Sample records for fish populations based

  1. Assessing three fish species ecological status in Colorado River, Grand Canyon based on physical habitat and population models.

    PubMed

    Yao, Weiwei; Chen, Yuansheng

    2018-04-01

    Colorado River is a unique ecosystem and provides important ecological services such as habitat for fish species as well as water power energy supplies. River management for this ecosystem requires assessment and decision support tools for fish which involves protecting, restoring as well as forecasting of future conditions. In this paper, a habitat and population model was developed and used to determine the levels of fish habitat suitability and population density in Colorado River between Lees Ferry and Lake Mead. The short term target fish populations are also predicted based on native fish recovery strategy. This model has been developed by combining hydrodynamics, heat transfer and sediment transport models with a habitat suitability index model and then coupling with habitat model into life stage population model. The fish were divided into four life stages according to the fish length. Three most abundant and typical native and non-native fish were selected as target species, which are rainbow trout (Oncorhynchus mykiss), brown trout (Salmo trutta) and flannelmouth sucker (Catostomus latipinnis). Flow velocity, water depth, water temperature and substrates were used as the suitability indicators in habitat model and overall suitability index (OSI) as well as weight usable area (WUA) was used as an indicator in population model. A comparison was made between simulated fish population alteration and surveyed fish number fluctuation during 2000 to 2009. The application of this habitat and population model indicates that this model can be accurate present habitat situation and targets fish population dynamics of in the study areas. The analysis also indicates the flannelmouth sucker population will steadily increase while the rainbow trout will decrease based on the native fish recovery scheme. Copyright © 2018. Published by Elsevier Inc.

  2. Importance of the habitat choice behavior assumed when modeling the effects of food and temperature on fish populations

    USGS Publications Warehouse

    Wildhaber, Mark L.; Lamberson, Peter J.

    2004-01-01

    Various mechanisms of habitat choice in fishes based on food and/or temperature have been proposed: optimal foraging for food alone; behavioral thermoregulation for temperature alone; and behavioral energetics and discounted matching for food and temperature combined. Along with development of habitat choice mechanisms, there has been a major push to develop and apply to fish populations individual-based models that incorporate various forms of these mechanisms. However, it is not known how the wide variation in observed and hypothesized mechanisms of fish habitat choice could alter fish population predictions (e.g. growth, size distributions, etc.). We used spatially explicit, individual-based modeling to compare predicted fish populations using different submodels of patch choice behavior under various food and temperature distributions. We compared predicted growth, temperature experience, food consumption, and final spatial distribution using the different models. Our results demonstrated that the habitat choice mechanism assumed in fish population modeling simulations was critical to predictions of fish distribution and growth rates. Hence, resource managers who use modeling results to predict fish population trends should be very aware of and understand the underlying patch choice mechanisms used in their models to assure that those mechanisms correctly represent the fish populations being modeled.

  3. Fishing amplifies forage fish population collapses.

    PubMed

    Essington, Timothy E; Moriarty, Pamela E; Froehlich, Halley E; Hodgson, Emma E; Koehn, Laura E; Oken, Kiva L; Siple, Margaret C; Stawitz, Christine C

    2015-05-26

    Forage fish support the largest fisheries in the world but also play key roles in marine food webs by transferring energy from plankton to upper trophic-level predators, such as large fish, seabirds, and marine mammals. Fishing can, thereby, have far reaching consequences on marine food webs unless safeguards are in place to avoid depleting forage fish to dangerously low levels, where dependent predators are most vulnerable. However, disentangling the contributions of fishing vs. natural processes on population dynamics has been difficult because of the sensitivity of these stocks to environmental conditions. Here, we overcome this difficulty by collating population time series for forage fish populations that account for nearly two-thirds of global catch of forage fish to identify the fingerprint of fisheries on their population dynamics. Forage fish population collapses shared a set of common and unique characteristics: high fishing pressure for several years before collapse, a sharp drop in natural population productivity, and a lagged response to reduce fishing pressure. Lagged response to natural productivity declines can sharply amplify the magnitude of naturally occurring population fluctuations. Finally, we show that the magnitude and frequency of collapses are greater than expected from natural productivity characteristics and therefore, likely attributed to fishing. The durations of collapses, however, were not different from those expected based on natural productivity shifts. A risk-based management scheme that reduces fishing when populations become scarce would protect forage fish and their predators from collapse with little effect on long-term average catches.

  4. Capturing ecology in modeling approaches applied to environmental risk assessment of endocrine active chemicals in fish.

    PubMed

    Mintram, Kate S; Brown, A Ross; Maynard, Samuel K; Thorbek, Pernille; Tyler, Charles R

    2018-02-01

    Endocrine active chemicals (EACs) are widespread in freshwater environments and both laboratory and field based studies have shown reproductive effects in fish at environmentally relevant exposures. Environmental risk assessment (ERA) seeks to protect wildlife populations and prospective assessments rely on extrapolation from individual-level effects established for laboratory fish species to populations of wild fish using arbitrary safety factors. Population susceptibility to chemical effects, however, depends on exposure risk, physiological susceptibility, and population resilience, each of which can differ widely between fish species. Population models have significant potential to address these shortfalls and to include individual variability relating to life-history traits, demographic and density-dependent vital rates, and behaviors which arise from inter-organism and organism-environment interactions. Confidence in population models has recently resulted in the EU Commission stating that results derived from reliable models may be considered when assessing the relevance of adverse effects of EACs at the population level. This review critically assesses the potential risks posed by EACs for fish populations, considers the ecological factors influencing these risks and explores the benefits and challenges of applying population modeling (including individual-based modeling) in ERA for EACs in fish. We conclude that population modeling offers a way forward for incorporating greater environmental relevance in assessing the risks of EACs for fishes and for identifying key risk factors through sensitivity analysis. Individual-based models (IBMs) allow for the incorporation of physiological and behavioral endpoints relevant to EAC exposure effects, thus capturing both direct and indirect population-level effects.

  5. Social-ecological interactions, management panaceas, and the future of wild fish populations

    PubMed Central

    van Poorten, Brett T.; Arlinghaus, Robert; Daedlow, Katrin; Haertel-Borer, Susanne S.

    2011-01-01

    We explored the social and ecological outcomes associated with emergence of a management panacea designed to govern a stochastic renewable natural resource. To that end, we constructed a model of a coupled social-ecological system of recreational fisheries in which a manager supports naturally fluctuating stocks by stocking fish in response to harvest-driven satisfaction of resource users. The realistic assumption of users remembering past harvest experiences when exploiting a stochastically fluctuating fish population facilitates the emergence of a stocking-based management panacea over time. The social benefits of panacea formation involve dampening natural population fluctuations and generating stability of user satisfaction. It also maintains the resource but promotes the eventual replacement of wild fish by hatchery-descended fish. Our analyses show this outcome is particularly likely when hatchery-descended fish are reasonably fit (e.g., characterized by similar survival relative to wild fish) and/or when natural recruitment of the wild population is low (e.g., attributable to habitat deterioration), which leaves the wild population with little buffer against competition by stocked fish. The potential for release-based panacea formation is particularly likely under user-based management regimes and should be common in a range of social-ecological systems (e.g., fisheries, forestry), whenever user groups are entitled to engage in release or replanting strategies. The net result will be the preservation of a renewable resource through user-based incentives, but the once natural populations are likely to be altered and to host nonnative genotypes. This risks other ecosystem services and the future of wild populations. PMID:21742983

  6. A resilience approach can improve anadromous fish restoration

    USGS Publications Warehouse

    Waldman, John R.; Wilson, Karen A.; Mather, Martha E.; Snyder, Noah P.

    2016-01-01

    Most anadromous fish populations remain at low levels or are in decline despite substantial investments in restoration. We explore whether a resilience perspective (i.e., a different paradigm for understanding populations, communities, and ecosystems) is a viable alternative framework for anadromous fish restoration. Many life history traits have allowed anadromous fish to thrive in unimpacted ecosystems but have become contemporary curses as anthropogenic effects increase. This contradiction creates a significant conservation challenge but also makes these fish excellent candidates for a resilience approach. A resilience approach recognizes the need to maintain life history, population, and habitat characteristics that increase the ability of a population to withstand and recover from multiple disturbances. To evaluate whether a resilience approach represents a viable strategy for anadromous fish restoration, we review four issues: (1) how resilience theory can inform anadromous fish restoration, (2) how a resilience-based approach is fundamentally different than extant anadromous fish restoration strategies, (3) ecological characteristics that historically benefited anadromous fish persistence, and (4) examples of how human impacts harm anadromous fish and how a resilience approach might produce more successful outcomes. We close by suggesting new research and restoration directions for implementation of a resilience-based approach.

  7. Dynamics of an introduced and unexploited Lake Whitefish population in Lake Pend Oreille, Idaho

    USGS Publications Warehouse

    Hosack, Michael A.; Hansen, Michael J.; Horner, Ned J.

    2014-01-01

    To evaluate biological potential of a commercial fishery for an unexploited Lake Whitefish Coregonus clupeaformis population in Lake Pend Oreille, Idaho, we estimated population parameters related to production and yield. The length frequency based on trap-netting in autumn 2005 was normal with a mean of 448 mm TL, whereas the length frequency based on gillnetting in spring 2006 was bimodal with a mean of 390 mm TL. Sex composition was skewed toward females (0.66) during autumn trap-netting. Shape parameters β of weight–length models for females (β = 3.38) and males (β = 3.45) were similar to those of other unexploited populations. Instantaneous growth rates K for females (K = 0.144 per year) and males (K = 0.153 per year) were among the lowest for unexploited populations across the species’ range. Age at 50% maturity (females: 6.5 years; males: 6.0 years) and length at 50% maturity (females: 390 mm TL; males: 378 mm TL) were high for unexploited populations. The natural mortality rate M (0.149 per year, ages 11–36) was among the lowest observed for unexploited populations. Adult population density was lower than that of other populations based on total surface area (mean = 1.35 fish/ha; 95% confidence interval [CI] = 1.11–1.78 fish/ha) but was average based on lake area shallower than 70 m (4.07 fish/ha; 95% CI = 3.35–5.35 fish/ha). Population density of juveniles and adults averaged 84 fish/ha (95% CI = 52–143 fish/ha) over the entire surface area and 278 fish/ha (95% CI = 173–474 fish/ha) over depths shallower than 70 m. The difference between the low M of the unexploited population in Lake Pend Oreille (M = 0.149 per year; annual mortality rate A = 14%) and the high sustainable total mortality Z of exploited stocks in the Laurentian Great Lakes (Z = 1.204; A = 70%) suggests a large scope for sustainable fishing mortality F (1.055 per year; exploitation rate u = 61%) that is equivalent to a sustainable Lake Whitefish harvest of 55,000 individuals (50,000–60,000 individuals) and 49,000 kg (45,000–54,000 kg) from Lake Pend Oreille.

  8. Quantifying the Human Impacts on Papua New Guinea Reef Fish Communities across Space and Time.

    PubMed

    Drew, Joshua A; Amatangelo, Kathryn L; Hufbauer, Ruth A

    2015-01-01

    Describing the drivers of species loss and of community change are important goals in both conservation and ecology. However, it is difficult to determine whether exploited species decline due to direct effects of harvesting or due to other environmental perturbations brought about by proximity to human populations. Here we quantify differences in species richness of coral reef fish communities along a human population gradient in Papua New Guinea to understand the relative impacts of fishing and environmental perturbation. Using data from published species lists we categorize the reef fishes as either fished or non-fished based on their body size and reports from the published literature. Species diversity for both fished and non-fished groups decreases as the size of the local human population increases, and this relationship is stronger in species that are fished. Additionally, comparison of modern and museum collections show that modern reef communities have proportionally fewer fished species relative to 19th century ones. Together these findings show that the reef fish communities of Papua New Guinea experience multiple anthropogenic stressors and that even at low human population levels targeted species experience population declines across both time and space.

  9. Climate change effects on North American inland fish populations and assemblages

    USGS Publications Warehouse

    Lynch, Abigail J.; Myers, Bonnie; Chu, Cindy; Eby, Lisa A.; Falke, Jeffrey A.; Kovach, Ryan P.; Krabbenhoft, Trevor J.; Kwak, Thomas J.; Lyons, John; Paukert, Craig P.; Whitney, James E.

    2016-01-01

    Climate is a critical driver of many fish populations, assemblages, and aquatic communities. However, direct observational studies of climate change impacts on North American inland fishes are rare. In this synthesis, we (1) summarize climate trends that may influence North American inland fish populations and assemblages, (2) compile 31 peer-reviewed studies of documented climate change effects on North American inland fish populations and assemblages, and (3) highlight four case studies representing a variety of observed responses ranging from warmwater systems in the southwestern and southeastern United States to coldwater systems along the Pacific Coast and Canadian Shield. We conclude by identifying key data gaps and research needs to inform adaptive, ecosystem-based approaches to managing North American inland fishes and fisheries in a changing climate.

  10. Development of a spatially distributed model of fish population density for habitat assessment of rivers

    NASA Astrophysics Data System (ADS)

    Sui, Pengzhe; Iwasaki, Akito; Ryo, Masahiro; Saavedra, Oliver; Yoshimura, Chihiro

    2013-04-01

    Flow conditions play an important role in sustaining biodiversity of river ecosystem. However, their relations to freshwater fishes, especially to fish population density, have not been clearly described. This study, therefore, aimed to propose a new methodology to quantitatively link habitat conditions, including flow conditions and other physical conditions, to population density of fish species. We developed a basin-scale fish distribution model by integrating the concept of habitat suitability assessment with a distributed hydrological model (DHM) in order to estimate fish population density with particular attention to flow conditions. Generalized linear model (GLM) was employed to evaluate the relationship between population density of fish species and major environmental factors. The target basin was Sagami River in central Japan, where the river reach was divided into 10 sections by estuary, confluences of tributaries, and river-crossing structures (dams, weirs). The DHM was employed to simulate river discharge from 1998 to 2005, which was used to calculate 10 flow indices including mean discharge, 25th and 75th percentile discharge, duration of low and high flows, number of floods. In addition, 5 water quality parameters and 13 other physical conditions (such as basin area, river width, mean diameter of riverbed material, and number of river-crossing structures upstream and downstream) of each river section were considered as environmental variables. In case of Sagami River, 10 habitat variables among them were then selected based on their correlations to avoid multicollinearity. Finally, the best GLM was developed for each species based on Akaike's information criterion. As results, population densities of 16 fish species in Sagami River were modelled, and correlation coefficients between observed and calculated population densities for 10 species were more than 0.70. The key habitat factors for population density varied among fish species. Minimum discharge (MID) was found to be positively correlated to 9 among 16 fish species. For duration of high and low flows (DHF and DLF), longer DHF/DLF was corresponded to lower population density for 7/6 fish species, respectively, such as Rhinogobius kurodai and Plecoglossus altivelis altivelis. Among physical habitat conditions, sinuosity index (SI, the ratio between actual river section length and straight line length) seems to be the most important parameter for fish population density in Sagami River basin, since it affects 12 out of 16 fish species, followed by mean longitudinal slope (S) and number of downstream dams (NLD). Above results demonstrated the applicability of fish distribution model to provide quantitative information on flow conditions required to maintain fish population, which enabled us to evaluate and project ecological consequences of water resource management policy, such as flood management and water withdrawal.

  11. Methods for assessing fish populations

    Treesearch

    Kevin L. Pope; Steve E. Lochmann; Michael K. Young

    2010-01-01

    Fisheries managers are likely to assess fish populations at some point during the fisheries management process. Managers that follow the fisheries management process (see Chapter 5) might find their knowledge base insufficient during the steps of problem identification or management action and must assess a population before appropriate actions can be taken. Managers...

  12. An ecological model of the habitat mosaic in estuarine nursery areas: Part II – Projecting effects of sea level rise on fish production

    EPA Science Inventory

    Understanding the response of fish populations to habitat change mediated by sea level rise (SLR) is a key component of ecosystem-based management. Yet, no direct link has been established between habitat change due to SLR and fish population production. Here we take a coupled ...

  13. Estimating the Marginal Causal Effect of Fish Consumption during Adolescence on Multiple Sclerosis: A Population-Based Incident Case-Control Study.

    PubMed

    Abdollahpour, Ibrahim; Nedjat, Saharnaz; Mansournia, Mohammad Ali; Sahraian, Mohammad Ali; Kaufman, Jay S

    2018-01-01

    Adolescence is considered as a critical time period in multiple sclerosis (MS) etiology. Nonetheless, there are insufficient reports regarding the potential role of fresh and canned fish consumptions during adolescence in MS etiology. The authors investigated the association between fresh and canned fish consumptions and MS. This was a population-based incident case-control study conducted in Tehran. Cases (n = 547) identified from Iranian Multiple Sclerosis Society between August 7, 2013, and November 17, 2015 were included in the study. Population-based controls (n = 1,057) were recruited by random digit telephone dialing without any matching. Inverse-probability-of-treatment weighing (IPTW) using 2 sets of propensity scores and model-based standardization were used to separately estimate the marginal odds ratio between fresh and canned fish consumptions in adolescence and MS. The marginal OR for fresh fish was 0.72 (95% CI 0.58-0.90; p = 0.005) in both IPTW analyses. Similarly, the marginal OR for canned fish consumption was 0.75 (95% CI 0.60-0.95; p = 0.014).The model-based standardized OR was 0.72 (95% CI 0.58-0.91; p = 0.008) for fresh and 0.73 (95% CI 0.59-0.94; p = 0.006) for canned fish consumption in adolescence. Subject to limitation of case-control studies in interpreting associations causally, this study suggests that both fresh and canned fish consumptions in adolescence can decrease the risk of MS. © 2018 S. Karger AG, Basel.

  14. 40 CFR 130.7 - Total maximum daily loads (TMDL) and individual water quality-based effluent limitations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of a balanced indigenous population of shellfish, fish and wildlife. (3) For the purposes of listing... propagation of a balanced, indigenous population of shellfish, fish and wildlife. Such estimates shall take... water quality criteria for protection and propagation of a balanced, indigenous population of shellfish...

  15. 40 CFR 130.7 - Total maximum daily loads (TMDL) and individual water quality-based effluent limitations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of a balanced indigenous population of shellfish, fish and wildlife. (3) For the purposes of listing... propagation of a balanced, indigenous population of shellfish, fish and wildlife. Such estimates shall take... water quality criteria for protection and propagation of a balanced, indigenous population of shellfish...

  16. 40 CFR 130.7 - Total maximum daily loads (TMDL) and individual water quality-based effluent limitations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of a balanced indigenous population of shellfish, fish and wildlife. (3) For the purposes of listing... propagation of a balanced, indigenous population of shellfish, fish and wildlife. Such estimates shall take... water quality criteria for protection and propagation of a balanced, indigenous population of shellfish...

  17. Impact of minimum catch size on the population viability of Strombus gigas (Mesogastropoda: Strombidae) in Quintana Roo, Mexico.

    PubMed

    Peel, Joanne R; Mandujano, María del Carmen

    2014-12-01

    The queen conch Strombus gigas represents one of the most important fishery resources of the Caribbean but heavy fishing pressure has led to the depletion of stocks throughout the region, causing the inclusion of this species into CITES Appendix II and IUCN's Red-List. In Mexico, the queen conch is managed through a minimum fishing size of 200 mm shell length and a fishing quota which usually represents 50% of the adult biomass. The objectives of this study were to determine the intrinsic population growth rate of the queen conch population of Xel-Ha, Quintana Roo, Mexico, and to assess the effects of a regulated fishing impact, simulating the extraction of 50% adult biomass on the population density. We used three different minimum size criteria to demonstrate the effects of minimum catch size on the population density and discuss biological implications. Demographic data was obtained through capture-mark-recapture sampling, collecting all animals encountered during three hours, by three divers, at four different sampling sites of the Xel-Ha inlet. The conch population was sampled each month between 2005 and 2006, and bimonthly between 2006 and 2011, tagging a total of 8,292 animals. Shell length and lip thickness were determined for each individual. The average shell length for conch with formed lip in Xel-Ha was 209.39 ± 14.18 mm and the median 210 mm. Half of the sampled conch with lip ranged between 200 mm and 219 mm shell length. Assuming that the presence of the lip is an indicator for sexual maturity, it can be concluded that many animals may form their lip at greater shell lengths than 200 mm and ought to be considered immature. Estimation of relative adult abundance and densities varied greatly depending on the criteria employed for adult classification. When using a minimum fishing size of 200 mm shell length, between 26.2% and up to 54.8% of the population qualified as adults, which represented a simulated fishing impact of almost one third of the population. When conch extraction was simulated using a classification criteria based on lip thickness, it had a much smaller impact on the population density. We concluded that the best management strategy for S. gigas is a minimum fishing size based on a lip thickness, since it has lower impact on the population density, and given that selective fishing pressure based on size may lead to the appearance of small adult individuals with reduced fecundity. Furthermore, based on the reproductive biology and the results of the simulated fishing, we suggest a minimum lip thickness of ≥ 15 mm, which ensures the protection of reproductive stages, reduces the risk of overfishing, leading to non-viable density reduction.

  18. Archived DNA reveals fisheries and climate induced collapse of a major fishery.

    PubMed

    Bonanomi, Sara; Pellissier, Loïc; Therkildsen, Nina Overgaard; Hedeholm, Rasmus Berg; Retzel, Anja; Meldrup, Dorte; Olsen, Steffen Malskær; Nielsen, Anders; Pampoulie, Christophe; Hemmer-Hansen, Jakob; Wisz, Mary Susanne; Grønkjær, Peter; Nielsen, Einar Eg

    2015-10-22

    Fishing and climate change impact the demography of marine fishes, but it is generally ignored that many species are made up of genetically distinct locally adapted populations that may show idiosyncratic responses to environmental and anthropogenic pressures. Here, we track 80 years of Atlantic cod (Gadus morhua) population dynamics in West Greenland using DNA from archived otoliths in combination with fish population and niche based modeling. We document how the interacting effects of climate change and high fishing pressure lead to dramatic spatiotemporal changes in the proportions and abundance of different genetic populations, and eventually drove the cod fishery to a collapse in the early 1970s. Our results highlight the relevance of fisheries management at the level of genetic populations under future scenarios of climate change.

  19. Archived DNA reveals fisheries and climate induced collapse of a major fishery

    PubMed Central

    Bonanomi, Sara; Pellissier, Loïc; Therkildsen, Nina Overgaard; Hedeholm, Rasmus Berg; Retzel, Anja; Meldrup, Dorte; Olsen, Steffen Malskær; Nielsen, Anders; Pampoulie, Christophe; Hemmer-Hansen, Jakob; Wisz, Mary Susanne; Grønkjær, Peter; Nielsen, Einar Eg

    2015-01-01

    Fishing and climate change impact the demography of marine fishes, but it is generally ignored that many species are made up of genetically distinct locally adapted populations that may show idiosyncratic responses to environmental and anthropogenic pressures. Here, we track 80 years of Atlantic cod (Gadus morhua) population dynamics in West Greenland using DNA from archived otoliths in combination with fish population and niche based modeling. We document how the interacting effects of climate change and high fishing pressure lead to dramatic spatiotemporal changes in the proportions and abundance of different genetic populations, and eventually drove the cod fishery to a collapse in the early 1970s. Our results highlight the relevance of fisheries management at the level of genetic populations under future scenarios of climate change. PMID:26489934

  20. Archived DNA reveals fisheries and climate induced collapse of a major fishery

    NASA Astrophysics Data System (ADS)

    Bonanomi, Sara; Pellissier, Loïc; Therkildsen, Nina Overgaard; Hedeholm, Rasmus Berg; Retzel, Anja; Meldrup, Dorte; Olsen, Steffen Malskær; Nielsen, Anders; Pampoulie, Christophe; Hemmer-Hansen, Jakob; Wisz, Mary Susanne; Grønkjær, Peter; Nielsen, Einar Eg

    2015-10-01

    Fishing and climate change impact the demography of marine fishes, but it is generally ignored that many species are made up of genetically distinct locally adapted populations that may show idiosyncratic responses to environmental and anthropogenic pressures. Here, we track 80 years of Atlantic cod (Gadus morhua) population dynamics in West Greenland using DNA from archived otoliths in combination with fish population and niche based modeling. We document how the interacting effects of climate change and high fishing pressure lead to dramatic spatiotemporal changes in the proportions and abundance of different genetic populations, and eventually drove the cod fishery to a collapse in the early 1970s. Our results highlight the relevance of fisheries management at the level of genetic populations under future scenarios of climate change.

  1. Management of fish populations in large rivers: a review of tools and approaches

    USGS Publications Warehouse

    Petts, Geoffrey E.; Imhoff, Jack G.; Manny, Bruce A.; Maher, John F. B.; Weisberg, Stephen B.

    1989-01-01

    In common with most branches of science, the management of riverine fish populations is characterised by reductionist and isolationist philosophies. Traditional fish management focuses on stocking and controls on fishing. This paper presents a concensus of scientists involved in the LARS workshop on the management of fish populations in large rivers. A move towards a more holistic philosophy is advocated, with fish management forming an integral part of sustainable river development. Based upon a questionnaire survey of LARS members, with wide-ranging expertise and experience from all parts of the world, lists of management tools currently in use are presented. Four categories of tools are described: flow, water-quality, habitat, and biological. The potential applications of tools for fish management in large rivers is discussed and research needs are identified. The lack of scientific evaluations of the different tools remains the major constraint to their wider application.

  2. Development of standard weight equations for Caribbean and Gulf of Mexico amphidromous fishes

    USGS Publications Warehouse

    Cooney, Patrick B.; Kwak, Thomas J.

    2010-01-01

    We collected and compiled length and weight information from four countries and one commonwealth to develop standard weight (Ws) equations for three amphidromous fish species native to the Caribbean and Gulf of Mexico regions: mountain mullet Agonostomus monticola (N = 9,768 individuals, 52 populations), river goby Awaous banana (N = 1,847 individuals, 62 populations), and bigmouth sleeper Gobiomorus dormitor (N = 2,983 individuals, 53 populations). Linear and quadratic Ws equations for three quartiles (25%, median, 75%) are presented for these three species. The length-weight relationship from eight lentic bigmouth sleeper populations was significantly different from that of lotic populations, reflecting higher weights of juvenile fish (< 70 mm total length) in lentic environments. Thus, independent W(s) equations were developed for lotic populations of bigmouth sleepers. W(s) equations were not developed from lentic bigmouth sleeper populations alone due to the low number of applicable populations caused by life history constraints; the equation from combined lentic and lotic populations is suggested for application to lentic bigmouth sleeper populations. These morphometric relationships for amphidromous fishes may improve the ability to assess existing and potential sport fisheries and allow ecological assessment based on fish condition.

  3. First genealogy for a wild marine fish population reveals multigenerational philopatry.

    PubMed

    Salles, Océane C; Pujol, Benoit; Maynard, Jeffrey A; Almany, Glenn R; Berumen, Michael L; Jones, Geoffrey P; Saenz-Agudelo, Pablo; Srinivasan, Maya; Thorrold, Simon R; Planes, Serge

    2016-11-15

    Natal philopatry, the return of individuals to their natal area for reproduction, has advantages and disadvantages for animal populations. Natal philopatry may generate local genetic adaptation, but it may also increase the probability of inbreeding that can compromise persistence. Although natal philopatry is well documented in anadromous fishes, marine fish may also return to their birth site to spawn. How philopatry shapes wild fish populations is, however, unclear because it requires constructing multigenerational pedigrees that are currently lacking for marine fishes. Here we present the first multigenerational pedigree for a marine fish population by repeatedly genotyping all individuals in a population of the orange clownfish (Amphiprion percula) at Kimbe Island (Papua New Guinea) during a 10-y period. Based on 2927 individuals, our pedigree analysis revealed that longitudinal philopatry was recurrent over five generations. Progeny tended to settle close to their parents, with related individuals often sharing the same colony. However, successful inbreeding was rare, and genetic diversity remained high, suggesting occasional inbreeding does not impair local population persistence. Local reproductive success was dependent on the habitat larvae settled into, rather than the habitat they came from. Our study suggests that longitudinal philopatry can influence both population replenishment and local adaptation of marine fishes. Resolving multigenerational pedigrees during a relatively short period, as we present here, provides a framework for assessing the ability of marine populations to persist and adapt to accelerating climate change.

  4. First genealogy for a wild marine fish population reveals multigenerational philopatry

    PubMed Central

    Salles, Océane C.; Pujol, Benoit; Maynard, Jeffrey A.; Almany, Glenn R.; Berumen, Michael L.; Jones, Geoffrey P.; Saenz-Agudelo, Pablo; Srinivasan, Maya; Thorrold, Simon R.; Planes, Serge

    2016-01-01

    Natal philopatry, the return of individuals to their natal area for reproduction, has advantages and disadvantages for animal populations. Natal philopatry may generate local genetic adaptation, but it may also increase the probability of inbreeding that can compromise persistence. Although natal philopatry is well documented in anadromous fishes, marine fish may also return to their birth site to spawn. How philopatry shapes wild fish populations is, however, unclear because it requires constructing multigenerational pedigrees that are currently lacking for marine fishes. Here we present the first multigenerational pedigree for a marine fish population by repeatedly genotyping all individuals in a population of the orange clownfish (Amphiprion percula) at Kimbe Island (Papua New Guinea) during a 10-y period. Based on 2927 individuals, our pedigree analysis revealed that longitudinal philopatry was recurrent over five generations. Progeny tended to settle close to their parents, with related individuals often sharing the same colony. However, successful inbreeding was rare, and genetic diversity remained high, suggesting occasional inbreeding does not impair local population persistence. Local reproductive success was dependent on the habitat larvae settled into, rather than the habitat they came from. Our study suggests that longitudinal philopatry can influence both population replenishment and local adaptation of marine fishes. Resolving multigenerational pedigrees during a relatively short period, as we present here, provides a framework for assessing the ability of marine populations to persist and adapt to accelerating climate change. PMID:27799530

  5. One Fish, Two Fish, Redfish, You Fish!

    ERIC Educational Resources Information Center

    White, Katherine; Timmons, Maryellen; Medders, Paul

    2011-01-01

    The recreational fishing activity presented in this article provides a hands-on, problem-based experience for students; it unites biology, math, economics, environmental policy, and population dynamics concepts. In addition, the activity allows students to shape environmental policy in a realistic setting and evaluate their peers' work. By…

  6. A stochastic bioenergetics model based approach to translating large river flow and temperature in to fish population responses: The pallid sturgeon example

    USGS Publications Warehouse

    Wildhaber, Mark L.; Dey, Rima; Wikle, Christopher K.; Moran, Edward H.; Anderson, Christopher J.; Franz, Kristie J.

    2015-01-01

    In managing fish populations, especially at-risk species, realistic mathematical models are needed to help predict population response to potential management actions in the context of environmental conditions and changing climate while effectively incorporating the stochastic nature of real world conditions. We provide a key component of such a model for the endangered pallid sturgeon (Scaphirhynchus albus) in the form of an individual-based bioenergetics model influenced not only by temperature but also by flow. This component is based on modification of a known individual-based bioenergetics model through incorporation of: the observed ontogenetic shift in pallid sturgeon diet from marcroinvertebrates to fish; the energetic costs of swimming under flowing-water conditions; and stochasticity. We provide an assessment of how differences in environmental conditions could potentially alter pallid sturgeon growth estimates, using observed temperature and velocity from channelized portions of the Lower Missouri River mainstem. We do this using separate relationships between the proportion of maximum consumption and fork length and swimming cost standard error estimates for fish captured above and below the Kansas River in the Lower Missouri River. Critical to our matching observed growth in the field with predicted growth based on observed environmental conditions was a two-step shift in diet from macroinvertebrates to fish.

  7. [Fishery resource protection by artificial propagation in hydroelectric development: Lixianjiang River drainage in Yunnan as an example].

    PubMed

    Yang, Yong-Hong; Yang, Jun-Xing; Pan, Xiao-Fu; Zhou, Wei; Yang, Mei-Lin

    2011-04-01

    Hydroelectric developments can result in a number of negative environmental consequences. Conservation aquaculture is a branch of science derived from conservation and population recovery studies on endangered fishes. Here we discuss the impacts on fishes caused by hydropower projects in Lixianjiang, and evaluate effects and problems on the propagation of Parazacco spilurus, Hemibagrus pluriradiatus, Neolissochilus benasi and Semilabeo obscurus. A successful propagation project includes foraging ecology in fields, pond cultivation, juvenile fish raising, prevention and curing on fish disease, genetic management, artificial releasing and population monitoring. Artificial propagation is the practicable act on genetic intercommunication, preventing population deterioration for fishes in upper and lower reaches of the dam. For long-term planning, fish stocks are not suitable for many kind of fishes, but can prevent fishes from going extinct in the wild. Basic data collection on fish ecology, parent fish hunting, prevention on fish disease are the most important factors on artificial propagation. Strengthening the genetic management of stock population for keeping a higher genetic diversity can increase the success of stock enhancement. The works on Lixianjiang provide a new model for river fish protection. To make sure the complicated project works well, project plans, commission contracts, base line monitoring and techniques on artificial reproduction must be considered early. Last, fishery conservation should be considered alongside location development.

  8. Consequences of cannibalism and competition for food in a smallmouth bass population: An individual-based modeling study

    USGS Publications Warehouse

    Dong, Q.; DeAngelis, D.L.

    1998-01-01

    We used an individual-based modeling approach to study the consequences of cannibalism and competition for food in a freshwater fish population. We simulated the daily foraging, growth, and survival of the age-0 fish and older juvenile individuals of a sample population to reconstruct patterns of density dependence in the age-0 fish during the growth season. Cannibalism occurs as a part of the foraging process. For age-0 fish, older juvenile fish are both potential cannibals and competitors of food. We found that competition and cannibalism produced intraclass and interclass density dependence. Our modeling results suggested the following. (1) With low density of juvenile fish and weak interclass interactions, the age-0 fish recruitment shows a Beverton-Holt type of density dependence. (2) With high density of juvenile fish and strong interclass interactions, the age-0 fish recruitment shows a Ricker type of density dependence, and overcompensation occurs. (3) Interclass competition of food is responsible for much of the overcompensation. (4) Cannibalism intensifies the changes in the recruitment that are brought about by competition. Cannibalism can (a) generally reduce the recruitment, (b) particularly reduce the maximum level of recruitment, (c) cause overcompensation to occur at lower densities, and (d) produce a stronger overcompensation. (5) Growth is also a function of density. Cannibalism generally improves average growth of cannibals. (6) Variation in the lengths of age-0 fish increases with density and with a decreased average growth. These results imply that cannibalism and competition for food could strongly affect recruitment dynamics. Our model also showed that the rate of cannibalism either could be fairly even through the whole season or could vary dramatically. The individual-based modeling approach can help ecologists understand the mechanistic connection between daily behavioral and physiological processes operating at the level of individual organisms and seasonal patterns of population structure and dynamics. ?? Copyright by the American Fisheries Society 1998.

  9. Understanding and managing fish populations: keeping the toolbox fit for purpose.

    PubMed

    Paris, J R; Sherman, K D; Bell, E; Boulenger, C; Delord, C; El-Mahdi, M B M; Fairfield, E A; Griffiths, A M; Gutmann Roberts, C; Hedger, R D; Holman, L E; Hooper, L H; Humphries, N E; Katsiadaki, I; King, R A; Lemopoulos, A; Payne, C J; Peirson, G; Richter, K K; Taylor, M I; Trueman, C N; Hayden, B; Stevens, J R

    2018-03-01

    Wild fish populations are currently experiencing unprecedented pressures, which are projected to intensify in the coming decades. Developing a thorough understanding of the influences of both biotic and abiotic factors on fish populations is a salient issue in contemporary fish conservation and management. During the 50th Anniversary Symposium of The Fisheries Society of the British Isles at the University of Exeter, UK, in July 2017, scientists from diverse research backgrounds gathered to discuss key topics under the broad umbrella of 'Understanding Fish Populations'. Below, the output of one such discussion group is detailed, focusing on tools used to investigate natural fish populations. Five main groups of approaches were identified: tagging and telemetry; molecular tools; survey tools; statistical and modelling tools; tissue analyses. The appraisal covered current challenges and potential solutions for each of these topics. In addition, three key themes were identified as applicable across all tool-based applications. These included data management, public engagement, and fisheries policy and governance. The continued innovation of tools and capacity to integrate interdisciplinary approaches into the future assessment and management of fish populations is highlighted as an important focus for the next 50 years of fisheries research. © 2018 The Fisheries Society of the British Isles.

  10. [Overview of the artificial enhancement and release of endemic freshwater fish in China].

    PubMed

    Yang, Jun-Xing; Pan, Xiao-Fu; Chen, Xiao-Yong; Wang, Xiao-Ai; Zhao, Ya-Peng; Li, Jian-You; Li, Zai-Yun

    2013-08-01

    Due to declining fishery resources and the growing development of conservation aquaculture, artificial freshwater fish enhancement and releasing have begun to replace traditional means of recovering endemic and rare fish populations. Artificial proliferation can be beneficial both to endemic fish conservation and technical bottleneck breakthroughs. This overview presents a review of the latest research and the underlying principles behind the conservation implementation processes, as well as the research status of artificial enhancement and release of endangered freshwater fish species in China, such as Mylopharyngodon piceus, Ctenopharyngodon idellus, Hypophthalmichthys molitrix, H. nobilis, Acipenser sinensis, Myxocyprinus asiaticus, and Sinocyclocheilus grahami. The overview also presents evolutionarily significant units, sperm and egg quality, and cryopreservation technologies and cell cultures used in artificial enhancement and release, which help standardize genetic management and minimize the genetic differences between hatched and wild populations. Monitoring fish from cultivation to release is essential to evaluating wild population recovery and adjusting recovery plans. Moreover, the remaining problems of artificial releases are discussed in-depth, touching on issues such as the limitations of domestic hatching, the base number of wild populations necessary to the environment, the proper size at which to release juveniles' into the environment, the geographic confusion of populations, the contradictions in commercial fish selection and fish conservation, and "exotic species" invasion.

  11. Estimating the hatchery fraction of a natural population: a Bayesian approach

    USGS Publications Warehouse

    Barber, Jarrett J.; Gerow, Kenneth G.; Connolly, Patrick J.; Singh, Sarabdeep

    2011-01-01

    There is strong and growing interest in estimating the proportion of hatchery fish that are in a natural population (the hatchery fraction). In a sample of fish from the relevant population, some are observed to be marked, indicating their origin as hatchery fish. The observed proportion of marked fish is usually less than the actual hatchery fraction, since the observed proportion is determined by the proportion originally marked, differential survival (usually lower) of marked fish relative to unmarked hatchery fish, and rates of mark retention and detection. Bayesian methods can work well in a setting such as this, in which empirical data are limited but for which there may be considerable expert judgment regarding these values. We explored a Bayesian estimation of the hatchery fraction using Monte Carlo–Markov chain methods. Based on our findings, we created an interactive Excel tool to implement the algorithm, which we have made available for free.

  12. Long-term survival despite low genetic diversity in the critically endangered Madagascar fish-eagle

    USGS Publications Warehouse

    Johnson, J.A.; Tingay, R.E.; Culver, M.; Hailer, F.; Clarke, M.L.; Mindell, D.P.

    2009-01-01

    The critically endangered Madagascar fish-eagle (Haliaeetus vociferoides) is considered to be one of the rarest birds of prey globally and at significant risk of extinction. In the most recent census, only 222 adult individuals were recorded with an estimated total breeding population of no more than 100-120 pairs. Here, levels of Madagascar fish-eagle population genetic diversity based on 47 microsatellite loci were compared with its sister species, the African fish-eagle (Haliaeetus vocifer), and 16 of these loci were also characterized in the white-tailed eagle (Haliaeetus albicilla) and the bald eagle (Haliaeetus leucocephalus). Overall, extremely low genetic diversity was observed in the Madagascar fish-eagle compared to other surveyed Haliaeetus species. Determining whether this low diversity is the result of a recent bottleneck or a more historic event has important implications for their conservation. Using a Bayesian coalescent-based method, we show that Madagascar fish-eagles have maintained a small effective population size for hundreds to thousands of years and that its low level of neutral genetic diversity is not the result of a recent bottleneck. Therefore, efforts made to prevent Madagascar fish-eagle extinction should place high priority on maintenance of habitat requirements and reducing direct and indirect human persecution. Given the current rate of deforestation in Madagascar, we further recommend that the population be expanded to occupy a larger geographical distribution. This will help the population persist when exposed to stochastic factors (e.g. climate and disease) that may threaten a species consisting of only 200 adult individuals while inhabiting a rapidly changing landscape. ?? 2008 The Authors.

  13. Long-term survival despite low genetic diversity in the critically endangered Madagascar fish-eagle.

    PubMed

    Johnson, Jeff A; Tingay, Ruth E; Culver, Melanie; Hailer, Frank; Clarke, Michèle L; Mindell, David P

    2009-01-01

    The critically endangered Madagascar fish-eagle (Haliaeetus vociferoides) is considered to be one of the rarest birds of prey globally and at significant risk of extinction. In the most recent census, only 222 adult individuals were recorded with an estimated total breeding population of no more than 100-120 pairs. Here, levels of Madagascar fish-eagle population genetic diversity based on 47 microsatellite loci were compared with its sister species, the African fish-eagle (Haliaeetus vocifer), and 16 of these loci were also characterized in the white-tailed eagle (Haliaeetus albicilla) and the bald eagle (Haliaeetus leucocephalus). Overall, extremely low genetic diversity was observed in the Madagascar fish-eagle compared to other surveyed Haliaeetus species. Determining whether this low diversity is the result of a recent bottleneck or a more historic event has important implications for their conservation. Using a Bayesian coalescent-based method, we show that Madagascar fish-eagles have maintained a small effective population size for hundreds to thousands of years and that its low level of neutral genetic diversity is not the result of a recent bottleneck. Therefore, efforts made to prevent Madagascar fish-eagle extinction should place high priority on maintenance of habitat requirements and reducing direct and indirect human persecution. Given the current rate of deforestation in Madagascar, we further recommend that the population be expanded to occupy a larger geographical distribution. This will help the population persist when exposed to stochastic factors (e.g. climate and disease) that may threaten a species consisting of only 200 adult individuals while inhabiting a rapidly changing landscape.

  14. Fish consumption, fish oil supplements and risk of atherosclerosis in the Tromsø study.

    PubMed

    Johnsen, Stein Harald; Jacobsen, Bjarne K; Brækkan, Sigrid K; Hansen, John-Bjarne; Mathiesen, Ellisiv B

    2018-05-25

    Whether long-chain n-3 PUFAs of marine origin have an anti-atherogenic effect in the general population has hardly been studied. In this population-based study, we hypothesized that fatty fish and fish oil intake protect against development of novel atherosclerotic plaques and is associated with reduced plaque size. We obtained questionnaire-based information on fish consumption and carotid ultrasonography from 3900 persons aged 45-74 years. The questionnaires were validated by measuring serum concentrations of PUFAs and triglycerides in a subgroup. At follow-up seven years later, 2983 (76%) went through a second ultrasound scanning. Logistic regression and general linear models were used to analyze the outcome (plaque presence and plaque area) as a function of fish consumption, including analyses stratified on fish oil supplements. At baseline, lean fish intake < 1 time/week vs. 1-1.9 times/week was associated with risk of plaque (OR 1.34, 95% CI 1.03-1.76). Fatty fish intake and use of fish oil supplements were not statistically significantly associated with atherosclerosis at baseline. In persons without plaque at baseline, total fish consumption ≥3 times/week vs. 1-1.9 times/week was associated with risk of novel plaque (OR 1.32, 95% CI 1.01-1.73) and larger plaque area (1.76 mm 2 vs. 1.46 mm 2 , p = 0.02) at follow-up. Adjustments for use of fish oil supplements had no impact on the associations, and no interactions were seen between total, fatty or lean fish consumption and fish oil intake. We found no protective effect of fatty fish eating or fish oil supplements on atherosclerotic plaque formation or plaque area in a general population. Lean fish consumption was associated with a reduced risk for plaque in cross-sectional analysis, suggesting that the beneficial effects of fish consumption on atherosclerosis may be mediated through other mechanisms than n-3 PUFAs.

  15. Estimating multi-factor cumulative watershed effects on fish populations with an individual-based model

    Treesearch

    Bret C. Harvey; Steven F. Railsback

    2007-01-01

    While the concept of cumulative effects is prominent in legislation governing environmental management, the ability to estimate cumulative effects remains limited. One reason for this limitation is that important natural resources such as fish populations may exhibit complex responses to changes in environmental conditions, particularly to alteration of multiple...

  16. High-throughput telomere length quantification by FISH and its application to human population studies.

    PubMed

    Canela, Andrés; Vera, Elsa; Klatt, Peter; Blasco, María A

    2007-03-27

    A major limitation of studies of the relevance of telomere length to cancer and age-related diseases in human populations and to the development of telomere-based therapies has been the lack of suitable high-throughput (HT) assays to measure telomere length. We have developed an automated HT quantitative telomere FISH platform, HT quantitative FISH (Q-FISH), which allows the quantification of telomere length as well as percentage of short telomeres in large human sample sets. We show here that this technique provides the accuracy and sensitivity to uncover associations between telomere length and human disease.

  17. Invasive lionfish had no measurable effect on prey fish community structure across the Belizean Barrier Reef

    PubMed Central

    Valdivia, Abel; Cox, Courtney E.; Silbiger, Nyssa J.; Bruno, John F.

    2017-01-01

    Invasive lionfish are assumed to significantly affect Caribbean reef fish communities. However, evidence of lionfish effects on native reef fishes is based on uncontrolled observational studies or small-scale, unrepresentative experiments, with findings ranging from no effect to large effects on prey density and richness. Moreover, whether lionfish affect populations and communities of native reef fishes at larger, management-relevant scales is unknown. The purpose of this study was to assess the effects of lionfish on coral reef prey fish communities in a natural complex reef system. We quantified lionfish and the density, richness, and composition of native prey fishes (0–10 cm total length) at sixteen reefs along ∼250 km of the Belize Barrier Reef from 2009 to 2013. Lionfish invaded our study sites during this four-year longitudinal study, thus our sampling included fish community structure before and after our sites were invaded, i.e., we employed a modified BACI design. We found no evidence that lionfish measurably affected the density, richness, or composition of prey fishes. It is possible that higher lionfish densities are necessary to detect an effect of lionfish on prey populations at this relatively large spatial scale. Alternatively, negative effects of lionfish on prey could be small, essentially undetectable, and ecologically insignificant at our study sites. Other factors that influence the dynamics of reef fish populations including reef complexity, resource availability, recruitment, predation, and fishing could swamp any effects of lionfish on prey populations. PMID:28560093

  18. Invasive lionfish had no measurable effect on prey fish community structure across the Belizean Barrier Reef.

    PubMed

    Hackerott, Serena; Valdivia, Abel; Cox, Courtney E; Silbiger, Nyssa J; Bruno, John F

    2017-01-01

    Invasive lionfish are assumed to significantly affect Caribbean reef fish communities. However, evidence of lionfish effects on native reef fishes is based on uncontrolled observational studies or small-scale, unrepresentative experiments, with findings ranging from no effect to large effects on prey density and richness. Moreover, whether lionfish affect populations and communities of native reef fishes at larger, management-relevant scales is unknown. The purpose of this study was to assess the effects of lionfish on coral reef prey fish communities in a natural complex reef system. We quantified lionfish and the density, richness, and composition of native prey fishes (0-10 cm total length) at sixteen reefs along ∼250 km of the Belize Barrier Reef from 2009 to 2013. Lionfish invaded our study sites during this four-year longitudinal study, thus our sampling included fish community structure before and after our sites were invaded, i.e., we employed a modified BACI design. We found no evidence that lionfish measurably affected the density, richness, or composition of prey fishes. It is possible that higher lionfish densities are necessary to detect an effect of lionfish on prey populations at this relatively large spatial scale. Alternatively, negative effects of lionfish on prey could be small, essentially undetectable, and ecologically insignificant at our study sites. Other factors that influence the dynamics of reef fish populations including reef complexity, resource availability, recruitment, predation, and fishing could swamp any effects of lionfish on prey populations.

  19. Rapid estimation of microbial populations in fish samples by using terminal restriction fragment length polymorphism analysis of 16S rDNA.

    PubMed

    Tanaka, Yuichiro; Takahashi, Hajime; Kitazawa, Nao; Kimura, Bon

    2010-01-01

    A rapid system using terminal restriction fragment length polymorphism (T-RFLP) analysis targeting 16S rDNA is described for microbial population analysis in edible fish samples. The defined terminal restriction fragment database was constructed by collecting 102 strains of bacteria representing 53 genera that are associated with fish. Digestion of these 102 strains with two restriction enzymes, HhaI and MspI, formed 54 pattern groups with discrimination to the genus level. This T-RFLP system produced results comparable to those from a culture-based method in six natural fish samples with a qualitative correspondence of 71.4 to 92.3%. Using the T-RFLP system allowed an estimation of the microbial population within 7 h. Rapid assay of the microbial population is advantageous for food manufacturers and testing laboratories; moreover, the strategy presented here allows adaptation to specific testing applications.

  20. Log-linear model based behavior selection method for artificial fish swarm algorithm.

    PubMed

    Huang, Zhehuang; Chen, Yidong

    2015-01-01

    Artificial fish swarm algorithm (AFSA) is a population based optimization technique inspired by social behavior of fishes. In past several years, AFSA has been successfully applied in many research and application areas. The behavior of fishes has a crucial impact on the performance of AFSA, such as global exploration ability and convergence speed. How to construct and select behaviors of fishes are an important task. To solve these problems, an improved artificial fish swarm algorithm based on log-linear model is proposed and implemented in this paper. There are three main works. Firstly, we proposed a new behavior selection algorithm based on log-linear model which can enhance decision making ability of behavior selection. Secondly, adaptive movement behavior based on adaptive weight is presented, which can dynamically adjust according to the diversity of fishes. Finally, some new behaviors are defined and introduced into artificial fish swarm algorithm at the first time to improve global optimization capability. The experiments on high dimensional function optimization showed that the improved algorithm has more powerful global exploration ability and reasonable convergence speed compared with the standard artificial fish swarm algorithm.

  1. Fish consumption, marine omega-3 fatty acids, and incidence of heart failure: a population-based prospective study of middle-aged and elderly men.

    PubMed

    Levitan, Emily B; Wolk, Alicja; Mittleman, Murray A

    2009-06-01

    Fatty fish and marine omega-3 fatty acids were associated with lower rates of heart failure (HF) among US elderly, but this has not been confirmed in broader age ranges or other populations where source and type of fish may differ. We therefore conducted a population-based, prospective study of 39 367 middle-aged and older Swedish men. Diet was measured using food-frequency questionnaires. Men were followed for HF through Swedish inpatient and cause-of-death registers from 1 January 1998 to 31 December 2004. We used proportional hazards models adjusted for age and other covariates to estimate hazard ratios (HR). Compared with no consumption, men who ate fatty fish once per week had an HR of 0.88 (95% CI 0.68-1.13). Hazard ratios for consumption two times per week and > or =3 times per week were 0.99 and 0.97, respectively. Hazard ratios across quintiles of marine omega-3 were 1, 0.94 (95% CI 0.74-1.20), 0.67 (95% CI 0.50-0.90), 0.89 (95% CI 0.68-1.16), 1.00 (95% CI 0.77-1.29). In this population, moderate intake of fatty fish and marine omega-3 fatty acids was associated with lower rates of HF, though the association for fish intake was not statistically significant; higher intake was not associated with additional benefit.

  2. Compensatory mechanisms in fish populations: Literature reviews: Volume 2, Compensation in fish populations subject to catastrophic impact: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jude, D.J.; Mansfield, P.J.; Schneeberger, P.J.

    1987-05-01

    This study comprises an extensive literature review, critical evaluations of case histories, and considered recommendations for future research on the mechanisms and extent of compensation by various fish species subject to catastrophic impacts. ''Catastrophic impact'' was defined as an event which removes some limitation (such as food or space) on a fish population. Those events studied included new species introduction, toxic spills, exploitation of specific fish populations, and drawdown. The fish studied each had more than one compensatory mechanism available, and thus were able to respond to a catastrophic event even if an option was removed. Predation, overfishing, competition, disease,more » and parasitism are all potential catastrophies, but were found not to cause a catastrophic impact (except in special cases). In general, compensatory responses were determined to vary widely, even for species which perform fairly similar functions in an ecosystem. The extensive nature of this study, however, pointed up the many data gaps in the existing literature; recommendations are therefore made for followup research and expansion of ongoing monitoring programs, based on an evaluation of their relative importance.« less

  3. Length-Based Assessment of Coral Reef Fish Populations in the Main and Northwestern Hawaiian Islands

    PubMed Central

    Nadon, Marc O.; Ault, Jerald S.; Williams, Ivor D.; Smith, Steven G.; DiNardo, Gerard T.

    2015-01-01

    The coral reef fish community of Hawaii is composed of hundreds of species, supports a multimillion dollar fishing and tourism industry, and is of great cultural importance to the local population. However, a major stock assessment of Hawaiian coral reef fish populations has not yet been conducted. Here we used the robust indicator variable “average length in the exploited phase of the population (L¯)”, estimated from size composition data from commercial fisheries trip reports and fishery-independent diver surveys, to evaluate exploitation rates for 19 Hawaiian reef fishes. By and large, the average lengths obtained from diver surveys agreed well with those from commercial data. We used the estimated exploitation rates coupled with life history parameters synthesized from the literature to parameterize a numerical population model and generate stock sustainability metrics such as spawning potential ratios (SPR). We found good agreement between predicted average lengths in an unfished population (from our population model) and those observed from diver surveys in the largely unexploited Northwestern Hawaiian Islands. Of 19 exploited reef fish species assessed in the main Hawaiian Islands, 9 had SPRs close to or below the 30% overfishing threshold. In general, longer-lived species such as surgeonfishes, the redlip parrotfish (Scarus rubroviolaceus), and the gray snapper (Aprion virescens) had the lowest SPRs, while short-lived species such as goatfishes and jacks, as well as two invasive species (Lutjanus kasmira and Cephalopholis argus), had SPRs above the 30% threshold. PMID:26267473

  4. Population viability analysis for endangered Roanoke logperch

    USGS Publications Warehouse

    Roberts, James H.; Angermeier, Paul; Anderson, Gregory B.

    2016-01-01

    A common strategy for recovering endangered species is ensuring that populations exceed the minimum viable population size (MVP), a demographic benchmark that theoretically ensures low long-term extinction risk. One method of establishing MVP is population viability analysis, a modeling technique that simulates population trajectories and forecasts extinction risk based on a series of biological, environmental, and management assumptions. Such models also help identify key uncertainties that have a large influence on extinction risk. We used stochastic count-based simulation models to explore extinction risk, MVP, and the possible benefits of alternative management strategies in populations of Roanoke logperch Percina rex, an endangered stream fish. Estimates of extinction risk were sensitive to the assumed population growth rate and model type, carrying capacity, and catastrophe regime (frequency and severity of anthropogenic fish kills), whereas demographic augmentation did little to reduce extinction risk. Under density-dependent growth, the estimated MVP for Roanoke logperch ranged from 200 to 4200 individuals, depending on the assumed severity of catastrophes. Thus, depending on the MVP threshold, anywhere from two to all five of the logperch populations we assessed were projected to be viable. Despite this uncertainty, these results help identify populations with the greatest relative extinction risk, as well as management strategies that might reduce this risk the most, such as increasing carrying capacity and reducing fish kills. Better estimates of population growth parameters and catastrophe regimes would facilitate the refinement of MVP and extinction-risk estimates, and they should be a high priority for future research on Roanoke logperch and other imperiled stream-fish species.

  5. Fishing-induced changes in adult length are mediated by skipped-spawning.

    PubMed

    Wang, Hui-Yu; Chen, Ying-Shiuan; Hsu, Chien-Chung; Shen, Sheng-Feng

    2017-01-01

    Elucidating fishing effects on fish population dynamics is a critical step toward sustainable fisheries management. Despite previous studies that have suggested age or size truncation in exploited fish populations, other aspects of fishing effects on population demography, e.g., via altering life histories and density, have received less attention. Here, we investigated the fishing effects altering adult demography via shifting reproductive trade-offs in the iconic, overexploited, Pacific bluefin tuna Thunnus orientalis. We found that, contrary to our expectation, mean lengths of catch increased over time in longline fisheries. On the other hand, mean catch lengths for purse seine fisheries did not show such increasing trends. We hypothesized that the size-dependent energetic cost of the spawning migration and elevated fishing mortality on the spawning grounds potentially drive size-dependent skipped spawning for adult tuna, mediating the observed changes in the catch lengths. Using eco-genetic individual-based modeling, we demonstrated that fishing-induced evolution of skipped spawning and size truncation interacted to shape the observed temporal changes in mean catch lengths for tuna. Skipped spawning of the small adults led to increased mean catch lengths for the longline fisheries, while truncation of small adults by the purse seines could offset such a pattern. Our results highlight the eco-evolutionary dynamics of fishing effects on population demography and caution against using demographic traits as a basis for fisheries management of the Pacific bluefin tuna as well as other migratory species. © 2016 by the Ecological Society of America.

  6. Environmental Factors Affecting Large-Bodied Coral Reef Fish Assemblages in the Mariana Archipelago

    PubMed Central

    Richards, Benjamin L.; Williams, Ivor D.; Vetter, Oliver J.; Williams, Gareth J.

    2012-01-01

    Large-bodied reef fishes represent an economically and ecologically important segment of the coral reef fish assemblage. Many of these individuals supply the bulk of the reproductive output for their population and have a disproportionate effect on their environment (e.g. as apex predators or bioeroding herbivores). Large-bodied reef fishes also tend to be at greatest risk of overfishing, and their loss can result in a myriad of either cascading (direct) or indirect trophic and other effects. While many studies have investigated habitat characteristics affecting populations of small-bodied reef fishes, few have explored the relationship between large-bodied species and their environment. Here, we describe the distribution of the large-bodied reef fishes in the Mariana Archipelago with an emphasis on the environmental factors associated with their distribution. Of the factors considered in this study, a negative association with human population density showed the highest relative influence on the distribution of large-bodied reef fishes; however, depth, water temperature, and distance to deep water also were important. These findings provide new information on the ecology of large-bodied reef fishes can inform discussions concerning essential fish habitat and ecosystem-based management for these species and highlight important knowledge gaps worthy of additional research. PMID:22384014

  7. Environmental factors affecting large-bodied coral reef fish assemblages in the Mariana Archipelago.

    PubMed

    Richards, Benjamin L; Williams, Ivor D; Vetter, Oliver J; Williams, Gareth J

    2012-01-01

    Large-bodied reef fishes represent an economically and ecologically important segment of the coral reef fish assemblage. Many of these individuals supply the bulk of the reproductive output for their population and have a disproportionate effect on their environment (e.g. as apex predators or bioeroding herbivores). Large-bodied reef fishes also tend to be at greatest risk of overfishing, and their loss can result in a myriad of either cascading (direct) or indirect trophic and other effects. While many studies have investigated habitat characteristics affecting populations of small-bodied reef fishes, few have explored the relationship between large-bodied species and their environment. Here, we describe the distribution of the large-bodied reef fishes in the Mariana Archipelago with an emphasis on the environmental factors associated with their distribution. Of the factors considered in this study, a negative association with human population density showed the highest relative influence on the distribution of large-bodied reef fishes; however, depth, water temperature, and distance to deep water also were important. These findings provide new information on the ecology of large-bodied reef fishes can inform discussions concerning essential fish habitat and ecosystem-based management for these species and highlight important knowledge gaps worthy of additional research.

  8. Long-term effect of rice-based farming systems on soil health.

    PubMed

    Bihari, Priyanka; Nayak, A K; Gautam, Priyanka; Lal, B; Shahid, M; Raja, R; Tripathi, R; Bhattacharyya, P; Panda, B B; Mohanty, S; Rao, K S

    2015-05-01

    Integrated rice-fish culture, an age-old farming system, is a technology which could produce rice and fish sustainably at a time by optimizing scarce resource use through complementary use of land and water. An understanding of microbial processes is important for the management of farming systems as soil microbes are the living part of soil organic matter and play critical roles in soil C and N cycling and ecosystem functioning of farming system. Rice-based integrated farming system model for small and marginal farmers was established in 2001 at Central Rice Research Institute, Cuttack, Odisha. The different enterprises of farming system were rice-fish, fish-fingerlings, fruits, vegetables, rice-fish refuge, and agroforestry. This study was conducted with the objective to assess the soil physicochemical properties, microbial population, carbon and nitrogen fractions, soil enzymatic activity, and productivity of different enterprises. The effect of enterprises induced significant changes in the chemical composition and organic matter which in turn influenced the activities of enzymes (urease, acid, and alkaline phosphatase) involved in the C, N, and P cycles. The different enterprises of long-term rice-based farming system caused significant variations in nutrient content of soil, which was higher in rice-fish refuge followed by rice-fish enterprise. Highest microbial populations and enzymatic properties were recorded in rice-fish refuge system because of waterlogging and reduced condition prolonged in this system leading to less decomposition of organic matter. The maximum alkaline phosphatase, urease, and FDA were observed in rice-fish enterprise. However, highest acid phosphatase and dehydrogenase activity were obtained in vegetable enterprise and fish-fingerlings enterprise, respectively.

  9. Comparative Analysis of State Fish Consumption Advisories Targeting Sensitive Populations

    PubMed Central

    Scherer, Alison C.; Tsuchiya, Ami; Younglove, Lisa R.; Burbacher, Thomas M.; Faustman, Elaine M.

    2008-01-01

    Objective Fish consumption advisories are issued to warn the public of possible toxicological threats from consuming certain fish species. Although developing fetuses and children are particularly susceptible to toxicants in fish, fish also contain valuable nutrients. Hence, formulating advice for sensitive populations poses challenges. We conducted a comparative analysis of advisory Web sites issued by states to assess health messages that sensitive populations might access. Data sources We evaluated state advisories accessed via the National Listing of Fish Advisories issued by the U.S. Environmental Protection Agency. Data extraction We created criteria to evaluate advisory attributes such as risk and benefit message clarity. Data synthesis All 48 state advisories issued at the time of this analysis targeted children, 90% (43) targeted pregnant women, and 58% (28) targeted women of childbearing age. Only six advisories addressed single contaminants, while the remainder based advice on 2–12 contaminants. Results revealed that advisories associated a dozen contaminants with specific adverse health effects. Beneficial health effects of any kind were specifically associated only with omega-3 fatty acids found in fish. Conclusions These findings highlight the complexity of assessing and communicating information about multiple contaminant exposure from fish consumption. Communication regarding potential health benefits conferred by specific fish nutrients was minimal and focused primarily on omega-3 fatty acids. This overview suggests some lessons learned and highlights a lack of both clarity and consistency in providing the breadth of information that sensitive populations such as pregnant women need to make public health decisions about fish consumption during pregnancy. PMID:19079708

  10. Isotopic structure of Lake Whitefish in Lake Huron: Evidence for regional and local populations based on resource use

    USGS Publications Warehouse

    Eberts, Rebecca L.; Wissel, Bjorn; Simpson, Gavin L.; Crawford, Stephen S.; Stott, Wendylee; Hanner, Robert H.; Manzon, Richard G.; Wilson, Joanna Y.; Boreham, Douglas R.; Somers, Christopher M.

    2017-01-01

    Lake Whitefish Coregonus clupeaformis is the most commercially valuable species in Lake Huron. The fishery for this species has historically been managed based on 25 management units (17 in Canada, 8 in the USA). However, congruence between the contemporary population structure of Lake Whitefish and management units is poorly understood. We used stable isotopes of carbon (δ13C) and nitrogen (δ15N), food web markers that reflect patterns in resource use (i.e., prey, location, habitat), to assess the population structure of spawning-phase Lake Whitefish collected from 32 sites (1,474 fish) across Lake Huron. We found large isotopic variation among fish from different sites (ranges: δ13C = 10.2‰, δ15N = 5.5‰) and variable niche size and levels of overlap (standard ellipse area = 1.0–4.3‰2). Lake Huron contained spawning-phase fish from four major isotopic clusters largely defined by extensive variation in δ13C, and the isotopic composition of fish sampled was spatially structured both within and between lake basins. Based on cluster compositions, we identified six putative regional groups, some of which represented sites of high diversity (three to four clusters) and others with less (one to two clusters). Analysis of isotopic values from Lake Whitefish collected from summer feeding locations and baseline prey items showed similar isotopic variation and established spatial linkage between spawning-phase and summer fish. Our results show that summer feeding location contributes strongly to the isotopic structure we observed in spawning-phase fish. One of the regional groups we identified in northern Georgian Bay is highly distinct based on isotopic composition and possibly ecologically unique within Lake Huron. Our findings are congruent with several previous studies using different markers (genetics, mark–recapture), and we conclude that current management units are generally too small and numerous to reflect the population structure of Lake Whitefish in Lake Huron.

  11. Microhabitat use, not temperature, regulates intensity of Gyrodactylus cichlidarum long-term infection on farmed tilapia--are parasites evading competition or immunity?

    PubMed

    Rubio-Godoy, Miguel; Muñoz-Córdova, Germán; Garduño-Lugo, Mario; Salazar-Ulloa, Martha; Mercado-Vidal, Gabriel

    2012-02-10

    Gyrodactylids (Monogenea) are ectoparasites of fish, some of which negatively affect commercially valuable fishes. Temperature strongly regulates population dynamics of these viviparous flatworms in farmed and wild fish populations, with most gyrodactylid species showing positive temperature-abundance associations. In agreement with epidemiological theory, numerous laboratory studies demonstrate that these parasites cannot persist in confined fish populations without periodic introduction of susceptible hosts. Extinction of gyrodactylid populations is due to host immunity, which develops in several fish species. In this one-year study, we followed populations of the recognized pathogen Gyrodactylus cichlidarum infecting four genetic groups of confined tilapia (wild type Nile tilapia Oreochromis niloticus niloticus, red O. n. niloticus, Mozambique tilapia O. mossambicus and a red synthetic population called Pargo-UNAM) kept under farming conditions and subject to natural environmental fluctuations. Based on the antecedents given, we postulated the following three hypotheses: (1) parasite abundance will be regulated by water temperature; (2) parasites will induce host mortality, particularly during periods of rapid infrapopulation growth; and (3) gyrodactylid populations will eventually become extinct on confined fish hosts. We disproved the three hypotheses: (1) parasite numbers fluctuated independently of temperature but were associated to changes in microhabitat use; (2) although gyrodactylid populations exhibited considerable growth, no evidence was found of negative effects on the hosts; and (3) infections persisted for one year on confined fish. Microhabitat use changed over time, with most worms apparently migrating anteriorly from the caudal fin and ending on the pectoral fins. Gyrodactylid populations followed similar trajectories in all fish, aggregating and dispersing repeatedly. Several instances were found where increased parasite dispersion coincided with increased intensity of infection; as well as the opposite, where increased aggregation coincided with parasite population declines. Three alternative explanations could account for these observations: that parasites (1) experience differential mortality on different anatomical regions of the fish; (2) migrate to avoid intraspecific competition; and (3) migrate to escape localized immune responses induced by infection. Our data do not allow us to demonstrate which of these alternatives is correct, so we discuss the merits of each. We provide circumstantial evidence in support of the third explanation, because as shown in other fish host-gyrodactylid interactions where immune responses have been characterized, in this study worms progressively moved away from fins with high mucus cell density to those with low density - what would be anticipated if immune defenses occur and reach the fish surface through mucus. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. The cumulative MeHg and PCBs exposure and risk of tribal ...

    EPA Pesticide Factsheets

    Studies have shown that the U.S. population continues to be exposed to methyl mercury (MeHg) and polychlorinated biphenyls (PCBs) due to the long half-life of those environmental contaminants. Fish intake of Tribal populations is much higher than the U.S. general population due to dietary habits and unique cultural practices. Large fish tissue concentration data sets from the Environmental Protections Agency’s (EPA’s) Office of Water, USGS’s EMMMA program, and other data sources, were integrated, analyzed, and combined with recent tribal fish intake data for exposure analyses using the dietary module within EPA’s SHEDS-Multimedia model. SHEDS-Multimedia is a physically-based, probabilistic model, which can simulate cumulative (multiple chemicals) or aggregate (single chemical) exposures over time for a population via various pathways of exposure for a variety of multimedia, multipathway environmental chemicals. Our results show that MeHg and total PCBs exposure of tribal populations from fish are about 3 to 10 and 5 to 15 times higher than the US general population, respectively, and that the estimated exposures pose potential health risks. The cumulative exposures of MeHg and total PCBs will be assessed to generate the joint exposure profiles for Tribal and US general populations. Model sensitivity analyses will identify the important contributions of the cumulative exposures of MeHg and total PCBs such as fish types, locations, and size, and key expos

  13. Age-structured mark-recapture analysis: A virtual-population-analysis-based model for analyzing age-structured capture-recapture data

    USGS Publications Warehouse

    Coggins, L.G.; Pine, William E.; Walters, C.J.; Martell, S.J.D.

    2006-01-01

    We present a new model to estimate capture probabilities, survival, abundance, and recruitment using traditional Jolly-Seber capture-recapture methods within a standard fisheries virtual population analysis framework. This approach compares the numbers of marked and unmarked fish at age captured in each year of sampling with predictions based on estimated vulnerabilities and abundance in a likelihood function. Recruitment to the earliest age at which fish can be tagged is estimated by using a virtual population analysis method to back-calculate the expected numbers of unmarked fish at risk of capture. By using information from both marked and unmarked animals in a standard fisheries age structure framework, this approach is well suited to the sparse data situations common in long-term capture-recapture programs with variable sampling effort. ?? Copyright by the American Fisheries Society 2006.

  14. Log-Linear Model Based Behavior Selection Method for Artificial Fish Swarm Algorithm

    PubMed Central

    Huang, Zhehuang; Chen, Yidong

    2015-01-01

    Artificial fish swarm algorithm (AFSA) is a population based optimization technique inspired by social behavior of fishes. In past several years, AFSA has been successfully applied in many research and application areas. The behavior of fishes has a crucial impact on the performance of AFSA, such as global exploration ability and convergence speed. How to construct and select behaviors of fishes are an important task. To solve these problems, an improved artificial fish swarm algorithm based on log-linear model is proposed and implemented in this paper. There are three main works. Firstly, we proposed a new behavior selection algorithm based on log-linear model which can enhance decision making ability of behavior selection. Secondly, adaptive movement behavior based on adaptive weight is presented, which can dynamically adjust according to the diversity of fishes. Finally, some new behaviors are defined and introduced into artificial fish swarm algorithm at the first time to improve global optimization capability. The experiments on high dimensional function optimization showed that the improved algorithm has more powerful global exploration ability and reasonable convergence speed compared with the standard artificial fish swarm algorithm. PMID:25691895

  15. EFFECTS OF DIOXIN-LIKE COMPOUND CONTAMINATION ON AN ESTUARINE FISH SPECIES: ADAPTIVE CHANGES AT SPECIFIC GENETIC LOCI

    EPA Science Inventory

    Fish from a highly PCB-contaminated Superfund site (New Bedford, Massachusetts, USA) that show genetically-based tolerance to DLCs (Nacci, D. et al. 1999. Mar.Biol.134: 9-17) also have altered MHC Class II antigen-binding receptor profiles compared to a population of fish from a ...

  16. Conflict in the Currents: The Cross-boundary Consequences of Larval Dispersal

    NASA Astrophysics Data System (ADS)

    Rising, J. A.; Ramesh, N.; Dookie, D.

    2016-02-01

    As commercial fish populations decline in many regions, the increasing demand for ocean resources can create conflicts along international boundaries. Because fish stock ranges do not respect political boundaries, neighboring countries can impact each other through the management of the stocks within their exclusive economic zones. By combining spawning and larvae information from the FishBase database with current velocities from ocean reanalyses using a particle tracking scheme, we construct a measure of the cross-boundary diffusion of fish larvae for 40 major exploited species. These flows represent important connections both for fish populations and for fisheries and the people who depend on them, but these connections rely on fisheries management in the 'source' countries. We then use socioeconomic data on the national importance of these fish to identify hotspots for potential conflict. Finally, we consider how ranges will shift under climate change, and the social impacts of these shifts.

  17. Population Viability Analysis of Riverine Fishes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bates, P.; Chandler, J.; Jager, H.I.

    Many utilities face conflkts between two goals: cost-efficient hydropower generation and protecting riverine fishes. Research to develop ecological simulation tools that can evaluate alternative mitigation strategies in terms of their benefits to fish populations is vital to informed decision-making. In this paper, we describe our approach to population viability analysis of riverine fishes in general and Snake River white sturgeon in particular. We are finding that the individual-based modeling approach used in previous in-stream flow applications is well suited to addressing questions about the viability of species of concern for several reasons. Chief among these are: (1) the abiIity tomore » represent the effects of individual variation in life history characteristics on predicted population viabili~, (2) the flexibili~ needed to quanti~ the ecological benefits of alternative flow management options by representing spatial and temporal variation in flow and temperaturty and (3) the flexibility needed to quantifi the ecological benefits of non-flow related manipulations (i.e., passage, screening and hatchery supplementation).« less

  18. Fishing degrades size structure of coral reef fish communities.

    PubMed

    Robinson, James P W; Williams, Ivor D; Edwards, Andrew M; McPherson, Jana; Yeager, Lauren; Vigliola, Laurent; Brainard, Russell E; Baum, Julia K

    2017-03-01

    Fishing pressure on coral reef ecosystems has been frequently linked to reductions of large fishes and reef fish biomass. Associated impacts on overall community structure are, however, less clear. In size-structured aquatic ecosystems, fishing impacts are commonly quantified using size spectra, which describe the distribution of individual body sizes within a community. We examined the size spectra and biomass of coral reef fish communities at 38 US-affiliated Pacific islands that ranged in human presence from near pristine to human population centers. Size spectra 'steepened' steadily with increasing human population and proximity to market due to a reduction in the relative biomass of large fishes and an increase in the dominance of small fishes. Reef fish biomass was substantially lower on inhabited islands than uninhabited ones, even at inhabited islands with the lowest levels of human presence. We found that on populated islands size spectra exponents decreased (analogous to size spectra steepening) linearly with declining biomass, whereas on uninhabited islands there was no relationship. Size spectra were steeper in regions of low sea surface temperature but were insensitive to variation in other environmental and geomorphic covariates. In contrast, reef fish biomass was highly sensitive to oceanographic conditions, being influenced by both oceanic productivity and sea surface temperature. Our results suggest that community size structure may be a more robust indicator than fish biomass to increasing human presence and that size spectra are reliable indicators of exploitation impacts across regions of different fish community compositions, environmental drivers, and fisheries types. Size-based approaches that link directly to functional properties of fish communities, and are relatively insensitive to abiotic variation across biogeographic regions, offer great potential for developing our understanding of fishing impacts in coral reef ecosystems. © 2016 John Wiley & Sons Ltd.

  19. Distribution and habitat use of the Missouri River and Lower Yellowstone River benthic fishes from 1996 to 1998: A baseline for fish community recovery

    USGS Publications Warehouse

    Wildhaber, M.L.; Gladish, D.W.; Arab, A.

    2011-01-01

    Past and present Missouri River management practices have resulted in native fishes being identified as in jeopardy. In 1995, the Missouri River Benthic Fishes Study was initiated to provide improved information on Missouri River fish populations and how alterations might affect them. The study produced a baseline against which to evaluate future changes in Missouri River operating criteria. The objective was to evaluate population structure and habitat use of benthic fishes along the entire mainstem Missouri River, exclusive of reservoirs. Here we use the data from this study to provide a recent-past baseline for on-going Missouri River fish population monitoring programmes along with a more powerful method for analysing data containing large percentages of zero values. This is carried out by describing the distribution and habitat use of 21 species of Missouri River benthic fishes based on catch-per-unit area data from multiple gears. We employ a Bayesian zero-inflated Poisson model expanded to include continuous measures of habitat quality (i.e. substrate composition, depth, velocity, temperature, turbidity and conductivity). Along with presenting the method, we provide a relatively complete picture of the Missouri River benthic fish community and the relationship between their relative population numbers and habitat conditions. We demonstrate that our single model provides all the information that is often obtained by a myriad of analytical techniques. An important advantage of the present approach is reliable inference for patterns of relative abundance using multiple gears without using gear efficiencies.

  20. Impacts of invasive fish removal through angling on population characteristics and juvenile growth rate.

    PubMed

    Evangelista, Charlotte; Britton, Robert J; Cucherousset, Julien

    2015-06-01

    Exploitation can modify the characteristics of fish populations through the selective harvesting of individuals, with this potentially leading to rapid ecological and evolutionary changes. Despite the well-known effects of invasive fishes on aquatic ecosystems generally, the potential effects of their selective removal through angling, a strategy commonly used to manage invasive fish, are poorly understood. The aim of this field-based study was to use the North American pumpkinseed Lepomis gibbosus as the model species to investigate the consequences of selective removal on their population characteristics and juvenile growth rates across 10 populations in artificial lakes in southern France. We found that the maximal individual mass in populations decreased as removal pressure through angling increased, whereas we did not observed any changes in the maximal individual length in populations as removal pressure increased. Total population abundance did not decrease as removal pressure increased; instead, here was a U-shaped relationship between removal pressure and the abundance of medium-bodied individuals. In addition, population biomass had a U-shaped curve response to removal pressure, implying that invasive fish populations can modulate their characteristics to compensate for the negative effects of selective removals. In addition, individual lengths at age 2 and juvenile growth rates decreased as removal pressure through angling increased, suggesting a shift toward an earlier size at maturity and an overall slower growing phenotype. Therefore, these outputs challenge the efficiency of selective management methods, suggesting the use of more proactive strategies to control invasive populations, and the need to investigate the potential ecological and evolutionary repercussions of nonrandom removal.

  1. Impacts of invasive fish removal through angling on population characteristics and juvenile growth rate

    PubMed Central

    Evangelista, Charlotte; Britton, Robert J; Cucherousset, Julien

    2015-01-01

    Exploitation can modify the characteristics of fish populations through the selective harvesting of individuals, with this potentially leading to rapid ecological and evolutionary changes. Despite the well-known effects of invasive fishes on aquatic ecosystems generally, the potential effects of their selective removal through angling, a strategy commonly used to manage invasive fish, are poorly understood. The aim of this field-based study was to use the North American pumpkinseed Lepomis gibbosus as the model species to investigate the consequences of selective removal on their population characteristics and juvenile growth rates across 10 populations in artificial lakes in southern France. We found that the maximal individual mass in populations decreased as removal pressure through angling increased, whereas we did not observed any changes in the maximal individual length in populations as removal pressure increased. Total population abundance did not decrease as removal pressure increased; instead, here was a U-shaped relationship between removal pressure and the abundance of medium-bodied individuals. In addition, population biomass had a U-shaped curve response to removal pressure, implying that invasive fish populations can modulate their characteristics to compensate for the negative effects of selective removals. In addition, individual lengths at age 2 and juvenile growth rates decreased as removal pressure through angling increased, suggesting a shift toward an earlier size at maturity and an overall slower growing phenotype. Therefore, these outputs challenge the efficiency of selective management methods, suggesting the use of more proactive strategies to control invasive populations, and the need to investigate the potential ecological and evolutionary repercussions of nonrandom removal. PMID:26078856

  2. Water quality, physical habitat, and fish community composition in streams in the Twin Cities metropolitan area, Minnesota, 1997-98

    USGS Publications Warehouse

    Talmage, Philip J.; Lee, Kathy E.; Goldstein, Robert M.; Anderson, Jesse P.; Fallon, James D.

    1999-01-01

    Water quality, physical habitat, and fish-community composition were characterized at 13 Twin Cities metropolitan area streams during low-flow conditions, September 1997. Fish communities were resampled during September 1998. Sites were selected based on a range of human population density. Nutrient concentrations were generally low, rarely exceeding concentrations found in agricultural streams or water-quality criteria. Seventeen pesticides and five pesticide metabolites were detected, with atrazine being the only pesticide detected at all 13 streams. Colony counts of fecal coliform bacteria ranged from 54 to greater than 11,000 colonies per 100 mL. Instream fish habitat was sparse with little woody debris and few boulders, cobble, or other suitable fish habitat. Thirty-eight species and one hybrid from 10 families were collected. Fish communities were characterized by high percentages of omnivores and tolerant species with few intolerant species. Index of Biotic Integrity scores were low, with most streams rating fair to very poor. Percent impervious surface was positively correlated with sodium and chloride concentrations and human population density, but was negatively correlated with fish species richness and diversity. Urban land use and human population density influence fish communities and water quality in Twin Cities metropolitan area streams. Other factors that may influence fish community composition include percent impervious cover, water chemistry, water temperature, geomorphology, substrate, instream habitat, and migration barriers.

  3. Trends in the exploitation of South Atlantic shark populations.

    PubMed

    Barreto, Rodrigo; Ferretti, Francesco; Flemming, Joanna M; Amorim, Alberto; Andrade, Humber; Worm, Boris; Lessa, Rosangela

    2016-08-01

    Approximately 25% of globally reported shark catches occur in Atlantic pelagic longline fisheries. Strong declines in shark populations have been detected in the North Atlantic, whereas in the South Atlantic the situation is less clear, although fishing effort has been increasing in this region since the late 1970s. We synthesized information on shark catch rates (based on 871,177 sharks caught on 86,492 longline sets) for the major species caught by multiple fleets in the South Atlantic between 1979 and 2011. We complied records from fishing logbooks of fishing companies, fishers, and onboard observers that were supplied to Brazilian institutions. By using exploratory data analysis and literature sources, we identified 3 phases of exploitation in these data (Supporting Information). From 1979 to 1997 (phase A), 5 fleets (40 vessels) fished mainly for tunas. From 1998 to 2008 (phase B), 20 fleets (100 vessels) fished for tunas, swordfishes, and sharks. From 2008 to 2011 (phase C), 3 fleets (30 vessels) fished for multiple species, but restrictive measures were implemented. We used generalized linear models to standardize catch rates and identify trends in each of these phases. Shark catch rates increased from 1979 to 1997, when fishing effort was low, decreased from 1998 to 2008, when fishing effort increased substantially, and remained stable or increased from 2008 to 2011, when fishing effort was again low. Our results indicate that most shark populations affected by longlines in the South Atlantic are currently depleted, but these populations may recover if fishing effort is reduced accordingly. In this context, it is problematic that comprehensive data collection, monitoring, and management of these fisheries ceased after 2012. Concurrently with the fact that Brazil is newly identified by FAO among the largest (and in fastest expansion) shark sub-products consumer market worldwide. © 2015 Society for Conservation Biology.

  4. Estimation and modeling of electrofishing capture efficiency for fishes in wadeable warmwater streams

    USGS Publications Warehouse

    Price, A.; Peterson, James T.

    2010-01-01

    Stream fish managers often use fish sample data to inform management decisions affecting fish populations. Fish sample data, however, can be biased by the same factors affecting fish populations. To minimize the effect of sample biases on decision making, biologists need information on the effectiveness of fish sampling methods. We evaluated single-pass backpack electrofishing and seining combined with electrofishing by following a dual-gear, mark–recapture approach in 61 blocknetted sample units within first- to third-order streams. We also estimated fish movement out of unblocked units during sampling. Capture efficiency and fish abundances were modeled for 50 fish species by use of conditional multinomial capture–recapture models. The best-approximating models indicated that capture efficiencies were generally low and differed among species groups based on family or genus. Efficiencies of single-pass electrofishing and seining combined with electrofishing were greatest for Catostomidae and lowest for Ictaluridae. Fish body length and stream habitat characteristics (mean cross-sectional area, wood density, mean current velocity, and turbidity) also were related to capture efficiency of both methods, but the effects differed among species groups. We estimated that, on average, 23% of fish left the unblocked sample units, but net movement varied among species. Our results suggest that (1) common warmwater stream fish sampling methods have low capture efficiency and (2) failure to adjust for incomplete capture may bias estimates of fish abundance. We suggest that managers minimize bias from incomplete capture by adjusting data for site- and species-specific capture efficiency and by choosing sampling gear that provide estimates with minimal bias and variance. Furthermore, if block nets are not used, we recommend that managers adjust the data based on unconditional capture efficiency.

  5. Indicators of AEI applied to the Delaware Estuary.

    PubMed

    Barnthouse, Lawrence W; Heimbuch, Douglas G; Anthony, Vaughn C; Hilborn, Ray W; Myers, Ransom A

    2002-05-18

    We evaluated the impacts of entrainment and impingement at the Salem Generating Station on fish populations and communities in the Delaware Estuary. In the absence of an agreed-upon regulatory definition of "adverse environmental impact" (AEI), we developed three independent benchmarks of AEI based on observed or predicted changes that could threaten the sustainability of a population or the integrity of a community. Our benchmarks of AEI included: (1) disruption of the balanced indigenous community of fish in the vicinity of Salem (the "BIC" analysis); (2) a continued downward trend in the abundance of one or more susceptible fish species (the "Trends" analysis); and (3) occurrence of entrainment/impingement mortality sufficient, in combination with fishing mortality, to jeopardize the future sustainability of one or more populations (the "Stock Jeopardy" analysis). The BIC analysis utilized nearly 30 years of species presence/absence data collected in the immediate vicinity of Salem. The Trends analysis examined three independent data sets that document trends in the abundance of juvenile fish throughout the estuary over the past 20 years. The Stock Jeopardy analysis used two different assessment models to quantify potential long-term impacts of entrainment and impingement on susceptible fish populations. For one of these models, the compensatory capacities of the modeled species were quantified through meta-analysis of spawner-recruit data available for several hundred fish stocks. All three analyses indicated that the fish populations and communities of the Delaware Estuary are healthy and show no evidence of an adverse impact due to Salem. Although the specific models and analyses used at Salem are not applicable to every facility, we believe that a weight of evidence approach that evaluates multiple benchmarks of AEI using both retrospective and predictive methods is the best approach for assessing entrainment and impingement impacts at existing facilities.

  6. Evaluating and understanding fish health risks and their consequences in propagated and free-ranging fish populations

    USGS Publications Warehouse

    Moffitt, C.M.; Haukenes, A.H.; Williams, C.J.

    2005-01-01

    Fishery managers and resource conservationists are increasingly interested in understanding the fish health and disease risks of free-ranging fishes and whether propagated fishes or features and practices used at fish culture facilities pose a health risk to free-ranging populations. Disease agents are present in most both captive and all free-ranging fish populations, but the consequences and extent of infections in free-ranging populations are often difficult to measure, control, and understand. Sampling methods, protocols, and assay techniques developed to assess the health of captive populations are not as applicable for assessments of free-ranging fishes. The use of chemicals and therapeutics to control diseases and parasites in propagated fishes likely reduces the risk of introducing specific pathogens into the environment, but control measures may have localized effects on the environment surrounding fish culture facilities. To understand health risks of propagated and free ranging fishes, we must consider fish populations, culture facilities, fish releases, and their interactions within the greater geospatial features of the aquatic environment. ?? 2004 by the American Fisheries Society.

  7. A framework for assessing the feasibility of native fish conservation translocations: Applications to threatened bull trout

    USGS Publications Warehouse

    Galloway, Benjamin T.; Muhlfeld, Clint C.; Guy, Christopher S.; Downs, Christopher C.; Fredenberg, Wade A.

