Science.gov

Sample records for fish populations prior

  1. Collapse and recovery of forage fish populations prior to commercial exploitation

    NASA Astrophysics Data System (ADS)

    McClatchie, S.; Hendy, I. L.; Thompson, A. R.; Watson, W.

    2017-02-01

    We use a new, well-calibrated 500 year paleorecord off southern California to determine collapse frequency, cross correlation, persistence, and return times of exploited forage fish populations. The paleorecord shows that "collapse" (defined as <10% of the mean peak biomass) is a normal state repeatedly experienced by northern anchovy, Pacific hake, and Pacific sardine which were collapsed 29-40% of the time, prior to commercial fishing exploitation. Mean (± SD) persistence of "fishable biomass" (defined as one third mean peak biomass from the paleorecord) was 19 ± 18, 15 ± 17, and 12 ± 7 years for anchovy, hake, and sardine. Mean return times to the same biomass was 8 years for anchovy but 22 years for sardine and hake. Further, we find that sardine and anchovy are positively correlated over 400 years, consistent with coherent declines of both species off California. Persistence and return times combined with positive sardine-anchovy correlation indicate that on average 1-2 decades of fishable biomass will be followed by 1-2 decades of low forage. Forage populations are resilient on the 500 year time scale, but their collapse and recovery cycle (based on the paleorecord) are suited to alternating periods of high fishing mortality and periods of little or no fishing.

  2. Importance of benthic production to fish populations in Lake Mead prior to the establishment of quagga mussels

    USGS Publications Warehouse

    Umek, John; Chandra, Sudeep; Rosen, Michael; Wittmann, Marion; Sullivan, Joe; Orsak, Erik

    2010-01-01

    Limnologists recently have developed an interest in quantifying benthic resource contributions to higher-level consumers. Much of this research focuses on natural lakes with very little research in reservoirs. In this study, we provide a contemporary snapshot of the food web structure of Lake Mead to evaluate the contribution of benthic resources to fish consumers. In addition, we document the available food to fishes on soft sediments and changes to the invertebrate community over 2 time periods. Benthic invertebrate food availability for fishes is greater in Las Vegas Bay than Overton Arm. Las Vegas Bay is dominated by oligochaetes, whose biomass increased with depth, while Overton Arm is dominated by chironomids, whose biomass did not change with depth. Diet and isotopic measurements indicate the fish community largely relies on benthic resources regardless of basin (Las Vegas Bay >80%; Overton Arm >92%); however, the threadfin shad likely contribute more to largemouth and striped bass production in Overton Arm versus Las Vegas Bay. A 2-time period analysis, pre and post quagga mussel establishment and during lake level declines, suggests there is no change in the density of benthic invertebrates in Boulder Basin, but there were greater abundances of select taxa in this basin by season and depth than in other basins. Given the potential of alterations as a result of the expansion of quagga mussel and the reliance of the fishery on benthic resources, future investigation of basin specific, benthic processes is recommended.

  3. Detection of dwarf gourami iridovirus (Infectious spleen and kidney necrosis virus) in populations of ornamental fish prior to and after importation into Australia, with the first evidence of infection in domestically farmed Platy (Xiphophorus maculatus).

    PubMed

    Rimmer, Anneke E; Becker, Joy A; Tweedie, Alison; Lintermans, Mark; Landos, Matthew; Stephens, Fran; Whittington, Richard J

    2015-11-01

    The movement of ornamental fish through international trade is a major factor for the transboundary spread of pathogens. In Australia, ornamental fish which may carry dwarf gourami iridovirus (DGIV), a strain of Infectious spleen and kidney necrosis virus (ISKNV), have been identified as a biosecurity risk despite relatively stringent import quarantine measures being applied. In order to gain knowledge of the potential for DGIV to enter Australia, imported ornamental fish were sampled prior to entering quarantine, during quarantine, and post quarantine from wholesalers and aquatic retail outlets in Australia. Samples were tested by quantitative polymerase chain reaction (qPCR) for the presence of megalocytivirus. Farmed and wild ornamental fish were also tested. Megalocytivirus was detected in ten of fourteen species or varieties of ornamental fish. Out of the 2086 imported gourami tested prior to entering quarantine, megalocytivirus was detected in 18.7% of fish and out of the 51 moribund/dead ornamental fish tested during the quarantine period, 68.6% were positive for megalocytivirus. Of fish from Australian wholesalers and aquatic retail outlets 14.5% and 21.9%, respectively, were positive. Out of 365 farmed ornamental fish, ISKNV-like megalocytivirus was detected in 1.1%; these were Platy (Xiphophorus maculatus). Megalocytivirus was not detected in free-living breeding populations of Blue gourami (Trichopodus trichopterus) caught in Queensland. This study showed that imported ornamental fish are vectors for DGIV and it was used to support an import risk analysis completed by the Australian Department of Agriculture. Subsequently, the national biosecurity policy was revised and from 1 March 2016, a health certification is required for susceptible families of fish to be free of this virus prior to importation.

  4. Fishing amplifies forage fish population collapses.

    PubMed

    Essington, Timothy E; Moriarty, Pamela E; Froehlich, Halley E; Hodgson, Emma E; Koehn, Laura E; Oken, Kiva L; Siple, Margaret C; Stawitz, Christine C

    2015-05-26

    Forage fish support the largest fisheries in the world but also play key roles in marine food webs by transferring energy from plankton to upper trophic-level predators, such as large fish, seabirds, and marine mammals. Fishing can, thereby, have far reaching consequences on marine food webs unless safeguards are in place to avoid depleting forage fish to dangerously low levels, where dependent predators are most vulnerable. However, disentangling the contributions of fishing vs. natural processes on population dynamics has been difficult because of the sensitivity of these stocks to environmental conditions. Here, we overcome this difficulty by collating population time series for forage fish populations that account for nearly two-thirds of global catch of forage fish to identify the fingerprint of fisheries on their population dynamics. Forage fish population collapses shared a set of common and unique characteristics: high fishing pressure for several years before collapse, a sharp drop in natural population productivity, and a lagged response to reduce fishing pressure. Lagged response to natural productivity declines can sharply amplify the magnitude of naturally occurring population fluctuations. Finally, we show that the magnitude and frequency of collapses are greater than expected from natural productivity characteristics and therefore, likely attributed to fishing. The durations of collapses, however, were not different from those expected based on natural productivity shifts. A risk-based management scheme that reduces fishing when populations become scarce would protect forage fish and their predators from collapse with little effect on long-term average catches.

  5. Fish population and habitat analysis in Buck Creek, Washington, prior to recolonization by anadromous salmonids after the removal of Condit Dam

    USGS Publications Warehouse

    Allen, M. Brady; Burkhardt, Jeanette; Munz, Carrie; Connolly, Patrick J.

    2012-01-01

    We assessed the physical and biotic conditions in the part of Buck Creek, Washington, potentially accessible to anadromous fishes. This creek is a major tributary to the White Salmon River upstream of Condit Dam, which was breached in October 2011. Habitat and fish populations were characterized in four stream reaches. Reach breaks were based on stream gradient, water withdrawals, and fish barriers. Buck Creek generally was confined, with a single straight channel and low sinuosity. Boulders and cobble were the dominant stream substrate, with limited gravel available for spawning. Large-cobble riffles were 83 percent of the available fish habitat. Pools, comprising 15 percent of the surface area, mostly were formed by bedrock with little instream cover and low complexity. Instream wood averaged 6—10 pieces per 100 meters, 80 percent of which was less than 50 centimeters in diameter. Water temperature in Buck Creek rarely exceeded 16 degrees Celsius and did so for only 1 day at river kilometer (rkm) 3 and 11 days at rkm 0.2 in late July and early August 2009. The maximum temperature recorded was 17.2 degrees Celsius at rkm 0.2 on August 2, 2009. Minimum summer discharge in Buck Creek was 3.3 cubic feet per second downstream of an irrigation diversion (rkm 3.1) and 7.7 cubic feet per second at its confluence with the White Salmon River. Rainbow trout (Oncorhynchus mykiss) was the dominant fish species in all reaches. The abundance of age-1 or older rainbow trout was similar between reaches. However, in 2009 and 2010, the greatest abundance of age-0 rainbow trout (8 fish per meter) was in the most downstream reach. These analyses in Buck Creek are important for understanding the factors that may limit fish abundance and productivity, and they will help identify and prioritize potential restoration actions. The data collected constitute baseline information of pre-dam removal conditions that will allow assessment of changes in fish populations now that Condit Dam has

  6. Methods for assessing fish populations

    Treesearch

    Kevin L. Pope; Steve E. Lochmann; Michael K. Young

    2010-01-01

    Fisheries managers are likely to assess fish populations at some point during the fisheries management process. Managers that follow the fisheries management process (see Chapter 5) might find their knowledge base insufficient during the steps of problem identification or management action and must assess a population before appropriate actions can be taken. Managers...

  7. Fish populations surviving estrogen pollution.

    PubMed

    Wedekind, Claus

    2014-02-10

    Among the most common pollutants that enter the environment after passing municipal wastewater treatment are estrogens, especially the synthetic 17α-ethinylestradiol that is used in oral contraceptives. Estrogens are potent endocrine disruptors at concentrations frequently observed in surface waters. However, new genetic analyses suggest that some fish populations can be self-sustaining even in heavily polluted waters. We now need to understand the basis of this tolerance.

  8. Fish populations surviving estrogen pollution

    PubMed Central

    2014-01-01

    Among the most common pollutants that enter the environment after passing municipal wastewater treatment are estrogens, especially the synthetic 17α-ethinylestradiol that is used in oral contraceptives. Estrogens are potent endocrine disruptors at concentrations frequently observed in surface waters. However, new genetic analyses suggest that some fish populations can be self-sustaining even in heavily polluted waters. We now need to understand the basis of this tolerance. See research article: http://www.biomedcentral.com/1741-7007/12/1 PMID:24512617

  9. Impact of entrainment and impingement on fish populations in the Hudson River estuary. Volume III. An analysis of the validity of the utilities' stock-recruitment curve-fitting exercise and prior estimation of beta technique. Environmental Sciences Division publication No. 1792

    SciTech Connect

    Christensen, S. W.; Goodyear, C. P.; Kirk, B. L.

    1982-03-01

    This report addresses the validity of the utilities' use of the Ricker stock-recruitment model to extrapolate the combined entrainment-impingement losses of young fish to reductions in the equilibrium population size of adult fish. In our testimony, a methodology was developed and applied to address a single fundamental question: if the Ricker model really did apply to the Hudson River striped bass population, could the utilities' estimates, based on curve-fitting, of the parameter alpha (which controls the impact) be considered reliable. In addition, an analysis is included of the efficacy of an alternative means of estimating alpha, termed the technique of prior estimation of beta (used by the utilities in a report prepared for regulatory hearings on the Cornwall Pumped Storage Project). This validation methodology should also be useful in evaluating inferences drawn in the literature from fits of stock-recruitment models to data obtained from other fish stocks.

  10. Fluctuations of fish populations and the magnifying effects of fishing.

    PubMed

    Shelton, Andrew O; Mangel, Marc

    2011-04-26

    A central and classic question in ecology is what causes populations to fluctuate in abundance. Understanding the interaction between natural drivers of fluctuating populations and human exploitation is an issue of paramount importance for conservation and natural resource management. Three main hypotheses have been proposed to explain fluctuations: (i) species interactions, such as predator-prey interactions, cause fluctuations, (ii) strongly nonlinear single-species dynamics cause fluctuations, and (iii) environmental variation cause fluctuations. We combine a general fisheries model with data from a global sample of fish species to assess how two of these hypothesis, nonlinear single-species dynamics and environmental variation, interact with human exploitation to affect the variability of fish populations. In contrast with recent analyses that suggest fishing drives increased fluctuations by changing intrinsic nonlinear dynamics, we show that single-species nonlinear dynamics alone, both in the presence and absence of fisheries, are unlikely to drive deterministic fluctuations in fish; nearly all fish populations fall into regions of stable dynamics. However, adding environmental variation dramatically alters the consequences of exploitation on the temporal variability of populations. In a variable environment, (i) the addition of mortality from fishing leads to increased temporal variability for all species examined, (ii) variability in recruitment rates of juveniles contributes substantially more to fluctuations than variation in adult mortality, and (iii) the correlation structure of juvenile and adult vital rates plays an important and underappreciated role in determining population fluctuations. Our results are robust to alternative model formulations and to a range of environmental autocorrelation.

  11. Genomic Approaches with Natural Fish Populations

    PubMed Central

    Oleksiak, M. F.

