypanosomes in fish are heteroxenous and transmitted by hirudineans. This study aims to evaluate the prevalence and density of infections by Trypanosoma sp. in blood from three species of catfish, Hypostomus regani, H. strigaticeps, H. albopunctatus, from the Mogi Guaçu River, Pirassununga, São Paulo, Brazil. Further, this study intends to characterize the Trypanosoma specimens found in the blood of these fish by morphological and molecular techniques. The trypanosomes overall prevalence observed was 47.6% with a general average density of 0.75 parasites/µl of blood. Hypostomus regani and Hypostomus strigaticeps showed a significant difference in prevalence. The average densities of parasites were not significantly different among the three fish species. Similar findings were observed for the monthly variations in densities. The parasites found in the three species of catfish studied showed similar morphological characteristics. The morphological data and the statistical analyses used in this study didn't show the formation of groups. The analyses provided evidence of the presence of pleomorphisms in the trypanosomes found in the three studied fish.

  4. Metagenomics analysis of gut microbiota and immune modulation in zebrafish (Danio rerio) fed chitosan silver nanocomposites.

    PubMed

    Udayangani, R M C; Dananjaya, S H S; Nikapitiya, Chamilani; Heo, Gang-Joon; Lee, Jehee; De Zoysa, Mahanama

    2017-07-01

    In this study, we evaluated the effects of chitosan silver nanocomposites (CAgNCs) supplemented diet on gut microbial community, goblet cell density, gut morphometry and mRNA expression of immune related and mucin encoding genes in zebrafish. Zebrafish gut microbiota analysis results clearly showed the reduction of phylum Proteobacteria. However, they remained as the major bacterial group in gut with CAgNCs supplemented diet, while the abundance of phylum Fusobacteria and phylum Bacteroidetes were increased notably compared to the control diet fed fish. Total goblet cell density was significantly increased at 30 and 60 days in CAgNCs supplemented group (1.6-fold and 2.0-fold, respectively) compared to the control group indicating enhanced immune function in the gut. CAgNCs supplementation has also increased villi height significantly in the zebrafish mid gut at the end of 30 (95.5 ± 3.7 μm) and 60 days (144.40 ± 4.8 μm) compared to control diet fed fish at 30 (86.90 ± 3.7 μm) and 60 days (96.2 ± 4.8 μm). Furthermore, mRNA expression of immune related genes such as TNF-α (6.2-fold), IL-10 (5.0-fold), IL-12 (9.2-fold), IRF-1 (5.2-fold), Defbl1 (3-fold), Lyz (5.1-fold) and mucin encoding genes were significantly upregulated (above 2-fold) compared to that of control group. The current study revealed that CAgNCs supplemented diet engenders promising effects on fish gut immunity by enhancing beneficial microbial populations, goblet cell density, villi length, and transcriptional regulation of immune related and mucin encoding genes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Spatial and temporal consumption dynamics of trout in catch-and-release areas in Arkansas tailwaters

    USGS Publications Warehouse

    Flinders, John M.; Magoulick, Daniel D.

    2017-01-01

    Restrictive angling regulations in tailwater trout fisheries may be unsuccessful if food availability limits energy for fish to grow. We examined spatial and temporal variation in energy intake and growth in populations of Brown Trout Salmo trutta and Rainbow Trout Oncorhynchus mykiss within three catch-and-release (C-R) areas in Arkansas tailwaters to evaluate food availability compared with consumption. Based on bioenergetic simulations, Rainbow Trout fed at submaintenance levels in both size-classes (≤400 mm TL, >400 mm TL) throughout most seasons. A particular bottleneck in food availability occurred in the winter for Rainbow Trout when the daily ration was substantially below the minimum required for maintenance, despite reduced metabolic costs associated with lower water temperatures. Rainbow Trout growth rates followed a similar pattern to consumption with negative growth rates during the winter periods. All three size-classes (<250 mm TL, 250–400 mm TL, >400 mm TL) of Brown Trout experienced high growth rates and limited temporal bottlenecks in food availability. We observed higher mean densities for Rainbow Trout (47–342 fish/ha) than for Brown Trout (3–84 fish/ha) in all C-R areas. Lower densities of Brown Trout coupled with an ontogenetic shift towards piscivory may have allowed for higher growth rates and sufficient consumption rates to meet energetic demands. Brown Trout at current densities were more effective in maintaining adequate growth rates and larger sizes in C-R areas than were Rainbow Trout. Bioenergetic simulations suggest that reducing stocking levels of Rainbow Trout in the tailwaters may be necessary in order to achieve increased catch rates of larger trout in the C-R areas.