    2016-01-01

    There is an urgent need to consider more aggressive and direct interventions for the conservation of freshwater fishes that are threatened by invasive species, habitat loss, and climate change. Conservation introduction (moving a species outside its indigenous range to other areas where conditions are predicted to be more suitable) is one type of translocation strategy that fisheries managers can use to establish new conservation populations in areas of refugia. To date, however, there are few examples of successful conservation-based introductions. Many attempts fail to establish new populations—in part because environmental factors that might influence success are inadequately evaluated before the translocation is implemented. We developed a framework to assess the feasibility of rescuing threatened fish populations through translocation into historically unoccupied stream and lake habitats. The suitability of potential introduction sites was evaluated based on four major components: the recipient habitat, recipient community, donor population, and future threats. Specific questions were then developed to evaluate each major component. The final assessment was based on a scoring system that addressed each question by using criteria developed from characteristics representative of highly suitable habitats and populations. This framework was used to evaluate the proposed within-drainage translocation of three Bull Trout Salvelinus confluentus populations in Glacier National Park, Montana. Our results indicated that within-drainage translocation is a feasible strategy for conserving locally adapted populations of Bull Trout through the creation of new areas of refugia in Glacier National Park. The framework provides a flexible platform that can help managers make informed decisions for moving threatened fishes into new areas of refugia for conservation and recovery programs.

  8. Life cycle ecophysiology of small pelagic fish and climate-driven changes in populations

    NASA Astrophysics Data System (ADS)

    Peck, Myron A.; Reglero, Patricia; Takahashi, Motomitsu; Catalán, Ignacio A.

    2013-09-01

    Due to their population characteristics and trophodynamic role, small pelagic fishes are excellent bio-indicators of climate-driven changes in marine systems world-wide. We argue that making robust projections of future changes in the productivity and distribution of small pelagics will require a cause-and-effect understanding of historical changes based upon physiological principles. Here, we reviewed the ecophysiology of small pelagic (clupeiform) fishes including a matrix of abiotic and biotic extrinsic factors (e.g., temperature, salinity, light, and prey characteristics) and stage-specific vital rates: (1) adult spawning, (2) survival and development of eggs and yolk sac larvae, and (3) feeding and growth of larvae, post-larvae and juveniles. Emphasis was placed on species inhabiting Northwest Pacific and Northeast Atlantic (European) waters for which summary papers are particularly scarce compared to anchovy and sardine in upwelling systems. Our review revealed that thermal niches (optimal and sub-optimal ranges in temperatures) were species- and stage-specific but that temperature effects only partly explained observed changes in the distribution and/or productivity of populations in the Northwest Pacific and Northeast Atlantic; changes in temperature may be necessary but not sufficient to induce population-level shifts. Prey availability during the late larval and early juvenile period was a common, density-dependent mechanism linked to fluctuations in populations but recruitment mechanisms were system-specific suggesting that generalizations of climate drivers across systems should be avoided. We identified gaps in knowledge regarding basic elements of the growth physiology of each life stage that will require additional field and laboratory study. Avenues of research are recommended that will aid the development of models that provide more robust, physiological-based projections of the population dynamics of these and other small pelagic fish. In our opinion, the continued development of biophysical models that close the life cycle (depict all life stages) offers the best chance of revealing processes causing historical fluctuations on the productivity and distribution of small pelagic fishes and to project future climate-driven impacts. Correctly representing physiological-based mechanisms will increase confidence in the outcomes of models simulating the potential impacts of bottom-up processes, a first step towards evaluating the mixture of factors and processes (e.g. intra-guild dynamics, predation, fisheries exploitation) which interact with climate to affect populations of small pelagic fishes. Understand the impacts of reduced growth rates during the juvenile stage on the process of maturation and spawning condition of small pelagic fishes. Examine the effects of changes in prey quality on the duration and magnitude of spawning by small pelagic fishes to capture how climate-driven changes in zooplankton species composition might act as a “bottom-up” regulator of fish productivity. Identify the drivers for spawning location and timing to better understand how spawning dynamics may be influenced by climate change (e.g. changes in water salinity or turbidity resulting from changes in river discharges or wind-driven turbulence, respectively).

  9. Evaluation of marine subareas of Europe using life history parameters and trophic levels of selected fish populations.

    PubMed

    Jayasinghe, R P Prabath K; Amarasinghe, Upali S; Newton, Alice

    2015-12-01

    European marine waters include four regional seas that provide valuable ecosystem services to humans, including fish and other seafood. However, these marine environments are threatened by pressures from multiple anthropogenic activities and climate change. The European Marine Strategy Framework Directive (MSFD) was adopted in 2008 to achieve good environmental status (GEnS) in European Seas by year 2020, using an Ecosystem Approach. GEnS is to be assessed using 11 descriptors and up to 56 indicators. In the present analysis two descriptors namely "commercially exploited fish and shellfish populations" and "food webs" were used to evaluate the status of subareas of FAO 27 area. Data on life history parameters, trophic levels and fisheries related data of cod, haddock, saithe, herring, plaice, whiting, hake and sprat were obtained from the FishBase online database and advisory reports of International Council for the Exploration of the Sea (ICES). Subareas inhabited by r and K strategists were identified using interrelationships of life history parameters of commercially important fish stocks. Mean trophic level (MTL) of fish community each subarea was calculated and subareas with species of high and low trophic level were identified. The Fish in Balance (FiB) index was computed for each subarea and recent trends of FiB indices were analysed. The overall environmental status of each subarea was evaluated considering life history trends, MTL and FiB Index. The analysis showed that subareas I, II, V, VIII and IX were assessed as "good" whereas subareas III, IV, VI and VII were assessed as "poor". The subareas assessed as "good" were subject to lower environmental pressures, (less fishing pressure, less eutrophication and more water circulation), while the areas with "poor" environment experienced excessive fishing pressure, eutrophication and disturbed seabed. The evaluation was based on two qualitative descriptors ("commercially exploited fish and shellfish populations" and "food webs") is therefore more robust. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. A model describing the effect of sex-reversed YY fish in an established wild population: The use of a Trojan Y chromosome to cause extinction of an introduced exotic species.

    PubMed

    Gutierrez, Juan B; Teem, John L

    2006-07-21

    A novel means of inducing extinction of an exotic fish population is proposed using a genetic approach to shift the ratio of male to females within a population. In the proposed strategy, sex-reversed fish containing two Y chromosomes are introduced into a normal fish population. These YY fish result in the production of a disproportionate number of male fish in subsequent generations. Mathematical modeling of the system following introduction of YY fish at a constant rate reveals that female fish decline in numbers over time, leading to eventual extinction of the population.

  11. Observations of the distributions of five fish species in a small Appalachian stream

    USGS Publications Warehouse

    Larson, Gary L.; Hoffman, Robert L.; Moore, S.E.

    2002-01-01

    The notion has been growing that resident stream fishes exhibit a greater capacity for movement than was previously thought. In this study, we recorded the distributions of four resident fish species (longnose dace Rhinichthys cataractae, blacknose dace R. atratulus, mottled sculpin Cottus bairdi, and rainbow trout Oncorhynchus mykiss) and one nonresident species (central stoneroller Campostoma anomalum) in Rock Creek, a small tributary of Cosby Creek in Great Smoky Mountains National Park, over the period 1979a??1995. During this study, 1,998 individuals of resident species were collected from stream sections considered to be within a common area of distribution for each species. Forty-five individuals of resident and nonresident species were captured upstream of these areas, and eight of these fish were considered to be larger than individuals considered typical for each species. Small mammal dispersal theory concepts were used to classify and describe fish movements outside of common areas of distribution. These movements were identified as important in maintaining population connectivity within stream drainages, contributing to reducing the potential for local extinctions of populations and to the recolonization of unoccupied habitats. This study highlights the need for continued study of fish movements in stream drainages and for development of appropriate resource management strategies based partly on the spatial dynamics of fish populations and communities.

  12. Do management actions to restore rare habitat benefit native fish conservation? Distribution of juvenile native fish among shoreline habitats of the Colorado River

    USGS Publications Warehouse

    Dodrill, Michael J.; Yackulic, Charles B.; Gerig, Brandon; Pine, William E.; Korman, Josh; Finch, Colton

    2015-01-01

    Many management actions in aquatic ecosystems are directed at restoring or improving specific habitats to benefit fish populations. In the Grand Canyon reach of the Colorado River, experimental flow operations as part of the Glen Canyon Dam Adaptive Management Program have been designed to restore sandbars and associated backwater habitats. Backwaters can have warmer water temperatures than other habitats, and native fish, including the federally endangered humpback chub Gila cypha, are frequently observed in backwaters, leading to a common perception that this habitat is critical for juvenile native fish conservation. However, it is unknown how fish densities in backwaters compare with that in other habitats or what proportion of juvenile fish populations reside in backwaters. Here, we develop and fit multi-species hierarchical models to estimate habitat-specific abundances and densities of juvenile humpback chub, bluehead suckerCatostomus discobolus, flannelmouth sucker Catostomus latipinnis and speckled dace Rhinichthys osculus in a portion of the Colorado River. Densities of all four native fish were greatest in backwater habitats in 2009 and 2010. However, backwaters are rare and ephemeral habitats, so they contain only a small portion of the overall population. For example, the total abundance of juvenile humpback chub in this study was much higher in talus than in backwater habitats. Moreover, when we extrapolated relative densities based on estimates of backwater prevalence directly after a controlled flood, the majority of juvenile humpback chub were still found outside of backwaters. This suggests that the role of controlled floods in influencing native fish population trends may be limited in this section of the Colorado River. 

  13. Developing and Testing TernCOLONY 1.0: An Individual-based Model of Least Tern Reproduction

    DTIC Science & Technology

    2013-06-01

    interior population of the Least Tern nests primarily on riverine sandbars (U.S. Fish and Wildlife Service (USFWS) 1990, Lott 2006). Consequently...Fish and Wildlife Service (USFWS). 1990. Recovery plan for the interior population of the Least Tern (~Sterna antillarum~). Twin Cities, MN. ERDC/EL...colony sites in the Keystone reach. The flow occurring in normal hydropower operations (both turbines at Keystone Dam operating at capacity for

  14. SkateBase, an elasmobranch genome project and collection of molecular resources for chondrichthyan fishes

    PubMed Central

    Wyffels, Jennifer; L. King, Benjamin; Vincent, James; Chen, Chuming; Wu, Cathy H.; Polson, Shawn W.

    2014-01-01

    Chondrichthyan fishes are a diverse class of gnathostomes that provide a valuable perspective on fundamental characteristics shared by all jawed and limbed vertebrates. Studies of phylogeny, species diversity, population structure, conservation, and physiology are accelerated by genomic, transcriptomic and protein sequence data. These data are widely available for many sarcopterygii (coelacanth, lungfish and tetrapods) and actinoptergii (ray-finned fish including teleosts) taxa, but limited for chondrichthyan fishes.  In this study, we summarize available data for chondrichthyes and describe resources for one of the largest projects to characterize one of these fish, Leucoraja erinacea, the little skate.  SkateBase ( http://skatebase.org) serves as the skate genome project portal linking data, research tools, and teaching resources. PMID:25309735

  15. Population growth rates of reef sharks with and without fishing on the great barrier reef: robust estimation with multiple models.

    PubMed

    Hisano, Mizue; Connolly, Sean R; Robbins, William D

    2011-01-01

    Overfishing of sharks is a global concern, with increasing numbers of species threatened by overfishing. For many sharks, both catch rates and underwater visual surveys have been criticized as indices of abundance. In this context, estimation of population trends using individual demographic rates provides an important alternative means of assessing population status. However, such estimates involve uncertainties that must be appropriately characterized to credibly and effectively inform conservation efforts and management. Incorporating uncertainties into population assessment is especially important when key demographic rates are obtained via indirect methods, as is often the case for mortality rates of marine organisms subject to fishing. Here, focusing on two reef shark species on the Great Barrier Reef, Australia, we estimated natural and total mortality rates using several indirect methods, and determined the population growth rates resulting from each. We used bootstrapping to quantify the uncertainty associated with each estimate, and to evaluate the extent of agreement between estimates. Multiple models produced highly concordant natural and total mortality rates, and associated population growth rates, once the uncertainties associated with the individual estimates were taken into account. Consensus estimates of natural and total population growth across multiple models support the hypothesis that these species are declining rapidly due to fishing, in contrast to conclusions previously drawn from catch rate trends. Moreover, quantitative projections of abundance differences on fished versus unfished reefs, based on the population growth rate estimates, are comparable to those found in previous studies using underwater visual surveys. These findings appear to justify management actions to substantially reduce the fishing mortality of reef sharks. They also highlight the potential utility of rigorously characterizing uncertainty, and applying multiple assessment methods, to obtain robust estimates of population trends in species threatened by overfishing.

  16. Population Growth Rates of Reef Sharks with and without Fishing on the Great Barrier Reef: Robust Estimation with Multiple Models

    PubMed Central

    Hisano, Mizue; Connolly, Sean R.; Robbins, William D.

    2011-01-01

    Overfishing of sharks is a global concern, with increasing numbers of species threatened by overfishing. For many sharks, both catch rates and underwater visual surveys have been criticized as indices of abundance. In this context, estimation of population trends using individual demographic rates provides an important alternative means of assessing population status. However, such estimates involve uncertainties that must be appropriately characterized to credibly and effectively inform conservation efforts and management. Incorporating uncertainties into population assessment is especially important when key demographic rates are obtained via indirect methods, as is often the case for mortality rates of marine organisms subject to fishing. Here, focusing on two reef shark species on the Great Barrier Reef, Australia, we estimated natural and total mortality rates using several indirect methods, and determined the population growth rates resulting from each. We used bootstrapping to quantify the uncertainty associated with each estimate, and to evaluate the extent of agreement between estimates. Multiple models produced highly concordant natural and total mortality rates, and associated population growth rates, once the uncertainties associated with the individual estimates were taken into account. Consensus estimates of natural and total population growth across multiple models support the hypothesis that these species are declining rapidly due to fishing, in contrast to conclusions previously drawn from catch rate trends. Moreover, quantitative projections of abundance differences on fished versus unfished reefs, based on the population growth rate estimates, are comparable to those found in previous studies using underwater visual surveys. These findings appear to justify management actions to substantially reduce the fishing mortality of reef sharks. They also highlight the potential utility of rigorously characterizing uncertainty, and applying multiple assessment methods, to obtain robust estimates of population trends in species threatened by overfishing. PMID:21966402

  17. Does Angling Technique Selectively Target Fishes Based on Their Behavioural Type?

    PubMed Central

    Wilson, Alexander D. M.; Brownscombe, Jacob W.; Sullivan, Brittany; Jain-Schlaepfer, Sofia; Cooke, Steven J.

    2015-01-01

    Recently, there has been growing recognition that fish harvesting practices can have important impacts on the phenotypic distributions and diversity of natural populations through a phenomenon known as fisheries-induced evolution. Here we experimentally show that two common recreational angling techniques (active crank baits versus passive soft plastics) differentially target wild largemouth bass (Micropterus salmoides) and rock bass (Ambloplites rupestris) based on variation in their behavioural tendencies. Fish were first angled in the wild using both techniques and then brought back to the laboratory and tested for individual-level differences in common estimates of personality (refuge emergence, flight-initiation-distance, latency-to-recapture and with a net, and general activity) in an in-lake experimental arena. We found that different angling techniques appear to selectively target these species based on their boldness (as characterized by refuge emergence, a standard measure of boldness in fishes) but not other assays of personality. We also observed that body size was independently a significant predictor of personality in both species, though this varied between traits and species. Our results suggest a context-dependency for vulnerability to capture relative to behaviour in these fish species. Ascertaining the selective pressures angling practices exert on natural populations is an important area of fisheries research with significant implications for ecology, evolution, and resource management. PMID:26284779

  18. Contaminants in fish tissue from US lakes and reservoirs: A ...

    EPA Pesticide Factsheets

    An unequal probability design was used to develop national estimates for 268 persistent, bioaccumulative, and toxic chemicals in fish tissue from lakes and reservoirs of the conterminous United States (excluding the Laurentian Great Lakes and Great Salt Lake). Predator (fillet) and bottom-dweller (whole-body) composites were collected from 500 lakes selected randomly from the target population of 147,343 lakes in the lower 48 states. Each of these composite types comprised nationally representative samples whose results were extrapolated to the sampled population of an estimated 76,559 lakes for predators and 46,190 lakes for bottom dwellers. Mercury and PCBs were detected in all fish samples. Dioxins and furans were detected in 81% and 99% of predator and bottom-dweller samples, respectively. Cumulative frequency distributions showed that mercury concentrations exceeded the EPA 300 ppb mercury fish tissue criterion at nearly half of the lakes in the sampled population. Total PCB concentrations exceeded a 12 ppb human health risk-based consumption limit at nearly 17% of lakes, and dioxins and furans exceeded a 0.15 ppt (toxic equivalent or TEQ) risk-based threshold at nearly 8% of lakes in the sampled population. In contrast, 43 target chemicals were not detected in any samples. No detections were reported for nine organophosphate pesticides, one PCB congener, 16 polycyclic aromatic hydrocarbons, or 17 other semivolatile organic chemicals. An unequal prob

  19. Contaminants in fish tissue from US lakes and reservoirs: a national probabilistic study.

    PubMed

    Stahl, Leanne L; Snyder, Blaine D; Olsen, Anthony R; Pitt, Jennifer L

    2009-03-01

    An unequal probability design was used to develop national estimates for 268 persistent, bioaccumulative, and toxic chemicals in fish tissue from lakes and reservoirs of the conterminous United States (excluding the Laurentian Great Lakes and Great Salt Lake). Predator (fillet) and bottom-dweller (whole body) composites were collected from 500 lakes selected randomly from the target population of 147,343 lakes in the lower 48 states. Each of these composite types comprised nationally representative samples whose results were extrapolated to the sampled population of an estimated 76,559 lakes for predators and 46,190 lakes for bottom dwellers. Mercury and PCBs were detected in all fish samples. Dioxins and furans were detected in 81% and 99% of predator and bottom-dweller samples, respectively. Cumulative frequency distributions showed that mercury concentrations exceeded the EPA 300 ppb mercury fish tissue criterion at nearly half of the lakes in the sampled population. Total PCB concentrations exceeded a 12 ppb human health risk-based consumption limit at nearly 17% of lakes, and dioxins and furans exceeded a 0.15 ppt (toxic equivalent or TEQ) risk-based threshold at nearly 8% of lakes in the sampled population. In contrast, 43 target chemicals were not detected in any samples. No detections were reported for nine organophosphate pesticides, one PCB congener, 16 polycyclic aromatic hydrocarbons, or 17 other semivolatile organic chemicals.

  20. Spatial analysis of the trophic interactions between two juvenile fish species and their preys along a coastal-estuarine gradient

    NASA Astrophysics Data System (ADS)

    Kopp, Dorothée; Le Bris, Hervé; Grimaud, Lucille; Nérot, Caroline; Brind'Amour, Anik

    2013-08-01

    Coastal and estuarine systems provide nursery grounds for many marine fish species. Their productivity has been correlated with terrigeneous inputs entering the coastal-estuarine benthic food web, thereby favouring the establishment of fish juveniles. Studies in these ecosystems often describe the nursery as a single large habitat without verifying nor considering the presence of contiguous habitats. Our study aimed at identifying different habitats based on macrozoobenthic communities and morpho-sedimentary characteristics and assessing the trophic interactions between fish juveniles and their benthic preys within these habitats. It included 43 sampling sites covering 5 habitats in which we described taxonomically and quantitatively the invertebrates and fish communities with stable isotopes and gut contents. It suggested that the benthic common sole Solea solea displayed feeding plasticity at the population level, separating the juveniles (G0) from the older fish (G1) into different "feeding sub-populations". Size-based feeding plasticity was also observable in the spatial occupancy of that species in the studied bay. The demersal pouting, Trisopterus luscus, equally used the different habitats but displayed low feeding plasticity across and inside each habitat. Stable isotopes proved to be powerful tools to study the spatial distribution of trophic interactions in complex ecosystems like the bay of Vilaine and to define optimal habitats for fish that use the coastal-estuarine ecosystem as nursery grounds.

  1. Persistence and extirpation in invaded landscapes: patch characteristics and connectivity determine effects of non-native predatory fish on native salamanders

    USGS Publications Warehouse

    Pilliod, David S.; Arkle, Robert S.; Maxell, Bryce A.

    2012-01-01

    Studies have demonstrated negative effects of non-native, predatory fishes on native amphibians, yet it is still unclear why some amphibian populations persist, while others are extirpated, following fish invasion. We examined this question by developing habitat-based occupancy models for the long-toed salamander (Ambystoma macrodactylum) and nonnative fish using survey data from 1,749 water bodies across 470 catchments in the Northern Rocky Mountains, USA. We first modeled the habitat associations of salamanders at 468 fishless water bodies in 154 catchments where non-native fish were historically, and are currently, absent from the entire catchment. Wethen applied this habitat model to the complete data set to predict the probability of salamander occupancy in each water body, removing any effect of fish presence. Finally, we compared field-observed occurrences of salamanders and fish to modeled probability of salamander occupancy. Suitability models indicated that fish and salamanders had similar habitat preferences, possibly resulting in extirpations of salamander populations from entire catchments where suitable habitats were limiting. Salamanders coexisted with non-native fish in some catchments by using marginal quality, isolated (no inlet or outlet) habitats that remained fishless. They rarely coexisted with fish within individual water bodies and only where habitat quality was highest. Connectivity of water bodies via streams resulted in increased probability of fish invasion and consequently reduced probability of salamander occupancy.These results could be used to identify and prioritize catchments and water bodies where control measures would be most effective at restoring amphibian populations. Our approach could be useful as a framework for improved investigations into questions of persistence and extirpation of native species when non-native species have already become established.

  2. A Probabilistic Model for Hydrokinetic Turbine Collision Risks: Exploring Impacts on Fish

    PubMed Central

    Hammar, Linus; Eggertsen, Linda; Andersson, Sandra; Ehnberg, Jimmy; Arvidsson, Rickard; Gullström, Martin; Molander, Sverker

    2015-01-01

    A variety of hydrokinetic turbines are currently under development for power generation in rivers, tidal straits and ocean currents. Because some of these turbines are large, with rapidly moving rotor blades, the risk of collision with aquatic animals has been brought to attention. The behavior and fate of animals that approach such large hydrokinetic turbines have not yet been monitored at any detail. In this paper, we conduct a synthesis of the current knowledge and understanding of hydrokinetic turbine collision risks. The outcome is a generic fault tree based probabilistic model suitable for estimating population-level ecological risks. New video-based data on fish behavior in strong currents are provided and models describing fish avoidance behaviors are presented. The findings indicate low risk for small-sized fish. However, at large turbines (≥5 m), bigger fish seem to have high probability of collision, mostly because rotor detection and avoidance is difficult in low visibility. Risks can therefore be substantial for vulnerable populations of large-sized fish, which thrive in strong currents. The suggested collision risk model can be applied to different turbine designs and at a variety of locations as basis for case-specific risk assessments. The structure of the model facilitates successive model validation, refinement and application to other organism groups such as marine mammals. PMID:25730314

  3. A probabilistic model for hydrokinetic turbine collision risks: exploring impacts on fish.

    PubMed

    Hammar, Linus; Eggertsen, Linda; Andersson, Sandra; Ehnberg, Jimmy; Arvidsson, Rickard; Gullström, Martin; Molander, Sverker

    2015-01-01

    A variety of hydrokinetic turbines are currently under development for power generation in rivers, tidal straits and ocean currents. Because some of these turbines are large, with rapidly moving rotor blades, the risk of collision with aquatic animals has been brought to attention. The behavior and fate of animals that approach such large hydrokinetic turbines have not yet been monitored at any detail. In this paper, we conduct a synthesis of the current knowledge and understanding of hydrokinetic turbine collision risks. The outcome is a generic fault tree based probabilistic model suitable for estimating population-level ecological risks. New video-based data on fish behavior in strong currents are provided and models describing fish avoidance behaviors are presented. The findings indicate low risk for small-sized fish. However, at large turbines (≥5 m), bigger fish seem to have high probability of collision, mostly because rotor detection and avoidance is difficult in low visibility. Risks can therefore be substantial for vulnerable populations of large-sized fish, which thrive in strong currents. The suggested collision risk model can be applied to different turbine designs and at a variety of locations as basis for case-specific risk assessments. The structure of the model facilitates successive model validation, refinement and application to other organism groups such as marine mammals.

  4. Persistence and diversity of directional landscape connectivity improves biomass pulsing in expanding and contracting wetlands

    USGS Publications Warehouse

    Yurek, Simeon; DeAngelis, Donald L.; Trexler, Joel C.; Klassen, Stephen; Larsen, Laurel G.

    2016-01-01

    In flood-pulsed ecosystems, hydrology and landscape structure mediate transfers of energy up the food chain by expanding and contracting in area, enabling spatial expansion and growth of fish populations during rising water levels, and subsequent concentration during the drying phase. Connectivity of flooded areas is dynamic as waters rise and fall, and is largely determined by landscape geomorphology and anisotropy. We developed a methodology for simulating fish dispersal and concentration on spatially-explicit, dynamic floodplain wetlands with pulsed food web dynamics, to evaluate how changes in connectivity through time contribute to the concentration of fish biomass that is essential for higher trophic levels. The model also tracks a connectivity index (DCI) over different compass directions to see if fish biomass dynamics can be related in a simple way to topographic pattern. We demonstrate the model for a seasonally flood-pulsed, oligotrophic system, the Everglades, where flow regimes have been greatly altered. Three dispersing populations of functional fish groups were simulated with empirically-based dispersal rules on two landscapes, and two twelve-year time series of managed water levels for those areas were applied. The topographies of the simulations represented intact and degraded ridge-and-slough landscapes (RSL). Simulation results showed large pulses of biomass concentration forming during the onset of the drying phase, when water levels were falling and fish began to converge into the sloughs. As water levels fell below the ridges, DCI declined over different directions, closing down dispersal lanes, and fish density spiked. Persistence of intermediate levels of connectivity on the intact RSL enabled persistent concentration events throughout the drying phase. The intact landscape also buffered effects of wet season population growth. Water level reversals on both landscapes negatively affected fish densities by depleting fish populations without allowing enough time for them to regenerate. Testable, spatiotemporal predictions of the timing, location, duration, and magnitude of fish concentration pulses were produced by the model, and can be applied to restoration planning.

  5. Sex effect on polychlorinated biphenyl concentrations in fish: a synthesis

    USGS Publications Warehouse

    Madenjian, C.P.

    2011-01-01

    Polychlorinated biphenyls (PCBs) accumulate in fish primarily via food intake, and therefore, PCBs serve as a chemical tracer for food consumption. Sex differences in PCB concentrations of fish have been attributed to the following three mechanisms: (i) females losing a substantial portion of their PCB body burden during spawning and consequently their PCB concentration is considerably reduced immediately after spawning; (ii) sex differences in habitat utilization leading to sex differences in the PCB concentrations of the prey; and (iii) sex differences in gross growth efficiency, which is defined as growth divided by the amount of food consumption needed to achieve that growth. Based on my analyses and synthesis, mechanisms (i) and (ii) operate in relatively few fish populations, but can lead to mature males having PCB concentrations two to three times higher than mature female PCB concentrations. In contrast, mechanism (iii) operates in all fish populations, but typically, mechanism (iii) results in relatively modest sex differences, with mature males only between 15 and 35% higher in PCB concentration than mature females. In summary, the study of sex differences in PCB concentrations of fish has led to insights into fish behaviour and fish physiology.

  6. Effects of streamflow diversion on a fish population: combining empirical data and individual-based models in a site-specific evaluation

    Treesearch

    Bret C. Harvey; Jason L. White; Rodney J. Nakamoto; Steven F. Railsback

    2014-01-01

    Resource managers commonly face the need to evaluate the ecological consequences of specific water diversions of small streams. We addressed this need by conducting 4 years of biophysical monitoring of stream reaches above and below a diversion and applying two individual-based models of salmonid fish that simulated different levels of behavioral complexity. The...

  7. PROFILES OF GREAT LAKES CRITICAL POLLUTANTS: A SENTINEL ANALYSIS OF HUMAN BLOOD AND URINE

    EPA Science Inventory

    To determine the contaminants that should be studied further in the subsequent population-based study, a profile of Great Lakes (GL) sport fish contaminant residues were studied in human blood and urine specimens from 32 sport fish consumers from three Great Lakes: Lake Michigan ...

  8. Consumption of freshwater fish by recreational and native freshwater anglers in the upper St-Maurice (Quebec, Canada) and estimation of the intake of methylmercury in humans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loranger, S.; Houde, L.; Schetagne, R.

    1995-12-31

    Hydro-Quebec is planning to build two hydroelectric reservoirs in the upper Saint-Maurice River, which would flood about 80% of the surrounding area. The methylmercury (MeHg) content in freshwater fish will therefore tend to increase during the first few years. This development will have a direct impact on the amount of MeHg that the actual users of this river section are exposed to. The objective of this study is to assess the consumption of local fish of these target groups using a Monte-Carlo approach. This study is part of a larger research project aimed at assessing human exposure and the healthmore » risks related to MeHg contamination in local fish. The fish consumption rate for recreational freshwater anglers was calculated using the duration of the average annual fishing trip, the average number of catches per species, the average fish weight per species exceeding a specific length of fish usually caught, and the edible portion of fish consumed. This rate was calculated for the native communities based on the total number of meals per year per species, the average fish weight per species, and the edible portion. Based on these calculations, average intake for sport fishermen is estimated at 6.9 g/day (sd = 6.4). This value is 5 to 25 times lower on average than for other North American native communities. However, it must be pointed out that the food habits of the native population were very similar to those of non-native populations; less than 30% of the food comes from traditional sources.« less

  9. Effect of climate change on marine ecosystems

    NASA Astrophysics Data System (ADS)

    Vikebo, F. B.; Sundby, S.; Aadlandsvik, B.; Fiksen, O.

    2003-04-01

    As a part of the INTEGRATION project, headed by Potsdam Institute for Climate Impact Research, funded by the German Research Council, the impact of climate change scenarios on marine fish populations will be addressed on a spesific population basis and will focus on fish populations in the northern North Atlantic with special emphasis on cod. The approach taken will mainly be a modelling study supported by analysis of existing data on fish stocks and climate. Through down-scaling and nesting techniques, various climate change scenarios with reduced THC in the North Atlantic will be investigated with higher spatial resolution for selected shelf areas. The hydrodynamical model used for the regional ocean modeling is ROMS (http://marine.rutgers.edu/po/models/roms/). An individual based model will be implemented into the larval drift module to simulate growth of the larvae along the drift paths.

  10. Physiological-based modelling of marine fish early life stages provides process knowledge on climate impacts

    NASA Astrophysics Data System (ADS)

    Peck, M. A.

    2016-02-01

    Gaining a cause-and-effect understanding of climate-driven changes in marine fish populations at appropriate spatial scales is important for providing robust advice for ecosystem-based fisheries management. Coupling long-term, retrospective analyses and 3-d biophysical, individual-based models (IBMs) shows great potential to reveal mechanism underlying historical changes and to project future changes in marine fishes. IBMs created for marine fish early life stages integrate organismal-level physiological responses and climate-driven changes in marine habitats (from ocean physics to lower trophic level productivity) to test and reveal processes affecting marine fish recruitment. Case studies are provided for hindcasts and future (A1 and B2 projection) simulations performed on some of the most ecologically- and commercially-important pelagic and demersal fishes in the North Sea including European anchovy, Atlantic herring, European sprat and Atlantic cod. We discuss the utility of coupling biophysical IBMs to size-spectrum models to better project indirect (trophodynamic) pathways of climate influence on the early life stages of these and other fishes. Opportunities and challenges are discussed regarding the ability of these physiological-based tools to capture climate-driven changes in living marine resources and food web dynamics of shelf seas.

  11. Bayesian Estimation of Fish Disease Prevalence from Pooled Samples Incorporating Sensitivity and Specificity

    NASA Astrophysics Data System (ADS)

    Williams, Christopher J.; Moffitt, Christine M.

    2003-03-01

    An important emerging issue in fisheries biology is the health of free-ranging populations of fish, particularly with respect to the prevalence of certain pathogens. For many years, pathologists focused on captive populations and interest was in the presence or absence of certain pathogens, so it was economically attractive to test pooled samples of fish. Recently, investigators have begun to study individual fish prevalence from pooled samples. Estimation of disease prevalence from pooled samples is straightforward when assay sensitivity and specificity are perfect, but this assumption is unrealistic. Here we illustrate the use of a Bayesian approach for estimating disease prevalence from pooled samples when sensitivity and specificity are not perfect. We also focus on diagnostic plots to monitor the convergence of the Gibbs-sampling-based Bayesian analysis. The methods are illustrated with a sample data set.

  12. Biology of extinction risk in marine fishes

    PubMed Central

    Reynolds, John D; Dulvy, Nicholas K; Goodwin, Nicholas B; Hutchings, Jeffrey A

    2005-01-01

    We review interactions between extrinsic threats to marine fishes and intrinsic aspects of their biology that determine how populations and species respond to those threats. Information is available on the status of less than 5% of the world's approximately 15 500 marine fish species, most of which are of commercial importance. By 2001, based on data from 98 North Atlantic and northeast Pacific populations, marine fishes had declined by a median 65% in breeding biomass from known historic levels; 28 populations had declined by more than 80%. Most of these declines would be sufficient to warrant a status of threatened with extinction under international threat criteria. However, this interpretation is highly controversial, in part because of a perception that marine fishes have a suite of life history characteristics, including high fecundity and large geographical ranges, which might confer greater resilience than that shown by terrestrial vertebrates. We review 15 comparative analyses that have tested for these and other life history correlates of vulnerability in marine fishes. The empirical evidence suggests that large body size and late maturity are the best predictors of vulnerability to fishing, regardless of whether differences among taxa in fishing mortality are controlled; there is no evidence that high fecundity confers increased resilience. The evidence reviewed here is of direct relevance to the diverse criteria used at global and national levels by various bodies to assess threat status of fishes. Simple life history traits can be incorporated directly into quantitative assessment criteria, or used to modify the conclusions of quantitative assessments, or used as preliminary screening criteria for assessment of the ∼95% of marine fish species whose status has yet to be evaluated either by conservationists or fisheries scientists. PMID:16243696

  13. Modeling seasonal dynamics of the small fish cohorts in fluctuating freshwater marsh landscapes

    USGS Publications Warehouse

    Jopp, Fred; DeAngelis, Donald L.; Trexler, Joel C.

    2010-01-01

    Small-bodied fishes constitute an important assemblage in many wetlands. In wetlands that dry periodically except for small permanent waterbodies, these fishes are quick to respond to change and can undergo large fluctuations in numbers and biomasses. An important aspect of landscapes that are mixtures of marsh and permanent waterbodies is that high rates of biomass production occur in the marshes during flooding phases, while the permanent waterbodies serve as refuges for many biotic components during the dry phases. The temporal and spatial dynamics of the small fishes are ecologically important, as these fishes provide a crucial food base for higher trophic levels, such as wading birds. We develop a simple model that is analytically tractable, describing the main processes of the spatio-temporal dynamics of a population of small-bodied fish in a seasonal wetland environment, consisting of marsh and permanent waterbodies. The population expands into newly flooded areas during the wet season and contracts during declining water levels in the dry season. If the marsh dries completely during these times (a drydown), the fish need refuge in permanent waterbodies. At least three new and general conclusions arise from the model: (1) there is an optimal rate at which fish should expand into a newly flooding area to maximize population production; (2) there is also a fluctuation amplitude of water level that maximizes fish production, and (3) there is an upper limit on the number of fish that can reach a permanent waterbody during a drydown, no matter how large the marsh surface area is that drains into the waterbody. Because water levels can be manipulated in many wetlands, it is useful to have an understanding of the role of these fluctuations.

  14. Biology of extinction risk in marine fishes.

    PubMed

    Reynolds, John D; Dulvy, Nicholas K; Goodwin, Nicholas B; Hutchings, Jeffrey A

    2005-11-22

    We review interactions between extrinsic threats to marine fishes and intrinsic aspects of their biology that determine how populations and species respond to those threats. Information is available on the status of less than 5% of the world's approximately 15500 marine fish species, most of which are of commercial importance. By 2001, based on data from 98 North Atlantic and northeast Pacific populations, marine fishes had declined by a median 65% in breeding biomass from known historic levels; 28 populations had declined by more than 80%. Most of these declines would be sufficient to warrant a status of threatened with extinction under international threat criteria. However, this interpretation is highly controversial, in part because of a perception that marine fishes have a suite of life history characteristics, including high fecundity and large geographical ranges, which might confer greater resilience than that shown by terrestrial vertebrates. We review 15 comparative analyses that have tested for these and other life history correlates of vulnerability in marine fishes. The empirical evidence suggests that large body size and late maturity are the best predictors of vulnerability to fishing, regardless of whether differences among taxa in fishing mortality are controlled; there is no evidence that high fecundity confers increased resilience. The evidence reviewed here is of direct relevance to the diverse criteria used at global and national levels by various bodies to assess threat status of fishes. Simple life history traits can be incorporated directly into quantitative assessment criteria, or used to modify the conclusions of quantitative assessments, or used as preliminary screening criteria for assessment of the approximately 95% of marine fish species whose status has yet to be evaluated either by conservationists or fisheries scientists.

  15. Population assessment of tropical tuna based on their associative behavior around floating objects.

    PubMed

    Capello, M; Deneubourg, J L; Robert, M; Holland, K N; Schaefer, K M; Dagorn, L

    2016-11-03

    Estimating the abundance of pelagic fish species is a challenging task, due to their vast and remote habitat. Despite the development of satellite, archival and acoustic tagging techniques that allow the tracking of marine animals in their natural environments, these technologies have so far been underutilized in developing abundance estimations. We developed a new method for estimating the abundance of tropical tuna that employs these technologies and exploits the aggregative behavior of tuna around floating objects (FADs). We provided estimates of abundance indices based on a simulated set of tagged fish and studied the sensitivity of our method to different association dynamics, FAD numbers, population sizes and heterogeneities of the FAD-array. Taking the case study of yellowfin tuna (Thunnus albacares) acoustically-tagged in Hawaii, we implemented our approach on field data and derived for the first time the ratio between the associated and the total population. With more extensive and long-term monitoring of FAD-associated tunas and good estimates of the numbers of fish at FADs, our method could provide fisheries-independent estimates of populations of tropical tuna. The same approach can be applied to obtain population assessments for any marine and terrestrial species that display associative behavior and from which behavioral data have been acquired using acoustic, archival or satellite tags.

  16. Genetic structure and demographic history of the endangered and endemic schizothoracine fish Gymnodiptychus pachycheilus in Qinghai-Tibetan Plateau.

    PubMed

    Su, Junhu; Ji, Weihong; Wei, Yanming; Zhang, Yanping; Gleeson, Dianne M; Lou, Zhongyu; Ren, Jing

    2014-08-01

    The endangered schizothoracine fish Gymnodiptychus pachycheilus is endemic to the Qinghai-Tibetan Plateau (QTP), but very little genetic information is available for this species. Here, we accessed the current genetic divergence of G. pachycheilus population to evaluate their distributions modulated by contemporary and historical processes. Population structure and demographic history were assessed by analyzing 1811-base pairs of mitochondrial DNA from 61 individuals across a large proportion of its geographic range. Our results revealed low nucleotide diversity, suggesting severe historical bottleneck events. Analyses of molecular variance and the conventional population statistic FST (0.0435, P = 0.0215) confirmed weak genetic structure. The monophyly of G. pachycheilus was statistically well-supported, while two divergent evolutionary clusters were identified by phylogenetic analyses, suggesting a microgeographic population structure. The consistent scenario of recent population expansion of two clusters was identified based on several complementary analyses of demographic history (0.096 Ma and 0.15 Ma). This genetic divergence and evolutionary process are likely to have resulted from a series of drainage arrangements triggered by the historical tectonic events of the region. The results obtained here provide the first insights into the evolutionary history and genetic status of this little-known fish.

  17. Evaluating a fish monitoring protocol using state-space hierarchical models

    USGS Publications Warehouse

    Russell, Robin E.; Schmetterling, David A.; Guy, Chris S.; Shepard, Bradley B.; McFarland, Robert; Skaar, Donald

    2012-01-01

    Using data collected from three river reaches in Montana, we evaluated our ability to detect population trends and predict fish future fish abundance. Data were collected as part of a long-term monitoring program conducted by Montana Fish, Wildlife and Parks to primarily estimate rainbow (Oncorhynchus mykiss) and brown trout (Salmo trutta) abundance in numerous rivers across Montana. We used a hierarchical Bayesian mark-recapture model to estimate fish abundance over time in each of the three river reaches. We then fit a state-space Gompertz model to estimate current trends and future fish populations. Density dependent effects were detected in 1 of the 6 fish populations. Predictions of future fish populations displayed wide credible intervals. Our simulations indicated that given the observed variation in the abundance estimates, the probability of detecting a 30% decline in fish populations over a five-year period was less than 50%. We recommend a monitoring program that is closely tied to management objectives and reflects the precision necessary to make informed management decisions.

  18. Tracing Asian Seabass Individuals to Single Fish Farms Using Microsatellites

    PubMed Central

    Yue, Gen Hua; Xia, Jun Hong; Liu, Peng; Liu, Feng; Sun, Fei; Lin, Grace

    2012-01-01

    Traceability through physical labels is well established, but it is not highly reliable as physical labels can be easily changed or lost. Application of DNA markers to the traceability of food plays an increasingly important role for consumer protection and confidence building. In this study, we tested the efficiency of 16 polymorphic microsatellites and their combinations for tracing 368 fish to four populations where they originated. Using the maximum likelihood and Bayesian methods, three most efficient microsatellites were required to assign over 95% of fish to the correct populations. Selection of markers based on the assignment score estimated with the software WHICHLOCI was most effective in choosing markers for individual assignment, followed by the selection based on the allele number of individual markers. By combining rapid DNA extraction, and high-throughput genotyping of selected microsatellites, it is possible to conduct routine genetic traceability with high accuracy in Asian seabass. PMID:23285169

  19. Replenishment of fish populations is threatened by ocean acidification

    PubMed Central

    Munday, Philip L.; Dixson, Danielle L.; McCormick, Mark I.; Meekan, Mark; Ferrari, Maud C. O.; Chivers, Douglas P.

    2010-01-01

    There is increasing concern that ocean acidification, caused by the uptake of additional CO2 at the ocean surface, could affect the functioning of marine ecosystems; however, the mechanisms by which population declines will occur have not been identified, especially for noncalcifying species such as fishes. Here, we use a combination of laboratory and field-based experiments to show that levels of dissolved CO2 predicted to occur in the ocean this century alter the behavior of larval fish and dramatically decrease their survival during recruitment to adult populations. Altered behavior of larvae was detected at 700 ppm CO2, with many individuals becoming attracted to the smell of predators. At 850 ppm CO2, the ability to sense predators was completely impaired. Larvae exposed to elevated CO2 were more active and exhibited riskier behavior in natural coral-reef habitat. As a result, they had 5–9 times higher mortality from predation than current-day controls, with mortality increasing with CO2 concentration. Our results show that additional CO2 absorbed into the ocean will reduce recruitment success and have far-reaching consequences for the sustainability of fish populations. PMID:20615968

  20. Proposed methods and endpoints for defining and assessing adverse environmental impact (AEI) on fish communities/populations in Tennessee River reservoirs.

    PubMed

    Hickman, Gary D; Brown, Mary L

    2002-06-07

    Two multimetric indices have been developed to help address fish community (reservoir fish assemblage index [RFAI]) and individual population quality (sport fishing index [SFI]) in Tennessee River reservoirs. The RFAI, with characteristics similar to the index of biotic integrity (IBI) used in stream fish community determinations, was developed to monitor the existing condition of resident fish communities. The index, which incorporates standardized electrofishing of littoral areas and experimental gill netting for limnetic bottom-dwelling species, has been used to determine residential fish community response to various anthropogenic impacts in southeastern reservoirs. The SFI is a multimetric index designed to address the quality of the fishery for individual resident sport fish species in a particular lake or reservoir[4]. The SFI incorporates measures of fish population aspects and angler catch and pressure estimates. This paper proposes 70% of the maximum RFAI score and 10% above the average SFI score for individual species as "screening" endpoints for balanced indigenous populations (BIP) or adverse environmental impact (AEI). Endpoints for these indices indicate: (1) communities/populations are obviously balanced indigenous populations (BIP) indicating no adverse environmental impact (AEI), or are "screened out"; (2) communities/populations are considered to be potentially impacted; and (3) where the resident fish community/population should be considered adversely impacted. Suggestions are also made concerning how examination of individual metric scores can help determine the source or cause of the impact.

  1. Human Body Burden and Dietary Methylmercury Intake: The Relationship in a Rice-Consuming Population.

    PubMed

    Li, Ping; Feng, Xinbin; Chan, Hing-Man; Zhang, Xiaofeng; Du, Buyun

    2015-08-18

    Rice can be the main route of methylmercury (MeHg) exposure for rice-consuming populations living in area where mercury (Hg) is mined. However, the current risk assessment paradigm for MeHg exposure is based on epidemiological data collected from fish-consuming populations. This study was designed to evaluate the relationship between dietary MeHg intake and human body burden in a rice -consuming population from the Wanshan Hg mining area in China. Hair MeHg concentrations averaged 2.07 ± 1.79 μg/g, and the average blood MeHg concentration across the study area ranged from 2.20 to 9.36 μg/L. MeHg constituted 52.8 ± 17.5% and 71.7 ± 18.2% of total Hg (THg) on average in blood and hair samples, respectively. Blood and hair MeHg concentrations, rather than THg, can be used as a proxy of human MeHg exposure. Hair MeHg levels showed no significant monthly variation; however, hair THg can be impacted by inorganic Hg exposure. The toxicokinetic model of MeHg exposure based on fish consumption underestimated the human hair MeHg levels, and this may be a consequence of the high hair-to-blood MeHg ratio (361 ± 105) in the studied rice-consuming population. The use of risk assessment models based on fish consumption may not be appropriate for inland mining areas where rice is the staple food.

  2. Winter Fish Populations in Probable Locations of Air Bubblers in the St. Marys River-Lake Superior Area

    DTIC Science & Technology

    1980-09-01

    Lawrence Seaway Navigation Season Extension, Draft Main Report and Environmental Statement. Detroit, Michigan. Potential effects on fish were discussed...to keep channels ice free for winter vessel passage. The stucies were Jone to determine base line ecological conditions and the effects of the...Subjects were: "Ecological effects of air bub- blers in the winter, a partially annotated bibliography" and "Annotated bibliography on winter fish and

  3. Mercury concentrations in China's coastal waters and implications for fish consumption by vulnerable populations.

    PubMed

    Tong, Yindong; Wang, Mengzhu; Bu, Xiaoge; Guo, Xin; Lin, Yan; Lin, Huiming; Li, Jing; Zhang, Wei; Wang, Xuejun

    2017-12-01

    We assessed mercury (Hg) pollution in China's coastal waters, including the Bohai Sea, the Yellow Sea, the East China Sea and the South China Sea, based on a nationwide dataset from 301 sampling sites. A methylmercury (MeHg) intake model for humans based on the marine food chain and human fish consumption was established to determine the linkage between water pollutants and the pollutant intake by humans. The predicted MeHg concentration in fish from the Bohai Sea was the highest among the four seas included in the study. The MeHg intake through dietary ingestion was dominant for the fish and was considerably higher than the MeHg intake through water respiration. The predicted MeHg concentrations in human blood in the coastal regions of China ranged from 1.37 to 2.77 μg/L for pregnant woman and from 0.43 to 1.00 μg/L for infants, respectively, based on different diet sources. The carnivorous fish consumption advisory for pregnant women was estimated to be 288-654 g per week to maintain MeHg concentrations in human blood at levels below the threshold level (4.4 μg/L established by the US Environmental Protection Agency). With a 50% increase in Hg concentrations in water in the Bohai Sea, the bioaccumulated MeHg concentration (4.5 μg/L) in the fish consumers will be higher than the threshold level. This study demonstrates the importance in controlling Hg pollution in China's coastal waters. An official recommendation guideline for the fish consumption rate and its sources will be necessary for vulnerable populations in China. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Invasive Cyprinid Fish in Europe Originate from the Single Introduction of an Admixed Source Population Followed by a Complex Pattern of Spread

    PubMed Central

    Simon, Andrea; Britton, Robert; Gozlan, Rodolphe; van Oosterhout, Cock; Volckaert, Filip A. M.; Hänfling, Bernd

    2011-01-01

    The Asian cyprinid fish, the topmouth gudgeon (Pseudorasbora parva), was introduced into Europe in the 1960s. A highly invasive freshwater fish, it is currently found in at least 32 countries outside its native range. Here we analyse a 700 base pair fragment of the mitochondrial cytochrome b gene to examine different models of colonisation and spread within the invasive range, and to investigate the factors that may have contributed to their invasion success. Haplotype and nucleotide diversity of the introduced populations from continental Europe was higher than that of the native populations, although two recently introduced populations from the British Isles showed low levels of variability. Based on coalescent theory, all introduced and some native populations showed a relative excess of nucleotide diversity compared to haplotype diversity. This suggests that these populations are not in mutation-drift equilibrium, but rather that the relative inflated level of nucleotide diversity is consistent with recent admixture. This study elucidates the colonisation patterns of P. parva in Europe and provides an evolutionary framework of their invasion. It supports the hypothesis that their European colonisation was initiated by their introduction to a single location or small geographic area with subsequent complex pattern of spread including both long distance and stepping-stone dispersal. Furthermore, it was preceded by, or associated with, the admixture of genetically diverse source populations that may have augmented its invasive-potential. PMID:21674031

  5. Relative importance of population size, fishing pressure and temperature on the spatial distribution of nine Northwest Atlantic groundfish stocks.

    PubMed

    Adams, Charles F; Alade, Larry A; Legault, Christopher M; O'Brien, Loretta; Palmer, Michael C; Sosebee, Katherine A; Traver, Michele L

    2018-01-01

    The spatial distribution of nine Northwest Atlantic groundfish stocks was documented using spatial indicators based on Northeast Fisheries Science Center spring and fall bottom trawl survey data, 1963-2016. We then evaluated the relative importance of population size, fishing pressure and bottom temperature on spatial distribution with an information theoretic approach. Northward movement in the spring was generally consistent with prior analyses, whereas changes in depth distribution and area occupancy were not. Only two stocks exhibited the same changes in spatiotemporal distribution in the fall as compared with the spring. Fishing pressure was the most important predictor of the center of gravity (i.e., bivariate mean location of the population) for the majority of stocks in the spring, whereas in the fall this was restricted to the east-west component. Fishing pressure was also the most important predictor of the dispersion around the center of gravity in both spring and fall. In contrast, biomass was the most important predictor of area occupancy for the majority of stocks in both seasons. The relative importance of bottom temperature was ranked highest in the fewest number of cases. This study shows that fishing pressure, in addition to the previously established role of climate, influences the spatial distribution of groundfish in the Northwest Atlantic. More broadly, this study is one of a small but growing body of literature to demonstrate that fishing pressure has an effect on the spatial distribution of marine resources. Future work must consider both fishing pressure and climate when examining mechanisms underlying fish distribution shifts.

  6. The impacts of mobile fishing gear on seafloor habitats in the Gulf of Maine (Northwest Atlantic): implications for conservation of fish populations

    USGS Publications Warehouse

    Auster, Peter J.; Malatesta, Richard J.; Langton, Richard W.; Watting, Les; Valentine, Page C.; Donaldson, Carol Lee S.; Langton, Elizabeth W.; Shepard, Andrew N.; Babb, War G.

    1997-01-01

    Fishing gear alters seafloor habitats, but the extent of these alterations, and their effects, have not been quantified extensively in the northwest Atlantic. Understanding the extent of these impacts, and their effects on populations of living marine resources, is needed to properly manage current and future levels of fishing effort and fishing power. For example, the entire U.S. side of the Gulf of Maine was impacted annually by mobile fishing gear between 1984 and 1990, based on calculations of area swept by trawl and dredge gear. Georges Bank was imparted three to nearly four times annually during the same period. Studies at three sites in the Gulf of Maine (off Swans Island, Jeffreys Bank, and Stellwagen Bank) showed that mobile fishing gear altered the physical structure (=complexity) of benthic habitats. Complexity was reduced by direct removal of biogenic (e.g., sponges, hydrozoans, bryozoans, amphipod tubes, holothurians, shell aggregates) and‐ sedimentary (e.g., sand waves, depressions) structures. Also, removal of organisms that create.structures (e.g., crabs, scallops) indirectly reduced complexity. Reductions in habitat complexity may lead to increased predation on juveniles of harvested species and ultimately recruitment to the harvestable stock. Because of a lack of reference sites, where use of mobile fishing is prohibited, no empirical studies have yet been conducted on a scale that could demonstrate population level effects of habitat‐management options. If marine fisheries management is to evolve toward an ecosystem or habitat management approach, experiments are required on the effects of habitat change, both anthropogenic and natural.

  7. The impacts of mobile fishing gear on seafloor habitats in the gulf of maine (Northwest Atlantic): Implications for conservation of fish populations

    USGS Publications Warehouse

    Auster, P.J.; Malatesta, R.J.; Langton, R.W.; Watling, Les; Valentine, P.C.; Donaldson, C.L.S.; Langton, E.W.; Shepard, A.N.; Babb, Ivar G.

    1996-01-01

    Fishing gear alters seafloor habitats, but the extent of these alterations, and their effects, have not been quantified extensively in the northwest Atlantic. Understanding the extent of these impacts, and their effects on populations of living marine resources, is needed to properly manage current and future levels of fishing effort and fishing power. For example, the entire U.S. side of the Gulf of Maine was impacted annually by mobile fishing gear between 1984 and 1990, based on calculations of area swept by trawl and dredge gear. Georges Bank was impacted three to nearly four times annually during the same period. Studies at three sites in the Gulf of Maine (off Swans Island, Jeffreys Bank, and Stellwagen Bank) showed that mobile fishing gear altered the physical structure (=complexity) of benthic habitats. Complexity was reduced by direct removal of biogenic (e.g., sponges, hydrozoans, bryozoans, amphipod tubes, holothurians, shell aggregates) and sedimentary (e.g., sand waves, depressions) structures. Also, removal of organisms that create structures (e.g., crabs, scallops) indirectly reduced complexity. Reductions in habitat complexity may lead to increased predation on juveniles of harvested species and ultimately recruitment to the harvestable stock. Because of a lack of reference sites, where use of mobile fishing is prohibited, no empirical studies have yet been conducted on a scale that could demonstrate population level effects of habitat-management options. If marine fisheries management is to evolve toward an ecosystem or habitat management approach, experiments are required on the effects of habitat change, both anthropogenic and natural.

  8. Relative importance of population size, fishing pressure and temperature on the spatial distribution of nine Northwest Atlantic groundfish stocks

    PubMed Central

    Alade, Larry A.; Legault, Christopher M.; O’Brien, Loretta; Palmer, Michael C.; Sosebee, Katherine A.; Traver, Michele L.

    2018-01-01

    The spatial distribution of nine Northwest Atlantic groundfish stocks was documented using spatial indicators based on Northeast Fisheries Science Center spring and fall bottom trawl survey data, 1963–2016. We then evaluated the relative importance of population size, fishing pressure and bottom temperature on spatial distribution with an information theoretic approach. Northward movement in the spring was generally consistent with prior analyses, whereas changes in depth distribution and area occupancy were not. Only two stocks exhibited the same changes in spatiotemporal distribution in the fall as compared with the spring. Fishing pressure was the most important predictor of the center of gravity (i.e., bivariate mean location of the population) for the majority of stocks in the spring, whereas in the fall this was restricted to the east-west component. Fishing pressure was also the most important predictor of the dispersion around the center of gravity in both spring and fall. In contrast, biomass was the most important predictor of area occupancy for the majority of stocks in both seasons. The relative importance of bottom temperature was ranked highest in the fewest number of cases. This study shows that fishing pressure, in addition to the previously established role of climate, influences the spatial distribution of groundfish in the Northwest Atlantic. More broadly, this study is one of a small but growing body of literature to demonstrate that fishing pressure has an effect on the spatial distribution of marine resources. Future work must consider both fishing pressure and climate when examining mechanisms underlying fish distribution shifts. PMID:29698454

  9. Physiology can contribute to better understanding, management, and conservation of coral reef fishes.

    PubMed

    Illing, Björn; Rummer, Jodie L

    2017-01-01

    Coral reef fishes, like many other marine organisms, are affected by anthropogenic stressors such as fishing and pollution and, owing to climate change, are experiencing increasing water temperatures and ocean acidification. Against the backdrop of these various stressors, a mechanistic understanding of processes governing individual organismal performance is the first step for identifying drivers of coral reef fish population dynamics. In fact, physiological measurements can help to reveal potential cause-and-effect relationships and enable physiologists to advise conservation management by upscaling results from cellular and individual organismal levels to population levels. Here, we highlight studies that include physiological measurements of coral reef fishes and those that give advice for their conservation. A literature search using combined physiological, conservation and coral reef fish key words resulted in ~1900 studies, of which only 99 matched predefined requirements. We observed that, over the last 20 years, the combination of physiological and conservation aspects in studies on coral reef fishes has received increased attention. Most of the selected studies made their physiological observations at the whole organism level and used their findings to give conservation advice on population dynamics, habitat use or the potential effects of climate change. The precision of the recommendations differed greatly and, not surprisingly, was least concrete when studies examined the effects of projected climate change scenarios. Although more and more physiological studies on coral reef fishes include conservation aspects, there is still a lack of concrete advice for conservation managers, with only very few published examples of physiological findings leading to improved management practices. We conclude with a call to action to foster better knowledge exchange between natural scientists and conservation managers to translate physiological findings more effectively in order to obtain evidence-based and adaptive management strategies for the conservation of coral reef fishes.

  10. Assessing connectivity of estuarine fishes based on stable isotope ratio analysis

    NASA Astrophysics Data System (ADS)

    Herzka, Sharon Z.

    2005-07-01

    Assessing connectivity is fundamental to understanding the population dynamics of fishes. I propose that isotopic analyses can greatly contribute to studies of connectivity in estuarine fishes due to the high diversity of isotopic signatures found among estuarine habitats and the fact that variations in isotopic composition at the base of a food web are reflected in the tissues of consumers. Isotopic analysis can be used for identifying nursery habitats and estimating their contribution to adult populations. If movement to a new habitat is accompanied by a shift to foods of distinct isotopic composition, recent immigrants and residents can be distinguished based on their isotopic ratios. Movement patterns thus can be reconstructed based on information obtained from individuals. A key consideration is the rate of isotopic turnover, which determines the length of time that an immigrant to a given habitat will be distinguishable from a longtime resident. A literature survey indicated that few studies have measured turnover rates in fishes and that these have focused on larvae and juveniles. These studies reveal that biomass gain is the primary process driving turnover rates, while metabolic turnover is either minimal or undetectable. Using a simple dilution model and biomass-specific growth rates, I estimated that young fishes with fast growth rates will reflect the isotopic composition of a new diet within days or weeks. Older or slower-growing individuals may take years or never fully equilibrate. Future studies should evaluate the factors that influence turnover rates in fishes during various stages of the life cycle and in different tissues, as well as explore the potential for combining stable isotope and otolith microstructure analyses to examine the relationship between demographic parameters, movement and connectivity.

  11. Fishes in a changing world: learning from the past to promote sustainability of fish populations.

    PubMed

    Gordon, T A C; Harding, H R; Clever, F K; Davidson, I K; Davison, W; Montgomery, D W; Weatherhead, R C; Windsor, F M; Armstrong, J D; Bardonnet, A; Bergman, E; Britton, J R; Côté, I M; D'agostino, D; Greenberg, L A; Harborne, A R; Kahilainen, K K; Metcalfe, N B; Mills, S C; Milner, N J; Mittermayer, F H; Montorio, L; Nedelec, S L; Prokkola, J M; Rutterford, L A; Salvanes, A G V; Simpson, S D; Vainikka, A; Pinnegar, J K; Santos, E M

    2018-03-01

    Populations of fishes provide valuable services for billions of people, but face diverse and interacting threats that jeopardize their sustainability. Human population growth and intensifying resource use for food, water, energy and goods are compromising fish populations through a variety of mechanisms, including overfishing, habitat degradation and declines in water quality. The important challenges raised by these issues have been recognized and have led to considerable advances over past decades in managing and mitigating threats to fishes worldwide. In this review, we identify the major threats faced by fish populations alongside recent advances that are helping to address these issues. There are very significant efforts worldwide directed towards ensuring a sustainable future for the world's fishes and fisheries and those who rely on them. Although considerable challenges remain, by drawing attention to successful mitigation of threats to fish and fisheries we hope to provide the encouragement and direction that will allow these challenges to be overcome in the future. © 2018 The Authors. Journal of Fish Biology published by John Wiley & Sons Ltd on behalf of The Fisheries Society of the British Isles.

  12. Mitochondrial and Allozyme Genetics of Incipient Speciation in a Landlocked Population of Galaxias Truttaceus (Pisces: Galaxiidae)

    PubMed Central

    Ovenden, J. R.; White, RWG.

    1990-01-01

    Galaxias truttaceus is found in coastal rivers and streams in south-eastern Australia. It spawns at the head of estuaries in autumn and the larvae spend 3 months of winter at sea before returning to fresh water. In Tasmania there are landlocked populations of G. truttaceus in a cluster of geologically young lakes on the recently glaciated Central Plateau. These populations have no marine larval stage and spawn in the lakes in spring. Speciation due to land locking is thought to be a frequent occurrence within Galaxias. To investigate the nature of the speciation event which may be occurring within lake populations of G. truttaceus we studied the mitochondrial DNA (mtDNA) and allozyme diversity of both lake and stream populations. Using the presence or absence of restriction sites recognized by 13 six-base restriction endonucleases, we found 58 mtDNA haplotypes among 150 fish collected from 13 Tasmanian and one south-east Australian mainland stream populations. The most parsimonious network relating the haplotypes by site loss or gain was starlike in shape. We argue that this arrangement is best explained by selection upon slightly beneficial mutations within the mitochondrial genome. Gene diversity analysis under Wright's island model showed that the populations in each drainage were not genetically subdivided. Only two of these stream haplotypes were found among the 66 fish analyzed from four lake populations. Despite the extreme lack of mtDNA diversity in lake populations, the observed nuclear DNA heterozygosity of 40 lake fish (0.10355) was only slightly less than that of 82 stream fish (0.11635). In the short time (3000-7000 years) that the lake fish have been landlocked, random genetic drift in a finite, stable-sized population was probably not responsible for the lack of mtDNA diversity in the lake populations. We infer the lake populations have probably experienced at least one, severe, but transitory bottleneck possibly induced by natural selection for life-history characters essential for survival in the lacustrine habitat. If speciation is occurring in the landlocked populations of G. truttaceus, then it may be driven by genetic transilience. PMID:2155855

  13. Effects of human population density and proximity to markets on coral reef fishes vulnerable to extinction by fishing.

    PubMed

    Brewer, T D; Cinner, J E; Green, A; Pressey, R L

    2013-06-01

    Coral reef fisheries are crucial to the livelihoods of tens of millions of people; yet, widespread habitat degradation and unsustainable fishing are causing severe depletion of stocks of reef fish. Understanding how social and economic factors, such as human population density, access to external markets, and modernization interact with fishing and habitat degradation to affect fish stocks is vital to sustainable management of coral reef fisheries. We used fish survey data, national social and economic data, and path analyses to assess whether these factors explain variation in biomass of coral reef fishes among 25 sites in Solomon Islands. We categorized fishes into 3 groups on the basis of life-history characteristics associated with vulnerability to extinction by fishing (high, medium, and low vulnerability). The biomass of fish with low vulnerability was positively related to habitat condition. The biomass of fishes with high vulnerability was negatively related to fishing conducted with efficient gear. Use of efficient gear, in turn, was strongly and positively related to both population density and market proximity. This result suggests local population pressure and external markets have additive negative effects on vulnerable reef fish. Biomass of the fish of medium vulnerability was not explained by fishing intensity or habitat condition, which suggests these species may be relatively resilient to both habitat degradation and fishing. © 2012 Society for Conservation Biology.

  14. A spatial method to calculate small-scale fisheries effort in data poor scenarios.

    PubMed

    Johnson, Andrew Frederick; Moreno-Báez, Marcia; Giron-Nava, Alfredo; Corominas, Julia; Erisman, Brad; Ezcurra, Exequiel; Aburto-Oropeza, Octavio

    2017-01-01

    To gauge the collateral impacts of fishing we must know where fishing boats operate and how much they fish. Although small-scale fisheries land approximately the same amount of fish for human consumption as industrial fleets globally, methods of estimating their fishing effort are comparatively poor. We present an accessible, spatial method of calculating the effort of small-scale fisheries based on two simple measures that are available, or at least easily estimated, in even the most data-poor fisheries: the number of boats and the local coastal human population. We illustrate the method using a small-scale fisheries case study from the Gulf of California, Mexico, and show that our measure of Predicted Fishing Effort (PFE), measured as the number of boats operating in a given area per day adjusted by the number of people in local coastal populations, can accurately predict fisheries landings in the Gulf. Comparing our values of PFE to commercial fishery landings throughout the Gulf also indicates that the current number of small-scale fishing boats in the Gulf is approximately double what is required to land theoretical maximum fish biomass. Our method is fishery-type independent and can be used to quantitatively evaluate the efficacy of growth in small-scale fisheries. This new method provides an important first step towards estimating the fishing effort of small-scale fleets globally.

  15. Accurate aging of juvenile salmonids using fork lengths

    USGS Publications Warehouse

    Sethi, Suresh; Gerken, Jonathon; Ashline, Joshua

    2017-01-01

    Juvenile salmon life history strategies, survival, and habitat interactions may vary by age cohort. However, aging individual juvenile fish using scale reading is time consuming and can be error prone. Fork length data are routinely measured while sampling juvenile salmonids. We explore the performance of aging juvenile fish based solely on fork length data, using finite Gaussian mixture models to describe multimodal size distributions and estimate optimal age-discriminating length thresholds. Fork length-based ages are compared against a validation set of juvenile coho salmon, Oncorynchus kisutch, aged by scales. Results for juvenile coho salmon indicate greater than 95% accuracy can be achieved by aging fish using length thresholds estimated from mixture models. Highest accuracy is achieved when aged fish are compared to length thresholds generated from samples from the same drainage, time of year, and habitat type (lentic versus lotic), although relatively high aging accuracy can still be achieved when thresholds are extrapolated to fish from populations in different years or drainages. Fork length-based aging thresholds are applicable for taxa for which multiple age cohorts coexist sympatrically. Where applicable, the method of aging individual fish is relatively quick to implement and can avoid ager interpretation bias common in scale-based aging.

  16. Spatial structuring within a reservoir fish population: implications for management

    USGS Publications Warehouse

    Stewart, David R.; Long, James M.; Shoup, Daniel E.

    2014-01-01

    Spatial structuring in reservoir fish populations can exist because of environmental gradients, species-specific behaviour, or even localised fishing effort. The present study investigated whether white crappie exhibited evidence of improved population structure where the northern more productive half of a lake is closed to fishing to provide waterfowl hunting opportunities. Population response to angling was modelled for each substock of white crappie (north (protected) and south (unprotected) areas), the entire lake (single-stock model) and by combining simulations of the two independent substock models (additive model). White crappie in the protected area were more abundant, consisting of larger, older individuals, and exhibited a lower total annual mortality rate than in the unprotected area. Population modelling found that fishing mortality rates between 0.1 and 0.3 resulted in sustainable populations (spawning potential ratios (SPR) >0.30). The population in the unprotected area appeared to be more resilient (SPR > 0.30) at the higher fishing intensities (0.35–0.55). Considered additively, the whole-lake fishery appeared more resilient than when modelled as a single-panmictic stock. These results provided evidence of spatial structuring in reservoir fish populations, and we recommend model assessments used to guide management decisions should consider those spatial differences in other populations where they exist.

  17. Population Genetic Structure of the Tropical Two-Wing Flyingfish (Exocoetus volitans)

    PubMed Central

    Lewallen, Eric A.; Bohonak, Andrew J.; Bonin, Carolina A.; van Wijnen, Andre J.; Pitman, Robert L.; Lovejoy, Nathan R.

    2016-01-01

    Delineating populations of pantropical marine fish is a difficult process, due to widespread geographic ranges and complex life history traits in most species. Exocoetus volitans, a species of two-winged flyingfish, is a good model for understanding large-scale patterns of epipelagic fish population structure because it has a circumtropical geographic range and completes its entire life cycle in the epipelagic zone. Buoyant pelagic eggs should dictate high local dispersal capacity in this species, although a brief larval phase, small body size, and short lifespan may limit the dispersal of individuals over large spatial scales. Based on these biological features, we hypothesized that E. volitans would exhibit statistically and biologically significant population structure defined by recognized oceanographic barriers. We tested this hypothesis by analyzing cytochrome b mtDNA sequence data (1106 bps) from specimens collected in the Pacific, Atlantic and Indian oceans (n = 266). AMOVA, Bayesian, and coalescent analytical approaches were used to assess and interpret population-level genetic variability. A parsimony-based haplotype network did not reveal population subdivision among ocean basins, but AMOVA revealed limited, statistically significant population structure between the Pacific and Atlantic Oceans (ΦST = 0.035, p<0.001). A spatially-unbiased Bayesian approach identified two circumtropical population clusters north and south of the Equator (ΦST = 0.026, p<0.001), a previously unknown dispersal barrier for an epipelagic fish. Bayesian demographic modeling suggested the effective population size of this species increased by at least an order of magnitude ~150,000 years ago, to more than 1 billion individuals currently. Thus, high levels of genetic similarity observed in E. volitans can be explained by high rates of gene flow, a dramatic and recent population expansion, as well as extensive and consistent dispersal throughout the geographic range of the species. PMID:27736863

  18. Population Genetic Structure of the Tropical Two-Wing Flyingfish (Exocoetus volitans).

    PubMed

    Lewallen, Eric A; Bohonak, Andrew J; Bonin, Carolina A; van Wijnen, Andre J; Pitman, Robert L; Lovejoy, Nathan R

    2016-01-01

    Delineating populations of pantropical marine fish is a difficult process, due to widespread geographic ranges and complex life history traits in most species. Exocoetus volitans, a species of two-winged flyingfish, is a good model for understanding large-scale patterns of epipelagic fish population structure because it has a circumtropical geographic range and completes its entire life cycle in the epipelagic zone. Buoyant pelagic eggs should dictate high local dispersal capacity in this species, although a brief larval phase, small body size, and short lifespan may limit the dispersal of individuals over large spatial scales. Based on these biological features, we hypothesized that E. volitans would exhibit statistically and biologically significant population structure defined by recognized oceanographic barriers. We tested this hypothesis by analyzing cytochrome b mtDNA sequence data (1106 bps) from specimens collected in the Pacific, Atlantic and Indian oceans (n = 266). AMOVA, Bayesian, and coalescent analytical approaches were used to assess and interpret population-level genetic variability. A parsimony-based haplotype network did not reveal population subdivision among ocean basins, but AMOVA revealed limited, statistically significant population structure between the Pacific and Atlantic Oceans (ΦST = 0.035, p<0.001). A spatially-unbiased Bayesian approach identified two circumtropical population clusters north and south of the Equator (ΦST = 0.026, p<0.001), a previously unknown dispersal barrier for an epipelagic fish. Bayesian demographic modeling suggested the effective population size of this species increased by at least an order of magnitude ~150,000 years ago, to more than 1 billion individuals currently. Thus, high levels of genetic similarity observed in E. volitans can be explained by high rates of gene flow, a dramatic and recent population expansion, as well as extensive and consistent dispersal throughout the geographic range of the species.

  19. Otolith reading and multi-model inference for improved estimation of age and growth in the gilthead seabream Sparus aurata (L.)

    NASA Astrophysics Data System (ADS)

    Mercier, Lény; Panfili, Jacques; Paillon, Christelle; N'diaye, Awa; Mouillot, David; Darnaude, Audrey M.

    2011-05-01

    Accurate knowledge of fish age and growth is crucial for species conservation and management of exploited marine stocks. In exploited species, age estimation based on otolith reading is routinely used for building growth curves that are used to implement fishery management models. However, the universal fit of the von Bertalanffy growth function (VBGF) on data from commercial landings can lead to uncertainty in growth parameter inference, preventing accurate comparison of growth-based history traits between fish populations. In the present paper, we used a comprehensive annual sample of wild gilthead seabream ( Sparus aurata L.) in the Gulf of Lions (France, NW Mediterranean) to test a methodology improving growth modelling for exploited fish populations. After validating the timing for otolith annual increment formation for all life stages, a comprehensive set of growth models (including VBGF) were fitted to the obtained age-length data, used as a whole or sub-divided between group 0 individuals and those coming from commercial landings (ages 1-6). Comparisons in growth model accuracy based on Akaike Information Criterion allowed assessment of the best model for each dataset and, when no model correctly fitted the data, a multi-model inference (MMI) based on model averaging was carried out. The results provided evidence that growth parameters inferred with VBGF must be used with high caution. Hence, VBGF turned to be among the less accurate for growth prediction irrespective of the dataset and its fit to the whole population, the juvenile or the adult datasets provided different growth parameters. The best models for growth prediction were the Tanaka model, for group 0 juveniles, and the MMI, for the older fish, confirming that growth differs substantially between juveniles and adults. All asymptotic models failed to correctly describe the growth of adult S. aurata, probably because of the poor representation of old individuals in the dataset. Multi-model inference associated with separate analysis of juveniles and adult fish is then advised to obtain objective estimations of growth parameters when sampling cannot be corrected towards older fish.

  20. Acid rain recovery may help to mitigate the impacts of climate change on thermally sensitive fish in lakes across eastern North America.

    PubMed

    Warren, Dana R; Kraft, Clifford E; Josephson, Daniel C; Driscoll, Charles T

    2017-06-01

    From the 1970s to 1990s, more stringent air quality regulations were implemented across North America and Europe to reduce chemical emissions that contribute to acid rain. Surface water pH slowly increased during the following decades, but biological recovery lagged behind chemical recovery. Fortunately, this situation is changing. In the past few years, northeastern US fish populations have begun to recover in lakes that were historically incapable of sustaining wild fish due to acidic conditions. As lake ecosystems across the eastern United States recover from acid deposition, the stress to the most susceptible populations of native coldwater fish appears to be shifting from acidification effects to thermal impacts associated with changing climate. Extreme summer temperature events - which are expected to occur with increasing frequency in the coming century - can stress and ultimately kill native coldwater fish in lakes where thermal stratification is absent or highly limited. Based on data from northeastern North America, we argue that recovery from acid deposition has the potential to improve the resilience of coldwater fish populations in some lakes to impacts of climate change. This will occur as the amount of dissolved organic carbon (DOC) in the water increases with increasing lake pH. Increased DOC will reduce water clarity and lead to shallower and more persistent lake thermoclines that can provide larger areas of coldwater thermal refuge habitat. Recovery from acidification will not eliminate the threat of climate change to coldwater fish, but secondary effects of acid recovery may improve the resistance of coldwater fish populations in lakes to the effects of elevated summer temperatures in historically acidified ecosystems. This analysis highlights the importance of considering the legacy of past ecosystem impacts and how recovery or persistence of those effects may interact with climate change impacts on biota in the coming decades. © 2016 John Wiley & Sons Ltd.

  1. Impact of climate change on the relict tropical fish fauna of central sahara: threat for the survival of adrar mountains fishes, mauritania.

    PubMed

    Trape, Sébastien

    2009-01-01

    Four central Sahara mountainous massifs provide habitats for relict populations of fish. In the Adrar of Mauritania all available data on the presence and distribution of fish come from pre-1960 surveys where five fish species were reported: Barbus pobeguini, Barbus macrops, Barbus mirei, Sarotherodon galilaeus, and Clarias anguillaris. Since 1970, drought has had a severe impact in the Adrar where rainfall decreased by 35%. To investigate whether the relict populations of fish have survived the continuing drought, a study was carried out from 2004 to 2008. An inventory of perennial bodies of water was drawn up using a literature review and analysis of topographical and hydrological maps. Field surveys were carried out in order to locate the bodies of water described in the literature, identify the presence of fish, determine which species were present and estimate their abundance. The thirteen sites where the presence of fish was observed in the 1950s -Ksar Torchane, Ilij, Molomhar, Agueni, Tachot, Hamdoun, Terjit, Toungad, El Berbera, Timagazine, Dâyet el Mbârek, Dâyet et-Tefla, Nkedeï- were located and surveyed. The Ksar Torchane spring -type locality and the only known locality of B. mirei- has dried up at the height of the drought in 1984, and any fish populations have since become extinct there. The Timagazine, Dâyet el Mbârek and Dâyet et-Tefla pools have become ephemeral. The Hamdoun guelta appears to be highly endangered. The fish populations at the other sites remain unchanged. Four perennial pools which are home to populations of B. pobeguini are newly recorded. The tropical relict fish populations of the Adrar mountains of Mauritania appear to be highly endangered. Of thirteen previously recorded populations, four have become extinct since the beginning of the drought period. New fish population extinctions may occur should low levels of annual rainfall be repeated.

  2. Collapse and recovery of forage fish populations prior to commercial exploitation

    NASA Astrophysics Data System (ADS)

    McClatchie, S.; Hendy, I. L.; Thompson, A. R.; Watson, W.

    2017-02-01

    We use a new, well-calibrated 500 year paleorecord off southern California to determine collapse frequency, cross correlation, persistence, and return times of exploited forage fish populations. The paleorecord shows that "collapse" (defined as <10% of the mean peak biomass) is a normal state repeatedly experienced by northern anchovy, Pacific hake, and Pacific sardine which were collapsed 29-40% of the time, prior to commercial fishing exploitation. Mean (± SD) persistence of "fishable biomass" (defined as one third mean peak biomass from the paleorecord) was 19 ± 18, 15 ± 17, and 12 ± 7 years for anchovy, hake, and sardine. Mean return times to the same biomass was 8 years for anchovy but 22 years for sardine and hake. Further, we find that sardine and anchovy are positively correlated over 400 years, consistent with coherent declines of both species off California. Persistence and return times combined with positive sardine-anchovy correlation indicate that on average 1-2 decades of fishable biomass will be followed by 1-2 decades of low forage. Forage populations are resilient on the 500 year time scale, but their collapse and recovery cycle (based on the paleorecord) are suited to alternating periods of high fishing mortality and periods of little or no fishing.

  3. Respondent driven sampling in a biomonitoring study of refugees from Burma in Buffalo, New York who eat Great Lakes fish.

    PubMed

    Liu, Ming; McCann, Molly; Lewis-Michl, Elizabeth; Hwang, Syni-An

    2018-06-01

    Refugees from Burma who consume fish caught from local waterbodies have increased risk of exposure to environmental contaminants. We used respondent driven sampling (RDS) to sample this hard-to-reach population for the first Biomonitoring of Great Lakes Populations program. In the current study, we examined the interview data and assessed the effectiveness of RDS to sample the unique population. In 2013, we used RDS to sample 205 Burmese refugees and immigrants residing in Buffalo, New York who consumed fish caught from Great Lakes waters. RDS-adjusted population estimates of sociodemographic characteristics, residential history, fish consumption related behaviors, and awareness of fish advisories were obtained. We also examined sample homophily and equilibrium to assess how well the RDS assumptions were met in the study. Our sample was diverse with respect to sex, age, years residing in Buffalo, years lived in a refugee camp, education, employment, and fish consumption behaviors, and each of these variables reached equilibrium by the end of recruitment. Burmese refugees in Buffalo consumed Great Lakes fish throughout the year; a majority of them consumed the fish more than two times per week during summer, and about one third ate local fish more than once per week in winter. An estimated 60% of Burmese refugees in Buffalo had heard about local fish advisories. RDS has the potential to be an effective methodology for sampling refugees and immigrants in conducting biomonitoring and environmental exposure assessment. Due to high fish consumption and limited awareness and knowledge of fish advisories, some refugee and immigrant populations are more susceptible to environmental contaminants. Increased awareness on local fish advisories is needed among these populations. Published by Elsevier GmbH.

  4. ADAPTIONS OF WILD POPULATIONS OF THE ESTUARINE FISH FUNDULUS HETEROCLITUS TO PERSISTENT ENVIRONMENTAL CONTAMINANTS

    EPA Science Inventory

    Many aquatic species, including the estuarine fish Fundulus heteroclitus (mummichogs), adapt to local environmental conditions. We conducted studies to evaluate whether highly exposed populations of mummichogs adapt to toxic environmental contaminants. These fish populations are ...

  5. Movement and capture efficiency of radio-tagged salmonids sampled by electrofishing

    Treesearch

    Michael K. Young; David A. Schmetterling

    2012-01-01

    Electrofishing-based estimates of fish abundance are common. Most population models assume that samples are drawn froma closed population, but population closure is sometimes difficult to achieve. Consequently, we individually electrofished 103 radio-tagged trout of two species, westslope cutthroat trout Oncorhynchus clarkii lewisi and brook trout Salvelinus fontinalis...

  6. Individual-based model formulation for cutthroat trout, Little Jones Creek, California

    Treesearch

    Steven F. Railsback; Bret C. Harvey

    2001-01-01

    This report contains the detailed formulation of an individual-based model (IBM) of cutthroat trout developed for three study sites on Little Jones Creek, Del Norte County, in northwestern California. The model was designed to support research on relations between habitat and fish population dynamics, the importance of small tributaries to trout populations, and the...

  7. The waterfall paradox: How knickpoints disconnect hillslope and channel processes, isolating salmonid populations in ideal habitats

    NASA Astrophysics Data System (ADS)

    May, Christine; Roering, Josh; Snow, Kyle; Griswold, Kitty; Gresswell, Robert

    2017-01-01

    Waterfalls create barriers to fish migration, yet hundreds of isolated salmonid populations exist above barriers and have persisted for thousands of years in steep mountainous terrain. Ecological theory indicates that small isolated populations in disturbance-prone landscapes are at greatest risk of extirpation because immigration and recolonization are not possible. On the contrary, many above-barrier populations are currently thriving while their downstream counterparts are dwindling. This quandary led us to explore geomorphic knickpoints as a mechanism for disconnecting hillslope and channel processes by limiting channel incision and decreasing the pace of base-level lowering. Using LiDAR from the Oregon Coast Range, we found gentler channel gradients, wider valleys, lower gradient hillslopes, and less shallow landslide potential in an above-barrier catchment compared to a neighboring catchment devoid of persistent knickpoints. Based on this unique geomorphic template, above-barrier channel networks are less prone to debris flows and other episodic sediment fluxes. These above-barrier catchments also have greater resiliency to flooding, owing to wider valleys with greater floodplain connectivity. Habitat preference models further indicate that salmonid habitat is present in greater quantity and quality in these above-barrier networks. Therefore the paradox of the persistence of small isolated fish populations may be facilitated by a geomorphic mechanism that both limits their connectivity to larger fish populations yet dampens the effect of disturbance by decreasing connections between hillslope and channel processes above geomorphic knickpoints.

  8. Life in a rock pool: Radiation and population genetics of myxozoan parasites in hosts inhabiting restricted spaces.

    PubMed

    Bartošová-Sojková, Pavla; Lövy, Alena; Reed, Cecile C; Lisnerová, Martina; Tomková, Tereza; Holzer, Astrid S; Fiala, Ivan

    2018-01-01

    Intertidal rock pools where fish and invertebrates are in constant close contact due to limited space and water level fluctuations represent ideal conditions to promote life cycles in parasites using these two alternate hosts and to study speciation processes that could contribute to understanding the roles of parasitic species in such ecosystems. Gall bladder and liver samples from five clinid fish species (Blenniiformes: Clinidae) were morphologically and molecularly examined to determine the diversity, prevalence, distribution and host specificity of Ceratomyxa parasites (Cnidaria: Myxozoa) in intertidal habitats along the coast of South Africa. Phylogenetic relationships of clinid ceratomyxids based on the SSU rDNA, LSU rDNA and ITS regions were assessed additionally to the investigation of population genetic structure of Ceratomyxa cottoidii and subsequent comparison with the data known from type fish host Clinus cottoides. Seven Ceratomyxa species including previously described Ceratomyxa dehoopi and C. cottoidii were recognized in clinids. They represent a diverse group of rapidly evolving, closely related species with a remarkably high prevalence in their hosts, little host specificity and frequent concurrent infections, most probably as a result of parasite radiation after multiple speciation events triggered by limited host dispersal within restricted spaces. C. cottoidii represents the most common clinid parasite with a population structure characterized by young expanding populations in the south west and south east coast and by older populations in equilibrium on the west coast of its distribution. Parasite and fish host population structures show overlapping patterns and are very likely affected by similar oceanographic barriers possibly due to reduced host dispersal enhancing parasite community differentiation. While fish host specificity had little impact on parasite population structure, the habitat preference of the alternate invertebrate host as well as tidal water exchange may be additional crucial variables affecting the dispersal and associated population structure of C. cottoidii.

  9. Life in a rock pool: Radiation and population genetics of myxozoan parasites in hosts inhabiting restricted spaces

    PubMed Central

    Reed, Cecile C.; Lisnerová, Martina; Tomková, Tereza; Holzer, Astrid S.; Fiala, Ivan

    2018-01-01

    Introduction Intertidal rock pools where fish and invertebrates are in constant close contact due to limited space and water level fluctuations represent ideal conditions to promote life cycles in parasites using these two alternate hosts and to study speciation processes that could contribute to understanding the roles of parasitic species in such ecosystems. Material and methods Gall bladder and liver samples from five clinid fish species (Blenniiformes: Clinidae) were morphologically and molecularly examined to determine the diversity, prevalence, distribution and host specificity of Ceratomyxa parasites (Cnidaria: Myxozoa) in intertidal habitats along the coast of South Africa. Phylogenetic relationships of clinid ceratomyxids based on the SSU rDNA, LSU rDNA and ITS regions were assessed additionally to the investigation of population genetic structure of Ceratomyxa cottoidii and subsequent comparison with the data known from type fish host Clinus cottoides. Results and discussion Seven Ceratomyxa species including previously described Ceratomyxa dehoopi and C. cottoidii were recognized in clinids. They represent a diverse group of rapidly evolving, closely related species with a remarkably high prevalence in their hosts, little host specificity and frequent concurrent infections, most probably as a result of parasite radiation after multiple speciation events triggered by limited host dispersal within restricted spaces. C. cottoidii represents the most common clinid parasite with a population structure characterized by young expanding populations in the south west and south east coast and by older populations in equilibrium on the west coast of its distribution. Parasite and fish host population structures show overlapping patterns and are very likely affected by similar oceanographic barriers possibly due to reduced host dispersal enhancing parasite community differentiation. While fish host specificity had little impact on parasite population structure, the habitat preference of the alternate invertebrate host as well as tidal water exchange may be additional crucial variables affecting the dispersal and associated population structure of C. cottoidii. PMID:29561884

  10. Tropical insular fish assemblages are resilient to flood disturbance

    USGS Publications Warehouse

    Smith, William E.; Kwak, Thomas J.

    2015-01-01

    Periods of stable environmental conditions, favoring development of ecological communities regulated by density-dependent processes, are interrupted by random periods of disturbance that may restructure communities. Disturbance may affect populations via habitat alteration, mortality, or displacement. We quantified fish habitat conditions, density, and movement before and after a major flood disturbance in a Caribbean island tropical river using habitat surveys, fish sampling and population estimates, radio telemetry, and passively monitored PIT tags. Native stream fish populations showed evidence of acute mortality and downstream displacement of surviving fish. All fish species were reduced in number at most life stages after the disturbance, but populations responded with recruitment and migration into vacated upstream habitats. Changes in density were uneven among size classes for most species, indicating altered size structures. Rapid recovery processes at the population level appeared to dampen effects at the assemblage level, as fish assemblage parameters (species richness and diversity) were unchanged by the flooding. The native fish assemblage appeared resilient to flood disturbance, rapidly compensating for mortality and displacement with increased recruitment and recolonization of upstream habitats.