    2011-01-01

    Natural populations versus inbred stocks provide a much richer resource for identifying the effects of nucleotide substitutions because natural populations have greater polymorphism. Additionally, natural populations offer an advantage over most common research organisms because they are subject to natural selection, and analyses of these adaptations can be used to identify biologically important changes. Among fishes, these analyses are enhanced by having a wide diversity of species (> 28,000 species, more than any other group of vertebrates) living in a huge range of environments (from below freezing to > 46° C, in fresh water to salinities > 40 ppt.). Moreover, fishes exhibit many different life history and reproductive strategies and have many different phenotypes and social structures. While fishes provide numerous advantages over other vertebrate models, there is still a dearth of available genomic tools for fishes. Fish make up approximately half of all known vertebrate species, yet less than 0.2% of fish species have significant genomic resources. Nonetheless, genomic approaches with fishes have provided some of the first measures of individual variation in gene expression and insights in to environmental and ecological adaptations. Thus, genomic approaches with natural fish populations have the potential to revolutionize fundamental studies of diverse fish species that offer myriad ecological and evolutionary questions. PMID:20409163

  12. Vibrio diseases of marine fish populations

    NASA Astrophysics Data System (ADS)

    Colwell, R. R.; Grimes, D. J.

    1984-03-01

    Several Vibrio spp. cause disease in marine fish populations, both wild and cultured. The most common disease, vibriosis, is caused by V. anguillarum. However, increase in the intensity of mariculture, combined with continuing improvements in bacterial systematics, expands the list of Vibrio spp. that cause fish disease. The bacterial pathogens, species of fish affected, virulence mechanisms, and disease treatment and prevention are included as topics of emphasis in this review.

  13. POPULATION DECLINE IN STREAM FISH

    EPA Science Inventory

    Over half of the streams in the Mid-Atlantic Highlands have fish communities that are in fair or poor condition, and the EPA concluded that physical habitat alteration represents the greatest potential stressor across this region. A quantitative method for relating habitat quali...

  14. POPULATION DECLINE IN STREAM FISH

    EPA Science Inventory

    Over half of the streams in the Mid-Atlantic Highlands have fish communities that are in fair or poor condition, and the EPA concluded that physical habitat alteration represents the greatest potential stressor across this region. A quantitative method for relating habitat quali...

  15. Social recognition in wild fish populations

    PubMed Central

    Ward, Ashley J.W; Webster, Michael M; Hart, Paul J.B

    2007-01-01

    The ability of animals to gather information about their social and physical environment is essential for their ecological function. Odour cues are an important component of this information gathering across taxa. Recent laboratory studies have revealed the importance of flexible chemical cues in facilitating social recognition of fishes. These cues are known to be mediated by recent habitat experience and fishes are attracted to individuals that smell like themselves. However, to be relevant to wild populations, where animals may move and forage freely, these cues would have to be temporally flexible and allow spatial resolution. Here, we present data from a study of social recognition in wild populations of three-spined sticklebacks (Gasterosteus aculeatus). Focal fish preferentially associated with conspecifics from the same habitat as themselves. These preferences were changed and updated following translocation of the focal fish to a different site. Further investigation revealed that association preferences changed after 3 h of exposure to different habitat cues. In addition to temporal flexibility, the cues also allowed a high degree of spatial resolution: fish taken from sites 200 m apart produced cues that were sufficiently different to enable the focal fish to discriminate and associate with fish captured near their own home site. The adaptive benefits of this social recognition mechanism remain unclear, though they may allow fish to orient within their social environment and gain current local information. PMID:17284411

  16. Population Viability Analysis of Riverine Fishes

    SciTech Connect

    Bates, P.; Chandler, J.; Jager, H.I.; Lepla, K.; Van Winkle, W.

    1999-04-12

    Many utilities face conflkts between two goals: cost-efficient hydropower generation and protecting riverine fishes. Research to develop ecological simulation tools that can evaluate alternative mitigation strategies in terms of their benefits to fish populations is vital to informed decision-making. In this paper, we describe our approach to population viability analysis of riverine fishes in general and Snake River white sturgeon in particular. We are finding that the individual-based modeling approach used in previous in-stream flow applications is well suited to addressing questions about the viability of species of concern for several reasons. Chief among these are: (1) the abiIity to represent the effects of individual variation in life history characteristics on predicted population viabili~, (2) the flexibili~ needed to quanti~ the ecological benefits of alternative flow management options by representing spatial and temporal variation in flow and temperaturty and (3) the flexibility needed to quantifi the ecological benefits of non-flow related manipulations (i.e., passage, screening and hatchery supplementation).

  17. Methodological issues affecting the study of fish parasites. I. Duration of live fish storage prior to dissection.

    PubMed

    Kvach, Yuriy; Ondračková, Markéta; Janáč, Michal; Jurajda, Pavel

    2016-05-03

    We tested the ability of parasite species to respond quickly to artificial conditions (e.g. by changing abundance or even decreasing to extinction) while host fish species were being held alive prior to dissection. Prussian carp Carassius gibelio were sampled by electrofishing from 2 ponds alongside the River Dyje (Czech Republic) during 'cold' and 'warm' seasons. All fish were transported to the laboratory in aerated pond water and kept in a 1 m3 outdoor basin with aged tap water for 6 d. Twenty fish were dissected on consecutive days (total 120 fish for each site). Our results indicated that there was little change in parasite loading over the first 3 d of holding, suggesting no impact on parasitological studies undertaken over this period. From the fourth day, however, overall parasite abundance increased due to rapid reproduction of some parasite species, especially gyrodactylids in the cold season and dactylogyrids in the warm season. Parasite diversity appeared less stable in the warm season, with significant differences being registered as early as the second day. In addition to holding period, environmental conditions during fish holding will also play an important role in parasite community shifts.

  18. 18 CFR 4.301 - Notice to fish and wildlife agencies and estimation of fees prior to filing.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... wildlife agencies and estimation of fees prior to filing. 4.301 Section 4.301 Conservation of Power and... the Act § 4.301 Notice to fish and wildlife agencies and estimation of fees prior to filing. (a... each fish and wildlife agency consulted in writing with a copy to the Commission whether it will...

  19. 18 CFR 4.301 - Notice to fish and wildlife agencies and estimation of fees prior to filing.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... wildlife agencies and estimation of fees prior to filing. 4.301 Section 4.301 Conservation of Power and... the Act § 4.301 Notice to fish and wildlife agencies and estimation of fees prior to filing. (a... each fish and wildlife agency consulted in writing with a copy to the Commission whether it will...

  20. 18 CFR 4.301 - Notice to fish and wildlife agencies and estimation of fees prior to filing.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... wildlife agencies and estimation of fees prior to filing. 4.301 Section 4.301 Conservation of Power and... the Act § 4.301 Notice to fish and wildlife agencies and estimation of fees prior to filing. (a... each fish and wildlife agency consulted in writing with a copy to the Commission whether it will...

  1. Fish population persistence in hydrologically variable landscapes.

    PubMed

    Bond, Nick R; Balcombe, Stephen R; Crook, David A; Marshall, Jonathan C; Menke, Norbert; Lobegeiger, Jaye S

    2015-06-01

    Forecasting population persistence in environments subjected to periodic disturbances represents a general challenge for ecologists. In arid and semiarid regions, climate change and human water use pose significant threats to the future persistence of aquatic biota whose populations typically depend on permanent refuge waterholes for their viability. As such, habitats are increasingly being lost as a result of decreasing runoff and increasing water extraction. We constructed a spatially explicit population model for golden perch Macquaria ambigua (Richardson), a native freshwater fish in the Murray-Darling Basin in eastern Australia. We then used the model to examine the effects of increased aridity, increased drought frequency, and localized human water extraction on population viability. Consistent with current observations, the model predicted golden perch population persistence under the current climate and levels of water use. Modeled increases in local water extraction greatly increased the risk of population decline, while scenarios of increasing aridity and drought frequency were associated with only minor increases in this risk. We conclude that natural variability in abundances and high turnover rates (extinction/recolonization) of local populations dictate the importance of spatial connectivity and periodic cycles of population growth. Our study also demonstrates an effective way to examine population persistence in intermittent and ephemeral river systems by integrating spatial and temporal dynamics of waterhole persistence with demographic processes (survival, recruitment, and dispersal) within a stochastic modeling framework. The approach can be used to help understand the impacts of natural and anthropogenic drivers, including water resource development, on the viability of biota inhabiting highly dynamic environments.

  2. 18 CFR 4.301 - Notice to fish and wildlife agencies and estimation of fees prior to filing.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Notice to fish and... the Act § 4.301 Notice to fish and wildlife agencies and estimation of fees prior to filing. (a... each fish and wildlife agency consulted in writing with a copy to the Commission whether it will...

  3. 18 CFR 4.301 - Notice to fish and wildlife agencies and estimation of fees prior to filing.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Notice to fish and... the Act § 4.301 Notice to fish and wildlife agencies and estimation of fees prior to filing. (a... each fish and wildlife agency consulted in writing with a copy to the Commission whether it will...

  4. Restoring depleted coral-reef fish populations through recruitment enhancement: a proof of concept.

    PubMed

    Heenan, A; Simpson, S D; Meekan, M G; Healy, S D; Braithwaite, V A

    2009-11-01

    To determine whether enhancing the survival of new recruits is a sensible target for the restorative management of depleted coral-reef fish populations, settlement-stage ambon damsel fish Pomacentrus amboinensis were captured, tagged and then either released immediately onto small artificial reefs or held in aquaria for 1 week prior to release. Holding conditions were varied to determine whether they affected survival of fish: half the fish were held in bare tanks (non-enriched) and the other half in tanks containing coral and sand (enriched). Holding fish for this short period had a significantly positive effect on survivorship relative to the settlement-stage treatment group that were released immediately. The enrichment of holding conditions made no appreciable difference on the survival of fish once released onto the reef. It did, however, have a positive effect on the survival of fish while in captivity, thus supporting the case for the provision of simple environmental enrichment in fish husbandry. Collecting and holding settlement-stage fish for at least a week before release appear to increase the short-term survival of released fish; whether it is an effective method for longer-term enhancement of locally depleted coral-reef fish populations will require further study.

  5. Short winters threaten temperate fish populations.

    PubMed

    Farmer, Troy M; Marschall, Elizabeth A; Dabrowski, Konrad; Ludsin, Stuart A

    2015-07-15

    Although climate warming is expected to benefit temperate ectotherms by lengthening the summer growing season, declines in reproductive success following short, warm winters may counter such positive effects. Here we present long-term (1973-2010) field patterns for Lake Erie yellow perch, Perca flavescens, which show that failed annual recruitment events followed short, warm winters. Subsequent laboratory experimentation and field investigations revealed how reduced reproductive success following short, warm winters underlie these observed field patterns. Following short winters, females spawn at warmer temperatures and produce smaller eggs that both hatch at lower rates and produce smaller larvae than females exposed to long winters. Our research suggests that continued climate warming can lead to unanticipated, negative effects on temperate fish populations.

  6. Short winters threaten temperate fish populations

    PubMed Central

    Farmer, Troy M.; Marschall, Elizabeth A.; Dabrowski, Konrad; Ludsin, Stuart A.

    2015-01-01

    Although climate warming is expected to benefit temperate ectotherms by lengthening the summer growing season, declines in reproductive success following short, warm winters may counter such positive effects. Here we present long-term (1973–2010) field patterns for Lake Erie yellow perch, Perca flavescens, which show that failed annual recruitment events followed short, warm winters. Subsequent laboratory experimentation and field investigations revealed how reduced reproductive success following short, warm winters underlie these observed field patterns. Following short winters, females spawn at warmer temperatures and produce smaller eggs that both hatch at lower rates and produce smaller larvae than females exposed to long winters. Our research suggests that continued climate warming can lead to unanticipated, negative effects on temperate fish populations. PMID:26173734

  7. Short winters threaten temperate fish populations

    NASA Astrophysics Data System (ADS)

    Farmer, Troy M.; Marschall, Elizabeth A.; Dabrowski, Konrad; Ludsin, Stuart A.

    2015-07-01

    Although climate warming is expected to benefit temperate ectotherms by lengthening the summer growing season, declines in reproductive success following short, warm winters may counter such positive effects. Here we present long-term (1973-2010) field patterns for Lake Erie yellow perch, Perca flavescens, which show that failed annual recruitment events followed short, warm winters. Subsequent laboratory experimentation and field investigations revealed how reduced reproductive success following short, warm winters underlie these observed field patterns. Following short winters, females spawn at warmer temperatures and produce smaller eggs that both hatch at lower rates and produce smaller larvae than females exposed to long winters. Our research suggests that continued climate warming can lead to unanticipated, negative effects on temperate fish populations.

