Fish population dynamics in a seasonally varying wetland
DeAngelis, Donald L.; Trexler, Joel C.; Cosner, Chris; Obaza, Adam; Jopp, Fred
2010-01-01
Small fishes in seasonally flooded environments such as the Everglades are capable of spreading into newly flooded areas and building up substantial biomass. Passive drift cannot account for the rapidity of observed population expansions. To test the reaction-diffusion mechanism for spread of the fish, we estimated their diffusion coefficient and applied a reaction-diffusion model. This mechanism was also too weak to account for the spatial dynamics. Two other hypotheses were tested through modeling. The first--the 'refuge mechanism--hypothesizes that small remnant populations of small fishes survive the dry season in small permanent bodies of water (refugia), sites where the water level is otherwise below the surface. The second mechanism, which we call the 'dynamic ideal free distribution mechanism' is that consumption by the fish creates a prey density gradient and that fish taxis along this gradient can lead to rapid population expansion in space. We examined the two alternatives and concluded that although refugia may play an important role in recolonization by the fish population during reflooding, only the second, taxis in the direction of the flooding front, seems capable of matching empirical observations. This study has important implications for management of wetlands, as fish biomass is an essential support of higher trophic levels.
Fishing amplifies forage fish population collapses.
Essington, Timothy E; Moriarty, Pamela E; Froehlich, Halley E; Hodgson, Emma E; Koehn, Laura E; Oken, Kiva L; Siple, Margaret C; Stawitz, Christine C
2015-05-26
Forage fish support the largest fisheries in the world but also play key roles in marine food webs by transferring energy from plankton to upper trophic-level predators, such as large fish, seabirds, and marine mammals. Fishing can, thereby, have far reaching consequences on marine food webs unless safeguards are in place to avoid depleting forage fish to dangerously low levels, where dependent predators are most vulnerable. However, disentangling the contributions of fishing vs. natural processes on population dynamics has been difficult because of the sensitivity of these stocks to environmental conditions. Here, we overcome this difficulty by collating population time series for forage fish populations that account for nearly two-thirds of global catch of forage fish to identify the fingerprint of fisheries on their population dynamics. Forage fish population collapses shared a set of common and unique characteristics: high fishing pressure for several years before collapse, a sharp drop in natural population productivity, and a lagged response to reduce fishing pressure. Lagged response to natural productivity declines can sharply amplify the magnitude of naturally occurring population fluctuations. Finally, we show that the magnitude and frequency of collapses are greater than expected from natural productivity characteristics and therefore, likely attributed to fishing. The durations of collapses, however, were not different from those expected based on natural productivity shifts. A risk-based management scheme that reduces fishing when populations become scarce would protect forage fish and their predators from collapse with little effect on long-term average catches.
Small-scale fisheries, population dynamics, and resource use in Africa: the case of Moree, Ghana.
Marquette, Catherine M; Koranteng, Kwame A; Overå, Ragnhild; Aryeetey, Ellen Bortei-Doku
2002-06-01
We consider population dynamics and sustainable use and development of fishery resources in Moree, a small-scale fishing and coastal community of 20,000 people in the Central Region of Ghana near Cape Coast. Moree suggests that relationships between population dynamics and fishery resources are more complex than the concept of Malthusian overfishing implies. Reasons include changing biophysical characteristics of the upwelling system along the coast of West Africa; qualitative as well as quantitative changes in fishing activity throughout the year; the market nature of fishing activity and nonlocal demands for fish; regular fishery migration; and institutions regulating fishery resource access at home and at migration destinations. Population and resource relationships in Moree may be the effects of fishery resource and economic changes on migration rather than population pressure on fishery resources. Fisheries management policies must take into account processes that lie beyond the influence of local fishermen.
Lorenzen, Kai
2005-01-29
The population dynamics of fisheries stock enhancement, and its potential for generating benefits over and above those obtainable from optimal exploitation of wild stocks alone are poorly understood and highly controversial. I review pertinent knowledge of fish population biology, and extend the dynamic pool theory of fishing to stock enhancement by unpacking recruitment, incorporating regulation in the recruited stock, and accounting for biological differences between wild and hatchery fish. I then analyse the dynamics of stock enhancement and its potential role in fisheries management, using the candidate stock of North Sea sole as an example and considering economic as well as biological criteria. Enhancement through release of recruits or advanced juveniles is predicted to increase total yield and stock abundance, but reduce abundance of the naturally recruited stock component through compensatory responses or overfishing. Economic feasibility of enhancement is subject to strong constraints, including trade-offs between the costs of fishing and hatchery releases. Costs of hatchery fish strongly influence optimal policy, which may range from no enhancement at high cost to high levels of stocking and fishing effort at low cost. Release of genetically maladapted fish reduces the effectiveness of enhancement, and is most detrimental overall if fitness of hatchery fish is only moderately compromised. As a temporary measure for the rebuilding of depleted stocks, enhancement cannot substitute for effort limitation, and is advantageous as an auxiliary measure only if the population has been reduced to a very low proportion of its unexploited biomass. Quantitative analysis of population dynamics is central to the responsible use of stock enhancement in fisheries management, and the necessary tools are available.
Coexistence in streams: Do source-sink dynamics allow salamanders to persist with fish predators?
Sepulveda, A.J.; Lowe, W.H.
2011-01-01
Theory suggests that source-sink dynamics can allow coexistence of intraguild predators and prey, but empirical evidence for this coexistence mechanism is limited. We used capture-mark-recapture, genetic methods, and stable isotopes to test whether source-sink dynamics promote coexistence between stream fishes, the intraguild predator, and stream salamanders (Dicamptodon aterrimus), the intraguild prey. Salamander populations from upstream reaches without fish were predicted to maintain or supplement sink populations in downstream reaches with fish. We found instead that downstream reaches with fish were not sinks even though fish consumed salamander larvae-apparent survival, recruitment, and population growth rate did not differ between upstream and downstream reaches. There was also no difference between upstream and downstream reaches in net emigration. We did find that D. aterrimus moved frequently along streams, but believe that this is a response to seasonal habitat changes rather than intraguild predation. Our study provides empirical evidence that local-scale mechanisms are more important than dispersal dynamics to coexistence of streams salamanders and fish. More broadly, it shows the value of empirical data on dispersal and gene flow for distinguishing between local and spatial mechanisms of coexistence. ?? 2011 Springer-Verlag.
Peacock, Mary M; Gustin, Mae S; Kirchoff, Veronica S; Robinson, Morgan L; Hekkala, Evon; Pizzarro-Barraza, Claudia; Loux, Tim
2016-09-01
In-stream structures are recognized as significant impediments to movement for freshwater fishes. Apex predators such as salmonids have been the focus of much research on the impacts of such barriers to population dynamics and population viability however much less research has focused on native fishes, where in-stream structures may have a greater impact on long term population viability of these smaller, less mobile species. Patterns of genetic structure on a riverscape can provide information on which structures represent real barriers to movement for fish species and under what specific flow conditions. Here we characterize the impact of 41 dam and diversion structures on movement dynamics under varying flow conditions for a suite of six native fishes found in the Truckee River of California and Nevada. Microsatellite loci were used to estimate total allelic diversity, effective population size and assess genetic population structure. Although there is spatial overlap among species within the river there are clear differences in species distributions within the watershed. Observed population genetic structure was associated with in-stream structures, but only under low flow conditions. High total discharge in 2006 allowed fish to move over potential barriers resulting in no observed population genetic structure for any species in 2007. The efficacy of in-stream structures to impede movement and isolate fish emerged only after multiple years of low flow conditions. Our results suggest that restricted movement of fish species, as a result of in-stream barriers, can be mitigated by flow management. However, as flow dynamics are likely to be altered under global climate change, fragmentation due to barriers could isolate stream fishes into small subpopulations susceptible to both demographic losses and losses of genetic variation. Copyright © 2016 Elsevier B.V. All rights reserved.
PROJECTING THE RESPONSE OF FISH POPULATION GROWTH RATE TO SEDIMENT EXPOSURE
Sediment is one of the main stressors on stream fish populations in Georgia. Here, a quantitative approach relating sediment exposure to stream fish population dynamics is presented, where equations characterize sediment exposure to vital rates, then vital rates are used in a mat...
Goitom, Eyerusalem; Kilsdonk, Laurens J; Brans, Kristien; Jansen, Mieke; Lemmens, Pieter; De Meester, Luc
2018-01-01
There is growing evidence of rapid genetic adaptation of natural populations to environmental change, opening the perspective that evolutionary trait change may subsequently impact ecological processes such as population dynamics, community composition, and ecosystem functioning. To study such eco-evolutionary feedbacks in natural populations, however, requires samples across time. Here, we capitalize on a resurrection ecology study that documented rapid and adaptive evolution in a natural population of the water flea Daphnia magna in response to strong changes in predation pressure by fish, and carry out a follow-up mesocosm experiment to test whether the observed genetic changes influence population dynamics and top-down control of phytoplankton. We inoculated populations of the water flea D. magna derived from three time periods of the same natural population known to have genetically adapted to changes in predation pressure in replicate mesocosms and monitored both Daphnia population densities and phytoplankton biomass in the presence and absence of fish. Our results revealed differences in population dynamics and top-down control of algae between mesocosms harboring populations from the time period before, during, and after a peak in fish predation pressure caused by human fish stocking. The differences, however, deviated from our a priori expectations. An S-map approach on time series revealed that the interactions between adults and juveniles strongly impacted the dynamics of populations and their top-down control on algae in the mesocosms, and that the strength of these interactions was modulated by rapid evolution as it occurred in nature. Our study provides an example of an evolutionary response that fundamentally alters the processes structuring population dynamics and impacts ecosystem features.
The effect of seasonal harvesting on stage-structured population models.
Tang, Sanyi; Chen, Lansun
2004-04-01
In most models of population dynamics, increases in population due to birth are assumed to be time-independent, but many species reproduce only during a single period of the year. We propose an exploited single-species model with stage structure for the dynamics in a fish population for which births occur in a single pulse once per time period. Since birth pulse populations are often characterized with a discrete time dynamical system determined by its Poincaré map, we explore the consequences of harvest timing to equilibrium population sizes under seasonal dependence and obtain threshold conditions for their stability, and show that the timing of harvesting has a strong impact on the persistence of the fish population, on the volume of mature fish stock and on the maximum annual-sustainable yield. Moreover, our results imply that the population can sustain much higher harvest rates if the mature fish is removed as early in the season (after the birth pulse) as possible. Further, the effects of harvesting effort and harvest timing on the dynamical complexity are also investigated. Bifurcation diagrams are constructed with the birth rate (or harvesting effort or harvest timing) as the bifurcation parameter, and these are observed to display rich structure, including chaotic bands with periodic windows, pitch-fork and tangent bifurcations, non-unique dynamics (meaning that several attractors coexist) and attractor crisis. This suggests that birth pulse, in effect, provides a natural period or cyclicity that makes the dynamical behavior more complex.
Temperature-driven regime shifts in the dynamics of size-structured populations.
Ohlberger, Jan; Edeline, Eric; Vøllestad, Leif Asbjørn; Stenseth, Nils C; Claessen, David
2011-02-01
Global warming impacts virtually all biota and ecosystems. Many of these impacts are mediated through direct effects of temperature on individual vital rates. Yet how this translates from the individual to the population level is still poorly understood, hampering the assessment of global warming impacts on population structure and dynamics. Here, we study the effects of temperature on intraspecific competition and cannibalism and the population dynamical consequences in a size-structured fish population. We use a physiologically structured consumer-resource model in which we explicitly model the temperature dependencies of the consumer vital rates and the resource population growth rate. Our model predicts that increased temperature decreases resource density despite higher resource growth rates, reflecting stronger intraspecific competition among consumers. At a critical temperature, the consumer population dynamics destabilize and shift from a stable equilibrium to competition-driven generation cycles that are dominated by recruits. As a consequence, maximum age decreases and the proportion of younger and smaller-sized fish increases. These model predictions support the hypothesis of decreasing mean body sizes due to increased temperatures. We conclude that in size-structured fish populations, global warming may increase competition, favor smaller size classes, and induce regime shifts that destabilize population and community dynamics.
Population dynamics of the sand shiner (notropis stramineus) in non-wadeable rivers of Iowa
Smith, C.D.; Neebling, T.E.; Quist, M.C.
2010-01-01
The sand shiner (Notropis stramineus) is a common cyprinid found throughout the Great Plains region of North America that plays an important ecological role in aquatic systems. This study was conducted to describe population dynamics of sand shiners including age structure, growth, mortality, and recruitment variability in 15 non-wadeable rivers in Iowa. Fish were collected during June-August (2007-2008) using a modified Missouri trawl, a seine, and boat-mounted electrofishing. Scales were removed for age and growth analysis. A total of 3,443 fish was sampled from 15 populations across Iowa, of which 676 were aged. Iowa's sand shiner populations consisted primarily of age-1 fish (53% of all fish sampled), followed by age-2 fish (30%), age-0 fish (15%), and age-3 fish (2%). Sand shiners grew an average of 38.5 mm (SE = 5.7) during their first year, 13.8 mm (4.5) during their second year, and 9.0 mm (6.9) during their third year. Total annual mortality varied from 35.0% to 92.3% among populations with a mean of 77.9% (0.2). Incremental mortality rates were 84.5% (0.2) between age 1 and age 2, and 92.0% (0.1) between age 2 and age 3. Recruitment was highly variable, as indicated by a mean recruitment variation index of-0.12 (0.54). Overall, the sand shiner was characterized by relatively low mean age, fast growth, high mortality, and high recruitment variability. Indices of sand shiner population dynamics were poorly correlated with habitat characteristics.
Sea lice and salmon population dynamics: effects of exposure time for migratory fish.
Krkosek, Martin; Morton, Alexandra; Volpe, John P; Lewis, Mark A
2009-08-07
The ecological impact of parasite transmission from fish farms is probably mediated by the migration of wild fishes, which determines the period of exposure to parasites. For Pacific salmon and the parasitic sea louse, Lepeophtheirus salmonis, analysis of the exposure period may resolve conflicting observations of epizootic mortality in field studies and parasite rejection in experiments. This is because exposure periods can differ by 2-3 orders of magnitude, ranging from months in the field to hours in experiments. We developed a mathematical model of salmon-louse population dynamics, parametrized by a study that monitored naturally infected juvenile salmon held in ocean enclosures. Analysis of replicated trials indicates that lice suffer high mortality, particularly during pre-adult stages. The model suggests louse populations rapidly decline following brief exposure of juvenile salmon, similar to laboratory study designs and data. However, when the exposure period lasts for several weeks, as occurs when juvenile salmon migrate past salmon farms, the model predicts that lice accumulate to abundances that can elevate salmon mortality and depress salmon populations. The duration of parasite exposure is probably critical to salmon-louse population dynamics, and should therefore be accommodated in coastal planning and management where fish farms are situated on wild fish migration routes.
Yurek, Simeon; DeAngelis, Donald L.; Trexler, Joel C.; Klassen, Stephen; Larsen, Laurel G.
2016-01-01
In flood-pulsed ecosystems, hydrology and landscape structure mediate transfers of energy up the food chain by expanding and contracting in area, enabling spatial expansion and growth of fish populations during rising water levels, and subsequent concentration during the drying phase. Connectivity of flooded areas is dynamic as waters rise and fall, and is largely determined by landscape geomorphology and anisotropy. We developed a methodology for simulating fish dispersal and concentration on spatially-explicit, dynamic floodplain wetlands with pulsed food web dynamics, to evaluate how changes in connectivity through time contribute to the concentration of fish biomass that is essential for higher trophic levels. The model also tracks a connectivity index (DCI) over different compass directions to see if fish biomass dynamics can be related in a simple way to topographic pattern. We demonstrate the model for a seasonally flood-pulsed, oligotrophic system, the Everglades, where flow regimes have been greatly altered. Three dispersing populations of functional fish groups were simulated with empirically-based dispersal rules on two landscapes, and two twelve-year time series of managed water levels for those areas were applied. The topographies of the simulations represented intact and degraded ridge-and-slough landscapes (RSL). Simulation results showed large pulses of biomass concentration forming during the onset of the drying phase, when water levels were falling and fish began to converge into the sloughs. As water levels fell below the ridges, DCI declined over different directions, closing down dispersal lanes, and fish density spiked. Persistence of intermediate levels of connectivity on the intact RSL enabled persistent concentration events throughout the drying phase. The intact landscape also buffered effects of wet season population growth. Water level reversals on both landscapes negatively affected fish densities by depleting fish populations without allowing enough time for them to regenerate. Testable, spatiotemporal predictions of the timing, location, duration, and magnitude of fish concentration pulses were produced by the model, and can be applied to restoration planning.
Climate, invasive species and land use drive population dynamics of a cold-water specialist
Kovach, Ryan P.; Al-Chokhachy, Robert K.; Whited, Diane C.; Schmetterling, David A.; Dux, Andrew M; Muhlfeld, Clint C.
2017-01-01
Climate change is an additional stressor in a complex suite of threats facing freshwater biodiversity, particularly for cold-water fishes. Research addressing the consequences of climate change on cold-water fish has generally focused on temperature limits defining spatial distributions, largely ignoring how climatic variation influences population dynamics in the context of other existing stressors.We used long-term data from 92 populations of bull trout Salvelinus confluentus – one of North America's most cold-adapted fishes – to quantify additive and interactive effects of climate, invasive species and land use on population dynamics (abundance, variability and growth rate).Populations were generally depressed, more variable and declining where spawning and rearing stream habitat was limited, invasive species and land use were prevalent and stream temperatures were highest. Increasing stream temperature acted additively and independently, whereas land use and invasive species had additive and interactive effects (i.e. the impact of one stressor depended on exposure to the other stressor).Most (58%–78%) of the explained variation in population dynamics was attributed to the presence of invasive species, differences in life history and management actions in foraging habitats in rivers, lakes and reservoirs. Although invasive fishes had strong negative effects on populations in foraging habitats, proactive control programmes appeared to effectively temper their negative impact.Synthesis and applications. Long-term demographic data emphasize that climate warming will exacerbate imperilment of cold-water specialists like bull trout, yet other stressors – especially invasive fishes – are immediate threats that can be addressed by proactive management actions. Therefore, climate-adaptation strategies for freshwater biodiversity should consider existing abiotic and biotic stressors, some of which provide potential and realized opportunity for conservation of freshwater biodiversity in a warming world.
NASA Astrophysics Data System (ADS)
Bravo, Ramón; Soriguer, Mila C.; Villar, Noelia; Hernando, José A.
2001-02-01
The relationship between flooding and changes in the size distribution of fish populations in the Palancar stream confirms observations in other rivers. On average, density decreased by 36.2 % and biomass increased by 14.5 %, passing from a period of severe drought to one of heavier than normal rains. Precipitation is the most important of the many factors affecting the populations of the Palancar stream; the most evident changes all occurred after the drought. During the drought period, the marked seasonal fluctuation in flow was the most important factor regulating the population dynamics. Fish density and biomass varied in proportion to the water volume. During the rainy period, the studied section of the river was found to be an important reproduction and nursery area, with juveniles and individuals of reproduction age dominating. The presence of Micropterus salmoides, an introduced piscivorous species, is another factor affecting the population dynamics in the Palancar stream. The observed absence of age 0+ individuals of the dominant populations is considered a direct effect of predation.
Modeling fish community dynamics in Florida Everglades: Role of temperature variation
Al-Rabai'ah, H. A.; Koh, H. L.; DeAngelis, Donald L.; Lee, Hooi-Ling
2002-01-01
The model shows that the temperature dependent starvation mortality is an important factor that influences fish population densities. It also shows high fish population densities at some temperature ranges when this consumption need is minimum. Several sensitivity analyses involving variations in temperature terms, food resources and water levels are conducted to ascertain the relative importance of temperature dependence terms.
One Fish, Two Fish, Redfish, You Fish!
ERIC Educational Resources Information Center
White, Katherine; Timmons, Maryellen; Medders, Paul
2011-01-01
The recreational fishing activity presented in this article provides a hands-on, problem-based experience for students; it unites biology, math, economics, environmental policy, and population dynamics concepts. In addition, the activity allows students to shape environmental policy in a realistic setting and evaluate their peers' work. By…
Increased natural mortality at low abundance can generate an Allee effect in a marine fish.
Kuparinen, Anna; Hutchings, Jeffrey A
2014-10-01
Negative density-dependent regulation of population dynamics promotes population growth at low abundance and is therefore vital for recovery following depletion. Inversely, any process that reduces the compensatory density-dependence of population growth can negatively affect recovery. Here, we show that increased adult mortality at low abundance can reverse compensatory population dynamics into its opposite-a demographic Allee effect. Northwest Atlantic cod (Gadus morhua) stocks collapsed dramatically in the early 1990s and have since shown little sign of recovery. Many experienced dramatic increases in natural mortality, ostensibly attributable in some populations to increased predation by seals. Our findings show that increased natural mortality of a magnitude observed for overfished cod stocks has been more than sufficient to fundamentally alter the dynamics of density-dependent population regulation. The demographic Allee effect generated by these changes can slow down or even impede the recovery of depleted populations even in the absence of fishing.
Fishing-induced changes in adult length are mediated by skipped-spawning.
Wang, Hui-Yu; Chen, Ying-Shiuan; Hsu, Chien-Chung; Shen, Sheng-Feng
2017-01-01
Elucidating fishing effects on fish population dynamics is a critical step toward sustainable fisheries management. Despite previous studies that have suggested age or size truncation in exploited fish populations, other aspects of fishing effects on population demography, e.g., via altering life histories and density, have received less attention. Here, we investigated the fishing effects altering adult demography via shifting reproductive trade-offs in the iconic, overexploited, Pacific bluefin tuna Thunnus orientalis. We found that, contrary to our expectation, mean lengths of catch increased over time in longline fisheries. On the other hand, mean catch lengths for purse seine fisheries did not show such increasing trends. We hypothesized that the size-dependent energetic cost of the spawning migration and elevated fishing mortality on the spawning grounds potentially drive size-dependent skipped spawning for adult tuna, mediating the observed changes in the catch lengths. Using eco-genetic individual-based modeling, we demonstrated that fishing-induced evolution of skipped spawning and size truncation interacted to shape the observed temporal changes in mean catch lengths for tuna. Skipped spawning of the small adults led to increased mean catch lengths for the longline fisheries, while truncation of small adults by the purse seines could offset such a pattern. Our results highlight the eco-evolutionary dynamics of fishing effects on population demography and caution against using demographic traits as a basis for fisheries management of the Pacific bluefin tuna as well as other migratory species. © 2016 by the Ecological Society of America.
Modeling seasonal dynamics of the small fish cohorts in fluctuating freshwater marsh landscapes
Jopp, Fred; DeAngelis, Donald L.; Trexler, Joel C.
2010-01-01
Small-bodied fishes constitute an important assemblage in many wetlands. In wetlands that dry periodically except for small permanent waterbodies, these fishes are quick to respond to change and can undergo large fluctuations in numbers and biomasses. An important aspect of landscapes that are mixtures of marsh and permanent waterbodies is that high rates of biomass production occur in the marshes during flooding phases, while the permanent waterbodies serve as refuges for many biotic components during the dry phases. The temporal and spatial dynamics of the small fishes are ecologically important, as these fishes provide a crucial food base for higher trophic levels, such as wading birds. We develop a simple model that is analytically tractable, describing the main processes of the spatio-temporal dynamics of a population of small-bodied fish in a seasonal wetland environment, consisting of marsh and permanent waterbodies. The population expands into newly flooded areas during the wet season and contracts during declining water levels in the dry season. If the marsh dries completely during these times (a drydown), the fish need refuge in permanent waterbodies. At least three new and general conclusions arise from the model: (1) there is an optimal rate at which fish should expand into a newly flooding area to maximize population production; (2) there is also a fluctuation amplitude of water level that maximizes fish production, and (3) there is an upper limit on the number of fish that can reach a permanent waterbody during a drydown, no matter how large the marsh surface area is that drains into the waterbody. Because water levels can be manipulated in many wetlands, it is useful to have an understanding of the role of these fluctuations.
Tadiri, Christina P; Dargent, Felipe; Scott, Marilyn E
2013-03-01
Understanding disease transmission is important to species management and human health. Host body condition, nutrition and disease susceptibility interact in a complex manner, and while the individual effects of these variables are well known, our understanding of how they interact and translate to population dynamics is limited. Our objective was to determine whether host relative body condition influences epidemic dynamics, and how this relationship is affected by food availability. Poecilia reticulata (guppies) of roughly similar size were selected and assembled randomly into populations of 10 guppies assigned to 3 different food availability treatments, and the relative condition index (Kn) of each fish was calculated. We infected 1 individual per group ('source' fish) with Gyrodactyus turnbulli and counted parasites on each fish every other day for 10 days. Epidemic parameters for each population were analysed using generalized linear models. High host Kn-particularly that of the 'source' fish-exerted a positive effect on incidence, peak parasite burden, and the degree of parasite aggregation. Low food availability increased the strength of the associations with peak burden and aggregation. Our findings suggest that host Kn and food availability interact to influence epidemic dynamics, and that the condition of the individual that brings the parasite into the host population has a profound impact on the spread of infection.
Fish everywhere, all the time: modeling fish in the riverscape
From 2002-2006, EPA’s Western Ecology Division conducted innovative research on the population dynamics of fish within an entire stream network. Employing individual tagging and tracking technology, we examined spatial patterns of juvenile coho salmon (Oncorhynchus kisutch...
Yurek, Simeon; DeAngelis, Donald L.; Trexler, Joel C.; Jopp, Fred; Donalson, Douglas D.
2013-01-01
Movement strategies of small forage fish (<8 cm total length) between temporary and permanent wetland habitats affect their overall population growth and biomass concentrations, i.e., availability to predators. These fish are often the key energy link between primary producers and top predators, such as wading birds, which require high concentrations of stranded fish in accessible depths. Expansion and contraction of seasonal wetlands induce a sequential alternation between rapid biomass growth and concentration, creating the conditions for local stranding of small fish as they move in response to varying water levels. To better understand how landscape topography, hydrology, and fish behavior interact to create high densities of stranded fish, we first simulated population dynamics of small fish, within a dynamic food web, with different traits for movement strategy and growth rate, across an artificial, spatially explicit, heterogeneous, two-dimensional marsh slough landscape, using hydrologic variability as the driver for movement. Model output showed that fish with the highest tendency to invade newly flooded marsh areas built up the largest populations over long time periods with stable hydrologic patterns. A higher probability to become stranded had negative effects on long-term population size, and offset the contribution of that species to stranded biomass. The model was next applied to the topography of a 10 km × 10 km area of Everglades landscape. The details of the topography were highly important in channeling fish movements and creating spatiotemporal patterns of fish movement and stranding. This output provides data that can be compared in the future with observed locations of fish biomass concentrations, or such surrogates as phosphorus ‘hotspots’ in the marsh.
ECOLOGICAL ENDPOINT MODELING FOR TMDLS: EFFECTS OF SEDIMENT ON FISH POPULATIONS
Sediment is one of the primary stressors of concern for Total Maximum Daily Loads (TMDLs) for streams, and often it is a concern because of its impact on ecological endpoints. A modeling approach relating sediment to stream fish population dynamics is presented. Equations are d...
The relationship between population density and demographic rates (e.g. survival, reproduction, growth) is critical to understand population dynamics and has been widely studied in fishes. Estuarine species are regularly exposed to dramatic changes in density with daily, monthly,...
Paukert, C.P.; Makinster, A.S.
2009-01-01
We investigated the spatial variation of flathead catfish (Pylodictis olivaris) relative abundance and growth in the 274 km long Kansas River to determine if population dynamics of catfish are related to urbanization. Electrofishing was conducted at 462 random sites throughout the river in summer, 2005-2006 to collect fish. Relative abundance of age 1 fish (???200mm), subadult (>200-400mm) and adult fish (>400 mm) ranged from 0.34 to 14.67 fish h-1, mean length at age 1 was 165 (range: 128-195) mm total length (TL) and mean length at age 3 was 376 mm TL (range: 293-419mm TL). The proportion of land use within 200 m of the river edge was between 0 and 0.54 urban. River reaches with high relative abundance of age 1 flathead catfish had high relative abundance of subadult and adult catfish. River reaches with fast flathead catfish growth to age 1 had fast growth to age 3. High urban land use and riprap in the riparian area were evident in river reaches near the heavily populated Kansas City and Topeka, Kansas, USA. Reaches with increased number of log jams and islands had decreased riparian agriculture. Areas of low urbanization had faster flathead catfish growth (r = 0.67, p = 0.005). Relative abundance of flathead catfish was higher in more agricultural areas (r = -0.57, p = 0.02). Changes in land use in riverine environments may alter population dynamics of a fish species within a river. Spatial differences in population dynamics need to be considered when evaluating riverine fish populations. Published in 2008 by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Liu, Hui; Fogarty, Michael J.; Hare, Jonathan A.; Hsieh, Chih-hao; Glaser, Sarah M.; Ye, Hao; Deyle, Ethan; Sugihara, George
2014-03-01
The dynamics of marine fishes are closely related to lower trophic levels and the environment. Quantitatively understanding ecosystem dynamics linking environmental variability and prey resources to exploited fishes is crucial for ecosystem-based management of marine living resources. However, standard statistical models typically grounded in the concept of linear system may fail to capture the complexity of ecological processes. We have attempted to model ecosystem dynamics using a flexible, nonparametric class of nonlinear forecasting models. We analyzed annual time series of four environmental indices, 22 marine copepod taxa, and four ecologically and commercially important fish species during 1977 to 2009 on Georges Bank, a highly productive and intensively studied area of the northeast U.S. continental shelf ecosystem. We examined the underlying dynamic features of environmental indices and copepods, quantified the dynamic interactions and coherence with fishes, and explored the potential control mechanisms of ecosystem dynamics from a nonlinear perspective. We found: (1) the dynamics of marine copepods and environmental indices exhibiting clear nonlinearity; (2) little evidence of complex dynamics across taxonomic levels of copepods; (3) strong dynamic interactions and coherence between copepods and fishes; and (4) the bottom-up forcing of fishes and top-down control of copepods coexisting as target trophic levels vary. These findings highlight the nonlinear interactions among ecosystem components and the importance of marine zooplankton to fish populations which point to two forcing mechanisms likely interactively regulating the ecosystem dynamics on Georges Bank under a changing environment.
Sakaris, Peter C; Irwin, Elise R
2010-03-01
We developed stochastic matrix models to evaluate the effects of hydrologic alteration and variable mortality on the population dynamics of a lotic fish in a regulated river system. Models were applied to a representative lotic fish species, the flathead catfish (Pylodictis olivaris), for which two populations were examined: a native population from a regulated reach of the Coosa River (Alabama, USA) and an introduced population from an unregulated section of the Ocmulgee River (Georgia, USA). Size-classified matrix models were constructed for both populations, and residuals from catch-curve regressions were used as indices of year class strength (i.e., recruitment). A multiple regression model indicated that recruitment of flathead catfish in the Coosa River was positively related to the frequency of spring pulses between 283 and 566 m3/s. For the Ocmulgee River population, multiple regression models indicated that year class strength was negatively related to mean March discharge and positively related to June low flow. When the Coosa population was modeled to experience five consecutive years of favorable hydrologic conditions during a 50-year projection period, it exhibited a substantial spike in size and increased at an overall 0.2% annual rate. When modeled to experience five years of unfavorable hydrologic conditions, the Coosa population initially exhibited a decrease in size but later stabilized and increased at a 0.4% annual rate following the decline. When the Ocmulgee River population was modeled to experience five years of favorable conditions, it exhibited a substantial spike in size and increased at an overall 0.4% annual rate. After the Ocmulgee population experienced five years of unfavorable conditions, a sharp decline in population size was predicted. However, the population quickly recovered, with population size increasing at a 0.3% annual rate following the decline. In general, stochastic population growth in the Ocmulgee River was more erratic and variable than population growth in the Coosa River. We encourage ecologists to develop similar models for other lotic species, particularly in regulated river systems. Successful management of fish populations in regulated systems requires that we are able to predict how hydrology affects recruitment and will ultimately influence the population dynamics of fishes.
SIMULATING FISH ASSEMBLAGE DYNAMICS IN RIVER NETWORKS
My recently retired colleague, Joan Baker, and I have developed a prototype computer simulation model for studying the effects of human and non-human alterations of habitats and species availability on fish assemblage populations. The fish assemblage model, written in R, is a sp...
Kuparinen, Anna; Stenseth, Nils Christian; Hutchings, Jeffrey A
2014-12-01
The evolution of life histories over contemporary time scales will almost certainly affect population demography. One important pathway for such eco-evolutionary interactions is the density-dependent regulation of population dynamics. Here, we investigate how fisheries-induced evolution (FIE) might alter density-dependent population-productivity relationships. To this end, we simulate the eco-evolutionary dynamics of an Atlantic cod (Gadus morhua) population under fishing, followed by a period of recovery in the absence of fishing. FIE is associated with increases in juvenile production, the ratio of juveniles to mature population biomass, and the ratio of the mature population biomass relative to the total population biomass. In contrast, net reproductive rate (R 0 ) and per capita population growth rate (r) decline concomitantly with evolution. Our findings suggest that FIE can substantially modify the fundamental population-productivity relationships that underlie density-dependent population regulation and that form the primary population-dynamical basis for fisheries stock-assessment projections. From a conservation and fisheries-rebuilding perspective, we find that FIE reduces R 0 and r, the two fundamental correlates of population recovery ability and inversely extinction probability.
Strategies to control a common carp population by pulsed commercial harvest
Colvin, Michael E.; Pierce, Clay; Stewart, Timothy W.; Grummer, Scott E.
2012-01-01
Commercial fisheries are commonly used to manage nuisance fishes in freshwater systems, but such efforts are often unsuccessful. Strategies for successfully controlling a nuisance population of common carp Cyprinus carpio by pulsed commercial harvest were evaluated with a combination of (1) field sampling, (2) population estimation and CPUE indexing, and (3) simulation using an exponential semidiscrete biomass dynamics model (SDBDM). The range of annual fishing mortalities (F) that resulted in successful control (F = 0.244–0.265) was narrow. Common carp biomass dynamics were sensitive to unintentional underharvest due to high rates of surplus production and a biomass doubling time of 2.7 years. Simulations indicated that biomanipulation never achieved successful control unless supplemental fishing mortality was imposed. Harvest of a majority of annual production was required to achieve successful control, as indicated by the ecotrophic coefficient (EC). Readily available biomass data and tools such as SDBDMs and ECs can be used in an adaptive management framework to successfully control common carp and other nuisance fishes by pulsed commercial fishing.
Yao, Weiwei; Chen, Yuansheng
2018-04-01
Colorado River is a unique ecosystem and provides important ecological services such as habitat for fish species as well as water power energy supplies. River management for this ecosystem requires assessment and decision support tools for fish which involves protecting, restoring as well as forecasting of future conditions. In this paper, a habitat and population model was developed and used to determine the levels of fish habitat suitability and population density in Colorado River between Lees Ferry and Lake Mead. The short term target fish populations are also predicted based on native fish recovery strategy. This model has been developed by combining hydrodynamics, heat transfer and sediment transport models with a habitat suitability index model and then coupling with habitat model into life stage population model. The fish were divided into four life stages according to the fish length. Three most abundant and typical native and non-native fish were selected as target species, which are rainbow trout (Oncorhynchus mykiss), brown trout (Salmo trutta) and flannelmouth sucker (Catostomus latipinnis). Flow velocity, water depth, water temperature and substrates were used as the suitability indicators in habitat model and overall suitability index (OSI) as well as weight usable area (WUA) was used as an indicator in population model. A comparison was made between simulated fish population alteration and surveyed fish number fluctuation during 2000 to 2009. The application of this habitat and population model indicates that this model can be accurate present habitat situation and targets fish population dynamics of in the study areas. The analysis also indicates the flannelmouth sucker population will steadily increase while the rainbow trout will decrease based on the native fish recovery scheme. Copyright © 2018. Published by Elsevier Inc.
Archived DNA reveals fisheries and climate induced collapse of a major fishery.
Bonanomi, Sara; Pellissier, Loïc; Therkildsen, Nina Overgaard; Hedeholm, Rasmus Berg; Retzel, Anja; Meldrup, Dorte; Olsen, Steffen Malskær; Nielsen, Anders; Pampoulie, Christophe; Hemmer-Hansen, Jakob; Wisz, Mary Susanne; Grønkjær, Peter; Nielsen, Einar Eg
2015-10-22
Fishing and climate change impact the demography of marine fishes, but it is generally ignored that many species are made up of genetically distinct locally adapted populations that may show idiosyncratic responses to environmental and anthropogenic pressures. Here, we track 80 years of Atlantic cod (Gadus morhua) population dynamics in West Greenland using DNA from archived otoliths in combination with fish population and niche based modeling. We document how the interacting effects of climate change and high fishing pressure lead to dramatic spatiotemporal changes in the proportions and abundance of different genetic populations, and eventually drove the cod fishery to a collapse in the early 1970s. Our results highlight the relevance of fisheries management at the level of genetic populations under future scenarios of climate change.
Archived DNA reveals fisheries and climate induced collapse of a major fishery
Bonanomi, Sara; Pellissier, Loïc; Therkildsen, Nina Overgaard; Hedeholm, Rasmus Berg; Retzel, Anja; Meldrup, Dorte; Olsen, Steffen Malskær; Nielsen, Anders; Pampoulie, Christophe; Hemmer-Hansen, Jakob; Wisz, Mary Susanne; Grønkjær, Peter; Nielsen, Einar Eg
2015-01-01
Fishing and climate change impact the demography of marine fishes, but it is generally ignored that many species are made up of genetically distinct locally adapted populations that may show idiosyncratic responses to environmental and anthropogenic pressures. Here, we track 80 years of Atlantic cod (Gadus morhua) population dynamics in West Greenland using DNA from archived otoliths in combination with fish population and niche based modeling. We document how the interacting effects of climate change and high fishing pressure lead to dramatic spatiotemporal changes in the proportions and abundance of different genetic populations, and eventually drove the cod fishery to a collapse in the early 1970s. Our results highlight the relevance of fisheries management at the level of genetic populations under future scenarios of climate change. PMID:26489934
Archived DNA reveals fisheries and climate induced collapse of a major fishery
NASA Astrophysics Data System (ADS)
Bonanomi, Sara; Pellissier, Loïc; Therkildsen, Nina Overgaard; Hedeholm, Rasmus Berg; Retzel, Anja; Meldrup, Dorte; Olsen, Steffen Malskær; Nielsen, Anders; Pampoulie, Christophe; Hemmer-Hansen, Jakob; Wisz, Mary Susanne; Grønkjær, Peter; Nielsen, Einar Eg
2015-10-01
Fishing and climate change impact the demography of marine fishes, but it is generally ignored that many species are made up of genetically distinct locally adapted populations that may show idiosyncratic responses to environmental and anthropogenic pressures. Here, we track 80 years of Atlantic cod (Gadus morhua) population dynamics in West Greenland using DNA from archived otoliths in combination with fish population and niche based modeling. We document how the interacting effects of climate change and high fishing pressure lead to dramatic spatiotemporal changes in the proportions and abundance of different genetic populations, and eventually drove the cod fishery to a collapse in the early 1970s. Our results highlight the relevance of fisheries management at the level of genetic populations under future scenarios of climate change.
Binder, Thomas; Marsden, J. Ellen; Riley, Stephen; Johnson, James E.; Johnson, Nicholas; He, Ji; Ebener, Mark P.; Holbrook, Christopher; Bergstedt, Roger A.; Bronte, Charles R.; Hayden, Todd A.; Krueger, Charles C.
2017-01-01
Movement ecology is an important component of life history and population dynamics, and consequently its understanding can inform successful fishery management decision-making. While lake trout populations in Lake Huron have shown signs of recovery from near extinction in recent years, knowledge of their movement behavior remains incomplete. We used acoustic telemetry to describe and compare movement patterns of two Lake Huron lake trout populations: Drummond Island and Thunder Bay. Both populations showed high spawning site fidelity, with no evidence of co-mingling during non-spawning season. Detections between spawning periods were mainly limited to receivers within 100 km of spawning locations, and suggested that the two populations likely remained segregated throughout the year. Drummond Island fish, which spawn inside the Drummond Island Refuge, primarily dispersed east into Canadian waters of Lake Huron, with 79–92% of fish being detected annually on receivers outside the refuge. In contrast, Thunder Bay fish tended to disperse south towards Saginaw Bay. Large proportions (i.e., > 80%) of both populations were available to fisheries outside the management zone containing their spawning location. Thunder Bay fish moved relatively quickly to overwinter habitat after spawning, and tended to repeat the same post-spawning movement behavior each year. The consistent, predictable movement of both populations across management zones highlights the importance of understanding population dynamics to effective management of Lake Huron lake trout.
Spatial distribution of limited resources and local density regulation in juvenile Atlantic salmon.
Finstad, Anders G; Einum, Sigurd; Ugedal, Ola; Forseth, Torbjørn
2009-01-01
1. Spatial heterogeneity of resources may influence competition among individuals and thus have a fundamental role in shaping population dynamics and carrying capacity. In the present study, we identify shelter opportunities as a limiting resource for juvenile Atlantic salmon (Salmo salar L.). Experimental and field studies are combined in order to demonstrate how the spatial distribution of shelters may influence population dynamics on both within and among population scales. 2. In closed experimental streams, fish performance scaled negatively with decreasing shelter availability and increasing densities. In contrast, the fish in open stream channels dispersed according to shelter availability and performance of fish remaining in the streams did not depend on initial density or shelters. 3. The field study confirmed that spatial variation in densities of 1-year-old juveniles was governed both by initial recruit density and shelter availability. Strength of density-dependent population regulation, measured as carrying capacity, increased with decreasing number of shelters. 4. Nine rivers were surveyed for spatial variation in shelter availability and increased shelter heterogeneity tended to decrease maximum observed population size (measured using catch statistics of adult salmon as a proxy). 5. Our studies highlight the importance of small-scale within-population spatial structure in population dynamics and demonstrate that not only the absolute amount of limiting resources but also their spatial arrangement can be an important factor influencing population carrying capacity.
McKenna, James E.
2000-01-01
Although, perceiving genetic differences and their effects on fish population dynamics is difficult, simulation models offer a means to explore and illustrate these effects. I partitioned the intrinsic rate of increase parameter of a simple logistic-competition model into three components, allowing specification of effects of relative differences in fitness and mortality, as well as finite rate of increase. This model was placed into an interactive, stochastic environment to allow easy manipulation of model parameters (FITPOP). Simulation results illustrated the effects of subtle differences in genetic and population parameters on total population size, overall fitness, and sensitivity of the system to variability. Several consequences of mixing genetically distinct populations were illustrated. For example, behaviors such as depression of population size after initial introgression and extirpation of native stocks due to continuous stocking of genetically inferior fish were reproduced. It also was shown that carrying capacity relative to the amount of stocking had an important influence on population dynamics. Uncertainty associated with parameter estimates reduced confidence in model projections. The FITPOP model provided a simple tool to explore population dynamics, which may assist in formulating management strategies and identifying research needs.
Wagner, Tyler; Jones, Michael L.; Ebener, Mark P.; Arts, Michael T.; Brenden, Travis O.; Honeyfield, Dale C.; Wright, Gregory M.; Faisal, Mohamed
2010-01-01
We examined the spatial and temporal dynamics of health indicators in four lake whitefish (Coregonus clupeaformis) stocks located in northern lakes Michigan and Huron from 2003 to 2006. The specific objectives were to (1) quantify spatial and temporal variability in health indicators; (2) examine relationships among nutritional indicators and stock-specific spatial and temporal dynamics of pathogen prevalence and intensity of infection; and (3) examine relationships between indicators measured on individual fish and stock-specific estimates of natural mortality. The percent of the total variation attributed to spatial and temporal sources varied greatly depending on the health indicator examined. The most notable pattern was a downward trend in the concentration of highly unsaturated fatty acids (HUFAs), observed in all stocks, in the polar lipid fraction of lake whitefish dorsal muscle tissue over the three study years. Variation among stocks and years for some indicators were correlated with the prevalence and intensity of the swimbladder nematode Cystidicola farionis, suggesting that our measures of fish health were related, at some level, with disease dynamics. We did not find relationships between spatial patterns in fish health indicators and estimates of natural mortality rates for the stocks. Our research highlights the complexity of the interactions between fish nutritional status, disease dynamics, and natural mortality in wild fish populations. Additional research that identifies thresholds of health indicators, below (or above) which survival may be reduced, will greatly help in understanding the relationship between indicators measured on individual fish and potential population-level effects.
Sakaris, P.C.; Irwin, E.R.
2010-01-01
We developed stochastic matrix models to evaluate the effects of hydrologic alteration and variable mortality on the population dynamics of a lotie fish in a regulated river system. Models were applied to a representative lotic fish species, the flathead catfish (Pylodictis olivaris), for which two populations were examined: a native population from a regulated reach of the Coosa River (Alabama, USA) and an introduced population from an unregulated section of the Ocmulgee River (Georgia, USA). Size-classified matrix models were constructed for both populations, and residuals from catch-curve regressions were used as indices of year class strength (i.e., recruitment). A multiple regression model indicated that recruitment of flathead catfish in the Coosa River was positively related to the frequency of spring pulses between 283 and 566 m3/s. For the Ocmulgee River population, multiple regression models indicated that year class strength was negatively related to mean March discharge and positively related to June low flow. When the Coosa population was modeled to experience five consecutive years of favorable hydrologic conditions during a 50-year projection period, it exhibited a substantial spike in size and increased at an overall 0.2% annual rate. When modeled to experience five years of unfavorable hydrologic conditions, the Coosa population initially exhibited a decrease in size but later stabilized and increased at a 0.4% annual rate following the decline. When the Ocmulgee River population was modeled to experience five years of favorable conditions, it exhibited a substantial spike in size and increased at an overall 0.4% annual rate. After the Ocmulgee population experienced five years of unfavorable conditions, a sharp decline in population size was predicted. However, the population quickly recovered, with population size increasing at a 0.3% annual rate following the decline. In general, stochastic population growth in the Ocmulgee River was more erratic and variable than population growth in the Coosa River. We encourage ecologists to develop similar models for other lotic species, particularly in regulated river systems. Successful management of fish populations in regulated systems requires that we are able to predict how hydrology affects recruitment and will ultimately influence the population dynamics of fishes. ?? 2010 by the Ecological Society of America.
Wilk, Rebecca J; Horth, Lisa
2016-12-01
Hybrid zones allow for the investigation of incipient speciation and related evolutionary processes of selection, gene flow, and migration. Interspecific dynamics, like competition, can impact the size, shape, and directional movement of species in hybrid zones. Hybrid zones contribute to a paradox for the biological species concept because interbreeding between species occurs while parental forms remain distinct. A long-standing zone of intergradation or introgression exists for eastern and western mosquito fish ( Gambusia holbrooki and G. affinis ) around Mobile Bay, AL. The region has been studied episodically, over decades, making it perfect for addressing temporal dynamics and for providing a deeper understanding of the genetics of these periodically reclassified fishes (as species or subspecies). We used six microsatellite markers to assess the current population structure and gene flow patterns across 19 populations of mosquito fish and then compared our results with historical data. Genetic evidence demonstrates that the current hybrid zone is located in a similar geographic region as the historical one, even after three decades. Hybrid fish, however, demonstrate relatively low heterozygosity and are genetically distinct from western and eastern mosquito fish populations. Fin ray counts, sometimes used to distinguish the two species from one another, demonstrate more eastern ( G. holbrooki) phenotype fish within the molecular genetic hybrid zone today. Mosquito fish are globally invasive, often found on the leading edge of flooded waters that they colonize, so the impact of hurricanes in the wake of climate change was also evaluated. An increase in the frequency and intensity of hurricanes in the hybrid region has occurred, and this point warrants further attention since hurricanes are known to move these aggressive, invasive species into novel territory. This work contributes to our classical understanding of hybrid zone temporal dynamics, refines our understanding of mosquito fish genetics in their native range, evaluates important genotype-phenotype relationships, and identifies a potential new impact of climate change.
NASA Astrophysics Data System (ADS)
Sala, R.; Bawole, R.; Runtuboi, F.; Mudjirahayu; Wopi, I. A.; Budisetiawan, J.; Irwanto
2018-03-01
The Wondama Bay water is located within the Cendrawasih Bay National Park and is potential for fishery resources, including pelagic fish such as yellowstripe scad (Selaroides leptolepis Cuvier, 1833) and Indian mackerel (Rastrelliger kanagurta Cuvier, 1816). Yet, information about the population dynamics of these species in the region is unknown until today. Meanwhile, the fishing activities have been quite intensive and include the dominant catches over the last ten years by traditional fishermen fishing using liftnets. Therefore, this study aims to determine some of specific characteristics of the population dynamics and fish utilization status of scad and mackerel in the waters of the Wondama Bay. Data used in this study were taken from direct observation of catch of liftnet fishery. The data then were analysed by using FISAT II to estimate the growth parameters, mortality rates, and yield per recruitment. The results showed that yellowstripe scad has the positive allometric growth, while Indian mackerel followed isometric growth. Models of fish growth were L(t) = 22 (1-e-3.0(t-0.05)) for yellowstripe scad and L(t) = 27.8 (1-e-4.0(t-0.04)) for Indian mackerel. The natural mortality (M) of 4.19 year-1, fishing mortality (F) of 5.01 year-1, and total mortality (Z) of 9.20 year-1 were for yellowstripe scad, and M of 4.74 year-1, F of 2.52 year-1 and Z of 7.26 year-1 were for Indian mackerel. Based on the mortality rates, estimated exploitation rate for the yellowatripe scad was 54 % and the Indian mackerel was 35 %. To increase the production of catch without increasing fishing effort (fishing mortality) can be done by increasing the size of fish caught or the Lc/L∞ should be greater than 0.5.
Response of fish population dynamics to mitigation activities in a large regulated river
Watkins, Carson J.; Ross, Tyler J.; Quist, Michael C.; Hardy, Ryan S.
2017-01-01
Extensive water development in large rivers has precipitated many negative ecological effects on native fish populations. Mitigation for such development often focuses on restoring biological integrity through remediation of the physical and chemical properties of regulated rivers. However, evaluating and defining the success of those programs can be difficult. We modeled the influence of mitigation-related environmental factors on growth and recruitment of two ecologically important native fish species (Largescale Sucker Catostomus macrocheilus and Mountain Whitefish Prosopium williamsoni) in the Kootenai River, Idaho. Artificial nutrient (phosphorus) addition best predicted the variability in annual growth of both species. Nutrient addition was positively related to Largescale Sucker growth but negatively related to Mountain Whitefish growth. The best model explained 82% of the annual variability in incremental growth for Largescale Suckers and 61% of the annual variability for Mountain Whitefish. Year-class strength of Largescale Suckers was not closely related to any of the environmental variables evaluated; however, year-class strength of Mountain Whitefish was closely associated with nutrient addition, discharge, and temperature. Most research has focused on biotic assemblages to evaluate the effects of mitigation activities on fishes, but there is an increased need to identify the influence of rehabilitation activities on fish population dynamics within those assemblages. Here, we demonstrate how fish growth can serve as an indicator of rehabilitation success in a highly regulated large river. Future fish restoration projects can likely benefit from a change in scope and from consideration of an evaluation framework involving the response of population rate functions to mitigation.
Nonlinear absorption dynamics using field-induced surface hopping: zinc porphyrin in water.
Röhr, Merle I S; Petersen, Jens; Wohlgemuth, Matthias; Bonačić-Koutecký, Vlasta; Mitrić, Roland
2013-05-10
We wish to present the application of our field-induced surface-hopping (FISH) method to simulate nonlinear absorption dynamics induced by strong nonresonant laser fields. We provide a systematic comparison of the FISH approach with exact quantum dynamics simulations on a multistate model system and demonstrate that FISH allows for accurate simulations of nonlinear excitation processes including multiphoton electronic transitions. In particular, two different approaches for simulating two-photon transitions are compared. The first approach is essentially exact and involves the solution of the time-dependent Schrödinger equation in an extended manifold of excited states, while in the second one only transiently populated nonessential states are replaced by an effective quadratic coupling term, and dynamics is performed in a considerably smaller manifold of states. We illustrate the applicability of our method to complex molecular systems by simulating the linear and nonlinear laser-driven dynamics in zinc (Zn) porphyrin in the gas phase and in water. For this purpose, the FISH approach is connected with the quantum mechanical-molecular mechanical approach (QM/MM) which is generally applicable to large classes of complex systems. Our findings that multiphoton absorption and dynamics increase the population of higher excited states of Zn porphyrin in the nonlinear regime, in particular in solution, provides a means for manipulating excited-state properties, such as transient absorption dynamics and electronic relaxation. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Williamson, David H; Ceccarelli, Daniela M; Evans, Richard D; Jones, Geoffrey P; Russ, Garry R
2014-02-01
Severe climatic disturbance events often have major impacts on coral reef communities, generating cycles of decline and recovery, and in some extreme cases, community-level phase shifts from coral-to algal-dominated states. Benthic habitat changes directly affect reef fish communities, with low coral cover usually associated with low fish diversity and abundance. No-take marine reserves (NTRs) are widely advocated for conserving biodiversity and enhancing the sustainability of exploited fish populations. Numerous studies have documented positive ecological and socio-economic benefits of NTRs; however, the ability of NTRs to ameliorate the effects of acute disturbances on coral reefs has seldom been investigated. Here, we test these factors by tracking the dynamics of benthic and fish communities, including the important fishery species, coral trout (Plectropomus spp.), over 8 years in both NTRs and fished areas in the Keppel Island group, Great Barrier Reef, Australia. Two major disturbances impacted the reefs during the monitoring period, a coral bleaching event in 2006 and a freshwater flood plume in 2011. Both disturbances generated significant declines in coral cover and habitat complexity, with subsequent declines in fish abundance and diversity, and pronounced shifts in fish assemblage structure. Coral trout density also declined in response to the loss of live coral, however, the approximately 2:1 density ratio between NTRs and fished zones was maintained over time. The only post-disturbance refuges for coral trout spawning stocks were within the NTRs that escaped the worst effects of the disturbances. Although NTRs had little discernible effect on the temporal dynamics of benthic or fish communities, it was evident that the post-disturbance refuges for coral trout spawning stocks within some NTRs may be critically important to regional-scale population persistence and recovery.
Habitat dynamics, marine reserve status, and the decline and recovery of coral reef fish communities
Williamson, David H; Ceccarelli, Daniela M; Evans, Richard D; Jones, Geoffrey P; Russ, Garry R
2014-01-01
Severe climatic disturbance events often have major impacts on coral reef communities, generating cycles of decline and recovery, and in some extreme cases, community-level phase shifts from coral-to algal-dominated states. Benthic habitat changes directly affect reef fish communities, with low coral cover usually associated with low fish diversity and abundance. No-take marine reserves (NTRs) are widely advocated for conserving biodiversity and enhancing the sustainability of exploited fish populations. Numerous studies have documented positive ecological and socio-economic benefits of NTRs; however, the ability of NTRs to ameliorate the effects of acute disturbances on coral reefs has seldom been investigated. Here, we test these factors by tracking the dynamics of benthic and fish communities, including the important fishery species, coral trout (Plectropomus spp.), over 8 years in both NTRs and fished areas in the Keppel Island group, Great Barrier Reef, Australia. Two major disturbances impacted the reefs during the monitoring period, a coral bleaching event in 2006 and a freshwater flood plume in 2011. Both disturbances generated significant declines in coral cover and habitat complexity, with subsequent declines in fish abundance and diversity, and pronounced shifts in fish assemblage structure. Coral trout density also declined in response to the loss of live coral, however, the approximately 2:1 density ratio between NTRs and fished zones was maintained over time. The only post-disturbance refuges for coral trout spawning stocks were within the NTRs that escaped the worst effects of the disturbances. Although NTRs had little discernible effect on the temporal dynamics of benthic or fish communities, it was evident that the post-disturbance refuges for coral trout spawning stocks within some NTRs may be critically important to regional-scale population persistence and recovery. PMID:24634720
Rogers, Lauren A; Schindler, Daniel E; Lisi, Peter J; Holtgrieve, Gordon W; Leavitt, Peter R; Bunting, Lynda; Finney, Bruce P; Selbie, Daniel T; Chen, Guangjie; Gregory-Eaves, Irene; Lisac, Mark J; Walsh, Patrick B
2013-01-29
Observational data from the past century have highlighted the importance of interdecadal modes of variability in fish population dynamics, but how these patterns of variation fit into a broader temporal and spatial context remains largely unknown. We analyzed time series of stable nitrogen isotopes from the sediments of 20 sockeye salmon nursery lakes across western Alaska to characterize temporal and spatial patterns in salmon abundance over the past ∼500 y. Although some stocks varied on interdecadal time scales (30- to 80-y cycles), centennial-scale variation, undetectable in modern-day catch records and survey data, has dominated salmon population dynamics over the past 500 y. Before 1900, variation in abundance was clearly not synchronous among stocks, and the only temporal signal common to lake sediment records from this region was the onset of commercial fishing in the late 1800s. Thus, historical changes in climate did not synchronize stock dynamics over centennial time scales, emphasizing that ecosystem complexity can produce a diversity of ecological responses to regional climate forcing. Our results show that marine fish populations may alternate between naturally driven periods of high and low abundance over time scales of decades to centuries and suggest that management models that assume time-invariant productivity or carrying capacity parameters may be poor representations of the biological reality in these systems.
Rogers, Lauren A.; Schindler, Daniel E.; Lisi, Peter J.; Holtgrieve, Gordon W.; Leavitt, Peter R.; Bunting, Lynda; Finney, Bruce P.; Selbie, Daniel T.; Chen, Guangjie; Gregory-Eaves, Irene; Lisac, Mark J.; Walsh, Patrick B.
2013-01-01
Observational data from the past century have highlighted the importance of interdecadal modes of variability in fish population dynamics, but how these patterns of variation fit into a broader temporal and spatial context remains largely unknown. We analyzed time series of stable nitrogen isotopes from the sediments of 20 sockeye salmon nursery lakes across western Alaska to characterize temporal and spatial patterns in salmon abundance over the past ∼500 y. Although some stocks varied on interdecadal time scales (30- to 80-y cycles), centennial-scale variation, undetectable in modern-day catch records and survey data, has dominated salmon population dynamics over the past 500 y. Before 1900, variation in abundance was clearly not synchronous among stocks, and the only temporal signal common to lake sediment records from this region was the onset of commercial fishing in the late 1800s. Thus, historical changes in climate did not synchronize stock dynamics over centennial time scales, emphasizing that ecosystem complexity can produce a diversity of ecological responses to regional climate forcing. Our results show that marine fish populations may alternate between naturally driven periods of high and low abundance over time scales of decades to centuries and suggest that management models that assume time-invariant productivity or carrying capacity parameters may be poor representations of the biological reality in these systems. PMID:23322737
Medvedinskiĭ, A B; Tikhonova, I A; Li, B L; Malchow, H
2003-01-01
The dynamics of aquatic biological communities in a patchy environment is of great interest in respect to interrelations between phenomena at various spatial and time scales. To study the complex plankton dynamics in relation to variations of such a biologically essential parameter as the fish predation rate, we use a simple reaction-diffusion model of trophic interactions between phytoplankton, zooplankton, and fish. We suggest that plankton is distributed between two habitats one of which is fish-free due to hydrological inhomogeneity, while the other is fish-populated. We show that temporal variations in the fish predation rate do not violate the strong correspondence between the character of spatial distribution of plankton and changes of plankton biomass in time: regular temporal oscillations of plankton biomass correspond to large-scale plankton patches, while chaotic oscillations correspond to small-scale plankton patterns. As in the case of the constant fish predation rate, the chaotic plankton dynamics is characterized by coexistence of the chaotic attractor and limit cycle.
Dong, Q.; DeAngelis, D.L.
1998-01-01
We used an individual-based modeling approach to study the consequences of cannibalism and competition for food in a freshwater fish population. We simulated the daily foraging, growth, and survival of the age-0 fish and older juvenile individuals of a sample population to reconstruct patterns of density dependence in the age-0 fish during the growth season. Cannibalism occurs as a part of the foraging process. For age-0 fish, older juvenile fish are both potential cannibals and competitors of food. We found that competition and cannibalism produced intraclass and interclass density dependence. Our modeling results suggested the following. (1) With low density of juvenile fish and weak interclass interactions, the age-0 fish recruitment shows a Beverton-Holt type of density dependence. (2) With high density of juvenile fish and strong interclass interactions, the age-0 fish recruitment shows a Ricker type of density dependence, and overcompensation occurs. (3) Interclass competition of food is responsible for much of the overcompensation. (4) Cannibalism intensifies the changes in the recruitment that are brought about by competition. Cannibalism can (a) generally reduce the recruitment, (b) particularly reduce the maximum level of recruitment, (c) cause overcompensation to occur at lower densities, and (d) produce a stronger overcompensation. (5) Growth is also a function of density. Cannibalism generally improves average growth of cannibals. (6) Variation in the lengths of age-0 fish increases with density and with a decreased average growth. These results imply that cannibalism and competition for food could strongly affect recruitment dynamics. Our model also showed that the rate of cannibalism either could be fairly even through the whole season or could vary dramatically. The individual-based modeling approach can help ecologists understand the mechanistic connection between daily behavioral and physiological processes operating at the level of individual organisms and seasonal patterns of population structure and dynamics. ?? Copyright by the American Fisheries Society 1998.
Effects of riffle length on the short-term movement of fishes among stream pools.
David George Lonzarich; Mary Ruth Elger Lonzrich; Melvin L. Warren
2000-01-01
Recent research has suggested that the within-habitat dynamics of fish populations and assemblages can be affected by the spatial distribution of habitats within streams. In this study, we determined the extent to which pool isolation (length of riffles connecting adjacent pools) influenced fish movement in two Arkansas streams. We marked individuals from 12 pools...
Coggins, Lewis G; Bacheler, Nathan M; Gwinn, Daniel C
2014-01-01
Occupancy models using incidence data collected repeatedly at sites across the range of a population are increasingly employed to infer patterns and processes influencing population distribution and dynamics. While such work is common in terrestrial systems, fewer examples exist in marine applications. This disparity likely exists because the replicate samples required by these models to account for imperfect detection are often impractical to obtain when surveying aquatic organisms, particularly fishes. We employ simultaneous sampling using fish traps and novel underwater camera observations to generate the requisite replicate samples for occupancy models of red snapper, a reef fish species. Since the replicate samples are collected simultaneously by multiple sampling devices, many typical problems encountered when obtaining replicate observations are avoided. Our results suggest that augmenting traditional fish trap sampling with camera observations not only doubled the probability of detecting red snapper in reef habitats off the Southeast coast of the United States, but supplied the necessary observations to infer factors influencing population distribution and abundance while accounting for imperfect detection. We found that detection probabilities tended to be higher for camera traps than traditional fish traps. Furthermore, camera trap detections were influenced by the current direction and turbidity of the water, indicating that collecting data on these variables is important for future monitoring. These models indicate that the distribution and abundance of this species is more heavily influenced by latitude and depth than by micro-scale reef characteristics lending credence to previous characterizations of red snapper as a reef habitat generalist. This study demonstrates the utility of simultaneous sampling devices, including camera traps, in aquatic environments to inform occupancy models and account for imperfect detection when describing factors influencing fish population distribution and dynamics.
Coggins, Lewis G.; Bacheler, Nathan M.; Gwinn, Daniel C.
2014-01-01
Occupancy models using incidence data collected repeatedly at sites across the range of a population are increasingly employed to infer patterns and processes influencing population distribution and dynamics. While such work is common in terrestrial systems, fewer examples exist in marine applications. This disparity likely exists because the replicate samples required by these models to account for imperfect detection are often impractical to obtain when surveying aquatic organisms, particularly fishes. We employ simultaneous sampling using fish traps and novel underwater camera observations to generate the requisite replicate samples for occupancy models of red snapper, a reef fish species. Since the replicate samples are collected simultaneously by multiple sampling devices, many typical problems encountered when obtaining replicate observations are avoided. Our results suggest that augmenting traditional fish trap sampling with camera observations not only doubled the probability of detecting red snapper in reef habitats off the Southeast coast of the United States, but supplied the necessary observations to infer factors influencing population distribution and abundance while accounting for imperfect detection. We found that detection probabilities tended to be higher for camera traps than traditional fish traps. Furthermore, camera trap detections were influenced by the current direction and turbidity of the water, indicating that collecting data on these variables is important for future monitoring. These models indicate that the distribution and abundance of this species is more heavily influenced by latitude and depth than by micro-scale reef characteristics lending credence to previous characterizations of red snapper as a reef habitat generalist. This study demonstrates the utility of simultaneous sampling devices, including camera traps, in aquatic environments to inform occupancy models and account for imperfect detection when describing factors influencing fish population distribution and dynamics. PMID:25255325
Illing, Björn; Rummer, Jodie L
2017-01-01
Coral reef fishes, like many other marine organisms, are affected by anthropogenic stressors such as fishing and pollution and, owing to climate change, are experiencing increasing water temperatures and ocean acidification. Against the backdrop of these various stressors, a mechanistic understanding of processes governing individual organismal performance is the first step for identifying drivers of coral reef fish population dynamics. In fact, physiological measurements can help to reveal potential cause-and-effect relationships and enable physiologists to advise conservation management by upscaling results from cellular and individual organismal levels to population levels. Here, we highlight studies that include physiological measurements of coral reef fishes and those that give advice for their conservation. A literature search using combined physiological, conservation and coral reef fish key words resulted in ~1900 studies, of which only 99 matched predefined requirements. We observed that, over the last 20 years, the combination of physiological and conservation aspects in studies on coral reef fishes has received increased attention. Most of the selected studies made their physiological observations at the whole organism level and used their findings to give conservation advice on population dynamics, habitat use or the potential effects of climate change. The precision of the recommendations differed greatly and, not surprisingly, was least concrete when studies examined the effects of projected climate change scenarios. Although more and more physiological studies on coral reef fishes include conservation aspects, there is still a lack of concrete advice for conservation managers, with only very few published examples of physiological findings leading to improved management practices. We conclude with a call to action to foster better knowledge exchange between natural scientists and conservation managers to translate physiological findings more effectively in order to obtain evidence-based and adaptive management strategies for the conservation of coral reef fishes.
NASA Astrophysics Data System (ADS)
Jordan, C.; Bouwes, N.; Wheaton, J. M.; Pollock, M.
2013-12-01
Over the past several centuries, the population of North American Beaver has been dramatically reduced through fur trapping. As a result, the geomorphic impacts long-term beaver occupancy and activity can have on fluvial systems have been lost, both from the landscape and from our collective memory such that physical and biological models of floodplain system function neither consider nor have the capacity to incorporate the role beaver can play in structuring the dynamics of streams. Concomitant with the decline in beaver populations was an increasing pressure on streams and floodplains through human activity, placing numerous species of stream rearing fishes in peril, most notably the ESA listing of trout and salmon populations across the entirety of the Western US. The rehabilitation of stream systems is seen as one of the primary means by which population and ecosystem recovery can be achieved, yet the methods of stream rehabilitation are applied almost exclusively with the expected outcome of a static idealized stream planform, occasionally with an acknowledgement of restoring processes rather than form and only rarely with the goal of a beaver dominated riverscape. We have constructed an individual based model of trout and beaver populations that allows the exploration of fish population dynamics as a function of stream habitat quality and quantity. We based the simulation tool on Bridge Creek (John Day River basin, Oregon) where we have implemented a large-scale restoration experiment using wooden posts to provide beavers with stable platforms for dam building and to simulate the dams themselves. Extensive monitoring captured geomorphic and riparian changes, as well as fish and beaver population responses; information we use to parameterize the model as to the geomorphic and fish response to dam building beavers. In the simulation environment, stream habitat quality and quantity can be manipulated directly through rehabilitation actions and indirectly through the dynamics of the co-occurring beaver population. The model allowed to us to ask questions critical for designing restoration strategies based on dam building beaver activity, such as what beaver population growth rate is required to develop and maintain floodplain connectivity in an incised system, or what beaver population size is required to increase juvenile steelhead production? The model was sensitive to several variables including beaver colony size, dams and colony dynamics and site fidelity, and thus highlights further research needs to fill critical information gaps.
Behavioural responses to human-induced change: Why fishing should not be ignored.
Diaz Pauli, Beatriz; Sih, Andrew
2017-03-01
Change in behaviour is usually the first response to human-induced environmental change and key for determining whether a species adapts to environmental change or becomes maladapted. Thus, understanding the behavioural response to human-induced changes is crucial in the interplay between ecology, evolution, conservation and management. Yet the behavioural response to fishing activities has been largely ignored. We review studies contrasting how fish behaviour affects catch by passive (e.g., long lines, angling) versus active gears (e.g., trawls, seines). We show that fishing not only targets certain behaviours, but it leads to a multitrait response including behavioural, physiological and life-history traits with population, community and ecosystem consequences. Fisheries-driven change (plastic or evolutionary) of fish behaviour and its correlated traits could impact fish populations well beyond their survival per se , affecting predation risk, foraging behaviour, dispersal, parental care, etc., and hence numerous ecological issues including population dynamics and trophic cascades . In particular, we discuss implications of behavioural responses to fishing for fisheries management and population resilience. More research on these topics, however, is needed to draw general conclusions, and we suggest fruitful directions for future studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aho, J.M.; Anderson, C.S.; Floyd, K.B.
1986-06-01
Research conducted as part of the Comprehensive Cooling Water Study (CCWS) has elucidated many factors that are important to fish population and community dynamics in a variety of habitats on the Savannah River Plant (SRP). Information gained from these studies is useful in predicting fish responses to SRP operations. The overall objective of the CCWS was (1) to determine the environmental effects of SRP cooling water withdrawals and discharges and (2) to determine the significance of the cooling water impacts on the environment. The purpose of this study was to: (1) examine the effects of thermal plumes on anadromous andmore » resident fishes, including overwintering effects, in the SRP swamp and associated tributary streams; (2) assess fish spawning and locate nursery grounds on the SRP; (3) examine the level of use of the SRP by spawning fish from the Savannah River, this objective was shared with the Savannah River Laboratory, E.I. du Pont de Nemours and Company; and (4) determine impacts of cooling-water discharges on fish population and community attributes. Five studies were designed to address the above topics. The specific objectives and a summary of the findings of each study are presented.« less
A dynamic landscape model for fish in the Everglades and its application to restoration
Gaff, H.D.; DeAngelis, D.L.; Gross, L.J.; Salinas, R.; Shorrosh, M.
2000-01-01
A model (ALFISH) for fish functional groups in freshwater marshes of the greater Everglades area of southern Florida has been developed. Its main objective is to assess the spatial pattern of fish densities through time across freshwater marshes. This model has the capability of providing a dynamic measure of the spatially-explicit food resources available to wading birds. ALFISH simulates two functional groups, large and small fish, where the larger ones can prey on the small fish type. Both functional groups are size-structured. The marsh landscape is modeled as 500×500 m spatial cells on a grid across southern Florida. A hydrology model predicts water levels in the spatial cells on 5-day time steps. Fish populations spread across the marsh during flooded conditions and either retreat into refugia (alligator ponds), move to other spatial cells, or die if their cell dries out. ALFISH has been applied to the evaluation of alternative water regulation scenarios under the Central and South Florida Comprehensive Project Review Study. The objective of this Review Study is to compare alternative methods for restoring historical ecological conditions in southern Florida. ALFISH has provided information on which plans are most are likely to increase fish biomass and its availability to wading bird populations.
Invasive fishes generate biogeochemical hotspots in a nutrient-limited system.
Capps, Krista A; Flecker, Alexander S
2013-01-01
Fishes can play important functional roles in the nutrient dynamics of freshwater systems. Aggregating fishes have the potential to generate areas of increased biogeochemical activity, or hotspots, in streams and rivers. Many of the studies documenting the functional role of fishes in nutrient dynamics have focused on native fish species; however, introduced fishes may restructure nutrient storage and cycling freshwater systems as they can attain high population densities in novel environments. The purpose of this study was to examine the impact of a non-native catfish (Loricariidae: Pterygoplichthys) on nitrogen and phosphorus remineralization and estimate whether large aggregations of these fish generate measurable biogeochemical hotspots within nutrient-limited ecosystems. Loricariids formed large aggregations during daylight hours and dispersed throughout the stream during evening hours to graze benthic habitats. Excretion rates of phosphorus were twice as great during nighttime hours when fishes were actively feeding; however, there was no diel pattern in nitrogen excretion rates. Our results indicate that spatially heterogeneous aggregations of loricariids can significantly elevate dissolved nutrient concentrations via excretion relative to ambient nitrogen and phosphorus concentrations during daylight hours, creating biogeochemical hotspots and potentially altering nutrient dynamics in invaded systems.
Invasive Fishes Generate Biogeochemical Hotspots in a Nutrient-Limited System
Capps, Krista A.; Flecker, Alexander S.
2013-01-01
Fishes can play important functional roles in the nutrient dynamics of freshwater systems. Aggregating fishes have the potential to generate areas of increased biogeochemical activity, or hotspots, in streams and rivers. Many of the studies documenting the functional role of fishes in nutrient dynamics have focused on native fish species; however, introduced fishes may restructure nutrient storage and cycling freshwater systems as they can attain high population densities in novel environments. The purpose of this study was to examine the impact of a non-native catfish (Loricariidae: Pterygoplichthys) on nitrogen and phosphorus remineralization and estimate whether large aggregations of these fish generate measurable biogeochemical hotspots within nutrient-limited ecosystems. Loricariids formed large aggregations during daylight hours and dispersed throughout the stream during evening hours to graze benthic habitats. Excretion rates of phosphorus were twice as great during nighttime hours when fishes were actively feeding; however, there was no diel pattern in nitrogen excretion rates. Our results indicate that spatially heterogeneous aggregations of loricariids can significantly elevate dissolved nutrient concentrations via excretion relative to ambient nitrogen and phosphorus concentrations during daylight hours, creating biogeochemical hotspots and potentially altering nutrient dynamics in invaded systems. PMID:23342083
Fine-scale population dynamics in a marine fish species inferred from dynamic state-space models.
Rogers, Lauren A; Storvik, Geir O; Knutsen, Halvor; Olsen, Esben M; Stenseth, Nils C
2017-07-01
Identifying the spatial scale of population structuring is critical for the conservation of natural populations and for drawing accurate ecological inferences. However, population studies often use spatially aggregated data to draw inferences about population trends and drivers, potentially masking ecologically relevant population sub-structure and dynamics. The goals of this study were to investigate how population dynamics models with and without spatial structure affect inferences on population trends and the identification of intrinsic drivers of population dynamics (e.g. density dependence). Specifically, we developed dynamic, age-structured, state-space models to test different hypotheses regarding the spatial structure of a population complex of coastal Atlantic cod (Gadus morhua). Data were from a 93-year survey of juvenile (age 0 and 1) cod sampled along >200 km of the Norwegian Skagerrak coast. We compared two models: one which assumes all sampled cod belong to one larger population, and a second which assumes that each fjord contains a unique population with locally determined dynamics. Using the best supported model, we then reconstructed the historical spatial and temporal dynamics of Skagerrak coastal cod. Cross-validation showed that the spatially structured model with local dynamics had better predictive ability. Furthermore, posterior predictive checks showed that a model which assumes one homogeneous population failed to capture the spatial correlation pattern present in the survey data. The spatially structured model indicated that population trends differed markedly among fjords, as did estimates of population parameters including density-dependent survival. Recent biomass was estimated to be at a near-record low all along the coast, but the finer scale model indicated that the decline occurred at different times in different regions. Warm temperatures were associated with poor recruitment, but local changes in habitat and fishing pressure may have played a role in driving local dynamics. More generally, we demonstrated how state-space models can be used to test evidence for population spatial structure based on survey time-series data. Our study shows the importance of considering spatially structured dynamics, as the inferences from such an approach can lead to a different ecological understanding of the drivers of population declines, and fundamentally different management actions to restore populations. © 2017 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.
Ocean Acidification Effects on Atlantic Cod Larval Survival and Recruitment to the Fished Population
Stiasny, Martina H.; Mittermayer, Felix H.; Sswat, Michael; Voss, Rüdiger; Jutfelt, Fredrik; Chierici, Melissa; Puvanendran, Velmurugu; Mortensen, Atle; Reusch, Thorsten B. H.; Clemmesen, Catriona
2016-01-01
How fisheries will be impacted by climate change is far from understood. While some fish populations may be able to escape global warming via range shifts, they cannot escape ocean acidification (OA), an inevitable consequence of the dissolution of anthropogenic carbon dioxide (CO2) emissions in marine waters. How ocean acidification affects population dynamics of commercially important fish species is critical for adapting management practices of exploited fish populations. Ocean acidification has been shown to impair fish larvae’s sensory abilities, affect the morphology of otoliths, cause tissue damage and cause behavioural changes. Here, we obtain first experimental mortality estimates for Atlantic cod larvae under OA and incorporate these effects into recruitment models. End-of-century levels of ocean acidification (~1100 μatm according to the IPCC RCP 8.5) resulted in a doubling of daily mortality rates compared to present-day CO2 concentrations during the first 25 days post hatching (dph), a critical phase for population recruitment. These results were consistent under different feeding regimes, stocking densities and in two cod populations (Western Baltic and Barents Sea stock). When mortality data were included into Ricker-type stock-recruitment models, recruitment was reduced to an average of 8 and 24% of current recruitment for the two populations, respectively. Our results highlight the importance of including vulnerable early life stages when addressing effects of climate change on fish stocks. PMID:27551924
Stiasny, Martina H; Mittermayer, Felix H; Sswat, Michael; Voss, Rüdiger; Jutfelt, Fredrik; Chierici, Melissa; Puvanendran, Velmurugu; Mortensen, Atle; Reusch, Thorsten B H; Clemmesen, Catriona
2016-01-01
How fisheries will be impacted by climate change is far from understood. While some fish populations may be able to escape global warming via range shifts, they cannot escape ocean acidification (OA), an inevitable consequence of the dissolution of anthropogenic carbon dioxide (CO2) emissions in marine waters. How ocean acidification affects population dynamics of commercially important fish species is critical for adapting management practices of exploited fish populations. Ocean acidification has been shown to impair fish larvae's sensory abilities, affect the morphology of otoliths, cause tissue damage and cause behavioural changes. Here, we obtain first experimental mortality estimates for Atlantic cod larvae under OA and incorporate these effects into recruitment models. End-of-century levels of ocean acidification (~1100 μatm according to the IPCC RCP 8.5) resulted in a doubling of daily mortality rates compared to present-day CO2 concentrations during the first 25 days post hatching (dph), a critical phase for population recruitment. These results were consistent under different feeding regimes, stocking densities and in two cod populations (Western Baltic and Barents Sea stock). When mortality data were included into Ricker-type stock-recruitment models, recruitment was reduced to an average of 8 and 24% of current recruitment for the two populations, respectively. Our results highlight the importance of including vulnerable early life stages when addressing effects of climate change on fish stocks.
A key phase in the recruitment dynamics of coral reef fishes: post-settlement transition
Kaufman, L.; Ebersole, J.L.; Beets, Jim; McIvor, Carole
1992-01-01
Recent studies of recruitment dynamics in demersal fishes have placed major emphasis on presettlement mortality, and little on events bridging late larval and early juvenile periods. Observations on 68 taxa of Caribbean coral reef fishes before and during settlement revealed the existence of a distinct post-settlement life phase called the transition juvenile, associated with the act of recruitment. Transition juveniles were found as solitary individuals, in conspecific groups, or in heterospecific groups. The groups were either uniform or heterogenous in appearance. The complexity of the transition phase and its apparently widespread occurrence in coral reef fishes suggests that important aspects of population structure may be determined between settlement and first appearance as a full-fledged juvenile.
Cooke, Steven J.; Martins, Eduardo G; Struthers, Daniel P; Gutowsky, Lee F G; Powers, Michael H.; Doka, Susan E.; Dettmers, John M.; Crook, David A; Lucas, Martyn C.; Holbrook, Christopher; Krueger, Charles C.
2016-01-01
Freshwater fish move vertically and horizontally through the aquatic landscape for a variety of reasons, such as to find and exploit patchy resources or to locate essential habitats (e.g., for spawning). Inherent challenges exist with the assessment of fish populations because they are moving targets. We submit that quantifying and describing the spatial ecology of fish and their habitat is an important component of freshwater fishery assessment and management. With a growing number of tools available for studying the spatial ecology of fishes (e.g., telemetry, population genetics, hydroacoustics, otolith microchemistry, stable isotope analysis), new knowledge can now be generated and incorporated into biological assessment and fishery management. For example, knowing when, where, and how to deploy assessment gears is essential to inform, refine, or calibrate assessment protocols. Such information is also useful for quantifying or avoiding bycatch of imperiled species. Knowledge of habitat connectivity and usage can identify critically important migration corridors and habitats and can be used to improve our understanding of variables that influence spatial structuring of fish populations. Similarly, demographic processes are partly driven by the behavior of fish and mediated by environmental drivers. Information on these processes is critical to the development and application of realistic population dynamics models. Collectively, biological assessment, when informed by knowledge of spatial ecology, can provide managers with the ability to understand how and when fish and their habitats may be exposed to different threats. Naturally, this knowledge helps to better evaluate or develop strategies to protect the long-term viability of fishery production. Failure to understand the spatial ecology of fishes and to incorporate spatiotemporal data can bias population assessments and forecasts and potentially lead to ineffective or counterproductive management actions.
Cooke, Steven J; Martins, Eduardo G; Struthers, Daniel P; Gutowsky, Lee F G; Power, Michael; Doka, Susan E; Dettmers, John M; Crook, David A; Lucas, Martyn C; Holbrook, Christopher M; Krueger, Charles C
2016-04-01
Freshwater fish move vertically and horizontally through the aquatic landscape for a variety of reasons, such as to find and exploit patchy resources or to locate essential habitats (e.g., for spawning). Inherent challenges exist with the assessment of fish populations because they are moving targets. We submit that quantifying and describing the spatial ecology of fish and their habitat is an important component of freshwater fishery assessment and management. With a growing number of tools available for studying the spatial ecology of fishes (e.g., telemetry, population genetics, hydroacoustics, otolith microchemistry, stable isotope analysis), new knowledge can now be generated and incorporated into biological assessment and fishery management. For example, knowing when, where, and how to deploy assessment gears is essential to inform, refine, or calibrate assessment protocols. Such information is also useful for quantifying or avoiding bycatch of imperiled species. Knowledge of habitat connectivity and usage can identify critically important migration corridors and habitats and can be used to improve our understanding of variables that influence spatial structuring of fish populations. Similarly, demographic processes are partly driven by the behavior of fish and mediated by environmental drivers. Information on these processes is critical to the development and application of realistic population dynamics models. Collectively, biological assessment, when informed by knowledge of spatial ecology, can provide managers with the ability to understand how and when fish and their habitats may be exposed to different threats. Naturally, this knowledge helps to better evaluate or develop strategies to protect the long-term viability of fishery production. Failure to understand the spatial ecology of fishes and to incorporate spatiotemporal data can bias population assessments and forecasts and potentially lead to ineffective or counterproductive management actions.