  11. Using river distance and existing hydrography data can improve the geostatistical estimation of fish tissue mercury at unsampled locations.

    PubMed

    Money, Eric S; Sackett, Dana K; Aday, D Derek; Serre, Marc L

    2011-09-15

    Mercury in fish tissue is a major human health concern. Consumption of mercury-contaminated fish poses risks to the general population, including potentially serious developmental defects and neurological damage in young children. Therefore, it is important to accurately identify areas that have the potential for high levels of bioaccumulated mercury. However, due to time and resource constraints, it is difficult to adequately assess fish tissue mercury on a basin wide scale. We hypothesized that, given the nature of fish movement along streams, an analytical approach that takes into account distance traveled along these streams would improve the estimation accuracy for fish tissue mercury in unsampled streams. Therefore, we used a river-based Bayesian Maximum Entropy framework (river-BME) for modern space/time geostatistics to estimate fish tissue mercury at unsampled locations in the Cape Fear and Lumber Basins in eastern North Carolina. We also compared the space/time geostatistical estimation using river-BME to the more traditional Euclidean-based BME approach, with and without the inclusion of a secondary variable. Results showed that this river-based approach reduced the estimation error of fish tissue mercury by more than 13% and that the median estimate of fish tissue mercury exceeded the EPA action level of 0.3 ppm in more than 90% of river miles for the study domain.

  12. Evidence of population resistance to extreme low flows in a fluvial-dependent fish species

    USGS Publications Warehouse

    Katz, Rachel A.; Freeman, Mary C.

    2015-01-01

    Extreme low streamflows are natural disturbances to aquatic populations. Species in naturally intermittent streams display adaptations that enhance persistence during extreme events; however, the fate of populations in perennial streams during unprecedented low-flow periods is not well-understood. Biota requiring swift-flowing habitats may be especially vulnerable to flow reductions. We estimated the abundance and local survival of a native fluvial-dependent fish species (Etheostoma inscriptum) across 5 years encompassing historic low flows in a sixth-order southeastern USA perennial river. Based on capturemark-recapture data, the study shoal may have acted as a refuge during severe drought, with increased young-of-the-year (YOY) recruitment and occasionally high adult immigration. Contrary to expectations, summer and autumn survival rates (30 days) were not strongly depressed during low-flow periods, despite 25%-80% reductions in monthly discharge. Instead, YOY survival increased with lower minimum discharge and in response to small rain events that increased low-flow variability. Age-1+ fish showed the opposite pattern, with survival decreasing in response to increasing low-flow variability. Results from this population dynamics study of a small fish in a perennial river suggest that fluvial-dependent species can be resistant to extreme flow reductions through enhanced YOY recruitment and high survival

  13. Defining fish nursery habitats: an application of otolith elemental fingerprinting in Tampa Bay, Florida

    USGS Publications Warehouse

    Ley, Janet A.; McIvor, Carole C.; Peebles, Ernst B; Rolls, Holly; Cooper, Suzanne T.

    2009-01-01

    Fishing in Tampa Bay enhances the quality of life of the area's residents and visitors. However, people's desire to settle along the Bay's shorelines and tributaries has been detrimental to the very habitat believed to be crucial to prime target fishery species. Common snook (Centropomus undecimalis) and red drum (Sciaenops ocellatus) are part of the suite of estuarine fishes that 1) are economically or ecologically prominent, and 2) have complex life cycles involving movement between open coastal waters and estuarine nursery habitats, including nursery habitats that are located within upstream, low-salinity portions of the Bay?s tidal tributaries. We are using an emerging microchemical technique -- elemental fingerprinting of fish otoliths -- to determine the degree to which specific estuarine locations contribute to adult fished populations in Tampa Bay. In ongoing monitoring surveys, over 1,000 young-of-the-year common snook and red drum have already been collected from selected Tampa Bay tributaries. Using laser ablation-inductively coupled plasma - mass spectrometry (LA-ICP-MS), we are currently processing a subsample of these archived otoliths to identify location-specific fingerprints based on elemental microchemistry. We will then analyze older fish from the local fishery in order to match them to their probable nursery areas, as defined by young-of-the-year otoliths. We expect to find that some particularly favorable nursery locations contribute disproportionately to the fished population. In contrast, other nursery areas may be degraded, or act as 'sinks', thereby decreasing their contribution to the fish population. Habitat managers can direct strategic efforts to protect any nursery locations that are found to be of prime importance in contributing to adult stocks.

  14. Marine reserves as linked social-ecological systems.

    PubMed

    Pollnac, Richard; Christie, Patrick; Cinner, Joshua E; Dalton, Tracey; Daw, Tim M; Forrester, Graham E; Graham, Nicholas A J; McClanahan, Timothy R

    2010-10-26

    Marine reserves are increasingly recognized as having linked social and ecological dynamics. This study investigates how the ecological performance of 56 marine reserves throughout the Philippines, Caribbean, and Western Indian Ocean (WIO) is related to both reserve design features and the socioeconomic characteristics in associated coastal communities. Ecological performance was measured as fish biomass in the reserve relative to nearby areas. Of the socioeconomic variables considered, human population density and compliance with reserve rules had the strongest effects on fish biomass, but the effects of these variables were region specific. Relationships between population density and the reserve effect on fish biomass were negative in the Caribbean, positive in the WIO, and not detectable in the Philippines. Differing associations between population density and reserve effectiveness defy simple explanation but may depend on human migration to effective reserves, depletion of fish stocks outside reserves, or other social factors that change with population density. Higher levels of compliance reported by resource users was related to higher fish biomass in reserves compared with outside, but this relationship was only statistically significant in the Caribbean. A heuristic model based on correlations between social, cultural, political, economic, and other contextual conditions in 127 marine reserves showed that high levels of compliance with reserve rules were related to complex social interactions rather than simply to enforcement of reserve rules. Comparative research of this type is important for uncovering the complexities surrounding human dimensions of marine reserves and improving reserve management.

  15. Differential susceptibility in steelhead trout populations to an emergent MD strain of infectious hematopoietic necrosis virus

    USGS Publications Warehouse

    Breyta, R.; Jones, Amelia; Kurath, Gael

    2014-01-01

    A significant emergence of trout-adapted MD subgroup infectious hematopoietic necrosis virus (IHNV) began in the coastal region of Washington State, USA, in 2007. This emergence event lasted until 2011 and caused both asymptomatic adult fish infection and symptomatic epidemic disease and mortality in juvenile fish. Incidence of virus during this emergence demonstrated a heterogeneous distribution among rivers of the coastal region, leaving fish populations of some rivers apparently untouched while others suffered significant and recurrent infection and mortality (Breyta et. al. 2013; Dis Aquat Org 104:179-195). In this study, we examined the possible contribution of variations in susceptibility of fish populations, age-related resistance, and virus virulence to the observed landscape heterogeneity. We found that the most significant variable was host susceptibility: by controlled experimental challenge studies steelhead trout populations with no history of IHNV infection were 1 to 3 orders of magnitude more sensitive than a fish population with a long history of IHNV infection. In addition, 2 fish populations from the same river, which descended relatively recently from a common ancestral population, demonstrated 1 to 2 orders of magnitude difference in susceptibility. Fish age-related development of resistance was most evident in the more susceptible of 2 related fish populations. Finally, the strain of virus involved in the 2007 coastal Washington emergence had high virulence but was within the range of other known M group viruses tested. These results suggest that one major driver of landscape heterogeneity in the 2007 coastal Washington IHNV emergence was variation in fish population susceptibility and that this trait may have a heritable component.

  16. Genetic diversity based on SSR analysis of the cultured snakehead fish, Channa argus, (Channidae) in China.

    PubMed

    Zhu, S-R; Li, J-L; Xie, N; Zhu, L-M; Wang, Q; Yue, G-H

    2014-02-13

    The snakehead fish Channa argus is an important food fish in China. We identified six microsatellite loci for C. argus. These six microsatellite loci and four other microsatellite markers were used to analyze genetic diversity in four cultured populations of C. argus (SD, JX, HN, and ZJ) and determine their relationships. A total of 154 alleles were detected at the 10 microsatellite loci. The average expected and observed heterozygosities varied from 0.70-0.84 and 0.69-0.83, respectively, and polymorphism information content ranged between 0.66 and 0.82 in the four populations, indicating high genetic diversity. Population JX deviated from mutation-drift equilibrium and may have experienced a recent bottleneck. Analysis of pairwise genetic differentiation revealed FST values that ranged from 0.028 to 0.100, which indicates a moderate level of genetic differentiation. The largest distances were observed between populations HN and SD, whereas the smallest distances were obtained between populations HN and JX. Genetic clustering analysis demonstrated that the ZJ and HN populations probably share the same origin. This information about the genetic diversity within each of the four populations, and their genetic relationships will be useful for future genetic improvement of C. argus through selective breeding.

  17. Childhood diet in relation to Sámi and Norwegian ethnicity in northern and mid-Norway--the SAMINOR study.

    PubMed

    Brustad, M; Parr, C L; Melhus, M; Lund, E

    2008-02-01

    The purpose of this work was to identify dietary patterns in the past using cluster analysis of reported diet in childhood, and to assess predictors for dietary patterns in relation to ethnicity in the population in the Sámi core areas in Norway. The Sámis are an indigenous population living in the border areas of Norway, Sweden, Finland and Russia. Population-based, cross-sectional study, using self-administered questionnaires. A food-frequency questionnaire covering selected food items eaten in childhood was used. The questionnaire also provided data on ethnicity. This study was based on data collected from 7614 subjects participating in The Population Based Study of Health and Living Conditions in Areas with a Mixed Sámi and Norwegian Population (the SAMINOR study) who grew up in the SAMINOR geographical areas, i.e. areas with mixed Sámi and Norwegian populations in Norway. Four dietary clusters were identified: a reindeer meat cluster; a cluster with high intakes of fish, traditional fish products and mutton, in addition to food sources from the local environment; a Westernised food cluster with high intakes of meat balls and sausages; and a cluster with a high intake of fish, but not any other foods in the questionnaire. The cluster distribution differed by ethnicity, but the effect of ethnicity on diet differed by coastal and inland residence. Our study has shown that data gathered through the limited questionnaire could be used to group the study sample into different dietary clusters, which we believe will be useful for further research on relationships between diet in childhood and health in the Sámi core areas in Norway.

  18. Predicting the effects of copper on local population decline of 2 marine organisms, cobia fish and whiteleg shrimp, based on avoidance response.

    PubMed

    Araújo, Cristiano V M; Cedeño-Macías, Luís A; Vera-Vera, Victoria C; Salvatierra, David; Rodríguez, Elizabeth N V; Zambrano, Ufredo; Kuri, Samir

    2016-02-01

    The present study focuses on avoidance response to predict population decline of the marine fish Rachycentron canadum (cobia) and larvae of the estuarine shrimp Litopenaeus vannamei (whiteleg shrimp). Avoidance of approximately 60% was recorded for the cobia fry exposed to 1.0 mg Cu/L, 1.60 mg Cu/L, and 1.80 mg Cu/L. For the shrimp larvae, avoidance was approximately 80% for all Cu concentrations. The population decline of cobia fry was conditioned by avoidance in lower concentrations. However, in higher concentrations mortality begins to play an important role. The displacement toward uncontaminated habitats might determine shrimp population decline. A Cu-contaminated environment can determine the habitat selection of both species and, therefore, their local population decline. © 2015 SETAC.

  19. High potency fish oil supplement improves omega-3 fatty acid status in healthy adults: an open-label study using a web-based, virtual platform.

    PubMed

    Udani, Jay K; Ritz, Barry W

    2013-08-08

    The health benefits of omega-3 fatty acids from fish are well known, and fish oil supplements are used widely in a preventive manner to compensate the low intake in the general population. The aim of this open-label study was to determine if consumption of a high potency fish oil supplement could improve blood levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and impact SF-12 mental and physical health scores in healthy adults. A novel virtual clinical research organization was used along with the HS-Omega-3 Index, a measure of EPA and DHA in red blood cell membranes expressed as a percentage of total fatty acids that has been shown to correlate with a reduction in cardiovascular and other risk factors. Briefly, adult subjects (mean age 44 years) were recruited from among U.S. health food store employees and supplemented with 1.1 g/d of omega-3 from fish oil (756 mg EPA, 228 mg DHA, Minami Nutrition MorEPA Platinum) for 120 days (n = 157). Omega-3 status and mental health scores increased with supplementation (p < 0.001), while physical health scores remained unchanged. The use of a virtual, web-based platform shows considerable potential for engaging in clinical research with normal, healthy subjects. A high potency fish oil supplement may further improve omega-3 status in a healthy population regularly consuming an omega-3 supplement.

  20. Spatially explicit measures of production of young alewives in Lake Michigan: Linkage between essential fish habitat and recruitment

    USGS Publications Warehouse

    Hook, Tomas O.; Rutherford, Edward S.; Brines, Shannon J.; Mason, Doran M.; Schwab, David J.; McCormick, Michael; Desorcie, Timothy J.

    2003-01-01

    The identification and protection of essential habitats for early life stages of fishes are necessary to sustain fish stocks. Essential fish habitat for early life stages may be defined as areas where fish densities, growth, survival, or production rates are relatively high. To identify critical habitats for young-of-year (YOY) alewives (Alosa pseud oharengus) in Lake Michigan, we integrated bioenergetics models with GIS (Geographic Information Systems) to generate spatially explicit estimates of potential population production (an index of habitat quality). These estimates were based upon YOY alewife bioenergetic growth rate potential and their salmonine predators’ consumptive demand. We compared estimates of potential population production to YOY alewife yield (an index of habitat importance). Our analysis suggested that during 1994–1995, YOY alewife habitat quality and yield varied widely throughout Lake Michigan. Spatial patterns of alewife yield were not significantly correlated to habitat quality. Various mechanisms (e.g., predator migrations, lake circulation patterns, alternative strategies) may preclude YOY alewives from concentrating in areas of high habitat quality in Lake Michigan.

  1. Genetic variation reveals influence of landscape connectivity on population dynamics and resiliency of western trout in disturbance-prone habitats

    USGS Publications Warehouse

    Helen M. Neville,; Gresswell, Robert E.; Dunham, Jason B.

    2012-01-01

    Salmonid fishes have evolved and persisted in dynamic ecosystems where disturbance events vary in frequency, magnitude, timing, and duration, as well as the specific nature of associated effects (e.g., changes in thermal or flow regimes, geomorphology, or water chemistry). In the western United States, one of the major drivers of disturbance in stream ecosystems is fire. Although there is a growing consensus that fish populations can ultimately benefit from the productive and heterogeneous habitats created by fire, to persist they obviously have to withstand the immediate and shorter-term effects of fire, which can reduce or even extirpate local populations. Movement among interconnected stream habitats is thought to be an important strategy enabling persistence during and following fire, and there is mounting concern that the extensive isolation of salmonid populations in fragmented habitats is reducing their resiliency to fire. In spite of this concern, there are few direct observations of salmonid responses to fire. In fact, guidance is based largely on a broader understanding of the influences of landscape structure and disturbance in general on salmonid fishes, and there is considerable uncertainty about how best to manage for salmonid resilience to wildfire. Studies are limited by the difficult logistics of following fish responses in the face of unpredictable events such as wildfires. Therefore, BACI (Before-After-Control-Impact) study designs are nearly impossible, and replication is similarly challenging because fires are often low-frequency events. Furthermore, conventional ecological study approaches (e.g., studies of fish distribution, abundance, life histories, and movement) are logistically difficult to implement. Overall, a major challenge to understanding resilience of salmonid populations in fire-prone environments is related to moving beyond localized case studies to those with broader applicability in wildfire management . Genetic data can be useful for overcoming many of the limitations inherent in ecological studies. Here we review several case studies of western trout where population genetic data have provided insight about fish responses to fragmentation and disturbance more generally, and specifically in relation to fire. Results of these studies confirm the importance of movement and landscape connectivity for ensuring fish persistence in fire-prone landscapes, and highlight the usefulness of genetic approaches for broad-scale evaluation and monitoring of population responses to fire and related management actions.

  2. A population-based study of fish allergy in the Philippines, Singapore and Thailand.

    PubMed

    Connett, Gary James; Gerez, Irvin; Cabrera-Morales, Elizabeth Ann; Yuenyongviwat, Araya; Ngamphaiboon, Jarungchit; Chatchatee, Pantipa; Sangsupawanich, Pasuree; Soh, Shu-E; Yap, Gaik-Chin; Shek, Lynette Pei-Chi; Lee, Bee-Wah

    2012-01-01

    Fish allergy is the third most common food allergy after milk and egg in parts of Europe, but there is little data about prevalence in South East Asia where it is an important part of regular diets. We aimed to obtain an estimate of the population prevalence of fish allergy among older children in the Philippines, Singapore and Thailand. The population prevalence of fish allergy in 14- to 16-year-old children in the 3 countries was evaluated using a structured written questionnaire which was distributed to students of randomly selected secondary schools. An extended questionnaire to determine convincing fish allergy on the basis of typical clinical manifestations within 2 h of ingestion was administered to those with positive responses. From a cohort of 25,842 students, responses were 81.1% in the Philippines (n = 11,434), 67.9% in Singapore (n = 6,498) and 80.2% (n = 2,034) in Thailand. Using criteria for convincing food allergy, fish allergy was much higher in the Philippines [2.29%, 95% confidence interval (CI) 2.02-2.56] than in Singapore (0.26%, 95% CI 0.14-0.79) and Thailand (0.29%, 95% CI 0.06-0.52). Weighted multiple logistic regression analyses showed that compared to the Philippines, prevalence rates were lower in Singapore [odds ratio (OR) 0.40, 95% CI 0.27-0.60, p < 0.0001] and Thailand (OR 0.13, 95% CI 0.05-0.33, p < 0.0001). Females were more likely to have fish allergy compared to males for all children combined (OR 1.32, 95% CI 1.11-1.58, p = 0.002). Most allergies appeared mild, as only 28% of cases sought medical consultation at the time of the reaction and 31.2% of cases reported continued exposure despite allergic symptoms. Fish allergy in late childhood is more common in the Philippines compared to Singapore and Thailand. Differences in food processing, dietary habits and other cultural practices might be important risk factors for the development of fish allergy in these populations. Copyright © 2012 S. Karger AG, Basel.

  3. Experimental stocking of sport fish in the regulated Tallapoosa River to determine critical periods for recruitment

    USGS Publications Warehouse

    Lloyd, M. Clint; Lai, Quan; Sammons, Steve; Irwin, Elise R.

    2017-01-01

    The stocking of fish in riverine systems to re-establish stocks for conservation and management appears limited to a few species and often occurs in reaches impacted by impoundments. Stocking of sport fish species such as centrarchids and ictalurids is often restricted to lentic environments, although stocking in lotic environments is feasible with variable success. R. L. Harris Dam on the Tallapoosa River, Alabama is the newest and uppermost dam facility on the river (operating since 1983); flows from the dam have been managed adaptively for multiple stakeholder objectives since 2005. One of the stakeholders’ primary objectives is to provide quality sport fisheries in the Tallapoosa River in the managed area below the dam. Historically, ictalurids and cyprinids dominated the river above Lake Martin. However, investigations after Harris Dam closed have detected a shift in community structure to domination by centrarchids. Flow management (termed the Green Plan) has been occurring since March 2005; however, sport fish populations as measured by recruitment of age-1 sport fishes below the dam has not responded adequately to flow management. The objectives of this research were to: (1) determine if stocking Channel Catfish Ictalurus punctatus and Redbreast Sunfish Lepomis auritus influences year-class strength; (2) estimate vital rates (i.e. growth, mortality, and recruitment) for Channel Catfish populations for use in an age-based population model; and (3) identify age-specific survivorship and fecundity rates contributing to Channel Catfish population stability. No marked Redbreast Sunfish were recaptured due to poor marking efficacy and therefore no further analysis was conducted with this species. Stocked Channel Catfish, similarly, were not recaptured, leaving reasons for non-recapture unknown. Matrix models exploring vital rates illustrated survival to age-1 for Channel Catfish to be less than 0.03% and that survival through ages 2 – 4 had equal contribution to overall population growth, indicating recruitment limitation may impact population size and stability. Results from this study indicate stock enhancement of sport fish populations below Harris Dam may not be an effective management technique at this time.

  4. Clinical methods for the assessment of the effects of environmental stress on fish health

    USGS Publications Warehouse

    Wedemeyer, Gary A.; Yasutake, William T.

    1977-01-01

    Clinical methods are presented for biological monitoring of hatchery and native fish populations to assess the effects of environmental stress on fish health. The choice of methods is based on the experience of the authors and the judgment of colleagues at fishery laboratories of the U.S. Fish and Wildlife Service. Detailed analysis methods, together with guidelines for sample collection and for the interpretation of results, are given for tests on blood (cell counts, chloride, cholesterol, clotting time, cortisol, glucose, hematocrit, hemoglobin, lactic acid, methemoglobin, osmolality, and total protein); water (ammonia and nitrite content); and liver and muscle (glycogen content).

  5. Tragedy of the Commons Fisheries Management Simulation Game

    NASA Astrophysics Data System (ADS)

    Prothero, W. A.

    2011-12-01

    The goal of the "Fishing Game" is that students will understand some of the issues that occur when multiple stakeholders share, and profit from, common and finite resources. Garrett Hardin described this as "The Tragedy of the Commons." The global fisheries provide a timely example of the over-exploitation of a shared resource. The forests, our water supplies, and atmosphere are other examples of "commons" that we must manage effectively. The "Fishing Game" is loosely based on the "Fishbanks Game" of Dennis Meadows. The student plays against two virtual fishing companies in an effort to make as much money as possible, while exploring the management issues that arise when trying to sustain the fish population for future profits. The player selects each of four realistic management scenarios. These are 1) free for all, 2) limited fishing season, 3) marine reserves, and 4) catch shares. For each scenario the student makes decisions about how many ships to build and how many to send to each of two fishing areas. A simple population model works in the background to determine the catch and number of new fish that are added to the population through birth each year. The student sets the management parameters for each of the scenarios. A modeling tool is used to determine the optimum parameters for each management scenario. The player will quickly find that a single aggressive player whose profit motive trumps concern over the sustainability of the population will almost always win under all scenarios except the 4'th. When the season is limited, everybody fishes harder. With marine reserves, catches will drop, but the population will not disappear completely. Only catch shares sustain the population while providing reasonable long term profit for the fishing companies. For each management scenario, the player is asked a pre and a post play thought question. After all scenarios are played, the student can edit the post versions of the thought questions, plus several added questions about his/her ideas and experience with the game. The game results and answers to the questions are then automatically emailed to the instructor, or printed for hand-in. The teacher can also monitor student progress with an online tool. The game provides an effective way to start students thinking about how science and policy intersect and how human nature and the profit motive affect management strategies. Important issues that are not addressed by the game are destruction of fisheries habitat, by-catch, and international law.

  6. PROJECTING THE RESPONSE OF FISH POPULATION GROWTH RATE TO SEDIMENT EXPOSURE

    EPA Science Inventory

    Sediment is one of the main stressors on stream fish populations in Georgia. Here, a quantitative approach relating sediment exposure to stream fish population dynamics is presented, where equations characterize sediment exposure to vital rates, then vital rates are used in a mat...

  7. Cryptic vicariance in Gulf of California fishes parallels vicariant patterns found in Baja California mammals and reptiles.

    PubMed

    Riginos, Cynthia

    2005-12-01

    Comparisons across multiple taxa can often clarify the histories of biogeographic regions. In particular, historic barriers to movement should have affected multiple species and, thus, result in a pattern of concordant intraspecific genetic divisions among species. A striking example of such comparative phylogeography is the recent observation that populations of many small mammals and reptiles living on the Baja California peninsula have a large genetic break between northern and southern peninsular populations. In the present study, I demonstrate that five species of near-shore fishes living on the Baja coastline of the Gulf of California share this genetic pattern. The simplest explanation for this concordant genetic division within both terrestrial and marine vertebrates is that the Baja Peninsula was fragmented by a Plio-Pleistocene marine seaway and that this seaway posed a substantial barrier to movement for near-shore fishes. For some fish species, the signal of this vicariance in mtDNA has been eroded by gene flow and is not evident with classic, equilibrium measures of population structure. Yet, significant divisions are apparent in coalescent analyses that jointly estimate divergence with gene flow. The genetic divisions within Gulf of California fishes also coincide with recognized biogeographic regions based on fish community composition and several environmental factors. It is likely that adaptation to regional environments and present-day oceanographic circulation limit gene exchange between biogeographic regions and help maintain evidence of past vicariance.

  8. Coupled stream and population dynamics: Modeling the role beaver (Castor canadensis) play in generating juvenile steelhead (Oncorhynchus mykiss) habitat

    NASA Astrophysics Data System (ADS)

    Jordan, C.; Bouwes, N.; Wheaton, J. M.; Pollock, M.

    2013-12-01

    Over the past several centuries, the population of North American Beaver has been dramatically reduced through fur trapping. As a result, the geomorphic impacts long-term beaver occupancy and activity can have on fluvial systems have been lost, both from the landscape and from our collective memory such that physical and biological models of floodplain system function neither consider nor have the capacity to incorporate the role beaver can play in structuring the dynamics of streams. Concomitant with the decline in beaver populations was an increasing pressure on streams and floodplains through human activity, placing numerous species of stream rearing fishes in peril, most notably the ESA listing of trout and salmon populations across the entirety of the Western US. The rehabilitation of stream systems is seen as one of the primary means by which population and ecosystem recovery can be achieved, yet the methods of stream rehabilitation are applied almost exclusively with the expected outcome of a static idealized stream planform, occasionally with an acknowledgement of restoring processes rather than form and only rarely with the goal of a beaver dominated riverscape. We have constructed an individual based model of trout and beaver populations that allows the exploration of fish population dynamics as a function of stream habitat quality and quantity. We based the simulation tool on Bridge Creek (John Day River basin, Oregon) where we have implemented a large-scale restoration experiment using wooden posts to provide beavers with stable platforms for dam building and to simulate the dams themselves. Extensive monitoring captured geomorphic and riparian changes, as well as fish and beaver population responses; information we use to parameterize the model as to the geomorphic and fish response to dam building beavers. In the simulation environment, stream habitat quality and quantity can be manipulated directly through rehabilitation actions and indirectly through the dynamics of the co-occurring beaver population. The model allowed to us to ask questions critical for designing restoration strategies based on dam building beaver activity, such as what beaver population growth rate is required to develop and maintain floodplain connectivity in an incised system, or what beaver population size is required to increase juvenile steelhead production? The model was sensitive to several variables including beaver colony size, dams and colony dynamics and site fidelity, and thus highlights further research needs to fill critical information gaps.

  9. The Rediscovery of a Long Described Species Reveals Additional Complexity in Speciation Patterns of Poeciliid Fishes in Sulfide Springs

    PubMed Central

    Palacios, Maura; Arias-Rodriguez, Lenin; Plath, Martin; Eifert, Constanze; Lerp, Hannes; Lamboj, Anton; Voelker, Gary; Tobler, Michael

    2013-01-01

    The process of ecological speciation drives the evolution of locally adapted and reproductively isolated populations in response to divergent natural selection. In Southern Mexico, several lineages of the freshwater fish species of the genus Poecilia have independently colonized toxic, hydrogen sulfide-rich springs. Even though ecological speciation processes are increasingly well understood in this system, aligning the taxonomy of these fish with evolutionary processes has lagged behind. While some sulfide spring populations are classified as ecotypes of Poecilia mexicana, others, like P. sulphuraria, have been described as highly endemic species. Our study particularly focused on elucidating the taxonomy of the long described sulfide spring endemic, Poecilia thermalis Steindachner 1863, and investigates if similar evolutionary patterns of phenotypic trait divergence and reproductive isolation are present as observed in other sulfidic species of Poecilia. We applied a geometric morphometric approach to assess body shape similarity to other sulfidic and non-sulfidic fish of the genus Poecilia. We also conducted phylogenetic and population genetic analyses to establish the phylogenetic relationships of P. thermalis and used a population genetic approach to determine levels of gene flow among Poecilia from sulfidic and non-sulfidic sites. Our results indicate that P. thermalis' body shape has evolved in convergence with other sulfide spring populations in the genus. Phylogenetic analyses placed P. thermalis as most closely related to one population of P. sulphuraria, and population genetic analyses demonstrated that P. thermalis is genetically isolated from both P. mexicana ecotypes and P. sulphuraria. Based on these findings, we make taxonomic recommendations for P. thermalis. Overall, our study verifies the role of hydrogen sulfide as a main factor shaping convergent, phenotypic evolution and the emergence of reproductive isolation between Poecilia populations residing in adjacent sulfidic and non-sulfidic environments. PMID:23976979

  10. EFFECTS OF BENZO[A]PYRENE EXPOSURE ON A FISH POPULATION RESISTANT TO THE TOXIC EFFECTS OF DIOXIN-LIKE COMPOUNDS

    EPA Science Inventory

    Effects of a model polycyclic aromatic hydrocarbon (PAH) were compared in populations of the estuarine fish Fundulus heteroclitus indigenous to a reference site and one highly contaminated with polychlorinated biphenyls (PCBs) and other compounds. The fish population resident to ...

  11. COST AND BENEFITS OF ALTERED BENZO(A)PYRENE METABOLISM IN A PCB-ADAPTED FISH POPULATION

    EPA Science Inventory

    We examined populations of an estuarine fish species (Fundulus heteroclitus) resident to a highly contaminated site and a reference site for their ability to metabolize an important environmental pollutant. In previous work, we characterized the fish population resident to this h...

  12. Inability to demonstrate fish-to-fish transmission of Ichthyophonus from laboratory infected Pacific herring Clupea pallasii to naïve conspecifics

    USGS Publications Warehouse

    Gregg, J.L.; Grady, C.A.; Friedman, C.S.; Hershberger, P.K.

    2012-01-01

    The parasite Ichthyophonus is enzootic in many marine fish populations of the northern Atlantic and Pacific Oceans. Forage fishes are a likely source of infection for higher trophic level predators; however, the processes that maintain Ichthyophonus in forage fish populations (primarily clupeids) are not well understood. Lack of an identified intermediate host has led to the convenient hypothesis that the parasite can be maintained within populations of schooling fishes by waterborne fish-to-fish transmission. To test this hypothesis we established Ichthyophonus infections in Age-1 and young-of-the-year (YOY) Pacific herring Clupea pallasii (Valenciennes) via intraperitoneal (IP) injection and cohabitated these donors with naïve conspecifics (sentinels) in the laboratory. IP injections established infection in 75 to 84% of donor herring, and this exposure led to clinical disease and mortality in the YOY cohort. However, after cohabitation for 113 d no infections were detected in naïve sentinels. These data do not preclude the possibility of fish-to-fish transmission, but they do suggest that other transmission processes are necessary to maintain Ichthyophonus in wild Pacific herring populations.

  13. Native fishes in the Truckee River: Are in-stream structures and patterns of population genetic structure related?

    PubMed

    Peacock, Mary M; Gustin, Mae S; Kirchoff, Veronica S; Robinson, Morgan L; Hekkala, Evon; Pizzarro-Barraza, Claudia; Loux, Tim

    2016-09-01

    In-stream structures are recognized as significant impediments to movement for freshwater fishes. Apex predators such as salmonids have been the focus of much research on the impacts of such barriers to population dynamics and population viability however much less research has focused on native fishes, where in-stream structures may have a greater impact on long term population viability of these smaller, less mobile species. Patterns of genetic structure on a riverscape can provide information on which structures represent real barriers to movement for fish species and under what specific flow conditions. Here we characterize the impact of 41 dam and diversion structures on movement dynamics under varying flow conditions for a suite of six native fishes found in the Truckee River of California and Nevada. Microsatellite loci were used to estimate total allelic diversity, effective population size and assess genetic population structure. Although there is spatial overlap among species within the river there are clear differences in species distributions within the watershed. Observed population genetic structure was associated with in-stream structures, but only under low flow conditions. High total discharge in 2006 allowed fish to move over potential barriers resulting in no observed population genetic structure for any species in 2007. The efficacy of in-stream structures to impede movement and isolate fish emerged only after multiple years of low flow conditions. Our results suggest that restricted movement of fish species, as a result of in-stream barriers, can be mitigated by flow management. However, as flow dynamics are likely to be altered under global climate change, fragmentation due to barriers could isolate stream fishes into small subpopulations susceptible to both demographic losses and losses of genetic variation. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Rapid biological speciation driven by tectonic evolution in New Zealand

    NASA Astrophysics Data System (ADS)

    Craw, Dave; Upton, Phaedra; Burridge, Christopher P.; Wallis, Graham P.; Waters, Jonathan M.

    2016-02-01

    Collisions between tectonic plates lead to the rise of new mountain ranges that can separate biological populations and ultimately result in new species. However, the identification of links between tectonic mountain-building and biological speciation is confounded by environmental and ecological factors. Thus, there are surprisingly few well-documented examples of direct tectonic controls on terrestrial biological speciation. Here we present examples from New Zealand, where the rapid evolution of 18 species of freshwater fishes has resulted from parallel tectonic landscape evolution. We use numerical models to reconstruct changes in the deep crustal structure and surface drainage catchments of the southern island of New Zealand over the past 25 million years. We show that the island and mountain topography evolved in six principal tectonic zones, which have distinct drainage catchments that separated fish populations. We use new and existing phylogenetic analyses of freshwater fish populations, based on over 1,000 specimens from more than 400 localities, to show that fish genomes can retain evidence of this tectonic landscape development, with a clear correlation between geologic age and extent of DNA sequence divergence. We conclude that landscape evolution has controlled on-going biological diversification over the past 25 million years.

  15. Partial migration: growth varies between resident and migratory fish.

    PubMed

    Gillanders, Bronwyn M; Izzo, Christopher; Doubleday, Zoë A; Ye, Qifeng

    2015-03-01

    Partial migration occurs in many taxa and ecosystems and may confer survival benefits. Here, we use otolith chemistry data to determine whether fish from a large estuarine system were resident or migratory, and then examine whether contingents display differences in modelled growth based on changes in width of otolith growth increments. Sixty-three per cent of fish were resident based on Ba : Ca of otoliths, with the remainder categorized as migratory, with both contingents distributed across most age/size classes and both sexes, suggesting population-level bet hedging. Migrant fish were in slightly better condition than resident fish based on Fulton's K condition index. Migration type (resident versus migratory) was 56 times more likely to explain variation in growth than a model just incorporating year- and age-related growth trends. While average growth only varied slightly between resident and migratory fish, year-to-year variation was significant. Such dynamism in growth rates likely drives persistence of both life-history types. The complex relationships in growth between contingents suggest that management of species exhibiting partial migration is challenging, especially in a world subject to a changing climate. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  16. Exploring the role of movement in determining the global distribution of marine biomass using a coupled hydrodynamic - Size-based ecosystem model

    NASA Astrophysics Data System (ADS)

    Watson, James R.; Stock, Charles A.; Sarmiento, Jorge L.

    2015-11-01

    Modeling the dynamics of marine populations at a global scale - from phytoplankton to fish - is necessary if we are to quantify how climate change and other broad-scale anthropogenic actions affect the supply of marine-based food. Here, we estimate the abundance and distribution of fish biomass using a simple size-based food web model coupled to simulations of global ocean physics and biogeochemistry. We focus on the spatial distribution of biomass, identifying highly productive regions - shelf seas, western boundary currents and major upwelling zones. In the absence of fishing, we estimate the total ocean fish biomass to be ∼ 2.84 ×109 tonnes, similar to previous estimates. However, this value is sensitive to the choice of parameters, and further, allowing fish to move had a profound impact on the spatial distribution of fish biomass and the structure of marine communities. In particular, when movement is implemented the viable range of large predators is greatly increased, and stunted biomass spectra characterizing large ocean regions in simulations without movement, are replaced with expanded spectra that include large predators. These results highlight the importance of considering movement in global-scale ecological models.

  17. Organism and population-level ecological models for ...

    EPA Pesticide Factsheets

    Ecological risk assessment typically focuses on animal populations as endpoints for regulatory ecotoxicology. Scientists at USEPA are developing models for animal populations exposed to a wide range of chemicals from pesticides to emerging contaminants. Modeled taxa include aquatic and terrestrial invertebrates, fish, amphibians, and birds, and employ a wide range of methods, from matrix-based projection models to mechanistic bioenergetics models and spatially explicit population models. not applicable

  18. Fish population dynamics in a seasonally varying wetland

    USGS Publications Warehouse

    DeAngelis, Donald L.; Trexler, Joel C.; Cosner, Chris; Obaza, Adam; Jopp, Fred

    2010-01-01

    Small fishes in seasonally flooded environments such as the Everglades are capable of spreading into newly flooded areas and building up substantial biomass. Passive drift cannot account for the rapidity of observed population expansions. To test the reaction-diffusion mechanism for spread of the fish, we estimated their diffusion coefficient and applied a reaction-diffusion model. This mechanism was also too weak to account for the spatial dynamics. Two other hypotheses were tested through modeling. The first--the 'refuge mechanism--hypothesizes that small remnant populations of small fishes survive the dry season in small permanent bodies of water (refugia), sites where the water level is otherwise below the surface. The second mechanism, which we call the 'dynamic ideal free distribution mechanism' is that consumption by the fish creates a prey density gradient and that fish taxis along this gradient can lead to rapid population expansion in space. We examined the two alternatives and concluded that although refugia may play an important role in recolonization by the fish population during reflooding, only the second, taxis in the direction of the flooding front, seems capable of matching empirical observations. This study has important implications for management of wetlands, as fish biomass is an essential support of higher trophic levels.

  19. Projected entrainment of fish resulting from aggregate dredging.

    PubMed

    Drabble, Ray

    2012-02-01

    Previous research to assess impacts from aggregate dredging has focussed on infaunal species with few studies made of fish entrainment. Entrainment evidence from hydraulic dredging studies is reviewed to develop a sensitivity index for benthic fish. Environmental monitoring attendant with the granting of new licences in the Eastern Channel Region (ECR) in 2006 offers a unique opportunity to assess the effects of dredging upon fish. Projected theoretical fish entrainment rates are calculated based upon: abundance data from 4m beam trawl sampling of fish species over the period 2005-2008; sensitivity data; and dredging activity and footprint derived from Electronic monitoring System (EMS) data. Results have been compared with actual entrainment rates and also against summary results from independent analysis of the changes in fish population over the period 2005-2008 (Drabble, 2012). The case is made for entrainment surveys to form part of impact monitoring for marine aggregate dredging. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Omega-3 and omega-6 fatty acid intakes and endometrial cancer risk in a population-based case-control study.

    PubMed

    Arem, Hannah; Neuhouser, Marian L; Irwin, Melinda L; Cartmel, Brenda; Lu, Lingeng; Risch, Harvey; Mayne, Susan T; Yu, Herbert

    2013-04-01

    Animal and laboratory studies suggest that long-chain omega-3 (n-3) fatty acids, a type of polyunsaturated fat found in fatty fish, may protect against carcinogenesis, but human studies on dietary intake of polyunsaturated fats and fish with endometrial cancer risk show mixed results. We evaluated the associations between endometrial cancer risk and intake of fatty acids and fish in a population-based sample of 556 incident cancer cases and 533 age-matched controls using multivariate unconditional logistic regression methods. Although total n-3 fatty acid intake was not associated with endometrial cancer risk, higher intakes of eicosapentaenoic (EPA 20:5) and docosahexaenoic (DHA 22:6) fatty acids were significantly associated with lower risks (OR = 0.57, 95 % CI: 0.39-0.84; OR = 0.64, 95 % CI: 0.44-0.94; respectively) comparing extreme quartiles. The ratio of n-3:n-6 fatty acids was inversely associated with risk only on a continuous scale (OR = 0.84, 95 % CI: 0.71-0.99), while total fish intake was not associated with risk. Fish oil supplement use was significantly associated with reduced risk of endometrial cancer: OR = 0.63 (95 % CI: 0.45-0.88). Our results suggest that dietary intake of the long-chain polyunsaturated fatty acids EPA and DHA in foods and supplements may have protective associations against the development of endometrial cancer.

  1. US Atlantic coast striped bass: Issues with a recovered population

    USGS Publications Warehouse

    Hartman, K.J.; Margraf, F.J.

    2003-01-01

    Striped bass, Morone saxatilis (Walbaum), is an anadromous species naturally occurring along the US Atlantic coast, which historically supported valuable commercial and recreational fisheries. In response to a near order-of-magnitude decline in landings, the Atlantic States Marine Fisheries Commission enacted a management plan in 1981 protecting fish until they could spawn at least once. By 1989, recruitment increased in natal rivers and regulations were relaxed, permitting limited fisheries by 1990. By 1995, the stock was declared fully recovered. Since the recovery, concern has increased over the health of the stocks. In the 1990s, fish in poor physical condition with dermal lesions became common in Chesapeake Bay. Pathogens of most concern in cultures from fish include the genus Mycobacterium. Coincident with declines in fish health were changes in diets, declines of preferred prey, and reduced growth and condition. Theories were suggested linking declines in condition to reductions in forage base or pathogens. Diets have changed since the 1950s and while many Chesapeake fish are infected with mycobacteria, it is still not known how or if these factors are linked. The highest priorities for research were considered to be: linking numerous local and regional studies to provide a coast-wide perspective; continuation of investigations linking population health to the prey-base; determination of the cause-effect of mycobacteria infections; and formulation of management options.

  2. Master Middle Ware: A Tool to Integrate Water Resources and Fish Population Dynamics Models

    NASA Astrophysics Data System (ADS)

    Yi, S.; Sandoval Solis, S.; Thompson, L. C.; Kilduff, D. P.

    2017-12-01

    Linking models that investigate separate components of ecosystem processes has the potential to unify messages regarding management decisions by evaluating potential trade-offs in a cohesive framework. This project aimed to improve the ability of riparian resource managers to forecast future water availability conditions and resultant fish habitat suitability, in order to better inform their management decisions. To accomplish this goal, we developed a middleware tool that is capable of linking and overseeing the operations of two existing models, a water resource planning tool Water Evaluation and Planning (WEAP) model and a habitat-based fish population dynamics model (WEAPhish). First, we designed the Master Middle Ware (MMW) software in Visual Basic for Application® in one Excel® file that provided a familiar framework for both data input and output Second, MMW was used to link and jointly operate WEAP and WEAPhish, using Visual Basic Application (VBA) macros to implement system level calls to run the models. To demonstrate the utility of this approach, hydrological, biological, and middleware model components were developed for the Butte Creek basin. This tributary of the Sacramento River, California is managed for both hydropower and the persistence of a threatened population of spring-run Chinook salmon (Oncorhynchus tschawytscha). While we have demonstrated the use of MMW for a particular watershed and fish population, MMW can be customized for use with different rivers and fish populations, assuming basic data requirements are met. This model integration improves on ad hoc linkages for managing data transfer between software programs by providing a consistent, user-friendly, and familiar interface across different model implementations. Furthermore, the data-viewing capabilities of MMW facilitate the rapid interpretation of model results by hydrologists, fisheries biologists, and resource managers, in order to accelerate learning and management decision making.

  3. Removal of nonnative fish results in population expansion of a declining amphibian (mountain yellow-legged frog, Rana muscosa)

    PubMed Central

    KNAPP, Roland A.; BOIANO, Daniel M.; VREDENBURG, Vance T.

    2007-01-01

    The mountain yellow-legged frog (Rana muscosa) was once a common inhabitant of the Sierra Nevada (California, USA), but has declined precipitously during the past century due in part to the introduction of nonnative fish into naturally fishless habitats. The objectives of the current study were to describe (1) the effect of fish removal from three lakes (located in two watersheds) on the small, remnant R. muscosa populations inhabiting those lakes, and (2) the initial development of metapopulation structure in each watershed as R. muscosa from expanding populations in fish-removal lakes dispersed to adjacent habitats. At all three fish-removal lakes, R. muscosa population densities increased significantly following the removal of predatory fish. The magnitude of these increases was significantly greater than that observed over the same time period in R. muscosa populations inhabiting control lakes that remained in their natural fishless condition. Following these population increases, R. muscosa dispersed to adjacent suitable (but unoccupied) sites, moving between 200 and 900 m along streams or across dry land. Together, these results suggest that large-scale removal of introduced fish could result in at least partial reversal of the decline of R. muscosa. Continued monitoring of R. muscosa at the fish-removal sites will be necessary to determine whether the positive effects of fish eradication are sustained over the long-term, especially in light of the increasingly important role played by an emerging infectious disease (chytridiomycosis, caused by Batrachochytrium dendrobatidis) in influencing R. muscosa populations. PMID:17396156

  4. Effective size of a wild salmonid population is greatly reduced by hatchery supplementation

    PubMed Central

    Christie, M R; Marine, M L; French, R A; Waples, R S; Blouin, M S

    2012-01-01

    Many declining and commercially important populations are supplemented with captive-born individuals that are intentionally released into the wild. These supplementation programs often create large numbers of offspring from relatively few breeding adults, which can have substantial population-level effects. We examined the genetic effects of supplementation on a wild population of steelhead (Oncorhynchus mykiss) from the Hood River, Oregon, by matching 12 run-years of hatchery steelhead back to their broodstock parents. We show that the effective number of breeders producing the hatchery fish (broodstock parents; Nb) was quite small (harmonic mean Nb=25 fish per brood-year vs 373 for wild fish), and was exacerbated by a high variance in broodstock reproductive success among individuals within years. The low Nb caused hatchery fish to have decreased allelic richness, increased average relatedness, more loci in linkage disequilibrium and substantial levels of genetic drift in comparison with their wild-born counterparts. We also documented a substantial Ryman–Laikre effect whereby the additional hatchery fish doubled the total number of adult fish on the spawning grounds each year, but cut the effective population size of the total population (wild and hatchery fish combined) by nearly two-thirds. We further demonstrate that the Ryman–Laikre effect is most severe in this population when (1) >10% of fish allowed onto spawning grounds are from hatcheries and (2) the hatchery fish have high reproductive success in the wild. These results emphasize the trade-offs that arise when supplementation programs attempt to balance disparate goals (increasing production while maintaining genetic diversity and fitness). PMID:22805657

  5. HIV/AIDS, artisanal fishing and food security in the Okavango Delta, Botswana

    NASA Astrophysics Data System (ADS)

    Ngwenya, B. N.; Mosepele, K.

    Generally, rural households pursue all year round natural and non-natural resource-based livelihood systems to diversify these options in order to cope with risks emanating from a range of shocks and stressors. Artisanal fishing in the Delta is not only a major livelihood option but also a source of food security. This paper is based on analysis of primary data collected from a survey of 248 subsistence fishers’ households through simple random sampling in 22 villages in the Delta. The overall objectives of the survey were to assess the general prevalence of HIV/AIDS in the Ngamiland district of Botswana, to investigate potential effects of AIDS-related stressors, particularly chronic illness on artisanal fishing activities, and to assess implications towards food security. Results from this study indicate that HIV prevalence rates for pregnant women attending antenatal clinics in the Delta are approximately 30% and are related to factors such as marriage, education, and employment. Despite this relatively high prevalence percentage, most of the affected households do not have adequate access to HIV/AIDS support facilities. Support services are provided on the basis of population size and/or status of the settlement (i.e. urban, urban village, rural or remote). Therefore, since about 50% of the Delta’s population lives in settlements of less than 500 people, they receive health services indirectly through major population centres whose capacity to deliver timely HIV/AIDS services is limited. This disproportionate access to HIV/AIDS services disadvantages the majority of fishing communities in the Delta, and may affect their ability to fish. Moreover, about 53% of sampled households had cared for a continuously ill person/s (CIP’s) in the last 5 years, out of which approximately 29% felt that this seriously impacted fishing activities. These serious impacts included sale of family assets, depletion of savings, and switching or abandoning fishing activities. Subsequently, household food security is seriously affected because fish provides a significant proportion of food to CIP households where approximately 55% of households get their food from fish products. During food shortages, CIP households resorted to a hierarchy of strategies which included cutting down on meals or reducing meal portions, looking for paid work, gathering wild fruit, asking for food from relatives, selling livestock, and getting social assistance. In conclusion, artisanal fishing is a natural safety net which constitutes an important buffer for households affected by HIV/AIDS-related stressors in the Okavango Delta. Access to fish helps these households mitigate potentially adverse impacts such as deterioration into chronic poverty.

  6. AHR-related activities in a creosote-adapted population of adult atlantic killifish, Fundulus heteroclitus, two decades post-EPA superfund status at the Atlantic Wood Site, Portsmouth, VA USA.

    PubMed

    Wojdylo, Josephine V; Vogelbein, Wolfgang; Bain, Lisa J; Rice, Charles D

    2016-08-01

    Atlantic killifish, Fundulus heteroclitus, are adapted to creosote-based PAHs at the US EPA Superfund site known as Atlantic Wood (AW) on the southern branch of the Elizabeth River, VA USA. Subsequent to the discovery of the AW population in the early 1990s, these fish were shown to be recalcitrant to CYP1A induction by PAHs under experimental conditions, and even to the time of this study, killifish embryos collected from the AW site are resistant to developmental deformities typically associated with exposure to PAHs in reference fish. Historically, however, 90 +% of the adult killifish at this site have proliferative hepatic lesions including cancer of varying severity. Several PAHs at this site are known to be ligands for the aryl hydrocarbon receptor (AHR). In this study, AHR-related activities in AW fish collected between 2011 and 2013 were re-examined nearly 2 decades after first discovery. This study shows that CYP1A mRNA expression is three-fold higher in intestines of AW killifish compared to a reference population. Using immunohistochemistry, CYP1A staining in intestines was uniformly positive compared to negative staining in reference fish. Livers of AW killifish were examined by IHC to show that CYP1A and AHR2 protein expression reflect lesions-specific patterns, probably representing differences in intrinsic cellular physiology of the spectrum of proliferative lesions comprising the hepatocarcinogenic process. We also found that COX2 mRNA expression levels were higher in AW fish livers compared to those in the reference population, suggesting a state of chronic inflammation. Overall, these findings suggest that adult AW fish are responsive to AHR signaling, and do express CYP1A and AHR2 proteins in intestines at a level above what was observed in the reference population. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Response of fish populations to natural channel design restoration in streams of the Catskill Mountains, New York

    USGS Publications Warehouse

    Baldigo, Barry P.; Warren, D.R.; Ernst, A.G.; Mulvihill, C.I.

    2008-01-01

    Many streams and rivers throughout North America have been extensively straightened, widened, and hardened since the middle 1800s, but related effects on aquatic ecosystems have seldom been monitored, described, or published. Beginning in the early 1990s, reach-level restoration efforts began to base projects on natural channel design (NCD) techniques and Rosgen's (1994b, 1996) river classification system in an effort to duplicate or mimic stable reference reach geomorphology. Four reaches in three streams of the Catskill Mountains, New York, were restored from 2000 to 2002 using NCD techniques to decrease bed and bank erosion rates, decrease sediment loads, and improve water quality. The effects of restoration on the health of fish assemblages were assessed through a before-after, control-impact (BACI) study design to quantify the net changes in population and community indices at treatment reaches relative to index changes at unaltered reference reaches from 1999 to 2004. After restoration, community richness and biomass at treatment reaches increased by more than one-third. Changes in fish communities were caused mainly by shifts in dominant species populations; fish community biomass and total fish abundance were generally dominated by daces or daces and sculpins before restoration and by one or more salmonid species after restoration. Density and biomass of eastern blacknose dace Rhinichthys atratulus, longnose dace R. cataractae, and slimy sculpin Cottus cognatus did not change appreciably, whereas net salmonid density and biomass increased substantially after restoration. These changes were driven primarily by large increases in populations of brown trout Salmo trutta. The findings demonstrate that the structure, function, and ultimately the health of resident fish populations and communities can be improved, at least over the short term, through NCD restoration in perturbed streams of the Catskill Mountains. ?? Copyright by the American Fisheries Society 2008.

  8. AHR-related Activities in a Creosote-Adapted Population of Adult Atlantic Killifish, Fundulus heteroclitus, Two Decades Post-EPA Superfund Status at the Atlantic Wood Site, Portsmouth, VA USA

    PubMed Central

    Wojdylo, Josephine V.; Vogelbein, Wolfgang; Bain, Lisa J.; Rice, Charles D.

    2016-01-01

    Atlantic killifish, Fundulus heteroclitus, are adapted to creosote-based PAHs at the US EPA Superfund site known as Atlantic Wood (AW) on the southern branch of the Elizabeth River, VA USA. Subsequent to the discovery of the AW population in the early 1990s, these fish were shown to be recalcitrant to CYP1A induction by PAHs under experimental conditions, and even to the time of this study, killifish embryos collected from the AW site are resistant to developmental deformities typically associated with exposure to PAHs in reference fish. Historically, however, 90+% of the adult killifish at this site have proliferative hepatic lesions including cancer of varying severity. Several PAHs at this site are known to be ligands for the aryl hydrocarbon receptor (AHR). In this study, AHR-related activities in AW fish collected between 2011–2013 were re-examined nearly 2 decades after first discovery. This study shows that CYP1A mRNA expression is three-fold higher in intestines of AW killifish compared to a reference population. Using immunohistochemistry, CYP1A staining in intestines was uniformly positive compared to negative staining in reference fish. Livers of AW killifish were examined by IHC to show that CYP1A and AHR2 protein expression reflect lesions-specific patterns, probably representing differences in intrinsic cellular physiology of the spectrum of proliferative lesions comprising the hepatocarcinogenic process. We also found that COX2 mRNA expression levels were higher in AW fish livers compared to those in the reference population, suggesting a state of chronic inflammation. Overall, these findings suggest that adult AW fish are responsive to AHR signaling, and do express CYP1A and AHR2 proteins in intestines at a level above what was observed in the reference population. PMID:27262937

  9. Aggressive and foraging behavioral interactions among ruffe

    USGS Publications Warehouse

    Savino, Jacqueline F.; Kostich, Melissa J.

    2000-01-01

    The ruffe, Gymnocephalus cernuus, is a nonindigenous percid in the Great Lakes. Ruffe are aggressive benthivores and forage over soft substrates. Laboratory studies in pools (100 cm in diameter, 15 cm water depth) were conducted to determine whether fish density (low = 2, medium = 4, high = 6 ruffe per pool) changed foraging and aggressive behaviors with a limited food supply of chironomid larvae. All fish densities demonstrated a hierarchy based on aggressive interactions, but ruffe were most aggressive at low and high fish densities. Time spent in foraging was lowest at the low fish density. The best forager at the low fish density was the most aggressive individual, but the second most aggressive fish at the medium and high fish density was the best forager and also the one chased most frequently. A medium fish density offered the best energetic benefits to ruffe by providing the lowest ratio of time spent in aggression to that spent foraging. Based on our results, ruffe should grow best at an intermediate density. With high ruffe densities, we would also expect disparity in size as the more aggressive fish are able to garner a disproportionate amount of the resources. Alternatively, as the Great Lakes are a fairly open system, ruffe could migrate out of one area to colonize another as populations exceed optimal densities.

  10. Changing expression of vertebrate immunity genes in an anthropogenic environment: a controlled experiment.

    PubMed

    Hablützel, Pascal I; Brown, Martha; Friberg, Ida M; Jackson, Joseph A

    2016-09-01

    The effect of anthropogenic environments on the function of the vertebrate immune system is a problem of general importance. For example, it relates to the increasing rates of immunologically-based disease in modern human populations and to the desirability of identifying optimal immune function in domesticated animals. Despite this importance, our present understanding is compromised by a deficit of experimental studies that make adequately matched comparisons between wild and captive vertebrates. We transferred post-larval fishes (three-spined sticklebacks), collected in the wild, to an anthropogenic (captive) environment. We then monitored, over 11 months, how the systemic expression of immunity genes changed in comparison to cohort-matched wild individuals in the originator population (total n = 299). We found that a range of innate (lyz, defbl2, il1r-like, tbk1) and adaptive (cd8a, igmh) immunity genes were up-regulated in captivity, accompanied by an increase in expression of the antioxidant enzyme, gpx4a. For some genes previously known to show seasonality in the wild, this appeared to be reduced in captive fishes. Captive fishes tended to express immunity genes, including igzh, foxp3b, lyz, defbl2, and il1r-like, more variably. Furthermore, although gene co-expression patterns (analyzed through gene-by-gene correlations and mutual information theory based networks) shared common structure in wild and captive fishes, there was also significant divergence. For one gene in particular, defbl2, high expression was associated with adverse health outcomes in captive fishes. Taken together, these results demonstrate widespread regulatory changes in the immune system in captive populations, and that the expression of immunity genes is more constrained in the wild. An increase in constitutive systemic immune activity, such as we observed here, may alter the risk of immunopathology and contribute to variance in health in vertebrate populations exposed to anthropogenic environments.

  11. A non-invasive technique for rapid extraction of DNA from fish scales.

    PubMed

    Kumar, Ravindra; Singh, Poonam Jayant; Nagpure, N S; Kushwaha, Basdeo; Srivastava, S K; Lakra, W S

    2007-11-01

    DNA markers are being increasingly used in studies related to population genetics and conservation biology of endangered species. DNA isolation for such studies requires a source of biological material that is easy to collect, non-bulky and reliable. Further, the sampling strategies based on non-invasive procedures are desirable, especially for the endangered fish species. In view of above, a rapid DNA extraction method from fish scales has been developed with the use of a modified lysis buffer that require about 2 hr duration. This methodology is non-invasive, less expensive and reproducible with high efficiency of DNA recovery. The DNA extracted by this technique, have been found suitable for performing restriction enzyme digestion and PCR amplification. Therefore, the present DNA extraction procedure can be used as an alternative technique in population genetic studies pertaining to endangered fish species. The technique was also found equally effective for DNA isolation from fresh, dried and ethanol preserved scales.

  12. Empirical assessment of fish introductions in a subtropical wetland: An evaluation of contrasting views

    USGS Publications Warehouse

    Trexler, J.C.; Loftus, W.F.; Jordan, F.; Lorenz, J.J.; Chick, J.H.; Kobza, Robert M.

    2000-01-01

    We summarized data from eight quantitative fish surveys conducted in southern Florida to evaluate the distribution and relative abundance of introduced fishes across a variety of habitats. These surveys encompassed marsh and canal habitats throughout most of the Everglades region, including the mangrove fringe of Florida Bay. Two studies provided systematically collected density information over a 20-year period, and documented the first local appearance of four introduced fishes based on their repeated absence in prior surveys. Those species displayed a pattern of rapid population growth followed by decline, then persistence at lower densities. Estuarine areas in the southern Everglades, characterized by natural tidal creeks surrounded by mangrove-dominated marshes, and canals held the largest introduced-fish populations. Introduced fishes were also common, at times exceeding 50% of the fish community, in solution holes that serve as dry-season refuges in short-hydroperiod rockland habitats of the eastern Everglades. Wet prairies and alligator ponds distant from canals generally held few individuals of introduced fishes. These patterns suggest that the introduced fishes in southern Florida at present may not be well-adapted to persist in freshwater marshes of the Everglades, possibly because of an interaction of periodic cold-temperature stress and hydrologic fluctuation. Our analyses indicated low densities of these fishes in central or northern Everglades wet-prairie communities, and, in the absence of experimental data, little evidence of biotic effects in this spatially extensive habitat. There is no guarantee that this condition will be maintained, especially under the cumulative effects of future invasions or environmental change.

  13. Fish population studies using parasites from the Southeastern Pacific Ocean: considering host population changes and species body size as sources of variability of parasite communities.

    PubMed

    George-Nascimento, Mario; Oliva, Marcelo

    2015-01-01

    Research using parasites in fish population studies in the South Eastern Pacific (SEP) is summarized. There are 27 such studies (snapshots mainly) in single host species sampled at different geographic localities and at somewhat similar times. They have been devoted mainly to economically important species, though others on coastal and intertidal fish or on less- or non-commercial species provide insights on scales of temporal and spatial variation of parasite infracommunities. Later, we assess whether the probability of harbouring parasites depends on the host species body size. Our results indicate that a stronger tool for fish population studies may be developed under regular (long term) scrutiny of parasite communities, especially of small fish host species, due to their larger variability in richness, abundance and total biomass, than in large fish species. Finally, it might also be necessary to consider the effects of fishing on parasite communities as well as the natural oscillations (coupled or not) of host and parasite populations.

  14. Evaluation of Fluoride Retention Due to Most Commonly Consumed Estuarine Fishes Among Fish Consuming Population of Andhra Pradesh as a Contributing Factor to Dental Fluorosis: A Cross-Sectional Study

    PubMed Central

    Ganta, Shravani; Nagaraj, Anup; Pareek, Sonia; Sidiq, Mohsin; Singh, Kushpal; Vishnani, Preeti

    2015-01-01

    Background Fluoride in drinking water is known for both beneficial and detrimental effects on health. The principal sources of fluoride include water, some species of vegetation, certain edible marine animals, dust and industrial processes. The purpose of this study was to evaluate the fluoride retention of most commonly consumed estuarine fishes among fish consuming population of Andhra Pradesh. Materials and Methods A cross-sectional study was conducted to evaluate the amount of fluoride retention due to ten most commonly consumed estuarine fishes as a contributing factor to Fluorosis by SPADNS Spectrophotometric method. The presence and severity of dental fluorosis among fish consuming population was recorded using Community Fluorosis Index. Statistical analysis was done using MedCalc v12.2.1.0 software. Results For Sea water fishes, the fluoride levels in bone were maximum in Indian Sardine (4.22 ppm). Amongst the river water fishes, the fluoride levels in bone were maximum in Catla (1.51 ppm). Also, the mean total fluoride concentrations of all the river fishes in skin, muscle and bone were less (0.86 ppm) as compared to the sea water fishes (2.59 ppm). It was unveiled that sea fishes accumulate relatively large amounts of Fluoride as compared to the river water fishes. The mean Community Fluorosis Index was found to be 1.06 amongst a sampled fish consuming population. Evaluation by Community Index for Dental fluorosis (CFI) suggested that fluorosis is of medium public health importance. Conclusion It was analysed that bone tends to accumulate more amount of fluoride followed by muscle and skin which might be due to the increased permeability and chemical trapping of fluoride inside the tissues. The amount of fluoride present in the fishes is directly related to the severity of fluorosis amongst fish consuming population, suggesting fishes as a contributing factor to fluorosis depending upon the dietary consumption. PMID:26266208

  15. Evaluation of Fluoride Retention Due to Most Commonly Consumed Estuarine Fishes Among Fish Consuming Population of Andhra Pradesh as a Contributing Factor to Dental Fluorosis: A Cross-Sectional Study.

    PubMed

    Ganta, Shravani; Yousuf, Asif; Nagaraj, Anup; Pareek, Sonia; Sidiq, Mohsin; Singh, Kushpal; Vishnani, Preeti

    2015-06-01

    Fluoride in drinking water is known for both beneficial and detrimental effects on health. The principal sources of fluoride include water, some species of vegetation, certain edible marine animals, dust and industrial processes. The purpose of this study was to evaluate the fluoride retention of most commonly consumed estuarine fishes among fish consuming population of Andhra Pradesh. A cross-sectional study was conducted to evaluate the amount of fluoride retention due to ten most commonly consumed estuarine fishes as a contributing factor to Fluorosis by SPADNS Spectrophotometric method. The presence and severity of dental fluorosis among fish consuming population was recorded using Community Fluorosis Index. Statistical analysis was done using MedCalc v12.2.1.0 software. For Sea water fishes, the fluoride levels in bone were maximum in Indian Sardine (4.22 ppm). Amongst the river water fishes, the fluoride levels in bone were maximum in Catla (1.51 ppm). Also, the mean total fluoride concentrations of all the river fishes in skin, muscle and bone were less (0.86 ppm) as compared to the sea water fishes (2.59 ppm). It was unveiled that sea fishes accumulate relatively large amounts of Fluoride as compared to the river water fishes. The mean Community Fluorosis Index was found to be 1.06 amongst a sampled fish consuming population. Evaluation by Community Index for Dental fluorosis (CFI) suggested that fluorosis is of medium public health importance. It was analysed that bone tends to accumulate more amount of fluoride followed by muscle and skin which might be due to the increased permeability and chemical trapping of fluoride inside the tissues. The amount of fluoride present in the fishes is directly related to the severity of fluorosis amongst fish consuming population, suggesting fishes as a contributing factor to fluorosis depending upon the dietary consumption.

  16. Overestimating Fish Counts by Non-Instantaneous Visual Censuses: Consequences for Population and Community Descriptions

    PubMed Central

    Ward-Paige, Christine; Mills Flemming, Joanna; Lotze, Heike K.

    2010-01-01

    Background Increasingly, underwater visual censuses (UVC) are used to assess fish populations. Several studies have demonstrated the effectiveness of protected areas for increasing fish abundance or provided insight into the natural abundance and structure of reef fish communities in remote areas. Recently, high apex predator densities (>100,000 individuals·km−2) and biomasses (>4 tonnes·ha−1) have been reported for some remote islands suggesting the occurrence of inverted trophic biomass pyramids. However, few studies have critically evaluated the methods used for sampling conspicuous and highly mobile fish such as sharks. Ideally, UVC are done instantaneously, however, researchers often count animals that enter the survey area after the survey has started, thus performing non-instantaneous UVC. Methodology/Principal Findings We developed a simulation model to evaluate counts obtained by divers deploying non-instantaneous belt-transect and stationary-point-count techniques. We assessed how fish speed and survey procedure (visibility, diver speed, survey time and dimensions) affect observed fish counts. Results indicate that the bias caused by fish speed alone is huge, while survey procedures had varying effects. Because the fastest fishes tend to be the largest, the bias would have significant implications on their biomass contribution. Therefore, caution is needed when describing abundance, biomass, and community structure based on non-instantaneous UVC, especially for highly mobile species such as sharks. Conclusions/Significance Based on our results, we urge that published literature state explicitly whether instantaneous counts were made and that survey procedures be accounted for when non-instantaneous counts are used. Using published density and biomass values of communities that include sharks we explore the effect of this bias and suggest that further investigation may be needed to determine pristine shark abundances and the existence of inverted biomass pyramids. Because such studies are used to make important management and conservation decisions, incorrect estimates of animal abundance and biomass have serious and significant implications. PMID:20661304

  17. Physiology can contribute to better understanding, management, and conservation of coral reef fishes

    PubMed Central

    Rummer, Jodie L.

    2017-01-01

    Abstract Coral reef fishes, like many other marine organisms, are affected by anthropogenic stressors such as fishing and pollution and, owing to climate change, are experiencing increasing water temperatures and ocean acidification. Against the backdrop of these various stressors, a mechanistic understanding of processes governing individual organismal performance is the first step for identifying drivers of coral reef fish population dynamics. In fact, physiological measurements can help to reveal potential cause-and-effect relationships and enable physiologists to advise conservation management by upscaling results from cellular and individual organismal levels to population levels. Here, we highlight studies that include physiological measurements of coral reef fishes and those that give advice for their conservation. A literature search using combined physiological, conservation and coral reef fish key words resulted in ~1900 studies, of which only 99 matched predefined requirements. We observed that, over the last 20 years, the combination of physiological and conservation aspects in studies on coral reef fishes has received increased attention. Most of the selected studies made their physiological observations at the whole organism level and used their findings to give conservation advice on population dynamics, habitat use or the potential effects of climate change. The precision of the recommendations differed greatly and, not surprisingly, was least concrete when studies examined the effects of projected climate change scenarios. Although more and more physiological studies on coral reef fishes include conservation aspects, there is still a lack of concrete advice for conservation managers, with only very few published examples of physiological findings leading to improved management practices. We conclude with a call to action to foster better knowledge exchange between natural scientists and conservation managers to translate physiological findings more effectively in order to obtain evidence-based and adaptive management strategies for the conservation of coral reef fishes. PMID:28852508

  18. Population dynamics of the yellowstripe scad (Selaroides leptolepis Cuvier, 1833) and Indian mackerel (Rastrelliger kanagurta Cuvier, 1816) in the Wondama Bay Water, Indonesia

    NASA Astrophysics Data System (ADS)

    Sala, R.; Bawole, R.; Runtuboi, F.; Mudjirahayu; Wopi, I. A.; Budisetiawan, J.; Irwanto

    2018-03-01

    The Wondama Bay water is located within the Cendrawasih Bay National Park and is potential for fishery resources, including pelagic fish such as yellowstripe scad (Selaroides leptolepis Cuvier, 1833) and Indian mackerel (Rastrelliger kanagurta Cuvier, 1816). Yet, information about the population dynamics of these species in the region is unknown until today. Meanwhile, the fishing activities have been quite intensive and include the dominant catches over the last ten years by traditional fishermen fishing using liftnets. Therefore, this study aims to determine some of specific characteristics of the population dynamics and fish utilization status of scad and mackerel in the waters of the Wondama Bay. Data used in this study were taken from direct observation of catch of liftnet fishery. The data then were analysed by using FISAT II to estimate the growth parameters, mortality rates, and yield per recruitment. The results showed that yellowstripe scad has the positive allometric growth, while Indian mackerel followed isometric growth. Models of fish growth were L(t) = 22 (1-e-3.0(t-0.05)) for yellowstripe scad and L(t) = 27.8 (1-e-4.0(t-0.04)) for Indian mackerel. The natural mortality (M) of 4.19 year-1, fishing mortality (F) of 5.01 year-1, and total mortality (Z) of 9.20 year-1 were for yellowstripe scad, and M of 4.74 year-1, F of 2.52 year-1 and Z of 7.26 year-1 were for Indian mackerel. Based on the mortality rates, estimated exploitation rate for the yellowatripe scad was 54 % and the Indian mackerel was 35 %. To increase the production of catch without increasing fishing effort (fishing mortality) can be done by increasing the size of fish caught or the Lc/L∞ should be greater than 0.5.

  19. Supporting Fisheries Management by Means of Complex Models: Can We Point out Isles of Robustness in a Sea of Uncertainty?

    PubMed Central

    Gasche, Loïc; Mahévas, Stéphanie; Marchal, Paul

    2013-01-01

    Ecosystems are usually complex, nonlinear and strongly influenced by poorly known environmental variables. Among these systems, marine ecosystems have high uncertainties: marine populations in general are known to exhibit large levels of natural variability and the intensity of fishing efforts can change rapidly. These uncertainties are a source of risks that threaten the sustainability of both fish populations and fishing fleets targeting them. Appropriate management measures have to be found in order to reduce these risks and decrease sensitivity to uncertainties. Methods have been developed within decision theory that aim at allowing decision making under severe uncertainty. One of these methods is the information-gap decision theory. The info-gap method has started to permeate ecological modelling, with recent applications to conservation. However, these practical applications have so far been restricted to simple models with analytical solutions. Here we implement a deterministic approach based on decision theory in a complex model of the Eastern English Channel. Using the ISIS-Fish modelling platform, we model populations of sole and plaice in this area. We test a wide range of values for ecosystem, fleet and management parameters. From these simulations, we identify management rules controlling fish harvesting that allow reaching management goals recommended by ICES (International Council for the Exploration of the Sea) working groups while providing the highest robustness to uncertainties on ecosystem parameters. PMID:24204873

  20. Supporting fisheries management by means of complex models: can we point out isles of robustness in a sea of uncertainty?

    PubMed

    Gasche, Loïc; Mahévas, Stéphanie; Marchal, Paul

    2013-01-01

    Ecosystems are usually complex, nonlinear and strongly influenced by poorly known environmental variables. Among these systems, marine ecosystems have high uncertainties: marine populations in general are known to exhibit large levels of natural variability and the intensity of fishing efforts can change rapidly. These uncertainties are a source of risks that threaten the sustainability of both fish populations and fishing fleets targeting them. Appropriate management measures have to be found in order to reduce these risks and decrease sensitivity to uncertainties. Methods have been developed within decision theory that aim at allowing decision making under severe uncertainty. One of these methods is the information-gap decision theory. The info-gap method has started to permeate ecological modelling, with recent applications to conservation. However, these practical applications have so far been restricted to simple models with analytical solutions. Here we implement a deterministic approach based on decision theory in a complex model of the Eastern English Channel. Using the ISIS-Fish modelling platform, we model populations of sole and plaice in this area. We test a wide range of values for ecosystem, fleet and management parameters. From these simulations, we identify management rules controlling fish harvesting that allow reaching management goals recommended by ICES (International Council for the Exploration of the Sea) working groups while providing the highest robustness to uncertainties on ecosystem parameters.

  1. Effects of fire on fish populations: Landscape perspectives on persistence of native fishes and nonnative fish invasions

    Treesearch

    Jason B. Dunham; Michael K. Young; Robert E. Gresswell; Bruce E. Rieman

    2003-01-01

    Our limited understanding of the short and long-term effects of fire on fish contributes to considerable uncertainty in assessments of the risks and benefits of fire management alternatives. A primary concern among the many potential effects of fire is the effects of fire and fire management on persistence of native fish populations. Limited evidence suggests...

  2. Conservation physiology of marine fishes: state of the art and prospects for policy.

    PubMed

    McKenzie, David J; Axelsson, Michael; Chabot, Denis; Claireaux, Guy; Cooke, Steven J; Corner, Richard A; De Boeck, Gudrun; Domenici, Paolo; Guerreiro, Pedro M; Hamer, Bojan; Jørgensen, Christian; Killen, Shaun S; Lefevre, Sjannie; Marras, Stefano; Michaelidis, Basile; Nilsson, Göran E; Peck, Myron A; Perez-Ruzafa, Angel; Rijnsdorp, Adriaan D; Shiels, Holly A; Steffensen, John F; Svendsen, Jon C; Svendsen, Morten B S; Teal, Lorna R; van der Meer, Jaap; Wang, Tobias; Wilson, Jonathan M; Wilson, Rod W; Metcalfe, Julian D

    2016-01-01

    The state of the art of research on the environmental physiology of marine fishes is reviewed from the perspective of how it can contribute to conservation of biodiversity and fishery resources. A major constraint to application of physiological knowledge for conservation of marine fishes is the limited knowledge base; international collaboration is needed to study the environmental physiology of a wider range of species. Multifactorial field and laboratory studies on biomarkers hold promise to relate ecophysiology directly to habitat quality and population status. The 'Fry paradigm' could have broad applications for conservation physiology research if it provides a universal mechanism to link physiological function with ecological performance and population dynamics of fishes, through effects of abiotic conditions on aerobic metabolic scope. The available data indicate, however, that the paradigm is not universal, so further research is required on a wide diversity of species. Fish physiologists should interact closely with researchers developing ecological models, in order to investigate how integrating physiological information improves confidence in projecting effects of global change; for example, with mechanistic models that define habitat suitability based upon potential for aerobic scope or outputs of a dynamic energy budget. One major challenge to upscaling from physiology of individuals to the level of species and communities is incorporating intraspecific variation, which could be a crucial component of species' resilience to global change. Understanding what fishes do in the wild is also a challenge, but techniques of biotelemetry and biologging are providing novel information towards effective conservation. Overall, fish physiologists must strive to render research outputs more applicable to management and decision-making. There are various potential avenues for information flow, in the shorter term directly through biomarker studies and in the longer term by collaborating with modellers and fishery biologists.

  3. Thermodynamic and Mechanic Consideration on the stability of Anti-symmetric Schaefer’s equation

    NASA Astrophysics Data System (ADS)

    Suriamihardja, D. A.; Amiruddin; Saaduddin

    2018-03-01

    Schaefer’s equation relates an interaction between population of fishes and the number of units of fishing effort. The population growth of fishes is reduced by the number of units of fishing effort, while the population growth of units of fishing effort depends on the existence of fishes. This paper aims to examine the stability of an anti-symmetric Schaefer’s equation through thermodynamic and mechanic procedure using a formula of entropy production near equilibrium which is recognized as Onsager’s relation. The results confirm that entropic approach (thermodynamics) and dissipative approach (mechanics) are usable to be applied as Lyapunov’s procedure in examining the stability of systems of differential equations.

  4. Models to compare management options for a protogynous fish.

    PubMed

    Heppell, Selina S; Heppell, Scott A; Coleman, Felicia C; Koenig, Christopher C

    2006-02-01

    Populations of gag (Mycteroperca microlepis), a hermaphroditic grouper, have experienced a dramatic shift in sex ratio over the past 25 years due to a decline in older age classes. The highly female-skewed sex ratio can be predicted as a consequence of increased fishing mortality that truncates the age distribution, and raises some concern about the overall fitness of the population. Management efforts may need to be directed toward maintenance of sex ratio as well as stock size, with evaluations of recruitment based on sex ratio or male stock size in addition to the traditional female-based stock-recruitment relationship. We used two stochastic, age-structured models to heuristically compare the effects of reducing fishing mortality on different life history stages and the relative impact of reductions in fertilization rates that may occur with highly skewed sex ratios. Our response variables included population size, sex ratio, lost egg fertility, and female spawning stock biomass. Population growth rates were highest for scenarios that reduced mortality for female gag (nearshore closure), while improved sex ratios were obtained most quickly with spawning reserves. The effect of reduced fertility through sex ratio bias was generally low but depended on the management scenario employed. Our results demonstrate the utility of evaluation of fishery management scenarios through model analysis and simulation, the synergistic interaction of life history and response to changes in mortality rates, and the importance of defining management goals.

  5. It is the economy, stupid! Projecting the fate of fish populations using ecological-economic modeling.

    PubMed

    Quaas, Martin F; Reusch, Thorsten B H; Schmidt, Jörn O; Tahvonen, Olli; Voss, Rudi

    2016-01-01

    Four marine fish species are among the most important on the world market: cod, salmon, tuna, and sea bass. While the supply of North American and European markets for two of these species - Atlantic salmon and European sea bass - mainly comes from fish farming, Atlantic cod and tunas are mainly caught from wild stocks. We address the question what will be the status of these wild stocks in the midterm future, in the year 2048, to be specific. Whereas the effects of climate change and ecological driving forces on fish stocks have already gained much attention, our prime interest is in studying the effects of changing economic drivers, as well as the impact of variable management effectiveness. Using a process-based ecological-economic multispecies optimization model, we assess the future stock status under different scenarios of change. We simulate (i) technological progress in fishing, (ii) increasing demand for fish, and (iii) increasing supply of farmed fish, as well as the interplay of these driving forces under different scenarios of (limited) fishery management effectiveness. We find that economic change has a substantial effect on fish populations. Increasing aquaculture production can dampen the fishing pressure on wild stocks, but this effect is likely to be overwhelmed by increasing demand and technological progress, both increasing fishing pressure. The only solution to avoid collapse of the majority of stocks is institutional change to improve management effectiveness significantly above the current state. We conclude that full recognition of economic drivers of change will be needed to successfully develop an integrated ecosystem management and to sustain the wild fish stocks until 2048 and beyond. © 2015 John Wiley & Sons Ltd.

  6. Minimum Pool and Bull Trout Prey Base Investigations at Beulah Reservoir - Final Report for 2008

    USGS Publications Warehouse

    Rose, Brien P.; Mesa, Matthew G.

    2009-01-01

    Beulah Reservoir in southeastern Oregon provides irrigation water to nearby farms and supports an adfluvial population of threatened bull trout (Salvelinus confluentus). Summer drawdowns in the reservoir could affect forage fish production and overwintering bull trout. To assess the impacts of drawdown, we sampled fish, invertebrates, and water-quality variables seasonally during 2006-08. In 2006, the summer drawdown was about 68 percent of full pool, which was less than a typical drawdown of 85 percent. We detected few changes in pelagic invertebrate densities, and catch rates, abundance, and sizes of fish when comparing values from spring to values from fall. We did note that densities of benthic insects in areas that were dewatered annually were lower than those from areas that were not dewatered annually. In 2007, the drawdown was 100 percent (to run-of-river level) and resulted in decreases in abundance of invertebrates as much as 96 percent, decreases in catch rates of fish as much as 80 percent, decreases in abundance of redside shiners (Richardsonius balteatus) and northern pikeminnow (Ptychocheilus oregonensis) as much as 93 percent, and decreased numbers of small fish in catches. In the fall 2007, we estimated the total biomass of forage fish to be 76 kilograms, or about one-quarter of total biomass of forage fish in 2006. Bioenergetics modeling suggested that ample forage for about 1,000 bull trout would exist after a moderate drawdown, but that forage remaining after a complete dewatering would not be sufficient for a population one-fifth the size. Our results indicate that drawdowns in Beulah Reservoir affect the aquatic community and perhaps the health and well-being of bull trout. The severity of effects depends on the extent of drawdown, population size of bull trout, and perhaps other factors.

  7. Fishery-independent data reveal negative effect of human population density on Caribbean predatory fish communities.

    PubMed

    Stallings, Christopher D

    2009-01-01

    Understanding the current status of predatory fish communities, and the effects fishing has on them, is vitally important information for management. However, data are often insufficient at region-wide scales to assess the effects of extraction in coral reef ecosystems of developing nations. Here, I overcome this difficulty by using a publicly accessible, fisheries-independent database to provide a broad scale, comprehensive analysis of human impacts on predatory reef fish communities across the greater Caribbean region. Specifically, this study analyzed presence and diversity of predatory reef fishes over a gradient of human population density. Across the region, as human population density increases, presence of large-bodied fishes declines, and fish communities become dominated by a few smaller-bodied species. Complete disappearance of several large-bodied fishes indicates ecological and local extinctions have occurred in some densely populated areas. These findings fill a fundamentally important gap in our knowledge of the ecosystem effects of artisanal fisheries in developing nations, and provide support for multiple approaches to data collection where they are commonly unavailable.

  8. Fishery-Independent Data Reveal Negative Effect of Human Population Density on Caribbean Predatory Fish Communities

    PubMed Central

    Stallings, Christopher D.

    2009-01-01

    Background Understanding the current status of predatory fish communities, and the effects fishing has on them, is vitally important information for management. However, data are often insufficient at region-wide scales to assess the effects of extraction in coral reef ecosystems of developing nations. Methodology/Principal Findings Here, I overcome this difficulty by using a publicly accessible, fisheries-independent database to provide a broad scale, comprehensive analysis of human impacts on predatory reef fish communities across the greater Caribbean region. Specifically, this study analyzed presence and diversity of predatory reef fishes over a gradient of human population density. Across the region, as human population density increases, presence of large-bodied fishes declines, and fish communities become dominated by a few smaller-bodied species. Conclusions/Significance Complete disappearance of several large-bodied fishes indicates ecological and local extinctions have occurred in some densely populated areas. These findings fill a fundamentally important gap in our knowledge of the ecosystem effects of artisanal fisheries in developing nations, and provide support for multiple approaches to data collection where they are commonly unavailable. PMID:19421312

  9. Development of habitat suitability indices for the Candy Darter, with cross-scale validation across representative populations

    USGS Publications Warehouse

    Dunn, Corey G.; Angermeier, Paul

    2016-01-01

    Understanding relationships between habitat associations for individuals and habitat factors that limit populations is a primary challenge for managers of stream fishes. Although habitat use by individuals can provide insight into the adaptive significance of selected microhabitats, not all habitat parameters will be significant at the population level, particularly when distributional patterns partially result from habitat degradation. We used underwater observation to quantify microhabitat selection by an imperiled stream fish, the Candy Darter Etheostoma osburni, in two streams with robust populations. We developed multiple-variable and multiple-life-stage habitat suitability indices (HSIs) from microhabitat selection patterns and used them to assess the suitability of available habitat in streams where Candy Darter populations were extirpated, localized, or robust. Next, we used a comparative framework to examine relationships among (1) habitat availability across streams, (2) projected habitat suitability of each stream, and (3) a rank for the likely long-term viability (robustness) of the population inhabiting each stream. Habitat selection was characterized by ontogenetic shifts from the low-velocity, slightly embedded areas used by age-0 Candy Darters to the swift, shallow areas with little fine sediment and complex substrate, which were used by adults. Overall, HSIs were strongly correlated with population rank. However, we observed weak or inverse relationships between predicted individual habitat suitability and population robustness for multiple life stages and variables. The results demonstrated that microhabitat selection by individuals does not always reflect population robustness, particularly when based on a single life stage or season, which highlights the risk of generalizing habitat selection that is observed during nonstressful periods or for noncritical resources. These findings suggest that stream fish managers may need to be cautious when implementing conservation measures based solely on observations of habitat selection by individuals and that detailed study at the individual and population levels may be necessary to identify habitat that limits populations.

  10. Approximate sample sizes required to estimate length distributions

    USGS Publications Warehouse

    Miranda, L.E.

    2007-01-01

    The sample sizes required to estimate fish length were determined by bootstrapping from reference length distributions. Depending on population characteristics and species-specific maximum lengths, 1-cm length-frequency histograms required 375-1,200 fish to estimate within 10% with 80% confidence, 2.5-cm histograms required 150-425 fish, proportional stock density required 75-140 fish, and mean length required 75-160 fish. In general, smaller species, smaller populations, populations with higher mortality, and simpler length statistics required fewer samples. Indices that require low sample sizes may be suitable for monitoring population status, and when large changes in length are evident, additional sampling effort may be allocated to more precisely define length status with more informative estimators. ?? Copyright by the American Fisheries Society 2007.

  11. Demographic analysis of Lost River sucker and shortnose sucker populations in Upper Klamath Lake, Oregon

    USGS Publications Warehouse

    Janney, E.C.; Shively, R.S.; Hayes, B.S.; Barry, P.M.; Perkins, D.

    2008-01-01

    We used 13 years (1995-2007) of capture-mark-recapture data to assess population dynamics of endangered Lost River suckers Deltistes luxatus and shortnose suckers Chasmistes brevirostris in Upper Klamath Lake, Oregon. The Cormack-Jolly-Seber method was used to estimate survival, and information theoretic modeling was used to assess variation due to time, gender, species, and spawning subpopulations. Length data were used to detect multiple year-class failures and events of high recruitment into adult spawning populations. Average annual survival probability was 0.88 for Lost River suckers and 0.76 for shortnose suckers. Mean life span estimates based on these survival rates indicated that Lost River suckers survived long enough on average to attempt reproduction eight times, whereas shortnose suckers only survived to spawn three to four times. Shortnose sucker survival was not only poor in years of fish kills (1995-1997) but also was low in years without fish kills (i.e., 2002 and 2004). This suggests that high mortality occurs in some years but is not necessarily associated with fish kills. Annual survival probabilities were not only different between the two species but also differed between two spawning subpopulations of Lost River suckers. Length composition data indicated that recruitment into spawning populations only occurred intermittently. Populations of both species transitioned from primarily old individuals with little size diversity and consistently poor recruitment in the late 1980s and early 1990s to mostly small, recruit-sized fish by the late 1990s. A better understanding of the factors influencing adult survival and recruitment into spawning populations is needed. Monitoring these vital parameters will provide a quantitative means to evaluate population status and assess the effectiveness of conservation and recovery efforts.

  12. Integrating effects based monitoring with adverse outcome pathways and population models

    EPA Science Inventory

    In addressing Beneficial Use Impairments (BUIs) at a Great Lakes Area of Concern (AOC), recovery from loss of fish and wildlife populations exposed to stressors is targeted for use in decision making. We describe a framework that can be applied in utilizing field monitoring effo...