  6. THE APPLICABILITY OF EMAP'S WESTERN PILOT TO STATE AND REGIONAL QUESTIONS OF FISH ASSEMBLAGE STRUCTURE

    EPA Science Inventory

    What percentage of the West's 209,381 kilometers of streams and rivers contain fish? What proportion contains only native fish? Do aliens dominate the fish fauna of streams in any region or state? What are the ranges and relative densities of the most common fish, native and al...

  7. PROJECTING THE RESPONSE OF FISH POPULATION GROWTH RATE TO SEDIMENT EXPOSURE

    EPA Science Inventory

    Sediment is one of the main stressors on stream fish populations in Georgia. Here, a quantitative approach relating sediment exposure to stream fish population dynamics is presented, where equations characterize sediment exposure to vital rates, then vital rates are used in a mat...

  8. Climate change effects on North American inland fish populations and assemblages

    USGS Publications Warehouse

    Lynch, Abigail J.; Myers, Bonnie; Chu, Cindy; Eby, Lisa A.; Falke, Jeffrey A.; Kovach, Ryan P.; Krabbenhoft, Trevor J.; Kwak, Thomas J.; Lyons, John; Paukert, Craig P.; Whitney, James E.

    2016-01-01

    Climate is a critical driver of many fish populations, assemblages, and aquatic communities. However, direct observational studies of climate change impacts on North American inland fishes are rare. In this synthesis, we (1) summarize climate trends that may influence North American inland fish populations and assemblages, (2) compile 31 peer-reviewed studies of documented climate change effects on North American inland fish populations and assemblages, and (3) highlight four case studies representing a variety of observed responses ranging from warmwater systems in the southwestern and southeastern United States to coldwater systems along the Pacific Coast and Canadian Shield. We conclude by identifying key data gaps and research needs to inform adaptive, ecosystem-based approaches to managing North American inland fishes and fisheries in a changing climate.

  9. Benthic grazing in a eutrophic river: cascading effects of zoobenthivorous fish mask direct effects of herbivorous fish

    PubMed Central

    Cob Chaves, Daniel; Richter, Marc; Mewes, Daniela; Schneider, Jörg; Hübner, Dirk; Winkelmann, Carola

    2018-01-01

    Benthic grazing strongly controls periphyton biomass. The question therefore arises whether benthic grazing could be used as a tool to reduce excessive growth of periphyton in nutrient-enriched rivers. Although benthic invertebrate grazers reduce the growth of periphyton, this is highly context dependent. Here we assessed whether the only obligate herbivorous fish in European rivers, the common nase (Chondrostoma nasus L.), is able to reduce periphyton biomass in a eutrophic river. We conducted three consecutive in situ experiments at low, intermediate and high densities of nase in the river using standard tiles on the river bottom naturally covered with periphyton that were accessible to fish and tiles that excluded fish foraging with electric exclosures. The biomass of benthic invertebrate grazers was very low relative to nase. We hypothesised that nase would reduce periphyton biomass on accessible tiles and therefore expected higher periphyton biomass on the exclosure tiles, at least at intermediate and high densities of nase in the river. Contrary to our expectation, the impact of fish grazing was low even at high fish density, as judged by the significantly lower chlorophyll a concentration on exclosure tiles even though the ash-free dry mass on accessible and exclosure tiles did not differ. The lower chlorophyll a concentrations on exclosure tiles might be explained by a higher biomass of invertebrate grazers on the exclosure tiles, which would indicate that the effect of invertebrate grazers was stronger than that of herbivorous fish grazers. The high biomass of invertebrate grazers on exclosure tiles likely arose from the exclusion of zoobenthivorous fish, which occur in the river at high densities. The results of our small-scale experiments suggested that cascading top-down effects of zoobenthivorous fish have a higher impact on periphyton biomass than direct effects of herbivorous nase. PMID:29473006

  10. [Species composition, diversity and density of small fishes in two different habitats in Niushan Lake].