[New view on the population genetic structure of marine fish].
Salmenkova, E A
2011-11-01
The view on homogeneous population genetic structure in many marine fish with high mobility has changed significantly during the last ten years. Molecular genetic population studies over the whole ranges of such species as Atlantic herring and Atlantic cod showed a complex picture of spatial differentiation both on the macrogeographic and, in many areas, on the microgeographic scale, although the differentiation for neutral molecular markers was low. It was established that the migration activity of such fish is constrained in many areas of the species range by hydrological and physicochemical transition zones (environmental gradients), as well as gyres in the spawning regions. Natal homing was recorded in a number of marine fish species. Existing in marine fish constraints of gene migration and a very high variance of reproductive success determine a significantly smaller proportion of effective reproductive size of their populations in the total population size, which generates more complex abundance dynamics than assumed earlier. The various constraints on gene migration and natal homing in marine fish promote the formation of local adaptations at ecologically important phenotypic traits. Effects of selection underlying adaptations are actively investigated in marine fish on the genomic level, using approaches of population genomics. The knowledge of adaptive intraspecific structure enables understanding the ecological and evolutionary processes, that influence biodiversity and providing spatial frames for conservation of genetic resources under commercial exploitation. Contemporary views on the population genetic and adaptive structures or biocomplexity in marine fish support and develop the main principles of the conception of systemic organization of the species and its regional populations, which were advanced by Yu.P. Altukhov and Yu.G. Rychkov.
Life cycle ecophysiology of small pelagic fish and climate-driven changes in populations
NASA Astrophysics Data System (ADS)
Peck, Myron A.; Reglero, Patricia; Takahashi, Motomitsu; Catalán, Ignacio A.
2013-09-01
Due to their population characteristics and trophodynamic role, small pelagic fishes are excellent bio-indicators of climate-driven changes in marine systems world-wide. We argue that making robust projections of future changes in the productivity and distribution of small pelagics will require a cause-and-effect understanding of historical changes based upon physiological principles. Here, we reviewed the ecophysiology of small pelagic (clupeiform) fishes including a matrix of abiotic and biotic extrinsic factors (e.g., temperature, salinity, light, and prey characteristics) and stage-specific vital rates: (1) adult spawning, (2) survival and development of eggs and yolk sac larvae, and (3) feeding and growth of larvae, post-larvae and juveniles. Emphasis was placed on species inhabiting Northwest Pacific and Northeast Atlantic (European) waters for which summary papers are particularly scarce compared to anchovy and sardine in upwelling systems. Our review revealed that thermal niches (optimal and sub-optimal ranges in temperatures) were species- and stage-specific but that temperature effects only partly explained observed changes in the distribution and/or productivity of populations in the Northwest Pacific and Northeast Atlantic; changes in temperature may be necessary but not sufficient to induce population-level shifts. Prey availability during the late larval and early juvenile period was a common, density-dependent mechanism linked to fluctuations in populations but recruitment mechanisms were system-specific suggesting that generalizations of climate drivers across systems should be avoided. We identified gaps in knowledge regarding basic elements of the growth physiology of each life stage that will require additional field and laboratory study. Avenues of research are recommended that will aid the development of models that provide more robust, physiological-based projections of the population dynamics of these and other small pelagic fish. In our opinion, the continued development of biophysical models that close the life cycle (depict all life stages) offers the best chance of revealing processes causing historical fluctuations on the productivity and distribution of small pelagic fishes and to project future climate-driven impacts. Correctly representing physiological-based mechanisms will increase confidence in the outcomes of models simulating the potential impacts of bottom-up processes, a first step towards evaluating the mixture of factors and processes (e.g. intra-guild dynamics, predation, fisheries exploitation) which interact with climate to affect populations of small pelagic fishes. Understand the impacts of reduced growth rates during the juvenile stage on the process of maturation and spawning condition of small pelagic fishes. Examine the effects of changes in prey quality on the duration and magnitude of spawning by small pelagic fishes to capture how climate-driven changes in zooplankton species composition might act as a “bottom-up” regulator of fish productivity. Identify the drivers for spawning location and timing to better understand how spawning dynamics may be influenced by climate change (e.g. changes in water salinity or turbidity resulting from changes in river discharges or wind-driven turbulence, respectively).
Estimating the impact of oyster restoration scenarios on transient fish production
McCoy, Elizabeth; Borrett, Stuart R.; LaPeyre, Megan K.; Peterson, Bradley J.
2017-01-01
Oyster reef restoration projects are increasing in number both to enhance oyster density and to retain valuable ecosystem services provided by oyster reefs. Although some oyster restoration projects have demonstrated success by increasing density and biomass of transient fish, it still remains a challenge to quantify the effects of oyster restoration on transient fish communities. We developed a bioenergetics model to assess the impact of selected oyster reef restoration scenarios on associated transient fish species. We used the model to analyze the impact of changes in (1) oyster population carrying capacity; (2) oyster population growth rate; and (3) diet preference of transient fish on oyster reef development and associated transient fish species. Our model results indicate that resident fish biomass is directly affected by oyster restoration and oyster biomass, and oyster restoration can have cascading impacts on transient fish biomass. Furthermore, the results highlight the importance of a favorable oyster population growth rate during early restoration years, as it can lead to rapid increases in mean oyster biomass and biomass of transient fish species. The model also revealed that a transient fish's diet solely dependent on oyster reef-derived prey could limit the biomass of transient fish species, emphasizing the importance of habitat connectivity in estuarine areas to enhance transient fish species biomass. Simple bioenergetics models can be developed to understand the dynamics of a system and make qualitative predictions of management and restoration scenarios.
NASA Astrophysics Data System (ADS)
Corbineau, A.; Rouyer, T.; Fromentin, J.-M.; Cazelles, B.; Fonteneau, A.; Ménard, F.
2010-07-01
Catch data of large pelagic fish such as tuna, swordfish and billfish are highly variable ranging from short to long term. Based on fisheries data, these time series are noisy and reflect mixed information on exploitation (targeting, strategy, fishing power), population dynamics (recruitment, growth, mortality, migration, etc.), and environmental forcing (local conditions or dominant climate patterns). In this work, we investigated patterns of variation of large pelagic fish (i.e. yellowfin tuna, bigeye tuna, swordfish and blue marlin) in Japanese longliners catch data from 1960 to 2004. We performed wavelet analyses on the yearly time series of each fish species in each biogeographic province of the tropical Indian and Atlantic Oceans. In addition, we carried out cross-wavelet analyses between these biological time series and a large-scale climatic index, i.e. the Southern Oscillation Index (SOI). Results showed that the biogeographic province was the most important factor structuring the patterns of variability of Japanese catch time series. Relationships between the SOI and the fish catches in the Indian and Atlantic Oceans also pointed out the role of climatic variability for structuring patterns of variation of catch time series. This work finally confirmed that Japanese longline CPUE data poorly reflect the underlying population dynamics of tunas.
Valdivia, Abel; Cox, Courtney E.; Silbiger, Nyssa J.; Bruno, John F.
2017-01-01
Invasive lionfish are assumed to significantly affect Caribbean reef fish communities. However, evidence of lionfish effects on native reef fishes is based on uncontrolled observational studies or small-scale, unrepresentative experiments, with findings ranging from no effect to large effects on prey density and richness. Moreover, whether lionfish affect populations and communities of native reef fishes at larger, management-relevant scales is unknown. The purpose of this study was to assess the effects of lionfish on coral reef prey fish communities in a natural complex reef system. We quantified lionfish and the density, richness, and composition of native prey fishes (0–10 cm total length) at sixteen reefs along ∼250 km of the Belize Barrier Reef from 2009 to 2013. Lionfish invaded our study sites during this four-year longitudinal study, thus our sampling included fish community structure before and after our sites were invaded, i.e., we employed a modified BACI design. We found no evidence that lionfish measurably affected the density, richness, or composition of prey fishes. It is possible that higher lionfish densities are necessary to detect an effect of lionfish on prey populations at this relatively large spatial scale. Alternatively, negative effects of lionfish on prey could be small, essentially undetectable, and ecologically insignificant at our study sites. Other factors that influence the dynamics of reef fish populations including reef complexity, resource availability, recruitment, predation, and fishing could swamp any effects of lionfish on prey populations. PMID:28560093
Hackerott, Serena; Valdivia, Abel; Cox, Courtney E; Silbiger, Nyssa J; Bruno, John F
2017-01-01
Invasive lionfish are assumed to significantly affect Caribbean reef fish communities. However, evidence of lionfish effects on native reef fishes is based on uncontrolled observational studies or small-scale, unrepresentative experiments, with findings ranging from no effect to large effects on prey density and richness. Moreover, whether lionfish affect populations and communities of native reef fishes at larger, management-relevant scales is unknown. The purpose of this study was to assess the effects of lionfish on coral reef prey fish communities in a natural complex reef system. We quantified lionfish and the density, richness, and composition of native prey fishes (0-10 cm total length) at sixteen reefs along ∼250 km of the Belize Barrier Reef from 2009 to 2013. Lionfish invaded our study sites during this four-year longitudinal study, thus our sampling included fish community structure before and after our sites were invaded, i.e., we employed a modified BACI design. We found no evidence that lionfish measurably affected the density, richness, or composition of prey fishes. It is possible that higher lionfish densities are necessary to detect an effect of lionfish on prey populations at this relatively large spatial scale. Alternatively, negative effects of lionfish on prey could be small, essentially undetectable, and ecologically insignificant at our study sites. Other factors that influence the dynamics of reef fish populations including reef complexity, resource availability, recruitment, predation, and fishing could swamp any effects of lionfish on prey populations.
Master Middle Ware: A Tool to Integrate Water Resources and Fish Population Dynamics Models
NASA Astrophysics Data System (ADS)
Yi, S.; Sandoval Solis, S.; Thompson, L. C.; Kilduff, D. P.
2017-12-01
Linking models that investigate separate components of ecosystem processes has the potential to unify messages regarding management decisions by evaluating potential trade-offs in a cohesive framework. This project aimed to improve the ability of riparian resource managers to forecast future water availability conditions and resultant fish habitat suitability, in order to better inform their management decisions. To accomplish this goal, we developed a middleware tool that is capable of linking and overseeing the operations of two existing models, a water resource planning tool Water Evaluation and Planning (WEAP) model and a habitat-based fish population dynamics model (WEAPhish). First, we designed the Master Middle Ware (MMW) software in Visual Basic for Application® in one Excel® file that provided a familiar framework for both data input and output Second, MMW was used to link and jointly operate WEAP and WEAPhish, using Visual Basic Application (VBA) macros to implement system level calls to run the models. To demonstrate the utility of this approach, hydrological, biological, and middleware model components were developed for the Butte Creek basin. This tributary of the Sacramento River, California is managed for both hydropower and the persistence of a threatened population of spring-run Chinook salmon (Oncorhynchus tschawytscha). While we have demonstrated the use of MMW for a particular watershed and fish population, MMW can be customized for use with different rivers and fish populations, assuming basic data requirements are met. This model integration improves on ad hoc linkages for managing data transfer between software programs by providing a consistent, user-friendly, and familiar interface across different model implementations. Furthermore, the data-viewing capabilities of MMW facilitate the rapid interpretation of model results by hydrologists, fisheries biologists, and resource managers, in order to accelerate learning and management decision making.
Makler-Pick, Vardit; Hipsey, Matthew R; Zohary, Tamar; Carmel, Yohay; Gal, Gideon
2017-03-29
The food web of Lake Kinneret contains intraguild predation (IGP). Predatory invertebrates and planktivorous fish both feed on herbivorous zooplankton, while the planktivorous fish also feed on the predatory invertebrates. In this study, a complex mechanistic hydrodynamic-ecological model, coupled to a bioenergetics-based fish population model (DYCD-FISH), was employed with the aim of revealing IGP dynamics. The results indicate that the predation pressure of predatory zooplankton on herbivorous zooplankton varies widely, depending on the season. At the time of its annual peak, it is 10-20 times higher than the fish predation pressure. When the number of fish was significantly higher, as occurs in the lake after atypical meteorological years, the effect was a shift from a bottom-up controlled ecosystem, to the top-down control of planktivorous fish and a significant reduction of predatory and herbivorous zooplankton biomass. Yet, seasonally, the decrease in predatory-zooplankton biomass was followed by a decrease in their predation pressure on herbivorous zooplankton, leading to an increase of herbivorous zooplankton biomass to an extent similar to the base level. The analysis demonstrates the emergence of non-equilibrium IGP dynamics due to intra-annual and inter-annual changes in the physico-chemical characteristics of the lake, and suggests that IGP dynamics should be considered in food web models in order to more accurately capture mass transfer and trophic interactions.
Fish distribution during smolt migration in the Penobscot Estuary, ME
NASA Astrophysics Data System (ADS)
Volkel, S. L.
2016-02-01
Estuaries are complex and dynamic ecosystems. The Penobscot Estuary is particularly important because it harbors a suite of imperiled diadromous fish species. In order to properly manage these populations, it is imperative to understand their distribution and ecology. My study focuses on May because endangered Atlantic salmon migrate seaward then. Successful emigration of these smolts is important to the population's overall fitness. One potential way to increase the likelihood of migratory success (survival) is to decrease their risk of predation. Assuming that predators in this system are generalists, overall smolt predation may be reduced by having a larger selection of alternative prey (other fish species). We hypothesize that diadromous fish abundance is increasing as a result of recent (2012-2013) dam removals. To explore this hypothesis, I used hydroacoustic methods to characterize the distribution patterns of alternative prey (TL=10-30 cm). I found that peak fish abundances occurred in the mid-estuary, especially during mid-May, and depth distribution patterns varied weekly. By understanding these seasonal, longitudinal, and vertical distribution patterns, I explored potential interactions of other fish populations as prey buffers to emigrating smolts.
Karen L. Pope
2008-01-01
Sport-fish introductions are now recognized as an important cause of amphibian decline, but few researchers have quantified the demographic responses of amphibians to current options in fisheries management designed to minimize effects on sensitive amphibians. Demographic analyses with mark–recapture data allow researchers to assess the relative importance of...
Modeling Parasite Dynamics on Farmed Salmon for Precautionary Conservation Management of Wild Salmon
Rogers, Luke A.; Peacock, Stephanie J.; McKenzie, Peter; DeDominicis, Sharon; Jones, Simon R. M.; Chandler, Peter; Foreman, Michael G. G.; Revie, Crawford W.; Krkošek, Martin
2013-01-01
Conservation management of wild fish may include fish health management in sympatric populations of domesticated fish in aquaculture. We developed a mathematical model for the population dynamics of parasitic sea lice (Lepeophtheirus salmonis) on domesticated populations of Atlantic salmon (Salmo salar) in the Broughton Archipelago region of British Columbia. The model was fit to a seven-year dataset of monthly sea louse counts on farms in the area to estimate population growth rates in relation to abiotic factors (temperature and salinity), local host density (measured as cohort surface area), and the use of a parasiticide, emamectin benzoate, on farms. We then used the model to evaluate management scenarios in relation to policy guidelines that seek to keep motile louse abundance below an average three per farmed salmon during the March–June juvenile wild Pacific salmon (Oncorhynchus spp.) migration. Abiotic factors mediated the duration of effectiveness of parasiticide treatments, and results suggest treatment of farmed salmon conducted in January or early February minimized average louse abundance per farmed salmon during the juvenile wild salmon migration. Adapting the management of parasites on farmed salmon according to migrations of wild salmon may therefore provide a precautionary approach to conserving wild salmon populations in salmon farming regions. PMID:23577082
Riley, Stephen C.; Dunlop, Erin S.
2016-01-01
Drastic recent and ongoing changes to fish populations and food webs in the Great Lakes have been well-described (Riley et al. 2008; Barbiero et al. 2009; Nalepa et al. 2009; Fahnenstiel et al. 2010;Evans et al. 2011; Gobin et al. 2015), and uncertainty regarding their potential effects on fisheries has caused concern among scientists and fishery managers (e.g., Dettmers et al. 2012). In particular, the relative importance of “bottom-up” (e.g., lower trophic level changes) versus “top-down” (e.g., predation) factors to fish community changes in the Great Lakes have been widely debated (e.g.,Barbiero et al. 2011; Eshenroder and Lantry 2012; Bunnell et al. 2014). In Lake Huron, recent ecosystem changes have been particularly profound, and populations of alewife (Alosa pseudoharengus), an offshore pelagic prey fish, collapsed in 2003 and have yet to recover (Riley et al. 2008, 2014). He et al. (2015) recently used a series of linked ecological models to assess the role of predation in the dynamics of the offshore prey fish community in Lake Huron. While we believe that they provide a novel method for combining bioenergetics and stock assessment modeling, we question the validity of their conclusions because of the misapplication of survey data and the lack of critical interpretation of their modeling efforts. Here we describe how He et al. (2015) have misapplied bottom trawl data from Lake Huron, and we provide examples of how this has resulted in erroneous conclusions regarding the importance of predation to the population dynamics and collapse of alewife in Lake Huron.
Carter-Lynn, K. P.; Quist, Michael C.
2015-01-01
Channel catfish, Ictalurus punctatus (Rafinesque), populations in six lakes in northern Idaho, USA, were sampled to describe their population characteristics. During the summers of 2011 and 2012, 4864 channel catfish were sampled. Channel catfish populations had low to moderate catch rates, and length structure was dominated by fish <400 mm. Channel catfish were in good body condition. All populations were maintained by stocking age-1 or age-2 fish. Growth of fish reared in thermally enriched environments prior to stocking was fast compared to other North American channel catfish populations. After stocking, growth of channel catfish declined rapidly. Once stocked, cold water temperatures, prey resources and (or) genetic capabilities limited growth. Total annual mortality of age 2 and older channel catfish was generally <40%. Tag returns indicated that angler exploitation was low, varying from 0 to 43% among lakes. This research provides insight on factors regulating channel catfish population dynamics and highlights important considerations associated with their ecology and management.
Founding population size of an aquatic invasive species
Kalinowski, Steven T.; Muhlfeld, Clint C.; Guy, Christopher S.; Benjamin Cox,
2010-01-01
Non-native species of fish threaten native fishes throughout North America, and in the Rocky Mountains, introduced populations of lake trout threaten native populations of bull trout. Effective management of lake trout and other exotic species require understanding the dynamics of invasion in order to either suppress non-native populations or to prevent their spread. In this study, we used microsatellite genetic data to estimate the number of lake trout that invaded a population of bull trout in Swan Lake, MT. Examination of genetic diversity and allele frequencies within the Swan Lake populations showed that most of the genes in the lake trout population are descended from two founders. This emphasizes the importance of preventing even a few lake trout from colonizing new territory.
Overview on the effects of parasites on fish health
Iwanowicz, D.D.; Cipriano, R.C.; Bruckner, A.W.; Shchelkunov, I.S.
2011-01-01
It is believed by many that parasites are only as important as the fish they infect. Parasites are ubiquitous, primarily surviving in a dynamic equilibrium with their host(s) and they are often overlooked in fish health assessments. Changes in the environment, both anthropogenic and environmental, can alter the parasite/host equilibrium and cause disease or mortality in fish. Therefore it is imperative that we have knowledge of both parasites and parasitic communities within a given population. When fish kills occur, it can often be associated with changes in parasite density and community composition. Often the damage associated with these fish is relative to the rate of infestation with the parasite; a fish that is lightly infected will show few signs of the parasite, while a heavily infected fish may become physiologically impaired and even die. Parasites can cause mechanical damage (fusion of gill lamellae, tissue replacement), physiological damage (cell proliferation, immunomodulation, detrimental behavioral responses, altered growth) and reproductive damage. As parasitism is the most common lifestyle on the planet, understanding its role in the environment may help researchers understand changes in a given fish population or stream ecosystem.
Moore, Jonathan W; Yeakel, Justin D; Peard, Dean; Lough, Jeff; Beere, Mark
2014-09-01
Life-history strategies can buffer individuals and populations from environmental variability. For instance, it is possible that asynchronous dynamics among different life histories can stabilize populations through portfolio effects. Here, we examine life-history diversity and its importance to stability for an iconic migratory fish species. In particular, we examined steelhead (Oncorhynchus mykiss), an anadromous and iteroparous salmonid, in two large, relatively pristine, watersheds, the Skeena and Nass, in north-western British Columbia, Canada. We synthesized life-history information derived from scales collected from adult steelhead (N = 7227) in these watersheds across a decade. These migratory fishes expressed 36 different manifestations of the anadromous life-history strategy, with 16 different combinations of freshwater and marine ages, 7·6% of fish performing multiple spawning migrations, and up to a maximum of four spawning migrations per lifetime. Furthermore, in the Nass watershed, various life histories were differently prevalent through time - three different life histories were the most prevalent in a given year, and no life history ever represented more than 45% of the population. These asynchronous dynamics among life histories decreased the variability of numerical abundance and biomass of the aggregated population so that it was > 20% more stable than the stability of the weighted average of specific life histories: evidence of a substantial portfolio effect. Year of ocean entry was a key driver of dynamics; the median correlation coefficient of abundance of life histories that entered the ocean the same year was 2·5 times higher than the median pairwise coefficient of life histories that entered the ocean at different times. Simulations illustrated how different elements of life-history diversity contribute to stability and persistence of populations. This study provides evidence that life-history diversity can dampen fluctuations in population abundances and biomass via portfolio effects. Conserving genetic integrity and habitat diversity in these and other large watersheds can enable a diversity of life histories that increases population and biomass stability in the face of environmental variability. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.
The dynamics of a fish stock exploited in two fishing zones.
Mchich, R; Auger, P; Raïss, N
2000-12-01
This work presents a specific stock-effort dynamical model. The stocks correspond to two populations of fish moving and growing between two fishery zones. They are harvested by two different fleets. The effort represents the number of fishing boats of the two fleets that operate in the two fishing zones. The bioeconomical model is a set of four ODE's governing the fishing efforts and the stocks in the two fishing areas. Furthermore, the migration of the fish between the two patches is assumed to be faster than the growth of the harvested stock. The displacement of the fleets is also faster than the variation in the number of fishing boats resulting from the investment of the fishing income. So, there are two time scales: a fast one corresponding to the migration between the two patches, and a slow time scale corresponding to growth. We use aggregation methods that allow us to reduce the dimension of the model and to obtain an aggregated model for the total fishing effort and fish stock of the two fishing zones. The mathematical analysis of the model is shown. Under some conditions, we obtain a stable equilibrium, which is a desired situation, as it leads to a sustainable harvesting equilibrium, keeping the stock at exploitable densities.
Physiology can contribute to better understanding, management, and conservation of coral reef fishes
Rummer, Jodie L.
2017-01-01
Abstract Coral reef fishes, like many other marine organisms, are affected by anthropogenic stressors such as fishing and pollution and, owing to climate change, are experiencing increasing water temperatures and ocean acidification. Against the backdrop of these various stressors, a mechanistic understanding of processes governing individual organismal performance is the first step for identifying drivers of coral reef fish population dynamics. In fact, physiological measurements can help to reveal potential cause-and-effect relationships and enable physiologists to advise conservation management by upscaling results from cellular and individual organismal levels to population levels. Here, we highlight studies that include physiological measurements of coral reef fishes and those that give advice for their conservation. A literature search using combined physiological, conservation and coral reef fish key words resulted in ~1900 studies, of which only 99 matched predefined requirements. We observed that, over the last 20 years, the combination of physiological and conservation aspects in studies on coral reef fishes has received increased attention. Most of the selected studies made their physiological observations at the whole organism level and used their findings to give conservation advice on population dynamics, habitat use or the potential effects of climate change. The precision of the recommendations differed greatly and, not surprisingly, was least concrete when studies examined the effects of projected climate change scenarios. Although more and more physiological studies on coral reef fishes include conservation aspects, there is still a lack of concrete advice for conservation managers, with only very few published examples of physiological findings leading to improved management practices. We conclude with a call to action to foster better knowledge exchange between natural scientists and conservation managers to translate physiological findings more effectively in order to obtain evidence-based and adaptive management strategies for the conservation of coral reef fishes. PMID:28852508
Helen M. Neville,; Gresswell, Robert E.; Dunham, Jason B.
2012-01-01
Salmonid fishes have evolved and persisted in dynamic ecosystems where disturbance events vary in frequency, magnitude, timing, and duration, as well as the specific nature of associated effects (e.g., changes in thermal or flow regimes, geomorphology, or water chemistry). In the western United States, one of the major drivers of disturbance in stream ecosystems is fire. Although there is a growing consensus that fish populations can ultimately benefit from the productive and heterogeneous habitats created by fire, to persist they obviously have to withstand the immediate and shorter-term effects of fire, which can reduce or even extirpate local populations. Movement among interconnected stream habitats is thought to be an important strategy enabling persistence during and following fire, and there is mounting concern that the extensive isolation of salmonid populations in fragmented habitats is reducing their resiliency to fire. In spite of this concern, there are few direct observations of salmonid responses to fire. In fact, guidance is based largely on a broader understanding of the influences of landscape structure and disturbance in general on salmonid fishes, and there is considerable uncertainty about how best to manage for salmonid resilience to wildfire. Studies are limited by the difficult logistics of following fish responses in the face of unpredictable events such as wildfires. Therefore, BACI (Before-After-Control-Impact) study designs are nearly impossible, and replication is similarly challenging because fires are often low-frequency events. Furthermore, conventional ecological study approaches (e.g., studies of fish distribution, abundance, life histories, and movement) are logistically difficult to implement. Overall, a major challenge to understanding resilience of salmonid populations in fire-prone environments is related to moving beyond localized case studies to those with broader applicability in wildfire management . Genetic data can be useful for overcoming many of the limitations inherent in ecological studies. Here we review several case studies of western trout where population genetic data have provided insight about fish responses to fragmentation and disturbance more generally, and specifically in relation to fire. Results of these studies confirm the importance of movement and landscape connectivity for ensuring fish persistence in fire-prone landscapes, and highlight the usefulness of genetic approaches for broad-scale evaluation and monitoring of population responses to fire and related management actions.
Complex dynamics at the interface between wild and domestic viruses of finfish
Kurath, G.; Winton, J.
2011-01-01
Viral traffic occurs readily between wild and domesticated stocks of finfish because aquatic environments have greater connectivity than their terrestrial counterparts and because the global expansion and dynamic nature of intensive aquaculture provide multiple pathways of transmission and unique drivers of virus adaptation. Supported by examples from the literature, we provide reasons why viruses move from wild fish reservoirs to infect domestic fish in aquaculture more readily than 'domestic' viruses move across the interface to infect wild stocks. We also hypothesize that 'wild' viruses moving across the interface to domestic populations of finfish are more frequently associated with disease outbreaks and host switches compared to domestic viruses that cross the interface to infect wild fish.
Contrasting Fish Behavior in Artificial Seascapes with Implications for Resources Conservation
Koeck, Barbara; Alós, Josep; Caro, Anthony; Neveu, Reda; Crec'hriou, Romain; Saragoni, Gilles; Lenfant, Philippe
2013-01-01
Artificial reefs are used by many fisheries managers as a tool to mitigate the impact of fisheries on coastal fish communities by providing new habitat for many exploited fish species. However, the comparison between the behavior of wild fish inhabiting either natural or artificial habitats has received less attention. Thus the spatio-temporal patterns of fish that establish their home range in one habitat or the other and their consequences of intra-population differentiation on life-history remain largely unexplored. We hypothesize that individuals with a preferred habitat (i.e. natural vs. artificial) can behave differently in terms of habitat use, with important consequences on population dynamics (e.g. life-history, mortality, and reproductive success). Therefore, using biotelemetry, 98 white seabream (Diplodus sargus) inhabiting either artificial or natural habitats were tagged and their behavior was monitored for up to eight months. Most white seabreams were highly resident either on natural or artificial reefs, with a preference for the shallow artificial reef subsets. Connectivity between artificial and natural reefs was limited for resident individuals due to great inter-habitat distances. The temporal behavioral patterns of white seabreams differed between artificial and natural reefs. Artificial-reef resident fish had a predominantly nocturnal diel pattern, whereas natural-reef resident fish showed a diurnal diel pattern. Differences in diel behavioral patterns of white seabream inhabiting artificial and natural reefs could be the expression of realized individual specialization resulting from differences in habitat configuration and resource availability between these two habitats. Artificial reefs have the potential to modify not only seascape connectivity but also the individual behavioral patterns of fishes. Future management plans of coastal areas and fisheries resources, including artificial reef implementation, should therefore consider the potential effect of habitat modification on fish behavior, which could have key implications on fish dynamics. PMID:23935978
Contrasting fish behavior in artificial seascapes with implications for resources conservation.
Koeck, Barbara; Alós, Josep; Caro, Anthony; Neveu, Reda; Crec'hriou, Romain; Saragoni, Gilles; Lenfant, Philippe
2013-01-01
Artificial reefs are used by many fisheries managers as a tool to mitigate the impact of fisheries on coastal fish communities by providing new habitat for many exploited fish species. However, the comparison between the behavior of wild fish inhabiting either natural or artificial habitats has received less attention. Thus the spatio-temporal patterns of fish that establish their home range in one habitat or the other and their consequences of intra-population differentiation on life-history remain largely unexplored. We hypothesize that individuals with a preferred habitat (i.e. natural vs. artificial) can behave differently in terms of habitat use, with important consequences on population dynamics (e.g. life-history, mortality, and reproductive success). Therefore, using biotelemetry, 98 white seabream (Diplodus sargus) inhabiting either artificial or natural habitats were tagged and their behavior was monitored for up to eight months. Most white seabreams were highly resident either on natural or artificial reefs, with a preference for the shallow artificial reef subsets. Connectivity between artificial and natural reefs was limited for resident individuals due to great inter-habitat distances. The temporal behavioral patterns of white seabreams differed between artificial and natural reefs. Artificial-reef resident fish had a predominantly nocturnal diel pattern, whereas natural-reef resident fish showed a diurnal diel pattern. Differences in diel behavioral patterns of white seabream inhabiting artificial and natural reefs could be the expression of realized individual specialization resulting from differences in habitat configuration and resource availability between these two habitats. Artificial reefs have the potential to modify not only seascape connectivity but also the individual behavioral patterns of fishes. Future management plans of coastal areas and fisheries resources, including artificial reef implementation, should therefore consider the potential effect of habitat modification on fish behavior, which could have key implications on fish dynamics.
FISHERY-ORIENTED MODEL OF MARYLAND OYSTER POPULATIONS
We used time series data to calibrate a model of oyster population dynamics for Maryland's Chesapeake Bay. Model parameters were fishing mortality, natural mortality, recruitment, and carrying capacity. We calibrated for the Maryland bay as a whole and separately for 3 salinity z...
LONG-TERM PROJECTIONS OF EASTERN OYSTER POPULATIONS UNDER VARIOUS MANAGEMENT SCENARIOS
Time series of fishery-dependent and fishery-independent data were used to parameterize a model of oyster population dynamics for Maryland's Chesapeake Bay. Model parameters are (1) fishing mortality, estimated from differences between predicted and reported landings scaled to a ...
1989-08-01
Linda P. Mercer North Carolina Division of Marine Fisheries Morehead City, NC 28557 Project Officer David Moran U.S. Fish and Wildlife Service National...of the nomenclature, taxonomy, morphology, distribution, life history, population structure and dynamics, and the fishery of the blue crab...AND RECREATIONAL FISHERIES .. ............. ........ ECOLOGICAL ROLE. .... ................... .......... 9 Food habits
Bronte, Charles R.; Evrard, Lori M.; Brown, William P.; Mayo, Kathleen R.; Edwards, Andrew J.
1998-01-01
Ruffe (Gymnocephalus cernuus) have been implicated in density declines of native species through egg predation and competition for food in some European waters where they were introduced. Density estimates for ruffe and principal native fishes in the St. Louis River estuary (western Lake Superior) were developed for 1989 to 1996 to measure changes in the fish community in response to an unintentional introduction of ruffe. During the study, ruffe density increased and the densities of several native species decreased. The reductions of native stocks to the natural population dynamics of the same species from Chequamegon Bay, Lake Superior (an area with very few ruffe) were developed, where there was a 24-year record of density. Using these data, short- and long-term variations in catch and correlations among species within years were compared, and species-specific distributions were developed of observed trends in abundance of native fishes in Chequamegon Bay indexed by the slopes of densities across years. From these distributions and our observed trend-line slopes from the St. Louis River, probabilities of measuring negative change at the magnitude observed in the St. Louis River were estimated. Compared with trends in Chequamegon Bay, there was a high probability of obtaining the negative slopes measured for most species, which suggests natural population dynamics could explain, the declines rather than interactions with ruffe. Variable recruitment, which was not related to ruffe density, and associated density-dependent changes in mortality likely were responsible for density declines of native species.
Lake Ontario benthic prey fish assessment, 2015
Weidel, Brian C.; Walsh, Maureen; Holden, Jeremy P.; Connerton, Michael J.
2016-01-01
Benthic prey fishes are a critical component of the Lake Ontario food web, serving as energy vectors from benthic invertebrates to native and introduced piscivores. Since the late 1970’s, Lake Ontario benthic prey fish status was primarily assessed using bottom trawl observations confined to the lake’s south shore, in waters from 8 – 150 m (26 – 492 ft). In 2015, the Benthic Prey Fish Survey was cooperatively adjusted and expanded to address resource management information needs including lake-wide benthic prey fish population dynamics. Effort increased from 55 bottom trawl sites to 135 trawl sites collected in depths from 8 - 225m (26 – 738 ft). The spatial coverage of sampling was also expanded and occurred in all major lake basins. The resulting distribution of tow depths more closely matched the available lake depth distribution. The additional effort illustrated how previous surveys were underestimating lake-wide Deepwater Sculpin, Myoxocephalus thompsonii, abundance by not sampling in areas of highest density. We also found species richness was greater in the new sampling sites relative to the historic sites with 11 new fish species caught in the new sites including juvenile Round Whitefish, Prosopium cylindraceum, and Mottled sculpin, Cottus bairdii. Species-specific assessments found Slimy Sculpin, Cottus cognatus abundance increased slightly in 2015 relative to 2014, while Deepwater Sculpin and Round Goby, Neogobius melanostomus, dramatically increased in 2015, relative to 2014. The cooperative, lake-wide Benthic Prey Fish Survey expanded our understanding of benthic fish population dynamics and habitat use in Lake Ontario. This survey’s data and interpretations influence international resource management decision making, such as informing the Deepwater Sculpin conservation status and assessing the balance between sport fish consumption and prey fish populations. Additionally a significant Lake Ontario event occurred in May 2015 when a single juvenile Bloater Coregonus hoyi, was captured during the spring bottom trawl survey at 95m (312 ft) near Oswego, NY. This native, deep-water prey fish, last captured in Lake Ontario survey trawls in 1983, is part of an international, collaborative coregonid restoration effort in the Great Lakes.
Mangroves enhance the biomass of coral reef fish communities in the Caribbean.
Mumby, Peter J; Edwards, Alasdair J; Arias-González, J Ernesto; Lindeman, Kenyon C; Blackwell, Paul G; Gall, Angela; Gorczynska, Malgosia I; Harborne, Alastair R; Pescod, Claire L; Renken, Henk; Wabnitz, Colette C C; Llewellyn, Ghislane
2004-02-05
Mangrove forests are one of the world's most threatened tropical ecosystems with global loss exceeding 35% (ref. 1). Juvenile coral reef fish often inhabit mangroves, but the importance of these nurseries to reef fish population dynamics has not been quantified. Indeed, mangroves might be expected to have negligible influence on reef fish communities: juvenile fish can inhabit alternative habitats and fish populations may be regulated by other limiting factors such as larval supply or fishing. Here we show that mangroves are unexpectedly important, serving as an intermediate nursery habitat that may increase the survivorship of young fish. Mangroves in the Caribbean strongly influence the community structure of fish on neighbouring coral reefs. In addition, the biomass of several commercially important species is more than doubled when adult habitat is connected to mangroves. The largest herbivorous fish in the Atlantic, Scarus guacamaia, has a functional dependency on mangroves and has suffered local extinction after mangrove removal. Current rates of mangrove deforestation are likely to have severe deleterious consequences for the ecosystem function, fisheries productivity and resilience of reefs. Conservation efforts should protect connected corridors of mangroves, seagrass beds and coral reefs.
Mangroves enhance the biomass of coral reef fish communities in the Caribbean
NASA Astrophysics Data System (ADS)
Mumby, Peter J.; Edwards, Alasdair J.; Ernesto Arias-González, J.; Lindeman, Kenyon C.; Blackwell, Paul G.; Gall, Angela; Gorczynska, Malgosia I.; Harborne, Alastair R.; Pescod, Claire L.; Renken, Henk; C. C. Wabnitz, Colette; Llewellyn, Ghislane
2004-02-01
Mangrove forests are one of the world's most threatened tropical ecosystems with global loss exceeding 35% (ref. 1). Juvenile coral reef fish often inhabit mangroves, but the importance of these nurseries to reef fish population dynamics has not been quantified. Indeed, mangroves might be expected to have negligible influence on reef fish communities: juvenile fish can inhabit alternative habitats and fish populations may be regulated by other limiting factors such as larval supply or fishing. Here we show that mangroves are unexpectedly important, serving as an intermediate nursery habitat that may increase the survivorship of young fish. Mangroves in the Caribbean strongly influence the community structure of fish on neighbouring coral reefs. In addition, the biomass of several commercially important species is more than doubled when adult habitat is connected to mangroves. The largest herbivorous fish in the Atlantic, Scarus guacamaia, has a functional dependency on mangroves and has suffered local extinction after mangrove removal. Current rates of mangrove deforestation are likely to have severe deleterious consequences for the ecosystem function, fisheries productivity and resilience of reefs. Conservation efforts should protect connected corridors of mangroves, seagrass beds and coral reefs.
Makler-Pick, Vardit; Hipsey, Matthew R.; Zohary, Tamar; Carmel, Yohay; Gal, Gideon
2017-01-01
The food web of Lake Kinneret contains intraguild predation (IGP). Predatory invertebrates and planktivorous fish both feed on herbivorous zooplankton, while the planktivorous fish also feed on the predatory invertebrates. In this study, a complex mechanistic hydrodynamic-ecological model, coupled to a bioenergetics-based fish population model (DYCD-FISH), was employed with the aim of revealing IGP dynamics. The results indicate that the predation pressure of predatory zooplankton on herbivorous zooplankton varies widely, depending on the season. At the time of its annual peak, it is 10–20 times higher than the fish predation pressure. When the number of fish was significantly higher, as occurs in the lake after atypical meteorological years, the effect was a shift from a bottom-up controlled ecosystem, to the top-down control of planktivorous fish and a significant reduction of predatory and herbivorous zooplankton biomass. Yet, seasonally, the decrease in predatory-zooplankton biomass was followed by a decrease in their predation pressure on herbivorous zooplankton, leading to an increase of herbivorous zooplankton biomass to an extent similar to the base level. The analysis demonstrates the emergence of non-equilibrium IGP dynamics due to intra-annual and inter-annual changes in the physico-chemical characteristics of the lake, and suggests that IGP dynamics should be considered in food web models in order to more accurately capture mass transfer and trophic interactions. PMID:28353646
NASA Astrophysics Data System (ADS)
Murphy, B. P.; Czuba, J. A.; Belmont, P.; Budy, P.; Finch, C.
2017-12-01
Episodic events in steep landscapes, such as wildfire and mass wasting, contribute large pulses of sediment to rivers and can significantly alter the quality and connectivity of fish habitat. Understanding where these sediment inputs occur, how they are transported and processed through the watershed, and their geomorphic effect on the river network is critical to predicting the impact on ecological aquatic communities. The Tushar Mountains of southern Utah experienced a severe wildfire in 2010, resulting in numerous debris flows and the extirpation of trout populations. Following many years of habitat and ecological monitoring in the field, we have developed a modeling framework that links post-wildfire debris flows, fluvial sediment routing, and population ecology in order to evaluate the impact and response of trout to wildfire. First, using the Tushar topographic and wildfire parameters, as well as stochastic precipitation generation, we predict the post-wildfire debris flow probabilities and volumes of mainstem tributaries using the Cannon et al. [2010] model. This produces episodic hillslope sediment inputs, which are delivered to a fluvial sediment, river-network routing model (modified from Czuba et al. [2017]). In this updated model, sediment transport dynamics are driven by time-varying discharge associated with the stochastic precipitation generation, include multiple grain sizes (including gravel), use mixed-size transport equations (Wilcock & Crowe [2003]), and incorporate channel slope adjustments with aggradation and degradation. Finally, with the spatially explicit adjustments in channel bed elevation and grain size, we utilize a new population viability analysis (PVA) model to predict the impact and recovery of fish populations in response to these changes in habitat. Our model provides a generalizable framework for linking physical and ecological models and for evaluating the extirpation risk of isolated fish populations throughout the Intermountain West to the increasing threat of wildfire.
Ecology and genetic structure of zoonotic Anisakis spp. from adriatic commercial fish species.
Mladineo, Ivona; Poljak, Vedran
2014-02-01
Consumption of raw or thermally inadequately treated fishery products represents a public health risk, with the possibility of propagation of live Anisakis larvae, the causative agent of the zoonotic disease anisakidosis, or anisakiasis. We investigated the population dynamics of Anisakis spp. in commercially important fish-anchovies (Anisakis), sardines (Sardina pilchardus), European hake (Merluccius merluccius), whiting (Merlangius merlangus), chub mackerel (Scomber japonicus), and Atlantic bluefin tuna (Thunnus thynnus)-captured in the main Adriatic Sea fishing ground. We observed a significant difference in the numbers of parasite larvae (1 to 32) in individual hosts and between species, with most fish showing high or very high Anisakis population indices. Phylogenetic analysis confirmed that commercial fish in the Adriatic Sea are parasitized by Anisakis pegreffii (95.95%) and Anisakis simplex sensu stricto (4.05%). The genetic structure of A. pegreffii in demersal, pelagic, and top predator hosts was unstructured, and the highest frequency of haplotype sharing (n = 10) was between demersal and pelagic fish.
Endocrine disrupting chemicals (EDCs) in the environment may alter the population dynamics of wildlife by affecting reproductive output. This study describes a matrix modeling approach to link laboratory studies on endocrine disruption with potential ecological effects. The exper...
Rocky Mountain Center for Conservation Genetics and Systematics
Oyler-McCance, S.J.; Quinn, T.W.
2005-01-01
The use of molecular genetic tools has become increasingly important in addressing conservation issues pertaining to plants and animals. Genetic information can be used to augment studies of population dynamics and population viability, investigate systematic, refine taxonomic definitions, investigate population structure and gene flow, and document genetic diversity in a variety of plant and animal species. Further, genetic techniques are being used to investigate mating systems through paternity analysis, and analyze ancient DNA samples from museum specimens, and estimate population size and survival rates using DNA as a unique marker. Such information is essential for the sound management of small, isolated populations of concern and is currently being used by universities, zoos, the U.S. Fish and Wildlife Service, and numerous state fish and wildlife agencies.
Invasive aquarium fish transform ecosystem nutrient dynamics
Capps, Krista A.; Flecker, Alexander S.
2013-01-01
Trade of ornamental aquatic species is a multi-billion dollar industry responsible for the introduction of myriad fishes into novel ecosystems. Although aquarium invaders have the potential to alter ecosystem function, regulation of the trade is minimal and little is known about the ecosystem-level consequences of invasion for all but a small number of aquarium species. Here, we demonstrate how ecological stoichiometry can be used as a framework to identify aquarium invaders with the potential to modify ecosystem processes. We show that explosive growth of an introduced population of stoichiometrically unique, phosphorus (P)-rich catfish in a river in southern Mexico significantly transformed stream nutrient dynamics by altering nutrient storage and remineralization rates. Notably, changes varied between elements; the P-rich fish acted as net sinks of P and net remineralizers of nitrogen. Results from this study suggest species-specific stoichiometry may be insightful for understanding how invasive species modify nutrient dynamics when their population densities and elemental composition differ substantially from native organisms. Risk analysis for potential aquarium imports should consider species traits such as body stoichiometry, which may increase the likelihood that an invasion will alter the structure and function of ecosystems. PMID:23966642
Allee effects may slow the spread of parasites in a coastal marine ecosystem.
Krkošek, Martin; Connors, Brendan M; Lewis, Mark A; Poulin, Robert
2012-03-01
Allee effects are thought to mediate the dynamics of population colonization, particularly for invasive species. However, Allee effects acting on parasites have rarely been considered in the analogous process of infectious disease establishment and spread. We studied the colonization of uninfected wild juvenile Pacific salmon populations by ectoparasitic salmon lice (Lepeophtheirus salmonis) over a 4-year period. In a data set of 68,376 fish, we observed 85 occurrences of precopular pair formation among 1,259 preadult female and 613 adult male lice. The probability of pair formation was dependent on the local abundance of lice, but this mate limitation is likely offset somewhat by mate-searching dispersal of males among host fish. A mathematical model of macroparasite population dynamics that incorporates the empirical results suggests a high likelihood of a demographic Allee effect, which can cause the colonizing parasite populations to die out. These results may provide the first empirical evidence for Allee effects in a macroparasite. Furthermore, the data give a rare detailed view of Allee effects in colonization dynamics and suggest that Allee effects may dampen the spread of parasites in a coastal marine ecosystem.
Observations of the distributions of five fish species in a small Appalachian stream
Larson, Gary L.; Hoffman, Robert L.; Moore, S.E.
2002-01-01
The notion has been growing that resident stream fishes exhibit a greater capacity for movement than was previously thought. In this study, we recorded the distributions of four resident fish species (longnose dace Rhinichthys cataractae, blacknose dace R. atratulus, mottled sculpin Cottus bairdi, and rainbow trout Oncorhynchus mykiss) and one nonresident species (central stoneroller Campostoma anomalum) in Rock Creek, a small tributary of Cosby Creek in Great Smoky Mountains National Park, over the period 1979a??1995. During this study, 1,998 individuals of resident species were collected from stream sections considered to be within a common area of distribution for each species. Forty-five individuals of resident and nonresident species were captured upstream of these areas, and eight of these fish were considered to be larger than individuals considered typical for each species. Small mammal dispersal theory concepts were used to classify and describe fish movements outside of common areas of distribution. These movements were identified as important in maintaining population connectivity within stream drainages, contributing to reducing the potential for local extinctions of populations and to the recolonization of unoccupied habitats. This study highlights the need for continued study of fish movements in stream drainages and for development of appropriate resource management strategies based partly on the spatial dynamics of fish populations and communities.
The non-linear relationship between body size and function in parrotfishes
NASA Astrophysics Data System (ADS)
Lokrantz, J.; Nyström, M.; Thyresson, M.; Johansson, C.
2008-12-01
Parrotfishes are a group of herbivores that play an important functional role in structuring benthic communities on coral reefs. Increasingly, these fish are being targeted by fishermen, and resultant declines in biomass and abundance may have severe consequences for the dynamics and regeneration of coral reefs. However, the impact of overfishing extends beyond declining fish stocks. It can also lead to demographic changes within species populations where mean body size is reduced. The effect of reduced mean body size on population dynamics is well described in literature but virtually no information exists on how this may influence important ecological functions. The study investigated how one important function, scraping (i.e., the capacity to remove algae and open up bare substratum for coral larval settlement), by three common species of parrotfishes ( Scarus niger, Chlorurus sordidus, and Chlorurus strongylocephalus) on coral reefs at Zanzibar (Tanzania) was influenced by the size of individual fishes. There was a non-linear relationship between body size and scraping function for all species examined, and impact through scraping was also found to increase markedly when fish reached a size of 15 20 cm. Thus, coral reefs which have a high abundance and biomass of parrotfish may nonetheless be functionally impaired if dominated by small-sized individuals. Reductions in mean body size within parrotfish populations could, therefore, have functional impacts on coral reefs that previously have been overlooked.
Genetic diversity affects the strength of population regulation in a marine fish.
Johnson, D W; Freiwald, J; Bernardi, G
2016-03-01
Variation is an essential feature of biological populations, yet much of ecological theory treats individuals as though they are identical. This simplifying assumption is often justified by the perception that variation among individuals does not have significant effects on the dynamics of whole populations. However, this perception may be skewed by a historic focus on studying single populations. A true evaluation of the extent to which among-individual variation affects the dynamics of populations requires the study of multiple populations. In this study, we examined variation in the dynamics of populations of a live-bearing, marine fish (black surfperch; Embiotoca jacksoni). In collaboration with an organization of citizen scientists (Reef Check California), we were able to examine the dynamics of eight populations that were distributed throughout approximately 700 km of coastline, a distance that encompasses much of this species' range. We hypothesized that genetic variation within a local population would be related to the intensity of competition and to the strength of population regulation. To test this hypothesis, we examined whether genetic diversity (measured by the diversity of mitochondrial DNA haplotypes) was related to the strength of population regulation. Low-diversity populations experienced strong density dependence in population growth rates and population sizes were regulated much more tightly than they were in high-diversity populations. Mechanisms that contributed to this pattern include links between genetic diversity, habitat use, and spatial crowding. On average, low-diversity populations used less of the available habitat and exhibited greater spatial clustering (and more intense competition) for a given level of density (measured at the scale of the reef). Although the populations we studied also varied with respect to exogenous characteristics (habitat complexity, densities of predators, and interspecific competitors), none of these characteristics was significantly related to the strength of population regulation. In contrast, an endogenous characteristic of the population (genetic diversity) explained 77% of the variation in the strength of population regulation (95% CI: 27-94%). Our results suggest that the genetic and phenotypic composition of populations can play a major role in their dynamics.
Predation Risk Shapes Social Networks in Fission-Fusion Populations
Kelley, Jennifer L.; Morrell, Lesley J.; Inskip, Chloe; Krause, Jens; Croft, Darren P.
2011-01-01
Predation risk is often associated with group formation in prey, but recent advances in methods for analysing the social structure of animal societies make it possible to quantify the effects of risk on the complex dynamics of spatial and temporal organisation. In this paper we use social network analysis to investigate the impact of variation in predation risk on the social structure of guppy shoals and the frequency and duration of shoal splitting (fission) and merging (fusion) events. Our analyses revealed that variation in the level of predation risk was associated with divergent social dynamics, with fish in high-risk populations displaying a greater number of associations with overall greater strength and connectedness than those from low-risk sites. Temporal patterns of organisation also differed according to predation risk, with fission events more likely to occur over two short time periods (5 minutes and 20 minutes) in low-predation fish and over longer time scales (>1.5 hours) in high-predation fish. Our findings suggest that predation risk influences the fine-scale social structure of prey populations and that the temporal aspects of organisation play a key role in defining social systems. PMID:21912627
The Good, The Bad, and The Distant: Soundscape Cues for Larval Fish.
Piercy, Julius J B; Smith, David J; Codling, Edward A; Hill, Adam J; Simpson, Stephen D
2016-01-01
Coral reef noise is an important navigation cue for settling reef fish larvae and can thus potentially affect reef population dynamics. Recent evidence has shown that fish are able to discriminate between the soundscapes of different types of habitat (e.g., mangrove and reef). In this study, we investigated whether discernible acoustic differences were present between sites within the same coral reef system. Differences in sound intensity and transient content were found between sites, but site-dependent temporal variation was also present. We discuss the implications of these findings for settling fish larvae.
Applications of bioenergetics models to fish ecology and management: where do we go from here?
Hansen, Michael J.; Boisclair, Daniel; Brandt, Stephen B.; Hewett, Steven W.; Kitchell, James F.; Lucas, Martyn C.; Ney, John J.
1993-01-01
Papers and panel discussions given during a 1992 symposium on bioenergetics models are summarized. Bioenergetics models have been applied to a variety of research and management questions related to fish stocks, populations, food webs, and ecosystems. Applications include estimates of the intensity and dynamics of predator-prey interactions, nutrient cycling within aquatic food webs of varying trophic structure, and food requirements of single animals, whole populations, and communities of fishes. As tools in food web and ecosystem applications, bioenergetics models have been used to compare forage consumption by salmonid predators across the Laurentian Great Lakes for single populations and whole communities, and to estimate the growth potential of pelagic predators in Chesapeake Bay and Lake Ontario. Some critics say that bioenergetics models lack sufficient detail to produce reliable results in such field applications, whereas others say that the models are too complex to be useful tools for fishery managers. Nevertheless, bioenergetics models have achieved notable predictive successes. Improved estimates are needed for model parameters such as metabolic costs of activity, and more complete studies are needed of the bioenergetics of larval and juvenile fishes. Future research on bioenergetics should include laboratory and field measurements of key model parameters such as weight-dependent maximum consumption, respiration and activity, and thermal habitats actually occupied by fish. Future applications of bioenergetics models to fish populations also depend on accurate estimates of population sizes and survival rates.
Dynamics of an introduced and unexploited Lake Whitefish population in Lake Pend Oreille, Idaho
Hosack, Michael A.; Hansen, Michael J.; Horner, Ned J.
2014-01-01
To evaluate biological potential of a commercial fishery for an unexploited Lake Whitefish Coregonus clupeaformis population in Lake Pend Oreille, Idaho, we estimated population parameters related to production and yield. The length frequency based on trap-netting in autumn 2005 was normal with a mean of 448 mm TL, whereas the length frequency based on gillnetting in spring 2006 was bimodal with a mean of 390 mm TL. Sex composition was skewed toward females (0.66) during autumn trap-netting. Shape parameters β of weight–length models for females (β = 3.38) and males (β = 3.45) were similar to those of other unexploited populations. Instantaneous growth rates K for females (K = 0.144 per year) and males (K = 0.153 per year) were among the lowest for unexploited populations across the species’ range. Age at 50% maturity (females: 6.5 years; males: 6.0 years) and length at 50% maturity (females: 390 mm TL; males: 378 mm TL) were high for unexploited populations. The natural mortality rate M (0.149 per year, ages 11–36) was among the lowest observed for unexploited populations. Adult population density was lower than that of other populations based on total surface area (mean = 1.35 fish/ha; 95% confidence interval [CI] = 1.11–1.78 fish/ha) but was average based on lake area shallower than 70 m (4.07 fish/ha; 95% CI = 3.35–5.35 fish/ha). Population density of juveniles and adults averaged 84 fish/ha (95% CI = 52–143 fish/ha) over the entire surface area and 278 fish/ha (95% CI = 173–474 fish/ha) over depths shallower than 70 m. The difference between the low M of the unexploited population in Lake Pend Oreille (M = 0.149 per year; annual mortality rate A = 14%) and the high sustainable total mortality Z of exploited stocks in the Laurentian Great Lakes (Z = 1.204; A = 70%) suggests a large scope for sustainable fishing mortality F (1.055 per year; exploitation rate u = 61%) that is equivalent to a sustainable Lake Whitefish harvest of 55,000 individuals (50,000–60,000 individuals) and 49,000 kg (45,000–54,000 kg) from Lake Pend Oreille.
Feiner, Zachary S.; Bunnell, David B.; Hook, Tomas O.; Madenjian, Charles P.; Warner, David M.; Collingsworth, Paris D.
2015-01-01
Fish stock-recruitment dynamics may be difficult to elucidate because of nonstationary relationships resulting from shifting environmental conditions and fluctuations in important vital rates such as individual growth or maturation. The Great Lakes have experienced environmental stressors that may have changed population demographics and stock-recruitment relationships while causing the declines of several prey fish species, including rainbow smelt (Osmerus mordax). We investigated changes in the size and maturation of rainbow smelt in Lake Michigan and Lake Huron and recruitment dynamics of the Lake Michigan stock over the past four decades. Mean lengths and length-at-maturation of rainbow smelt generally declined over time in both lakes. To evaluate recruitment, we used both a Ricker model and a Kalman filter-random walk (KF-RW) model which incorporated nonstationarity in stock productivity by allowing the productivity term to vary over time. The KF-RW model explained nearly four times more variation in recruitment than the Ricker model, indicating the productivity of the Lake Michigan stock has increased. By accounting for this nonstationarity, we were able identify significant variations in stock productivity, evaluate its importance to rainbow smelt recruitment, and speculate on potential environmental causes for the shift. Our results suggest that investigating mechanisms driving nonstationary shifts in stock-recruit relationships can provide valuable insights into temporal variation in fish population dynamics.
Rubio-Godoy, Miguel; Muñoz-Córdova, Germán; Garduño-Lugo, Mario; Salazar-Ulloa, Martha; Mercado-Vidal, Gabriel
2012-02-10
Gyrodactylids (Monogenea) are ectoparasites of fish, some of which negatively affect commercially valuable fishes. Temperature strongly regulates population dynamics of these viviparous flatworms in farmed and wild fish populations, with most gyrodactylid species showing positive temperature-abundance associations. In agreement with epidemiological theory, numerous laboratory studies demonstrate that these parasites cannot persist in confined fish populations without periodic introduction of susceptible hosts. Extinction of gyrodactylid populations is due to host immunity, which develops in several fish species. In this one-year study, we followed populations of the recognized pathogen Gyrodactylus cichlidarum infecting four genetic groups of confined tilapia (wild type Nile tilapia Oreochromis niloticus niloticus, red O. n. niloticus, Mozambique tilapia O. mossambicus and a red synthetic population called Pargo-UNAM) kept under farming conditions and subject to natural environmental fluctuations. Based on the antecedents given, we postulated the following three hypotheses: (1) parasite abundance will be regulated by water temperature; (2) parasites will induce host mortality, particularly during periods of rapid infrapopulation growth; and (3) gyrodactylid populations will eventually become extinct on confined fish hosts. We disproved the three hypotheses: (1) parasite numbers fluctuated independently of temperature but were associated to changes in microhabitat use; (2) although gyrodactylid populations exhibited considerable growth, no evidence was found of negative effects on the hosts; and (3) infections persisted for one year on confined fish. Microhabitat use changed over time, with most worms apparently migrating anteriorly from the caudal fin and ending on the pectoral fins. Gyrodactylid populations followed similar trajectories in all fish, aggregating and dispersing repeatedly. Several instances were found where increased parasite dispersion coincided with increased intensity of infection; as well as the opposite, where increased aggregation coincided with parasite population declines. Three alternative explanations could account for these observations: that parasites (1) experience differential mortality on different anatomical regions of the fish; (2) migrate to avoid intraspecific competition; and (3) migrate to escape localized immune responses induced by infection. Our data do not allow us to demonstrate which of these alternatives is correct, so we discuss the merits of each. We provide circumstantial evidence in support of the third explanation, because as shown in other fish host-gyrodactylid interactions where immune responses have been characterized, in this study worms progressively moved away from fins with high mucus cell density to those with low density - what would be anticipated if immune defenses occur and reach the fish surface through mucus. Copyright © 2011 Elsevier B.V. All rights reserved.
Modeling the effects of land use and climate change on riverine smallmouth bass
Peterson, J.T.; Kwak, T.J.
1999-01-01
Anthropogenic changes in temperature and stream flow, associated with watershed land use and climate change, are critical influences on the distribution and abundance of riverine fishes. To project the effects of changing land use and climate, we modeled a smallmouth bass (Micropterus dolomieu) population in a midwestern USA, large river- floodplain ecosystem under historical (1915-1925), present (1977-1990), and future (2060, influenced by climate change) temperature and flow regimes. The age-structured model included parameters for temperature and river discharge during critical seasonal periods, fish population dynamics, and fishing harvest. Model relationships were developed from empirical field data collected over a 13-yr period. Sensitivity analyses indicated that discharge during the spawning/rearing period had a greater effect on adult density and fishing yield than did spawning/rearing temperature or winter discharge. Simulations for 100 years projected a 139% greater mean fish density under a historical flow regime (64.9 fish/ha) than that estimated for the present (27.1 fish/ha) with a sustainable fishing harvest under both flow regimes. Simulations under future climate-change-induced temperature and flow regimes with present land use projected a 69% decrease in mean fish density (8.5 fish/ha) from present and an unstable population that went extinct during 56% of the simulations. However, when simulated under a future climate-altered temperature and flow regime with historical land use, the population increased by 66% (45.0 fish/ha) from present and sustained a harvest. Our findings suggest that land-use changes may be a greater detriment to riverine fishes than projected climate change and that the combined effects of both factors may lead to local species extinction. However, the negative effects of increased temperature and precipitation associated with future global warming could be mitigated by river channel, floodplain, and watershed restoration.
Large scale, synchronous variability of marine fish populations driven by commercial exploitation.
Frank, Kenneth T; Petrie, Brian; Leggett, William C; Boyce, Daniel G
2016-07-19
Synchronous variations in the abundance of geographically distinct marine fish populations are known to occur across spatial scales on the order of 1,000 km and greater. The prevailing assumption is that this large-scale coherent variability is a response to coupled atmosphere-ocean dynamics, commonly represented by climate indexes, such as the Atlantic Multidecadal Oscillation and North Atlantic Oscillation. On the other hand, it has been suggested that exploitation might contribute to this coherent variability. This possibility has been generally ignored or dismissed on the grounds that exploitation is unlikely to operate synchronously at such large spatial scales. Our analysis of adult fishing mortality and spawning stock biomass of 22 North Atlantic cod (Gadus morhua) stocks revealed that both the temporal and spatial scales in fishing mortality and spawning stock biomass were equivalent to those of the climate drivers. From these results, we conclude that greater consideration must be given to the potential of exploitation as a driving force behind broad, coherent variability of heavily exploited fish species.
Michael C. Anderson
2009-01-01
Ungulate grazing in riparian areas has been shown to detrimentally impact stream morphology and fish populations. Goals of this research were to assess changes in stream morphology and responses of a brown trout (Salmo trutta) population to exclusion of cattle (Bos taurus) and elk (Cervus elaphus) from riparian...
A regional perspective on the diversity and conservation of tropical Andean fishes.
Anderson, Elizabeth P; Maldonado-Ocampo, Javier A
2011-02-01
The tropical Andes harbor an extraordinarily varied concentration of species in a landscape under increasing pressure from human activities. Conservation of the region's native plants and animals has received considerable international attention, but the focus has been on terrestrial biota. The conservation of freshwater fauna, particularly the conservation of fishes, has not been emphasized. Tropical Andean fishes are among the most understudied vertebrates in the world. We estimate that between 400 and 600 fish species inhabit the diverse aquatic environments in the region. Nearly 40% of these species are endemic. Tropical Andean fishes are vulnerable to ongoing environmental changes related to deforestation, water withdrawals, water pollution, species introductions, and hydropower development. Additionally, their distributions and population dynamics may be affected by hydrologic alterations and warmer water temperatures associated with projected climate change. Presently, at least three species are considered extinct, some populations are endangered, and some species are likely to decline or disappear. The long-term persistence of tropical Andean fishes will depend on greater consideration of freshwater systems in regional conservation initiatives. ©2010 Society for Conservation Biology.
Population characteristics and the influence of discharge on Bluehead Sucker and Flannelmouth Sucker
Klein, Zachary B.; Breen, Matthew J.; Quist, Michael C.
2017-01-01
Rivers are among some of the most complex and important ecosystems in the world. Unfortunately, many fishes endemic to rivers have suffered declines in abundance and distribution suggesting that alterations to lotic environments have negatively influenced native fish populations. Of the 35 fishes native to the Colorado River basin (CRB), seven are considered either endangered, threatened, or species of special concern. As such, the conservation of fishes native to the CRB is a primary interest for natural resource management agencies. One of the major factors limiting the conservation and management of fishes endemic to the CRB is the lack of basic information on their ecology and population characteristics. We sought to describe the population dynamics and demographics of three populations of Bluehead Suckers (Catostomus discobolus) and Flannelmouth Suckers (C. latipinnis) in Utah. Additionally, we evaluated the potential influence of altered flow regimes on the recruitment and growth of Bluehead Suckers and Flannelmouth Suckers. Mortality of Bluehead Suckers and Flannelmouth Suckers from the Green, Strawberry, and White rivers was comparable to other populations. Growth of Bluehead Suckers and Flannelmouth Suckers was higher in the Green, Strawberry, and White rivers when compared to other populations in the CRB. Similarly, recruitment indices suggested that Bluehead Suckers and Flannelmouth Suckers in the Green, Strawberry, and White rivers had more stable recruitment than other populations in the CRB. Models relating growth and recruitment to hydrological indices provided little explanatory power. Notwithstanding, our results indicate that Bluehead Suckers and Flannelmouth Suckers in the Green, Strawberry, and White rivers represent fairly stable populations and provide baseline information that will be valuable for the effective management and conservation of the species.
Crafford, Dionne; Luus-Powell, Wilmien; Avenant-Oldewage, Annemariè
2014-03-01
Indigenous South African Labeo spp. show promise with regard to development of semi-intensive aquaculture, yet little research on their monogenean fauna has been conducted. Ecological aspects of monogenean fauna of the moggel Labeo umbratus (Smith 1841) and the Orange River mudfish Labeo capensis (Smith 1841), as recorded during both winter and summer sampling surveys, are reported here. Fish were collected using gill nets, euthanized and gills removed and examined to both quantify parasite numbers and distribution on the gills. Results obtained support the hypothesis that gill site preference is not due to active choice for a particular attachment site, but rather a result of water flow over gills during respiration in conjunction with fish behaviour and habitat use. Interaction between individual elements investigated (temperature effects, parasite population dynamics and host population dynamics) may be largely responsible for seasonal differences in infection statistics of monogenean parasites. Such interactions should be investigated in future large scale ecological studies, in combination with experimental studies, to further elucidate these effects.
Faugeras, Blaise; Maury, Olivier
2005-10-01
We develop an advection-diffusion size-structured fish population dynamics model and apply it to simulate the skipjack tuna population in the Indian Ocean. The model is fully spatialized, and movements are parameterized with oceanographical and biological data; thus it naturally reacts to environment changes. We first formulate an initial-boundary value problem and prove existence of a unique positive solution. We then discuss the numerical scheme chosen for the integration of the simulation model. In a second step we address the parameter estimation problem for such a model. With the help of automatic differentiation, we derive the adjoint code which is used to compute the exact gradient of a Bayesian cost function measuring the distance between the outputs of the model and catch and length frequency data. A sensitivity analysis shows that not all parameters can be estimated from the data. Finally twin experiments in which pertubated parameters are recovered from simulated data are successfully conducted.
2018-01-01
Qualitative risk assessment frameworks, such as the Productivity Susceptibility Analysis (PSA), have been developed to rapidly evaluate the risks of fishing to marine populations and prioritize management and research among species. Despite being applied to over 1,000 fish populations, and an ongoing debate about the most appropriate method to convert biological and fishery characteristics into an overall measure of risk, the assumptions and predictive capacity of these approaches have not been evaluated. Several interpretations of the PSA were mapped to a conventional age-structured fisheries dynamics model to evaluate the performance of the approach under a range of assumptions regarding exploitation rates and measures of biological risk. The results demonstrate that the underlying assumptions of these qualitative risk-based approaches are inappropriate, and the expected performance is poor for a wide range of conditions. The information required to score a fishery using a PSA-type approach is comparable to that required to populate an operating model and evaluating the population dynamics within a simulation framework. In addition to providing a more credible characterization of complex system dynamics, the operating model approach is transparent, reproducible and can evaluate alternative management strategies over a range of plausible hypotheses for the system. PMID:29856869
Fish stranding in freshwater systems: sources, consequences, and mitigation.
Nagrodski, Alexander; Raby, Graham D; Hasler, Caleb T; Taylor, Mark K; Cooke, Steven J
2012-07-30
Fish can become stranded when water levels decrease, often rapidly, as a result of anthropogenic (e.g., canal drawdown, hydropeaking, vessel wakes) and natural (e.g., floods, drought, winter ice dynamics) events. We summarize existing research on stranding of fish in freshwater, discuss the sources, consequences, and mitigation options for stranding, and report current knowledge gaps. Our literature review revealed that ∼65.5% of relevant peer-reviewed articles were found to focus on stranding associated with hydropower operations and irrigation projects. In fact, anthropogenic sources of fish stranding represented 81.8% of available literature compared to only 19.9% attributed to natural fish stranding events. While fish mortality as a result of stranding is well documented, our analysis revealed that little is known about the sublethal and long-term consequences of stranding on growth and population dynamics. Furthermore, the contribution of stranding to annual mortality rates is poorly understood as are the potential ecosystem-scale impacts. Mitigation strategies available to deal with stranding include fish salvage, ramping rate limitations, and physical habitat works (e.g., to contour substrate to minimize stranding). However, a greater knowledge of the factors that cause fish stranding would promote the development and refinement of mitigation strategies that are economically and ecologically sustainable. Copyright © 2012 Elsevier Ltd. All rights reserved.
Frohnauer, N.K.; Pierce, C.L.; Kallemeyn, L.W.
2007-01-01
A unique population of muskellunge Esox masquinongy inhabits Shoepack Lake in Voyageurs National Park, Minnesota. Little is known about its status, dynamics, and angler exploitation, and there is concern for the long-term viability of this population. We used intensive sampling and mark-recapture methods to quantify abundance, survival, growth, condition, age at maturity and fecundity and angler surveys to quantify angler pressure, catch rates, and exploitation. During our study, heavy rain washed out a dam constructed by beavers Castor canadensis which regulates the water level at the lake outlet, resulting in a nearly 50% reduction in surface area. We estimated a population size of 1,120 adult fish at the beginning of the study. No immediate reduction in population size was detected in response to the loss of lake area, although there was a gradual, but significant, decline in population size over the 2-year study. Adults grew less than 50 mm per year, and relative weight (W r) averaged roughly 80. Anglers were successful in catching, on average, two fish during a full day of angling, but harvest was negligible. Shoepack Lake muskellunge exhibit much slower growth rates and lower condition, but much higher densities and angler catch per unit effort (CPUE), than other muskellunge populations. The unique nature, limited distribution, and location of this population in a national park require special consideration for management. The results of this study provide the basis for assessing the long-term viability of the Shoepack Lake muskellunge population through simulations of long-term population dynamics and genetically effective population size. ?? Copyright by the American Fisheries Society 2007.
Influences on Bythotrephes longimanus life-history characteristics in the Great Lakes
Pothoven, Steven A.; Vanderploeg, Henry A.; Warner, David M.; Schaeffer, Jeffrey S.; Ludsin, Stuart A.; Claramunt, Randall M.; Nalepa, Thomas F.
2012-01-01
We compared Bythotrephes population demographics and dynamics to predator (planktivorous fish) and prey (small-bodied crustacean zooplankton) densities at a site sampled through the growing season in Lakes Michigan, Huron, and Erie. Although seasonal average densities of Bythotrephes were similar across lakes (222/m2 Erie, 247/m2 Huron, 162/m2 Michigan), temporal trends in abundance differed among lakes. In central Lake Erie where Bythotrephes' prey assemblage was dominated by small individuals (60%), where planktivorous fish densities were high (14,317/ha), and where a shallow water column limited availability of a deepwater refuge, the Bythotrephes population was characterized by a small mean body size, large broods with small neonates, allocation of length increases mainly to the spine rather than to the body, and a late summer population decline. By contrast, in Lake Michigan where Bythotrephes' prey assemblage was dominated by large individuals (72%) and planktivorous fish densities were lower (5052/ha), the Bythotrephes population was characterized by a large mean body size (i.e., 37–55% higher than in Erie), small broods with large neonates, nearly all growth in body length occurring between instars 1 and 2, and population persistence into fall. Life-history characteristics in Lake Huron tended to be intermediate to those found in Lakes Michigan and Erie, reflecting lower overall prey and predator densities (1224/ha) relative to the other lakes. Because plasticity in life history can affect interactions with other species, our findings point to the need to understand life-history variation among Great Lakes populations to improve our ability to model the dynamics of these ecosystems.
Schall, Megan K.; Blazer, Vicki S.; Lorantas, Robert M.; Smith, Geoffrey; Mullican, John E.; Keplinger, Brandon J.; Wagner, Tyler
2018-01-01
Detecting temporal changes in fish abundance is an essential component of fisheries management. Because of the need to understand short‐term and nonlinear changes in fish abundance, traditional linear models may not provide adequate information for management decisions. This study highlights the utility of Bayesian dynamic linear models (DLMs) as a tool for quantifying temporal dynamics in fish abundance. To achieve this goal, we quantified temporal trends of Smallmouth Bass Micropterus dolomieu catch per effort (CPE) from rivers in the mid‐Atlantic states, and we calculated annual probabilities of decline from the posterior distributions of annual rates of change in CPE. We were interested in annual declines because of recent concerns about fish health in portions of the study area. In general, periods of decline were greatest within the Susquehanna River basin, Pennsylvania. The declines in CPE began in the late 1990s—prior to observations of fish health problems—and began to stabilize toward the end of the time series (2011). In contrast, many of the other rivers investigated did not have the same magnitude or duration of decline in CPE. Bayesian DLMs provide information about annual changes in abundance that can inform management and are easily communicated with managers and stakeholders.
Conservation physiology of marine fishes: state of the art and prospects for policy.
McKenzie, David J; Axelsson, Michael; Chabot, Denis; Claireaux, Guy; Cooke, Steven J; Corner, Richard A; De Boeck, Gudrun; Domenici, Paolo; Guerreiro, Pedro M; Hamer, Bojan; Jørgensen, Christian; Killen, Shaun S; Lefevre, Sjannie; Marras, Stefano; Michaelidis, Basile; Nilsson, Göran E; Peck, Myron A; Perez-Ruzafa, Angel; Rijnsdorp, Adriaan D; Shiels, Holly A; Steffensen, John F; Svendsen, Jon C; Svendsen, Morten B S; Teal, Lorna R; van der Meer, Jaap; Wang, Tobias; Wilson, Jonathan M; Wilson, Rod W; Metcalfe, Julian D
2016-01-01
The state of the art of research on the environmental physiology of marine fishes is reviewed from the perspective of how it can contribute to conservation of biodiversity and fishery resources. A major constraint to application of physiological knowledge for conservation of marine fishes is the limited knowledge base; international collaboration is needed to study the environmental physiology of a wider range of species. Multifactorial field and laboratory studies on biomarkers hold promise to relate ecophysiology directly to habitat quality and population status. The 'Fry paradigm' could have broad applications for conservation physiology research if it provides a universal mechanism to link physiological function with ecological performance and population dynamics of fishes, through effects of abiotic conditions on aerobic metabolic scope. The available data indicate, however, that the paradigm is not universal, so further research is required on a wide diversity of species. Fish physiologists should interact closely with researchers developing ecological models, in order to investigate how integrating physiological information improves confidence in projecting effects of global change; for example, with mechanistic models that define habitat suitability based upon potential for aerobic scope or outputs of a dynamic energy budget. One major challenge to upscaling from physiology of individuals to the level of species and communities is incorporating intraspecific variation, which could be a crucial component of species' resilience to global change. Understanding what fishes do in the wild is also a challenge, but techniques of biotelemetry and biologging are providing novel information towards effective conservation. Overall, fish physiologists must strive to render research outputs more applicable to management and decision-making. There are various potential avenues for information flow, in the shorter term directly through biomarker studies and in the longer term by collaborating with modellers and fishery biologists.
NASA Astrophysics Data System (ADS)
Carraro, Luca; Bertuzzo, Enrico; Mari, Lorenzo; Gatto, Marino; Strepparava, Nicole; Hartikainen, Hanna; Rinaldo, Andrea
2015-04-01
Proliferative kidney disease (PKD) affects salmonid populations in European and North-American rivers. It is caused by the endoparasitic myxozoan Tetracapsuloides bryosalmonae, which exploits freshwater bryozoans (Fredericella sultana) and salmonids as primary and secondary hosts, respectively. Incidence and mortality, which can reach up to 90-100%, are known to be strongly related to water temperature. PKD has been present in brown trout population for a long time but has recently increased rapidly in incidence and severity causing a decline in fish catches in many countries. In addition, environmental changes are feared to cause PKD outbreaks at higher latitude and altitude regions as warmer temperatures promote disease development. This calls for a better comprehension of the interactions between disease dynamics and the thermal regime of rivers, in order to possibly devise strategies for disease management. In this perspective, a spatially explicit model of PKD epidemiology in riverine host metacommunities is proposed. The model aims at summarizing the knowledge on the modes of transmission of the disease and the life-cycle of the parasite, making the connection between temperature and epidemiological parameters explicit. The model accounts for both local population and disease dynamics of bryozoans and fish and hydrodynamic dispersion of the parasite spores and hosts along the river network. The model is time-hybrid, coupling inter-seasonal and intra-seasonal dynamics, the former being described in a continuous time domain, the latter seen as time steps of a discrete time domain. In order to test the model, a case study is conducted in river Wigger (Cantons of Aargau and Lucerne, Switzerland), where data about water temperature, brown trout and bryozoan populations and PKD prevalence are being collected.
Linking killer whale survival and prey abundance: food limitation in the oceans' apex predator?
Ford, John K. B.; Ellis, Graeme M.; Olesiuk, Peter F.; Balcomb, Kenneth C.
2010-01-01
Killer whales (Orcinus orca) are large predators that occupy the top trophic position in the world's oceans and as such may have important roles in marine ecosystem dynamics. Although the possible top-down effects of killer whale predation on populations of their prey have received much recent attention, little is known of how the abundance of these predators may be limited by bottom-up processes. Here we show, using 25 years of demographic data from two populations of fish-eating killer whales in the northeastern Pacific Ocean, that population trends are driven largely by changes in survival, and that survival rates are strongly correlated with the availability of their principal prey species, Chinook salmon (Oncorhynchus tshawytscha). Our results suggest that, although these killer whales may consume a variety of fish species, they are highly specialized and dependent on this single salmonid species to an extent that it is a limiting factor in their population dynamics. Other ecologically specialized killer whale populations may be similarly constrained to a narrow range of prey species by culturally inherited foraging strategies, and thus are limited in their ability to adapt rapidly to changing prey availability. PMID:19755531
Linking killer whale survival and prey abundance: food limitation in the oceans' apex predator?
Ford, John K B; Ellis, Graeme M; Olesiuk, Peter F; Balcomb, Kenneth C
2010-02-23
Killer whales (Orcinus orca) are large predators that occupy the top trophic position in the world's oceans and as such may have important roles in marine ecosystem dynamics. Although the possible top-down effects of killer whale predation on populations of their prey have received much recent attention, little is known of how the abundance of these predators may be limited by bottom-up processes. Here we show, using 25 years of demographic data from two populations of fish-eating killer whales in the northeastern Pacific Ocean, that population trends are driven largely by changes in survival, and that survival rates are strongly correlated with the availability of their principal prey species, Chinook salmon (Oncorhynchus tshawytscha). Our results suggest that, although these killer whales may consume a variety of fish species, they are highly specialized and dependent on this single salmonid species to an extent that it is a limiting factor in their population dynamics. Other ecologically specialized killer whale populations may be similarly constrained to a narrow range of prey species by culturally inherited foraging strategies, and thus are limited in their ability to adapt rapidly to changing prey availability.
Cioffi, Marcelo de Bello; Bertollo, Luiz Antonio Carlos; Villa, Mateo Andres; de Oliveira, Ezequiel Aguiar; Tanomtong, Alongklod; Yano, Cassia Fernanda; Supiwong, Weerayuth; Chaveerach, Arunrat
2015-01-01
Channid fishes, commonly referred to as "snakeheads", are currently very important in Asian fishery and aquaculture due to the substantial decline in natural populations because of overexploitation. A large degree of chromosomal variation has been found in this family, mainly through the use of conventional cytogenetic investigations. In this study, we analyzed the karyotype structure and the distribution of 7 repetitive DNA sequences in several Channa species from different Thailand river basins. The aim of this study was to investigate the chromosomal differentiation among species and populations to improve upon the knowledge of its biodiversity and evolutionary history. Rearrangements, such as pericentric inversions, fusions and polyploidization, appear to be important events during the karyotypic evolution of this genus, resulting in the chromosomal diversity observed among the distinct species and even among populations of the same species. In addition, such variability is also increased by the genomic dynamism of repetitive elements, particularly by the differential distribution and accumulation of rDNA sequences on chromosomes. This marked diversity is likely linked to the lifestyle of the snakehead fishes and their population fragmentation, as already identified for other fish species. The karyotypic features highlight the biodiversity of the channid fishes and justify a taxonomic revision of the genus Channa, as well as of the Channidae family as a whole, as some nominal species may actually constitute species complexes.
Wildhaber, Mark L.; Wikle, Christopher K.; Anderson, Christopher J.; Franz, Kristie J.; Moran, Edward H.; Dey, Rima; Mader, Helmut; Kraml, Julia
2012-01-01
Climate change operates over a broad range of spatial and temporal scales. Understanding its effects on ecosystems requires multi-scale models. For understanding effects on fish populations of riverine ecosystems, climate predicted by coarse-resolution Global Climate Models must be downscaled to Regional Climate Models to watersheds to river hydrology to population response. An additional challenge is quantifying sources of uncertainty given the highly nonlinear nature of interactions between climate variables and community level processes. We present a modeling approach for understanding and accomodating uncertainty by applying multi-scale climate models and a hierarchical Bayesian modeling framework to Midwest fish population dynamics and by linking models for system components together by formal rules of probability. The proposed hierarchical modeling approach will account for sources of uncertainty in forecasts of community or population response. The goal is to evaluate the potential distributional changes in an ecological system, given distributional changes implied by a series of linked climate and system models under various emissions/use scenarios. This understanding will aid evaluation of management options for coping with global climate change. In our initial analyses, we found that predicted pallid sturgeon population responses were dependent on the climate scenario considered.
Individual-based model formulation for cutthroat trout, Little Jones Creek, California
Steven F. Railsback; Bret C. Harvey
2001-01-01
This report contains the detailed formulation of an individual-based model (IBM) of cutthroat trout developed for three study sites on Little Jones Creek, Del Norte County, in northwestern California. The model was designed to support research on relations between habitat and fish population dynamics, the importance of small tributaries to trout populations, and the...
Population Dynamics and Production of the Amphipod Corophium salmonis in Grays Harbor, Washington,
1981-09-01
biomass ratios of bivalve and gastropod population in an eastern Canadian estuary. J. Fish. Res. Bd. Can. 31: 167-177. Casablanca, M. -L., de. 1975...analysis was adapted from "Standards Methods for the Examination of Water and Wastewater," 14th Edition, APHA, AWWA, and WPCF, Washington, D.C., 1975, pp
Local variability mediates vulnerability of trout populations to land use and climate change
Brooke E. Penaluna; Jason B. Dunham; Steve F. Railsback; Ivan Arismendi; Sherri L. Johnson; Robert E. Bilby; Mohammad Safeeq; Arne E. Skaugset; James P. Meador
2015-01-01
Land use and climate change occur simultaneously around the globe. Fully understanding their separate and combined effects requires a mechanistic understanding at the local scale where their effects are ultimately realized. Here we applied an individual-based model of fish population dynamics to evaluate the role of local stream variability in modifying responses of...
Perry, Russell W.; Plumb, John M.; Jones, Edward C.; Som, Nicholas A.; Hetrick, Nicholas J.; Hardy, Thomas B.