  13. Connectivity of microbial populations in coral reef environments: microbiomes of sediment, fish and water

    NASA Astrophysics Data System (ADS)

    Biddle, J.; Leon, Z. R.; McCargar, M.; Drew, J.

    2016-12-01

    The benthic environments of coral reefs are heavily shaped by physiochemical factors, but also the ecological interactions of the animals and plants in the reef ecosystem. Microbial populations may be shared between the ecosystem of sediments, seagrasses and reef fish, however it is unknown to what degree. We investigated the potential connections between the microbiomes of sediments, seagrass blades and roots (Syringodium isoetifolium), Surgeonfish (A. nigricauda, Acanthurinae sp. unknown, C. striatus) and Parrotfish (C. spinidens) guts in reef areas of Fiji. We contrasted these with sediment samples from the Florida Keys and ocean water microbiomes from the Atlantic, Pacific and Indian Oceans. In general, we see a higher diversity of sediment microbial communities in Fiji compared to the Florida Keys. However, many of the same taxa are shared in these chemically similar environments, whereas the ocean water environments are completely distinct with few overlapping groups. We were able to show connectivity of a core microbiome between seagrass, fish and sediments in Fiji, including identifying a potential environmental reservoir of a surgeonfish symbiont, Epulopiscum. Finally, we show that fish guts have different microbial populations from crop to hindgut, and that microbial populations differ based on food source. The connection of these ecosystems suggest that the total microbiome of these environments may vary as their animal inhabitants shift in a changing ocean.

  14. Fishing-induced life-history changes degrade and destabilize harvested ecosystems.

    PubMed

    Kuparinen, Anna; Boit, Alice; Valdovinos, Fernanda S; Lassaux, Hélène; Martinez, Neo D

    2016-02-26

    Fishing is widely known to magnify fluctuations in targeted populations. These fluctuations are correlated with population shifts towards young, small, and more quickly maturing individuals. However, the existence and nature of the mechanistic basis for these correlations and their potential ecosystem impacts remain highly uncertain. Here, we elucidate this basis and associated impacts by showing how fishing can increase fluctuations in fishes and their ecosystem, particularly when coupled with decreasing body sizes and advancing maturation characteristic of the life-history changes induced by fishing. More specifically, using an empirically parameterized network model of a well-studied lake ecosystem, we show how fishing may both increase fluctuations in fish abundances and also, when accompanied by decreasing body size of adults, further decrease fish abundance and increase temporal variability of fishes' food resources and their ecosystem. In contrast, advanced maturation has relatively little effect except to increase variability in juvenile populations. Our findings illustrate how different mechanisms underlying life-history changes that may arise as evolutionary responses to intensive, size-selective fishing can rapidly and continuously destabilize and degrade ecosystems even after fishing has ceased. This research helps better predict how life-history changes may reduce fishes' resilience to fishing and ecosystems' resistance to environmental variations.

  15. Fish consumption as a driver of risk-management decisions and human health-based water quality criteria.

    PubMed

    Judd, Nancy; Lowney, Yvette; Anderson, Paul; Baird, Suzanne; Bay, Steven M; Breidt, Jay; Buonanduci, Michele; Dong, Zhao; Essig, Don; Garry, Michael R; Jim, Rebecca C; Kirkwood, Gemma; Moore, Shelly; Niemi, Cheryl; O'Rourke, Rory; Ruffle, Betsy; Schaider, Laurel A; Vidal-Dorsch, Doris E

    2015-11-01

    The use and interpretation of fish consumption surveys and interviews, the application of fish consumption rates for sediment evaluation and cleanup, and the development of human health water quality criteria (HH WQC) are complex and interrelated issues. The present article focuses on these issues using examples from the United States, although the issues may be relevant for other countries. Some key considerations include the fact that there are many types of fish consumption surveys (e.g., 24-h recall surveys, food frequency questionnaires, creel surveys), and these surveys have different advantages and limitations. Identification of target populations for protection, identification of the species and quantities of fish consumed, and determination of bioaccumulation assumptions are important factors when developing water quality and sediment screening levels and standards. Accounting for the cultural importance of fish consumption for some populations is an even more complex element. Discussions about HH WQC often focus only on the fish consumption rate and may not have broad public input. Some states are trying to change this through extensive public participation efforts and use of probabilistic approaches to derive HH WQC. Finally, there are limits to what WQC can achieve. Solutions beyond the establishment of WQC that target toxics reduction from other sources may provide the greatest improvements to water quality and reductions in human health risks in the future. © 2015 SETAC.

  16. Recovery of a wild fish population from whole-lake additions of a synthetic estrogen.

    PubMed

    Blanchfield, Paul J; Kidd, Karen A; Docker, Margaret F; Palace, Vince P; Park, Brad J; Postma, Lianne D

    2015-03-03

    Despite widespread recognition that municipal wastewaters contain natural and synthetic estrogens, which interfere with development and reproduction of fishes in freshwaters worldwide, there are limited data on the extent to which natural populations of fish can recover from exposure to these compounds. We conducted whole-lake additions of an active component of the birth control pill (17α-ethynylestradiol; EE2) that resulted in the collapse of the fathead minnow (Pimephales promelas) population. Here we quantify physiological, population, and genetic characteristics of this population over the 7 years after EE2 additions stopped to determine if complete recovery was possible. By 3 years post-treatment, whole-body vitellogenin concentrations in male fathead minnow had returned to baseline, and testicular abnormalities were absent. In the spring of the fourth year, adult size-frequency distribution and abundance had returned to pretreatment levels. Microsatellite analyses clearly showed that postrecovery fish were descendants of the original EE2-treated population. Results from this whole-lake experiment demonstrate that fish can recover from EE2 exposure at the biochemical through population levels, although the timelines to do so are long for multigenerational exposures. These results suggest that wastewater treatment facilities that reduce discharges of estrogens and their mimics can improve the health of resident fish populations in their receiving environments.

  17. Genetically based population divergence in overwintering energy mobilization in brook charr (Salvelinus fontinalis).

    PubMed

    Crespel, Amélie; Bernatchez, Louis; Garant, Dany; Audet, Céline

    2013-03-01

    Investigating the nature of physiological traits potentially related to fitness is important towards a better understanding of how species and/or populations may respond to selective pressures imposed by contrasting environments. In northern species in particular, the ability to mobilize energy reserves to compensate for the low external energy intake during winter is crucial. However, the phenotypic and genetic bases of energy reserve accumulation and mobilization have rarely been investigated, especially pertaining to variation in strategy adopted by different populations. In the present study, we documented variation in several energy reserve variables and estimated their quantitative genetic basis to test the null hypothesis of no difference in variation at those traits among three strains of brook charr (Salvelinus fontinalis) and their reciprocal hybrids. Our results indicate that the strategy of winter energy preparation and mobilization was specific to each strain, whereby (1) domestic fish accumulated a higher amount of energy reserves before winter and kept accumulating liver glycogen during winter despite lower feeding; (2) Laval fish used liver glycogen and lipids during winter and experienced a significant decrease in condition factor; (3) Rupert fish had relatively little energy reserves accumulated at the end of fall and preferentially mobilized visceral fat during winter. Significant heritability for traits related to the accumulation and use of energy reserves was found in the domestic and Laval but not in the Rupert strain. Genetic and phenotypic correlations also varied among strains, which suggested population-specific genetic architecture underlying the expression of these traits. Hybrids showed limited evidence of non-additive effects. Overall, this study provides the first evidence of a genetically based-and likely adaptive-population-specific strategy for energy mobilization related to overwinter survival.

  18. Fish population losses from Adirondack Lakes: The role of surface water acidity and acidification

    NASA Astrophysics Data System (ADS)

    Baker, Joan P.; Warren-Hicks, William J.; Gallagher, James; Christensen, Sigurd W.

    1993-04-01

    Changes over time in the species composition of fish communities in Adirondack lakes were assessed to determine (1) the approximate numbers offish populations that have been lost and (2) the degree to which fish population losses may have resulted from surface water acidification and acidic deposition. Information on the present-day status offish communities was obtained by the Adirondack Lakes Survey Corporation, which surveyed 1469 Adirondack lakes in 1984-1987 (53% of the total ponded waters in the Adirondack ecological zone). Two hundred and ninety-five of these lakes had been surveyed in 1929-1934 during the first statewide biological survey; 720 had been surveyed in one or more years prior to 1970. Sixteen to 19% of the lakes with adequate historical data appeared to have lost one or more fish populations as a result of acidification. Brook trout and acid-sensitive minnow species had experienced the most widespread effects. Populations of brook trout and acid-sensitive minnows had been lost apparently as a result of acidification from 11% and 19%, respectively, of the lakes with confirmed historical occurrence of these taxa. By contrast, fish species that tend to occur primarily in lower elevation and larger lakes, such as largemouth and smallmouth bass and brown trout, have experienced little to no documented adverse effects. Lakes that were judged to have lost fish populations as a result of acidification had significantly lower; pH and, in most cases, also had higher estimated concentrations of inorganic aluminum and occurred at higher elevations than did lakes with the fish species still present. No other lake characteristics were consistently associated with fish population losses attributed to acidification. The exact numbers and proportions of fish populations affected could not be determined because of limitations on the quantity and quality of historical data. Lakes for which we had adequate historical data to assess long-term trends in fish communities were significantly larger and deeper and have higher pH than do Adirondack lakes in general; thus, fish communities adversely affected by acidification and acidic deposition may be underrepresented in this study.

  19. High Interannual Variability in Connectivity and Genetic Pool of a Temperate Clingfish Matches Oceanographic Transport Predictions

    PubMed Central

    Teixeira, Sara; Assis, Jorge; Serrão, Ester A.; Gonçalves, Emanuel J.; Borges, Rita

    2016-01-01

    Adults of most marine benthic and demersal fish are site-attached, with the dispersal of their larval stages ensuring connectivity among populations. In this study we aimed to infer spatial and temporal variation in population connectivity and dispersal of a marine fish species, using genetic tools and comparing these with oceanographic transport. We focused on an intertidal rocky reef fish species, the shore clingfish Lepadogaster lepadogaster, along the southwest Iberian Peninsula, in 2011 and 2012. We predicted high levels of self-recruitment and distinct populations, due to short pelagic larval duration and because all its developmental stages have previously been found near adult habitats. Genetic analyses based on microsatellites countered our prediction and a biophysical dispersal model showed that oceanographic transport was a good explanation for the patterns observed. Adult sub-populations separated by up to 300 km of coastline displayed no genetic differentiation, revealing a single connected population with larvae potentially dispersing long distances over hundreds of km. Despite this, parentage analysis performed on recruits from one focal site within the Marine Park of Arrábida (Portugal), revealed self-recruitment levels of 2.5% and 7.7% in 2011 and 2012, respectively, suggesting that both long- and short-distance dispersal play an important role in the replenishment of these populations. Population differentiation and patterns of dispersal, which were highly variable between years, could be linked to the variability inherent in local oceanographic processes. Overall, our measures of connectivity based on genetic and oceanographic data highlight the relevance of long-distance dispersal in determining the degree of connectivity, even in species with short pelagic larval durations. PMID:27911952

  20. Empirical links between natural mortality and recovery in marine fishes.

    PubMed

    Hutchings, Jeffrey A; Kuparinen, Anna

    2017-06-14

    Probability of species recovery is thought to be correlated with specific aspects of organismal life history, such as age at maturity and longevity, and how these affect rates of natural mortality ( M ) and maximum per capita population growth ( r max ). Despite strong theoretical underpinnings, these correlates have been based on predicted rather than realized population trajectories following threat mitigation. Here, we examine the level of empirical support for postulated links between a suite of life-history traits (related to maturity, age, size and growth) and recovery in marine fishes. Following threat mitigation (medium time since cessation of overfishing = 20 years), 71% of 55 temperate populations had fully recovered, the remainder exhibiting, on average, negligible change (impaired recovery). Singly, life-history traits did not influence recovery status. In combination, however, those that jointly reflect length-based mortality at maturity, M α , revealed that recovered populations have higher M α , which we hypothesize to reflect local adaptations associated with greater r max But, within populations, the smaller sizes at maturity generated by overfishing are predicted to increase M α , slowing recovery and increasing its uncertainty. We conclude that recovery potential is greater for populations adapted to high M but that temporal increases in M concomitant with smaller size at maturity will have the opposite effect. The recovery metric documented here ( M α ) has a sound theoretical basis, is significantly correlated with direct estimates of M that directly reflect r max , is not reliant on data-intensive time series, can be readily estimated, and offers an empirically defensible correlate of recovery, given its clear links to the positive and impaired responses to threat mitigation that have been observed in fish populations over the past three decades. © 2017 The Author(s).

  1. Patterns of variations in large pelagic fish: A comparative approach between the Indian and the Atlantic Oceans

    NASA Astrophysics Data System (ADS)

    Corbineau, A.; Rouyer, T.; Fromentin, J.-M.; Cazelles, B.; Fonteneau, A.; Ménard, F.

    2010-07-01

    Catch data of large pelagic fish such as tuna, swordfish and billfish are highly variable ranging from short to long term. Based on fisheries data, these time series are noisy and reflect mixed information on exploitation (targeting, strategy, fishing power), population dynamics (recruitment, growth, mortality, migration, etc.), and environmental forcing (local conditions or dominant climate patterns). In this work, we investigated patterns of variation of large pelagic fish (i.e. yellowfin tuna, bigeye tuna, swordfish and blue marlin) in Japanese longliners catch data from 1960 to 2004. We performed wavelet analyses on the yearly time series of each fish species in each biogeographic province of the tropical Indian and Atlantic Oceans. In addition, we carried out cross-wavelet analyses between these biological time series and a large-scale climatic index, i.e. the Southern Oscillation Index (SOI). Results showed that the biogeographic province was the most important factor structuring the patterns of variability of Japanese catch time series. Relationships between the SOI and the fish catches in the Indian and Atlantic Oceans also pointed out the role of climatic variability for structuring patterns of variation of catch time series. This work finally confirmed that Japanese longline CPUE data poorly reflect the underlying population dynamics of tunas.

  2. How predation shapes the social interaction rules of shoaling fish

    PubMed Central

    Rosén, Emil; Ioannou, Christos C.; Rogell, Björn; Perna, Andrea; Ramnarine, Indar W.; Kolm, Niclas

    2017-01-01

    Predation is thought to shape the macroscopic properties of animal groups, making moving groups more cohesive and coordinated. Precisely how predation has shaped individuals' fine-scale social interactions in natural populations, however, is unknown. Using high-resolution tracking data of shoaling fish (Poecilia reticulata) from populations differing in natural predation pressure, we show how predation adapts individuals' social interaction rules. Fish originating from high predation environments formed larger, more cohesive, but not more polarized groups than fish from low predation environments. Using a new approach to detect the discrete points in time when individuals decide to update their movements based on the available social cues, we determine how these collective properties emerge from individuals' microscopic social interactions. We first confirm predictions that predation shapes the attraction–repulsion dynamic of these fish, reducing the critical distance at which neighbours move apart, or come back together. While we find strong evidence that fish align with their near neighbours, we do not find that predation shapes the strength or likelihood of these alignment tendencies. We also find that predation sharpens individuals' acceleration and deceleration responses, implying key perceptual and energetic differences associated with how individuals move in different predation regimes. Our results reveal how predation can shape the social interactions of individuals in groups, ultimately driving differences in groups' collective behaviour. PMID:28855361

  3. High potency fish oil supplement improves omega-3 fatty acid status in healthy adults: an open-label study using a web-based, virtual platform

    PubMed Central

    2013-01-01

    Background The health benefits of omega-3 fatty acids from fish are well known, and fish oil supplements are used widely in a preventive manner to compensate the low intake in the general population. The aim of this open-label study was to determine if consumption of a high potency fish oil supplement could improve blood levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and impact SF-12 mental and physical health scores in healthy adults. Methods A novel virtual clinical research organization was used along with the HS-Omega-3 Index, a measure of EPA and DHA in red blood cell membranes expressed as a percentage of total fatty acids that has been shown to correlate with a reduction in cardiovascular and other risk factors. Briefly, adult subjects (mean age 44 years) were recruited from among U.S. health food store employees and supplemented with 1.1 g/d of omega-3 from fish oil (756 mg EPA, 228 mg DHA, Minami Nutrition® MorEPA® Platinum) for 120 days (n = 157). Results Omega-3 status and mental health scores increased with supplementation (p < 0.001), while physical health scores remained unchanged. Conclusions The use of a virtual, web-based platform shows considerable potential for engaging in clinical research with normal, healthy subjects. A high potency fish oil supplement may further improve omega-3 status in a healthy population regularly consuming an omega-3 supplement. PMID:23924406

  4. Blood mercury concentrations in CHARGE Study children with and without autism.

    PubMed

    Hertz-Picciotto, Irva; Green, Peter G; Delwiche, Lora; Hansen, Robin; Walker, Cheryl; Pessah, Isaac N

    2010-01-01

    Some authors have reported higher blood mercury (Hg) levels in persons with autism, relative to unaffected controls. We compared blood total Hg concentrations in children with autism or autism spectrum disorder (AU/ASD) and typically developing (TD) controls in population-based samples, and determined the role of fish consumption in differences observed. The Childhood Autism Risk from Genetics and the Environment (CHARGE) Study enrolled children 2-5 years of age. After diagnostic evaluation, we analyzed three groups: AU/ASD, non-AU/ASD with developmental delay (DD), and population-based TD controls. Mothers were interviewed about household, medical, and dietary exposures. Blood Hg was measured by inductively coupled plasma mass spectrometry. Multiple linear regression analysis was conducted (n = 452) to predict blood Hg from diagnostic status controlling for Hg sources. Fish consumption strongly predicted total Hg concentration. AU/ASD children ate less fish. After adjustment for fish and other Hg sources, blood Hg levels in AU/ASD children were similar to those of TD children (p = 0.75); this was also true among non-fish eaters (p = 0.73). The direct effect of AU/ASD diagnosis on blood Hg not through the indirect pathway of altered fish consumption was a 12% reduction. DD children had lower blood Hg concentrations in all analyses. Dental amalgams in children with gum-chewing or teeth-grinding habits predicted higher levels. After accounting for dietary and other differences in Hg exposures, total Hg in blood was neither elevated nor reduced in CHARGE Study preschoolers with AU/ASD compared with unaffected controls, and resembled those of nationally representative samples.

  5. Abundance trends and status of the Little Colorado River population of humpback chub

    USGS Publications Warehouse

    Coggins, L.G.; Pine, William E.; Walters, C.J.; Van Haverbeke, D. R.; Ward, D.; Johnstone, H.C.

    2006-01-01

    The abundance of the Little Colorado River population of federally listed humpback chub Gila cypha in Grand Canyon has been monitored since the late 1980s by means of catch rate indices and capture-recapture-based abundance estimators. Analyses of data from all sources using various methods are consistent and indicate that the adult population has declined since monitoring began. Intensive tagging led to a high proportion (>80%) of the adult population being marked by the mid-1990s. Analysis of these data using both closed and open abundance estimation models yields results that agree with catch rate indices about the extent of the decline. Survival rates for age-2 and older fish are age dependent but apparently not time dependent. Back-calculation of recruitment using the apparent 1990s population age structure implies periods of higher recruitment in the late 1970s to early 1980s than is now the case. Our analyses indicate that the U.S. Fish and Wildlife Service recovery criterion of stable abundance is not being met for this population. Also, there is a critical need to develop new abundance indexing and tagging methods so that early, reliable, and rapid estimates of humpback chub recruitment can be obtained to evaluate population responses to management actions designed to facilitate the restoration of Colorado River native fish communities. ?? Copyright by the American Fisheries Society 2006.

  6. Desert tortoise annotated bibliography, 1991-2015

    USGS Publications Warehouse

    Berry, Kristin H.; Lyren, Lisa M.; Mack, Jeremy S.; Brand, L. Arriana; Wood, Dustin A.

    2016-03-01

    Agassiz’s Desert Tortoise (hereinafter called desert tortoise) is a state- and federally-listed threatened species (U.S. Fish and Wildlife Service, 1990; California Department of Fish and Game, 2015). The first population federally listed as threatened occurred on the Beaver Dam Slope, Utah (U.S. Fish and Wildlife Service, 1980). In 1990, the entire geographic range north and west of the Colorado River was federally listed as threatened (U.S. Fish and Wildlife Service, 1990), with the exception being a small population in northwestern Arizona. The purpose of this annotated bibliography is to support recovery efforts for the species, because populations have continued to decline in spite of designation of critical habitat and publication of a recovery plan (U.S. Fish and Wildlife Service, 1994). For example, between 2005 and 2014, populations in critical habitats declined about 50% (U.S. Fish and Wildlife Service, 2015).

  7. The influence of changes in lifestyle and mercury exposure in riverine populations of the Madeira River (Amazon Basin) near a hydroelectric project.

    PubMed

    Hacon, Sandra S; Dórea, José G; Fonseca, Márlon de F; Oliveira, Beatriz A; Mourão, Dennys S; Ruiz, Claudia M V; Gonçalves, Rodrigo A; Mariani, Carolina F; Bastos, Wanderley R

    2014-02-26

    In the Amazon Basin, naturally occurring methylmercury bioaccumulates in fish, which is a key source of protein consumed by riverine populations. The hydroelectric power-plant project at Santo Antônio Falls allows us to compare the Hg exposure of riverine populations sparsely distributed on both sides of the Madeira river before the area is to be flooded. From 2009 to 2011, we concluded a population survey of the area (N = 2,008; representing circa 80% of community residents) that estimated fish consumption and mercury exposure of riverine populations with different degrees of lifestyle related to fish consumption. Fish samples from the Madeira river (N = 1,615) and 110 species were analyzed for Hg. Hair-Hg was significantly lower (p < 0.001) in less isolated communities near to the capital of Porto Velho (median 2.32 ppm) than in subsistence communities in the Cuniã Lake, 180 km from Porto Velho city (median 6.3 ppm). Fish Hg concentrations ranged from 0.01 to 6.06 µg/g, depending on fish size and feeding behavior. Currently available fish in the Madeira river show a wide variability in Hg concentrations. Despite cultural similarities, riparians showed hair-Hg distribution patterns that reflect changes in fish-eating habits driven by subsistence characteristics.

  8. A moving target—incorporating knowledge of the spatial ecology of fish into the assessment and management of freshwater fish populations

    USGS Publications Warehouse

    Cooke, Steven J.; Martins, Eduardo G; Struthers, Daniel P; Gutowsky, Lee F G; Powers, Michael H.; Doka, Susan E.; Dettmers, John M.; Crook, David A; Lucas, Martyn C.; Holbrook, Christopher; Krueger, Charles C.

    2016-01-01

    Freshwater fish move vertically and horizontally through the aquatic landscape for a variety of reasons, such as to find and exploit patchy resources or to locate essential habitats (e.g., for spawning). Inherent challenges exist with the assessment of fish populations because they are moving targets. We submit that quantifying and describing the spatial ecology of fish and their habitat is an important component of freshwater fishery assessment and management. With a growing number of tools available for studying the spatial ecology of fishes (e.g., telemetry, population genetics, hydroacoustics, otolith microchemistry, stable isotope analysis), new knowledge can now be generated and incorporated into biological assessment and fishery management. For example, knowing when, where, and how to deploy assessment gears is essential to inform, refine, or calibrate assessment protocols. Such information is also useful for quantifying or avoiding bycatch of imperiled species. Knowledge of habitat connectivity and usage can identify critically important migration corridors and habitats and can be used to improve our understanding of variables that influence spatial structuring of fish populations. Similarly, demographic processes are partly driven by the behavior of fish and mediated by environmental drivers. Information on these processes is critical to the development and application of realistic population dynamics models. Collectively, biological assessment, when informed by knowledge of spatial ecology, can provide managers with the ability to understand how and when fish and their habitats may be exposed to different threats. Naturally, this knowledge helps to better evaluate or develop strategies to protect the long-term viability of fishery production. Failure to understand the spatial ecology of fishes and to incorporate spatiotemporal data can bias population assessments and forecasts and potentially lead to ineffective or counterproductive management actions.

  9. A moving target--incorporating knowledge of the spatial ecology of fish into the assessment and management of freshwater fish populations.

    PubMed

    Cooke, Steven J; Martins, Eduardo G; Struthers, Daniel P; Gutowsky, Lee F G; Power, Michael; Doka, Susan E; Dettmers, John M; Crook, David A; Lucas, Martyn C; Holbrook, Christopher M; Krueger, Charles C

    2016-04-01

    Freshwater fish move vertically and horizontally through the aquatic landscape for a variety of reasons, such as to find and exploit patchy resources or to locate essential habitats (e.g., for spawning). Inherent challenges exist with the assessment of fish populations because they are moving targets. We submit that quantifying and describing the spatial ecology of fish and their habitat is an important component of freshwater fishery assessment and management. With a growing number of tools available for studying the spatial ecology of fishes (e.g., telemetry, population genetics, hydroacoustics, otolith microchemistry, stable isotope analysis), new knowledge can now be generated and incorporated into biological assessment and fishery management. For example, knowing when, where, and how to deploy assessment gears is essential to inform, refine, or calibrate assessment protocols. Such information is also useful for quantifying or avoiding bycatch of imperiled species. Knowledge of habitat connectivity and usage can identify critically important migration corridors and habitats and can be used to improve our understanding of variables that influence spatial structuring of fish populations. Similarly, demographic processes are partly driven by the behavior of fish and mediated by environmental drivers. Information on these processes is critical to the development and application of realistic population dynamics models. Collectively, biological assessment, when informed by knowledge of spatial ecology, can provide managers with the ability to understand how and when fish and their habitats may be exposed to different threats. Naturally, this knowledge helps to better evaluate or develop strategies to protect the long-term viability of fishery production. Failure to understand the spatial ecology of fishes and to incorporate spatiotemporal data can bias population assessments and forecasts and potentially lead to ineffective or counterproductive management actions.

  10. Historic changes in length distributions of three Baltic cod (Gadus morhua) stocks: Evidence of growth retardation.

    PubMed

    Svedäng, Henrik; Hornborg, Sara

    2017-08-01

    Understanding how combinations of fishing effort and selectivity affect productivity is central to fisheries research. We investigate the roles of fishing regulation in comparison with ecosystem status for Baltic Sea cod stock productivity, growth performance, and population stability. This case study is interesting because three cod populations with different exploitation patterns and stock status are located in three adjacent but partially, ecologically different areas. In assessing stock status, growth, and productivity, we use survey information and rather basic stock parameters without relying on age readings. Because there is an urgent interest of better understanding of the current development of the Eastern Baltic cod stock, we argue that our approach represents partly a novel way of interpreting monitoring information together with catch data in a simplified yet more informative way. Our study reports how the Eastern and Western Baltic cod have gone toward more truncated size structures between 1991 and 2016, in particular for the Eastern Baltic cod, whereas the Öresund cod show no trend. We suggest that selective fishing may disrupt fish population dynamic stability and that lower natural productivity might amplify the effects of selective fishing. In support of earlier findings on a density-dependent growth of Eastern Baltic cod, management is advised to acknowledge that sustainable exploitation levels for Eastern Baltic cod are much more limited than perceived in regular assessments. Of more general importance, our results emphasize the need to embrace a more realistic view on what ecosystems can produce regarding tractable fish biomass to facilitate a more ecosystem-based fisheries management.

  11. Evolution of movement rate increases the effectiveness of marine reserves for the conservation of pelagic fishes.

    PubMed

    Mee, Jonathan A; Otto, Sarah P; Pauly, Daniel

    2017-06-01

    Current debates about the efficacy of no-take marine reserves (MR) in protecting large pelagic fish such as tuna and sharks have usually not considered the evolutionary dimension of this issue, which emerges because the propensity to swim away from a given place, like any other biological trait, will probably vary in a heritable fashion among individuals. Here, based on spatially explicit simulations, we investigated whether selection to remain in MRs to avoid higher fishing mortality can lead to the evolution of more philopatric fish. Our simulations, which covered a range of life histories among tuna species (skipjack tuna vs. Atlantic bluefin tuna) and shark species (great white sharks vs. spiny dogfish), suggested that MRs were most effective at maintaining viable population sizes when movement distances were lowest. Decreased movement rate evolved following the establishment of marine reserves, and this evolution occurred more rapidly with higher fishing pressure. Evolutionary reductions in movement rate led to increases in within-reserve population sizes over the course of the 50 years following MR establishment, although this varied among life histories, with skipjack responding fastest and great white sharks slowest. Our results suggest the evolution of decreased movement can augment the efficacy of marine reserves, especially for species, such as skipjack tuna, with relatively short generation times. Even when movement rates did not evolve substantially over 50 years (e.g., given long generation times or little heritable variation), marine reserves were an effective tool for the conservation of fish populations when mean movement rates were low or MRs were large.

  12. Complex small pelagic fish population patterns arising from individual behavioral responses to their environment

    NASA Astrophysics Data System (ADS)

    Brochier, Timothée; Auger, Pierre-Amaël; Pecquerie, Laure; Machu, Eric; Capet, Xavier; Thiaw, Modou; Mbaye, Baye Cheikh; Braham, Cheikh-Baye; Ettahiri, Omar; Charouki, Najib; Sène, Ousseynou Ndaw; Werner, Francisco; Brehmer, Patrice

    2018-05-01

    Small pelagic fish (SPF) species are heavily exploited in eastern boundary upwelling systems (EBUS) as their transformation products are increasingly used in the world's food chain. Management relies on regular monitoring, but there is a lack of robust theories for the emergence of the populations' traits and their evolution in highly variable environments. This work aims to address existing knowledge gaps by combining physical and biogeochemical modelling with an individual life-cycle based model applied to round sardinella (Sardinella aurita) off northwest Africa, a key species for regional food security. Our approach focused on the processes responsible for seasonal migrations, spatio-temporal size-structure, and interannual biomass fluctuations. Emergence of preferred habitat resulted from interactions between natal homing behavior and environmental variability that impacts early life stages. Exploration of the environment by the fishes was determined by swimming capabilities, mesoscale to regional habitat structure, and horizontal currents. Fish spatio-temporal abundance variability emerged from a complex combination of distinct life-history traits. An alongshore gradient in fish size distributions is reported and validated by in situ measurements. New insights into population structure are provided, within an area where the species is abundant year-round (Mauritania) and with latitudinal migrations of variable (300-1200 km) amplitude. Interannual biomass fluctuations were linked to modulations of fish recruitment over the Sahara Bank driven by variability in alongshore current intensity. The identified processes constitute an analytical framework that can be implemented in other EBUS and used to explore impacts of regional climate change on SPF.

  13. [New view on the population genetic structure of marine fish].

    PubMed

    Salmenkova, E A

    2011-11-01

    The view on homogeneous population genetic structure in many marine fish with high mobility has changed significantly during the last ten years. Molecular genetic population studies over the whole ranges of such species as Atlantic herring and Atlantic cod showed a complex picture of spatial differentiation both on the macrogeographic and, in many areas, on the microgeographic scale, although the differentiation for neutral molecular markers was low. It was established that the migration activity of such fish is constrained in many areas of the species range by hydrological and physicochemical transition zones (environmental gradients), as well as gyres in the spawning regions. Natal homing was recorded in a number of marine fish species. Existing in marine fish constraints of gene migration and a very high variance of reproductive success determine a significantly smaller proportion of effective reproductive size of their populations in the total population size, which generates more complex abundance dynamics than assumed earlier. The various constraints on gene migration and natal homing in marine fish promote the formation of local adaptations at ecologically important phenotypic traits. Effects of selection underlying adaptations are actively investigated in marine fish on the genomic level, using approaches of population genomics. The knowledge of adaptive intraspecific structure enables understanding the ecological and evolutionary processes, that influence biodiversity and providing spatial frames for conservation of genetic resources under commercial exploitation. Contemporary views on the population genetic and adaptive structures or biocomplexity in marine fish support and develop the main principles of the conception of systemic organization of the species and its regional populations, which were advanced by Yu.P. Altukhov and Yu.G. Rychkov.

  14. Sex assignment of lake sturgeon (Acipenser fluvescens) based on plasma sex hormone and vitellogenin levels

    USGS Publications Warehouse

    Craig, J.M.; Papoulias, D.M.; Thomas, M.V.; Annis, M.L.; Boase, J.

    2009-01-01

    This study focused on identifying the sex of lake sturgeon by measuring the sex hormones estradiol and testosterone, and the phosphoprotein vitellogenin (Vtg) in blood plasma by radioimmunoassay and enzyme-linked immunosorbent assay, respectively, and evaluating these techniques as tools in lake sturgeon population management. Surveys of the St Clair River (SCR) lake sturgeon population have characterized it as rebounding by having steady or increasing recruitment since 1997. However, researchers have not been able to effectively determine the sex for most of the sturgeon they capture because few fish caught during surveys are releasing gametes. A total of 115 fish were sampled from May through June in 2004 and 2005 from the SCR, Michigan, USA. Of these, only four females and eight males were verified (i.e. they were releasing gametes at time of capture), resulting in very few fish with which to validate blood hormone and Vtg biomarkers of sex. Fifty-six percent of the fish were assigned a sex designation based on biomarker criteria. Correspondence between actual gonadal sex and biomarker-directed classification was good for the small subset of fish for which gonadal sex was definitively determined. Moreover, application of the steroid values in a predictive sex assignment model developed for white sturgeon misclassified only the same two fish that were misclassified with the steroid and Vtg biomarkers. The experimental results suggest a sex ratio of 1 : 2.7 (F:M), however more conclusive methods are needed to confirm this ratio because so few fish were available for sex validation. Of the 43 males, 14 were within the legal slot limit, 11 were smaller than 1067 mm total length (TL), and 18 were larger than 1270 mm TL. All 15 females were larger than 1270 mm TL, and thus protected by the slot limit criteria. Considering that lake sturgeon are threatened in Michigan, an advantage to using blood plasma assays was that fish were not harmed, and sample collection was quick, simple, and inexpensive. However, because a sufficiently large number of fish could not be validated for gonadal sex due to handling restrictions given the fish's protected status, assignment of sex is not based on a robust multi-variate model. An immediate alternative may be to use other non-invasive field methods (e.g. ultrasound, fiber-optic endoscope) to provide a more timely classification while establishing well-validated plasma hormone and Vtg-based predictive models for sex assignment of lake sturgeon. ?? 2009 Blackwell Verlag, Berlin.

  15. Population maintenance among tropical reef fishes: Inferences from small-island endemics

    PubMed Central

    Robertson, D. Ross

    2001-01-01

    To what extent do local populations of tropical reef fishes persist through the recruitment of pelagic larvae to their natal reef? Endemics from small, isolated islands can help answer that question by indicating whether special biological attributes are needed for long-term survival under enforced localization in high-risk situations. Taxonomically and biologically, the endemics from seven such islands are broadly representative of their regional faunas. As natal-site recruitment occurs among reef fishes in much less isolated situations, these characteristics of island endemics indicate that a wide range of reef fishes could have persistent self-sustaining local populations. Because small islands regularly support substantial reef fish faunas, regional systems of small reserves could preserve much of the diversity of these fishes. PMID:11331752

  16. An indigenous religious ritual selects for resistance to a toxicant in a livebearing fish.

    PubMed

    Tobler, M; Culumber, Z W; Plath, M; Winemiller, K O; Rosenthal, G G

    2011-04-23

    Human-induced environmental change can affect the evolutionary trajectory of populations. In Mexico, indigenous Zoque people annually introduce barbasco, a fish toxicant, into the Cueva del Azufre to harvest fish during a religious ceremony. Here, we investigated tolerance to barbasco in fish from sites exposed and unexposed to the ritual. We found that barbasco tolerance increases with body size and differs between the sexes. Furthermore, fish from sites exposed to the ceremony had a significantly higher tolerance. Consequently, the annual ceremony may not only affect population structure and gene flow among habitat types, but the increased tolerance in exposed fish may indicate adaptation to human cultural practices in a natural population on a very small spatial scale.

  17. An indigenous religious ritual selects for resistance to a toxicant in a livebearing fish

    PubMed Central

    Tobler, M.; Culumber, Z. W.; Plath, M.; Winemiller, K. O.; Rosenthal, G. G.

    2011-01-01

    Human-induced environmental change can affect the evolutionary trajectory of populations. In Mexico, indigenous Zoque people annually introduce barbasco, a fish toxicant, into the Cueva del Azufre to harvest fish during a religious ceremony. Here, we investigated tolerance to barbasco in fish from sites exposed and unexposed to the ritual. We found that barbasco tolerance increases with body size and differs between the sexes. Furthermore, fish from sites exposed to the ceremony had a significantly higher tolerance. Consequently, the annual ceremony may not only affect population structure and gene flow among habitat types, but the increased tolerance in exposed fish may indicate adaptation to human cultural practices in a natural population on a very small spatial scale. PMID:20826470

  18. A physiological perspective on fisheries-induced evolution.

    PubMed

    Hollins, Jack; Thambithurai, Davide; Koeck, Barbara; Crespel, Amelie; Bailey, David M; Cooke, Steven J; Lindström, Jan; Parsons, Kevin J; Killen, Shaun S

    2018-06-01

    There is increasing evidence that intense fishing pressure is not only depleting fish stocks but also causing evolutionary changes to fish populations. In particular, body size and fecundity in wild fish populations may be altered in response to the high and often size-selective mortality exerted by fisheries. While these effects can have serious consequences for the viability of fish populations, there are also a range of traits not directly related to body size which could also affect susceptibility to capture by fishing gears-and therefore fisheries-induced evolution (FIE)-but which have to date been ignored. For example, overlooked within the context of FIE is the likelihood that variation in physiological traits could make some individuals within species more vulnerable to capture. Specifically, traits related to energy balance (e.g., metabolic rate), swimming performance (e.g., aerobic scope), neuroendocrinology (e.g., stress responsiveness) and sensory physiology (e.g., visual acuity) are especially likely to influence vulnerability to capture through a variety of mechanisms. Selection on these traits could produce major shifts in the physiological traits within populations in response to fishing pressure that are yet to be considered but which could influence population resource requirements, resilience, species' distributions and responses to environmental change.

  19. Restoring depleted coral-reef fish populations through recruitment enhancement: a proof of concept.

    PubMed

    Heenan, A; Simpson, S D; Meekan, M G; Healy, S D; Braithwaite, V A

    2009-11-01

    To determine whether enhancing the survival of new recruits is a sensible target for the restorative management of depleted coral-reef fish populations, settlement-stage ambon damsel fish Pomacentrus amboinensis were captured, tagged and then either released immediately onto small artificial reefs or held in aquaria for 1 week prior to release. Holding conditions were varied to determine whether they affected survival of fish: half the fish were held in bare tanks (non-enriched) and the other half in tanks containing coral and sand (enriched). Holding fish for this short period had a significantly positive effect on survivorship relative to the settlement-stage treatment group that were released immediately. The enrichment of holding conditions made no appreciable difference on the survival of fish once released onto the reef. It did, however, have a positive effect on the survival of fish while in captivity, thus supporting the case for the provision of simple environmental enrichment in fish husbandry. Collecting and holding settlement-stage fish for at least a week before release appear to increase the short-term survival of released fish; whether it is an effective method for longer-term enhancement of locally depleted coral-reef fish populations will require further study.

  20. Shoreline development and degradation of coastal fish reproduction habitats.

    PubMed

    Sundblad, Göran; Bergström, Ulf

    2014-12-01

    Coastal development has severely affected habitats and biodiversity during the last century, but quantitative estimates of the impacts are usually lacking. We utilize predictive habitat modeling and mapping of human pressures to estimate the cumulative long-term effects of coastal development in relation to fish habitats. Based on aerial photographs since the 1960s, shoreline development rates were estimated in the Stockholm archipelago in the Baltic Sea. By combining shoreline development rates with spatial predictions of fish reproduction habitats, we estimated annual habitat degradation rates for three of the most common coastal fish species, northern pike (Esox lucius), Eurasian perch (Perca fluviatilis) and roach (Rutilus rutilus). The results showed that shoreline constructions were concentrated to the reproduction habitats of these species. The estimated degradation rates, where a degraded habitat was defined as having ≥3 constructions per 100 m shoreline, were on average 0.5 % of available habitats per year and about 1 % in areas close to larger population centers. Approximately 40 % of available habitats were already degraded in 2005. These results provide an example of how many small construction projects over time may have a vast impact on coastal fish populations.

  1. Population connectivity and genetic structure of burbot (Lota lota) populations in the Wind River Basin, Wyoming

    USGS Publications Warehouse

    Underwood, Zachary E.; Mandeville, Elizabeth G.; Walters, Annika W.

    2016-01-01

    Burbot (Lota lota) occur in the Wind River Basin in central Wyoming, USA, at the southwestern extreme of the species’ native range in North America. The most stable and successful of these populations occur in six glacially carved mountain lakes on three different tributary streams and one large main stem impoundment (Boysen Reservoir) downstream from the tributary populations. Burbot are rarely found in connecting streams and rivers, which are relatively small and high gradient, with a variety of potential barriers to upstream movement of fish. We used high-throughput genomic sequence data for 11,197 SNPs to characterize the genetic diversity, population structure, and connectivity among burbot populations on the Wind River system. Fish from Boysen Reservoir and lower basin tributary populations were genetically differentiated from those in the upper basin tributary populations. In addition, fish within the same tributary streams fell within the same genetic clusters, suggesting there is movement of fish between lakes on the same tributaries but that populations within each tributary system are isolated and genetically distinct from other populations. Observed genetic differentiation corresponded to natural and anthropogenic barriers, highlighting the importance of barriers to fish population connectivity and gene flow in human-altered linked lake-stream habitats.

  2. Status of native stream fishes within selected protected areas of Niobrara River in western Nebraska

    USGS Publications Warehouse

    Spurgeon, Jonathan J.; Stasiak, Richard H.; Cunningham, George R.; Pope, Kevin L.; Pegg, Mark A.

    2014-01-01

    Lotic systems within the Great Plains are characterized by highly fluctuating conditions through both space and time. Fishes inhabiting these systems have adopted specific life-history strategies to survive in such environments; however, anthropogenic disturbance to prairie streams has resulted in declines and extirpation of many native stream fishes. Terrestrial protected areas (i.e., parks and reserves) are designated to support native flora and fauna and, it is assumed, to provide protection to native fishes. We assessed the presence and relative abundance of stream fish populations within protected areas along the Niobrara River in western Nebraska based on data collected during 1979, 1989, 2008, and 2011. The spatial extent of protection, landscape changes resulting in degraded physiochemical parameters, and introduced species may reduce the effectiveness of these terrestrial protected areas in protecting native fishes in Great Plains stream environments.

  3. Associations of prenatal mercury exposure from maternal fish consumption and polyunsaturated fatty acids with child neurodevelopment: a prospective cohort study in Italy.

    PubMed

    Valent, Francesca; Mariuz, Marika; Bin, Maura; Little, D'Anna; Mazej, Darja; Tognin, Veronica; Tratnik, Janja; McAfee, Alison J; Mulhern, Maria S; Parpinel, Maria; Carrozzi, Marco; Horvat, Milena; Tamburlini, Giorgio; Barbone, Fabio

    2013-09-05

    Mercury is a neurotoxin, and limited prenatal exposure to it can affect long-term child neurodevelopment. However, results of epidemiologic studies of such exposure have been inconsistent. We examined the association of prenatal mercury exposure from maternal fish consumption with child neurodevelopment in northern Italy. A population-based cohort of 606 children and their mothers was studied from pregnancy to age 18 months. Mercury levels were measured in maternal hair and blood during pregnancy and in umbilical cord blood and breast milk. Levels of polyunsaturated fatty acids (PUFAs) were measured in maternal serum. Maternal and child intakes of fish were assessed by using a food frequency questionnaire. The Bayley Scales of Infant and Toddler Development, Third Edition (BSID-III) was used to evaluate child neurodevelopment. Multivariate linear regression was used to examine the association of mercury exposure with BSID-III scores, after controlling for maternal fish intake, PUFAs during pregnancy, and several other confounders. Mean weekly fish intake during pregnancy was less than 2 servings. Mercury concentrations in biological samples were low (mean, 1061 ng/g in hair) and moderately correlated with fish intake, particularly of carnivorous species. Maternal ω-3 PUFA concentrations were poorly correlated with fish intake. Maternal intelligence quotient (IQ) and child intake of fish were significantly associated with neurodevelopment scores. In multivariate models, the level of Hg exposure was not associated with neurodevelopmental performance at 18 months. In this Italian population, neurodevelopment at 18 months was associated with child intake of fresh fish and maternal IQ rather than with mercury exposure. The expected beneficial effect of maternal fish intake (from maternal ω-3 PUFAs) was not found.

  4. Associations of Prenatal Mercury Exposure From Maternal Fish Consumption and Polyunsaturated Fatty Acids With Child Neurodevelopment: A Prospective Cohort Study in Italy

    PubMed Central

    Valent, Francesca; Mariuz, Marika; Bin, Maura; Little, D’Anna; Mazej, Darja; Tognin, Veronica; Tratnik, Janja; McAfee, Alison J; Mulhern, Maria S; Parpinel, Maria; Carrozzi, Marco; Horvat, Milena; Tamburlini, Giorgio; Barbone, Fabio

    2013-01-01

    Background Mercury is a neurotoxin, and limited prenatal exposure to it can affect long-term child neurodevelopment. However, results of epidemiologic studies of such exposure have been inconsistent. We examined the association of prenatal mercury exposure from maternal fish consumption with child neurodevelopment in northern Italy. Methods A population-based cohort of 606 children and their mothers was studied from pregnancy to age 18 months. Mercury levels were measured in maternal hair and blood during pregnancy and in umbilical cord blood and breast milk. Levels of polyunsaturated fatty acids (PUFAs) were measured in maternal serum. Maternal and child intakes of fish were assessed by using a food frequency questionnaire. The Bayley Scales of Infant and Toddler Development, Third Edition (BSID-III) was used to evaluate child neurodevelopment. Multivariate linear regression was used to examine the association of mercury exposure with BSID-III scores, after controlling for maternal fish intake, PUFAs during pregnancy, and several other confounders. Results Mean weekly fish intake during pregnancy was less than 2 servings. Mercury concentrations in biological samples were low (mean, 1061 ng/g in hair) and moderately correlated with fish intake, particularly of carnivorous species. Maternal ω-3 PUFA concentrations were poorly correlated with fish intake. Maternal intelligence quotient (IQ) and child intake of fish were significantly associated with neurodevelopment scores. In multivariate models, the level of Hg exposure was not associated with neurodevelopmental performance at 18 months. Conclusions In this Italian population, neurodevelopment at 18 months was associated with child intake of fresh fish and maternal IQ rather than with mercury exposure. The expected beneficial effect of maternal fish intake (from maternal ω-3 PUFAs) was not found. PMID:23933621

  5. Natural and anthropogenic influences on the distribution of the threatened Neosho madtom in a midwestern warmwater stream

    USGS Publications Warehouse

    Wildhaber, M.L.; Allert, A.L.; Schmitt, C.J.; Tabor, V.M.; Mulhern, D.; Powell, K.L.; Sowa, S.P.

    2000-01-01

    We attempted to discern the contributions of physical habitat, water chemistry, nutrients, and contaminants from historic lead-zinc mining activities on the riffle-dwelling benthic fish community of the Spring River, a midwestern warmwater stream that originates in Missouri and flows into Kansas and Oklahoma. The Spring River has a fish community that includes the Neosho madtom Noturus placidus, a species federally listed as threatened. Although anthropogenic factors such as contaminants limited populations and densities of fishes, an integrated assessment of natural and anthropogenic factors was necessary to effectively estimate the influence of the latter. Fish populations in the Spring River, especially Neosho madtoms, seem to be limited by the presence of cadmium, lead, and zinc in water and in benthic invertebrate food sources and by physical habitat. The population density and community structure of fish in the Spring River also seem to be related to water chemistry and nutrients. Concurrently, diminished food availability may be limiting fish populations at some sites where Neosho madtoms are not found. Many of the natural factors that may be limiting Neosho madtom and other riffle-dwelling fish populations in the Spring River probably are characteristic of the physiographic region drained by the upper reach and many of the tributaries of the Spring River. Our results indicate that competition between the Neosho madtom and other species within the riffle-dwelling fish community is an unlikely cause of Neosho madtom population limitation in the Spring River.

  6. Effect of small versus large clusters of fish school on the yield of a purse-seine small pelagic fishery including a marine protected area.

    PubMed

    Hieu, Nguyen Trong; Brochier, Timothée; Tri, Nguyen-Huu; Auger, Pierre; Brehmer, Patrice

    2014-09-01

    We consider a fishery model with two sites: (1) a marine protected area (MPA) where fishing is prohibited and (2) an area where the fish population is harvested. We assume that fish can migrate from MPA to fishing area at a very fast time scale and fish spatial organisation can change from small to large clusters of school at a fast time scale. The growth of the fish population and the catch are assumed to occur at a slow time scale. The complete model is a system of five ordinary differential equations with three time scales. We take advantage of the time scales using aggregation of variables methods to derive a reduced model governing the total fish density and fishing effort at the slow time scale. We analyze this aggregated model and show that under some conditions, there exists an equilibrium corresponding to a sustainable fishery. Our results suggest that in small pelagic fisheries the yield is maximum for a fish population distributed among both small and large clusters of school.

  7. Intraguild Predation Dynamics in a Lake Ecosystem Based on a Coupled Hydrodynamic-Ecological Model: The Example of Lake Kinneret (Israel).

    PubMed

    Makler-Pick, Vardit; Hipsey, Matthew R; Zohary, Tamar; Carmel, Yohay; Gal, Gideon

    2017-03-29

    The food web of Lake Kinneret contains intraguild predation (IGP). Predatory invertebrates and planktivorous fish both feed on herbivorous zooplankton, while the planktivorous fish also feed on the predatory invertebrates. In this study, a complex mechanistic hydrodynamic-ecological model, coupled to a bioenergetics-based fish population model (DYCD-FISH), was employed with the aim of revealing IGP dynamics. The results indicate that the predation pressure of predatory zooplankton on herbivorous zooplankton varies widely, depending on the season. At the time of its annual peak, it is 10-20 times higher than the fish predation pressure. When the number of fish was significantly higher, as occurs in the lake after atypical meteorological years, the effect was a shift from a bottom-up controlled ecosystem, to the top-down control of planktivorous fish and a significant reduction of predatory and herbivorous zooplankton biomass. Yet, seasonally, the decrease in predatory-zooplankton biomass was followed by a decrease in their predation pressure on herbivorous zooplankton, leading to an increase of herbivorous zooplankton biomass to an extent similar to the base level. The analysis demonstrates the emergence of non-equilibrium IGP dynamics due to intra-annual and inter-annual changes in the physico-chemical characteristics of the lake, and suggests that IGP dynamics should be considered in food web models in order to more accurately capture mass transfer and trophic interactions.

  8. 3D tooth microwear texture analysis in fishes as a test of dietary hypotheses of durophagy

    NASA Astrophysics Data System (ADS)

    Purnell, Mark A.; Darras, Laurent P. G.

    2016-03-01

    An understanding of how extinct animals functioned underpins our understanding of past evolutionary events, including adaptive radiations, and the role of functional innovation and adaptation as drivers of both micro- and macroevolution. Yet analysis of function in extinct animals is fraught with difficulty. Hypotheses that interpret molariform teeth in fishes as evidence of durophagous (shell-crushing) diets provide a good example of the particular problems inherent in the methods of functional morphology. This is because the assumed close coupling of form and function upon which the approach is based is weakened by, among other things, behavioural flexibility and the absence of a clear one to one relationship between structures and functions. Here we show that ISO 25178-2 standard parameters for surface texture, derived from analysis of worn surfaces of molariform teeth of fishes, vary significantly between species that differ in the amount of hard-shelled prey they consume. Two populations of the Sheepshead Seabream (Archosargus probatocephalus) were studied. This fish is not a dietary specialist, and one of the populations is known to consume more vegetation and less hard-shelled prey than the other; this is reflected in significant differences in their microwear textures. The Archosargus populations differ significantly in their microwear from the specialist shell-crusher Anarhichas lupus (the Atlantic Wolffish). Multivariate analysis of these three groups of fishes lends further support to the relationship between diet and tooth microwear, and provides robust validation of the approach. Application of the multivariate models derived from microwear texture in Archosargus and Anarhichas to a third fish species—the cichlid Astatoreochromis alluaudi—successfully separates wild caught fish that ate hard-shelled prey from lab-raised fish that did not. This cross-taxon validation demonstrates that quantitative analysis of tooth microwear texture can differentiate between fishes with different diets even when they range widely in size, habitat, and in the structure of their trophic apparatus. The approach thus has great potential as an additional tool for dietary analysis in extant fishes, and for testing dietary hypotheses in ancient and extinct species.

  9. Fish population and habitat analysis in Buck Creek, Washington, prior to recolonization by anadromous salmonids after the removal of Condit Dam

    USGS Publications Warehouse

    Allen, M. Brady; Burkhardt, Jeanette; Munz, Carrie; Connolly, Patrick J.

    2012-01-01

    We assessed the physical and biotic conditions in the part of Buck Creek, Washington, potentially accessible to anadromous fishes. This creek is a major tributary to the White Salmon River upstream of Condit Dam, which was breached in October 2011. Habitat and fish populations were characterized in four stream reaches. Reach breaks were based on stream gradient, water withdrawals, and fish barriers. Buck Creek generally was confined, with a single straight channel and low sinuosity. Boulders and cobble were the dominant stream substrate, with limited gravel available for spawning. Large-cobble riffles were 83 percent of the available fish habitat. Pools, comprising 15 percent of the surface area, mostly were formed by bedrock with little instream cover and low complexity. Instream wood averaged 6—10 pieces per 100 meters, 80 percent of which was less than 50 centimeters in diameter. Water temperature in Buck Creek rarely exceeded 16 degrees Celsius and did so for only 1 day at river kilometer (rkm) 3 and 11 days at rkm 0.2 in late July and early August 2009. The maximum temperature recorded was 17.2 degrees Celsius at rkm 0.2 on August 2, 2009. Minimum summer discharge in Buck Creek was 3.3 cubic feet per second downstream of an irrigation diversion (rkm 3.1) and 7.7 cubic feet per second at its confluence with the White Salmon River. Rainbow trout (Oncorhynchus mykiss) was the dominant fish species in all reaches. The abundance of age-1 or older rainbow trout was similar between reaches. However, in 2009 and 2010, the greatest abundance of age-0 rainbow trout (8 fish per meter) was in the most downstream reach. These analyses in Buck Creek are important for understanding the factors that may limit fish abundance and productivity, and they will help identify and prioritize potential restoration actions. The data collected constitute baseline information of pre-dam removal conditions that will allow assessment of changes in fish populations now that Condit Dam has been removed and anadromous fish have an opportunity to recolonize Buck Creek.

  10. Climate change and control of the southeastern Bering Sea pelagic ecosystem

    NASA Astrophysics Data System (ADS)

    Hunt, George L., Jr.; Stabeno, Phyllis; Walters, Gary; Sinclair, Elizabeth; Brodeur, Richard D.; Napp, Jeffery M.; Bond, Nicholas A.

    2002-12-01

    We propose a new hypothesis, the Oscillating Control Hypothesis (OCH), which predicts that pelagic ecosystem function in the southeastern Bering Sea will alternate between primarily bottom-up control in cold regimes and primarily top-down control in warm regimes. The timing of spring primary production is determined predominately by the timing of ice retreat. Late ice retreat (late March or later) leads to an early, ice-associated bloom in cold water (e.g., 1995, 1997, 1999), whereas no ice, or early ice retreat before mid-March, leads to an open-water bloom in May or June in warm water (e.g., 1996, 1998, 2000). Zooplankton populations are not closely coupled to the spring bloom, but are sensitive to water temperature. In years when the spring bloom occurs in cold water, low temperatures limit the production of zooplankton, the survival of larval/juvenile fish, and their recruitment into the populations of species of large piscivorous fish, such as walleye pollock ( Theragra chalcogramma), Pacific cod ( Gadus macrocephalus) and arrowtooth flounder ( Atheresthes stomias). When continued over decadal scales, this will lead to bottom-up limitation and a decreased biomass of piscivorous fish. Alternatively, in periods when the bloom occurs in warm water, zooplankton populations should grow rapidly, providing plentiful prey for larval and juvenile fish. Abundant zooplankton will support strong recruitment of fish and will lead to abundant predatory fish that control forage fish, including, in the case of pollock, their own juveniles. Piscivorous marine birds and pinnipeds may achieve higher production of young and survival in cold regimes, when there is less competition from large piscivorous fish for cold-water forage fish such as capelin ( Mallotus villosus). Piscivorous seabirds and pinnipeds also may be expected to have high productivity in periods of transition from cold regimes to warm regimes, when young of large predatory species of fish are numerous enough to provide forage. The OCH predicts that the ability of large predatory fish populations to sustain fishing pressure will vary between warm and cold regimes. The OCH points to the importance of the timing of ice retreat and water temperatures during the spring bloom for the productivity of zooplankton, and the degree and direction of coupling between zooplankton and forage fish. Forage fish (e.g., juvenile pollock, capelin, Pacific herring [ Clupea pallasii]) are key prey for adult pollock and other apex predators. In the southeastern Bering Sea, important changes in the biota since the mid-1970s include a marked increase in the biomass of large piscivorous fish and a concurrent decline in the biomass of forage fish, including age-1 walleye pollock, particularly over the southern portion of the shelf. Populations of northern fur seals ( Callorhinus ursinus) and seabirds such as kittiwakes ( Rissa spp.) at the Pribilof Islands have declined, most probably in response to a diminished prey base. The available evidence suggests that these changes are unlikely the result of a decrease in total annual new primary production, though the possibility of reduced post-bloom production during summer remains. An ecosystem approach to management of the Bering Sea and its fisheries is of great importance if all of the ecosystem components valued by society are to thrive. Cognizance of how climate regimes may alter relationships within this ecosystem will facilitate reaching that goal.

  11. The Camera-Based Assessment Survey System (C-BASS): A towed camera platform for reef fish abundance surveys and benthic habitat characterization in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Lembke, Chad; Grasty, Sarah; Silverman, Alex; Broadbent, Heather; Butcher, Steven; Murawski, Steven

    2017-12-01

    An ongoing challenge for fisheries management is to provide cost-effective and timely estimates of habitat stratified fish densities. Traditional approaches use modified commercial fishing gear (such as trawls and baited hooks) that have biases in species selectivity and may also be inappropriate for deployment in some habitat types. Underwater visual and optical approaches offer the promise of more precise and less biased assessments of relative fish abundance, as well as direct estimates of absolute fish abundance. A number of video-based approaches have been developed and the technology for data acquisition, calibration, and synthesis has been developing rapidly. Beginning in 2012, our group of engineers and researchers at the University of South Florida has been working towards the goal of completing large scale, video-based surveys in the eastern Gulf of Mexico. This paper discusses design considerations and development of a towed camera system for collection of video-based data on commercially and recreationally important reef fishes and benthic habitat on the West Florida Shelf. Factors considered during development included potential habitat types to be assessed, sea-floor bathymetry, vessel support requirements, personnel requirements, and cost-effectiveness of system components. This regional-specific effort has resulted in a towed platform called the Camera-Based Assessment Survey System, or C-BASS, which has proven capable of surveying tens of kilometers of video transects per day and has the ability to cost-effective population estimates of reef fishes and coincident benthic habitat classification.

  12. Phenological and distributional shifts in ichthyoplankton associated with recent warming in the northeast Pacific Ocean.

    PubMed

    Auth, Toby D; Daly, Elizabeth A; Brodeur, Richard D; Fisher, Jennifer L

    2018-01-01

    Understanding changes in the migratory and reproductive phenology of fish stocks in relation to climate change is critical for accurate ecosystem-based fisheries management. Relocation and changes in timing of reproduction can have dramatic effects upon the success of fish populations and throughout the food web. During anomalously warm conditions (1-4°C above normal) in the northeast Pacific Ocean during 2015-2016, we documented shifts in timing and spawning location of several pelagic fish stocks based on larval fish samples. Total larval concentrations in the northern California Current (NCC) during winter (January-March) 2015 and 2016 were the highest observed since annual collections first occurred in 1998, primarily due to increased abundances of Engraulis mordax (northern anchovy) and Sardinops sagax (Pacific sardine) larvae, which are normally summer spawning species in this region. Sardinops sagax and Merluccius productus (Pacific hake) exhibited an unprecedented early and northward spawning expansion during 2015-16. In addition, spawning duration was greatly increased for E. mordax, as the presence of larvae was observed throughout the majority of 2015-16, indicating prolonged and nearly continuous spawning of adults throughout the warm period. Larvae from all three of these species have never before been collected in the NCC as early in the year. In addition, other southern species were collected in the NCC during this period. This suggests that the spawning phenology and distribution of several ecologically and commercially important fish species dramatically and rapidly changed in response to the warming conditions occurring in 2014-2016, and could be an indication of future conditions under projected climate change. Changes in spawning timing and poleward migration of fish populations due to warmer ocean conditions or global climate change will negatively impact areas that were historically dependent on these fish, and change the food web structure of the areas that the fish move into with unforeseen consequences. © 2017 John Wiley & Sons Ltd.

  13. Applications of very high-resolution imagery in the study and conservation of large predators in the Southern Ocean.

    PubMed

    Larue, Michelle A; Knight, Joseph

    2014-12-01

    The Southern Ocean is one of the most rapidly changing ecosystems on the planet due to the effects of climate change and commercial fishing for ecologically important krill and fish. Because sea ice loss is expected to be accompanied by declines in krill and fish predators, decoupling the effects of climate and anthropogenic changes on these predator populations is crucial for ecosystem-based management of the Southern Ocean. We reviewed research published from 2007 to 2014 that incorporated very high-resolution satellite imagery to assess distribution, abundance, and effects of climate and other anthropogenic changes on populations of predators in polar regions. Very high-resolution imagery has been used to study 7 species of polar animals in 13 papers, many of which provide methods through which further research can be conducted. Use of very high-resolution imagery in the Southern Ocean can provide a broader understanding of climate and anthropogenic forces on populations and inform management and conservation recommendations. We recommend that conservation biologists continue to integrate high-resolution remote sensing into broad-scale biodiversity and population studies in remote areas, where it can provide much needed detail. © 2014 Society for Conservation Biology.

  14. Complex postglacial recolonization inferred from population genetic structure of mottled sculpin Cottus bairdii in tributaries of eastern Lake Michigan, U.S.A.

    PubMed

    Homola, J J; Ruetz, C R; Kohler, S L; Thum, R A

    2016-11-01

    This study used analyses of the genetic structure of a non-game fish species, the mottled sculpin Cottus bairdii to hypothesize probable recolonization routes used by cottids and possibly other Laurentian Great Lakes fishes following glacial recession. Based on samples from 16 small streams in five major Lake Michigan, U.S.A., tributary basins, significant interpopulation differentiation was documented (overall F ST = 0·235). Differentiation was complex, however, with unexpectedly high genetic similarity among basins as well as occasionally strong differentiation within basins, despite relatively close geographic proximity of populations. Genetic dissimilarities were identified between eastern and western populations within river basins, with similarities existing between eastern and western populations across basins. Given such patterns, recolonization is hypothesized to have occurred on three occasions from more than one glacial refugium, with a secondary vicariant event resulting from reduction in the water level of ancestral Lake Michigan. By studying the phylogeography of a small, non-game fish species, this study provides insight into recolonization dynamics of the region that could be difficult to infer from game species that are often broadly dispersed by humans. © 2016 The Fisheries Society of the British Isles.

  15. Assessing trade-offs to inform ecosystem-based fisheries management of forage fish.

    PubMed

    Shelton, Andrew Olaf; Samhouri, Jameal F; Stier, Adrian C; Levin, Philip S

    2014-11-19

    Twenty-first century conservation is centered on negotiating trade-offs between the diverse needs of people and the needs of the other species constituting coupled human-natural ecosystems. Marine forage fishes, such as sardines, anchovies, and herring, are a nexus for such trade-offs because they are both central nodes in marine food webs and targeted by fisheries. An important example is Pacific herring, Clupea pallisii in the Northeast Pacific. Herring populations are subject to two distinct fisheries: one that harvests adults and one that harvests spawned eggs. We develop stochastic, age-structured models to assess the interaction between fisheries, herring populations, and the persistence of predators reliant on herring populations. We show that egg- and adult-fishing have asymmetric effects on herring population dynamics--herring stocks can withstand higher levels of egg harvest before becoming depleted. Second, ecosystem thresholds proposed to ensure the persistence of herring predators do not necessarily pose more stringent constraints on fisheries than conventional, fishery driven harvest guidelines. Our approach provides a general template to evaluate ecosystem trade-offs between stage-specific harvest practices in relation to environmental variability, the risk of fishery closures, and the risk of exceeding ecosystem thresholds intended to ensure conservation goals are met.

  16. Hankin and Reeves' approach to estimating fish abundance in small streams: Limitations and alternatives

    USGS Publications Warehouse

    Thompson, W.L.

    2003-01-01

    Hankin and Reeves' (1988) approach to estimating fish abundance in small streams has been applied in stream fish studies across North America. However, their population estimator relies on two key assumptions: (1) removal estimates are equal to the true numbers of fish, and (2) removal estimates are highly correlated with snorkel counts within a subset of sampled stream units. Violations of these assumptions may produce suspect results. To determine possible sources of the assumption violations, I used data on the abundance of steelhead Oncorhynchus mykiss from Hankin and Reeves' (1988) in a simulation composed of 50,000 repeated, stratified systematic random samples from a spatially clustered distribution. The simulation was used to investigate effects of a range of removal estimates, from 75% to 100% of true fish abundance, on overall stream fish population estimates. The effects of various categories of removal-estimates-to-snorkel-count correlation levels (r = 0.75-1.0) on fish population estimates were also explored. Simulation results indicated that Hankin and Reeves' approach may produce poor results unless removal estimates exceed at least 85% of the true number of fish within sampled units and unless correlations between removal estimates and snorkel counts are at least 0.90. A potential modification to Hankin and Reeves' approach is the inclusion of environmental covariates that affect detection rates of fish into the removal model or other mark-recapture model. A potential alternative approach is to use snorkeling combined with line transect sampling to estimate fish densities within stream units. As with any method of population estimation, a pilot study should be conducted to evaluate its usefulness, which requires a known (or nearly so) population of fish to serve as a benchmark for evaluating bias and precision of estimators.

  17. ASSESSING THE IMPORTANCE OF THERMAL REFUGE ...

    EPA Pesticide Factsheets

    Salmon populations require river networks that provide water temperature regimes sufficient to support a diversity of salmonid life histories across space and time. The importance of cold water refuges for migrating adult salmon and steelhead may seem intuitive, and refuges are clearly used by fish during warm water episodes. But quantifying the value of both small and large scale thermal features to salmon populations has been challenging due to the difficulty of mapping thermal regimes at sufficient spatial and temporal resolutions, and integrating thermal regimes into population models. We attempt to address these challenges by using newly-available datasets and modeling approaches to link thermal regimes to salmon populations across scales. We discuss the challenges and opportunities to simulating fish behaviors and linking exposures to migratory and reproductive fitness. In this talk and companion poster, we describe an individual-based modeling approach for assessing sufficiency of thermal refuges for migrating salmon and steelhead in the Columbia River. Many rivers and streams in the Pacific Northwest are currently listed as impaired under the Clean Water Act as a result of high summer water temperatures. Adverse effects of warm waters include impacts to salmon and steelhead populations that may already be stressed by habitat alteration, disease, predation, and fishing pressures. Much effort is being expended to improve conditions for salmon and steelhea

  18. Random and systematic sampling error when hooking fish to monitor skin fluke (Benedenia seriolae) and gill fluke (Zeuxapta seriolae) burden in Australian farmed yellowtail kingfish (Seriola lalandi).

    PubMed

    Fensham, J R; Bubner, E; D'Antignana, T; Landos, M; Caraguel, C G B

    2018-05-01

    The Australian farmed yellowtail kingfish (Seriola lalandi, YTK) industry monitor skin fluke (Benedenia seriolae) and gill fluke (Zeuxapta seriolae) burden by pooling the fluke count of 10 hooked YTK. The random and systematic error of this sampling strategy was evaluated to assess potential impact on treatment decisions. Fluke abundance (fluke count per fish) in a study cage (estimated 30,502 fish) was assessed five times using the current sampling protocol and its repeatability was estimated the repeatability coefficient (CR) and the coefficient of variation (CV). Individual body weight, fork length, fluke abundance, prevalence, intensity (fluke count per infested fish) and density (fluke count per Kg of fish) were compared between 100 hooked and 100 seined YTK (assumed representative of the entire population) to estimate potential selection bias. Depending on the fluke species and age category, CR (expected difference in parasite count between 2 sampling iterations) ranged from 0.78 to 114 flukes per fish. Capturing YTK by hooking increased the selection of fish of a weight and length in the lowest 5th percentile of the cage (RR = 5.75, 95% CI: 2.06-16.03, P-value = 0.0001). These lower end YTK had on average an extra 31 juveniles and 6 adults Z. seriolae per Kg of fish and an extra 3 juvenile and 0.4 adult B. seriolae per Kg of fish, compared to the rest of the cage population (P-value < 0.05). Hooking YTK on the edge of the study cage biases sampling towards the smallest and most heavily infested fish in the population, resulting in poor repeatability (more variability amongst sampled fish) and an overestimation of parasite burden in the population. In this particular commercial situation these finding supported that health management program, where the finding of an underestimation of parasite burden could provide a production impact on the study population. In instances where fish populations and parasite burdens are more homogenous, sampling error may be less severe. Sampling error when capturing fish from sea cage is difficult to predict. The amplitude and direction of this error should be investigated for a given cultured fish species across a range of parasite burden and fish profile scenarios. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Status of rainbow smelt in the U.S. waters of Lake Ontario, 2013

    USGS Publications Warehouse

    Weidel, Brian C.; Connerton, Michael J.

    2014-01-01

    Rainbow Smelt Osmerus mordax are the second most abundant pelagic prey fish in Lake Ontario after Alewife Alosa psuedoharengus. The 2013, USGS/NYSDEC bottom trawl assessment indicated the abundance of Lake Ontario age-1 and older Rainbow Smelt decreased by 69% relative to 2012. Length frequency-based age analysis indicated that age-1 Rainbow Smelt constituted approximately 50% of the population, which is similar to recent trends where the proportion of age-1 has ranged from 95% to 42% of the population. While they constituted approximately half of the catch, the overall abundance index for age 1 was one of the lowest observed in the time series, potentially a result of cannibalism from the previous year class. Combined data from all bottom trawl assessments along the southern shore and eastern basin indicate the proportion of the fish community that is Rainbow Smelt has declined over the past 30 years. In 2013 the proportion of the pelagic fish catch (only pelagic species) that was Rainbow Smelt was the second lowest in the time series at 3.1%. Community diversity indices, based on bottom trawl catches, indicate that Lake Ontario fish community diversity, as assessed by bottom trawls, has sharply declined over the past 36 years and in 2013 the index was the lowest value in the time series. Much of this community diversity decline is driven by changes in the pelagic fish community and dominance of Alewife.

  20. Variation in local abundance and species richness of stream fishes in relation to dispersal barriers: Implications for management and conservation

    USGS Publications Warehouse

    Nislow, K.H.; Hudy, M.; Letcher, B.H.; Smith, E.P.

    2011-01-01

    1.Barriers to immigration, all else being equal, should in principle depress local abundance and reduce local species richness. These issues are particularly relevant to stream-dwelling species when improperly designed road crossings act as barriers to migration with potential impacts on the viability of upstream populations. However, because abundance and richness are highly spatially and temporally heterogeneous and the relative importance of immigration on demography is uncertain, population- and community-level effects can be difficult to detect. 2.In this study, we tested the effects of potential barriers to upstream movements on the local abundance and species richness of a diverse assemblage of resident stream fishes in the Monongahela National Forest, West Virginia, U.S.A. Fishes were sampled using simple standard techniques above- and below road crossings that were either likely or unlikely to be barriers to upstream fish movements (based on physical dimensions of the crossing). We predicted that abundance of resident fishes would be lower in the upstream sections of streams with predicted impassable barriers, that the strength of the effect would vary among species and that variable effects on abundance would translate into lower species richness. 3.Supporting these predictions, the statistical model that best accounted for variation in abundance and species richness included a significant interaction between location (upstream or downstream of crossing) and type (passable or impassable crossing). Stream sections located above predicated impassable culverts had fewer than half the number of species and less than half the total fish abundance, while stream sections above and below passable culverts had essentially equivalent richness and abundance. 4.Our results are consistent with the importance of immigration and population connectivity to local abundance and species richness of stream fishes. In turn, these results suggest that when measured at appropriate scales (multiple streams within catchments), with simple protocols amenable to use by management agencies, differences in local abundance and species richness may serve as indicators of the extent to which road crossings are barriers to fish movement and help determine whether road-crossing improvements have restored connectivity to stream fish populations and communities. Published 2011. This article is a US Government work and is in the public domain in the USA.

  1. Effects of stream acidification and habitat on fish populations of a North American river

    USGS Publications Warehouse

    Baldigo, Barry P.; Lawrence, G.B.

    2001-01-01

    Water quality, physical habitat, and fisheries at sixteen reaches in the Neversink River Basin were studied during 1991-95 to identify the effects of acidic precipitation on stream-water chemistry and on selected fish-species populations, and to test the hypothesis that the degree of stream acidification affected the spatial distribution of each fish-species population. Most sites on the East Branch Neversink were strongly to severely acidified, whereas most sites on the West Branch were minimally to moderately acidified. Mean density of fish populations ranged from 0 to 2.15 fish/m2; biomass ranged from 0 to 17.5 g/m2. Where brook trout were present, their population density ranged from 0.04 to 1.09 fish/m2, biomass ranged from 0.76 to 12.2 g/m2, and condition (K) ranged from 0.94 to 1.07. Regression analyses revealed strong relations (r2 ?? 0.41 to 0.99; p ??? 0.05) between characteristics of the two most common species (brook trout and slimy sculpin) populations and mean concentrations of inorganic monomeric aluminum (Alim), pH, Si, K+, NO3/-, NH4/+, DOC, Ca2+, and Na+; acid neutralizing capacity (ANC); and water temperature. Stream acidification may have adversely affected fish populations at most East Branch sites, but in other parts of the Neversink River Basin these effects were masked or mitigated by other physical habitat, geochemical, and biological factors.

  2. A Mixed-Method Approach for Quantifying Illegal Fishing and Its Impact on an Endangered Fish Species.

    PubMed

    Free, Christopher M; Jensen, Olaf P; Mendsaikhan, Bud

    2015-01-01

    Illegal harvest is recognized as a widespread problem in natural resource management. The use of multiple methods for quantifying illegal harvest has been widely recommended yet infrequently applied. We used a mixed-method approach to evaluate the extent, character, and motivations of illegal gillnet fishing in Lake Hovsgol National Park, Mongolia and its impact on the lake's fish populations, especially that of the endangered endemic Hovsgol grayling (Thymallus nigrescens). Surveys for derelict fishing gear indicate that gillnet fishing is widespread and increasing and that fishers generally use 3-4 cm mesh gillnet. Interviews with resident herders and park rangers suggest that many residents fish for subsistence during the spring grayling spawning migration and that some residents fish commercially year-round. Interviewed herders and rangers generally agree that fish population sizes are decreasing but are divided on the causes and solutions. Biological monitoring indicates that the gillnet mesh sizes used by fishers efficiently target Hovsgol grayling. Of the five species sampled in the monitoring program, only burbot (Lota lota) showed a significant decrease in population abundance from 2009-2013. However, grayling, burbot, and roach (Rutilus rutilus) all showed significant declines in average body size, suggesting a negative fishing impact. Data-poor stock assessment methods suggest that the fishing effort equivalent to each resident family fishing 50-m of gillnet 11-15 nights per year would be sufficient to overexploit the grayling population. Results from the derelict fishing gear survey and interviews suggest that this level of effort is not implausible. Overall, we demonstrate the ability for a mixed-method approach to effectively describe an illegal fishery and suggest that these methods be used to assess illegal fishing and its impacts in other protected areas.

  3. A Mixed-Method Approach for Quantifying Illegal Fishing and Its Impact on an Endangered Fish Species

    PubMed Central

    Free, Christopher M.; Jensen, Olaf P.; Mendsaikhan, Bud

    2015-01-01

    Illegal harvest is recognized as a widespread problem in natural resource management. The use of multiple methods for quantifying illegal harvest has been widely recommended yet infrequently applied. We used a mixed-method approach to evaluate the extent, character, and motivations of illegal gillnet fishing in Lake Hovsgol National Park, Mongolia and its impact on the lake’s fish populations, especially that of the endangered endemic Hovsgol grayling (Thymallus nigrescens). Surveys for derelict fishing gear indicate that gillnet fishing is widespread and increasing and that fishers generally use 3–4 cm mesh gillnet. Interviews with resident herders and park rangers suggest that many residents fish for subsistence during the spring grayling spawning migration and that some residents fish commercially year-round. Interviewed herders and rangers generally agree that fish population sizes are decreasing but are divided on the causes and solutions. Biological monitoring indicates that the gillnet mesh sizes used by fishers efficiently target Hovsgol grayling. Of the five species sampled in the monitoring program, only burbot (Lota lota) showed a significant decrease in population abundance from 2009–2013. However, grayling, burbot, and roach (Rutilus rutilus) all showed significant declines in average body size, suggesting a negative fishing impact. Data-poor stock assessment methods suggest that the fishing effort equivalent to each resident family fishing 50-m of gillnet 11–15 nights per year would be sufficient to overexploit the grayling population. Results from the derelict fishing gear survey and interviews suggest that this level of effort is not implausible. Overall, we demonstrate the ability for a mixed-method approach to effectively describe an illegal fishery and suggest that these methods be used to assess illegal fishing and its impacts in other protected areas. PMID:26625154

  4. Using parentage analysis to estimate rates of straying and homing in Chinook salmon (Oncorhynchus tshawytscha).

    PubMed

    Ford, Michael J; Murdoch, Andrew; Hughes, Michael

    2015-03-01

    We used parentage analysis based on microsatellite genotypes to measure rates of homing and straying of Chinook salmon (Oncorhynchus tshawytscha) among five major spawning tributaries within the Wenatchee River, Washington. On the basis of analysis of 2248 natural-origin and 11594 hatchery-origin fish, we estimated that the rate of homing to natal tributaries by natural-origin fish ranged from 0% to 99% depending on the tributary. Hatchery-origin fish released in one of the five tributaries homed to that tributary at a far lower rate than the natural-origin fish (71% compared to 96%). For hatchery-released fish, stray rates based on parentage analysis were consistent with rates estimated using physical tag recoveries. Stray rates among major spawning tributaries were generally higher than stray rates of tagged fish to areas outside of the Wenatchee River watershed. Within the Wenatchee watershed, rates of straying by natural-origin fish were significantly affected by spawning tributary and by parental origin: progeny of naturally spawning hatchery-produced fish strayed at significantly higher rates than progeny whose parents were themselves of natural origin. Notably, none of the 170 offspring that were products of mating by two natural-origin fish strayed from their natal tributary. Indirect estimates of gene flow based on FST statistics were correlated with but higher than the estimates from the parentage data. Tributary-specific estimates of effective population size were also correlated with the number of spawners in each tributary. Published [2015]. This article is a U.S. Government work and is in the public domain in the USA.

  5. Fishing-induced life-history changes degrade and destabilize harvested ecosystems

    NASA Astrophysics Data System (ADS)

    Kuparinen, Anna; Boit, Alice; Valdovinos, Fernanda S.; Lassaux, Hélène; Martinez, Neo D.

    2016-02-01

    Fishing is widely known to magnify fluctuations in targeted populations. These fluctuations are correlated with population shifts towards young, small, and more quickly maturing individuals. However, the existence and nature of the mechanistic basis for these correlations and their potential ecosystem impacts remain highly uncertain. Here, we elucidate this basis and associated impacts by showing how fishing can increase fluctuations in fishes and their ecosystem, particularly when coupled with decreasing body sizes and advancing maturation characteristic of the life-history changes induced by fishing. More specifically, using an empirically parameterized network model of a well-studied lake ecosystem, we show how fishing may both increase fluctuations in fish abundances and also, when accompanied by decreasing body size of adults, further decrease fish abundance and increase temporal variability of fishes’ food resources and their ecosystem. In contrast, advanced maturation has relatively little effect except to increase variability in juvenile populations. Our findings illustrate how different mechanisms underlying life-history changes that may arise as evolutionary responses to intensive, size-selective fishing can rapidly and continuously destabilize and degrade ecosystems even after fishing has ceased. This research helps better predict how life-history changes may reduce fishes’ resilience to fishing and ecosystems’ resistance to environmental variations.

  6. Assessing power of large river fish monitoring programs to detect population changes: the Missouri River sturgeon example

    USGS Publications Warehouse

    Wildhaber, M.L.; Holan, S.H.; Bryan, J.L.; Gladish, D.W.; Ellersieck, M.

    2011-01-01

    In 2003, the US Army Corps of Engineers initiated the Pallid Sturgeon Population Assessment Program (PSPAP) to monitor pallid sturgeon and the fish community of the Missouri River. The power analysis of PSPAP presented here was conducted to guide sampling design and effort decisions. The PSPAP sampling design has a nested structure with multiple gear subsamples within a river bend. Power analyses were based on a normal linear mixed model, using a mixed cell means approach, with variance estimates from the original data. It was found that, at current effort levels, at least 20 years for pallid and 10 years for shovelnose sturgeon is needed to detect a 5% annual decline. Modified bootstrap simulations suggest power estimates from the original data are conservative due to excessive zero fish counts. In general, the approach presented is applicable to a wide array of animal monitoring programs.

  7. Size and age structure of anadromous and landlocked populations of Rainbow Smelt

    USGS Publications Warehouse

    O'Malley, Andrew; Enterline, Claire; Zydlewski, Joseph D.

    2017-01-01

    Rainbow Smelt Osmerus mordax are widely distributed in both anadromous and landlocked populations throughout northeastern North America; abundance, size at age, and maximum size vary widely among populations and life histories. In the present study, size at age, von Bertalanffy growth parameters, population age distributions, and precision and bias in age assessment based on scales and sectioned otoliths were compared between ecotypes and among populations of Rainbow Smelt. To compare the ecotypes, we collected spawning adults from four anadromous and three landlocked populations in Maine during spring 2014. A significant bias was identified in only one of four scale comparisons but in four of seven otolith comparisons; however, a comparable level of precision was indicated. Anadromous populations had larger and more variable size at age and von Bertalanffy growth parameters than landlocked fish. Populations were composed of ages 1–4; six populations were dominated by age-2 or age-3 individuals, and one population was dominated by age-1 fish. These data suggest the presence of considerable plasticity among populations. A latitudinal gradient was observed in the anadromous Rainbow Smelt, which may show signs of population stress at the southern extent of their distribution.

  8. Interactions Between the Cross-Shore Structure of Small Pelagic Fish Population, Offshore Industrial Fisheries and Near Shore Artisanal Fisheries: A Mathematical Approach.

    PubMed

    Mchich, Rachid; Brochier, Timothée; Auger, Pierre; Brehmer, Patrice

    2016-12-01

    This work presents a mathematical model describing the interactions between the cross-shore structure of small pelagic fish population an their exploitation by coastal and offshore fisheries. The complete model is a system of seven ODE's governing three stocks of small pelagic fish population moving and growing between three zones. Two types of fishing fleets are inter-acting with the fish population, industrial boats, constrained to offshore area, and artisanal boats, operating from the shore. Two time scales were considered and we use aggregation methods that allow us to reduce the dimension of the model and to obtain an aggregated model, which is a four dimension one. The analysis of the aggregated model is performed. We discuss the possible equilibriums and their meaning in terms of fishery management. An interesting equilibrium state can be obtained for which we can expect coexistence and a stable equilibrium state between fish stocks and fishing efforts. Some identification parameters are also given in the discussion part of the model.

  9. Population-structure and genetic diversity in a haplochromine cichlid fish [corrected] of a satellite lake of Lake Victoria.

    PubMed

    Abila, Romulus; Barluenga, Marta; Engelken, Johannes; Meyer, Axel; Salzburger, Walter

    2004-09-01

    The approximately 500 species of the cichlid fish species flock of Lake Victoria, East Africa, have evolved in a record-setting 100,000 years and represent one of the largest adaptive radiations. We examined the population structure of the endangered cichlid species Xystichromis phytophagus from Lake Kanyaboli, a satellite lake to Lake Victoria in the Kenyan Yala wetlands. Two sets of molecular markers were analysed--sequences of the mitochondrial control region as well as six microsatellite loci--and revealed surprisingly high levels of genetic variability in this species. Mitochondrial DNA sequences failed to detect population structuring among the three sample populations. A model-based population assignment test based on microsatellite data revealed that the three populations most probably aggregate into a larger panmictic population. However, values of population pairwise FST indicated moderate levels of genetic differentiation for one population. Eleven distinct mitochondrial haplotypes were found among 205 specimens of X. phytophagus, a relatively high number compared to the total number of 54 haplotypes that were recovered from hundreds of specimens of the entire cichlid species flock of Lake Victoria. Most of the X. phytophagus mitochondrial DNA haplotypes were absent from the main Lake Victoria, corroborating the putative importance of satellite lakes as refugia for haplochromine cichlids that went extinct from the main lake in the last decades and possibly during the Late Pleistocene desiccation of Lake Victoria.

  10. The Influence of Changes in Lifestyle and Mercury Exposure in Riverine Populations of the Madeira River (Amazon Basin) near a Hydroelectric Project

    PubMed Central

    Hacon, Sandra S.; Dórea, José G.; Fonseca, Márlon de F.; Oliveira, Beatriz A.; Mourão, Dennys S.; Ruiz, Claudia M. V.; Gonçalves, Rodrigo A.; Mariani, Carolina F.; Bastos, Wanderley R.

    2014-01-01

    In the Amazon Basin, naturally occurring methylmercury bioaccumulates in fish, which is a key source of protein consumed by riverine populations. The hydroelectric power-plant project at Santo Antônio Falls allows us to compare the Hg exposure of riverine populations sparsely distributed on both sides of the Madeira river before the area is to be flooded. From 2009 to 2011, we concluded a population survey of the area (N = 2,008; representing circa 80% of community residents) that estimated fish consumption and mercury exposure of riverine populations with different degrees of lifestyle related to fish consumption. Fish samples from the Madeira river (N = 1,615) and 110 species were analyzed for Hg. Hair-Hg was significantly lower (p < 0.001) in less isolated communities near to the capital of Porto Velho (median 2.32 ppm) than in subsistence communities in the Cuniã Lake, 180 km from Porto Velho city (median 6.3 ppm). Fish Hg concentrations ranged from 0.01 to 6.06 µg/g, depending on fish size and feeding behavior. Currently available fish in the Madeira river show a wide variability in Hg concentrations. Despite cultural similarities, riparians showed hair-Hg distribution patterns that reflect changes in fish-eating habits driven by subsistence characteristics. PMID:24577285

  11. Current ecological understanding of fungal-like pathogens of fish: what lies beneath?

    PubMed Central

    Gozlan, Rodolphe E.; Marshall, Wyth L.; Lilje, Osu; Jessop, Casey N.; Gleason, Frank H.; Andreou, Demetra

    2014-01-01

    Despite increasingly sophisticated microbiological techniques, and long after the first discovery of microbes, basic knowledge is still lacking to fully appreciate the ecological importance of microbial parasites in fish. This is likely due to the nature of their habitats as many species of fish suffer from living beneath turbid water away from easy recording. However, fishes represent key ecosystem services for millions of people around the world and the absence of a functional ecological understanding of viruses, prokaryotes, and small eukaryotes in the maintenance of fish populations and of their diversity represents an inherent barrier to aquatic conservation and food security. Among recent emerging infectious diseases responsible for severe population declines in plant and animal taxa, fungal and fungal-like microbes have emerged as significant contributors. Here, we review the current knowledge gaps of fungal and fungal-like parasites and pathogens in fish and put them into an ecological perspective with direct implications for the monitoring of fungal fish pathogens in the wild, their phylogeography as well as their associated ecological impact on fish populations. With increasing fish movement around the world for farming, releases into the wild for sport fishing and human-driven habitat changes, it is expected, along with improved environmental monitoring of fungal and fungal-like infections, that the full extent of the impact of these pathogens on wild fish populations will soon emerge as a major threat to freshwater biodiversity. PMID:24600442

  12. Modeling the population-level effects of hypoxia on a coastal fish: implications of a spatially-explicit individual-based model

    NASA Astrophysics Data System (ADS)

    Rose, K.; Creekmore, S.; Thomas, P.; Craig, K.; Neilan, R.; Rahman, S.; Wang, L.; Justic, D.