  8. Male fish use prior knowledge about rivals to adjust their mate choice

    PubMed Central

    Bierbach, David; Girndt, Antje; Hamfler, Sybille; Klein, Moritz; Mücksch, Frauke; Penshorn, Marina; Schwinn, Michael; Zimmer, Claudia; Schlupp, Ingo; Streit, Bruno; Plath, Martin

    2011-01-01

    Mate choice as one element of sexual selection can be sensitive to public information from neighbouring individuals. Here, we demonstrate that males of the livebearing fish Poecilia mexicana gather complex social information when given a chance to familiarize themselves with rivals prior to mate choice. Focal males ceased to show mating preferences when being observed by a rival (which prevents rivals from copying mating decisions), but this effect was only seen when focal males have perceived rivals as sexually active. In addition, focal males that were observed by a familiar, sexually active rival showed a stronger behavioural response when rivals were larger and thus, more attractive to females. Our study illustrates an unparalleled adjustment in the expression of mating preferences based on social cues, and suggests that male fish are able to remember and strategically exploit information about rivals when performing mate choice. PMID:21208944

  9. Reconstructing fish populations using Chaoborus (Diptera: Chaoboridae) remains a review

    NASA Astrophysics Data System (ADS)

    Sweetman, Jon N.; Smol, John P.

    2006-08-01

    Fish are an important component of many lakes, and a valuable resource in many countries, yet knowledge of how fish populations have fluctuated in the past is very limited. One potential source of information on fisheries dynamics is paleolimnology. This paper reviews the use of the sedimentary remains of the dipteran insect Chaoborus (commonly referred to as the phantom midge) in reconstructing past presence or absence of fish populations. We provide a brief overview of the ecology of Chaoborus larvae, and review the factors believed to be important in determining their distribution and abundance. In particular, we outline the important role fish have in structuring chaoborid assemblages. We highlight several recent studies utilizing Chaoborus remains in reconstructing past fish dynamics, including their use in determining the effects of acidification and piscicide additions on fish populations, and to tracing fish introductions into previously fishless lakes. We conclude by discussing the potential applications of other aquatic invertebrates, such as the Cladocera and Chironomidae, to infer changes in fish populations, and suggest that by integrating the information provided by these different proxies, we may further improve our ability to infer changes in past fish populations.

  10. Archaeological evidence of validity of fish populations on unexploited reefs as proxy targets for modern populations.

    PubMed

    Longenecker, Ken; Chan, Yvonne L; Toonen, Robert J; Carlon, David B; Hunt, Terry L; Friedlander, Alan M; Demartini, Edward E

    2014-10-01

    Reef-fish management and conservation is hindered by a lack of information on fish populations prior to large-scale contemporary human impacts. As a result, relatively pristine sites are often used as conservation baselines for populations near sites affected by humans. This space-for-time approach can only be validated by sampling assemblages through time. We used archaeological remains to evaluate whether the remote, uninhabited Northwestern Hawaiian Islands (NWHI) might provide a reasonable proxy for a lightly exploited baseline in the Main Hawaiian Islands (MHI). We used molecular and morphological techniques to describe the taxonomic and size composition of the scarine parrotfish catches present in 2 archaeological assemblages from the MHI, compared metrics of these catches with modern estimates of reproductive parameters to evaluate whether catches represented by the archaeological material were consistent with sustainable fishing, and evaluated overlap between size structures represented by the archaeological material and modern survey data from the MHI and the NWHI to assess whether a space-for-time substitution is reasonable. The parrotfish catches represented by archaeological remains were consistent with sustainable fishing because they were dominated by large, mature individuals whose average size remained stable from prehistoric (AD approximately 1400-1700) through historic (AD 1700-1960) periods. The ancient catches were unlike populations in the MHI today. Overlap between the size structure of ancient MHI catches and modern survey data from the NWHI or the MHI was an order of magnitude greater for the NWHI comparison, a result that supports the validity of using the NWHI parrotfish data as a proxy for the MHI before accelerated, heavy human impacts in modern times. © 2014 Society for Conservation Biology.

  11. Spatial structuring within a reservoir fish population: implications for management

    USGS Publications Warehouse

    Stewart, David R.; Long, James M.; Shoup, Daniel E.

    2014-01-01

    Spatial structuring in reservoir fish populations can exist because of environmental gradients, species-specific behaviour, or even localised fishing effort. The present study investigated whether white crappie exhibited evidence of improved population structure where the northern more productive half of a lake is closed to fishing to provide waterfowl hunting opportunities. Population response to angling was modelled for each substock of white crappie (north (protected) and south (unprotected) areas), the entire lake (single-stock model) and by combining simulations of the two independent substock models (additive model). White crappie in the protected area were more abundant, consisting of larger, older individuals, and exhibited a lower total annual mortality rate than in the unprotected area. Population modelling found that fishing mortality rates between 0.1 and 0.3 resulted in sustainable populations (spawning potential ratios (SPR) >0.30). The population in the unprotected area appeared to be more resilient (SPR > 0.30) at the higher fishing intensities (0.35–0.55). Considered additively, the whole-lake fishery appeared more resilient than when modelled as a single-panmictic stock. These results provided evidence of spatial structuring in reservoir fish populations, and we recommend model assessments used to guide management decisions should consider those spatial differences in other populations where they exist.

  12. Effects of fire on fish populations: Landscape perspectives on persistence of native fishes and nonnative fish invasions

    Treesearch

    Jason B. Dunham; Michael K. Young; Robert E. Gresswell; Bruce E. Rieman

    2003-01-01

    Our limited understanding of the short and long-term effects of fire on fish contributes to considerable uncertainty in assessments of the risks and benefits of fire management alternatives. A primary concern among the many potential effects of fire is the effects of fire and fire management on persistence of native fish populations. Limited evidence suggests...

  13. Fish population dynamics in a seasonally varying wetland

    USGS Publications Warehouse

    DeAngelis, Donald L.; Trexler, Joel C.; Cosner, Chris; Obaza, Adam; Jopp, Fred

    2010-01-01

    Small fishes in seasonally flooded environments such as the Everglades are capable of spreading into newly flooded areas and building up substantial biomass. Passive drift cannot account for the rapidity of observed population expansions. To test the reaction-diffusion mechanism for spread of the fish, we estimated their diffusion coefficient and applied a reaction-diffusion model. This mechanism was also too weak to account for the spatial dynamics. Two other hypotheses were tested through modeling. The first--the 'refuge mechanism--hypothesizes that small remnant populations of small fishes survive the dry season in small permanent bodies of water (refugia), sites where the water level is otherwise below the surface. The second mechanism, which we call the 'dynamic ideal free distribution mechanism' is that consumption by the fish creates a prey density gradient and that fish taxis along this gradient can lead to rapid population expansion in space. We examined the two alternatives and concluded that although refugia may play an important role in recolonization by the fish population during reflooding, only the second, taxis in the direction of the flooding front, seems capable of matching empirical observations. This study has important implications for management of wetlands, as fish biomass is an essential support of higher trophic levels.

  14. May organic pollutants affect fish populations in the North Sea?

    PubMed

    Hylland, Ketil; Beyer, Jonny; Berntssen, Marc; Klungsøyr, Jarle; Lang, Thomas; Balk, Lennart

    2006-01-08

    The North Sea is a highly productive area with large fish populations that have been extensively harvested over the past century. North Sea fisheries remain important to the surrounding countries despite declining fish stocks over the past decades. The main reason for declining fish stocks is nearly certainly overfishing, but other environmental pressures also affect fish populations, such as eutrophication, climate change, and exposure to metals and organic pollutants, including polyaromatic hydrocarbons (PAHs), alkylphenols, and organochlorine compounds. There are three main sources of organic pollutants in the North Sea: atmospheric, land-based sources, and inputs from offshore gas and oil installations. All three sources contribute to elevated concentrations of organic pollutants in the North Sea compared to the Norwegian Sea. There is evidence that chlorinated organic contaminants were present in sufficiently high concentrations in the southern North Sea two decades ago, to alter embryonal development in fish. The results from extensive, long-term monitoring programs show that some diseases decreased whereas other increased in the southern North Sea and that, among other factors, contaminants may play a role in the temporal changes recorded in disease prevalence. Recent studies demonstrated that components in offshore effluents may affect fish reproduction and that tissues of fish near oil rigs are structurally different to tissues of fish from reference areas. Data on effluents from offshore activities have recently become available through an international workshop (BECPELAG) and follow-up studies.

  15. Intake Levels of Fish in the UK Paediatric Population.

    PubMed

    Kranz, Sibylle; Jones, Nicholas R V; Monsivais, Pablo

    2017-04-16

    The United Kingdom (UK) is an island and its culture, including diet, is heavily influenced by the maritime resources. Dietary guidance in the UK recommends intake of fish, which provides important nutrients, such as long-chain omega-3 polyunsaturated fatty acids (n-3 PUFA). This study was designed to describe the fish intake habits of UK children using a nationally representative sample. Dietary and socio-demographic data of children 2-18 (N = 2096) in the National Diet and Nutrition Survey Rolling Program (NDNS) Years 1-4 (2008-2012) were extracted. Average nutrient and food intakes were estimated. Logistic regression models were used to predict the meeting of fish intake recommendations, controlling for age, sex, income, total energy intake, and survey year. All analyses were conducted using survey routines and dietary survey weights. In this nationally representative study, 4.7% of children met the fish and 4.5% the oily fish intake recommendations; only 1.3% of the population met both recommendations. Fish intake levels did not significantly change with children's increasing age. Higher vegetable but lower meat consumption predicted meeting the fish intake recommendations, indicating that children eating fish have better diet quality than non-consumers. Further research is needed to explore how intake behaviours can be changed to improve children's diet quality.

  16. Intake Levels of Fish in the UK Paediatric Population

    PubMed Central

    Kranz, Sibylle; Jones, Nicholas R. V.; Monsivais, Pablo

    2017-01-01

    The United Kingdom (UK) is an island and its culture, including diet, is heavily influenced by the maritime resources. Dietary guidance in the UK recommends intake of fish, which provides important nutrients, such as long-chain omega-3 polyunsaturated fatty acids (n-3 PUFA). This study was designed to describe the fish intake habits of UK children using a nationally representative sample. Dietary and socio-demographic data of children 2–18 (N = 2096) in the National Diet and Nutrition Survey Rolling Program (NDNS) Years 1–4 (2008–2012) were extracted. Average nutrient and food intakes were estimated. Logistic regression models were used to predict the meeting of fish intake recommendations, controlling for age, sex, income, total energy intake, and survey year. All analyses were conducted using survey routines and dietary survey weights. In this nationally representative study, 4.7% of children met the fish and 4.5% the oily fish intake recommendations; only 1.3% of the population met both recommendations. Fish intake levels did not significantly change with children’s increasing age. Higher vegetable but lower meat consumption predicted meeting the fish intake recommendations, indicating that children eating fish have better diet quality than non-consumers. Further research is needed to explore how intake behaviours can be changed to improve children’s diet quality. PMID:28420147

  17. Fish population losses from Adirondack Lakes: The role of surface water acidity and acidification

    NASA Astrophysics Data System (ADS)

    Baker, Joan P.; Warren-Hicks, William J.; Gallagher, James; Christensen, Sigurd W.