2018-04-06
Fisheries and water managers often use population models to aid in understanding the effect of alternative water management or restoration actions on anadromous fish populations. We developed the Stream Salmonid Simulator (S3) to help resource managers evaluate the effect of management alternatives on juvenile salmonid populations. S3 is a deterministic stage-structured population model that tracks daily growth, movement, and survival of juvenile salmon. A key theme of the model is that river flow affects habitat availability and capacity, which in turn drives density dependent population dynamics. To explicitly link population dynamics to habitat quality and quantity, the river environment is constructed as a one-dimensional series of linked habitat units, each of which has an associated daily time series of discharge, water temperature, and usable habitat area or carrying capacity. The physical characteristics of each habitat unit and the number of fish occupying each unit, in turn, drive survival and growth within each habitat unit and movement of fish among habitat units.The purpose of this report is to outline the underlying general structure of the S3 model that is common among different applications of the model. We have developed applications of the S3 model for juvenile fall Chinook salmon (Oncorhynchus tshawytscha) in the lower Klamath River. Thus, this report is a companion to current application of the S3 model to the Trinity River (in review). The general S3 model structure provides a biological and physical framework for the salmonid freshwater life cycle. This framework captures important demographics of juvenile salmonids aimed at translating management alternatives into simulated population responses. Although the S3 model is built on this common framework, the model has been constructed to allow much flexibility in application of the model to specific river systems. The ability for practitioners to include system-specific information for the physical stream structure, survival, growth, and movement processes ensures that simulations provide results that are relevant to the questions asked about the population under study.
Mantzouni, Irene; MacKenzie, Brian R
2010-06-22
Climate change will have major consequences for population dynamics and life histories of marine biota as it progresses in the twenty-first century. These impacts will differ in magnitude and direction for populations within individual marine species whose geographical ranges span large gradients in latitude and temperature. Here we use meta-analytical methods to investigate how recruitment (i.e. the number of new fish produced by spawners in a given year which subsequently grow and survive to become vulnerable to fishing gear) has reacted to temperature fluctuations, and in particular to extremes of temperature, in cod populations throughout the north Atlantic. Temperature has geographically explicit effects on cod recruitment. Impacts differ depending on whether populations are located in the upper (negative effects) or in the lower (positive effects) thermal range. The probabilities of successful year-classes in populations living in warm areas is on average 34 per cent higher in cold compared with warm seasons, whereas opposite patterns exist for populations living in cold areas. These results have implications for cod dynamics, distributions and phenologies under the influence of ocean warming, particularly related to not only changes in the mean temperature, but also its variability (e.g. frequency of exceptionally cold or warm seasons).
Hughes, Jane M.; Real, Kathryn M.; Marshall, Jonathan C.; Schmidt, Daniel J.
2012-01-01
Freshwater fish are a group that is especially susceptible to biodiversity loss as they often exist naturally in small, fragmented populations that are vulnerable to habitat degradation, pollution and introduction of exotic species. Relatively little is known about spatial dynamics of unperturbed populations of small-bodied freshwater fish species. This study examined population genetic structure of the purple spotted gudgeon (Mogurnda adspersa, Eleotridae), a small-bodied freshwater fish that is widely distributed in eastern Australia. The species is threatened in parts of its range but is common in coastal streams of central Queensland where this study took place. Microsatellite (msat) and mitochondrial DNA (mtDNA) variation was assessed for nine sites from four stream sections in two drainage basins. Very high levels of among population structure were observed (msat F ST = 0.18; mtDNA ΦST = 0.85) and evidence for contemporary migration among populations was rare and limited to sites within the same section of stream. Hierarchical structuring of variation was best explained by stream section rather than by drainage basin. Estimates of contemporary effective population size for each site was low (range 28 – 63, Sibship method), but compared favorably with similar estimates for other freshwater fish species, and there was no genetic evidence for inbreeding or recent population bottlenecks. In conclusion, within a stable part of its range, M adspersa exists as a series of small, demographically stable populations that are highly isolated from one another. Complimentary patterns in microsatellites and mtDNA indicate this structuring is the result of long-term processes that have developed over a remarkably small spatial scale. High population structure and limited dispersal mean that recolonisation of locally extinct populations is only likely to occur from closely situated populations within stream sections. Limited potential for recolonisation should be considered as an important factor in conservation and management of this species. PMID:22808190
SALMOD: A population model for salmonids: user's manual. Version W3
Bartholow, John; Heasley, John; Laake, Jeff; Sandelin, Jeff; Coughlan, Beth A.K.; Moos, Alan
2002-01-01
SALMOD is a computer model that simulates the dynamics of freshwater salmonid populations, both anadromous and resident. The conceptual model was developed in a workshop setting (Williamson et al. 1993) using fish experts concerned with Trinity River chinook restoration. The model builds on the foundation laid by similar models (see Cheslak and Jacobson 1990). The model’s premise that that egg and fish mortality are directly related to spatially and temporally variable micro- and macrohabitat limitations, which themselves are related to the timing and amount of streamflow and other meteorological variables. Habitat quality and capacity are characterized by the hydraulic and thermal properties of individual mesohabitats, which we use as spatial “computation units” in the model. The model tracks a population of spatially distinct cohorts that originate as gees and grow from one life stage to another as a function of local water temperature. Individual cohorts either remain in the computational unit in which they emerged or move, in whole or in part, to nearby units (see McCormick et al. 1998). Model processes include spawning (with red superimposition and incubation losses), growth (including egg maturation), mortality, and movement (freshet-induced, habitat-induced, and seasonal). Model processes are implemented such that the user (modeler) has the ability to more-or-less program the model on the fly to create the dynamics thought to animate the population. SALMOD then tabulates the various causes of mortality and the whereabouts of fish.
Linking extinction-colonization dynamics to genetic structure in a salamander metapopulation.
Cosentino, Bradley J; Phillips, Christopher A; Schooley, Robert L; Lowe, Winsor H; Douglas, Marlis R
2012-04-22
Theory predicts that founder effects have a primary role in determining metapopulation genetic structure. However, ecological factors that affect extinction-colonization dynamics may also create spatial variation in the strength of genetic drift and migration. We tested the hypothesis that ecological factors underlying extinction-colonization dynamics influenced the genetic structure of a tiger salamander (Ambystoma tigrinum) metapopulation. We used empirical data on metapopulation dynamics to make a priori predictions about the effects of population age and ecological factors on genetic diversity and divergence among 41 populations. Metapopulation dynamics of A. tigrinum depended on wetland area, connectivity and presence of predatory fish. We found that newly colonized populations were more genetically differentiated than established populations, suggesting that founder effects influenced genetic structure. However, ecological drivers of metapopulation dynamics were more important than age in predicting genetic structure. Consistent with demographic predictions from metapopulation theory, genetic diversity and divergence depended on wetland area and connectivity. Divergence was greatest in small, isolated wetlands where genetic diversity was low. Our results show that ecological factors underlying metapopulation dynamics can be key determinants of spatial genetic structure, and that habitat area and isolation may mediate the contributions of drift and migration to divergence and evolution in local populations.
Evidence of population resistance to extreme low flows in a fluvial-dependent fish species
Katz, Rachel A.; Freeman, Mary C.
2015-01-01
Extreme low streamflows are natural disturbances to aquatic populations. Species in naturally intermittent streams display adaptations that enhance persistence during extreme events; however, the fate of populations in perennial streams during unprecedented low-flow periods is not well-understood. Biota requiring swift-flowing habitats may be especially vulnerable to flow reductions. We estimated the abundance and local survival of a native fluvial-dependent fish species (Etheostoma inscriptum) across 5 years encompassing historic low flows in a sixth-order southeastern USA perennial river. Based on capturemark-recapture data, the study shoal may have acted as a refuge during severe drought, with increased young-of-the-year (YOY) recruitment and occasionally high adult immigration. Contrary to expectations, summer and autumn survival rates (30 days) were not strongly depressed during low-flow periods, despite 25%-80% reductions in monthly discharge. Instead, YOY survival increased with lower minimum discharge and in response to small rain events that increased low-flow variability. Age-1+ fish showed the opposite pattern, with survival decreasing in response to increasing low-flow variability. Results from this population dynamics study of a small fish in a perennial river suggest that fluvial-dependent species can be resistant to extreme flow reductions through enhanced YOY recruitment and high survival
Consumption dynamics of the adult piscivorous fish community in Spirit Lake, Iowa
Liao, H.; Pierce, C.L.; Larscheid, J.G.
2004-01-01
At Spirit Lake, one of Iowa's most important fisheries, walleye Sander vitreus (formerly Stizostedion vitreum) is one of the most popular species with anglers. Despite a century of walleye stocking and management in Spirit Lake, walleye growth rate, size structure, and angler harvest continue to decline. Our purpose was to determine the magnitude and dynamics of walleye population consumption relative to those of other piscivorous species in Spirit Lake, which would allow managers to judge the feasibility of increasing the abundance, growth rate, and size structure of the walleye population. We quantified food consumption by the adult piscivorous fish community in Spirit Lake over a 3-year period. Data on population dynamics, diet, energy density, and water temperature from 1995 to 1997 were used in bioenergetics models to estimate total consumption by walleye, yellow perch Perca flavescens, smallmouth bass Micropterus dolomieu, largemouth bass Micropterus salmoides, black crappie Pomoxis nigromaculatus, and northern pike Esox lucius. Estimated annual consumption by the piscivorous community varied roughly fourfold, ranging from 154,752 kg in 1995 to 662,776 kg in 1997. Walleyes dominated total consumption, accounting for 68, 73, and 90% (1995-1997, respectively) of total food consumption. Walleyes were also the dominant consumers of fish, accounting for 76, 86, and 97% of piscivorous consumption; yellow perch followed, accounting for 16% of piscivorous consumption in 1995 and 12% in 1996. Yellow perch were the predominant fish prey species in all 3 years, accounting for 68, 52, and 36% of the total prey consumed. Natural reproduction is weak, so high walleye densities are maintained by intensive stocking. Walleye stocking drives piscivorous consumption in Spirit Lake, and yearly variation in the cannibalism of stocked walleye fry may be an important determinant of walleye year-class strength and angler success. Reducing walleye stocking intensity, varying stocking intensity from year to year, and attempting to match stocking intensity with the abundance of prey species other than walleye may improve the walleye fishery in Spirit Lake.
NASA Astrophysics Data System (ADS)
Priest, Mark A.; Halford, Andrew R.; Clements, Kendall D.; Douglas, Emily; Abellana, Sheena L.; McIlwain, Jennifer L.
2016-12-01
Processes acting during the early stages of coral reef fish life cycles have a disproportionate influence on their adult abundance and community structure. Higher growth rates, for example, confer a major fitness advantage in larval and juvenile fishes, with larger fish undergoing significantly less mortality. The role of dietary resources in the size-structuring process has not been well validated, especially at the early post-settlement phase, where competition and predation are seen as preeminent drivers of juvenile fish assemblage structure. Here, we report on a size differential of 10-20% between recently settled Siganus spinus rabbitfish recruits from different bays around the Pacific island of Guam. This difference was maintained across multiple recruitment events within and between years. After confirming the validity of our observations through otolith increment analysis, subsequent investigation into the drivers of this variation revealed significant differences in the structure of algal assemblages between bays, congruent with the observed differences in size of the recently settled fish. Gut analyses showed a greater presence of algal types with higher levels of nitrogen and phosphorus in the stomachs of fish from Tanguisson, the bay with the largest observed recruits. To ensure this mechanism was one of causation and not correlation, we conducted a fully factorial experiment in which S. spinus recruits sampled from different bays were reared on all combinations of algal diets representative of the different bays. Recruits on the `Tanguisson' diet grew faster than recruits on other diets, regardless of their origin. We propose that the greater availability of high-quality dietary resources at this location is likely conferring benefits that impact on the population-level dynamics of this species. The spatial and temporal extent of this process clearly implicates food as a limiting resource, capable of mediating fish population dynamics at multiple spatial scales and ontogenetic phases.
Linking river management to species conservation using dynamic landscape scale models
Freeman, Mary C.; Buell, Gary R.; Hay, Lauren E.; Hughes, W. Brian; Jacobson, Robert B.; Jones, John W.; Jones, S.A.; LaFontaine, Jacob H.; Odom, Kenneth R.; Peterson, James T.; Riley, Jeffrey W.; Schindler, J. Stephen; Shea, C.; Weaver, J.D.
2013-01-01
Efforts to conserve stream and river biota could benefit from tools that allow managers to evaluate landscape-scale changes in species distributions in response to water management decisions. We present a framework and methods for integrating hydrology, geographic context and metapopulation processes to simulate effects of changes in streamflow on fish occupancy dynamics across a landscape of interconnected stream segments. We illustrate this approach using a 482 km2 catchment in the southeastern US supporting 50 or more stream fish species. A spatially distributed, deterministic and physically based hydrologic model is used to simulate daily streamflow for sub-basins composing the catchment. We use geographic data to characterize stream segments with respect to channel size, confinement, position and connectedness within the stream network. Simulated streamflow dynamics are then applied to model fish metapopulation dynamics in stream segments, using hypothesized effects of streamflow magnitude and variability on population processes, conditioned by channel characteristics. The resulting time series simulate spatially explicit, annual changes in species occurrences or assemblage metrics (e.g. species richness) across the catchment as outcomes of management scenarios. Sensitivity analyses using alternative, plausible links between streamflow components and metapopulation processes, or allowing for alternative modes of fish dispersal, demonstrate large effects of ecological uncertainty on model outcomes and highlight needed research and monitoring. Nonetheless, with uncertainties explicitly acknowledged, dynamic, landscape-scale simulations may prove useful for quantitatively comparing river management alternatives with respect to species conservation.
Past, present, and future of a freshwater fish metapopulation in a threatened landscape.
Vera-Escalona, Iván; Senthivasan, Shreeram; Habit, Evelyn; Ruzzante, Daniel E
2018-02-12
It is well documented that hydropower plants can affect the dynamics of fish populations through landscape alterations and the creation of new barriers. Less emphasis has been placed on the examination of the genetic consequences for fish populations of the construction of dams. The relatively few studies that focus on genetics often do not consider colonization history and even fewer tend to use this information for conservation purposes. As a case study, we used a 3-pronged approach to study the influence of historical processes, contemporary landscape features, and potential future anthropogenic changes in landscape on the genetic diversity of a fish metapopulation. Our goal was to identify the metapopulation's main attributes, detect priority areas for conservation, and assess the consequences of the construction of hydropower plants for the persistence of the metapopulation. We used microsatellite markers and coalescent approaches to examine historical colonization processes, traditional population genetics, and simulations of future populations under alternate scenarios of population size reduction and gene flow. Historical gene flow appeared to have declined relatively recently and contemporary populations appeared highly susceptible to changes in landscape. Gene flow is critical for population persistence. We found that hydropower plants could lead to a rapid reduction in number of alleles and to population extirpation 50-80 years after their construction. More generally, our 3-pronged approach for the analyses of empirical genetic data can provide policy makers with information on the potential impacts of landscape changes and thus lead to more robust conservation efforts. © 2018 Society for Conservation Biology.
D. J. Isaak; R. F. Thurow; B. E. Rieman; J. B. Dunham
2003-01-01
Metapopulation dynamics have emerged as a key consideration in conservation planning for salmonid fishes. Implicit to many models of spatially structured populations is a degree of synchrony, or correlation, among populations. We used a spatially and temporally extensive database of chinook salmon (Oncorhynchus tshawytscha) redd counts from a wilderness area in central...
Optimal harvesting policy of predator-prey model with free fishing and reserve zones
NASA Astrophysics Data System (ADS)
Toaha, Syamsuddin; Rustam
2017-03-01
The present paper deals with an optimal harvesting of predator-prey model in an ecosystem that consists of two zones, namely the free fishing and prohibited zones. The dynamics of prey population in the ecosystem can migrate from the free fishing to the prohibited zone and vice versa. The predator and prey populations in the free fishing zone are then harvested with constant efforts. The existence of the interior equilibrium point is analyzed and its stability is determined using Routh-Hurwitz stability test. The stable interior equilibrium point is then related to the problem of maximum profit and the problem of present value of net revenue. We follow the Pontryagin's maximal principle to get the optimal harvesting policy of the present value of the net revenue. From the analysis, we found a critical point of the efforts that makes maximum profit. There also exists certain conditions of the efforts that makes the present value of net revenue becomes maximal. In addition, the interior equilibrium point is locally asymptotically stable which means that the optimal harvesting is reached and the unharvested prey, harvested prey, and harvested predator populations remain sustainable. Numerical examples are given to verify the analytical results.
Modeling fish dynamics and effects of stress in a hydrologically pulsed ecosystem
DeAngelis, Donald L.; Loftus, William F.; Trexler, Joel C.; Ulanowicz, Robert E.
1997-01-01
Many wetlands undergo seasonal cycles in precipitation and water depth.This environmental seasonality is echoed in patterns of production of fishbiomass, which, in turn, influence the phenology of other components of thefood web, including wading birds. Human activities, such as drainage orother alterations of the hydrology, can exacerbate these natural cycles andresult in detrimental stresses on fish production and the higher trophic levels dependent on this production. In this paper we model theseasonal pattern of fish production in a freshwater marsh, with specialreference to the Everglades/Big Cypress region of southern Florida.The model illustrates the temporal pattern of production through theyear, which can result in very high densities of fish at the end of ahydroperiod (period of flooding), aswell as the importance of ponds and other deep depressions, both as refugia and sinks during dry periods. The model predicts that: (1) there is an effective threshold in the length of the hydroperiod that must beexceeded for high fish-population densities to be produced, (2) large,piscivorous fishes do not appear tohave a major impact on smaller fishes in the marsh habitat, and (3) therecovery of small-fish populations in the marsh following a major droughtmay require up to a year. The last of these results is relevant toassessing anthropogenic impacts on marsh production, as these effectsmay increase the severity and frequency of droughts.
Marine reserves as linked social-ecological systems.
Pollnac, Richard; Christie, Patrick; Cinner, Joshua E; Dalton, Tracey; Daw, Tim M; Forrester, Graham E; Graham, Nicholas A J; McClanahan, Timothy R
2010-10-26
Marine reserves are increasingly recognized as having linked social and ecological dynamics. This study investigates how the ecological performance of 56 marine reserves throughout the Philippines, Caribbean, and Western Indian Ocean (WIO) is related to both reserve design features and the socioeconomic characteristics in associated coastal communities. Ecological performance was measured as fish biomass in the reserve relative to nearby areas. Of the socioeconomic variables considered, human population density and compliance with reserve rules had the strongest effects on fish biomass, but the effects of these variables were region specific. Relationships between population density and the reserve effect on fish biomass were negative in the Caribbean, positive in the WIO, and not detectable in the Philippines. Differing associations between population density and reserve effectiveness defy simple explanation but may depend on human migration to effective reserves, depletion of fish stocks outside reserves, or other social factors that change with population density. Higher levels of compliance reported by resource users was related to higher fish biomass in reserves compared with outside, but this relationship was only statistically significant in the Caribbean. A heuristic model based on correlations between social, cultural, political, economic, and other contextual conditions in 127 marine reserves showed that high levels of compliance with reserve rules were related to complex social interactions rather than simply to enforcement of reserve rules. Comparative research of this type is important for uncovering the complexities surrounding human dimensions of marine reserves and improving reserve management.
Status and future of Lake Huron fish communities
Ebener, M.P.; Johnson, J.E.; Reid, D.M.; Payne, N.P.; Argyle, R.L.; Wright, G.M.; Krueger, K.; Baker, J.P.; Morse, T.; Weise, J.; Munawar, M.; Edsall, T.; Leach, J.
1995-01-01
In 1993, fishery management agencies with jurisdiction over Lake Huron fish populations developed draft fish community objectives in response to the Joint Strategic Plan for Management of Great Lakes Fisheries. The Joint Strategic Plan charged the Great Lakes Fishery Commission sponsored Lake Huron Committee to define objectives for what the fish community of Lake Huron should look like in the future, and to develop means for measuring progress toward the objectives. The overall management objective for Lake Huron is to 'over the next two decades restore an ecologically balanced fish community dominated by top predators and consisting largely of self-sustaining, indigenous and naturalized species and capable of sustaining annual harvests of 8.9 million kg'. This paper represents the first attempt at consolidating current biological information from different management agencies on a lake-wide basis for the purpose of assessing the current status and dynamics of Lake Huron fishes.
Helen M. Neville; R. E. Gresswell; J. B. Dunham
2012-01-01
Salmonid fishes have evolved and persisted in dynamic ecosystems (Waples and others 2008) where disturbance events vary in frequency, magnitude, timing, and duration (Gresswell 1999; Dale and others 2001), as well as the specific nature of associated effects (e.g., changes in thermal or flow regimes, geomorphology, or water chemistry; Reeves and others 1995; Benda and...
Full-Sibs in Cohorts of Newly Settled Coral Reef Fishes
Bernardi, Giacomo; Beldade, Ricardo; Holbrook, Sally J.; Schmitt, Russell J.
2012-01-01
Reef fishes exhibit a bipartite life cycle where a benthic adult stage is preceded by a pelagic dispersal phase during which larvae are presumed to be mixed and transported by oceanic currents. Genetic analyses based on twelve microsatellite loci of 181 three-spot dascyllus (Dascyllus trimaculatus) that settled concurrently on a small reef in French Polynesia revealed 11 groups of siblings (1 full sibs and 10 half-sibs). This is the first evidence that fish siblings can journey together throughout their entire planktonic dispersal phase (nearly a month long for three-spot dascyllus). Our findings have critical implications for the dynamics and genetic structure of fish populations, as well as for the design of marine protected areas and management of fisheries. PMID:23028700
NASA Astrophysics Data System (ADS)
Hernandez, Olga; Lehodey, Patrick; Senina, Inna; Echevin, Vincent; Ayón, Patricia; Bertrand, Arnaud; Gaspar, Philippe
2014-04-01
The Spatial Ecosystem And Populations Dynamics Model "SEAPODYM", based on a system of Eulerian equations and initially developed for large pelagic fish (e.g., tuna), was modified to describe spawning habitat and eggs and larvae dynamics of small pelagic fish. The spawning habitat is critical since it controls the initial recruitment of larvae and the subsequent spatio-temporal variability of natural mortality during their drift with currents. A robust statistical approach based on Maximum Likelihood Estimation is presented to optimize the model parameters defining the spawning habitat and the eggs and larvae dynamics. To improve parameterization, eggs and larvae density observations are assimilated in the model. The model and its associated optimization approach allow investigating the significance of the mechanisms proposed to control fish spawning habitat and larval recruitment: temperature, prey abundance, trade-off between prey and predators, and retention and dispersion processes. An application to the Peruvian anchovy (Engraulis ringens) and sardine (Sardinops sagax) illustrates the ability of the model to simulate the main features of spatial dynamics of these two species in the Humboldt Current System. For both species, in climatological conditions, the main observed spatial patterns are well reproduced and are explained by the impact of prey and predator abundance and by physical retention with currents, while temperature has a lower impact. In agreement with observations, sardine larvae are mainly predicted in the northern part of the Peruvian shelf (5-10°S), while anchovy larvae extend further south. Deoxygenation, which can potentially limit the accessibility of adult fish to spawning areas, does not appear to have an impact in our model setting. Conversely, the observed seasonality in spawning activity, especially the spawning rest period in austral autumn, is not well simulated. It is proposed that this seasonal cycle is more likely driven by the spatio-temporal dynamics of adult fish constituting the spawning biomass and not yet included in the model.
The effects of parasites on the early life stages of a damselfish
NASA Astrophysics Data System (ADS)
Sun, D.; Blomberg, S. P.; Cribb, T. H.; McCormick, M. I.; Grutter, A. S.
2012-12-01
Early life history traits, such as larval growth, influence the success of coral reef fish in the transition from the larval to the juvenile life phase. Few studies, however, have examined the relationship between parasites and growth in the early life history stages of such fishes. This study examined how parasite prevalence (% infected) and load, and the relationship between parasite presence and fish growth, differed among life stages of the damselfish Pomacentrus amboinensis. Parasite prevalence decreased significantly between the larval stage, which was sampled immediately before settlement on the reef (97 %) and recently settled juveniles (60 %); prevalence was also high for 4-month-old juveniles (90 %), 7-month-old juveniles (100 %) and adult fish (100 %). Total numbers of parasites per fish decreased dramatically (fourfold) between larval and recently settled fish, and then increased in the older stages to levels similar to those observed in larvae, but they did so more gradually than did prevalence. One explanation for these patterns is that heavily infected larvae were preferentially removed from the population during or soon after settlement. Daily fish growth, determined from otolith increments, revealed that growth did not differ between parasitised and non-parasitised larval fish, whereas recently settled fish that were parasitised had faster growth; these parasitised recently settled fish also displayed faster growth prior to settlement. These data provide evidence that parasites may explain some of the variation in growth and survival observed among coral reef fishes after settlement and thereby have a greater impact on population dynamics than previously understood.
A Computational Model for Oocyte Growth Dynamics in Fathead Minnows
Molecular biomarkers have been used in ecotoxicological studies to evaluate the effects of endocrine disrupting chemicals in fish. Changes in these molecular biomarkers must then be linked to the effects upon reproduction in individuals, and subsequently populations. To meet th...
A Computational Model for Oocyte Growth Dynamics in Fathead Minnows (Pimephales promelas)
Molecular biomarkers have been used in ecotoxicological studies to evaluate the effects of endocrine disrupting chemicals in fish. Ideally, changes in these molecular biomarkers should be linked to the effects upon reproduction in individuals, and subsequently populations. To m...
Impacts of the Deepwater Horizon oil spill evaluated using an end-to-end ecosystem model.
Ainsworth, Cameron H; Paris, Claire B; Perlin, Natalie; Dornberger, Lindsey N; Patterson, William F; Chancellor, Emily; Murawski, Steve; Hollander, David; Daly, Kendra; Romero, Isabel C; Coleman, Felicia; Perryman, Holly
2018-01-01
We use a spatially explicit biogeochemical end-to-end ecosystem model, Atlantis, to simulate impacts from the Deepwater Horizon oil spill and subsequent recovery of fish guilds. Dose-response relationships with expected oil concentrations were utilized to estimate the impact on fish growth and mortality rates. We also examine the effects of fisheries closures and impacts on recruitment. We validate predictions of the model by comparing population trends and age structure before and after the oil spill with fisheries independent data. The model suggests that recruitment effects and fishery closures had little influence on biomass dynamics. However, at the assumed level of oil concentrations and toxicity, impacts on fish mortality and growth rates were large and commensurate with observations. Sensitivity analysis suggests the biomass of large reef fish decreased by 25% to 50% in areas most affected by the spill, and biomass of large demersal fish decreased even more, by 40% to 70%. Impacts on reef and demersal forage caused starvation mortality in predators and increased reliance on pelagic forage. Impacts on the food web translated effects of the spill far away from the oiled area. Effects on age structure suggest possible delayed impacts on fishery yields. Recovery of high-turnover populations generally is predicted to occur within 10 years, but some slower-growing populations may take 30+ years to fully recover.
Rising temperatures may drive fishing-induced selection of low-performance phenotypes
Clark, Timothy D.; Messmer, Vanessa; Tobin, Andrew J.; Hoey, Andrew S.; Pratchett, Morgan S.
2017-01-01
Climate warming is likely to interact with other stressors to challenge the physiological capacities and survival of phenotypes within populations. This may be especially true for the billions of fishes per year that undergo vigorous exercise prior to escaping or being intentionally released from fishing gear. Using adult coral grouper (Plectropomus leopardus), an important fisheries species throughout the Indo-Pacific, we show that population-level survival following vigorous exercise is increasingly compromised as temperatures increase from current-day levels (100–67% survival at 24–30 °C) to those projected for the end of the century (42% survival at 33 °C). Intriguingly, we demonstrate that high-performance individuals take longer to recover to a resting metabolic state and subsequently have lower survival in warm water compared with conspecifics that exercise less vigorously. Moreover, we show that post-exercise mortality of high-performance phenotypes manifests after 3–13 d at the current summer maximum (30 °C), while mortality at 33 °C occurs within 1.8–14.9 h. We propose that wild populations in a warming climate may become skewed towards low-performance phenotypes with ramifications for predator-prey interactions and community dynamics. Our findings highlight the susceptibility of phenotypic diversity to fishing activities and demonstrate a mechanism that may contribute to fishing-induced evolution in the face of ongoing climate change. PMID:28094310
Impacts of the Deepwater Horizon oil spill evaluated using an end-to-end ecosystem model
Paris, Claire B.; Perlin, Natalie; Dornberger, Lindsey N.; Patterson, William F.; Chancellor, Emily; Murawski, Steve; Hollander, David; Daly, Kendra; Romero, Isabel C.; Coleman, Felicia; Perryman, Holly
2018-01-01
We use a spatially explicit biogeochemical end-to-end ecosystem model, Atlantis, to simulate impacts from the Deepwater Horizon oil spill and subsequent recovery of fish guilds. Dose-response relationships with expected oil concentrations were utilized to estimate the impact on fish growth and mortality rates. We also examine the effects of fisheries closures and impacts on recruitment. We validate predictions of the model by comparing population trends and age structure before and after the oil spill with fisheries independent data. The model suggests that recruitment effects and fishery closures had little influence on biomass dynamics. However, at the assumed level of oil concentrations and toxicity, impacts on fish mortality and growth rates were large and commensurate with observations. Sensitivity analysis suggests the biomass of large reef fish decreased by 25% to 50% in areas most affected by the spill, and biomass of large demersal fish decreased even more, by 40% to 70%. Impacts on reef and demersal forage caused starvation mortality in predators and increased reliance on pelagic forage. Impacts on the food web translated effects of the spill far away from the oiled area. Effects on age structure suggest possible delayed impacts on fishery yields. Recovery of high-turnover populations generally is predicted to occur within 10 years, but some slower-growing populations may take 30+ years to fully recover. PMID:29370187
How predation shapes the social interaction rules of shoaling fish
Rosén, Emil; Ioannou, Christos C.; Rogell, Björn; Perna, Andrea; Ramnarine, Indar W.; Kolm, Niclas
2017-01-01
Predation is thought to shape the macroscopic properties of animal groups, making moving groups more cohesive and coordinated. Precisely how predation has shaped individuals' fine-scale social interactions in natural populations, however, is unknown. Using high-resolution tracking data of shoaling fish (Poecilia reticulata) from populations differing in natural predation pressure, we show how predation adapts individuals' social interaction rules. Fish originating from high predation environments formed larger, more cohesive, but not more polarized groups than fish from low predation environments. Using a new approach to detect the discrete points in time when individuals decide to update their movements based on the available social cues, we determine how these collective properties emerge from individuals' microscopic social interactions. We first confirm predictions that predation shapes the attraction–repulsion dynamic of these fish, reducing the critical distance at which neighbours move apart, or come back together. While we find strong evidence that fish align with their near neighbours, we do not find that predation shapes the strength or likelihood of these alignment tendencies. We also find that predation sharpens individuals' acceleration and deceleration responses, implying key perceptual and energetic differences associated with how individuals move in different predation regimes. Our results reveal how predation can shape the social interactions of individuals in groups, ultimately driving differences in groups' collective behaviour. PMID:28855361
Log-linear model based behavior selection method for artificial fish swarm algorithm.
Huang, Zhehuang; Chen, Yidong
2015-01-01
Artificial fish swarm algorithm (AFSA) is a population based optimization technique inspired by social behavior of fishes. In past several years, AFSA has been successfully applied in many research and application areas. The behavior of fishes has a crucial impact on the performance of AFSA, such as global exploration ability and convergence speed. How to construct and select behaviors of fishes are an important task. To solve these problems, an improved artificial fish swarm algorithm based on log-linear model is proposed and implemented in this paper. There are three main works. Firstly, we proposed a new behavior selection algorithm based on log-linear model which can enhance decision making ability of behavior selection. Secondly, adaptive movement behavior based on adaptive weight is presented, which can dynamically adjust according to the diversity of fishes. Finally, some new behaviors are defined and introduced into artificial fish swarm algorithm at the first time to improve global optimization capability. The experiments on high dimensional function optimization showed that the improved algorithm has more powerful global exploration ability and reasonable convergence speed compared with the standard artificial fish swarm algorithm.
BIOACCUMULATION AND AQUATIC SYSTEM SIMULATOR (BASS) USER'S MANUAL BETA TEST VERSION 2.1
BASS (Bioaccumulation and Aquatic System Simulator) is a Fortran 95 simulation program that predicts the population and bioaccumulation dynamics of age-structured fish assemblages that are exposed to hydrophobic organic pollutants and class B and borderline metals that complex wi...
Nagelkerken, Ivan; Grol, Monique G G; Mumby, Peter J
2012-01-01
No-take marine fishery reserves sustain commercial stocks by acting as buffers against overexploitation and enhancing fishery catches in adjacent areas through spillover. Likewise, nursery habitats such as mangroves enhance populations of some species in adjacent habitats. However, there is lack of understanding of the magnitude of stock enhancement and the effects on community structure when both protection from fishing and access to nurseries concurrently act as drivers of fish population dynamics. In this study we test the separate as well as interactive effects of marine reserves and nursery habitat proximity on structure and abundance of coral reef fish communities. Reserves had no effect on fish community composition, while proximity to nursery habitat only had a significant effect on community structure of species that use mangroves or seagrass beds as nurseries. In terms of reef fish biomass, proximity to nursery habitat by far outweighed (biomass 249% higher than that in areas with no nursery access) the effects of protection from fishing in reserves (biomass 21% lower than non-reserve areas) for small nursery fish (≤ 25 cm total length). For large-bodied individuals of nursery species (>25 cm total length), an additive effect was present for these two factors, although fish benefited more from fishing protection (203% higher biomass) than from proximity to nurseries (139% higher). The magnitude of elevated biomass for small fish on coral reefs due to proximity to nurseries was such that nursery habitats seem able to overrule the usually positive effects on fish biomass by reef reserves. As a result, conservation of nursery habitats gains importance and more consideration should be given to the ecological processes that occur along nursery-reef boundaries that connect neighboring ecosystems.
Effects of Marine Reserves versus Nursery Habitat Availability on Structure of Reef Fish Communities
Nagelkerken, Ivan; Grol, Monique G. G.; Mumby, Peter J.
2012-01-01
No-take marine fishery reserves sustain commercial stocks by acting as buffers against overexploitation and enhancing fishery catches in adjacent areas through spillover. Likewise, nursery habitats such as mangroves enhance populations of some species in adjacent habitats. However, there is lack of understanding of the magnitude of stock enhancement and the effects on community structure when both protection from fishing and access to nurseries concurrently act as drivers of fish population dynamics. In this study we test the separate as well as interactive effects of marine reserves and nursery habitat proximity on structure and abundance of coral reef fish communities. Reserves had no effect on fish community composition, while proximity to nursery habitat only had a significant effect on community structure of species that use mangroves or seagrass beds as nurseries. In terms of reef fish biomass, proximity to nursery habitat by far outweighed (biomass 249% higher than that in areas with no nursery access) the effects of protection from fishing in reserves (biomass 21% lower than non-reserve areas) for small nursery fish (≤25 cm total length). For large-bodied individuals of nursery species (>25 cm total length), an additive effect was present for these two factors, although fish benefited more from fishing protection (203% higher biomass) than from proximity to nurseries (139% higher). The magnitude of elevated biomass for small fish on coral reefs due to proximity to nurseries was such that nursery habitats seem able to overrule the usually positive effects on fish biomass by reef reserves. As a result, conservation of nursery habitats gains importance and more consideration should be given to the ecological processes that occur along nursery-reef boundaries that connect neighboring ecosystems. PMID:22675474
Population dynamics in an intermittent refuge
NASA Astrophysics Data System (ADS)
Colombo, E. H.; Anteneodo, C.
2016-10-01
Population dynamics is constrained by the environment, which needs to obey certain conditions to support population growth. We consider a standard model for the evolution of a single species population density, which includes reproduction, competition for resources, and spatial spreading, while subject to an external harmful effect. The habitat is spatially heterogeneous, there existing a refuge where the population can be protected. Temporal variability is introduced by the intermittent character of the refuge. This scenario can apply to a wide range of situations, from a laboratory setting where bacteria can be protected by a blinking mask from ultraviolet radiation, to large-scale ecosystems, like a marine reserve where there can be seasonal fishing prohibitions. Using analytical and numerical tools, we investigate the asymptotic behavior of the total population as a function of the size and characteristic time scales of the refuge. We obtain expressions for the minimal size required for population survival, in the slow and fast time scale limits.
Madenjian, C.P.; Ebener, M.P.; Desorcie, T.J.
2008-01-01
The Drummond Island Refuge (DIR) was established in 1985 as part of the rehabilitation effort for lake trout Salvelinus namaycush in Lake Huron. Since then, several strains of hatchery-reared lake trout have been stocked annually at the DIR. An intensive lampricide treatment of the St. Marys River during 1998-2001 was expected to lower the abundance of sea lamprey Petromyzon marinus within the DIR by 2000. We conducted annual gill-net surveys during spring and fall to evaluate the performance of each of the strains of lake trout as well as that of the entire lake trout population (all strains pooled) in the DIR during 1991-2005. The criteria to evaluate performance included the proportion of "wild" fish within the population, spawner density, adult survival, growth, maturity, and wounding rate by sea lampreys. Wild lake trout did not recruit to the adult population to any detectable degree. During 1991-2005, the average density of spawning lake trout appeared to be marginally sufficient to initiate a self-sustaining population. Survival of the Seneca Lake (SEN) strain of lake trout was significantly higher than that of the Superior-Marquette (SUP) strain, in part because of the higher sea-lamprey-induced mortality suffered by the SUP strain. However, other factors were also involved. Apparently SUP fish were more vulnerable to fishing conducted in waters near the refuge boundaries than SEN fish. The St. Marys River treatment appeared to be effective in reducing the sea lamprey wounding rate on SEN fish. We recommend that the stocking of SEN lake trout in the DIR, control of sea lampreys in the St. Marys River, and reduction of commercial fishery effort in waters near the DIR be maintained. ?? Copyright by the American Fisheries Society 2008.
Homola, J J; Ruetz, C R; Kohler, S L; Thum, R A
2016-11-01
This study used analyses of the genetic structure of a non-game fish species, the mottled sculpin Cottus bairdii to hypothesize probable recolonization routes used by cottids and possibly other Laurentian Great Lakes fishes following glacial recession. Based on samples from 16 small streams in five major Lake Michigan, U.S.A., tributary basins, significant interpopulation differentiation was documented (overall F ST = 0·235). Differentiation was complex, however, with unexpectedly high genetic similarity among basins as well as occasionally strong differentiation within basins, despite relatively close geographic proximity of populations. Genetic dissimilarities were identified between eastern and western populations within river basins, with similarities existing between eastern and western populations across basins. Given such patterns, recolonization is hypothesized to have occurred on three occasions from more than one glacial refugium, with a secondary vicariant event resulting from reduction in the water level of ancestral Lake Michigan. By studying the phylogeography of a small, non-game fish species, this study provides insight into recolonization dynamics of the region that could be difficult to infer from game species that are often broadly dispersed by humans. © 2016 The Fisheries Society of the British Isles.
Assessing trade-offs to inform ecosystem-based fisheries management of forage fish.
Shelton, Andrew Olaf; Samhouri, Jameal F; Stier, Adrian C; Levin, Philip S
2014-11-19
Twenty-first century conservation is centered on negotiating trade-offs between the diverse needs of people and the needs of the other species constituting coupled human-natural ecosystems. Marine forage fishes, such as sardines, anchovies, and herring, are a nexus for such trade-offs because they are both central nodes in marine food webs and targeted by fisheries. An important example is Pacific herring, Clupea pallisii in the Northeast Pacific. Herring populations are subject to two distinct fisheries: one that harvests adults and one that harvests spawned eggs. We develop stochastic, age-structured models to assess the interaction between fisheries, herring populations, and the persistence of predators reliant on herring populations. We show that egg- and adult-fishing have asymmetric effects on herring population dynamics--herring stocks can withstand higher levels of egg harvest before becoming depleted. Second, ecosystem thresholds proposed to ensure the persistence of herring predators do not necessarily pose more stringent constraints on fisheries than conventional, fishery driven harvest guidelines. Our approach provides a general template to evaluate ecosystem trade-offs between stage-specific harvest practices in relation to environmental variability, the risk of fishery closures, and the risk of exceeding ecosystem thresholds intended to ensure conservation goals are met.
Efficacy of using data from angler-caught Burbot to estimate population rate functions
Brauer, Tucker A.; Rhea, Darren T.; Walrath, John D.; Quist, Michael C.
2018-01-01
The effective management of a fish population depends on the collection of accurate demographic data from that population. Since demographic data are often expensive and difficult to obtain, developing cost‐effective and efficient collection methods is a high priority. This research evaluates the efficacy of using angler‐supplied data to monitor a nonnative population of Burbot Lota lota. Age and growth estimates were compared between Burbot collected by anglers and those collected in trammel nets from two Wyoming reservoirs. Collection methods produced different length‐frequency distributions, but no difference was observed in age‐frequency distributions. Mean back‐calculated lengths at age revealed that netted Burbot grew faster than angled Burbot in Fontenelle Reservoir. In contrast, angled Burbot grew slightly faster than netted Burbot in Flaming Gorge Reservoir. Von Bertalanffy growth models differed between collection methods, but differences in parameter estimates were minor. Estimates of total annual mortality (A) of Burbot in Fontenelle Reservoir were comparable between angled (A = 35.4%) and netted fish (33.9%); similar results were observed in Flaming Gorge Reservoir for angled (29.3%) and netted fish (30.5%). Beverton–Holt yield‐per‐recruit models were fit using data from both collection methods. Estimated yield differed by less than 15% between data sources and reservoir. Spawning potential ratios indicated that an exploitation rate of 20% would be required to induce recruitment overfishing in either reservoir, regardless of data source. Results of this study suggest that angler‐supplied data are useful for monitoring Burbot population dynamics in Wyoming and may be an option to efficiently monitor other fish populations in North America.
NASA Astrophysics Data System (ADS)
Shastry, A. R.; Durand, M. T.; Fernandez, A.; Phang, S. C.; Hamilton, I.; Laborde, S.; Mark, B. G.; Moritz, M.; Neal, J. C.
2017-12-01
The Logone floodplain in northern Cameroon, also known as Yaayre, is an excellent example of coupled human-natural systems because of strong couplings between social, ecological and hydrologic systems. Overbank flow from the Logone River inundates the floodplain ( 8000 km2) annually and the flood is essential for fish populations and the fishers that depend on them for their livelihood. However, a recent trend of construction of fishing canals threatens to change flood dynamics like duration and timing of onset and may reduce fish productivity. Fishers dig canals during dry season, which are used to catch fish by collecting and channeling water during the flood recession. By connecting the floodplain to the river, these fishing canals act an extension of the river drainage network. The goal of this study is to characterize the relationship between the observed exponential increase in numbers of fishing canals and flood dynamics. We modelled the Logone floodplain as a two-dimensional hydrodynamic model with sub-grid parameterizations of channels using LISFLOOD-FP. We use a simplified version of the hydraulic system at a grid-cell size of 1-km, upscaled using a new high accuracy map of global terrain elevations from Shuttle Radar Topography Mission (SRTM). Using data from a field-collected survey performed in 2014, 1120 fishing canal were collated and parameterized as 111 sub-grid channels and the fishnet structure was represented as a combination of weir and mesh screens. 49 mapped floodplain depressions were also represented as sub-grid channels. In situ discharge observations available at Katoa between 2001 and 2007 were used as input for the model. Preliminary results show that presence of canals resulted in a 24% quicker recession of water in the natural depressions showing increasing canal numbers lead to quicker flood recession. We also investigate the rate of effect increasing number of fishing canals has on flood recession by simulating varying numbers of canals. This model will be integrated within a larger modelling effort to quantify the floodplain's hydraulic, biological and human couplings. This larger integrated model will link inputs and outputs across three different models (flood, fish and fisher) for a holistic insight into the drivers and dynamics of this coupled human and natural system.
Measurements of spatial population synchrony: influence of time series transformations.
Chevalier, Mathieu; Laffaille, Pascal; Ferdy, Jean-Baptiste; Grenouillet, Gaël
2015-09-01
Two mechanisms have been proposed to explain spatial population synchrony: dispersal among populations, and the spatial correlation of density-independent factors (the "Moran effect"). To identify which of these two mechanisms is driving spatial population synchrony, time series transformations (TSTs) of abundance data have been used to remove the signature of one mechanism, and highlight the effect of the other. However, several issues with TSTs remain, and to date no consensus has emerged about how population time series should be handled in synchrony studies. Here, by using 3131 time series involving 34 fish species found in French rivers, we computed several metrics commonly used in synchrony studies to determine whether a large-scale climatic factor (temperature) influenced fish population dynamics at the regional scale, and to test the effect of three commonly used TSTs (detrending, prewhitening and a combination of both) on these metrics. We also tested whether the influence of TSTs on time series and population synchrony levels was related to the features of the time series using both empirical and simulated time series. For several species, and regardless of the TST used, we evidenced a Moran effect on freshwater fish populations. However, these results were globally biased downward by TSTs which reduced our ability to detect significant signals. Depending on the species and the features of the time series, we found that TSTs could lead to contradictory results, regardless of the metric considered. Finally, we suggest guidelines on how population time series should be processed in synchrony studies.
Population assessment of tropical tuna based on their associative behavior around floating objects.
Capello, M; Deneubourg, J L; Robert, M; Holland, K N; Schaefer, K M; Dagorn, L
2016-11-03
Estimating the abundance of pelagic fish species is a challenging task, due to their vast and remote habitat. Despite the development of satellite, archival and acoustic tagging techniques that allow the tracking of marine animals in their natural environments, these technologies have so far been underutilized in developing abundance estimations. We developed a new method for estimating the abundance of tropical tuna that employs these technologies and exploits the aggregative behavior of tuna around floating objects (FADs). We provided estimates of abundance indices based on a simulated set of tagged fish and studied the sensitivity of our method to different association dynamics, FAD numbers, population sizes and heterogeneities of the FAD-array. Taking the case study of yellowfin tuna (Thunnus albacares) acoustically-tagged in Hawaii, we implemented our approach on field data and derived for the first time the ratio between the associated and the total population. With more extensive and long-term monitoring of FAD-associated tunas and good estimates of the numbers of fish at FADs, our method could provide fisheries-independent estimates of populations of tropical tuna. The same approach can be applied to obtain population assessments for any marine and terrestrial species that display associative behavior and from which behavioral data have been acquired using acoustic, archival or satellite tags.
The use of archived tags in retrospective genetic analysis of fish.
Bonanomi, Sara; Therkildsen, Nina Overgaard; Hedeholm, Rasmus Berg; Hemmer-Hansen, Jakob; Nielsen, Einar E
2014-05-01
Collections of historical tissue samples from fish (e.g. scales and otoliths) stored in museums and fisheries institutions are precious sources of DNA for conducting retrospective genetic analysis. However, in some cases, only external tags used for documentation of spatial dynamics of fish populations have been preserved. Here, we test the usefulness of fish tags as a source of DNA for genetic analysis. We extract DNA from historical tags from cod collected in Greenlandic waters between 1950 and 1968. We show that the quantity and quality of DNA recovered from tags is comparable to DNA from archived otoliths from the same individuals. Surprisingly, levels of cross-contamination do not seem to be significantly higher in DNA from external (tag) than internal (otolith) sources. Our study therefore demonstrates that historical tags can be a highly valuable source of DNA for retrospective genetic analysis of fish. © 2013 John Wiley & Sons Ltd.
Ory, Nicolas; Chagnon, Catherine; Felix, Fernando; Fernández, César; Ferreira, Joana Lia; Gallardo, Camila; Garcés Ordóñez, Ostin; Henostroza, Aida; Laaz, Enrique; Mizraji, Ricardo; Mojica, Hermes; Murillo Haro, Vladimir; Ossa Medina, Luis; Preciado, Mercy; Sobral, Paula; Urbina, Mauricio A; Thiel, Martin
2018-02-01
The gut contents of 292 planktivorous fish, from four families (Atherinopsidae, Clupeidae, Engraulidae and Scombridae) and seven species, captured along the coast of the southeast Pacific, were examined for microplastic contamination. Only a small fraction of all studied fish (2.1%; 6 individuals) contained microplastic particles in their digestive tract. Microplastics found were degraded hard fragments and threads, ranging from 1.1 to 4.9 (3.8±SD 2.4) mm in length, and of various colours, which suggests that the planktivorous fish species examined herein did not capture microplastics on the basis of their colour. The low prevalence of microplastic contamination in planktivorous fishes found in this study suggests that the risk of accidental ingestion by these species might be limited in the coastal upwelled waters of the southeast Pacific, perhaps due to small human population and highly dynamic oceanographic processes. Copyright © 2017 Elsevier Ltd. All rights reserved.
John D. Armstrong; Keith H. Nislow
2012-01-01
Modelling approaches for relating discharge to the biology of Atlantic salmon, Salmo salar L., and brown trout, Salmo trutta L., growing in rivers are reviewed. Process-based and empirical models are set within a common framework of input of water flow and output of characteristics of fish, such as growth and survival, which relate directly to population dynamics. A...
ECOLOGICAL AND EVOLUTIONARY APPLICATIONS FOR ENVIRONMENTAL SEX REVERSAL OF FISH.
Mcnair, Alistair; Lokman, P Mark; Closs, Gerard P; Nakagawa, Shinichi
2015-03-01
Environmental sex reversal (ESR), which results in a mismatch between genotypic and phenotypic sex, is well documented in numerous fish species and may be induced by chemical exposure. Historically, research involving piscine ESR has been carried out with a view to improving profitability in aquaculture or to elucidate the processes governing sex determination and sexual differentiation. However, recent studies in evolution and ecology suggest research on ESR now has much wider applications and ramifications. We begin with an overview of ESR in fish and a brief review of the traditional applications thereof. We then discuss ESR and its potential demographic consequences in wild populations. Theory even suggests sex-reversed fish may be purposefully released to manipulate population dynamics. We suggest new research directions that may prove fruitful in understanding how ESR at the individual level translates to population-level processes. In the latter portion of the review we focus on evolutionary applications of ESR. Sex-reversal studies from the aquaculture literature provide insight in to the evolvability of determinants of sexual phenotype. Additionally, induced sex reversal can provide information about the evolution of sex chromosomes and sex-linked traits. Recently, naturally occurring ESR has been implicated as a mechanism contributing to the evolution of sex chromosomes.
Exploitation dynamics of small fish stocks like Arctic cisco
Nielsen, Jennifer L.
2004-01-01
Potential impacts to the Arctic cisco population fall into both demographic and behavioral categories. Possible demographic impacts include stock recruitment effects, limited escapement into marine habitats, and variable age-class reproductive success. Potential behavioral impacts involve migratory patterns, variable life histories, and strategies for seasonal feeding. Arctic cisco stocks are highly susceptible to over-exploitation due to our limited basic knowledge of the highly variable Arctic environment and the role they play in this dynamic ecosystem.Our knowledge of potential demographic changes is very limited, and it is necessary to determine the abundance and recruitment of the hypothesized Mackenzie River source population, the extent of the coastal migratory corridor, growth patterns, and coastal upwelling and mixing effects on population dynamics for this species. Information needed to answer some of the demographic questions includes basic evolutionary history and molecular genetics of Arctic cisco (for instance, are there contributions to the Arctic cisco stock from the Yukon?), what is the effective population size (i.e., breeding population size), and potential links to changes in climate. The basic behavioral questions include migratory and variable life history questions. For instance, the extent of movement back and forth between freshwater and the sea, age-specific differences in food web dynamics, and nearshore brackish and high salinity habitats are topics that should be studied. Life history data should be gathered to understand the variation in age at reproduction, salinity tolerance, scale and duration of the freshwater stage, survival, and adult migration. Both molecular and ecological tools should be integrated to manage the Arctic cisco stock(s), such as understanding global climate changes on patterns of harvest and recruitment, and the genetics of population structure and colonization. Perhaps other populations are contributing to the population within the Colville River other than only the Mackenzie River population. This needs further exploration. By examining otolith microchemistry, unique transitions from freshwater to sea can be identified for these stocks. This may shed light on why some fish arrive at the mouth of the Colville River, while others don’t.
How to control chaotic behaviour and population size with proportional feedback
NASA Astrophysics Data System (ADS)
Liz, Eduardo
2010-01-01
We study the control of chaos in one-dimensional discrete maps as they often occur in modelling population dynamics. For managing the population, we seek to suppress any possible chaotic behavior, leading the system to a stable equilibrium. In this Letter, we make a rigorous analysis of the proportional feedback method under certain conditions fulfilled by a wide family of maps. We show that it is possible to stabilize the chaotic dynamics towards a globally stable positive equilibrium, that can be chosen among a broad range of possible values. In particular, the size of the population can be enhanced by control in form of population reduction. This paradoxical phenomenon is known as the hydra effect, and it has important implications in the design of strategies in such areas as fishing, pest management, and conservation biology.
NASA Astrophysics Data System (ADS)
McMonagle, H.; Koslow, J. A.; Watson, W.
2016-02-01
Climate has been shown to play a major role in the dynamics of fisheries and marine ecosystems. Previous studies of relationships between physical oceanography and fish population dynamics have focused primarily on commercially important species. However, as we move towards more comprehensive, ecosystem-based management of fisheries, it is important to understand how entire assemblages of fish, including ecologically important but noncommercial taxa, are influenced by climate. We used the ichthyoplankton time series maintained by the California Cooperative Oceanic Fisheries Investigations (CalCOFI) to examine changes in over 200 fish taxa from 1969 to 2011 in the Southern California Current region. We used several indices of species richness and evenness, as well as graphical approaches, to examine potential changes in the diversity of regional fish assemblages in relation to interannual and decadal-scale climate variability. These include El Niño-La Niña events, changes in deepwater oxygen concentration and long-term ocean warming. Richness was positively correlated with deepwater oxygen concentration, consistent with the strong correlation between midwater fish abundance and oxygen. Diversity (a measurement of both richness and evenness) was positively correlated with sea surface temperature. Diversity decreased as the abundance of a diverse midwater fish assemblage declined, and it increased as a dominant assemblage of common, coldwater fish declined. This latter pattern may be due to the strong dominance of species with cold water affinities when conditions were favorable, which reduced evenness in the community. Trends in deoxygenation and warming are predicted to continue due to climate change. A better understanding of the relationships between the diversity of fish communities and climate could lead to improved indicators of ecosystem status and the ability to predict trends in fish communities related to climate change.
Janney, E.C.; Shively, R.S.; Hayes, B.S.; Barry, P.M.; Perkins, D.
2008-01-01
We used 13 years (1995-2007) of capture-mark-recapture data to assess population dynamics of endangered Lost River suckers Deltistes luxatus and shortnose suckers Chasmistes brevirostris in Upper Klamath Lake, Oregon. The Cormack-Jolly-Seber method was used to estimate survival, and information theoretic modeling was used to assess variation due to time, gender, species, and spawning subpopulations. Length data were used to detect multiple year-class failures and events of high recruitment into adult spawning populations. Average annual survival probability was 0.88 for Lost River suckers and 0.76 for shortnose suckers. Mean life span estimates based on these survival rates indicated that Lost River suckers survived long enough on average to attempt reproduction eight times, whereas shortnose suckers only survived to spawn three to four times. Shortnose sucker survival was not only poor in years of fish kills (1995-1997) but also was low in years without fish kills (i.e., 2002 and 2004). This suggests that high mortality occurs in some years but is not necessarily associated with fish kills. Annual survival probabilities were not only different between the two species but also differed between two spawning subpopulations of Lost River suckers. Length composition data indicated that recruitment into spawning populations only occurred intermittently. Populations of both species transitioned from primarily old individuals with little size diversity and consistently poor recruitment in the late 1980s and early 1990s to mostly small, recruit-sized fish by the late 1990s. A better understanding of the factors influencing adult survival and recruitment into spawning populations is needed. Monitoring these vital parameters will provide a quantitative means to evaluate population status and assess the effectiveness of conservation and recovery efforts.
A synthesis of ecological and fish-community changes in Lake Ontario, 1970-2000
Mills, E.L.; Casselman, J.M.; Dermott, R.; Fitzsimons, J.D.; Gal, G.; Holeck, K. T.; Hoyle, J.A.; Johannsson, O.E.; Lantry, B.F.; Makarewicz, J.C.; Millard, E.S.; Munawar, I.F.; Munawar, M.; O'Gorman, R.; Owens, R.W.; Rudstam, L. G.; Schaner, T.; Stewart, T.J.
2005-01-01
We assessed stressors associated with ecological and fishcommunity changes in Lake Ontario since 1970, when the first symposium on Salmonid Communities in Oligotrophic Lakes (SCOL I) was held (J. Fish. Res. Board Can. 29: 613-616). Phosphorus controls implemented in the early 1970s were undeniably successful; lower food-web studies showed declines in algal abundance and epilimnetic zooplankton production and a shift in pelagic primary productivity toward smaller organisms. Stressors on the fish community prior to 1970 such as exploitation, sea lamprey (Petromyzon marinus) predation, and effects of nuisance populations of alewife (Alosa pseudoharengus) were largely ameliorated by the 1990s. The alewife became a pivotal species supporting a multi-million-dollar salmonid sport fishery, but alewife-induced thiamine deficiency continued to hamper restoration and sustainability of native lake trout (Salvelinus namaycush). Expanding salmonine populations dependent on alewife raised concerns about predator demand and prey supply, leading to reductions in salmonine stocking in the early 1990s. Relaxation of the predation impact by alewives and their shift to deeper water allowed recovery of native fishes such as threespine stickleback (Gasterosteus aculeatus) and emerald shiner (Notropis atherinoides). The return of the Lake Ontario ecosystem to historical conditions has been impeded by unplanned introductions. Establishment of Dreissena spp. led to increased water clarity and increased vectoring of lower trophic-level production to benthic habitats and contributed to the collapse of Diporeia spp. populations, behavioral modifications of key fish species, and the decline of native lake whitefish (Coregonus clupeaformis). Despite reduced productivity, exotic-species introductions, and changes in the fish community, offshore Mysis relicta populations remained relatively stable. The effects of climate and climate change on the population abundance and dynamics of Lake Ontario fish were unknown at the time of SCOL I, but a temperature-time series begun in the late 1950s in the Kingston Basin has since provided evidence of climate warming and associated fish-community changes. We should expect ecological surprises in the coming decades that will challenge scientists and fishery managers especially as they face new exotic species, climate warming, and escalating stakeholder demands on the resource. Continuous long-term ecological studies were critical for interpreting changes in Lake Ontario's fish community over the past three decades and will be essential in the future for both scientific understanding and management of the fishery.
Svedäng, Henrik; Hornborg, Sara
2017-08-01
Understanding how combinations of fishing effort and selectivity affect productivity is central to fisheries research. We investigate the roles of fishing regulation in comparison with ecosystem status for Baltic Sea cod stock productivity, growth performance, and population stability. This case study is interesting because three cod populations with different exploitation patterns and stock status are located in three adjacent but partially, ecologically different areas. In assessing stock status, growth, and productivity, we use survey information and rather basic stock parameters without relying on age readings. Because there is an urgent interest of better understanding of the current development of the Eastern Baltic cod stock, we argue that our approach represents partly a novel way of interpreting monitoring information together with catch data in a simplified yet more informative way. Our study reports how the Eastern and Western Baltic cod have gone toward more truncated size structures between 1991 and 2016, in particular for the Eastern Baltic cod, whereas the Öresund cod show no trend. We suggest that selective fishing may disrupt fish population dynamic stability and that lower natural productivity might amplify the effects of selective fishing. In support of earlier findings on a density-dependent growth of Eastern Baltic cod, management is advised to acknowledge that sustainable exploitation levels for Eastern Baltic cod are much more limited than perceived in regular assessments. Of more general importance, our results emphasize the need to embrace a more realistic view on what ecosystems can produce regarding tractable fish biomass to facilitate a more ecosystem-based fisheries management.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polivka, Karl; Bennett, Rita L.
2009-03-31
We studied variation in productivity in headwater reaches of the Wenatchee subbasin for multiple field seasons with the objective that we could develop methods for monitoring headwater stream conditions at the subcatchment and stream levels, assign a landscape-scale context via the effects of geoclimatic parameters on biological productivity (macroinvertebrates and fish) and use this information to identify how variability in productivity measured in fishless headwaters is transmitted to fish communities in downstream habitats. In 2008, we addressed this final objective. In collaboration with the University of Alaska Fairbanks we found some broad differences in the production of aquatic macroinvertebrates andmore » in fish abundance across categories that combine the effects of climate and management intensity within the subbasin (ecoregions). From a monitoring standpoint, production of benthic macroinvertebrates was not a good predictor of drifting macroinvertebrates and therefore might be a poor predictor of food resources available to fish. Indeed, there is occasionally a correlation between drifting macroinvertebrate abundance and fish abundance which suggests that headwater-derived resources are important. However, fish in the headwaters appeared to be strongly food-limited and there was no evidence that fishless headwaters provided a consistent subsidy to fish in reaches downstream. Fish abundance and population dynamics in first order headwaters may be linked with similar metrics further down the watershed. The relative strength of local dynamics and inputs into productivity may be constrained or augmented by large-scale biogeoclimatic control. Headwater streams are nested within watersheds, which are in turn nested within ecological subregions; thus, we hypothesized that local effects would not necessarily be mutually exclusive from large-scale influence. To test this we examined the density of primarily salmonid fishes at several spatial and temporal scales within a major sub-basin of the Columbia River and associations of density with ecoregion and individuals drainages within the sub-basin. We further examined habitat metrics that show positive associations with fish abundance to see if these relationships varied at larger spatial scales. We examined the extent to which headwater fish density and temporal variation in density were correlated between the headwaters and the main tributaries of the sub-basin, and the influence of ecoregion influence on density differences, particularly at wider temporal scales. Finally, we examined demographic parameters such as growth and emigration to determine whether density-dependence differs among ecoregions or whether responses were more strongly influenced by the demography of the local fish population.« less
Dynamic in-lake spawning migrations by female sockeye salmon
Young, Daniel B.; Woody, C.A.
2007-01-01
Precise homing by salmon to natal habitats is considered the primary mechanism in the evolution of population-specific traits, yet few studies have focused on this final phase of their spawning migration. We radio tagged 157 female sockeye salmon (Oncorhynchus nerka) as they entered Lake Clark, Alaska, and tracked them every 1-10 days to their spawning locations. Contrary to past research, no specific shoreline migration pattern was observed (e.g., clockwise) nor did fish enter a tributary unless they spawned in that tributary. Tributary spawning fish migrated faster (mean = 4.7 km??day-1, SD = 2.7, vs. 1.6 km??day-1, SD = 2.1) and more directly (mean linearity = 0.8, SD = 0.2, vs. 0.4, SD = 0.2) than Lake Clark beach spawning fish. Although radio-tagged salmon migrated to within 5 km of their final spawning location in an average of 21.2 days (SD = 13.2), some fish migrated five times the distance necessary and over 50 days to reach their spawning destination. These results demonstrate the dynamic nature of this final phase of migration and support studies indicating a higher degree of homing precision by tributary spawning fish. ?? Journal compilation 2007 Blackwell Munksgaard No claim to original US government works.
Exploring fish microbial communities to mitigate emerging diseases in aquaculture.
de Bruijn, Irene; Liu, Yiying; Wiegertjes, Geert F; Raaijmakers, Jos M
2018-01-01
Aquaculture is the fastest growing animal food sector worldwide and expected to further increase to feed the growing human population. However, existing and (re-)emerging diseases are hampering fish and shellfish cultivation and yield. For many diseases, vaccination protocols are not in place and the excessive use of antibiotics and other chemicals is of substantial concern. A more sustainable disease control strategy to protect fish and shellfish from (re-)emerging diseases could be achieved by introduction or augmentation of beneficial microbes. To establish and maintain a 'healthy' fish microbiome, a fundamental understanding of the diversity and temporal-spatial dynamics of fish-associated microbial communities and their impact on growth and health of their aquatic hosts is required. This review describes insights in the diversity and functions of the fish bacterial communities elucidated with next-generation sequencing and discusses the potential of the microbes to mitigate (re-)emerging diseases in aquaculture. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
ONR Far East Scientific Bulletin. Volume 8. Number 1, January-March 1983,
1983-03-01
dissociated zircon was recently reported.1 In addition, several alumina based, e.g., Al 2 O 3-SiO 2 , A12 0 3-Cr 2 O9 , Al20 3 - TiO2 powders have been...Agriculture 26.2 Forestry 3.8 Fishing 3.6 33.6% Mineral, energy, and water resources Mineral resources 6.1 Energy resources 7.8 Water resources 2.3 16.2...ecosystems and the ecology and population dynamics of the ocean’s harvestable resources, - methods of processing, handling, and storing meat, fish , dairy
Diet dynamics of the juvenile piscivorous fish community in Spirit Lake, Iowa, USA, 1997-1998
Pelham, M.E.; Pierce, C.L.; Larscheid, J.G.
2001-01-01
We assessed temporal dynamics and variation among species and age-classes in the diets of age 0 and age 1 piscivorous fish species in Spirit Lake, Iowa, USA during 1997 and 1998. Species included walleye Stizostedion vitreum, yellow perch Perca flavescens, smallmouth bass Micropterus dolomieui, largemouth bass Micropterus salmoides, black crappie Pomoxis nigromaculatus and white bass Morone chrysops. Thirty taxa were identified in diets, including 12 species of fish. We found dramatic differences in diets among species, among age-classes within species and over time. Walleye, largemouth bass, smallmouth bass and white bass were piscivorous at age 0. Black crappie began piscivory at age 1. Yellow perch also began piscivory at age 1, but fish were a very small fraction of age-1 diets. The primary temporal pattern, seen in several species and age- classes, was an increase in piscivory from spring to fall. This pattern was due to the lack of small, age-0 prey fish in spring. Although some patterns were evident, the taxonomic composition of the diets of all species was highly variable over time, making generalizations difficult. A surprising result was the absence of yellow perch in the diet of age-0 walleye, despite their abundance in Spirit Lake and prominence in diets of age-1 walleye and other age 1-piscivores. Age-0 yellow perch were consistently too large to be eaten by age-0 piscivores, which preyed primarily on invertebrates and smaller fish such as johnny darters Etheostoma nigrum and age 0 bluegill Lepomis macrochirus. This finding suggests that predator-prey interactions and resulting population dynamics may be quite different in Spirit Lake than in other systems dominated by walleye and yellow perch.
Wheeler, Kit; Wengerd, Seth J.; Walsh, Stephen J.; Martin, Zachary P.; Jelks, Howard L.; Freeman, Mary C.
2018-01-01
Many species have distributions that span distinctly different physiographic regions, and effective conservation of such taxa will require a full accounting of all factors that potentially influence populations. Ecologists recognize effects of physiographic differences in topography, geology and climate on local habitat configurations, and thus the relevance of landscape heterogeneity to species distributions and abundances. However, research is lacking that examines how physiography affects the processes underlying metapopulation dynamics. We used data describing occupancy dynamics of stream fishes to evaluate evidence that physiography influences rates at which individual taxa persist in or colonize stream reaches under different flow conditions. Using periodic survey data from a stream fish assemblage in a large river basin that encompasses multiple physiographic regions, we fit multi-species dynamic occupancy models. Our modeling results suggested that stream fish colonization but not persistence was strongly governed by physiography, with estimated colonization rates considerably higher in Coastal Plain streams than in Piedmont and Blue Ridge systems. Like colonization, persistence was positively related to an index of stream flow magnitude, but the relationship between flow and persistence did not depend on physiography. Understanding the relative importance of colonization and persistence, and how one or both processes may change across the landscape, is critical information for the conservation of broadly distributed taxa, and conservation strategies explicitly accounting for spatial variation in these processes are likely to be more successful for such taxa.
Zuray, Stanley; Kocan, Richard; Hershberger, Paul
2012-01-01
Populations of Chinook salmon Oncorhynchus tshawytscha in the Yukon River declined by more than 57% between 2003 and 2010, probably the result of a combination of anthropogenic and environmental factors. One possible contributor to this decline is Ichthyophonus, a mesomycetozoan parasite that has previously been implicated in significant losses of fish, including Chinook salmon. A multiyear epidemiological study of ichthyophoniasis in the Yukon River revealed that disease prevalence and Chinook salmon population abundance increased and decreased simultaneously (i.e., were concordant) from 1999 to 2010. The two values rose and fell synchronously 91% of the time for female Chinook salmon and 82% of the time for males; however, there was no significant correlation between Ichthyophonus prevalence and population abundance. This synchronicity might be explained by a single factor, such as a prey item that is critical to Chinook salmon survival as well as a source of Ichthyophonus infection. The host–parasite relationship between Ichthyophonus and migrating Chinook salmon from 2004 to 2010 was similar to that reported for the previous 5 years. During 2004–2010, overall disease prevalence was significantly higher among females (21%) than among males (8%), increased linearly with fish length for both males and females, and increased in both sexes as the fish progressed upriver. These regularly occurring features of host–parasite dynamics confirm a stable base of transmission for Ichthyophonus. However, from 2003 to 2010, disease prevalence decreased from 30% to just 8% in males and from 45% to 9% in females, paralleling a similar decline in Chinook salmon abundance during the same period. These findings may help clarify questions regarding the complex host–parasite dynamics that occur in marine species such as herrings Clupea spp., which have less well-defined population structures.
NASA Astrophysics Data System (ADS)
Muhling, B.; Gaitan, C. F.; Tommasi, D.; Saba, V. S.; Stock, C. A.; Dixon, K. W.
2016-02-01
Estuaries of the northeastern United States provide essential habitat for many anadromous fishes, across a range of life stages. Climate change is likely to impact estuarine environments and habitats through multiple pathways. Increasing air temperatures will result in a warming water column, and potentially increased stratification. In addition, changes to precipitation patterns may alter freshwater inflow dynamics, leading to altered seasonal salinity regimes. However, the spatial resolution of global climate models is generally insufficient to resolve these processes at the scale of individual estuaries. Global models can be downscaled to a regional resolution using a variety of dynamical and statistical methods. In this study, we examined projections of estuarine conditions, and future habitat extent, for several anadromous fishes in the Chesapeake Bay using different statistical downscaling methods. Sources of error from physical and biological models were quantified, and key areas of uncertainty were highlighted. Results suggested that future projections of the distribution and recruitment of species most strongly linked to freshwater flow dynamics had the highest levels of uncertainty. The sensitivity of different life stages to environmental conditions, and the population-level responses of anadromous species to climate change, were identified as important areas for further research.
How predation shapes the social interaction rules of shoaling fish.
Herbert-Read, James E; Rosén, Emil; Szorkovszky, Alex; Ioannou, Christos C; Rogell, Björn; Perna, Andrea; Ramnarine, Indar W; Kotrschal, Alexander; Kolm, Niclas; Krause, Jens; Sumpter, David J T
2017-08-30
Predation is thought to shape the macroscopic properties of animal groups, making moving groups more cohesive and coordinated. Precisely how predation has shaped individuals' fine-scale social interactions in natural populations, however, is unknown. Using high-resolution tracking data of shoaling fish ( Poecilia reticulata ) from populations differing in natural predation pressure, we show how predation adapts individuals' social interaction rules. Fish originating from high predation environments formed larger, more cohesive, but not more polarized groups than fish from low predation environments. Using a new approach to detect the discrete points in time when individuals decide to update their movements based on the available social cues, we determine how these collective properties emerge from individuals' microscopic social interactions. We first confirm predictions that predation shapes the attraction-repulsion dynamic of these fish, reducing the critical distance at which neighbours move apart, or come back together. While we find strong evidence that fish align with their near neighbours, we do not find that predation shapes the strength or likelihood of these alignment tendencies. We also find that predation sharpens individuals' acceleration and deceleration responses, implying key perceptual and energetic differences associated with how individuals move in different predation regimes. Our results reveal how predation can shape the social interactions of individuals in groups, ultimately driving differences in groups' collective behaviour. © 2017 The Authors.
Is There a Relationship between Fish Cannibalism and Latitude or Species Richness?
Pereira, Larissa Strictar; Keppeler, Friedrich Wolfgang; Agostinho, Angelo Antonio; Winemiller, Kirk O
2017-01-01
Cannibalism has been commonly observed in fish from northern and alpine regions and less frequently reported for subtropical and tropical fish in more diverse communities. Assuming all else being equal, cannibalism should be more common in communities with lower species richness because the probability of encountering conspecific versus heterospecific prey would be higher. A global dataset was compiled to determine if cannibalism occurrence is associated with species richness and latitude. Cannibalism occurrence, local species richness and latitude were recorded for 4,100 populations of 2,314 teleost fish species. Relationships between cannibalism, species richness and latitude were evaluated using generalized linear mixed models. Species richness was an important predictor of cannibalism, with occurrences more frequently reported for assemblages containing fewer species. Cannibalism was positively related with latitude for both marine and freshwater ecosystems in the Northern Hemisphere, but not in the Southern Hemisphere. The regression slope for the relationship was steeper for freshwater than marine fishes. In general, cannibalism is more frequent in communities with lower species richness, and the relationship between cannibalism and latitude is stronger in the Northern Hemisphere. In the Southern Hemisphere, weaker latitudinal gradients of fish species richness may account for the weak relationship between cannibalism and latitude. Cannibalism may be more common in freshwater than marine systems because freshwater habitats tend to be smaller and more closed to dispersal. Cannibalism should have greatest potential to influence fish population dynamics in freshwater systems at high northern latitudes.
Is There a Relationship between Fish Cannibalism and Latitude or Species Richness?
Keppeler, Friedrich Wolfgang; Agostinho, Angelo Antonio; Winemiller, Kirk O.
2017-01-01
Cannibalism has been commonly observed in fish from northern and alpine regions and less frequently reported for subtropical and tropical fish in more diverse communities. Assuming all else being equal, cannibalism should be more common in communities with lower species richness because the probability of encountering conspecific versus heterospecific prey would be higher. A global dataset was compiled to determine if cannibalism occurrence is associated with species richness and latitude. Cannibalism occurrence, local species richness and latitude were recorded for 4,100 populations of 2,314 teleost fish species. Relationships between cannibalism, species richness and latitude were evaluated using generalized linear mixed models. Species richness was an important predictor of cannibalism, with occurrences more frequently reported for assemblages containing fewer species. Cannibalism was positively related with latitude for both marine and freshwater ecosystems in the Northern Hemisphere, but not in the Southern Hemisphere. The regression slope for the relationship was steeper for freshwater than marine fishes. In general, cannibalism is more frequent in communities with lower species richness, and the relationship between cannibalism and latitude is stronger in the Northern Hemisphere. In the Southern Hemisphere, weaker latitudinal gradients of fish species richness may account for the weak relationship between cannibalism and latitude. Cannibalism may be more common in freshwater than marine systems because freshwater habitats tend to be smaller and more closed to dispersal. Cannibalism should have greatest potential to influence fish population dynamics in freshwater systems at high northern latitudes. PMID:28122040
Fluctuating interaction network and time-varying stability of a natural fish community
NASA Astrophysics Data System (ADS)
Ushio, Masayuki; Hsieh, Chih-Hao; Masuda, Reiji; Deyle, Ethan R.; Ye, Hao; Chang, Chun-Wei; Sugihara, George; Kondoh, Michio
2018-02-01
Ecological theory suggests that large-scale patterns such as community stability can be influenced by changes in interspecific interactions that arise from the behavioural and/or physiological responses of individual species varying over time. Although this theory has experimental support, evidence from natural ecosystems is lacking owing to the challenges of tracking rapid changes in interspecific interactions (known to occur on timescales much shorter than a generation time) and then identifying the effect of such changes on large-scale community dynamics. Here, using tools for analysing nonlinear time series and a 12-year-long dataset of fortnightly collected observations on a natural marine fish community in Maizuru Bay, Japan, we show that short-term changes in interaction networks influence overall community dynamics. Among the 15 dominant species, we identify 14 interspecific interactions to construct a dynamic interaction network. We show that the strengths, and even types, of interactions change with time; we also develop a time-varying stability measure based on local Lyapunov stability for attractor dynamics in non-equilibrium nonlinear systems. We use this dynamic stability measure to examine the link between the time-varying interaction network and community stability. We find seasonal patterns in dynamic stability for this fish community that broadly support expectations of current ecological theory. Specifically, the dominance of weak interactions and higher species diversity during summer months are associated with higher dynamic stability and smaller population fluctuations. We suggest that interspecific interactions, community network structure and community stability are dynamic properties, and that linking fluctuating interaction networks to community-level dynamic properties is key to understanding the maintenance of ecological communities in nature.
Log-Linear Model Based Behavior Selection Method for Artificial Fish Swarm Algorithm
Huang, Zhehuang; Chen, Yidong
2015-01-01
Artificial fish swarm algorithm (AFSA) is a population based optimization technique inspired by social behavior of fishes. In past several years, AFSA has been successfully applied in many research and application areas. The behavior of fishes has a crucial impact on the performance of AFSA, such as global exploration ability and convergence speed. How to construct and select behaviors of fishes are an important task. To solve these problems, an improved artificial fish swarm algorithm based on log-linear model is proposed and implemented in this paper. There are three main works. Firstly, we proposed a new behavior selection algorithm based on log-linear model which can enhance decision making ability of behavior selection. Secondly, adaptive movement behavior based on adaptive weight is presented, which can dynamically adjust according to the diversity of fishes. Finally, some new behaviors are defined and introduced into artificial fish swarm algorithm at the first time to improve global optimization capability. The experiments on high dimensional function optimization showed that the improved algorithm has more powerful global exploration ability and reasonable convergence speed compared with the standard artificial fish swarm algorithm. PMID:25691895
2012-01-01
Background Carassius gibelio, a cyprinid fish from Eurasia, has the ability to reproduce both sexually and asexually. This fish is also known as an invasive species which colonized almost all continental Europe, most likely originating from Asia and Eastern Europe. Populations of both sexually and asexually reproducing individuals exist in sympatry. In this study we try to elucidate the advantages of such a mixed type of reproduction. We investigate the dynamics of two sympatric populations with sexual and asexual reproduction in a periodically fluctuating environment. We define an individual-based computational model in which genotypes are represented by L loci, and the environment is composed of L resources for which the two populations compete. Results Our model demonstrates advantageous population dynamics where the optimal percentage of asexual reproduction depends on selection strength, on the number of selected loci and on the timescale of environmental fluctuations. We show that the sexual reproduction is necessary for "generating" fit genotypes, while the asexual reproduction is suitable for "amplifying" them. The simulations show that the optimal percentage of asexual reproduction increases with the length of the environment stability period and decrease with the strength of the selection and the number of loci. Conclusions In this paper we addressed the advantages of a mixed type of sexual and asexual reproduction in a changing environment and explored the idea that a species that is able to adapt itself to environmental fluctuation can easily colonize a new habitat. Our results could provide a possible explanation for the rapid and efficient invasion of species with a variable ratio of sexual and asexual reproduction such as Carassius gibelio. PMID:22489797
Phytoplankton and sediments in Gulf of Mexico
NASA Technical Reports Server (NTRS)
2002-01-01
Affected both by terrestrial factors like agriculture, deforestation, and erosion, and by marine factors like salinity levels, ocean temperature and water pollution, coastal environments are the dynamic interface between land and sea. In this MODIS image from January 15, 2002, the Gulf of Mexico is awash in a mixture of phytoplankton and sediment. Tan-colored sediment is flowing out into the Gulf from the Mississippi River, whose floodplain cuts a pale, wide swath to the right of center in the image, and also from numerous smaller rivers along the Louisiana coast (center). Mixing with the sediment are the multi-colored blue and green swirls that reveal the presence of large populations of marine plants called phytoplankton. Phytoplankton populations bloom and then fade, and these cycles affect fish and mammals-including humans-higher up the food chain. Certain phytoplankton are toxic to both fish and humans, and coastal health departments must monitor ecosystems carefully, often restricting fishing or harvesting of shellfish until the blooms have subsided.
Habitat and movement of lake sturgeon in the upper Mississippi River system, USA
Knights, Brent C.; Vallazza, Jonathon M.; Zigler, Steven J.; Dewey, Michael R.
2002-01-01
Lake sturgeon Acipenser fluvescens, which are now protected from harvest, are considered rare in the upper Mississippi River and little information is available on the remaining populations. Transmitters were implanted into 31 lake sturgeon from two sites in the upper Mississippi River to describe their habitats and movement. The areas surrounding the tagging sites were core areas for both groups of lake sturgeon based on the high use (about 50% of locations by group) and frequent return to these areas by many of the tagged fish. Core areas contained sites with unique hydraulic characteristics, such that depositional substrates were common yet flow was present; these areas probably provide important feeding habitat for lake sturgeon. Minimal geographical overlap in range occurred between groups, suggesting that river reaches and associated core areas were unique to groups or substocks of fish. Lake sturgeon exhibited complex movement behaviors and had ranges of 3-198 km (median, 56 km) during the study. Tagged fish moved both downstream and upstream through upper Mississippi River navigation dams. However, dams appeared to be intermittent barriers to upstream passage because upstream passage events (10 fish, 19 passages) were fewer than downstream events (13 fish, 35 passages). Extensive use of the Wisconsin River by one group of lake sturgeon tagged in the upper Mississippi River has implications regarding management of a threatened population that transcends regulatory boundaries. Our study indicates that lake sturgeon In the upper Mississippi River system share many movement and habitat use characteristics with populations in other systems. However, significant data gaps preclude development of cogent management strategies, including information on population numbers and dynamics, identification of spawning areas, relations between groups, and assessment of the effects of commercial navigation.
Fish farms, parasites, and predators: implications for salmon population dynamics.
Krkosek, Martin; Connors, Brendan M; Ford, Helen; Peacock, Stephanie; Mages, Paul; Ford, Jennifer S; Morton, Alexandra; Volpe, John P; Hilborn, Ray; Dill, Lawrence M; Lewis, Mark A
2011-04-01
For some salmon populations, the individual and population effects of sea lice (Lepeophtheirus salmonis) transmission from sea cage salmon farms is probably mediated by predation, which is a primary natural source of mortality of juvenile salmon. We examined how sea lice infestation affects predation risk and mortality of juvenile pink (Oncorhynchus gorbuscha) and chum (O. keta) salmon, and developed a mathematical model to assess the implications for population dynamics and conservation. A risk-taking experiment indicated that infected juvenile pink salmon accept a higher predation risk in order to obtain foraging opportunities. In a schooling experiment with juvenile chum salmon, infected individuals had increased nearest-neighbor distances and occupied peripheral positions in the school. Prey selection experiments with cutthroat trout (O. clarkii) predators indicated that infection reduces the ability of juvenile pink salmon to evade a predatory strike. Group predation experiments with coho salmon (O. kisutch) feeding on juvenile pink or chum salmon indicated that predators selectively consume infected prey. The experimental results indicate that lice may increase the rate of prey capture but not the handling time of a predator. Based on this result, we developed a mathematical model of sea lice and salmon population dynamics in which parasitism affects the attack rate in a type II functional response. Analysis of the model indicates that: (1) the estimated mortality of wild juvenile salmon due to sea lice infestation is probably higher than previously thought; (2) predation can cause a simultaneous decline in sea louse abundance on wild fish and salmon productivity that could mislead managers and regulators; and (3) compensatory mortality occurs in the saturation region of the type II functional response where prey are abundant because predators increase mortality of parasites but not overall predation rates. These findings indicate that predation is an important component of salmon-louse dynamics and has implications for estimating mortality, reducing infection, and developing conservation policy.
The ecology of parasites of freshwater fishes: the search for patterns.