    2016-02-01

    The northwestern Gulf of Mexico (USA) currently experiences a large hypoxic area ("dead zone") during the summer. The population-level effects of hypoxia on coastal fish are largely unknown. We developed a spatially-explicit, individual-based model to analyze how hypoxia effects on reproduction, growth, and mortality of individual Atlantic croaker could lead to population-level responses. The model follows the hourly growth, mortality, reproduction, and movement of individuals on a 300 x 800 spatial grid of 1 km2 cells for 140 years. Chlorophyll-a concentration and water temperature were specified daily for each grid cell. Dissolved oxygen (DO) was obtained from a 3-D water quality model for four years that differed in their severity of hypoxia. A bioenergetics model was used to represent growth, mortality was assumed stage- and age-dependent, and movement behavior was based on temperature preferences and avoidance of low DO. Hypoxia effects were imposed using exposure-effects sub-models that converted time-varying exposure to DO to reductions in growth and fecundity, and increases in mortality. Using sequences of mild, intermediate, and severe hypoxia years, the model predicted a 20% decrease in population abundance. Additional simulations were performed under the assumption that river-based nutrients loadings that lead to more hypoxia also lead to higher primary production and more food for croaker. Twenty-five percent and 50% nutrient reduction scenarios were simulated by adjusting the cholorphyll-a concentrations used as food proxy for the croaker. We then incrementally increased the DO concentrations to determine how much hypoxia would need to be reduced to offset the lower food production resulting from reduced nutrients. We discuss the generality of our results, the hidden effects of hypoxia on fish, and our overall strategy of combining laboratory and field studies with modeling to produce robust predictions of population responses to stressors under dynamic and multi-stressor conditions.

  13. Distinct developmental genetic mechanisms underlie convergently evolved tooth gain in sticklebacks

    PubMed Central

    Ellis, Nicholas A.; Glazer, Andrew M.; Donde, Nikunj N.; Cleves, Phillip A.; Agoglia, Rachel M.; Miller, Craig T.

    2015-01-01

    Teeth are a classic model system of organogenesis, as repeated and reciprocal epithelial and mesenchymal interactions pattern placode formation and outgrowth. Less is known about the developmental and genetic bases of tooth formation and replacement in polyphyodonts, which are vertebrates with continual tooth replacement. Here, we leverage natural variation in the threespine stickleback fish Gasterosteus aculeatus to investigate the genetic basis of tooth development and replacement. We find that two derived freshwater stickleback populations have both convergently evolved more ventral pharyngeal teeth through heritable genetic changes. In both populations, evolved tooth gain manifests late in development. Using pulse-chase vital dye labeling to mark newly forming teeth in adult fish, we find that both high-toothed freshwater populations have accelerated tooth replacement rates relative to low-toothed ancestral marine fish. Despite the similar evolved phenotype of more teeth and an accelerated adult replacement rate, the timing of tooth number divergence and the spatial patterns of newly formed adult teeth are different in the two populations, suggesting distinct developmental mechanisms. Using genome-wide linkage mapping in marine-freshwater F2 genetic crosses, we find that the genetic basis of evolved tooth gain in the two freshwater populations is largely distinct. Together, our results support a model whereby increased tooth number and an accelerated tooth replacement rate have evolved convergently in two independently derived freshwater stickleback populations using largely distinct developmental and genetic mechanisms. PMID:26062935

  14. Working with, not against, coral-reef fisheries

    NASA Astrophysics Data System (ADS)

    Birkeland, Charles

    2017-03-01

    The fisheries policies of some Pacific island nations are more appropriate to the biology of their resources than are some of the fisheries policies of more industrialized countries. Exclusive local ownership of natural resources in Palau encourages adjustive management on biologically relevant scales of time and space and promotes responsibility by reducing the tragedy of the commons. The presence of large individuals in fish populations and adequate size of spawning aggregations are more efficient and meaningful cues for timely management than are surveys of abundance or biomass. Taking fish from populations more than halfway to their carrying capacity is working favorably with the fishery because removing fish potentially increases resource stability by negative feedback between stock size and population production. Taking the same amount of fish from a population below half its carrying capacity is working against the fishery, making the population unstable, because reducing the reproductive stock potentially accelerates reduction of the population production by positive feedback. Reef fish are consumed locally, while Palauan laws ban the export of reef resources. This is consistent with the high gross primary production with little excess net production from undisturbed coral-reef ecosystems. The relatively rapid growth rates, short life spans, reliable recruitment and wide-ranging movements of open-ocean fishes such as scombrids make them much more productive than coral-reef fishes. The greater fisheries yield per square kilometer in the open ocean multiplied by well over a thousand times the area of the exclusive economic zone than that of Palau's coral reefs should encourage Palauans to keep reef fishes for subsistence and to feed tourists open-ocean fishes. Fisheries having only artisanal means should be encouraged to increase the yield and sustainability by moving away from coral reefs to bulk harvesting of nearshore pelagics.

  15. Predator-induced demographic shifts in coral reef fish assemblages

    USGS Publications Warehouse

    Ruttenberg, B.I.; Hamilton, S.L.; Walsh, S.M.; Donovan, M.K.; Friedlander, A.; DeMartini, E.; Sala, E.; Sandin, S.A.

    2011-01-01

    In recent years, it has become apparent that human impacts have altered community structure in coastal and marine ecosystems worldwide. Of these, fishing is one of the most pervasive, and a growing body of work suggests that fishing can have strong effects on the ecology of target species, especially top predators. However, the effects of removing top predators on lower trophic groups of prey fishes are less clear, particularly in highly diverse and trophically complex coral reef ecosystems. We examined patterns of abundance, size structure, and age-based demography through surveys and collection-based studies of five fish species from a variety of trophic levels at Kiritimati and Palmyra, two nearby atolls in the Northern Line Islands. These islands have similar biogeography and oceanography, and yet Kiritimati has ~10,000 people with extensive local fishing while Palmyra is a US National Wildlife Refuge with no permanent human population, no fishing, and an intact predator fauna. Surveys indicated that top predators were relatively larger and more abundant at unfished Palmyra, while prey functional groups were relatively smaller but showed no clear trends in abundance as would be expected from classic trophic cascades. Through detailed analyses of focal species, we found that size and longevity of a top predator were lower at fished Kiritimati than at unfished Palmyra. Demographic patterns also shifted dramatically for 4 of 5 fish species in lower trophic groups, opposite in direction to the top predator, including decreases in average size and longevity at Palmyra relative to Kiritimati. Overall, these results suggest that fishing may alter community structure in complex and non-intuitive ways, and that indirect demographic effects should be considered more broadly in ecosystem-based management. ?? 2011 Ruttenberg et al.

  16. Predator-Induced Demographic Shifts in Coral Reef Fish Assemblages

    PubMed Central

    Ruttenberg, Benjamin I.; Hamilton, Scott L.; Walsh, Sheila M.; Donovan, Mary K.; Friedlander, Alan; DeMartini, Edward; Sala, Enric; Sandin, Stuart A.

    2011-01-01

    In recent years, it has become apparent that human impacts have altered community structure in coastal and marine ecosystems worldwide. Of these, fishing is one of the most pervasive, and a growing body of work suggests that fishing can have strong effects on the ecology of target species, especially top predators. However, the effects of removing top predators on lower trophic groups of prey fishes are less clear, particularly in highly diverse and trophically complex coral reef ecosystems. We examined patterns of abundance, size structure, and age-based demography through surveys and collection-based studies of five fish species from a variety of trophic levels at Kiritimati and Palmyra, two nearby atolls in the Northern Line Islands. These islands have similar biogeography and oceanography, and yet Kiritimati has ∼10,000 people with extensive local fishing while Palmyra is a US National Wildlife Refuge with no permanent human population, no fishing, and an intact predator fauna. Surveys indicated that top predators were relatively larger and more abundant at unfished Palmyra, while prey functional groups were relatively smaller but showed no clear trends in abundance as would be expected from classic trophic cascades. Through detailed analyses of focal species, we found that size and longevity of a top predator were lower at fished Kiritimati than at unfished Palmyra. Demographic patterns also shifted dramatically for 4 of 5 fish species in lower trophic groups, opposite in direction to the top predator, including decreases in average size and longevity at Palmyra relative to Kiritimati. Overall, these results suggest that fishing may alter community structure in complex and non-intuitive ways, and that indirect demographic effects should be considered more broadly in ecosystem-based management. PMID:21698165

  17. Stocking activities for the Arctic charr in Lake Geneva: Genetic effects in space and time.

    PubMed

    Savary, Romain; Dufresnes, Christophe; Champigneulle, Alexis; Caudron, Arnaud; Dubey, Sylvain; Perrin, Nicolas; Fumagalli, Luca

    2017-07-01

    Artificial stocking practices are widely used by resource managers worldwide, in order to sustain fish populations exploited by both recreational and commercial activities, but their benefits are controversial. Former practices involved exotic strains, although current programs rather consider artificial breeding of local fishes (supportive breeding). Understanding the complex genetic effects of these management strategies is an important challenge with economic and conservation implications, especially in the context of population declines. In this study, we focus on the declining Arctic charr ( Salvelinus alpinus ) population from Lake Geneva (Switzerland and France), which has initially been restocked with allochtonous fishes in the early eighties, followed by supportive breeding. In this context, we conducted a genetic survey to document the evolution of the genetic diversity and structure throughout the last 50 years, before and after the initiation of hatchery supplementation, using contemporary and historical samples. We show that the introduction of exotic fishes was associated with a genetic bottleneck in the 1980-1990s, a break of Hardy-Weinberg Equilibrium (HWE), a reduction in genetic diversity, an increase in genetic structure among spawning sites, and a change in their genetic composition. Together with better environmental conditions, three decades of subsequent supportive breeding using local fishes allowed to re-establish HWE and the initial levels of genetic variation. However, current spawning sites have not fully recovered their original genetic composition and were extensively homogenized across the lake. Our study demonstrates the drastic genetic consequences of different restocking tactics in a comprehensive spatiotemporal framework and suggests that genetic alteration by nonlocal stocking may be partly reversible through supportive breeding. We recommend that conservation-based programs consider local diversity and implement adequate protocols to limit the genetic homogenization of this Arctic charr population.

  18. Population trends, bend use relative to available habitat and within-river-bend habitat use of eight indicator species of Missouri and Lower Kansas River benthic fishes: 15 years after baseline assessment

    USGS Publications Warehouse

    Wildhaber, Mark L.; Yang, Wen-Hsi; Arab, Ali

    2016-01-01

    A baseline assessment of the Missouri River fish community and species-specific habitat use patterns conducted from 1996 to 1998 provided the first comprehensive analysis of Missouri River benthic fish population trends and habitat use in the Missouri and Lower Yellowstone rivers, exclusive of reservoirs, and provided the foundation for the present Pallid Sturgeon Population Assessment Program (PSPAP). Data used in such studies are frequently zero inflated. To address this issue, the zero-inflated Poisson (ZIP) model was applied. This follow-up study is based on PSPAP data collected up to 15 years later along with new understanding of how habitat characteristics among and within bends affect habitat use of fish species targeted by PSPAP, including pallid sturgeon. This work demonstrated that a large-scale, large-river, PSPAP-type monitoring program can be an effective tool for assessing population trends and habitat usage of large-river fish species. Using multiple gears, PSPAP was effective in monitoring shovelnose and pallid sturgeons, sicklefin, shoal and sturgeon chubs, sand shiner, blue sucker and sauger. For all species, the relationship between environmental variables and relative abundance differed, somewhat, among river segments suggesting the importance of the overall conditions of Upper and Middle Missouri River and Lower Missouri and Kansas rivers on the habitat usage patterns exhibited. Shoal and sicklefin chubs exhibited many similar habitat usage patterns; blue sucker and shovelnose sturgeon also shared similar responses. For pallid sturgeon, the primary focus of PSPAP, relative abundance tended to increase in Upper and Middle Missouri River paralleling stocking efforts, whereas no evidence of an increasing relative abundance was found in the Lower Missouri River despite stocking.

  19. Principles underlying the epizootiology of viral hemorrhagic septicemia in Pacific herring and other fishes throughout the North Pacific Ocean

    USGS Publications Warehouse

    Hershberger, Paul K.; Garver, Kyle A.; Winton, James R.

    2016-01-01

    Although viral hemorrhagic septicemia virus (VHSV) typically occurs at low prevalence and intensity in natural populations of Pacific herring (Clupea pallasii) and other marine fishes in the Northeast Pacific Ocean, epizootics of the resulting disease (VHS) periodically occur, often in association with observed fish kills. Here we identify a list of principles, based on a combination of field studies, controlled laboratory experiments, and previously unpublished observations, that govern the epizootiology of VHS in Pacific herring. A thorough understanding of these principles provides the basis for identifying risk factors that predispose certain marine fish populations to VHS epizootics, including the lack of population resistance, presence of chronic viral carriers in a population, copious viral shedding by infected individuals, cool water temperatures, limited water circulation patterns, and gregarious host behavioral patterns. Further, these principles are used to define the epizootiological stages of the disease in Pacific herring, including the susceptible (where susceptible individuals predominate a school or subpopulation), enzootic (where infection prevalence and intensity are often below the limits of reasonable laboratory detection), disease amplification (where infection prevalence and intensity increase rapidly), outbreak (often accompanied by host mortalities with high virus loads and active shedding), recovery (in which the mortality rate and virus load decline owing to an active host immune response), and refractory stages (characterized by little or no susceptibility and where viral clearance occurs in most VHS survivors). In addition to providing a foundation for quantitatively assessing the potential risks of future VHS epizootics in Pacific herring, these principles provide insights into the epizootiology of VHS in other fish communities where susceptible species exist.

  20. Habitat and movement of lake sturgeon in the upper Mississippi River system, USA

    USGS Publications Warehouse

    Knights, Brent C.; Vallazza, Jonathon M.; Zigler, Steven J.; Dewey, Michael R.

    2002-01-01

    Lake sturgeon Acipenser fluvescens, which are now protected from harvest, are considered rare in the upper Mississippi River and little information is available on the remaining populations. Transmitters were implanted into 31 lake sturgeon from two sites in the upper Mississippi River to describe their habitats and movement. The areas surrounding the tagging sites were core areas for both groups of lake sturgeon based on the high use (about 50% of locations by group) and frequent return to these areas by many of the tagged fish. Core areas contained sites with unique hydraulic characteristics, such that depositional substrates were common yet flow was present; these areas probably provide important feeding habitat for lake sturgeon. Minimal geographical overlap in range occurred between groups, suggesting that river reaches and associated core areas were unique to groups or substocks of fish. Lake sturgeon exhibited complex movement behaviors and had ranges of 3-198 km (median, 56 km) during the study. Tagged fish moved both downstream and upstream through upper Mississippi River navigation dams. However, dams appeared to be intermittent barriers to upstream passage because upstream passage events (10 fish, 19 passages) were fewer than downstream events (13 fish, 35 passages). Extensive use of the Wisconsin River by one group of lake sturgeon tagged in the upper Mississippi River has implications regarding management of a threatened population that transcends regulatory boundaries. Our study indicates that lake sturgeon In the upper Mississippi River system share many movement and habitat use characteristics with populations in other systems. However, significant data gaps preclude development of cogent management strategies, including information on population numbers and dynamics, identification of spawning areas, relations between groups, and assessment of the effects of commercial navigation.

  1. Geographical variation in sound production in the anemonefish Amphiprion akallopisos.

    PubMed

    Parmentier, E; Lagardère, J P; Vandewalle, P; Fine, M L

    2005-08-22

    Because of pelagic-larval dispersal, coral-reef fishes are distributed widely with minimal genetic differentiation between populations. Amphiprion akallopisos, a clownfish that uses sound production to defend its anemone territory, has a wide but disjunct distribution in the Indian Ocean. We compared sounds produced by these fishes from populations in Madagascar and Indonesia, a distance of 6500 km. Differentiation of agonistic calls into distinct types indicates a complexity not previously recorded in fishes' acoustic communication. Moreover, various acoustic parameters, including peak frequency, pulse duration, number of peaks per pulse, differed between the two populations. The geographic comparison is the first to demonstrate 'dialects' in a marine fish species, and these differences in sound parameters suggest genetic divergence between these two populations. These results highlight the possible approach for investigating the role of sounds in fish behaviour in reproductive divergence and speciation.

  2. The fish community of a small impoundment in upstate New York

    USGS Publications Warehouse

    McCoy, C. Mead; Madenjian, Charles P.; Adams, Jean V.; Harman, Willard N.

    2001-01-01

    Moe Pond is a dimictic impoundment with surface area of 15.6 ha, a mean depth of 1.8 m, and an unexploited fish community of only two species: brown bullhead (Ameiurus nebulosus) and golden shiner (Notemigonus crysoleucas). The age-1 and older brown bullhead population was estimated to be 4,057 individuals, based on the Schnabel capture-recapture method of population estimation. Density and biomass were respectively estimated at 260 individuals/ha and 13 kg/ha. Annual survival rate of age-2 through age-5 brown bullheads was estimated at 48%. The golden shiner length-frequency distribution was unimodal with modal length of 80 mm and maximum total length of 115 m. The golden shiner population estimate was 7,154 individuals, based on seven beach seine haul replicate samples; the density and biomass were 686 shiners/ha and 5 kg/ha, respectively. This study provides an information baseline that may be useful in understanding food web interactions and whole-pond nutrient flux.

  3. Full-Sibs in Cohorts of Newly Settled Coral Reef Fishes

    PubMed Central

    Bernardi, Giacomo; Beldade, Ricardo; Holbrook, Sally J.; Schmitt, Russell J.

    2012-01-01

    Reef fishes exhibit a bipartite life cycle where a benthic adult stage is preceded by a pelagic dispersal phase during which larvae are presumed to be mixed and transported by oceanic currents. Genetic analyses based on twelve microsatellite loci of 181 three-spot dascyllus (Dascyllus trimaculatus) that settled concurrently on a small reef in French Polynesia revealed 11 groups of siblings (1 full sibs and 10 half-sibs). This is the first evidence that fish siblings can journey together throughout their entire planktonic dispersal phase (nearly a month long for three-spot dascyllus). Our findings have critical implications for the dynamics and genetic structure of fish populations, as well as for the design of marine protected areas and management of fisheries. PMID:23028700

  4. Strong positive association of traditional Asian-style diets with blood cadmium and lead levels in the Korean adult population.

    PubMed

    Park, Sunmin; Lee, Byung-Kook

    2013-12-01

    Blood lead and cadmium levels are more than twofold to fivefold higher in the Korean population compared to that of the USA. This may be related to the foods consumed. We examined which food categories are related to blood lead and cadmium levels in the Korean adult population using the 2008-2010 Korean National Health and Nutrition Examination Survey (n = 5504). High and moderate consumption of bread and crackers, potatoes, meat and meat products, milk and dairy products, and pizza and hamburger resulted in significantly lower odds ratios for blood lead levels than their low consumption. However, consumption of salted fish, white fish, green vegetables, white and yellow vegetables, coffee, and alcohol resulted in significantly higher odds ratios of blood lead and cadmium. In conclusion, the typical Asian diet based on rice, fish, vegetables, regular coffee, and alcoholic drinks may be associated with higher blood cadmium and lead levels. This study suggests that lead and cadmium contents should be monitored and controlled in agricultural products to reduce health risks from heavy metals.

  5. Review of fish species introduced into the Great Lakes, 1819-1974

    USGS Publications Warehouse

    Emery, Lee

    1985-01-01

    This review is based on an extensive literature search, combined with updated information obtained from biologists, and unpublished reports from private, state, and federal organizations throughout the Great Lakes basin. The chronological review lists 34 species of fishes in 13 families that were introduced into the basin from 1819 to 1974. The Salmonidae and Cyprinidae are best represented, contributing 14 and 5 of the species, respectively. The list is divided into successful and unsuccessful introductions; each species is briefly described and information about its entry into the basin and present status is given. About half of the introductions have been successful (i.e., the fish have reproduced and created viable, self-sustaining populations). Some of the successful introductions were disastrous in terms of damage inflicted on native populations (e.g., the effect of the sea lamprey, Petromyzon marinus, on populations of lake trout, Salvelinus namaycush, and lake whitefish, Coregonus clupeaformis), but others yielded highly favorable results (e.g., the extraordinary sport fisheries created by introductions of coho salmon, Oncorhynchus kisutch, and chinook salmon, Oncorhynchus tshawytscha).

  6. Great Lakes prey fish populations: A cross-basin overview of status and trends in 2008

    USGS Publications Warehouse

    Gorman, Owen T.; Bunnell, David B.

    2009-01-01

    Assessments of prey fishes in the Great Lakes have been conducted annually since the 1970s by the Great Lakes Science Center, sometimes assisted by partner agencies. Prey fish assessments differ among lakes in the proportion of a lake covered, seasonal timing, bottom trawl gear used, sampling design, and the manner in which the trawl is towed (across or along bottom contours). Because each assessment is unique in one or more important aspects, a direct comparison of prey fish catches among lakes is problematic. All of the assessments, however, produce indices of abundance or biomass that can be standardized to facilitate comparisons of trends among lakes and to illustrate present status of the populations. We present indices of abundance for important prey fishes in the Great Lakes standardized to the highest value for a time series within each lake: cisco (Coregonus artedi), bloater (C. hoyi), rainbow smelt (Osmerus mordax), and alewife (Alosa pseudoharengus). We also provide indices for round goby (Neogobius melanostomus), an invasive fish presently spreading throughout the basin. Our intent is to provide a short, informal report emphasizing data presentation rather than synthesis; for this reason we intentionally avoid use of tables and cited references.For each lake, standardized relative indices for annual biomass and density estimates of important prey fishes were calculated as the fraction relative to the largest value observed in the times series. To determine whether basin-wide trends were apparent for each species, we first ranked standardized index values within each lake. When comparing ranked index values from three or more lakes, we calculated the Kendall coefficient of concordance (W), which can range from 0 (complete discordance or disagreement among trends) to 1 (complete concordance or agreement among trends). The P-value for W provides the probability of agreement across the lakes. When comparing ranked index values from two lakes, we calculated the Kendall correlation coefficient (τ), which ranges from -1 (inverse association, perfect disagreement) to 1 (direct association, perfect agreement). Here, the P-value for τ provides the probability of either inverse or direct association between the lakes. First, we present trends in relative biomass of age-1 and older prey fishes to show changes in populations within each lake. Then, we present standardized indices of numerical abundance of a single age class to show changes in relative year-class strength within each lake. Indices of year-class strength reliably reflect the magnitude of the cohort size at subsequent ages. However, because of differences in survey timing across lakes, the age class that is used for each species to index year-class strength varies across lakes and, just as surveys differ among lakes, methods for determining fish age-class differ also. For Lake Superior cisco, bloater, smelt, and Lake Michigan alewife, year- class strengths are based on aged fish and age-length keys, and for all other combinations of lakes and species, age-classes are assigned based on fish length cut-offs. Our intent with this report is to provide a cross-lakes view of population trends but not to propose reasons for those trends.

  7. Role of egg predation by haddock in the decline of an Atlantic herring population

    PubMed Central

    Richardson, David E.; Hare, Jonathan A.; Fogarty, Michael J.; Link, Jason S.

    2011-01-01

    Theoretical studies suggest that the abrupt and substantial changes in the productivity of some fisheries species may be explained by predation-driven alternate stable states in their population levels. With this hypothesis, an increase in fishing or a natural perturbation can drive a population from an upper to a lower stable-equilibrium population level. After fishing is reduced or the perturbation ended, this low population level can persist due to the regulatory effect of the predator. Although established in theoretical studies, there is limited empirical support for predation-driven alternate stable states in exploited marine fish populations. We present evidence that egg predation by haddock (Melanogrammus aeglefinus) can cause alternate stable population levels in Georges Bank Atlantic herring (Clupea harengus). Egg predation by haddock explains a substantial decoupling of herring spawning stock biomass (an index of egg production) from observed larval herring abundance (an index of egg hatching). Estimated egg survival rates ranged from <2–70% from 1971 to 2005. A population model incorporating egg predation and herring fishing explains the major population trends of Georges Bank herring over four decades and predicts that, when the haddock population is high, seemingly conservative levels of fishing can still precipitate a severe decline in the herring population. These findings illustrate how efforts to rebuild fisheries can be undermined by not incorporating ecological interactions into fisheries models and management plans. PMID:21825166

  8. Differences in detection of Aeromonas salmonicida in covertly infected salmonid fishes by the stress-inducible furunculosis test and culture-based assays

    USGS Publications Warehouse

    Cipriano, R.C.; Ford, L.A.; Smith, D.R.; Schachte, J.H.; Petrie, C.J.

    1997-01-01

    Accurate detection of Aeromonas salmonicida subsp. salmonicida (the cause of furunculosis disease) in covertly infected salmonids is difficult and is a cause of concern for those involved in fish health inspection and resource management programs. In this study, we examined populations of brook trout Salvelinus fontinalis, Atlantic salmon Salmo salar, and lake trout Salvelinus namaycush that previously sustained natural episodes of furunculosis. Consequently, the sampled fish were presumed to harbor latent infections. Mucus, gill, liver, kidney, heart, spleen, and intestine samples (N = 100 fish per group sampled) were processed and examined by (1) direct dilution counts and (2) quadrant streaking after a 48-h pre-enrichment in trypticase soy broth (TSB). Another subsample of fish from each group was then subjected to stress-inducible furunculosis tests. Stress tests detected A. salmonicida in three of four groups of fish that were examined whereas the pathogen was detected in only two of the groups analyzed with culture-based assays. Although pre-enrichment in TSB enhanced detection within internal sampling sites including the liver, heart, spleen, and kidney, enrichment did not enhance detection from mucus, gill, or intestinal samples.

  9. A simple web-based tool to compare freshwater fish data collected using AFS standard methods

    USGS Publications Warehouse

    Bonar, Scott A.; Mercado-Silva, Norman; Rahr, Matt; Torrey, Yuta T.; Cate, Averill

    2016-01-01

    The American Fisheries Society (AFS) recently published Standard Methods for Sampling North American Freshwater Fishes. Enlisting the expertise of 284 scientists from 107 organizations throughout Canada, Mexico, and the United States, this text was developed to facilitate comparisons of fish data across regions or time. Here we describe a user-friendly web tool that automates among-sample comparisons in individual fish condition, population length-frequency distributions, and catch per unit effort (CPUE) data collected using AFS standard methods. Currently, the web tool (1) provides instantaneous summaries of almost 4,000 data sets of condition, length frequency, and CPUE of common freshwater fishes collected using standard gears in 43 states and provinces; (2) is easily appended with new standardized field data to update subsequent queries and summaries; (3) compares fish data from a particular water body with continent, ecoregion, and state data summaries; and (4) provides additional information about AFS standard fish sampling including benefits, ongoing validation studies, and opportunities to comment on specific methods. The web tool—programmed in a PHP-based Drupal framework—was supported by several AFS Sections, agencies, and universities and is freely available from the AFS website and fisheriesstandardsampling.org. With widespread use, the online tool could become an important resource for fisheries biologists.

  10. How predation shapes the social interaction rules of shoaling fish.

    PubMed

    Herbert-Read, James E; Rosén, Emil; Szorkovszky, Alex; Ioannou, Christos C; Rogell, Björn; Perna, Andrea; Ramnarine, Indar W; Kotrschal, Alexander; Kolm, Niclas; Krause, Jens; Sumpter, David J T

    2017-08-30

    Predation is thought to shape the macroscopic properties of animal groups, making moving groups more cohesive and coordinated. Precisely how predation has shaped individuals' fine-scale social interactions in natural populations, however, is unknown. Using high-resolution tracking data of shoaling fish ( Poecilia reticulata ) from populations differing in natural predation pressure, we show how predation adapts individuals' social interaction rules. Fish originating from high predation environments formed larger, more cohesive, but not more polarized groups than fish from low predation environments. Using a new approach to detect the discrete points in time when individuals decide to update their movements based on the available social cues, we determine how these collective properties emerge from individuals' microscopic social interactions. We first confirm predictions that predation shapes the attraction-repulsion dynamic of these fish, reducing the critical distance at which neighbours move apart, or come back together. While we find strong evidence that fish align with their near neighbours, we do not find that predation shapes the strength or likelihood of these alignment tendencies. We also find that predation sharpens individuals' acceleration and deceleration responses, implying key perceptual and energetic differences associated with how individuals move in different predation regimes. Our results reveal how predation can shape the social interactions of individuals in groups, ultimately driving differences in groups' collective behaviour. © 2017 The Authors.

  11. Distribution and status of five non-native fish species in the Tampa Bay drainage (USA), a hot spot for fish introductions

    USGS Publications Warehouse

    Lawson, Katelyn M.; Tuckett, Quenton M.; Ritch, Jared L.; Nico, Leo; Fuller, Pam; Matheson, Richard E.; Hill, Jeffrey E.

    2017-01-01

    The Tampa Bay region of Florida (USA) is a hot spot for non-native freshwater fishes. However, published information on most non-native fishes in the basin is not current. Systematic sampling efforts targeting non-native fishes in the region were conducted from 2013–2015 by the University of Florida Tropical Aquaculture Laboratory. Data from these recent surveys were analyzed, along with historic and new data from published and unpublished sources, to assess current fish distributions and determine status. We focus on five of the non-native species sampled: pike killifish Belonesox belizanus Kner, 1860, green swordtail Xiphophorus hellerii Heckel, 1848, southern platyfish Xiphophorus maculatus (Günther, 1866), Mayan cichlid Mayaheros urophthalmus (Günther, 1862), and Jack Dempsey Rocio octofasciata (Regan, 1903). All five were found to have reproducing populations in the basin, each showing broader distributions than previously indicated. Non-native populations of four of the species have persisted in the Tampa Bay region since at least the 1990s. In contrast, the presence of Mayan cichlid in the basin was not confirmed until 2004. Based on numbers, distributions, and years of persistence, these five species all maintain established populations. Pike killifish and Mayan cichlid are established and spreading throughout multiple habitat types, while green swordtail, southern platyfish, and Jack Dempsey are localized and found primarily in more marginal habitats (e.g., small ditches and first order tributary streams). Factors affecting continued existence and distributions likely include aquaculture, biotic resistance, and thermal and salinity tolerances. We also clarify non-native species status determination using a multi-agency collaborative approach, and reconcile differences in terminology usage and interpretation.

  12. Bioenergetics in ecosystems

    USGS Publications Warehouse

    Madenjian, Charles P.; Farrell, Anthony P.

    2011-01-01

    A bioenergetics model for a fish can be defined as a quantitative description of the fish’s energy budget. Bioenergetics modeling can be applied to a fish population in a lake, river, or ocean to estimate the annual consumption of food by the fish population; such applications have proved to be useful in managing fisheries. In addition, bioenergetics models have been used to better understand fish growth and consumption in ecosystems, to determine the importance of the role of fish in cycling nutrients within ecosystems, and to identify the important factors regulating contaminant accumulation in fish from lakes, rivers, and oceans.

  13. The Impact of Marine Protected Areas on Reef-Wide Population Structure and Fishing-Induced Phenotypes in Coral-Reef Fishes

    NASA Astrophysics Data System (ADS)

    Fidler, Robert Young, III

    Overfishing and destructive fishing practices threaten the sustainability of fisheries worldwide. In addition to reducing population sizes, anthropogenic fishing effort is highly size-selective, preferentially removing the largest individuals from harvested stocks. Intensive, size-selective mortality induces widespread phenotypic shifts toward the predominance of smaller and earlier-maturing individuals. Fish that reach sexual maturity at smaller size and younger age produce fewer, smaller, and less viable larvae, severely reducing the reproductive capacity of exploited populations. These directional phenotypic alterations, collectively known as "fisheries-induced evolution" (FIE) are among the primary causes of the loss of harvestable fish biomass. Marine protected areas (MPAs) are one of the most widely utilized components of fisheries management programs around the world, and have been proposed as a potential mechanism by which the impacts of FIE may be mitigated. The ability of MPAs to buffer exploited populations against fishing pressure, however, remains debated due to inconsistent results across studies. Additionally, empirical evidence of phenotypic shifts in fishes within MPAs is lacking. This investigation addresses both of these issues by: (1) using a categorical meta-analysis of MPAs to standardize and quantify the magnitude of MPA impacts across studies; and (2) conducting a direct comparison of life-history phenotypes known to be influenced by FIE in six reef-fish species inside and outside of MPAs. The Philippines was used as a model system for analyses due to the country's significance in global marine biodiversity and reliance on MPAs as a fishery management tool. The quantitative impact of Philippine MPAs was assessed using a "reef-wide" meta-analysis. This analysis used pooled visual census data from 39 matched pairs of MPAs and fished reefs surveyed twice over a mean period of 3 years. In 17 of these MPAs, two additional surveys were conducted using size-specific fish counts, allowing for spatiotemporal comparisons of abundance and demographic structure of fish populations across protected and fished areas. Results of the meta-analysis revealed that: (1) although fish density was higher inside MPAs than in fished reefs at each sampling period, reef-wide density often increased or remained stable over time; and (2) increases in large-bodied fish were evident reef-wide between survey periods, indicating that positive demographic shifts occurred simultaneously in both MPAs and adjacent areas. Increases in large-bodied fish were observed across a range of taxa, but were most prominent in families directly targeted by fishermen. These results suggest that over relatively few years of protection, Philippine MPAs promoted beneficial shifts in population structure throughout entire reef systems, rather than simply maintaining stable populations within their borders. Relationships between MPA age and shifts in fish density or demographic structure were rare, but may have been precluded by the relatively short period between replicate surveys. Although increases in fish density inside MPAs were occasionally associated with MPA size, there were no significant relationships between the size of MPAs and reef-wide increases in fish density. The reef-wide framework of MPA assessment used in this study has the advantage of treating MPAs and fished reefs as an integrated system, thus revealing trends that would be indistinguishable in traditional spatial comparisons between MPAs and fished reefs. The impact of MPAs on fishing-induced life-history traits was assessed by comparing growth and maturation patterns exhibited by six reef-fish species inside and outside five MPAs and adjacent, fished reefs in Zambales, Luzon, Philippines. This analysis demonstrated considerable variation in terminal body-sizes (Linf) and growth rates (K) between conspecifics in MPAs and fished reefs. Three of the four experimental species directly targeted for food in the region (Acanthurus nigrofuscus, Ctenochaetus striatus, and Parupeneus multifasciatus) exhibited greater Linf, lower K, or both characteristics inside at least one MPA compared to populations in adjacent, fished reefs. Life-history shifts were concentrated in the oldest and largest MPAs, but occurred at least once in each of the five MPAs that were examined. A fourth species harvested for food (Ctenochaetus binotatus), as well as a species targeted for the aquarium trade (Zebrasoma scopas) and a non-target species (Plectroglyphidodon lacrymatus) did not exhibit differential phenotypes between MPAs and fished reefs. The relatively high frequency of alterations to life-history characteristics across MPAs in harvested species suggests that observed changes in the density and size-structure of harvested fish populations inside MPAs are likely driven by spatial disparities in fishing pressure, and are the result of phenotypic changes rather than increased longevity.

  14. Vertebrate Genome Evolution in the Light of Fish Cytogenomics and rDNAomics

    PubMed Central

    Howell, W. Mike

    2018-01-01

    To understand the cytogenomic evolution of vertebrates, we must first unravel the complex genomes of fishes, which were the first vertebrates to evolve and were ancestors to all other vertebrates. We must not forget the immense time span during which the fish genomes had to evolve. Fish cytogenomics is endowed with unique features which offer irreplaceable insights into the evolution of the vertebrate genome. Due to the general DNA base compositional homogeneity of fish genomes, fish cytogenomics is largely based on mapping DNA repeats that still represent serious obstacles in genome sequencing and assembling, even in model species. Localization of repeats on chromosomes of hundreds of fish species and populations originating from diversified environments have revealed the biological importance of this genomic fraction. Ribosomal genes (rDNA) belong to the most informative repeats and in fish, they are subject to a more relaxed regulation than in higher vertebrates. This can result in formation of a literal ‘rDNAome’ consisting of more than 20,000 copies with their high proportion employed in extra-coding functions. Because rDNA has high rates of transcription and recombination, it contributes to genome diversification and can form reproductive barrier. Our overall knowledge of fish cytogenomics grows rapidly by a continuously increasing number of fish genomes sequenced and by use of novel sequencing methods improving genome assembly. The recently revealed exceptional compositional heterogeneity in an ancient fish lineage (gars) sheds new light on the compositional genome evolution in vertebrates generally. We highlight the power of synergy of cytogenetics and genomics in fish cytogenomics, its potential to understand the complexity of genome evolution in vertebrates, which is also linked to clinical applications and the chromosomal backgrounds of speciation. We also summarize the current knowledge on fish cytogenomics and outline its main future avenues. PMID:29443947

  15. Study on polychlorobiphenyl serum levels in French consumers of freshwater fish.

    PubMed

    Desvignes, Virginie; Volatier, Jean-Luc; de Bels, Frédéric; Zeghnoun, Abdelkrim; Favrot, Marie-Christine; Marchand, Philippe; Le Bizec, Bruno; Rivière, Gilles; Leblanc, Jean-Charles; Merlo, Mathilde

    2015-02-01

    Polychlorobiphenyls (PCBs) are persistent pollutants that are widespread in the environment and in foodstuffs, particularly in freshwater fish, which frequently exceed the maximum levels set by European regulations. First, we describe the consumption of freshwater fish and serum PCB levels in French anglers, a population expected to have the highest level of dietary PCB exposure. Second, we investigated whether there is a statistical relationship between serum PCB levels and the angler consumption of freshwater fish with high PCB bioaccumulation potential (PCB-BP(+) freshwater fish) in order to make recommendations with regard to safe consumption of freshwater fish. We conducted a survey of anglers from six sites with contrasting PCB contamination levels. The survey included a food consumption frequency questionnaire and blood samples were taken to assess serum PCB levels. We used a regression model to determine the main factors contributing to serum PCB levels. Consumption of PCB-BP(+) freshwater fish was relatively infrequent. Serum PCB levels of the study population and of women of childbearing age were in the same range as those observed in the French population and in neighbouring European countries, but higher than in the North American population. The two factors with the highest positive association with serum PCB levels were age (R(2)=61%) and the consumption of PCB-BP(+) freshwater fish (R(2)=2%). Using the regression model, we calculated, for several scenarios depending on the age and gender of the population, the maximum annual frequencies for PCB-BP(+) freshwater fish consumption that do not exceed the critical body burden threshold. Following the results of this study, the French agency for food, environmental and occupational health and safety (ANSES) issued an opinion and recommended some specific maximum freshwater fish consumption frequencies to protect the French general population. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Ocean Acidification Effects on Atlantic Cod Larval Survival and Recruitment to the Fished Population

    PubMed Central

    Stiasny, Martina H.; Mittermayer, Felix H.; Sswat, Michael; Voss, Rüdiger; Jutfelt, Fredrik; Chierici, Melissa; Puvanendran, Velmurugu; Mortensen, Atle; Reusch, Thorsten B. H.; Clemmesen, Catriona

    2016-01-01

    How fisheries will be impacted by climate change is far from understood. While some fish populations may be able to escape global warming via range shifts, they cannot escape ocean acidification (OA), an inevitable consequence of the dissolution of anthropogenic carbon dioxide (CO2) emissions in marine waters. How ocean acidification affects population dynamics of commercially important fish species is critical for adapting management practices of exploited fish populations. Ocean acidification has been shown to impair fish larvae’s sensory abilities, affect the morphology of otoliths, cause tissue damage and cause behavioural changes. Here, we obtain first experimental mortality estimates for Atlantic cod larvae under OA and incorporate these effects into recruitment models. End-of-century levels of ocean acidification (~1100 μatm according to the IPCC RCP 8.5) resulted in a doubling of daily mortality rates compared to present-day CO2 concentrations during the first 25 days post hatching (dph), a critical phase for population recruitment. These results were consistent under different feeding regimes, stocking densities and in two cod populations (Western Baltic and Barents Sea stock). When mortality data were included into Ricker-type stock-recruitment models, recruitment was reduced to an average of 8 and 24% of current recruitment for the two populations, respectively. Our results highlight the importance of including vulnerable early life stages when addressing effects of climate change on fish stocks. PMID:27551924

  17. Ocean Acidification Effects on Atlantic Cod Larval Survival and Recruitment to the Fished Population.

    PubMed

    Stiasny, Martina H; Mittermayer, Felix H; Sswat, Michael; Voss, Rüdiger; Jutfelt, Fredrik; Chierici, Melissa; Puvanendran, Velmurugu; Mortensen, Atle; Reusch, Thorsten B H; Clemmesen, Catriona

    2016-01-01

    How fisheries will be impacted by climate change is far from understood. While some fish populations may be able to escape global warming via range shifts, they cannot escape ocean acidification (OA), an inevitable consequence of the dissolution of anthropogenic carbon dioxide (CO2) emissions in marine waters. How ocean acidification affects population dynamics of commercially important fish species is critical for adapting management practices of exploited fish populations. Ocean acidification has been shown to impair fish larvae's sensory abilities, affect the morphology of otoliths, cause tissue damage and cause behavioural changes. Here, we obtain first experimental mortality estimates for Atlantic cod larvae under OA and incorporate these effects into recruitment models. End-of-century levels of ocean acidification (~1100 μatm according to the IPCC RCP 8.5) resulted in a doubling of daily mortality rates compared to present-day CO2 concentrations during the first 25 days post hatching (dph), a critical phase for population recruitment. These results were consistent under different feeding regimes, stocking densities and in two cod populations (Western Baltic and Barents Sea stock). When mortality data were included into Ricker-type stock-recruitment models, recruitment was reduced to an average of 8 and 24% of current recruitment for the two populations, respectively. Our results highlight the importance of including vulnerable early life stages when addressing effects of climate change on fish stocks.

  18. Design complexity in termite-fishing tools of chimpanzees (Pan troglodytes)

    PubMed Central

    Sanz, Crickette; Call, Josep; Morgan, David

    2009-01-01

    Adopting the approach taken with New Caledonian crows (Corvus moneduloides), we present evidence of design complexity in one of the termite-fishing tools of chimpanzees (Pan troglodytes) in the Goualougo Triangle, Republic of Congo. Prior to termite fishing, chimpanzees applied a set of deliberate, distinguishable actions to modify herb stems to fashion a brush-tipped probe, which is different from the form of fishing tools used by chimpanzees in East and West Africa. This means that ‘brush-tipped fishing probes’, unlike ‘brush sticks’, are not a by-product of use but a deliberate design feature absent in other chimpanzee populations. The specialized modifications to prepare the tool for termite fishing, measures taken to repair non-functional brushes and appropriate orientation of the modified end suggest that these wild chimpanzees are attentive to tool modifications. We also conducted experimental trials that showed that a brush-tipped probe is more effective in gathering insects than an unmodified fishing probe. Based on these findings, we suggest that chimpanzees in the Congo Basin have developed an improved fishing probe design. PMID:19324641

  19. Preventing Opioid Use Disorders among Fishing Industry Workers

    PubMed Central

    Morocho, Cesar; King, Lauren; Bartlett, John; Kelsey, Debra; DeSousa, Monica; Biesecker, Gretchen

    2018-01-01

    Fishing industry workers are at high risk for work-related musculoskeletal disorders (MSDs) and injuries. Prescription opioids used to treat pain injuries may put these workers at increased risk for developing substance disorders. Using a Community-Based Participatory Research approach, formative research was conducted to inform the eventual development of relevant interventions to prevent and reduce opioid use disorders among fishing industry workers. Qualitative interviews (n = 21) were conducted to assess: knowledge and attitudes about opioid use disorders; features of fishing work that might affect use and/or access to treatment; and community and organizational capacity for prevention and treatment. Participants reported numerous pathways connecting commercial fishing with opioid use. The combination of high stress and physically tasking job duties requires comprehensive workplace interventions to prevent chronic pain and MSDs, in addition to tailored and culturally responsive treatment options to address opioid use disorders in this population. Public health programs must integrate workplace health and safety protection along with evidence-based primary, secondary, and tertiary interventions in order to address opioid use disorders, particularly among workers in strenuous jobs. PMID:29614742

  20. Preventing Opioid Use Disorders among Fishing Industry Workers.

    PubMed

    Walter, Angela Wangari; Morocho, Cesar; King, Lauren; Bartlett, John; Kelsey, Debra; DeSousa, Monica; Biesecker, Gretchen; Punnett, Laura

    2018-03-31

    Fishing industry workers are at high risk for work-related musculoskeletal disorders (MSDs) and injuries. Prescription opioids used to treat pain injuries may put these workers at increased risk for developing substance disorders. Using a Community-Based Participatory Research approach, formative research was conducted to inform the eventual development of relevant interventions to prevent and reduce opioid use disorders among fishing industry workers. Qualitative interviews ( n = 21) were conducted to assess: knowledge and attitudes about opioid use disorders; features of fishing work that might affect use and/or access to treatment; and community and organizational capacity for prevention and treatment. Participants reported numerous pathways connecting commercial fishing with opioid use. The combination of high stress and physically tasking job duties requires comprehensive workplace interventions to prevent chronic pain and MSDs, in addition to tailored and culturally responsive treatment options to address opioid use disorders in this population. Public health programs must integrate workplace health and safety protection along with evidence-based primary, secondary, and tertiary interventions in order to address opioid use disorders, particularly among workers in strenuous jobs.

  1. Modelling the effects of stranding on the Atlantic salmon population in the Dale River, Norway.

    PubMed

    Sauterleute, Julian F; Hedger, Richard D; Hauer, Christoph; Pulg, Ulrich; Skoglund, Helge; Sundt-Hansen, Line E; Bakken, Tor Haakon; Ugedal, Ola

    2016-12-15

    Rapid dewatering in rivers as a consequence of hydropower operations may cause stranding of juvenile fish and have a negative impact on fish populations. We implemented stranding into an Atlantic salmon population model in order to evaluate long-term effects on the population in the Dale River, Western Norway. Furthermore, we assessed the sensitivity of the stranding model to dewatered area in comparison to biological parameters, and compared different methods for calculating wetted area, the main abiotic input parameter to the population model. Five scenarios were simulated dependent on fish life-stage, season and light level. Our simulation results showed largest negative effect on the population abundance for hydropeaking during winter daylight. Salmon smolt production had highest sensitivity to the stranding mortality of older juvenile fish, suggesting that stranding of fish at these life-stages is likely to have greater population impacts than that of earlier life-stages. Downstream retention effects on the ramping velocity were found to be negligible in the stranding model, but are suggested to be important in the context of mitigation measure design. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. A middle Pleistocene eastern Mediterranean fish refuge: the Tsampika Bay (Rhodes, Greece)

    NASA Astrophysics Data System (ADS)

    Agiadi, K.; Koskeridou, E.; Moissette, P.; Lopez-Otalvaro, G. E.; Quillévéré, F.; Cornée, J. J.

    2012-04-01

    Extensive sampling of the Tsampika marly diatomites reveals the presence of at least three very important fish species, Bregmaceros sp., Sygnathus acus and Spratteloides sp.. Previous records of Bregmaceros sp. in the Mediterranean have suggested that this characteristic Pliocene warm-water circumglobal pelagic fish disappeared from the Mediterranean basin due to the climatic deterioration, after the Gelasian age1,2,3,4. The Tsampika fish-bearing deposits, mainly marly diatomites, are younger than 268 Ka, based on the occurrence of Emiliania huxleyi. Consequently, this is so far the youngest record of Bregmaceros sp. in the Mediterranean, suggesting that typical Pliocene fish may have found refuge in selected localities, such as Tsampika Bay, at least until the Ionian. Evidence for its presence in the Mediterranean basin today is ambiguous. Isolated records of Bregmaceros atlanticus place it in the Sicily Strait5, and off the Israeli and south Turkish coasts6. Although it appears more likely that Bregmaceros atlanticus has been introduced to the modern Mediterranean from the Red Sea, through the Suez Canal, the possibility that it is part of a small population native to the Mediterranean can not be excluded based on present-day data6. Indeed the late Pleistocene Mediterranean fish record is obsolete, due to the lack of appropriate sampling on this subject. Furthermore, the majority of Pleistocene Bregmaceros samples pertain to otoliths, which cannot be unambiguously identified on the species level. As a result, the present findings pose the considerable possibility that the Pleistocene Bregmaceros records belong to two species, B. albyi, the well known post-Messinian Mediterranean fish, and B. atlanticus, which may have invaded the Mediterranean Sea from Gibraltar along with several other warm-water taxa during recurring interglacial periods. The specific identification of the Tsampika fish will undoubtedly shed light to this possibility, and enhance our knowledge on the resilience of fish populations to significant environmental perturbations. Acknowledgments This research has been co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: Heracleitus II. Investing in knowledge society through the European Social Fund.

  3. SEASAT economic assessment. Volume 8: Ocean fishing case study. [economic benefits of SEASAT satellites to ocean fishing industries in the United States and Canada

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The potential application of SEASAT data with regard to ocean fisheries is discussed. Tracking fish populations, indirect assistance in forecasting expected populations and assistance to fishing fleets in avoiding costs incurred due to adverse weather through improved ocean conditions forecasts were investigated. Case studies on fisheries in the United States and Canada are cited.

  4. Lake Michigan: Man's effects on native fish stocks and other biota

    USGS Publications Warehouse

    Wells, LaRue; McLain, Alberton L.

    1973-01-01

    Exploitation was largely responsible for the changes in Lake Michigan fish stocks before the invasion of the smelt, and probably before the invasion of the sea lamprey. The lamprey and alewife, however, have exerted a greater impact than the fishery on native fish populations in recent decades. Accelerated eutrophication and other pollution, although important, have not equalled the other factors in causing changes in native fish populations.

  5. Geographical variation in sound production in the anemonefish Amphiprion akallopisos

    PubMed Central

    Parmentier, E; Lagardère, J.P; Vandewalle, P; Fine, M.L

    2005-01-01

    Because of pelagic-larval dispersal, coral-reef fishes are distributed widely with minimal genetic differentiation between populations. Amphiprion akallopisos, a clownfish that uses sound production to defend its anemone territory, has a wide but disjunct distribution in the Indian Ocean. We compared sounds produced by these fishes from populations in Madagascar and Indonesia, a distance of 6500 km. Differentiation of agonistic calls into distinct types indicates a complexity not previously recorded in fishes' acoustic communication. Moreover, various acoustic parameters, including peak frequency, pulse duration, number of peaks per pulse, differed between the two populations. The geographic comparison is the first to demonstrate ‘dialects’ in a marine fish species, and these differences in sound parameters suggest genetic divergence between these two populations. These results highlight the possible approach for investigating the role of sounds in fish behaviour in reproductive divergence and speciation. PMID:16087425

  6. Framework for Evaluating Habitat Restoration Success with Respect to Fish Habitat- and Population-related Beneficial Use Impairments

    EPA Science Inventory

    A major challenge of evaluating restoration progress is establishing a cause-effect relationship between observed changes in fish abundance and ongoing aquatic habitat restoration. Since 1979, fish populations within the St. Louis River Area of Concern, which were severely degrad...

  7. Local variability mediates vulnerability of trout populations to land use and climate change

    Treesearch

    Brooke E. Penaluna; Jason B. Dunham; Steve F. Railsback; Ivan Arismendi; Sherri L. Johnson; Robert E. Bilby; Mohammad Safeeq; Arne E. Skaugset; James P. Meador

    2015-01-01

    Land use and climate change occur simultaneously around the globe. Fully understanding their separate and combined effects requires a mechanistic understanding at the local scale where their effects are ultimately realized. Here we applied an individual-based model of fish population dynamics to evaluate the role of local stream variability in modifying responses of...

  8. Fish abundance and population stability in a reservoir tailwater and an unregulated headwater stream

    USGS Publications Warehouse

    Jacobs, K.E.; Swink, W.D.

    1983-01-01

    Fish abundance and population stability were compared in the tailwater and in an unregulated tributary of Barren River Lake, a flood control reservoir in south central Kentucky. Fish abundance was greater in the tailwater near the dam and was dominated by three species common in the reservoir: gizzard shad (Dorosoma cepedianum), bluegills (Lepomis macrochirus), and white crappies (Pomoxis annularis). Three riverine suckers were less abundant in the tailwater than in the unregulated stream: northern hog suckers (Hypentelium nigricans), black redhorse (Moxostoma duquesnei), and golden redhorse (Moxostoma erythrurum). The fish populations in the tailwater, particularly common carp (Cyprinus carpio), northern hog suckers, black redhorse, and golden redhorse, were less stable than those in the unregulated stream. Population stability is defined as the extent to which fish remain in a stream section. This study suggests that the occurrence of reservoir species in the tailwater was the result of fish passage from the reservoir during high discharges in fall and winter. Reservoir operations (altered flow, low summer water temperature, and poor summer water quality) probably were responsible for the unstable populations of common carp and riverine suckers in the tailwater.

  9. Simulating mechanisms for dispersal, production and stranding of small forage fish in temporary wetland habitats

    USGS Publications Warehouse

    Yurek, Simeon; DeAngelis, Donald L.; Trexler, Joel C.; Jopp, Fred; Donalson, Douglas D.

    2013-01-01

    Movement strategies of small forage fish (<8 cm total length) between temporary and permanent wetland habitats affect their overall population growth and biomass concentrations, i.e., availability to predators. These fish are often the key energy link between primary producers and top predators, such as wading birds, which require high concentrations of stranded fish in accessible depths. Expansion and contraction of seasonal wetlands induce a sequential alternation between rapid biomass growth and concentration, creating the conditions for local stranding of small fish as they move in response to varying water levels. To better understand how landscape topography, hydrology, and fish behavior interact to create high densities of stranded fish, we first simulated population dynamics of small fish, within a dynamic food web, with different traits for movement strategy and growth rate, across an artificial, spatially explicit, heterogeneous, two-dimensional marsh slough landscape, using hydrologic variability as the driver for movement. Model output showed that fish with the highest tendency to invade newly flooded marsh areas built up the largest populations over long time periods with stable hydrologic patterns. A higher probability to become stranded had negative effects on long-term population size, and offset the contribution of that species to stranded biomass. The model was next applied to the topography of a 10 km × 10 km area of Everglades landscape. The details of the topography were highly important in channeling fish movements and creating spatiotemporal patterns of fish movement and stranding. This output provides data that can be compared in the future with observed locations of fish biomass concentrations, or such surrogates as phosphorus ‘hotspots’ in the marsh.

  10. Intraguild Predation Dynamics in a Lake Ecosystem Based on a Coupled Hydrodynamic-Ecological Model: The Example of Lake Kinneret (Israel)

    PubMed Central

    Makler-Pick, Vardit; Hipsey, Matthew R.; Zohary, Tamar; Carmel, Yohay; Gal, Gideon

    2017-01-01

    The food web of Lake Kinneret contains intraguild predation (IGP). Predatory invertebrates and planktivorous fish both feed on herbivorous zooplankton, while the planktivorous fish also feed on the predatory invertebrates. In this study, a complex mechanistic hydrodynamic-ecological model, coupled to a bioenergetics-based fish population model (DYCD-FISH), was employed with the aim of revealing IGP dynamics. The results indicate that the predation pressure of predatory zooplankton on herbivorous zooplankton varies widely, depending on the season. At the time of its annual peak, it is 10–20 times higher than the fish predation pressure. When the number of fish was significantly higher, as occurs in the lake after atypical meteorological years, the effect was a shift from a bottom-up controlled ecosystem, to the top-down control of planktivorous fish and a significant reduction of predatory and herbivorous zooplankton biomass. Yet, seasonally, the decrease in predatory-zooplankton biomass was followed by a decrease in their predation pressure on herbivorous zooplankton, leading to an increase of herbivorous zooplankton biomass to an extent similar to the base level. The analysis demonstrates the emergence of non-equilibrium IGP dynamics due to intra-annual and inter-annual changes in the physico-chemical characteristics of the lake, and suggests that IGP dynamics should be considered in food web models in order to more accurately capture mass transfer and trophic interactions. PMID:28353646

  11. Visual Basic, Excel-based fish population modeling tool - The pallid sturgeon example

    USGS Publications Warehouse

    Moran, Edward H.; Wildhaber, Mark L.; Green, Nicholas S.; Albers, Janice L.

    2016-02-10

    The model presented in this report is a spreadsheet-based model using Visual Basic for Applications within Microsoft Excel (http://dx.doi.org/10.5066/F7057D0Z) prepared in cooperation with the U.S. Army Corps of Engineers and U.S. Fish and Wildlife Service. It uses the same model structure and, initially, parameters as used by Wildhaber and others (2015) for pallid sturgeon. The difference between the model structure used for this report and that used by Wildhaber and others (2015) is that variance is not partitioned. For the model of this report, all variance is applied at the iteration and time-step levels of the model. Wildhaber and others (2015) partition variance into parameter variance (uncertainty about the value of a parameter itself) applied at the iteration level and temporal variance (uncertainty caused by random environmental fluctuations with time) applied at the time-step level. They included implicit individual variance (uncertainty caused by differences between individuals) within the time-step level.The interface developed for the model of this report is designed to allow the user the flexibility to change population model structure and parameter values and uncertainty separately for every component of the model. This flexibility makes the modeling tool potentially applicable to any fish species; however, the flexibility inherent in this modeling tool makes it possible for the user to obtain spurious outputs. The value and reliability of the model outputs are only as good as the model inputs. Using this modeling tool with improper or inaccurate parameter values, or for species for which the structure of the model is inappropriate, could lead to untenable management decisions. By facilitating fish population modeling, this modeling tool allows the user to evaluate a range of management options and implications. The goal of this modeling tool is to be a user-friendly modeling tool for developing fish population models useful to natural resource managers to inform their decision-making processes; however, as with all population models, caution is needed, and a full understanding of the limitations of a model and the veracity of user-supplied parameters should always be considered when using such model output in the management of any species.

  12. Behavioural responses to human-induced change: Why fishing should not be ignored.

    PubMed

    Diaz Pauli, Beatriz; Sih, Andrew

    2017-03-01

    Change in behaviour is usually the first response to human-induced environmental change and key for determining whether a species adapts to environmental change or becomes maladapted. Thus, understanding the behavioural response to human-induced changes is crucial in the interplay between ecology, evolution, conservation and management. Yet the behavioural response to fishing activities has been largely ignored. We review studies contrasting how fish behaviour affects catch by passive (e.g., long lines, angling) versus active gears (e.g., trawls, seines). We show that fishing not only targets certain behaviours, but it leads to a multitrait response including behavioural, physiological and life-history traits with population, community and ecosystem consequences. Fisheries-driven change (plastic or evolutionary) of fish behaviour and its correlated traits could impact fish populations well beyond their survival per se , affecting predation risk, foraging behaviour, dispersal, parental care, etc., and hence numerous ecological issues including population dynamics and trophic cascades . In particular, we discuss implications of behavioural responses to fishing for fisheries management and population resilience. More research on these topics, however, is needed to draw general conclusions, and we suggest fruitful directions for future studies.

  13. Estimates of fish consumption rates for consumers of bought and self-caught fish in Connecticut, Florida, Minnesota, and North Dakota.

    PubMed

    Moya, Jacqueline; Itkin, Cheryl; Selevan, Sherry G; Rogers, John W; Clickner, Robert P

    2008-09-15

    Fish consumption rates derived from national surveys may not accurately reflect consumption rates in a particular population such as recreational anglers. Many state and local health agencies in the U.S. have conducted area-specific surveys to study fish consumption patterns in local populations, assess exposure to environmental contaminants, or evaluate compliance with fish advisories. The U.S. Environmental Protection Agency (EPA) has analyzed the raw data from fish consumption surveys in Florida, Connecticut, Minnesota, and North Dakota for the purpose of deriving distributions of fish consumption rates and studying the variables that may be more predictive of high-end consumers. Distributions of fish consumption for different age cohorts, ethnic groups, socioeconomic statuses, types of fish (i.e., freshwater, marine, estuarine), and source of fish (i.e., store-bought versus self-caught) were derived. Consumption of fish and shellfish for those who consume both caught and bought fish is higher than those who reported eating only bought or only self-caught. Mean fish consumption per kilogram of body weight ranged from 0.11 g/kg-day to 2.3 g/kg-day. The highest values were observed in Florida for children 1<6 years of age. The Florida data show a statistically significant increase in the percentage of the population reporting fish and shellfish consumption with an increase in household income and education. This trend was not observed in the other states.

  14. Research in thermal biology: Burning questions for coldwater stream fishes

    USGS Publications Warehouse

    McCullough, D.A.; Bartholow, J.M.; Jager, H.I.; Beschta, R.L.; Cheslak, E.F.; Deas, M.L.; Ebersole, J.L.; Foott, J.S.; Johnson, S.L.; Marine, K.R.; Mesa, M.G.; Petersen, J.H.; Souchon, Y.; Tiffan, K.F.; Wurtsbaugh, W.A.

    2009-01-01

    With the increasing appreciation of global warming impacts on ecological systems, in addition to the myriad of land management effects on water quality, the number of literature citations dealing with the effects of water temperature on freshwater fish has escalated in the past decade. Given the many biological scales at which water temperature effects have been studied, and the growing need to integrate knowledge from multiple disciplines of thermal biology to fully protect beneficial uses, we held that a survey of the most promising recent developments and an expression of some of the remaining unanswered questions with significant management implications would best be approached collectively by a diverse research community. We have identified five specific topic areas of renewed research where new techniques and critical thought could benefit coldwater stream fishes (particularly salmonids): molecular, organism, population/species, community and ecosystem, and policy issues in water quality. Our hope is that information gained through examination of recent research fronts linking knowledge at various scales will prove useful in managing water quality at a basin level to protect fish populations and whole ecosystems. Standards of the past were based largely on incipient lethal and optimum growth rate temperatures for fish species, while future standards should consider all integrated thermal impacts to the organism and ecosystem. ?? Taylor and Francis Group, LLC.

  15. Telomere content measurement in human hematopoietic cells: Comparative analysis of qPCR and Flow-FISH techniques.

    PubMed

    Wand, Taylor; Fang, Mike; Chen, Christina; Hardy, Nathan; McCoy, J Philip; Dumitriu, Bogdan; Young, Neal S; Biancotto, Angélique

    2016-10-01

    Abnormal telomere lengths have been linked to cancer and other hematologic disorders. Determination of mean telomere content (MTC) is traditionally performed by Southern blotting and densitometry, giving a mean telomere restriction fragment (TRF) value for the total cell population studied. Here, we compared a quantitative Polymerase Chain Reaction approach (qPCR) and a flow cytometric approach, fluorescence in situ hybridization (Flow-FISH), to evaluate telomere content distribution in total patient peripheral blood mononuclear cells or specific cell populations. Flow-FISH is based on in situ hybridization using a fluorescein-labeled peptide nucleic acid (PNA) (CCCTAA) 3 probe and DNA staining with propidium iodide. We showed that both qPCR and Flow-FISH provide a robust measurement, with Flow-FISH measuring a relative content longer than qPCR at a single cell approach and that TRF2 fluorescence intensity did not correlate with MTC. Both methods showed comparable telomere content reduction with age, and the rate of relative telomere loss was similar. Published 2016 Wiley Periodicals Inc. This article is a US government work and, as such, is in the public domain in the United States of America. Published 2016 Wiley Periodicals Inc. This article is a US government work and, as such, is in the public domain in the United States of America.

  16. Research in thermal biology: Burning questions for coldwater stream fishes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCullough, Dr. Dale; Bartholow, Dr. John; Jager, Yetta

    2009-01-01

    With the increasing appreciation of global warming impacts on ecological systems in addition to the myriad of land management effects on water quality, the number of literature citations dealing with the effects of water temperature on freshwater fish has escalated in the past decade. Given the many biological scales at which water temperature effects have been studied and the growing need to integrate knowledge from multiple disciplines of thermal biology to fully protect beneficial uses, we held that a survey of the most promising recent developments and an expression of some of the remaining unanswered questions with significant management implicationsmore » would best be approached collectively by a diverse research community. We have identified five specific topic areas of renewed research where new techniques and critical thought could benefit coldwater stream fishes (particularly salmonids): molecular, organism, population/species, community and ecosystem, and policy issues in water quality. Our hope is that information gained through examination of recent research fronts linking knowledge at various scales will prove useful in managing water quality at a basin level to protect fish populations and whole ecosystems. Standards of the past were based largely on incipient lethal and optimum growth rate temperatures for fish species, while future standards should consider all integrated thermal impacts to the organism and ecosystem.« less

  17. Using a Web-Based Diary Method to Estimate Risks and Benefits from Fish Consumption.

    PubMed

    Connelly, Nancy A; Lauber, T Bruce; Niederdeppe, Jeff; Knuth, Barbara A

    2018-06-01

    Accurate estimates of the amount and type of fish people eat are necessary to determine the health benefits and risks of consuming fish, and to assess compliance with fish consumption guidelines issued for fish affected by chemical contaminants. We developed a web-based and mobile-phone-enabled diary methodology to collect detailed fish consumption information for two 16-week periods in the summers of 2014 and 2015. We recruited study participants from two populations living in the Great Lakes region-women of childbearing age (WCBA) and urban residents who had purchased fishing licenses. In this article, we describe the methodology in detail and provide evidence related to participation rates, the representativeness of our sample over time, and both convergent validity and reliability of the data collection methods. Overall, 56% of WCBA and 50% of urban anglers provided complete data across both data collection periods. Among those who provided information at the beginning of Year 2, 97% of both audiences provided information throughout the entire 16-week period. Those who participated throughout the two-year period were slightly older on average (1.9-2.5 years) than other members of our original samples. We conclude that using diaries with web and smartphone technology, combined with incentives and persistent communication, has strong potential for assessing fish consumption in other areas of the country or for situations where the potential risks associated with fish consumption are substantial and the cost can be justified. © 2017 Society for Risk Analysis.

  18. Weapons testing and endangered fish coexist in Florida

    USGS Publications Warehouse

    Jelks, Howard; Tate, Bill; Jordan, Frank

    2011-01-01

    Okaloosa darters (Etheostoma okaloosae) are small fish found only in a few streams in the Florida panhandle. This species has been listed since 1973 as endangered due to habitat alteration resulting from erosion, the potential competition from brown darters (E. edwini), and a limited geographic distribution. In recent years, however, Okaloosa darters have benefited from improved resource management and adaptive population monitoring techniques developed collaboratively by the U.S. Fish and Wildlife Service (FWS), U.S. Geological Survey (USGS), Loyola University New Orleans, and Eglin Air Force Base. As a result, the FWS reclassified the Okaloosa darter to the less critical category of threatened in March 2011.

  19. Age, growth, and mortality of introduced flathead catfish in Atlantic rivers and a review of other populations

    USGS Publications Warehouse

    Kwak, T.J.; Pine, William E.; Waters, D.S.

    2006-01-01

    Knowledge of individual growth and mortality rates of an introduced fish population is required to determine the success and degree of establishment as well as to predict the fish's impact on native fauna. The age and growth of flathead catfish Pylodictis olivaris have been studied extensively in the species' native and introduced ranges, and estimates have varied widely. We quantified individual growth rates and age structure of three introduced flathead catfish populations in North Carolina's Atlantic slope rivers using sagittal otoliths, determined trends in growth rates over time, compared these estimates among rivers in native and introduced ranges, and determined total mortality rates for each population. Growth was significantly faster in the Northeast Cape Fear River (NECFR) than in the Lumber and Neuse rivers. Fish in the NECFR grew to a total length of 700 mm by age 7, whereas fish in the Neuse and Lumber river populations reached this length by 8 and 10 years, respectively. The growth rates of fish in all three rivers were consistently higher than those of native riverine populations, similar to those of native reservoir populations, and slower than those of other introduced riverine populations. In general, recent cohorts (1998-2001 year-classes) in these three rivers exhibited slower growth among all ages than did cohorts previous to the 1998 year-class. The annual total mortality rate was similar among the three rivers, ranging from 0.16 to 0.20. These mortality estimates are considerably lower than those from the Missouri and Mississippi rivers, suggesting relatively low fishing mortality for these introduced populations. Overall, flathead catfish populations in reservoirs grow faster than those in rivers, the growth rates of introduced populations exceed those of native populations, and eastern United States populations grow faster than those in western states. Such trends constitute critical information for understanding and managing local populations.

  20. Cured meat, vegetables, and bean-curd foods in relation to childhood acute leukemia risk: a population based case-control study.

    PubMed

    Liu, Chen-Yu; Hsu, Yi-Hsiang; Wu, Ming-Tsang; Pan, Pi-Chen; Ho, Chi-Kung; Su, Li; Xu, Xin; Li, Yi; Christiani, David C

    2009-01-13

    Consumption of cured/smoked meat and fish leads to the formation of carcinogenic N-nitroso compounds in the acidic stomach. This study investigated whether consumed cured/smoked meat and fish, the major dietary resource for exposure to nitrites and nitrosamines, is associated with childhood acute leukemia. A population-based case-control study of Han Chinese between 2 and 20 years old was conducted in southern Taiwan. 145 acute leukemia cases and 370 age- and sex-matched controls were recruited between 1997 and 2005. Dietary data were obtained from a questionnaire. Multiple logistic regression models were used in data analyses. Consumption of cured/smoked meat and fish more than once a week was associated with an increased risk of acute leukemia (OR = 1.74; 95% CI: 1.15-2.64). Conversely, higher intake of vegetables (OR = 0.55; 95% CI: 0.37-0.83) and bean-curd (OR = 0.55; 95% CI: 0.34-0.89) was associated with a reduced risk. No statistically significant association was observed between leukemia risk and the consumption of pickled vegetables, fruits, and tea. Dietary exposure to cured/smoked meat and fish may be associated with leukemia risk through their contents of nitrites and nitrosamines among children and adolescents, and intake of vegetables and soy-bean curd may be protective.

  1. Life history, population viability, and the potential for local adaptation in isolated trout populations

    Treesearch

    K. J. Carim; Y. Vindenes; L. A. Eby; C. Barfoot; L. A. Vollestad

    2017-01-01

    Habitat loss and fragmentation have caused population decline across taxa through impacts on life history diversity, dispersal patterns, and gene flow. Yet, intentional isolation of native fish populations is a frequently used management strategy to protect against negative interactions with invasive fish species. We evaluated the population viability and genetic...

  2. THE COMPETITION BETWEEN METHYLMERCURY RISKS AND OMEGA-3 POLYUNSATURATED FATTY ACID BENEFITS: A REVIEW OF CONFLICTING EVIDENCE ON FISH CONSUMPTION AND CARDIOVASCULAR HEALTH.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LIPFERT, F.W.; SULLIVAN, T.M.

    2006-10-31

    The health concerns of methylmercury (MeHg) contamination of seafood have recently been extended to include cardiovascular effects, especially premature mortality. Although the fatty acids (fish oils) found in most species are thought to confer a wide range of health benefits, especially to the cardiovascular system, some epidemiological studies have suggested that such benefits may be offset by adverse effects of MeHg. This comprehensive review is based on searches of the NIH MEDLINE database and compares and contrasts 145 published studies involving cardiovascular effects and exposures to mercury and other fish contaminants, intake of fatty acids including dietary supplements of fishmore » oils, and rates of seafood consumption. Since few of these studies include adequate simultaneous measurements of all of these potential predictor variables, we summarized their effects separately, across the available studies of each, and then drew conclusions based on the aggregated findings. It is important to realize that studies of seafood consumption encompass the net effects of all of these predictor variables, but that seafood intake studies are rarely supported by human biomarker measurements that reflect the actual uptake of harmful as well as beneficial fish ingredients. As a result, exposure measurement error is an issue when comparing studies and predictor variables. It is also possible that the observed benefits of eating fish may relate more to the characteristics of the consumers than to those of the fish. We found the evidence for adverse cardiovascular effects of MeHg to be sparse and unconvincing. Studies of cardiovascular mortality show net benefits, and the findings of adverse effects are mainly limited to studies Finland at high mercury exposure levels. By contrast, a very consistent picture of beneficial effects is seen for fatty acids, after recognizing the effects of exposure uncertainties and the presence of threshold effects. Studies based on measured biomarker levels are seen to be the most reliable and present a convincing picture of strong beneficial effects, especially for those causes of death involving cardiac arrhythmia. This conclusion also extends to studies of fish-oil supplementation. Studies based on fish consumption show mainly benefits from increased consumption. This finding is supported by an ecological study at the national population level, for which the lifestyle effects that might be correlated with fish consumption within a given population would be expected to ''average out'' across nations. Finally, the net survival benefits resulting from eating fish are consistent with studies involving complete diets, although benefits are also seen to accrue from reduced consumption of red meat and saturated fats.« less

  3. Fishing in urban New Jersey: Ethnicity affects information sources, perception and compliance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burger, J.; Pflugh, K.K.; Lurig, L.

    1999-04-01

    Recreational and subsistence angling are important aspects of urban culture for much of North American where people are concentrated near the coasts or major rivers. Yet there are fish and shellfish advisories for many estuaries, rivers, and lakes, and these are not always heeded. This paper examines fishing behavior, sources of information, perceptions, and compliance with fishing advisories as a function of ethnicity for people fishing in the Newark Bay Complex of the New York-New Jersey Harbor. The authors test the null hypothesis that there were no ethnic differences in sources of information, perceptions of the safety of fish consumption,more » and compliance with advisories. There were ethnic differences in consumption rates, sources of information about fishing, knowledge about the safety of the fish, awareness of fishing advisories or of the correct advisories, and knowledge about risks for increased cancer and to unborn and young children. In general, the knowledge base was much lower for Hispanics, was intermediate for blacks, and was greatest for whites. When presented with a statement about the potential risks from eating fish, there were no differences in their willingness to stop eating fish or to encourage pregnant women to stop. These results indicate a willingness to comply with advisories regardless of ethnicity, but a vast difference in the base knowledge necessary to make an informed risk decisions about the safety of fish and shellfish. Although the overall median income level of the population was in the $25,000--34,999 income category, for Hispanics it was on the border between $15,000--24,999 and $25,000--34,999.« less

  4. Estimating the impact of oyster restoration scenarios on transient fish production

    USGS Publications Warehouse

    McCoy, Elizabeth; Borrett, Stuart R.; LaPeyre, Megan K.; Peterson, Bradley J.

    2017-01-01

    Oyster reef restoration projects are increasing in number both to enhance oyster density and to retain valuable ecosystem services provided by oyster reefs. Although some oyster restoration projects have demonstrated success by increasing density and biomass of transient fish, it still remains a challenge to quantify the effects of oyster restoration on transient fish communities. We developed a bioenergetics model to assess the impact of selected oyster reef restoration scenarios on associated transient fish species. We used the model to analyze the impact of changes in (1) oyster population carrying capacity; (2) oyster population growth rate; and (3) diet preference of transient fish on oyster reef development and associated transient fish species. Our model results indicate that resident fish biomass is directly affected by oyster restoration and oyster biomass, and oyster restoration can have cascading impacts on transient fish biomass. Furthermore, the results highlight the importance of a favorable oyster population growth rate during early restoration years, as it can lead to rapid increases in mean oyster biomass and biomass of transient fish species. The model also revealed that a transient fish's diet solely dependent on oyster reef-derived prey could limit the biomass of transient fish species, emphasizing the importance of habitat connectivity in estuarine areas to enhance transient fish species biomass. Simple bioenergetics models can be developed to understand the dynamics of a system and make qualitative predictions of management and restoration scenarios.

  5. Spawning site selection and contingent behavior in Common Snook, Centropomus undecimalis.

    PubMed

    Lowerre-Barbieri, Susan; Villegas-Ríos, David; Walters, Sarah; Bickford, Joel; Cooper, Wade; Muller, Robert; Trotter, Alexis

    2014-01-01

    Reproductive behavior affects spatial population structure and our ability to manage for sustainability in marine and diadromous fishes. In this study, we used fishery independent capture-based sampling to evaluate where Common Snook occurred in Tampa Bay and if it changed with spawning season, and passive acoustic telemetry to assess fine scale behavior at an inlet spawning site (2007-2009). Snook concentrated in three areas during the spawning season only one of which fell within the expected spawning habitat. Although in lower numbers, they remained in these areas throughout the winter months. Acoustically-tagged snook (n = 31) showed two seasonal patterns at the spawning site: Most fish occurred during the spawning season but several fish displayed more extended residency, supporting the capture-based findings that Common Snook exhibit facultative catadromy. Spawning site selection for iteroparous, multiple-batch spawning fishes occurs at the lifetime, annual, or intra-annual temporal scales. In this study we show colonization of a new spawning site, indicating that lifetime spawning site fidelity of Common Snook is not fixed at this fine spatial scale. However, individuals did exhibit annual and intra-seasonal spawning site fidelity to this new site over the three years studied. The number of fish at the spawning site increased in June and July (peak spawning months) and on new and full lunar phases indicating within population variability in spawning and movement patterns. Intra-seasonal patterns of detection also differed significantly with sex. Common Snook exhibited divergent migration tactics and habitat use at the annual and estuarine scales, with contingents using different overwintering habitat. Migration tactics also varied at the spawning site at the intra-seasonal scale and with sex. These results have important implications for understanding how reproductive behavior affects spatio-temporal patterns of fish abundance and their resilience to disturbance events and fishing pressure.

  6. Fish can get diseases too

    USGS Publications Warehouse

    Winton, J.R.; Mesa, M.; Kurath, G.; Elliot, D.

    2005-01-01

    Infectious diseases are increasingly recognized as an important component of the ecology of fish in the wild. Many of the viral, bacterial, protozoan and fungal pathogens of fish that were initially discovered in captive fish have their origin among wild populations; however, the impact of disease among these free-ranging stocks has been difficult to study. At the WFRC, combinations of field and laboratory investigations, aided by the tools of molecular biology, have begun to provide information on the ecology of infectious diseases among natural populations of fish in both freshwater and marine ecosystems.

  7. Migration and spawning of radio-tagged zulega Prochilodus argenteus in a dammed Brazilian river

    USGS Publications Warehouse

    Godinho, Alexandre L.; Kynard, B.

    2006-01-01

    It is difficult for agencies to evaluate the impacts of the many planned dams on Sa??o Francisco River, Brazil, migratory fishes because fish migrations are poorly known. We conducted a study on zulega Prochilodus argenteus, an important commercial and recreational fish in the Sa??o Francisco River, to identify migrations and spawning areas and to determine linear home range. During two spawning seasons (2001-2003), we radio-tagged fish in three main-stem reaches downstream of Tre??s Marias Dam (TMD), located at river kilometer (rkm) 2,109. We tagged 10 fish at Tre??s Marias (TM), which is 5 km downstream of TMD; 12 fish at Pontal, which is 28 km downstream of TMD and which includes the mouth of the Abaete?? River, and 10 fish at Cilga, which is 45 km downstream of TMD. Late-stage (ripe) adults tagged in each area during the spawning season remained at or near the tagging site, except for four Cilga fish that went to Pontal and probably spawned. The Pontal area at the Abaete?? River mouth was the most important spawning site we found. Prespawning fish moved back and forth between main-stem staging areas upstream of the Abaete?? River mouth and Pontal for short visits. These multiple visits were probably needed as ripe fish waited for spawning cues from a flooding Abaete?? River. Some fish homed to prespaw ning staging areas, spawning areas, and nonspawning areas. The migratory style of zulega was dualistic, with resident and migratory fish. Total linear home range was also dualistic, with small (<26-km) and large (53-127-km) ranges. The locations of spawning areas and home ranges suggest that the Pontal group (which includes Cilga fish) is one population that occupies about 110 km. The Pontal population overlaps a short distance with a population located downstream of Cilga. Movements of late-stage TM adults suggest that the TM group is a separate population, possibly with connections to populations upstream of TMD. ?? Copyright by the American Fisheries Society 2006.

  8. Ciguatera risk management in French Polynesia: the case study of Raivavae Island (Australes Archipelago).

    PubMed

    Chinain, Mireille; Darius, H Taiana; Ung, André; Fouc, Mote Tchou; Revel, Taina; Cruchet, Philippe; Pauillac, Serge; Laurent, Dominique

    2010-10-01

    Based on epidemiological data available through long-term monitoring surveys conducted by both the Public Health Directorate and the Louis Malardé Institute, ciguatera is highly endemic in French Polynesia, most notably in Raivavae (Australes) which appears as a hot spot of ciguatera with an average incidence rate of 140 cases/10,000 population for the period 2007-2008. In order to document the ciguatera risk associated with Raivavae lagoon, algal and toxin-based field monitoring programs were conducted in this island from April 2007 to May 2008. Practically, the distribution, abundance and toxicity of Gambierdiscus populations, along with the toxicity levels in 160 fish distributed within 25 distinct species, were assessed in various sampling locations. Herbivores such as Scarids (parrotfish) and Acanthurids (unicornfish) were rated as high-risk species based on receptor-binding assay toxicity data. A map of the risk stratification within the Raivavae lagoon was also produced, which indicates that locations where both natural and man-made disturbances have occurred remained the most susceptible to CFP incidents. Our findings also suggest that, locally, the traditional knowledge about ciguatera may not be scientifically complete but is functionally correct. Community education resulted in self-regulating behaviour towards avoidance of high-risk fish species and fishing locations. Copyright 2009 Elsevier Ltd. All rights reserved.

  9. The Influence of Life History Variability on Population Connectivity: Development and Application of a Trait-Based Biophysical Model of Individuals

    NASA Astrophysics Data System (ADS)

    Wong-Ala, J.; Neuheimer, A. B.; Hixon, M.; Powell, B.

    2016-02-01

    Connectivity estimates, which measure the exchange of individuals among populations, are necessary to create effective reserves for marine life. Connectivity can be influenced by a combination of biology (e.g. spawning time) and physics (e.g. currents). In the past a dispersal model was created in an effort to explain connectivity for the highly sought after reef fish Lau`ipala (Yellow Tang, Zebrasoma flavescens) around Hawai`i Island using physics alone, but this was shown to be insufficient. Here we created an individual based model (IBM) to describe Lau`ipala life history and behavior forced with ocean currents and temperature (via coupling to a physical model) to examine biophysical interactions. The IBM allows for tracking of individual fish from spawning to settlement, and individual variability in modeled processes. We first examined the influence of different reproductive (e.g. batch vs. constant spawners), developmental (e.g. pelagic larval duration), and behavioral (e.g. active vs. passive buoyancy control) traits on modeled connectivity estimates for larval reef fish around Hawai`i Island and compared results to genetic observations of parent-offspring pair distribution. Our model is trait-based which allows individuals to vary in life history strategies enabling mechanistic links between predictions and underlying traits and straightforward applications to other species and sites.

  10. Sampling characteristics and calibration of snorkel counts to estimate stream fish populations

    USGS Publications Warehouse

    Weaver, D.; Kwak, Thomas J.; Pollock, Kenneth

    2014-01-01

    Snorkeling is a versatile technique for estimating lotic fish population characteristics; however, few investigators have evaluated its accuracy at population or assemblage levels. We evaluated the accuracy of snorkeling using prepositioned areal electrofishing (PAE) for estimating fish populations in a medium-sized Appalachian Mountain river during fall 2008 and summer 2009. Strip-transect snorkel counts were calibrated with PAE counts in identical locations among macrohabitats, fish species or taxa, and seasons. Mean snorkeling efficiency (i.e., the proportion of individuals counted from the true population) among all taxa and seasons was 14.7% (SE, 2.5%), and the highest efficiencies were for River Chub Nocomis micropogon at 21.1% (SE, 5.9%), Central Stoneroller Campostoma anomalum at 20.3% (SE, 9.6%), and darters (Percidae) at 17.1% (SE, 3.7%), whereas efficiencies were lower for shiners (Notropis spp., Cyprinella spp., Luxilus spp.) at 8.2% (SE, 2.2%) and suckers (Catostomidae) at 6.6% (SE, 3.2%). Macrohabitat type, fish taxon, or sampling season did not significantly explain variance in snorkeling efficiency. Mean snorkeling detection probability (i.e., probability of detecting at least one individual of a taxon) among fish taxa and seasons was 58.4% (SE, 6.1%). We applied the efficiencies from our calibration study to adjust snorkel counts from an intensive snorkeling survey conducted in a nearby reach. Total fish density estimates from strip-transect counts adjusted for snorkeling efficiency were 7,288 fish/ha (SE, 1,564) during summer and 15,805 fish/ha (SE, 4,947) during fall. Precision of fish density estimates is influenced by variation in snorkeling efficiency and sample size and may be increased with additional sampling effort. These results demonstrate the sampling properties and utility of snorkeling to characterize lotic fish assemblages with acceptable efficiency and detection probability, less effort, and no mortality, compared with traditional sampling methods.

  11. Putting pharmaceuticals into the wider context of challenges to fish populations in rivers

    PubMed Central

    Johnson, Andrew C.; Sumpter, John P.

    2014-01-01

    The natural range of fish species in our rivers is related to flow, elevation, temperature, local habitat and connectivity. For over 2000 years, humans have altered to varying degrees the river habitat. In the past 200 years, we added to the environmental disruption by discharging poorly treated sewage, nutrients and industrial waste into our rivers. For many rivers, the low point arrived during the period of 1950s–1970s, when rapid economic development overrode environmental concerns and dissolved oxygen concentrations dropped to zero. In these more enlightened times, gross river pollution is a thing of the past in the Developed World. However, persistent legacy chemical contaminants can be found in fish long after their discharge ceased. Changes in habitat quality and morphology caused and continue to cause the disappearance of fish species. The range of fish stressors has now increased as temperatures rise, and non-native fish introductions bring new diseases. The threat from pharmaceuticals to fish populations remains hypothetical, and no studies have yet linked change in fish populations to exposure. PMID:25405969

  12. Individual differences in cognition among teleost fishes.

    PubMed

    Lucon-Xiccato, Tyrone; Bisazza, Angelo

    2017-08-01

    Individual differences in cognitive abilities have been thoroughly investigated in humans and to a lesser extent in other mammals. Despite the growing interest in studying cognition in other taxonomic groups, data on individual differences are scarce for non-mammalian species. Here, we review the literature on individual differences in cognitive abilities in teleost fishes. Relatively few studies have directly addressed this topic and have provided evidence of consistent and heritable individual variation in cognitive abilities in fish. We found much more evidence of individual cognitive differences in other research areas, namely sex differences, personality differences, cerebral lateralisation and comparison between populations. Altogether, these studies suggest that individual differences in cognition are as common in fish as in warm-blooded vertebrates. Based on the example of research on mammals, we suggest directions for future investigation in fish. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Climatic forcing and larval dispersal capabilities shape the replenishment of fishes and their habitat-forming biota on a tropical coral reef.