    PubMed

    Ye, Shao-Wen; Li, Zhong-Jie; Cao, Wen-Xuan

    2007-07-01

    This paper studied the spatial distribution of small fishes in a shallow macrophytic lake, Niushan Lake in spring 2003, and its relations with habitat heterogeneity. Based on the macrophyte cover condition, distance from lake shore and water depth, two representative habitat types in the lake were selected. Habitat A was near the shore with dense submersed macrophyte, while habitat B was far from the shore with sparse submersed macrophyte. Small fishes were sampled quantitatively by block net (180 m2), and their densities within the net area were estimated by multiple mark-recapture or Zippin's removal method. The results showed that there were some differences in species composition, biodiversity measurement, and estimated density of small fishes between the two habitats: 1) the catches in habitat A consisted of 14 small fish species from 5 families, among which, benthopelagic species Rhodeus ocellatus, Paracheilognathus imberbis and Pseudorasbora parva were considered as dominant species, while those in habitat B consisted of 9 small fish species from 3 families, among which, bottom species Rhinogobius giurinus and Micropercops swinhonis were dominant; 2) the Bray-Curtis index between the two small fish communities was 0.222, reflecting their low structure similarity, and no significant difference was observed between their rank/ abundance distributions, both of which belonged to log series distribution; 3) the total density of 9 major species in habitat A was 8.71 ind x m(-2), while that of 5 major species in habitat B was only 3.54 ind x m(-2). The fact that the spatial distribution of the small fishes differed with habitats might be related to their habitat need for escaping predators, feeding, and breeding, and thus, aquatic macrophyte habitat should be of significance in the rational exploitation of small fish resources as well as the conservation of fish resource diversity.

  11. Lean fish consumption is associated with lower risk of metabolic syndrome: a Norwegian cross sectional study.

    PubMed

    Tørris, C; Molin, M; Cvancarova, M Småstuen

    2016-04-19

    Fish consumption may have a role in reducing the prevalence of metabolic syndrome (MetS). The aim of this study was to identify associations between fish consumption and MetS and its components, especially regarding differences concerning consumption of fatty and lean fish. This cross sectional study uses data from the Tromsø 6 survey (2007-08), where a sample of 12 981 adults, aged 30-87 years (47 % men) from the Norwegian general population was included. Fish consumption was assessed using food frequency questionnaires (FFQ). Blood sample assessments, anthropometric and blood pressure measurements were carried out according to standard protocols. MetS was defined using the Joint Interim Societies (JIS) definition. All tests were two-sided. Analyses were performed using IBM SPSS Statistics 22 (Pearson's correlation, Chi-Square tests, analysis of variance (ANOVA), linear and logistic regression models). Mean age was 57.5, and the prevalence of MetS was 22.6 %. Fish consumption once a week or more was associated with lower risk of having MetS among men (OR 0.85, CI 95 % 0.74 to 0.98, P = 0.03). In the adjusted models, lean fish consumption was associated with a decreased risk of having MetS, whereas fatty fish consumption was not associated with a decreased risk of having MetS. Both an increased fatty and lean fish consumption (0-1 times per month, 2-3 times per month, 1-3 times per week, 4-6 times per week, 1-2 times per day) were associated with decreased serum triglyceride (TG), and increased high-density lipoprotein cholesterol (HDL-C). Fish consumption may be associated with a lower risk of having MetS and consumption of lean fish seems to be driving the association. Further investigation is warranted to establish associations between fish consumption and MetS.

  12. RANGE AND DENSITY OF ALIEN FISH IN WESTERN STREAMS AND RIVERS, US

    EPA Science Inventory

    Alien fish have become increasingly prevalent in Western U.S. waters. The EPA Environmental Monitoring and Assessment Program's Western Pilot (12 western states), which is based upon a probabilistic design, provides an opportunity to make inferences about the range and density of...