Kennedy, C R
2009-10-01
Developments in the study of the ecology of helminth parasites of freshwater fishes over the last half century are reviewed. Most research has of necessity been field based and has involved the search for patterns in population and community dynamics that are repeatable in space and time. Mathematical models predict that under certain conditions host and parasite populations can attain equilibrial levels through operation of regulatory factors. Such factors have been identified in several host-parasite systems and some parasite populations have been shown to persist over long time-periods. However, there is no convincing evidence that fish parasite populations are stable and regulated since in all cases alternative explanations are equally acceptable and it appears that they are non-equilibrial systems. It has proved particularly difficult to detect replicable patterns in parasite communities. Inter-specific competition, evidenced by functional and numerical responses, has been detected in several communities but its occurrence is erratic and its significance unclear. Some studies have failed to find any nested patterns in parasite community structure and richness, whereas others have identified such patterns although they are seldom constant over space and time. Departures from randomness appear to be the exception and then only temporary. It appears that parasite communities are non-equilibrial, stochastic assemblages rather than structured and organized.
Assessing trade-offs to inform ecosystem-based fisheries management of forage fish
Shelton, Andrew Olaf; Samhouri, Jameal F.; Stier, Adrian C.; Levin, Philip S.
2014-01-01
Twenty-first century conservation is centered on negotiating trade-offs between the diverse needs of people and the needs of the other species constituting coupled human-natural ecosystems. Marine forage fishes, such as sardines, anchovies, and herring, are a nexus for such trade-offs because they are both central nodes in marine food webs and targeted by fisheries. An important example is Pacific herring, Clupea pallisii in the Northeast Pacific. Herring populations are subject to two distinct fisheries: one that harvests adults and one that harvests spawned eggs. We develop stochastic, age-structured models to assess the interaction between fisheries, herring populations, and the persistence of predators reliant on herring populations. We show that egg- and adult-fishing have asymmetric effects on herring population dynamics - herring stocks can withstand higher levels of egg harvest before becoming depleted. Second, ecosystem thresholds proposed to ensure the persistence of herring predators do not necessarily pose more stringent constraints on fisheries than conventional, fishery driven harvest guidelines. Our approach provides a general template to evaluate ecosystem trade-offs between stage-specific harvest practices in relation to environmental variability, the risk of fishery closures, and the risk of exceeding ecosystem thresholds intended to ensure conservation goals are met. PMID:25407879
Papaioannou, Eleni; Giaouris, Efstathios D; Berillis, Panagiotis; Boziaris, Ioannis S
2018-02-21
The progressive ability of a six-strains L. monocytogenes cocktail to form biofilm on stainless steel (SS), under fish-processing simulated conditions, was investigated, together with the biocide tolerance of the developed sessile communities. To do this, the pathogenic bacteria were left to form biofilms on SS coupons incubated at 15°C, for up to 240h, in periodically renewable model fish juice substrate, prepared by aquatic extraction of sea bream flesh, under both mono-species and mixed-culture conditions. In the latter case, L. monocytogenes cells were left to produce biofilms together with either a five-strains cocktail of four Pseudomonas species (fragi, savastanoi, putida and fluorescens), or whole fish indigenous microflora. The biofilm populations of L. monocytogenes, Pseudomonas spp., Enterobacteriaceae, H 2 S producing and aerobic plate count (APC) bacteria, both before and after disinfection, were enumerated by selective agar plating, following their removal from surfaces through bead vortexing. Scanning electron microscopy was also applied to monitor biofilm formation dynamics and anti-biofilm biocidal actions. Results revealed the clear dominance of Pseudomonas spp. bacteria in all the mixed-culture sessile communities throughout the whole incubation period, with the in parallel sole presence of L. monocytogenes cells to further increase (ca. 10-fold) their sessile growth. With respect to L. monocytogenes and under mono-species conditions, its maximum biofilm population (ca. 6logCFU/cm 2 ) was reached at 192h of incubation, whereas when solely Pseudomonas spp. cells were also present, its biofilm formation was either slightly hindered or favored, depending on the incubation day. However, when all the fish indigenous microflora was present, biofilm formation by the pathogen was greatly hampered and never exceeded 3logCFU/cm 2 , while under the same conditions, APC biofilm counts had already surpassed 7logCFU/cm 2 by the end of the first 96h of incubation. All here tested disinfection treatments, composed of two common food industry biocides gradually applied for 15 to 30min, were insufficient against L. monocytogenes mono-species biofilm communities, with the resistance of the latter to significantly increase from the 3rd to 7th day of incubation. However, all these treatments resulted in no detectable L. monocytogenes cells upon their application against the mixed-culture sessile communities also containing the fish indigenous microflora, something probably associated with the low attached population level of these pathogenic cells before disinfection (<10 2 CFU/cm 2 ) under such mixed-culture conditions. Taken together, all these results expand our knowledge on both the population dynamics and resistance of L. monocytogenes biofilm cells under conditions resembling those encountered within the seafood industry and should be considered upon designing and applying effective anti-biofilm strategies. Copyright © 2017 Elsevier B.V. All rights reserved.
Barry, Patrick M.; Janney, Eric C.; Hewitt, David A.; Hayes, Brian S.; Scott, Alta C.
2009-01-01
We report results from ongoing research into the population dynamics of endangered Lost River and shortnose suckers in Clear Lake Reservoir, California. Results are included for sampling that occurred from fall 2006 to spring 2008. We summarize catches and passive integrated transponder tagging efforts from trammel net sampling in fall 2006 and fall 2007, and report on detections of tagged suckers on remote antennas in the primary spawning tributary, Willow Creek, in spring 2007 and spring 2008. Results from trammel net sampling were similar to previous years, although catches of suckers in fall 2006 were lower than in 2007 and past years. Lost River and shortnose suckers combined made up about 80 percent of the sucker catch in each year, and more than 2,000 new fish were tagged across the 2 years. Only a small number of the suckers captured in fall sampling were recaptures of previously tagged fish, reinforcing the importance of remote detections of fish for capture-recapture analysis. Detections of tagged suckers in Willow Creek were low in spring 2007, presumably because of low flows. Nonetheless, the proportions of tagged fish that were detected were reasonably high and capture-recapture analyses should be possible after another year of data collection. Run timing for Lost River and shortnose suckers was well described by first detections of individuals by antennas in Willow Creek, although we may not have installed the antennas early enough in 2008 to monitor the earliest portion of the Lost River sucker migration. The duration and magnitude of the spawning runs for both species were influenced by flows and water temperature. Flows in Willow Creek were much higher in 2008 than in 2007, and far more detections were recorded in 2008 and the migrations were more protracted. In both years and for both species, migrations began in early March at water temperatures between 5 and 6 deg C and peaks were related to periods of increasing water temperature. The sex ratio of Lost River suckers detected in Willow Creek was skewed toward males, despite consistently more females having been tagged in fall sampling. This pattern indicates that some tagged female Lost River suckers may be spawning elsewhere in the system, and we intend to investigate this possibility to verify or alter the representativeness of our spring monitoring. Length frequency analysis of fall trammel net catches showed that the populations of both species in Clear Lake Reservoir have undergone major demographic transitions during the last 15 years. In the mid-1990s, the populations were dominated by larger fish and showed little evidence of recent recruitment. These larger fish apparently disappeared in the late 1990s and early 2000s, and the populations are now dominated by fish that recruited into the adult populations in the late 1990s. The length frequencies from the last 4 years provide evidence of consistent recruitment into the Lost River sucker population, but provide no such evidence for the shortnose sucker population. Overall, annual growth rates for both species in Clear Lake were 2-4 times greater than growth rates for conspecifics in Upper Klamath Lake. However, little or no growth occurred for either species in Clear Lake between 2006 and 2007. Based on available evidence, we are unable to fully explain differences in growth rates between systems or among years within Clear Lake.
Coarse-scale movement patterns of a small-bodied fish inhabiting a desert stream
Dzul, M.C.; Quist, M.C.; Dinsmore, S.J.; Gaines, D.B.; Bower, M.R.
2013-01-01
Located on the floor of Death Valley (CA, USA), Salt Creek harbors a single fish species, the Salt Creek pupfish, Cyprinodon salinus salinus, which has adapted to this extremely harsh environment. Salt Creek is fed by an underground spring and is comprised of numerous pools, runs, and marshes that exhibit substantial variability in temperature, salinity, and dissolved oxygen concentrations. In addition, the wetted area of Salt Creek is reduced throughout the summer months due to high rates of evaporation, with some reaches drying completely. Therefore, it seems logical that short- and long-term movement patterns may play an important role in Salt Creek pupfish population dynamics. The objective of this study was to describe coarse-scale movements of Salt Creek pupfish in Salt Creek during their breeding season from March to May. Sex ratios and length–frequency distributions varied spatially within Salt Creek, suggesting population segregation during the breeding season. Long-distance movements were generally rare, although two fish moved more than 1.2 km. Movement in upstream reaches was rare or absent, in contrast to the greater movement observed in downstream reaches (29% of recaptures). Temporal trends and demographic patterns in movement were not observed. Because the two most downstream habitats dry up in the summer, our results indicate that coarse-scale movements that re-populate downstream reaches likely occur during other times of year. Consequently, the importance of small- and large-scale movements is influenced by season. Further assessment of Salt Creek movement patterns conducted during other times of year may better illuminate long-distance movement patterns and source-sink dynamics.
Fish spawning is often used as an integrated measure of reproductive toxicity, and an indicator of aquatic ecosystem health in the context of forecasting potential population-level effects considered important for ecological risk assessment. Consequently, there is a need for fle...
Management of a Single Species Fishery with Stage Structure
ERIC Educational Resources Information Center
Kar, T. K.; Pahari, U. K.; Chaudhuri, K. S.
2004-01-01
A dynamic model for a single species fishery with stage structure is proposed using taxation as a control instrument to protect the fish population from overexploitation. Criteria for local stability and global stability of the system are derived. The optimal tax policy is established by using Pontryagin's maximal principle. By numerical…
NASA Astrophysics Data System (ADS)
Cockrell, M.; Murawski, S. A.; Sanchirico, J. N.; O'Farrell, S.; Strelcheck, A.
2016-02-01
Spatial and temporal patterns of fishing activity have historically been described over relatively coarse scales or with limited datasets. However, new and innovative approaches for fisheries management will require an understanding of both species population dynamics and fleet behavior at finer spatial and temporal resolution. In this study we describe the spatial and temporal patterns of commercial reef-fish fisheries on the West Florida Shelf (WFS) from 2006-14, using a combination of on-board observer, catch logbook, and vessel satellite tracking data. The satellite tracking data is both high resolution (ie, records from each vessel at least once every hour for the duration of a trip), and required of all federally-permitted reef fish vessels in the Gulf of Mexico, making this a uniquely rich and powerful dataset. Along with spatial and temporal fishery dynamics, we quantified concomitant patterns in fishery economics and catch metrics, such as total landings and catch composition. Fishery patterns were correlated to a number of variables across the vessel, trip, and whole fleet scales, including vessel size, distance from home port, number of days at sea, and days available to fish. Notably, changes in management structure during the years examined (eg, establishment of a seasonal closed area in 2009 and implementation of an individual fishing quota system for Grouper-Tilefish in 2010), as well as emergency spatial closures during the Deepwater Horizon oil spill in 2010, enabled us to examine the impacts of specific management frameworks on the WFS reef-fish fishery. This research highlights the need to better understand the biological, economic, and social impacts within fisheries when managing for conservation and fisheries sustainability. We discuss our results in the context of a changing policy and management landscape for marine and coastal resources in the Gulf of Mexico.
Hydrological disturbance diminishes predator control in wetlands.
Dorn, Nathan J; Cook, Mark I
2015-11-01
Effects of predators on prey populations can be especially strong in aquatic ecosystems, but disturbances may mediate the strength of predator limitation and even allow outbreaks of some prey populations. In a two-year study we investigated the numerical responses of crayfish (Procambarus fallax) and small fishes (Poeciliidae and Fundulidae) to a brief hydrological disturbance in replicated freshwater wetlands with an experimental drying and large predatory fish reduction. The experiment and an in situ predation assay tested the component of the consumer stress model positing that disturbances release prey from predator limitation. In the disturbed wetlands, abundances of large predatory fish were seasonally reduced, similar to dynamics in the Everglades (southern Florida). Densities of small fish were unaffected by the disturbance, but crayfish densities, which were similar across all wetlands before drying, increased almost threefold in the year after the disturbance. Upon re-flooding, juvenile crayfish survival was inversely related to the abundance of large fish across wetlands, but we found no evidence for enhanced algal food quality. At a larger landscape scale (500 km2 of the Everglades), crayfish densities over eight years were positively correlated with the severity of local dry disturbances (up to 99 days dry) during the preceding dry season. In contrast, densities of small-bodied fishes in the same wetlands were seasonally depressed by dry disturbances. The results from our experimental wetland drought and the observations of crayfish densities in the Everglades represent a large-scale example of prey population release following a hydrological disturbance in a freshwater ecosystem. The conditions producing crayfish pulses in the Everglades appear consistent with the mechanics of the consumer stress model, and we suggest crayfish pulses may influence the number of nesting wading birds in the Everglades.
Consequences of Hatch Phenology on Stages of Fish Recruitment.
Bogner, David M; Kaemingk, Mark A; Wuellner, Melissa R
2016-01-01
Little is known about how hatch phenology (e.g., the start, peak, and duration of hatching) could influence subsequent recruitment of freshwater fishes into a population. We used two commonly sympatric fish species that exhibit different hatching phenologies to examine recruitment across multiple life stages. Nine yellow perch (Perca flavescens) and bluegill (Lepomis macrochirus) annual cohorts were sampled from 2004 through 2013 across larval, age-0, age-1, and age-2 life stages in a Nebraska (U.S.A.) Sandhill lake. Yellow perch hatched earlier in the season and displayed a more truncated hatch duration compared to bluegill. The timing of hatch influenced recruitment dynamics for both species but important hatching metrics were not similar between species across life stages. A longer hatch duration resulted in greater larval yellow perch abundance but greater age-1 bluegill abundance. In contrast, bluegill larval and age-0 abundances were greater during years when hatching duration was shorter and commenced earlier, whereas age-0 yellow perch abundance was greater when hatching occurred earlier. As a result of hatch phenology, yellow perch recruitment variability was minimized sooner (age-0 life stage) than bluegill (age-1 life stage). Collectively, hatch phenology influenced recruitment dynamics across multiple life stages but was unique for each species. Understanding the complexities of when progeny enter an environment and how this influences eventual recruitment into a population will be critical in the face of ongoing climate change.
Wilberg, Michael J.; Bronte, Charles R.; Hansen, Michael J.
2004-01-01
Understanding fishing fleet dynamics is important when using fishery dependent data to infer the status of fish stocks. We analyzed data from mandatory catch reports from the commercial lake trout (Salvelinus namaycush) fishery in Michigan waters of Lake Superior during 1929-1961, a period when lake trout populations collapsed through the combined effects of overfishing and sea lamprey (Petromyzon marinus) predation. The number of full-time fishermen increased during 1933-1943 and then decreased during 1943-1957. Addition of new fishermen was related to past yield, market prices, World War II draft exemptions, and lost fishing opportunities in Lake Huron and Lake Michigan. Loss of existing fishermen was related to declining lake trout density. Large mesh (a?Y 114-mm stretch-measure) gill net effort increased during 1929-1951 because fishermen fished more net inshore as lake trout density declined, even though catch per effort (CPE) was often higher in deeper waters. The most common gill net mesh size increased from 114-mm to 120-mm stretch-measure during 1929-1957, as lake trout growth increased. More effort was fished inshore than offshore and the amount of inshore effort was less variable over time than offshore effort. Relatively stable yield was maintained by increasing gill net effort and by moving some effort to better grounds. Because fishing-up caused yield and CPE to remain high despite declining lake trout abundance, caution must be used when basing goals for lake trout restoration on historical fishery indices.
Lumme, Jaakko; Zietara, Marek S
2018-04-19
In the parthenogenetic monogeneans of the genus Gyrodactylus Nordmann, 1832, the genetic diversity within or between hosts is determined by the relative roles of lateral transmission and clonal propagation. Clonality and limited transmission lead to high-amplitude metapopulation dynamics and strong genetic drift. In Baltic populations of the three-spined stickleback Gasterosteus aculeatus Linnaeus, the local mitochondrial diversity of Gyrodactylus arcuatus Bychowsky, 1933 is very high, and spatial differentiation weak. To understand the transmission dynamics in a single location, the transmission of the parasite from adults to next generation sticklebacks was investigated in a northern Baltic brackish water location. By sequencing 777 nt of cox1, as many as 38 separate mitochondrial haplotypes were identified. In August, the intensity of gyrodactylid infection on adult hosts was high, the haplotype diversity (h) was extreme and differentiation between fish was negligible (total h = 0.926, mean h = 0.938). In October, only 46% of the juvenile sticklebacks carried G. arcuatus. The number of parasites per young fish followed a Poisson distribution 0.92 ± 1.04 (mean ± SD) on October 2, and was clearly overdispersed 2.38 ± 5.00 on October 25. The total haplotype diversity of parasites on juveniles was nearly as high as in adults (h = 0.916), but the mean per fish was only h = 0.364 (F ST = 0.60), due to low intensity of infection and rapid clonal propagation of early arrivals. The initial first come first served advantage of the first gyrodactylid colonisers will be lost during the host adulthood via continuous transmission. Nesting and polygamy are suggested as factors maintaining the high genetic diversity of the parasite population. The transmission dynamics and, consequently, the population structure of Baltic G. arcuatus is fundamentally different from that of G. salaris Malmberg, 1957, on the Baltic salmon Salmo salar Linnaeus.
Simpson, Stephen D; Harrison, Hugo B; Claereboudt, Michel R; Planes, Serge
2014-01-01
Dispersal is a crucial ecological process, driving population dynamics and defining the structure and persistence of populations. Measuring demographic connectivity between discreet populations remains a long-standing challenge for most marine organisms because it involves tracking the movement of pelagic larvae. Recent studies demonstrate local connectivity of reef fish populations via the dispersal of planktonic larvae, while biogeography indicates some larvae must disperse 100-1000 s kilometres. To date, empirical measures of long-distance dispersal are lacking and the full scale of dispersal is unknown. Here we provide the first measure of long-distance dispersal in a coral reef fish, the Omani clownfish Amphiprion omanensis, throughout its entire species range. Using genetic assignment tests we demonstrate bidirectional exchange of first generation migrants, with subsequent social and reproductive integration, between two populations separated by over 400 km. Immigration was 5.4% and 0.7% in each region, suggesting a biased southward exchange, and matched predictions from a physically-coupled dispersal model. This rare opportunity to measure long-distance dispersal demonstrates connectivity of isolated marine populations over distances of 100 s of kilometres and provides a unique insight into the processes of biogeography, speciation and adaptation.
Claereboudt, Michel R.; Planes, Serge
2014-01-01
Dispersal is a crucial ecological process, driving population dynamics and defining the structure and persistence of populations. Measuring demographic connectivity between discreet populations remains a long-standing challenge for most marine organisms because it involves tracking the movement of pelagic larvae. Recent studies demonstrate local connectivity of reef fish populations via the dispersal of planktonic larvae, while biogeography indicates some larvae must disperse 100–1000 s kilometres. To date, empirical measures of long-distance dispersal are lacking and the full scale of dispersal is unknown. Here we provide the first measure of long-distance dispersal in a coral reef fish, the Omani clownfish Amphiprion omanensis, throughout its entire species range. Using genetic assignment tests we demonstrate bidirectional exchange of first generation migrants, with subsequent social and reproductive integration, between two populations separated by over 400 km. Immigration was 5.4% and 0.7% in each region, suggesting a biased southward exchange, and matched predictions from a physically-coupled dispersal model. This rare opportunity to measure long-distance dispersal demonstrates connectivity of isolated marine populations over distances of 100 s of kilometres and provides a unique insight into the processes of biogeography, speciation and adaptation. PMID:25229550
Baldigo, Barry P.; Sporn, Lee Ann; George, Scott D.; Ball, Jacob
2016-01-01
Environmental DNA (eDNA) analysis is rapidly evolving as a tool for monitoring the distributions of aquatic species. Detection of species’ populations in streams may be challenging because the persistence time for intact DNA fragments is unknown and because eDNA is diluted and dispersed by dynamic hydrological processes. During 2015, the DNA of Brook Trout Salvelinus fontinalis was analyzed from water samples collected at 40 streams across the Adirondack region of upstate New York, where Brook Trout populations were recently quantified. Study objectives were to evaluate different sampling methods and the ability of eDNA to accurately predict the presence and abundance of resident Brook Trout populations. Results from three-pass electrofishing surveys indicated that Brook Trout were absent from 10 sites and were present in low (<100 fish/0.1 ha), moderate (100–300 fish/0.1 ha), and high (>300 fish/0.1 ha) densities at 9, 11, and 10 sites, respectively. The eDNA results correctly predicted the presence and confirmed the absence of Brook Trout at 85.0–92.5% of the study sites; eDNA also explained 44% of the variability in Brook Trout population density and 24% of the variability in biomass. These findings indicate that eDNA surveys will enable researchers to effectively characterize the presence and abundance of Brook Trout and other species’ populations in headwater streams across the Adirondack region and elsewhere.
Population dynamics of Lake Ontario lake trout during 1985-2007
Brenden, Travis O.; Bence, James R.; Lantry, Brian F.; Lantry, Jana R.; Schaner, Ted
2011-01-01
Lake trout Salvelinus namaycush were extirpated from Lake Ontario circa 1950 owing to commercial and recreational fishing, predation by sea lampreys Petromyzon marinus, and habitat degradation. Since the 1970s, substantial efforts have been devoted to reestablishing a self-sustaining population through stocking, sea lamprey control, and harvest reduction. Although a stocking-supported population has been established, only limited natural reproduction has been detected. Since the 1990s, surveys have indicated a continuing decline in overall abundance despite fairly static stocking levels. We constructed a statistical catch-at-age model to describe the dynamics of Lake Ontario lake trout from 1985 to 2007 and explore what factor(s) could be causing the declines in abundance. Model estimates indicated that abundance had declined by approximately 76% since 1985. The factor that appeared most responsible for this was an increase in age-1 natural mortality rates from approximately 0.9 to 2.5 between 1985 and 2002. The largest source of mortality for age-2 and older fish was sea lamprey predation, followed by natural and recreational fishing mortality. Exploitation was low, harvest levels being uncertain and categorized by length rather than age. Accurate predictions of fishery harvest and survey catch per unit effort were obtained despite low harvest levels by using atypical data (e.g., numbers stocked as an absolute measure of recruitment) and a flexible modeling approach. Flexible approaches such as this might allow similar assessments for a wide range of lightly exploited stocks. The mechanisms responsible for declining age-1 lake trout survival are unknown, but the declines were coincident with an increase in the proportion of stocked fish that were of the Seneca strain and a decrease in the overall stocking rate. It is possible that earlier studies suggesting that Seneca strain lake trout would be successful in Lake Ontario are no longer applicable given the large ecosystem changes that have occurred subsequent to invasion by dreissenid mussels.
Sea-louse parasites on juvenile wild salmon in the Broughton Archipelago, British Columbia, Canada.
Peacock, Stephanie J; Bateman, Andrew W; Krkošek, Martin; Connors, Brendan; Rogers, Scott; Portner, Lauren; Polk, Zephyr; Webb, Coady; Morton, Alexandra
2016-07-01
The global expansion of aquaculture has changed the structure of fish populations in coastal environments, with implications for disease dynamics. In Pacific Canada, farmed salmon act as reservoir hosts for parasites and pathogens, including sea lice (Lepeophtheirus salmonis and Caligus clemensi) that can transmit to migrating wild salmon. Assessing the impact of salmon farms on wild salmon requires regular monitoring of sea-louse infections on both farmed and wild fish. Since 2001, we have collected juvenile pink (Oncorhynchus gorbuscha) and chum (O. keta) salmon annually at three sites in the Broughton Archipelago in British Columbia, Canada, during the annual juvenile salmon migration from fresh water to the open ocean. From sampled fish, we recorded counts of parasitic copepodid-, chalimus-, and motile-stage sea lice. We report louse abundances as well as supplementary observations of fish size, development, and health. © 2016 by the Ecological Society of America.
Effects of marine reserves and urchin disease on southern Californian rocky reef communities
Behrens, Michael D.; Lafferty, Kevin D.
2004-01-01
While the species level effects of marine reserves are widely recognized, community level shifts due to marine reserves have only recently been documented. Protection from fishing of top predators may lead to trophic cascades, which have community-wide implications. Disease may act in a similar manner, regulating population levels of dominant species within a community. Two decades of data from the Channel Islands National Park Service's Kelp Forest Monitoring database allowed us to compare the effects of fishing and urchin disease on rocky reef community patterns and dynamics. Different size-frequency distributions of urchins inside and outside of reserves indicated reduced predation on urchins at sites where fishing removes urchin predators. Rocky reefs inside reserves were more likely to support kelp forests than were fished areas. We suggest that this results from cascading effects of the fishery on urchin predators outside the reserves, which releases herbivores (urchins) from predation. After periods of prevalent urchin disease, the reef community shifted more towards kelp forest assemblages. Specific groups of algae and invertebrates were associated with kelp forest and barrens communities. The community dynamics leading to transitions between kelp forests and barrens are driven by both fishing and disease; however the fishery effect was of greater magnitude. This study further confirms the importance of marine reserves not only for fisheries conservation, but also for the conservation of historically dominant community types.
Baker, Matthew R; Schindler, Daniel E; Essington, Timothy E; Hilborn, Ray
2014-01-01
Few studies have considered the management implications of mortality to target fish stocks caused by non-retention in commercial harvest gear (escape mortality). We demonstrate the magnitude of this previously unquantified source of mortality and its implications for the population dynamics of exploited stocks, biological metrics, stock productivity, and optimal management. Non-retention in commercial gillnet fisheries for Pacific salmon (Oncorhynchus spp.) is common and often leads to delayed mortality in spawning populations. This represents losses, not only to fishery harvest, but also in future recruitment to exploited stocks. We estimated incidence of non-retention in Alaskan gillnet fisheries for sockeye salmon (O. nerka) and found disentanglement injuries to be extensive and highly variable between years. Injuries related to non-retention were noted in all spawning populations, and incidence of injury ranged from 6% to 44% of escaped salmon across nine river systems over five years. We also demonstrate that non-retention rates strongly correlate with fishing effort. We applied maximum likelihood and Bayesian approaches to stock-recruitment analyses, discounting estimates of spawning salmon to account for fishery-related mortality in escaped fish. Discounting spawning stock estimates as a function of annual fishing effort improved model fits to historical stock-recruitment data in most modeled systems. This suggests the productivity of exploited stocks has been systematically underestimated. It also suggests that indices of fishing effort may be used to predict escape mortality and correct for losses. Our results illustrate how explicitly accounting for collateral effects of fishery extraction may improve estimates of productivity and better inform management metrics derived from estimates of stock-recruitment analyses.
Can Fish Morphological Characteristics be Used to Re-design Hydroelectric Turbines?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cada, G. F.; Richmond, Marshall C.
2011-07-19
Safe fish passage affects not only migratory species, but also populations of resident fish by altering biomass, biodiversity, and gene flow. Consequently, it is important to estimate turbine passage survival of a wide range of susceptible fish. Although fish-friendly turbines show promise for reducing turbine passage mortality, experimental data on their beneficial effects are limited to only a few species, mainly salmon and trout. For thousands of untested species and sizes of fish, the particular causes of turbine passage mortality and the benefits of fish-friendly turbine designs remain unknown. It is not feasible to measure the turbine-passage survival of everymore » species of fish in every hydroelectric turbine design. We are attempting to predict fish mortality based on an improved understanding of turbine-passage stresses (pressure, shear stress, turbulence, strike) and information about the morphological, behavioral, and physiological characteristics of different fish taxa that make them susceptible to the stresses. Computational fluid dynamics and blade strike models of the turbine environment are re-examined in light of laboratory and field studies of fish passage effects. Comparisons of model-predicted stresses to measured injuries and mortalities will help identify fish survival thresholds and the aspects of turbines that are most in need of re-design. The coupled model and fish morphology evaluations will enable us to make predictions of turbine-passage survival among untested fish species, for both conventional and advanced turbines, and to guide the design of hydroelectric turbines to improve fish passage survival.« less
Moffitt, C.M.; Haukenes, A.H.; Williams, C.J.
2005-01-01
Fishery managers and resource conservationists are increasingly interested in understanding the fish health and disease risks of free-ranging fishes and whether propagated fishes or features and practices used at fish culture facilities pose a health risk to free-ranging populations. Disease agents are present in most both captive and all free-ranging fish populations, but the consequences and extent of infections in free-ranging populations are often difficult to measure, control, and understand. Sampling methods, protocols, and assay techniques developed to assess the health of captive populations are not as applicable for assessments of free-ranging fishes. The use of chemicals and therapeutics to control diseases and parasites in propagated fishes likely reduces the risk of introducing specific pathogens into the environment, but control measures may have localized effects on the environment surrounding fish culture facilities. To understand health risks of propagated and free ranging fishes, we must consider fish populations, culture facilities, fish releases, and their interactions within the greater geospatial features of the aquatic environment. ?? 2004 by the American Fisheries Society.
Barber, M Craig; Rashleigh, Brenda; Cyterski, Michael J
2016-01-01
Regional fishery conditions of Mid-Atlantic wadeable streams in the eastern United States are estimated using the Bioaccumulation and Aquatic System Simulator (BASS) bioaccumulation and fish community model and data collected by the US Environmental Protection Agency's Environmental Monitoring and Assessment Program (EMAP). Average annual biomasses and population densities and annual productions are estimated for 352 randomly selected streams. Realized bioaccumulation factors (BAF) and biomagnification factors (BMF), which are dependent on these forecasted biomasses, population densities, and productions, are also estimated by assuming constant water exposures to methylmercury and tetra-, penta-, hexa-, and hepta-chlorinated biphenyls. Using observed biomasses, observed densities, and estimated annual productions of total fish from 3 regions assumed to support healthy fisheries as benchmarks (eastern Tennessee and Catskill Mountain trout streams and Ozark Mountains smallmouth bass streams), 58% of the region's wadeable streams are estimated to be in marginal or poor condition (i.e., not healthy). Using simulated BAFs and EMAP Hg fish concentrations, we also estimate that approximately 24% of the game fish and subsistence fishing species that are found in streams having detectable Hg concentrations would exceed an acceptable human consumption criterion of 0.185 μg/g wet wt. Importantly, such streams have been estimated to represent 78.2% to 84.4% of the Mid-Atlantic's wadeable stream lengths. Our results demonstrate how a dynamic simulation model can support regional assessment and trends analysis for fisheries. © 2015 SETAC.
NASA Astrophysics Data System (ADS)
Adams, L. E.; Lund, J. R.; Moyle, P. B.; Quiñones, R. M.; Herman, J. D.; O'Rear, T. A.
2017-09-01
Building reservoir release schedules to manage engineered river systems can involve costly trade-offs between storing and releasing water. As a result, the design of release schedules requires metrics that quantify the benefit and damages created by releases to the downstream ecosystem. Such metrics should support making operational decisions under uncertain hydrologic conditions, including drought and flood seasons. This study addresses this need and develops a reservoir operation rule structure and method to maximize downstream environmental benefit while meeting human water demands. The result is a general approach for hedging downstream environmental objectives. A multistage stochastic mixed-integer nonlinear program with Markov Chains, identifies optimal "environmental hedging," releases to maximize environmental benefits subject to probabilistic seasonal hydrologic conditions, current, past, and future environmental demand, human water supply needs, infrastructure limitations, population dynamics, drought storage protection, and the river's carrying capacity. Environmental hedging "hedges bets" for drought by reducing releases for fish, sometimes intentionally killing some fish early to reduce the likelihood of large fish kills and storage crises later. This approach is applied to Folsom reservoir in California to support survival of fall-run Chinook salmon in the lower American River for a range of carryover and initial storage cases. Benefit is measured in terms of fish survival; maintaining self-sustaining native fish populations is a significant indicator of ecosystem function. Environmental hedging meets human demand and outperforms other operating rules, including the current Folsom operating strategy, based on metrics of fish extirpation and water supply reliability.
Crane, Nicole L; Nelson, Peter; Abelson, Avigdor; Precoda, Kristin; Rulmal, John; Bernardi, Giacomo; Paddack, Michelle
2017-01-01
The dynamic relationship between reefs and the people who utilize them at a subsistence level is poorly understood. This paper characterizes atoll-scale patterns in shallow coral reef habitat and fish community structure, and correlates these with environmental characteristics and anthropogenic factors, critical to conservation efforts for the reefs and the people who depend on them. Hierarchical clustering analyses by site for benthic composition and fish community resulted in the same 3 major clusters: cluster 1-oceanic (close proximity to deep water) and uninhabited (low human impact); cluster 2-oceanic and inhabited (high human impact); and cluster 3-lagoonal (facing the inside of the lagoon) and inhabited (highest human impact). Distance from village, reef exposure to deep water and human population size had the greatest effect in predicting the fish and benthic community structure. Our study demonstrates a strong association between benthic and fish community structure and human use across the Ulithi Atoll (Yap State, Federated States of Micronesia) and confirms a pattern observed by local people that an 'opportunistic' scleractinian coral (Montipora sp.) is associated with more highly impacted reefs. Our findings suggest that small human populations (subsistence fishing) can nevertheless have considerable ecological impacts on reefs due, in part, to changes in fishing practices rather than overfishing per se, as well as larger global trends. Findings from this work can assist in building local capacity to manage reef resources across an atoll-wide scale, and illustrates the importance of anthropogenic impact even in small communities.
Ocean acidification alters fish-jellyfish symbiosis.
Nagelkerken, Ivan; Pitt, Kylie A; Rutte, Melchior D; Geertsma, Robbert C
2016-06-29
Symbiotic relationships are common in nature, and are important for individual fitness and sustaining species populations. Global change is rapidly altering environmental conditions, but, with the exception of coral-microalgae interactions, we know little of how this will affect symbiotic relationships. We here test how the effects of ocean acidification, from rising anthropogenic CO2 emissions, may alter symbiotic interactions between juvenile fish and their jellyfish hosts. Fishes treated with elevated seawater CO2 concentrations, as forecast for the end of the century on a business-as-usual greenhouse gas emission scenario, were negatively affected in their behaviour. The total time that fish (yellowtail scad) spent close to their jellyfish host in a choice arena where they could see and smell their host was approximately three times shorter under future compared with ambient CO2 conditions. Likewise, the mean number of attempts to associate with jellyfish was almost three times lower in CO2-treated compared with control fish, while only 63% (high CO2) versus 86% (control) of all individuals tested initiated an association at all. By contrast, none of three fish species tested were attracted solely to jellyfish olfactory cues under present-day CO2 conditions, suggesting that the altered fish-jellyfish association is not driven by negative effects of ocean acidification on olfaction. Because shelter is not widely available in the open water column and larvae of many (and often commercially important) pelagic species associate with jellyfish for protection against predators, modification of the fish-jellyfish symbiosis might lead to higher mortality and alter species population dynamics, and potentially have flow-on effects for their fisheries. © 2016 The Author(s).
Defining thresholds of sustainable impact on benthic communities in relation to fishing disturbance.
Lambert, G I; Murray, L G; Hiddink, J G; Hinz, H; Lincoln, H; Hold, N; Cambiè, G; Kaiser, M J
2017-07-14
While the direct physical impact on seabed biota is well understood, no studies have defined thresholds to inform an ecosystem-based approach to managing fishing impacts. We addressed this knowledge gap using a large-scale experiment that created a controlled gradient of fishing intensity and assessed the immediate impacts and short-term recovery. We observed a mosaic of taxon-specific responses at various thresholds. The lowest threshold of significant lasting impact occurred between 1 and 3 times fished and elicited a decrease in abundance of 39 to 70% for some sessile epifaunal organisms (cnidarians, bryozoans). This contrasted with significant increases in abundance and/or biomass of scavenging species (epifaunal echinoderms, infaunal crustaceans) by two to four-fold in areas fished twice and more. In spite of these significant specific responses, the benthic community structure, biomass and abundance at the population level appeared resilient to fishing. Overall, natural temporal variation in community metrics exceeded the effects of fishing in this highly dynamic study site, suggesting that an acute level of disturbance (fished over six times) would match the level of natural variation. We discuss the implications of our findings for natural resources management with respect to context-specific human disturbance and provide guidance for best fishing practices.
Investigating the effect of chemical stress and resource ...
Modeling exposure and recovery of fish and wildlife populations after stressor mitigation serves as a basis for evaluating population status and remediation success. The Atlantic killifish (Fundulus heteroclitus) is an important and well-studied model organism for understanding the effects of pollutants and other stressors in estuarine and marine ecosystems. Herein, we develop a density dependent matrix population model for Atlantic killifish that analyzes both size-structure and age class-structure of the population so that we could readily incorporate output from a dynamic energy budget (DEB) model currently under development. This population modeling approach emphasizes application in conjunction with field monitoring efforts (e.g., through effects-based monitoring programs) and/or laboratory analysis to link effects due to chemical stress to adverse outcomes in whole organisms and populations. We applied the model using data for killifish exposed to dioxin-like compounds, taken from a previously published study. Specifically, the model was used to investigate population trajectories for Atlantic killifish with dietary exposures to 112, 296, and 875 pg/g of dioxin with effects on fertility and survival rates. All effects were expressed relative to control fish. Further, the population model was employed to examine age and size distributions of a population exposed to resource limitation in addition to chemical stress. For each dietary exposure concentration o
Fish Assemblage Response to a Small Dam Removal in the Eightmile River System, Connecticut, USA
NASA Astrophysics Data System (ADS)
Poulos, Helen M.; Miller, Kate E.; Kraczkowski, Michelle L.; Welchel, Adam W.; Heineman, Ross; Chernoff, Barry
2014-11-01
We examined the effects of the Zemko Dam removal on the Eightmile River system in Salem, Connecticut, USA. The objective of this research was to quantify spatiotemporal variation in fish community composition in response to small dam removal. We sampled fish abundance over a 6-year period (2005-2010) to quantify changes in fish assemblages prior to dam removal, during drawdown, and for three years following dam removal. Fish population dynamics were examined above the dam, below the dam, and at two reference sites by indicator species analysis, mixed models, non-metric multidimensional scaling, and analysis of similarity. We observed significant shifts in fish relative abundance over time in response to dam removal. Changes in fish species composition were variable, and they occurred within 1 year of drawdown. A complete shift from lentic to lotic fishes failed to occur within 3 years after the dam was removed. However, we did observe increases in fluvial and transition (i.e., pool head, pool tail, or run) specialist fishes both upstream and downstream from the former dam site. Our results demonstrate the importance of dam removal for restoring river connectivity for fish movement. While the long-term effects of dam removal remain uncertain, we conclude that dam removals can have positive benefits on fish assemblages by enhancing river connectivity and fluvial habitat availability.
Fish assemblage response to a small dam removal in the Eightmile River system, Connecticut, USA.
Poulos, Helen M; Miller, Kate E; Kraczkowski, Michelle L; Welchel, Adam W; Heineman, Ross; Chernoff, Barry
2014-11-01
We examined the effects of the Zemko Dam removal on the Eightmile River system in Salem, Connecticut, USA. The objective of this research was to quantify spatiotemporal variation in fish community composition in response to small dam removal. We sampled fish abundance over a 6-year period (2005-2010) to quantify changes in fish assemblages prior to dam removal, during drawdown, and for three years following dam removal. Fish population dynamics were examined above the dam, below the dam, and at two reference sites by indicator species analysis, mixed models, non-metric multidimensional scaling, and analysis of similarity. We observed significant shifts in fish relative abundance over time in response to dam removal. Changes in fish species composition were variable, and they occurred within 1 year of drawdown. A complete shift from lentic to lotic fishes failed to occur within 3 years after the dam was removed. However, we did observe increases in fluvial and transition (i.e., pool head, pool tail, or run) specialist fishes both upstream and downstream from the former dam site. Our results demonstrate the importance of dam removal for restoring river connectivity for fish movement. While the long-term effects of dam removal remain uncertain, we conclude that dam removals can have positive benefits on fish assemblages by enhancing river connectivity and fluvial habitat availability.
Managed Metapopulations: Do Salmon Hatchery ‘Sources’ Lead to In-River ‘Sinks’ in Conservation?
Johnson, Rachel C.; Weber, Peter K.; Wikert, John D.; Workman, Michelle L.; MacFarlane, R. Bruce; Grove, Marty J.; Schmitt, Axel K.
2012-01-01
Maintaining viable populations of salmon in the wild is a primary goal for many conservation and recovery programs. The frequency and extent of connectivity among natal sources defines the demographic and genetic boundaries of a population. Yet, the role that immigration of hatchery-produced adults may play in altering population dynamics and fitness of natural populations remains largely unquantified. Quantifying, whether natural populations are self-sustaining, functions as sources (population growth rate in the absence of dispersal, λ>1), or as sinks (λ<1) can be obscured by an inability to identify immigrants. In this study we use a new isotopic approach to demonstrate that a natural spawning population of Chinook salmon, (Oncorhynchus tshawytscha) considered relatively healthy, represents a sink population when the contribution of hatchery immigrants is taken into consideration. We retrieved sulfur isotopes (34S/32S, referred to as δ34S) in adult Chinook salmon otoliths (ear bones) that were deposited during their early life history as juveniles to determine whether individuals were produced in hatcheries or naturally in rivers. Our results show that only 10.3% (CI = 5.5 to 18.1%) of adults spawning in the river had otolith δ34S values less than 8.5‰, which is characteristic of naturally produced salmon. When considering the total return to the watershed (total fish in river and hatchery), we estimate that 90.7 to 99.3% (CI) of returning adults were produced in a hatchery (best estimate = 95.9%). When population growth rate of the natural population was modeled to account for the contribution of previously unidentified hatchery immigrants, we found that hatchery-produced fish caused the false appearance of positive population growth. These findings highlight the potential dangers in ignoring source-sink dynamics in recovering natural populations, and question the extent to which declines in natural salmon populations are undetected by monitoring programs. PMID:22347362
Managed Metapopulations: Do Salmon Hatchery ‘Sources’ Lead to In-River ‘Sinks’ in Conservation?
Johnson, Rachel C.; Weber, Peter K.; Wikert, John D.; ...
2012-02-08
Maintaining viable populations of salmon in the wild is a primary goal for many conservation and recovery programs. The frequency and extent of connectivity among natal sources defines the demographic and genetic boundaries of a population. Yet, the role that immigration of hatchery-produced adults may play in altering population dynamics and fitness of natural populations remains largely unquantified. Quantifying, whether natural populations are self-sustaining, functions as sources (population growth rate in the absence of dispersal, λ>1), or as sinks (λ<1) can be obscured by an inability to identify immigrants. In this study we use a new isotopic approach to demonstratemore » that a natural spawning population of Chinook salmon, (Oncorhynchus tshawytscha) considered relatively healthy, represents a sink population when the contribution of hatchery immigrants is taken into consideration. We retrieved sulfur isotopes ( 34S/ 32S, referred to as δ 34S) in adult Chinook salmon otoliths (ear bones) that were deposited during their early life history as juveniles to determine whether individuals were produced in hatcheries or naturally in rivers. Our results show that only 10.3% (CI=5.5 to 18.1%) of adults spawning in the river had otolith δ 34S values less than 8.5‰, which is characteristic of naturally produced salmon. When considering the total return to the watershed (total fish in river and hatchery), we estimate that 90.7 to 99.3% (CI) of returning adults were produced in a hatchery (best estimate=95.9%). When population growth rate of the natural population was modeled to account for the contribution of previously unidentified hatchery immigrants, we found that hatchery-produced fish caused the false appearance of positive population growth. In conclusion, these findings highlight the potential dangers in ignoring source-sink dynamics in recovering natural populations, and question the extent to which declines in natural salmon populations are undetected by monitoring programs.« less
Gutierrez, Juan B; Teem, John L
2006-07-21
A novel means of inducing extinction of an exotic fish population is proposed using a genetic approach to shift the ratio of male to females within a population. In the proposed strategy, sex-reversed fish containing two Y chromosomes are introduced into a normal fish population. These YY fish result in the production of a disproportionate number of male fish in subsequent generations. Mathematical modeling of the system following introduction of YY fish at a constant rate reveals that female fish decline in numbers over time, leading to eventual extinction of the population.
Fernández-Chacón, Albert; Genovart, Meritxell; Álvarez, David; Cano, José M; Ojanguren, Alfredo F; Rodriguez-Muñoz, Rolando; Nicieza, Alfredo G
2015-06-01
In organisms such as fish, where body size is considered an important state variable for the study of their population dynamics, size-specific growth and survival rates can be influenced by local variation in both biotic and abiotic factors, but few studies have evaluated the complex relationships between environmental variability and size-dependent processes. We analysed a 6-year capture-recapture dataset of brown trout (Salmo trutta) collected at 3 neighbouring but heterogeneous mountain streams in northern Spain with the aim of investigating the factors shaping the dynamics of local populations. The influence of body size and water temperature on survival and individual growth was assessed under a multi-state modelling framework, an extension of classical capture-recapture models that considers the state (i.e. body size) of the individual in each capture occasion and allows us to obtain state-specific demographic rates and link them to continuous environmental variables. Individual survival and growth patterns varied over space and time, and evidence of size-dependent survival was found in all but the smallest stream. At this stream, the probability of reaching larger sizes was lower compared to the other wider and deeper streams. Water temperature variables performed better in the modelling of the highest-altitude population, explaining over a 99 % of the variability in maturation transitions and survival of large fish. The relationships between body size, temperature and fitness components found in this study highlight the utility of multi-state approaches to investigate small-scale demographic processes in heterogeneous environments, and to provide reliable ecological knowledge for management purposes.
NASA Astrophysics Data System (ADS)
Peck, M. A.
2016-02-01
Gaining a cause-and-effect understanding of climate-driven changes in marine fish populations at appropriate spatial scales is important for providing robust advice for ecosystem-based fisheries management. Coupling long-term, retrospective analyses and 3-d biophysical, individual-based models (IBMs) shows great potential to reveal mechanism underlying historical changes and to project future changes in marine fishes. IBMs created for marine fish early life stages integrate organismal-level physiological responses and climate-driven changes in marine habitats (from ocean physics to lower trophic level productivity) to test and reveal processes affecting marine fish recruitment. Case studies are provided for hindcasts and future (A1 and B2 projection) simulations performed on some of the most ecologically- and commercially-important pelagic and demersal fishes in the North Sea including European anchovy, Atlantic herring, European sprat and Atlantic cod. We discuss the utility of coupling biophysical IBMs to size-spectrum models to better project indirect (trophodynamic) pathways of climate influence on the early life stages of these and other fishes. Opportunities and challenges are discussed regarding the ability of these physiological-based tools to capture climate-driven changes in living marine resources and food web dynamics of shelf seas.
Long-term change in benthopelagic fish abundance in the abyssal northeast Pacific Ocean.
Bailey, D M; Ruhl, H A; Smith, K L
2006-03-01
Food web structure, particularly the relative importance of bottom-up and top-down control of animal abundances, is poorly known for the Earth's largest habitats: the abyssal plains. A unique 15-yr time series of climate, productivity, particulate flux, and abundance of primary consumers (primarily echinoderms) and secondary consumers (fish) was examined to elucidate the response of trophic levels to temporal variation in one another. Towed camera sled deployments in the abyssal northeast Pacific (4100 m water depth) showed that annual mean numbers of the dominant fish genus (Coryphaenoides spp.) more than doubled over the period 1989-2004. Coryphaenoides spp. abundance was significantly correlated with total abundance of mobile epibenthic megafauna (echinoderms), with changes in fish abundance lagging behind changes in the echinoderms. Direct correlations between surface climate and fish abundances, and particulate organic carbon (POC) flux and fish abundances, were insignificant, which may be related to the varied response of the potential prey taxa to climate and POC flux. This study provides a rare opportunity to study the long-term dynamics of an unexploited marine fish population and suggests a dominant role for bottom-up control in this system.
Response of walleye and yellow perch to water-level fluctuations in glacial lakes
Dembkowski, D.J.; Chipps, Steven R.; Blackwell, B. G.
2014-01-01
The influence of water levels on population characteristics of yellow perch, Perca flavescens (Mitchill), and walleye, Sander vitreus (Mitchill), was evaluated across a range of glacial lakes in north-eastern South Dakota, USA. Results showed that natural variation in water levels had an important influence on frequently measured fish population characteristics. Yellow perch abundance was significantly (P<0.10) greater during elevated water levels. Yellow perch size structure, as indexed by the proportional size distribution of quality- and preferred-length fish (PSD and PSD-P), was significantly greater during low-water years, as was walleye PSD. Mean relative weight of walleye increased significantly during high-water periods. The dynamic and unpredictable nature of water-level fluctuations in glacial lakes ultimately adds complexity to management of these systems.
Zarkasi, K Z; Abell, G C J; Taylor, R S; Neuman, C; Hatje, E; Tamplin, M L; Katouli, M; Bowman, J P
2014-07-01
The relationship of Atlantic salmon gastrointestinal (GI) tract bacteria to environmental factors, in particular water temperature within a commercial mariculture system, was investigated. Salmon GI tract bacterial communities commercially farmed in south-eastern Tasmania were analysed, over a 13-month period across a standard commercial production farm cycle, using 454 16S rRNA-based pyrosequencing. Faecal bacterial communities were highly dynamic but largely similar between randomly selected fish. In postsmolt, the faecal bacteria population was dominated by Gram-positive fermentative bacteria; however, by midsummer, members of the family Vibrionaceae predominated. As fish progressed towards harvest, a range of different bacterial genera became more prominent corresponding to a decline in Vibrionaceae. The sampled fish were fed two different commercial diet series with slightly different protein, lipid and digestible energy level; however, the effect of these differences was minimal. The overall data demonstrated dynamic hind gut communities in salmon that were related to season and fish growth phases but were less influenced by differences in commercial diets used routinely within the farm system studied. This study provides understanding of farmed salmon GI bacterial communities and describes the relative impact of diet, environmental and farm factors. © 2014 The Society for Applied Microbiology.
Wilberg, Michael J; Wiedenmann, John R; Robinson, Jason M
2013-06-01
Autogenic ecosystem engineers are critically important parts of many marine and estuarine systems because of their substantial effect on ecosystem services. Oysters are of particular importance because of their capacity to modify coastal and estuarine habitats and the highly degraded status of their habitats worldwide. However, models to predict dynamics of ecosystem engineers have not previously included the effects of exploitation. We developed a linked population and habitat model for autogenic ecosystem engineers undergoing exploitation. We parameterized the model to represent eastern oyster (Crassostrea virginica) in upper Chesapeake Bay by selecting sets of parameter values that matched observed rates of change in abundance and habitat. We used the model to evaluate the effects of a range of management and restoration options including sustainability of historical fishing pressure, effectiveness of a newly enacted sanctuary program, and relative performance of two restoration approaches. In general, autogenic ecosystem engineers are expected to be substantially less resilient to fishing than an equivalent species that does not rely on itself for habitat. Historical fishing mortality rates in upper Chesapeake Bay for oysters were above the levels that would lead to extirpation. Reductions in fishing or closure of the fishery were projected to lead to long-term increases in abundance and habitat. For fisheries to become sustainable outside of sanctuaries, a substantial larval subsidy would be required from oysters within sanctuaries. Restoration efforts using high-relief reefs were predicted to allow recovery within a shorter period of time than low-relief reefs. Models such as ours, that allow for feedbacks between population and habitat dynamics, can be effective tools for guiding management and restoration of autogenic ecosystem engineers.
Population structure and dynamics of northern pike and smallmouth bass in Coeur d’Alene Lake, Idaho.
Walrath, John D.; Quist, Michael C.; Firehammer, Jon A.
2015-01-01
Numerous species have been introduced to Coeur d'Alene Lake, Idaho over the last century, but minimal research has been completed to understand their population dynamics. The objective of this study was to describe the population demographics and dynamics of northern pike (Esox lucius) and smallmouth bass (Micropterus dolomieu), two important nonnative sport fishes in the system to provide information that will assist with guiding management decisions. The oldest northern pike was age 7 and the oldest smallmouth bass was age 11. Populations of both species exhibited very stable recruitment with a recruitment coefficient of determination of 0.99 for northern pike and 0.98 for smallmouth bass. Total annual mortality was estimated as 66% for northern pike and 42% for smallmouth bass. Growth of northern pike in Coeur d'Alene Lake was comparable to the 50–75th percentiles of growth exhibited by lentic northern pike populations across North America. Northern pike in Coeur d'Alene Lake were most similar to populations in the north-central and northeast United States with fast growth rates and short life spans. In contrast, smallmouth bass grew slowly and generally fell within the 5th percentile of lentic smallmouth bass populations in North America. Smallmouth bass in Coeur d'Alene Lake were similar to other populations in northern regions of the United States displaying slow growth rates with high longevity. Results of this study provide important insight on nonnative northern pike and smallmouth bass population dynamics.
Kulaw, Dannielle H.; Jackson, Melissa W.
2017-01-01
In studies done a decade apart, we provide evidence of a recent shift toward a slower progression to sexual maturity as well as reduced egg production, especially among young, small female red snapper, in the Gulf of Mexico (Gulf). Slower maturation rates (among fish ≤6 years old), lower GSI values and decreased spawning frequency were observed, and were especially pronounced in the northwestern Gulf. Furthermore, an Index of Reproductive Importance showed that young fish (ages 2–7) are contributing far less to the spawning stock in recent years, while older fish (>8 years) are contributing more, when compared to fish from the same age groups sampled in the previous decade. Coincident with these changes in reproductive output, fishing pressure has steadily declined gulf-wide, and spawning stock biomass and spawning potential ratio have increased. Thus, it is possible that the age structure of the red snapper stock is becoming less truncated, or that reproductive effort observed is due to the temporary influence of recent strong year classes produced in 2004 and 2006 as they begin to reach full reproductive potential. If the latter is true, careful documentation of the stock’s reproductive dynamics during a time of population growth provides new understanding at the meta-population spatial and decadal temporal scales. In contrast, if the former is true, a truncated age structure due to overharvest can limit the productivity of the Gulf red snapper stock. In addition, we have learned that red snapper females in the northwestern Gulf collected on natural reefs and banks have much higher reproductive output than those on artificial reefs in the form of standing and toppled oil and gas platforms, thus making the need to know the relative abundance of females found on these disparate habitats an important next step toward better-understanding factors impacting the reproductive dynamics of this species. PMID:28355239
Dynamics and management of stage-structured fish stocks.
Meng, Xinzhu; Lundström, Niklas L P; Bodin, Mats; Brännström, Åke
2013-01-01
With increasing fishing pressures having brought several stocks to the brink of collapse, there is a need for developing efficient harvesting methods that account for factors beyond merely yield or profit. We consider the dynamics and management of a stage-structured fish stock. Our work is based on a consumer-resource model which De Roos et al. (in Theor. Popul. Biol. 73, 47-62, 2008) have derived as an approximation of a physiologically-structured counterpart. First, we rigorously prove the existence of steady states in both models, that the models share the same steady states, and that there exists at most one positive steady state. Furthermore, we carry out numerical investigations which suggest that a steady state is globally stable if it is locally stable. Second, we consider multiobjective harvesting strategies which account for yield, profit, and the recovery potential of the fish stock. The recovery potential is a measure of how quickly a fish stock can recover from a major disturbance and serves as an indication of the extinction risk associated with a harvesting strategy. Our analysis reveals that a small reduction in yield or profit allows for a disproportional increase in recovery potential. We also show that there exists a harvesting strategy with yield close to the maximum sustainable yield (MSY) and profit close to that associated with the maximum economic yield (MEY). In offering a good compromise between MSY and MEY, we believe that this harvesting strategy is preferable in most instances. Third, we consider the impact of harvesting on population size structure and analytically determine the most and least harmful harvesting strategies. We conclude that the most harmful harvesting strategy consists of harvesting both adults and juveniles, while harvesting only adults is the least harmful strategy. Finally, we find that a high percentage of juvenile biomass indicates elevated extinction risk and might therefore serve as an early-warning signal of impending stock collapse.
Kulaw, Dannielle H; Cowan, James H; Jackson, Melissa W
2017-01-01
In studies done a decade apart, we provide evidence of a recent shift toward a slower progression to sexual maturity as well as reduced egg production, especially among young, small female red snapper, in the Gulf of Mexico (Gulf). Slower maturation rates (among fish ≤6 years old), lower GSI values and decreased spawning frequency were observed, and were especially pronounced in the northwestern Gulf. Furthermore, an Index of Reproductive Importance showed that young fish (ages 2-7) are contributing far less to the spawning stock in recent years, while older fish (>8 years) are contributing more, when compared to fish from the same age groups sampled in the previous decade. Coincident with these changes in reproductive output, fishing pressure has steadily declined gulf-wide, and spawning stock biomass and spawning potential ratio have increased. Thus, it is possible that the age structure of the red snapper stock is becoming less truncated, or that reproductive effort observed is due to the temporary influence of recent strong year classes produced in 2004 and 2006 as they begin to reach full reproductive potential. If the latter is true, careful documentation of the stock's reproductive dynamics during a time of population growth provides new understanding at the meta-population spatial and decadal temporal scales. In contrast, if the former is true, a truncated age structure due to overharvest can limit the productivity of the Gulf red snapper stock. In addition, we have learned that red snapper females in the northwestern Gulf collected on natural reefs and banks have much higher reproductive output than those on artificial reefs in the form of standing and toppled oil and gas platforms, thus making the need to know the relative abundance of females found on these disparate habitats an important next step toward better-understanding factors impacting the reproductive dynamics of this species.
Walsh, Maureen; Weidel, Brian C.; Connerton, Michael J.
2014-01-01
Lake Ontario has a mean depth of 86 m (282 ft) and a maximum depth of 244 m (801 ft) (Herdendorf 1982). The southern, New York portion of the lake has the deepest water (Figure 1). In New York waters, about 67% of the lake is <160 m (525 ft) deep and about 82% of the lake is <180 m (591 ft) deep. The U.S. Geological Survey (USGS) and New York State Department of Environmental Conservation (NYSDEC) have cooperatively assessed Lake Ontario prey fishes each year since 1978. Bottom trawl assessments were initially focused on Alewife Alosa pseudoharengus (April), Rainbow Smelt Osmerus mordax (June), and Slimy Sculpin Cottus cognatus (October). Seasonal survey timing corresponded to the peak catches in 1972 when collections were made every month May to October (Owens et al. 2003). Twelve transects were established at approximately 25-km intervals along the U.S. shoreline (Figure 2). Alewife assessment was conducted at all transects, Rainbow Smelt assessment at all transects except Fair Haven, and six transects representing eastern, southern, and western lake areas were sampled for Slimy Sculpin (Figure 2). Changes in the Lake Ontario ecosystem (species invasion, oligotrophication, native species rebound) require ongoing evaluation of current methods which sometimes necessitate redistribution of trawl effort, or changes in sampling designs and/or gear. For instance, the spring Alewife assessment is now used also to assess invasive Round Goby Neogobius melanostomus population dynamics. Likewise, the fall benthic fish assessment (formerly sculpin assessment) now also tracks dynamics of the rebounding native Deepwater Sculpin Myoxocephalus thompsonii population, the apparent declining population of Slimy Sculpin, and fall distribution of Round Goby.
Dynamics of fish diseases in the lower Elbe River
NASA Astrophysics Data System (ADS)
Möller, H.
1984-03-01
As part of a survey on population dynamics and ecology of fishesin the Elbe River, seasonal and regional fluctuations of external fish diseases were studied from the open North Sea to Hamburg in 1981 1982. Clinical signs of 11 different diseases, several of them not being recorded before, were noted in 22 fish species. Averaged over all samples, the total disease prevalence was below 1 % in 16 species. Highest prevalences were found in smelt (12.7 %), eel (9.2 %), and flounder (5.5 %). The frequency of most diseases increased in larger (older) fish. High prevalences of skeletal abnormalities in cod could be related to abnormal migration habits of diseased fish. Spawning papillomatosis, skin ulceration, and fin rot in smelt occurred predominantly during the spawning season. Most diseases observed occurred at relatively high prevalences in the central Elbe estuary between Cuxhaven and Brunsbüttel. This is most obvious for lymphocystis, fin rot, skin ulceration, and bleaching syndrome in flounder, but such a tendency also seems to occur in cauliflower disease of eel, as well as spawning papillomatosis and pharyngeal granuloma in smelt. This area is less heavily polluted and less frequently affected by oxygen deficiency than the area upstream of Glückstadt, where diseases in general occurred at lower frequencies. Therefore, it is concluded that neither pollution nor lack of oxygen are the main triggers for the outbreak of diseases in Elbe fish. It is supposed that large tidal fluctuations of salinity are a major stress factor for fish in the estuary between Cuxhaven and Brunsbüttel. Flounder from this area usually are in a relatively bad nutritional state. Their condition factor increases significantly towards Hamburg, while their disease prevalence decreases in the same direction.
França, Susana; Vasconcelos, Rita P; Tanner, Susanne; Máguas, Cristina; Costa, Maria José; Cabral, Henrique N
2011-10-01
Stable carbon and nitrogen isotopes (δ¹³C, δ¹⁵N) were used to analyse food web dynamics of two of the main estuaries of the Portuguese coast: Tejo and Mira. The ultimate sources of organic matter supporting production of some of the most abundant and commercially important fish species were determined; and seasonal, inter- and intra- estuarine differences in the trophic relations among producers and consumers were identified. Stable isotope analysis was performed in different producers, primary consumers (main prey items for fish) and fish species (Solea solea, Solea senegalensis, Pomatoschistus microps, Dicentrarchus labrax, Liza ramada, Diplodus vulgaris and Atherina presbyter) of two areas in each estuary, in July and October 2009. Model calculations showed that the main prey for the fish species in the Tejo estuary used mostly salt marsh-derived organic matter as nutritional sources, with no marked differences between the sampled months. Trophic levels of fish species from the same estuary differed at multiple scales: inter-species, seasonally and spatially (both between and within estuaries). Significant differences in isotopic composition of fish species were more pronounced spatially (between the two sampled areas in the estuary) than seasonally (between sampled months). Trophic relationships in both estuaries demonstrated that organic matter is transferred to higher trophic positions mainly through benthic pathways. This shows the flexibility of these species to share resources and to exploit temporary peaks in prey populations. The present results showed that extensive disturbance in intertidal habitats from both estuaries may potentially change the balance of organic matter in the base of these complex food webs. Copyright © 2011 Elsevier Ltd. All rights reserved.
Fish Productivity in Open-Ocean Gyre Systems in the Late Oligocene and Miocene
NASA Astrophysics Data System (ADS)
Cuevas, J. M.; Sibert, E. C.; Norris, R. D.
2015-12-01
Understanding how marine ecosystems respond to climate change is very important as we continue to warm the climate. Fish represent a critical protein source for a significant portion of the global population, and as such, an understanding of fish production and its interactions with climate change may help better prepare for the future. Ichthyoliths, fossil fish teeth and shark scales, are a novel fossil group which can be used as an indicator for fish productivity. Several important climate events occurred during the Miocene (7 to 23 Ma), including the Middle Miocene Climatic Optimum. Here we reconstruct fish production from across the Miocene from Pacific and Atlantic Ocean gyres. South Atlantic samples, from Deep Sea Drilling Program (DSDP) Site 522 spanning from 30 to 20 Ma, show fairly variable numbers in the Oligocene (ranging from 100 to 800 ich/cm2/yr), but stabilization in the Early Miocene (around 400 ich/cm2/yr), suggesting that the beginning of the Miocene brought consistent conditions for fish production. In the North Pacific, our record from Ocean Drilling Program (ODP) Site 886 shows a distinct crash in fish productivity at 11 Ma, from 3500 ich/cm2/yr to a steady decline around 100 ich/cm2/yr for the next million years. This crash is followed by a marked increase in the presence of diatoms and biogenous opal. This is somewhat surprising, since in modern oceanic systems, an increase in diatoms and other large-celled phytoplankton is associated with shorter, more efficient food chains and higher levels of fish. It is also interesting to note that denticles remain consistently low at both sites, indicating consistently low shark populations through this time period. Together, these results suggest that the Late Oligocene and Miocene was a time of variable fish production and provide a window into understanding of dynamic ecosystem changes through the Miocene in open-ocean gyre ecosystems.
Krkosek, Martin; Gottesfeld, Allen; Proctor, Bart; Rolston, Dave; Carr-Harris, Charmaine; Lewis, Mark A
2007-12-22
Animal migrations can affect disease dynamics. One consequence of migration common to marine fish and invertebrates is migratory allopatry-a period of spatial separation between adult and juvenile hosts, which is caused by host migration and which prevents parasite transmission from adult to juvenile hosts. We studied this characteristic for sea lice (Lepeophtheirus salmonis and Caligus clemensi) and pink salmon (Oncorhynchus gorbuscha) from one of the Canada's largest salmon stocks. Migratory allopatry protects juvenile salmon from L. salmonis for two to three months of early marine life (2-3% prevalence). In contrast, host diversity facilitates access for C. clemensi to juvenile salmon (8-20% prevalence) but infections appear ephemeral. Aquaculture can augment host abundance and diversity and increase parasite exposure of wild juvenile fish. An empirically parametrized model shows high sensitivity of salmon populations to increased L. salmonis exposure, predicting population collapse at one to five motile L. salmonis per juvenile pink salmon. These results characterize parasite threats of salmon aquaculture to wild salmon populations and show how host migration and diversity are important factors affecting parasite transmission in the oceans.
Coral reef fish larvae settle close to home.
Jones, Geoffrey P; Planes, Serge; Thorrold, Simon R
2005-07-26
Population connectivity through larval dispersal is an essential parameter in models of marine population dynamics and the optimal size and spacing of marine reserves. However, there are remarkably few direct estimates of larval dispersal for marine organisms, and the actual birth sites of successful recruits have never been located. Here, we solve the mystery of the natal origin of clownfish (Amphiprion polymnus) juveniles by mass-marking via tetracycline immersion all larvae produced in a population. In addition, we established parentage by DNA genotyping all potential adults and all new recruits arriving in the population. Although no individuals settled into the same anemone as their parents, many settled remarkably close to home. Even though this species has a 9-12 day larval duration, one-third of settled juveniles had returned to a 2 hectare natal area, with many settling <100 m from their birth site. This represents the smallest scale of dispersal known for any marine fish species with a pelagic larval phase. The degree of local retention indicates that marine reserves can provide recruitment benefits not only beyond but also within their boundaries.
NASA Astrophysics Data System (ADS)
Escalas, Arthur; Ferraton, Franck; Paillon, Christelle; Vidy, Guy; Carcaillet, Frédérique; Salen-Picard, Chantal; Le Loc'h, François; Richard, Pierre; Darnaude, Audrey Michèle
2015-01-01
Effective conservation of marine fish stocks involves understanding the impact, on population dynamics, of intra-specific variation in nursery habitats use at the juvenile stage. In some regions, an important part of the catching effort is concentrated on a small number of marine species that colonize coastal lagoons during their first year of life. To determine the intra-specific variation in lagoon use by these fish and their potential demographic consequences, we studied diet spatiotemporal variations in the group 0 juveniles of a highly exploited sparid, the gilthead seabream (Sparus aurata L.), during their ∼6 months stay in a NW Mediterranean lagoon (N = 331, SL = 25-198 mm) and traced the origin of the organic matter in their food webs, at two lagoon sites with contrasted continental inputs. This showed that the origin (marine, lagoonal or continental) of the organic matter (OM) available in the water column and the sediment can vary substantially within the same lagoon, in line with local variations in the intensity of marine and continental inputs. The high trophic plasticity of S. aurata allows its juveniles to adapt to resulting differences in prey abundances at each site during their lagoon residency, thereby sustaining high growth irrespective of the area inhabited within the lagoon. However, continental POM incorporation by the juveniles through their diet (of 21-37% on average depending on the site) is proportional to its availability in the environment and could be responsible for the greater fish sizes (of 28 mm SL on average) and body weights (of 40.8 g on average) observed at the site under continental influence in the autumn, when the juveniles are ready to leave the lagoon. This suggests that continental inputs in particulate OM, when present, could significantly enhance fish growth within coastal lagoons, with important consequences on the local population dynamics of the fish species that use them as nurseries. As our results indicate that continental OM can represent up to 62% of the flesh of the juveniles originating from these ecosystems, particular care should be taken to preserve or improve the chemical quality of riverine inputs to coastal lagoons.
NASA Astrophysics Data System (ADS)
Sutimin; Khabibah, Siti; Munawwaroh, Dita Anis
2018-02-01
A harvesting fishery model is proposed to analyze the effects of the presence of red devil fish population, as a predator in an ecosystem. In this paper, we consider an ecological model of three species by taking into account two competing species and presence of a predator (red devil), the third species, which incorporates the harvesting efforts of each fish species. The stability of the dynamical system is discussed and the existence of biological and bionomic equilibrium is examined. The optimal harvest policy is studied and the solution is derived in the equilibrium case applying Pontryagin's maximal principle. The simulation results is presented to simulate the dynamical behavior of the model and show that the optimal equilibrium solution is globally asymptotically stable. The results show that the optimal harvesting effort is obtained regarding to bionomic and biological equilibrium.
Roelke, D.L.; Errera, R.M.; Riesling, R.; Brooks, B.W.; Grover, J.P.; Schwierzke, L.; Urena-Boeck, F.; Baker, J.; Pinckney, J.L.
2007-01-01
Large fish kills associated with toxic populations of the haptophyte Prymnesium parvum occur worldwide. In the past 5 yr, incidences of P. parvum blooms in inland water bodies of Texas (USA) have increased dramatically, where cell densities in excess of 1 ?? 107 cells l-1 are typically observed. We conducted field experiments (Lake Possum Kingdom) during the fall and early spring of 28 d duration using 24 enclosures of 1.57 m 3 each. The experiments investigated the effect of nutrient enrichment, immigration of P. parvum and addition of barley straw extract on phytoplankton biomass and assemblage structure, P. parvum population density, zooplankton biomass and assemblage structure, bacteria, and toxicity. Nutrient enrichment stimulated P. parvum population growth beyond bloom proportions (>1 ?? 107 cells l-1). However, P. parvum did not dominate the assemblage under these conditions, as it does during natural blooms. Instead, euglenophytes and chlorophytes dominated. Toxicity, estimated using fish (Pimephales promelas) and cladoceran (Daphnia magna) bioassays and which is linked to P. parvum's allelopathic and mixotrophic effectiveness, was greatly reduced (eliminated in many cases) under conditions of nutrient enrichment. The suppression of toxicity by nutrient addition suggested that targeted and time-limited nutrient manipulations might be used to mitigate the effects of P. parvum blooms. Immigration of P. parvum into natural assemblages and addition of barley straw extract had no significant effect on plankton dynamics. ?? Inter-Research 2007.
Buktenica, M.W.; Girdner, S.F.; Larson, G.L.; McIntire, C.D.
2007-01-01
Crater Lake is a unique environment to evaluate the ecology of introduced kokanee and rainbow trout because of its otherwise pristine state, low productivity, absence of manipulative management, and lack of lotic systems for fish spawning. Between 1986 and 2004, kokanee displayed a great deal of variation in population demographics with a pattern that reoccurred in about 10 years. We believe that the reoccurring pattern resulted from density dependent growth, and associated changes in reproduction and abundance, driven by prey resource limitation that resulted from low lake productivity exacerbated by prey consumption when kokanee were abundant. Kokanee fed primarily on small-bodied prey from the mid-water column; whereas rainbow trout fed on large-bodied prey from the benthos and lake surface. Cladoceran zooplankton abundance may be regulated by kokanee. And kokanee growth and reproductive success may be influenced by the availability of Daphnia pulicaria, which was absent in zooplankton samples collected annually from 1990 to 1995, and after 1999. Distribution and diel migration of kokanee varied over the duration of the study and appeared to be most closely associated with prey availability, maximization of bioenergetic efficiency, and fish density. Rainbow trout were less abundant than were kokanee and exhibited less variation in population demographics, distribution, and food habits. There is some evidence that the population dynamics of rainbow trout were in-part related to the availability of kokanee as prey. ?? 2007 Springer Science+Business Media B.V.
Käll, Filip; Hansson, Martin; Baranova, Tatjana; Karlsson, Olle; Lundström, Karl; Neuenfeldt, Stefan; Hjelm, Joakim
2016-01-01
Investigating the factors regulating fish condition is crucial in ecology and the management of exploited fish populations. The body condition of cod (Gadus morhua) in the Baltic Sea has dramatically decreased during the past two decades, with large implications for the fishery relying on this resource. Here, we statistically investigated the potential drivers of the Baltic cod condition during the past 40 years using newly compiled fishery-independent biological data and hydrological observations. We evidenced a combination of different factors operating before and after the ecological regime shift that occurred in the Baltic Sea in the early 1990s. The changes in cod condition related to feeding opportunities, driven either by density-dependence or food limitation, along the whole period investigated and to the fivefold increase in the extent of hypoxic areas in the most recent 20 years. Hypoxic areas can act on cod condition through different mechanisms related directly to species physiology, or indirectly to behaviour and trophic interactions. Our analyses found statistical evidence for an effect of the hypoxia-induced habitat compression on cod condition possibly operating via crowding and density-dependent processes. These results furnish novel insights into the population dynamics of Baltic Sea cod that can aid the management of this currently threatened population. PMID:27853557
1989-12-01
PACIFIC GEODUCK CLAM by C. Lynn Goodwin and Bruce Pease Point Whitney Shellfish Laboratory Washington Department of Fisheries Brinnon, WA 98320... FISHERIES ................................. 6 POPULATION DYNAMICS ............................................. 7 GROWTH CHARACTERISTICS...authors would like to thank Bobbe Hardie, Washington State Department of Fisheries , for typing and editing early drafts and Dr. Ken Chew of the
The Sheperd equation and chaos identification.
Gregson, Robert A M
2010-04-01
An equation created by Sheperd (1982) to model stability in exploited fish populations has been found to have a wider application, and it exhibits complicated internal dynamics, including phases of strict periodicity and of chaos. It may be potentially applicable to other psychophysiological contexts. The problems of determining goodness-of fit, and the comparative performance of alternative models including the Shephed model, are briefly addressed.
Tischer, Karolin; Zeder, Michael; Klug, Rebecca; Pernthaler, Jakob; Schattenhofer, Martha; Harms, Hauke; Wendeberg, Annelie
2012-12-01
Groundwater ecosystems are the most important sources of drinking water worldwide but they are threatened by contamination and overexploitation. Petroleum spills account for the most common source of contamination and the high carbon load results in anoxia and steep geochemical gradients. Microbes play a major role in the transformation of petroleum hydrocarbons into less toxic substances. To investigate microbial populations at the single cell level, fluorescence in situ hybridization (FISH) is now a well-established technique. Recently, however, catalyzed reporter deposition (CARD)-FISH has been introduced for the detection of microbes from oligotrophic environments. Nevertheless, petroleum contaminated aquifers present a worst case scenario for FISH techniques due to the combination of high background fluorescence of hydrocarbons and the presence of small microbial cells caused by the low turnover rates characteristic of groundwater ecosystems. It is therefore not surprising that studies of microorganisms from such sites are mostly based on cultivation techniques, fingerprinting, and amplicon sequencing. However, to reveal the population dynamics and interspecies relationships of the key participants of contaminant degradation, FISH is an indispensable tool. In this study, a protocol for FISH was developed in combination with cell quantification using an automated counting microscope. The protocol includes the separation and purification of microbial cells from sediment particles, cell permeabilization and, finally, CARD-FISH in a microwave oven. As a proof of principle, the distribution of Archaea and Bacteria was shown in 60 sediment samples taken across the contaminant plume of an aquifer (Leuna, Germany), which has been heavily contaminated with several ten-thousand tonnes of petroleum hydrocarbons since World War II. Copyright © 2012 Elsevier GmbH. All rights reserved.
Wildhaber, Mark L.; Albers, Janice; Green, Nicholas; Moran, Edward H.
2017-01-01
We develop a fully-stochasticized, age-structured population model suitable for population viability analysis (PVA) of fish and demonstrate its use with the endangered pallid sturgeon (Scaphirhynchus albus) of the Lower Missouri River as an example. The model incorporates three levels of variance: parameter variance (uncertainty about the value of a parameter itself) applied at the iteration level, temporal variance (uncertainty caused by random environmental fluctuations over time) applied at the time-step level, and implicit individual variance (uncertainty caused by differences between individuals) applied within the time-step level. We found that population dynamics were most sensitive to survival rates, particularly age-2+ survival, and to fecundity-at-length. The inclusion of variance (unpartitioned or partitioned), stocking, or both generally decreased the influence of individual parameters on population growth rate. The partitioning of variance into parameter and temporal components had a strong influence on the importance of individual parameters, uncertainty of model predictions, and quasiextinction risk (i.e., pallid sturgeon population size falling below 50 age-1+ individuals). Our findings show that appropriately applying variance in PVA is important when evaluating the relative importance of parameters, and reinforce the need for better and more precise estimates of crucial life-history parameters for pallid sturgeon.
Atoll-scale patterns in coral reef community structure: Human signatures on Ulithi Atoll, Micronesia
Nelson, Peter; Abelson, Avigdor; Precoda, Kristin; Rulmal, John; Bernardi, Giacomo; Paddack, Michelle
2017-01-01
The dynamic relationship between reefs and the people who utilize them at a subsistence level is poorly understood. This paper characterizes atoll-scale patterns in shallow coral reef habitat and fish community structure, and correlates these with environmental characteristics and anthropogenic factors, critical to conservation efforts for the reefs and the people who depend on them. Hierarchical clustering analyses by site for benthic composition and fish community resulted in the same 3 major clusters: cluster 1–oceanic (close proximity to deep water) and uninhabited (low human impact); cluster 2–oceanic and inhabited (high human impact); and cluster 3–lagoonal (facing the inside of the lagoon) and inhabited (highest human impact). Distance from village, reef exposure to deep water and human population size had the greatest effect in predicting the fish and benthic community structure. Our study demonstrates a strong association between benthic and fish community structure and human use across the Ulithi Atoll (Yap State, Federated States of Micronesia) and confirms a pattern observed by local people that an ‘opportunistic’ scleractinian coral (Montipora sp.) is associated with more highly impacted reefs. Our findings suggest that small human populations (subsistence fishing) can nevertheless have considerable ecological impacts on reefs due, in part, to changes in fishing practices rather than overfishing per se, as well as larger global trends. Findings from this work can assist in building local capacity to manage reef resources across an atoll-wide scale, and illustrates the importance of anthropogenic impact even in small communities. PMID:28489903
Fish Consumption Patterns and Mercury Advisory Knowledge Among Fishers in the Haw River Basin.
Johnston, Jill E; Hoffman, Kate; Wing, Steve; Lowman, Amy
2016-01-01
Fish consumption has numerous health benefits, with fish providing a source of protein as well as omega-3 fatty acids. However, some fish also contain contaminants that can impair human health. In North Carolina, the Department of Health and Human Services has issued fish consumption advisories due to methylmercury contamination in fish. Little is known about local fishers' consumption patterns and advisory adherence in North Carolina. We surveyed a consecutive sample of 50 fishers (74.6% positive response rate) who reported eating fish caught from the Haw River Basin or Jordan Lake. They provided information on demographic characteristics, species caught, and the frequency of local fish consumption. Additionally, fishers provided information on their knowledge of fish consumption advisories and the impact of those advisories on their fishing and fish consumption patterns. The majority of participants were male (n = 44) and reported living in central North Carolina. Catfish, crappie, sunfish, and large-mouth bass were consumed more frequently than other species of fish. Of the fishers surveyed, 8 reported eating more than 1 fish meal high in mercury per week, which exceeds the North Carolina advisory recommendation. Most participants (n = 32) had no knowledge of local fish advisories, and only 4 fishers reported that advisories impacted their fishing practices. We sampled 50 fishers at 11 locations. There is no enumeration of the dynamic population of fishers and no way to assess the representativeness of this sample. Additional outreach is needed to make local fishers aware of fish consumption advisories and the potential health impacts of eating high-mercury fish, which may also contain other persistent and bioaccumulative toxins. ©2016 by the North Carolina Institute of Medicine and The Duke Endowment. All rights reserved.
Fish Consumption Patterns and Mercury Advisory Knowledge Among Fishers in the Haw River Basin
Johnston, Jill E.; Hoffman, Kate; Wing, Steve; Lowman, Amy
2016-01-01
BACKGROUND Fish consumption has numerous health benefits, with fish providing a source of protein as well as omega-3 fatty acids. However, some fish also contain contaminants that can impair human health. In North Carolina, the Department of Health and Human Services has issued fish consumption advisories due to methylmercury contamination in fish. Little is known about local fishers’ consumption patterns and advisory adherence in North Carolina. METHODS We surveyed a consecutive sample of 50 fishers (74.6% positive response rate) who reported eating fish caught from the Haw River Basin or Jordan Lake. They provided information on demographic characteristics, species caught, and the frequency of local fish consumption. Additionally, fishers provided information on their knowledge of fish consumption advisories and the impact of those advisories on their fishing and fish consumption patterns. RESULTS The majority of participants were male (n = 44) and reported living in central North Carolina. Catfish, crappie, sunfish, and large-mouth bass were consumed more frequently than other species of fish. Of the fishers surveyed, 8 reported eating more than 1 fish meal high in mercury per week, which exceeds the North Carolina advisory recommendation. Most participants (n = 32) had no knowledge of local fish advisories, and only 4 fishers reported that advisories impacted their fishing practices. LIMITATIONS We sampled 50 fishers at 11 locations. There is no enumeration of the dynamic population of fishers and no way to assess the representativeness of this sample. CONCLUSIONS Additional outreach is needed to make local fishers aware of fish consumption advisories and the potential health impacts of eating high-mercury fish, which may also contain other persistent and bioaccumulative toxins. PMID:26763238
NASA Astrophysics Data System (ADS)
Bolle, Loes J.; Rijnsdorp, Adriaan D.; van Neer, Wim; Millner, Richard S.; van Leeuwen, Piet I.; Ervynck, Anton; Ayers, Richard; Ongenae, Ellen
2004-05-01
Fishing effort has strongly increased in the North Sea since the mid-19th century, causing a substantial reduction in the population size of exploited fish stocks. As fisheries research has developed simultaneously with the industrialisation of the fisheries, our knowledge of population dynamics at low levels of exploitations is limited. Otoliths retrieved from archaeological excavations offer a unique opportunity to study growth rates in the past. This study compares historical and present-day growth rates for four commercially important demersal fish species. A total of 2532 modern otoliths (AD 1984-1999) and 1286 historical otoliths (AD 1200-1925) obtained from archaeological excavations in Belgium and Scotland were analysed. Comparison of the growth patterns between eras revealed a major increase in growth rate of haddock, whereas growth changes were not observed in saithe and only in the smaller size classes of plaice and cod. Comparison of our results with literature data indicates that the observed growth rate changes in plaice and cod occurred within the 20th century. Apparently the onset of industrialised fisheries has not greatly affected the growth of plaice, cod and saithe populations in the North Sea. This result contradicts the expectation of density-dependent limitation of growth during the era of pre-industrialised fishing, but is in agreement with the concentration hypothesis of Beverton (Neth. J. Sea Res. 34 (1995) 1) stating that species which concentrate spatially into nursery grounds during their early life-history may 'saturate' the carrying capacity of the juvenile habitat even though the adult part of the population is not limited by the adult habitat.