    1993-04-01

    Changes over time in the species composition of fish communities in Adirondack lakes were assessed to determine (1) the approximate numbers offish populations that have been lost and (2) the degree to which fish population losses may have resulted from surface water acidification and acidic deposition. Information on the present-day status offish communities was obtained by the Adirondack Lakes Survey Corporation, which surveyed 1469 Adirondack lakes in 1984-1987 (53% of the total ponded waters in the Adirondack ecological zone). Two hundred and ninety-five of these lakes had been surveyed in 1929-1934 during the first statewide biological survey; 720 had been surveyed in one or more years prior to 1970. Sixteen to 19% of the lakes with adequate historical data appeared to have lost one or more fish populations as a result of acidification. Brook trout and acid-sensitive minnow species had experienced the most widespread effects. Populations of brook trout and acid-sensitive minnows had been lost apparently as a result of acidification from 11% and 19%, respectively, of the lakes with confirmed historical occurrence of these taxa. By contrast, fish species that tend to occur primarily in lower elevation and larger lakes, such as largemouth and smallmouth bass and brown trout, have experienced little to no documented adverse effects. Lakes that were judged to have lost fish populations as a result of acidification had significantly lower; pH and, in most cases, also had higher estimated concentrations of inorganic aluminum and occurred at higher elevations than did lakes with the fish species still present. No other lake characteristics were consistently associated with fish population losses attributed to acidification. The exact numbers and proportions of fish populations affected could not be determined because of limitations on the quantity and quality of historical data. Lakes for which we had adequate historical data to assess long-term trends in fish

  18. Modelling production per unit of food consumed in fish populations.

    PubMed

    Wiff, Rodrigo; Barrientos, Mauricio A; Milessi, Andrés C; Quiroz, J C; Harwood, John

    2015-01-21

    The ratio of production-to-consumption (ρ) reflects how efficiently a population can transform ingested food into biomass. Usually this ratio is estimated by separately integrating cohort per-recruit production and consumption per unit of biomass. Estimates of ρ from cohort analysis differ from those that consider the whole population, because fish populations are usually composed of cohorts that differ in their relative abundance. Cohort models for ρ also assume a stable age-structure and a constant population size (stationary condition). This may preclude their application to harvested populations, in which variations in fishing mortality and recruitment will affect age-structure. In this paper, we propose a different framework for estimating (ρ) in which production and consumption are modelled simultaneously to produce a population estimator of ρ. Food consumption is inferred from the physiological concepts underpinning the generalised von Bertalanffy growth function (VBGF). This general framework allows the effects of different age-structures to be explored, with a stationary population as a special case. Three models with different complexities, depending mostly on what assumptions are made about age-structure, are explored. The full data model requires knowledge about food assimilation efficiency, parameters of the VBGF and the relative proportion of individuals at age a at time y (Py(a)). A simpler model, which requires less data, is based on the stationary assumption. Model results are compared with estimates from cohort models for ρ using simulated fish populations of different lifespans. The models proposed here were also applied to three fish populations that are targets of commercial fisheries in the south-east Pacific. Uncertainty in the estimation of ρ was evaluated using a resampling approach. Simulation showed that cohort and population models produce different estimates for ρ and those differences depend on lifespan, fishing mortality and

  19. Multimodel robust observer for an uncertain fish population model.

    PubMed

    Ait Kaddour, Achraf; Benjelloun, Khalid; Elalami, Noureddine; El Mazoudi, El Houssine

    2014-10-01

    In this paper, a new method is proposed to design an observer for a nonlinear and uncertain system describing a continuous stage structured model of a harvested fish population. The aim is to get an estimation of the biomass of fishes by stage class. In the studied model the fishing effort is considered as a control term, the stage classes as states and the quantity of captured fish as a measured output. A Takagi-Sugeno multimodel first represents the uncertain non-linear model. Next, we develop a technique for designing a multimodel observer corresponding to this system, which attenuates the effect of modelling uncertainties and measurement noise on the state estimation. The design conditions are given in linear matrix inequalities (LMIs) terms that can be solved efficiently using existing numerical tools. The validity of the proposed method is illustrated by the simulation results. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Effects of fire on fish populations: Landscape perspectives on persistance of native fishes and nonnative fish invasions

    USGS Publications Warehouse

    Dunham, J.B.; Young, M.; Gresswell, Robert E.; Rieman, B.

    2003-01-01

    Our limited understanding of the short and long-term effects of fire on fish contributes to considerable uncertainty in assessments of the risks and benefits of fire management alternatives. A primary concern among the many potential effects of fire is the effects of fire and fire management on persistence of native fish populations. Limited evidence suggests vulnerability of fish to fire is contingent upon the quality of affected habitats, the amount and distribution of habitat (habitat fragmentation), and habitat specificity of the species in question. Species with narrow habitat requirements in highly degraded and fragmented systems are likely to be most vulnerable to fire and fire-related disturbance. In addition to effects of fire on native fish, there are growing concerns about the effects of fire on nonnative fish invasions. The role of fire in facilitating invasions by nonnative fishes is unknown, but experience with other species suggests some forms of disturbance associated with fire may facilitate invasion. Management efforts to promote persistence of fishes in fire-prone landscapes can take the form of four basic alternatives: (1) pre-fire management; (2) post-fire management; (3) managing fire itself (e.g. fire fighting); and (4) monitoring and adaptive management. Among these alternatives, pre-fire management is likely to be most effective. Effective pre-fire management activities will address factors that may render fish populations more vulnerable to the effects of fire (e.g. habitat degradation, fragmentation, and nonnative species). Post-fire management is also potentially important, but suffers from being a reactive approach that may not address threats in time to avert them. Managing fire itself can be important in some contexts, but negative consequences for fish populations are possible (e.g. toxicity of fire fighting chemicals to fish). Monitoring and adaptive management can provide important new information for evaluating alternatives, but

  1. Basinwide Estimation of Habitat and Fish Populations in Streams

    Treesearch

    C. Andrew Dolloff; David G. Hankin; Gordon H. Reeves

    1993-01-01

    Basinwide visual estimation techniques (BVET) are statistically reliable and cost effective for estimating habitat and fish populations across entire watersheds. Survey teams visit habitats in every reach of the study area to record visual observations. At preselected intervals, teams also record actual measurements. These observations and measurements are used to...

  2. Are current efforts sufficient to ensure healthy fish populations?

    Treesearch

    Bob Danehy; Andy Dolloff

    2013-01-01

    The maintenance and conservation of fish and wildlife populations in landscapes managed for timber production is a contemporary stewardship requirement and a challenge for forest managers. Best management practices (BMPs) have been developed to meet these challenges. Most BMPs were developed starting in the 1970s so the full impact and the success of those BMPs are not...

  3. Effects of human population density and proximity to markets on coral reef fishes vulnerable to extinction by fishing.

    PubMed

    Brewer, T D; Cinner, J E; Green, A; Pressey, R L

    2013-06-01

    Coral reef fisheries are crucial to the livelihoods of tens of millions of people; yet, widespread habitat degradation and unsustainable fishing are causing severe depletion of stocks of reef fish. Understanding how social and economic factors, such as human population density, access to external markets, and modernization interact with fishing and habitat degradation to affect fish stocks is vital to sustainable management of coral reef fisheries. We used fish survey data, national social and economic data, and path analyses to assess whether these factors explain variation in biomass of coral reef fishes among 25 sites in Solomon Islands. We categorized fishes into 3 groups on the basis of life-history characteristics associated with vulnerability to extinction by fishing (high, medium, and low vulnerability). The biomass of fish with low vulnerability was positively related to habitat condition. The biomass of fishes with high vulnerability was negatively related to fishing conducted with efficient gear. Use of efficient gear, in turn, was strongly and positively related to both population density and market proximity. This result suggests local population pressure and external markets have additive negative effects on vulnerable reef fish. Biomass of the fish of medium vulnerability was not explained by fishing intensity or habitat condition, which suggests these species may be relatively resilient to both habitat degradation and fishing.

  4. Evaluating and understanding fish health risks and their consequences in propagated and free-ranging fish populations

    USGS Publications Warehouse

    Moffitt, C.M.; Haukenes, A.H.; Williams, C.J.

    2005-01-01

    Fishery managers and resource conservationists are increasingly interested in understanding the fish health and disease risks of free-ranging fishes and whether propagated fishes or features and practices used at fish culture facilities pose a health risk to free-ranging populations. Disease agents are present in most both captive and all free-ranging fish populations, but the consequences and extent of infections in free-ranging populations are often difficult to measure, control, and understand. Sampling methods, protocols, and assay techniques developed to assess the health of captive populations are not as applicable for assessments of free-ranging fishes. The use of chemicals and therapeutics to control diseases and parasites in propagated fishes likely reduces the risk of introducing specific pathogens into the environment, but control measures may have localized effects on the environment surrounding fish culture facilities. To understand health risks of propagated and free ranging fishes, we must consider fish populations, culture facilities, fish releases, and their interactions within the greater geospatial features of the aquatic environment. ?? 2004 by the American Fisheries Society.

  5. Fish (Fundulus heteroclitus) populations with different exposure histories differ in tolerance of creosote-contaminated sediments.

    PubMed

    Ownby, David R; Newman, Michael C; Mulvey, Margaret; Vogelbein, Wolfgang K; Unger, Michael A; Arzayus, L Felipe

    2002-09-01

    Prior studies suggest that field-collected fish (Fundulus heteroclitus) from a creosote-contaminated Superfund site (Atlantic Wood Industries site, Elizabeth River, VA, USA) have enhanced tolerance to local, contaminated sediments. This study was designed to test whether other populations in the Elizabeth River at less contaminated sites also show similar tolerance and whether this tolerance is heritable. To test this, F. heteroclitus populations were sampled from four sites within the Elizabeth River with varying sediment polycyclic aromatic hydrocarbon (PAH) concentrations (3.9-264 ng PAH/g dry wt 10(3)) and one reference site in a nearby, uncontaminated estuary (York River, VA, USA; 0.27 ng PAH/g dry wt x 10(3)). Embryo assays were performed to quantify population differences in teratogenic effects during contaminated sediment exposure. Atlantic Wood sediment was mixed with reference sediment to achieve a range of sediment concentrations. Minimal differences were observed in teratogenic effects among fish taken from sites within the Elizabeth River; however, embryos of fish collected from a nearby, uncontaminated York River site and exposed to contaminated sediments had a significantly higher proportion of embryos with cardiac abnormalities than those from the Elizabeth River sites. Embryos from wild-caught and laboratory-reared Elizabeth River F. heteroclitus were simultaneously exposed to contaminated sediments, and no significant tolerance differences were found between embryos from fish taken directly from the field and those reared for a generation in the lab. Differences between fish populations from the two estuaries were larger than differences within the Elizabeth River, and these differences in tolerance were heritable.

  6. ADAPTIONS OF WILD POPULATIONS OF THE ESTUARINE FISH FUNDULUS HETEROCLITUS TO PERSISTENT ENVIRONMENTAL CONTAMINANTS

    EPA Science Inventory

    Many aquatic species, including the estuarine fish Fundulus heteroclitus (mummichogs), adapt to local environmental conditions. We conducted studies to evaluate whether highly exposed populations of mummichogs adapt to toxic environmental contaminants. These fish populations are ...

  7. Pineapple juice as an agent for the digestion of fish prior to the harvesting of metacercariae.

    PubMed

    Prawang, Toon; Sukontason, Kom; Sukontason, Kabkaew L; Choochote, Wej; Piangjai, Somsak

    2002-01-01

    The efficacy of crude pineapple juice obtained from Ananus comosus in digesting fish for the harvesting of trematode metacercariae was investigated. No significant difference was found between the total number of metacercariae detected from fish (Cirrhina jullieni) digested by acid pepsin and those digested by freshly prepared pineapple juice that was kept for 15 days at a temperature of either -4 degrees C or -75 degrees C. However, fewer metacercariae were found when using juice that had been kept for more than 30 days. This study showed that freshly prepared pineapple juice kept frozen for 15 days could be used instead of commercial acid pepsin to digest fish for harvesting metacercariae, some of which could be used for further biological studies.