  13. Ova fecundity in Scottish Atlantic salmon Salmo salar: predictions, selective forces and causal mechanisms.

    PubMed

    Bacon, P J; MacLean, J C; Malcolm, I A; Gurney, W S C

    2012-08-01

    Ova fecundities of Scottish Atlantic salmon Salmo salar, predicted from log(10) regression of ova numbers and female fork length (L(F)), differed widely between upland and lowland stocks within the same river, whereas sea-age, river and year factors had insignificant effects on fecundity once L(F) was accounted for. For upland fish, the relationship between log(10)L(F) and log(10) ova mass (M(O)) was stable between two datasets collected 40 years apart. Although upland and lowland females both produced comparable log(10)M(O) (log(10)L(F))(-1), lowland females partitioned this into 45% more, but smaller ova, whereas upland females produced fewer, but larger, eggs. The possible causes and implications of this are discussed for evolutionary perspectives (lifetime production), population structure (local tributary v. large catchments; environmental effects), population dynamics and stability (density-dependent control mechanisms) and fisheries management (stock-recruitment; short and long-term stock sustainability). © 2012 Marine Scotland. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  14. EFFECTS OF BENZO[A]PYRENE EXPOSURE ON A FISH POPULATION RESISTANT TO THE TOXIC EFFECTS OF DIOXIN-LIKE COMPOUNDS

    EPA Science Inventory

    Effects of a model polycyclic aromatic hydrocarbon (PAH) were compared in populations of the estuarine fish Fundulus heteroclitus indigenous to a reference site and one highly contaminated with polychlorinated biphenyls (PCBs) and other compounds. The fish population resident to ...

  15. COST AND BENEFITS OF ALTERED BENZO(A)PYRENE METABOLISM IN A PCB-ADAPTED FISH POPULATION

    EPA Science Inventory

    We examined populations of an estuarine fish species (Fundulus heteroclitus) resident to a highly contaminated site and a reference site for their ability to metabolize an important environmental pollutant. In previous work, we characterized the fish population resident to this h...

  16. Inability to demonstrate fish-to-fish transmission of Ichthyophonus from laboratory infected Pacific herring Clupea pallasii to naïve conspecifics

    USGS Publications Warehouse

    Gregg, J.L.; Grady, C.A.; Friedman, C.S.; Hershberger, P.K.

    2012-01-01

    The parasite Ichthyophonus is enzootic in many marine fish populations of the northern Atlantic and Pacific Oceans. Forage fishes are a likely source of infection for higher trophic level predators; however, the processes that maintain Ichthyophonus in forage fish populations (primarily clupeids) are not well understood. Lack of an identified intermediate host has led to the convenient hypothesis that the parasite can be maintained within populations of schooling fishes by waterborne fish-to-fish transmission. To test this hypothesis we established Ichthyophonus infections in Age-1 and young-of-the-year (YOY) Pacific herring Clupea pallasii (Valenciennes) via intraperitoneal (IP) injection and cohabitated these donors with naïve conspecifics (sentinels) in the laboratory. IP injections established infection in 75 to 84% of donor herring, and this exposure led to clinical disease and mortality in the YOY cohort. However, after cohabitation for 113 d no infections were detected in naïve sentinels. These data do not preclude the possibility of fish-to-fish transmission, but they do suggest that other transmission processes are necessary to maintain Ichthyophonus in wild Pacific herring populations.

  17. A resilience approach can improve anadromous fish restoration

    USGS Publications Warehouse

    Waldman, John R.; Wilson, Karen A.; Mather, Martha E.; Snyder, Noah P.

    2016-01-01

    Most anadromous fish populations remain at low levels or are in decline despite substantial investments in restoration. We explore whether a resilience perspective (i.e., a different paradigm for understanding populations, communities, and ecosystems) is a viable alternative framework for anadromous fish restoration. Many life history traits have allowed anadromous fish to thrive in unimpacted ecosystems but have become contemporary curses as anthropogenic effects increase. This contradiction creates a significant conservation challenge but also makes these fish excellent candidates for a resilience approach. A resilience approach recognizes the need to maintain life history, population, and habitat characteristics that increase the ability of a population to withstand and recover from multiple disturbances. To evaluate whether a resilience approach represents a viable strategy for anadromous fish restoration, we review four issues: (1) how resilience theory can inform anadromous fish restoration, (2) how a resilience-based approach is fundamentally different than extant anadromous fish restoration strategies, (3) ecological characteristics that historically benefited anadromous fish persistence, and (4) examples of how human impacts harm anadromous fish and how a resilience approach might produce more successful outcomes. We close by suggesting new research and restoration directions for implementation of a resilience-based approach.