Variation in the population demographics of Scolopsis bilineatus in response to predators
NASA Astrophysics Data System (ADS)
Hall, A. E.; Kingsford, M. J.
2016-12-01
Predatory fishes play critical roles in the trophodynamics of coral reefs, and the biomass of predatory fish can be a strong determinant of the structure of reef fish assemblages. In this study, we used variations in predator biomass between management zones on the Great Barrier Reef to examine how predators influence the biomass, mortality, condition, and reproductive potential of a common prey species Scolopsis bilineatus (bridled monocle bream; Nemipteridae). Despite no numerical differences in biomass or mortality, we found significant differences in a variety of demographic traits for S. bilineatus between multiple areas of high and low predator biomass. The size-at-age, condition, and reproductive potential of fish were reduced in marine reserves where predator biomass was high. The response of fish to predators was highly sex dependent; females suffered the greatest reductions in condition and reproductive potential. This study supports the notion that predators can play important roles in regulating prey dynamics and emphasises the importance of understanding top-down control by predators when considering fisheries management techniques and conservation strategies.
Life history trade-offs and community dynamics of small fishes in a seasonally pulsed wetland
DeAngelis, D.L.; Trexler, J.C.; Loftus, W.F.
2005-01-01
We used a one-dimensional, spatially explicit model to simulate the community of small fishes in the freshwater wetlands of southern Florida, USA. The seasonality of rainfall in these wetlands causes annual fluctuations in the amount of flooded area. We modeled fish populations that differed from each other only in efficiency of resource utilization and dispersal ability. The simulations showed that these trade-offs, along with the spatial and temporal variability of the environment, allow coexistence of several species competing exploitatively for a common resource type. This mechanism, while sharing some characteristics with other mechanisms proposed for coexistence of competing species, is novel in detail. Simulated fish densities resembled patterns observed in Everglades empirical data. Cells with hydroperiods less than 6 months accumulated negligible fish biomass. One unique model result was that, when multiple species coexisted, it was possible for one of the coexisting species to have both lower local resource utilization efficiency and lower dispersal ability than one of the other species. This counterintuitive result is a consequence of stronger effects of other competitors on the superior species. ?? 2005 NRC.
Population dynamics of the Laysan and other albatrosses in the North Pacific
Gould, Patrick J.; Hobbs, Rod; Ito, J.; Shaw, W.; Burgner, R.L.
1993-01-01
Laysan albatrosses (Diomedea immutabilis) are among the most prominent bird species which interact with commercial fisheries in the North Pacific. They are attracted to fishing nets and vessels and feed extensively on animals caught in nets, waste fish, offal, and refuse discarded from vessels. Approximately 17,500 individuals were killed in the five major high seas driftnet fisheries in 1990. Laysan albatross numbers are still increasing after being decimated in the early 1900's. Mortality in the high seas driftnet fisheries is reducing the recover rate by an estimated 0.4 to 1.6% per year depending on the intrinsic growth rate of the population. The impact of the fisheries is thought to be more severe on the less abundant black-footed albatross (Diomedea nigripes) which is also increasing but at a lower rate. No driftnet mortalities have been reported for the short-tailed albatross (Diomedea albatrus).
Partial migration: growth varies between resident and migratory fish.
Gillanders, Bronwyn M; Izzo, Christopher; Doubleday, Zoë A; Ye, Qifeng
2015-03-01
Partial migration occurs in many taxa and ecosystems and may confer survival benefits. Here, we use otolith chemistry data to determine whether fish from a large estuarine system were resident or migratory, and then examine whether contingents display differences in modelled growth based on changes in width of otolith growth increments. Sixty-three per cent of fish were resident based on Ba : Ca of otoliths, with the remainder categorized as migratory, with both contingents distributed across most age/size classes and both sexes, suggesting population-level bet hedging. Migrant fish were in slightly better condition than resident fish based on Fulton's K condition index. Migration type (resident versus migratory) was 56 times more likely to explain variation in growth than a model just incorporating year- and age-related growth trends. While average growth only varied slightly between resident and migratory fish, year-to-year variation was significant. Such dynamism in growth rates likely drives persistence of both life-history types. The complex relationships in growth between contingents suggest that management of species exhibiting partial migration is challenging, especially in a world subject to a changing climate. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
NASA Astrophysics Data System (ADS)
Watson, James R.; Stock, Charles A.; Sarmiento, Jorge L.
2015-11-01
Modeling the dynamics of marine populations at a global scale - from phytoplankton to fish - is necessary if we are to quantify how climate change and other broad-scale anthropogenic actions affect the supply of marine-based food. Here, we estimate the abundance and distribution of fish biomass using a simple size-based food web model coupled to simulations of global ocean physics and biogeochemistry. We focus on the spatial distribution of biomass, identifying highly productive regions - shelf seas, western boundary currents and major upwelling zones. In the absence of fishing, we estimate the total ocean fish biomass to be ∼ 2.84 ×109 tonnes, similar to previous estimates. However, this value is sensitive to the choice of parameters, and further, allowing fish to move had a profound impact on the spatial distribution of fish biomass and the structure of marine communities. In particular, when movement is implemented the viable range of large predators is greatly increased, and stunted biomass spectra characterizing large ocean regions in simulations without movement, are replaced with expanded spectra that include large predators. These results highlight the importance of considering movement in global-scale ecological models.
Coral–algal phase shifts alter fish communities and reduce fisheries production
Ainsworth, Cameron H; Mumby, Peter J
2015-01-01
Anthropogenic stress has been shown to reduce coral coverage in ecosystems all over the world. A phase shift towards an algae-dominated system may accompany coral loss. In this case, the composition of the reef-associated fish assemblage will change and human communities relying on reef fisheries for income and food security may be negatively impacted. We present a case study based on the Raja Ampat Archipelago in Eastern Indonesia. Using a dynamic food web model, we simulate the loss of coral reefs with accompanied transition towards an algae-dominated state and quantify the likely change in fish populations and fisheries productivity. One set of simulations represents extreme scenarios, including 100% loss of coral. In this experiment, ecosystem changes are driven by coral loss itself and a degree of habitat dependency by reef fish is assumed. An alternative simulation is presented without assumed habitat dependency, where changes to the ecosystem are driven by historical observations of reef fish communities when coral is lost. The coral–algal phase shift results in reduced biodiversity and ecosystem maturity. Relative increases in the biomass of small-bodied fish species mean higher productivity on reefs overall, but much reduced landings of traditionally targeted species. PMID:24953835
Bartolino, Valerio; Tian, Huidong; Bergström, Ulf; Jounela, Pekka; Aro, Eero; Dieterich, Christian; Meier, H. E. Markus; Cardinale, Massimiliano; Bland, Barbara
2017-01-01
Understanding the mechanisms of spatial population dynamics is crucial for the successful management of exploited species and ecosystems. However, the underlying mechanisms of spatial distribution are generally complex due to the concurrent forcing of both density-dependent species interactions and density-independent environmental factors. Despite the high economic value and central ecological importance of cod in the Baltic Sea, the drivers of its spatio-temporal population dynamics have not been analytically investigated so far. In this paper, we used an extensive trawl survey dataset in combination with environmental data to investigate the spatial dynamics of the distribution of the Eastern Baltic cod during the past three decades using Generalized Additive Models. The results showed that adult cod distribution was mainly affected by cod population size, and to a minor degree by small-scale hydrological factors and the extent of suitable reproductive areas. As population size decreases, the cod population concentrates to the southern part of the Baltic Sea, where the preferred more marine environment conditions are encountered. Using the fitted models, we predicted the Baltic cod distribution back to the 1970s and a temporal index of cod spatial occupation was developed. Our study will contribute to the management and conservation of this important resource and of the ecosystem where it occurs, by showing the forces shaping its spatial distribution and therefore the potential response of the population to future exploitation and environmental changes. PMID:28207804
Warm oceanographic anomalies and fishing pressure drive seabird nesting north
Velarde, Enriqueta; Ezcurra, Exequiel; Horn, Michael H.; Patton, Robert T.
2015-01-01
Parallel studies of nesting colonies in Mexico and the United States show that Elegant Terns (Thalasseus elegans) have expanded from the Gulf of California Midriff Island Region into Southern California, but the expansion fluctuates from year to year. A strong inverse relationship between nesting pairs in three Southern California nesting areas [San Diego saltworks, Bolsa Chica Ecological Reserve, and Los Angeles Harbor (1991 to 2014)] and Isla Rasa in the Midriff (1980 to 2014) shows that terns migrate northward when confronting warm oceanographic anomalies (>1.0°C), which may decrease fish availability and hamper nesting success. Migration pulses are triggered by sea surface temperature anomalies localized in the Midriff and, secondarily, by reductions in the sardine population as a result of intensive fishing. This behavior is new; before year 2000, the terns stayed in the Midriff even when oceanographic conditions were adverse. Our results show that terns are responding dynamically to rapidly changing oceanographic conditions and fish availability by migrating 600 km northwest in search of more productive waters. PMID:26601193
Wildhaber, Mark L.; Lamberson, Peter J.
2004-01-01
Various mechanisms of habitat choice in fishes based on food and/or temperature have been proposed: optimal foraging for food alone; behavioral thermoregulation for temperature alone; and behavioral energetics and discounted matching for food and temperature combined. Along with development of habitat choice mechanisms, there has been a major push to develop and apply to fish populations individual-based models that incorporate various forms of these mechanisms. However, it is not known how the wide variation in observed and hypothesized mechanisms of fish habitat choice could alter fish population predictions (e.g. growth, size distributions, etc.). We used spatially explicit, individual-based modeling to compare predicted fish populations using different submodels of patch choice behavior under various food and temperature distributions. We compared predicted growth, temperature experience, food consumption, and final spatial distribution using the different models. Our results demonstrated that the habitat choice mechanism assumed in fish population modeling simulations was critical to predictions of fish distribution and growth rates. Hence, resource managers who use modeling results to predict fish population trends should be very aware of and understand the underlying patch choice mechanisms used in their models to assure that those mechanisms correctly represent the fish populations being modeled.
Bunnell, D.B.; Madenjian, C.P.; Holuszko, J.D.; Adams, J.V.; French, J. R. P.
2009-01-01
Lake Michigan was invaded by zebra mussels (Dreissena polymorpha) in the late 1980s and then followed by quagga mussels (D. bugensis) around 1997. Through 2000, both species (herein Dreissena) were largely restricted to depths less than 50??m. Herein, we provide results of an annual lake-wide bottom trawl survey in Lake Michigan that reveal the relative biomass and depth distribution of Dreissena between 1999 and 2007 (although biomass estimates from a bottom trawl are biased low). Lake-wide mean biomass density (g/m2) and mean depth of collection revealed no trend between 1999 and 2003 (mean = 0.7??g/m2 and 37??m, respectively). Between 2004 and 2007, however, mean lake-wide biomass density increased from 0.8??g/m2 to 7.0??g/m2, because of increased density at depths between 30 and 110??m, and mean depth of collection increased from 42 to 77??m. This pattern was confirmed by a generalized additive model. Coincident with the Dreissena expansion that occurred beginning in 2004, fish biomass density (generally planktivores) declined 71% between 2003 and 2007. Current understanding of fish population dynamics, however, indicates that Dreissena expansion is not the primary explanation for the decline of fish, and we provide a species-specific account for more likely underlying factors. Nonetheless, future sampling and research may reveal a better understanding of the potential negative interactions between Dreissena and fish in Lake Michigan and elsewhere.
Stability and Bifurcation of a Fishery Model with Crowley-Martin Functional Response
NASA Astrophysics Data System (ADS)
Maiti, Atasi Patra; Dubey, B.
To understand the dynamics of a fishery system, a nonlinear mathematical model is proposed and analyzed. In an aquatic environment, we considered two populations: one is prey and another is predator. Here both the fish populations grow logistically and interaction between them is of Crowley-Martin type functional response. It is assumed that both the populations are harvested and the harvesting effort is assumed to be dynamical variable and tax is considered as a control variable. The existence of equilibrium points and their local stability are examined. The existence of Hopf-bifurcation, stability and direction of Hopf-bifurcation are also analyzed with the help of Center Manifold theorem and normal form theory. The global stability behavior of the positive equilibrium point is also discussed. In order to find the value of optimal tax, the optimal harvesting policy is used. To verify our analytical findings, an extensive numerical simulation is carried out for this model system.
Telomere dynamics in wild brown trout: effects of compensatory growth and early growth investment.
Näslund, Joacim; Pauliny, Angela; Blomqvist, Donald; Johnsson, Jörgen I
2015-04-01
After a period of food deprivation, animals often respond with a period of faster than normal growth. Such responses have been suggested to result in decreased chromosomal maintenance, which in turn may affect the future fitness of an individual. Here, we present a field experiment in which a food deprivation period of 24 days was enforced on fish from a natural population of juvenile brown trout (Salmo trutta) at the start of the high-growth season in spring. The growth of the food-deprived fish and a non-deprived control group was then monitored in the wild during 1 year. Fin tissue samples were taken at the start of the experiment and 1 year after food deprivation to monitor the telomere dynamics, using reduced telomere length as an indicator of maintenance cost. The food-deprived fish showed partial compensatory growth in both mass and length relative to the control group. However, we found no treatment effects on telomere dynamics, suggesting that growth-compensating brown trout juveniles are able to maintain their telomeres during their second year in the stream. However, body size at the start of the experiment, reflecting growth rate during their first year of life, was negatively correlated with change in telomere length over the following year. This result raises the possibility that rapid growth early in life induces delayed costs in cellular maintenance.
Mixotrophy in red tide algae raphidophytes.
Jeong, Hae Jin
2011-01-01
Marine raphidophytes are common red tide organisms that are distributed worldwide. They are known to be harmful to other plankton and fish and have often caused large-scale fish mortality in many countries. Thus, the population dynamics of raphidophytes is a critical concern for scientists, the aquaculture industry, and government officers from many countries. Raphidophyte growth and mortality should be investigated to understand bloom dynamics. Raphidophytes were thought to be exclusively autotrophic organisms. However, several recent studies have revealed that raphidophytes are able to feed on heterotrophic and autotrophic bacteria, i.e. raphidophytes are mixotrophic algae. Further, high-resolution video microscopy has revealed the mechanism by which raphidophytes feed on bacteria, which involves capturing prey cells in the mucus excreted by mucocysts and engulfing the cells through mucocysts. These discoveries may influence the conventional view on both raphidophyte bloom dynamics and plankton energy flow and carbon cycling. In the present study, I review prey, feeding mechanisms, and ingestion rates of mixotrophic marine raphidophytes. In addition, I examine the ecological significance of raphidophyte mixotrophy. © 2011 The Author(s). Journal of Eukaryotic Microbiology© 2011 International Society of Protistologists.
Susdorf, R; Salama, N K G; Lusseau, D
2017-11-21
Atlantic salmon Salmo salar is an iconic species of high conservation and economic importance. At sea, individuals typically are subject to sea lice infestation, which can have detrimental effects on their host. Over recent decades, the body condition and marine survival in NE Atlantic stocks have generally decreased, reflected in fewer adults returning to rivers, which is partly attributable to sea lice. We developed a deterministic stage-structured population model to assess condition-mediated population dynamics resulting in changing fecundity, age at sexual maturation and marine survival rate. The model is parameterized using data from the North Esk system, north-east Scotland. Both constant and density-dependent juvenile survival rates are considered. We show that even small sea lice-mediated changes in mean body condition of MSW can cause substantial population declines, whereas 1SW condition is less influential. Density dependence alleviates the condition-mediated population effect. The resilience of the population to demographic perturbations declines as adult condition is reduced. Indirect demographic changes in salmonid life-history traits (e.g., body condition) are often considered unimportant for population trajectory. The model shows that Atlantic salmon population dynamics can be highly responsive to sea lice-mediated effects on adult body condition, thus highlighting the importance of non-lethal parasitic long-term effects. © 2017 The Authors Journal of Fish Diseases Published by John Wiley & Sons Ltd.
Lake Ontario benthic prey fish assessment, 2014
Weidel, Brian C.; Walsh, Maureen
2015-01-01
Benthic prey fishes are an important component of the Lake Ontario fish community and serve as vectors that move energy from benthic invertebrates into native and introduced sport fishes. Since the 1970’s, the USGS Lake Ontario Biological Station has assessed benthic fish populations and community dynamics with bottom trawls at depths ranging from 8 m out to depths of 150-225 m along the south and eastern shores of Lake Ontario. From the late 1970’s through the early 2000’s the benthic fish community was dominated by Slimy Sculpin Cottus cognatus, but in 2004 non-native Round Goby Neogobius melanostomus abundance increased and, since then Round Goby have generally been the dominant benthic species. Over the past 10 years the native Deepwater Sculpin Myoxocephalus thompsonii, once considered absent from the lake, have increased. Presently their lake-wide biomass density is equal to, or larger than, Slimy Sculpin. Species-specific assessments found Slimy and Deepwater Sculpin abundance increased slightly in 2014 relative to 2013, while changes in Round Goby abundance differed between spring and fall survey. Recent survey modifications have increased our understanding of benthic prey fish abundance and behavior in Lake Ontario. For instance, increasing the maximum tow depth to 225 m in 2014 improved our understanding of Deepwater Sculpin distribution in this rarely sampled lake habitat.
Evaluating a fish monitoring protocol using state-space hierarchical models
Russell, Robin E.; Schmetterling, David A.; Guy, Chris S.; Shepard, Bradley B.; McFarland, Robert; Skaar, Donald
2012-01-01
Using data collected from three river reaches in Montana, we evaluated our ability to detect population trends and predict fish future fish abundance. Data were collected as part of a long-term monitoring program conducted by Montana Fish, Wildlife and Parks to primarily estimate rainbow (Oncorhynchus mykiss) and brown trout (Salmo trutta) abundance in numerous rivers across Montana. We used a hierarchical Bayesian mark-recapture model to estimate fish abundance over time in each of the three river reaches. We then fit a state-space Gompertz model to estimate current trends and future fish populations. Density dependent effects were detected in 1 of the 6 fish populations. Predictions of future fish populations displayed wide credible intervals. Our simulations indicated that given the observed variation in the abundance estimates, the probability of detecting a 30% decline in fish populations over a five-year period was less than 50%. We recommend a monitoring program that is closely tied to management objectives and reflects the precision necessary to make informed management decisions.
NASA Astrophysics Data System (ADS)
Owens, H.; Skaugset, A. E.
2012-12-01
Resident Coastal Cutthroat trout are ubiquitous in headwater streams across western Oregon. The federal Endangered Species Act lists coastal cutthroat trout as a species of concern and lists habitat modification due to forest management as a cause of population decline. Protection of cutthroat trout is a concern to natural resource managers, yet the dynamics of cutthroat trout populations are complex and poorly understood. Thus, identifying the factors that drive the dynamics of cutthroat trout populations is important to the management of forested headwater watersheds. This poster describes an interdisciplinary study to identify hydrologic determinants of annual abundance, age structure, and growth in resident Cutthroat trout in headwater streams of the western Cascades of southern Oregon. Discharge is a primary variable of interest because it affects habitat volume, stream velocity, channel hydraulics, water quality, channel geomorphology, bed-load stability, and resource availability. Discharge is also affected by forest management activities, specifically timber harvest. The objective of this project is to identify and quantify the influence streamflow has on the abundance of resident cutthroat trout in western Oregon. The study was a part of the Hinkle Creek Paired Watershed Study and took place in the foothills of the Cascade Mountains in the Umpqua River basin from 2004-2011. Streamflow and fish populations were measured in the streams of a 3rd order, 1,950 hectare watershed. The study design was a nested paired watershed study that allowed the investigation to occur at multiple spatial and temporal scales. The study watersheds supported harvest-regenerated stands of Douglas-fir (pseudotsuga menziesii) and are part of a larger study to investigate the environmental impacts of contemporary forest practices on fish-bearing headwater streams. Fish populations and channel habitat characteristics were measured throughout the stream network annually. Discharge was measured at eight gaging stations (two 3rd-order and six 2nd-order streams). Stream temperature was measured at 29 locations throughout the study period. Linear regression was used to model potential explanatory variables of discharge, temperature, and habitat characteristics to explain annual trout abundance, age structure, and growth.
NASA Astrophysics Data System (ADS)
Albo-Puigserver, M.; Muñoz, A.; Navarro, J.; Coll, M.; Pethybridge, H.; Sánchez, S.; Palomera, I.
2017-06-01
Small and medium pelagic fishes play a central role in marine food webs by transferring energy from plankton to top predators. In this study, direct calorimetry was used to analyze the energy density of seven pelagic species collected over four seasons from the western Mediterranean Sea: anchovy Engraulis encrasicolus, sardine Sardina pilchardus, round sardinella Sardinella aurita, horse mackerels Trachurus trachurus and T. mediterraneus, and mackerels Scomber scombrus and S. colias. Inter-specific differences in energy density were linked to spawning period, energy allocation strategies for reproduction and growth, and feeding ecologies. Energy density of each species varied over time, with the exception of S. colias, likely due to its high energetic requirements related to migration throughout the year. In general, higher energy density was observed in spring for all species, regardless of their breeding strategy, probably as a consequence of the late-winter phytoplankton bloom. These results provide new insights into the temporal availability of energy in the pelagic ecosystem of the Mediterranean Sea, which are pivotal for understanding how the population dynamics of small and medium pelagic fishes and their predators may respond to environmental changes and fishing impacts. In addition, the differences found in energy density between species highlighted the importance of using species specific energy-values in ecosystem assessment tools such as bioenergetic and food web models.
McGilliard, Carey R; Punt, André E; Hilborn, Ray; Essington, Tim
2017-10-01
Many rockfish species are long-lived and thought to be susceptible to being overfished. Hypotheses about the importance of older female rockfish to population persistence have led to arguments that marine reserves are needed to ensure the sustainability of rockfish populations. However, the implications of these hypotheses for rockfish population dynamics are still unclear. We modeled two mechanisms by which reducing the proportion of older fish in a population has been hypothesized to influence sustainability, and explored whether these mechanisms influenced mean population dynamics and recruitment variability. We explored whether populations with these mechanisms could be managed more sustainably with a marine reserve in addition to a constant fishing mortality rate (F) than with a constant F alone. Both hypotheses can be seen as portfolio effects whereby risk of recruitment failure is spread over a "portfolio" of maternal ages. First, we modeled a spawning window effect whereby mothers of different ages spawned in different times or locations (windows) with local environmental conditions. Second, we modeled an offspring size effect whereby older mothers produced larger offspring than younger mothers, where length of a starvation period over which offspring could survive increased with maternal age. Recruitment variability resulting from both models was 55-65% lower than for models without maternal age-related portfolio effects in the absence of fishing and increased with increases in Fs for both models. An offspring size effect caused lower output reproductive rates such that the specified reproductive rate input as a model parameter was no longer the realized rate measured as the reproductive rate observed in model results; this quirk is not addressed in previous analyses of offspring size effects. We conducted a standardization such that offspring size effect and control models had the same observed reproductive rates. A comparison of long-term catch, the probability of falling below a biomass threshold, and recruitment variability over a range of exploitation rates for models with an age-related portfolio effect showed no benefit of a marine reserve implemented in addition to a constant F (as compared to a constant F alone) for populations with sedentary adults and sedentary or mobile larvae. © 2017 by the Ecological Society of America.
Forestry practices and aquatic biodiversity: Fish
Gresswell, Robert E.
2005-01-01
In the Pacific Northwest, fish communities are found in a diverse array of aquatic habitats ranging from the large coastal rivers of the temperate rainforests, to the fragmented and sometimes ephemeral streams of the xeric interior basins, and high-elevation streams and lakes in the mountainous areas (Rieman et al. 2003). Only high-elevation lakes and streams isolated above barriers to fish passage remained historically devoid of fish because they were never invaded following Pleistocene glaciation (Smith 1981). Despite this widespread distribution and once great population abundances, taxonomic diversity of fishes in these forested systems is naturally lower than in aquatic habitats in the eastern U.S. (Reeves, Bisson, and Dambacher 1998). Interactions among factors that influence species richness in aquatic systems (e.g., basin size, long-term stability of habitat, and barriers to colonization; Smith 1981) continue to influence the occurrence and persistence of fishes in these systems today. Consequently, the larger low-elevation rivers and estuaries support the greatest variety of fish species. In the high-elevation tributary streams, fish communities are less complex because these aquatic systems were less climatically and geologically stable, and fish populations were smaller and more prone to local extirpation. Furthermore, barriers to fish passage inhibited dispersal and colonization (Smith 1981). Streams in forested landscapes generally support salmon and trout, Oncorhynchus spp., whitefish Prosopium spp., sculpins Cottus spp., suckers Catostomus spp., and minnows (Cyprinidae), but in some of the colder streams, chars (e.g., Salvelinus confluentus and Salvelinus malma) and lampreys (Petromyzontidae)may also occur (Rieman et al. 2003).Although biodiversity defined in terms of fish species richness is low in the Pacific Northwest, intraspecific variability is high, and polytypic fish species are common in the diverse aquatic habitats of the region. For example, the salmonids in the coastal rivers and streams, and the larger interconnected streams, rivers, and lakes of the interior exhibit a variety of ecotypes and migratory life histories (Healey 1986; Trotter 1989; Larson and McIntire 1993; Northcote 1997). This life-history variation appears to be associated with adaptation to spatial and temporal variation in environment (e.g., Schaffer and Elson 1975; Carl and Healey 1984; Beacham and Murray 1987), and there is some evidence of the genetic heritability of life-history traits (Carl and Healey 1984; Gharrett and Smoker 1993; Hankin, Nicholas, and Downey 1993). Persistence of any level of biological organization (e.g., life-history type, population, metapopulation, subspecies, species, community) is related to the interaction of environmental and biological components, and intraspecific diversity is a means of spreading risk (sensu den Boer 1968) of extirpation in dynamic environments (Gresswell 1999). Unfortunately, despite the broad distribution and extensive intraspecific diversity, persistence of native fishes is uncertain in the Pacific Northwest. Many populations of anadromous salmonids, once synonymous with vigorous biological communities throughout the region, are threatened with extinction (Nehlsen, Williams, and Lichatowich 1991; Frissell 1993; Thurow, Lee, and Rieman 1997). Furthermore, over half of the native taxa in the Columbia River Basin are either listed under the Endangered Species Act, are being considered for listing, or are deemed sensitive by the management agencies (Lee et al. 1997; Thurow, Lee, and Rieman 1997). Potamodromous species like bull trout Salvelinus confluentus are estimated to occur as strong populations in less than 5% of their potential range (Rieman, Lee, and Thurow 1997). Although not currently listed under the endangered species list, the coastal cutthroat trout Oncorhynchus clarki is managed as a sensitive species in Oregon and California (Hall, Bisson, and Gresswell 1997). Native non-game fishes have rarely been monitored, but populations of species such as large-scale suckers (Catostomus macrocheilus), squawfish (Ptychocheilus umpquae), and Pacific lamprey (Lampetra tridentata) also are declining in some drainages (Oregon Department of Fish and Wildlife, unpublished data).
Hickman, Gary D; Brown, Mary L
2002-06-07
Two multimetric indices have been developed to help address fish community (reservoir fish assemblage index [RFAI]) and individual population quality (sport fishing index [SFI]) in Tennessee River reservoirs. The RFAI, with characteristics similar to the index of biotic integrity (IBI) used in stream fish community determinations, was developed to monitor the existing condition of resident fish communities. The index, which incorporates standardized electrofishing of littoral areas and experimental gill netting for limnetic bottom-dwelling species, has been used to determine residential fish community response to various anthropogenic impacts in southeastern reservoirs. The SFI is a multimetric index designed to address the quality of the fishery for individual resident sport fish species in a particular lake or reservoir[4]. The SFI incorporates measures of fish population aspects and angler catch and pressure estimates. This paper proposes 70% of the maximum RFAI score and 10% above the average SFI score for individual species as "screening" endpoints for balanced indigenous populations (BIP) or adverse environmental impact (AEI). Endpoints for these indices indicate: (1) communities/populations are obviously balanced indigenous populations (BIP) indicating no adverse environmental impact (AEI), or are "screened out"; (2) communities/populations are considered to be potentially impacted; and (3) where the resident fish community/population should be considered adversely impacted. Suggestions are also made concerning how examination of individual metric scores can help determine the source or cause of the impact.
Quantifying the Human Impacts on Papua New Guinea Reef Fish Communities across Space and Time.
Drew, Joshua A; Amatangelo, Kathryn L; Hufbauer, Ruth A
2015-01-01
Describing the drivers of species loss and of community change are important goals in both conservation and ecology. However, it is difficult to determine whether exploited species decline due to direct effects of harvesting or due to other environmental perturbations brought about by proximity to human populations. Here we quantify differences in species richness of coral reef fish communities along a human population gradient in Papua New Guinea to understand the relative impacts of fishing and environmental perturbation. Using data from published species lists we categorize the reef fishes as either fished or non-fished based on their body size and reports from the published literature. Species diversity for both fished and non-fished groups decreases as the size of the local human population increases, and this relationship is stronger in species that are fished. Additionally, comparison of modern and museum collections show that modern reef communities have proportionally fewer fished species relative to 19th century ones. Together these findings show that the reef fish communities of Papua New Guinea experience multiple anthropogenic stressors and that even at low human population levels targeted species experience population declines across both time and space.
Porter, Nicholas J.; Bonvechio, Timothy F.; McCormick, Joshua L.; Quist, Michael
2014-01-01
The objectives of this study were to evaluate the population dynamics of bowfin (Amia calva) in Lake Lindsay Grace, Georgia, and to compare those dynamics to other bowfin populations. Relative abundance of bowfin sampled in 2010 in Lake Lindsay Grace was low and variable (mean±SD; 2.7±4.7 fish per hour of electrofishing). Total length (TL) of bowfin collected in Lake Lindsay Grace varied from 233–683 mm. Age of bowfin in Lake Lindsay Grace varied from 0–5 yr. Total annual mortality (A) was estimated at 68%. Both sexes appeared to be fully mature by age 2 with gonadosomatic index values above 8 for females and close to 1 for males. The majority of females were older, longer, and heavier than males. Bowfin in Lake Lindsay Grace had fast growth up to age 4 and higher total annual mortality than the other populations examined in this study. A chi-square test indicated that size structure of bowfin from Lake Lindsay Grace was different than those of a Louisiana population and two bowfin populations from the upper Mississippi River. To further assess bowfin size structure, we proposed standard length (i.e., TL) categories: stock (200 mm, 8 inches), quality (350 mm, 14 inches), preferred (460 mm, 18 inches), memorable (560 mm, 22, inches), and trophy (710 mm, 28 inches). Because our knowledge of bowfin ecology is limited, additional understanding of bowfin population dynamics provides important insight that can be used in management of bowfin across their distribution.
Hoff, Michael H.; Meyer, Michael W.; Van Stappen, Julie; Fratt, Thomas W.
2004-01-01
Bald eagle (Haliaeetus leucocephalus) abundance declined in the 1950s and 1960s along the Wisconsin waters of Lake Superior, and were nearly absent along Wisconsin's Lake Superior shoreline. The population began to increase again between 1980 and 1983, and since then bald eagles nesting on islands along Wisconsin's Lake Superior shoreline (i.e., Apostle Islands) reproduced at a lower rate than have those nesting along the mainland shoreline of the lake and inland. Recent research indicated that bioaccumulation of toxic chemicals in the aquatic food chain no longer limits bald eagle reproduction there, and that productivity at island nests was lower than at mainland nests and inland nests as the result of low food availability. Management agencies have sought models that accurately predict productivity and explain ecological relationships, but no satisfactory models had previously been developed. Modeling was conducted here to determine which factors best explained productivity variability. The Ricker stock-recruitment model derived from only the bivariate breeding pair and productivity data explained only 1% of the variability in productivity data. The functional relationship that explained the greatest amount of productivity variation (83%) included the number of breeding pairs, burbot (Lota lota) biomass, longnose sucker (Catostomus catostomus) biomass, and commercial harvest of nontarget fishes. Model results were interpreted to mean that productivity was positively affected by populations of burbot and longnose sucker, which are important prey items, and by commercial fishermen feeding nontarget fish to bald eagles. Harvest of nontarget fishes by tribal fishermen and burbot and longnose sucker populations have not tended to change during the entire study period, although the burbot population has declined since 1991. Therefore, bald eagle productivity is not predicted to increase unless burbot, longnose sucker, or other preferred prey of bald eagles increases in the Apostle Islands.
Dynamics of alewives in Lake Ontario following a mass mortality
O'Gorman, Robert; Schneider, Clifford P.
1986-01-01
The U.S. Fish and Wildlife Service and the New York Department of Environmental Conservation assessed the population of alewives Alosa pseudoharengus in U.S. waters of Lake Ontario during 1976–1982 with bottom trawls. Alewives were abundant in 1976 but a die-off greatly reduced their numbers during the winter of 1976–1977. The population quickly recovered, however, adult abundance increasing nearly sevenfold during 1978–1981. In spring 1981 the bottom population in southern Lake Ontario was estimated to be 5.25 × 109 fish weighing 128,500 t. Estimated average alewife biomass per hectare during 1978–1982 far exceeded the estimates for either Lake Michigan during 1967–1982 or western Lake Huron during 1973–1982. Recruitment of age-II fish to the population was affected by abundance of adults in two ways: (1) the number of yearlings produced was directly related to adult abundance at low population levels but inversely related at high population levels; and (2) survival of yearlings to age II was inversely related to adult abundance. Growth in 1977 was exceptional, leaving a wide, unmistakable band on scales of the previously slow-growing adults. This wide growth zone served as a marker to identify survivors of the 1976–1977 die-off and to show that each year after 1978 a successively larger proportion of survivors was failing to grow in length or to form an annulus (54% in 1979, 96% in 1980, and 100% in 1981). There was no marker on scales of alewives recruited after the die-off, but the apparent age composition of our catches strongly suggested that most of them also failed to grow in 1981.
Scale-dependent seasonal pool habitat use by sympatric Wild Brook Trout and Brown Trout populations
Davis, Lori A.; Wagner, Tyler
2016-01-01
Sympatric populations of native Brook Trout Salvelinus fontinalis and naturalized Brown Trout Salmo truttaexist throughout the eastern USA. An understanding of habitat use by sympatric populations is of importance for fisheries management agencies because of the close association between habitat and population dynamics. Moreover, habitat use by stream-dwelling salmonids may be further complicated by several factors, including the potential for fish to display scale-dependent habitat use. Discrete-choice models were used to (1) evaluate fall and early winter daytime habitat use by sympatric Brook Trout and Brown Trout populations based on available residual pool habitat within a stream network and (2) assess the sensitivity of inferred habitat use to changes in the spatial scale of the assumed available habitat. Trout exhibited an overall preference for pool habitats over nonpool habitats; however, the use of pools was nonlinear over time. Brook Trout displayed a greater preference for deep residual pool habitats than for shallow pool and nonpool habitats, whereas Brown Trout selected for all pool habitat categories similarly. Habitat use by both species was found to be scale dependent. At the smallest spatial scale (50 m), habitat use was primarily related to the time of year and fish weight. However, at larger spatial scales (250 and 450 m), habitat use varied over time according to the study stream in which a fish was located. Scale-dependent relationships in seasonal habitat use by Brook Trout and Brown Trout highlight the importance of considering scale when attempting to make inferences about habitat use; fisheries managers may want to consider identifying the appropriate spatial scale when devising actions to restore and protect Brook Trout populations and their habitats.
Using high-resolution satellite imagery to assess populations of animals in the Antarctic
NASA Astrophysics Data System (ADS)
LaRue, Michelle Ann
The Southern Ocean is one of the most rapidly-changing ecosystems on the planet due to the effects of climate change and commercial fishing for ecologically-important krill and fish. It is imperative that populations of indicator species, such as penguins and seals, be monitored at regional- to global scales to decouple the effects of climate and anthropogenic changes for appropriate ecosystem-based management of the Southern Ocean. Remotely monitoring populations through high-resolution satellite imagery is currently the only feasible way to gain information about population trends of penguins and seals in Antarctica. In my first chapter, I review the literature where high-resolution satellite imagery has been used to assess populations of animals in polar regions. Building on this literature, my second chapter focuses on estimating changes in abundance in the Weddell seal population in Erebus Bay. I found a strong correlation between ground and satellite counts, and this finding provides an alternate method for assessing populations of Weddell seals in areas where less is known about population status. My third chapter explores how size of the guano stain of Adelie penguins can be used to predict population size. Using high-resolution imagery and ground counts, I built a model to estimate the breeding population of Adelie penguins using a supervised classification to estimate guano size. These results suggest that the size of guano stain is an accurate predictor of population size, and can be applied to estimate remote Adelie penguin colonies. In my fourth chapter, I use air photos, satellite imagery, climate and mark-resight data to determine that climate change has positively impacted the population of Adelie penguins at Beaufort Island through a habitat release that ultimately affected the dynamics within the southern Ross Sea metapopulation. Finally, for my fifth chapter I combined the literature with observations from aerial surveys and satellite imagery to determine that emperor penguins are not philopatric. These results have implications for interpreting long-term modeling studies and I suggest that future research should account for metapopulation dynamics within emperor penguin populations. Combined, my dissertation provides resources and new insights for effective management of the Southern Ocean ecosystem.
Annual changes in seasonal river water temperatures in the eastern and western United States
Wagner, Tyler; Midway, Stephen R.; Whittier, Joanna B.; DeWeber, Jefferson T.; Paukert, Craig P.
2017-01-01
Changes in river water temperatures are anticipated to have direct effects on thermal habitat and fish population vital rates, and therefore, understanding temporal trends in water temperatures may be necessary for predicting changes in thermal habitat and how species might respond to such changes. However, many investigations into trends in water temperatures use regression methods that assume long-term monotonic changes in temperature, when in fact changes are likely to be nonmonotonic. Therefore, our objective was to highlight the need and provide an example of an analytical method to better quantify the short-term, nonmonotonic temporal changes in thermal habitat that are likely necessary to determine the effects of changing thermal conditions on fish populations and communities. To achieve this objective, this study uses Bayesian dynamic linear models (DLMs) to examine seasonal trends in river water temperatures from sites located in the eastern and western United States, regions that have dramatically different riverine habitats and fish communities. We estimated the annual rate of change in water temperature and found little evidence of seasonal changes in water temperatures in the eastern U.S. We found more evidence of warming for river sites located in the western U.S., particularly during the fall and winter seasons. Use of DLMs provided a more detailed view of temporal dynamics in river thermal habitat compared to more traditional methods by quantifying year-to-year changes and associated uncertainty, providing managers with the information needed to adapt decision making to short-term changes in habitat conditions that may be necessary for conserving aquatic resources in the face of a changing climate.
NASA Astrophysics Data System (ADS)
Politikos, D.; Somarakis, S.; Tsiaras, K. P.; Giannoulaki, M.; Petihakis, G.; Machias, A.; Triantafyllou, G.
2015-11-01
A 3-D full life cycle population model for the North Aegean Sea (NAS) anchovy stock is presented. The model is two-way coupled with a hydrodynamic-biogeochemical model (POM-ERSEM). The anchovy life span is divided into seven life stages/age classes. Embryos and early larvae are passive particles, but subsequent stages exhibit active horizontal movements based on specific rules. A bioenergetics model simulates the growth in both the larval and juvenile/adult stages, while the microzooplankton and mesozooplankton fields of the biogeochemical model provide the food for fish consumption. The super-individual approach is adopted for the representation of the anchovy population. A dynamic egg production module, with an energy allocation algorithm, is embedded in the bioenergetics equation and produces eggs based on a new conceptual model for anchovy vitellogenesis. A model simulation for the period 2003-2006 with realistic initial conditions reproduced well the magnitude of population biomass and daily egg production estimated from acoustic and daily egg production method (DEPM) surveys, carried out in the NAS during June 2003-2006. Model simulated adult and egg habitats were also in good agreement with observed spatial distributions of acoustic biomass and egg abundance in June. Sensitivity simulations were performed to investigate the effect of different formulations adopted for key processes, such as reproduction and movement. The effect of the anchovy population on plankton dynamics was also investigated, by comparing simulations adopting a two-way or a one-way coupling of the fish with the biogeochemical model.
Adams, S Marshall; Ham, Kenneth D
2011-06-01
Recovery dynamics in a previously disturbed stream were investigated to determine the influence of a series of remedial actions on stream recovery and to evaluate the potential application of bioindicators as an environmental management tool. A suite of bioindicators, representing five different functional response groups, were measured annually for a sentinel fish species over a 15 year period during which a variety of remedial and pollution abatement actions were implemented. Trends in biochemical, physiological, condition, growth, bioenergetic, and nutritional responses demonstrated that the health status of a sentinel fish species in the disturbed stream approached that of fish in the reference stream by the end of the study. Two major remedial actions, dechlorination and water flow management, had large effects on stream recovery resulting in an improvement in the bioenergetic, disease, nutritional, and organ condition status of the sentinel fish species. A subset of bioindicators responded rather dramatically to temporal trends affecting all sites, but some indicators showed little response to disturbance or to restoration activities. In assessing recovery of aquatic systems, application of appropriate integrative structural indices along with a variety of sensitive functional bioindicators should be used to understand the mechanistic basis of stress and recovery and to reduce the risk of false positives. Understanding the mechanistic processes involved between stressors, stress responses of biota, and the recovery dynamics of aquatic systems reduces the uncertainty involved in environmental management and regulatory decisions resulting in an increased ability to predict the consequences of restoration and remedial actions for aquatic systems.
Gregg, J.L.; Vollenweider, Johanna J.; Grady, C.A.; Heintz, R.A.; Hershberger, P.K.
2011-01-01
The effects of temperature and infection by Ichthyophonus were examined in juvenile Pacific herring (Clupea pallasii) maintained under simulated overwinter fasting conditions. In addition to defining parameters for a herring bioenergetics model (discussed in Vollenweider et al. this issue), these experiments provided new insights into factors influencing the infectivity and virulence of the parasite Ichthyophonus. In groups of fish with established disease, temperature variation had little effect on disease outcome. Ichthyophonus mortality outpaced that resulting from starvation alone. In newly infected fish, temperature variation significantly changed the mortality patterns related to disease. Both elevated and lowered temperatures suppressed disease-related mortality relative to ambient treatments. When parasite exposure dose decreased, an inverse relationship between infection prevalence and temperature was detected. These findings suggest interplay between temperature optima for parasite growth and host immune function and have implications for our understanding of how Ichthyophonus infections are established in wild fish populations.
Fishing Quotas, Induced Allee Effect, and Fluctuation-Driven Extinction.
Hastings, Harold M; Radin, Michael; Wiandt, Tamas
2017-01-01
We explore the potential of modifications to standard fishery models (for example Gordon-Schafer-Munro) to help understand events such as the collapse of the North Atlantic cod fishery. In particular we find that quota-driven and similar harvesting strategies induce an effective strong Allee effect (collapse if the population falls below a critical level). In the presence of environmental noise, fish population dynamics is similar to a random walk with (non-linear) drift. The expected survival time (first passage time to collapse) is shown to depend sensitively upon the amount of environmental noise and size of the 'safe zone' between the deterministic steady state population and the critical population level at which the system collapses; more precisely it is exponential in the cube of the size of the safe zone divided by the variance of the noise process. Similar scaling can be expected for more survival in more general systems with multiple steady states. Our calculations imply an amplification effect under which small increases in harvest yield large decreases in expected survival time, and one should be cautious in changes in harvesting, especially in fisheries with poor or limited data and fisheries affected by climate change.
Seegert, Sarah E. Zahn; Rosi-Marshall, Emma J.; Baxter, Colden V.; Kennedy, Theodore A.; Hall, Robert O.; Cross, Wyatt F.
2014-01-01
River regulation may mediate the interactions among native and nonnative species, potentially favoring nonnative species and contributing to the decline of native populations. We examined food resource use and diet overlap among small-bodied fishes in the Grand Canyon section of the Colorado River as a first step in evaluating potential resource competition. We compared the diets of the predominant small-bodied fishes (native Speckled Dace Rhinichthys osculus, juvenile Flannelmouth Sucker Catostomus latipinnis, and juvenile Bluehead Sucker C. discobolus, and nonnative Fathead Minnow Pimephales promelas) across seasons at four sites downstream of Glen Canyon Dam using nonmetric multidimensional scaling and Schoener's similarity index. The diets of these fishes included diatoms, amorphous detritus, aquatic invertebrates (especially simuliid and chironomid larvae), terrestrial invertebrates, and terrestrial vegetation. Diets varied with season and were affected by high turbidity. Fish consumed more amorphous detritus and terrestrial vegetation during the summer monsoon season (July–September), when turbidity was higher. The diets of all species overlapped, but there was large variation in the degree of overlap. The diets of juvenile suckers and Fathead Minnows were most similar, while Speckled Dace had relatively distinct diets. The differences took the form of higher proportions of diatoms and amorphous detritus in the diets of Bluehead Suckers and Fathead Minnows and higher proportions of simuliids and chironomids in those of Speckled Dace. If food resources are or become limiting, diet overlap suggests that competition may occur among native and nonnative species, which could have implications for the population dynamics of these fishes and for the management of the Colorado River ecosystem in Grand Canyon.
Assessing connectivity of estuarine fishes based on stable isotope ratio analysis
NASA Astrophysics Data System (ADS)
Herzka, Sharon Z.
2005-07-01
Assessing connectivity is fundamental to understanding the population dynamics of fishes. I propose that isotopic analyses can greatly contribute to studies of connectivity in estuarine fishes due to the high diversity of isotopic signatures found among estuarine habitats and the fact that variations in isotopic composition at the base of a food web are reflected in the tissues of consumers. Isotopic analysis can be used for identifying nursery habitats and estimating their contribution to adult populations. If movement to a new habitat is accompanied by a shift to foods of distinct isotopic composition, recent immigrants and residents can be distinguished based on their isotopic ratios. Movement patterns thus can be reconstructed based on information obtained from individuals. A key consideration is the rate of isotopic turnover, which determines the length of time that an immigrant to a given habitat will be distinguishable from a longtime resident. A literature survey indicated that few studies have measured turnover rates in fishes and that these have focused on larvae and juveniles. These studies reveal that biomass gain is the primary process driving turnover rates, while metabolic turnover is either minimal or undetectable. Using a simple dilution model and biomass-specific growth rates, I estimated that young fishes with fast growth rates will reflect the isotopic composition of a new diet within days or weeks. Older or slower-growing individuals may take years or never fully equilibrate. Future studies should evaluate the factors that influence turnover rates in fishes during various stages of the life cycle and in different tissues, as well as explore the potential for combining stable isotope and otolith microstructure analyses to examine the relationship between demographic parameters, movement and connectivity.
NASA Astrophysics Data System (ADS)
Ribera, M.
2016-02-01
Identification of biological hotspots may be a necessary step toward ecosystem-based management goals, as these often signal underlying processes that aggregate or stimulate resources in a particular location. However, previously used metrics to locate these hotspots are not easily adapted to local marine datasets, in part due to the high spatial and temporal variability of phytoplankton populations. While most fish species in temperate regions are well adapted to the seasonal variability of phytoplankton abundance, it is the variability beyond this predictable pattern (i.e. anomalies) that may heavily impact the abundance and spatial distribution of organisms higher up the food chain. The objective of this study was to identify local-scale biological hotspots in a region in the western side of the Gulf of Maine using remote sensing chlorophyll-a data (from MERIS sensor), and to study the spatial overlap between these hotspots and high concentrations of fish abundance (derived from VTR dataset). For this reason, we defined a new hotspot metric that identified as a hotspot any area that consistently exhibited high-magnitude anomalies through time, a sign of highly dynamic communities. We improved on previous indices by minimizing the effect that different means and variances across space may have on the results, a situation that often occurs when comparing coastal and offshore systems. Results show a significant spatial correlation between pelagic fish abundance and aggregations of primary productivity. Spatial correlations were also significant between benthic fish abundance and primary productivity hotspots, but only during spring months. We argue that this new hotspot index compliments existing global measures as it helps managers understand the dynamic characteristics of a complex marine system. It also provides a unique metric that is easily compared across space and between different trophic levels, which may facilitate future ecosystem-wide studies.
NASA Astrophysics Data System (ADS)
Ribera, M.
2016-12-01
Identification of biological hotspots may be a necessary step toward ecosystem-based management goals, as these often signal underlying processes that aggregate or stimulate resources in a particular location. However, previously used metrics to locate these hotspots are not easily adapted to local marine datasets, in part due to the high spatial and temporal variability of phytoplankton populations. While most fish species in temperate regions are well adapted to the seasonal variability of phytoplankton abundance, it is the variability beyond this predictable pattern (i.e. anomalies) that may heavily impact the abundance and spatial distribution of organisms higher up the food chain. The objective of this study was to identify local-scale biological hotspots in a region in the western side of the Gulf of Maine using remote sensing chlorophyll-a data (from MERIS sensor), and to study the spatial overlap between these hotspots and high concentrations of fish abundance (derived from VTR dataset). For this reason, we defined a new hotspot metric that identified as a hotspot any area that consistently exhibited high-magnitude anomalies through time, a sign of highly dynamic communities. We improved on previous indices by minimizing the effect that different means and variances across space may have on the results, a situation that often occurs when comparing coastal and offshore systems. Results show a significant spatial correlation between pelagic fish abundance and aggregations of primary productivity. Spatial correlations were also significant between benthic fish abundance and primary productivity hotspots, but only during spring months. We argue that this new hotspot index compliments existing global measures as it helps managers understand the dynamic characteristics of a complex marine system. It also provides a unique metric that is easily compared across space and between different trophic levels, which may facilitate future ecosystem-wide studies.
Recruitment Variability in North Atlantic Cod and Match-Mismatch Dynamics
Kristiansen, Trond; Drinkwater, Kenneth F.; Lough, R. Gregory; Sundby, Svein
2011-01-01
Background Fisheries exploitation, habitat destruction, and climate are important drivers of variability in recruitment success. Understanding variability in recruitment can reveal mechanisms behind widespread decline in the abundance of key species in marine and terrestrial ecosystems. For fish populations, the match-mismatch theory hypothesizes that successful recruitment is a function of the timing and duration of larval fish abundance and prey availability. However, the underlying mechanisms of match-mismatch dynamics and the factors driving spatial differences between high and low recruitment remain poorly understood. Methodology/Principal Findings We used empirical observations of larval fish abundance, a mechanistic individual-based model, and a reanalysis of ocean temperature data from 1960 to 2002 to estimate the survival of larval cod (Gadus morhua). From the model, we quantified how survival rates changed during the warmest and coldest years at four important cod spawning sites in the North Atlantic. The modeled difference in survival probability was not large for any given month between cold or warm years. However, the cumulative effect of higher growth rates and survival through the entire spawning season in warm years was substantial with 308%, 385%, 154%, and 175% increases in survival for Georges Bank, Iceland, North Sea, and Lofoten cod stocks, respectively. We also found that the importance of match-mismatch dynamics generally increased with latitude. Conclusions/Significance Our analyses indicate that a key factor for enhancing survival is the duration of the overlap between larval and prey abundance and not the actual timing of the peak abundance. During warm years, the duration of the overlap between larval fish and their prey is prolonged due to an early onset of the spring bloom. This prolonged season enhances cumulative growth and survival, leading to a greater number of large individuals with enhanced potential for survival to recruitment. PMID:21408215
Fishes in a changing world: learning from the past to promote sustainability of fish populations.
Gordon, T A C; Harding, H R; Clever, F K; Davidson, I K; Davison, W; Montgomery, D W; Weatherhead, R C; Windsor, F M; Armstrong, J D; Bardonnet, A; Bergman, E; Britton, J R; Côté, I M; D'agostino, D; Greenberg, L A; Harborne, A R; Kahilainen, K K; Metcalfe, N B; Mills, S C; Milner, N J; Mittermayer, F H; Montorio, L; Nedelec, S L; Prokkola, J M; Rutterford, L A; Salvanes, A G V; Simpson, S D; Vainikka, A; Pinnegar, J K; Santos, E M
2018-03-01
Populations of fishes provide valuable services for billions of people, but face diverse and interacting threats that jeopardize their sustainability. Human population growth and intensifying resource use for food, water, energy and goods are compromising fish populations through a variety of mechanisms, including overfishing, habitat degradation and declines in water quality. The important challenges raised by these issues have been recognized and have led to considerable advances over past decades in managing and mitigating threats to fishes worldwide. In this review, we identify the major threats faced by fish populations alongside recent advances that are helping to address these issues. There are very significant efforts worldwide directed towards ensuring a sustainable future for the world's fishes and fisheries and those who rely on them. Although considerable challenges remain, by drawing attention to successful mitigation of threats to fish and fisheries we hope to provide the encouragement and direction that will allow these challenges to be overcome in the future. © 2018 The Authors. Journal of Fish Biology published by John Wiley & Sons Ltd on behalf of The Fisheries Society of the British Isles.
Gould, William R.; Kendall, William L.
2013-01-01
Capture-recapture methods were initially developed to estimate human population abundance, but since that time have seen widespread use for fish and wildlife populations to estimate and model various parameters of population, metapopulation, and disease dynamics. Repeated sampling of marked animals provides information for estimating abundance and tracking the fate of individuals in the face of imperfect detection. Mark types have evolved from clipping or tagging to use of noninvasive methods such as photography of natural markings and DNA collection from feces. Survival estimation has been emphasized more recently as have transition probabilities between life history states and/or geographical locations, even where some states are unobservable or uncertain. Sophisticated software has been developed to handle highly parameterized models, including environmental and individual covariates, to conduct model selection, and to employ various estimation approaches such as maximum likelihood and Bayesian approaches. With these user-friendly tools, complex statistical models for studying population dynamics have been made available to ecologists. The future will include a continuing trend toward integrating data types, both for tagged and untagged individuals, to produce more precise and robust population models.
Comparative recruitment dynamics of Alewife and Bloater in Lakes Michigan and Huron
Collingsworth, Paris D.; Bunnell, David B.; Madenjian, Charles P.; Riley, Stephen C.
2014-01-01
The predictive power of recruitment models often relies on the identification and quantification of external variables, in addition to stock size. In theory, the identification of climatic, biotic, or demographic influences on reproductive success assists fisheries management by identifying factors that have a direct and reproducible influence on the population dynamics of a target species. More often, models are constructed as one-time studies of a single population whose results are not revisited when further data become available. Here, we present results from stock recruitment models for Alewife Alosa pseudoharengus and Bloater Coregonus hoyi in Lakes Michigan and Huron. The factors that explain variation in Bloater recruitment were remarkably consistent across populations and with previous studies that found Bloater recruitment to be linked to population demographic patterns in Lake Michigan. Conversely, our models were poor predictors of Alewife recruitment in Lake Huron but did show some agreement with previously published models from Lake Michigan. Overall, our results suggest that external predictors of fish recruitment are difficult to discern using traditional fisheries models, and reproducing the results from previous studies may be difficult particularly at low population sizes.
Connectivity dominates larval replenishment in a coastal reef fish metapopulation
Saenz-Agudelo, Pablo; Jones, Geoffrey P.; Thorrold, Simon R.; Planes, Serge
2011-01-01
Direct estimates of larval retention and connectivity are essential to understand the structure and dynamics of marine metapopulations, and optimize the size and spacing of reserves within networks of marine-protected areas (MPAs). For coral reef fishes, while there are some empirical estimates of self-recruitment at isolated populations, exchange among sub-populations has been rarely quantified. Here, we used microsatellite DNA markers and a likelihood-based parentage analysis to assess the relative magnitude of self-recruitment and exchange among eight geographically distinct sub-populations of the panda clownfish Amphiprion polymnus along 30 km of coastline near Port Moresby, Papua New Guinea. In addition, we used an assignment/exclusion test to identify immigrants arriving from genetically distinct sources. Overall, 82 per cent of the juveniles were immigrants while 18 per cent were progeny of parents genotyped in our focal metapopulation. Of the immigrants, only 6 per cent were likely to be genetically distinct from the focal metapopulation, suggesting most of the connectivity is among sub-populations from a rather homogeneous genetic pool. Of the 18 per cent that were progeny of known adults, two-thirds dispersed among the eight sub-populations and only one-third settled back into natal sub-populations. Comparison of our data with previous studies suggested that variation in dispersal distances is likely to be influenced by the geographical setting and spacing of sub-populations. PMID:21325328
Connectivity dominates larval replenishment in a coastal reef fish metapopulation.
Saenz-Agudelo, Pablo; Jones, Geoffrey P; Thorrold, Simon R; Planes, Serge
2011-10-07
Direct estimates of larval retention and connectivity are essential to understand the structure and dynamics of marine metapopulations, and optimize the size and spacing of reserves within networks of marine-protected areas (MPAs). For coral reef fishes, while there are some empirical estimates of self-recruitment at isolated populations, exchange among sub-populations has been rarely quantified. Here, we used microsatellite DNA markers and a likelihood-based parentage analysis to assess the relative magnitude of self-recruitment and exchange among eight geographically distinct sub-populations of the panda clownfish Amphiprion polymnus along 30 km of coastline near Port Moresby, Papua New Guinea. In addition, we used an assignment/exclusion test to identify immigrants arriving from genetically distinct sources. Overall, 82 per cent of the juveniles were immigrants while 18 per cent were progeny of parents genotyped in our focal metapopulation. Of the immigrants, only 6 per cent were likely to be genetically distinct from the focal metapopulation, suggesting most of the connectivity is among sub-populations from a rather homogeneous genetic pool. Of the 18 per cent that were progeny of known adults, two-thirds dispersed among the eight sub-populations and only one-third settled back into natal sub-populations. Comparison of our data with previous studies suggested that variation in dispersal distances is likely to be influenced by the geographical setting and spacing of sub-populations.
Brewer, T D; Cinner, J E; Green, A; Pressey, R L
2013-06-01
Coral reef fisheries are crucial to the livelihoods of tens of millions of people; yet, widespread habitat degradation and unsustainable fishing are causing severe depletion of stocks of reef fish. Understanding how social and economic factors, such as human population density, access to external markets, and modernization interact with fishing and habitat degradation to affect fish stocks is vital to sustainable management of coral reef fisheries. We used fish survey data, national social and economic data, and path analyses to assess whether these factors explain variation in biomass of coral reef fishes among 25 sites in Solomon Islands. We categorized fishes into 3 groups on the basis of life-history characteristics associated with vulnerability to extinction by fishing (high, medium, and low vulnerability). The biomass of fish with low vulnerability was positively related to habitat condition. The biomass of fishes with high vulnerability was negatively related to fishing conducted with efficient gear. Use of efficient gear, in turn, was strongly and positively related to both population density and market proximity. This result suggests local population pressure and external markets have additive negative effects on vulnerable reef fish. Biomass of the fish of medium vulnerability was not explained by fishing intensity or habitat condition, which suggests these species may be relatively resilient to both habitat degradation and fishing. © 2012 Society for Conservation Biology.
Ng, Elizabeth L.; Fredericks, Jim P.; Quist, Michael C.
2016-01-01
Lake Trout Salvelinus namaycush have been introduced widely throughout the western USA to enhance recreational fisheries, but high predatory demand can create challenges for management of yield and trophy fisheries alike. Lake Trout were introduced to Priest Lake, Idaho, during the 1920s, but few fishery-independent data are available to guide current or future management actions. We collected fishery-independent data to describe population dynamics and evaluate potential management scenarios using an age-structured population model. Lake Trout in Priest Lake were characterized by fast growth at young ages, which resulted in young age at maturity. However, adult growth rates and body condition were lower than for other Lake Trout populations. High rates of skipped spawning (>50%) were also observed. Model projections indicated that the population was growing (λ = 1.03). Eradication could be achieved by increasing annual mortality to 0.32, approximately twice the current rate. A protected slot length limit could increase population length-structure, but few fish grew fast enough to exit the slot. In contrast, a juvenile removal scenario targeting age-2 to age-5 Lake Trout maintained short-term harvest of trophy-length individuals while reducing overall population abundance.
Carter, A B; Russ, G R; Tobin, A J; Williams, A J; Davies, C R; Mapstone, B D
2014-04-01
The effects of size and age on reproductive dynamics of common coral trout Plectropomus leopardus populations were compared between coral reefs open or closed (no-take marine reserves) to fishing and among four geographic regions of the Great Barrier Reef (GBR), Australia. The specific reproductive metrics investigated were the sex ratio, the proportion of vitellogenic females and the spawning fraction of local populations. Sex ratios became increasingly male biased with length and age, as expected for a protogyne, but were more male biased in southern regions of the GBR (Mackay and Storm Cay) than in northern regions (Lizard Island and Townsville) across all lengths and ages. The proportion of vitellogenic females also increased with length and age. Female P. leopardus were capable of daily spawning during the spawning season, but on average spawned every 4·3 days. Mature females spawned most frequently on Townsville reserve reefs (every 2·3 days) and Lizard Island fished reefs (every 3·2 days). Females on Mackay reefs open to fishing showed no evidence of spawning over 4 years of sampling, while females on reserve reefs spawned only once every 2-3 months. No effect of length on spawning frequency was detected. Spawning frequency increased with age on Lizard Island fished reefs, declined with age on Storm Cay fished reefs, and declined with age on reserve reefs in all regions. It is hypothesized that the variation in P. leopardus sex ratios and spawning frequency among GBR regions is primarily driven by water temperature, while no-take management zones influence spawning frequency depending on the region in which the reserve is located. Male bias and lack of spawning activity on southern GBR, where densities of adult P. leopardus are highest, suggest that recruits may be supplied from central or northern GBR. Significant regional variation in reproductive traits suggests that a regional approach to management of P. leopardus is appropriate and highlights the need for considering spatial variation in reproduction where reserves are used as fishery or conservation management tools. © 2014 The Fisheries Society of the British Isles.
Fishing, fast growth and climate variability increase the risk of collapse
Pinsky, Malin L.; Byler, David
2015-01-01
Species around the world have suffered collapses, and a key question is why some populations are more vulnerable than others. Traditional conservation biology and evidence from terrestrial species suggest that slow-growing populations are most at risk, but interactions between climate variability and harvest dynamics may alter or even reverse this pattern. Here, we test this hypothesis globally. We use boosted regression trees to analyse the influences of harvesting, species traits and climate variability on the risk of collapse (decline below a fixed threshold) across 154 marine fish populations around the world. The most important factor explaining collapses was the magnitude of overfishing, while the duration of overfishing best explained long-term depletion. However, fast growth was the next most important risk factor. Fast-growing populations and those in variable environments were especially sensitive to overfishing, and the risk of collapse was more than tripled for fast-growing when compared with slow-growing species that experienced overfishing. We found little evidence that, in the absence of overfishing, climate variability or fast growth rates alone drove population collapse over the last six decades. Expanding efforts to rapidly adjust harvest pressure to account for climate-driven lows in productivity could help to avoid future collapses, particularly among fast-growing species. PMID:26246548
Fishing, fast growth and climate variability increase the risk of collapse.
Pinsky, Malin L; Byler, David
2015-08-22
Species around the world have suffered collapses, and a key question is why some populations are more vulnerable than others. Traditional conservation biology and evidence from terrestrial species suggest that slow-growing populations are most at risk, but interactions between climate variability and harvest dynamics may alter or even reverse this pattern. Here, we test this hypothesis globally. We use boosted regression trees to analyse the influences of harvesting, species traits and climate variability on the risk of collapse (decline below a fixed threshold) across 154 marine fish populations around the world. The most important factor explaining collapses was the magnitude of overfishing, while the duration of overfishing best explained long-term depletion. However, fast growth was the next most important risk factor. Fast-growing populations and those in variable environments were especially sensitive to overfishing, and the risk of collapse was more than tripled for fast-growing when compared with slow-growing species that experienced overfishing. We found little evidence that, in the absence of overfishing, climate variability or fast growth rates alone drove population collapse over the last six decades. Expanding efforts to rapidly adjust harvest pressure to account for climate-driven lows in productivity could help to avoid future collapses, particularly among fast-growing species. © 2015 The Author(s).
Spatial structuring within a reservoir fish population: implications for management
Stewart, David R.; Long, James M.; Shoup, Daniel E.
2014-01-01
Spatial structuring in reservoir fish populations can exist because of environmental gradients, species-specific behaviour, or even localised fishing effort. The present study investigated whether white crappie exhibited evidence of improved population structure where the northern more productive half of a lake is closed to fishing to provide waterfowl hunting opportunities. Population response to angling was modelled for each substock of white crappie (north (protected) and south (unprotected) areas), the entire lake (single-stock model) and by combining simulations of the two independent substock models (additive model). White crappie in the protected area were more abundant, consisting of larger, older individuals, and exhibited a lower total annual mortality rate than in the unprotected area. Population modelling found that fishing mortality rates between 0.1 and 0.3 resulted in sustainable populations (spawning potential ratios (SPR) >0.30). The population in the unprotected area appeared to be more resilient (SPR > 0.30) at the higher fishing intensities (0.35–0.55). Considered additively, the whole-lake fishery appeared more resilient than when modelled as a single-panmictic stock. These results provided evidence of spatial structuring in reservoir fish populations, and we recommend model assessments used to guide management decisions should consider those spatial differences in other populations where they exist.
Mintram, Kate S; Brown, A Ross; Maynard, Samuel K; Thorbek, Pernille; Tyler, Charles R
2018-02-01
Endocrine active chemicals (EACs) are widespread in freshwater environments and both laboratory and field based studies have shown reproductive effects in fish at environmentally relevant exposures. Environmental risk assessment (ERA) seeks to protect wildlife populations and prospective assessments rely on extrapolation from individual-level effects established for laboratory fish species to populations of wild fish using arbitrary safety factors. Population susceptibility to chemical effects, however, depends on exposure risk, physiological susceptibility, and population resilience, each of which can differ widely between fish species. Population models have significant potential to address these shortfalls and to include individual variability relating to life-history traits, demographic and density-dependent vital rates, and behaviors which arise from inter-organism and organism-environment interactions. Confidence in population models has recently resulted in the EU Commission stating that results derived from reliable models may be considered when assessing the relevance of adverse effects of EACs at the population level. This review critically assesses the potential risks posed by EACs for fish populations, considers the ecological factors influencing these risks and explores the benefits and challenges of applying population modeling (including individual-based modeling) in ERA for EACs in fish. We conclude that population modeling offers a way forward for incorporating greater environmental relevance in assessing the risks of EACs for fishes and for identifying key risk factors through sensitivity analysis. Individual-based models (IBMs) allow for the incorporation of physiological and behavioral endpoints relevant to EAC exposure effects, thus capturing both direct and indirect population-level effects.
Travers-Trolet, Morgane; Shin, Yunne-Jai; Shannon, Lynne J; Moloney, Coleen L; Field, John G
2014-01-01
The effects of climate and fishing on marine ecosystems have usually been studied separately, but their interactions make ecosystem dynamics difficult to understand and predict. Of particular interest to management, the potential synergism or antagonism between fishing pressure and climate forcing is analysed in this paper, using an end-to-end ecosystem model of the southern Benguela ecosystem, built from coupling hydrodynamic, biogeochemical and multispecies fish models (ROMS-N2P2Z2D2-OSMOSE). Scenarios of different intensities of upwelling-favourable wind stress combined with scenarios of fishing top-predator fish were tested. Analyses of isolated drivers show that the bottom-up effect of the climate forcing propagates up the food chain whereas the top-down effect of fishing cascades down to zooplankton in unfavourable environmental conditions but dampens before it reaches phytoplankton. When considering both climate and fishing drivers together, it appears that top-down control dominates the link between top-predator fish and forage fish, whereas interactions between the lower trophic levels are dominated by bottom-up control. The forage fish functional group appears to be a central component of this ecosystem, being the meeting point of two opposite trophic controls. The set of combined scenarios shows that fishing pressure and upwelling-favourable wind stress have mostly dampened effects on fish populations, compared to predictions from the separate effects of the stressors. Dampened effects result in biomass accumulation at the top predator fish level but a depletion of biomass at the forage fish level. This should draw our attention to the evolution of this functional group, which appears as both structurally important in the trophic functioning of the ecosystem, and very sensitive to climate and fishing pressures. In particular, diagnoses considering fishing pressure only might be more optimistic than those that consider combined effects of fishing and environmental variability.
Travers-Trolet, Morgane; Shin, Yunne-Jai; Shannon, Lynne J.; Moloney, Coleen L.; Field, John G.
2014-01-01
The effects of climate and fishing on marine ecosystems have usually been studied separately, but their interactions make ecosystem dynamics difficult to understand and predict. Of particular interest to management, the potential synergism or antagonism between fishing pressure and climate forcing is analysed in this paper, using an end-to-end ecosystem model of the southern Benguela ecosystem, built from coupling hydrodynamic, biogeochemical and multispecies fish models (ROMS-N2P2Z2D2-OSMOSE). Scenarios of different intensities of upwelling-favourable wind stress combined with scenarios of fishing top-predator fish were tested. Analyses of isolated drivers show that the bottom-up effect of the climate forcing propagates up the food chain whereas the top-down effect of fishing cascades down to zooplankton in unfavourable environmental conditions but dampens before it reaches phytoplankton. When considering both climate and fishing drivers together, it appears that top-down control dominates the link between top-predator fish and forage fish, whereas interactions between the lower trophic levels are dominated by bottom-up control. The forage fish functional group appears to be a central component of this ecosystem, being the meeting point of two opposite trophic controls. The set of combined scenarios shows that fishing pressure and upwelling-favourable wind stress have mostly dampened effects on fish populations, compared to predictions from the separate effects of the stressors. Dampened effects result in biomass accumulation at the top predator fish level but a depletion of biomass at the forage fish level. This should draw our attention to the evolution of this functional group, which appears as both structurally important in the trophic functioning of the ecosystem, and very sensitive to climate and fishing pressures. In particular, diagnoses considering fishing pressure only might be more optimistic than those that consider combined effects of fishing and environmental variability. PMID:24710351
A comprehensive investigation of mesophotic coral ecosystems in the Hawaiian Archipelago
Boland, Raymond; Bolick, Holly; Bowen, Brian W.; Bradley, Christina J.; Kane, Corinne; Kosaki, Randall K.; Langston, Ross; Longenecker, Ken; Montgomery, Anthony; Parrish, Frank A.; Popp, Brian N.; Smith, Celia M.; Wagner, Daniel; Spalding, Heather L.
2016-01-01
Although the existence of coral-reef habitats at depths to 165 m in tropical regions has been known for decades, the richness, diversity, and ecological importance of mesophotic coral ecosystems (MCEs) has only recently become widely acknowledged. During an interdisciplinary effort spanning more than two decades, we characterized the most expansive MCEs ever recorded, with vast macroalgal communities and areas of 100% coral cover between depths of 50–90 m extending for tens of km2 in the Hawaiian Archipelago. We used a variety of sensors and techniques to establish geophysical characteristics. Biodiversity patterns were established from visual and video observations and collected specimens obtained from submersible, remotely operated vehicles and mixed-gas SCUBA and rebreather dives. Population dynamics based on age, growth and fecundity estimates of selected fish species were obtained from laser-videogrammetry, specimens, and otolith preparations. Trophic dynamics were determined using carbon and nitrogen stable isotopic analyses on more than 750 reef fishes. MCEs are associated with clear water and suitable substrate. In comparison to shallow reefs in the Hawaiian Archipelago, inhabitants of MCEs have lower total diversity, harbor new and unique species, and have higher rates of endemism in fishes. Fish species present in shallow and mesophotic depths have similar population and trophic (except benthic invertivores) structures and high genetic connectivity with lower fecundity at mesophotic depths. MCEs in Hawai‘i are widespread but associated with specific geophysical characteristics. High genetic, ecological and trophic connectivity establish the potential for MCEs to serve as refugia for some species, but our results question the premise that MCEs are more resilient than shallow reefs. We found that endemism within MCEs increases with depth, and our results do not support suggestions of a global faunal break at 60 m. Our findings enhance the scientific foundations for conservation and management of MCEs, and provide a template for future interdisciplinary research on MCEs worldwide. PMID:27761310
Tao, Juan; He, Dekui; Kennard, Mark J; Ding, Chengzhi; Bunn, Stuart E; Liu, Chunlong; Jia, Yintao; Che, Rongxiao; Chen, Yifeng
2018-05-01
Phenological responses to climate change have been widely observed and have profound and lasting effects on ecosystems and biodiversity. However, compared to terrestrial ecosystems, the long-term effects of climate change on species' phenology are poorly understood in aquatic ecosystems. Understanding the long-term changes in fish reproductive phenology is essential for predicting population dynamics and for informing management strategies, but is currently hampered by the requirement for intensive field observations and larval identification. In this study, a very low-frequency sampling of juveniles and adults combined with otolith measurements (long axis length of the first annulus; LAFA) of an endemic Tibetan Plateau fish (Gymnocypris selincuoensis) was used to examine changes in reproductive phenology associated with climate changes from the 1970s to 2000s. Assigning individual fish to their appropriate calendar year class was assisted by dendrochronological methods (crossdating). The results demonstrated that LAFA was significantly and positively associated with temperature and growing season length. To separate the effects of temperature and the growing season length on LAFA growth, measurements of larval otoliths from different sites were conducted and revealed that daily increment additions were the main contributor (46.3%), while temperature contributed less (12.0%). Using constructed water-air temperature relationships and historical air temperature records, we found that the reproductive phenology of G. selincuoensis was strongly advanced in the spring during the 1970s and 1990s, while the increased growing season length in the 2000s was mainly due to a delayed onset of winter. The reproductive phenology of G. selincuoensis advanced 2.9 days per decade on average from the 1970s to 2000s, and may have effects on recruitment success and population dynamics of this species and other biota in the ecosystem via the food web. The methods used in this study are applicable for studying reproductive phenological changes across a wide range of species and ecosystems. © 2018 John Wiley & Sons Ltd.
Quantitative species-level ecology of reef fish larvae via metabarcoding.
Kimmerling, Naama; Zuqert, Omer; Amitai, Gil; Gurevich, Tamara; Armoza-Zvuloni, Rachel; Kolesnikov, Irina; Berenshtein, Igal; Melamed, Sarah; Gilad, Shlomit; Benjamin, Sima; Rivlin, Asaph; Ohavia, Moti; Paris, Claire B; Holzman, Roi; Kiflawi, Moshe; Sorek, Rotem
2018-02-01
The larval pool of coral reef fish has a crucial role in the dynamics of adult fish populations. However, large-scale species-level monitoring of species-rich larval pools has been technically impractical. Here, we use high-throughput metabarcoding to study larval ecology in the Gulf of Aqaba, a region that is inhabited by >500 reef fish species. We analysed 9,933 larvae from 383 samples that were stratified over sites, depth and time. Metagenomic DNA extracted from pooled larvae was matched to a mitochondrial cytochrome c oxidase subunit I barcode database compiled for 77% of known fish species within this region. This yielded species-level reconstruction of the larval community, allowing robust estimation of larval spatio-temporal distributions. We found significant correlations between species abundance in the larval pool and in local adult assemblages, suggesting a major role for larval supply in determining local adult densities. We documented larval flux of species whose adults were never documented in the region, suggesting environmental filtering as the reason for the absence of these species. Larvae of several deep-sea fishes were found in shallow waters, supporting their dispersal over shallow bathymetries, potentially allowing Lessepsian migration into the Mediterranean Sea. Our method is applicable to any larval community and could assist coral reef conservation and fishery management efforts.
Ayub, Farhana; Seychelles, Laurent; Strauch, Olaf; Wittke, Martina; Ehlers, Ralf-Udo
2013-09-01
The free-living, bacterial-feeding nematode Panagrolaimus sp. (strain NFS 24-5) has potential for use as live food for marine shrimp and fish larvae. Mass production in liquid culture is a prerequisite for its commercial exploitation. Panagrolaimus sp. was propagated in monoxenic liquid culture on Escherichia coli and parameters, like nematode density, population dynamics and biomass were recorded and compared with life history table data. A mean maximum nematode density of 174,278 mL(-1) and a maximum of 251,000 mL(-1) were recorded on day 17 after inoculation. Highest average biomass was 40 g L(-1) at day 13. The comparison with life history table data indicated that the hypothetical potential of liquid culture is much higher than documented during this investigation. Nematode development is delayed in liquid culture and egg production per female is more than five times lower than reported from life history trait analysis. The latter assessed a nematode generation time of 7.1 days, whereas the process time at maximum nematode density in liquid culture was 16 days indicating that a reduction of the process time can be achieved by further investigating the influence of nematode inoculum density on population development. The results challenge future research to reduce process time and variability and improve population dynamics also during scale-up of the liquid culture process.
Otolith microchemistry of tropical diadromous fishes: spatial and migratory dynamics
Smith, William E.; Kwak, Thomas J.
2014-01-01
Otolith microchemistry was applied to quantify migratory variation and the proportion of native Caribbean stream fishes that undergo full or partial marine migration. Strontium and barium water chemistry in four Puerto Rico, U.S.A., rivers was clearly related to a salinity gradient; however, variation in water barium, and thus fish otoliths, was also dependent on river basin. Strontium was the most accurate index of longitudinal migration in tropical diadromous fish otoliths. Among the four species examined, bigmouth sleeper Gobiomorus dormitor, mountain mullet Agonostomus monticola, sirajo goby Sicydium spp. and river goby Awaous banana, most individuals were fully amphidromous, but 9-12% were semi-amphidromous as recruits, having never experienced marine or estuarine conditions in early life stages and showing no evidence of marine elemental signatures in their otolith core. Populations of one species, G. dormitor, may have contained a small contingent of semi-amphidromous adults, migratory individuals that periodically occupied marine or estuarine habitats (4%); however, adult migratory elemental signatures may have been confounded with those related to diet and physiology. These findings indicate the plasticity of migratory strategies of tropical diadromous fishes, which may be more variable than simple categorization might suggest.
Otolith microchemistry of tropical diadromous fishes: spatial and migratory dynamics.
Smith, W E; Kwak, T J
2014-04-01
Otolith microchemistry was applied to quantify migratory variation and the proportion of native Caribbean stream fishes that undergo full or partial marine migration. Strontium and barium water chemistry in four Puerto Rico, U.S.A., rivers was clearly related to a salinity gradient; however, variation in water barium, and thus fish otoliths, was also dependent on river basin. Strontium was the most accurate index of longitudinal migration in tropical diadromous fish otoliths. Among the four species examined, bigmouth sleeper Gobiomorus dormitor, mountain mullet Agonostomus monticola, sirajo goby Sicydium spp. and river goby Awaous banana, most individuals were fully amphidromous, but 9-12% were semi-amphidromous as recruits, having never experienced marine or estuarine conditions in early life stages and showing no evidence of marine elemental signatures in their otolith core. Populations of one species, G. dormitor, may have contained a small contingent of semi-amphidromous adults, migratory individuals that periodically occupied marine or estuarine habitats (4%); however, adult migratory elemental signatures may have been confounded with those related to diet and physiology. These findings indicate the plasticity of migratory strategies of tropical diadromous fishes, which may be more variable than simple categorization might suggest. © 2014 The Fisheries Society of the British Isles.
Examining the 10-Year Rebuilding Dilemma for U.S. Fish Stocks
Patrick, Wesley S.; Cope, Jason
2014-01-01
Worldwide, fishery managers strive to maintain fish stocks at or above levels that produce maximum sustainable yields, and to rebuild overexploited stocks that can no longer support such yields. In the United States, rebuilding overexploited stocks is a contentious issue, where most stocks are mandated to rebuild in as short a time as possible, and in a time period not to exceed 10 years. Opponents of such mandates and related guidance argue that rebuilding requirements are arbitrary, and create discontinuities in the time and fishing effort allowed for stocks to rebuild due to differences in productivity. Proponents, however, highlight how these mandates and guidance were needed to curtail the continued overexploitation of these stocks by setting firm deadlines on rebuilding. Here we evaluate the statements made by opponents and proponents of the 10-year rebuilding mandate and related guidance to determine whether such points are technically accurate using a simple population dynamics model and a database of U.S. fish stocks to parameterize the model. We also offer solutions to many of the issues surrounding this mandate and its implementation by recommending some fishing mortality based frameworks, which meet the intent of the 10-year rebuilding requirement while also providing more flexibility. PMID:25375788
Bertrand, Arnaud; Chaigneau, Alexis; Peraltilla, Salvador; Ledesma, Jesus; Graco, Michelle; Monetti, Florian; Chavez, Francisco P.
2011-01-01
Background In the southeastern tropical Pacific anchovy (Engraulis ringens) and sardine (Sardinops sagax) abundance have recently fluctuated on multidecadal scales and food and temperature have been proposed as the key parameters explaining these changes. However, ecological and paleoecological studies, and the fact that anchovies and sardines are favored differently in other regions, raise questions about the role of temperature. Here we investigate the role of oxygen in structuring fish populations in the Peruvian upwelling ecosystem that has evolved over anoxic conditions and is one of the world's most productive ecosystems in terms of forage fish. This study is particularly relevant given that the distribution of oxygen in the ocean is changing with uncertain consequences. Methodology/Principal Findings A comprehensive data set is used to show how oxygen concentration and oxycline depth affect the abundance and distribution of pelagic fish. We show that the effects of oxygen on anchovy and sardine are opposite. Anchovy flourishes under relatively low oxygen conditions while sardine avoid periods/areas with low oxygen concentration and restricted habitat. Oxygen consumption, trophic structure and habitat compression play a fundamental role in fish dynamics in this important ecosystem. Conclusions/Significance For the ocean off Peru we suggest that a key process, the need to breathe, has been neglected previously. Inclusion of this missing piece allows the development of a comprehensive conceptual model of pelagic fish populations and change in an ocean ecosystem impacted by low oxygen. Should current trends in oxygen in the ocean continue similar effects may be evident in other coastal upwelling ecosystems. PMID:22216315
Vast assembly of vocal marine mammals from diverse species on fish spawning ground.
Wang, Delin; Garcia, Heriberto; Huang, Wei; Tran, Duong D; Jain, Ankita D; Yi, Dong Hoon; Gong, Zheng; Jech, J Michael; Godø, Olav Rune; Makris, Nicholas C; Ratilal, Purnima
2016-03-17
Observing marine mammal (MM) populations continuously in time and space over the immense ocean areas they inhabit is challenging but essential for gathering an unambiguous record of their distribution, as well as understanding their behaviour and interaction with prey species. Here we use passive ocean acoustic waveguide remote sensing (POAWRS) in an important North Atlantic feeding ground to instantaneously detect, localize and classify MM vocalizations from diverse species over an approximately 100,000 km(2) region. More than eight species of vocal MMs are found to spatially converge on fish spawning areas containing massive densely populated herring shoals at night-time and diffuse herring distributions during daytime. We find the vocal MMs divide the enormous fish prey field into species-specific foraging areas with varying degrees of spatial overlap, maintained for at least two weeks of the herring spawning period. The recorded vocalization rates are diel (24 h)-dependent for all MM species, with some significantly more vocal at night and others more vocal during the day. The four key baleen whale species of the region: fin, humpback, blue and minke have vocalization rate trends that are highly correlated to trends in fish shoaling density and to each other over the diel cycle. These results reveal the temporospatial dynamics of combined multi-species MM foraging activities in the vicinity of an extensive fish prey field that forms a massive ecological hotspot, and would be unattainable with conventional methodologies. Understanding MM behaviour and distributions is essential for management of marine ecosystems and for accessing anthropogenic impacts on these protected marine species.