  8. Coral reef fish populations can persist without immigration

    PubMed Central

    Salles, Océane C.; Maynard, Jeffrey A.; Joannides, Marc; Barbu, Corentin M.; Saenz-Agudelo, Pablo; Almany, Glenn R.; Berumen, Michael L.; Thorrold, Simon R.; Jones, Geoffrey P.; Planes, Serge

    2015-01-01

    Determining the conditions under which populations may persist requires accurate estimates of demographic parameters, including immigration, local reproductive success, and mortality rates. In marine populations, empirical estimates of these parameters are rare, due at least in part to the pelagic dispersal stage common to most marine organisms. Here, we evaluate population persistence and turnover for a population of orange clownfish, Amphiprion percula, at Kimbe Island in Papua New Guinea. All fish in the population were sampled and genotyped on five occasions at 2-year intervals spanning eight years. The genetic data enabled estimates of reproductive success retained in the same population (reproductive success to self-recruitment), reproductive success exported to other subpopulations (reproductive success to local connectivity), and immigration and mortality rates of sub-adults and adults. Approximately 50% of the recruits were assigned to parents from the Kimbe Island population and this was stable through the sampling period. Stability in the proportion of local and immigrant settlers is likely due to: low annual mortality rates and stable egg production rates, and the short larval stages and sensory capacities of reef fish larvae. Biannual mortality rates ranged from 0.09 to 0.55 and varied significantly spatially. We used these data to parametrize a model that estimated the probability of the Kimbe Island population persisting in the absence of immigration. The Kimbe Island population was found to persist without significant immigration. Model results suggest the island population persists because the largest of the subpopulations are maintained due to having low mortality and high self-recruitment rates. Our results enable managers to appropriately target and scale actions to maximize persistence likelihood as disturbance frequencies increase. PMID:26582017

  9. Coral reef fish populations can persist without immigration.

    PubMed

    Salles, Océane C; Maynard, Jeffrey A; Joannides, Marc; Barbu, Corentin M; Saenz-Agudelo, Pablo; Almany, Glenn R; Berumen, Michael L; Thorrold, Simon R; Jones, Geoffrey P; Planes, Serge

    2015-11-22

    Determining the conditions under which populations may persist requires accurate estimates of demographic parameters, including immigration, local reproductive success, and mortality rates. In marine populations, empirical estimates of these parameters are rare, due at least in part to the pelagic dispersal stage common to most marine organisms. Here, we evaluate population persistence and turnover for a population of orange clownfish, Amphiprion percula, at Kimbe Island in Papua New Guinea. All fish in the population were sampled and genotyped on five occasions at 2-year intervals spanning eight years. The genetic data enabled estimates of reproductive success retained in the same population (reproductive success to self-recruitment), reproductive success exported to other subpopulations (reproductive success to local connectivity), and immigration and mortality rates of sub-adults and adults. Approximately 50% of the recruits were assigned to parents from the Kimbe Island population and this was stable through the sampling period. Stability in the proportion of local and immigrant settlers is likely due to: low annual mortality rates and stable egg production rates, and the short larval stages and sensory capacities of reef fish larvae. Biannual mortality rates ranged from 0.09 to 0.55 and varied significantly spatially. We used these data to parametrize a model that estimated the probability of the Kimbe Island population persisting in the absence of immigration. The Kimbe Island population was found to persist without significant immigration. Model results suggest the island population persists because the largest of the subpopulations are maintained due to having low mortality and high self-recruitment rates. Our results enable managers to appropriately target and scale actions to maximize persistence likelihood as disturbance frequencies increase. © 2015 The Author(s).

  10. Improving the assessment of instream flow needs for fish populations

    SciTech Connect

    Sale, M.J. ); Otto, R.G. and Associates, Arlington, VA )

    1991-01-01

    Instream flow requirements are one of the most frequent and most costly environmental issues that must be addressed in developing hydroelectric projects. Existing assessment methods for determining instream flow requirements have been criticized for not including all the biological response mechanisms that regulate fishery resources. A new project has been initiated to study the biological responses of fish populations to altered stream flows and to develop improved ways of managing instream flows. 21 refs., 3 figs.

  11. Impacts of the live reef fish trade on populations of coral reef fish off northern Borneo

    PubMed Central

    Scales, Helen; Balmford, Andrew; Manica, Andrea

    2007-01-01

    The live reef fish trade (LRFT) is one of the greatest but least-quantified sources of fishing pressure for several species of large coral reef fish across the Indo-Pacific. For the first time we quantify the localized impact of the LRFT. We collected data from three LRFT traders in northern Borneo, which yielded information on daily fishing effort and the species and mass of all fishes sold every day by individual fishers or vessels over 2, 3 and 8 years. Total monthly catch and relative abundance (catch-per-unit-effort) declined significantly in several species, including the most valuable species the Napoleon wrasse (Cheilinus undulatus, estimated changes of −98 and −78% over 8 years in catch and relative abundance, respectively) and lower-value bluelined groupers (Plectropomus oligocanthus: −99 and −81%) and Epinephelus groupers (−89 and −32%). These severe declines were rapid, species-specific and occurred in the first 2–4 years of the dataset and are, we believe, directly attributable to the LRFT. This has crucial implications for future data collection and monitoring if population collapses in other parts of the LRFT and similar wildlife trades are to be successfully detected. PMID:17251096

  12. Fish Population Responses to Exceptional High and Low Flows

    NASA Astrophysics Data System (ADS)

    Wenger, S.; Leasure, D.; Freeman, M. C.; Wheeler, K.

    2016-12-01

    For lotic fishes, the flow regime is a critical factor influencing population dynamics, but these flow-population relationships remain poorly described for most taxa. We used multiple long-term fish abundance datasets in two contrasting climatic regions—the humid southeastern US and the arid Great Basin in western US—to test hypotheses fish response to high and low flows. We used autoregressive population models and flow data derived from a macroscale hydrologic model (western US) or extrapolated from gages (southeastern US). We found that in both regions, multiple species show a negative response to high flow magnitude in the current year, but a positive response to high flow magnitude in preceding years. We speculate that very high flows cause direct mortality but facilitate recruitment by flushing fine sediment from spawning locations. We found some evidence of a negative effect of very low flows on trout in the western US, but no evidence of such a relationship for shoal-dwelling species in the Southeast. In fact, drought years appeared to be associated with strong recruitment for some of these species.

  13. Replenishment of fish populations is threatened by ocean acidification.

    PubMed

    Munday, Philip L; Dixson, Danielle L; McCormick, Mark I; Meekan, Mark; Ferrari, Maud C O; Chivers, Douglas P

    2010-07-20

    There is increasing concern that ocean acidification, caused by the uptake of additional CO(2) at the ocean surface, could affect the functioning of marine ecosystems; however, the mechanisms by which population declines will occur have not been identified, especially for noncalcifying species such as fishes. Here, we use a combination of laboratory and field-based experiments to show that levels of dissolved CO(2) predicted to occur in the ocean this century alter the behavior of larval fish and dramatically decrease their survival during recruitment to adult populations. Altered behavior of larvae was detected at 700 ppm CO(2), with many individuals becoming attracted to the smell of predators. At 850 ppm CO(2), the ability to sense predators was completely impaired. Larvae exposed to elevated CO(2) were more active and exhibited riskier behavior in natural coral-reef habitat. As a result, they had 5-9 times higher mortality from predation than current-day controls, with mortality increasing with CO(2) concentration. Our results show that additional CO(2) absorbed into the ocean will reduce recruitment success and have far-reaching consequences for the sustainability of fish populations.

  14. Teratogenic effects of selenium in natural populations of freshwater fish.

    PubMed

    Lemly, A D

    1993-10-01

    The prevalence of abnormalities and associated tissue selenium residues were assessed for the fish population of Belews Lake, North Carolina, and two reference lakes in 1975, 1978, 1982, and 1992. Teratogenic defects identified included lordosis, kyphosis, scoliosis, and head, mouth, and fin deformities. Many fish exhibited multiple malformations and some were grossly deformed and distorted in appearance. Other abnormalities observed were edema, exophthalmus, and cataracts. Whole-body tissue residues of selenium in the fishes of Belews Lake were up to 130 times those in the reference lakes and the incidence of abnormalities was some 7 to 70 times greater. Teratogenic defects increased as selenium levels rose between 1975 and 1982 and fell with declining selenium levels between 1982 and 1992 as selenium inputs into Belews Lake were curtailed. The relationship between selenium residues and prevalence of malformations approximated an exponential function (R2 = 0.881, P < 0.01; cubic model) for centrarchids over the range of 1-80 micrograms/g dry wt selenium and 0-70% deformities. This relationship could be useful in evaluating the role of teratogenic effects in warm-water fish populations suspected of having selenium-related reproductive failure. Unique conditions may have existed in Belews Lake which led to the high frequency and persistence of deformities in juvenile and adult fish. In other, less-contaminated locations competition and predation may eliminate malformed individuals in all but the larval life stage. Teratogenesis could be an important, but easily overlooked phenomenon contributing to fishery reproductive failure in selenium-contaminated aquatic habitats.

  15. Compensatory mechanisms in fish populations: Literature reviews: Volume 2, Compensation in fish populations subject to catastrophic impact: Final report

    SciTech Connect

    Jude, D.J.; Mansfield, P.J.; Schneeberger, P.J.; Wojcik, J.A.

    1987-05-01

    This study comprises an extensive literature review, critical evaluations of case histories, and considered recommendations for future research on the mechanisms and extent of compensation by various fish species subject to catastrophic impacts. ''Catastrophic impact'' was defined as an event which removes some limitation (such as food or space) on a fish population. Those events studied included new species introduction, toxic spills, exploitation of specific fish populations, and drawdown. The fish studied each had more than one compensatory mechanism available, and thus were able to respond to a catastrophic event even if an option was removed. Predation, overfishing, competition, disease, and parasitism are all potential catastrophies, but were found not to cause a catastrophic impact (except in special cases). In general, compensatory responses were determined to vary widely, even for species which perform fairly similar functions in an ecosystem. The extensive nature of this study, however, pointed up the many data gaps in the existing literature; recommendations are therefore made for followup research and expansion of ongoing monitoring programs, based on an evaluation of their relative importance.

  16. Increasing hydrologic variability threatens depleted anadromous fish populations.

    PubMed

    Ward, Eric J; Anderson, Joseph H; Beechie, Tim J; Pess, George R; Ford, Michael J

    2015-01-29

    Predicting effects of climate change on species and ecosystems depend on understanding responses to shifts in means (such as trends in global temperatures), but also shifts in climate variability. To evaluate potential responses of anadromous fish populations to an increasingly variable environment, we performed a hierarchical analysis of 21 Chinook salmon populations from the Pacific Northwest, examining support for changes in river flows and flow variability on population growth. More than half of the rivers analyzed have already experienced significant increases in flow variability over the last 60 years, and this study shows that this increase in variability in freshwater flows has a more negative effect than any other climate signal included in our model. Climate change models predict that this region will experience warmer winters and more variable flows, which may limit the ability of these populations to recover. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  17. A population approach to fish monitoring: too much blind trust?

    PubMed

    Payne, Jerry F

    2007-04-01

    In spite of pronouncements on the importance of an ecological or ecosystem approach to environmental issues, even a straightforward request such as the quantification of the effects of contaminants on a fish population can be inexorably difficult. Although no panacea for determining population reductions, biomarkers can be a useful tool for providing guidance on whether and to what extent health effects are occurring in a population. Except for their use in environmental effects monitoring (EEM) programs around oil development sites on the east coast, Canada has been a laggard in the application of biomarkers. Part of this stems from some agencies still continuing to advocate a population approach, a position which has major scientific drawbacks and probably represents too much blind trust.

  18. Major pathways by which climate may force marine fish populations

    NASA Astrophysics Data System (ADS)

    Ottersen, Geir; Kim, Suam; Huse, Geir; Polovina, Jeffrey J.; Stenseth, Nils Chr.

    2010-02-01

    Climate may affect marine fish populations through many different pathways, operating at a variety of temporal and spatial scales. Climate impacts may work their way bottom up through the food web or affect higher trophic levels more directly. In this review we try to disentangle and summarize some of the current knowledge made available through the rapidly increasing literature on the topic, with particular emphasis on the work within the Global Ocean Ecosystems Dynamics (GLOBEC) programme. We first consider different classification schemes and hypotheses relating climate through physical features of the ocean to population patterns. The response of a population or community to climate may be linear or non-linear, direct or indirect. The hypotheses may be classified according to the form of physical features in operation as being related to mixing, advection or temperature. The bulk of the paper is devoted to a region-by-region presentation and discussion of examples relating climate variability to marine fish populations. It is slanted towards the North Atlantic and North Pacific, but the tropical Pacific is also covered. By means of different categorization methods we compare climate responses between ecosystems. We conclude that the use of such classification schemes allows for a more precise description of the various ecosystems particular properties and facilitates inter-regional comparison.

  19. Native fish population and habitat study, Santa Ana River, California

    USGS Publications Warehouse

    Wulff, Marissa L.; Brown, Larry R.; May, Jason

    2017-01-01

    Collection of additional data on the Santa Ana Sucker (Catostomus santaanae) and the Arroyo Chub (Gila orcutti) has been identified as a needed task to support development of the upper Santa Ana River Habitat Conservation Plan (HCP; http://www.uppersarhcp.com/). The ability to monitor population abundance and understanding the habitats used by species are important when developing such plans. The Santa Ana Sucker (Catostomus santaanae) is listed as a threatened species under federal legislation and is considered a species of special concern in California by the California Department of Fish and Wildlife (Moyle 2002). The Arroyo Chub (Gila orcutti) is considered a species of special concern in California by the California Department of Fish and Wildlife (Moyle 2002). Both species are present in the Santa Ana River watershed in the area being evaluated for establishment of the upper Santa Ana River Habitat Conservation Plan (HCP; http://www.uppersarhcp.com/). The HCP is a collaborative effort involving the water resource agencies of the Santa Ana River Watershed, the US Fish and Wildlife Service, California Department of Fish and Wildlife, and other government agencies and stakeholder organizations. The goals of the HCP are to: 1) enable the water resource agencies to provide a reliable water supply for human uses; 2) conserve and maintain natural rivers and streams that provide habitat for a diversity of unique and rare species; and 3) maintain recreational opportunities for activities such as hiking, fishing, and wildlife viewing, provided by the protection of these habitats and the river systems they depend on. The HCP will specify how species and their habitats will be protected and managed in the future and will provide the incidental take permits needed by the water resource agencies under the federal and State endangered species acts to maintain, operate, and improve their water resource infrastructure. Although the Santa Ana Sucker has been the subject of

  20. Historical Population Estimates For Several Fish Species At Offshore Oil and Gas Structures in the US Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Gitschlag, G.