    PubMed

    Wilson, Shaun K; Depcyznski, Martial; Fisher, Rebecca; Holmes, Thomas H; Noble, Mae M; Radford, Ben T; Rule, Michael; Shedrawi, George; Tinkler, Paul; Fulton, Christopher J

    2018-02-01

    Fluctuations in marine populations often relate to the supply of recruits by oceanic currents. Variation in these currents is typically driven by large-scale changes in climate, in particular ENSO (El Nino Southern Oscillation). The dependence on large-scale climatic changes may, however, be modified by early life history traits of marine taxa. Based on eight years of annual surveys, along 150 km of coastline, we examined how ENSO influenced abundance of juvenile fish, coral spat, and canopy-forming macroalgae. We then investigated what traits make populations of some fish families more reliant on the ENSO relationship than others. Abundance of juvenile fish and coral recruits was generally positively correlated with the Southern Oscillation Index (SOI), higher densities recorded during La Niña years, when the ENSO-influenced Leeuwin Current is stronger and sea surface temperature higher. The relationship is typically positive and stronger among fish families with shorter pelagic larval durations and stronger swimming abilities. The relationship is also stronger at sites on the coral back reef, although the strongest of all relationships were among the lethrinids ( r  = .9), siganids ( r  = .9), and mullids ( r  = .8), which recruit to macroalgal meadows in the lagoon. ENSO effects on habitat seem to moderate SOI-juvenile abundance relationship. Macroalgal canopies are higher during La Niña years, providing more favorable habitat for juvenile fish and strengthening the SOI effect on juvenile abundance. Conversely, loss of coral following a La Niña-related heat wave may have compromised postsettlement survival of coral dependent species, weakening the influence of SOI on their abundance. This assessment of ENSO effects on tropical fish and habitat-forming biota and how it is mediated by functional ecology improves our ability to predict and manage changes in the replenishment of marine populations.

  14. Impact of global warming and rising CO2 levels on coral reef fishes: what hope for the future?

    PubMed

    Munday, Philip L; McCormick, Mark I; Nilsson, Göran E

    2012-11-15

    Average sea-surface temperature and the amount of CO(2) dissolved in the ocean are rising as a result of increasing concentrations of atmospheric CO(2). Many coral reef fishes appear to be living close to their thermal optimum, and for some of them, even relatively moderate increases in temperature (2-4°C) lead to significant reductions in aerobic scope. Reduced aerobic capacity could affect population sustainability because less energy can be devoted to feeding and reproduction. Coral reef fishes seem to have limited capacity to acclimate to elevated temperature as adults, but recent research shows that developmental and transgenerational plasticity occur, which might enable some species to adjust to rising ocean temperatures. Predicted increases in P(CO(2)), and associated ocean acidification, can also influence the aerobic scope of coral reef fishes, although there is considerable interspecific variation, with some species exhibiting a decline and others an increase in aerobic scope at near-future CO(2) levels. As with thermal effects, there are transgenerational changes in response to elevated CO(2) that could mitigate impacts of high CO(2) on the growth and survival of reef fishes. An unexpected discovery is that elevated CO(2) has a dramatic effect on a wide range of behaviours and sensory responses of reef fishes, with consequences for the timing of settlement, habitat selection, predator avoidance and individual fitness. The underlying physiological mechanism appears to be the interference of acid-base regulatory processes with brain neurotransmitter function. Differences in the sensitivity of species and populations to global warming and rising CO(2) have been identified that will lead to changes in fish community structure as the oceans warm and becomes more acidic; however, the prospect for acclimation and adaptation of populations to these threats also needs to be considered. Ultimately, it will be the capacity for species to adjust to environmental change over coming decades that will determine the impact of climate change on marine ecosystems.

  15. Blood pressure, serum lipids, and fatty acids in populations on a lake-fish diet or on a vegetarian diet in Tanzania.

    PubMed

    Pauletto, P; Puato, M; Angeli, M T; Pessina, A C; Munhambo, A; Bittolo-Bon, G; Galli, C

    1996-03-01

    Major risk factors for coronary heart disease were assessed in two populations of Tanzania, one on a fish diet (FD) living along the coast of Lake Nyasa, and the other, mainly on a vegetarian diet (VD), living in a farming area. Lower blood pressure values were found in the FD subjects (n = 618) vs. VD (n = 618) (systolic blood pressure, SBP, 120 +/- 15 vs. 135 +/- 20, P < 0.01; diastolic blood pressure, DBP, 70 +/- 9 vs. 78 +/- 11, P < 0.01, respectively). In an FD subgroup (n = 61), total cholesterol (TC) (122 vs. 136 mg/dL, P < 0.01); triglycerides (TG) (82 vs. 105 mg/dL, P < 0.01); and lipoprotein (a) [Lp(a)] (19.9 +/- 18.4 vs. 32.3 +/- 22.4, P < 0.001) were lower than in a VD subgroup (n = 55). Serum fatty acids (FA) in the FD subgroup were as follows: eicosapentaenoic acid (EPA) (20:5) 2.48 vs. 0.72%, docosahexaenoic acid (DHA) (22:6) 5.93 vs. 1.49%, vs. the VD, respectively. Arachidonic acid (AA) (20:4n-6) also was higher in the FD vs. the VD group (9.85 vs. 8.30%, P < 0.05), whereas 18:2n-6 was about double (23.97 and 14.85%) in VD vs. FD. The peculiar serum FA pattern in FD reflected the FA of dietary fish. In fact, in four main species of lake fish, DHA was 8-19%, higher than EPA (1.8-4.2%), in contrast with the situation in cold-water fish, and AA was 5.8-8%, higher than in cold-water fish. The data, obtained in populations strictly on natural, unprocessed, low-fat diets, show that a diet based on freshwater fish results in lower BP, serum TC, TG, and Lp(a), and suggests that serum AA is not reduced when the major dietary n-3 is DNA rather than EPA.

  16. Food wastes as fish feeds for polyculture of low-trophic-level fish: bioaccumulation and health risk assessments of heavy metals in the cultured fish.

    PubMed

    Cheng, Zhang; Lam, Cheung-Lung; Mo, Wing-Yin; Nie, Xiang-Ping; Choi, Wai-Ming; Man, Yu-Bon; Wong, Ming-Hung

    2016-04-01

    The major purpose of this study was to use different types of food wastes which serve as the major sources of protein to replace the fish meal used in fish feeds to produce quality fish. Two types of food waste-based feed pellets FW A (with cereals) and FW B (with cereals and meat products) and the commercial feed Jinfeng® were used to culture fingerlings of three low-trophic-level fish species: bighead carp, grass carp, and mud carp (in the ratio of 1:3:1) for 1 year period in the Sha Tau Kok Organic Farm in Hong Kong. Heavy metal concentrations in all of the fish species fed with food waste pellets and commercial pellets in Sha Tau Kok fish ponds were all below the local and international maximum permissible levels in food. Health risk assessments indicated that human consumption of the fish fed with food waste feed pellets was safe for the Hong Kong residents. The present results revealed that recycling of food waste for cultivating low-trophic-level fish (mainly herbivores and detritus feeders) is feasible, and at the same time will ease the disposal pressure of food waste, a common problem of densely populated cities like Hong Kong.

  17. Survey design for lakes and reservoirs in the United States to assess contaminants in fish tissue.

    PubMed

    Olsen, Anthony R; Snyder, Blaine D; Stahl, Leanne L; Pitt, Jennifer L

    2009-03-01

    The National Lake Fish Tissue Study (NLFTS) was the first survey of fish contamination in lakes and reservoirs in the 48 conterminous states based on a probability survey design. This study included the largest set (268) of persistent, bioaccumulative, and toxic (PBT) chemicals ever studied in predator and bottom-dwelling fish species. The U.S. Environmental Protection Agency (USEPA) implemented the study in cooperation with states, tribal nations, and other federal agencies, with field collection occurring at 500 lakes and reservoirs over a four-year period (2000-2003). The sampled lakes and reservoirs were selected using a spatially balanced unequal probability survey design from 270,761 lake objects in USEPA's River Reach File Version 3 (RF3). The survey design selected 900 lake objects, with a reserve sample of 900, equally distributed across six lake area categories. A total of 1,001 lake objects were evaluated to identify 500 lake objects that met the study's definition of a lake and could be accessed for sampling. Based on the 1,001 evaluated lakes, it was estimated that a target population of 147,343 (+/-7% with 95% confidence) lakes and reservoirs met the NLFTS definition of a lake. Of the estimated 147,343 target lakes, 47% were estimated not to be sampleable either due to landowner access denial (35%) or due to physical barriers (12%). It was estimated that a sampled population of 78,664 (+/-12% with 95% confidence) lakes met the NLFTS lake definition, had either predator or bottom-dwelling fish present, and could be sampled.

  18. Integrating Anisakis spp. parasites data and host genetic structure in the frame of a holistic approach for stock identification of selected Mediterranean Sea fish species.

    PubMed

    Mattiucci, S; Cimmaruta, R; Cipriani, P; Abaunza, P; Bellisario, B; Nascetti, G

    2015-01-01

    The unique environment of the Mediterranean Sea makes fish stock assessment a major challenge. Stock identification of Mediterranean fisheries has been based mostly from data on biology, morphometrics, artificial tags, otolith shape and fish genetics, with less effort on the use of parasites as biomarkers. Here we use some case studies comparing Mediterranean vs Atlantic fish stocks in a multidisciplinary framework. The generalized Procrustes Rotation (PR) was used to assess the association between host genetics and larval Anisakis spp. datasets on demersal (hake) and pelagic (horse mackerel, swordfish) species. When discordant results emerged, they were due to the different features of the data. While fish population genetics can detect changes over an evolutionary timescale, providing indications on the cohesive action of gene flow, parasites are more suitable biomarkers when considering fish stocks over smaller temporal and spatial scales, hence giving information of fish movements over their lifespan. Future studies on the phylogeographic analysis of parasites suitable as biomarkers, and that of their fish host, performed on the same genes, will represent a further tool to be included in multidisciplinary studies on fish stock structure.

  19. Fishing and temperature effects on the size structure of exploited fish stocks.

    PubMed

    Tu, Chen-Yi; Chen, Kuan-Ting; Hsieh, Chih-Hao

    2018-05-08

    Size structure of fish stock plays an important role in maintaining sustainability of the population. Size distribution of an exploited stock is predicted to shift toward small individuals caused by size-selective fishing and/or warming; however, their relative contribution remains relatively unexplored. In addition, existing analyses on size structure have focused on univariate size-based indicators (SBIs), such as mean length, evenness of size classes, or the upper 95-percentile of the length frequency distribution; these approaches may not capture full information of size structure. To bridge the gap, we used the variation partitioning approach to examine how the size structure (composition of size classes) responded to fishing, warming and the interaction. We analyzed 28 exploited stocks in the West US, Alaska and North Sea. Our result shows fishing has the most prominent effect on the size structure of the exploited stocks. In addition, the fish stocks experienced higher variability in fishing is more responsive to the temperature effect in their size structure, suggesting that fishing may elevate the sensitivity of exploited stocks in responding to environmental effects. The variation partitioning approach provides complementary information to univariate SBIs in analyzing size structure.

  20. The Potential for Spatial Distribution Indices to Signal Thresholds in Marine Fish Biomass

    PubMed Central

    Reuchlin-Hugenholtz, Emilie

    2015-01-01

    The frequently observed positive relationship between fish population abundance and spatial distribution suggests that changes in distribution can be indicative of trends in abundance. If contractions in spatial distribution precede declines in spawning stock biomass (SSB), spatial distribution reference points could complement the SSB reference points that are commonly used in marine conservation biology and fisheries management. When relevant spatial distribution information is integrated into fisheries management and recovery plans, risks and uncertainties associated with a plan based solely on the SSB criterion would be reduced. To assess the added value of spatial distribution data, we examine the relationship between SSB and four metrics of spatial distribution intended to reflect changes in population range, concentration, and density for 10 demersal populations (9 species) inhabiting the Scotian Shelf, Northwest Atlantic. Our primary purpose is to assess their potential to serve as indices of SSB, using fisheries independent survey data. We find that metrics of density offer the best correlate of spawner biomass. A decline in the frequency of encountering high density areas is associated with, and in a few cases preceded by, rapid declines in SSB in 6 of 10 populations. Density-based indices have considerable potential to serve both as an indicator of SSB and as spatially based reference points in fisheries management. PMID:25789624

  1. Using Tournament Angler Data to Rapidly Assess the Invasion Status of Alien Sport Fishes (Micropterus spp.) in Southern Africa.

    PubMed

    Hargrove, John S; Weyl, Olaf L F; Allen, Micheal S; Deacon, Neil R

    2015-01-01

    Fishes are one of the most commonly introduced aquatic taxa worldwide, and invasive fish species pose threats to biodiversity and ecosystem function in recipient waters. Considerable research efforts have focused on predicting the invasibility of different fish taxa; however, accurate records detailing the establishment and spread of invasive fishes are lacking for large numbers of fish around the globe. In response to these data limitations, a low-cost method of cataloging and quantifying the temporal and spatial status of fish invasions was explored. Specifically, angler catch data derived from competitive bass angling tournaments was used to document the distribution of 66 non-native populations of black bass (Micropterus spp.) in southern Africa. Additionally, catch data from standardized tournament events were used to assess the abundance and growth of non-native bass populations in southern Africa relative to their native distribution (southern and eastern United States). Differences in metrics of catch per unit effort (average number of fish retained per angler per day), daily bag weights (the average weight of fish retained per angler), and average fish weight were assessed using catch data from 14,890 angler days of tournament fishing (11,045 days from South Africa and Zimbabwe; 3,845 days from the United States). No significant differences were found between catch rates, average daily bag weight, or the average fish weight between countries, suggesting that bass populations in southern Africa reach comparable sizes and numbers relative to waters in their native distribution. Given the minimal cost associated with data collection (i.e. records are collected by tournament organizers), the standardized nature of the events, and consistent bias (i.e. selection for the biggest fish in a population), the use of angler catch data represents a novel approach to infer the status and distribution of invasive sport fish.

  2. Using Tournament Angler Data to Rapidly Assess the Invasion Status of Alien Sport Fishes (Micropterus spp.) in Southern Africa

    PubMed Central

    Hargrove, John S.; Weyl, Olaf L. F.; Allen, Micheal S.; Deacon, Neil R.

    2015-01-01

    Fishes are one of the most commonly introduced aquatic taxa worldwide, and invasive fish species pose threats to biodiversity and ecosystem function in recipient waters. Considerable research efforts have focused on predicting the invasibility of different fish taxa; however, accurate records detailing the establishment and spread of invasive fishes are lacking for large numbers of fish around the globe. In response to these data limitations, a low-cost method of cataloging and quantifying the temporal and spatial status of fish invasions was explored. Specifically, angler catch data derived from competitive bass angling tournaments was used to document the distribution of 66 non-native populations of black bass (Micropterus spp.) in southern Africa. Additionally, catch data from standardized tournament events were used to assess the abundance and growth of non-native bass populations in southern Africa relative to their native distribution (southern and eastern United States). Differences in metrics of catch per unit effort (average number of fish retained per angler per day), daily bag weights (the average weight of fish retained per angler), and average fish weight were assessed using catch data from 14,890 angler days of tournament fishing (11,045 days from South Africa and Zimbabwe; 3,845 days from the United States). No significant differences were found between catch rates, average daily bag weight, or the average fish weight between countries, suggesting that bass populations in southern Africa reach comparable sizes and numbers relative to waters in their native distribution. Given the minimal cost associated with data collection (i.e. records are collected by tournament organizers), the standardized nature of the events, and consistent bias (i.e. selection for the biggest fish in a population), the use of angler catch data represents a novel approach to infer the status and distribution of invasive sport fish. PMID:26047487

  3. Behavioural thermoregulation in a temperature-sensitive coral reef fish, the five-lined cardinalfish ( Cheilodipterus quinquelineatus)

    NASA Astrophysics Data System (ADS)

    Nay, Tiffany J.; Johansen, Jacob L.; Habary, Adam; Steffensen, John F.; Rummer, Jodie L.

    2015-12-01

    As global temperatures increase, fish populations at low latitudes are thought to be at risk as they are adapted to narrow temperature ranges and live at temperatures close to their thermal tolerance limits. Behavioural movements, based on a preference for a specific temperature ( T pref), may provide a strategy to cope with changing conditions. A temperature-sensitive coral reef cardinalfish ( Cheilodipterus quinquelineatus) was exposed to 28 °C (average at collection site) or 32 °C (predicted end-of-century) for 6 weeks. T pref was determined using a shuttlebox system, which allowed fish to behaviourally manipulate their thermal environment. Regardless of treatment temperature, fish preferred 29.5 ± 0.25 °C, approximating summer average temperatures in the wild. However, 32 °C fish moved more frequently to correct their thermal environment than 28 °C fish, and daytime movements were more frequent than night-time movements. Understanding temperature-mediated movements is imperative for predicting how ocean warming will influence coral reef species and distribution patterns.

  4. DNA barcoding of marine ornamental fishes from India.

    PubMed

    Bamaniya, Dhaval C; Pavan-Kumar, A; Gireesh-Babu, P; Sharma, Niti; Reang, Dhalongsaih; Krishna, Gopal; Lakra, W S

    2016-09-01

    India has rich marine ornamental fish diversity with 400 fish species distributed in Gulf of Munnar/Palk Bay, Gulf of Kutch, and in reefs around Andaman & Nicobar and Lakshadweep Islands. Marine ornamental fish identification at the field level is very difficult because of their high diversity and profound changes in appearance during their developmental stages and camouflage. To facilitate ornamental fish trading with ease and in compliance with the biodiversity act, DNA barcoding technique could be used to accurately identify species. In this study, DNA barcodes were generated for 31 species of commercially important marine ornamental fishes from India. The average genetic distance (K2P model) within species, genus, and family was 0.446, 13.08, and 20.09%, respectively. Intraspecific variation has increased several folds (15-20 times) after including conspecific sequences from different geographical locations. The presence of allopatric lineages/cryptic species was observed in the Indo-pacific region. The NJ tree constructed based on K2P values showed distinct clusters shared by congeneric species specific to populations.

  5. CREATION OF A GEOGRAPHIC INFORMATION SYSTEM TO IDENTIFY AT-RISK POPULATIONS IN NEW JERSEY AND NEW YORK FOR CONSUMPTION OF CONTAMINATED FISH AND SEAFOOD

    EPA Science Inventory

    Project Objective: To identify at-risk populations, particularly women of child bearing years and young children, for consumption of contaminated fish and seafood via the use of geographically and demographically defined seafood consumption patterns and fish/seafood contaminatio...

  6. Ranking the contributions of commercial fish and shellfish varieties to mercury exposure in the United States: implications for risk communication.

    PubMed

    Groth, Edward

    2010-04-01

    Fish and shellfish have important nutritional benefits, and US per capita seafood consumption has increased substantially since 2002. Recent research has reinforced concerns about adverse effects of methylmercury exposure, suggesting that methylmercury doses associated with typical US rates of fish consumption may pose measurable risks, with no threshold. These converging trends create a need to improve risk communication about fish consumption and mercury. The analysis performed here identifies the relative importance of different fish and shellfish as sources of mercury in the US seafood supply and proposes improved consumer advice, so that the public can benefit from fish consumption while minimizing mercury exposure. I have quantified contributions to total mercury in the US seafood supply by 51 different varieties of fish and shellfish, then ranked and sorted the 51 varieties in terms of relative impact. Except for swordfish, most fish with the highest mercury levels are relatively minor contributors to total inputs. Tuna (canned light, canned albacore and fresh/frozen varieties) accounts for 37.4 percent of total mercury inputs, while two-thirds of the seafood supply and nine of the 11 most heavily consumed fish and shellfish are low or very low in mercury. Substantial improvement in risk communication about mercury in fish and seafood is needed; in particular, several population subsets need better guidance to base their seafood choices more explicitly on mercury content. I have sorted the 51 seafood varieties into six categories based on mercury levels, as a framework for improving risk communication in this regard. (c) 2009 Elsevier Inc. All rights reserved.

  7. The ecology of parasites of freshwater fishes: the search for patterns.

    PubMed

    Kennedy, C R

    2009-10-01

    Developments in the study of the ecology of helminth parasites of freshwater fishes over the last half century are reviewed. Most research has of necessity been field based and has involved the search for patterns in population and community dynamics that are repeatable in space and time. Mathematical models predict that under certain conditions host and parasite populations can attain equilibrial levels through operation of regulatory factors. Such factors have been identified in several host-parasite systems and some parasite populations have been shown to persist over long time-periods. However, there is no convincing evidence that fish parasite populations are stable and regulated since in all cases alternative explanations are equally acceptable and it appears that they are non-equilibrial systems. It has proved particularly difficult to detect replicable patterns in parasite communities. Inter-specific competition, evidenced by functional and numerical responses, has been detected in several communities but its occurrence is erratic and its significance unclear. Some studies have failed to find any nested patterns in parasite community structure and richness, whereas others have identified such patterns although they are seldom constant over space and time. Departures from randomness appear to be the exception and then only temporary. It appears that parasite communities are non-equilibrial, stochastic assemblages rather than structured and organized.

  8. Assessing trade-offs to inform ecosystem-based fisheries management of forage fish

    PubMed Central

    Shelton, Andrew Olaf; Samhouri, Jameal F.; Stier, Adrian C.; Levin, Philip S.

    2014-01-01

    Twenty-first century conservation is centered on negotiating trade-offs between the diverse needs of people and the needs of the other species constituting coupled human-natural ecosystems. Marine forage fishes, such as sardines, anchovies, and herring, are a nexus for such trade-offs because they are both central nodes in marine food webs and targeted by fisheries. An important example is Pacific herring, Clupea pallisii in the Northeast Pacific. Herring populations are subject to two distinct fisheries: one that harvests adults and one that harvests spawned eggs. We develop stochastic, age-structured models to assess the interaction between fisheries, herring populations, and the persistence of predators reliant on herring populations. We show that egg- and adult-fishing have asymmetric effects on herring population dynamics - herring stocks can withstand higher levels of egg harvest before becoming depleted. Second, ecosystem thresholds proposed to ensure the persistence of herring predators do not necessarily pose more stringent constraints on fisheries than conventional, fishery driven harvest guidelines. Our approach provides a general template to evaluate ecosystem trade-offs between stage-specific harvest practices in relation to environmental variability, the risk of fishery closures, and the risk of exceeding ecosystem thresholds intended to ensure conservation goals are met. PMID:25407879

  9. Effects of landscape features on population genetic variation of a tropical stream fish, Stone lapping minnow, Garra cambodgiensis, in the upper Nan River drainage basin, northern Thailand.

    PubMed

    Jaisuk, Chaowalee; Senanan, Wansuk

    2018-01-01

    Spatial genetic variation of river-dwelling freshwater fishes is typically affected by the historical and contemporary river landscape as well as life-history traits. Tropical river and stream landscapes have endured extended geological change, shaping the existing pattern of genetic diversity, but were not directly affected by glaciation. Thus, spatial genetic variation of tropical fish populations should look very different from the pattern observed in temperate fish populations. These data are becoming important for designing appropriate management and conservation plans, as these aquatic systems are undergoing intense development and exploitation. This study evaluated the effects of landscape features on population genetic diversity of Garra cambodgiensis, a stream cyprinid , in eight tributary streams in the upper Nan River drainage basin ( n  = 30-100 individuals/location), Nan Province, Thailand. These populations are under intense fishing pressure from local communities. Based on 11 microsatellite loci, we detected moderate genetic diversity within eight population samples (average number of alleles per locus = 10.99 ± 3.00; allelic richness = 10.12 ± 2.44). Allelic richness within samples and stream order of the sampling location were negatively correlated ( P  < 0.05). We did not detect recent bottleneck events in these populations, but we did detect genetic divergence among populations (Global F ST = 0.022, P  < 0.01). The Bayesian clustering algorithms (TESS and STRUCTURE) suggested that four to five genetic clusters roughly coincide with sub-basins: (1) headwater streams/main stem of the Nan River, (2) a middle tributary, (3) a southeastern tributary and (4) a southwestern tributary. We observed positive correlation between geographic distance and linearized F ST ( P  < 0.05), and the genetic differentiation pattern can be moderately explained by the contemporary stream network (STREAMTREE analysis, R 2 = 0.75). The MEMGENE analysis suggested genetic division between northern (genetic clusters 1 and 2) and southern (clusters 3 and 4) sub-basins. We observed a high degree of genetic admixture in each location, highlighting the importance of natural flooding patterns and possible genetic impacts of supplementary stocking. Insights obtained from this research advance our knowledge of the complexity of a tropical stream system, and guide current conservation and restoration efforts for this species in Thailand.

  10. Mercury concentrations in Maine sport fishes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stafford, C.P.; Haines, T.A.

    1997-01-01

    To assess mercury contamination of fish in Maine, fish were collected from 120 randomly selected lakes. The collection goal for each lake was five fish of the single most common sport fish species within the size range commonly harvested by anglers. Skinless, boneless fillets of fish from each lake were composited, homogenized, and analyzed for total mercury. The two most abundant species, brook trout Salvelinus fontinalis and smallmouth bass Micropterus dolomieu, were also analyzed individually. The composite fish analyses indicate high concentrations of mercury, particularly in large and long-lived nonsalmonid species. Chain pickerel Esox niger, smallmouth bass, largemouth bass Micropterusmore » salmoides, and white perch Morone americana had the highest average mercury concentrations, and brook trout and yellow perch Perca flavescens had the lowest. The mean species composite mercury concentration was positively correlated with a factor incorporating the average size and age of the fish. Lakes containing fish with high mercury concentrations were not clustered near known industrial or population centers but were commonest in the area within 150 km of the seacoast, reflecting the geographical distribution of species that contained higher mercury concentrations. Stocked and wild brook trout were not different in length or weight, but wild fish were older and had higher mercury concentrations. Fish populations maintained by frequent introductions of hatchery-produced fish and subject to high angler exploitation rates may consist of younger fish with lower exposure to environmental mercury and thus contain lower concentrations than wild populations.« less

  11. Landscape attributes and life history variability shape genetic structure of trout populations in a stream network

    USGS Publications Warehouse

    Neville, H.M.; Dunham, J.B.; Peacock, M.M.

    2006-01-01

    Spatial and temporal landscape patterns have long been recognized to influence biological processes, but these processes often operate at scales that are difficult to study by conventional means. Inferences from genetic markers can overcome some of these limitations. We used a landscape genetics approach to test hypotheses concerning landscape processes influencing the demography of Lahontan cutthroat trout in a complex stream network in the Great Basin desert of the western US. Predictions were tested with population- and individual-based analyses of microsatellite DNA variation, reflecting patterns of dispersal, population stability, and local effective population sizes. Complementary genetic inferences suggested samples from migratory corridors housed a mixture of fish from tributaries, as predicted based on assumed migratory life histories in those habitats. Also as predicted, populations presumed to have greater proportions of migratory fish or from physically connected, large, or high quality habitats had higher genetic variability and reduced genetic differentiation from other populations. Populations thought to contain largely non-migratory individuals generally showed the opposite pattern, suggesting behavioral isolation. Estimated effective sizes were small, and we identified significant and severe genetic bottlenecks in several populations that were isolated, recently founded, or that inhabit streams that desiccate frequently. Overall, this work suggested that Lahontan cutthroat trout populations in stream networks are affected by a combination of landscape and metapopulation processes. Results also demonstrated that genetic patterns can reveal unexpected processes, even within a system that is well studied from a conventional ecological perspective. ?? Springer 2006.

  12. Factors controlling the early stages of viral haemorrhagic septicaemia epizootics: Low exposure levels, virus amplification and fish-to-fish transmission

    USGS Publications Warehouse

    Hershberger, P.K.; Gregg, J.L.; Grady, C.A.; Hart, L.M.; Roon, S.R.; Winton, J.R.

    2011-01-01

    Viral haemorrhagic septicaemia virus, Genogroup IVa (VHSV), was highly infectious to Pacific herring, Clupea pallasii (Valenciennes), even at exposure doses occurring below the threshold of sensitivity for a standard viral plaque assay; however, further progression of the disease to a population-level epizootic required viral amplification and effective fish-to-fish transmission. Among groups of herring injected with VHSV, the prevalence of infection was dose-dependent, ranging from 100%, 75% and 38% after exposure to 19, 0.7 and 0.07 plaque-forming units (PFU)/fish, respectively. Among Pacific herring exposed to waterborne VHSV (140PFUmL-1), the prevalence of infection, geometric mean viral tissue titre and cumulative mortality were greater among cohabitated herring than among cohorts that were held in individual aquaria, where fish-to-fish transmission was prevented. Fish-to-fish transmission among cohabitated herring probably occurred via exposure to shed virus which peaked at 680PFUmL-1; shed virus was not detected in the tank water from any isolated individuals. The results provide insights into mechanisms that initiate epizootic cascades in populations of wild herring and have implications for the design of VHSV surveys in wild fish populations. ?? Published 2011. This article is a US Government work and is in the public domain in the USA.

  13. Differential contribution of animal and vegetable food items on persistent organic pollutant serum concentrations in Spanish adults. Data from BIOAMBIENT.ES project.

    PubMed

    Arrebola, Juan Pedro; Castaño, Argelia; Esteban, Marta; Bartolomé, Mónica; Pérez-Gómez, Beatriz; Ramos, Juan José

    2018-09-01

    Diet is considered the main source of Persistent Organic Pollutant (POP) exposure in the general population, although there are still several gaps of knowledge regarding the differential contribution of main food groups. The aim of this study was to identify dietary patterns that contribute to human exposure to organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and Perfluoroalkyl Substances (PFASs). Study population (n=1880, 18-65years old) was recruited during 2009-2010 in all the main geographical areas of Spain. For this work, exposure was estimated by chemical analyses of serum levels of 6 PCBs (n=1880), 13 OCPs (n=934), and 6 (PFASs) in a subsample of 755 (n=755). Dietary habits and covariates were gathered via self-administered questionnaires. Data analyses were performed by means of multivariable linear regression and weighted quantile sum regression. Both the consumption of animal-based and plant-based food were positively associated with the individual concentrations of p,p´-DDE, hexachlorobenzene, and PCB-congeners -138, -153, and-180. The contribution of animal-based products was 2.1-4.0× stronger except in p,p´-DDE, to which both patterns had similar contributions. In PFASs only animal food was positively associated with the exposure levels. The main animal-based contributors to PCB exposure were fish (49-64%) and eggs (19-36%), while OCP concentrations were mainly influenced by dairy products (32-48%) and fish (47-48%). PFOA and PFHxS were mainly explained by cold-meat (34-37%), fish (25-26%), and eggs (19-21%), while PFOS and PFDA were primarily influenced by fish consumption (44-77%). In the case of plant-based items, fruits (25-82%) and vegetables (18-63%) accounted for the majority of the variability of PCB and OCP concentrations. Our results highlight the relevance of dietary POP exposure as well as the need for the consideration of nutritional interventions in public health programs aiming to reduce POP exposure in the general population. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Fish are central in the diet of Amazonian riparians: should we worry about their mercury concentrations?

    PubMed

    Dorea, Jose G

    2003-07-01

    The Amazon rain forest extends over an area of 7.8x10(6)km(2) in nine countries. It harbors a diverse human population distributed in dense cities and isolated communities with extreme levels of infrastructure. Amazonian forest people, either autochthons or frontier riparians (ribeirinhos) living in isolated areas, share the same environment for survival and nutritional status. The peculiarities of the hydrological cycle determine disease patterns, agricultural conditions, and food availability. Feeding strategies depend heavily on cassava products and fish. These two foods carry toxic substances such as linamarin (naturally present in cassava) and monomethyl mercury (MMHg) (bioconcentrated in fish flesh) that cause neurotoxic diseases in other parts of the world but not in Amazonia, where neurotoxic cases of food origin are rare and not related to these staples. While cassava detoxification processes may partly explain its safe consumption, the Hg concentrations in Amazonian fish are within traditionally safe limits for this population and contribute to an important metabolic interaction with cassava. The gold rush of the 1970s and 1980s brought large-scale environmental disruption and physical destruction of ecosystems at impact points, along with a heavy discharge of metallic Hg. The discharged Hg has not yet impacted on MMHg concentrations in fish or in hair of fish consumers. Hair Hg concentration, used as a biomarker of fish consumption, indicates that the Amazonian riparians are acquiring an excellent source of protein carrying important nutrients, the lack of which could aggravate their existing health problems. Therefore, in a scenario of insufficient health services and an unhealthy environment, food habits based on fish consumption are part of a successful survival strategy and recommendations for changes are not yet justifiable.

  15. Ecosystem and human health assessment in relation to aquatic environment pollution by heavy metals: case study of the Murmansk region, northwest of the Kola Peninsula, Russia

    NASA Astrophysics Data System (ADS)

    Moiseenko, T. I.; Morgunov, B. A.; Gashkina, N. A.; Megorskiy, V. V.; Pesiakova, A. A.

    2018-06-01

    Throughout the Euro-Arctic region of Russia (Murmansk region), there is a substantial increase of metal concentrations in water, which are related to local discharges from the metallurgical and mining industry, transboundary pollution, as well as indirect leaching of elements by acid precipitation. This study collates data to investigate the relationship between surface water contamination by metals, and fish and human health. Fish are used as a biological indicator to show the impact of water pollution by metals on the ecosystem’s health. The etiology of fish and human diseases are related to the water pollution and accumulation of metals in organisms. High concentrations of Ni and Cd in water drives an accumulation of these elements in organs and tissues of fish, especially in kidneys. The relation between the accumulation of Ni in kidneys and the development of fish nephrocalcinosis and fibroelastosis was established. Statistical analysis demonstrated that human populations in cities close in proximity to smelters show the highest incidence of disease. The results of histological, clinical, and post-mortem examination of patients shows the highest content of toxic metals, especially Cd, in livers and kidneys. Our complex investigation of a set of disorders observed in fish and human populations indicates that there is a high probability that the negative impact on human health is caused by prolonged water contamination by heavy metals. As a novel finding, this paper shows that based on the similarity of pathological processes and bioaccumulation of metals in fish and humans, examining the content of heavy metals in fish can be used to confirm etiology and evaluate the potential risk to human health by pollution of surface waters.

  16. Great lakes prey fish populations: a cross-basin overview of status and trends based on bottom trawl surveys, 1978-2012

    USGS Publications Warehouse

    Gorman, Owen T.

    2012-01-01

    The assessment of prey fish stocks in the Great Lakes have been conducted annually with bottom trawls since the 1970s by the Great Lakes Science Center, sometimes assisted by partner agencies. These stock assessments provide data on the status and trends of prey fish that are consumed by important commercial and recreational fishes. Although all these annual surveys are conducted using bottom trawls, they differ among the lakes in the proportion of the lake covered, seasonal timing, bottom trawl gear used, and the manner in which the trawl is towed (across or along bottom contours). Because each assessment is unique in one or more important aspects, direct comparison of prey fish catches among lakes is not straightforward. However, all of the assessments produce indices of abundance or biomass that can be standardized to facilitate comparisons of status and trends across all the Great Lakes. In this report, population indices were standardized to the highest value for a time series within each lake for the following principal prey species: cisco (Coregonus artedi), bloater (C. hoyi), rainbow smelt (Osmerus mordax), and alewife (Alosa pseudoharengus). Indices were also provided for round goby (Neogobius melanostomus), an invasive fish that has proliferated throughout the basin over the past 18 years. These standardized indices represent the best available long-term indices of relative abundance for these fishes across all of the Great Lakes. In this report, standardized indices are presented in graphical form along with synopses to provide a short, informal cross-basin summary of the status and trends of principal prey fishes. In keeping with this intent, tables, references, and a detailed discussion were omitted.

  17. Angler harvest, hatchery return, and tributary stray rates of recycled adult summer steelhead Oncorhynchus mykiss in the Cowlitz River, Washington

    USGS Publications Warehouse

    Kock, Tobias J.; Perry, Russell W.; Gleizes, Chris; Dammers, Wolf; Liedtke, Theresa L.

    2016-01-01

    Hatchery ‘recycling’ programs have been used to increase angling opportunities by re-releasing fish into a river after they returned to a hatchery or fish trap. Recycling is intended to increase opportunities for fishermen, but this strategy could affect wild fish populations if some recycled fish remain in the river and interact with wild fish populations. To quantify hatchery return and angler harvest rates of recycled steelhead, we conducted a 2-year study on the Cowlitz River, Washington. A total of 1051 steelhead were recycled, including 218 fish that were radio-tagged. Fates of recycled steelhead were similar between years: 48.4% returned to the hatchery, 19.2% were reported captured by anglers, and 32.4% remained in the river. A multistate model quantified the effects of covariates on hatchery return and angler harvest rates, which were positively affected by river discharge and negatively affected by time since release. However, hatchery return rates increased and angler harvest rates decreased during periods of increasing discharge. A total of 21.1% (46 fish) of the radio-tagged steelhead failed to return to the hatchery or be reported by anglers, but nearly half of those fish (20 fish) appeared to be harvested and not reported. The remaining tagged fish (11.9% of the radio-tagged population) were monitored into the spawning period, but only five fish (2.3% of the radio-tagged population) entered tributaries where wild steelhead spawning occurs. Future research focused on straying behaviour, and spawning success of recycled steelhead may further advance the understanding of the effects of recycling as a management strategy.

  18. Impacts of golden alga Prymnesium parvum on fish populations in reservoirs of the upper Colorado River and Brazos River basins, Texas

    USGS Publications Warehouse

    VanLandeghem, Matthew M.; Farooqi, Mukhtar; Farquhar, B.; Patino, Reynaldo

    2013-01-01

    Several reservoirs in the upper Colorado River and Brazos River basins in Texas have experienced toxic blooms of golden alga Prymnesium parvum and associated fish kills since 2001. There is a paucity of information, however, regarding the population-level effects of such kills in large reservoirs, species-specific resistance to or recovery from kills, or potential differences in the patterns of impacts among basins. We used multiple before-after, control-impact analysis to determine whether repeated golden alga blooms have led to declines in the relative abundance and size structure of fish populations. Sustained declines were noted for 9 of 12 fish species surveyed in the upper Colorado River, whereas only one of eight species was impacted by golden alga in the Brazos River. In the upper Colorado River, White Bass Morone chrysops, White Crappie Pomoxis annularis, Largemouth Bass Micropterus salmoides, Bluegill Lepomis macrochirus, River Carpsucker Carpiodes carpio, Freshwater Drum Aplodinotus grunniens, Channel Catfish Ictalurus punctatus, Flathead Catfish Pylodictis olivaris, and Blue Catfish I. furcatus exhibited sustained declines in relative abundance, size structure, or both; Gizzard Shad Dorosoma cepedianum, Longnose Gar Lepisosteus osseus, and Common Carp Cyprinus carpio did not exhibit those declines. In the Brazos River, only the relative abundance of Blue Catfish was impacted. Overall, toxic golden alga blooms can negatively impact fish populations over the long-term, but the patterns of impact can vary considerably among river basins and species. In the Brazos River, populations of most fish species appear to be healthy, suggesting a positive angling outlook for this basin. In the upper Colorado River, fish populations have been severely impacted, and angling opportunities have been reduced. Basin-specific management plans aimed at improving water quality and quantity will likely reduce bloom intensity and allow recovery of fish populations to the abundances and size structures present before golden alga. Received August 26, 2011; accepted November 25, 2012

  19. Larvivorous fish for preventing malaria transmission

    PubMed Central

    Walshe, Deirdre P; Garner, Paul; Abdel-Hameed Adeel, Ahmed A; Pyke, Graham H; Burkot, Tom

    2013-01-01

    Background Adult anopheline mosquitoes transmit Plasmodium parasites that cause malaria. Some fish species eat mosquito larvae and pupae. In disease control policy documents, the World Health Organization includes biological control of malaria vectors by stocking ponds, rivers, and water collections near where people live with larvivorous fish to reduce Plasmodium parasite transmission. The Global Fund finances larvivorous fish programmes in some countries, and, with increasing efforts in eradication of malaria, policy makers may return to this option. We therefore assessed the evidence base for larvivorous fish programmes in malaria control. Objectives Our main objective was to evaluate whether introducing larvivorous fish to anopheline breeding sites impacts Plasmodium parasite transmission. Our secondary objective was to summarize studies evaluating whether introducing larvivorous fish influences the density and presence of Anopheles larvae and pupae in water sources, to understand whether fish can possibly have an effect. Search methods We attempted to identify all relevant studies regardless of language or publication status (published, unpublished, in press, or ongoing). We searched the following databases: the Cochrane Infectious Diseases Group Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL), published in The Cochrane Library; MEDLINE; EMBASE; CABS Abstracts; LILACS; and the metaRegister of Controlled Trials (mRCT) until 18 June 2013. We checked the reference lists of all studies identified by the above methods. We also examined references listed in review articles and previously compiled bibliographies to look for eligible studies. Selection criteria Randomized controlled trials and non-randomized controlled trials, including controlled before-and-after studies, controlled time series and controlled interrupted time series studies from malaria-endemic regions that introduced fish as a larvicide and reported on malaria in the community or the density of the adult anopheline population. In the absence of direct evidence of an effect on transmission, we carried out a secondary analysis on studies that evaluated the effect of introducing larvivorous fish on the density or presence of immature anopheline mosquitoes (larvae and pupae forms) in community water sources to determine whether this intervention has any potential in further research on control of malaria vectors. Data collection and analysis Three review authors screened abstracts and examined potentially relevant studies by using an eligibility form. Two review authors independently extracted data and assessed risk of bias of included studies. If relevant data were unclear or were not reported, we wrote to the trial authors for clarification. We presented data in tables, and we summarized studies that evaluated the effects of fish introduction on anopheline immature density or presence, or both. We used GRADE to summarize evidence quality. We also examined whether the authors of included studies reported on any possible adverse impact of larvivorous fish introduction on non-target native species. Main results We found no reliable studies that reported the effects of introducing larvivorous fish on malaria infection in nearby communities, on entomological inoculation rate, or on adult Anopheles density. For the secondary analysis, we examined the effects of introducing larvivorous fish on the density and presence of anopheline larvae and pupae in community water sources. We included 12 small studies, with follow-up from 22 days to five years. Studies were conducted in a variety of settings, including localized water bodies (such as wells, domestic water containers, fishponds, and pools; six studies), riverbed pools below dams (two studies), rice field plots (three studies), and water canals (two studies). All studies were at high risk of bias. The research was insufficient to determine whether larvivorous fish reduce the density of Anopheles larvae and pupae (nine studies, unpooled data, very low quality evidence). Some studies with high stocking levels of fish seemed to arrest the increase in immature anopheline populations, or to reduce the number of immature anopheline mosquitoes, compared with controls. However, this finding was not consistent, and in studies that showed a decrease in immature anopheline populations, the effect was not consistently sustained. Larvivorous fish may reduce the number of water sources withAnopheles larvae and pupae (five studies, unpooled data, low quality evidence). None of the included studies reported effects of larvivorous fish on local native fish populations or other species. Authors' conclusions Reliable research is insufficient to show whether introducing larvivorous fish reduces malaria transmission or the density of adult anopheline mosquito populations. In research examining the effects on immature anopheline stages of introducing fish to potential malaria vector breeding sites (localized water bodies such as wells and domestic water sources, rice field plots, and water canals) weak evidence suggests an effect on the density or presence of immature anopheline mosquitoes with high stocking levels of fish, but this finding is by no means consistent. We do not know whether this translates into health benefits, either with fish alone or with fish combined with other vector control measures. Our interpretation of the current evidence is that countries should not invest in fish stocking as a larval control measure in any malaria transmission areas outside the context of carefully controlled field studies or quasi-experimental designs. Research could also usefully examine the effects on native fish and other non-target species. PLAIN LANGUAGE SUMMARY Fish that feed on mosquito larvae for preventing malaria transmission Plasmodium parasites cause malaria and are transmitted by adult Anopheles mosquitoes. Programmes that introduce fish into water sources near where people live have been promoted. The theory is that these fish eat the Anopheles mosquito larvae and pupae, thus decreasing the adult mosquito population and reducing the number of people infected with Plasmodium parasites. In this review, we examined the research that evaluated introducing larvivorous fish to Anopheles mosquito breeding sites in areas where malaria was common, published up to 18 June 2013. We did not find any studies that looked at the effects of larvivorous fish on adult Anopheles mosquito populations or on the number of people infected with Plasmodium parasites. We included 12 studies that examined the effects of larvivorous fish on Anopheles larvae and pupae in different breeding sites, including localized water bodies (such as wells, domestic water containers, fishponds, and pools; six studies), riverbed pools below dams (two studies), rice field plots (three studies), and water canals (two studies). Research evidence is insufficient to show whether introduction of larvivorous fish reduces the number of Anopheles larvae and pupae in water sources (nine studies, unpooled data, very low quality evidence). However, larvivorous fish may reduce the number of water sources withAnopheles mosquito larvae and pupae (five studies, unpooled data, low quality evidence). None of the included studies examined the effects of introducing larvivorous fish on other native species present, but these studies were not designed to do this. Before much is invested in this intervention, better research is needed to determine the effect of introducing larvivorous fish on adult Anopheles populations and on the number of people infected with malaria. Researchers need to use robust controlled designs with an adequate number of sites. Also, researchers should explore whether introducing these fish affects native fish and other non-target species. PMID:24323308

  20. Ichthyoplankton Time Series: A Potential Ocean Observing Network to Provide Indicators of Climate Impacts on Fish Communities along the West Coast of North America

    NASA Astrophysics Data System (ADS)

    Koslow, J. A.; Brodeur, R.; Duffy-Anderson, J. T.; Perry, I.; jimenez Rosenberg, S.; Aceves, G.

    2016-02-01

    Ichthyoplankton time series available from the Bering Sea, Gulf of Alaska and California Current (Oregon to Baja California) provide a potential ocean observing network to assess climate impacts on fish communities along the west coast of North America. Larval fish abundance reflects spawning stock biomass, so these data sets provide indicators of the status of a broad range of exploited and unexploited fish populations. Analyses to date have focused on individual time series, which generally exhibit significant change in relation to climate. Off California, a suite of 24 midwater fish taxa have declined > 60%, correlated with declining midwater oxygen concentrations, and overall larval fish abundance has declined 72% since 1969, a trend based on the decline of predominantly cool-water affinity taxa in response to warming ocean temperatures. Off Oregon, there were dramatic differences in community structure and abundance of larval fishes between warm and cool ocean conditions. Midwater deoxygenation and warming sea surface temperature trends are predicted to continue as a result of global climate change. US, Canadian, and Mexican fishery scientists are now collaborating in a virtual ocean observing network to synthesize available ichthyoplankton time series and compare patterns of change in relation to climate. This will provide regional indicators of populations and groups of taxa sensitive to warming, deoxygenation and potentially other stressors, establish the relevant scales of coherence among sub-regions and across Large Marine Ecosystems, and provide the basis for predicting future climate change impacts on these ecosystems.

  1. Control of Biogenic Amines in Food—Existing and Emerging Approaches

    PubMed Central

    Naila, Aishath; Flint, Steve; Fletcher, Graham; Bremer, Phil; Meerdink, Gerrit

    2010-01-01

    Biogenic amines have been reported in a variety of foods, such as fish, meat, cheese, vegetables, and wines. They are described as low molecular weight organic bases with aliphatic, aromatic, and heterocyclic structures. The most common biogenic amines found in foods are histamine, tyramine, cadaverine, 2-phenylethylamine, spermine, spermidine, putrescine, tryptamine, and agmatine. In addition octopamine and dopamine have been found in meat and meat products and fish. The formation of biogenic amines in food by the microbial decarboxylation of amino acids can result in consumers suffering allergic reactions, characterized by difficulty in breathing, itching, rash, vomiting, fever, and hypertension. Traditionally, biogenic amine formation in food has been prevented, primarily by limiting microbial growth through chilling and freezing. However, for many fishing based subsistence populations, such measures are not practical. Therefore, secondary control measures to prevent biogenic amine formation in foods or to reduce their levels once formed need to be considered as alternatives. Such approaches to limit microbial growth may include hydrostatic pressures, irradiation, controlled atmosphere packaging, or the use of food additives. Histamine may potentially be degraded by the use of bacterial amine oxidase or amine-negative bacteria. Only some will be cost-effective and practical for use in subsistence populations. PMID:21535566

  2. Native and nonnative fish populations of the Colorado River are food limited--evidence from new food web analyses

    USGS Publications Warehouse

    Kennedy, Theodore A.; Cross, Wyatt F.; Hall, Robert O.; Baxter, Colden V.; Rosi-Marshall, Emma J.

    2013-01-01

    Fish populations in the Colorado River downstream from Glen Canyon Dam appear to be limited by the availability of high-quality invertebrate prey. Midge and blackfly production is low and nonnative rainbow trout in Glen Canyon and native fishes in Grand Canyon consume virtually all of the midge and blackfly biomass that is produced annually. In Glen Canyon, the invertebrate assemblage is dominated by nonnative New Zealand mudsnails, the food web has a simple structure, and transfers of energy from the base of the web (algae) to the top of the web (rainbow trout) are inefficient. The food webs in Grand Canyon are more complex relative to Glen Canyon, because, on average, each species in the web is involved in more interactions and feeding connections. Based on theory and on studies from other ecosystems, the structure and organization of Grand Canyon food webs should make them more stable and less susceptible to large changes following perturbations of the flow regime relative to food webs in Glen Canyon. In support of this hypothesis, Grand Canyon food webs were much less affected by a 2008 controlled flood relative to the food web in Glen Canyon.

  3. Big Spring spinedace and associated fish populations and habitat conditions in Condor Canyon, Meadow Valley Wash, Nevada

    USGS Publications Warehouse

    Jezorek, Ian G.; Connolly, Patrick J.; Munz, Carrie S.; Dixon, Chris

    2011-01-01

    Executive Summary: This project was designed to document habitat conditions and populations of native and non-native fish within the 8-kilometer Condor Canyon section of Meadow Valley Wash, Nevada, with an emphasis on Big Spring spinedace (Lepidomeda mollispinis pratensis). Other native fish present were speckled dace (Rhinichthys osculus) and desert sucker (Catostomus clarki). Big Spring spinedace were known to exist only within this drainage and were known to have been extirpated from a portion of their former habitat located downstream of Condor Canyon. Because of this extirpation and the limited distribution of Big Spring spinedace, the U.S. Fish and Wildlife Service listed this species as threatened under the Endangered Species Act in 1985. Prior to our effort, little was known about Big Spring spinedace populations or life histories and habitat associations. In 2008, personnel from the U.S. Geological Survey's Columbia River Research Laboratory began surveys of Meadow Valley Wash in Condor Canyon. Habitat surveys characterized numerous variables within 13 reaches, thermologgers were deployed at 9 locations to record water temperatures, and fish populations were surveyed at 22 individual sites. Additionally, fish were tagged with Passive Integrated Transponder (PIT) tags, which allowed movement and growth information to be collected on individual fish. The movements of tagged fish were monitored with a combination of recapture events and stationary in-stream antennas, which detected tagged fish. Meadow Valley Wash within Condor Canyon was divided by a 12-meter (m) waterfall known as Delmue Falls. About 6,100 m of stream were surveyed downstream of the falls and about 2,200 m of stream were surveyed upstream of the falls. Although about three-quarters of the surveyed stream length was downstream of Delmue Falls, the highest densities and abundance of native fish were upstream of the falls. Big Spring spinedace and desert sucker populations were highest near the upper end of Condor Canyon, where a tributary known as Kill Wash, and several springs, contribute flow and moderate high and low water temperature. Kill Wash and the area around its confluence with Meadow Valley Wash appeared important for spawning of all three native species. Detections of PIT-tagged fish indicated that there were substantial movements to this area during the spring. Our surveys included about 700 m of Meadow Valley Wash upstream of Kill Wash. A small falls about 2 m high was about 560 m upstream of Kill Wash. This falls is likely a barrier to upstream fish movement at most flows. Populations of all three native species were found upstream of this small falls. Age-0 fish of all three species were present, indicating successful spawning. The maximum upstream extent of native fish within Meadow Valley Wash was not determined. Our surveys included about 700 m of Meadow Valley Wash upstream of Kill Wash. A small falls about 2 m high was about 560 m upstream of Kill Wash. This falls is likely a barrier to upstream fish movement at most flows. Populations of all three native species were found upstream of this small falls. Age-0 fish of all three species were present, indicating successful spawning. The maximum upstream extent of native fish within Meadow Valley Wash was not determined. A population of non-native rainbow trout (Oncorhynchus mykiss) was found within the 2,000 m of stream immediately downstream of Delmue Falls. Non-native crayfish were very common both upstream and downstream of Delmue Falls. We were not able to quantify crayfish populations, but they compose a significant portion of the biomass of aquatic species in Condor Canyon. There were some distinctive habitat features that may have favored native fish upstream of Delmue Falls. Upstream of the falls, water temperatures were moderated by inputs from springs, turbidity was lower, pool habitat was more prevalent, substrate heterogeneity was higher, and there was less fine sediment than

  4. Natural Reproductive Success and Demographic Effects of Hatchery-Origin Steelhead in Abernathy Creek, Washington : Annual Report 2008.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    U.S. Fish & Wildlife Service, Abernathy Fish Technology Center

    2008-12-01

    Many hatchery programs for steelhead pose genetic or ecological risks to natural populations because those programs release or outplant fish from non-native stocks. The goal of many steelhead programs has been to simply provide 'fishing opportunities' with little consideration given to conservation concerns. For example, the Washington Department of Fish and Wildlife (WDFW) has widely propagated and outplanted one stock of winter-run steelhead (Chambers Creek stock) and one stock of summer-run steelhead (Skamania stock) throughout western Washington. Biologists and managers now recognize potential negative effects can occur when non-native hatchery fish interact biologically with native populations. Not only do non-nativemore » stocks pose genetic and ecological risks to naturally spawning populations, but non-native fish stray as returning adults at a much higher rate than do native fish (Quinn 1993). Biologists and managers also recognize the need to (a) maintain the genetic resources associated with naturally spawning populations and (b) restore or recover natural populations wherever possible. As a consequence, the U.S. Fish & Wildlife Service (USFWS) and the NOAA Fisheries have been recommending a general policy that discourages the use of non-native hatchery stocks and encourages development of native broodstocks. There are two primary motivations for these recommendations: (1) reduce or minimize potential negative biological effects resulting from genetic or ecological interactions between hatchery-origin and native-origin fish and (2) use native broodstocks as genetic repositories to potentially assist with recovery of naturally spawning populations. A major motivation for the captive-rearing work described in this report resulted from NOAA's 1998 Biological Opinion on Artificial Propagation in the Columbia River Basin. In that biological opinion (BO), NOAA concluded that non-native hatchery stocks of steelhead jeopardize the continued existence of U.S. Endangered Species Act (ESA)-listed, naturally spawning populations in the Columbia River Basin. As a consequence of that BO, NOAA recommended - as a reasonable and prudent alternative (RPA) - that federal and state agencies phase out non-native broodstocks of steelhead and replace them with native broodstocks. However, NOAA provided no guidance on how to achieve that RPA. The development of native broodstocks of hatchery steelhead can potentially pose unacceptable biological risks to naturally spawning populations, particularly those that are already listed as threatened or endangered under the ESA. The traditional method of initiating new hatchery broodstocks of anadromous salmonid fishes is by trapping adults during their upstream, spawning migration. However, removing natural-origin adults from ESA listed populations may not be biologically acceptable because such activities may further depress those populations via 'broodstock mining'. In addition, trapping adult steelhead may be logistically unfeasible in many subbasins due to high water flows in the spring, when steelhead are moving upstream to spawn, that will often 'blow out' temporary weirs. Additional risks associated with trapping adults include genetic founder effects and difficulties meeting minimum, genetic effective number of breeders without 'mining' the wild population to potential extinction. As a result, alternative methods for developing native broodstocks are highly desired. One alternative for developing native broodstocks, particularly when the collection of adults is logistically unfeasible or biologically unacceptable, is captive rearing of natural-origin juveniles to sexual maturity. In this approach, pre-smolt juveniles are collected from the stream or watershed for which a native broodstock is desired, and those juveniles are raised to sexual maturity in a hatchery. Those hatchery-reared adults then become the broodstock source for gametes and initial progeny releases. Such a captive rearing program offers many genetic advantages over traditional adult-trapping programs for developing native broodstocks: (1) Large numbers of juveniles can be collected from the wild with only minimal impacts to naturally spawning populations because juvenile (age 0+parr)-to-adult survivals are typically very small (<1%) under natural conditions. (2) The genetic base of the broodstock (i.e. genetic effective population size) can be substantially larger for juveniles than adults because juveniles can theoretically represent the offspring of all adults that spawned successfully within a stream or watershed, as opposed to trapping only a small portion of returning adults for broodstock. (3) Collecting juveniles for broodstock can substantially reduce the risk of genetically 'swamping' naturally spawning populations with hatchery-origin fish (i.e. via a 'Ryman-Laikre effect') as occurs when hatchery-released fish represent the progeny of a relatively small number of trapped adults.« less

  5. Within and between Population Variation in Epidermal Club Cell Investment in a Freshwater Prey Fish: A Cautionary Tale for Evolutionary Ecologists

    PubMed Central

    Manek, Aditya K.; Ferrari, Maud C. O.; Pollock, Robyn J.; Vicente, Daniel; Weber, Lynn P.; Chivers, Douglas P.

    2013-01-01

    Many prey fishes possess large club cells in their epidermis. The role of these cells has garnered considerable attention from evolutionary ecologists. These cells likely form part of the innate immune system of fishes, however, they also have an alarm function, releasing chemical cues that serve to warn nearby conspecifics of danger. Experiments aimed at understanding the selection pressures leading to the evolution of these cells have been hampered by a surprisingly large intraspecific variation in epidermal club cell (ECC) investment. The goal of our current work was to explore the magnitude and nature of this variation in ECC investment. In a field survey, we documented large differences in ECC investment both within and between several populations of minnows. We then tested whether we could experimentally reduce variation in mean ECC number by raising fish under standard laboratory conditions for 4 weeks. Fish from different populations responded very differently to being held under standard laboratory conditions; some populations showed an increase in ECC investment while others remained unchanged. More importantly, we found some evidence that we could reduce within population variation in ECC investment through time, but could not reduce among-population variation in mean ECC investment. Given the large variation we observed in wild fish and our limited ability to converge mean cell number by holding the fish under standard conditions, we caution that future studies may be hard pressed to find subtle effects of various experimental manipulations; this will make elucidating the selection pressures leading to the evolution of the cells challenging. PMID:23469175

  6. Population dynamics of the sand shiner (notropis stramineus) in non-wadeable rivers of Iowa

    USGS Publications Warehouse

    Smith, C.D.; Neebling, T.E.; Quist, M.C.

    2010-01-01

    The sand shiner (Notropis stramineus) is a common cyprinid found throughout the Great Plains region of North America that plays an important ecological role in aquatic systems. This study was conducted to describe population dynamics of sand shiners including age structure, growth, mortality, and recruitment variability in 15 non-wadeable rivers in Iowa. Fish were collected during June-August (2007-2008) using a modified Missouri trawl, a seine, and boat-mounted electrofishing. Scales were removed for age and growth analysis. A total of 3,443 fish was sampled from 15 populations across Iowa, of which 676 were aged. Iowa's sand shiner populations consisted primarily of age-1 fish (53% of all fish sampled), followed by age-2 fish (30%), age-0 fish (15%), and age-3 fish (2%). Sand shiners grew an average of 38.5 mm (SE = 5.7) during their first year, 13.8 mm (4.5) during their second year, and 9.0 mm (6.9) during their third year. Total annual mortality varied from 35.0% to 92.3% among populations with a mean of 77.9% (0.2). Incremental mortality rates were 84.5% (0.2) between age 1 and age 2, and 92.0% (0.1) between age 2 and age 3. Recruitment was highly variable, as indicated by a mean recruitment variation index of-0.12 (0.54). Overall, the sand shiner was characterized by relatively low mean age, fast growth, high mortality, and high recruitment variability. Indices of sand shiner population dynamics were poorly correlated with habitat characteristics.

  7. Targeting Abundant Fish Stocks while Avoiding Overfished Species: Video and Fishing Surveys to Inform Management after Long-Term Fishery Closures

    PubMed Central

    2016-01-01

    Historically, it has been difficult to balance conservation goals and yield objectives when managing multispecies fisheries that include stocks with various vulnerabilities to fishing. As managers try to maximize yield in mixed-stock fisheries, exploitation rates can lead to less productive stocks becoming overfished. In the late 1990s, population declines of several U.S. West Coast groundfish species caused the U.S. Pacific Fishery Management Council to create coast-wide fishery closures, known as Rockfish Conservation Areas, to rebuild overfished species. The fishery closures and other management measures successfully reduced fishing mortality of these species, but constrained fishing opportunities on abundant stocks. Restrictive regulations also caused the unintended consequence of reducing fishery-dependent data available to assess population status of fished species. As stocks rebuild, managers are faced with the challenge of increasing fishing opportunities while minimizing fishing mortality on rebuilding species. We designed a camera system to evaluate fishes in coastal habitats and used experimental gear and fishing techniques paired with video surveys to determine if abundant species could be caught in rocky habitats with minimal catches of co-occurring rebuilding species. We fished a total of 58 days and completed 741 sets with vertical hook-and-line fishing gear. We also conducted 299 video surveys in the same locations where fishing occurred. Comparison of fishing and stereo-video surveys indicated that fishermen could fish with modified hook-and-line gear to catch abundant species while limiting bycatch of rebuilding species. As populations of overfished species continue to recover along the U.S. West Coast, it is important to improve data collection, and video and fishing surveys may be key to assessing species that occur in rocky habitats. PMID:28002499

  8. Targeting Abundant Fish Stocks while Avoiding Overfished Species: Video and Fishing Surveys to Inform Management after Long-Term Fishery Closures.

    PubMed

    Starr, Richard M; Gleason, Mary G; Marks, Corina I; Kline, Donna; Rienecke, Steve; Denney, Christian; Tagini, Anne; Field, John C

    2016-01-01

    Historically, it has been difficult to balance conservation goals and yield objectives when managing multispecies fisheries that include stocks with various vulnerabilities to fishing. As managers try to maximize yield in mixed-stock fisheries, exploitation rates can lead to less productive stocks becoming overfished. In the late 1990s, population declines of several U.S. West Coast groundfish species caused the U.S. Pacific Fishery Management Council to create coast-wide fishery closures, known as Rockfish Conservation Areas, to rebuild overfished species. The fishery closures and other management measures successfully reduced fishing mortality of these species, but constrained fishing opportunities on abundant stocks. Restrictive regulations also caused the unintended consequence of reducing fishery-dependent data available to assess population status of fished species. As stocks rebuild, managers are faced with the challenge of increasing fishing opportunities while minimizing fishing mortality on rebuilding species. We designed a camera system to evaluate fishes in coastal habitats and used experimental gear and fishing techniques paired with video surveys to determine if abundant species could be caught in rocky habitats with minimal catches of co-occurring rebuilding species. We fished a total of 58 days and completed 741 sets with vertical hook-and-line fishing gear. We also conducted 299 video surveys in the same locations where fishing occurred. Comparison of fishing and stereo-video surveys indicated that fishermen could fish with modified hook-and-line gear to catch abundant species while limiting bycatch of rebuilding species. As populations of overfished species continue to recover along the U.S. West Coast, it is important to improve data collection, and video and fishing surveys may be key to assessing species that occur in rocky habitats.

  9. Small-scale fisheries, population dynamics, and resource use in Africa: the case of Moree, Ghana.

    PubMed

    Marquette, Catherine M; Koranteng, Kwame A; Overå, Ragnhild; Aryeetey, Ellen Bortei-Doku

    2002-06-01

    We consider population dynamics and sustainable use and development of fishery resources in Moree, a small-scale fishing and coastal community of 20,000 people in the Central Region of Ghana near Cape Coast. Moree suggests that relationships between population dynamics and fishery resources are more complex than the concept of Malthusian overfishing implies. Reasons include changing biophysical characteristics of the upwelling system along the coast of West Africa; qualitative as well as quantitative changes in fishing activity throughout the year; the market nature of fishing activity and nonlocal demands for fish; regular fishery migration; and institutions regulating fishery resource access at home and at migration destinations. Population and resource relationships in Moree may be the effects of fishery resource and economic changes on migration rather than population pressure on fishery resources. Fisheries management policies must take into account processes that lie beyond the influence of local fishermen.

  10. Fatal Asphyxiation in Bottlenose Dolphins (Tursiops truncatus) from the Indian River Lagoon.

    PubMed

    Stolen, Megan; St Leger, Judy; Durden, Wendy Noke; Mazza, Teresa; Nilson, Erika

    2013-01-01

    Multiple single case reports of asphyxiation in dolphins caused by fish lodged in the esophagus exist. However, the significance of this cause of mortality in a single population has not been documented. We performed a retrospective evaluation of pathology records from stranded bottlenose dolphins (Tursiops truncatus) from the Indian River Lagoon to evaluate the impact of this cause of death on this population. From 1997 to 2011, asphyxiation due to choking was identified as the cause of death in 14 of 350 cases (4%). Sampling of an unrelated but adjacent population over this same period yielded 186 necropsy cases of bottlenose dolphins with no cases of asphyxiation. Asphyxiated animals presented with a fish lodged in the cranial esophagus associated with a dislocated and obstructed or compressed larynx. There was no clear sex predilection. Affected animals included 12 adults and two juveniles. The fish species involved included sheepshead, black chin tilapia and striped mojarra. In five cases, recreational fishing gear was also present. Cetacean choking is related to selection of prey fish species with strong dorsal spines and may be secondarily associated with fish attached to fishing gear. Prey abundance and dolphin behavior may influence these selections. Environmental alterations leading to changes in prey availability or increased interactions with fishing gear may change the significance of fatal choking in dolphin populations.

  11. Density regulation in Northeast Atlantic fish populations: Density dependence is stronger in recruitment than in somatic growth.

    PubMed

    Zimmermann, Fabian; Ricard, Daniel; Heino, Mikko

    2018-05-01

    Population regulation is a central concept in ecology, yet in many cases its presence and the underlying mechanisms are difficult to demonstrate. The current paradigm maintains that marine fish populations are predominantly regulated by density-dependent recruitment. While it is known that density-dependent somatic growth can be present too, its general importance remains unknown and most practical applications neglect it. This study aimed to close this gap by for the first time quantifying and comparing density dependence in growth and recruitment over a large set of fish populations. We fitted density-dependent models to time-series data on population size, recruitment and age-specific weight from commercially exploited fish populations in the Northeast Atlantic Ocean and the Baltic Sea. Data were standardized to enable a direct comparison within and among populations, and estimated parameters were used to quantify the impact of density regulation on population biomass. Statistically significant density dependence in recruitment was detected in a large proportion of populations (70%), whereas for density dependence in somatic growth the prevalence of density dependence depended heavily on the method (26% and 69%). Despite age-dependent variability, the density dependence in recruitment was consistently stronger among age groups and between alternative approaches that use weight-at-age or weight increments to assess growth. Estimates of density-dependent reduction in biomass underlined these results: 97% of populations with statistically significant parameters for growth and recruitment showed a larger impact of density-dependent recruitment on population biomass. The results reaffirm the importance of density-dependent recruitment in marine fishes, yet they also show that density dependence in somatic growth is not uncommon. Furthermore, the results are important from an applied perspective because density dependence in somatic growth affects productivity and catch composition, and therefore the benefits of maintaining fish populations at specific densities. © 2018 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

  12. Can Fish Morphological Characteristics be Used to Re-design Hydroelectric Turbines?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cada, G. F.; Richmond, Marshall C.

    2011-07-19

    Safe fish passage affects not only migratory species, but also populations of resident fish by altering biomass, biodiversity, and gene flow. Consequently, it is important to estimate turbine passage survival of a wide range of susceptible fish. Although fish-friendly turbines show promise for reducing turbine passage mortality, experimental data on their beneficial effects are limited to only a few species, mainly salmon and trout. For thousands of untested species and sizes of fish, the particular causes of turbine passage mortality and the benefits of fish-friendly turbine designs remain unknown. It is not feasible to measure the turbine-passage survival of everymore » species of fish in every hydroelectric turbine design. We are attempting to predict fish mortality based on an improved understanding of turbine-passage stresses (pressure, shear stress, turbulence, strike) and information about the morphological, behavioral, and physiological characteristics of different fish taxa that make them susceptible to the stresses. Computational fluid dynamics and blade strike models of the turbine environment are re-examined in light of laboratory and field studies of fish passage effects. Comparisons of model-predicted stresses to measured injuries and mortalities will help identify fish survival thresholds and the aspects of turbines that are most in need of re-design. The coupled model and fish morphology evaluations will enable us to make predictions of turbine-passage survival among untested fish species, for both conventional and advanced turbines, and to guide the design of hydroelectric turbines to improve fish passage survival.« less

  13. Prevalence and clinical outcomes for patients with ALK-positive resected stage I to III adenocarcinoma: results from the European Thoracic Oncology Platform Lungscape Project.

    PubMed

    Blackhall, Fiona H; Peters, Solange; Bubendorf, Lukas; Dafni, Urania; Kerr, Keith M; Hager, Henrik; Soltermann, Alex; O'Byrne, Kenneth J; Dooms, Christoph; Sejda, Aleksandra; Hernández-Losa, Javier; Marchetti, Antonio; Savic, Spasenija; Tan, Qiang; Thunnissen, Erik; Speel, Ernst-Jan M; Cheney, Richard; Nonaka, Daisuke; de Jong, Jeroen; Martorell, Miguel; Letovanec, Igor; Rosell, Rafael; Stahel, Rolf A

    2014-09-01

    The prevalence of anaplastic lymphoma kinase (ALK) gene fusion (ALK positivity) in early-stage non-small-cell lung cancer (NSCLC) varies by population examined and detection method used. The Lungscape ALK project was designed to address the prevalence and prognostic impact of ALK positivity in resected lung adenocarcinoma in a primarily European population. Analysis of ALK status was performed by immunohistochemistry (IHC) and fluorescent in situ hybridization (FISH) in tissue sections of 1,281 patients with adenocarcinoma in the European Thoracic Oncology Platform Lungscape iBiobank. Positive patients were matched with negative patients in a 1:2 ratio, both for IHC and for FISH testing. Testing was performed in 16 participating centers, using the same protocol after passing external quality assessment. Positive ALK IHC staining was present in 80 patients (prevalence of 6.2%; 95% CI, 4.9% to 7.6%). Of these, 28 patients were ALK FISH positive, corresponding to a lower bound for the prevalence of FISH positivity of 2.2%. FISH specificity was 100%, and FISH sensitivity was 35.0% (95% CI, 24.7% to 46.5%), with a sensitivity value of 81.3% (95% CI, 63.6% to 92.8%) for IHC 2+/3+ patients. The hazard of death for FISH-positive patients was lower than for IHC-negative patients (P = .022). Multivariable models, adjusted for patient, tumor, and treatment characteristics, and matched cohort analysis confirmed that ALK FISH positivity is a predictor for better overall survival (OS). In this large cohort of surgically resected lung adenocarcinomas, the prevalence of ALK positivity was 6.2% using IHC and at least 2.2% using FISH. A screening strategy based on IHC or H-score could be envisaged. ALK positivity (by either IHC or FISH) was related to better OS. © 2014 by American Society of Clinical Oncology.

  14. Consumption of Red Meat, but Not Cooking Oils High in Polyunsaturated Fat, Is Associated with Higher Arachidonic Acid Status in Singapore Chinese Adults.

    PubMed

    Seah, Jowy Yi Hoong; Gay, Gibson Ming Wei; Su, Jin; Tai, E-Shyong; Yuan, Jian-Min; Koh, Woon-Puay; Ong, Choon Nam; van Dam, Rob M

    2017-01-31

    High arachidonic acid (AA; 20:4 n - 6) status may have adverse effects on inflammation and risk of cardiovascular diseases. Concerns about high intake of n - 6 polyunsaturated fatty acids (PUFAs) are based on the premise that endogenous conversion from linoleic acid (LA; 18:2 n - 6) is an important source of AA, but few population-based studies have investigated dietary determinants of AA status. In this study, we examined habitual food consumption in relation to plasma concentrations of AA and other PUFAs in population-based studies. We used cross-sectional data from 269 healthy, ethnic Chinese participants (25-80 years old) with contrasting intakes of fish and red meat from the Singapore Prospective Study Program and 769 healthy participants (44-74 years old) from the Singapore Chinese Health Study as a validation set. Multivariable linear regression was used to examine PUFA intake (% energy) and food sources of PUFA (fish, red meat, poultry, soy and cooking oils) in relation to plasma PUFAs (AA, LA, dihomo-gamma-linolenic acid (DGLA; 20:3 n - 6), alpha-linolenic acid (ALA; 18:3 n - 3), eicosapentaenoic acid (EPA; 20:5 n - 3), and docosahexaenoic acid (DHA; 22:6 n - 3)) concentrations. Higher intake of red meat was associated with higher plasma AA concentrations. High intake of PUFA or PUFA-rich oils was associated with higher plasma ALA but not with plasma AA. Higher intakes of soy were associated with higher ALA and fish with higher DHA and EPA concentrations. These associations were statistically significant (p < 0.05) in both studies. Red meat consumption, but not PUFA or PUFA-rich cooking oil, was associated with circulating AA suggesting that intake of pre-formed AA rather than LA is an important determinant of AA status. A diet high in fish, soy products and polyunsaturated cooking oil, and low in red meat may be associated with an optimal plasma profile of PUFA in this Chinese population.

  15. Sustainability in single-species population models.

    PubMed

    Quinn, Terrance J; Collie, Jeremy S

    2005-01-29

    In this paper, we review the concept of sustainability with regard to a single-species, age-structured fish population with density dependence at some stage of its life history. We trace the development of the view of sustainability through four periods. The classical view of sustainability, prevalent in the 1970s and earlier, developed from deterministic production models, in which equilibrium abundance or biomass is derived as a function of fishing mortality. When there is no fishing mortality, the population equilibrates about its carrying capacity. We show that carrying capacity is the result of reproductive and mortality processes and is not a fixed constant unless these processes are constant. There is usually a fishing mortality, F(MSY), which results in MSY, and a higher value, F(ext), for which the population is eventually driven to extinction. For each F between 0 and F(ext), there is a corresponding sustainable population. From this viewpoint, the primary tool for achieving sustainability is the control of fishing mortality. The neoclassical view of sustainability, developed in the 1980s, involved population models with depensation and stochasticity. This view point is in accord with the perception that a population at a low level is susceptible to collapse or to a lack of rebuilding regardless of fishing. Sustainability occurs in a more restricted range from that in the classical view and includes an abundance threshold. A variety of studies has suggested that fishing mortality should not let a population drop below a threshold at 10-20% of carrying capacity. The modern view of sustainability in the 1990s moves further in the direction of precaution. The fishing mortality limit is the former target of F(MSY) (or some proxy), and the target fishing mortality is set lower. This viewpoint further reduces the range of permissible fishing mortalities and resultant desired population sizes. The objective has shifted from optimizing long-term catch to preserving spawning biomass and egg production for the future. The use of discount rates in objective functions involving catch is not a suitable alternative to protecting reproductive value. As we move into the post-modern time period, new definitions of sustainability will attempt to incorporate he economic and social aspects of fisheries and/or ecosystem and habitat requirements. These definitions now involve "warm and fuzzy" notions (healthy ecosystems and fishing communities, the needs of future generations, diverse fish communities) and value judgements of desired outcomes. Additional work is needed to make these definitions operational and to specify quantitative objectives to be achieved. In addition, multiple objectives may be incompatible, so trade-offs in what constitutes sustainability must be made. The advances made under the single-species approach should not be abandoned in the post-modern era, but rather enhanced and combined with new approaches in the multi-species and economic realms.

  16. Sustainability in single-species population models

    PubMed Central

    Quinn, Terrance J.; Collie, Jeremy S.

    2005-01-01

    In this paper, we review the concept of sustainability with regard to a single-species, age-structured fish population with density dependence at some stage of its life history. We trace the development of the view of sustainability through four periods. The classical view of sustainability, prevalent in the 1970s and earlier, developed from deterministic production models, in which equilibrium abundance or biomass is derived as a function of fishing mortality. When there is no fishing mortality, the population equilibrates about its carrying capacity. We show that carrying capacity is the result of reproductive and mortality processes and is not a fixed constant unless these processes are constant. There is usually a fishing mortality, FMSY, which results in MSY, and a higher value, Fext, for which the population is eventually driven to extinction. For each F between 0 and Fext, there is a corresponding sustainable population. From this viewpoint, the primary tool for achieving sustainability is the control of fishing mortality. The neoclassical view of sustainability, developed in the 1980s, involved population models with depensation and stochasticity. This viewpoint is in accord with the perception that a population at a low level is susceptible to collapse or to a lack of rebuilding regardless of fishing. Sustainability occurs in a more restricted range from that in the classical view and includes an abundance threshold. A variety of studies has suggested that fishing mortality should not let a population drop below a threshold at 10–20% of carrying capacity. The modern view of sustainability in the 1990s moves further in the direction of precaution. The fishing mortality limit is the former target of FMSY (or some proxy), and the target fishing mortality is set lower. This viewpoint further reduces the range of permissible fishing mortalities and resultant desired population sizes. The objective has shifted from optimizing long-term catch to preserving spawning biomass and egg production for the future. The use of discount rates in objective functions involving catch is not a suitable alternative to protecting reproductive value. As we move into the post-modern time period, new definitions of sustainability will attempt to incorporate the economic and social aspects of fisheries and/or ecosystem and habitat requirements. These definitions now involve ‘warm and fuzzy’ notions (healthy ecosystems and fishing communities, the needs of future generations, diverse fish communities) and value judgements of desired outcomes. Additional work is needed to make these definitions operational and to specify quantitative objectives to be achieved. In addition, multiple objectives may be incompatible, so trade-offs in what constitutes sustainability must be made. The advances made under the single-species approach should not be abandoned in the post-modern era, but rather enhanced and combined with new approaches in the multi-species and economic realms. PMID:15713594

  17. The Evolution of Vicia ramuliflora (Fabaceae) at Tetraploid and Diploid Levels Revealed with FISH and RAPD

    PubMed Central

    Han, Ying; Liu, Yuan; Wang, Haoyou; Liu, Xiangjun

    2017-01-01

    Vicia ramuliflora L. is a widely distributed species in Eurasia with high economic value. For past 200 years, it has evolved a tetraploid cytotype and new subspecies at the diploid level. Based on taxonomy, cytogeography and other lines of evidence, previous studies have provided valuable information about the evolution of V. ramuliflora ploidy level, but due to the limited resolution of traditional methods, important questions remain. In this study, fluorescence in situ hybridization (FISH) and random amplified polymorphic DNA (RAPD) were used to analyze the evolution of V. ramuliflora at the diploid and tetraploid levels. Our aim was to reveal the genomic constitution and parents of the tetraploid V. ramuliflora and the relationships among diploid V. ramuliflora populations. Our study showed that the tetraploid cytotype of V. ramuliflora at Changbai Mountains (M) has identical 18S and 5S rDNA distribution patterns with the diploid Hengdaohezi population (B) and the diploid Dailing population (H). However, UPGMA clustering, Neighbor-Joining clustering and principal coordinates analysis based on RAPD showed that the tetraploid cytotype (M) has more close relationships with Qianshan diploid population T. Based on our results and the fact that interspecific hybridization among Vicia species is very difficult, we think that the tetraploid V. ramuliflora is an autotetraploid and its genomic origin still needs further study. In addition, our study also found that Qianshan diploid population (T) had evolved distinct new traits compared with other diploid populations, which hints that V. ramuliflora evolved further at diploid level. We suggest that diploid population T be re-classified as a new subspecies. PMID:28135314

  18. The Evolution of Vicia ramuliflora (Fabaceae) at Tetraploid and Diploid Levels Revealed with FISH and RAPD.

    PubMed

    Han, Ying; Liu, Yuan; Wang, Haoyou; Liu, Xiangjun

    2017-01-01

    Vicia ramuliflora L. is a widely distributed species in Eurasia with high economic value. For past 200 years, it has evolved a tetraploid cytotype and new subspecies at the diploid level. Based on taxonomy, cytogeography and other lines of evidence, previous studies have provided valuable information about the evolution of V. ramuliflora ploidy level, but due to the limited resolution of traditional methods, important questions remain. In this study, fluorescence in situ hybridization (FISH) and random amplified polymorphic DNA (RAPD) were used to analyze the evolution of V. ramuliflora at the diploid and tetraploid levels. Our aim was to reveal the genomic constitution and parents of the tetraploid V. ramuliflora and the relationships among diploid V. ramuliflora populations. Our study showed that the tetraploid cytotype of V. ramuliflora at Changbai Mountains (M) has identical 18S and 5S rDNA distribution patterns with the diploid Hengdaohezi population (B) and the diploid Dailing population (H). However, UPGMA clustering, Neighbor-Joining clustering and principal coordinates analysis based on RAPD showed that the tetraploid cytotype (M) has more close relationships with Qianshan diploid population T. Based on our results and the fact that interspecific hybridization among Vicia species is very difficult, we think that the tetraploid V. ramuliflora is an autotetraploid and its genomic origin still needs further study. In addition, our study also found that Qianshan diploid population (T) had evolved distinct new traits compared with other diploid populations, which hints that V. ramuliflora evolved further at diploid level. We suggest that diploid population T be re-classified as a new subspecies.

  19. Barriers impede upstream spawning migration of flathead chub

    USGS Publications Warehouse

    Walters, David M.; Zuellig, Robert E.; Crockett, Harry J.; Bruce, James F.; Lukacs, Paul M.; Fitzpatrick, Ryan M.

    2014-01-01

    Many native cyprinids are declining throughout the North American Great Plains. Some of these species require long reaches of contiguous, flowing riverine habitat for drifting eggs or larvae to develop, and their declining populations have been attributed to habitat fragmentation or barriers (e.g., dams, dewatered channels, and reservoirs) that restrict fish movement. Upstream dispersal is also needed to maintain populations of species with passively drifting eggs or larvae, and prior researchers have suggested that these fishes migrate upstream to spawn. To test this hypothesis, we conducted a mark–recapture study of Flathead Chub Platygobio gracilis within a 91-km reach of continuous riverine habitat in Fountain Creek, Colorado. We measured CPUE, spawning readiness (percent of Flathead Chub expressing milt), and fish movement relative to a channel-spanning dam. Multiple lines of evidence indicate that Flathead Chub migrate upstream to spawn during summer. The CPUE was much higher at the base of the dam than at downstream sites; the seasonal increases in CPUE at the dam closely tracked seasonal increases in spawning readiness, and marked fish moved upstream as far as 33 km during the spawning run. The upstream migration was effectively blocked by the dam. The CPUE of Flathead Chub was much lower upstream of the OHDD than at downstream sites, and <0.2% of fish marked at the dam were recaptured upstream. This study provides the first direct evidence of spawning migration for Flathead Chub and supports the general hypothesis that barriers limit adult dispersal of these and other plains fishes.

  20. Environmental hedging: A theory and method for reconciling reservoir operations for downstream ecology and water supply

    NASA Astrophysics Data System (ADS)

    Adams, L. E.; Lund, J. R.; Moyle, P. B.; Quiñones, R. M.; Herman, J. D.; O'Rear, T. A.

    2017-09-01

    Building reservoir release schedules to manage engineered river systems can involve costly trade-offs between storing and releasing water. As a result, the design of release schedules requires metrics that quantify the benefit and damages created by releases to the downstream ecosystem. Such metrics should support making operational decisions under uncertain hydrologic conditions, including drought and flood seasons. This study addresses this need and develops a reservoir operation rule structure and method to maximize downstream environmental benefit while meeting human water demands. The result is a general approach for hedging downstream environmental objectives. A multistage stochastic mixed-integer nonlinear program with Markov Chains, identifies optimal "environmental hedging," releases to maximize environmental benefits subject to probabilistic seasonal hydrologic conditions, current, past, and future environmental demand, human water supply needs, infrastructure limitations, population dynamics, drought storage protection, and the river's carrying capacity. Environmental hedging "hedges bets" for drought by reducing releases for fish, sometimes intentionally killing some fish early to reduce the likelihood of large fish kills and storage crises later. This approach is applied to Folsom reservoir in California to support survival of fall-run Chinook salmon in the lower American River for a range of carryover and initial storage cases. Benefit is measured in terms of fish survival; maintaining self-sustaining native fish populations is a significant indicator of ecosystem function. Environmental hedging meets human demand and outperforms other operating rules, including the current Folsom operating strategy, based on metrics of fish extirpation and water supply reliability.

  1. Larval export from marine reserves and the recruitment benefit for fish and fisheries.

    PubMed

    Harrison, Hugo B; Williamson, David H; Evans, Richard D; Almany, Glenn R; Thorrold, Simon R; Russ, Garry R; Feldheim, Kevin A; van Herwerden, Lynne; Planes, Serge; Srinivasan, Maya; Berumen, Michael L; Jones, Geoffrey P

    2012-06-05

    Marine reserves, areas closed to all forms of fishing, continue to be advocated and implemented to supplement fisheries and conserve populations. However, although the reproductive potential of important fishery species can dramatically increase inside reserves, the extent to which larval offspring are exported and the relative contribution of reserves to recruitment in fished and protected populations are unknown. Using genetic parentage analyses, we resolve patterns of larval dispersal for two species of exploited coral reef fish within a network of marine reserves on the Great Barrier Reef. In a 1,000 km(2) study area, populations resident in three reserves exported 83% (coral trout, Plectropomus maculatus) and 55% (stripey snapper, Lutjanus carponotatus) of assigned offspring to fished reefs, with the remainder having recruited to natal reserves or other reserves in the region. We estimate that reserves, which account for just 28% of the local reef area, produced approximately half of all juvenile recruitment to both reserve and fished reefs within 30 km. Our results provide compelling evidence that adequately protected reserve networks can make a significant contribution to the replenishment of populations on both reserve and fished reefs at a scale that benefits local stakeholders. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Historical Population Estimates For Several Fish Species At Offshore Oil and Gas Structures in the US Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Gitschlag, G.

    2016-02-01

    Population estimates were calculated for four fish species occurring at offshore oil and gas structures in water depths of 14-32 m off the Louisiana and upper Texas coasts in the US Gulf of Mexico. From 1993-1999 sampling was conducted at eight offshore platforms in conjunction with explosive salvage of the structures. To estimate fish population size prior to detonation of explosives, a fish mark-recapture study was conducted. Fish were captured on rod and reel using assorted hook sizes. Traps were occasionally used to supplement catches. Fish were tagged below the dorsal fin with plastic t-bar tags using tagging guns. Only fish that were alive and in good condition were released. Recapture sampling was conducted after explosives were detonated during salvage operations. Personnel operating from inflatable boats used dip nets to collect all dead fish that floated to the surface. Divers collected representative samples of dead fish that sank to the sea floor. Data provided estimates for red snapper (Lutjanus campechanus), Atlantic spadefish (Chaetodipterus faber), gray triggerfish (Balistes capriscus), and blue runner (Caranx crysos) at one or more of the eight platforms studied. At seven platforms, population size for red snapper was calculated at 503-1,943 with a 95% CI of 478. Abundance estimates for Atlantic spadefish at three platforms ranged from 1,432-1,782 with a 95% CI of 473. At three platforms, population size of gray triggerfish was 63-129 with a 95% CI of 82. Blue runner abundance at one platform was 558. Unlike the other three species which occur close to the platforms, blue runner range widely and recapture of this species was dependent on fish schools being in close proximity to the platform at the time explosives were detonated. Tag recapture was as high as 73% for red snapper at one structure studied.