Bertrand, Arnaud; Chaigneau, Alexis; Peraltilla, Salvador; Ledesma, Jesus; Graco, Michelle; Monetti, Florian; Chavez, Francisco P
2011-01-01
In the southeastern tropical Pacific anchovy (Engraulis ringens) and sardine (Sardinops sagax) abundance have recently fluctuated on multidecadal scales and food and temperature have been proposed as the key parameters explaining these changes. However, ecological and paleoecological studies, and the fact that anchovies and sardines are favored differently in other regions, raise questions about the role of temperature. Here we investigate the role of oxygen in structuring fish populations in the Peruvian upwelling ecosystem that has evolved over anoxic conditions and is one of the world's most productive ecosystems in terms of forage fish. This study is particularly relevant given that the distribution of oxygen in the ocean is changing with uncertain consequences. A comprehensive data set is used to show how oxygen concentration and oxycline depth affect the abundance and distribution of pelagic fish. We show that the effects of oxygen on anchovy and sardine are opposite. Anchovy flourishes under relatively low oxygen conditions while sardine avoid periods/areas with low oxygen concentration and restricted habitat. Oxygen consumption, trophic structure and habitat compression play a fundamental role in fish dynamics in this important ecosystem. For the ocean off Peru we suggest that a key process, the need to breathe, has been neglected previously. Inclusion of this missing piece allows the development of a comprehensive conceptual model of pelagic fish populations and change in an ocean ecosystem impacted by low oxygen. Should current trends in oxygen in the ocean continue similar effects may be evident in other coastal upwelling ecosystems. © 2011 Bertrand et al.
Ocean acidification alters fish–jellyfish symbiosis
Nagelkerken, Ivan; Pitt, Kylie A.; Rutte, Melchior D.; Geertsma, Robbert C.
2016-01-01
Symbiotic relationships are common in nature, and are important for individual fitness and sustaining species populations. Global change is rapidly altering environmental conditions, but, with the exception of coral–microalgae interactions, we know little of how this will affect symbiotic relationships. We here test how the effects of ocean acidification, from rising anthropogenic CO2 emissions, may alter symbiotic interactions between juvenile fish and their jellyfish hosts. Fishes treated with elevated seawater CO2 concentrations, as forecast for the end of the century on a business-as-usual greenhouse gas emission scenario, were negatively affected in their behaviour. The total time that fish (yellowtail scad) spent close to their jellyfish host in a choice arena where they could see and smell their host was approximately three times shorter under future compared with ambient CO2 conditions. Likewise, the mean number of attempts to associate with jellyfish was almost three times lower in CO2-treated compared with control fish, while only 63% (high CO2) versus 86% (control) of all individuals tested initiated an association at all. By contrast, none of three fish species tested were attracted solely to jellyfish olfactory cues under present-day CO2 conditions, suggesting that the altered fish–jellyfish association is not driven by negative effects of ocean acidification on olfaction. Because shelter is not widely available in the open water column and larvae of many (and often commercially important) pelagic species associate with jellyfish for protection against predators, modification of the fish–jellyfish symbiosis might lead to higher mortality and alter species population dynamics, and potentially have flow-on effects for their fisheries. PMID:27358374
Trape, Sébastien
2009-01-01
Four central Sahara mountainous massifs provide habitats for relict populations of fish. In the Adrar of Mauritania all available data on the presence and distribution of fish come from pre-1960 surveys where five fish species were reported: Barbus pobeguini, Barbus macrops, Barbus mirei, Sarotherodon galilaeus, and Clarias anguillaris. Since 1970, drought has had a severe impact in the Adrar where rainfall decreased by 35%. To investigate whether the relict populations of fish have survived the continuing drought, a study was carried out from 2004 to 2008. An inventory of perennial bodies of water was drawn up using a literature review and analysis of topographical and hydrological maps. Field surveys were carried out in order to locate the bodies of water described in the literature, identify the presence of fish, determine which species were present and estimate their abundance. The thirteen sites where the presence of fish was observed in the 1950s -Ksar Torchane, Ilij, Molomhar, Agueni, Tachot, Hamdoun, Terjit, Toungad, El Berbera, Timagazine, Dâyet el Mbârek, Dâyet et-Tefla, Nkedeï- were located and surveyed. The Ksar Torchane spring -type locality and the only known locality of B. mirei- has dried up at the height of the drought in 1984, and any fish populations have since become extinct there. The Timagazine, Dâyet el Mbârek and Dâyet et-Tefla pools have become ephemeral. The Hamdoun guelta appears to be highly endangered. The fish populations at the other sites remain unchanged. Four perennial pools which are home to populations of B. pobeguini are newly recorded. The tropical relict fish populations of the Adrar mountains of Mauritania appear to be highly endangered. Of thirteen previously recorded populations, four have become extinct since the beginning of the drought period. New fish population extinctions may occur should low levels of annual rainfall be repeated.
Korman, Josh; Yard, Micheal D.; Kennedy, Theodore A.
2017-01-01
Data from a large-scale mark-recapture study was used in an open population model to determine the cause for long-term trends in growth and abundance of a Rainbow Trout Oncorhynchus mykiss population in the tailwater of Glen Canyon Dam, AZ. Reduced growth affected multiple life stages and processes causing negative feedbacks that regulated the abundance of the population, including: higher mortality of larger fish; lower rates of recruitment (young of year) in years when growth was reduced; and lower rates of sexual maturation the following year. High and steady flows during spring and summer of 2011 resulted in very large recruitment event. The population declined 10-fold by 2016 due a combination of lower recruitment and reduced survival of larger trout. Survival rates for trout ≥ 225 mm in 2014, 2015, and 2016 were 11%, 21%, and 22% lower than average survival rates between 2012 and 2013, respectively. Abundance at the end of the study would have been three- to five-fold higher had survival rates for larger trout remained at the elevated levels estimated for 2012 and 2013. Growth declined between 2012 and 2014 owing to reduced prey availability, which led to very poor fish condition by fall of 2014 (~0.9-0.95). Poor condition in turn resulted in low survival rates of larger fish during fall of 2014 and winter of 2015, which contributed to the population collapse. In Glen Canyon, large recruitment events driven by high flows can lead to increases in the population that cannot be sustained due to limitations in prey supply. In the absence of being able to regulate prey supply, flows which reduce the probability of large recruitment events can be used to avoid boom-and-bust population cycles. Our study demonstrates that mark-recapture is a very informative approach for understanding the dynamics of tailwater trout populations.
Craven, S.W.; Peterson, J.T.; Freeman, Mary C.; Kwak, T.J.; Irwin, E.
2010-01-01
Modifications to stream hydrologic regimes can have a profound influence on the dynamics of their fish populations. Using hierarchical linear models, we examined the relations between flow regime and young-of-year fish density using fish sampling and discharge data from three different warmwater streams in Illinois, Alabama, and Georgia. We used an information theoretic approach to evaluate the relative support for models describing hypothesized influences of five flow regime components representing: short-term high and low flows; short-term flow stability; and long-term mean flows and flow stability on fish reproductive success during fish spawning and rearing periods. We also evaluated the influence of ten fish species traits on fish reproductive success. Species traits included spawning duration, reproductive strategy, egg incubation rate, swimming locomotion morphology, general habitat preference, and food habits. Model selection results indicated that young-of-year fish density was positively related to short-term high flows during the spawning period and negatively related to flow variability during the rearing period. However, the effect of the flow regime components varied substantially among species, but was related to species traits. The effect of short-term high flows on the reproductive success was lower for species that broadcast their eggs during spawning. Species with cruiser swimming locomotion morphologies (e.g., Micropterus) also were more vulnerable to variable flows during the rearing period. Our models provide insight into the conditions and timing of flows that influence the reproductive success of warmwater stream fishes and may guide decisions related to stream regulation and management. ?? 2010 US Government.
Dynamic hypoxic zones in Lake Erie compress fish habitat, altering vulnerability to fishing gears
Kraus, Richard T.; Knight, Carey T.; Farmer, Troy M.; Gorman, Ann Marie; Collingsworth, Paris D.; Warren, Glenn J.; Kocovsky, Patrick M.; Conroy, Joseph D.
2015-01-01
Seasonal degradation of aquatic habitats from hypoxia occurs in numerous freshwater and coastal marine systems and can result in direct mortality or displacement of fish. Yet, fishery landings from these systems are frequently unresponsive to changes in the severity and extent of hypoxia, and population-scale effects have been difficult to measure except in extreme hypoxic conditions with hypoxia-sensitive species. We investigated fine-scale temporal and spatial variability in dissolved oxygen in Lake Erie as it related to fish distribution and catch efficiencies of both active (bottom trawls) and passive (trap nets) fishing gears. Temperature and dissolved oxygen loggers placed near the edge of the hypolimnion exhibited much higher than expected variability. Hypoxic episodes of variable durations were frequently punctuated by periods of normoxia, consistent with high-frequency internal waves. High-resolution interpolations of water quality and hydroacoustic surveys suggest that fish habitat is compressed during hypoxic episodes, resulting in higher fish densities near the edges of hypoxia. At fixed locations with passive commercial fishing gear, catches with the highest values occurred when bottom waters were hypoxic for intermediate proportions of time. Proximity to hypoxia explained significant variation in bottom trawl catches, with higher catch rates near the edge of hypoxia. These results emphasize how hypoxia may elevate catch rates in various types of fishing gears, leading to a lack of association between indices of hypoxia and fishery landings. Increased catch rates of fish at the edges of hypoxia have important implications for stock assessment models that assume catchability is spatially homogeneous.
Hansen, Michael J.; Nate, Nancy A.
2014-01-01
We evaluated the dynamics of walleye Sander vitreus population size structure, as indexed by the proportional size distribution (PSD) of quality-length fish, in Escanaba Lake during 1967–2003 and in 204 other lakes in northern Wisconsin during 1990–2011. We estimated PSD from angler-caught walleyes in Escanaba Lake and from spring electrofishing in 204 other lakes, and then related PSD to annual estimates of recruitment to age-3, length at age 3, and annual angling exploitation rate. In Escanaba Lake during 1967–2003, annual estimates of PSD were highly dynamic, growth (positively) explained 35% of PSD variation, recruitment explained only 3% of PSD variation, and exploitation explained only 7% of PSD variation. In 204 other northern Wisconsin lakes during 1990–2011, PSD varied widely among lakes, recruitment (negatively) explained 29% of PSD variation, growth (positively) explained 21% of PSD variation, and exploitation explained only 4% of PSD variation. We conclude that population size structure was most strongly driven by recruitment and growth, rather than exploitation, in northern Wisconsin walleye populations. Studies of other species over wide spatial and temporal ranges of recruitment, growth, and mortality are needed to determine which dynamic rate most strongly influences population size structure of other species. Our findings indicate a need to be cautious about assuming exploitation is a strong driver of walleye population size structure.
Liu, Ming; McCann, Molly; Lewis-Michl, Elizabeth; Hwang, Syni-An
2018-06-01
Refugees from Burma who consume fish caught from local waterbodies have increased risk of exposure to environmental contaminants. We used respondent driven sampling (RDS) to sample this hard-to-reach population for the first Biomonitoring of Great Lakes Populations program. In the current study, we examined the interview data and assessed the effectiveness of RDS to sample the unique population. In 2013, we used RDS to sample 205 Burmese refugees and immigrants residing in Buffalo, New York who consumed fish caught from Great Lakes waters. RDS-adjusted population estimates of sociodemographic characteristics, residential history, fish consumption related behaviors, and awareness of fish advisories were obtained. We also examined sample homophily and equilibrium to assess how well the RDS assumptions were met in the study. Our sample was diverse with respect to sex, age, years residing in Buffalo, years lived in a refugee camp, education, employment, and fish consumption behaviors, and each of these variables reached equilibrium by the end of recruitment. Burmese refugees in Buffalo consumed Great Lakes fish throughout the year; a majority of them consumed the fish more than two times per week during summer, and about one third ate local fish more than once per week in winter. An estimated 60% of Burmese refugees in Buffalo had heard about local fish advisories. RDS has the potential to be an effective methodology for sampling refugees and immigrants in conducting biomonitoring and environmental exposure assessment. Due to high fish consumption and limited awareness and knowledge of fish advisories, some refugee and immigrant populations are more susceptible to environmental contaminants. Increased awareness on local fish advisories is needed among these populations. Published by Elsevier GmbH.
Many aquatic species, including the estuarine fish Fundulus heteroclitus (mummichogs), adapt to local environmental conditions. We conducted studies to evaluate whether highly exposed populations of mummichogs adapt to toxic environmental contaminants. These fish populations are ...
Laplanche, Christophe; Elger, Arnaud; Santoul, Frédéric; Thiede, Gary P.; Budy, Phaedra
2018-01-01
Management actions aimed at eradicating exotic fish species from riverine ecosystems can be better informed by forecasting abilities of mechanistic models. We illustrate this point with an example of the Logan River, Utah, originally populated with endemic cutthroat trout (Oncorhynchus clarkii utah), which compete with exotic brown trout (Salmo trutta). The coexistence equilibrium was disrupted by a large scale, experimental removal of the exotic species in 2009–2011 (on average, 8.2% of the stock each year), followed by an increase in the density of the native species. We built a spatially-explicit, reaction-diffusion model encompassing four key processes: population growth in heterogeneous habitat, competition, dispersal, and a management action. We calibrated the model with detailed long-term monitoring data (2001–2016) collected along the 35.4-km long river main channel. Our model, although simple, did a remarkable job reproducing the system steady state prior to the management action. Insights gained from the model independent predictions are consistent with available knowledge and indicate that the exotic species is more competitive; however, the native species still occupies more favorable habitat upstream. Dynamic runs of the model also recreated the observed increase of the native species following the management action. The model can simulate two possible distinct long-term outcomes: recovery or eradication of the exotic species. The processing of available knowledge using Bayesian methods allowed us to conclude that the chance for eradication of the invader was low at the beginning of the experimental removal (0.7% in 2009) and increased (20.5% in 2016) by using more recent monitoring data. We show that accessible mathematical and numerical tools can provide highly informative insights for managers (e.g., outcome of their conservation actions), identify knowledge gaps, and provide testable theory for researchers.
NASA Astrophysics Data System (ADS)
Bernard, A. M.; Feldheim, K. A.; Nemeth, R.; Kadison, E.; Blondeau, J.; Semmens, B. X.; Shivji, M. S.
2016-03-01
The Nassau grouper ( Epinephelus striatus) has sustained large declines across its distribution, including extirpation of many of its fish spawning aggregations (FSAs). Within US Virgin Islands (USVI) waters, Nassau grouper FSAs were overfished until their disappearance in the 1970s and 1980s. In the early 2000s, however, Nassau grouper were found gathering at Grammanik Bank, USVI, a mesophotic coral reef adjacent to one of the extinct aggregation sites, and regulatory protective measures were implemented to protect this fledgling FSA. The population genetic dynamics of this rapid FSA deterioration followed by protection-facilitated, incipient recovery are unknown. We addressed two objectives: (1) we explored which factors (i.e., local vs. external recruitment) might be key in shaping the USVI FSA recovery; and (2) we examined the consequences of severe past overfishing on this FSA's current genetic status. We genotyped individuals (15 microsatellites) from the USVI FSA comprising three successive spawning years (2008-2010), as well as individuals from a much larger, presumably less impacted, Nassau grouper FSA in the Cayman Islands, to assess their comparative population dynamics. No population structure was detected between the USVI and Cayman FSAs ( F ST = -0.0004); however, a temporally waning, genetic bottleneck signal was detected in the USVI FSA. Parentage analysis failed to identify any parent-offspring matches between USVI FSA adults and nearby juveniles, and relatedness analysis showed low levels of genetic relatedness among USVI FSA individuals. Genetic diversity across USVI FSA temporal collections was relatively high, and no marked differences were found between the USVI and Cayman FSAs. These collective results suggest that external recruitment is an important driver of the USVI FSA recovery. Furthermore, despite an apparent genetic bottleneck, the genetic diversity of USVI Nassau grouper has not been severely compromised. Our findings also provide a baseline for future genetic monitoring of the nascent USVI aggregation.
Liu, Dongqi; Hou, Feixia; Liu, Qin; Zhang, Xiuyue; Yan, Taiming; Song, Zhaobin
2015-02-01
The Tibetan Plateau underwent dramatic geological and climatic changes, which had important implications for genetic divergence and population dynamics of freshwater fish populations. Fluctuations of the ecogeographical environment and major hydrographic formations might have promoted the formation of new subspecies or species. In order to understand the impact of plateau uplift on freshwater fish evolutionary history, we estimated the genetic diversity and population structure in two subspecies of Schizopygopsis chengi (S. c. chengi and S. c. baoxingensis) in upper Yangtze River in Tibetan Plateau area using mitochondrial DNA control region and eight microsatellite markers, which suggested that there was a close genetic relationship. S. chengi showed some significant genetic structure that did not correlate with geographic distance. Bayesian assignment tests indicated that S. chengi samples in the study could be divided into four populations: upstream population, midstream population, tributary population and S. c. baoxingensis population. S. c. chengi and S. c. baoxingensis showed significant genetic divergence. However, phylogenetic analysis, population structure analysis and historical gene flow estimation suggested that there was close genetic relationship between S. c. baoxingensis and the Dawei population which belongs to populations of S. c. chengi. The time that Dawei population suffered from a bottleneck and S. c. baoxingensis underwent population expansion was congruent with the last glacial period on the Tibetan Plateau. The results confirmed the hypothesis that the Dawei River and Baoxing River were once connected, and the Dawei and Baoxing populations originated from a single population, but were isolated into separate populations because of crustal movements and the Baoxing population evolved as S. c. baoxingensis.
Tropical insular fish assemblages are resilient to flood disturbance
Smith, William E.; Kwak, Thomas J.
2015-01-01
Periods of stable environmental conditions, favoring development of ecological communities regulated by density-dependent processes, are interrupted by random periods of disturbance that may restructure communities. Disturbance may affect populations via habitat alteration, mortality, or displacement. We quantified fish habitat conditions, density, and movement before and after a major flood disturbance in a Caribbean island tropical river using habitat surveys, fish sampling and population estimates, radio telemetry, and passively monitored PIT tags. Native stream fish populations showed evidence of acute mortality and downstream displacement of surviving fish. All fish species were reduced in number at most life stages after the disturbance, but populations responded with recruitment and migration into vacated upstream habitats. Changes in density were uneven among size classes for most species, indicating altered size structures. Rapid recovery processes at the population level appeared to dampen effects at the assemblage level, as fish assemblage parameters (species richness and diversity) were unchanged by the flooding. The native fish assemblage appeared resilient to flood disturbance, rapidly compensating for mortality and displacement with increased recruitment and recolonization of upstream habitats.
Interspecific resource competition effects on fisheries revenue.
van de Wolfshaar, Karen E; Schellekens, Tim; Poos, Jan-Jaap; van Kooten, Tobias
2012-01-01
In many fisheries multiple species are simultaneously caught while stock assessments and fishing quota are defined at species level. Yet species caught together often share habitat and resources, resulting in interspecific resource competition. The consequences of resource competition on population dynamics and revenue of simultaneously harvested species has received little attention due to the historical single stock approach in fisheries management. Here we present the results of a modelling study on the interaction between resource competition of sole (Solea solea) and slaice (Pleuronectus platessa) and simultaneous harvesting of these species, using a stage-structured population model. Three resources were included of which one is shared with a varied competition intensity. We find that plaice is the better competitor of the two species and adult plaice are more abundant than adult sole. When competition is high sole population biomass increases with increasing fishing effort prior to plaice extinction. As a result of this increase in the sole population, the revenue of the stocks combined as function of effort becomes bimodal with increasing resource competition. When considering a single stock quota for sole, its recovery with increasing effort may result in even more fishing effort that would drive the plaice population to extinction. When sole and plaice compete for resources the highest revenue is obtained at effort levels at which plaice is extinct. Ignoring resource competition promotes overfishing due to increasing stock of one species prior to extinction of the other species. Consequently, efforts to mitigate the decline in one species will not be effective if increased stock in the other species leads to increased quota. If a species is to be protected against extinction, management should not only be directed at this one species, but all species that compete with it for resource as well.
NASA Astrophysics Data System (ADS)
Sui, Pengzhe; Iwasaki, Akito; Ryo, Masahiro; Saavedra, Oliver; Yoshimura, Chihiro
2013-04-01
Flow conditions play an important role in sustaining biodiversity of river ecosystem. However, their relations to freshwater fishes, especially to fish population density, have not been clearly described. This study, therefore, aimed to propose a new methodology to quantitatively link habitat conditions, including flow conditions and other physical conditions, to population density of fish species. We developed a basin-scale fish distribution model by integrating the concept of habitat suitability assessment with a distributed hydrological model (DHM) in order to estimate fish population density with particular attention to flow conditions. Generalized linear model (GLM) was employed to evaluate the relationship between population density of fish species and major environmental factors. The target basin was Sagami River in central Japan, where the river reach was divided into 10 sections by estuary, confluences of tributaries, and river-crossing structures (dams, weirs). The DHM was employed to simulate river discharge from 1998 to 2005, which was used to calculate 10 flow indices including mean discharge, 25th and 75th percentile discharge, duration of low and high flows, number of floods. In addition, 5 water quality parameters and 13 other physical conditions (such as basin area, river width, mean diameter of riverbed material, and number of river-crossing structures upstream and downstream) of each river section were considered as environmental variables. In case of Sagami River, 10 habitat variables among them were then selected based on their correlations to avoid multicollinearity. Finally, the best GLM was developed for each species based on Akaike's information criterion. As results, population densities of 16 fish species in Sagami River were modelled, and correlation coefficients between observed and calculated population densities for 10 species were more than 0.70. The key habitat factors for population density varied among fish species. Minimum discharge (MID) was found to be positively correlated to 9 among 16 fish species. For duration of high and low flows (DHF and DLF), longer DHF/DLF was corresponded to lower population density for 7/6 fish species, respectively, such as Rhinogobius kurodai and Plecoglossus altivelis altivelis. Among physical habitat conditions, sinuosity index (SI, the ratio between actual river section length and straight line length) seems to be the most important parameter for fish population density in Sagami River basin, since it affects 12 out of 16 fish species, followed by mean longitudinal slope (S) and number of downstream dams (NLD). Above results demonstrated the applicability of fish distribution model to provide quantitative information on flow conditions required to maintain fish population, which enabled us to evaluate and project ecological consequences of water resource management policy, such as flood management and water withdrawal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashe, Becky L.; Scholz, Allan T.
1992-03-01
This report recommends resident fish substitution projects to partially replace anadromous fish losses caused by construction of Grand Coulee and Chief Joseph Dams. These recommendations involve enhancing the resident fishery in the Pend Oreille River as a substitute for anadromous fish losses. In developing these recommendations we have intentionally attempted to minimize the impact upon the hydroelectric system and anadromous fish recovery plans. In this report we are recommending that the Northwest Power Planning Council direct Bonneville Power Administration to fund the proposed enhancement measures as resident fish substitution projects under the NPPC's Columbia Basin Fish and Wildlife Program. Themore » Pend Oreille River, located in northeast Washington, was historically a free flowing river which supported anadromous steelhead trout and chinook salmon, and large resident cutthroat trout and bull trout. In 1939, Grand Coulee Dam eliminated the anadromous species from the river. In 1955, Box Canyon Dam was constructed, inundating resident trout habitat in the river and creating many back water and slough areas. By the late 1950's the fishery in the reservoir had changed from a quality trout fishery to a warm water fishery, supporting largemouth bass, yellow perch and rough fish (tenth, suckers, squawfish). The object of this study was to examine the existing fishery, identify fishery improvement opportunities and recommend fishery enhancement projects. Three years of baseline data were collected from the Box Canyon portion of the Pend Oreille River to assess population dynamics, growth rates, feeding habits, behavior patterns and factors limiting the fishery. Fishery improvement opportunities were identified based on the results of these data. Relative abundance surveys in the reservoir resulted in the capture of 47,415 fish during the study. The most abundant species in the reservoir were yellow perch, composing 44% of the fish captured. The perch population in the river is stunted and therefore not popular with anglers. Pumpkinseed composed 16% of the total catch, followed by tenth (9%), largemouth bass (8%), mountain whitefish (6%), largescale sucker (5%), northern squawfish (4%) and longnose sucker (3%).« less
Influence of depth on sex-specific energy allocation patterns in a tropical reef fish
NASA Astrophysics Data System (ADS)
Hoey, J.; McCormick, M. I.; Hoey, A. S.
2007-09-01
The effect of depth on the distribution and sex-specific energy allocation patterns of a common coral reef fish, Chrysiptera rollandi (Pomacentridae), was investigated using depth-stratified collections over a broad depth range (5-39 m) and a translocation experiment. C. rollandi consistently selected rubble habitats at each depth, however abundance patterns did not reflect the availability of the preferred microhabitat suggesting a preference for depth as well as microhabitat. Reproductive investment (gonado-somatic index), energy stores (liver cell density and hepatocyte vacuolation), and overall body condition (hepato-somatic index and Fulton’s K) of female fish varied significantly among depths and among the three reefs sampled. Male conspecifics displayed no variation between depth or reef. Depth influenced growth dynamics, with faster initial growth rates and smaller mean asymptotic lengths with decreasing depth. In female fish, relative gonad weight and overall body condition (Fulton’s K and hepato-somatic index) were generally higher in shallower depths (≤10 m). Hepatic lipid storage was highest at the deepest sites sampled on each reef, whereas hepatic glycogen stores tended to decrease with depth. Depth was found to influence energy allocation dynamics in C. rollandi. While it is unclear what processes directly influenced the depth-related patterns in energy allocation, this study shows that individuals across a broad depth gradient are not all in the same physiological state and may contribute differentially to the population reproductive output.
Breyta, R.; Jones, Amelia; Kurath, Gael
2014-01-01
A significant emergence of trout-adapted MD subgroup infectious hematopoietic necrosis virus (IHNV) began in the coastal region of Washington State, USA, in 2007. This emergence event lasted until 2011 and caused both asymptomatic adult fish infection and symptomatic epidemic disease and mortality in juvenile fish. Incidence of virus during this emergence demonstrated a heterogeneous distribution among rivers of the coastal region, leaving fish populations of some rivers apparently untouched while others suffered significant and recurrent infection and mortality (Breyta et. al. 2013; Dis Aquat Org 104:179-195). In this study, we examined the possible contribution of variations in susceptibility of fish populations, age-related resistance, and virus virulence to the observed landscape heterogeneity. We found that the most significant variable was host susceptibility: by controlled experimental challenge studies steelhead trout populations with no history of IHNV infection were 1 to 3 orders of magnitude more sensitive than a fish population with a long history of IHNV infection. In addition, 2 fish populations from the same river, which descended relatively recently from a common ancestral population, demonstrated 1 to 2 orders of magnitude difference in susceptibility. Fish age-related development of resistance was most evident in the more susceptible of 2 related fish populations. Finally, the strain of virus involved in the 2007 coastal Washington emergence had high virulence but was within the range of other known M group viruses tested. These results suggest that one major driver of landscape heterogeneity in the 2007 coastal Washington IHNV emergence was variation in fish population susceptibility and that this trait may have a heritable component.
Dobos, Marika E.; Corsi, Matthew P.; Schill, Daniel J.; DuPont, Joseph M.; Quist, Michael C.
2016-01-01
Although many Westslope Cutthroat Trout Oncorhynchus clarkii lewisi populations in Idaho are robust and stable, population densities in some systems remain below management objectives. In many of those systems, such as in the South Fork Clearwater River (SFCR) system, environmental conditions (e.g., summer temperatures) are hypothesized to limit populations of Westslope Cutthroat Trout. Radiotelemetry and snorkeling methods were used to describe seasonal movement patterns, distribution, and habitat use of Westslope Cutthroat Trout in the SFCR during the summers of 2013 and 2014. Sixty-six radio transmitters were surgically implanted into Westslope Cutthroat Trout (170–405 mm TL) from May 30–June 25, 2013, and June 20–July 6, 2014. Sedentary and mobile summer movement patterns by Westslope Cutthroat Trout were observed in the SFCR. Westslope Cutthroat Trout were generally absent from the lower SFCR. In the upper region of the SFCR, fish generally moved from the main-stem SFCR into tributaries as water temperatures increased during the summer. Fish remained in the middle region of the SFCR where water temperatures were cooler than in the upper or lower regions of the SFCR. A spatially explicit water temperature model indicated that the upper and lower regions of the SFCR exceeded thermal tolerance levels of Westslope Cutthroat Trout throughout the summer. During snorkeling, 23 Westslope Cutthroat Trout were observed in 13 sites along the SFCR and at low density (mean ± SD, 0.0003 ± 0.0001 fish/m2). The distribution of fish observed during snorkeling was consistent with the distribution of radio-tagged fish in the SFCR during the summer. Anthropogenic activities (i.e., grazing, mining, road construction, and timber harvest) in the SFCR basin likely altered the natural flow dynamics and temperature regime and thereby limited stream habitat in the SFCR system for Westslope Cutthroat Trout.
Scribner, Kim T.; Avise, John C.
1994-01-01
The dynamics of mitochondrial and multilocus nuclear genotypic frequencies were monitored for 2 yr in experimental populations established with equal numbers of two poeciliid fishes (Gambusia affinis and Gambusia holbrooki) that hybridize naturally in the southeastern United States. In replicated "small-pool" populations (experiment I), 1018 sampled individuals at six time periods revealed an initial flush of hybridization, followed by a rapid decline in frequencies of G. affinis nuclear and mitochondrial alleles over 64 wk. Decay of gametic and cytonuclear disequilibria differed from expectations under random mating as well as under a model of assortative mating involving empirically estimated mating propensities. In two replicate "large-pond" populations (experiment II), 841 sampled individuals across four reproductive cohorts revealed lower initial frequencies of F1 hybrids than in experiment I, but again G. holbrooki alleles achieved high frequencies over four generations (72 wk). Thus, evolution within experimental Gambusia hybrid populations can be extremely rapid, resulting in consistent loss of G. affinis nuclear and cytoplasmic alleles. Concordance in results between experiments and across genetic markers suggests strong directional selection favoring G. holbrooki genotypes. Results are interpreted in light of previous reports of genotype-specific differences in life-history traits, reproductive ecology, patterns of recruitment, and size-specific mortality, and in the context of patterns of introgression previously studied indirectly from spatial observations on cytonuclear genotypes in natural Gambusia populations.
Isari, Stamatina; Pearman, John K; Casas, Laura; Michell, Craig T; Curdia, Joao; Berumen, Michael L; Irigoien, Xabier
2017-01-01
An important aspect of population dynamics for coral reef fishes is the input of new individuals from the pelagic larval pool. However, the high biodiversity and the difficulty of identifying larvae of closely related species represent obstacles to more fully understanding these populations. In this study, we combined morphology and genetic barcoding (Cytochrome Oxidase I gene) to characterize the seasonal patterns of the larval fish community at two sites in close proximity to coral reefs in the central-north Red Sea: one shallower inshore location (50 m depth) and a nearby site located in deeper and more offshore waters (~ 500 m depth). Fish larvae were collected using oblique tows of a 60 cm-bongo net (500 μm mesh size) every month for one year (2013). During the warmer period of the year (June-November), the larval fish stock was comparable between sampling sites. However, during the colder months, abundances were higher in the inshore than in the offshore waters. Taxonomic composition and temporal variation of community structure differed notably between sites, potentially reflecting habitat differences, reproductive patterns of adults, and/or advective processes in the area. Eleven out of a total of 62 recorded families comprised 69-94% of the fish larval community, depending on sampling site and month. Richness of taxa was notably higher in the inshore station compared to the offshore, particularly during the colder period of the year and especially for the gobiids and apogonids. Two mesopelagic taxa (Vinciguerria sp. and Benthosema spp.) comprised an important component of the larval community at the deeper site with only a small and sporadic occurrence in the shallower inshore waters. Our data provide an important baseline reference for the larval fish communities of the central Red Sea, representing the first such study from Saudi Arabian waters.
Pearman, John K.; Casas, Laura; Michell, Craig T.; Curdia, Joao; Berumen, Michael L.; Irigoien, Xabier
2017-01-01
An important aspect of population dynamics for coral reef fishes is the input of new individuals from the pelagic larval pool. However, the high biodiversity and the difficulty of identifying larvae of closely related species represent obstacles to more fully understanding these populations. In this study, we combined morphology and genetic barcoding (Cytochrome Oxidase I gene) to characterize the seasonal patterns of the larval fish community at two sites in close proximity to coral reefs in the central-north Red Sea: one shallower inshore location (50 m depth) and a nearby site located in deeper and more offshore waters (~ 500 m depth). Fish larvae were collected using oblique tows of a 60 cm-bongo net (500 μm mesh size) every month for one year (2013). During the warmer period of the year (June-November), the larval fish stock was comparable between sampling sites. However, during the colder months, abundances were higher in the inshore than in the offshore waters. Taxonomic composition and temporal variation of community structure differed notably between sites, potentially reflecting habitat differences, reproductive patterns of adults, and/or advective processes in the area. Eleven out of a total of 62 recorded families comprised 69–94% of the fish larval community, depending on sampling site and month. Richness of taxa was notably higher in the inshore station compared to the offshore, particularly during the colder period of the year and especially for the gobiids and apogonids. Two mesopelagic taxa (Vinciguerria sp. and Benthosema spp.) comprised an important component of the larval community at the deeper site with only a small and sporadic occurrence in the shallower inshore waters. Our data provide an important baseline reference for the larval fish communities of the central Red Sea, representing the first such study from Saudi Arabian waters. PMID:28771590
Fish community structure and dynamics in a coastal hypersaline lagoon: Rio Lagartos, Yucatan, Mexico
NASA Astrophysics Data System (ADS)
Vega-Cendejas, Ma. Eugenia; Hernández de Santillana, Mireya
2004-06-01
Rio Lagartos, a tropical coastal lagoon in northern Yucatan Peninsula of Mexico, is characterized by high salinity during most of the year (55 psu annual average). Even though the area has been designated as a wetland of international importance because of its great biodiversity, fish species composition and distribution are unknown. To determine whether the salinity gradient was influencing fish assemblages or not, fish populations were sampled seasonally by seine and trawl from 1992 to 1993 and bimonthly during 1997. We identified 81 fish species, eight of which accounted for 53.1% considering the Importance Value Index ( Floridichthys polyommus, Sphoeroides testudineus, Eucinostomus argenteus, Eucinostomus gula, Fundulus majalis, Strongylura notata, Cyprinodon artifrons and Elops saurus). Species richness and density declined from the mouth to the inner zone where extreme salinity conditions are prominent (>80) and competitive interactions decreased. However, in Coloradas basin (53 average sanity) and in the inlet of the lagoon, the highest fish density and number of species were observed. Greater habitat heterogeneity and fish immigration were considered as the best explanation. Multivariate analysis found three zones distinguished by fish occurrence, abundance and distribution. Ichthyofaunal spatial differences were attributed to selective recruitment from the Gulf of Mexico due to salinity gradient and to changing climatic periods. Estuarine and euryhaline marine species are abundant, with estuarine dependent ones entering the system according to environmental preferences. This knowledge will contribute to the management of the Special Biosphere Reserve through baseline data to evaluate environmental and anthropogenic changes.
Sustainability of the Lake Superior fish community: Interactions in a food web context
Kitchell, James F.; Cox, Sean P.; Harvey, Chris J.; Johnson, Timothy B.; Mason, Doran M.; Schoen, Kurt K.; Aydin, Kerim; Bronte, Charles; Ebener, Mark; Hansen, Michael; Hoff, Michael; Schram, Steve; Schreiner, Don; Walters, Carl J.
2000-01-01
The restoration and rehabilitation of the native fish communities is a long-term goal for the Laurentian Great Lakes. In Lake Superior, the ongoing restoration of the native lake trout populations is now regarded as one of the major success stories in fisheries management. However, populations of the deepwater morphotype (siscowet lake trout) have increased much more substantially than those of the nearshore morphotype (lean lake trout), and the ecosystem now contains an assemblage of exotic species such as sea lamprey, rainbow smelt, and Pacific salmon (chinook, coho, and steelhead). Those species play an important role in defining the constraints and opportunities for ecosystem management. We combined an equilibrium mass balance model (Ecopath) with a dynamic food web model (Ecosim) to evaluate the ecological consequences of future alternative management strategies and the interaction of two different sets of life history characteristics for fishes at the top of the food web. Relatively rapid turnover rates occur among the exotic forage fish, rainbow smelt, and its primary predators, exotic Pacific salmonids. Slower turnover rates occur among the native lake trout and burbot and their primary prey—lake herring, smelt, deepwater cisco, and sculpins. The abundance of forage fish is a key constraint for all salmonids in Lake Superior. Smelt and Mysis play a prominent role in sustaining the current trophic structure. Competition between the native lake trout and the exotic salmonids is asymmetric. Reductions in the salmon population yield only a modest benefit for the stocks of lake trout, whereas increased fishing of lake trout produces substantial potential increases in the yields of Pacific salmon to recreational fisheries. The deepwater or siscowet morphotype of lake trout has become very abundant. Although it plays a major role in the structure of the food web it offers little potential for the restoration of a valuable commercial or recreational fishery. Even if a combination of strong management actions is implemented, the populations of lean (nearshore) lake trout cannot be restored to pre-fishery and pre-lamprey levels. Thus, management strategy must accept the ecological constraints due in part to the presence of exotics and choose alternatives that sustain public interest in the resources while continuing the gradual progress toward restoration.
Stickleback increase in the Baltic Sea - A thorny issue for coastal predatory fish
NASA Astrophysics Data System (ADS)
Bergström, Ulf; Olsson, Jens; Casini, Michele; Eriksson, Britas Klemens; Fredriksson, Ronny; Wennhage, Håkan; Appelberg, Magnus
2015-09-01
In the Baltic Sea, the mesopredator three-spined stickleback (Gasterosteus aculeatus) spends a large part of its life cycle in the open sea, but reproduces in shallow coastal habitats. In coastal waters, it may occur in high abundances, is a potent predator on eggs and larvae of fish, and has been shown to induce trophic cascades with resulting eutrophication symptoms through regulation of invertebrate grazers. Despite its potential significance for the coastal food web, little is known about its life history and population ecology. This paper provides a description of life history traits, migration patterns and spatiotemporal development of the species in the Baltic Sea during the past decades, and tests the hypothesis that stickleback may have a negative impact on populations of coastal predatory fish. Offshore and coastal data during the last 30 years show that stickleback has increased fourfold in the Bothnian Sea, 45-fold in the Central Baltic Sea and sevenfold in the Southern Baltic Sea. The abundances are similar in the two northern basins, and two orders of magnitude lower in the Southern Baltic Sea. The coastward spawning migration of sticklebacks from offshore areas peaks in early May, with most spawners being two years of age at a mean length of 65 mm. The early juvenile stage is spent at the coast, whereafter sticklebacks perform a seaward feeding migration in early autumn at a size of around 35 mm. A negative spatial relation between the abundance of stickleback and early life stages of perch and pike at coastal spawning areas was observed in spatial survey data, indicating strong interactions between the species. A negative temporal relationship was observed also between adult perch and stickleback in coastal fish monitoring programmes supporting the hypothesis that stickleback may have negative population level effects on coastal fish predators. The recent increase in stickleback populations in different basins of the Baltic Sea in combination with negative spatiotemporal patterns and previously observed interactions between stickleback and coastal predatory fish suggests that this species may have gained a key role in the coastal food webs of the Baltic Sea. Through its migrations, stickleback may also constitute an important vector linking coastal and open sea ecosystem dynamics.
Dambacher, Jeffrey M; Rothlisberg, Peter C; Loneragan, Neil R
2015-01-01
A major decline in the catch of the banana prawn [shrimp], Penaeus (Fenneropenaeus) merguiensis, occurred over a six-year period in the Weipa region of the northeastern Gulf of Carpentaria, Australia. Three main hypotheses have been developed to explain this decline: (1) prawn recruitment collapsed due to overfishing; (2) recruitment collapsed due to a change in the prawn's environment; and (3) adult banana prawns were still present, but fishers could no longer effectively find or catch them. Qualitative mathematical models were used to link population biology, environmental factors, and fishery dynamics to evaluate the alternative hypotheses. This modeling approach provides the means to rapidly integrate knowledge across disciplines and consider alternative hypotheses about how the structure and function of an ecosystem affects its dynamics. Alternative models were constructed to address the different hypotheses and also to encompass a diversity of opinion about the underlying dynamics of the system. Key findings from these analyses are that: instability in the system can arise when discarded fishery bycatch supports relatively high predation pressure; system stability can be enhanced by management of fishing effort or stock catchability; catch per unit effort is not necessarily a reliable indicator of stock abundance; a change in early-season rainfall should affect all stages in the banana prawn's life cycle; and a reduced catch in the Weipa region can create and reinforce a shift in fishing effort away from Weipa. Results from the models informed an approach to test the hypotheses (i.e., an experimental fishing program), and promoted understanding of the system among researchers, management agencies, and industry. The analytical tools developed in this work to address stages of a prawn life cycle and fishery dynamics are generally applicable to any exploited natural. resource.
Culturable microbiota of ranched southern bluefin tuna (Thunnus maccoyii Castelnau).
Valdenegro-Vega, V; Naeem, S; Carson, J; Bowman, J P; Tejedor del Real, J L; Nowak, B
2013-10-01
The Australian tuna industry is based on the ranching of wild southern bluefin tuna (SBT, Thunnus maccoyii). Within this industry, only opportunistic pathogens have been reported infecting external wounds of fish. This study aimed to identify different culturable bacteria present in three cohorts of SBT and to determine normal bacteria and potential pathogens in isolates from harvest fish and moribund/dead fish. Post-mortem changes in the microbiota were also studied. Moribund/dead showed a greater proportion of members from the family Vibrionaceae than harvested fish; the latter presented mainly non-Vibrio species. In harvested fish spleens, Vibrio splendidus I complex was the most commonly identified group among Vibrio isolates, while most groups from the family Vibrionaceae were isolated from gills. For moribund/dead, Vibrio chagasii and Photobacterium damselae subsp. damselae were common in gill, spleen and kidney samples. Non-Vibrio isolates from gills were characterized using 16S rRNA sequencing as Flavobacteriaceae and classes Gammaproteobacteria and Alphaproteobacteria, mainly from the genera Winogradskyella and Tenacibaculum. Post-mortem changes showed dynamic shifts in bacterial dominance in gills, with Vibrionaceae and non-Vibrio spp. found in similar proportions initially and types related to Pseudoalteromonas ruthenica prevailing after 27 h. Spleen samples showed little bacterial growth until 5 h post-mortem, while various Vibrio-associated species were isolated 27 h post-mortem. Bacterial isolates found include a range of potentially pathogenic bacteria that should be monitored though most of them have yet to be associated with disease in tuna. This study forms a foundation for future research into the bacterial population dynamics under different culture conditions of SBT. An understanding of the bacterial compositions in SBT is necessary to evaluate the effects of some bacterial species on their health. © 2013 The Society for Applied Microbiology.
Dynamics of the double-crested cormorant population on Lake Ontario
Blackwell, Bradley F.; Stapanian, Martin A.; Weseloh, D.V. Chip
2002-01-01
After nearly 30 years of recolonization and expansion across North America, the double-crested cormorant (Phalacrocorax auritus) occupies the role of a perceived and, in some situations, realized threat to fish stocks and other resources. However, population data necessary to plan, defend, and implement management of this species are few. Our purpose was to gain insight into the relative contribution of various population parameters to the overall rate of population growth and identify data needs critical to improving our understanding of the dynamics of double-crested cormorant populations. We demonstrated the construction of a biologically reasonable representation of cormorant population growth on Lake Ontario (1979-2000) by referencing literature values for fertility, age at first breeding, and survival. These parameters were incorporated into a deterministic stage-classified matrix model. By calculating the elasticity of matrix elements (i.e., statgspecific fertility and survival), we found that cormorant population growth on Lake Ontario was most sensitive to survival of birds about to turn age 3 and older. Finally, we demonstrated how this information could be used to evaluate management scenarios and direct future research by simulating potential environmental effects on fertility and survival, as well as a 5-year egg-oiling program. We also demonstrated that survival of older birds exerts more effective population control than changes in fertility.
Climate change effects on North American inland fish populations and assemblages
Lynch, Abigail J.; Myers, Bonnie; Chu, Cindy; Eby, Lisa A.; Falke, Jeffrey A.; Kovach, Ryan P.; Krabbenhoft, Trevor J.; Kwak, Thomas J.; Lyons, John; Paukert, Craig P.; Whitney, James E.
2016-01-01
Climate is a critical driver of many fish populations, assemblages, and aquatic communities. However, direct observational studies of climate change impacts on North American inland fishes are rare. In this synthesis, we (1) summarize climate trends that may influence North American inland fish populations and assemblages, (2) compile 31 peer-reviewed studies of documented climate change effects on North American inland fish populations and assemblages, and (3) highlight four case studies representing a variety of observed responses ranging from warmwater systems in the southwestern and southeastern United States to coldwater systems along the Pacific Coast and Canadian Shield. We conclude by identifying key data gaps and research needs to inform adaptive, ecosystem-based approaches to managing North American inland fishes and fisheries in a changing climate.
Moffitt, Christine M.; James, Christopher A.
2012-01-01
Following the discovery of New Zealand mudsnails, Potamopyrgus antipodarum, in the Silver Creek watershed in Idaho, we investigated the distribution and dynamics of the snail populations over two years in field surveys. Despite extensive fishing and recreational activities in the watershed, the infestations appeared limited in extent. As with other published studies, densities of P. antipodarum were highest during summer months, but the distribution in Silver Creek was patchy. We found that near-to-below freezing winter water temperatures in localized reaches of the watershed were related to reduced populations or lack of detection. Distributions observed in winter were associated with regions of groundwater releases, or downstream of impoundments that dampened the temperature extremes observed in locations elsewhere in the watershed. We speculate that the population has remained restricted because thermal conditions are not conducive to year-round survival and growth. However, these relationships could be altered with watershed alterations or global climate change.
Fish community dynamics following dam removal in a fragmented agricultural stream
Kornis, Matthew; Weidel, Brian C.; Powers, Stephens; Diebel, Matthew W.; Cline, Timpthy; Fox, Justin; Kitchell, James F.
2014-01-01
Habitat fragmentation impedes dispersal of aquatic fauna, and barrier removal is increasingly used to increase stream network connectivity and facilitate fish dispersal. Improved understanding of fish community response to barrier removal is needed, especially in fragmented agricultural streams where numerous antiquated dams are likely destined for removal. We examined post-removal responses in two distinct fish communities formerly separated by a small aging mill dam. The dam was removed midway through the 6 year study, enabling passage for downstream fishes affiliated with a connected reservoir into previously inaccessible habitat, thus creating the potential for taxonomic homogenization between upstream and downstream communities. Both communities changed substantially post-removal. Two previously excluded species (white sucker, yellow perch) established substantial populations upstream of the former dam, contributing to a doubling of total fish biomass. Meanwhile, numerical density of pre-existing upstream fishes declined. Downstream, largemouth bass density was inversely correlated with prey fish density throughout the study, while post-removal declines in bluegill density coincided with cooler water temperature and increased suspended and benthic fine sediment. Upstream and downstream fish communities became more similar post-removal, represented by a shift in Bray-Curtis index from 14 to 41 % similarity. Our findings emphasize that barrier removal in highly fragmented stream networks can facilitate the unintended and possibly undesirable spread of species into headwater streams, including dispersal of species from remaining reservoirs. We suggest that knowledge of dispersal patterns for key piscivore and competitor species in both the target system and neighboring systems may help predict community outcomes following barrier removal.
Evaluating Investment in Missouri River Restoration: The Missouri River Effects Analysis
NASA Astrophysics Data System (ADS)
Jacobson, R. B.; Fischenich, C. J.; Buenau, K. E.
2014-12-01
In excess of $700 million has been spent over the last 10 years on restoration of the Missouri River. During this time, restoration efforts have focused progressively on avoidance of jeopardy for three threatened or endangered species: interior least tern (Sternula antillarum), piping plover (Charadrius melodus), and the pallid sturgeon (Scaphirhynchus albus). In 2013, the US Army Corps of Engineers, the US Fish and Wildlife Service, and Missouri River stakeholders (through the Missouri River Recovery Implementation Committee) commissioned an Effects Analysis (EA; Murphy and Weiland, 2011) to evaluate the effects of this effort on the three species' populations and to project effects of future restoration. The EA includes synthesis of existing abiotic and biotic scientific information relating to species population processes, distributions, and habitat needs, as well as development of conceptual and quantitative models linking river context to its management and to species' responses. The EA also includes design of the next generation of hypothesis-driven science to support adaptive management of the species and the river. The Missouri River EA faces the challenge of evaluating how management of North America's largest reservoir storage system, 600 km of non-channelized mainstem, and nearly 1,200 km of channelized mainstem contribute to species' population dynamics. To support EA needs, the US Army Corps of Engineers is developing a new generation of reservoir simulation and routing models for the Missouri River basin, coupled with components to evaluate ecological and socio-economic metrics. The EA teams are developing coordinated models relating management to functional habitats and species' responses. A particular challenge faced by the EA is communicating the very different uncertainties in population dynamics between well-documented birds and the enigmatic fish, and the implications of this disparity in decision making, implementation, and adaptive management strategies.
NASA Astrophysics Data System (ADS)
Kohut, J. T.; Manderson, J.; Palamara, L. J.; Saba, V. S.; Saba, G.; Hare, J. A.; Curchitser, E. N.; Moore, P.; Seibel, B.; DiDomenico, G.
2016-12-01
Through a multidisciplinary study group of experts in marine ecology, physical oceanography and stock assessment from the fishing industry, government and academia we developed a method to explicitly account for shifting habitat distributions in fish population assessments. We used data from field surveys throughout the Northwest Atlantic Ocean to develop a parametric thermal niche model for an important short-lived pelagic forage fish, Atlantic Butterfish. This niche model was coupled to a hindcast of daily bottom water temperature derived from a regional numerical ocean model in order to project daily thermal habitat suitability over the last 40 years. This ecological hindcast was used to estimate the proportion of thermal habitat suitability available on the U.S. Northeast Shelf that was sampled on fishery-independent surveys, accounting for the relative motions of thermal habitat and the trajectory of sampling on the survey. The method and habitat based estimates of availability was integrated into the catchability estimate used to scale population size in the butterfish stock assessment model accepted by the reviewers of the 59th NEFSC stock assessment review, as well as the mid-Atlantic Council's Scientific and Statistical Committee. The contribution of the availability estimate (along with an estimate of detectability) allowed for the development of fishery reference points, a change in stock status from unknown to known, and the establishment of a directed fishery with an allocation of 20,000 metric tons of quota. This presentation will describe how a community based workgroup utilized ocean observing technologies combined with ocean models to better understand the physical ocean that structures marine ecosystems. Using these approaches we will discuss opportunities to inform ecological hindcasts and climate projections with mechanistic models that link species-specific physiology to climate-based thermal scenarios.
NASA Astrophysics Data System (ADS)
Kohut, J. T.; Manderson, J.; Palamara, L. J.; Saba, V. S.; Saba, G.; Hare, J. A.; Curchitser, E. N.; Moore, P.; Seibel, B.; DiDomenico, G.
2016-02-01
Through a multidisciplinary study group of experts in marine ecology, physical oceanography and stock assessment from the fishing industry, government and academia we developed a method to explicitly account for shifting habitat distributions in fish population assessments. We used data from field surveys throughout the Northwest Atlantic Ocean to develop a parametric thermal niche model for an important short-lived pelagic forage fish, Atlantic Butterfish. This niche model was coupled to a hindcast of daily bottom water temperature derived from a regional numerical ocean model in order to project daily thermal habitat suitability over the last 40 years. This ecological hindcast was used to estimate the proportion of thermal habitat suitability available on the U.S. Northeast Shelf that was sampled on fishery-independent surveys, accounting for the relative motions of thermal habitat and the trajectory of sampling on the survey. The method and habitat based estimates of availability was integrated into the catchability estimate used to scale population size in the butterfish stock assessment model accepted by the reviewers of the 59th NEFSC stock assessment review, as well as the mid-Atlantic Council's Scientific and Statistical Committee. The contribution of the availability estimate (along with an estimate of detectability) allowed for the development of fishery reference points, a change in stock status from unknown to known, and the establishment of a directed fishery with an allocation of 20,000 metric tons of quota. This presentation will describe how a community based workgroup utilized ocean observing technologies combined with ocean models to better understand the physical ocean that structures marine ecosystems. Using these approaches we will discuss opportunities to inform ecological hindcasts and climate projections with mechanistic models that link species-specific physiology to climate-based thermal scenarios.
NASA Astrophysics Data System (ADS)
Netburn, Amanda N.; Koslow, J. Anthony
2018-04-01
With strong horizontal gradients in physical properties, oceanic frontal regions can lead to disproportionately high biological productivity. We examined cross-frontal changes in mesopelagic fish assemblages at three separate frontal systems in the southern California Current Ecosystem (CCE) as part of the CCE Long Term Ecological Research program: the A-Front sampled in October 2008, the C-Front in June/July 2011, and the E-Front in July/August 2012. We analyzed the differential effects of front-associated regions on density and species composition of adult migratory and non-migratory fishes and larvae, and the larval to adult ratio (as a possible index of a population growth potential) for migratory and non-migratory species. The fronts did not have a strong effect on densities of any subset of the mesopelagic fish assemblage. The species composition of the vertical migratory fishes (and their larvae) was typically altered across fronts, with different assemblages present on either side of each front. The migratory assemblages at the fronts themselves were indistinguishable from those at the more productive side of the frontal system. In contrast, the assemblage composition of the non-migratory fishes was indistinguishable between regions across all three of the fronts. The differences between the Northern and Southern assemblages at the A-Front were primarily based on biogeographic provinces, while the assemblages at the E-Front were largely distinguishable by their oceanic or coastal-upwelling zone associations. These results generally confirm those of previous studies on frontal systems in the California Current Ecosystem and elsewhere. The ratio of larvae to adults, a potential index of population growth potential, was altered across two of the fronts for migratory species, elevated on the colder side of the A-Front and the warmer side of the E-Front. This finding suggests that fronts may be regions of enhanced reproduction. The larvae to adult ratio was indistinguishable for non-migratory species at all three frontal systems. The non-migratory component of the community was little influenced by the presence of a front, apparently because the regions of strongest horizontal spatial gradients were too shallow to be experienced directly. We speculate that there was no change in larval community composition and population growth index at the most dynamic frontal system (C-Front) compared to the other fronts surveyed because the frontal feature was short-lived relative to the time scale for population growth of the fish. However, the difference in results of the C-Front may also be due to a change in methodology used in this study. If mesoscale features such as fronts increase in frequency off the California coast in the future as predicted, they have the potential to alter population growth potential and restructure mesopelagic fish assemblages, which are dominated by migratory species.
Effects of a model polycyclic aromatic hydrocarbon (PAH) were compared in populations of the estuarine fish Fundulus heteroclitus indigenous to a reference site and one highly contaminated with polychlorinated biphenyls (PCBs) and other compounds. The fish population resident to ...
COST AND BENEFITS OF ALTERED BENZO(A)PYRENE METABOLISM IN A PCB-ADAPTED FISH POPULATION
We examined populations of an estuarine fish species (Fundulus heteroclitus) resident to a highly contaminated site and a reference site for their ability to metabolize an important environmental pollutant. In previous work, we characterized the fish population resident to this h...
Gregg, J.L.; Grady, C.A.; Friedman, C.S.; Hershberger, P.K.
2012-01-01
The parasite Ichthyophonus is enzootic in many marine fish populations of the northern Atlantic and Pacific Oceans. Forage fishes are a likely source of infection for higher trophic level predators; however, the processes that maintain Ichthyophonus in forage fish populations (primarily clupeids) are not well understood. Lack of an identified intermediate host has led to the convenient hypothesis that the parasite can be maintained within populations of schooling fishes by waterborne fish-to-fish transmission. To test this hypothesis we established Ichthyophonus infections in Age-1 and young-of-the-year (YOY) Pacific herring Clupea pallasii (Valenciennes) via intraperitoneal (IP) injection and cohabitated these donors with naïve conspecifics (sentinels) in the laboratory. IP injections established infection in 75 to 84% of donor herring, and this exposure led to clinical disease and mortality in the YOY cohort. However, after cohabitation for 113 d no infections were detected in naïve sentinels. These data do not preclude the possibility of fish-to-fish transmission, but they do suggest that other transmission processes are necessary to maintain Ichthyophonus in wild Pacific herring populations.
A resilience approach can improve anadromous fish restoration
Waldman, John R.; Wilson, Karen A.; Mather, Martha E.; Snyder, Noah P.
2016-01-01
Most anadromous fish populations remain at low levels or are in decline despite substantial investments in restoration. We explore whether a resilience perspective (i.e., a different paradigm for understanding populations, communities, and ecosystems) is a viable alternative framework for anadromous fish restoration. Many life history traits have allowed anadromous fish to thrive in unimpacted ecosystems but have become contemporary curses as anthropogenic effects increase. This contradiction creates a significant conservation challenge but also makes these fish excellent candidates for a resilience approach. A resilience approach recognizes the need to maintain life history, population, and habitat characteristics that increase the ability of a population to withstand and recover from multiple disturbances. To evaluate whether a resilience approach represents a viable strategy for anadromous fish restoration, we review four issues: (1) how resilience theory can inform anadromous fish restoration, (2) how a resilience-based approach is fundamentally different than extant anadromous fish restoration strategies, (3) ecological characteristics that historically benefited anadromous fish persistence, and (4) examples of how human impacts harm anadromous fish and how a resilience approach might produce more successful outcomes. We close by suggesting new research and restoration directions for implementation of a resilience-based approach.
Cytonuclear genetics of experimental fish hybrid zones inside Biosphere 2
Scribner, K.T.; Avise, John C.
1994-01-01
Two species of mosquitofish (family Poeciliidae) known to hybridize in nature were introduced into freshwater habitats inside Biosphere 2, and their population genetics were monitored after 2 years. Within four to six generations, nuclear and cytoplasmic markers characteristic of Gambusia holbrooki had risen greatly in frequency, although some Gambusia affinis alleles and haplotypes were retained primarily in recombinant genotypes, indicative of introgressive hybridization. The temporal cytonuclear dynamics proved similar to population genetic changes observed in replicated experimental hybrid populations outside of Biosphere 2, thus indicating strong directional selection favoring G. holbrooki genotypes across the range of environments monitored. When interpreted in the context of species-specific population demographies observed previously, results suggest that the extremely rapid evolution in these zones of secondary contact is attributable primarily to species differences in life-history traits.
First genealogy for a wild marine fish population reveals multigenerational philopatry.
Salles, Océane C; Pujol, Benoit; Maynard, Jeffrey A; Almany, Glenn R; Berumen, Michael L; Jones, Geoffrey P; Saenz-Agudelo, Pablo; Srinivasan, Maya; Thorrold, Simon R; Planes, Serge
2016-11-15
Natal philopatry, the return of individuals to their natal area for reproduction, has advantages and disadvantages for animal populations. Natal philopatry may generate local genetic adaptation, but it may also increase the probability of inbreeding that can compromise persistence. Although natal philopatry is well documented in anadromous fishes, marine fish may also return to their birth site to spawn. How philopatry shapes wild fish populations is, however, unclear because it requires constructing multigenerational pedigrees that are currently lacking for marine fishes. Here we present the first multigenerational pedigree for a marine fish population by repeatedly genotyping all individuals in a population of the orange clownfish (Amphiprion percula) at Kimbe Island (Papua New Guinea) during a 10-y period. Based on 2927 individuals, our pedigree analysis revealed that longitudinal philopatry was recurrent over five generations. Progeny tended to settle close to their parents, with related individuals often sharing the same colony. However, successful inbreeding was rare, and genetic diversity remained high, suggesting occasional inbreeding does not impair local population persistence. Local reproductive success was dependent on the habitat larvae settled into, rather than the habitat they came from. Our study suggests that longitudinal philopatry can influence both population replenishment and local adaptation of marine fishes. Resolving multigenerational pedigrees during a relatively short period, as we present here, provides a framework for assessing the ability of marine populations to persist and adapt to accelerating climate change.
First genealogy for a wild marine fish population reveals multigenerational philopatry
Salles, Océane C.; Pujol, Benoit; Maynard, Jeffrey A.; Almany, Glenn R.; Berumen, Michael L.; Jones, Geoffrey P.; Saenz-Agudelo, Pablo; Srinivasan, Maya; Thorrold, Simon R.; Planes, Serge
2016-01-01
Natal philopatry, the return of individuals to their natal area for reproduction, has advantages and disadvantages for animal populations. Natal philopatry may generate local genetic adaptation, but it may also increase the probability of inbreeding that can compromise persistence. Although natal philopatry is well documented in anadromous fishes, marine fish may also return to their birth site to spawn. How philopatry shapes wild fish populations is, however, unclear because it requires constructing multigenerational pedigrees that are currently lacking for marine fishes. Here we present the first multigenerational pedigree for a marine fish population by repeatedly genotyping all individuals in a population of the orange clownfish (Amphiprion percula) at Kimbe Island (Papua New Guinea) during a 10-y period. Based on 2927 individuals, our pedigree analysis revealed that longitudinal philopatry was recurrent over five generations. Progeny tended to settle close to their parents, with related individuals often sharing the same colony. However, successful inbreeding was rare, and genetic diversity remained high, suggesting occasional inbreeding does not impair local population persistence. Local reproductive success was dependent on the habitat larvae settled into, rather than the habitat they came from. Our study suggests that longitudinal philopatry can influence both population replenishment and local adaptation of marine fishes. Resolving multigenerational pedigrees during a relatively short period, as we present here, provides a framework for assessing the ability of marine populations to persist and adapt to accelerating climate change. PMID:27799530
KNAPP, Roland A.; BOIANO, Daniel M.; VREDENBURG, Vance T.
2007-01-01
The mountain yellow-legged frog (Rana muscosa) was once a common inhabitant of the Sierra Nevada (California, USA), but has declined precipitously during the past century due in part to the introduction of nonnative fish into naturally fishless habitats. The objectives of the current study were to describe (1) the effect of fish removal from three lakes (located in two watersheds) on the small, remnant R. muscosa populations inhabiting those lakes, and (2) the initial development of metapopulation structure in each watershed as R. muscosa from expanding populations in fish-removal lakes dispersed to adjacent habitats. At all three fish-removal lakes, R. muscosa population densities increased significantly following the removal of predatory fish. The magnitude of these increases was significantly greater than that observed over the same time period in R. muscosa populations inhabiting control lakes that remained in their natural fishless condition. Following these population increases, R. muscosa dispersed to adjacent suitable (but unoccupied) sites, moving between 200 and 900 m along streams or across dry land. Together, these results suggest that large-scale removal of introduced fish could result in at least partial reversal of the decline of R. muscosa. Continued monitoring of R. muscosa at the fish-removal sites will be necessary to determine whether the positive effects of fish eradication are sustained over the long-term, especially in light of the increasingly important role played by an emerging infectious disease (chytridiomycosis, caused by Batrachochytrium dendrobatidis) in influencing R. muscosa populations. PMID:17396156
Effective size of a wild salmonid population is greatly reduced by hatchery supplementation
Christie, M R; Marine, M L; French, R A; Waples, R S; Blouin, M S
2012-01-01
Many declining and commercially important populations are supplemented with captive-born individuals that are intentionally released into the wild. These supplementation programs often create large numbers of offspring from relatively few breeding adults, which can have substantial population-level effects. We examined the genetic effects of supplementation on a wild population of steelhead (Oncorhynchus mykiss) from the Hood River, Oregon, by matching 12 run-years of hatchery steelhead back to their broodstock parents. We show that the effective number of breeders producing the hatchery fish (broodstock parents; Nb) was quite small (harmonic mean Nb=25 fish per brood-year vs 373 for wild fish), and was exacerbated by a high variance in broodstock reproductive success among individuals within years. The low Nb caused hatchery fish to have decreased allelic richness, increased average relatedness, more loci in linkage disequilibrium and substantial levels of genetic drift in comparison with their wild-born counterparts. We also documented a substantial Ryman–Laikre effect whereby the additional hatchery fish doubled the total number of adult fish on the spawning grounds each year, but cut the effective population size of the total population (wild and hatchery fish combined) by nearly two-thirds. We further demonstrate that the Ryman–Laikre effect is most severe in this population when (1) >10% of fish allowed onto spawning grounds are from hatcheries and (2) the hatchery fish have high reproductive success in the wild. These results emphasize the trade-offs that arise when supplementation programs attempt to balance disparate goals (increasing production while maintaining genetic diversity and fitness). PMID:22805657
Van Wynsberge, Simon; Andréfouët, Serge; Gaertner-Mazouni, Nabila; Remoissenet, Georges
2018-02-01
Despite actions to manage sustainably tropical Pacific Ocean reef fisheries, managers have faced failures and frustrations because of unpredicted mass mortality events triggered by climate variability. The consequences of these events on the long-term population dynamics of living resources need to be better understood for better management decisions. Here, we use a giant clam (Tridacna maxima) spatially explicit population model to compare the efficiency of several management strategies under various scenarios of natural mortality, including mass mortality due to climatic anomalies. The model was parameterized by in situ estimations of growth and mortality and fishing effort, and was validated by historical and new in situ surveys of giant clam stocks in two French Polynesia lagoons. Projections on the long run (100 years) suggested that the best management strategy was a decrease of fishing pressure through quota implementation, regardless of the mortality regime considered. In contrast, increasing the minimum legal size of catch and closing areas to fishing were less efficient. When high mortality occurred due to climate variability, the efficiency of all management scenarios decreased markedly. Simulating El Niño Southern Oscillation event by adding temporal autocorrelation in natural mortality rates increased the natural variability of stocks, and also decreased the efficiency of management. These results highlight the difficulties that managers in small Pacific islands can expect in the future in the face of global warming, climate anomalies and new mass mortalities. Copyright © 2017 Elsevier Inc. All rights reserved.
Cod Collapse and Climate in the North Atlantic
NASA Astrophysics Data System (ADS)
Oremus, K. L.; Meng, K. C.; Gaines, S.
2016-02-01
Understanding the determinants of fish population dynamics is crucial to the recovery of many fisheries. Current research emphasizes the role of environmental conditions in driving fish populations, but the magnitude of and mechanisms behind these effects on crucial populations are not well established. Despite aggressive management efforts, New England cod fisheries have been in decline for several decades and have now reached unprecedented lows. We find a strong negative relationship between the North Atlantic Oscillation (NAO) and subsequent adult cod biomass and catch. In the Gulf of Maine fishery, a 1-unit NAO increase is associated with a 13% decrease in the biomass of age-1 cod the following year, a decrease that persists as the affected cohort matures. We further detect that a 1-unit NAO increase can lower commercial catch for up to 19 subsequent years, suggesting that fishing practices may be inadvertently exacerbating NAO's direct biological effects. These results imply that 18% and 32% of the overall decline in adult biomass and catch, respectively, since 1980 can be attributed to the NAO's recent multi-decadal positive phase. The Georges Bank cod fishery displays similar patterns. Because there is a delay between an NAO event and subsequent declines in adult biomass, our finding implies that already observed NAO events can be used in stock forecasts, providing lead time for adaptive policy. More broadly, our approach can inform forecasting efforts for other fisheries strongly affected by natural and anthropogenic climatic variation.
Vincenzi, Simone; Mangel, Marc; Crivelli, Alain J; Munch, Stephan; Skaug, Hans J
2014-09-01
The differences in demographic and life-history processes between organisms living in the same population have important consequences for ecological and evolutionary dynamics. Modern statistical and computational methods allow the investigation of individual and shared (among homogeneous groups) determinants of the observed variation in growth. We use an Empirical Bayes approach to estimate individual and shared variation in somatic growth using a von Bertalanffy growth model with random effects. To illustrate the power and generality of the method, we consider two populations of marble trout Salmo marmoratus living in Slovenian streams, where individually tagged fish have been sampled for more than 15 years. We use year-of-birth cohort, population density during the first year of life, and individual random effects as potential predictors of the von Bertalanffy growth function's parameters k (rate of growth) and L∞ (asymptotic size). Our results showed that size ranks were largely maintained throughout marble trout lifetime in both populations. According to the Akaike Information Criterion (AIC), the best models showed different growth patterns for year-of-birth cohorts as well as the existence of substantial individual variation in growth trajectories after accounting for the cohort effect. For both populations, models including density during the first year of life showed that growth tended to decrease with increasing population density early in life. Model validation showed that predictions of individual growth trajectories using the random-effects model were more accurate than predictions based on mean size-at-age of fish.
Impact of parasites on salmon recruitment in the Northeast Atlantic Ocean
Krkošek, Martin; Revie, Crawford W.; Gargan, Patrick G.; Skilbrei, Ove T.; Finstad, Bengt; Todd, Christopher D.
2013-01-01
Parasites may have large effects on host population dynamics, marine fisheries and conservation, but a clear elucidation of their impact is limited by a lack of ecosystem-scale experimental data. We conducted a meta-analysis of replicated manipulative field experiments concerning the influence of parasitism by crustaceans on the marine survival of Atlantic salmon (Salmo salar L.). The data include 24 trials in which tagged smolts (totalling 283 347 fish; 1996–2008) were released as paired control and parasiticide-treated groups into 10 areas of Ireland and Norway. All experimental fish were infection-free when released into freshwater, and a proportion of each group was recovered as adult recruits returning to coastal waters 1 or more years later. Treatment had a significant positive effect on survival to recruitment, with an overall effect size (odds ratio) of 1.29 that corresponds to an estimated loss of 39 per cent (95% CI: 18–55%) of adult salmon recruitment. The parasitic crustaceans were probably acquired during early marine migration in areas that host large aquaculture populations of domesticated salmon, which elevate local abundances of ectoparasitic copepods—particularly Lepeophtheirus salmonis. These results provide experimental evidence from a large marine ecosystem that parasites can have large impacts on fish recruitment, fisheries and conservation. PMID:23135680
NASA Astrophysics Data System (ADS)
Earl, Jason; Fowler, Anthony J.; Ye, Qifeng; Dittmann, Sabine
2017-04-01
The greenback flounder Rhombosolea tapirina is a commercially-important flatfish species in southern Australia and New Zealand, whose population dynamics are poorly understood. Acoustic telemetry was used to assess movement patterns and area use for R. tapirina in the Murray River estuary and Coorong, South Australia. Twenty fish (221-313 mm total length) equipped with acoustic transmitters were monitored for up to seven months during a period of high freshwater inflow. Fish were detected over a large part of the system, but showed a strong preference for brackish and near-marine conditions in the inner estuary. Tagged fish exhibited complex movement patterns that differed among individuals, including: (1) within estuary movements; (2) dispersal from the estuary to the sea; and (3) return migrations between the estuary and the sea. A diurnal shift in fine-scale area use was observed in the part of the estuary where residency was highest, with individuals occupying deeper habitats during the day and shallower areas during the night. The results demonstrate the individualistic and often highly transient behaviour of this species and its ability to undertake regular movements over the spatial scale of 10s of km. Understanding such movement patterns can improve effective management of estuarine flatfish populations and ecosystems.
Artim, J M; Sikkel, P C
2016-08-01
Characterizing spatio-temporal variation in the density of organisms in a community is a crucial part of ecological study. However, doing so for small, motile, cryptic species presents multiple challenges, especially where multiple life history stages are involved. Gnathiid isopods are ecologically important marine ectoparasites, micropredators that live in substrate for most of their lives, emerging only once during each juvenile stage to feed on fish blood. Many gnathiid species are nocturnal and most have distinct substrate preferences. Studies of gnathiid use of habitat, exploitation of hosts, and population dynamics have used various trap designs to estimate rates of gnathiid emergence, study sensory ecology, and identify host susceptibility. In the studies reported here, we compare and contrast the performance of emergence, fish-baited and light trap designs, outline the key features of these traps, and determine some life cycle parameters derived from trap counts for the Eastern Caribbean coral-reef gnathiid, Gnathia marleyi. We also used counts from large emergence traps and light traps to estimate additional life cycle parameters, emergence rates, and total gnathiid density on substrate, and to calibrate the light trap design to provide estimates of rate of emergence and total gnathiid density in habitat not amenable to emergence trap deployment.
Claireaux, Guy; Davoodi, Fariba
2010-06-10
The long term consequences of oil exposure upon marine populations are still poorly evaluated. One particular missing piece of information relates to the link between oil exposure, individuals' ability to face environmental contingencies and populations' production and dynamics. In that context, the present paper investigates the impact of oil exposure upon fish cardio-respiratory performance, this performance being viewed as a key determinant of individual fitness. Experimental conditions replicated the contamination conditions observed during the weeks that immediately followed the Erika oil spill (west coast of France; December 1999). Sole (Solea solea), were exposed to number-2 oil for 5 days and were then challenged with an acute rise in temperature (from 15 to 30 degrees C at 1.5 degrees Ch(-1)). Oxygen consumption, cardiac output, heart rate and stroke volume were monitored throughout. Experimental results showed that compared to uncontaminated control animals, oil-exposed sole displayed impaired cardio-respiratory responses and were unable to meet the temperature-driven increase in tissues oxygen demand. The relationship between oxygen consumption and cardiac output indicated that oil-exposed fish had recourse to venous oxygen stores very early in the thermal challenge (20 degrees C). In control fish there was no evidence for depletion of venous oxygen store until above 25 degrees C.
Riesch, Rüdiger; Plath, Martin; Schlupp, Ingo
2010-05-01
Life-history traits are very sensitive to extreme environmental conditions, because resources that need to be invested in somatic maintenance cannot be invested in reproduction. Here we examined female life-history traits in the Mexican livebearing fish Poecilia mexicana from a variety of benign surface habitats, a creek with naturally occurring toxic hydrogen sulfide (H2S), a sulfidic cave, and a non-sulfidic cave. Previous studies revealed pronounced genetic and morphological divergence over very small geographic scales in this system despite the absence of physical barriers, suggesting that local adaptation to different combinations of two selection factors, toxicity (H2S) and darkness, is accompanied by very low rates of gene flow. Hence, we investigated life-history divergence between these populations in response to the selective pressures of darkness and/or toxicity. Our main results show that toxicity and darkness both select for (or impose constraints on) the same female trait dynamics: reduced fecundity and increased offspring size. Since reduced fecundity in the sulfur cave population was previously shown to be heritable, we discuss how divergent life-history evolution may promote further ecological divergence: for example, reduced fecundity and increased offspring autonomy are clearly beneficial in extreme environments, but fish with these traits are outcompeted in benign habitats.
George-Nascimento, Mario; Oliva, Marcelo
2015-01-01
Research using parasites in fish population studies in the South Eastern Pacific (SEP) is summarized. There are 27 such studies (snapshots mainly) in single host species sampled at different geographic localities and at somewhat similar times. They have been devoted mainly to economically important species, though others on coastal and intertidal fish or on less- or non-commercial species provide insights on scales of temporal and spatial variation of parasite infracommunities. Later, we assess whether the probability of harbouring parasites depends on the host species body size. Our results indicate that a stronger tool for fish population studies may be developed under regular (long term) scrutiny of parasite communities, especially of small fish host species, due to their larger variability in richness, abundance and total biomass, than in large fish species. Finally, it might also be necessary to consider the effects of fishing on parasite communities as well as the natural oscillations (coupled or not) of host and parasite populations.
Ganta, Shravani; Nagaraj, Anup; Pareek, Sonia; Sidiq, Mohsin; Singh, Kushpal; Vishnani, Preeti
2015-01-01
Background Fluoride in drinking water is known for both beneficial and detrimental effects on health. The principal sources of fluoride include water, some species of vegetation, certain edible marine animals, dust and industrial processes. The purpose of this study was to evaluate the fluoride retention of most commonly consumed estuarine fishes among fish consuming population of Andhra Pradesh. Materials and Methods A cross-sectional study was conducted to evaluate the amount of fluoride retention due to ten most commonly consumed estuarine fishes as a contributing factor to Fluorosis by SPADNS Spectrophotometric method. The presence and severity of dental fluorosis among fish consuming population was recorded using Community Fluorosis Index. Statistical analysis was done using MedCalc v12.2.1.0 software. Results For Sea water fishes, the fluoride levels in bone were maximum in Indian Sardine (4.22 ppm). Amongst the river water fishes, the fluoride levels in bone were maximum in Catla (1.51 ppm). Also, the mean total fluoride concentrations of all the river fishes in skin, muscle and bone were less (0.86 ppm) as compared to the sea water fishes (2.59 ppm). It was unveiled that sea fishes accumulate relatively large amounts of Fluoride as compared to the river water fishes. The mean Community Fluorosis Index was found to be 1.06 amongst a sampled fish consuming population. Evaluation by Community Index for Dental fluorosis (CFI) suggested that fluorosis is of medium public health importance. Conclusion It was analysed that bone tends to accumulate more amount of fluoride followed by muscle and skin which might be due to the increased permeability and chemical trapping of fluoride inside the tissues. The amount of fluoride present in the fishes is directly related to the severity of fluorosis amongst fish consuming population, suggesting fishes as a contributing factor to fluorosis depending upon the dietary consumption. PMID:26266208
Ganta, Shravani; Yousuf, Asif; Nagaraj, Anup; Pareek, Sonia; Sidiq, Mohsin; Singh, Kushpal; Vishnani, Preeti
2015-06-01
Fluoride in drinking water is known for both beneficial and detrimental effects on health. The principal sources of fluoride include water, some species of vegetation, certain edible marine animals, dust and industrial processes. The purpose of this study was to evaluate the fluoride retention of most commonly consumed estuarine fishes among fish consuming population of Andhra Pradesh. A cross-sectional study was conducted to evaluate the amount of fluoride retention due to ten most commonly consumed estuarine fishes as a contributing factor to Fluorosis by SPADNS Spectrophotometric method. The presence and severity of dental fluorosis among fish consuming population was recorded using Community Fluorosis Index. Statistical analysis was done using MedCalc v12.2.1.0 software. For Sea water fishes, the fluoride levels in bone were maximum in Indian Sardine (4.22 ppm). Amongst the river water fishes, the fluoride levels in bone were maximum in Catla (1.51 ppm). Also, the mean total fluoride concentrations of all the river fishes in skin, muscle and bone were less (0.86 ppm) as compared to the sea water fishes (2.59 ppm). It was unveiled that sea fishes accumulate relatively large amounts of Fluoride as compared to the river water fishes. The mean Community Fluorosis Index was found to be 1.06 amongst a sampled fish consuming population. Evaluation by Community Index for Dental fluorosis (CFI) suggested that fluorosis is of medium public health importance. It was analysed that bone tends to accumulate more amount of fluoride followed by muscle and skin which might be due to the increased permeability and chemical trapping of fluoride inside the tissues. The amount of fluoride present in the fishes is directly related to the severity of fluorosis amongst fish consuming population, suggesting fishes as a contributing factor to fluorosis depending upon the dietary consumption.
NASA Astrophysics Data System (ADS)
da Silva Cortinhas, Maria Cristina; Kersanach, Ralf; Proietti, Maíra; Dumont, Luiz Felipe Cestari; D'Incao, Fernando; Lacerda, Ana Luzia F.; Prata, Pedro Sanmartin; Matoso, Daniele Aparecida; Noleto, Rafael Bueno; Ramsdorf, Wanessa; Boni, Talge Aiex; Prioli, Alberto José; Cestari, Marta Margarete
2016-09-01
Estuaries are dynamic environments, key for the survival of innumerous ecologically or economically important fish species. Among these species are Neotropical silversides (Atherinella brasiliensis), which are resident and abundant in Brazilian estuaries and used as a complementary source of income and food for local communities. To better understand silverside populations in Brazil, we evaluated the genetic diversity, structure and demography of fish sampled at six estuaries from the northeastern to the southern coast, using Random Amplified Polymorphic DNA and mitochondrial DNA (D-loop) markers. High haplotype diversities (h ranging from 0.75 to 0.99) were found in all populations except Carapebus, located in Southeast Brazil (h = 0.54). A total of 69 mtDNA haplotypes were found, with Itaparica (Northeast Brazil) and Carapebus presenting only exclusive haplotypes, while some were shared among populations in the South. Strong regional structure was observed, with very high differentiation between Itaparica and Carapebus, as well as among these two populations and the ones from the Southern region (Paranaguá, Conceição, Camacho and Patos). Among southern areas, low/moderate structure was detected. Most populations showed unimodal mismatch distributions indicating recent demographic expansion, while Carapebus presented a multimodal distribution characteristic of a stable or bottlenecked population. Times since possible population expansion were highest in Itaparica (32,500 ya) and Carapebus (29,540 ya), while in the Southern region longest time was observed at Conceição (25,540 ya) and shortest at Patos (9720 ya). In a general manner, haplotype diversities were directly related to times since population expansions; again, Carapebus was the exception, displaying long time since expansion but low diversity, possibly due to a recent bottleneck caused by the isolation and human impacts this lagoon is subject to. Isolation by Distance was significant for Itaparica and Carapebus, and considering the extremely high differentiation of these populations, we suggest that they could be undergoing speciation. To adequately manage and maintain the genetic variability of silversides in Brazilian estuaries, we propose three distinct management units for this species: 1) Itaparica; 2) Carapebus; and 3) Southern Brazil.
NASA Astrophysics Data System (ADS)
Le Goff, Clément; Lavaud, Romain; Cugier, Philippe; Jean, Fred; Flye-Sainte-Marie, Jonathan; Foucher, Eric; Desroy, Nicolas; Fifas, Spyros; Foveau, Aurélie
2017-03-01
In this paper we used a modelling approach integrating both physical and biological constraints to understand the biogeographical distribution of the great scallop Pecten maximus in the English Channel during its whole life cycle. A 3D bio-hydrodynamical model (ECO-MARS3D) providing environmental conditions was coupled to (i) a population dynamics model and (ii) an individual ecophysiological model (Dynamic Energy Budget model). We performed the coupling sequentially, which underlined the respective role of biological and physical factors in defining P. maximus distribution in the English Channel. Results show that larval dispersion by hydrodynamics explains most of the scallop distribution and enlighten the main known hotspots for the population, basically corresponding to the main fishing areas. The mechanistic description of individual bioenergetics shows that food availability and temperature control growth and reproduction and explain how populations may maintain themselves in particular locations. This last coupling leads to more realistic densities and distributions of adults in the English Channel. The results of this study improves our knowledge on the stock and distribution dynamics of P. maximus, and provides grounds for useful tools to support management strategies.
"Spilling Over": Fish Swimming Kinematics in Cylinder Wakes
NASA Astrophysics Data System (ADS)
Wilson, C. A.; Muhawenimana, V.; Cable, J.