    2016-02-01

    Population estimates were calculated for four fish species occurring at offshore oil and gas structures in water depths of 14-32 m off the Louisiana and upper Texas coasts in the US Gulf of Mexico. From 1993-1999 sampling was conducted at eight offshore platforms in conjunction with explosive salvage of the structures. To estimate fish population size prior to detonation of explosives, a fish mark-recapture study was conducted. Fish were captured on rod and reel using assorted hook sizes. Traps were occasionally used to supplement catches. Fish were tagged below the dorsal fin with plastic t-bar tags using tagging guns. Only fish that were alive and in good condition were released. Recapture sampling was conducted after explosives were detonated during salvage operations. Personnel operating from inflatable boats used dip nets to collect all dead fish that floated to the surface. Divers collected representative samples of dead fish that sank to the sea floor. Data provided estimates for red snapper (Lutjanus campechanus), Atlantic spadefish (Chaetodipterus faber), gray triggerfish (Balistes capriscus), and blue runner (Caranx crysos) at one or more of the eight platforms studied. At seven platforms, population size for red snapper was calculated at 503-1,943 with a 95% CI of 478. Abundance estimates for Atlantic spadefish at three platforms ranged from 1,432-1,782 with a 95% CI of 473. At three platforms, population size of gray triggerfish was 63-129 with a 95% CI of 82. Blue runner abundance at one platform was 558. Unlike the other three species which occur close to the platforms, blue runner range widely and recapture of this species was dependent on fish schools being in close proximity to the platform at the time explosives were detonated. Tag recapture was as high as 73% for red snapper at one structure studied.

  1. Energetic and ecological constraints on population density of reef fishes

    PubMed Central

    Barneche, D. R.; Kulbicki, M.; Floeter, S. R.; Friedlander, A. M.; Allen, A. P.

    2016-01-01

    Population ecology has classically focused on pairwise species interactions, hindering the description of general patterns and processes of population abundance at large spatial scales. Here we use the metabolic theory of ecology as a framework to formulate and test a model that yields predictions linking population density to the physiological constraints of body size and temperature on individual metabolism, and the ecological constraints of trophic structure and species richness on energy partitioning among species. Our model was tested by applying Bayesian quantile regression to a comprehensive reef-fish community database, from which we extracted density data for 5609 populations spread across 49 sites around the world. Our results indicate that population density declines markedly with increases in community species richness and that, after accounting for richness, energetic constraints are manifested most strongly for the most abundant species, which generally are of small body size and occupy lower trophic groups. Overall, our findings suggest that, at the global scale, factors associated with community species richness are the major drivers of variation in population density. Given that populations of species-rich tropical systems exhibit markedly lower maximum densities, they may be particularly susceptible to stochastic extinction. PMID:26791611

  2. Energetic and ecological constraints on population density of reef fishes.

    PubMed

    Barneche, D R; Kulbicki, M; Floeter, S R; Friedlander, A M; Allen, A P

    2016-01-27

    Population ecology has classically focused on pairwise species interactions, hindering the description of general patterns and processes of population abundance at large spatial scales. Here we use the metabolic theory of ecology as a framework to formulate and test a model that yields predictions linking population density to the physiological constraints of body size and temperature on individual metabolism, and the ecological constraints of trophic structure and species richness on energy partitioning among species. Our model was tested by applying Bayesian quantile regression to a comprehensive reef-fish community database, from which we extracted density data for 5609 populations spread across 49 sites around the world. Our results indicate that population density declines markedly with increases in community species richness and that, after accounting for richness, energetic constraints are manifested most strongly for the most abundant species, which generally are of small body size and occupy lower trophic groups. Overall, our findings suggest that, at the global scale, factors associated with community species richness are the major drivers of variation in population density. Given that populations of species-rich tropical systems exhibit markedly lower maximum densities, they may be particularly susceptible to stochastic extinction.

  3. Genetic concepts and uncertainties in restoring fish populations and species

    USGS Publications Warehouse

    Reisenbichler, R.R.; Utter, F.M.; Krueger, C.C.

    2003-01-01

    Genetic considerations can be crucially important to the success of reintroductions of lotic species. Current paradigms for conservation and population genetics provide guidance for reducing uncertainties in genetic issues and for increasing the likelihood of achieving restoration. Effective restoration is facilitated through specific goals and objectives developed from the definition that a restored or healthy population is (i) genetically adapted to the local environment, (ii) self-sustaining at abundances consistent with the carrying capacity of the river system, (iii) genetically compatible with neighboring populations so that substantial outbreeding depression does not result from straying and interbreeding between populations, and (iv) sufficiently diverse genetically to accommodate environmental variability over many decades. Genetic principles reveal the importance of describing and adhering to the ancestral lineages for the species to be restored and enabling genetic processes to maintain diversity and fitness in the populations under restoration. Newly established populations should be protected from unnecessary human sources of mortality, gene flow from maladapted (e.g., hatchery) or exotic populations, and inadvertent selection by fisheries or other human activities. Such protection facilitates initial, rapid adaptation of the population to its environment and should enhance the chances for persistence. Various uncertainties about specific restoration actions must be addressed on a case-by-case basis. Such uncertainties include whether to allow natural colonization or to introduce fish, which populations are suitable as sources for reintroduction, appropriate levels of gene flow from other populations, appropriate levels of artificial production, appropriate minimum numbers of individuals released or maintained in the population, and the best developmental stages for releasing fish into the restored stream. Rigorous evaluation or

  4. Resistance to contaminants in North American fish populations.

    PubMed

    Wirgin, Isaac; Waldman, John R

    2004-08-18

    Fish from urban and industrialized estuaries are exposed among the highest levels of contaminants of any vertebrate populations. As a result, they serve as especially relevant models for determining the toxic effects and mechanisms through which environmental toxicants work. In controlled laboratory experiments, fish from highly contaminated locales sometimes exhibit resistance to contaminant-induced toxicity. Resistance may be due to genetic adaptation or physiological acclimations. Distinguishing between these possibilities is important in predicting the persistence of resistance and its potential costs to affected populations and communities. Along the Atlantic coast of North America, populations of two estuarine species, Atlantic killifish (mummichog) Fundulus heteroclitus and Atlantic tomcod Microgadus tomcod, exhibit phenotypes that are resistant to aromatic hydrocarbon (AH) contaminants, including polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs), and polycyclic aromatic hydrocarbons (PAHs). Populations of these species exhibit resistance to AH-induced lethality, early life-stage toxicities, and expression of cytochrome P4501A (CYP1A). However, some differences among populations in the occurrence and type (genetic or physiological) of AH-resistant phenotypes have been observed. In some instances, resistance was obviously genetic and resulted in its transmission to at least the F2 generation, in others, resistance had a physiological or yet to be identified epigenetic basis. In some cases, resistance was observed for all AH compounds tested, in others, it was seen only for halogenated AHs. As toxic responses to AHs are believed to be mediated by the aryl hydrocarbon receptor pathway (AHR), several studies compared the structure and expression of AHR pathway molecules between resistant and sensitive fish populations. However, no obvious differences in these molecular parameters were observed between resistant and sensitive populations

  5. Evidence of melanoma in wild marine fish populations.

    PubMed

    Sweet, Michael; Kirkham, Nigel; Bendall, Mark; Currey, Leanne; Bythell, John; Heupel, Michelle

    2012-01-01

    The increase in reports of novel diseases in a wide range of ecosystems, both terrestrial and marine, has been linked to many factors including exposure to novel pathogens and changes in the global climate. Prevalence of skin cancer in particular has been found to be increasing in humans, but has not been reported in wild fish before. Here we report extensive melanosis and melanoma (skin cancer) in wild populations of an iconic, commercially-important marine fish, the coral trout Plectropomus leopardus. The syndrome reported here has strong similarities to previous studies associated with UV induced melanomas in the well-established laboratory fish model Xiphophorus. Relatively high prevalence rates of this syndrome (15%) were recorded at two offshore sites in the Great Barrier Reef Marine Park (GBRMP). In the absence of microbial pathogens and given the strong similarities to the UV-induced melanomas, we conclude that the likely cause was environmental exposure to UV radiation. Further studies are needed to establish the large scale distribution of the syndrome and confirm that the lesions reported here are the same as the melanoma in Xiphophorus, by assessing mutation of the EGFR gene, Xmrk. Furthermore, research on the potential links of this syndrome to increases in UV radiation from stratospheric ozone depletion needs to be completed.

  6. Ocean acidification alters fish populations indirectly through habitat modification

    NASA Astrophysics Data System (ADS)

    Nagelkerken, Ivan; Russell, Bayden D.; Gillanders, Bronwyn M.; Connell, Sean D.

    2016-01-01

    Ocean ecosystems are predicted to lose biodiversity and productivity from increasing ocean acidification. Although laboratory experiments reveal negative effects of acidification on the behaviour and performance of species, more comprehensive predictions have been hampered by a lack of in situ studies that incorporate the complexity of interactions between species and their environment. We studied CO2 vents from both Northern and Southern hemispheres, using such natural laboratories to investigate the effect of ocean acidification on plant-animal associations embedded within all their natural complexity. Although we substantiate simple direct effects of reduced predator-avoidance behaviour by fishes, as observed in laboratory experiments, we here show that this negative effect is naturally dampened when fish reside in shelter-rich habitats. Importantly, elevated CO2 drove strong increases in the abundance of some fish species through major habitat shifts, associated increases in resources such as habitat and prey availability, and reduced predator abundances. The indirect effects of acidification via resource and predator alterations may have far-reaching consequences for population abundances, and its study provides a framework for a more comprehensive understanding of increasing CO2 emissions as a driver of ecological change.

  7. Evidence of Melanoma in Wild Marine Fish Populations

    PubMed Central

    Sweet, Michael; Kirkham, Nigel; Bendall, Mark; Currey, Leanne; Bythell, John; Heupel, Michelle

    2012-01-01

    The increase in reports of novel diseases in a wide range of ecosystems, both terrestrial and marine, has been linked to many factors including exposure to novel pathogens and changes in the global climate. Prevalence of skin cancer in particular has been found to be increasing in humans, but has not been reported in wild fish before. Here we report extensive melanosis and melanoma (skin cancer) in wild populations of an iconic, commercially-important marine fish, the coral trout Plectropomus leopardus. The syndrome reported here has strong similarities to previous studies associated with UV induced melanomas in the well-established laboratory fish model Xiphophorus. Relatively high prevalence rates of this syndrome (15%) were recorded at two offshore sites in the Great Barrier Reef Marine Park (GBRMP). In the absence of microbial pathogens and given the strong similarities to the UV-induced melanomas, we conclude that the likely cause was environmental exposure to UV radiation. Further studies are needed to establish the large scale distribution of the syndrome and confirm that the lesions reported here are the same as the melanoma in Xiphophorus, by assessing mutation of the EGFR gene, Xmrk. Furthermore, research on the potential links of this syndrome to increases in UV radiation from stratospheric ozone depletion needs to be completed. PMID:22870273

  8. Population Structure of the Fish-Pathogenic Bacterium Flavobacterium psychrophilum▿

    PubMed Central

    Nicolas, Pierre; Mondot, Stanislas; Achaz, Guillaume; Bouchenot, Catherine; Bernardet, Jean-François; Duchaud, Eric

    2008-01-01

    Flavobacterium psychrophilum is currently one of the main bacterial pathogens hampering the productivity of salmonid farming worldwide, and its control mainly relies on antibiotic treatments. To better understand the population structure of this bacterium and its mode of evolution, we have examined the nucleotide polymorphisms at 11 protein-coding loci of the core genome in a set of 50 isolates. These isolates were selected to represent the broadest possible diversity, originating from 10 different host fish species and four continents. The nucleotide diversity between pairs of sequences amounted to fewer than four differences per kilobase on average, corresponding to a particularly low level of diversity, possibly indicative of a small effective-population size. The recombination rate, however, seemed remarkably high, and as a consequence, most of the isolates harbored unique combinations of alleles (33 distinct sequence types were resolved). The analysis also showed the existence of several clonal complexes with worldwide geographic distribution but marked association with particular fish species. Such an association could reflect preferential routes of transmission and/or adaptive niche specialization. The analysis provided no clues that the initial range of the bacterium was originally limited to North America. Instead, the historical record of the expansion of the pathogen may reflect the spread of a few clonal complexes. As a resource for future epidemiological surveys, a multilocus sequence typing website based on seven highly informative loci is available. PMID:18424537