  3. Fish introductions in the former Soviet Union: The Sevan trout (Salmo ischchan) — 80 years later

    PubMed Central

    Bogdanowicz, Wiesław; Rutkowski, Robert; Gabrielyan, Bardukh K.; Ryspaev, Akylbek; Asatryan, Anzhela N.; Mkrtchyan, Jon A.; Bujalska, Barbara M.

    2017-01-01

    The Soviet Union played the leading role in fish introductions in Eurasia. However, only 3% of all introductions prior to 1978 gave a commercial benefit. One of the noteworthy examples appears to be the Sevan trout (Salmo ischchan Kessler, 1877)—an endemic salmonid of Lake Sevan in Armenia. This species has been introduced to Kirghizstan, Kazakhstan, and Uzbekistan, however, only the Kirghiz population has persisted in relatively high numbers. In this paper we provide the first extensive molecular study of S. ischchan using samples from the native population from Lake Sevan and three hatcheries in Armenia, as well as from the population introduced to Lake Issyk Kul in Kirghizstan. The Kirghiz population has been isolated since the introductions took place in 1930 and 1936. Our results, based on 11 nuclear microsatellites and a 905 bp fragment of the mitochondrial control region suggest that hatcheries have maintained genetic variability by way of ongoing translocations of individuals from Lake Sevan. Simultaneously, significant Garza-Williamson M-values suggest that bottlenecks could have reduced the genetic variability of the wild populations in the past. This hypothesis is supported by historical data, indicating highly manipulated water-level regulations and poaching as two main factors that dramatically impact fish abundance in the lake. On the other hand, a similar situation has been observed in Kirghizstan, but this population likely rebounded from small population size faster than the other populations examined. The Kirghiz population is significantly genetically differentiated from the other groups and have morphological features and biological attributes not observed in the source population. Genetic data imply that the effective population size in the native population is lower than that found in the introduced population, suggesting that some active protection of the Lake Sevan population may be needed urgently. PMID:28683097

  4. HIV Partner Notification Values and Preferences Among Sex Workers, Fishermen, and Mainland Community Members in Rakai, Uganda: A Qualitative Study.

    PubMed

    Quinn, Caitlin; Nakyanjo, Neema; Ddaaki, William; Burke, Virginia M; Hutchinson, Naadiya; Kagaayi, Joseph; Wawer, Maria J; Nalugoda, Fred; Kennedy, Caitlin E

    2018-01-25

    HIV partner notification involves contacting sexual partners of people who test HIV positive and referring them to HIV testing, treatment, and prevention services. To understand values and preferences of key and general populations in Rakai, Uganda, we conducted 6 focus group discussions and 63 in-depth interviews in high prevalence fishing communities and low prevalence mainland communities. Participants included fishermen and sex workers in fishing communities, male and female mainland community members, and healthcare providers. Questions explored three approaches: passive referral, provider referral, and contract referral. Qualitative data were coded and analyzed using a team-based matrix approach. Participants agreed that passive referral was most suitable for primary partners. Provider referral was acceptable in fishing communities for notifying multiple, casual partners. Healthcare providers voiced concerns about limited time, resources, and training for provider-assisted approaches. Options for partner notification may help people overcome barriers to HIV serostatus disclosure and help reach key populations.

  5. Intervention analysis of power plant impact on fish populations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madenjian, C.P.

    1984-10-01

    Intervention analysis was applied to 10 yr (years 1973-1982) of field fish abundance data at the D. C. Cook Nuclear Power Plant, southeastern Lake Michigan. Three log-transformed catch series, comprising monthly observations, were examined for each combination of two species (alewife, Alosa pseudoharenga, or yellow perch, Perca flavescens) and gear (trawl or gill net): catch at the plant discharged transect, catch at the reference transect, and the ratio of plant catch to reference catch. Time series separated by age groups were examined. Based on intervention analysis, no change in the abundance of fish populations could be attributed to plant operation.more » Additionally, a modification of the intervention analysis technique was applied to investigate trends in abundance at both the plant discharge and reference transects. Significant declines were detected for abundance of alewife adults at both of the transects. Results of the trend analysis support the contention that the alewives have undergone a lakewide decrease in abundance during the 1970s.« less

  6. Habitat use by fishes in groundwater-dependent streams of southern Oklahoma

    USGS Publications Warehouse

    Seilheimer, Titus S.; Fisher, William L.

    2010-01-01

    Habitat use by fishes in groundwater-dependent ecosystems with springs and spring-fed creeks is not widely studied or well understood. We evaluated habitat use by three disjunct populations of fish species (Phoxinus erythrogaster, Nocomis asper and Etheostoma microperca) and, a widespread species, E. spectabile in spring-fed streams draining the Arbuckle-Simpson aquifer of southern Oklahoma. Habitat preference for each species was classified based on depth, velocity, substrate and cover. Phoxinus erthyrogaster and N. asper were associated with pools with little cover, while E. microperca was found in heavily vegetated areas. Etheostoma spectabile used habitat in riffles with rapid velocity and large substrate types. We classified habitat selection and avoidance with Chesson's α and observed significant differences in habitat use among species in the study sites. Overall differences in habitat use for P. erythrogaster among the three study sites were primarily related to differences in available habitat between springs. Our study provides vital ecological information about disjunct populations of groundwater-dependent fishes in an aquifer that is experiencing development pressure for water abstraction.

  7. Histo-FISH protocol to detect bacterial compositions and biofilms formation in vivo.

    PubMed

    Madar, M; Slizova, M; Czerwinski, J; Hrckova, G; Mudronova, D; Gancarcikova, S; Popper, M; Pistl, J; Soltys, J; Nemcova, R

    2015-01-01

    The study of biofilm function in vivo in various niches of the gastrointestinal tract (GIT) is rather limited. It is more frequently used in in vitro approaches, as an alternative to the studies focused on formation mechanisms and function of biofilms, which do not represent the actual in vivo complexity of microbial structures. Additionally, in vitro tests can sometimes lead to unreliable results. The goal of this study was to develop a simple approach to detect bacterial populations, particularly Lactobacillus and Bifidobacterium in biofilms, in vivo by the fluorescent in situ hybridisation (FISH) method. We standardised a new Histo-FISH method based on specific fluorochrome labelling probes which are able to detect Lactobacillus spp. and Bifidobacterium spp. within biofilms on the mucosal surface of the GIT embedded in paraffin in histological slices. This method is also suitable for visualisation of bacterial populations in the GIT internal content. Depending on the labelling probes, the Histo-FISH method has the potential to detect other probiotic strains or pathogenic bacteria. This original approach permits us to analyse bacterial colonisation processes as well as biofilm formation in stomach and caecum of BALB/c and germ-free mice.

  8. Titre distribution patterns of infectious haematopoietic necrosis virus in ovarian fluids of hatchery and feral salmon populations

    USGS Publications Warehouse

    Mulcahy, D.; Pascho, R.J.; Jenes, C.K.

    1983-01-01

    Infectious haematopoietic mecrosis virus (IHNV) is enzootic in virtually all populations of sockeye salmon, Oncorhynchus nerka (Walbaum), and in populations of chinook salmon, O. tshawytscha (Walbaum), of the Sacramento River drainage in California. This disease is an obstacle in hatcheries using brood stocks from these populations. However, naturally spawning sockeye salmon are highly successful and are the most important commercially fished salmon species in the United States. Most of the commercial landings of sockeye salmon are of feral fish originating in Alaska. The success of natural populations of salmon in which IHNV is enzootic, and the recurrent outbreaks of the disease in hatchery fish, led us to compare IHNW prevalence rates in hatchery and feral salmon populations.

  9. Predator-induced morphological plasticity across local populations of a freshwater snail.

    PubMed

    Brönmark, Christer; Lakowitz, Thomas; Hollander, Johan

    2011-01-01

    The expression of anti-predator adaptations may vary on a spatial scale, favouring traits that are advantageous in a given predation regime. Besides, evolution of different developmental strategies depends to a large extent on the grain of the environment and may result in locally canalized adaptations or, alternatively, the evolution of phenotypic plasticity as different predation regimes may vary across habitats. We investigated the potential for predator-driven variability in shell morphology in a freshwater snail, Radix balthica, and whether found differences were a specialized ecotype adaptation or a result of phenotypic plasticity. Shell shape was quantified in snails from geographically separated pond populations with and without molluscivorous fish. Subsequently, in a common garden experiment we investigated reaction norms of snails from populations' with/without fish when exposed to chemical cues from tench (Tinca tinca), a molluscivorous fish. We found that snails from fish-free ponds had a narrow shell with a well developed spire, whereas snails that coexisted with fish had more rotund shells with a low spire, a shell morphology known to increase survival rate from shell-crushing predators. The common garden experiment mirrored the results from the field survey and showed that snails had similar reaction norms in response to chemical predator cues, i.e. the expression of shell shape was independent of population origin. Finally, we found significant differences for the trait means among populations, within each pond category (fish/fish free), suggesting a genetic component in the determination of shell morphology that has evolved independently across ponds.

  10. Introducing a Novel Media to Improve the Recovery of Culturable Bacteria from the Fish Parasite Anisakis spp. larvae (Nematoda: Anisakidae).

    PubMed

    Svanevik, Cecilie S; Lunestad, Bjørn T

    2017-09-01

    This paper describes a cultivation method to increase the recovery of bacteria from the marine muscle-invading parasitic nematode larvae of Anisakis spp. These larvae hold a high and complex population of accumulated bacteria, originating from seawater, crustaceans, fish, and marine mammals, all involved in the lifecycle of Anisakis. Two in-house agars based on fish juice prepared by either mechanical or enzymatic degradation of the fish tissue, were made. The Anisakis larvae were homogenised prior to cultivation on the in-house fish juice agars and the bacterial numbers and diversity were compared to those obtained applying the commercially available Marine Agar and Iron Agar Lyngby. Bacterial colonies of unique appearance were subcultured and identified by 16S rRNA gene sequencing. Totally three of twenty identified taxa were found on the in-house fish juice agars only. Fish juice agar prepared enzymatically would be the best supplementary agar, as this agar gave significantly higher heterotrophic plate counts, compared to mechanical preparation. The enzymatically prepared fish juice gave more suitable agar quality, was more resource efficient, and had apparently increased nutrient density and availability.

  11. An evaluation of selenium concentrations in water, sediment, invertebrates, and fish from the Solomon River Basin

    USGS Publications Warehouse

    May, T.W.; Fairchild, J.F.; Petty, J.D.; Walther, M.J.; Lucero, J.; Delvaux, M.; Manring, J.; Armbruster, M.

    2008-01-01

    The Solomon River Basin is located in north-central Kansas in an area underlain by marine geologic shales. Selenium is an indigenous constituent of these shales and is readily leached into the surrounding groundwater. Portions of the Basin are irrigated primarily through the pumping of selenium-contaminated groundwater from wells onto fields in agricultural production. Water, sediment, macroinvertebrates, and fish were collected from various sites in the Basin in 1998 and analyzed for selenium. Selenium concentrations were analyzed spatially and temporally and compared to reported selenium toxic effect thresholds for specific ecosystem components: water, sediments, food-chain organisms, and wholebody fish. A selenium aquatic hazard assessment for the Basin was determined based on protocol established by Lemly. Throughout the Basin, water, macroinvertebrate, and whole fish samples exceeded levels suspected of causing reproductive impairment in fish. Population structures of several fish species implied that successful reproduction was occurring; however, the influence of immigration of fish from low-selenium habitats could not be discounted. Site-specific fish reproduction studies are needed to determine the true impact of selenium on fishery resources in the Basin. ?? Springer Science+Business Media B.V. 2007.

  12. Fish intake, cooking practices, and risk of prostate cancer: results from a multi-ethnic case-control study.

    PubMed

    Joshi, Amit D; John, Esther M; Koo, Jocelyn; Ingles, Sue A; Stern, Mariana C

    2012-03-01

    Studies conducted to assess the association between fish consumption and prostate cancer (PCA) risk are inconclusive. However, few studies have distinguished between fatty and lean fish, and no studies have considered the role of different cooking practices, which may lead to differential accumulation of chemical carcinogens. In this study, we investigated the association between fish intake and localized and advanced PCA taking into account fish types (lean vs. fatty) and cooking practices. We analyzed data for 1,096 controls, 717 localized and 1,140 advanced cases from the California Collaborative Prostate Cancer Study, a multiethnic, population-based case-control study. We used multivariate conditional logistic regression to estimate odds ratios using nutrient density converted variables of fried fish, tuna, dark fish and white fish consumption. We tested for effect modification by cooking methods (high- vs. low-temperature methods) and levels of doneness. We observed that high white fish intake was associated with increased risk of advanced PCA among men who cooked with high-temperature methods (pan-frying, oven-broiling and grilling) until fish was well done (p (trend) = 0.001). No associations were found among men who cooked fish at low temperature and/or just until done (white fish x cooking method p (interaction) = 0.040). Our results indicate that consideration of fish type (oily vs. lean), specific fish cooking practices and levels of doneness of cooked fish helps elucidate the association between fish intake and PCA risk and suggest that avoiding high-temperature cooking methods for white fish may lower PCA risk.

  13. Combined effects of constant sublethal UVA irradiation and elevated temperature on the survival and general metabolism of the convict-cichlid fish, Cichlasoma nigrofasciatum.

    PubMed

    Winckler, K; Fidhiany, L

    1996-04-01

    In a previous study we observed that a constant sublethal UVA (320-400 nm) irradiation had a significant effect on the general metabolism in the Convict-cichlid fish (Cichlasoma nigrofasciatum) [Winckler, K. and Fidhiany, L. (1996) J. Photochem. Photobiol. B. Biol. (In press)]. In the present study we show that sublethal UVA irradiation in combination with elevated environmental temperature has a deleterious effect on the same population. The threshold temperature for a sudden increase in mortality of fish receiving an additional sublethal UVA irradiation was 32 degrees C. Prior to the increased mortality, the fish started to avoid the UV light source when the water temperature increased to 31.5 degrees C. Mortality decreased when the temperature declined below 31.5 degrees C. As soon as the temperature changed to normal (adapted) condition (27-29 degrees C) mortality returned to normal levels. In contrast, no changes of fish behavior or mortality were observed at elevated temperature in the nonirradiated reference population. The percentages of fish surviving the high temperature stress were 21.9% for the UVA population and 96.8% for the reference population. The specific oxygen consumption (SOC, average +/- SD) of the survivors from the UVA population during temperature stress was 0.21 +/- 0.05 mg O2 h-1 g body weight (BW)-1, while it was 0.54 +/- 0.11 mg O2 h-1 g BW-1 in the reference population. After the environmental temperature returned below the apparent upper temperature tolerance limit, the oxygen consumption of the UVA population gradually normalized. The SOC measured at different temperature levels--after after the fish passed the temperature stress--showed no significant differences between the UVA population and its reference at 23, 25, 27 and 29 degrees C. However, the SOC at 31 degrees C was significantly (P < 0.05) lower than reference, while at 33 degrees C it was higher (P < 0.10).

  14. 40 CFR 35.1640-1 - Application review criteria.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... improvement in fish and wildlife habitat and associated beneficial effects on specific fish populations of... economic structure of the population residing near the lake which would use the improved lake for... freshwater lakes within 80 kilometer radius already adequately serve the population; and (v) Whether the...

  15. 40 CFR 35.1640-1 - Application review criteria.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... improvement in fish and wildlife habitat and associated beneficial effects on specific fish populations of... economic structure of the population residing near the lake which would use the improved lake for... freshwater lakes within 80 kilometer radius already adequately serve the population; and (v) Whether the...

  16. CHARACTERIZING POPULATIONS OF THE ESTUARINE FISH FUNDULUS HETEROCLITUS INDIGENOUS TO SITES WITH DIFFERING ENVIRONMENTAL QUALITY

    EPA Science Inventory

    Populations of the non-migratory estuarine fish Fundulus heteroclitus were collected from New Bedford Harbor and distant clean sites to investigate whether indigenous populations have adapted genetically to the harbor's contamination. New Bedford Harbor, a major port in southe...

  17. Recovery of a US endangered fish.

    PubMed

    Bain, Mark B; Haley, Nancy; Peterson, Douglas L; Arend, Kristin K; Mills, Kathy E; Sullivan, Patrick J

    2007-01-24

    More fish have been afforded US Endangered Species Act protection than any other vertebrate taxonomic group, and none has been designated as recovered. Shortnose sturgeon (Acipenser brevirostrum) occupy large rivers and estuaries along the Atlantic coast of North America, and the species has been protected by the US Endangered Species Act since its enactment. Data on the shortnose sturgeon in the Hudson River (New York to Albany, NY, USA) were obtained from a 1970s population study, a population and fish distribution study we conducted in the late 1990s, and a fish monitoring program during the 1980s and 1990s. Population estimates indicate a late 1990s abundance of about 60,000 fish, dominated by adults. The Hudson River population has increased by more than 400% since the 1970s, appears healthy, and has attributes typical for a long-lived species. Our population estimates exceed the government and scientific population recovery criteria by more than 500%, we found a positive trend in population abundance, and key habitats have remained intact despite heavy human river use. Scientists and legislators have called for changes in the US Endangered Species Act, the Act is being debated in the US Congress, and the Act has been characterized as failing to recover species. Recovery of the Hudson River population of shortnose sturgeon suggests the combination of species and habitat protection with patience can yield successful species recovery, even near one of the world's largest human population centers.

  18. Eye fluke-induced cataracts in natural fish populations: is there potential for host manipulation?

    PubMed

    Seppälä, O; Karvonen, A; Valtonen, E T

    2011-02-01

    Manipulation of host phenotype (e.g. behaviour, appearance) is suggested to be a common strategy to enhance transmission in trophically transmitted parasites. However, in many systems, evidence of manipulation comes exclusively from laboratory studies and its occurrence in natural host populations is poorly understood. Here, we examined the potential for host manipulation by Diplostomum eye flukes indirectly by quantifying the physiological effects of parasites on fish. Earlier laboratory studies have shown that Diplostomum infection predisposes fish to predation by birds (definitive hosts of the parasites) by reducing fish vision through cataract formation. However, occurrence of cataracts and the subsequent potential for host manipulation in natural fish populations has remained poorly explored. We studied the occurrence of eye fluke-induced cataracts from 7 common fish species (Gymnocephalus cernuus, Rutilus rutilus, Leuciscus leuciscus, Alburnus alburnus, Osmerus eperlanus, Coregonus lavaretus and Gasterosteus aculeatus) from the Bothnian Bay in the Baltic Sea. We found that the parasite-induced cataracts were common in fish and they also reached high levels which are likely to predispose fish to predation. However, we observed such cataracts only in species with the highest parasite abundances, which suggests that only certain hosts may be strongly affected by the infection.

  19. Factors for improved fish passage waterway construction.

    DOT National Transportation Integrated Search

    2011-06-01

    Streambeds are important fish passageways in Oregon; they provide for the necessary habitats and spawning cycles of a healthy fish population. Oregon state law requires that hydraulic structures located in water properly provide fish passage. Increas...

  20. The role of fish in a globally changing food system

    USGS Publications Warehouse

    Lynch, Abigail J.; MacMillan, J. Randy

    2017-01-01

    Though humans have been fishing for food since they first created tools to hunt, modern food systems are predominately terrestrial focused and fish are frequently overlooked. Yet, within the global food system, fish play an important role in meeting current and future food needs. Capture fisheries are the last large-scale “wild” food, and aquaculture is the fastest growing food production sector in the world. Currently, capture fisheries and aquaculture provide 4.3 billion people with at least 15% of their animal protein. In addition to providing protein and calories, fish are important sources of critical vitamins and vital nutrients that are difficult to acquire through other food sources. As the climate changes, human populations will continue to grow, cultural tastes will evolve, and fish populations will respond. Sustainable fisheries and aquaculture are poised to fill demand for food not met by terrestrial food systems. Climate change and other global changes will increase, decrease, or modify many wild fish populations and aquaculture systems. Understanding the knowledge gaps around these implications for global change on fish production is critical. Applied research and adaptive management techniques can assist with the necessary evolution of sustainable food systems to include a stronger emphasis on fish and other aquatic organisms.

  1. Stochastic von Bertalanffy models, with applications to fish recruitment.

    PubMed

    Lv, Qiming; Pitchford, Jonathan W

    2007-02-21

    We consider three individual-based models describing growth in stochastic environments. Stochastic differential equations (SDEs) with identical von Bertalanffy deterministic parts are formulated, with a stochastic term which decreases, remains constant, or increases with organism size, respectively. Probability density functions for hitting times are evaluated in the context of fish growth and mortality. Solving the hitting time problem analytically or numerically shows that stochasticity can have a large positive impact on fish recruitment probability. It is also demonstrated that the observed mean growth rate of surviving individuals always exceeds the mean population growth rate, which itself exceeds the growth rate of the equivalent deterministic model. The consequences of these results in more general biological situations are discussed.

  2. Sequential tests for infectious hematopoietic necrosis virus in individuals and populations of sockeye salmon

    USGS Publications Warehouse

    Mulcahy, Daniel M.; Pascho, Ron

    1986-01-01

    The incidence and titer distribution of infectious hematopoietic necrosis virus in cavity fluid from spent female sockeye salmon (Oncorhynchus nerka) varied little when fish from a naturally spawning population were sampled three times on alternate days. However, when prespawning female sockeye salmon from a second population were individually tagged, penned, and sampled daily, the incidence and proportion of fish with high virus titer rose over a 6-d period. In 10 instances, consecutive cavity fluid samples from the same fish reverted from virus-positive to virus-negative. We suggest that spent fish should be sampled when accurate and quantitative data on the incidence and level of the virus are required.

  3. Evaluation of targeted and untargeted effects-based monitoring tools to assess impacts of contaminants of emerging concern on fish in the South Platte River, CO

    EPA Science Inventory

    Rivers in the arid Western United States face increasing influences from anthropogenic contaminants due to population growth, urbanization, and drought. To better understand and more effectively track the impacts of these contaminants, biologically-based monitoring tools are incr...

  4. Modeling the effects of land use and climate change on riverine smallmouth bass

    USGS Publications Warehouse

    Peterson, J.T.; Kwak, T.J.

    1999-01-01

    Anthropogenic changes in temperature and stream flow, associated with watershed land use and climate change, are critical influences on the distribution and abundance of riverine fishes. To project the effects of changing land use and climate, we modeled a smallmouth bass (Micropterus dolomieu) population in a midwestern USA, large river- floodplain ecosystem under historical (1915-1925), present (1977-1990), and future (2060, influenced by climate change) temperature and flow regimes. The age-structured model included parameters for temperature and river discharge during critical seasonal periods, fish population dynamics, and fishing harvest. Model relationships were developed from empirical field data collected over a 13-yr period. Sensitivity analyses indicated that discharge during the spawning/rearing period had a greater effect on adult density and fishing yield than did spawning/rearing temperature or winter discharge. Simulations for 100 years projected a 139% greater mean fish density under a historical flow regime (64.9 fish/ha) than that estimated for the present (27.1 fish/ha) with a sustainable fishing harvest under both flow regimes. Simulations under future climate-change-induced temperature and flow regimes with present land use projected a 69% decrease in mean fish density (8.5 fish/ha) from present and an unstable population that went extinct during 56% of the simulations. However, when simulated under a future climate-altered temperature and flow regime with historical land use, the population increased by 66% (45.0 fish/ha) from present and sustained a harvest. Our findings suggest that land-use changes may be a greater detriment to riverine fishes than projected climate change and that the combined effects of both factors may lead to local species extinction. However, the negative effects of increased temperature and precipitation associated with future global warming could be mitigated by river channel, floodplain, and watershed restoration.

  5. Large-Scale Paraphrasing for Natural Language Understanding

    DTIC Science & Technology

    2018-04-01

    to manufacture , use, or sell any patented invention that may relate to them. This report is the result of contracted fundamental research deemed...station contaminated local fish populations Atomic power generation in Springfield polluted indigenous seafood stocks Radioactive power generation...from PPDB. Springfield’s nuclear power plant contaminated local fish populations nuclear power station nuclear plant power plant fish stocks

  6. Modeling fish community dynamics in Florida Everglades: Role of temperature variation

    USGS Publications Warehouse

    Al-Rabai'ah, H. A.; Koh, H. L.; DeAngelis, Donald L.; Lee, Hooi-Ling

    2002-01-01

    The model shows that the temperature dependent starvation mortality is an important factor that influences fish population densities. It also shows high fish population densities at some temperature ranges when this consumption need is minimum. Several sensitivity analyses involving variations in temperature terms, food resources and water levels are conducted to ascertain the relative importance of temperature dependence terms.

  7. 40 CFR 125.70 - Purpose and scope.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... propagation of a balanced, indigenous population of shellfish, fish and wildlife in and on the body of water... assure the protection and propagation of a balanced indigenous population of shellfish, fish and wildlife...

  8. 40 CFR 125.70 - Purpose and scope.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... propagation of a balanced, indigenous population of shellfish, fish and wildlife in and on the body of water... assure the protection and propagation of a balanced indigenous population of shellfish, fish and wildlife...

  9. 40 CFR 125.70 - Purpose and scope.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... propagation of a balanced, indigenous population of shellfish, fish and wildlife in and on the body of water... assure the protection and propagation of a balanced indigenous population of shellfish, fish and wildlife...

  10. 40 CFR 125.70 - Purpose and scope.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... propagation of a balanced, indigenous population of shellfish, fish and wildlife in and on the body of water... assure the protection and propagation of a balanced indigenous population of shellfish, fish and wildlife...

  11. 40 CFR 125.70 - Purpose and scope.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... propagation of a balanced, indigenous population of shellfish, fish and wildlife in and on the body of water... assure the protection and propagation of a balanced indigenous population of shellfish, fish and wildlife...

  12. Spatial and temporal variation at major histocompatibility complex class IIB genes in the endangered Blakiston's fish owl.

    PubMed

    Kohyama, Tetsuo I; Omote, Keita; Nishida, Chizuko; Takenaka, Takeshi; Saito, Keisuke; Fujimoto, Satoshi; Masuda, Ryuichi

    2015-01-01

    Quantifying intraspecific genetic variation in functionally important genes, such as those of the major histocompatibility complex (MHC), is important in the establishment of conservation plans for endangered species. The MHC genes play a crucial role in the vertebrate immune system and generally show high levels of diversity, which is likely due to pathogen-driven balancing selection. The endangered Blakiston's fish owl (Bubo blakistoni) has suffered marked population declines on Hokkaido Island, Japan, during the past several decades due to human-induced habitat loss and fragmentation. We investigated the spatial and temporal patterns of genetic diversity in MHC class IIβ genes in Blakiston's fish owl, using massively parallel pyrosequencing. We found that the Blakiston's fish owl genome contains at least eight MHC class IIβ loci, indicating recent gene duplications. An analysis of sequence polymorphism provided evidence that balancing selection acted in the past. The level of MHC variation, however, was low in the current fish owl populations in Hokkaido: only 19 alleles were identified from 174 individuals. We detected considerable spatial differences in MHC diversity among the geographically isolated populations. We also detected a decline of MHC diversity in some local populations during the past decades. Our study demonstrated that the current spatial patterns of MHC variation in Blakiston's fish owl populations have been shaped by loss of variation due to the decline and fragmentation of populations, and that the short-term effects of genetic drift have counteracted the long-term effects of balancing selection.

  13. Investigating the effect of chemical stress and resource limitation on fish populations: A case study with Fundulus heteroclitus

    EPA Science Inventory

    Modeling exposure and recovery of fish and wildlife populations after stressor mitigation serves as a basis for evaluating population status and remediation success. The Atlantic killifish (Fundulus heteroclitus) is an important and well-studied model organism for understanding t...

  14. Relations between introduced fish and environmental conditions at large geographic scales

    USGS Publications Warehouse

    Meador, M.R.; Brown, L.R.; Short, T.

    2003-01-01

    Data collected from 20 major river basins between 1993 and 1995 as part of the US Geological Survey's (USGS) National Water-Quality Assessment (NAWQA) Program were analyzed to assess patterns in introduced and native fish species richness and abundance relative to watershed characteristics and stream physicochemistry. Sites (N = 157) were divided into three regions-northeast, southeast, and west- to account for major longitudinal differences in precipitation/runoff and latitudinal limits of glaciation that affect zoogeographic patterns in fish communities. Common carp (Cyprinus carpio) and largemouth bass (Micropterus salmoides) were the most frequently collected introduced fish species across all river basins combined. Based on the percentage of introduced fish species, the fish communities most altered by the presence of introduced fish occurred in the western and northeastern parts of the US. Native fish species richness was not an indicator of introduced fish species richness for any of the three regions. However, in the west, introduced fish species richness was an indicator of total fish species richness and the abundance of introduced fish was negatively related to native fish species richness. Some relations between introduced fish species and environmental conditions were common between regions. Increased introduced fish species richness was related to increased population density in the northeast and southeast; increased total nitrogen in the northeast and west; and increased total phosphorous and water temperature in the southeast and west. These results suggest that introduced fish species tend to be associated with disturbance at large geographic scales, though specific relations may vary regionally. ?? 2003 Elsevier Science Ltd. All rights reserved.

  15. The 2005 Project Progress Report for 1987-099-00 Dworshak Kokanee Population and Entrainment Assessment (contract # 16791) is attached to project 1987-099-00, contract # 26850. [POINTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2008-12-18

    During this contract, we continued testing underwater strobe lights to determine their effectiveness at repelling kokanee Oncorhynchus nerka away from Dworshak Dam. We tested one set of nine strobe lights flashing at a rate of 360 flashes/min in front of turbine 3 while operating at higher discharges than previously tested. The density and distribution of fish, (thought to be mostly kokanee), were monitored with a split-beam echo sounder. We then compared fish counts and densities during nights when the lights were flashing to counts and densities during adjacent nights without the lights on. On five nights between January 31 andmore » February 28, 2006, when no lights were present, fish counts near turbine 3 averaged eight fish and densities averaged 91 fish/ha. When strobe lights were turned on during five adjacent nights during the same period, mean counts dropped to four fish and densities dropped to 35 fish/ha. The decline in counts (49%) was not statistically significant (p = 0.182), but decline in densities (62%) was significant (p = 0.049). There appeared to be no tendency for fish to habituate to the lights during the night. Test results indicated that strobe lights were able to reduce fish densities by at least 50% in front of turbines operating at higher discharges, which would be sufficient to improve sportfish harvest. We also used split-beam hydroacoustics to monitor the kokanee population in Dworshak Reservoir during 2005. Estimated abundance of kokanee decreased from the 2004 population estimate. Based on hydroacoustic surveys, we estimated 3,011,626 kokanee (90% CI {+-} 15.2%) in Dworshak Reservoir, July 2005. This included 2,135,986 age-0 (90% CI {+-} 15.9%), 769,175 age-1 (90% CI {+-} 16.0%), and 107,465 age-2 (90% CI {+-} 15.2%). Poor survival of kokanee from age-1 to age-2 continued to keep age-2 densities below the management goal of 30-50 adults/ha. Entrainment sampling was conducted with fixed-site split-beam hydroacoustics a minimum of two days per month for a continuous 24 h period when dam operations permitted. The highest fish detection rates from entrainment assessments were again found during nighttime periods and lowest during the day. Fish detection rates were low during high discharges throughout the spring and summer and highest during low discharges in September and November. High discharge during drawdowns for anadromous fish flows in July and August again resulted in low detection rates and susceptibility to entrainment. Index counts of spawning kokanee in four tributary streams totaled 12,742 fish. This data fits the previously developed relationship between spawner counts and adult kokanee abundance in the reservoir.« less

  16. Agricultural sources of contaminants of emerging concern and adverse health effects on freshwater fish

    USGS Publications Warehouse

    Tillitt, Donald E.; Buxton, Herbert T.

    2011-01-01

    Agricultural contaminants of emerging concern (CECs) are generally thought of as certain classes of chemicals associated with animal feeding and production facilities. Veterinary pharmaceuticals used in animal food production systems represent one of the largest groups of CECs. In our review, we discuss the extensive increase in use of antibiotics in animal feeding operations (AFOs) around the world. AFOs are a major consumer of antibiotics and other veterinary pharmaceuticals and over the past decade there has been growing information on the occurrence, release, and fate of CECs from animal food production operations, including the application of pharmaceutical-containing manure to agricultural fields and releases from waste lagoons. Concentrations of CECs in surface and ground water in proximity to AFOs correspond to their presence in the AFO wastes. In many cases, the environmental concentrations of agriculturally-derived CECs are below toxicity thresholds. Hormones and hormone replacement compounds are a notable exception, where chemical concentrations near AFOs can exceed concentrations known to cause adverse effects on endocrine-related functions in fish. In addition, some agricultural pesticides, once thought to be safe to non-target organisms, have demonstrated endocrine-related effects that may pose threats to fish populations in agricultural regions. That is, we have pesticides with emerging concerns, thus, the concern is emerging and not necessarily the chemical. In this light, one must consider certain agricultural pesticides to be included in the list of CECs. Even though agricultural pesticides are routinely evaluated in regulatory testing schemes which have been used for decades, the potential hazards of some pesticides have only recently been emerging. Emerging concerns of pesticides in fish include interference with hormone signaling pathways; additive (or more than additive) effects from pesticide mixtures; and adverse population-level effects at concentrations below predicted toxicity thresholds. Consequently, there is a need to evaluate the environmental concerns related to pesticide exposures to fish populations based on current biological and toxicological techniques. This presentation reviews some of the agricultural chemicals that have emerged as contaminants of concern and potentially threaten fish populations in agricultural watersheds.

  17. Endangered river fish: factors hindering conservation and restoration

    USGS Publications Warehouse

    Cooke, Steven J.; Paukert, Craig P.; Hogan, Zeb

    2012-01-01

    Globally, riverine fish face many anthropogenic threats including riparian and flood plain habitat degradation, altered hydrology, migration barriers, fisheries exploitation, environmental (climate) change, and introduction of invasive species. Collectively, these threats have made riverine fishes some of the most threatened taxa on the planet. Although much effort has been devoted to identifying the threats faced by river fish, there has been less effort devoted to identifying the factors that may hinder our ability to conserve and restore river fish populations and their watersheds. Therefore, we focus our efforts on identifying and discussing 10 general factors (can also be viewed as research and implementation needs) that constrain or hinder effective conservation action for endangered river fish: (1) limited basic natural history information; (2) limited appreciation for the scale/extent of migrations and the level of connectivity needed to sustain populations; (3) limited understanding of fish/river-flow relationships; (4) limited understanding of the seasonal aspects of river fish biology, particularly during winter and/or wet seasons; (5) challenges in predicting the response of river fish and river ecosystems to both environmental change and various restoration or management actions; (6) limited understanding of the ecosystem services provided by river fish; (7) the inherent difficulty in studying river fish; (8) limited understanding of the human dimension of river fish conservation and management; (9) limitations of single species approaches that often fail to address the broader-scale problems; and (10) limited effectiveness of governance structures that address endangered river fish populations and rivers that cross multiple jurisdictions. We suggest that these issues may need to be addressed to help protect, restore, or conserve river fish globally, particularly those that are endangered.

  18. Habitat fragmentation caused by contaminants: Atrazine as a chemical barrier isolating fish populations.

    PubMed

    Araújo, Cristiano V M; Silva, Daniel C V R; Gomes, Luiz E T; Acayaba, Raphael D; Montagner, Cassiana C; Moreira-Santos, Matilde; Ribeiro, Rui; Pompêo, Marcelo L M

    2018-02-01

    Information on how atrazine can affect the spatial distribution of organisms is non-existent. As this effect has been observed for some other contaminants, we hypothesized that atrazine-containing leachates/discharges could trigger spatial avoidance by the fish Poecilia reticulata and form a chemical barrier isolating upstream and downstream populations. Firstly, guppies were exposed to an atrazine gradient in a non-forced exposure system, in which organisms moved freely among the concentrations, to assess their ability to avoid atrazine. Secondly, a chemical barrier formed by atrazine, separating two clean habitats (extremities of the non-forced system), was simulated to assess whether the presence of the contaminant could prevent guppies from migrating to the other side of the system. Fish were able to avoid atrazine contamination at environmentally relevant concentrations (0.02 μg L -1 ), below those described to cause sub-lethal effects. The AC 50 (atrazine concentration causing avoidance to 50% of the population) was 0.065 μg L -1 . The chemical barrier formed by atrazine at 150 μg L -1 (concentration that should produce an avoidance around 82%) caused a reduction in the migratory potential of the fish by 47%; while the chemical barrier at 1058 μg L -1 (concentration that produces torpidity) caused a reduction in the migratory potential of the fish by 91%. Contamination by atrazine, besides driving the spatial distribution of fish populations, has potential to act as a chemical barrier by isolating fish populations. This study includes a novel approach to be integrated in environmental risk assessment schemes to assess high-tier contamination effects such as habitat fragmentation and population displacement and isolation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Supportive breeding boosts natural population abundance with minimal negative impacts on fitness of a wild population of Chinook salmon

    PubMed Central

    Hess, Maureen A; Rabe, Craig D; Vogel, Jason L; Stephenson, Jeff J; Nelson, Doug D; Narum, Shawn R

    2012-01-01

    While supportive breeding programmes strive to minimize negative genetic impacts to populations, case studies have found evidence for reduced fitness of artificially produced individuals when they reproduce in the wild. Pedigrees of two complete generations were tracked with molecular markers to investigate differences in reproductive success (RS) of wild and hatchery-reared Chinook salmon spawning in the natural environment to address questions regarding the demographic and genetic impacts of supplementation to a natural population. Results show a demographic boost to the population from supplementation. On average, fish taken into the hatchery produced 4.7 times more adult offspring, and 1.3 times more adult grand-offspring than naturally reproducing fish. Of the wild and hatchery fish that successfully reproduced, we found no significant differences in RS between any comparisons, but hatchery-reared males typically had lower RS values than wild males. Mean relative reproductive success (RRS) for hatchery F1 females and males was 1.11 (P = 0.84) and 0.89 (P = 0.56), respectively. RRS of hatchery-reared fish (H) that mated in the wild with either hatchery or wild-origin (W) fish was generally equivalent to W × W matings. Mean RRS of H × W and H × H matings was 1.07 (P = 0.92) and 0.94 (P = 0.95), respectively. We conclude that fish chosen for hatchery rearing did not have a detectable negative impact on the fitness of wild fish by mating with them for a single generation. Results suggest that supplementation following similar management practices (e.g. 100% local, wild-origin brood stock) can successfully boost population size with minimal impacts on the fitness of salmon in the wild. PMID:23025818

  20. Population dynamics and potential of fisheries stock enhancement: practical theory for assessment and policy analysis.

    PubMed

    Lorenzen, Kai

    2005-01-29

    The population dynamics of fisheries stock enhancement, and its potential for generating benefits over and above those obtainable from optimal exploitation of wild stocks alone are poorly understood and highly controversial. I review pertinent knowledge of fish population biology, and extend the dynamic pool theory of fishing to stock enhancement by unpacking recruitment, incorporating regulation in the recruited stock, and accounting for biological differences between wild and hatchery fish. I then analyse the dynamics of stock enhancement and its potential role in fisheries management, using the candidate stock of North Sea sole as an example and considering economic as well as biological criteria. Enhancement through release of recruits or advanced juveniles is predicted to increase total yield and stock abundance, but reduce abundance of the naturally recruited stock component through compensatory responses or overfishing. Economic feasibility of enhancement is subject to strong constraints, including trade-offs between the costs of fishing and hatchery releases. Costs of hatchery fish strongly influence optimal policy, which may range from no enhancement at high cost to high levels of stocking and fishing effort at low cost. Release of genetically maladapted fish reduces the effectiveness of enhancement, and is most detrimental overall if fitness of hatchery fish is only moderately compromised. As a temporary measure for the rebuilding of depleted stocks, enhancement cannot substitute for effort limitation, and is advantageous as an auxiliary measure only if the population has been reduced to a very low proportion of its unexploited biomass. Quantitative analysis of population dynamics is central to the responsible use of stock enhancement in fisheries management, and the necessary tools are available.

  1. Phylogenetic relationships among East African haplochromine fish as revealed by short interspersed elements (SINEs).

    PubMed

    Terai, Yohey; Takezaki, Naoko; Mayer, Werner E; Tichy, Herbert; Takahata, Naoyuki; Klein, Jan; Okada, Norihiro

    2004-01-01

    Genomic DNA libraries were prepared from two endemic species of Lake Victoria haplochromine (cichlid) fish and used to isolate and characterize a set of short interspersed elements (SINEs). The distribution and sequences of the SINEs were used to infer phylogenetic relationships among East African haplochromines. The SINE-based classification divides the fish into four groups, which, in order of their divergence from a stem lineage, are the endemic Lake Tanganyika flock (group 1); fish of the nonendemic, monotypic, widely distributed genus Astatoreochromis (group 2); the endemic Lake Malawi flock (group 3); and group 4, which contains fish from widely dispersed East African localities including Lakes Victoria, Edward, George, Albert, and Rukwa, as well as many rivers. The group 4 haplochromines are characterized by a subset of polymorphic SINEs, each of which is present in some individuals and absent in others of the same population at a given locality, the same morphologically defined species, and the same mtDNA-defined haplogroup. SINE-defined group 4 contains six of the seven previously described mtDNA haplogroups. One of the polymorphic SINEs appears to be fixed in the endemic Lake Victoria flock; four others display the presence-or-absence polymorphism within the species of this flock. These findings have implications for the origin of Lake Victoria cichlids and for their founding population sizes.

  2. RNA sequencing to study gene expression and SNP variations associated with growth in zebrafish fed a plant protein-based diet.

    PubMed

    Ulloa, Pilar E; Rincón, Gonzalo; Islas-Trejo, Alma; Araneda, Cristian; Iturra, Patricia; Neira, Roberto; Medrano, Juan F

    2015-06-01

    The objectives of this study were to measure gene expression in zebrafish and then identify SNP to be used as potential markers in a growth association study. We developed an approach where muscle samples collected from low- and high-growth fish were analyzed using RNA-Sequencing (RNA-seq), and SNP were chosen from the genes that were differentially expressed between the low and high groups. A population of 24 families was fed a plant protein-based diet from the larval to adult stages. From a total of 440 males, 5 % of the fish from both tails of the weight gain distribution were selected. Total RNA was extracted from individual muscle of 8 low-growth and 8 high-growth fish. Two pooled RNA-Seq libraries were prepared for each phenotype using 4 fish per library. Libraries were sequenced using the Illumina GAII Sequencer and analyzed using the CLCBio genomic workbench software. One hundred and twenty-four genes were differentially expressed between phenotypes (p value < 0.05 and FDR < 0.2). From these genes, 164 SNP were selected and genotyped in 240 fish samples. Marker-trait analysis revealed 5 SNP associated with growth in key genes (Nars, Lmod2b, Cuzd1, Acta1b, and Plac8l1). These genes are good candidates for further growth studies in fish and to consider for identification of potential SNPs associated with different growth rates in response to a plant protein-based diet.

  3. Assessing the quality of life history information in publicly available databases.

    PubMed

    Thorson, James T; Cope, Jason M; Patrick, Wesley S

    2014-01-01

    Single-species life history parameters are central to ecological research and management, including the fields of macro-ecology, fisheries science, and ecosystem modeling. However, there has been little independent evaluation of the precision and accuracy of the life history values in global and publicly available databases. We therefore develop a novel method based on a Bayesian errors-in-variables model that compares database entries with estimates from local experts, and we illustrate this process by assessing the accuracy and precision of entries in FishBase, one of the largest and oldest life history databases. This model distinguishes biases among seven life history parameters, two types of information available in FishBase (i.e., published values and those estimated from other parameters), and two taxa (i.e., bony and cartilaginous fishes) relative to values from regional experts in the United States, while accounting for additional variance caused by sex- and region-specific life history traits. For published values in FishBase, the model identifies a small positive bias in natural mortality and negative bias in maximum age, perhaps caused by unacknowledged mortality caused by fishing. For life history values calculated by FishBase, the model identified large and inconsistent biases. The model also demonstrates greatest precision for body size parameters, decreased precision for values derived from geographically distant populations, and greatest between-sex differences in age at maturity. We recommend that our bias and precision estimates be used in future errors-in-variables models as a prior on measurement errors. This approach is broadly applicable to global databases of life history traits and, if used, will encourage further development and improvements in these databases.

  4. Discrimination of fish populations using parasites: Random Forests on a 'predictable' host-parasite system.

    PubMed

    Pérez-Del-Olmo, A; Montero, F E; Fernández, M; Barrett, J; Raga, J A; Kostadinova, A

    2010-10-01

    We address the effect of spatial scale and temporal variation on model generality when forming predictive models for fish assignment using a new data mining approach, Random Forests (RF), to variable biological markers (parasite community data). Models were implemented for a fish host-parasite system sampled along the Mediterranean and Atlantic coasts of Spain and were validated using independent datasets. We considered 2 basic classification problems in evaluating the importance of variations in parasite infracommunities for assignment of individual fish to their populations of origin: multiclass (2-5 population models, using 2 seasonal replicates from each of the populations) and 2-class task (using 4 seasonal replicates from 1 Atlantic and 1 Mediterranean population each). The main results are that (i) RF are well suited for multiclass population assignment using parasite communities in non-migratory fish; (ii) RF provide an efficient means for model cross-validation on the baseline data and this allows sample size limitations in parasite tag studies to be tackled effectively; (iii) the performance of RF is dependent on the complexity and spatial extent/configuration of the problem; and (iv) the development of predictive models is strongly influenced by seasonal change and this stresses the importance of both temporal replication and model validation in parasite tagging studies.

  5. Effects of fluctuating flows and a controlled flood on incubation success and early survival rates and growth of age-0 rainbow trout in a large regulated river

    USGS Publications Warehouse

    Korman, Josh; Kaplinski, Matthew; Melis, Theodore S.

    2011-01-01

    Hourly fluctuations in flow from Glen Canyon Dam were increased in an attempt to limit the population of nonnative rainbow trout Oncorhynchus mykiss in the Colorado River, Arizona, due to concerns about negative effects of nonnative trout on endangered native fishes. Controlled floods have also been conducted to enhance native fish habitat. We estimated that rainbow trout incubation mortality rates resulting from greater fluctuations in flow were 23-49% (2003 and 2004) compared with 5-11% under normal flow fluctuations (2006-2010). Effects of this mortality were apparent in redd excavations but were not seen in hatch date distributions or in the abundance of the age-0 population. Multiple lines of evidence indicated that a controlled flood in March 2008, which was intended to enhance native fish habitat, resulted in a large increase in early survival rates of age-0 rainbow trout. Age-0 abundance in July 2008 was over fourfold higher than expected given the number of viable eggs that produced these fish. A hatch date analysis indicated that early survival rates were much higher for cohorts that hatched about 1 month after the controlled flood (~April 15) relative to those that hatched before this date. The cohorts that were fertilized after the flood were not exposed to high flows and emerged into better-quality habitat with elevated food availability. Interannual differences in age-0 rainbow trout growth based on otolith microstructure supported this hypothesis. It is likely that strong compensation in survival rates shortly after emergence mitigated the impact of incubation losses caused by increases in flow fluctuations. Control of nonnative fish populations will be most effective when additional mortality is applied to older life stages after the majority of density-dependent mortality has occurred. Our study highlights the need to rigorously assess instream flow decisions through the evaluation of population-level responses.

  6. Status and trends in the fish community of Lake Superior, 2012

    USGS Publications Warehouse

    Gorman, Owen T.; Evrard, Lori M.; Cholwek, Gary A.; Vinson, Mark

    2012-01-01

    Due to ship mechanical failures, nearshore sampling was delayed from mid-May to mid-June to mid-June to late August. The shift to summer sampling when the lake was stratified may have affected our estimates, thus our estimates of status and trends for the nearshore fish community in 2012 are tentative, pending results of future surveys. However, the results of the 2012 survey are comparable with those during 2009 and 2010 when lake-wide fish biomass declined to < 1.40 kg/ha. Declines in prey fish biomass since the late 1990s can be attributed to a combination of increased predation by recovered lake trout populations and infrequent and weak recruitment by the principal prey fishes, cisco and bloater. In turn declines in lake trout biomass since the mid-2000s are likely linked to declines in prey fish biomass. If lean and siscowet lake trout populations in nearshore waters continue to remain at current levels, predation mortality will likely maintain the relatively low prey fish biomass observed in recent years. Alternatively, if lake trout populations show a substantial decline in abundance in upcoming years, prey fish populations may rebound in a fashion reminiscent to what occurred in the late 1970s to mid-1980s. However, this scenario depends on substantial increases in harvest of lake trout, which seems unlikely given that levels of lake trout harvest have been flat or declining in many regions of Lake Superior since 2000.

  7. Historical Patterns and Drivers of Spatial Changes in Recreational Fishing Activity in Puget Sound, Washington

    PubMed Central

    Beaudreau, Anne H.; Whitney, Emily J.

    2016-01-01

    Small-scale fisheries are the primary users of many coastal fish stocks; yet, spatial and temporal patterns of recreational and subsistence fishing in coastal marine ecosystems are poorly documented. Knowledge about the spatial distribution of fishing activities can inform place-based management that balances species conservation with opportunities for recreation and subsistence. We used a participatory mapping approach to document changes in spatial fishing patterns of 80 boat-based recreational anglers from 1950 to 2010 in Puget Sound, Washington, USA. Hand-drawn fishing areas for salmon, rockfishes, flatfishes, and crabs were digitized and analyzed in a Geographic Information System. We found that recreational fishing has spanned the majority of Puget Sound since the 1950s, with the heaviest use limited to small areas of central and northern Puget Sound. People are still fishing in the same places they were decades ago, with relatively little change in specific locations despite widespread declines in salmon and bottomfish populations during the second half of the 20th century. While the location of core fishing areas remained consistent, the size of those areas and intensity of use changed over time. The size of fishing areas increased through the 2000s for salmon but declined after the 1970s and 1980s for rockfishes, flatfishes, and crabs. Our results suggest that the spatial extent of recreational bottomfishing increased after the 1960s, when the availability of motorized vessels and advanced fish-finding technologies allowed anglers to expand their scope beyond localized angling from piers and boathouses. Respondents offered a wide range of reasons for shifts in fishing areas over time, reflecting substantial individual variation in motivations and behaviors. Changes in fishing areas were most commonly attributed to changes in residence and declines in target species and least tied to fishery regulations, despite the implementation of at least 25 marine preserves since 1970. PMID:27054890

  8. Historical Patterns and Drivers of Spatial Changes in Recreational Fishing Activity in Puget Sound, Washington.

    PubMed

    Beaudreau, Anne H; Whitney, Emily J

    2016-01-01

    Small-scale fisheries are the primary users of many coastal fish stocks; yet, spatial and temporal patterns of recreational and subsistence fishing in coastal marine ecosystems are poorly documented. Knowledge about the spatial distribution of fishing activities can inform place-based management that balances species conservation with opportunities for recreation and subsistence. We used a participatory mapping approach to document changes in spatial fishing patterns of 80 boat-based recreational anglers from 1950 to 2010 in Puget Sound, Washington, USA. Hand-drawn fishing areas for salmon, rockfishes, flatfishes, and crabs were digitized and analyzed in a Geographic Information System. We found that recreational fishing has spanned the majority of Puget Sound since the 1950s, with the heaviest use limited to small areas of central and northern Puget Sound. People are still fishing in the same places they were decades ago, with relatively little change in specific locations despite widespread declines in salmon and bottomfish populations during the second half of the 20th century. While the location of core fishing areas remained consistent, the size of those areas and intensity of use changed over time. The size of fishing areas increased through the 2000s for salmon but declined after the 1970s and 1980s for rockfishes, flatfishes, and crabs. Our results suggest that the spatial extent of recreational bottomfishing increased after the 1960s, when the availability of motorized vessels and advanced fish-finding technologies allowed anglers to expand their scope beyond localized angling from piers and boathouses. Respondents offered a wide range of reasons for shifts in fishing areas over time, reflecting substantial individual variation in motivations and behaviors. Changes in fishing areas were most commonly attributed to changes in residence and declines in target species and least tied to fishery regulations, despite the implementation of at least 25 marine preserves since 1970.

  9. Molecular markers for genetic diversity, gene flow and genetic population structure of freshwater mussel species.

    PubMed

    Choupina, A B; Martins, I M

    2014-08-01

    Freshwater mussel species are in global decline. Anthropogenic changes of river channels and the decrease of autochthonous fish population, the natural hosts of mussels larval stages (glochidia), are the main causes. Therefore, the conservation of mussel species depends not only on habitat conservation, but also on the availability of the fish host. In Portugal, information concerning most of the mussel species is remarkably scarce. One of the most known species, Unio pictorum is also in decline however, in the basins of the rivers Tua and Sabor (Northeast of Portugal), there is some indication of relatively large populations. The aforementioned rivers can be extremely important for this species conservation not only in Portugal, but also in the remaining Iberian Peninsula. Thus, it is important to obtain data concerning Unio pictorum bioecology (distribution, habitat requirements, population structure, genetic variability, reproductive cycle and recruitment rates), as well as the genetic variability and structure of the population. Concomitantly, information concerning fish population structure, the importance of the different fish species as "glochidia" hosts and their appropriate density to allow effective mussel recruitment, will also be assessed. The achieved data is crucial to obtain information to develop effective management measures in order to promote the conservation of this bivalve species, the conservation of autochthonous fish populations, and consequently the integrity of the river habitats.

  10. Trace elements and organic compounds in streambed sediment and fish tissue of coastal New England streams, 1998-99

    USGS Publications Warehouse

    Chalmers, Ann

    2002-01-01

    Streambed sediment and fish tissue were collected at 14 river sites in eastern New England during low-flow conditions in 1998 and 1999 as part of the New England Coastal Basins (NECB) study of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program. Sampling sites were selected over a range of urban settings. Population densities at selected sites ranged from 26 to 3,585 people per square mile, and urban land use ranged from 1 to 68 percent. The streambed sediment samples were analyzed for a total of 141 contaminants, including 45 trace elements, 32 organochlorine compounds, and 64 semi-volatile organic compounds. The fish tissue samples were analyzed for 22 trace elements and 28 organochlorine compounds. Concentrations of selected contaminants in both streambed sediment and fish tissue correlated more strongly with population density than with other watershed characteristics. Cadmium, copper, lead, mercury, zinc, total polycyclic aromatic hydrocarbons (PAHs), total polychlorinated biphenyls (PCBs), dichloro diphenyl trichloroethane and metabolites (DDTM), and total chlordane in streambed sediment all showed strong positive correlations with population density (rho = 0.71 to 0.85, p value = 0.005 to <0.001). Correlations between population density and selected contaminants in fish tissue were less significant than with streambed sediment (rho = 0.62 to 0.72, p value = 0.03 to 0.008). Organic carbon concentrations were correlated with concentrations of arsenic, selenium, total PAHs, total PCBs, and DDTM in streambed sediment. The relation between concentrations of contaminants in streambed sediment and fish tissue was stronger for organochlorine compounds (rho = 0.75 to 0.55, p = 0.005 to 0.065) than for trace elements (rho = 0.63 to 0.53, p = 0.029 to 0.069). The NECB study area had the highest median concentrations of lead, mercury, total PAHs, total PCBs, and DDTM in streambed sediment and the highest median concentration of PCBs in fish tissue compared to 45 other NAWQA study units across the Nation. Concentrations of many of these constituents in streambed sediment also were frequently above the consensus-based Sediment-Quality Guidelines for the protection of wildlife, suggesting they are a threat to the health of aquatic biota in New England.

  11. Defining thresholds of sustainable impact on benthic communities in relation to fishing disturbance.

    PubMed

    Lambert, G I; Murray, L G; Hiddink, J G; Hinz, H; Lincoln, H; Hold, N; Cambiè, G; Kaiser, M J

    2017-07-14

    While the direct physical impact on seabed biota is well understood, no studies have defined thresholds to inform an ecosystem-based approach to managing fishing impacts. We addressed this knowledge gap using a large-scale experiment that created a controlled gradient of fishing intensity and assessed the immediate impacts and short-term recovery. We observed a mosaic of taxon-specific responses at various thresholds. The lowest threshold of significant lasting impact occurred between 1 and 3 times fished and elicited a decrease in abundance of 39 to 70% for some sessile epifaunal organisms (cnidarians, bryozoans). This contrasted with significant increases in abundance and/or biomass of scavenging species (epifaunal echinoderms, infaunal crustaceans) by two to four-fold in areas fished twice and more. In spite of these significant specific responses, the benthic community structure, biomass and abundance at the population level appeared resilient to fishing. Overall, natural temporal variation in community metrics exceeded the effects of fishing in this highly dynamic study site, suggesting that an acute level of disturbance (fished over six times) would match the level of natural variation. We discuss the implications of our findings for natural resources management with respect to context-specific human disturbance and provide guidance for best fishing practices.

  12. Contaminant effects on Great Lakes' fish-eating birds: a population perspective

    USGS Publications Warehouse

    Heinz, G.H.; Kendall, Ronald J.; Dickerson, Richard L.; Giesy, John P.; Suk, William P.

    1998-01-01

    Preventing environmental contaminants from reducing wildlife populations is the greatest concern in wildlife toxicology. In the Great Lakes, environmental contaminants have a history of reducing populations of many species of fish-eating birds. Endocrine effects may have contributed to declines in fish-eating bird populations, but the overriding harm was caused by DDE-induced eggshell thinning. Toxic effects may still be occurring today, but apparently they are not of a sufficient magnitude to depress populations of most fish-eating birds. Once DDE levels in the Great Lakes declined, eggshells of birds began to get thicker and reproductive success improved. Populations of double-crested cormorants (Phalacrocorax auritus) and ring-billed gulls (Larus delawarensis) have increased dramatically since the bans on DDT and other organochlorine pesticides. Bald eagles (Haliaeetus leucocephalus) are still not reproducing at a normal rate along the shores of the Great Lakes, but success is much improved compared to earlier records when eggshell thinning was worse. Other species, such as herring gulls (Larus argentatus) and black-crowned night-herons (Nycticorax nycticorax), seem to be having improved reproductive success, but data on Great Lakes'-wide population changes are incomplete. Reproductive success of common terns (Sterna hirundo), Caspian terns (Sterna caspia), and Forster's terns (Sterna forsteri) seems to have improved in recent years, but, again, data on population changes are not very complete, and these birds face many habitat related problems as well as contaminant problems. Although contaminants are still producing toxic effects, and these effects may include endocrine disfunction, fish-eating birds in the Great Lakes seem to be largely weathering these effects, at least as far as populations are concerned. A lack of obvious contaminant effects on populations of fish-eating birds in the Great Lakes, however, should not be equated with a lack of any harm to these birds or with a conclusion that certain contaminants do not need additional control.

  13. Individual Based modeling of cold water refuge use in the Columbia River

    EPA Science Inventory

    Diadromous fish populations in the Pacific Northwest face challenges along their migratory routes from declining habitat quality, harvest, and barriers to longitudinal connectivity. Changes in river temperature regimes are producing an additional challenge for upstream migrating ...

  14. Individual based modelling of cold water refuge use in the Columbia River

    EPA Science Inventory

    Diadromous fish populations in the Pacific Northwest face challenges along their migratory routes from declining habitat quality, harvest, and barriers to longitudinal connectivity. Changes in river temperature regimes are producing an additional challenge for upstream migrating ...

  15. Individual Based Modelling of Cold Water Refuge Use in the Columbia River.

    EPA Science Inventory

    Anadromous fish populations in the Pacific Northwest face challenges along their migratory routes from declining habitat quality, harvest, and barriers to longitudinal connectivity. Changes in river temperature regimes are producing an additional challenge for upstream migrating ...

  16. Investigating the effect of chemical stress and resource ...

    EPA Pesticide Factsheets

    Modeling exposure and recovery of fish and wildlife populations after stressor mitigation serves as a basis for evaluating population status and remediation success. The Atlantic killifish (Fundulus heteroclitus) is an important and well-studied model organism for understanding the effects of pollutants and other stressors in estuarine and marine ecosystems. Herein, we develop a density dependent matrix population model for Atlantic killifish that analyzes both size-structure and age class-structure of the population so that we could readily incorporate output from a dynamic energy budget (DEB) model currently under development. This population modeling approach emphasizes application in conjunction with field monitoring efforts (e.g., through effects-based monitoring programs) and/or laboratory analysis to link effects due to chemical stress to adverse outcomes in whole organisms and populations. We applied the model using data for killifish exposed to dioxin-like compounds, taken from a previously published study. Specifically, the model was used to investigate population trajectories for Atlantic killifish with dietary exposures to 112, 296, and 875 pg/g of dioxin with effects on fertility and survival rates. All effects were expressed relative to control fish. Further, the population model was employed to examine age and size distributions of a population exposed to resource limitation in addition to chemical stress. For each dietary exposure concentration o

  17. Variations in egg characteristics of ruffe Gymnocephalus cernua inhabiting brackish and freshwater environments

    NASA Astrophysics Data System (ADS)

    Svirgsden, Roland; Albert, Anu; Rohtla, Mehis; Taal, Imre; Saks, Lauri; Verliin, Aare; Kesler, Martin; Hubel, Kalvi; Vetemaa, Markus; Saat, Toomas

    2015-09-01

    Egg characteristics of teleost fishes are affected by various abiotic and biotic factors. In order to reproduce successfully, freshwater fishes inhabiting brackish environments must alter their reproductive characteristics, including egg properties, to increased osmotic pressure. Ruffe Gymnocephalus cernua was used as a model species to compare egg characteristics between fish populations inhabiting brackish and freshwater environments. Fish from the brackish environment had larger eggs with higher energy content than the individuals originating from freshwater. In freshwater, eggs from the first batch were larger than from the second. Female size correlated positively with egg size in the brackish water population. In freshwater, this correlation was evident only with eggs from the first batch. Only a weak positive correlation was found between fish condition and egg size in females from the brackish water population. Egg size variation did not differ between sites, nor was it correlated with mean egg size or any other maternal traits within populations. These results indicate significant modifications in reproductive strategies between brackish and freshwater ruffe populations. Additionally, results show that at least in freshwater, the first batch of eggs is of the highest quality and therefore more important for reproduction.

  18. So long to genetic diversity, and thanks for all the fish.

    PubMed

    Allendorf, Fred W; Berry, Oliver; Ryman, Nils

    2014-01-01

    The world faces a global fishing crisis. Wild marine fisheries comprise nearly 15% of all animal protein in the human diet, but, according to the U.N. Food and Agriculture Organization, nearly 60% of all commercially important marine fish stocks are overexploited, recovering, or depleted (FAO 2012; Fig. 1). Some authors have suggested that the large population sizes of harvested marine fish make even collapsed populations resistant to the loss of genetic variation by genetic drift (e.g. Beverton 1990). In contrast, others have argued that the loss of alleles because of overfishing may actually be more dramatic in large populations than in small ones (Ryman et al. 1995). In this issue, Pinsky & Palumbi (2014) report that overfished populations have approximately 2% lower heterozygosity and 12% lower allelic richness than populations that are not overfished. They also performed simulations which suggest that their estimates likely underestimate the actual loss of rare alleles by a factor of three or four. This important paper shows that the harvesting of marine fish can have genetic effects that threaten the long-term sustainability of this valuable resource. © 2013 John Wiley & Sons Ltd.

  19. Meeting the Needs for More Fish Through Aquaculture

    NASA Astrophysics Data System (ADS)

    Giap, D. H.; Lam, T. J.

    2015-10-01

    Fish is one of the major sources of animal protein. Due to rising world populations, increasing income and urbanization, demand for fish has been increasing. In order to meet the need for more fish, aquaculture has become increasingly important as wild populations and production from capture fisheries have declined due to overfishing and poor management. In recent years, production from aquaculture has increased rapidly to address the shortfalls in capture fisheries, especially in Asia where aquaculture production accounts for about 90% of world aquaculture production by volume. This paper reviews the status of the world’s fish production, provides an update on Asian aquaculture, and highlights developments that are contributing to sustainable fish production, particularly integrated multi-trophic aquaculture and aquaponics.

  20. Mercury Exposure: Medical and Public Health Issues

    PubMed Central

    Mahaffey, Kathryn R

    2005-01-01

    Mercury exposure is widespread in the United States with methylmercury as the predominant chemical species and fish and shellfish as the source. Use of more advanced diagnostic techniques and application of population-based risk assessment methodologies have assisted in addressing the impact of mercury exposure on the United States population. Biomonitoring, particularly through analyses of blood mercury, provides both population-based data and exposure information that can be informative for physicians. Data from the National Health and Nutrition Examination Survey (NHANES) beginning in 1999 provide population-based exposure estimates for United States overall. Methylmercury exposures among women of childbearing age are of particular concern because of methylmercury's developmental neurotoxicity. Exposures of concern among women are estimated to occur in between ∼6% to 8% of the 16-to-49-year-old age group based on data from NHANES; and in ∼15% of this age and sex group if physiological factors such as the degree of transplacental transport of methylmercury are taken into consideration. Subgroups with high fish consumption (e.g., many island and coastal populations, some persons of Asian ethnicity, some individuals following “healthy” diets) can have methylmercury exposures substantially higher than those reported among the NHANES examinees. These subpopulations are not likely to be aware of their blood mercury concentrations or the possible health outcomes associated with such high blood mercury levels. The American Medical Association has adopted policies that express concerns about methylmercury exposure, and advise patient education. Non-neurological risks for adults associated with methylmercury, including the potential for adverse cardiac outcomes, have not yet been incorporated into risk assessments. PMID:16555611

  1. Coral reef fishes exhibit beneficial phenotypes inside marine protected areas

    PubMed Central

    Carroll, Jessica; Rynerson, Kristen W.; Matthews, Danielle F.; Turingan, Ralph G.

    2018-01-01

    Human fishing effort is size-selective, preferentially removing the largest individuals from harvested stocks. Intensive, size-specific fishing mortality induces directional shifts in phenotypic frequencies towards the predominance of smaller and earlier-maturing individuals, which are among the primary causes of declining fish biomass. Fish that reproduce at smaller size and younger age produce fewer, smaller, and less viable larvae, severely reducing the reproductive capacity of harvested populations. Marine protected areas (MPAs) are extensively utilized in coral reefs for fisheries management, and are thought to mitigate the impacts of size-selective fishing mortality and supplement fished stocks through larval export. However, empirical evidence of disparities in fitness-relevant phenotypes between MPAs and adjacent fished reefs is necessary to validate this assertion. Here, we compare key life-history traits in three coral-reef fishes (Acanthurus nigrofuscus, Ctenochaetus striatus, and Parupeneus multifasciatus) between MPAs and fished reefs in the Philippines. Results of our analyses support previous hypotheses regarding the impacts of MPAs on phenotypic traits. Asymptotic length (Linf) and growth rates (K) differed between conspecifics in MPAs and fished reefs, with protected populations exhibiting phenotypes that are known to confer higher fecundity. Additionally, populations demonstrated increases in length at 50% maturity (L50) inside MPAs compared to adjacent areas, although age at 50% maturity (A50) did not appear to be impacted by MPA establishment. Shifts toward advantageous phenotypes were most common in the oldest and largest MPAs, but occurred in all of the MPAs examined. These results suggest that MPAs may provide protection against the impacts of size-selective harvest on life-history traits in coral-reef fishes. PMID:29470525

  2. 40 CFR 125.57 - Law governing issuance of a section 301(h) modified permit.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... propagation of a balanced indigenous population of shellfish, fish, and wildlife, and allows recreational... application do not support a balanced indigenous population of shellfish, fish, and wildlife, or allow...

  3. Fish Commoditization: Sustainability Strategies to Protect Living Fish

    ERIC Educational Resources Information Center

    Lam, Mimi E.; Pitcher, Tony J.

    2012-01-01

    The impacts of early fishing on aquatic ecosystems were minimal, as primitive technologies were used to harvest fish primarily for food. As fishing technology grew more sophisticated and human populations dispersed and expanded, local economies transitioned from subsistence to barter and trade. Expanded trade networks and mercantilization led to…

  4. The offshore benthic fish community

    USGS Publications Warehouse

    Lantry, Brian F.; Lantry, Jana R.; Weidel, Brian C.; Walsh, Maureen; Hoyle, James A.; Schaner, Teodore; Neave, Fraser B.; Keir, Michael

    2014-01-01

    The offshore benthic fish community will be composed of self-sustaining native fishes characterized by lake trout as the top predator, a population expansion of lake whitefish from northeastern waters to other areas of the lake, and rehabilitated native prey fishes.

  5. Standard methods for sampling North American freshwater fishes

    USGS Publications Warehouse

    Bonar, Scott A.; Hubert, Wayne A.; Willis, David W.

    2009-01-01

    This important reference book provides standard sampling methods recommended by the American Fisheries Society for assessing and monitoring freshwater fish populations in North America. Methods apply to ponds, reservoirs, natural lakes, and streams and rivers containing cold and warmwater fishes. Range-wide and eco-regional averages for indices of abundance, population structure, and condition for individual species are supplied to facilitate comparisons of standard data among populations. Provides information on converting nonstandard to standard data, statistical and database procedures for analyzing and storing standard data, and methods to prevent transfer of invasive species while sampling.

  6. Analysis of the supply chain and conservation status of sharks (Elasmobranchii: Superorder Selachimorpha) based on fisher knowledge.

    PubMed

    Martins, Ana Paula Barbosa; Feitosa, Leonardo Manir; Lessa, Rosangela Paula; Almeida, Zafira Silva; Heupel, Michelle; Silva, Wagner Macedo; Tchaicka, Ligia; Nunes, Jorge Luiz Silva

    2018-01-01

    Increasing fishing effort has caused declines in shark populations worldwide. Understanding biological and ecological characteristics of sharks is essential to effectively implement management measures, but to fully understand drivers of fishing pressure social factors must be considered through multidisciplinary and integrated approaches. The present study aimed to use fisher and trader knowledge to describe the shark catch and product supply chain in Northeastern Brazil, and evaluate perceptions regarding the regional conservation status of shark species. Non-systematic observations and structured individual interviews were conducted with experienced fishers and traders. The demand and economic value of shark fins has reportedly decreased over the last 10 years while the shark meat trade has increased slightly, including a small increase in the average price per kilogram of meat. Several threatened shark species were reportedly often captured off shore and traded at local markets. This reported and observed harvest breaches current Brazilian environmental laws. Fishing communities are aware of population declines of several shark species, but rarely take action to avoid capture of sharks. The continuing capture of sharks is mainly due to a lack of knowledge of environmental laws, lack of enforcement by responsible authorities, and difficulties encountered by fishers in finding alternative income streams. National and regional conservation measures are immediately required to reduce overfishing on shark populations in Northeastern Brazil. Social and economic improvements for poor fishing communities must also be implemented to achieve sustainable fisheries.

  7. Analysis of the supply chain and conservation status of sharks (Elasmobranchii: Superorder Selachimorpha) based on fisher knowledge

    PubMed Central

    Almeida, Zafira Silva; Heupel, Michelle; Silva, Wagner Macedo; Tchaicka, Ligia

    2018-01-01

    Increasing fishing effort has caused declines in shark populations worldwide. Understanding biological and ecological characteristics of sharks is essential to effectively implement management measures, but to fully understand drivers of fishing pressure social factors must be considered through multidisciplinary and integrated approaches. The present study aimed to use fisher and trader knowledge to describe the shark catch and product supply chain in Northeastern Brazil, and evaluate perceptions regarding the regional conservation status of shark species. Non-systematic observations and structured individual interviews were conducted with experienced fishers and traders. The demand and economic value of shark fins has reportedly decreased over the last 10 years while the shark meat trade has increased slightly, including a small increase in the average price per kilogram of meat. Several threatened shark species were reportedly often captured off shore and traded at local markets. This reported and observed harvest breaches current Brazilian environmental laws. Fishing communities are aware of population declines of several shark species, but rarely take action to avoid capture of sharks. The continuing capture of sharks is mainly due to a lack of knowledge of environmental laws, lack of enforcement by responsible authorities, and difficulties encountered by fishers in finding alternative income streams. National and regional conservation measures are immediately required to reduce overfishing on shark populations in Northeastern Brazil. Social and economic improvements for poor fishing communities must also be implemented to achieve sustainable fisheries. PMID:29534100

  8. Climate change as a long-term stressor for the fisheries of the Laurentian Great Lakes of North America

    USGS Publications Warehouse

    Collingsworth, Paris D.; Bunnell, David B.; Murray, Michael W.; Kao, Yu-Chun; Feiner, Zachary S.; Claramunt, Randall M.; Lofgren, Brent M.; Höök, Tomas O.; Ludsin, Stuart A.

    2017-01-01

    The Laurentian Great Lakes of North America provide valuable ecosystem services, including fisheries, to the surrounding population. Given the prevalence of other anthropogenic stressors that have historically affected the fisheries of the Great Lakes (e.g., eutrophication, invasive species, overfishing), climate change is often viewed as a long-term stressor and, subsequently, may not always be prioritized by managers and researchers. However, climate change has the potential to negatively affect fish and fisheries in the Great Lakes through its influence on habitat. In this paper, we (1) summarize projected changes in climate and fish habitat in the Great Lakes; (2) summarize fish responses to climate change in the Great Lakes; (3) describe key interactions between climate change and other stressors relevant to Great Lakes fish, and (4) summarize how climate change can be incorporated into fisheries management. In general, fish habitat is projected to be characterized by warmer temperatures throughout the water column, less ice cover, longer periods of stratification, and more frequent and widespread periods of bottom hypoxia in productive areas of the Great Lakes. Based solely on thermal habitat, fish populations theoretically could experience prolonged optimal growth environment within a changing climate, however, models that assess physical habitat influences at specific life stages convey a more complex picture. Looking at specific interactions with other stressors, climate change may exacerbate the negative impacts of both eutrophication and invasive species for fish habitat in the Great Lakes. Although expanding monitoring and research to consider climate change interactions with currently studied stressors, may offer managers the best opportunity to keep the valuable Great Lakes fisheries sustainable, this expansion is globally applicable for large lake ecosystem dealing with multiple stressors in the face of continued human-driven changes.

  9. Movements and demography of spawning American Shad in the Penobscot River, Maine, prior to dam removal

    USGS Publications Warehouse

    Grote, Ann B.; Bailey, Michael M.; Zydlewski, Joseph D.

    2014-01-01

    We conducted a baseline study to better understand the migratory movements and age and spawning histories of American Shad Alosa sapidissima in the Penobscot River, Maine. The Penobscot River is currently undergoing a major dam removal project that is focused on restoring migratory connectivity and recovering diadromous fish populations including American Shad. This study addresses key data gaps for a previously unstudied native population of shad prior to restoration. A combination of radio- (n = 70) and acoustic telemetry (n = 14) was used to investigate the movements of migratory adult fish in 2010 and 2011. Scale-based analyses were used to assess spawner age and iteroparity. Radiotelemetry results indicated that few tagged fish (5–8%) approached the head-of-tide dam. Tagged fish exhibited three general patterns of movement in the accessible freshwater river habitat: use of the upper river reach, the lower river reach, or both. Mean freshwater residence time ranged from 9.1 to 14.0 d. Congregating fish were observed at two sites in the upper river reach and spawning activity was observed. Freshwater survival and survival to the estuary were at least 71%. This observed high survival was consistent with the estimated age and spawning histories of tracked fish, which indicated that 75–95% of the sampled fish were repeat spawners. Estimated age of adult migrants ranged from age 4 to age 9. Postspawning acoustic-tagged American Shad exhibited a series of prolonged upstream and downstream reversals upon entering the lower estuary. These movements have been previously unreported, and suggest that estuarine residency after spawning is important to osmoregulatory acclimatization for re-entry into salt water and the resumption of postspawning feeding activity.

  10. Fluorescence in situ hybridization (CARD-FISH) of microorganisms in hydrocarbon contaminated aquifer sediment samples.

    PubMed

    Tischer, Karolin; Zeder, Michael; Klug, Rebecca; Pernthaler, Jakob; Schattenhofer, Martha; Harms, Hauke; Wendeberg, Annelie

    2012-12-01

    Groundwater ecosystems are the most important sources of drinking water worldwide but they are threatened by contamination and overexploitation. Petroleum spills account for the most common source of contamination and the high carbon load results in anoxia and steep geochemical gradients. Microbes play a major role in the transformation of petroleum hydrocarbons into less toxic substances. To investigate microbial populations at the single cell level, fluorescence in situ hybridization (FISH) is now a well-established technique. Recently, however, catalyzed reporter deposition (CARD)-FISH has been introduced for the detection of microbes from oligotrophic environments. Nevertheless, petroleum contaminated aquifers present a worst case scenario for FISH techniques due to the combination of high background fluorescence of hydrocarbons and the presence of small microbial cells caused by the low turnover rates characteristic of groundwater ecosystems. It is therefore not surprising that studies of microorganisms from such sites are mostly based on cultivation techniques, fingerprinting, and amplicon sequencing. However, to reveal the population dynamics and interspecies relationships of the key participants of contaminant degradation, FISH is an indispensable tool. In this study, a protocol for FISH was developed in combination with cell quantification using an automated counting microscope. The protocol includes the separation and purification of microbial cells from sediment particles, cell permeabilization and, finally, CARD-FISH in a microwave oven. As a proof of principle, the distribution of Archaea and Bacteria was shown in 60 sediment samples taken across the contaminant plume of an aquifer (Leuna, Germany), which has been heavily contaminated with several ten-thousand tonnes of petroleum hydrocarbons since World War II. Copyright © 2012 Elsevier GmbH. All rights reserved.

  11. Genetic analysis of potential postglacial watershed crossings in Central Europe by the bullhead (Cottus gobio L.).

    PubMed

    Vonlanthen, P; Excoffier, L; Bittner, D; Persat, H; Neuenschwander, S; Largiadèr, C R

    2007-11-01

    Natural colonizations across watersheds have been frequently proposed to explain the present distributions of many freshwater fish species. However, detailed studies of such potential watershed crossings are still missing. Here, we investigated potential postglacial watershed crossings of the widely distributed European bullhead (Cottus gobio L.) in two different areas along the Rhine-Rhône watershed using detailed genetic analysis. The main advantage of studying bullheads vs. other freshwater fish species is that their distribution has been lightly influenced by human activities and as such, interpretations of colonization history are not confounded by artificial transplantations. The genetic analyses of eight microsatellite loci revealed strong genetic similarities between populations of both sides of the Rhine-Rhône watershed in the Lake Geneva area, giving strong evidence for a natural watershed crossing of bullheads from the upper Rhine drainage into the Rhône drainage in the Lake Geneva area likely facilitated by the retreat of the glaciers after the last glacial maximum some 20,000 years ago. Populations from the Lake Geneva basin were genetically more similar to populations from across the watershed in the upper Rhine drainage than to populations further downstream in the lower Rhône. In contrast, populations from Belfort, an area, which was not covered by ice during the last glacial maximum, showed strong genetic differentiation between populations of the upper Rhine and Rhône drainages. Based on our results on the bullhead, we propose that glacial retreat may have eased the dispersal of numerous European freshwater fish species across several geological boundaries.

  12. Genetic structure and diversity in natural and stocked populations of the mandarin fish (Siniperca chuatsi) in China.

    PubMed

    Yang, M; Tian, C; Liang, X-F; Zheng, H; Zhao, C; Zhu, K

    2015-05-18

    The Chinese perch, or mandarin fish (Siniperca chuatsi), is a freshwater fish that is endemic to East Asia. In this study, we investigated the genetic diversity and structure of nine natural mandarin fish populations (from the Yangtze River and Amur River basins) and six hatchery stocks (from central and south China) using microsatellite markers. The results show that the genetic diversity of the Yangtze River populations was high and stable, and genetic differences between them were not significant. In contrast, a low level of genetic diversity and strong genetic structure were detected in the Amur River population. These results suggest that the Yangtze River region and the Amur River region should be treated as two separate units in conservation programs. The hatchery stocks exhibited low genetic diversity and significant genetic differentiation compared to natural populations; this may result in a significant impact on the species if escape events occur. Therefore, a scientific aquaculture management strategy is necessary for the long-term development of hatcheries.

  13. Assessment of mercury exposure among small-scale gold miners using mercury stable isotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherman, Laura S., E-mail: lsaylors@umich.edu; Blum, Joel D.; Basu, Niladri

    Total mercury (Hg) concentrations in hair and urine are often used as biomarkers of exposure to fish-derived methylmercury (MeHg) and gaseous elemental Hg, respectively. We used Hg stable isotopes to assess the validity of these biomarkers among small-scale gold mining populations in Ghana and Indonesia. Urine from Ghanaian miners displayed similar Δ{sup 199}Hg values to Hg derived from ore deposits (mean urine Δ{sup 199}Hg=0.01‰, n=6). This suggests that urine total Hg concentrations accurately reflect exposure to inorganic Hg among this population. Hair samples from Ghanaian miners displayed low positive Δ{sup 199}Hg values (0.23–0.55‰, n=6) and low percentages of total Hgmore » as MeHg (7.6–29%, n=7). These data suggest that the majority of the Hg in these miners' hair samples is exogenously adsorbed inorganic Hg and not fish-derived MeHg. Hair samples from Indonesian gold miners who eat fish daily displayed a wider range of positive Δ{sup 199}Hg values (0.21–1.32‰, n=5) and percentages of total Hg as MeHg (32–72%, n=4). This suggests that total Hg in the hair samples from Indonesian gold miners is likely a mixture of ingested fish MeHg and exogenously adsorbed inorganic Hg. Based on data from both populations, we suggest that total Hg concentrations in hair samples from small-scale gold miners likely overestimate exposure to MeHg from fish consumption. - Highlights: • Mercury isotopes were measured in hair and urine from small-scale gold miners. • Mercury isotopes indicate that Hg in urine comes from mining activity. • Mercury isotopes suggest Hg in hair is a mixture of fish MeHg and inorganic Hg. • A large percentage of Hg in miner’s hair is released during amalgam burning and adsorbed.« less

  14. Demographic changes following mechanical removal of exotic brown trout in an Intermountain West (USA), high-elevation stream

    USGS Publications Warehouse

    Saunders, W. Carl; Budy, Phaedra E.; Thiede, Gary P.

    2015-01-01

    Exotic species present a great threat to native fish conservation; however, eradicating exotics is expensive and often impractical. Mechanical removal can be ineffective for eradication, but nonetheless may increase management effectiveness by identifying portions of a watershed that are strong sources of exotics. We used mechanical removal to understand processes driving exotic brown trout (Salmo trutta) populations in the Logan River, Utah. Our goals were to: (i) evaluate the demographic response of brown trout to mechanical removal, (ii) identify sources of brown trout recruitment at a watershed scale and (iii) evaluate whether mechanical removal can reduce brown trout densities. We removed brown trout from 2 km of the Logan River (4174 fish), and 5.6 km of Right Hand Fork (RHF, 15,245 fish), a low-elevation tributary, using single-pass electrofishing. We compared fish abundance and size distributions prior to, and after 2 years of mechanical removal. In the Logan River, immigration to the removal reach and high natural variability in fish abundances limited the response to mechanical removal. In contrast, mechanical removal in RHF resulted in a strong recruitment pulse, shifting the size distribution towards smaller fish. These results suggest that, before removal, density-dependent mortality or emigration of juvenile fish stabilised adult populations and may have provided a source of juveniles to the main stem. Overall, in sites demonstrating strong density-dependent population regulation, or near sources of exotics, short-term mechanical removal has limited effects on brown trout populations but may help identify factors governing populations and inform large-scale management of exotic species.

  15. A shifted hyperbolic augmented Lagrangian-based artificial fish two-swarm algorithm with guaranteed convergence for constrained global optimization

    NASA Astrophysics Data System (ADS)

    Rocha, Ana Maria A. C.; Costa, M. Fernanda P.; Fernandes, Edite M. G. P.

    2016-12-01

    This article presents a shifted hyperbolic penalty function and proposes an augmented Lagrangian-based algorithm for non-convex constrained global optimization problems. Convergence to an ?-global minimizer is proved. At each iteration k, the algorithm requires the ?-global minimization of a bound constrained optimization subproblem, where ?. The subproblems are solved by a stochastic population-based metaheuristic that relies on the artificial fish swarm paradigm and a two-swarm strategy. To enhance the speed of convergence, the algorithm invokes the Nelder-Mead local search with a dynamically defined probability. Numerical experiments with benchmark functions and engineering design problems are presented. The results show that the proposed shifted hyperbolic augmented Lagrangian compares favorably with other deterministic and stochastic penalty-based methods.

  16. Environmental Impact Statement for the Modernization and Enhancement of Ranges, Airspace, and Training Areas in the Joint Pacific Alaska Range Complex in Alaska. Volume 1 - Executive Summary, Chapters 1 through 10

    DTIC Science & Technology

    2013-06-01

    to short-term behavioral responses and no effects that would be measurable at a population level have been documented. Fish in their native...the sustainable multipurpose use of natural resources (hunting, fishing , trapping, and non- consumptive uses) on military lands, subject to safety...support fish populations year-round, as they freeze in winter or when iced over and lack sufficient dissolved oxygen for fish to survive (USARAK 2004-1

  17. Indicators of fishing mortality on reef-shark populations in the world's first shark sanctuary: the need for surveillance and enforcement

    NASA Astrophysics Data System (ADS)

    Vianna, Gabriel M. S.; Meekan, Mark G.; Ruppert, Jonathan L. W.; Bornovski, Tova H.; Meeuwig, Jessica J.

    2016-09-01

    Shark sanctuaries are promoted as a management tool to achieve conservation goals following global declines of shark populations. We assessed the status of reef-shark populations and indicators of fishing pressure across the world's first shark sanctuary in Palau. Using underwater surveys and stereophotogrammetry, we documented large differences in abundance and size structure of shark populations across the sanctuary, with a strong negative relationship between shark densities and derelict fishing gear on reefs. Densities of 10.9 ± 4.7 (mean ± SE) sharks ha-1 occurred on reefs adjacent to the most populated islands of Palau, contrasting with lower densities of 1.6 ± 0.8 sharks ha-1 on remote uninhabited reefs, where surveillance and enforcement was limited. Our observations suggest that fishing still remains a major factor structuring shark populations in Palau, demonstrating that there is an urgent need for better enforcement and surveillance that targets both illegal and licensed commercial fisheries to provide effective protection for sharks within the sanctuary.

  18. Fisheries conservation on the high seas: linking conservation physiology and fisheries ecology for the management of large pelagic fishes

    PubMed Central

    Horodysky, Andrij Z.; Cooke, Steven J.; Graves, John E.; Brill, Richard W.