2016-12-01
Our understanding of fish swimming kinematics and behaviour in turbulent altered and pseudo-natural flows remains incomplete. This study aims to examine velocity, turbulence and wake metrics that govern fish stability and other behavioural traits in the turbulent wake of a horizontal cylinder. In a free surface flume, the swimming behaviour of Nile tilapia (Oreochromis niloticus, Silver strain) was monitored over a range of cylinder diameter (D) Reynolds numbers from 2.8 x103 to 25.8 x103. Spills, defined as loss of both balance and posture, were inversely correlated with fish length and weight; where smaller fish in the 50th percentile of standard length, lost balance more often and accounted for 65% of the total number (533) of spills. Additionally, the bigger fish in the 95th percentile, experienced <0.5% of all recorded spills. Such findings are in keeping with a previous study where the spill occurrence increased with decreasing fish length to eddy size ratio. Fish spent the majority of station holding time within a two diameter (2D) distance closest to the flume bed and in a downstream distance of 3D to 6D from the cylinder. The frequency of occurrence of spills increased with increasing Reynolds number for the whole fish population until an intermediate Reynolds number of 11.5 x103 was reached, where the frequency in spills steadily declined with increasing Reynolds number until the end of the test duration. The spill frequency-Reynolds number relationship indicates a shift in cylinder wake dynamics. Further analysis of the measured velocity statistics will help determine the intensity, periodicity and the turbulence length scale of the wake structure and their correlations with the observed fish swimming kinematics.
Jason B. Dunham; Michael K. Young; Robert E. Gresswell; Bruce E. Rieman
2003-01-01
Our limited understanding of the short and long-term effects of fire on fish contributes to considerable uncertainty in assessments of the risks and benefits of fire management alternatives. A primary concern among the many potential effects of fire is the effects of fire and fire management on persistence of native fish populations. Limited evidence suggests...
Processes influencing the duration and decline of epizootics in Schistocephalus solidus.
Heins, David C; Baker, John A; Green, Dillon M
2011-06-01
The interplay of intermediate host fish and plerocercoids of diphyllobothriidean cestodes results in epizootics that are deceptively simple, but conceal complex biotic and abiotic interactions shaping each event independently. Although general descriptions of epizootics and some details of biotic interactions between enemies are known, much remains to be discovered about the abiotic and biotic forces and their interactions driving epizootics. This study shows that the duration of an epizootic of Schistocephalus solidus was sustained by high prevalence, mean intensity, and PI (parasite index-parasite : host biomass ratio) levels among young-of-the-year and 1-yr-old threespine sticklebacks. Many infections and most parasite growth in young-of-the-year fish apparently occurred under the ice during the winter. Few new infections appear to have occurred among 1-yr-old fish, which may live 2 yr and sometimes 3 yr. The decline of the epizootic occurred as the recruitment of 1 to 2-yr-old hosts decreased significantly, followed by reduced infections of young-of-the-year fish. Thus, a major factor influencing parasite population dynamics was reduced transmission (probability of infection) as a result of overwinter host mortality among 1-yr-old fish. Mega-epizootics, named and described herein, appear to represent a "perfect storm" phenomenon dependent on a particular and rare combination of circumstances. Less extreme and more gradual epizootics may be more common and play out in myriad ways, because of complex abiotic and biotic factors influencing both parasite and host populations. The interplay of parasite and host resulting in reciprocal effects upon one another occurs during both the emergence and decline phases of an epizootic.
Yang, Yong-Hong; Yang, Jun-Xing; Pan, Xiao-Fu; Zhou, Wei; Yang, Mei-Lin
2011-04-01
Hydroelectric developments can result in a number of negative environmental consequences. Conservation aquaculture is a branch of science derived from conservation and population recovery studies on endangered fishes. Here we discuss the impacts on fishes caused by hydropower projects in Lixianjiang, and evaluate effects and problems on the propagation of Parazacco spilurus, Hemibagrus pluriradiatus, Neolissochilus benasi and Semilabeo obscurus. A successful propagation project includes foraging ecology in fields, pond cultivation, juvenile fish raising, prevention and curing on fish disease, genetic management, artificial releasing and population monitoring. Artificial propagation is the practicable act on genetic intercommunication, preventing population deterioration for fishes in upper and lower reaches of the dam. For long-term planning, fish stocks are not suitable for many kind of fishes, but can prevent fishes from going extinct in the wild. Basic data collection on fish ecology, parent fish hunting, prevention on fish disease are the most important factors on artificial propagation. Strengthening the genetic management of stock population for keeping a higher genetic diversity can increase the success of stock enhancement. The works on Lixianjiang provide a new model for river fish protection. To make sure the complicated project works well, project plans, commission contracts, base line monitoring and techniques on artificial reproduction must be considered early. Last, fishery conservation should be considered alongside location development.
Thermodynamic and Mechanic Consideration on the stability of Anti-symmetric Schaefer’s equation
NASA Astrophysics Data System (ADS)
Suriamihardja, D. A.; Amiruddin; Saaduddin
2018-03-01
Schaefer’s equation relates an interaction between population of fishes and the number of units of fishing effort. The population growth of fishes is reduced by the number of units of fishing effort, while the population growth of units of fishing effort depends on the existence of fishes. This paper aims to examine the stability of an anti-symmetric Schaefer’s equation through thermodynamic and mechanic procedure using a formula of entropy production near equilibrium which is recognized as Onsager’s relation. The results confirm that entropic approach (thermodynamics) and dissipative approach (mechanics) are usable to be applied as Lyapunov’s procedure in examining the stability of systems of differential equations.
Bunnell, David B.; Madenjian, Charles P.; Croley, Thomas E.
2006-01-01
Long-term population trends are generally explained by factors extrinsic (e.g., climate, predation) rather than intrinsic (e.g., genetics, maternal effects) to the population. We sought to understand the long-term population dynamics of an important native Lake Michigan prey fish, the bloaterCoregonus hoyi. Over a 38-year time series, three 10- to 15-year phases occurred (poor, excellent, and then poor recruitment) without high interannual variability within a particular phase. We used dynamic linear models to determine whether extrinsic (winter and spring temperature, alewife predator densities) or intrinsic factors (population egg production, adult condition, adult sex ratio) explained variation in recruitment. Models that included population egg production, sex ratio, winter and spring temperature, and adult bloater condition explained the most variation. Of these variables, sex ratio, which ranged from 47% to 97% female across the time series, consistently had the greatest effect: recruitment declined with female predominance. Including biomass of adult alewife predators in the models did not explain additional variation. Overall our results indicated that bloater recruitment is linked to its sex ratio, but understanding the underlying mechanisms will require additional efforts.
Simple phalanx pattern leads to energy saving in cohesive fish schooling.
Ashraf, Intesaaf; Bradshaw, Hanaé; Ha, Thanh-Tung; Halloy, José; Godoy-Diana, Ramiro; Thiria, Benjamin
2017-09-05
The question of how individuals in a population organize when living in groups arises for systems as different as a swarm of microorganisms or a flock of seagulls. The different patterns for moving collectively involve a wide spectrum of reasons, such as evading predators or optimizing food prospection. Also, the schooling pattern has often been associated with an advantage in terms of energy consumption. In this study, we use a popular aquarium fish, the red nose tetra fish, Hemigrammus bleheri , which is known to swim in highly cohesive groups, to analyze the schooling dynamics. In our experiments, fish swim in a shallow-water tunnel with controlled velocity, and stereoscopic video recordings are used to track the 3D positions of each individual in a school, as well as their tail-beating kinematics. Challenging the widespread idea of fish favoring a diamond pattern to swim more efficiently [Weihs D (1973) Nature 241:290-291], we observe that when fish are forced to swim fast-well above their free-swimming typical velocity, and hence in a situation where efficient swimming would be favored-the most frequent configuration is the "phalanx" or "soldier" formation, with all individuals swimming side by side. We explain this observation by considering the advantages of tail-beating synchronization between neighbors, which we have also characterized. Most importantly, we show that schooling is advantageous as compared with swimming alone from an energy-efficiency perspective.
Food web changes under ocean acidification promote herring larvae survival.
Sswat, Michael; Stiasny, Martina H; Taucher, Jan; Algueró-Muñiz, Maria; Bach, Lennart T; Jutfelt, Fredrik; Riebesell, Ulf; Clemmesen, Catriona
2018-05-01
Ocean acidification-the decrease in seawater pH due to rising CO 2 concentrations-has been shown to lower survival in early life stages of fish and, as a consequence, the recruitment of populations including commercially important species. To date, ocean-acidification studies with fish larvae have focused on the direct physiological impacts of elevated CO 2 , but largely ignored the potential effects of ocean acidification on food web interactions. In an in situ mesocosm study on Atlantic herring (Clupea harengus) larvae as top predators in a pelagic food web, we account for indirect CO 2 effects on larval survival mediated by changes in food availability. The community was exposed to projected end-of-the-century CO 2 conditions (~760 µatm pCO 2 ) over a period of 113 days. In contrast with laboratory studies that reported a decrease in fish survival, the survival of the herring larvae in situ was significantly enhanced by 19 ± 2%. Analysis of the plankton community dynamics suggested that the herring larvae benefitted from a CO 2 -stimulated increase in primary production. Such indirect effects may counteract the possible direct negative effects of ocean acidification on the survival of fish early life stages. These findings emphasize the need to assess the food web effects of ocean acidification on fish larvae before we can predict even the sign of change in fish recruitment in a high-CO 2 ocean.
Fishery management priorities vary with self‐recruitment in sedentary marine populations.
Yau, Annie J; Lenihan, Hunter S; Kendall, Bruce E
Fisheries science often uses population models that assume no external recruitment, but nearshore marine populations harvested on small scales of <200 km often exhibit an unknown mix of self-recruitment and recruitment from external sources. Since empirical determination of self-recruitment vs. external recruitment is difficult, we used a modeling approach to examine the sensitivity of fishery management priorities to recruitment assumptions (self [closed], external [open]) in a local population of harvested giant clams (Tridacna maxima) on Mo'orea, French Polynesia. From 2006 to 2010, we measured growth, fecundity, recruitment, and survival (resulting from natural and fishing mortality). We used these data to parameterize both a closed (complete self-recruitment) and an open (no self-recruitment) integral projection model (IPM), and then calculated elasticities of demographic rates (growth, survival, recruitment) to future population abundance in 20 years. The models' lowest projected abundance was 93.4% (95% CI, [86.5%, 101.8%]) of present abundance, if the local population is entirely open and the present level of fishing mortality persists. The population will exhibit self-sustaining dynamics (1 ≤ λ ≤ 1.07) as for a closed population if the ratio of self-recruits per gram of dry gonad is >0.775 (equivalent to 52.85% self-recruitment under present conditions). Elasticity analysis of demographic parameters indicated that future abundance can most effectively be influenced by increasing survival of mid-sized clams (∼80–120 mm) if the population is self-sustaining, and by increasing survival of juvenile clams (∼40–70 mm) if the population is non-self-sustaining (as for an open population). Our results illustrate that management priorities can vary depending on the amount of self-recruitment in a local population.
Seasonal dynamics of the juvenile fish community structure in the Maowei Sea mangroves
Zou, Qi; Chang, Tao; Zhang, Dong; Huang, Liang-Liang
2018-01-01
More than 50% of Chinese mangroves were lost between 1950 and 2000 to habitat destruction, prompting an urge for conservation. To assess the importance of the protected Maowei Gulf mangrove estuary for fish population assemblage in the Beibu Gulf (China), we studied species composition and abundance of juvenile fish (including larvae) from July 2012 to June 2013. A total of 11 691 specimens were collected, which belonged to 24 species and 15 families. Six perciform species constituted 93% of the total sample. Pseudogobius javanicus (53.29%) was the dominant species from August to November, Omobranchus elegans (28.49%) from April to July, non-identified species in December and January, and Liza carinata in February and March. A number of commercially important fish species were also identified. Abundance was the highest in summer/early autumn (max 162.4 in Sep), and lowest in winter/early spring (Mar = 4.5). Diversity (H’) and richness (Dma) indices (both max. in May: 1.67 and 1.95 respectively) were generally positively correlated with tide and temperature, and negatively with salinity. Seasonal variations play a more important role in the fish assemblage structure than tidal rhythm, with differences particularly pronounced between colder and warmer months. Despite the prominent seasonal differences in abiotic factors, this study indicates that Maowei mangroves provide habitat and food for juvenile fish throughout the year and thus are indispensable for the fish diversity in the Beibu Gulf. PMID:29438434
Benjamin, Joseph R.; Bellmore, J. Ryan
2016-05-19
In this report, we outline the structure of a stream food-web model constructed to explore how alternative river restoration strategies may affect stream fish populations. We have termed this model the “Aquatic Trophic Productivity model” (ATP). We present the model structure, followed by three case study applications of the model to segments of the Methow River watershed in northern Washington. For two case studies (middle Methow River and lower Twisp River floodplain), we ran a series of simulations to explore how food-web dynamics respond to four distinctly different, but applied, strategies in the Methow River watershed: (1) reconnection of floodplain aquatic habitats, (2) riparian vegetation planting, (3) nutrient augmentation (that is, salmon carcass addition), and (4) enhancement of habitat suitability for fish. For the third case study, we conducted simulations to explore the potential fish and food-web response to habitat improvements conducted in 2012 at the Whitefish Island Side Channel, located in the middle Methow River.
Stallings, Christopher D
2009-01-01
Understanding the current status of predatory fish communities, and the effects fishing has on them, is vitally important information for management. However, data are often insufficient at region-wide scales to assess the effects of extraction in coral reef ecosystems of developing nations. Here, I overcome this difficulty by using a publicly accessible, fisheries-independent database to provide a broad scale, comprehensive analysis of human impacts on predatory reef fish communities across the greater Caribbean region. Specifically, this study analyzed presence and diversity of predatory reef fishes over a gradient of human population density. Across the region, as human population density increases, presence of large-bodied fishes declines, and fish communities become dominated by a few smaller-bodied species. Complete disappearance of several large-bodied fishes indicates ecological and local extinctions have occurred in some densely populated areas. These findings fill a fundamentally important gap in our knowledge of the ecosystem effects of artisanal fisheries in developing nations, and provide support for multiple approaches to data collection where they are commonly unavailable.
Stallings, Christopher D.
2009-01-01
Background Understanding the current status of predatory fish communities, and the effects fishing has on them, is vitally important information for management. However, data are often insufficient at region-wide scales to assess the effects of extraction in coral reef ecosystems of developing nations. Methodology/Principal Findings Here, I overcome this difficulty by using a publicly accessible, fisheries-independent database to provide a broad scale, comprehensive analysis of human impacts on predatory reef fish communities across the greater Caribbean region. Specifically, this study analyzed presence and diversity of predatory reef fishes over a gradient of human population density. Across the region, as human population density increases, presence of large-bodied fishes declines, and fish communities become dominated by a few smaller-bodied species. Conclusions/Significance Complete disappearance of several large-bodied fishes indicates ecological and local extinctions have occurred in some densely populated areas. These findings fill a fundamentally important gap in our knowledge of the ecosystem effects of artisanal fisheries in developing nations, and provide support for multiple approaches to data collection where they are commonly unavailable. PMID:19421312
Lanés, L E K; Godoy, R S; Maltchik, L; Polačik, M; Blažek, R; Vrtílek, M; Reichard, M
2016-11-01
Seven ephemeral pools on the coastal plain of southern Brazil were found to be inhabited by three annual and 22 non-annual fish species. Two common annual species (Austrolebias minuano and Cynopoecilus fulgens) exhibited clear seasonal dynamics, with the appearance of young fishes in the austral autumn (May to June) and a decline in abundance over the seasonal cycle. The third annual species, Austrolebias wolterstorffii, was rare. No seasonal dynamics were observed in non-annual fishes. The relative abundance of non-annual fishes compared with annual fishes increased over the seasonal cycle, but they coexisted widely. The size structure of annual fishes suggested the presence of a single age cohort in most pools though a second age cohort was registered in one pool in August, coinciding with a large flooding. Strong sexual dimorphism in body size was found in C. fulgens throughout the seasonal cycle, while no sexual dimorphism in body size was found in A. minuano. Female-biased sex ratios were recorded in both common annual fish species in the last three sampling dates (in spring), but not during the first two sampling dates (in winter). The natural lifespan of annual fishes was <8 months. Annual fishes disappeared before habitat desiccation in half of the pools, while non-annual fishes were still present. © 2016 The Fisheries Society of the British Isles.
Approximate sample sizes required to estimate length distributions
Miranda, L.E.
2007-01-01
The sample sizes required to estimate fish length were determined by bootstrapping from reference length distributions. Depending on population characteristics and species-specific maximum lengths, 1-cm length-frequency histograms required 375-1,200 fish to estimate within 10% with 80% confidence, 2.5-cm histograms required 150-425 fish, proportional stock density required 75-140 fish, and mean length required 75-160 fish. In general, smaller species, smaller populations, populations with higher mortality, and simpler length statistics required fewer samples. Indices that require low sample sizes may be suitable for monitoring population status, and when large changes in length are evident, additional sampling effort may be allocated to more precisely define length status with more informative estimators. ?? Copyright by the American Fisheries Society 2007.
Fishing-induced life-history changes degrade and destabilize harvested ecosystems.
Kuparinen, Anna; Boit, Alice; Valdovinos, Fernanda S; Lassaux, Hélène; Martinez, Neo D
2016-02-26
Fishing is widely known to magnify fluctuations in targeted populations. These fluctuations are correlated with population shifts towards young, small, and more quickly maturing individuals. However, the existence and nature of the mechanistic basis for these correlations and their potential ecosystem impacts remain highly uncertain. Here, we elucidate this basis and associated impacts by showing how fishing can increase fluctuations in fishes and their ecosystem, particularly when coupled with decreasing body sizes and advancing maturation characteristic of the life-history changes induced by fishing. More specifically, using an empirically parameterized network model of a well-studied lake ecosystem, we show how fishing may both increase fluctuations in fish abundances and also, when accompanied by decreasing body size of adults, further decrease fish abundance and increase temporal variability of fishes' food resources and their ecosystem. In contrast, advanced maturation has relatively little effect except to increase variability in juvenile populations. Our findings illustrate how different mechanisms underlying life-history changes that may arise as evolutionary responses to intensive, size-selective fishing can rapidly and continuously destabilize and degrade ecosystems even after fishing has ceased. This research helps better predict how life-history changes may reduce fishes' resilience to fishing and ecosystems' resistance to environmental variations.
Calhoun, Dana M.; Schaffer, Paula A.; Gregory, Jacklyn R.; Hardy, Katherine M.; Johnson, Pieter T. J.
2016-01-01
Infections by the digenetic trematode, Ribeiroia ondatrae, cause severe limb malformations in many North American amphibians. Ribeiroia ondatrae also infects fishes as second intermediate hosts, but less is known about the pathology and immune responses initiated in infected fish, even though reports of infected fish date back to early 1900s. To this end, we experimentally exposed juvenile Bluegills Lepomis macrochirus to three doses of R. ondatrae cercariae and monitored the pathology, parasite infection success, and humoral responses over 648 h. All exposed fish became infected with metacercariae, and the average infection load increased with exposure dose. Histologically, infection was associated with acute hemorrhages in the lateral line and local dermis at 36 h, followed by progressive granulomatous inflammation that led to the destruction of encysted metacercariae. Correspondingly, over the course of 648 h we observed an 85% decline in average infection load among hosts, reflecting the host’s clearance of the parasite. Infection was not associated with changes in fish growth or survival, but did correlate with leukocytosis and neutrophilia in circulating host blood. Understanding the physiological responses of R. ondatrae in Bluegill will help to clarify the ecological effects of this parasite and provide a foundation for subsequent comparisons into its effects on behavior, individual health, and population dynamics of Bluegill. PMID:26587684
Calhoun, Dana M; Schaffer, Paula A; Gregory, Jacklyn R; Hardy, Katherine M; Johnson, Pieter T J
2015-12-01
Infections by the digenetic trematode, Ribeiroia ondatrae, cause severe limb malformations in many North American amphibians. Ribeiroia ondatrae also infects fishes as second intermediate hosts, but less is known about the pathology and immune responses initiated in infected fish, even though reports of infected fish date back to early 1900s. To this end, we experimentally exposed juvenile Bluegills Lepomis macrochirus to three doses of R. ondatrae cercariae and monitored the pathology, parasite infection success, and humoral responses over 648 h. All exposed fish became infected with metacercariae, and the average infection load increased with exposure dose. Histologically, infection was associated with acute hemorrhages in the lateral line and local dermis at 36 h, followed by progressive granulomatous inflammation that led to the destruction of encysted metacercariae. Correspondingly, over the course of 648 h we observed an 85% decline in average infection load among hosts, reflecting the host's clearance of the parasite. Infection was not associated with changes in fish growth or survival, but did correlate with leukocytosis and neutrophilia in circulating host blood. Understanding the physiological responses of R. ondatrae in Bluegill will help to clarify the ecological effects of this parasite and provide a foundation for subsequent comparisons into its effects on behavior, individual health, and population dynamics of Bluegill.
Drivers of protogynous sex change differ across spatial scales.
Taylor, Brett M
2014-01-22
The influence of social demography on sex change schedules in protogynous reef fishes is well established, yet effects across spatial scales (in particular, the magnitude of natural variation relative to size-selective fishing effects) are poorly understood. Here, I examine variation in timing of sex change for exploited parrotfishes across a range of environmental, anthropogenic and geographical factors. Results were highly dependent on spatial scale. Fishing pressure was the most influential factor determining length at sex change at the within-island scale where a wide range of anthropogenic pressure existed. Sex transition occurred at smaller sizes where fishing pressure was high. Among islands, however, differences were overwhelmingly predicted by reefal-scale structural features, a pattern evident for all species examined. For the most abundant species, Chlorurus spilurus, length at sex change increased at higher overall densities and greater female-to-male sex ratios at all islands except where targeted by fishermen; here the trend was reversed. This implies differing selective pressures on adult individuals can significantly alter sex change dynamics, highlighting the importance of social structure, demography and the selective forces structuring populations. Considerable life-history responses to exploitation were observed, but results suggest potential fishing effects on demography may be obscured by natural variation at biogeographic scales.
Arkhipov, A G; Mamedov, A A; Simonova, T A; Tenitskaia, I A
2011-01-01
Changes in the quantitative composition of mass fish species at early stages of ontogenesis in different areas of the Central-Eastern Atlantic (CEA) in warm and cold seasons in 1994-2008 were analyzed in the paper. The most widespread representatives of ichthyocenosis of CEA were: European pilchard (Sardina pilchardus), common scad (Trachurus trachurus), round sardinella (Sardinella aurita), and West-African scad (Trachrus trecae). The data obtained indicate that, within the economic zone of Morocco, fluctuations of numbers at early stages of development in European pilchard and common scad are close over the entire water area under consideration (36 degrees-21 degrees N). The regularities of fluctuations of the numbers of ichthyoplankton are similar to the interannual changes in the biomass of fish in the area of Morocco. In the area of Mauritania (21 degrees-16 degrees N), fluctuations of numbers of the early stages of development of commercial fish cannot be unambiguously correlated with changes in the biomass of adult fish. It is known that, in the economic zone of Mauritania, there are Senegal-Mauritanian populations of round sardinella and West-African scad that inhabit waters of different states and are not completely assessed by our surveys. Therefore, no obvious relation was observed between the considered data.
Spatial structure and distribution of small pelagic fish in the northwestern Mediterranean Sea.
Saraux, Claire; Fromentin, Jean-Marc; Bigot, Jean-Louis; Bourdeix, Jean-Hervé; Morfin, Marie; Roos, David; Van Beveren, Elisabeth; Bez, Nicolas
2014-01-01
Understanding the ecological and anthropogenic drivers of population dynamics requires detailed studies on habitat selection and spatial distribution. Although small pelagic fish aggregate in large shoals and usually exhibit important spatial structure, their dynamics in time and space remain unpredictable and challenging. In the Gulf of Lions (north-western Mediterranean), sardine and anchovy biomasses have declined over the past 5 years causing an important fishery crisis while sprat abundance rose. Applying geostatistical tools on scientific acoustic surveys conducted in the Gulf of Lions, we investigated anchovy, sardine and sprat spatial distributions and structures over 10 years. Our results show that sardines and sprats were more coastal than anchovies. The spatial structure of the three species was fairly stable over time according to variogram outputs, while year-to-year variations in kriged maps highlighted substantial changes in their location. Support for the McCall's basin hypothesis (covariation of both population density and presence area with biomass) was found only in sprats, the most variable of the three species. An innovative method to investigate species collocation at different scales revealed that globally the three species strongly overlap. Although species often co-occurred in terms of presence/absence, their biomass density differed at local scale, suggesting potential interspecific avoidance or different sensitivity to local environmental characteristics. Persistent favourable areas were finally detected, but their environmental characteristics remain to be determined.
Recovery of a wild fish population from whole-lake additions of a synthetic estrogen.
Blanchfield, Paul J; Kidd, Karen A; Docker, Margaret F; Palace, Vince P; Park, Brad J; Postma, Lianne D
2015-03-03
Despite widespread recognition that municipal wastewaters contain natural and synthetic estrogens, which interfere with development and reproduction of fishes in freshwaters worldwide, there are limited data on the extent to which natural populations of fish can recover from exposure to these compounds. We conducted whole-lake additions of an active component of the birth control pill (17α-ethynylestradiol; EE2) that resulted in the collapse of the fathead minnow (Pimephales promelas) population. Here we quantify physiological, population, and genetic characteristics of this population over the 7 years after EE2 additions stopped to determine if complete recovery was possible. By 3 years post-treatment, whole-body vitellogenin concentrations in male fathead minnow had returned to baseline, and testicular abnormalities were absent. In the spring of the fourth year, adult size-frequency distribution and abundance had returned to pretreatment levels. Microsatellite analyses clearly showed that postrecovery fish were descendants of the original EE2-treated population. Results from this whole-lake experiment demonstrate that fish can recover from EE2 exposure at the biochemical through population levels, although the timelines to do so are long for multigenerational exposures. These results suggest that wastewater treatment facilities that reduce discharges of estrogens and their mimics can improve the health of resident fish populations in their receiving environments.
Development of standard weight equations for Caribbean and Gulf of Mexico amphidromous fishes
Cooney, Patrick B.; Kwak, Thomas J.
2010-01-01
We collected and compiled length and weight information from four countries and one commonwealth to develop standard weight (Ws) equations for three amphidromous fish species native to the Caribbean and Gulf of Mexico regions: mountain mullet Agonostomus monticola (N = 9,768 individuals, 52 populations), river goby Awaous banana (N = 1,847 individuals, 62 populations), and bigmouth sleeper Gobiomorus dormitor (N = 2,983 individuals, 53 populations). Linear and quadratic Ws equations for three quartiles (25%, median, 75%) are presented for these three species. The length-weight relationship from eight lentic bigmouth sleeper populations was significantly different from that of lotic populations, reflecting higher weights of juvenile fish (< 70 mm total length) in lentic environments. Thus, independent W(s) equations were developed for lotic populations of bigmouth sleepers. W(s) equations were not developed from lentic bigmouth sleeper populations alone due to the low number of applicable populations caused by life history constraints; the equation from combined lentic and lotic populations is suggested for application to lentic bigmouth sleeper populations. These morphometric relationships for amphidromous fishes may improve the ability to assess existing and potential sport fisheries and allow ecological assessment based on fish condition.
Fish population losses from Adirondack Lakes: The role of surface water acidity and acidification
NASA Astrophysics Data System (ADS)
Baker, Joan P.; Warren-Hicks, William J.; Gallagher, James; Christensen, Sigurd W.
1993-04-01
Changes over time in the species composition of fish communities in Adirondack lakes were assessed to determine (1) the approximate numbers offish populations that have been lost and (2) the degree to which fish population losses may have resulted from surface water acidification and acidic deposition. Information on the present-day status offish communities was obtained by the Adirondack Lakes Survey Corporation, which surveyed 1469 Adirondack lakes in 1984-1987 (53% of the total ponded waters in the Adirondack ecological zone). Two hundred and ninety-five of these lakes had been surveyed in 1929-1934 during the first statewide biological survey; 720 had been surveyed in one or more years prior to 1970. Sixteen to 19% of the lakes with adequate historical data appeared to have lost one or more fish populations as a result of acidification. Brook trout and acid-sensitive minnow species had experienced the most widespread effects. Populations of brook trout and acid-sensitive minnows had been lost apparently as a result of acidification from 11% and 19%, respectively, of the lakes with confirmed historical occurrence of these taxa. By contrast, fish species that tend to occur primarily in lower elevation and larger lakes, such as largemouth and smallmouth bass and brown trout, have experienced little to no documented adverse effects. Lakes that were judged to have lost fish populations as a result of acidification had significantly lower; pH and, in most cases, also had higher estimated concentrations of inorganic aluminum and occurred at higher elevations than did lakes with the fish species still present. No other lake characteristics were consistently associated with fish population losses attributed to acidification. The exact numbers and proportions of fish populations affected could not be determined because of limitations on the quantity and quality of historical data. Lakes for which we had adequate historical data to assess long-term trends in fish communities were significantly larger and deeper and have higher pH than do Adirondack lakes in general; thus, fish communities adversely affected by acidification and acidic deposition may be underrepresented in this study.
Understanding and managing fish populations: keeping the toolbox fit for purpose.
Paris, J R; Sherman, K D; Bell, E; Boulenger, C; Delord, C; El-Mahdi, M B M; Fairfield, E A; Griffiths, A M; Gutmann Roberts, C; Hedger, R D; Holman, L E; Hooper, L H; Humphries, N E; Katsiadaki, I; King, R A; Lemopoulos, A; Payne, C J; Peirson, G; Richter, K K; Taylor, M I; Trueman, C N; Hayden, B; Stevens, J R
2018-03-01
Wild fish populations are currently experiencing unprecedented pressures, which are projected to intensify in the coming decades. Developing a thorough understanding of the influences of both biotic and abiotic factors on fish populations is a salient issue in contemporary fish conservation and management. During the 50th Anniversary Symposium of The Fisheries Society of the British Isles at the University of Exeter, UK, in July 2017, scientists from diverse research backgrounds gathered to discuss key topics under the broad umbrella of 'Understanding Fish Populations'. Below, the output of one such discussion group is detailed, focusing on tools used to investigate natural fish populations. Five main groups of approaches were identified: tagging and telemetry; molecular tools; survey tools; statistical and modelling tools; tissue analyses. The appraisal covered current challenges and potential solutions for each of these topics. In addition, three key themes were identified as applicable across all tool-based applications. These included data management, public engagement, and fisheries policy and governance. The continued innovation of tools and capacity to integrate interdisciplinary approaches into the future assessment and management of fish populations is highlighted as an important focus for the next 50 years of fisheries research. © 2018 The Fisheries Society of the British Isles.
Lee, David; Lee, Joshua; Lee, Imshik
2015-01-01
The locomotor behavior of small fish was characterized under a cell phone-generated radio frequency electromagnetic field (RF EMF). The trajectory of movement of 10 pairs of guppy (Poecilia reticulate) and 15 pairs of Zebrafish (Danio rerio) in a fish tank was recorded and tracked under the presence of a cell phone-generated RF EMF. The measures were based on spatial and temporal distributions. A time-series trajectory was utilized to emphasize the dynamic nature of locomotor behavior. Fish movement was recorded in real-time. Their spatial, velocity, turning angle and sinuosity distribution were analyzed in terms of F(v,x), P[n(x,t)], P(v), F (θ) and F(s), respectively. In addition, potential temperature elevation caused by a cellular phone was also examined. We demonstrated that a cellular phone-induced temperature elevation was not relevant, and that our measurements reflected RF EMF-induced effects on the locomotor behavior of Poecilia reticulata and Danio rerio. Fish locomotion was observed under normal conditions, in the visual presence of a cell phone, after feeding, and under starvation. Fish locomotor behavior was random both in normal conditions and in the presence of an off-signaled cell phone. However, there were significant changes in the locomotion of the fish after feeding under the RF EMF. The locomotion of the fed fish was affected in terms of changes in population and velocity distributions under the presence of the RF EMF emitted by the cell phone. There was, however, no significant difference in angular distribution.
Mbandzi, N; Wasserman, R J; Deyzel, S H P; Vine, N G; Whitfield, A K
2018-06-01
The possible links between river flow, zooplankton abundance and the responses of zooplanktivorous fishes to physico-chemical and food resource changes are assessed. To this end, the seasonal abundance, distribution and diet of the estuarine round-herring Gilchristella aestuaria and Cape silverside Atherina breviceps were studied in the Kariega Estuary. Spatio-temporal differences were determined for selected physico-chemical variables, zooplankton abundance and zooplanktivorous fish abundance and distribution. Results indicated that, following a river flood event in winter (>30 m 3 s -1 ), altered physico-chemical conditions occurred throughout the estuary and depressed zooplankton stocks. Abundance of G. aestuaria was highest in spring, with this species dominant in the upper and middle zones of the estuary, while A. breviceps was dominant in summer and preferred the middle and lower zones. The catch per unit of effort of both zooplanktivores also declined significantly following the flooding, thus suggesting that these fishes are reliant on zooplankton as a primary food source for healthy populations. Copepods dominated the stomach contents of both fish species, indicating a potential for strong interspecific competition for food, particularly in the middle reaches. Temporal differences were evident in dietary overlap between the two zooplanktivorous fish species and were correlated with river flow, zooplankton availability and fish distribution. The findings of this study emphasize the close trophic linkages between zooplankton and zooplanktivorous fishes under changing estuarine environmental conditions, particularly river flow and provide important baseline information for similar studies elsewhere in South Africa and the rest of the world. © 2018 The Fisheries Society of the British Isles.
Desert tortoise annotated bibliography, 1991-2015
Berry, Kristin H.; Lyren, Lisa M.; Mack, Jeremy S.; Brand, L. Arriana; Wood, Dustin A.
2016-03-01
Agassiz’s Desert Tortoise (hereinafter called desert tortoise) is a state- and federally-listed threatened species (U.S. Fish and Wildlife Service, 1990; California Department of Fish and Game, 2015). The first population federally listed as threatened occurred on the Beaver Dam Slope, Utah (U.S. Fish and Wildlife Service, 1980). In 1990, the entire geographic range north and west of the Colorado River was federally listed as threatened (U.S. Fish and Wildlife Service, 1990), with the exception being a small population in northwestern Arizona. The purpose of this annotated bibliography is to support recovery efforts for the species, because populations have continued to decline in spite of designation of critical habitat and publication of a recovery plan (U.S. Fish and Wildlife Service, 1994). For example, between 2005 and 2014, populations in critical habitats declined about 50% (U.S. Fish and Wildlife Service, 2015).
Hacon, Sandra S; Dórea, José G; Fonseca, Márlon de F; Oliveira, Beatriz A; Mourão, Dennys S; Ruiz, Claudia M V; Gonçalves, Rodrigo A; Mariani, Carolina F; Bastos, Wanderley R
2014-02-26
In the Amazon Basin, naturally occurring methylmercury bioaccumulates in fish, which is a key source of protein consumed by riverine populations. The hydroelectric power-plant project at Santo Antônio Falls allows us to compare the Hg exposure of riverine populations sparsely distributed on both sides of the Madeira river before the area is to be flooded. From 2009 to 2011, we concluded a population survey of the area (N = 2,008; representing circa 80% of community residents) that estimated fish consumption and mercury exposure of riverine populations with different degrees of lifestyle related to fish consumption. Fish samples from the Madeira river (N = 1,615) and 110 species were analyzed for Hg. Hair-Hg was significantly lower (p < 0.001) in less isolated communities near to the capital of Porto Velho (median 2.32 ppm) than in subsistence communities in the Cuniã Lake, 180 km from Porto Velho city (median 6.3 ppm). Fish Hg concentrations ranged from 0.01 to 6.06 µg/g, depending on fish size and feeding behavior. Currently available fish in the Madeira river show a wide variability in Hg concentrations. Despite cultural similarities, riparians showed hair-Hg distribution patterns that reflect changes in fish-eating habits driven by subsistence characteristics.
[Overview of the artificial enhancement and release of endemic freshwater fish in China].
Yang, Jun-Xing; Pan, Xiao-Fu; Chen, Xiao-Yong; Wang, Xiao-Ai; Zhao, Ya-Peng; Li, Jian-You; Li, Zai-Yun
2013-08-01
Due to declining fishery resources and the growing development of conservation aquaculture, artificial freshwater fish enhancement and releasing have begun to replace traditional means of recovering endemic and rare fish populations. Artificial proliferation can be beneficial both to endemic fish conservation and technical bottleneck breakthroughs. This overview presents a review of the latest research and the underlying principles behind the conservation implementation processes, as well as the research status of artificial enhancement and release of endangered freshwater fish species in China, such as Mylopharyngodon piceus, Ctenopharyngodon idellus, Hypophthalmichthys molitrix, H. nobilis, Acipenser sinensis, Myxocyprinus asiaticus, and Sinocyclocheilus grahami. The overview also presents evolutionarily significant units, sperm and egg quality, and cryopreservation technologies and cell cultures used in artificial enhancement and release, which help standardize genetic management and minimize the genetic differences between hatched and wild populations. Monitoring fish from cultivation to release is essential to evaluating wild population recovery and adjusting recovery plans. Moreover, the remaining problems of artificial releases are discussed in-depth, touching on issues such as the limitations of domestic hatching, the base number of wild populations necessary to the environment, the proper size at which to release juveniles' into the environment, the geographic confusion of populations, the contradictions in commercial fish selection and fish conservation, and "exotic species" invasion.
Species interactions and the effects of climate variability on a wetland amphibian metacommunity
Davis, Courtney L.; Miller, David A.W.; Walls, Susan C.; Barichivich, William J.; Riley, Jeffrey W.; Brown, Mary E.
2017-01-01
Disentangling the role that multiple interacting factors have on species responses to shifting climate poses a significant challenge. However, our ability to do so is of utmost importance to predict the effects of climate change on species distributions. We examined how populations of three species of wetland-breeding amphibians, which varied in life history requirements, responded to a six-year period of extremely variable precipitation. This interval was punctuated by both extensive drought and heavy precipitation and flooding, providing a natural experiment to measure community responses to environmental perturbations. We estimated occurrence dynamics using a discrete hidden Markov modeling approach that incorporated information regarding habitat state and predator–prey interactions. This approach allowed us to measure how metapopulation dynamics of each amphibian species was affected by interactions among weather, wetland hydroperiod, and co-occurrence with fish predators. The pig frog, a generalist, proved most resistant to perturbations, with both colonization and persistence being unaffected by seasonal variation in precipitation or co-occurrence with fishes. The ornate chorus frog, an ephemeral wetland specialist, responded positively to periods of drought owing to increased persistence and colonization rates during periods of low-rainfall. Low probabilities of occurrence of the ornate chorus frog in long-duration wetlands were driven by interactions with predators due to low colonization rates when fishes were present. The mole salamander was most sensitive to shifts in water availability. In our study area, this species never occurred in short-duration wetlands and persistence probabilities decreased during periods of drought. At the same time, negative effects occurred with extreme precipitation because flooding facilitated colonization of fishes to isolated wetlands and mole salamanders did not colonize wetlands once fishes were present. We demonstrate that the effects of changes in water availability depend on interactions with predators and wetland type and are influenced by the life history of each of our species. The dynamic species occurrence modeling approach we used offers promise for other systems when the goal is to disentangle the complex interactions that determine species responses to environmental variability.
A Lota lota consumption: Trophic dynamics of nonnative Burbot in a valuable sport fishery
Klobucar, Stephen L.; Saunders, W. Carl; Budy, Phaedra
2016-01-01
Unintentional and illegal introductions of species disrupt food webs and threaten the success of managed sport fisheries. Although many populations of Burbot Lota lota are declining in the species’ native range, a nonnative population recently expanded into Flaming Gorge Reservoir (FGR), Wyoming–Utah, and threatens to disrupt predator–prey interactions within this popular sport fishery. To determine potential impacts on sport fishes, especially trophy Lake Trout Salvelinus namaycush, we assessed the relative abundance of Burbot and quantified the potential trophic or food web impacts of this population by using diet, stable isotope, and bioenergetic analyses. We did not detect a significant potential for food resource competition between Burbot and Lake Trout (Schoener’s overlap index = 0.13), but overall consumption by Burbot likely affects other sport fishes, as indicated by our analyses of trophic niche space. Diet analyses suggested that crayfish were important diet items across time (89.3% of prey by weight in autumn; 49.4% in winter) and across Burbot size-classes (small: 77.5% of prey by weight; medium: 76.6%; large: 39.7%). However, overall consumption by Burbot increases as water temperatures cool, and fish consumption by Burbot in FGR was observed to increase during winter. Specifically, large Burbot consumed more salmonids, and we estimated (bioenergetically) that up to 70% of growth occurred in late autumn and winter. Further, our population-wide consumption estimates indicated that Burbot could consume up to double the biomass of Rainbow Trout Oncorhynchus mykiss stocked annually (>1.3 × 105 kg; >1 million individuals) into FGR. Overall, we provide some of the first information regarding Burbot trophic interactions outside of the species’ native range; these findings can help to inform the management of sport fisheries if Burbot range expansion occurs elsewhere.
NASA Astrophysics Data System (ADS)
Rocha, Ana Maria A. C.; Costa, M. Fernanda P.; Fernandes, Edite M. G. P.
2016-12-01
This article presents a shifted hyperbolic penalty function and proposes an augmented Lagrangian-based algorithm for non-convex constrained global optimization problems. Convergence to an ?-global minimizer is proved. At each iteration k, the algorithm requires the ?-global minimization of a bound constrained optimization subproblem, where ?. The subproblems are solved by a stochastic population-based metaheuristic that relies on the artificial fish swarm paradigm and a two-swarm strategy. To enhance the speed of convergence, the algorithm invokes the Nelder-Mead local search with a dynamically defined probability. Numerical experiments with benchmark functions and engineering design problems are presented. The results show that the proposed shifted hyperbolic augmented Lagrangian compares favorably with other deterministic and stochastic penalty-based methods.
Social-ecological interactions, management panaceas, and the future of wild fish populations
van Poorten, Brett T.; Arlinghaus, Robert; Daedlow, Katrin; Haertel-Borer, Susanne S.
2011-01-01
We explored the social and ecological outcomes associated with emergence of a management panacea designed to govern a stochastic renewable natural resource. To that end, we constructed a model of a coupled social-ecological system of recreational fisheries in which a manager supports naturally fluctuating stocks by stocking fish in response to harvest-driven satisfaction of resource users. The realistic assumption of users remembering past harvest experiences when exploiting a stochastically fluctuating fish population facilitates the emergence of a stocking-based management panacea over time. The social benefits of panacea formation involve dampening natural population fluctuations and generating stability of user satisfaction. It also maintains the resource but promotes the eventual replacement of wild fish by hatchery-descended fish. Our analyses show this outcome is particularly likely when hatchery-descended fish are reasonably fit (e.g., characterized by similar survival relative to wild fish) and/or when natural recruitment of the wild population is low (e.g., attributable to habitat deterioration), which leaves the wild population with little buffer against competition by stocked fish. The potential for release-based panacea formation is particularly likely under user-based management regimes and should be common in a range of social-ecological systems (e.g., fisheries, forestry), whenever user groups are entitled to engage in release or replanting strategies. The net result will be the preservation of a renewable resource through user-based incentives, but the once natural populations are likely to be altered and to host nonnative genotypes. This risks other ecosystem services and the future of wild populations. PMID:21742983
Population maintenance among tropical reef fishes: Inferences from small-island endemics
Robertson, D. Ross
2001-01-01
To what extent do local populations of tropical reef fishes persist through the recruitment of pelagic larvae to their natal reef? Endemics from small, isolated islands can help answer that question by indicating whether special biological attributes are needed for long-term survival under enforced localization in high-risk situations. Taxonomically and biologically, the endemics from seven such islands are broadly representative of their regional faunas. As natal-site recruitment occurs among reef fishes in much less isolated situations, these characteristics of island endemics indicate that a wide range of reef fishes could have persistent self-sustaining local populations. Because small islands regularly support substantial reef fish faunas, regional systems of small reserves could preserve much of the diversity of these fishes. PMID:11331752
An indigenous religious ritual selects for resistance to a toxicant in a livebearing fish.
Tobler, M; Culumber, Z W; Plath, M; Winemiller, K O; Rosenthal, G G
2011-04-23
Human-induced environmental change can affect the evolutionary trajectory of populations. In Mexico, indigenous Zoque people annually introduce barbasco, a fish toxicant, into the Cueva del Azufre to harvest fish during a religious ceremony. Here, we investigated tolerance to barbasco in fish from sites exposed and unexposed to the ritual. We found that barbasco tolerance increases with body size and differs between the sexes. Furthermore, fish from sites exposed to the ceremony had a significantly higher tolerance. Consequently, the annual ceremony may not only affect population structure and gene flow among habitat types, but the increased tolerance in exposed fish may indicate adaptation to human cultural practices in a natural population on a very small spatial scale.
An indigenous religious ritual selects for resistance to a toxicant in a livebearing fish
Tobler, M.; Culumber, Z. W.; Plath, M.; Winemiller, K. O.; Rosenthal, G. G.
2011-01-01
Human-induced environmental change can affect the evolutionary trajectory of populations. In Mexico, indigenous Zoque people annually introduce barbasco, a fish toxicant, into the Cueva del Azufre to harvest fish during a religious ceremony. Here, we investigated tolerance to barbasco in fish from sites exposed and unexposed to the ritual. We found that barbasco tolerance increases with body size and differs between the sexes. Furthermore, fish from sites exposed to the ceremony had a significantly higher tolerance. Consequently, the annual ceremony may not only affect population structure and gene flow among habitat types, but the increased tolerance in exposed fish may indicate adaptation to human cultural practices in a natural population on a very small spatial scale. PMID:20826470
A physiological perspective on fisheries-induced evolution.
Hollins, Jack; Thambithurai, Davide; Koeck, Barbara; Crespel, Amelie; Bailey, David M; Cooke, Steven J; Lindström, Jan; Parsons, Kevin J; Killen, Shaun S
2018-06-01
There is increasing evidence that intense fishing pressure is not only depleting fish stocks but also causing evolutionary changes to fish populations. In particular, body size and fecundity in wild fish populations may be altered in response to the high and often size-selective mortality exerted by fisheries. While these effects can have serious consequences for the viability of fish populations, there are also a range of traits not directly related to body size which could also affect susceptibility to capture by fishing gears-and therefore fisheries-induced evolution (FIE)-but which have to date been ignored. For example, overlooked within the context of FIE is the likelihood that variation in physiological traits could make some individuals within species more vulnerable to capture. Specifically, traits related to energy balance (e.g., metabolic rate), swimming performance (e.g., aerobic scope), neuroendocrinology (e.g., stress responsiveness) and sensory physiology (e.g., visual acuity) are especially likely to influence vulnerability to capture through a variety of mechanisms. Selection on these traits could produce major shifts in the physiological traits within populations in response to fishing pressure that are yet to be considered but which could influence population resource requirements, resilience, species' distributions and responses to environmental change.
Restoring depleted coral-reef fish populations through recruitment enhancement: a proof of concept.
Heenan, A; Simpson, S D; Meekan, M G; Healy, S D; Braithwaite, V A
2009-11-01
To determine whether enhancing the survival of new recruits is a sensible target for the restorative management of depleted coral-reef fish populations, settlement-stage ambon damsel fish Pomacentrus amboinensis were captured, tagged and then either released immediately onto small artificial reefs or held in aquaria for 1 week prior to release. Holding conditions were varied to determine whether they affected survival of fish: half the fish were held in bare tanks (non-enriched) and the other half in tanks containing coral and sand (enriched). Holding fish for this short period had a significantly positive effect on survivorship relative to the settlement-stage treatment group that were released immediately. The enrichment of holding conditions made no appreciable difference on the survival of fish once released onto the reef. It did, however, have a positive effect on the survival of fish while in captivity, thus supporting the case for the provision of simple environmental enrichment in fish husbandry. Collecting and holding settlement-stage fish for at least a week before release appear to increase the short-term survival of released fish; whether it is an effective method for longer-term enhancement of locally depleted coral-reef fish populations will require further study.
Pracheil, Brenda M.; DeRolph, Christopher R.; Schramm, Michael P.; ...
2016-01-01
One-way connectivity maintained by fish passing through hydropower turbines in fragmented rivers can be important to population dynamics, but can introduce a new and significant source of mortality due to turbine-associated mortality. Sources of mortality during downstream turbine passage can come from several sources including blade strike, shear forces, cavitation, or pressure decreases, and parsing the contributions of these individual forces is important for advancing and deploying turbines that minimize these impacts to fishes. We used a national hydropower database and conducted a systematic review of the literature to accomplish three goals: (1) report on the spatial distribution of turbinemore » types and generation capacities in the USA, (2) determine fish mortality rates among turbine types and fish species and (3) examine relationships between physical forces similar to those encountered during fish turbine passage and fish injury and mortality. We found that while Francis turbines generate 56% of all US hydropower and have the highest associated fish mortality of any turbine type, these turbines are proportionally understudied compared to less-common and less injury-associated Kaplan turbines, particularly in the Pacific Northwest. While juvenile salmonid species in actual or simulated Kaplan turbine conditions were the most commonly studied, the highest mortality rates were reported in percid fishes passing through Francis turbines. Also, although there are several mechanisms of turbine-associated injury, barotrauma was the most commonly studied with swim bladder rupture, exopthalmia, eye gas bubbles, and prolapsed cloaca being the most serious symptoms associated with rapid pressure decreases. Future studies should focus on understanding which species are most at-risk to turbine passage mortality and, subsequently, increasing the diversity of taxonomy and turbine types in evaluations of turbine mortality.« less
Recruitment phenology and pelagic larval duration in Caribbean amphidromous fishes
Engman, Augustin C.; Kwak, Thomas J.; Fischer, Jesse R.
2017-01-01
Amphidromous fishes are major components of oceanic tropical island stream ecosystems, such as those of the Caribbean island, Puerto Rico. Fishes with this life history face threats related to the requirement for connectivity between freshwater and marine environments during early life stages. Pelagic larval duration and recruitment phenology are 2 early life-history processes that are crucial for the biology, ecology, conservation, and management of amphidromous fishes. However, these processes are understudied in the Caribbean in general and have never been quantified in Puerto Rico. We quantified recruit abundance, recruitment phenology, and pelagic larval duration of several Caribbean amphidromous fish species in multiple rivers in Puerto Rico and explored the effects of environmental variables on recruit abundances. Two fish taxa—sirajo goby (Sicydium spp.) and River Goby (Awaous banana)—were exceptionally abundant as postlarvae and recruited to Caribbean rivers in pulsed migration episodes that were periodic at annual and lunar scales. Sirajo goby and River Goby recruit abundances varied among rivers, were greater at sunrise than at sunset, and were positively related to river discharge. The pelagic larval duration of 4 fish taxa ranged from a minimum of 28 d to a maximum of 103 d with means between 43 ± 7 d (SD) and 65 ± 11 d. We identified the last-quarter moon phase during the months of June through January as periods of maximum amphidromous fish recruitment to freshwater streams. The results and conclusions of our study can be applied to identify critical times to maintain river–ocean connectivity and stream flow for the benefit of the amphidromous fish population dynamics, stream ecology, and natural resources of the Caribbean.
Validation of daily ring deposition in the otoliths of age-0 channel catfish
Sakaris, P.C.; Irwin, E.R.
2008-01-01
We developed and validated methods for estimating the daily age of age-0 channel catfish Ictalurus punctatus. Two clutches of channel catfish eggs were hatched in the laboratory; subsequently, one was stocked in a 186-m2 earthen nursery pond and the other in a 757-L outdoor circular tank. Before stocking, subsamples of fish were collected at swim-up and 3 d after swim-up to evaluate early ring formation. Fish were sampled from the pond and tank on eight occasions ranging from 30 to 119 d posthatch. Distinct differences in early ring formation were found between yolk sac and free-swimming larval stages. Mean ring count and known age were closely related for tank- and pond-raised fish, indicating that daily ring deposition occurred in the otoliths of age-0 channel catfish up to 119 d posthatch. The accuracy of daily age estimation was similar between tank and pond samples, and daily ring counts were considerably accurate up to 60 d posthatch. Pond-raised fish were more difficult to age than tank-raised fish, which we attributed to ring compression resulting from slower growth among pond-raised fish after 30 d. The total length of tank- and pond-raised fish was positively related to otolith size; however, the slopes of the relationships between fish length and otolith radius were different between treatments. Therefore, we could not confirm that the relationship between fish length and otolith size was directly proportional for age-0 channel catfish. We encourage researchers to use this aging technique to determine how abiotic and biotic factors influence early life history characteristics and ultimately the population dynamics of catfishes (Ictaluridae). ?? Copyright by the American Fisheries Society 2008.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pracheil, Brenda M.; DeRolph, Christopher R.; Schramm, Michael P.
One-way connectivity maintained by fish passing through hydropower turbines in fragmented rivers can be important to population dynamics, but can introduce a new and significant source of mortality due to turbine-associated mortality. Sources of mortality during downstream turbine passage can come from several sources including blade strike, shear forces, cavitation, or pressure decreases, and parsing the contributions of these individual forces is important for advancing and deploying turbines that minimize these impacts to fishes. We used a national hydropower database and conducted a systematic review of the literature to accomplish three goals: (1) report on the spatial distribution of turbinemore » types and generation capacities in the USA, (2) determine fish mortality rates among turbine types and fish species and (3) examine relationships between physical forces similar to those encountered during fish turbine passage and fish injury and mortality. We found that while Francis turbines generate 56% of all US hydropower and have the highest associated fish mortality of any turbine type, these turbines are proportionally understudied compared to less-common and less injury-associated Kaplan turbines, particularly in the Pacific Northwest. While juvenile salmonid species in actual or simulated Kaplan turbine conditions were the most commonly studied, the highest mortality rates were reported in percid fishes passing through Francis turbines. Also, although there are several mechanisms of turbine-associated injury, barotrauma was the most commonly studied with swim bladder rupture, exopthalmia, eye gas bubbles, and prolapsed cloaca being the most serious symptoms associated with rapid pressure decreases. Future studies should focus on understanding which species are most at-risk to turbine passage mortality and, subsequently, increasing the diversity of taxonomy and turbine types in evaluations of turbine mortality.« less
Influence of habitat degradation on fish replenishment
NASA Astrophysics Data System (ADS)
McCormick, M. I.; Moore, J. A. Y.; Munday, P. L.
2010-09-01
Temperature-induced coral bleaching is a major threat to the biodiversity of coral reef ecosystems. While reductions in species diversity and abundance of fish communities have been documented following coral bleaching, the mechanisms that underlie these changes are poorly understood. The present study examined the impacts of coral bleaching on the early life-history processes of coral reef fishes. Daily monitoring of fish settlement patterns found that ten times as many fish settled to healthy coral than sub-lethally bleached coral. Species diversity of settling fishes was least on bleached coral and greatest on dead coral, with healthy coral having intermediate levels of diversity. Laboratory experiments using light-trap caught juveniles showed that different damselfish species chose among healthy, bleached and dead coral habitats using different combinations of visual and olfactory cues. The live coral specialist, Pomacentrus moluccensis, preferred live coral and avoided bleached and dead coral, using mostly visual cues to inform their habitat choice. The habitat generalist, Pomacentrus amboinensis, also preferred live coral and avoided bleached and dead coral but selected these habitats using both visual and olfactory cues. Trials with another habitat generalist, Dischistodus sp., suggested that vision played a significant role. A 20 days field experiment that manipulated densities of P. moluccensis on healthy and bleached coral heads found an influence of fish density on juvenile weight and growth, but no significant influence of habitat quality. These results suggests that coral bleaching will affect settlement patterns and species distributions by influencing the visual and olfactory cues that reef fish larvae use to make settlement choices. Furthermore, increased fish density within the remaining healthy coral habitats could play an important role in influencing population dynamics.
NASA Astrophysics Data System (ADS)
Holtgrieve, G. W.; Arias, M. E.; Chheng, P.
2013-12-01
The Lower Mekong River basin, including Tonle Sap Lake (TSL), is the largest inland fishery in the world and a dominant source of protein and income for much of Southeast Asia. Maintaining ecosystem productivity in the face of large-scale environmental change from hydroelectric dams and climate change is critical for economic and social well-being in the region. Yet, we currently lack the most basic understanding of how hydrologic variation relates to fisheries production, nutritional quality, and ultimately livelihoods of people. We will describe past, present, and future research to establish mechanistic connections between the hydrology, ecology, and sustainability of the Mekong ecosystem. Past research includes application of a state-space oxygen mass balance model and continuous dissolved oxygen measurements from four locations to provide the first estimates of gross primary productivity (GPP) and ecosystem respiration (ER) for the Tonle Sap. GPP averaged 4.1 × 2.3 g O2 m-3 d-1 with minimal differences among sites, while ER averaged 24.9 × 20.0 g O2 m-3 d-1, but had greater than six-fold variation among sites. Using our measurements of GPP, we calibrated a hydrodynamic-productivity model and predicted aquatic net primary production of 2.0 × 0.2 g C m-2 d-1 (2.4 × 0.2 million tonnes C y-1). Present research is using stable isotope and fatty acid methyl ester biomarkers to investigate basal carbon sources to the fishery, focusing specifically on the role of biogenic methane oxidation in supporting the food web. Individuals a wide variety of taxa had tissue carbon isotope values (δ13C) ranging from -36 to -57 per mil. These extremely depleted values are best explained by utilization of biogenic methane by methane oxidizing bacteria (MOB) and subsequent grazing of these bacterial by benthic insects and ultimately fishes. The presence of MOB in the food web was confirmed by identifying 16:1ω8 and 18:1ω8 FAME biomarkers specific to these bacteria in fish tissues. Finally, we will discuss future research to understand how hydrology and fishing practices interact to structure fish populations and, in turn, the amount and quality of nutrition available to people. Alterations to the sediment and oxygen dynamics of the TSL, as a result of hydroelectric dams, has the potential to significantly alter fish population dynamics and influence the role methane plays as a carbon source to this economically and socially important fishery.
Scoppettone, Gayton G.; Rissler, Peter H.; Fabes, Mark C.; Shea, Sean P.
2015-01-01
Fishes of the Truckee River basin (California and Nevada) evolved in an aquatic system that has been episodically diminished by extended drought. For potamodromous species, such as the endangered Cui-ui endemic to Pyramid Lake, Nevada, prehistoric episodic severe drought presumably led to periods of failed reproduction due to restricted access to spawning habitat. The response of the Cui-ui population to more recent failed reproduction caused by anthropogenic activity was studied to learn how to manage this species through periods of spawning disruption. Adult Cui-ui survival averaged 91% and 89% for females and males, respectively, in drought years when spawning migrations were either precluded or few fish migrated because of no or low stream flow. In each of 2 years when stream access was precluded, the adult survival was nearly 100% suggesting that Cui-ui survival is extended in the absence of a spawning migration. Survival averaged 62% and 60% for females and males, respectively, in years of spawning migrations. Strong predominant year-classes developed in the year immediately following a period of failed reproduction, indicating the species’ capacity for population rebound. Year-class predominance persisted for 6–10 years and through years of low survival associated with migration years, and this predominance is probably due, in part, to a diverse age at maturity. Contemporary water diversions from the Truckee River provided the opportunity to study the response of the Cui-ui population to years of failed reproduction. A projected drier Truckee River basin associated with global climate change will test the Cui-ui’s adaptive capacity to endure periods of reproductive failure. This study is aimed at assisting Cui-ui managers in conserving the species in this highly regulated and changing system. The study also adds insight into the prehistoric population dynamics of a potamodromous species in the arid western United States subject to wide fluctuations in annual precipitation and water availability
Underwood, Zachary E.; Mandeville, Elizabeth G.; Walters, Annika W.
2016-01-01
Burbot (Lota lota) occur in the Wind River Basin in central Wyoming, USA, at the southwestern extreme of the species’ native range in North America. The most stable and successful of these populations occur in six glacially carved mountain lakes on three different tributary streams and one large main stem impoundment (Boysen Reservoir) downstream from the tributary populations. Burbot are rarely found in connecting streams and rivers, which are relatively small and high gradient, with a variety of potential barriers to upstream movement of fish. We used high-throughput genomic sequence data for 11,197 SNPs to characterize the genetic diversity, population structure, and connectivity among burbot populations on the Wind River system. Fish from Boysen Reservoir and lower basin tributary populations were genetically differentiated from those in the upper basin tributary populations. In addition, fish within the same tributary streams fell within the same genetic clusters, suggesting there is movement of fish between lakes on the same tributaries but that populations within each tributary system are isolated and genetically distinct from other populations. Observed genetic differentiation corresponded to natural and anthropogenic barriers, highlighting the importance of barriers to fish population connectivity and gene flow in human-altered linked lake-stream habitats.
River networks as ecological corridors: A coherent ecohydrological perspective
NASA Astrophysics Data System (ADS)
Rinaldo, Andrea; Gatto, Marino; Rodriguez-Iturbe, Ignacio
2018-02-01
This paper draws together several lines of argument to suggest that an ecohydrological framework, i.e. laboratory, field and theoretical approaches focused on hydrologic controls on biota, has contributed substantially to our understanding of the function of river networks as ecological corridors. Such function proves relevant to: the spatial ecology of species; population dynamics and biological invasions; the spread of waterborne disease. As examples, we describe metacommunity predictions of fish diversity patterns in the Mississippi-Missouri basin, geomorphic controls imposed by the fluvial landscape on elevational gradients of species' richness, the zebra mussel invasion of the same Mississippi-Missouri river system, and the spread of proliferative kidney disease in salmonid fish. We conclude that spatial descriptions of ecological processes in the fluvial landscape, constrained by their specific hydrologic and ecological dynamics and by the ecosystem matrix for interactions, i.e. the directional dispersal embedded in fluvial and host/pathogen mobility networks, have already produced a remarkably broad range of significant results. Notable scientific and practical perspectives are thus open, in the authors' view, to future developments in ecohydrologic research.
Wildhaber, M.L.; Allert, A.L.; Schmitt, C.J.; Tabor, V.M.; Mulhern, D.; Powell, K.L.; Sowa, S.P.
2000-01-01
We attempted to discern the contributions of physical habitat, water chemistry, nutrients, and contaminants from historic lead-zinc mining activities on the riffle-dwelling benthic fish community of the Spring River, a midwestern warmwater stream that originates in Missouri and flows into Kansas and Oklahoma. The Spring River has a fish community that includes the Neosho madtom Noturus placidus, a species federally listed as threatened. Although anthropogenic factors such as contaminants limited populations and densities of fishes, an integrated assessment of natural and anthropogenic factors was necessary to effectively estimate the influence of the latter. Fish populations in the Spring River, especially Neosho madtoms, seem to be limited by the presence of cadmium, lead, and zinc in water and in benthic invertebrate food sources and by physical habitat. The population density and community structure of fish in the Spring River also seem to be related to water chemistry and nutrients. Concurrently, diminished food availability may be limiting fish populations at some sites where Neosho madtoms are not found. Many of the natural factors that may be limiting Neosho madtom and other riffle-dwelling fish populations in the Spring River probably are characteristic of the physiographic region drained by the upper reach and many of the tributaries of the Spring River. Our results indicate that competition between the Neosho madtom and other species within the riffle-dwelling fish community is an unlikely cause of Neosho madtom population limitation in the Spring River.
Imaging of Chromosome Dynamics in Mouse Testis Tissue by Immuno-FISH.
Scherthan, Harry
2017-01-01
The mouse (Mus musculus) represents the central mammalian genetic model system for biomedical and developmental research. Mutant mouse models have provided important insights into chromosome dynamics during the complex meiotic differentiation program that compensates for the genome doubling at fertilization. Homologous chromosomes (homologues) undergo dynamic pairing and recombine during first meiotic prophase before they become partitioned into four haploid sets by two consecutive meiotic divisions that lack an intervening S-phase. Fluorescence in situ hybridization (FISH) has been instrumental in the visualization and imaging of the dynamic reshaping of chromosome territories and mobility during prophase I, in which meiotic telomeres were found to act as pacemakers for the chromosome pairing dance. FISH combined with immunofluorescence (IF) co-staining of nuclear proteins has been instrumental for the visualization and imaging of mammalian meiotic chromosome behavior. This chapter describes FISH and IF methods for the analysis of chromosome dynamics in nuclei of paraffin-embedded mouse testes. The techniques have proven useful for fresh and archived paraffin testis material of several mammalian species.
Hieu, Nguyen Trong; Brochier, Timothée; Tri, Nguyen-Huu; Auger, Pierre; Brehmer, Patrice
2014-09-01
We consider a fishery model with two sites: (1) a marine protected area (MPA) where fishing is prohibited and (2) an area where the fish population is harvested. We assume that fish can migrate from MPA to fishing area at a very fast time scale and fish spatial organisation can change from small to large clusters of school at a fast time scale. The growth of the fish population and the catch are assumed to occur at a slow time scale. The complete model is a system of five ordinary differential equations with three time scales. We take advantage of the time scales using aggregation of variables methods to derive a reduced model governing the total fish density and fishing effort at the slow time scale. We analyze this aggregated model and show that under some conditions, there exists an equilibrium corresponding to a sustainable fishery. Our results suggest that in small pelagic fisheries the yield is maximum for a fish population distributed among both small and large clusters of school.
Temperature-dependent body size effects determine population responses to climate warming.
Lindmark, Max; Huss, Magnus; Ohlberger, Jan; Gårdmark, Anna
2018-02-01
Current understanding of animal population responses to rising temperatures is based on the assumption that biological rates such as metabolism, which governs fundamental ecological processes, scale independently with body size and temperature, despite empirical evidence for interactive effects. Here, we investigate the consequences of interactive temperature- and size scaling of vital rates for the dynamics of populations experiencing warming using a stage-structured consumer-resource model. We show that interactive scaling alters population and stage-specific responses to rising temperatures, such that warming can induce shifts in population regulation and stage-structure, influence community structure and govern population responses to mortality. Analysing experimental data for 20 fish species, we found size-temperature interactions in intraspecific scaling of metabolic rate to be common. Given the evidence for size-temperature interactions and the ubiquity of size structure in animal populations, we argue that accounting for size-specific temperature effects is pivotal for understanding how warming affects animal populations and communities. © 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.
Fast and behavior-selective exploitation of a marine fish targeted by anglers
Alós, Josep; Palmer, Miquel; Rosselló, Rosario; Arlinghaus, Robert
2016-01-01
Harvesting of wild-living animals is often intensive and may selectively target heritable behavioral traits. We studied the exploitation dynamics and the vulnerability consequences of individual heterogeneity in movement-related behaviors in free-ranging pearly razorfish (Xyrichthys novacula). Using underwater-video recording, we firstly document a fast and high exploitation rate of about 60% of the adult population removed in just few days after the opening of the season. Subsequently, we tagged a sample of individuals with acoustic transmitters and studied whether behavioral traits were significant predictors of the vulnerability to angling. Tagged individuals revealed repeatable behaviors in several home range-related traits, suggesting the presence of spatial behavioral types. The individuals surviving the experimental fishery showed only localized and low-intensity movement patterns. Our study provides new insights for understanding the harvesting pressures and selective properties acting on behavioral traits of recreational fishing. Many fish stocks around the globe are today predominantly exploited by recreational fisheries. The fisheries-induced change in fish behavior described here may be therefore widespread, and has the potential to alter food-webs, profitability of the fisheries and to affect stock assessment by eroding catchability in the long-term. PMID:27922022
Behaviour and Locomotor Activity of a Migratory Catostomid during Fishway Passage
Silva, Ana T.; Hatry, Charles; Thiem, Jason D.; Gutowsky, Lee F. G.; Hatin, Daniel; Zhu, David Z.; W. Dawson, Jeffery; Katopodis, Christos; J. Cooke, Steven
2015-01-01
Fishways have been developed to restore longitudinal connectivity in rivers. Despite their potential for aiding fish passage, fishways may represent a source of significant energetic expenditure for fish as they are highly turbulent environments. Nonetheless, our understanding of the physiological mechanisms underpinning fishway passage of fish is still limited. We examined swimming behaviour and activity of silver redhorse (Moxostoma anisurum) during its upriver spawning migration in a vertical slot fishway. We used an accelerometer-derived instantaneous activity metric (overall dynamic body acceleration) to estimate location-specific swimming activity. Silver redhorse demonstrated progressive increases in activity during upstream fishway passage. Moreover, location-specific passage duration decreased with an increasing number of passage attempts. Turning basins and the most upstream basin were found to delay fish passage. No relationship was found between basin-specific passage duration and activity and the respective values from previous basins. The results demonstrate that successful fishway passage requires periods of high activity. The resultant energetic expenditure may affect fitness, foraging behaviour and increase susceptibility to predation, compromising population sustainability. This study highlights the need to understand the physiological mechanisms underpinning fishway passage to improve future designs and interpretation of biological evaluations. PMID:25853245
Fast and behavior-selective exploitation of a marine fish targeted by anglers
NASA Astrophysics Data System (ADS)
Alós, Josep; Palmer, Miquel; Rosselló, Rosario; Arlinghaus, Robert
2016-12-01
Harvesting of wild-living animals is often intensive and may selectively target heritable behavioral traits. We studied the exploitation dynamics and the vulnerability consequences of individual heterogeneity in movement-related behaviors in free-ranging pearly razorfish (Xyrichthys novacula). Using underwater-video recording, we firstly document a fast and high exploitation rate of about 60% of the adult population removed in just few days after the opening of the season. Subsequently, we tagged a sample of individuals with acoustic transmitters and studied whether behavioral traits were significant predictors of the vulnerability to angling. Tagged individuals revealed repeatable behaviors in several home range-related traits, suggesting the presence of spatial behavioral types. The individuals surviving the experimental fishery showed only localized and low-intensity movement patterns. Our study provides new insights for understanding the harvesting pressures and selective properties acting on behavioral traits of recreational fishing. Many fish stocks around the globe are today predominantly exploited by recreational fisheries. The fisheries-induced change in fish behavior described here may be therefore widespread, and has the potential to alter food-webs, profitability of the fisheries and to affect stock assessment by eroding catchability in the long-term.
Fishing with bed nets on Lake Tanganyika: a randomized survey.
McLean, Kate A; Byanaku, Aisha; Kubikonse, Augustine; Tshowe, Vincent; Katensi, Said; Lehman, Amy G
2014-10-07
Malaria is among the most common causes of death along Lake Tanganyika, a problem which many aid organizations have attempted to combat through the distribution of free mosquito bed nets to high-risk communities. The Lake Tanganyika Floating Health Clinic (LTFHC), a health-based non-governmental organization (NGO), has observed residents of the Lake Tanganyika basin using bed nets to fish small fry near the shoreline, despite a series of laws that prohibit bed net use and other fine-gauge nets for fishing, implemented to protect the near-shore fish ecology. The LTFHC sought to quantify the sources of bed nets and whether they were being used for fishing. The LTFHC conducted a survey of seven lakeside villages in Lagosa Ward, Tanzania. The government has divided each village into two to six pre-existing geographic sub-villages depending on population size. Seven households per sub-village were chosen at random for survey administration. The survey consisted of 23 questions regarding mosquito bed net practices, including the use of bed nets for fishing, as well as questions pertaining to any perceived changes to the fish supply. A total of 196 surveys were administered over a four-week period with a 100% response rate. Over 87% of households surveyed have used a mosquito bed net for fishing at some point. The majority of respondents reported receiving their bed net for free (96.4%), observing "many" residents of their village using bed nets for fishing (97.4%), and noticing a subjective decrease in the fish supply over time (64.9%). The findings of this study raise concerns that the use of free malaria bed nets for fishing is widespread along Lake Tanganyika, and that this dynamic will have an adverse effect on fish ecology. Further studies are indicated to fully define the scope of bed net misuse and the effects of alternative vector control strategies in water-based communities.
DNA Metabarcoding of Amazonian Ichthyoplankton Swarms.
Maggia, M E; Vigouroux, Y; Renno, J F; Duponchelle, F; Desmarais, E; Nunez, J; García-Dávila, C; Carvajal-Vallejos, F M; Paradis, E; Martin, J F; Mariac, C
2017-01-01
Tropical rainforests harbor extraordinary biodiversity. The Amazon basin is thought to hold 30% of all river fish species in the world. Information about the ecology, reproduction, and recruitment of most species is still lacking, thus hampering fisheries management and successful conservation strategies. One of the key understudied issues in the study of population dynamics is recruitment. Fish larval ecology in tropical biomes is still in its infancy owing to identification difficulties. Molecular techniques are very promising tools for the identification of larvae at the species level. However, one of their limits is obtaining individual sequences with large samples of larvae. To facilitate this task, we developed a new method based on the massive parallel sequencing capability of next generation sequencing (NGS) coupled with hybridization capture. We focused on the mitochondrial marker cytochrome oxidase I (COI). The results obtained using the new method were compared with individual larval sequencing. We validated the ability of the method to identify Amazonian catfish larvae at the species level and to estimate the relative abundance of species in batches of larvae. Finally, we applied the method and provided evidence for strong temporal variation in reproductive activity of catfish species in the Ucayalí River in the Peruvian Amazon. This new time and cost effective method enables the acquisition of large datasets, paving the way for a finer understanding of reproductive dynamics and recruitment patterns of tropical fish species, with major implications for fisheries management and conservation.
Thompson, W.L.
2003-01-01
Hankin and Reeves' (1988) approach to estimating fish abundance in small streams has been applied in stream fish studies across North America. However, their population estimator relies on two key assumptions: (1) removal estimates are equal to the true numbers of fish, and (2) removal estimates are highly correlated with snorkel counts within a subset of sampled stream units. Violations of these assumptions may produce suspect results. To determine possible sources of the assumption violations, I used data on the abundance of steelhead Oncorhynchus mykiss from Hankin and Reeves' (1988) in a simulation composed of 50,000 repeated, stratified systematic random samples from a spatially clustered distribution. The simulation was used to investigate effects of a range of removal estimates, from 75% to 100% of true fish abundance, on overall stream fish population estimates. The effects of various categories of removal-estimates-to-snorkel-count correlation levels (r = 0.75-1.0) on fish population estimates were also explored. Simulation results indicated that Hankin and Reeves' approach may produce poor results unless removal estimates exceed at least 85% of the true number of fish within sampled units and unless correlations between removal estimates and snorkel counts are at least 0.90. A potential modification to Hankin and Reeves' approach is the inclusion of environmental covariates that affect detection rates of fish into the removal model or other mark-recapture model. A potential alternative approach is to use snorkeling combined with line transect sampling to estimate fish densities within stream units. As with any method of population estimation, a pilot study should be conducted to evaluate its usefulness, which requires a known (or nearly so) population of fish to serve as a benchmark for evaluating bias and precision of estimators.
Fensham, J R; Bubner, E; D'Antignana, T; Landos, M; Caraguel, C G B
2018-05-01
The Australian farmed yellowtail kingfish (Seriola lalandi, YTK) industry monitor skin fluke (Benedenia seriolae) and gill fluke (Zeuxapta seriolae) burden by pooling the fluke count of 10 hooked YTK. The random and systematic error of this sampling strategy was evaluated to assess potential impact on treatment decisions. Fluke abundance (fluke count per fish) in a study cage (estimated 30,502 fish) was assessed five times using the current sampling protocol and its repeatability was estimated the repeatability coefficient (CR) and the coefficient of variation (CV). Individual body weight, fork length, fluke abundance, prevalence, intensity (fluke count per infested fish) and density (fluke count per Kg of fish) were compared between 100 hooked and 100 seined YTK (assumed representative of the entire population) to estimate potential selection bias. Depending on the fluke species and age category, CR (expected difference in parasite count between 2 sampling iterations) ranged from 0.78 to 114 flukes per fish. Capturing YTK by hooking increased the selection of fish of a weight and length in the lowest 5th percentile of the cage (RR = 5.75, 95% CI: 2.06-16.03, P-value = 0.0001). These lower end YTK had on average an extra 31 juveniles and 6 adults Z. seriolae per Kg of fish and an extra 3 juvenile and 0.4 adult B. seriolae per Kg of fish, compared to the rest of the cage population (P-value < 0.05). Hooking YTK on the edge of the study cage biases sampling towards the smallest and most heavily infested fish in the population, resulting in poor repeatability (more variability amongst sampled fish) and an overestimation of parasite burden in the population. In this particular commercial situation these finding supported that health management program, where the finding of an underestimation of parasite burden could provide a production impact on the study population. In instances where fish populations and parasite burdens are more homogenous, sampling error may be less severe. Sampling error when capturing fish from sea cage is difficult to predict. The amplitude and direction of this error should be investigated for a given cultured fish species across a range of parasite burden and fish profile scenarios. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Upadhyay, Ranjit Kumar; Tiwari, S. K.; Roy, Parimita
2015-06-01
In this paper, an attempt has been made to study the spatial and temporal dynamical interactions among the species of wetland ecosystem through a mathematical model. The model represents the population dynamics of phytoplankton, zooplankton and fish species found in Chilika lake, Odisha, India. Nonlinear stability analysis of both the temporal and spatial models has been carried out. Maximum sustainable yield and optimal harvesting policy have been studied for a nonspatial model system. Numerical simulation has been performed to figure out the parameters responsible for the complex dynamics of the wetland system. Significant outcomes of our numerical findings and their interpretations from an ecological point of view are provided in this paper. Numerical simulation of spatial model exhibits some interesting and beautiful patterns. We have also pointed out the parameters that are responsible for the good health of wetland ecosystem.
Effects of stream acidification and habitat on fish populations of a North American river
Baldigo, Barry P.; Lawrence, G.B.
2001-01-01
Water quality, physical habitat, and fisheries at sixteen reaches in the Neversink River Basin were studied during 1991-95 to identify the effects of acidic precipitation on stream-water chemistry and on selected fish-species populations, and to test the hypothesis that the degree of stream acidification affected the spatial distribution of each fish-species population. Most sites on the East Branch Neversink were strongly to severely acidified, whereas most sites on the West Branch were minimally to moderately acidified. Mean density of fish populations ranged from 0 to 2.15 fish/m2; biomass ranged from 0 to 17.5 g/m2. Where brook trout were present, their population density ranged from 0.04 to 1.09 fish/m2, biomass ranged from 0.76 to 12.2 g/m2, and condition (K) ranged from 0.94 to 1.07. Regression analyses revealed strong relations (r2 ?? 0.41 to 0.99; p ??? 0.05) between characteristics of the two most common species (brook trout and slimy sculpin) populations and mean concentrations of inorganic monomeric aluminum (Alim), pH, Si, K+, NO3/-, NH4/+, DOC, Ca2+, and Na+; acid neutralizing capacity (ANC); and water temperature. Stream acidification may have adversely affected fish populations at most East Branch sites, but in other parts of the Neversink River Basin these effects were masked or mitigated by other physical habitat, geochemical, and biological factors.
Free, Christopher M; Jensen, Olaf P; Mendsaikhan, Bud
2015-01-01
Illegal harvest is recognized as a widespread problem in natural resource management. The use of multiple methods for quantifying illegal harvest has been widely recommended yet infrequently applied. We used a mixed-method approach to evaluate the extent, character, and motivations of illegal gillnet fishing in Lake Hovsgol National Park, Mongolia and its impact on the lake's fish populations, especially that of the endangered endemic Hovsgol grayling (Thymallus nigrescens). Surveys for derelict fishing gear indicate that gillnet fishing is widespread and increasing and that fishers generally use 3-4 cm mesh gillnet. Interviews with resident herders and park rangers suggest that many residents fish for subsistence during the spring grayling spawning migration and that some residents fish commercially year-round. Interviewed herders and rangers generally agree that fish population sizes are decreasing but are divided on the causes and solutions. Biological monitoring indicates that the gillnet mesh sizes used by fishers efficiently target Hovsgol grayling. Of the five species sampled in the monitoring program, only burbot (Lota lota) showed a significant decrease in population abundance from 2009-2013. However, grayling, burbot, and roach (Rutilus rutilus) all showed significant declines in average body size, suggesting a negative fishing impact. Data-poor stock assessment methods suggest that the fishing effort equivalent to each resident family fishing 50-m of gillnet 11-15 nights per year would be sufficient to overexploit the grayling population. Results from the derelict fishing gear survey and interviews suggest that this level of effort is not implausible. Overall, we demonstrate the ability for a mixed-method approach to effectively describe an illegal fishery and suggest that these methods be used to assess illegal fishing and its impacts in other protected areas.
A Mixed-Method Approach for Quantifying Illegal Fishing and Its Impact on an Endangered Fish Species
Free, Christopher M.; Jensen, Olaf P.; Mendsaikhan, Bud
2015-01-01
Illegal harvest is recognized as a widespread problem in natural resource management. The use of multiple methods for quantifying illegal harvest has been widely recommended yet infrequently applied. We used a mixed-method approach to evaluate the extent, character, and motivations of illegal gillnet fishing in Lake Hovsgol National Park, Mongolia and its impact on the lake’s fish populations, especially that of the endangered endemic Hovsgol grayling (Thymallus nigrescens). Surveys for derelict fishing gear indicate that gillnet fishing is widespread and increasing and that fishers generally use 3–4 cm mesh gillnet. Interviews with resident herders and park rangers suggest that many residents fish for subsistence during the spring grayling spawning migration and that some residents fish commercially year-round. Interviewed herders and rangers generally agree that fish population sizes are decreasing but are divided on the causes and solutions. Biological monitoring indicates that the gillnet mesh sizes used by fishers efficiently target Hovsgol grayling. Of the five species sampled in the monitoring program, only burbot (Lota lota) showed a significant decrease in population abundance from 2009–2013. However, grayling, burbot, and roach (Rutilus rutilus) all showed significant declines in average body size, suggesting a negative fishing impact. Data-poor stock assessment methods suggest that the fishing effort equivalent to each resident family fishing 50-m of gillnet 11–15 nights per year would be sufficient to overexploit the grayling population. Results from the derelict fishing gear survey and interviews suggest that this level of effort is not implausible. Overall, we demonstrate the ability for a mixed-method approach to effectively describe an illegal fishery and suggest that these methods be used to assess illegal fishing and its impacts in other protected areas. PMID:26625154
Fishing-induced life-history changes degrade and destabilize harvested ecosystems
NASA Astrophysics Data System (ADS)
Kuparinen, Anna; Boit, Alice; Valdovinos, Fernanda S.; Lassaux, Hélène; Martinez, Neo D.
2016-02-01
Fishing is widely known to magnify fluctuations in targeted populations. These fluctuations are correlated with population shifts towards young, small, and more quickly maturing individuals. However, the existence and nature of the mechanistic basis for these correlations and their potential ecosystem impacts remain highly uncertain. Here, we elucidate this basis and associated impacts by showing how fishing can increase fluctuations in fishes and their ecosystem, particularly when coupled with decreasing body sizes and advancing maturation characteristic of the life-history changes induced by fishing. More specifically, using an empirically parameterized network model of a well-studied lake ecosystem, we show how fishing may both increase fluctuations in fish abundances and also, when accompanied by decreasing body size of adults, further decrease fish abundance and increase temporal variability of fishes’ food resources and their ecosystem. In contrast, advanced maturation has relatively little effect except to increase variability in juvenile populations. Our findings illustrate how different mechanisms underlying life-history changes that may arise as evolutionary responses to intensive, size-selective fishing can rapidly and continuously destabilize and degrade ecosystems even after fishing has ceased. This research helps better predict how life-history changes may reduce fishes’ resilience to fishing and ecosystems’ resistance to environmental variations.