  9. Big Spring spinedace and associated fish populations and habitat conditions in Condor Canyon, Meadow Valley Wash, Nevada

    USGS Publications Warehouse

    Jezorek, Ian G.; Connolly, Patrick J.; Munz, Carrie S.; Dixon, Chris

    2011-01-01

    Executive Summary: This project was designed to document habitat conditions and populations of native and non-native fish within the 8-kilometer Condor Canyon section of Meadow Valley Wash, Nevada, with an emphasis on Big Spring spinedace (Lepidomeda mollispinis pratensis). Other native fish present were speckled dace (Rhinichthys osculus) and desert sucker (Catostomus clarki). Big Spring spinedace were known to exist only within this drainage and were known to have been extirpated from a portion of their former habitat located downstream of Condor Canyon. Because of this extirpation and the limited distribution of Big Spring spinedace, the U.S. Fish and Wildlife Service listed this species as threatened under the Endangered Species Act in 1985. Prior to our effort, little was known about Big Spring spinedace populations or life histories and habitat associations. In 2008, personnel from the U.S. Geological Survey's Columbia River Research Laboratory began surveys of Meadow Valley Wash in Condor Canyon. Habitat surveys characterized numerous variables within 13 reaches, thermologgers were deployed at 9 locations to record water temperatures, and fish populations were surveyed at 22 individual sites. Additionally, fish were tagged with Passive Integrated Transponder (PIT) tags, which allowed movement and growth information to be collected on individual fish. The movements of tagged fish were monitored with a combination of recapture events and stationary in-stream antennas, which detected tagged fish. Meadow Valley Wash within Condor Canyon was divided by a 12-meter (m) waterfall known as Delmue Falls. About 6,100 m of stream were surveyed downstream of the falls and about 2,200 m of stream were surveyed upstream of the falls. Although about three-quarters of the surveyed stream length was downstream of Delmue Falls, the highest densities and abundance of native fish were upstream of the falls. Big Spring spinedace and desert sucker populations were highest near the

  10. Assessing population effects from entrainment of fish at a large volume water intake

    SciTech Connect

    Gray, R.H.; Page, T.L.; Neitzel, D.A.; Dauble, D.D.

    1986-01-01

    A method is described for estimating population effects from entrainment of juvenile chinook salmon (Oncorhynchus tshawytscha) at a steam electric generating station on the Columbia River that required cooperation between power plant operators and fishery biologists. The method involved sampling fish in the river and entrained fish (both marked recaptures and naturally occurring downstream migrants) within the intake, and estimating the 1) total number of fish entrained, 2) size of the natural population, and 3) percent of the natural population affected.

  11. Relative distribution and abundance of fishes and crayfish in 2010 and 2014 prior to saltcedar (Tamarix ssp.) removal in the Amargosa River Canyon, southeastern California

    USGS Publications Warehouse

    Hereford, Mark E.

    2016-07-22

    The Amargosa River Canyon, located in the Mojave Desert of southeastern California, contains the longest perennial reach of the Amargosa River. Because of its diverse flora and fauna, it has been designated as an Area of Critical Environmental Concern and a Wild and Scenic River by the Bureau of Land Management. A survey of fishes conducted in summer 2010 indicated that endemic Amargosa River pupfish (Cyprinodon nevadensis amargosae) and speckled dace (Rhinichthys osculus spp.) were abundant and occurred throughout the Amargosa River Canyon. The 2010 survey reported non-native red swamp crayfish (Procambarus clarkii) and western mosquitofish (Gambusia affinis) captures were significantly higher, whereas pupfish captures were lower, in areas dominated by non-native saltcedar (Tamarix ssp.). Based on the 2010 survey, it was hypothesized that the invasion of saltcedar could result in a decrease in native species. In an effort to maintain and enhance native fish populations, the Bureau of Land Management removed saltcedar from a 1,550 meter reach of stream on the Amargosa River in autumn 2014 and autumn 2015. Prior to the removal of saltcedar, a survey of fishes and crayfish using baited minnow traps was conducted in the treatment reach to serve as a baseline for future comparisons with post-saltcedar removal surveys. During the 2014 survey, 1,073 pupfish and 960 speckled dace were captured within the treatment reach. Catch per unit effort of pupfish and speckled dace in the treatment reach was less in 2014 than in 2010, although differences could be owing to seasonal variation in capture probability. Non-native mosquitofish catch per unit effort decreased from 2010 to 2014; however, the catch per unit effort of crayfish increased from 2010 to 2014. Future monitoring efforts of this reach should be conducted at the same time period to account for potential seasonal fluctuations of abundance and distribution of fishes and crayfish. A more robust study design that

  12. Modeling future acidification and fish populations in Norwegian surface waters.

    PubMed

    Larssen, Thorjørn; Cosby, Bernard J; Lund, Espen; Wright, Richard F

    2010-07-15

    Despite great progress made in the past 25 years, acid deposition continues to cause widespread damage to the environment in Europe and eastern North America. Legislation to limit emissions of sulfur and nitrogen compounds in Europe is now under revision. The most recent protocol was based in part on the critical loads concept. The new protocol may also take into consideration the time delays between dose and response inherent in natural ecosystems. Policy decisions to reduce adverse effects on ecosystems entail a trade-off: quick response will require deeper cuts in emissions and thus higher costs, whereas lower costs with lesser cuts in emissions will give slower response. Acidification of lakes and damage to fish populations in Norway is used as an example. Under current legislation for emission reductions, surface waters will continue to slowly recover, but for many decades lakes in about 18% of Norway will continue to have water quality insufficient to support healthy populations of brown trout and other indicator organisms. Additional emission reductions can speed up the rate and degree of recovery.

  13. CHARACTERIZING POPULATIONS OF THE ESTUARINE FISH FUNDULUS HETEROCLITUS INDIGENOUS TO SITES WITH DIFFERING ENVIRONMENTAL QUALITY

    EPA Science Inventory

    Populations of the non-migratory estuarine fish Fundulus heteroclitus were collected from New Bedford Harbor and distant clean sites to investigate whether indigenous populations have adapted genetically to the harbor's contamination. New Bedford Harbor, a major port in southe...

  14. Report A: Fish distribution and population dynamics in Rock Creek, Klickitat County, Washington

    USGS Publications Warehouse

    Allen, Brady; Munz, Carrie S.; Harvey, Elaine

    2013-01-01

    The U.S. Geological Survey collaborated with the Yakama Nation starting in fall of 2009 to study the fish populations in Rock Creek, a Washington State tributary of the Columbia River 21 kilometers upstream of John Day Dam. Prior to this study, very little was known about the ESA-listed (threatened) Mid-Columbia River steelhead (Oncorhynchus mykiss) population in this arid watershed with intermittent stream flow. The objectives of the study were to quantify fish habitat, document fish distribution, abundance, and movement, and identify areas of high salmonid productivity. To accomplish these objectives, we electrofished in the spring and fall, documenting the distribution and relative abundance of all fish species to evaluate the influence of biotic factors on salmonid productivity and survival. We surveyed the distribution of perennial pools and established a network of automated temperature recording devices from river kilometer (rkm) 2 to 23 in Rock Creek and rkm 0 to 8 in Squaw Creek, a major tributary entering Rock Creek at rkm 13, to better understand the abiotic factors influencing the salmonid populations. Salmonid abundance estimates were conducted using a mark-recapture method in a systematic subsample of the perennial pools. The proportion and timing of salmonids migrating from these pools were assessed by building, installing, and operating two passive integrated transponder (PIT) tag interrogation systems at rkm 5 and at the confluence with Squaw Creek (rkm 13). From fall 2009 to fall 2012, we PIT-tagged 3,088 O. mykiss and 151 coho salmon (O. kisutch) during electrofishing efforts. In the lowest flow periods of 2010 to 2012, we found that an average of 36% of the surveyed streambed length was dry, and 17% remained as perennial pools. The maximum temperature recorded in those pools was 24.4°C, but most pools had a maximum temperature that was less than 21°C. O. mykiss were present in most pools, and non-native fish species, such as smallmouth bass

  15. Fish collagen is an important panallergen in the Japanese population.

    PubMed

    Kobayashi, Y; Akiyama, H; Huge, J; Kubota, H; Chikazawa, S; Satoh, T; Miyake, T; Uhara, H; Okuyama, R; Nakagawara, R; Aihara, M; Hamada-Sato, N

    2016-05-01

    Collagen was identified as a fish allergen in early 2000s. Although its allergenic potential has been suggested to be low, risks associated with collagen as a fish allergen have not been evaluated to a greater extent. In this study, we aimed to clarify the importance of collagen as a fish allergen. Our results showed that 50% of Japanese patients with fish allergy had immunoglobulin E (IgE) against mackerel collagen, whereas 44% had IgE against mackerel parvalbumin. IgE inhibition assay revealed high cross-reactivity of mackerel collagen to 22 fish species (inhibition rates: 87-98%). Furthermore, a recently developed allergy test demonstrated that collagen triggered IgE cross-linking on mast cells. These data indicate that fish collagen is an important and very common panallergen in fish consumed in Japan. The high rate of individuals' collagen allergy may be attributable to the traditional Japanese custom of raw fish consumption. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Development of a spatially distributed model of fish population density for habitat assessment of rivers

    NASA Astrophysics Data System (ADS)

    Sui, Pengzhe; Iwasaki, Akito; Ryo, Masahiro; Saavedra, Oliver; Yoshimura, Chihiro

    2013-04-01

    Flow conditions play an important role in sustaining biodiversity of river ecosystem. However, their relations to freshwater fishes, especially to fish population density, have not been clearly described. This study, therefore, aimed to propose a new methodology to quantitatively link habitat conditions, including flow conditions and other physical conditions, to population density of fish species. We developed a basin-scale fish distribution model by integrating the concept of habitat suitability assessment with a distributed hydrological model (DHM) in order to estimate fish population density with particular attention to flow conditions. Generalized linear model (GLM) was employed to evaluate the relationship between population density of fish species and major environmental factors. The target basin was Sagami River in central Japan, where the river reach was divided into 10 sections by estuary, confluences of tributaries, and river-crossing structures (dams, weirs). The DHM was employed to simulate river discharge from 1998 to 2005, which was used to calculate 10 flow indices including mean discharge, 25th and 75th percentile discharge, duration of low and high flows, number of floods. In addition, 5 water quality parameters and 13 other physical conditions (such as basin area, river width, mean diameter of riverbed material, and number of river-crossing structures upstream and downstream) of each river section were considered as environmental variables. In case of Sagami River, 10 habitat variables among them were then selected based on their correlations to avoid multicollinearity. Finally, the best GLM was developed for each species based on Akaike's information criterion. As results, population densities of 16 fish species in Sagami River were modelled, and correlation coefficients between observed and calculated population densities for 10 species were more than 0.70. The key habitat factors for population density varied among fish species. Minimum

  17. Assessing changes in amphibian population dynamics following experimental manipulations of introduced fish.

    PubMed

    Pope, Karen L

    2008-12-01

    Sport-fish introductions are now recognized as an important cause of amphibian decline, but few researchers have quantified the demographic responses of amphibians to current options in fisheries management designed to minimize effects on sensitive amphibians. Demographic analyses with mark-recapture data allow researchers to assess the relative importance of survival, local recruitment, and migration to changes in population densities. I conducted a 4-year, replicated whole-lake experiment in the Klamath Mountains of northern California (U.S.A.) to quantify changes in population density, survival, population growth rate, and recruitment of the Cascades frog (Rana cascadae) in response to manipulations of non-native fish populations. I compared responses of the frogs in lakes where fish were removed, in lakes in their naturally fish-free state, and in lakes where fish remained that were either stocked annually or no longer being stocked. Within 3 years of fish removals from 3 lakes, frog densities increased by a factor of 13.6. The survival of young adult frogs increased from 59% to 94%, and realized population growth and recruitment rates at the fish-removal lakes were more than twice as high as the rates for fish-free reference lakes and lakes that contained fish. Population growth in the fish-removal lakes was likely due to better on-site recruitment of frogs to later life stages rather than increased immigration. The effects on R. cascadae of suspending stocking were ambiguous and suggested no direct benefit to amphibians. With amphibians declining worldwide, these results show that active restoration can slow or reverse the decline of species affected by fish stocking within a short time frame.