    2016-01-01

    Populations of tunas, billfishes and pelagic sharks are fished at or over capacity in many regions of the world. They are captured by directed commercial and recreational fisheries (the latter of which often promote catch and release) or as incidental catch or bycatch in commercial fisheries. Population assessments of pelagic fishes typically incorporate catch-per-unit-effort time-series data from commercial and recreational fisheries; however, there have been notable changes in target species, areas fished and depth-specific gear deployments over the years that may have affected catchability. Some regional fisheries management organizations take into account the effects of time- and area-specific changes in the behaviours of fish and fishers, as well as fishing gear, to standardize catch-per-unit-effort indices and refine population estimates. However, estimates of changes in stock size over time may be very sensitive to underlying assumptions of the effects of oceanographic conditions and prey distribution on the horizontal and vertical movement patterns and distribution of pelagic fishes. Effective management and successful conservation of pelagic fishes requires a mechanistic understanding of their physiological and behavioural responses to environmental variability, potential for interaction with commercial and recreational fishing gear, and the capture process. The interdisciplinary field of conservation physiology can provide insights into pelagic fish demography and ecology (including environmental relationships and interspecific interactions) by uniting the complementary expertise and skills of fish physiologists and fisheries scientists. The iterative testing by one discipline of hypotheses generated by the other can span the fundamental–applied science continuum, leading to the development of robust insights supporting informed management. The resulting species-specific understanding of physiological abilities and tolerances can help to improve stock assessments, develop effective bycatch-reduction strategies, predict rates of post-release mortality, and forecast the population effects of environmental change. In this synthesis, we review several examples of these interdisciplinary collaborations that currently benefit pelagic fisheries management. PMID:27382467

  19. Characterizing fishing effort and spatial extent of coastal fisheries.

    PubMed

    Stewart, Kelly R; Lewison, Rebecca L; Dunn, Daniel C; Bjorkland, Rhema H; Kelez, Shaleyla; Halpin, Patrick N; Crowder, Larry B

    2010-12-29

    Biodiverse coastal zones are often areas of intense fishing pressure due to the high relative density of fishing capacity in these nearshore regions. Although overcapacity is one of the central challenges to fisheries sustainability in coastal zones, accurate estimates of fishing pressure in coastal zones are limited, hampering the assessment of the direct and collateral impacts (e.g., habitat degradation, bycatch) of fishing. We compiled a comprehensive database of fishing effort metrics and the corresponding spatial limits of fisheries and used a spatial analysis program (FEET) to map fishing effort density (measured as boat-meters per km²) in the coastal zones of six ocean regions. We also considered the utility of a number of socioeconomic variables as indicators of fishing pressure at the national level; fishing density increased as a function of population size and decreased as a function of coastline length. Our mapping exercise points to intra and interregional 'hotspots' of coastal fishing pressure. The significant and intuitive relationships we found between fishing density and population size and coastline length may help with coarse regional characterizations of fishing pressure. However, spatially-delimited fishing effort data are needed to accurately map fishing hotspots, i.e., areas of intense fishing activity. We suggest that estimates of fishing effort, not just target catch or yield, serve as a necessary measure of fishing activity, which is a key link to evaluating sustainability and environmental impacts of coastal fisheries.

  20. Restitution and genetic differentiation of salmon populations in the southern Baltic genotyped with the Atlantic salmon 7K SNP array.

    PubMed

    Poćwierz-Kotus, Anita; Bernaś, Rafał; Kent, Matthew P; Lien, Sigbjørn; Leliűna, Egidijus; Dębowski, Piotr; Wenne, Roman

    2015-05-06

    Native populations of Atlantic salmon in Poland, from the southern Baltic region, became extinct in the 1980s. Attempts to restitute salmon populations in Poland have been based on a Latvian salmon population from the Daugava river. Releases of hatchery reared smolts started in 1986, but to date, only one population with confirmed natural reproduction has been observed in the Slupia river. Our aim was to investigate the genetic differentiation of salmon populations in the southern Baltic using a 7K SNP (single nucleotide polymorphism) array in order to assess the impact of salmon restitution in Poland. One hundred and forty salmon samples were collected from: the Polish Slupia river including wild salmon and individuals from two hatcheries, the Swedish Morrum river and the Lithuanian Neman river. All samples were genotyped using an Atlantic salmon 7K SNP array. A set of 3218 diagnostic SNPs was used for genetic analyses. Genetic structure analyses indicated that the individuals from the investigated populations were clustered into three groups i.e. one clade that included individuals from both hatcheries and the wild population from the Polish Slupia river, which was clearly separated from the other clades. An assignment test showed that there were no stray fish from the Morrum or Neman rivers in the sample analyzed from the Slupia river. Global FST over polymorphic loci was high (0.177). A strong genetic differentiation was observed between the Lithuanian and Swedish populations (FST = 0.28). Wild juvenile salmon specimens that were sampled from the Slupia river were the progeny of fish released from hatcheries and, most likely, were not progeny of stray fish from Sweden or Lithuania. Strong genetic differences were observed between the salmon populations from the three studied locations. Our recommendation is that future stocking activities that aim at restituting salmon populations in Poland include stocking material from the Lithuanian Neman river because of its closer geographic proximity.

  1. Bull Trout Forage Investigations in Beulah Reservoir, Oregon - Annual Report for 2006

    USGS Publications Warehouse

    Rose, Brien P.; Mesa, Mathew G.

    2009-01-01

    Beulah Reservoir on the north fork of the Malheur River in northeastern Oregon provides irrigation water to nearby farms and ranches and supports an adfluvial population of bull trout (Salvelinus confluentus), which are listed as threatened under the Endangered Species Act. Water management in Beulah Reservoir results in seasonal and annual fluctuations of water volume that may affect forage availability for bull trout. Because no minimum pool requirements currently exist, the reservoir is occasionally reduced to run-of-river levels, which may decimate forage fish populations and ultimately affect bull trout. We sampled fish and aquatic insects in Beulah Reservoir in the spring, before the annual drawdown of 2006, and afterward, in the late fall. We also collected samples 1.5 years after the reservoir was dewatered for three consecutive summers. Overall, the moderate drawdown of 2006 (32 percent of full pool) did not drastically alter the fish community in Beulah Reservoir. We did document, however, decreases in abundance and sizes of chironomids in areas of the reservoir that were frequently dewatered, increased catch rates of fish with gillnets, and decreases in population estimates for smaller fishes after drawdown. In 2006, after the dewaterings of 2002-04, species composition was similar to that prior to the dewaterings, but the size distributions of most species were biased toward small juvenile or subyearling fishes and larger fishes were rare. Our results indicate that repeated reservoir drawdown reduces aquatic insect forage for bull trout and probably affects forage fish populations at least temporarily. The high catch rates of juvenile fishes 1.5 years after consecutive dewaterings suggests good reproductive success for any remaining adult fish, and shows that the fish community in Beulah Reservoir is resilient to such disturbances. There is, however, a period of time after serious drawdowns before significant numbers of juvenile fishes start to appear in the reservoir. Because Beulah Reservoir experiences a wide variety of drawdown scenarios in consecutive years, the forage fish community may never reach a state of equilibrium.

  2. Growth changes in plaice, cod, haddock and saithe in the North Sea: a comparison of (post-)medieval and present-day growth rates based on otolith measurements

    NASA Astrophysics Data System (ADS)

    Bolle, Loes J.; Rijnsdorp, Adriaan D.; van Neer, Wim; Millner, Richard S.; van Leeuwen, Piet I.; Ervynck, Anton; Ayers, Richard; Ongenae, Ellen

    2004-05-01

    Fishing effort has strongly increased in the North Sea since the mid-19th century, causing a substantial reduction in the population size of exploited fish stocks. As fisheries research has developed simultaneously with the industrialisation of the fisheries, our knowledge of population dynamics at low levels of exploitations is limited. Otoliths retrieved from archaeological excavations offer a unique opportunity to study growth rates in the past. This study compares historical and present-day growth rates for four commercially important demersal fish species. A total of 2532 modern otoliths (AD 1984-1999) and 1286 historical otoliths (AD 1200-1925) obtained from archaeological excavations in Belgium and Scotland were analysed. Comparison of the growth patterns between eras revealed a major increase in growth rate of haddock, whereas growth changes were not observed in saithe and only in the smaller size classes of plaice and cod. Comparison of our results with literature data indicates that the observed growth rate changes in plaice and cod occurred within the 20th century. Apparently the onset of industrialised fisheries has not greatly affected the growth of plaice, cod and saithe populations in the North Sea. This result contradicts the expectation of density-dependent limitation of growth during the era of pre-industrialised fishing, but is in agreement with the concentration hypothesis of Beverton (Neth. J. Sea Res. 34 (1995) 1) stating that species which concentrate spatially into nursery grounds during their early life-history may 'saturate' the carrying capacity of the juvenile habitat even though the adult part of the population is not limited by the adult habitat.

  3. Electronic tagging of green sturgeon reveals population structure and movement among estuaries

    USGS Publications Warehouse

    Lindley, S.T.; Erickson, D.L.; Moser, M.L.; Williams, G.; Langness, O.P.; McCovey, B.W.; Belchik, M.; Vogel, D.; Pinnix, W.; Kelly, J.T.; Heublein, J.C.; Klimley, A.P.

    2011-01-01

    Green sturgeon Acipenser medirostris spend much of their lives outside of their natal rivers, but the details of their migrations and habitat use are poorly known, which limits our understanding of how this species might be affected by human activities and habitat degradation.We tagged 355 green sturgeon with acoustic transmitters on their spawning grounds and in known nonspawning aggregation sites and examined their movement among these sites and other potentially important locations using automated data-logging hydrophones. We found that green sturgeon inhabit a number of estuarine and coastal sites over the summer, including the Columbia River estuary, Willapa Bay, Grays Harbor, and the estuaries of certain smaller rivers in Oregon, especially the Umpqua River estuary. Green sturgeon from different natal rivers exhibited different patterns of habitat use; most notably, San Francisco Bay was used only by Sacramento River fish, while the Umpqua River estuary was used mostly by fish from the Klamath and Rogue rivers. Earlier work, based on analysis of microsatellite markers, suggested that the Columbia River mixed stock was mainly composed of fish from the Sacramento River, but our results indicate that fish from the Rogue and Klamath River populations frequently use the Columbia River as well. We also found evidence for the existence of migratory contingentswithin spawning populations.Our findings have significant implications for the management of the threatened Sacramento River population of green sturgeon, which migrates to inland waters outside of California where anthropogenic impacts, including fisheries bycatch and water pollution, may be a concern. Our results also illustrate the utility of acoustic tracking to elucidate the migratory behavior of animals that are otherwise difficult to observe. ?? American Fisheries Society 2011.

  4. Modeling tribal exposures to methyl mercury from fish consumption

    EPA Science Inventory

    Exposure assessment and risk management considerations for tribal fish consumption are different than for the general U.S. population because of higher fish intake from subsistence fishing and/or from unique cultural practices. This research summarizes analyses of available data ...

  5. Genetic variation in steelhead of Oregon and northern California

    USGS Publications Warehouse

    Reisenbichler, R.R.; McIntyre, J.D.; Solazzi, M.F.; Landino, S.W

    1992-01-01

    Steelhead Oncorhynchus mykiss from various sites between the Columbia River and the Mad River, California, were genetically characterized at 10 protein-coding loci or pairs of loci by starch gel electrophoresis. Fish from coastal streams differed from fish east of the Cascade Mountains and from fish of the Willamette River (a tributary of the Columbia River, west of the Cascade Mountains). Coastal steelhead from the northern part of the study area differed from those in the southern part. Genetic differentiation within and among drainages was not statistically significant; however, gene diversity analysis and the life history of steelhead suggested that fish from different drainages should be considered as separate populations. Genetic variation among fish in separate drainages was similar to that reported in northwestern Washington and less than that reported in British Columbia. Allele frequencies varied significantly among year-classes. Genetic variation within samples accounted for 98.3% of the total genetic variation observed in this study. Most hatchery populations differed from wild populations, suggesting that conservation of genetic diversity among and within wild populations could be facilitated by altering hatchery programs.

  6. Fish consumption and risk of subclinical brain abnormalities on MRI in older adults.

    PubMed

    Virtanen, J K; Siscovick, D S; Longstreth, W T; Kuller, L H; Mozaffarian, D

    2008-08-05

    To investigate the association between fish consumption and subclinical brain abnormalities. In the population-based Cardiovascular Health Study, 3,660 participants age > or =65 underwent an MRI scan in 1992-1994. Five years later, 2,313 were scanned. Neuroradiologists assessed MRI scans in a standardized and blinded manner. Food frequency questionnaires were used to assess dietary intakes. Participants with known cerebrovascular disease were excluded from the analyses. After adjustment for multiple risk factors, the risk of having one or more prevalent subclinical infarcts was lower among those consuming tuna/other fish > or =3 times/week, compared to <1/month (relative risk 0.74, 95% CI = 0.54-1.01, p = 0.06, p trend = 0.03). Tuna/other fish consumption was also associated with trends toward lower incidence of subclinical infarcts. Additionally, tuna/other fish intake was associated with better white matter grade, but not with sulcal and ventricular grades, markers of brain atrophy. No significant associations were found between fried fish consumption and any subclinical brain abnormalities. Among older adults, modest consumption of tuna/other fish, but not fried fish, was associated with lower prevalence of subclinical infarcts and white matter abnormalities on MRI examinations. Our results add to prior evidence that suggest that dietary intake of fish with higher eicosapentaenoic acid and docosahexaenoic acid content, and not fried fish intake, may have clinically important health benefits.

  7. Biotic and abiotic influences on abundance and distribution of nonnative Chinook salmon and native ESA-listed steelhead in the Wind River, Washington

    USGS Publications Warehouse

    Jezorek, Ian G.; Connolly, Patrick J.

    2015-01-01

    Biotic and abiotic factors influence fish populations and distributions. Concerns have been raised about the influence of hatchery fish on wild populations. Carson National Fish Hatchery produces spring Chinook salmon Oncorhynchus tshawytscha in the Wind River, Washington, and some spawn in the river. Managers were concerned that Chinook salmon could negatively affect wild steelhead O. mykiss and that a self-sustaining population of Chinook salmon may develop. Our objectives were to assess: 1) the distribution and populations of juvenile spring Chinook salmon and juvenile steelhead in the upper Wind River; 2) the influence of stream flow and of each population on the other; and 3) if Chinook salmon populations were self-sustaining. We snorkeled to determine distribution and abundance. Flow in the fall influenced upstream distribution and abundance of juvenile Chinook salmon. Juvenile Chinook salmon densities were consistently low (range 0.0 to 5.7 fish 100 m-2) and not influenced by number of spawners, winter flow magnitude, or steelhead abundance. Juvenile steelhead were distributed through the study section each year. Age-0 and age-1 steelhead densities (age-0 range: 0.04 to 37.0 fish 100 m-2; age-1 range: 0.02 to 6.21 fish 100 m-2) were consistently higher than for juvenile Chinook salmon. Steelhead spawner abundance positively influenced juvenile steelhead abundance. During this study, Chinook salmon in the Wind River appear to have had little effect on steelhead. Low juvenile Chinook salmon abundance and a lack of a spawner-to-juvenile relationship suggest Chinook salmon are not self-sustaining and potential for such a population is low under current conditions.

  8. Radionuclides in resident and migratory fishes of a wedge bank region: Estimation of dose to human beings, South India.

    PubMed

    Khan, M Feroz; Wesley, S Godwin

    2012-10-01

    Baseline activity concentration of (137)Cs, (210)Po and (210)Pb was determined for 25 resident and 22 migratory fish species collected in a so-called wedge bank region in the extreme south of India. A nuclear power station is now under construction at Kudankulam near the target region and the data provide background information on the radionuclide activity concentration in the region. Three-way ANOVA revealed no significant variation in the concentrations of (137)Cs, (210)Po and (210)Pb between species based on feeding habit, habitat and migratory pattern except the effect of feeding habit on (210)Po concentration (p<0.05). The annual dose due to radionuclide ingestion through the fishes was calculated based on the survey results of fish consumption rates for the local population. The dose due to (137)Cs was negligibly small while those due to (210)Po and (210)Pb varied from 1.2 to 36.9 and 0.2 to 2.9μSv yr(-1), respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Fishing with bed nets on Lake Tanganyika: a randomized survey.

    PubMed

    McLean, Kate A; Byanaku, Aisha; Kubikonse, Augustine; Tshowe, Vincent; Katensi, Said; Lehman, Amy G

    2014-10-07

    Malaria is among the most common causes of death along Lake Tanganyika, a problem which many aid organizations have attempted to combat through the distribution of free mosquito bed nets to high-risk communities. The Lake Tanganyika Floating Health Clinic (LTFHC), a health-based non-governmental organization (NGO), has observed residents of the Lake Tanganyika basin using bed nets to fish small fry near the shoreline, despite a series of laws that prohibit bed net use and other fine-gauge nets for fishing, implemented to protect the near-shore fish ecology. The LTFHC sought to quantify the sources of bed nets and whether they were being used for fishing. The LTFHC conducted a survey of seven lakeside villages in Lagosa Ward, Tanzania. The government has divided each village into two to six pre-existing geographic sub-villages depending on population size. Seven households per sub-village were chosen at random for survey administration. The survey consisted of 23 questions regarding mosquito bed net practices, including the use of bed nets for fishing, as well as questions pertaining to any perceived changes to the fish supply. A total of 196 surveys were administered over a four-week period with a 100% response rate. Over 87% of households surveyed have used a mosquito bed net for fishing at some point. The majority of respondents reported receiving their bed net for free (96.4%), observing "many" residents of their village using bed nets for fishing (97.4%), and noticing a subjective decrease in the fish supply over time (64.9%). The findings of this study raise concerns that the use of free malaria bed nets for fishing is widespread along Lake Tanganyika, and that this dynamic will have an adverse effect on fish ecology. Further studies are indicated to fully define the scope of bed net misuse and the effects of alternative vector control strategies in water-based communities.

  10. DarT: The embryo test with the Zebrafish Danio rerio--a general model in ecotoxicology and toxicology.

    PubMed

    Nagel, Roland

    2002-01-01

    The acute fish test is an animal test whose ecotoxicological relevance is worthy of discussion. The primary aim of protection in ecotoxicology is the population and not the individual. Furthermore the concentration of pollutants in the environment is normally not in the lethal range. Therefore the acute fish test covers solely the situation after chemical spills. Nevertheless, acute fish toxicity data still belong to the base set used for the assessment of chemicals. The embryo test with the zebrafish Danio rerio (DarT) is recommended as a substitute for the acute fish test. For validation an international laboratory comparison test was carried out. A summary of the results is presented in this paper. Based on the promising results of testing chemicals and waste water the test design was validated by the DIN-working group "7.6 Fischei-Test". A normed test guideline for testing waste water with fish is available. The test duration is short (48 h) and within the test different toxicological endpoints can be examined. Endpoints from the embryo test are suitable for QSAR-studies. Besides the use in ecotoxicology the introduction as a toxicological model was investigated. Disturbance of pigmentation and effects on the frequency of heart-beat were examined. A further important application is testing of teratogenic chemicals. Based on the results DarT could be a screening test within preclinical studies.

  11. The 2006 Project Progress Report for 1987-099-00 Dworshak Kokanee Population and Entrainment Assessment (contract # 26850) is attached to project 2007-003-00, contract #31598. [POINTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2008-12-18

    During this contract, we continued testing underwater strobe lights to determine their effectiveness at repelling kokanee Oncorhynchus nerka away from Dworshak Dam. Strobe light tests were conducted on four nights from April 24-27, 2006, in front of the middle reservoir outlet (RO) 2. The density and distribution of fish, (thought to be mostly kokanee), were monitored with a split-beam echo sounder. We then compared fish counts and densities during nights when the lights were flashing to counts and densities during adjacent nights without the lights on. On two nights, April 25 and 27, 2006, when no lights were present, fishmore » counts near RO 2 averaged 12.4 fish and densities averaged 31.0 fish/ha. When strobe lights were turned on during the nights of April 24 and 26, mean counts dropped to 4.7 fish and densities dropped to 0.5 fish/ha. The decline in counts (62%) and densities (99%) was statistically significant (p = 0.009 and 0.002, respectively). Test results indicated that strobe lights were able to reduce fish densities by at least 50% in front of a discharging reservoir outlet, which would be sufficient to improve sport fish harvest. We also used split-beam hydroacoustics to monitor the kokanee population in Dworshak Reservoir during 2006. Estimated abundance of kokanee increased from the 2005 population estimate. Based on hydroacoustic surveys, we estimated approximately 5,815,000 kokanee (90% CI {+-} 27.6%) in Dworshak Reservoir in August 2006. This included 2,183,000 age-0 (90% CI {+-} 24.2%), 1,509,000 age-1 (90% CI {+-} 29.0%), and 2,124,000 age-2 (90% CI {+-} 27.6%) kokanee. This resulted in a density of age-2 kokanee above the management goal of 30-50 adults/ha. Entrainment sampling was conducted with fixed-site, split-beam hydroacoustics from May through September for a continuous 24 h period when dam operations permitted. The highest fish detection rates from entrainment assessments were found during dawn periods, unlike previous year's results, which were highest during nighttime. The lowest detection rate was found during the day period, which was consistent with previous findings. Fish detection rates were generally low during high discharges throughout the summer and highest during low discharges in May and June. Low detection rates were found during high discharge periods during drawdowns for anadromous fish flows in July and August, which resulted in low susceptibility to entrainment. Counts of spawning kokanee in four tributary streams totaled 29,743 fish. These data fit the previously developed relationship between spawner counts and adult kokanee abundance in the reservoir.« less

  12. Dworshak Kokanee Population and Engrainment Assessment : 2006 Annual Report, March 1, 2006 - February 28, 2007.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stark, Eric J.

    2008-12-18

    During this contract, we continued testing underwater strobe lights to determine their effectiveness at repelling kokanee Oncorhynchus nerka away from Dworshak Dam. Strobe light tests were conducted on four nights from April 24-27, 2006, in front of the middle reservoir outlet (RO) 2. The density and distribution of fish, (thought to be mostly kokanee), were monitored with a split-beam echo sounder. We then compared fish counts and densities during nights when the lights were flashing to counts and densities during adjacent nights without the lights on. On two nights, April 25 and 27, 2006, when no lights were present, fishmore » counts near RO 2 averaged 12.4 fish and densities averaged 31.0 fish/ha. When strobe lights were turned on during the nights of April 24 and 26, mean counts dropped to 4.7 fish and densities dropped to 0.5 fish/ha. The decline in counts (62%) and densities (99%) was statistically significant (p = 0.009 and 0.002, respectively). Test results indicated that strobe lights were able to reduce fish densities by at least 50% in front of a discharging reservoir outlet, which would be sufficient to improve sport fish harvest. We also used split-beam hydroacoustics to monitor the kokanee population in Dworshak Reservoir during 2006. Estimated abundance of kokanee increased from the 2005 population estimate. Based on hydroacoustic surveys, we estimated approximately 5,815,000 kokanee (90% CI {+-} 27.6%) in Dworshak Reservoir in August 2006. This included 2,183,000 age-0 (90% CI {+-} 24.2%), 1,509,000 age-1 (90% CI {+-} 29.0%), and 2,124,000 age-2 (90% CI {+-} 27.6%) kokanee. This resulted in a density of age-2 kokanee above the management goal of 30-50 adults/ha. Entrainment sampling was conducted with fixed-site, split-beam hydroacoustics from May through September for a continuous 24 h period when dam operations permitted. The highest fish detection rates from entrainment assessments were found during dawn periods, unlike previous year's results, which were highest during nighttime. The lowest detection rate was found during the day period, which was consistent with previous findings. Fish detection rates were generally low during high discharges throughout the summer and highest during low discharges in May and June. Low detection rates were found during high discharge periods during drawdowns for anadromous fish flows in July and August, which resulted in low susceptibility to entrainment. Counts of spawning kokanee in four tributary streams totaled 29,743 fish. These data fit the previously developed relationship between spawner counts and adult kokanee abundance in the reservoir.« less

  13. Factors regulating year‐class strength of Silver Carp throughout the Mississippi River basin

    USGS Publications Warehouse

    Sullivan, Christopher J.; Weber, Michael J.; Pierce, Clay; Wahl, David H.; Phelps, Quinton E.; Camacho, Carlos A.; Colombo, Robert E.

    2018-01-01

    Recruitment of many fish populations is inherently highly variable inter‐annually. However, this variability can be synchronous at broad geographic scales due to fish dispersal and climatic conditions. Herein, we investigated recruitment synchrony of Silver Carp Hypophthalmichthys molitrix across the Mississippi River basin. Year‐class strength (YCS) and synchrony of nine populations (max linear distance = 806.4 km) was indexed using catch‐curve residuals correlated between sites and related to local and regional climatic conditions. Overall, Silver Carp YCS was not synchronous among populations, suggesting local environmental factors are more important determinants of YCS than large‐scale environmental factors. Variation in Silver Carp YCS was influenced by river base flow and discharge variability at each site, indicating that extended periods of static local discharge benefit YCS. Further, river discharge and air temperature were correlated and synchronized among sites, but only similarities in river discharge was correlated with Silver Carp population synchrony, indicating that similarities in discharge (i.e., major flood) among sites can positively synchronize Silver Carp YCS. The positive correlation between Silver Carp YCS and river discharge synchrony suggests that regional flood regimes are an important force determining the degree of population synchrony among Mississippi River Silver Carp populations.

  14. Time-specific and population-level differences in physiological responses of fathead minnows (Pimephales promelas) and golden shiners (Notemigonus crysoleucas) exposed to copper.

    PubMed

    Peles, John D; Pistole, David H; Moffe, Mickey C

    2012-03-01

    The influence of exposure time on gill Na+/K+ ATPase activity and metabolic rate in populations of fathead minnows (Pimephales promelas) and golden shiners (Notemigonus crysoleucas) hatcheries in Ohio (OH) and Pennsylvania (PA) when exposed to sublethal concentrations of copper (Cu) was examined. The pattern of change in gill Na+/K+ ATPase activity was similar in all species/populations and results support expectations based on the concept of acclimation. In all populations, Na+/K+ ATPase activity declined significantly compared to reference values within 24 h, recovered by 48 h, and then continued to increase before exceeding reference values by 192 h. With the exception of PA fathead minnows, Na+/K+ ATPase activities returned to reference levels by 384 h. Although metabolic rates of individual fish were not strongly correlated with Na+/K+ ATPase activities, the pattern of change in mean values of these physiological parameters was very similar. However, OH populations of both fathead minnows and golden shiners demonstrated much more dramatic changes in metabolic rate compared to PA fish. At 24 h, metabolic rate of PA fathead minnows had decreased by 16% compared to the reference value whereas the OH population had decreased by 31%; metabolic rate of PA golden shiners declined by 23% compared to 59% in OH shiners at 24 h. Similar differences were observed in the maximum metabolic rates achieved at 192 h. While the increased sensitivity of OH fish to Cu is not readily explainable by genetic or environmental factors, results suggest the need for considering population level differences when evaluating the physiological effects of toxicants. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Inferring genetic connectivity in real populations, exemplified by coastal and oceanic Atlantic cod.

    PubMed

    Spies, Ingrid; Hauser, Lorenz; Jorde, Per Erik; Knutsen, Halvor; Punt, André E; Rogers, Lauren A; Stenseth, Nils Chr

    2018-05-08

    Genetic data are commonly used to estimate connectivity between putative populations, but translating them to demographic dispersal rates is complicated. Theoretical equations that infer a migration rate based on the genetic estimator F ST , such as Wright's equation, F ST ≈ 1/(4 N e m + 1), make assumptions that do not apply to most real populations. How complexities inherent to real populations affect migration was exemplified by Atlantic cod in the North Sea and Skagerrak and was examined within an age-structured model that incorporated genetic markers. Migration was determined under various scenarios by varying the number of simulated migrants until the mean simulated level of genetic differentiation matched a fixed level of genetic differentiation equal to empirical estimates. Parameters that decreased the N e / N t ratio (where N e is the effective and N t is the total population size), such as high fishing mortality and high fishing gear selectivity, increased the number of migrants required to achieve empirical levels of genetic differentiation. Higher maturity-at-age and lower selectivity increased N e / N t and decreased migration when genetic differentiation was fixed. Changes in natural mortality, fishing gear selectivity, and maturity-at-age within expected limits had a moderate effect on migration when genetic differentiation was held constant. Changes in population size had the greatest effect on the number of migrants to achieve fixed levels of F ST , particularly when genetic differentiation was low, F ST ≈ 10 -3 Highly variable migration patterns, compared with constant migration, resulted in higher variance in genetic differentiation and higher extreme values. Results are compared with and provide insight into the use of theoretical equations to estimate migration among real populations. Copyright © 2018 the Author(s). Published by PNAS.

  16. Changes in a population of exotic rainbow smelt in Lake Superior: Boom to bust, 1974-2005

    USGS Publications Warehouse

    Gorman, O.T.

    2007-01-01

    Changes in a population of rainbow smelt (Osmerus mordax) in the Apostle Islands region of Lake Superior were chronicled over a 32-yr time series, 1974–2005. At the beginning of the time series, rainbow smelt was the predominant prey species, abundance of lake herring (Coregonis artedi) was very low, and the dominant predator was stocked lake trout (Salvelinus namaycush). Following a period of successful lake trout stocking in the 1970s, the rainbow smelt population declined sharply in 1980, largely through mortality of adult fish and subsequent poor recruitment. In the succeeding 4 years, rainbow smelt populations reached historic low levels, resulting in reduced food resources for both wild and stocked lake trout. During 1985–1990 lake herring stocks began a spectacular recovery following the appearance of a very strong 1984 year class and subsequent 1988, 1989, and 1990 year classes. Rainbow smelt benefited from the high abundance of young lake herring as an alternate prey source for lake trout and showed a partial recovery in the late 1980s. However, a growing lake trout population coupled with an 8-yr period of low herring reproduction after 1990 resulted in a diminished rainbow smelt population dominated by age-1 and 2 fish and showing a pattern of alternating recruitment attributed to cannibalism. Low productivity of rainbow smelt and intermittent production of herring over the past decade has left lake trout populations with a diminished prey base. Although lake trout recovery benefited from the presence of rainbow smelt as a prey resource, the Lake Superior fish community was fundamentally altered by the introduction of rainbow smelt.

  17. A fine-scale assessment of using barriers to conserve native stream salmonids: a case study in Akokala Creek, Glacier National Park, USA

    USGS Publications Warehouse

    Muhlfeld, Clint C.; D'Angelo, Vincent S.; S. T. Kalinowski,; Landguth, Erin L.; C. C. Downs,; J. Tohtz,; Kershner, Jeffrey L.

    2012-01-01

    Biologists are often faced with the difficult decision in managing native salmonids of where and when to install barriers as a conservation action to prevent upstream invasion of nonnative fishes. However, fine-scale approaches to assess long-term persistence of populations within streams and watersheds chosen for isolation management are often lacking. We employed a spatially-explicit approach to evaluate stream habitat conditions, relative abundance, and genetic diversity of native westslope cutthroat trout (Oncorhynchus clarkii lewisi) within the Akokala Creek watershed in Glacier National Park- a population threatened by introgressive hybridization with nonnative rainbow trout (O. mykiss) from nearby sources. The systematic survey of 24 stream reaches showed broad overlap in fish population and suitable habitat characteristics among reaches and no natural barriers to fish migration were found. Analysis of population structure using 16 microsatellite loci showed modest amounts of genetic diversity among reaches, and that fish from Long Bow Creek were the only moderately distinct genetic group. We then used this information to assess the potential impacts of three barrier placement scenarios on long-term population persistence and genetic diversity. The two barrier placement scenarios in headwater areas generally failed to meet general persistence criteria for minimum population size (2,500 individuals, Ne = 500), maintenance of long-term genetic diversity (He), and no population subdivision. Conversely, placing a barrier near the stream mouth and selectively passing non-hybridized, migratory spawners entering Akokala Creek met all persistence criteria and may offer the best option to conserve native trout populations and life history diversity. Systematic, fine-scale stream habitat, fish distribution, and genetic assessments in streams chosen for barrier installation are needed in conjunction with broader scale assessments to understand the potential impacts of using barriers for conservation of native salmonid populations threatened by nonnative fish invasions.

  18. INDIVIDUAL BASED MODELLING APPROACH TO THERMAL REFUGE USE BY MIGRATING ADULT SALMON AND STEELHEAD

    EPA Science Inventory

    Diadromous fish populations in the Pacific Northwest face challenges along their migratory routes from declining habitat quality, harvest, and barriers to longitudinal connectivity. Changes in river temperature regimes are producing an additional challenge for upstream migrating ...

  19. Proceedings of the 2010 Northeastern Recreation Research Symposium

    Treesearch

    Cherie LeBlanc Fisher; Clifton E., Jr., eds. Watts

    2012-01-01

    Contains articles presented at the 2010 Northeastern Recreation Research Symposium. Contents cover tourism marketing, fish and wildlife, place meaning, leisure and demographics, nature-based tourism, methods, leisure motives, outdoor recreation management, outdoor recreation among specific populations, leisure constraints, environmental attitudes and values, leisure...

  20. Spatial extent of analysis influences observed patterns of population genetic structure in a widespread darter species (Percidae)

    USGS Publications Warehouse

    Argentina, Jane E.; Angermeier, Paul L.; Hallerman, Eric M.; Welsh, Stuart A.

    2018-01-01

    Connectivity among stream fish populations allows for exchange of genetic material and helps maintain genetic diversity, adaptive potential and population stability over time. Changes in species demographics and population connectivity have the potential to permanently alter the genetic patterns of stream fish, although these changes through space and time are variable and understudied in small‐bodied freshwater fish.As a spatially widespread, common species of benthic freshwater fish, the variegate darter (Etheostoma variatum) is a model species for documenting how patterns of genetic structure and diversity respond to increasing isolation due to large dams and how scale of study may shape our understanding of these patterns. We sampled variegate darters from 34 sites across their range in the North American Ohio River basin and examined how patterns of genetic structure and diversity within and between populations responded to historical population changes and dams within and between populations.Spatial scale and configuration of genetic structure varied across the eight identified populations, from tributaries within a watershed, to a single watershed, to multiple watersheds that encompass Ohio River mainstem habitats. This multiwatershed pattern of population structuring suggests genetic dispersal across large distances was and may continue to be common, although some populations remain isolated despite no apparent structural dispersal barriers. Populations with low effective population sizes and evidence of past population bottlenecks showed low allelic richness, but diversity patterns were not related to watershed size, a surrogate for habitat availability. Pairwise genetic differentiation (FST) increased with fluvial distance and was related to both historic and contemporary processes. Genetic diversity changes were influenced by underlying population size and stability, and while instream barriers were not strong determinants of genetic structuring or loss of genetic diversity, they reduce population connectivity and may impact long‐term population persistence.The broad spatial scale of this study demonstrated the large spatial extent of some variegate darter populations and indicated that dispersal is more extensive than expected given the movement patterns typically observed for small‐bodied, benthic fish. Dam impacts depended on underlying population size and stability, with larger populations more resilient to genetic drift and allelic richness loss than smaller populations.Other darters that inhabit large river habitats may show similar patterns in landscape‐scale studies, and large river barriers may impact populations of small‐bodied fish more than previously expected. Estimation of dispersal rates and behaviours is critical to conservation of imperilled riverine species such as darters.

  1. Spatial and temporal dynamics of lake whitefish (Coregonus clupeaformis) health indicators: linking individual-based indicators to a management-relevant endpoint

    USGS Publications Warehouse

    Wagner, Tyler; Jones, Michael L.; Ebener, Mark P.; Arts, Michael T.; Brenden, Travis O.; Honeyfield, Dale C.; Wright, Gregory M.; Faisal, Mohamed

    2010-01-01

    We examined the spatial and temporal dynamics of health indicators in four lake whitefish (Coregonus clupeaformis) stocks located in northern lakes Michigan and Huron from 2003 to 2006. The specific objectives were to (1) quantify spatial and temporal variability in health indicators; (2) examine relationships among nutritional indicators and stock-specific spatial and temporal dynamics of pathogen prevalence and intensity of infection; and (3) examine relationships between indicators measured on individual fish and stock-specific estimates of natural mortality. The percent of the total variation attributed to spatial and temporal sources varied greatly depending on the health indicator examined. The most notable pattern was a downward trend in the concentration of highly unsaturated fatty acids (HUFAs), observed in all stocks, in the polar lipid fraction of lake whitefish dorsal muscle tissue over the three study years. Variation among stocks and years for some indicators were correlated with the prevalence and intensity of the swimbladder nematode Cystidicola farionis, suggesting that our measures of fish health were related, at some level, with disease dynamics. We did not find relationships between spatial patterns in fish health indicators and estimates of natural mortality rates for the stocks. Our research highlights the complexity of the interactions between fish nutritional status, disease dynamics, and natural mortality in wild fish populations. Additional research that identifies thresholds of health indicators, below (or above) which survival may be reduced, will greatly help in understanding the relationship between indicators measured on individual fish and potential population-level effects.

  2. Health risk assessment of heavy metals in fish and accumulation patterns in food web in the upper Yangtze River, China.

    PubMed

    Yi, Yujun; Tang, Caihong; Yi, Tieci; Yang, Zhifeng; Zhang, Shanghong

    2017-11-01

    This study aims to concern the distribution of As, Cr, Cd, Hg, Cu, Zn, Pb and Fe in surface sediment, zoobenthos and fishes, and quantify the accumulative ecological risk and human health risk of metals in river ecological system based on the field investigation in the upper Yangtze River. The results revealed high ecological risk of As, Cd, Cu, Hg, Zn and Pb in sediment. As and Cd in fish presented potential human health risk of metals by assessing integrated target hazard quotient results based on average and maximum concentrations, respectively. No detrimental health effects of heavy metals on humans were found by daily fish consumption. While, the total target hazard quotient (1.659) exceeding 1, it meant that the exposed population might experience noncarcinogenic health risks from the accumulative effect of metals. Ecological network analysis model was established to identify the transfer routes and quantify accumulative effects of metals on river ecosystem. Control analysis between compartments showed large predator fish firstly depended on the omnivorous fish. Accumulative ecological risk of metals indicated that zoobenthos had the largest metal propagation risk and compartments located at higher trophic levels were not easier affected by the external environment pollution. A potential accumulative ecological risk of heavy metal in the food web was quantified, and the noncarcinogenic health risk of fish consumption was revealed for the upper reach of the Yangtze River. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Coexistence in streams: Do source-sink dynamics allow salamanders to persist with fish predators?

    USGS Publications Warehouse

    Sepulveda, A.J.; Lowe, W.H.

    2011-01-01

    Theory suggests that source-sink dynamics can allow coexistence of intraguild predators and prey, but empirical evidence for this coexistence mechanism is limited. We used capture-mark-recapture, genetic methods, and stable isotopes to test whether source-sink dynamics promote coexistence between stream fishes, the intraguild predator, and stream salamanders (Dicamptodon aterrimus), the intraguild prey. Salamander populations from upstream reaches without fish were predicted to maintain or supplement sink populations in downstream reaches with fish. We found instead that downstream reaches with fish were not sinks even though fish consumed salamander larvae-apparent survival, recruitment, and population growth rate did not differ between upstream and downstream reaches. There was also no difference between upstream and downstream reaches in net emigration. We did find that D. aterrimus moved frequently along streams, but believe that this is a response to seasonal habitat changes rather than intraguild predation. Our study provides empirical evidence that local-scale mechanisms are more important than dispersal dynamics to coexistence of streams salamanders and fish. More broadly, it shows the value of empirical data on dispersal and gene flow for distinguishing between local and spatial mechanisms of coexistence. ?? 2011 Springer-Verlag.

  4. Quantifying the impact of longline fisheries on adult survival in the black-footed albatross

    USGS Publications Warehouse

    Veran, S.; Gimenez, O.; Flint, E.; Kendall, W.L.; Doherty, P.F.; Lebreton, J.D.

    2007-01-01

    1. Industrial longline fishing has been suspected to impact upon black-footed albatross populations Phoebastria nigripes by increasing mortality, but no precise estimates of bycatch mortality are available to ascertain this statement. We present a general framework for quantifying the relationship between albatross population and longline fishing in absence of reliable estimates of bycatch rate. 2. We analysed capture?recapture data of a population of black-footed albatross to obtain estimates of survival probability for this population using several alternative models to adequately take into account heterogeneity in the recapture process. Instead of trying to estimate the number of birds killed by using various extrapolations and unchecked assumptions, we investigate the potential relationship between annual adult survival and several measures of fishing effort. Although we considered a large number of covariates, we used principal component analysis to generate a few uncorrelated synthetic variables from the set and thus we maintained both power and robustness. 3. The average survival for 1997?2002 was 92%, a low value compared to estimates available for other albatross species. We found that one of the synthetic variables used to summarize industrial longline fishing significantly explained more than 40% of the variation in adult survival over 11 years, suggesting an impact by longline fishing on albatross? survival. 4. Our analysis provides some evidence of non-linear variation in survival with fishing effort. This could indicate that below a certain level of fishing effort, deaths due to incidental catch can be partially or totally compensated for by a decrease in natural mortality. Another possible explanation is the existence of a strong interspecific competition for accessing the baits, reducing the risk of being accidentally hooked. 5. Synthesis and applications. The suspicion of a significant impact of longline fishing on the black-footed albatross population was supported by the combination of a low estimate of adult survival for the study period, and a significant relationship between adult survival and a synthetic measure of fishing effort. This study highlights the sensitivity of the black-footed albatross to commercial longline fishing, and should exhort fishery management authorities to find adequate seabirds avoidance methods and to encourage their employment.

  5. ONR Far East Scientific Bulletin. Volume 8. Number 1, January-March 1983,

    DTIC Science & Technology

    1983-03-01

    dissociated zircon was recently reported.1 In addition, several alumina based, e.g., Al 2 O 3-SiO 2 , A12 0 3-Cr 2 O9 , Al20 3 - TiO2 powders have been...Agriculture 26.2 Forestry 3.8 Fishing 3.6 33.6% Mineral, energy, and water resources Mineral resources 6.1 Energy resources 7.8 Water resources 2.3 16.2...ecosystems and the ecology and population dynamics of the ocean’s harvestable resources, - methods of processing, handling, and storing meat, fish , dairy

  6. Evidence of market-driven size-selective fishing and the mediating effects of biological and institutional factors.

    PubMed

    Reddy, Sheila M W; Wentz, Allison; Aburto-Oropeza, Octavio; Maxey, Martin; Nagavarapu, Sriniketh; Leslie, Heather M

    2013-06-01

    Market demand is often ignored or assumed to lead uniformly to the decline of resources. Yet little is known about how market demand influences natural resources in particular contexts, or the mediating effects of biological or institutional factors. Here, we investigate this problem by examining the Pacific red snapper (Lutjanus peru) fishery around La Paz, Mexico, where medium or "plate-sized" fish are sold to restaurants at a premium price. If higher demand for plate-sized fish increases the relative abundance of the smallest (recruit size class) and largest (most fecund) fish, this may be a market mechanism to increase stocks and fishermen's revenues. We tested this hypothesis by estimating the effect of prices on the distribution of catch across size classes using daily records of prices and catch. We linked predictions from this economic choice model to a staged-based model of the fishery to estimate the effects on the stock and revenues from harvest. We found that the supply of plate-sized fish increased by 6%, while the supply of large fish decreased by 4% as a result of a 13% price premium for plate-sized fish. This market-driven size selection increased revenues (14%) but decreased total fish biomass (-3%). However, when market-driven size selection was combined with limited institutional constraints, both fish biomass (28%) and fishermen's revenue (22%) increased. These results show that the direction and magnitude of the effects of market demand on biological populations and human behavior can depend on both biological attributes and institutional constraints. Fisheries management may capitalize on these conditional effects by implementing size-based regulations when economic and institutional incentives will enhance compliance, as in the case we describe here, or by creating compliance enhancing conditions for existing regulations.

  7. Identifying bio-physical, social and political challenges to catchment governance for sustainable freshwater fisheries in West Africa: Systems overview through scenario development in the SUSFISH project.

    NASA Astrophysics Data System (ADS)

    Sendzimir, Jan; Slezak, Gabriele; Melcher, Andreas

    2015-04-01

    Chronic and episodic water scarcity prompted construction of 1400 reservoirs in Burkina Faso since 1950, greatly expanding fisheries production. These fisheries provided an increasingly important protein source for a population that has risen 600% since 1920, but production has plateaued, and dramatic declines in adult fish size suggest these fisheries are not sustainable. The SUSFISH project joined Austrian and Burkinabe scientists to increase local capacities to manage fisheries sustainably. SUSFISH has successfully increased capacity to monitor fish populations, identify endangered species, and use specific fish and macroinvertebrate species as bio-indicators of water and habitat quality as well as anthropogenic pressures. But projects to support sustainable development in Africa have a long history of failure if only based on transfer of technology and theory based on bio-physical sciences. This paper describes the processes and products of knowledge elicitation, scenario development and systems analysis to identify barriers and bridges to long-term sustainable fisheries development that arise from bio-physical, social, political and cultural causes, and, especially, interactions between them. Lessons learned and important on-going research questions are identified for both the natural and social sciences as they apply to managing catchments at multiple scales of governance, from local to national.

  8. Modeling Tribal Exposures to PCBs from Fish Consumption

    EPA Science Inventory

    Studies have shown that U.S. population continues to be exposed to polychlorinated biphenyls (PCBs), despite the ban ~40 years ago. Fish intake is a major pathway, especially, for high fish-consumption groups. Exposure assessment and risk management considerations for tribal fish...

  9. Scalable population estimates using spatial-stream-network (SSN) models, fish density surveys, and national geospatial database frameworks for streams

    Treesearch

    Daniel J. Isaak; Jay M. Ver Hoef; Erin E. Peterson; Dona L. Horan; David E. Nagel

    2017-01-01

    Population size estimates for stream fishes are important for conservation and management, but sampling costs limit the extent of most estimates to small portions of river networks that encompass 100s–10 000s of linear kilometres. However, the advent of large fish density data sets, spatial-stream-network (SSN) models that benefit from nonindependence among samples,...

  10. Applying Fishers' Ecological Knowledge to Construct Past and Future Lobster Stocks in the Juan Fernández Archipelago, Chile

    PubMed Central

    Eddy, Tyler D.; Gardner, Jonathan P. A.; Pérez-Matus, Alejandro

    2010-01-01

    Over-exploited fisheries are a common feature of the modern world and a range of solutions including area closures (marine reserves; MRs), effort reduction, gear changes, ecosystem-based management, incentives and co-management have been suggested as techniques to rebuild over-fished populations. Historic accounts of lobster (Jasus frontalis) on the Chilean Juan Fernández Archipelago indicate a high abundance at all depths (intertidal to approximately 165 m), but presently lobsters are found almost exclusively in deeper regions of their natural distribution. Fishers' ecological knowledge (FEK) tells a story of serial depletion in lobster abundance at fishing grounds located closest to the fishing port with an associated decline in catch per unit effort (CPUE) throughout recent history. We have re-constructed baselines of lobster biomass throughout human history on the archipelago using historic data, the fishery catch record and FEK to permit examination of the potential effects of MRs, effort reduction and co-management (stewardship of catch) to restore stocks. We employed a bioeconomic model using FEK, fishery catch and effort data, underwater survey information, predicted population growth and response to MR protection (no-take) to explore different management strategies and their trade-offs to restore stocks and improve catches. Our findings indicate that increased stewardship of catch coupled with 30% area closure (MR) provides the best option to reconstruct historic baselines. Based on model predictions, continued exploitation under the current management scheme is highly influenced by annual fluctuations and unsustainable. We propose a community-based co-management program to implement a MR in order to rebuild the lobster population while also providing conservation protection for marine species endemic to the Archipelago. PMID:21079761

  11. Species composition and dietary relationships in a brackish shallow water fish assemblage in the Bothnian Sea, Sweden

    NASA Astrophysics Data System (ADS)

    Thorman, Staffan; Wiederholm, Anne-Marie

    1984-09-01

    A nearshore fish assemblage inhabiting a shallow bay in the southern Bothnian Sea, Sweden, with demanding environmental conditions (c. 5‰; >15°C during 4 months 1980 and 1 month 1981) was studied during a two-year period, in 1980 and 1981. Seasonal distribution patterns, dietary relationships, and growth rates were studied in Pungitius pungitius (L.), Pomatoschistus minutus (Pallas.), Gasterosteus aculeatus (L.), Phoxinus phoxinus (L.), Pomatoschistus microps (Krøyer) and Gobius niger L. The structure of the juvenile populations changed both over seasons and years but the adult populations remained constant. Lower water temperature, fewer individuals, lower and delayed fish growth, and lower interspecific food overlaps were found in 1981 compared to 1980. Few significant correlations were found in both years between the following community parameters: diversity, niche width, food overlap, and the proportion of each species in the fish assemblage. According to these results it is suggested that food competition and resource partitioning were of minor importance for the structuring of the fish community in the present area. Rather, the extreme salinity and the fluctuations in temperature regulated the fish populations. One may conclude that the populations of juveniles were more influenced by short-term changes in the environment than those of the adults.

  12. Fish Intake in Pregnancy and Child Growth

    PubMed Central

    Stratakis, Nikos; Roumeliotaki, Theano; Oken, Emily; Barros, Henrique; Basterrechea, Mikel; Charles, Marie-Aline; Eggesbø, Merete; Forastiere, Francesco; Gaillard, Romy; Gehring, Ulrike; Govarts, Eva; Hanke, Wojciech; Heude, Barbara; Iszatt, Nina; Jaddoe, Vincent W.; Kelleher, Cecily; Mommers, Monique; Murcia, Mario; Oliveira, Andreia; Pizzi, Costanza; Polańska, Kinga; Porta, Daniela; Richiardi, Lorenzo; Rifas-Shiman, Sheryl L.; Schoeters, Greet; Sunyer, Jordi; Thijs, Carel; Viljoen, Karien; Vrijheid, Martine; Vrijkotte, Tanja G. M.; Wijga, Alet H.; Zeegers, Maurice P.; Kogevinas, Manolis; Chatzi, Leda

    2016-01-01

    IMPORTANCE Maternal fish intake in pregnancy has been shown to influence fetal growth. The extent to which fish intake affects childhood growth and obesity remains unclear. OBJECTIVE To examine whether fish intake in pregnancy is associated with offspring growth and the risk of childhood overweight and obesity. DESIGN, SETTING, AND PARTICIPANTS Multicenter, population-based birth cohort study of singleton deliveries from 1996 to 2011 in Belgium, France, Greece, Ireland, Italy, the Netherlands, Norway, Poland, Portugal, Spain, and Massachusetts. A total of 26 184 pregnant women and their children were followed up at 2-year intervals until the age of 6 years. EXPOSURES Consumption of fish during pregnancy. MAIN OUTCOMES AND MEASURES We estimated offspring body mass index percentile trajectories from 3 months after birth to 6 years of age. We defined rapid infant growth as a weight gain z score greater than 0.67 from birth to 2 years and childhood overweight/obesity at 4 and 6 years as body mass index in the 85th percentile or higher for age and sex. We calculated cohort-specific effect estimates and combined them by random-effects meta-analysis. RESULTS This multicenter, population-based birth cohort study included the 26 184 pregnant women and their children. The median fish intake during pregnancy ranged from 0.5 times/week in Belgium to 4.45 times/week in Spain. Women who ate fish more than 3 times/week during pregnancy gave birth to offspring with higher body mass index values from infancy through middle childhood compared with women with lower fish intake (3 times/week or less). High fish intake during pregnancy (>3 times/week) was associated with increased risk of rapid infant growth, with an adjusted odds ratio (aOR) of 1.22 (95% CI, 1.05–1.42) and increased risk of offspring overweight/obesity at 4 years (aOR, 1.14 [95% CI, 0.99–1.32]) and 6 years (aOR, 1.22 [95% CI, 1.01–1.47]) compared with an intake of once per week or less. Interaction analysis showed that the effect of high fish intake during pregnancy on rapid infant growth was greater among girls (aOR, 1.31 [95% CI, 1.08–1.59]) than among boys (aOR, 1.11 [95% CI, 0.92–1.34]; P = .02 for interaction). CONCLUSIONS AND RELEVANCE High maternal fish intake during pregnancy was associated with increased risk of rapid growth in infancy and childhood obesity. Our findings are in line with the fish intake limit proposed by the US Food and Drug Administration and Environmental Protection Agency. PMID:26882542

  13. Prevalence of fish and shellfish allergy: A systematic review.

    PubMed

    Moonesinghe, Harriet; Mackenzie, Heather; Venter, Carina; Kilburn, Sally; Turner, Paul; Weir, Kellyn; Dean, Taraneh

    2016-09-01

    Accurate information on the prevalence of food allergy facilitates a more evidence-based approach to planning of allergy services and can identify important geographic variations. To conduct a systematic review to assess the age-specific prevalence of fish and shellfish allergy worldwide. Searches were conducted using Web of Science and PubMed. Population-based cross-sectional studies and cohort studies that examined the prevalence of fish and shellfish allergy (IgE mediated and non-IgE mediated) at an identifiable point in time were eligible for inclusion in the study. Reviewers extracted general study information and study design, type of food allergy considered, food(s) assessed, method of diagnosis, sampling strategy, and sample characteristics. Raw data were extracted and percentage prevalence and 95% confidence intervals calculated. A total of 7,333 articles were identified of which 61 studies met the inclusion criteria and were included in this review. The prevalence of fish allergy ranged from 0% to 7% and the prevalence of shellfish allergy from 0% to 10.3%, depending on the method of diagnosis. Where food challenges were used, the prevalence for fish allergy was found to be 0% to 0.3% and for shellfish allergy was 0% to 0.9%. Few studies have established the prevalence of fish or shellfish allergy using the gold standard double-blind, placebo-controlled challenge criteria, with most instead relying on self-reported questionnaire-based methods. The limited data available suggest that fish allergy prevalence is similar worldwide; however, shellfish allergy prevalence may be higher in the Southeast Asia region. Copyright © 2016 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  14. Modelling approaches for relating effects of change in river flow to populations of Atlantic salmon and brown trout

    Treesearch

    John D. Armstrong; Keith H. Nislow

    2012-01-01

    Modelling approaches for relating discharge to the biology of Atlantic salmon, Salmo salar L., and brown trout, Salmo trutta L., growing in rivers are reviewed. Process-based and empirical models are set within a common framework of input of water flow and output of characteristics of fish, such as growth and survival, which relate directly to population dynamics. A...

  15. Parental timing of allergenic food introduction in urban and suburban populations.

    PubMed

    Hartman, Heather; Dodd, Caitlin; Rao, Marepalli; DeBlasio, Dominick; Labowsky, Christine; D'Souza, Sharon; Lenkauskas, Siga; Roeser, Eve; Heffernan, Alison; Assa'ad, Amal

    2016-07-01

    Recommendations on timing for introduction of allergenic foods in an infant diet have changed twice during the past decade. How families with different demographic characteristics implement the change has not been studied in the United States. To compare the age of introduction of allergenic foods between an urban Medicaid-based population and a suburban private insurance-based population in Cincinnati, Ohio. Two hundred parent surveys were distributed at well-child checkups between 4 and 36 months of age. Data were analyzed using distribution mapping to determine the difference in the age of introduction of infant formula, infant solids, whole cow's milk, eggs, peanut, and fish. Random forest analysis was used to determine the most important factors affecting the age of introduction for both populations. There was no statistically significant difference in the age of infant solid introduction, but urban populations introduced allergenic foods earlier than suburban populations, with a statistically significant difference in the age of introduction of infant formula, whole cow's milk, eggs, peanut, and fish. The most important factor for the timing of all food introductions was the recommended age of introduction from health care professionals. There is a difference between urban and suburban populations in the timing of introduction of allergenic foods but not in other infant solid foods. The reliance on physician recommendation for both populations supports the need for education and guidance to health care professionals on up-to-date guidance and recommendations. Copyright © 2016 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  16. Population and biological parameters of selected fish species from the middle Xingu River, Amazon Basin.

    PubMed

    Camargo, M; Giarrizzo, T; Isaac, V J

    2015-08-01

    This study estimates the main biological parameters, including growth rates, asymptotic length, mortality, consumption by biomass, biological yield, and biomass, for the most abundant fish species found on the middle Xingu River, prior to the construction of the Belo Monte Dam. The specimens collected in experimental catches were analysed with empirical equations and length-based FISAT methods. For the 63 fish species studied, high growth rates (K) and high natural mortality (M) were related to early sexual maturation and low longevity. The predominance of species with short life cycles and a reduced number of age classes, determines high rates of stock turnover, which indicates high productivity for fisheries, and a low risk of overfishing.

  17. Does a predatory insect contribute to the divergence between cave- and surface-adapted fish populations?

    PubMed Central

    Tobler, Michael

    2009-01-01

    Immigrant inviability, where individuals from foreign, ecologically divergent habitats are less likely to survive, can restrict gene flow among diverging populations and result in speciation. I investigated whether a predatory aquatic insect (Belostoma sp.) selects against migrants between cave and surface populations of a fish (Poecilia mexicana). Cavefish were more susceptible to attacks in the light, whereas surface fish were more susceptible in darkness. Environmentally dependent susceptibility to attacks may thus contribute to genetic and phenotypic differentiation between the populations. This study highlights how predation—in this case in conjunction with differences in other environmental factors—can be an important driver in speciation. PMID:19443506

  18. Fish consumption and socio-economic factors among residents of Arkhangelsk city and the rural Nenets autonomous area.

    PubMed

    Petrenya, Natalia; Dobrodeeva, Liliya; Brustad, Magritt; Bichkaeva, Fatima; Menshikova, Elena; Lutfalieva, Gulnara; Poletaeva, Anna; Repina, Veronika; Cooper, Marie; Odland, Jon Øyvind

    2011-02-01

    The urban Russian and the rural Indigenous populations in the Russian European North have different lifestyles, living conditions and food supplies. The objective of this study was to investigate and compare fish consumption in relation to the socio-economic characteristics of 2 communities in Arkhangelsk County. A cross-sectional study. In total, 166 adults (83.1% women) from Arkhangelsk city and 134 adults (80.6% women) from the village of Nelmin-Nos (of which 88.9% are Indigenous people, Nenets), in the Nenets Autonomous Area (NAO), attended a health screening. The screening included a physical examination, blood sampling and a questionnaire. The populations studied had different socio-economic characteristics. In the rural NAO group, education levels were lower, the number of full-time employees was less, the percentage of persons with low monthly income was higher and the number of children per household was higher when compared to the Arkhangelsk group. The median total fish intake was 48.8 g/day for Arkhangelsk city and 27.1 g/day for Nelmin-Nos (p=0.009). Locally caught whitefish constituted a major part of the total fish consumption in Nelmin-Nos, while lean marine fish species were rarely eaten. Cod and cod-family fish species were often consumed by residents of Arkhangelsk city (p < 0.001). Fish consumption was positively related to monthly income. The frequency of fishing in the respondents from the Nelmin-Nos group predicted their fish consumption. Monthly income had a significant influence on fish intake in both study populations from Northern Russia. Fishing seems to be an important factor for predicting fish consumption in the residents of the rural NAO.

  19. Mitochondrial and morphological variation of Tilapia zillii in Israel.

    PubMed

    Szitenberg, Amir; Goren, Menachem; Huchon, Dorothée

    2012-04-02

    Tilapia zillii is widespread in the East Levant inland aquatic systems as well as in artificial water reservoirs. In this study we explore the genetic and morphological variation of this widespread species, using mitochondrial control region sequences and meristic characters. We examine the hypothesis that T. zillii's population structure corresponds to the four Israeli aquatic systems. Out of seven natural water bodies, only two were found to possess genetically divergent populations of T. zillii. In addition to its presence in fish farms, the species was found in two artificial recreational ponds which were supposed to have been stocked only with other fish species. In these two artificial habitats, the haplotype frequencies diverged significantly from those of natural populations. Finally, fish from the Dead Sea springs of Ne'ot HaKikar appear to differ both genetically and morphologically from fish of the same aquatic system but not from fish of other water systems. Our results show that the population structure of T. zillii does not match the geography of the Israeli water-basins, with the exception of the Dead Sea and Kishon River, when considering natural populations only. The absence of a significant divergence between basins is discussed. Our results and observations suggest that the Ne'ot HaKikar Dead Sea population and those of artificial ponds could have originated from the "hitchhiking" of T. zillii, at the expense of some other cultivated tilapiine species.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cada, Glenn F; Bevelhimer, Mark S

    The development of hydrokinetic (HK) energy projects is under consideration at over 150 sites in large rivers in the United States, including the Mississippi, Ohio, Tennessee, and Atchafalaya Rivers. These waterbodies support numerous fish species that might interact with the HK projects in a variety of ways, e.g., by attraction to or avoidance of project structures. Although many fish species inhabit these rivers (about 172 species in the Mississippi River alone), not all of them will encounter the HK projects. Some species prefer low-velocity, backwater habitats rather than the high-velocity, main channel areas that would be the best sites formore » HK. Other, riverbank-oriented species are weak swimmers or too small to inhabit the main channel for significant periods of time. Some larger, main channel fish species are not known to be attracted to structures. Based on a consideration of habitat preferences, size/swim speed, and behavior, fish species that are most likely to be attracted to HK structures in the main channel include carps, suckers, catfish, white bass, striped bass, smallmouth bass, spotted bass, and sauger. Proper siting of the project in order to avoid sensitive fish populations, backwater and fish nursery habitat areas, and fish migration corridors will likely minimize concerns about fish attraction to or avoidance of HK structures.« less

  1. Molecular confirmation of infectious spleen and kidney necrosis virus (ISKNV) in farmed and imported ornamental fish in Australia.

    PubMed

    Mohr, Peter G; Moody, Nicholas J G; Williams, Lynette M; Hoad, John; Cummins, David M; Davies, Kelly R; StJ Crane, Mark

    2015-10-16

    Viruses of the genus Megalocytivirus have not been detected in wild populations of fish in Australia but circulate in imported ornamental fish. In 2012, detection of a megalocytivirus in healthy platys Xiphophorus maculatus was reported from a farm in Australia during surveillance testing as part of a research project undertaken at the University of Sydney. Confirmatory testing of the original samples at the AAHL Fish Diseases Laboratory verified the presence of an infectious spleen and kidney necrosis virus (ISKNV)-like virus. Additional sampling at the positive farm confirmed the persistence of the virus in the platys, with 39 of 265 (14.7%) samples testing positive. Comparison of 3 separate gene regions of the virus with those of ISKNV confirmed the detection of a virus indistinguishable from ISKNV. Subsequently, ISKNV was also detected in a range of imported ornamental fish from several countries between 2013 and 2014, by screening with real-time PCR and confirmation by conventional PCR and sequence analysis. Accordingly, the current importation of live ornamental fish acts as a potential perpetual source for the establishment of ISKNV viruses within Australia. The testing of the farmed and imported ornamental fish verified the utility of the probe-based real-time PCR assay for screening of ornamental fish for Megalocytivirus.

  2. POPULATION GENETICS AND TOLERANCE TO DIOXIN-LIKE COMPOUNDS OF A MIGRATORY MARINE FISH (MENIDIA MENIDIA) IN POLYCHLORINATED BIPHENOL-CONTAMINTED AND REFERENCES SITES

    EPA Science Inventory

    We evaluated a population of migratory fish (Menidia menidia) that spawn in New Bedford Harbor (NBH), MA, USA, a U.S. EPA Superfund site with extreme polychlorinated biphenyl (PCB) for evidence of pollution tolerance and population genetic changes. We selected this site because ...

  3. Which Fish Should I Eat? Perspectives Influencing Fish Consumption Choices

    PubMed Central

    Choi, Anna L.; Karagas, Margaret R.; Mariën, Koenraad; Rheinberger, Christoph M.; Schoeny, Rita; Sunderland, Elsie; Korrick, Susan

    2012-01-01

    Background: Diverse perspectives have influenced fish consumption choices. Objectives: We summarized the issue of fish consumption choice from toxicological, nutritional, ecological, and economic points of view; identified areas of overlap and disagreement among these viewpoints; and reviewed effects of previous fish consumption advisories. Methods: We reviewed published scientific literature, public health guidelines, and advisories related to fish consumption, focusing on advisories targeted at U.S. populations. However, our conclusions apply to groups having similar fish consumption patterns. Discussion: There are many possible combinations of matters related to fish consumption, but few, if any, fish consumption patterns optimize all domains. Fish provides a rich source of protein and other nutrients, but because of contamination by methylmercury and other toxicants, higher fish intake often leads to greater toxicant exposure. Furthermore, stocks of wild fish are not adequate to meet the nutrient demands of the growing world population, and fish consumption choices also have a broad economic impact on the fishing industry. Most guidance does not account for ecological and economic impacts of different fish consumption choices. Conclusion: Despite the relative lack of information integrating the health, ecological, and economic impacts of different fish choices, clear and simple guidance is necessary to effect desired changes. Thus, more comprehensive advice can be developed to describe the multiple impacts of fish consumption. In addition, policy and fishery management inter-ventions will be necessary to ensure long-term availability of fish as an important source of human nutrition. PMID:22534056

  4. Fish distribution during smolt migration in the Penobscot Estuary, ME

    NASA Astrophysics Data System (ADS)

    Volkel, S. L.

    2016-02-01

    Estuaries are complex and dynamic ecosystems. The Penobscot Estuary is particularly important because it harbors a suite of imperiled diadromous fish species. In order to properly manage these populations, it is imperative to understand their distribution and ecology. My study focuses on May because endangered Atlantic salmon migrate seaward then. Successful emigration of these smolts is important to the population's overall fitness. One potential way to increase the likelihood of migratory success (survival) is to decrease their risk of predation. Assuming that predators in this system are generalists, overall smolt predation may be reduced by having a larger selection of alternative prey (other fish species). We hypothesize that diadromous fish abundance is increasing as a result of recent (2012-2013) dam removals. To explore this hypothesis, I used hydroacoustic methods to characterize the distribution patterns of alternative prey (TL=10-30 cm). I found that peak fish abundances occurred in the mid-estuary, especially during mid-May, and depth distribution patterns varied weekly. By understanding these seasonal, longitudinal, and vertical distribution patterns, I explored potential interactions of other fish populations as prey buffers to emigrating smolts.

  5. Larvivorous fish for preventing malaria transmission.

    PubMed

    Walshe, Deirdre P; Garner, Paul; Abdel-Hameed Adeel, Ahmed A; Pyke, Graham H; Burkot, Tom

    2013-12-10

    Adult anopheline mosquitoes transmit Plasmodium parasites that cause malaria. Some fish species eat mosquito larvae and pupae. In disease control policy documents, the World Health Organization includes biological control of malaria vectors by stocking ponds, rivers, and water collections near where people live with larvivorous fish to reduce Plasmodium parasite transmission. The Global Fund finances larvivorous fish programmes in some countries, and, with increasing efforts in eradication of malaria, policy makers may return to this option. We therefore assessed the evidence base for larvivorous fish programmes in malaria control. Our main objective was to evaluate whether introducing larvivorous fish to anopheline breeding sites impacts Plasmodium parasite transmission. Our secondary objective was to summarize studies evaluating whether introducing larvivorous fish influences the density and presence of Anopheles larvae and pupae in water sources, to understand whether fish can possibly have an effect. We attempted to identify all relevant studies regardless of language or publication status (published, unpublished, in press, or ongoing). We searched the following databases: the Cochrane Infectious Diseases Group Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL), published in The Cochrane Library; MEDLINE; EMBASE; CABS Abstracts; LILACS; and the metaRegister of Controlled Trials (mRCT) until 18 June 2013. We checked the reference lists of all studies identified by the above methods. We also examined references listed in review articles and previously compiled bibliographies to look for eligible studies. Randomized controlled trials and non-randomized controlled trials, including controlled before-and-after studies, controlled time series and controlled interrupted time series studies from malaria-endemic regions that introduced fish as a larvicide and reported on malaria in the community or the density of the adult anopheline population. In the absence of direct evidence of an effect on transmission, we carried out a secondary analysis on studies that evaluated the effect of introducing larvivorous fish on the density or presence of immature anopheline mosquitoes (larvae and pupae forms) in community water sources to determine whether this intervention has any potential in further research on control of malaria vectors. Three review authors screened abstracts and examined potentially relevant studies by using an eligibility form. Two review authors independently extracted data and assessed risk of bias of included studies. If relevant data were unclear or were not reported, we wrote to the trial authors for clarification. We presented data in tables, and we summarized studies that evaluated the effects of fish introduction on anopheline immature density or presence, or both. We used GRADE to summarize evidence quality. We also examined whether the authors of included studies reported on any possible adverse impact of larvivorous fish introduction on non-target native species. We found no reliable studies that reported the effects of introducing larvivorous fish on malaria infection in nearby communities, on entomological inoculation rate, or on adult Anopheles density.For the secondary analysis, we examined the effects of introducing larvivorous fish on the density and presence of anopheline larvae and pupae in community water sources. We included 12 small studies, with follow-up from 22 days to five years. Studies were conducted in a variety of settings, including localized water bodies (such as wells, domestic water containers, fishponds, and pools; six studies), riverbed pools below dams (two studies), rice field plots (three studies), and water canals (two studies). All studies were at high risk of bias.The research was insufficient to determine whether larvivorous fish reduce the density of Anopheles larvae and pupae (nine studies, unpooled data, very low quality evidence). Some studies with high stocking levels of fish seemed to arrest the increase in immature anopheline populations, or to reduce the number of immature anopheline mosquitoes, compared with controls. However, this finding was not consistent, and in studies that showed a decrease in immature anopheline populations, the effect was not consistently sustained. Larvivorous fish may reduce the number of water sources with Anopheles larvae and pupae (five studies, unpooled data, low quality evidence).None of the included studies reported effects of larvivorous fish on local native fish populations or other species. Reliable research is insufficient to show whether introducing larvivorous fish reduces malaria transmission or the density of adult anopheline mosquito populations.In research examining the effects on immature anopheline stages of introducing fish to potential malaria vector breeding sites (localized water bodies such as wells and domestic water sources, rice field plots, and water canals) weak evidence suggests an effect on the density or presence of immature anopheline mosquitoes with high stocking levels of fish, but this finding is by no means consistent. We do not know whether this translates into health benefits, either with fish alone or with fish combined with other vector control measures. Our interpretation of the current evidence is that countries should not invest in fish stocking as a larval control measure in any malaria transmission areas outside the context of carefully controlled field studies or quasi-experimental designs. Research could also usefully examine the effects on native fish and other non-target species.

  6. Determination and assessment of total mercury levels in local, frozen and canned fish in Lebanon.

    PubMed

    Obeid, Pierre J; El-Khoury, Bilal; Burger, Joanne; Aouad, Samer; Younis, Mira; Aoun, Amal; El-Nakat, John Hanna

    2011-01-01

    Fish is an important constituent of the Lebanese diet. However, very little attention in our area is given to bring awareness regarding the effect of the toxicity of mercury (Hg) mainly through fish consumption. This study aimed to report analytical data on total mercury levels in several fish species for the first time in thirty years and to also made individuals aware of the presence and danger from exposure to mercury through fish consumption. Fish samples were selected from local Lebanese markets and fisheries and included 94 samples of which were fresh, frozen, processed, and canned fish. All values were reported as microgram of mercury per gram of fish based on wet weight. The level of mercury ranged from 0.0190 to 0.5700 microg/g in fresh samples, 0.0059 to 0.0665 microg/g in frozen samples, and 0.0305 to 0.1190 microg/g in canned samples. The data clearly showed that higher levels of mercury were detected in local fresh fish as opposed to other types thus placing consumers at higher risk from mercury exposure. Moreover, the data revealed that Mallifa (yellowstripe barracuda/Sphyraena chrysotaenia), Sargous (white seabream/Diplodus sargus), Ghobbos (bogue/Boops boops), and shrimp (Penaeus sp.) were among the types containing the highest amounts of mercury. On the other hand, processed fish such as fish fillet, fish burger, small shrimp and crab are found to contain lower levels of mercury and are associated with lower exposure risks to mercury. Lebanese population should therefore, be aware to consume limited amounts of fresh local fish to minimize exposure to mercury.

  7. Near-future carbon dioxide levels alter fish behaviour by interfering with neurotransmitter function

    NASA Astrophysics Data System (ADS)

    Nilsson, Göran E.; Dixson, Danielle L.; Domenici, Paolo; McCormick, Mark I.; Sørensen, Christina; Watson, Sue-Ann; Munday, Philip L.

    2012-03-01

    Predicted future CO2 levels have been found to alter sensory responses and behaviour of marine fishes. Changes include increased boldness and activity, loss of behavioural lateralization, altered auditory preferences and impaired olfactory function. Impaired olfactory function makes larval fish attracted to odours they normally avoid, including ones from predators and unfavourable habitats. These behavioural alterations have significant effects on mortality that may have far-reaching implications for population replenishment, community structure and ecosystem function. However, the underlying mechanism linking high CO2 to these diverse responses has been unknown. Here we show that abnormal olfactory preferences and loss of behavioural lateralization exhibited by two species of larval coral reef fish exposed to high CO2 can be rapidly and effectively reversed by treatment with an antagonist of the GABA-A receptor. GABA-A is a major neurotransmitter receptor in the vertebrate brain. Thus, our results indicate that high CO2 interferes with neurotransmitter function, a hitherto unrecognized threat to marine populations and ecosystems. Given the ubiquity and conserved function of GABA-A receptors, we predict that rising CO2 levels could cause sensory and behavioural impairment in a wide range of marine species, especially those that tightly control their acid-base balance through regulatory changes in HCO3- and Cl- levels.

  8. Applications of bioenergetics models to fish ecology and management: where do we go from here?

    USGS Publications Warehouse

    Hansen, Michael J.; Boisclair, Daniel; Brandt, Stephen B.; Hewett, Steven W.; Kitchell, James F.; Lucas, Martyn C.; Ney, John J.

    1993-01-01

    Papers and panel discussions given during a 1992 symposium on bioenergetics models are summarized. Bioenergetics models have been applied to a variety of research and management questions related to fish stocks, populations, food webs, and ecosystems. Applications include estimates of the intensity and dynamics of predator-prey interactions, nutrient cycling within aquatic food webs of varying trophic structure, and food requirements of single animals, whole populations, and communities of fishes. As tools in food web and ecosystem applications, bioenergetics models have been used to compare forage consumption by salmonid predators across the Laurentian Great Lakes for single populations and whole communities, and to estimate the growth potential of pelagic predators in Chesapeake Bay and Lake Ontario. Some critics say that bioenergetics models lack sufficient detail to produce reliable results in such field applications, whereas others say that the models are too complex to be useful tools for fishery managers. Nevertheless, bioenergetics models have achieved notable predictive successes. Improved estimates are needed for model parameters such as metabolic costs of activity, and more complete studies are needed of the bioenergetics of larval and juvenile fishes. Future research on bioenergetics should include laboratory and field measurements of key model parameters such as weight-dependent maximum consumption, respiration and activity, and thermal habitats actually occupied by fish. Future applications of bioenergetics models to fish populations also depend on accurate estimates of population sizes and survival rates.

  9. Consequences of extreme life history traits on population persistence: do short-lived gobies face demographic bottlenecks?

    NASA Astrophysics Data System (ADS)

    Lefèvre, Carine D.; Nash, Kirsty L.; González-Cabello, Alonso; Bellwood, David R.

    2016-06-01

    The majority of coral reef goby species are short-lived, with some highly abundant species living less than 100 d. To understand the role and consequences of this extreme life history in shaping coral reef fish populations, we quantitatively documented the structure of small reef fish populations over a 26-month period (>14 short-lived fish generations) at an inshore reef on the Great Barrier Reef, Australia. Most species with life spans >1 yr, such as pomacentrids, exhibited a peak in recruitment during the austral summer, driving seasonal changes in the small fish community composition. In contrast, there were no clear changes in goby community composition, despite the abundance of short-lived, high turnover species. Species of Eviota, the most abundant gobiid genus observed, showed remarkably similar demographic profiles year-round, with consistent densities of adults as well as recently recruited juveniles. Our results demonstrate ongoing recruitment of these small cryptic fishes, which appears to compensate for an exceptionally short life span on the reef. Our results suggest that gobiid populations are able to overcome demographic limitations, and by maintaining reproduction, larval survival and recruitment throughout the year, they may avoid population bottlenecks. These findings also underline the potential trophodynamic importance of these small species; because of this constant turnover, Eviota species and other short-lived fishes may be particularly valuable contributors to the flow of energy on coral reefs, underpinning the year-round trophic structure.

  10. Size selection from fishways and potential evolutionary responses in a threatened Atlantic salmon population

    USGS Publications Warehouse

    Maynard, George A.; Kinnison, M.T.; Zydlewski, Joseph D.

    2017-01-01

    The evolutionary effects of harvest on wild fish populations have been documented around the world; however, sublethal selective pressures can also cause evolutionary changes in phenotypes. For migratory fishes, passage facilities may represent instances of nonlethal selective pressure. Our analysis of 6 years of passage data suggests that certain fish passage facilities on the Penobscot River have been exerting selective pressure against large-bodied, anadromous Atlantic salmon (Salmo salar). At the second and third dams in the river, a 91-cm salmon was 21%–27% and 12%–16% less likely to pass than a 45-cm salmon, respectively. Fish size positively influences egg survival and number and is a heritable trait. Therefore, in a wild-reproducing population, exclusion of large fish from spawning areas may have population-level impacts. In the Penobscot River, most returning adults derive from a hatchery program that collects its broodstock after passing the first dam in the river. Analysis of fork lengths of salmon returning to the Penobscot River from 1978 to 2012 provided mixed support for evolution of size at maturity in different age classes in a pattern that may be expected from interactions with conservation hatchery operations. Additionally, slow-maturing and iteroparous individuals that represent the largest salmon size classes were essentially lost from the population during that time, and Penobscot River fish have shorter fork lengths at maturity than Atlantic salmon in undammed systems.

  11. Managing for desired experiences and site preferences: the case of fee-fishing anglers.

    PubMed

    Schuett, Michael A; Pierskalla, Chad D

    2007-02-01

    Fee-fishing involves paying a fee for the privilege of fishing a body of water where fish populations are enhanced by stocking fish. Past literature on this activity has focused more on the operation of the enterprise and management of the fish than the people and site characteristics. The objectives of the study were to profile anglers and describe their site/management preferences. This study utilized an on-site interview and mail-back questionnaire at fee-fishing establishments in West Virginia (n = 212). Factor analysis of desired recreation experiences yielded five factors: Experience nature & adventure, Stress release & relaxation, Trophy fishing, Escape, and Family time. Cluster analysis showed that these anglers can be segmented into two distinct clusters, differing by sociodemographic characteristics, fishing behavior, and site/management preferences. The findings from this study provide baseline data to aid public resource managers and fee-fishing business owners in determining how to provide satisfying outdoor experiences and deliver desired services on-site. Future research will be needed from additional fee-fishing sites to obtain more detail about this outdoor recreation cohort and be able to generalize to a larger population of participants.

  12. Managing for Desired Experiences and Site Preferences: The Case of Fee-Fishing Anglers

    NASA Astrophysics Data System (ADS)

    Schuett, Michael A.; Pierskalla, Chad D.

    2007-02-01

    Fee-fishing involves paying a fee for the privilege of fishing a body of water where fish populations are enhanced by stocking fish. Past literature on this activity has focused more on the operation of the enterprise and management of the fish than the people and site characteristics. The objectives of the study were to profile anglers and describe their site/management preferences. This study utilized an on-site interview and mail-back questionnaire at fee-fishing establishments in West Virginia ( n = 212). Factor analysis of desired recreation experiences yielded five factors: Experience nature & adventure, Stress release & relaxation, Trophy fishing, Escape, and Family time. Cluster analysis showed that these anglers can be segmented into two distinct clusters, differing by sociodemographic characteristics, fishing behavior, and site/management preferences. The findings from this study provide baseline data to aid public resource managers and fee-fishing business owners in determining how to provide satisfying outdoor experiences and deliver desired services on-site. Future research will be needed from additional fee-fishing sites to obtain more detail about this outdoor recreation cohort and be able to generalize to a larger population of participants.

  13. Spatial fishing restrictions benefit demersal stocks in the northeastern Mediterranean Sea.

    PubMed

    Dimarchopoulou, Donna; Dogrammatzi, Aikaterini; Karachle, Paraskevi K; Tsikliras, Athanassios C

    2018-04-13

    The multi-level benefits that marine organisms gain when protected from fishing are well acknowledged. Here, we investigated the effects of a 40-year trawling ban on the status of targeted and non-targeted marine species within a major fishing ground in the northeastern Mediterranean Sea (Thermaikos Gulf, Aegean Sea). Biomass and somatic length of fish and invertebrates (six commercial and three non-commercial demersal species) were measured in three areas of varying fishing pressure, depending on the temporal and spatial operational regimes of fishing vessels. The positive effects of fishing restrictions on the studied demersal stocks were clearly revealed, as the commercial fish species exhibited higher biomass in the intermediate and low pressure areas, as well as increasing maximum and mean total length (and other length indicators) with decreasing fishing effort. The mean total length of non-commercial species generally did not differ among areas, except for species caught and discarded at high rates. The present study shows that fishing does alter the population structure and biomass of commercial demersal species, and that fishing restrictions greatly contribute to improving the status of demersal populations within the restricted areas by providing a refuge for large individuals and their important contribution to the gene pool.

  14. Assessment of tolerant sunfish populations (Lepomis sp.) inhabiting selenium-laden coal ash effluents. 1. Hematological and population level assessment.

    PubMed

    Lohner, T W; Reash, R J; Willet, V E; Rose, L A

    2001-11-01

    Sunfish were collected from coal ash effluent-receiving streams and Ohio River watershed reference sites to assess the effects of exposure to low-level selenium concentrations. Selenium, copper, and arsenic concentrations were statistically higher in tissue samples from exposed fish than in reference fish. Leukopenia, lymphocytosis, and neutropenia were evident in exposed fish and were indicative of metal exposure and effect. White blood cell counts and percent lymphocyte values were significantly correlated with liver selenium concentrations. Plasma protein levels were significantly lower in exposed fish than in fish from the Ohio River, indicating that exposed fish may have been nutritionally stressed. Condition factors for fish from the ash pond-receiving streams were the same as, or lower than, those of fish from the reference sites. There was no evidence that the growth rate of fish in the receiving streams differed from that of fish in the reference streams. Despite liver selenium concentrations which exceeded reported toxicity thresholds and evidence of significant hematological changes, there were no significant differences in fish condition factors, liver-somatic indices, or length-weight regressions related to selenium.

  15. Distribution of the Luminous Bacterium Beneckea harveyi in a Semitropical Estuarine Environment

    PubMed Central

    O'Brien, Catherine H.; Sizemore, Ronald K.

    1979-01-01

    Bioluminescent bacteria were found in the water column, sediment, shrimp, and gastrointestinal tract of marine fishes from the semitropical estuarine environment of the East Lagoon, Galveston Island, Tex. Populations in the water column decreased during cold weather while sedimentary populations persisted. The highest percentages of luminous organisms were isolated from the gastrointestinal tract of marine fishes, where they persisted during 5 days of starvation. The presence of chitin temporarily increased intestinal populations. All isolates were Beneckea harveyi, whose natural habitat appears to be the gut of fishes and whose free-living reservoir appears to be marine sediments. PMID:16345465

  16. Sea lice and salmon population dynamics: effects of exposure time for migratory fish.

    PubMed

    Krkosek, Martin; Morton, Alexandra; Volpe, John P; Lewis, Mark A

    2009-08-07

    The ecological impact of parasite transmission from fish farms is probably mediated by the migration of wild fishes, which determines the period of exposure to parasites. For Pacific salmon and the parasitic sea louse, Lepeophtheirus salmonis, analysis of the exposure period may resolve conflicting observations of epizootic mortality in field studies and parasite rejection in experiments. This is because exposure periods can differ by 2-3 orders of magnitude, ranging from months in the field to hours in experiments. We developed a mathematical model of salmon-louse population dynamics, parametrized by a study that monitored naturally infected juvenile salmon held in ocean enclosures. Analysis of replicated trials indicates that lice suffer high mortality, particularly during pre-adult stages. The model suggests louse populations rapidly decline following brief exposure of juvenile salmon, similar to laboratory study designs and data. However, when the exposure period lasts for several weeks, as occurs when juvenile salmon migrate past salmon farms, the model predicts that lice accumulate to abundances that can elevate salmon mortality and depress salmon populations. The duration of parasite exposure is probably critical to salmon-louse population dynamics, and should therefore be accommodated in coastal planning and management where fish farms are situated on wild fish migration routes.

  17. Qualitative modelling of gold mine impacts on Lihir Island's socioeconomic system and reef-edge fish community.

    PubMed

    Dambacher, Jeffrey M; Brewer, David T; Dennis, Darren M; Macintyre, Martha; Foale, Simon

    2007-01-15

    Inhabitants of Lihir Island, Papua New Guinea, have traditionally relied on reef fishing and rotational farming of slash-burn forest plots for a subsistence diet. However, a new gold mine has introduced a cash economy to the island's socioeconomic system and impacted the fringing coral reef through sedimentation from the near-shore dumping of mine wastes. Studies of the Lihirian people have documented changes in population size, local customs, health, education, and land use; studies of the reef have documented impacts to fish populations in mine affected sites. Indirect effects from these impacts are complex and indecipherable when viewed only from isolated studies. Here, we use qualitative modelling to synthesize the social and biological research programs in order to understand the interaction of the human and ecological systems. Initial modelling results appear to be consistent with differences in fish and macroalgae populations in sites with and without coral degradation due to sedimentation. A greater cash flow from mine expansion is predicted to increase the human population, the intensity of the artisanal fishery, and the rate of sewage production and land clearing. Modelling results are being used to guide ongoing research projects, such as monitoring fish populations and artisanal catch and patterns and intensity of land clearing.

  18. Evolutionary Responses to Invasion: Cane Toad Sympatric Fish Show Enhanced Avoidance Learning

    PubMed Central

    Caller, Georgina; Brown, Culum

    2013-01-01

    The introduced cane toad (Bufo marinus) poses a major threat to biodiversity due to its lifelong toxicity. Several terrestrial native Australian vertebrates are adapting to the cane toad’s presence and lab trials have demonstrated that repeated exposure to B. marinus can result in learnt avoidance behaviour. Here we investigated whether aversion learning is occurring in aquatic ecosystems by comparing cane toad naïve and sympatric populations of crimson spotted rainbow fish (Melanotaenia duboulayi). The first experiment indicated that fish from the sympatric population had pre-existing aversion to attacking cane toad tadpoles but also showed reduced attacks on native tadpoles. The second experiment revealed that fish from both naïve and sympatric populations learned to avoid cane toad tadpoles following repeated, direct exposure. Allopatric fish also developed a general aversion to tadpoles. The aversion learning abilities of both groups was examined using an experiment involving novel distasteful prey items. While both populations developed a general avoidance of edible pellets in the presence of distasteful pellets, only the sympatric population significantly reduced the number of attacks on the novel distasteful prey item. These results indicate that experience with toxic prey items over multiple generations can enhance avoidance leaning capabilities via natural selection. PMID:23372788

  19. Proceedings of the 2006 Northeastern Recreation Research Symposium

    Treesearch

    R. Burns; K., comps Robinson

    2007-01-01

    Contains articles and posters presented at the 2006 Northeastern Recreation Research Symposium. Contents cover tourism marketing, fish and wildlife, place meaning, leisure and gender, recreation resource allocation, nature-based tourism, methods, leisure motives, outdoor recreation management, tourism impacts, outdoor recreation among specific populations, leisure...

  20. Proceedings of the 2008 Northeastern Recreation Research Symposium

    Treesearch

    David B. Klenosky; Cherie LeBlanc Fisher; eds.

    2009-01-01

    Contains articles and posters presented at the 2008 Northeastern Recreation Research Symposium. Contents cover tourism marketing, fish and wildlife, place meaning, leisure and gender, recreation resource allocation, nature-based tourism, methods, leisure motives, outdoor recreation management, tourism impacts, outdoor recreation among specific populations, leisure...

Top