Mchich, Rachid; Brochier, Timothée; Auger, Pierre; Brehmer, Patrice
2016-12-01
This work presents a mathematical model describing the interactions between the cross-shore structure of small pelagic fish population an their exploitation by coastal and offshore fisheries. The complete model is a system of seven ODE's governing three stocks of small pelagic fish population moving and growing between three zones. Two types of fishing fleets are inter-acting with the fish population, industrial boats, constrained to offshore area, and artisanal boats, operating from the shore. Two time scales were considered and we use aggregation methods that allow us to reduce the dimension of the model and to obtain an aggregated model, which is a four dimension one. The analysis of the aggregated model is performed. We discuss the possible equilibriums and their meaning in terms of fishery management. An interesting equilibrium state can be obtained for which we can expect coexistence and a stable equilibrium state between fish stocks and fishing efforts. Some identification parameters are also given in the discussion part of the model.
2014-04-01
colonization may also limit the potential for intra-island speciation and adaptive radiations (MacArthur and Wilson 1963, Zink et al. 1996, Chubb et...et al. 2012), and nitrogen stable isotope ratios of algae, macroinvertebrates (i.e., gastropods ) and A. stamineus were used as a time-integrated...elevations are a genetic subset of coastal and lower elevation populations due to adaptive differences in climbing ability and predator avoidance
Dynamics of plankton populations in upwelling areas
NASA Technical Reports Server (NTRS)
Szekielda, K. H. (Principal Investigator)
1975-01-01
The author has identified the following significant results. Spectral properties of the upwelled waters off the NW coast of Africa were studied with observations derived from aircraft and Skylab. Results indicate that the two-channel, ratio approach is ineffective in determining surface chlorophyll concentrations. Ocean color boundaries and temperature gradients were found to be directly correlated with each other and also with fishing effort in the upwelling region. Photographic and scanner data derived from Skylab were effective in locating ocean boundaries and mapping temperature distributions.
Management of fish populations in large rivers: a review of tools and approaches
Petts, Geoffrey E.; Imhoff, Jack G.; Manny, Bruce A.; Maher, John F. B.; Weisberg, Stephen B.
1989-01-01
In common with most branches of science, the management of riverine fish populations is characterised by reductionist and isolationist philosophies. Traditional fish management focuses on stocking and controls on fishing. This paper presents a concensus of scientists involved in the LARS workshop on the management of fish populations in large rivers. A move towards a more holistic philosophy is advocated, with fish management forming an integral part of sustainable river development. Based upon a questionnaire survey of LARS members, with wide-ranging expertise and experience from all parts of the world, lists of management tools currently in use are presented. Four categories of tools are described: flow, water-quality, habitat, and biological. The potential applications of tools for fish management in large rivers is discussed and research needs are identified. The lack of scientific evaluations of the different tools remains the major constraint to their wider application.
Nevado, B; Mautner, S; Sturmbauer, C; Verheyen, E
2013-01-01
Understanding how genetic variation is generated and maintained in natural populations, and how this process unfolds in a changing environment, remains a central issue in biological research. In this work, we analysed patterns of genetic diversity from several populations of three cichlid species from Lake Tanganyika in parallel, using the mitochondrial DNA control region. We sampled populations inhabiting the littoral rocky habitats in both very deep and very shallow areas of the lake. We hypothesized that the former would constitute relatively older, more stable and genetically more diverse populations, because they should have been less severely affected by the well-documented episodes of dramatic water-level fluctuations. In agreement with our predictions, populations of all three species sampled in very shallow shorelines showed traces of stronger population growth than populations of the same species inhabiting deep shorelines. However, contrary to our working hypothesis, we found a significant trend towards increased genetic diversity in the younger, demographically less stable populations inhabiting shallow areas, in comparison with the older and more stable populations inhabiting the deep shorelines. We interpret this finding as the result of the establishment of metapopulation dynamics in the former shorelines, by the frequent perturbation and reshuffling of individuals between populations due to the lake-level fluctuations. The repeated succession of periods of allopatric separation and secondary contact is likely to have further increased the rapid pace of speciation in lacustrine cichlids. PMID:23837841
Nevado, B; Mautner, S; Sturmbauer, C; Verheyen, E
2013-08-01
Understanding how genetic variation is generated and maintained in natural populations, and how this process unfolds in a changing environment, remains a central issue in biological research. In this work, we analysed patterns of genetic diversity from several populations of three cichlid species from Lake Tanganyika in parallel, using the mitochondrial DNA control region. We sampled populations inhabiting the littoral rocky habitats in both very deep and very shallow areas of the lake. We hypothesized that the former would constitute relatively older, more stable and genetically more diverse populations, because they should have been less severely affected by the well-documented episodes of dramatic water-level fluctuations. In agreement with our predictions, populations of all three species sampled in very shallow shorelines showed traces of stronger population growth than populations of the same species inhabiting deep shorelines. However, contrary to our working hypothesis, we found a significant trend towards increased genetic diversity in the younger, demographically less stable populations inhabiting shallow areas, in comparison with the older and more stable populations inhabiting the deep shorelines. We interpret this finding as the result of the establishment of metapopulation dynamics in the former shorelines, by the frequent perturbation and reshuffling of individuals between populations due to the lake-level fluctuations. The repeated succession of periods of allopatric separation and secondary contact is likely to have further increased the rapid pace of speciation in lacustrine cichlids. © 2013 John Wiley & Sons Ltd.
Hacon, Sandra S.; Dórea, José G.; Fonseca, Márlon de F.; Oliveira, Beatriz A.; Mourão, Dennys S.; Ruiz, Claudia M. V.; Gonçalves, Rodrigo A.; Mariani, Carolina F.; Bastos, Wanderley R.
2014-01-01
In the Amazon Basin, naturally occurring methylmercury bioaccumulates in fish, which is a key source of protein consumed by riverine populations. The hydroelectric power-plant project at Santo Antônio Falls allows us to compare the Hg exposure of riverine populations sparsely distributed on both sides of the Madeira river before the area is to be flooded. From 2009 to 2011, we concluded a population survey of the area (N = 2,008; representing circa 80% of community residents) that estimated fish consumption and mercury exposure of riverine populations with different degrees of lifestyle related to fish consumption. Fish samples from the Madeira river (N = 1,615) and 110 species were analyzed for Hg. Hair-Hg was significantly lower (p < 0.001) in less isolated communities near to the capital of Porto Velho (median 2.32 ppm) than in subsistence communities in the Cuniã Lake, 180 km from Porto Velho city (median 6.3 ppm). Fish Hg concentrations ranged from 0.01 to 6.06 µg/g, depending on fish size and feeding behavior. Currently available fish in the Madeira river show a wide variability in Hg concentrations. Despite cultural similarities, riparians showed hair-Hg distribution patterns that reflect changes in fish-eating habits driven by subsistence characteristics. PMID:24577285
Current ecological understanding of fungal-like pathogens of fish: what lies beneath?
Gozlan, Rodolphe E.; Marshall, Wyth L.; Lilje, Osu; Jessop, Casey N.; Gleason, Frank H.; Andreou, Demetra
2014-01-01
Despite increasingly sophisticated microbiological techniques, and long after the first discovery of microbes, basic knowledge is still lacking to fully appreciate the ecological importance of microbial parasites in fish. This is likely due to the nature of their habitats as many species of fish suffer from living beneath turbid water away from easy recording. However, fishes represent key ecosystem services for millions of people around the world and the absence of a functional ecological understanding of viruses, prokaryotes, and small eukaryotes in the maintenance of fish populations and of their diversity represents an inherent barrier to aquatic conservation and food security. Among recent emerging infectious diseases responsible for severe population declines in plant and animal taxa, fungal and fungal-like microbes have emerged as significant contributors. Here, we review the current knowledge gaps of fungal and fungal-like parasites and pathogens in fish and put them into an ecological perspective with direct implications for the monitoring of fungal fish pathogens in the wild, their phylogeography as well as their associated ecological impact on fish populations. With increasing fish movement around the world for farming, releases into the wild for sport fishing and human-driven habitat changes, it is expected, along with improved environmental monitoring of fungal and fungal-like infections, that the full extent of the impact of these pathogens on wild fish populations will soon emerge as a major threat to freshwater biodiversity. PMID:24600442
Working with, not against, coral-reef fisheries
NASA Astrophysics Data System (ADS)
Birkeland, Charles
2017-03-01
The fisheries policies of some Pacific island nations are more appropriate to the biology of their resources than are some of the fisheries policies of more industrialized countries. Exclusive local ownership of natural resources in Palau encourages adjustive management on biologically relevant scales of time and space and promotes responsibility by reducing the tragedy of the commons. The presence of large individuals in fish populations and adequate size of spawning aggregations are more efficient and meaningful cues for timely management than are surveys of abundance or biomass. Taking fish from populations more than halfway to their carrying capacity is working favorably with the fishery because removing fish potentially increases resource stability by negative feedback between stock size and population production. Taking the same amount of fish from a population below half its carrying capacity is working against the fishery, making the population unstable, because reducing the reproductive stock potentially accelerates reduction of the population production by positive feedback. Reef fish are consumed locally, while Palauan laws ban the export of reef resources. This is consistent with the high gross primary production with little excess net production from undisturbed coral-reef ecosystems. The relatively rapid growth rates, short life spans, reliable recruitment and wide-ranging movements of open-ocean fishes such as scombrids make them much more productive than coral-reef fishes. The greater fisheries yield per square kilometer in the open ocean multiplied by well over a thousand times the area of the exclusive economic zone than that of Palau's coral reefs should encourage Palauans to keep reef fishes for subsistence and to feed tourists open-ocean fishes. Fisheries having only artisanal means should be encouraged to increase the yield and sustainability by moving away from coral reefs to bulk harvesting of nearshore pelagics.
Vincenzi, Simone; Mangel, Marc; Crivelli, Alain J.; Munch, Stephan; Skaug, Hans J.
2014-01-01
The differences in demographic and life-history processes between organisms living in the same population have important consequences for ecological and evolutionary dynamics. Modern statistical and computational methods allow the investigation of individual and shared (among homogeneous groups) determinants of the observed variation in growth. We use an Empirical Bayes approach to estimate individual and shared variation in somatic growth using a von Bertalanffy growth model with random effects. To illustrate the power and generality of the method, we consider two populations of marble trout Salmo marmoratus living in Slovenian streams, where individually tagged fish have been sampled for more than 15 years. We use year-of-birth cohort, population density during the first year of life, and individual random effects as potential predictors of the von Bertalanffy growth function's parameters k (rate of growth) and (asymptotic size). Our results showed that size ranks were largely maintained throughout marble trout lifetime in both populations. According to the Akaike Information Criterion (AIC), the best models showed different growth patterns for year-of-birth cohorts as well as the existence of substantial individual variation in growth trajectories after accounting for the cohort effect. For both populations, models including density during the first year of life showed that growth tended to decrease with increasing population density early in life. Model validation showed that predictions of individual growth trajectories using the random-effects model were more accurate than predictions based on mean size-at-age of fish. PMID:25211603
NASA Astrophysics Data System (ADS)
Beakes, M.; Satterthwaite, W.; Petrik, C.; Hendrix, N.; Danner, E.; Lindley, S. T.
2016-02-01
In past decades there has been a heavy reliance on the production of hatchery-reared fish to supplement declining population numbers of Pacific salmon. In some cases, the benefits of hatchery supplementation have been negligible despite concerted long-term stocking efforts. The management and conservation of depressed salmon populations, via hatchery practices or otherwise, can be improved by expanding our understanding of the dissimilarities between hatchery and wild salmon and how each interacts with the environment. In this study we use a stage-structured salmon life-cycle model to explore the population consequences of disparate survival and behavior between hatchery and wild-origin fall-run Chinook Salmon (Oncorhynchus tshawytscha) in the California Central Valley. We couple empirically-based statistical functions with deterministic theoretical models to identify how environmental conditions (e.g., water temperature, flow) and habitat drive the survival and abundance of both hatchery and wild salmon as they integrate across riverscapes and cross marine and freshwater ecosystem boundaries during their life cycle. Results from this study suggest that hatchery practices can lead to dissimilar interactions between hatchery and wild salmon and the environmental conditions they experience. As such, the population dynamics of fall-run Chinook Salmon in the California Central Valley are partly dependent on the composition of individuals that make up their populations. In total, this study improves out ability to conserve imperiled salmonids by identifying mechanistic linkages between the natal origin of salmon, survival and behavior, and the environment at spatiotemporal scales relevant to salmon populations and fisheries management.
Mercury levels in largemouth bass (Micropterus salmoides) from regulated and unregulated rivers.
Dharampal, Prarthana S; Findlay, Robert H
2017-03-01
Within areas of comparable atmospheric mercury deposition rates methylmercury burden in largemouth bass populations vary significantly between regulated and unregulated rivers. To investigate if trophic dynamics strongly influenced pollutant body load, we sampled largemouth bass from two adjacent rivers, one regulated and one unregulated, and applied a suite of biochemical and stable isotope assays to compare their trophic dynamics. Total mercury burden in the bass from the unregulated Sipsey River (Elrod, AL, USA) and the regulated Black Warrior River (Demopolis, AL, USA) averaged 0.87 mg kg -1 and 0.19 mg kg -1 wet weight, respectively. For both populations, age, weight, and length were positively correlated with muscle mercury concentration. Compound specific stable isotope analysis of amino acids showed the trophic position of both populations was just under four. Quantitative and isotopic analysis of neutral lipid fatty acid of Sipsey River bass indicated a greater reliance upon the detrital component of the food web compared to Demopolis Reservoir bass which fed within the autochthonous, pelagic component of the food web. Since the close proximity of the rivers makes differences in atmospheric deposition unlikely and both populations had similar trophic position, our findings indicate that food web dynamics should be included among the factors that can strongly influence mercury concentration in fish. Copyright © 2016 Elsevier Ltd. All rights reserved.
Courtney L. Davis,; David A.W. Miller,; Walls, Susan; Barichivich, William J.; Riley, Jeffrey W.; Brown, Mary E.
2017-01-01
Plasticity in life history strategies can be advantageous for species that occupy spatially or temporally variable environments. We examined how phenotypic plasticity influences responses of the mole salamander, Ambystoma talpoideum, to disturbance events at the St. Marks National Wildlife Refuge (SMNWR), FL, USA from 2009 to 2014. We observed periods of extensive drought early in the study, in contrast to high rainfall and expansive flooding events in later years. Flooding facilitated colonization of predatory fishes to isolated wetlands across the refuge. We employed multistate occupancy models to determine how this natural experiment influenced the occurrence of aquatic larvae and paedomorphic adults and what implications this may have for the population. We found that, in terms of occurrence, responses to environmental variation differed between larvae and paedomorphs, but plasticity (i.e. the ability to metamorphose rather than remain in aquatic environment) was not sufficient to buffer populations from declining as a result of environmental perturbations. Drought and fish presence negatively influenced occurrence dynamics of larval and paedomorphic mole salamanders and, consequently, contributed to observed short-term declines of this species. Overall occurrence of larval salamanders decreased from 0.611 in 2009 to 0.075 in 2014 and paedomorph occurrence decreased from 0.311 in 2009 to 0.121 in 2014. Although variation in selection pressures has likely maintained this polyphenism previously, our results suggest that continued changes in environmental variability and the persistence of fish in isolated wetlands could lead to a loss of paedomorphosis in the SMNWR population and, ultimately, impact regional persistence in the future.
Geographical variation in sound production in the anemonefish Amphiprion akallopisos.
Parmentier, E; Lagardère, J P; Vandewalle, P; Fine, M L
2005-08-22
Because of pelagic-larval dispersal, coral-reef fishes are distributed widely with minimal genetic differentiation between populations. Amphiprion akallopisos, a clownfish that uses sound production to defend its anemone territory, has a wide but disjunct distribution in the Indian Ocean. We compared sounds produced by these fishes from populations in Madagascar and Indonesia, a distance of 6500 km. Differentiation of agonistic calls into distinct types indicates a complexity not previously recorded in fishes' acoustic communication. Moreover, various acoustic parameters, including peak frequency, pulse duration, number of peaks per pulse, differed between the two populations. The geographic comparison is the first to demonstrate 'dialects' in a marine fish species, and these differences in sound parameters suggest genetic divergence between these two populations. These results highlight the possible approach for investigating the role of sounds in fish behaviour in reproductive divergence and speciation.
NASA Astrophysics Data System (ADS)
Power, Mary E.; Parker, Gary; Dietrich, William E.; Sun, Adrian
1995-09-01
Hydraulic food chain models allow us to explore the linkages of river discharge regimes and river-floodplain morphology to the structure and dynamics of modeled food webs. Physical conditions (e.g. depth, width, velocity) that vary with river discharge affect the performance (birth, growth, feeding, movement, or death rates) of organisms or trophic groups. Their performances in turn affect their impacts on food webs and ecosystems in channel and floodplain habitats. Here we explore the impact of floodplain width (modeled as 1 ×, 10× and 40× the channel width) on a food web with two energy sources (detritus and vegetation), invertebrates that consume these, a size structured fish population which consumes invertebrates and in which larger fish cannibalize small fish, and birds which feed on large fish. Hydraulic linkages to trophic dynamics are assumed to be mediated in three ways: birds feed efficiently only in shallow water; plant carrying capacity varies non-linearly with water velocity, and mobile and drifting organisms are diluted and concentrated with spillover of river discharge to the floodplain, and its reconfinement to the channel. Aspects of this model are based on field observations of Junk and Bailey from the Amazon, of Sparks from the Mississippi, and on our observations of the Fly River in Papua New Guinea. The model produced several counter-intuitive results. Biomass of invertebrates and fish increased with floodplain width, but much more rapidly from 1 × to 10 × floodplains than from 10 × to 40 × floodplains. For birds, maximum biomass occurred on the 10× floodplain. Initially high bird biomass on the 40 × floodplain declined to extinction over time, because although favorable fishing conditions (shallow water) were most prolonged on the widest floodplain, this advantage was more than offset by the greater dilution of prey after spillover. Bird predation on large fish sometimes increased their biomass, by reducing cannibalism and thereby increasing the abundance of small fish available to grow into the larger size class. Sensitivity analyses indicated that model results were relatively robust to variation in parameter values that we chose, but much more exploration and calibration with field data are needed before we know how specific our results are to the structure and other assumptions of this model. We share with others the opinion that progress towards understanding complex dynamic systems like floodplain river ecosystems requires frequent feedback between modeling and field observations and experimentation. This understanding is crucial for river management and restoration. Organisms in real rivers have adapted to track and quickly exploit favorable conditions, and to avoid or endure adverse conditions. It is when we engineer away this environmental variability that we threaten the long term persistence of river-adapted biota.
Avoidance threshold to oil water-soluble fraction by a juvenile marine teleost fish.
Claireaux, Guy; Quéau, Pierre; Marras, Stefano; Le Floch, Stéphane; Farrell, Anthony P; Nicolas-Kopec, Annabelle; Lemaire, Philippe; Domenici, Paolo
2018-03-01
When oil spills occur, behavior is the first line of defense for a fish to avoid being contaminated. We determined the avoidance threshold of the European seabass (Dicentrarchus labrax) to the water-soluble fraction (WSF) of oil using a dual-flow choice box. The results showed that a plume of 20%-diluted WSF (total polycyclic aromatic hydrocarbon [PAH] concentration: 8.54 μg L -1 ) triggered a significant avoidance response that was detected within 7.5 min of introducing WSF-contaminated water into the experimental setup. However, the ecological relevance of seabass capacity to detect and avoid WSF remains to be established. In the short term, such a response is indeed liable to reduce seabass contact time with oil-contaminated water and thus preserve their functional integrity. In the long term, however, avoidance may contribute to the displacement of a population into a possibly less auspicious environment, with consequences very similar to those of contaminant exposure, that is, disturbed population dynamics and demography. Environ Toxicol Chem 2018;37:854-859. © 2017 SETAC. © 2017 SETAC.
Fluctuations in food supply drive recruitment variation in a marine fish.
Okamoto, Daniel K; Schmitt, Russell J; Holbrook, Sally J; Reed, Daniel C
2012-11-22
Reproductive rates and survival of young in animal populations figure centrally in generating management and conservation strategies. Model systems suggest that food supply can drive these often highly variable properties, yet for many wild species, quantifying such effects and assessing their implications have been challenging. We used spatially explicit time series of a well-studied marine reef fish (black surfperch Embiotoca jacksoni) and its known prey resources to evaluate the extent to which fluctuations in food supply influenced production of young by adults and survival of young to subadulthood. Our analyses reveal: (i) variable food available to both adults and to their offspring directly produced an order of magnitude variation in the number of young-of-year (YOY) produced per adult and (ii) food available to YOY produced a similar magnitude of variation in their subsequent survival. We also show that such large natural variation in vital rates can significantly alter decision thresholds (biological reference points) important for precautionary management. These findings reveal how knowledge of food resources can improve understanding of population dynamics and reduce risk of overharvest by more accurately identifying periods of low recruitment.
Bacon, P J; MacLean, J C; Malcolm, I A; Gurney, W S C
2012-08-01
Ova fecundities of Scottish Atlantic salmon Salmo salar, predicted from log(10) regression of ova numbers and female fork length (L(F)), differed widely between upland and lowland stocks within the same river, whereas sea-age, river and year factors had insignificant effects on fecundity once L(F) was accounted for. For upland fish, the relationship between log(10)L(F) and log(10) ova mass (M(O)) was stable between two datasets collected 40 years apart. Although upland and lowland females both produced comparable log(10)M(O) (log(10)L(F))(-1), lowland females partitioned this into 45% more, but smaller ova, whereas upland females produced fewer, but larger, eggs. The possible causes and implications of this are discussed for evolutionary perspectives (lifetime production), population structure (local tributary v. large catchments; environmental effects), population dynamics and stability (density-dependent control mechanisms) and fisheries management (stock-recruitment; short and long-term stock sustainability). © 2012 Marine Scotland. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.
Allgeier, Jacob E; Layman, Craig A; Mumby, Peter J; Rosemond, Amy D
2014-08-01
Corals thrive in low nutrient environments and the conservation of these globally imperiled ecosystems is largely dependent on mitigating the effects of anthropogenic nutrient enrichment. However, to better understand the implications of anthropogenic nutrients requires a heightened understanding of baseline nutrient dynamics within these ecosystems. Here, we provide a novel perspective on coral reef nutrient dynamics by examining the role of fish communities in the supply and storage of nitrogen (N) and phosphorus (P). We quantified fish-mediated nutrient storage and supply for 144 species and modeled these data onto 172 fish communities (71 729 individual fish), in four types of coral reefs, as well as seagrass and mangrove ecosystems, throughout the Northern Antilles. Fish communities supplied and stored large quantities of nutrients, with rates varying among ecosystem types. The size structure and diversity of the fish communities best predicted N and P supply and storage and N : P supply, suggesting that alterations to fish communities (e.g., overfishing) will have important implications for nutrient dynamics in these systems. The stoichiometric ratio (N : P) for storage in fish mass (~8 : 1) and supply (~20 : 1) was notably consistent across the four coral reef types (but not seagrass or mangrove ecosystems). Published nutrient enrichment studies on corals show that deviations from this N : P supply ratio may be associated with poor coral fitness, providing qualitative support for the hypothesis that corals and their symbionts may be adapted to specific ratios of nutrient supply. Consumer nutrient stoichiometry provides a baseline from which to better understand nutrient dynamics in coral reef and other coastal ecosystems, information that is greatly needed if we are to implement more effective measures to ensure the future health of the world's oceans. © 2014 John Wiley & Sons Ltd.
Role of egg predation by haddock in the decline of an Atlantic herring population
Richardson, David E.; Hare, Jonathan A.; Fogarty, Michael J.; Link, Jason S.
2011-01-01
Theoretical studies suggest that the abrupt and substantial changes in the productivity of some fisheries species may be explained by predation-driven alternate stable states in their population levels. With this hypothesis, an increase in fishing or a natural perturbation can drive a population from an upper to a lower stable-equilibrium population level. After fishing is reduced or the perturbation ended, this low population level can persist due to the regulatory effect of the predator. Although established in theoretical studies, there is limited empirical support for predation-driven alternate stable states in exploited marine fish populations. We present evidence that egg predation by haddock (Melanogrammus aeglefinus) can cause alternate stable population levels in Georges Bank Atlantic herring (Clupea harengus). Egg predation by haddock explains a substantial decoupling of herring spawning stock biomass (an index of egg production) from observed larval herring abundance (an index of egg hatching). Estimated egg survival rates ranged from <2–70% from 1971 to 2005. A population model incorporating egg predation and herring fishing explains the major population trends of Georges Bank herring over four decades and predicts that, when the haddock population is high, seemingly conservative levels of fishing can still precipitate a severe decline in the herring population. These findings illustrate how efforts to rebuild fisheries can be undermined by not incorporating ecological interactions into fisheries models and management plans. PMID:21825166
Jue, Nathaniel K.; Brulé, Thierry; Coleman, Felicia C.; Koenig, Christopher C.
2015-01-01
Describing patterns of connectivity among populations of species with widespread distributions is particularly important in understanding the ecology and evolution of marine species. In this study, we examined patterns of population differentiation, migration, and historical population dynamics using microsatellite and mitochondrial loci to test whether populations of the epinephelid fish, Gag, Mycteroperca microlepis, an important fishery species, are genetically connected across the Gulf of Mexico and if so, whether that connectivity is attributable to either contemporary or historical processes. Populations of Gag on the Campeche Bank and the West Florida Shelf show significant, but low magnitude, differentiation. Time since divergence/expansion estimates associated with historical population dynamics indicate that any population or spatial expansions indicated by population genetics would have likely occurred in the late Pleistocene. Using coalescent-based approaches, we find that the best model for explaining observed spatial patterns of contemporary genetic variation is one of asymmetric gene flow, with movement from Campeche Bank to the West Florida Shelf. Both estimated migration rates and ecological data support the hypothesis that Gag populations throughout the Gulf of Mexico are connected via present day larval dispersal. Demonstrating this greatly expanded scale of connectivity for Gag highlights the influence of “ghost” populations (sensu Beerli) on genetic patterns and presents a critical consideration for both fisheries management and conservation of this and other species with similar genetic patterns. PMID:25856095
Hyperstability masks declines in bumphead parrotfish ( Bolbometopon muricatum) populations
NASA Astrophysics Data System (ADS)
Hamilton, Richard J.; Almany, Glenn R.; Stevens, Don; Bode, Michael; Pita, John; Peterson, Nate A.; Choat, J. Howard
2016-09-01
Bolbometopon muricatum, the largest species of parrotfish, is a functionally important species that is characterised by the formation of aggregations for foraging, reproductive, and sleeping behaviours. Aggregations are restricted to shallow reef habitats, the locations of which are often known to local fishers. Bolbometopon muricatum fisheries are therefore vulnerable to overfishing and are likely to exhibit hyperstability, the maintenance of high catch per unit effort (CPUE) while population abundance declines. In this study, we provide a clear demonstration of hyperstable dynamics in a commercial B. muricatum fishery in Isabel Province, Solomon Islands. Initially, we used participatory mapping to demarcate the Kia fishing grounds into nine zones that had experienced different historic levels of fishing pressure. We then conducted comprehensive underwater visual census (UVC) and CPUE surveys across these zones over a 21-month period in 2012-2013. The individual sites for replicate UVC surveys were selected using a generalised random tessellation stratified variable probability design, while CPUE surveys involved trained provincial fisheries officers and local spearfishers. A comparison of fishery-independent abundance data and fishery-dependent CPUE data indicate extreme hyperstability, with CPUE maintained as B. muricatum abundance declines towards zero. Hyperstability may explain the sudden collapses of many B. muricatum spear fisheries across the Pacific and highlights the limitations of using data-poor fisheries assessment methods to evaluate the status of commercially valuable coral reef fishes that form predicable aggregations.
Gagliano, Monica; McCormick, Mark I; Meekan, Mark G
2007-07-07
For organisms with complex life cycles, variation among individuals in traits associated with survival in one life-history stage can strongly affect the performance in subsequent stages with important repercussions on population dynamics. To identify which individual attributes are the most influential in determining patterns of survival in a cohort of reef fish, we compared the characteristics of Pomacentrus amboinensis surviving early juvenile stages on the reef with those of the cohort from which they originated. Individuals were collected at hatching, the end of the planktonic phase, and two, three, four, six and eight weeks post-settlement. Information stored in the otoliths of individual fish revealed strong carry-over effects of larval condition at hatching on juvenile survival, weeks after settlement (i.e. smaller-is-better). Among the traits examined, planktonic growth history was, by far, the most influential and long-lasting trait associated with juvenile persistence in reef habitats. However, otolith increments suggested that larval growth rate may not be maintained during early juvenile life, when selective mortality swiftly reverses its direction. These changes in selective pressure may mediate growth-mortality trade-offs between predation and starvation risks during early juvenile life. Ontogenetic changes in the shape of selectivity may be a mechanism maintaining phenotypic variation in growth rate and size within a population.
Acoustic telemetry reveals large-scale migration patterns of walleye in Lake Huron
Hayden, Todd A.; Holbrook, Christopher; Fielder, David G.; Vandergoot, Christopher S.; Bergstedt, Roger A.; Dettmers, John M.; Krueger, Charles C.; Cooke, Steven J.
2014-01-01
Fish migration in large freshwater lacustrine systems such as the Laurentian Great Lakes is not well understood. The walleye (Sander vitreus) is an economically and ecologically important native fish species throughout the Great Lakes. In Lake Huron walleye has recently undergone a population expansion as a result of recovery of the primary stock, stemming from changing food web dynamics. During 2011 and 2012, we used acoustic telemetry to document the timing and spatial scale of walleye migration in Lake Huron and Saginaw Bay. Spawning walleye (n = 199) collected from a tributary of Saginaw Bay were implanted with acoustic tags and their migrations were documented using acoustic receivers (n = 140) deployed throughout U.S. nearshore waters of Lake Huron. Three migration pathways were described using multistate mark-recapture models. Models were evaluated using the Akaike Information Criterion. Fish sex did not influence migratory behavior but did affect migration rate and walleye were detected on all acoustic receiver lines. Most (95%) tagged fish migrated downstream from the riverine tagging and release location to Saginaw Bay, and 37% of these fish emigrated from Saginaw Bay into Lake Huron. Remarkably, 8% of walleye that emigrated from Saginaw Bay were detected at the acoustic receiver line located farthest from the release location more than 350 km away. Most (64%) walleye returned to the Saginaw River in 2012, presumably for spawning. Our findings reveal that fish from this stock use virtually the entirety of U.S. nearshore waters of Lake Huron.
Acoustic telemetry reveals large-scale migration patterns of walleye in Lake Huron.
Hayden, Todd A; Holbrook, Christopher M; Fielder, David G; Vandergoot, Christopher S; Bergstedt, Roger A; Dettmers, John M; Krueger, Charles C; Cooke, Steven J
2014-01-01
Fish migration in large freshwater lacustrine systems such as the Laurentian Great Lakes is not well understood. The walleye (Sander vitreus) is an economically and ecologically important native fish species throughout the Great Lakes. In Lake Huron walleye has recently undergone a population expansion as a result of recovery of the primary stock, stemming from changing food web dynamics. During 2011 and 2012, we used acoustic telemetry to document the timing and spatial scale of walleye migration in Lake Huron and Saginaw Bay. Spawning walleye (n = 199) collected from a tributary of Saginaw Bay were implanted with acoustic tags and their migrations were documented using acoustic receivers (n = 140) deployed throughout U.S. nearshore waters of Lake Huron. Three migration pathways were described using multistate mark-recapture models. Models were evaluated using the Akaike Information Criterion. Fish sex did not influence migratory behavior but did affect migration rate and walleye were detected on all acoustic receiver lines. Most (95%) tagged fish migrated downstream from the riverine tagging and release location to Saginaw Bay, and 37% of these fish emigrated from Saginaw Bay into Lake Huron. Remarkably, 8% of walleye that emigrated from Saginaw Bay were detected at the acoustic receiver line located farthest from the release location more than 350 km away. Most (64%) walleye returned to the Saginaw River in 2012, presumably for spawning. Our findings reveal that fish from this stock use virtually the entirety of U.S. nearshore waters of Lake Huron.
Acoustic Telemetry Reveals Large-Scale Migration Patterns of Walleye in Lake Huron
Hayden, Todd A.; Holbrook, Christopher M.; Fielder, David G.; Vandergoot, Christopher S.; Bergstedt, Roger A.; Dettmers, John M.; Krueger, Charles C.; Cooke, Steven J.
2014-01-01
Fish migration in large freshwater lacustrine systems such as the Laurentian Great Lakes is not well understood. The walleye (Sander vitreus) is an economically and ecologically important native fish species throughout the Great Lakes. In Lake Huron walleye has recently undergone a population expansion as a result of recovery of the primary stock, stemming from changing food web dynamics. During 2011 and 2012, we used acoustic telemetry to document the timing and spatial scale of walleye migration in Lake Huron and Saginaw Bay. Spawning walleye (n = 199) collected from a tributary of Saginaw Bay were implanted with acoustic tags and their migrations were documented using acoustic receivers (n = 140) deployed throughout U.S. nearshore waters of Lake Huron. Three migration pathways were described using multistate mark-recapture models. Models were evaluated using the Akaike Information Criterion. Fish sex did not influence migratory behavior but did affect migration rate and walleye were detected on all acoustic receiver lines. Most (95%) tagged fish migrated downstream from the riverine tagging and release location to Saginaw Bay, and 37% of these fish emigrated from Saginaw Bay into Lake Huron. Remarkably, 8% of walleye that emigrated from Saginaw Bay were detected at the acoustic receiver line located farthest from the release location more than 350 km away. Most (64%) walleye returned to the Saginaw River in 2012, presumably for spawning. Our findings reveal that fish from this stock use virtually the entirety of U.S. nearshore waters of Lake Huron. PMID:25506913
Simple phalanx pattern leads to energy saving in cohesive fish schooling
Ashraf, Intesaaf; Bradshaw, Hanaé; Ha, Thanh-Tung; Halloy, José; Thiria, Benjamin
2017-01-01
The question of how individuals in a population organize when living in groups arises for systems as different as a swarm of microorganisms or a flock of seagulls. The different patterns for moving collectively involve a wide spectrum of reasons, such as evading predators or optimizing food prospection. Also, the schooling pattern has often been associated with an advantage in terms of energy consumption. In this study, we use a popular aquarium fish, the red nose tetra fish, Hemigrammus bleheri, which is known to swim in highly cohesive groups, to analyze the schooling dynamics. In our experiments, fish swim in a shallow-water tunnel with controlled velocity, and stereoscopic video recordings are used to track the 3D positions of each individual in a school, as well as their tail-beating kinematics. Challenging the widespread idea of fish favoring a diamond pattern to swim more efficiently [Weihs D (1973) Nature 241:290–291], we observe that when fish are forced to swim fast—well above their free-swimming typical velocity, and hence in a situation where efficient swimming would be favored—the most frequent configuration is the “phalanx” or “soldier” formation, with all individuals swimming side by side. We explain this observation by considering the advantages of tail-beating synchronization between neighbors, which we have also characterized. Most importantly, we show that schooling is advantageous as compared with swimming alone from an energy-efficiency perspective. PMID:28839092
NASA Astrophysics Data System (ADS)
Rose, K.; Creekmore, S.; Thomas, P.; Craig, K.; Neilan, R.; Rahman, S.; Wang, L.; Justic, D.
2016-02-01
The northwestern Gulf of Mexico (USA) currently experiences a large hypoxic area ("dead zone") during the summer. The population-level effects of hypoxia on coastal fish are largely unknown. We developed a spatially-explicit, individual-based model to analyze how hypoxia effects on reproduction, growth, and mortality of individual Atlantic croaker could lead to population-level responses. The model follows the hourly growth, mortality, reproduction, and movement of individuals on a 300 x 800 spatial grid of 1 km2 cells for 140 years. Chlorophyll-a concentration and water temperature were specified daily for each grid cell. Dissolved oxygen (DO) was obtained from a 3-D water quality model for four years that differed in their severity of hypoxia. A bioenergetics model was used to represent growth, mortality was assumed stage- and age-dependent, and movement behavior was based on temperature preferences and avoidance of low DO. Hypoxia effects were imposed using exposure-effects sub-models that converted time-varying exposure to DO to reductions in growth and fecundity, and increases in mortality. Using sequences of mild, intermediate, and severe hypoxia years, the model predicted a 20% decrease in population abundance. Additional simulations were performed under the assumption that river-based nutrients loadings that lead to more hypoxia also lead to higher primary production and more food for croaker. Twenty-five percent and 50% nutrient reduction scenarios were simulated by adjusting the cholorphyll-a concentrations used as food proxy for the croaker. We then incrementally increased the DO concentrations to determine how much hypoxia would need to be reduced to offset the lower food production resulting from reduced nutrients. We discuss the generality of our results, the hidden effects of hypoxia on fish, and our overall strategy of combining laboratory and field studies with modeling to produce robust predictions of population responses to stressors under dynamic and multi-stressor conditions.
Madenjian, Charles P.; Farrell, Anthony P.
2011-01-01
A bioenergetics model for a fish can be defined as a quantitative description of the fish’s energy budget. Bioenergetics modeling can be applied to a fish population in a lake, river, or ocean to estimate the annual consumption of food by the fish population; such applications have proved to be useful in managing fisheries. In addition, bioenergetics models have been used to better understand fish growth and consumption in ecosystems, to determine the importance of the role of fish in cycling nutrients within ecosystems, and to identify the important factors regulating contaminant accumulation in fish from lakes, rivers, and oceans.
NASA Astrophysics Data System (ADS)
Fidler, Robert Young, III
Overfishing and destructive fishing practices threaten the sustainability of fisheries worldwide. In addition to reducing population sizes, anthropogenic fishing effort is highly size-selective, preferentially removing the largest individuals from harvested stocks. Intensive, size-selective mortality induces widespread phenotypic shifts toward the predominance of smaller and earlier-maturing individuals. Fish that reach sexual maturity at smaller size and younger age produce fewer, smaller, and less viable larvae, severely reducing the reproductive capacity of exploited populations. These directional phenotypic alterations, collectively known as "fisheries-induced evolution" (FIE) are among the primary causes of the loss of harvestable fish biomass. Marine protected areas (MPAs) are one of the most widely utilized components of fisheries management programs around the world, and have been proposed as a potential mechanism by which the impacts of FIE may be mitigated. The ability of MPAs to buffer exploited populations against fishing pressure, however, remains debated due to inconsistent results across studies. Additionally, empirical evidence of phenotypic shifts in fishes within MPAs is lacking. This investigation addresses both of these issues by: (1) using a categorical meta-analysis of MPAs to standardize and quantify the magnitude of MPA impacts across studies; and (2) conducting a direct comparison of life-history phenotypes known to be influenced by FIE in six reef-fish species inside and outside of MPAs. The Philippines was used as a model system for analyses due to the country's significance in global marine biodiversity and reliance on MPAs as a fishery management tool. The quantitative impact of Philippine MPAs was assessed using a "reef-wide" meta-analysis. This analysis used pooled visual census data from 39 matched pairs of MPAs and fished reefs surveyed twice over a mean period of 3 years. In 17 of these MPAs, two additional surveys were conducted using size-specific fish counts, allowing for spatiotemporal comparisons of abundance and demographic structure of fish populations across protected and fished areas. Results of the meta-analysis revealed that: (1) although fish density was higher inside MPAs than in fished reefs at each sampling period, reef-wide density often increased or remained stable over time; and (2) increases in large-bodied fish were evident reef-wide between survey periods, indicating that positive demographic shifts occurred simultaneously in both MPAs and adjacent areas. Increases in large-bodied fish were observed across a range of taxa, but were most prominent in families directly targeted by fishermen. These results suggest that over relatively few years of protection, Philippine MPAs promoted beneficial shifts in population structure throughout entire reef systems, rather than simply maintaining stable populations within their borders. Relationships between MPA age and shifts in fish density or demographic structure were rare, but may have been precluded by the relatively short period between replicate surveys. Although increases in fish density inside MPAs were occasionally associated with MPA size, there were no significant relationships between the size of MPAs and reef-wide increases in fish density. The reef-wide framework of MPA assessment used in this study has the advantage of treating MPAs and fished reefs as an integrated system, thus revealing trends that would be indistinguishable in traditional spatial comparisons between MPAs and fished reefs. The impact of MPAs on fishing-induced life-history traits was assessed by comparing growth and maturation patterns exhibited by six reef-fish species inside and outside five MPAs and adjacent, fished reefs in Zambales, Luzon, Philippines. This analysis demonstrated considerable variation in terminal body-sizes (Linf) and growth rates (K) between conspecifics in MPAs and fished reefs. Three of the four experimental species directly targeted for food in the region (Acanthurus nigrofuscus, Ctenochaetus striatus, and Parupeneus multifasciatus) exhibited greater Linf, lower K, or both characteristics inside at least one MPA compared to populations in adjacent, fished reefs. Life-history shifts were concentrated in the oldest and largest MPAs, but occurred at least once in each of the five MPAs that were examined. A fourth species harvested for food (Ctenochaetus binotatus), as well as a species targeted for the aquarium trade (Zebrasoma scopas) and a non-target species (Plectroglyphidodon lacrymatus) did not exhibit differential phenotypes between MPAs and fished reefs. The relatively high frequency of alterations to life-history characteristics across MPAs in harvested species suggests that observed changes in the density and size-structure of harvested fish populations inside MPAs are likely driven by spatial disparities in fishing pressure, and are the result of phenotypic changes rather than increased longevity.
Study on polychlorobiphenyl serum levels in French consumers of freshwater fish.
Desvignes, Virginie; Volatier, Jean-Luc; de Bels, Frédéric; Zeghnoun, Abdelkrim; Favrot, Marie-Christine; Marchand, Philippe; Le Bizec, Bruno; Rivière, Gilles; Leblanc, Jean-Charles; Merlo, Mathilde
2015-02-01
Polychlorobiphenyls (PCBs) are persistent pollutants that are widespread in the environment and in foodstuffs, particularly in freshwater fish, which frequently exceed the maximum levels set by European regulations. First, we describe the consumption of freshwater fish and serum PCB levels in French anglers, a population expected to have the highest level of dietary PCB exposure. Second, we investigated whether there is a statistical relationship between serum PCB levels and the angler consumption of freshwater fish with high PCB bioaccumulation potential (PCB-BP(+) freshwater fish) in order to make recommendations with regard to safe consumption of freshwater fish. We conducted a survey of anglers from six sites with contrasting PCB contamination levels. The survey included a food consumption frequency questionnaire and blood samples were taken to assess serum PCB levels. We used a regression model to determine the main factors contributing to serum PCB levels. Consumption of PCB-BP(+) freshwater fish was relatively infrequent. Serum PCB levels of the study population and of women of childbearing age were in the same range as those observed in the French population and in neighbouring European countries, but higher than in the North American population. The two factors with the highest positive association with serum PCB levels were age (R(2)=61%) and the consumption of PCB-BP(+) freshwater fish (R(2)=2%). Using the regression model, we calculated, for several scenarios depending on the age and gender of the population, the maximum annual frequencies for PCB-BP(+) freshwater fish consumption that do not exceed the critical body burden threshold. Following the results of this study, the French agency for food, environmental and occupational health and safety (ANSES) issued an opinion and recommended some specific maximum freshwater fish consumption frequencies to protect the French general population. Copyright © 2014 Elsevier B.V. All rights reserved.
Norin, Tommy; Malte, Hans; Clark, Timothy D
2014-01-15
Climate warming is predicted to negatively impact fish populations through impairment of oxygen transport systems when temperatures exceed those which are optimal for aerobic scope (AS). This concept of oxygen- and capacity-limited thermal tolerance (OCLTT) is rapidly gaining popularity within climate change research and has been applied to several fish species. Here, we evaluated the relevance of aerobic performance of juvenile barramundi (Lates calcarifer) in the context of thermal preference and tolerance by (1) measuring standard and maximum metabolic rates (SMR and MMR, respectively) and AS of fish acclimated to 29°C and acutely exposed to temperatures from 23 to 38°C, (2) allowing the fish to behaviourally select a preferred temperature between 29 and 38°C, and (3) quantifying alterations to AS after 5 weeks of acclimation to 29 and 38°C. SMR and MMR both increased continuously with temperature in acutely exposed fish, but the increase was greater for MMR such that AS was highest at 38°C, a temperature approaching the upper lethal limit (40-41°C). Despite 38°C eliciting maximum AS, when given the opportunity the fish selected a median temperature of 31.7 ± 0.5°C and spent only 10 ± 3% of their time at temperatures >36°C. Following acclimation to 38°C, AS measured at 38°C was decreased to the same level as 29°C-acclimated fish measured at 29°C, suggesting that AS may be dynamically modulated independent of temperature to accommodate the requirements of daily life. Together, these results reveal limited power of the OCLTT hypothesis in predicting optimal temperatures and effects of climate warming on juvenile barramundi.
Green, Derek J; Duffy, Mark; Janz, David M; McCullum, Kevin; Carrière, Gary; Jardine, Timothy D
2016-08-01
Mercury (Hg) contamination can pose risks to human and animal health as well as commercial fisheries. Reservoir construction in riverine systems produces flooded conditions amenable to Hg(II)-methylating bacteria, which can transform this relatively benign environmental contaminant into the bioaccumulative, environmentally relevant, and neurotoxic methyl-Hg (MeHg). Hg concentrations ([Hg]) in fishes from reservoirs can take decades to decrease to pre-dam levels, but less is known about Hg exported downstream and its dynamics within downstream fish populations. We examined and compared the multidecadal rates of biotic [Hg] decrease and contemporary factors affecting [Hg] in fish collected from a hydroelectric reservoir (Tobin Lake) and a related downstream fishery (Cumberland Lake) along the Saskatchewan River, Canada. Rates of [Hg] decrease were considered in four species-northern pike (Esox lucius), sauger (Sander canadensis), goldeye (Hiodon alosoides), and walleye (S. vitreus)-all of which showed a significant decrease over time (p < 0.001) and are now lower than Health Canada consumption guidelines (0.5 μg/g). Rates of decrease ranged from 0.5 to 3.9 %/year and were similar between sites in the cases of northern pike and sauger. Contemporary factors affecting [Hg] in walleye collected downstream include fish length (p < 0.001), fish age (p < 0.001), and trophic magnification through the food web (p < 0.001), and relationships between [Hg] and trophic level in predatory and prey fish are now similar to those found in non-Hg-inundated systems at a similar latitude. Together, these results suggest connected contamination between the two sites and delineate the timeline during which [Hg] in a variety of fish species decreased to nontoxic levels in both locations.
Disease Spread and Its Effect on Population Dynamics in Heterogeneous Environment
NASA Astrophysics Data System (ADS)
Upadhyay, Ranjit Kumar; Roy, Parimita
In this paper, an eco-epidemiological model in which both species diffuse along a spatial gradient has been shown to exhibit temporal chaos at a fixed point in space. The proposed model is a modification of the model recently presented by Upadhyay and Roy [2014]. The spatial interactions among the species have been represented in the form of reaction-diffusion equations. The model incorporates the intrinsic growth rate of fish population which varies linearly with the depth of water. Numerical results show that diffusion can drive otherwise stable system into aperiodic behavior with sensitivity to initial conditions. We show that spatially induced chaos plays an important role in spatial pattern formation in heterogeneous environment. Spatiotemporal distributions of species have been simulated using the diffusivity assumptions realistic for natural eco-epidemic systems. We found that in heterogeneous environment, the temporal dynamics of both the species are drastically different and show chaotic behavior. It was also found that the instability observed in the model is due to spatial heterogeneity and diffusion-driven. Cumulative death rate of predator has an appreciable effect on model dynamics as the spatial distribution of all constituent populations exhibit significant changes when this model parameter is changed and it acts as a regularizing factor.
DuFour, Mark R.; May, Cassandra J.; Roseman, Edward F.; Ludsin, Stuart A.; Vandergoot, Christopher S.; Pritt, Jeremy J.; Fraker, Michael E.; Davis, Jeremiah J.; Tyson, Jeffery T.; Miner, Jeffery G.; Marschall, Elizabeth A.; Mayer, Christine M.
2015-01-01
Habitat degradation and harvest have upset the natural buffering mechanism (i.e., portfolio effects) of many large-scale multi-stock fisheries by reducing spawning stock diversity that is vital for generating population stability and resilience. The application of portfolio theory offers a means to guide management activities by quantifying the importance of multi-stock dynamics and suggesting conservation and restoration strategies to improve naturally occurring portfolio effects. Our application of portfolio theory to Lake Erie Sander vitreus (walleye), a large population that is supported by riverine and open-lake reef spawning stocks, has shown that portfolio effects generated by annual inter-stock larval fish production are currently suboptimal when compared to potential buffering capacity. Reduced production from riverine stocks has resulted in a single open-lake reef stock dominating larval production, and in turn, high inter-annual recruitment variability during recent years. Our analyses have shown (1) a weak average correlation between annual river and reef larval production (ρ̄ = 0.24), suggesting that a natural buffering capacity exists in the population, and (2) expanded annual production of larvae (potential recruits) from riverine stocks could stabilize the fishery by dampening inter-annual recruitment variation. Ultimately, our results demonstrate how portfolio theory can be used to quantify the importance of spawning stock diversity and guide management on ecologically relevant scales (i.e., spawning stocks) leading to greater stability and resilience of multi-stock populations and fisheries.
Fish robotics and hydrodynamics
NASA Astrophysics Data System (ADS)
Lauder, George
2010-11-01
Studying the fluid dynamics of locomotion in freely-swimming fishes is challenging due to difficulties in controlling fish behavior. To provide better control over fish-like propulsive systems we have constructed a variety of fish-like robotic test platforms that range from highly biomimetic models of fins, to simple physical models of body movements during aquatic locomotion. First, we have constructed a series of biorobotic models of fish pectoral fins with 5 fin rays that allow detailed study of fin motion, forces, and fluid dynamics associated with fin-based locomotion. We find that by tuning fin ray stiffness and the imposed motion program we can produce thrust both on the fin outstroke and instroke. Second, we are using a robotic flapping foil system to study the self-propulsion of flexible plastic foils of varying stiffness, length, and trailing edge shape as a means of investigating the fluid dynamic effect of simple changes in the properties of undulating bodies moving through water. We find unexpected non-linear stiffness-dependent effects of changing foil length on self-propelled speed, and as well as significant effects of trailing edge shape on foil swimming speed.
Neotropical fish-fruit interactions: eco-evolutionary dynamics and conservation.
Correa, Sandra Bibiana; Costa-Pereira, Raul; Fleming, Theodore; Goulding, Michael; Anderson, Jill T
2015-11-01
Frugivorous fish play a prominent role in seed dispersal and reproductive dynamics of plant communities in riparian and floodplain habitats of tropical regions worldwide. In Neotropical wetlands, many plant species have fleshy fruits and synchronize their fruiting with the flood season, when fruit-eating fish forage in forest and savannahs for periods of up to 7 months. We conducted a comprehensive analysis to examine the evolutionary origin of fish-fruit interactions, describe fruit traits associated with seed dispersal and seed predation, and assess the influence of fish size on the effectiveness of seed dispersal by fish (ichthyochory). To date, 62 studies have documented 566 species of fruits and seeds from 82 plant families in the diets of 69 Neotropical fish species. Fish interactions with flowering plants are likely to be as old as 70 million years in the Neotropics, pre-dating most modern bird-fruit and mammal-fruit interactions, and contributing to long-distance seed dispersal and possibly the radiation of early angiosperms. Ichthyochory occurs across the angiosperm phylogeny, and is more frequent among advanced eudicots. Numerous fish species are capable of dispersing small seeds, but only a limited number of species can disperse large seeds. The size of dispersed seeds and the probability of seed dispersal both increase with fish size. Large-bodied species are the most effective seed dispersal agents and remain the primary target of fishing activities in the Neotropics. Thus, conservation efforts should focus on these species to ensure continuity of plant recruitment dynamics and maintenance of plant diversity in riparian and floodplain ecosystems. © 2015 Cambridge Philosophical Society.
Modelling the effects of stranding on the Atlantic salmon population in the Dale River, Norway.
Sauterleute, Julian F; Hedger, Richard D; Hauer, Christoph; Pulg, Ulrich; Skoglund, Helge; Sundt-Hansen, Line E; Bakken, Tor Haakon; Ugedal, Ola
2016-12-15
Rapid dewatering in rivers as a consequence of hydropower operations may cause stranding of juvenile fish and have a negative impact on fish populations. We implemented stranding into an Atlantic salmon population model in order to evaluate long-term effects on the population in the Dale River, Western Norway. Furthermore, we assessed the sensitivity of the stranding model to dewatered area in comparison to biological parameters, and compared different methods for calculating wetted area, the main abiotic input parameter to the population model. Five scenarios were simulated dependent on fish life-stage, season and light level. Our simulation results showed largest negative effect on the population abundance for hydropeaking during winter daylight. Salmon smolt production had highest sensitivity to the stranding mortality of older juvenile fish, suggesting that stranding of fish at these life-stages is likely to have greater population impacts than that of earlier life-stages. Downstream retention effects on the ramping velocity were found to be negligible in the stranding model, but are suggested to be important in the context of mitigation measure design. Copyright © 2016 Elsevier B.V. All rights reserved.
Changes in the fish fauna of the Kissimmee River basin, peninsular Florida: Nonnative additions
Nico, L.G.
2005-01-01
Recent decades have seen substantial changes in fish assemblages in rivers of peninsular Florida. The most striking change has involved the addition of nonnative fishes, including taxa from Asia, Africa, and Central and South America. I review recent and historical records of fishes occurring in the Kissimmee River basin (7,800 km2), a low-gradient drainage with 47 extant native fishes (one possibly the result of an early transplant), at least 7 foreign fishes (most of which are widely established), and a stocked hybrid. Kissimmee assemblages include fewer marine fishes than the nearby Peace and Caloosahatchee rivers, and fewer introduced foreign fishes than south Florida canals. Fish assemblages of the Kissimmee and other subtropical Florida rivers are dynamic, due to new introductions, range expansions of nonnative fishes already present, and periodic declines in nonnative fish populations during occasional harsh winters. The addition, dispersal, and abundance of nonnative fishes in the basin is linked to many factors, including habitat disturbance, a subtropical climate, and the fact that the basin is centrally located in a region where drainage boundaries are blurred and introductions of foreign fishes commonplace. The first appearance of foreign fishes in the basin coincided with the complete channelization of the Kissimmee River in the 1970s. Although not a causal factor, artificial waterways connecting the upper lakes and channelization of the Kissimmee River have facilitated dispersal. With one possible exception, there have been no basin-wide losses of native fishes. When assessing change in peninsular Florida waters, extinction or extirpation of fishes appears to be a poor measure of impact. No endemic species are known from peninsular Florida (although some endemic subspecies have been noted). Most native freshwater fishes are themselves descended from recent invaders that reached the peninsula from the main continent. These invasions likely were associated with major fluctuations in sea level since the original mid-Oligocene emergence of the Florida Platform. As opportunistic invaders, most native freshwater fishes in peninsular Florida are resilient, widespread, and common. At this early stage, it is not possible to predict the long-term consequences caused by the introduction of foreign fishes. We know a few details about the unusual trophic roles and other aspects of the life histories of certain nonnatives. Still, the ecological outcome may take decades to unfold.
An inverse problem for a mathematical model of aquaponic agriculture
NASA Astrophysics Data System (ADS)
Bobak, Carly; Kunze, Herb
2017-01-01
Aquaponic agriculture is a sustainable ecosystem that relies on a symbiotic relationship between fish and macrophytes. While the practice has been growing in popularity, relatively little mathematical models exist which aim to study the system processes. In this paper, we present a system of ODEs which aims to mathematically model the population and concetrations dynamics present in an aquaponic environment. Values of the parameters in the system are estimated from the literature so that simulated results can be presented to illustrate the nature of the solutions to the system. As well, a brief sensitivity analysis is performed in order to identify redundant parameters and highlight those which may need more reliable estimates. Specifically, an inverse problem with manufactured data for fish and plants is presented to demonstrate the ability of the collage theorem to recover parameter estimates.
Dugarov, Zh N; Pronin, N M
2013-01-01
Parasite communities of Arctic cisco from Chivyrkui Bay of Lake Baikal have been analyzed at levels of a host individual (infracommunity), a individual age group of a host-(assemblages of infracommunities), and a host population (component community). Significant positive correlations of parameters of species richness (number of parasite species, Margalef and Menhinick indices) with the age of Arctic cisco were recorded only at the level of parasite inffacommunities. The absence of linear positive correlations between the parameters of species richness and the age of Arctic cisco at the level of assemblages of parasite infracommunities were revealed for the first time for fish of Lake Baikal. The peculiarity of the dynamics of parasite communities of. Arctic cisco is determined by specific features of the host physiology and ecology, primarily by the age dynamics of the feeding spectrum.
NASA Astrophysics Data System (ADS)
Alunno-Bruscia, Marianne; van der Veer, Henk W.; Kooijman, Sebastiaan A. L. M.
2009-08-01
The European Research Project AquaDEB (2007-2011, http://www.ifremer.fr/aquadeb/) is joining skills and expertise of some French and Dutch research institutes and universities to analyse the physiological flexibility of aquatic organisms and to link it to ecological and evolutionary processes within a common theoretical framework for quantitative bioenergetics [Kooijman, S.A.L.M., 2000. Dynamic energy and mass budgets in biological systems. Cambridge University Press, Cambridge]. The main scientific objectives in AquaDEB are i) to study and compare the sensitivity of aquatic species (mainly molluscs and fish) to environmental variability of natural or human origin, and ii) to evaluate the related consequences at different biological levels (individual, population, ecosystem) and temporal scales (life cycle, population dynamics, evolution). At mid-term life, the AquaDEB collaboration has already yielded interesting results by quantifying bio-energetic processes of various aquatic species (e.g. molluscs, fish, crustaceans, algae) with a single mathematical framework. It has also allowed to federate scientists with different backgrounds, e.g. mathematics, microbiology, ecology, chemistry, and working in different fields, e.g. aquaculture, fisheries, ecology, agronomy, ecotoxicology, climate change. For the two coming years, the focus of the AquaDEB collaboration will be in priority: (i) to compare energetic and physiological strategies among species through the DEB parameter values and to identify the factors responsible for any differences in bioenergetics and physiology; and to compare dynamic (DEB) versus static (SEB) energy models to study the physiological performance of aquatic species; (ii) to consider different scenarios of environmental disruption (excess of nutrients, diffuse or massive pollution, exploitation by man, climate change) to forecast effects on growth, reproduction and survival of key species; (iii) to scale up the models for a few species from the individual level up to the level of evolutionary processes.
Fluid dynamics of moving fish in a two-dimensional multiparticle collision dynamics model
NASA Astrophysics Data System (ADS)
Reid, Daniel A. P.; Hildenbrandt, H.; Padding, J. T.; Hemelrijk, C. K.
2012-02-01
The fluid dynamics of animal locomotion, such as that of an undulating fish, are of great interest to both biologists and engineers. However, experimentally studying these fluid dynamics is difficult and time consuming. Model studies can be of great help because of their simpler and more detailed analysis. Their insights may guide empirical work. Particularly the recently introduced multiparticle collision dynamics method may be suitable for the study of moving organisms because it is computationally fast, simple to implement, and has a continuous representation of space. As regards the study of hydrodynamics of moving organisms, the method has only been applied at low Reynolds numbers (below 120) for soft, permeable bodies, and static fishlike shapes. In the present paper we use it to study the hydrodynamics of an undulating fish at Reynolds numbers 1100-1500, after confirming its performance for a moving insect wing at Reynolds number 75. We measure (1) drag, thrust, and lift forces, (2) swimming efficiency and spatial structure of the wake, and (3) distribution of forces along the fish body. We confirm the resemblance between the simulated undulating fish and empirical data. In contrast to theoretical predictions, our model shows that for steadily undulating fish, thrust is produced by the rear 2/3 of the body and that the slip ratio U/V (with U the forward swimming speed and V the rearward speed of the body wave) correlates negatively (instead of positively) with the actual Froude efficiency of swimming. Besides, we show that the common practice of modeling individuals while constraining their sideways acceleration causes them to resemble unconstrained fish with a higher tailbeat frequency.
NASA Technical Reports Server (NTRS)
1975-01-01
The potential application of SEASAT data with regard to ocean fisheries is discussed. Tracking fish populations, indirect assistance in forecasting expected populations and assistance to fishing fleets in avoiding costs incurred due to adverse weather through improved ocean conditions forecasts were investigated. Case studies on fisheries in the United States and Canada are cited.
Lake Michigan: Man's effects on native fish stocks and other biota
Wells, LaRue; McLain, Alberton L.
1973-01-01
Exploitation was largely responsible for the changes in Lake Michigan fish stocks before the invasion of the smelt, and probably before the invasion of the sea lamprey. The lamprey and alewife, however, have exerted a greater impact than the fishery on native fish populations in recent decades. Accelerated eutrophication and other pollution, although important, have not equalled the other factors in causing changes in native fish populations.
Geographical variation in sound production in the anemonefish Amphiprion akallopisos
Parmentier, E; Lagardère, J.P; Vandewalle, P; Fine, M.L
2005-01-01
Because of pelagic-larval dispersal, coral-reef fishes are distributed widely with minimal genetic differentiation between populations. Amphiprion akallopisos, a clownfish that uses sound production to defend its anemone territory, has a wide but disjunct distribution in the Indian Ocean. We compared sounds produced by these fishes from populations in Madagascar and Indonesia, a distance of 6500 km. Differentiation of agonistic calls into distinct types indicates a complexity not previously recorded in fishes' acoustic communication. Moreover, various acoustic parameters, including peak frequency, pulse duration, number of peaks per pulse, differed between the two populations. The geographic comparison is the first to demonstrate ‘dialects’ in a marine fish species, and these differences in sound parameters suggest genetic divergence between these two populations. These results highlight the possible approach for investigating the role of sounds in fish behaviour in reproductive divergence and speciation. PMID:16087425
A major challenge of evaluating restoration progress is establishing a cause-effect relationship between observed changes in fish abundance and ongoing aquatic habitat restoration. Since 1979, fish populations within the St. Louis River Area of Concern, which were severely degrad...
Yakubu, Abdul-Aziz; Li, Nianpeng; Conrad, Jon M; Zeeman, Mary-Lou
2011-07-01
Overfishing, pollution and other environmental factors have greatly reduced commercially valuable stocks of fish. In a 2006 Science article, a group of ecologists and economists warned that the world may run out of seafood from natural stocks if overfishing continues at current rates. In this paper, we explore the interaction between a constant proportion harvest policy and recruitment dynamics. We examine the discrete-time constant proportion harvest policy discussed in Ang et al. (2009) and then expand the framework to include stock-recruitment functions that are compensatory and overcompensatory, both with and without the Allee effect. We focus on constant proportion policies (CPPs). CPPs have the potential to stabilize complex overcompensatory stock dynamics, with or without the Allee effect, provided the rates of harvest stay below a threshold. If that threshold is exceeded, CPPs are known to result in the sudden collapse of a fish stock when stock recruitment exhibits the Allee effect. In case studies, we analyze CPPs as they might be applied to Gulf of Alaska Pacific halibut fishery and the Georges Bank Atlantic cod fishery based on harvest rates from 1975 to 2007. The best fit models suggest that, under high fishing mortalities, the halibut fishery is vulnerable to sudden population collapse while the cod fishery is vulnerable to steady decline to zero. The models also suggest that CPP with mean harvesting levels from the last 30 years can be effective at preventing collapse in the halibut fishery, but these same policies would lead to steady decline to zero in the Atlantic cod fishery. We observe that the likelihood of collapse in both fisheries increases with increased stochasticity (for example, weather variability) as predicted by models of global climate change. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wibawa, Teja A.; Lehodey, Patrick; Senina, Inna
2017-02-01
Geo-referenced catch and fishing effort data of the bigeye tuna fisheries in the Indian Ocean over 1952-2014 were analyzed and standardized to facilitate population dynamics modeling studies. During this 62-year historical period of exploitation, many changes occurred both in the fishing techniques and the monitoring of activity. This study includes a series of processing steps used for standardization of spatial resolution, conversion and standardization of catch and effort units, raising of geo-referenced catch into nominal catch level, screening and correction of outliers, and detection of major catchability changes over long time series of fishing data, i.e., the Japanese longline fleet operating in the tropical Indian Ocean. A total of 30 fisheries were finally determined from longline, purse seine and other-gears data sets, from which 10 longline and 4 purse seine fisheries represented 96 % of the whole historical geo-referenced catch. Nevertheless, one-third of total nominal catch is still not included due to a total lack of geo-referenced information and would need to be processed separately, accordingly to the requirements of the study. The geo-referenced records of catch, fishing effort and associated length frequency samples of all fisheries are available at doi:10.1594/PANGAEA.864154.
Brüning, Anika; Kloas, Werner; Preuer, Torsten; Hölker, Franz
2018-01-01
Abstract Almost all life on earth has adapted to natural cycles of light and dark by evolving circadian and circannual rhythms to synchronize behavioural and physiological processes with the environment. Artificial light at night (ALAN) is suspected to interfere with these rhythms. In this study we examined the influence of ALAN on nocturnal melatonin and sex steroid blood concentrations and mRNA expression of gonadotropins in the pituitary of European perch (Perca fluviatilis) and roach (Rutilus rutilus). In a rural experimental setting, fish were held in net cages in drainage channels experiencing either additional ALAN of ~15 lx at the water surface or natural light conditions at half-moon. No differences in melatonin concentrations between ALAN and natural conditions were detected. However, blood concentration of sex steroids (17β-estradiol; 11-ketotestosterone) as well as mRNA expression of gonadotropins (luteinizing hormone, follicle stimulating hormone) was reduced in both fish species. We conclude that ALAN can disturb biological rhythms in fish in urban waters. However, impacts on melatonin rhythm might have been blurred by individual differences, sampling methods and moonlight. The effect of ALAN on biomarkers of reproduction suggests a photo-labile period around the onset of gonadogenesis, including the experimental period (August). Light pollution therefore has a great potential to influence crucial life history traits with unpredictable outcome for fish population dynamics. PMID:29686874
Brüning, Anika; Kloas, Werner; Preuer, Torsten; Hölker, Franz
2018-01-01
Almost all life on earth has adapted to natural cycles of light and dark by evolving circadian and circannual rhythms to synchronize behavioural and physiological processes with the environment. Artificial light at night (ALAN) is suspected to interfere with these rhythms. In this study we examined the influence of ALAN on nocturnal melatonin and sex steroid blood concentrations and mRNA expression of gonadotropins in the pituitary of European perch ( Perca fluviatilis ) and roach ( Rutilus rutilus ). In a rural experimental setting, fish were held in net cages in drainage channels experiencing either additional ALAN of ~15 lx at the water surface or natural light conditions at half-moon. No differences in melatonin concentrations between ALAN and natural conditions were detected. However, blood concentration of sex steroids (17β-estradiol; 11-ketotestosterone) as well as mRNA expression of gonadotropins (luteinizing hormone, follicle stimulating hormone) was reduced in both fish species. We conclude that ALAN can disturb biological rhythms in fish in urban waters. However, impacts on melatonin rhythm might have been blurred by individual differences, sampling methods and moonlight. The effect of ALAN on biomarkers of reproduction suggests a photo-labile period around the onset of gonadogenesis, including the experimental period (August). Light pollution therefore has a great potential to influence crucial life history traits with unpredictable outcome for fish population dynamics.
Fish abundance and population stability in a reservoir tailwater and an unregulated headwater stream
Jacobs, K.E.; Swink, W.D.
1983-01-01
Fish abundance and population stability were compared in the tailwater and in an unregulated tributary of Barren River Lake, a flood control reservoir in south central Kentucky. Fish abundance was greater in the tailwater near the dam and was dominated by three species common in the reservoir: gizzard shad (Dorosoma cepedianum), bluegills (Lepomis macrochirus), and white crappies (Pomoxis annularis). Three riverine suckers were less abundant in the tailwater than in the unregulated stream: northern hog suckers (Hypentelium nigricans), black redhorse (Moxostoma duquesnei), and golden redhorse (Moxostoma erythrurum). The fish populations in the tailwater, particularly common carp (Cyprinus carpio), northern hog suckers, black redhorse, and golden redhorse, were less stable than those in the unregulated stream. Population stability is defined as the extent to which fish remain in a stream section. This study suggests that the occurrence of reservoir species in the tailwater was the result of fish passage from the reservoir during high discharges in fall and winter. Reservoir operations (altered flow, low summer water temperature, and poor summer water quality) probably were responsible for the unstable populations of common carp and riverine suckers in the tailwater.
Metcalfe, J. D.; Le Quesne, W. J. F.; Cheung, W. W. L.; Righton, D. A.
2012-01-01
Physiological studies focus on the responses of cells, tissues and individuals to stressors, usually in laboratory situations. Conservation and management, on the other hand, focus on populations. The field of conservation physiology addresses the question of how abiotic drivers of physiological responses at the level of the individual alter requirements for successful conservation and management of populations. To achieve this, impacts of physiological effects at the individual level need to be scaled to impacts on population dynamics, which requires consideration of ecology. Successfully realizing the potential of conservation physiology requires interdisciplinary studies incorporating physiology and ecology, and requires that a constructive dialogue develops between these traditionally disparate fields. To encourage this dialogue, we consider the increasingly explicit incorporation of physiology into ecological models applied to marine fish conservation and management. Conservation physiology is further challenged as the physiology of an individual revealed under laboratory conditions is unlikely to reflect realized responses to the complex variable stressors to which it is exposed in the wild. Telemetry technology offers the capability to record an animal's behaviour while simultaneously recording environmental variables to which it is exposed. We consider how the emerging insights from telemetry can strengthen the incorporation of physiology into ecology. PMID:22566680
Mass-Dependent and -Independent Fractionation of Mercury Isotopes in Aquatic Systems
NASA Astrophysics Data System (ADS)
Bergquist, B. A.; Joel, B. D.; Jude, D. J.
2008-12-01
Mercury is a globally distributed and highly toxic pollutant. Although Hg is a proven health risk, much of the natural cycle of Hg is not well understood and new approaches are needed to track Hg and the chemical transformations it undergoes in the environment. Recently, we demonstrated that Hg isotopes exhibit two types of isotope fractionation: (1) mass dependent fractionation (MDF) and (2) mass independent fractionation (MIF) of only the odd isotopes (Bergquist and Blum, 2007). The observation of large MIF of Hg isotopes (up to 5 permil) is exciting because only a few other isotopic systems have been documented to display large MIF, the most notable of which are oxygen and sulfur. In both cases, the application of MIF has proven very useful in a variety of fields including cosmochemistry, paleoclimatology, physical chemistry, atmospheric chemistry, and biogeochemistry. Both MDF and MIF isotopic signatures are observed in natural samples, and together they open the door to a new method for tracing Hg pollution and for investigating Hg behavior in the environment. For example, fish record MDF that appears to be related to size and age. Additionally, fish display MIF signatures that are consistent with the photo-reduction of methylmercury (Bergquist and Blum, 2007). If the MDF and MIF in ecosystems can be understood, the signatures in fish could inform us about the sources and processes transforming Hg and why there are differences in the bioaccumulation of Hg in differing ecosystems and populations of fish. This requires sampling of a variety of ecosystems, the sampling of many components of the ecosystems, and the use of other tracers such as carbon and nitrogen isotopes. We have expanded our studies of aquatic ecosystems to include several lakes in North America. Similar to other isotopic systems used to study food web dynamics and structure (i.e., C and N), the MDF of Hg in fish appears to be related to size and age. The MDF recorded in fish likely reflects both the sources of Hg to the fish and the excretion of Hg by the fish. Thus, MDF alone provides new insights into sources and bioaccumulation of Hg in food web. Fish populations from different lakes display distinct MIF and relationships between MDF and MIF. The degree of MIF is likely related to the amount of photo-reduction in a lake and dissolved organic carbon. We also sampled food sources and livers of fish to understand processes of isotopic fractionation in the food web.
Personalities influence spatial responses to environmental fluctuations in wild fish.
Villegas-Ríos, David; Réale, Denis; Freitas, Carla; Moland, Even; Olsen, Esben M
2018-06-11
1.Although growing evidence supports the idea that animal personality can explain plasticity in response to changes in the social environment, it remains to be tested whether it can explain spatial responses of individuals in the face of natural environmental fluctuations. This is a major challenge in ecology and evolution as spatial dynamics link individual- and population-level processes. 2.In this study we investigated the potential of individual personalities to predict differences in fish behaviour in the wild. Specifically, our goal was to answer if individual differences in plasticity of space use to sea surface temperature could be explained by differences in personality along the reactive-proactive axis. 3.To address this question we first conducted repeated standard laboratory assays (i.e. open-field test, novel object test and mirror-stimulation test) to assess the personality type of 76 wild-caught Atlantic cod (Gadus morhua). Next, we released the fish back into the sea and monitored their spatial behaviour over large temporal (16 months) and spatial (a whole fjord) scales, using high-resolution acoustic tracking. 4. We demonstrate that 1) cod personality traits are structured into a proactive-reactive syndrome (proactive fish being more bold, exploratory and aggressive), 2) mean depth use of individuals is mainly driven by sea temperature and 3) personality is a significant predictor of home range changes in the wild, where reactive, but not proactive, individuals reduced their home range as sea temperature increased. 5. These findings expand our understanding of the ecological consequences of animal personality and the mechanisms shaping spatial dynamics of animals in nature. This article is protected by copyright. All rights reserved. © 2018 The Authors Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.
Improving inferences from fisheries capture-recapture studies through remote detection of PIT tags
Hewitt, David A.; Janney, Eric C.; Hayes, Brian S.; Shively, Rip S.
2010-01-01
Models for capture-recapture data are commonly used in analyses of the dynamics of fish and wildlife populations, especially for estimating vital parameters such as survival. Capture-recapture methods provide more reliable inferences than other methods commonly used in fisheries studies. However, for rare or elusive fish species, parameter estimation is often hampered by small probabilities of re-encountering tagged fish when encounters are obtained through traditional sampling methods. We present a case study that demonstrates how remote antennas for passive integrated transponder (PIT) tags can increase encounter probabilities and the precision of survival estimates from capture-recapture models. Between 1999 and 2007, trammel nets were used to capture and tag over 8,400 endangered adult Lost River suckers (Deltistes luxatus) during the spawning season in Upper Klamath Lake, Oregon. Despite intensive sampling at relatively discrete spawning areas, encounter probabilities from Cormack-Jolly-Seber models were consistently low (< 0.2) and the precision of apparent annual survival estimates was poor. Beginning in 2005, remote PIT tag antennas were deployed at known spawning locations to increase the probability of re-encountering tagged fish. We compare results based only on physical recaptures with results based on both physical recaptures and remote detections to demonstrate the substantial improvement in estimates of encounter probabilities (approaching 100%) and apparent annual survival provided by the remote detections. The richer encounter histories provided robust inferences about the dynamics of annual survival and have made it possible to explore more realistic models and hypotheses about factors affecting the conservation and recovery of this endangered species. Recent advances in technology related to PIT tags have paved the way for creative implementation of large-scale tagging studies in systems where they were previously considered impracticable.
Wilson, Jono R; Kay, Matthew C; Colgate, John; Qi, Roy; Lenihan, Hunter S
2012-01-01
A major challenge for small-scale fisheries management is high spatial variability in the demography and life history characteristics of target species. Implementation of local management actions that can reduce overfishing and maximize yields requires quantifying ecological heterogeneity at small spatial scales and is therefore limited by available resources and data. Collaborative fisheries research (CFR) is an effective means to collect essential fishery information at local scales, and to develop the social, technical, and logistical framework for fisheries management innovation. We used a CFR approach with fishing partners to collect and analyze geographically precise demographic information for grass rockfish (Sebastes rastrelliger), a sedentary, nearshore species harvested in the live fish fishery on the West Coast of the USA. Data were used to estimate geographically distinct growth rates, ages, mortality, and length frequency distributions in two environmental subregions of the Santa Barbara Channel, CA, USA. Results indicated the existence of two subpopulations; one located in the relatively cold, high productivity western Channel, and another in the relatively warm, low productivity eastern Channel. We parameterized yield per recruit models, the results of which suggested nearly twice as much yield per recruit in the high productivity subregion relative to the low productivity subregion. The spatial distribution of fishing in the two environmental subregions demonstrated a similar pattern to the yield per recruit outputs with greater landings, effort, and catch per unit effort in the high productivity subregion relative to the low productivity subregion. Understanding how spatial variability in stock dynamics translates to variability in fishery yield and distribution of effort is important to developing management plans that maximize fishing opportunities and conservation benefits at local scales.
Moya, Jacqueline; Itkin, Cheryl; Selevan, Sherry G; Rogers, John W; Clickner, Robert P
2008-09-15
Fish consumption rates derived from national surveys may not accurately reflect consumption rates in a particular population such as recreational anglers. Many state and local health agencies in the U.S. have conducted area-specific surveys to study fish consumption patterns in local populations, assess exposure to environmental contaminants, or evaluate compliance with fish advisories. The U.S. Environmental Protection Agency (EPA) has analyzed the raw data from fish consumption surveys in Florida, Connecticut, Minnesota, and North Dakota for the purpose of deriving distributions of fish consumption rates and studying the variables that may be more predictive of high-end consumers. Distributions of fish consumption for different age cohorts, ethnic groups, socioeconomic statuses, types of fish (i.e., freshwater, marine, estuarine), and source of fish (i.e., store-bought versus self-caught) were derived. Consumption of fish and shellfish for those who consume both caught and bought fish is higher than those who reported eating only bought or only self-caught. Mean fish consumption per kilogram of body weight ranged from 0.11 g/kg-day to 2.3 g/kg-day. The highest values were observed in Florida for children 1<6 years of age. The Florida data show a statistically significant increase in the percentage of the population reporting fish and shellfish consumption with an increase in household income and education. This trend was not observed in the other states.
NASA Astrophysics Data System (ADS)
Le Bris, A.; Pershing, A. J.; Holland, D. S.; Mills, K.; Sun, C. H. J.
2016-02-01
The Gulf of Maine and the northwest Atlantic shelf have experienced one of the fastest warming rates of the global ocean over the past decade, and concerns are growing about the long-term sustainability of the fishing industries in the region. The lucrative American lobster fishery occurs over a steep temperature gradient, providing a unique opportunity to evaluate the consequences of climate change and variability on marine socio-ecological systems. This study aims at developing an integrated climate, population dynamics, and fishery economics model to predict consequences of climate change on the American lobster fishery. In this talk, we first describe a mechanistic model that combines life-history theory and a size-spectrum approach to simulate the dynamics of the population. Results show that as temperature increases, early growth rate and predation on small individuals increases, while size-at-maturity, maximum length and predation on large individuals decreases, resulting in a lower recruitment in the southern New-England and higher recruitment in the northern Gulf of Maine. Second, we present an integrated fishery and economic module that links temperature to landings and price through its influence on catchability and abundance. Preliminary results show that temperature is positively correlated with landings and negatively correlated with price in the Gulf of Maine. Finally, we discuss how model simulations under various fishing effort, market and climate scenarios can be used to identify adaptation opportunities to improve the resilience of the fishery to climate change.
Marine Biogeochemistry Under The Influence of Fish And Fisheries: An Ecosystem Modeling Study
NASA Astrophysics Data System (ADS)
Disa, Deniz; Akoglu, Ekin; Salihoglu, Baris
2017-04-01
The ocean and the marine ecosystems are important controllers of the global carbon cycle. They play a pivotal role in capturing atmospheric carbon into the ocean body, transforming it into organic carbon through photosynthesis and transporting it to the depths of the ocean. Fish, which has a significant role in the marine food webs, is thought to have a considerable impact on carbon export. More specifically, fish has a control on plankton dynamics as a predator, it provides nutrient to the ecosystem by its metabolic activities and it has the ability of moving actively and transporting materials. Fishing is also expected to impact carbon cycle because it directly changes the fish biomasses. However, how fish impacts the biogeochemistry of marine ecosystems is not studied extensively. The aim of this study is to analyze the impact of fish and fisheries on marine biogeochemical processes by setting up an end-to-end model, which simulates lower and higher tropic levels of marine ecosystems simultaneously. For this purpose, a one dimensional biogeochemical model simulating lower tropic level dynamics (e.g. carbon export, nutrient cycles) and an food web model simulating fisheries exploitation and higher tropic level dynamics were online and two-way coupled. Representing the marine ecosystem from one end to the other, the coupled model served as a tool for the analysis of fishing impacts on marine biogeochemical dynamics. Results obtained after incorporation of higher trophic level model changed the plankton compositions and enhanced detritus pools and increased carbon export. Additionally, our model showed that active movement of fish contributed to transport of carbon from surface to the deeper parts of the ocean. Moreover, results after applying different fishing intensities indicated that changes in fisheries exploitation levels directly influence the marine nutrient cycles and hence, the carbon export. Depending on the target and the intensity of fisheries, considerable changes in the biogeochemical responses observed. In conclusion, unlike the models that do not represent the fish explicitly, we demonstrate how marine biogeochemical processes are impacted by the activity of fish assemblages and fisheries exploitation.
Further data on removal and repopulation of the breeding birds in a spruce-fir forest community
Hensley, M.M.; Cope, J.B.
1951-01-01
During June and July of 1950 the writers were engaged in a study of bird populations in northern Maine in conjunction with investigations to determine the effectiveness of the breeding bird population as a controlling agent of the spruce budworm, Choristoneura fumiferana. The field work was started in 1949 and the current project was a continuation. The entomological phase of the study during both seasons was conducted under the supervision of Philip B. Dowden and V. M. Carolin of the Bureau of Entomology and Plant Quarantine; the initial bird population study was made by John W. Aldrich and Robert E. Stewart of the Fish and Wildlife Service (See page 471 of this issue of 'The Auk').Many data were accumulated concerning bird population dynamics during the initial study. To compare the results of the two seasons and to present other significant facts, additional data are presented here.
Population viability of the Snake River chinook salmon (Oncorhynchus tshawytscha)
Emlen, John M.
1995-01-01
In the presence of historical data, population viability models of intermediate complexity can be parameterized and utilized to project the consequences of various management actions for endangered species. A general stochastic population dynamics model with density feedback, age structure, and autocorrelated environmental fluctuations was constructed and parameterized for best fit over 36 years of spring chinook salmon (Oncorhynchus tshawytscha) redd count data in five Idaho index streams. Simulations indicate that persistence of the Snake River spring chinook salmon population depends primarily on density-independent mortality. Improvement of rearing habitat, predator control, reduced fishing pressure, and improved dam passage all would alleviate density-independent mortality. The current value of the Ricker α should provide for a continuation of the status quo. A recovery of the population to 1957–1961 levels within 100 years would require an approximately 75% increase in survival and (or) fecundity. Manipulations of the Ricker β are likely to have little or no effect on persistence versus extinction, but considerable influence on population size.