  18. Native fishes in the Truckee River: Are in-stream structures and patterns of population genetic structure related?

    PubMed

    Peacock, Mary M; Gustin, Mae S; Kirchoff, Veronica S; Robinson, Morgan L; Hekkala, Evon; Pizzarro-Barraza, Claudia; Loux, Tim

    2016-09-01

    In-stream structures are recognized as significant impediments to movement for freshwater fishes. Apex predators such as salmonids have been the focus of much research on the impacts of such barriers to population dynamics and population viability however much less research has focused on native fishes, where in-stream structures may have a greater impact on long term population viability of these smaller, less mobile species. Patterns of genetic structure on a riverscape can provide information on which structures represent real barriers to movement for fish species and under what specific flow conditions. Here we characterize the impact of 41 dam and diversion structures on movement dynamics under varying flow conditions for a suite of six native fishes found in the Truckee River of California and Nevada. Microsatellite loci were used to estimate total allelic diversity, effective population size and assess genetic population structure. Although there is spatial overlap among species within the river there are clear differences in species distributions within the watershed. Observed population genetic structure was associated with in-stream structures, but only under low flow conditions. High total discharge in 2006 allowed fish to move over potential barriers resulting in no observed population genetic structure for any species in 2007. The efficacy of in-stream structures to impede movement and isolate fish emerged only after multiple years of low flow conditions. Our results suggest that restricted movement of fish species, as a result of in-stream barriers, can be mitigated by flow management. However, as flow dynamics are likely to be altered under global climate change, fragmentation due to barriers could isolate stream fishes into small subpopulations susceptible to both demographic losses and losses of genetic variation. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Bioenergetics estimate of the effects of stocking density on hatchery production of smallmouth bass fingerlings

    USGS Publications Warehouse

    Robel, G.L.; Fisher, W.L.

    1999-01-01

    Production of and consumption by hatchery-reared tingerling (age-0) smallmouth bass Micropterus dolomieu at various simulated stocking densities were estimated with a bioenergetics model. Fish growth rates and pond water temperatures during the 1996 growing season at two hatcheries in Oklahoma were used in the model. Fish growth and simulated consumption and production differed greatly between the two hatcheries, probably because of differences in pond fertilization and mortality rates. Our results suggest that appropriate stocking density depends largely on prey availability as affected by pond fertilization and on fingerling mortality rates. The bioenergetics model provided a useful tool for estimating production at various stocking density rates. However, verification of physiological parameters for age-0 fish of hatchery-reared species is needed.

  20. Status of lake trout rehabilitation in the Northern Refuge of Lake Michigan

    USGS Publications Warehouse

    Madenjian, Charles P.; DeSorcie, Timothy J.

    1999-01-01

    The Northern Refuge in Lake Michigan was established in 1985 as part of a rehabilitation program to stock yearling lake trout Salvelinus namaycush in areas with the best potential for success. Stocking of hatchery-reared lake trout within the refuge began in 1986 at three reefs: Boulder Reef, Gull Island Reef, and Richards Reef. On each reef from 1991 to 1997 we conducted gill-net surveys during the fall spawning season to evaluate performance of adult lake trout, and we conducted beam trawl surveys for naturally reproduced age-0 lake trout in the spring. Criteria to evaluate performance included spawner density, growth, maturity, and mortality. We found no evidence of natural reproduction by lake trout from our surveys. Nevertheless, density of spawning lake trout on Boulder Reef (69 fish/305 m of gill net/night) and Gull Island Reef (34 fish/305 m of gill net/night) appeared to be sufficiently high to initiate a self-sustaining population. Growth and maturity rates of lake trout in the Northern Refuge were similar to those for lake trout stocked in the nearshore region of Lake Michigan. In the Northern Refuge, growth rate for the Marquette strain of lake trout was slightly higher than for the Lewis Lake strain. Annual mortality estimates from catch curve analyses ranged from 0.46 to 0.41, and therefore, these estimates approached a level that was considered to be sufficiently low to allow for a self-sustaining population. Thus, it appeared that the lack of evidence for natural reproduction by lake trout in the Northern Refuge should not be attributed to inability of the population to attain a sufficiently large stock of spawners.

Top