  18. The invariance of production per unit of food consumed in fish populations.

    PubMed

    Wiff, R; Barrientos, M A; Segura, A M; Milessi, A C

    2017-02-03

    The amount of biomass production per unit of food consumed (P/Q) represents an important quantity in ecosystem functioning, because it indicates how efficient a population transforms ingested food into biomass. Several investigations have noticed that P/Q remains relatively constant (or invariant) across fish population that feed at the same food-type level (carnivorous/herbivorous). Nevertheless, theoretical explanation for this invariant is still lacking. In this paper, we demonstrate that P/Q remains invariant across fish populations with stable-age distribution. Three key assumptions underpin the P/Q invariant: (1) the ratio between natural mortality M and von Bertalanffy growth parameter k (M/k ratio) should remain invariant across fish populations; (2) a parameter defining the fraction of ingested food available for growth needs to remain constant across fish that feed at the same trophic level; (3) third, the ratio between length at age 0 ([Formula: see text]) and asymptotic length ([Formula: see text]) should be constant across fish populations. The influence of these assumptions on the P/Q estimates were numerically assessed considering fish populations of different lifespan. Numerical evaluations show that the most critical condition highly relates to the first assumption, M/k. Results are discussed in the context of the reliability of the required assumption to consider the P/Q invariant in stable-age distributed fish populations.

  19. Management of fish populations in large rivers: a review of tools and approaches

    USGS Publications Warehouse

    Petts, Geoffrey E.; Imhoff, Jack G.; Manny, Bruce A.; Maher, John F. B.; Weisberg, Stephen B.

    1989-01-01

    In common with most branches of science, the management of riverine fish populations is characterised by reductionist and isolationist philosophies. Traditional fish management focuses on stocking and controls on fishing. This paper presents a concensus of scientists involved in the LARS workshop on the management of fish populations in large rivers. A move towards a more holistic philosophy is advocated, with fish management forming an integral part of sustainable river development. Based upon a questionnaire survey of LARS members, with wide-ranging expertise and experience from all parts of the world, lists of management tools currently in use are presented. Four categories of tools are described: flow, water-quality, habitat, and biological. The potential applications of tools for fish management in large rivers is discussed and research needs are identified. The lack of scientific evaluations of the different tools remains the major constraint to their wider application.

  20. MODELING THE RESPONSE OF FISH POPULATIONS TO EUTROPHICATION

    EPA Science Inventory

    Eutrophication resulting from nonpoint source pollution is one of the largest environmental problems in lakes and reservoirs around the world. Two characteristics of eutrophication, decreased dissolved oxygen and increased concentration of ammonia, are known to affect fishes, yet...

  1. MODELING THE RESPONSE OF FISH POPULATIONS TO EUTROPHICATION

    EPA Science Inventory

    Eutrophication resulting from nonpoint source pollution is one of the largest environmental problems in lakes and reservoirs around the world. Two characteristics of eutrophication, decreased dissolved oxygen and increased concentration of ammonia, are known to affect fishes, yet...

  2. Climate change effects on North American inland fish populations and assemblages

    USGS Publications Warehouse

    Lynch, Abigail J.; Myers, Bonnie; Chu, Cindy; Eby, Lisa A.; Falke, Jeffrey A.; Kovach, Ryan P.; Krabbenhoft, Trevor J.; Kwak, Thomas J.; Lyons, John; Paukert, Craig P.; Whitney, James E.

    2016-01-01

    Climate is a critical driver of many fish populations, assemblages, and aquatic communities. However, direct observational studies of climate change impacts on North American inland fishes are rare. In this synthesis, we (1) summarize climate trends that may influence North American inland fish populations and assemblages, (2) compile 31 peer-reviewed studies of documented climate change effects on North American inland fish populations and assemblages, and (3) highlight four case studies representing a variety of observed responses ranging from warmwater systems in the southwestern and southeastern United States to coldwater systems along the Pacific Coast and Canadian Shield. We conclude by identifying key data gaps and research needs to inform adaptive, ecosystem-based approaches to managing North American inland fishes and fisheries in a changing climate.

  3. ENVIRONMENTAL AUDITING: The Fish Fauna of the Doubs River Prior to Completion of the Rhine-Rhone Connection

    PubMed

    Fruget; Centofanti

    1998-01-01

    / The part of the Doubs River between Montbeliard and Dole (France), i.e., downstream from the confluence with the Allan River, will be affected by the Rhine- Rhone connection project. In order to improve the understanding of the Doubs ichthyofauna, aquatic environments of the Doubs were sampled by electrofishing. Fish diversity and the presence of some rheophilic species demonstrated the good ecological quality of some stretches of the Doubs. This quality was due to alternating areas with very diversified aquatic environments (riffles, islands and side-arms, backwaters) and a considerable range of flow velocities. The differences in the structure of the fish communities of the different types of aquatic environments were more qualitative (fish species) than quantitative (number of species and number of fish). However, the mean number of fish was statistically lower in the canals (Freycinet canal and channelized part of the Allan River) than in the main course and in the backwaters. The natural parts of the Doubs (unnavigable reaches) showed the most diversified environmental structure and had the most rheophilic fish communities. Thus, the rheophilic species were well represented, but they proved also the most vulnerable to river regulation. However, the most abundant fishes throughout the Doubs River were generalists with no special requirements for food sources or spawning substrate.KEY WORDS: Fish communities; Regulation; Restoration; Floodplain; Large ship canal; Doubs River

  4. First genealogy for a wild marine fish population reveals multigenerational philopatry

    PubMed Central

    Salles, Océane C.; Pujol, Benoit; Maynard, Jeffrey A.; Almany, Glenn R.; Berumen, Michael L.; Jones, Geoffrey P.; Saenz-Agudelo, Pablo; Srinivasan, Maya; Thorrold, Simon R.; Planes, Serge

    2016-01-01

    Natal philopatry, the return of individuals to their natal area for reproduction, has advantages and disadvantages for animal populations. Natal philopatry may generate local genetic adaptation, but it may also increase the probability of inbreeding that can compromise persistence. Although natal philopatry is well documented in anadromous fishes, marine fish may also return to their birth site to spawn. How philopatry shapes wild fish populations is, however, unclear because it requires constructing multigenerational pedigrees that are currently lacking for marine fishes. Here we present the first multigenerational pedigree for a marine fish population by repeatedly genotyping all individuals in a population of the orange clownfish (Amphiprion percula) at Kimbe Island (Papua New Guinea) during a 10-y period. Based on 2927 individuals, our pedigree analysis revealed that longitudinal philopatry was recurrent over five generations. Progeny tended to settle close to their parents, with related individuals often sharing the same colony. However, successful inbreeding was rare, and genetic diversity remained high, suggesting occasional inbreeding does not impair local population persistence. Local reproductive success was dependent on the habitat larvae settled into, rather than the habitat they came from. Our study suggests that longitudinal philopatry can influence both population replenishment and local adaptation of marine fishes. Resolving multigenerational pedigrees during a relatively short period, as we present here, provides a framework for assessing the ability of marine populations to persist and adapt to accelerating climate change. PMID:27799530

  5. PREDICTING THE OCCURRANCE OF ADAPTATION TO DIOXINLIKE COMPOUNDS IN POPULATIONS OF THE ESTUARINE FISH FUNDULUS HETEROCLITUS

    EPA Science Inventory

    A population of the non-migratory estuarine fish species Fundulus heteroclitus (mummichog) indigenous to a polychlorinated biphenyl (PCB)-contaminated Superfund site (New Bedford Harbor, NBH, MA, USA) demonstrates an inherited tolerance to local, dioxin-like contaminants (DLCs). ...

  6. Estimating Consumption to Biomass Ratio in Non-Stationary Harvested Fish Populations

    PubMed Central

    Wiff, Rodrigo; Roa-Ureta, Ruben H.; Borchers, David L.; Milessi, Andrés C.; Barrientos, Mauricio A.

    2015-01-01

    The food consumption to biomass ratio (C) is one of the most important population parameters in ecosystem modelling because its quantifies the interactions between predator and prey. Existing models for estimating C in fish populations are per-recruit cohort models or empirical models, valid only for stationary populations. Moreover, empirical models lack theoretical support. Here we develop a theory and derive a general modelling framework to estimate C in fish populations, based on length frequency data and the generalised von Bertalanffy growth function, in which models for stationary populations with a stable-age distributions are special cases. Estimates using our method are compared with estimates from per-recruit cohort models for C using simulated harvested fish populations of different lifespans. The models proposed here are also applied to three fish populations that are targets of commercial fisheries in southern Chile. Uncertainty in the estimation of C was evaluated using a resampling approach. Simulations showed that stationary and non-stationary population models produce different estimates for C and those differences depend on the lifespan, fishing mortality and recruitment variations. Estimates of C using the new model exhibited smoother inter-annual variation in comparison with a per-recruit model estimates and they were also smaller than C predicted by the empirical equations in all population assessed. PMID:26528721

  7. Paleoecological studies on variability in marine fish populations: A long-term perspective on the impacts of climatic change on marine ecosystems

    NASA Astrophysics Data System (ADS)

    Finney, Bruce P.; Alheit, Jürgen; Emeis, Kay-Christian; Field, David B.; Gutiérrez, Dimitri; Struck, Ulrich

    2010-02-01

    The use of historical fishing records to understand relationships between climatic change and fish abundance is limited by the relatively short duration of these records, and complications due to the strong influence of human activity in addition to climatic change. Sedimentary records containing scales, bones or geochemical proxies of variability in fish populations provide unique insights on long-term ecosystem dynamics and relationships with climatic change. Available records from Holocene sediments are summarized and synthesized. The records are from several widespread locations near or along the continental margins of the South Atlantic and Pacific oceans, including Alaska, USA (Pacific salmon), Saanich and Effingham Inlets, British Columbia, Canada (pelagic fish), Santa Barbara Basin, California, USA (Northern anchovies and Pacific sardines), Gulf of California, Mexico (Pacific sardines, Northern anchovies and Pacific hake), Peru upwelling system (sardines, anchovies and hake), and Benguela Current System, South Africa (sardines, anchovies and hake). These records demonstrate that fish population sizes are not constant, and varied significantly over a range of time scales prior to the advent of large-scale commercial fishing. In addition to the decadal-scale variability commonly observed in historical records, the long-term records reveal substantial variability over centennial and millennial time scales. Shifts in abundance are often, but not always, correlated with regional and/or global climatic changes. The long-term perspective reveals different patterns of variability in fish populations, as well as fish-climate relationships, than suggested by analysis of historical records. Many records suggest prominent changes in fish abundance at ca. 1000-1200 AD, during the Little Ice Age, and during the transition at the end of the Little Ice Age in the 19th century that may be correlative, and that were likely driven by major hemispheric or global

  8. A quantitative risk-benefit analysis of changes in population fish consumption.

    PubMed

    Cohen, Joshua T; Bellinger, David C; Connor, William E; Kris-Etherton, Penny M; Lawrence, Robert S; Savitz, David A; Shaywitz, Bennett A; Teutsch, Steven M; Gray, George M

    2005-11-01

    Although a rich source of n-3 polyunsaturated fatty acids (PUFAs) that may confer multiple health benefits, some fish contain methyl mercury (MeHg), which may harm the developing fetus. U.S. government recommendations for women of childbearing age are to modify consumption of high-MeHg fish, while recommendations encourage fish consumption among the general population because of nutritional benefits. To investigate the aggregate impacts of hypothetical shifts in fish consumption, the Harvard Center for Risk Analysis convened an expert panel (see acknowledgements). Effects investigated include prenatal cognitive development, coronary heart disease mortality, and stroke. Substitution of fish with high MeHg concentrations with fish containing less MeHg among women of childbearing age yields substantial developmental benefits and few negative impacts. However, if women instead decrease fish consumption, countervailing risks substantially reduce net benefits. If other adults (mistakenly and inappropriately) also reduce their fish consumption, the net public health impact is negative. Although high compliance with recommended fish consumption patterns can improve public health, unintended shifts in consumption can lead to public health losses. Risk managers should investigate and carefully consider how populations will respond to interventions, how those responses will influence nutrient intake and contaminant exposure, and how these changes will affect aggregate public health.

  9. Population maintenance among tropical reef fishes: Inferences from small-island endemics

    PubMed Central

    Robertson, D. Ross

    2001-01-01

    To what extent do local populations of tropical reef fishes persist through the recruitment of pelagic larvae to their natal reef? Endemics from small, isolated islands can help answer that question by indicating whether special biological attributes are needed for long-term survival under enforced localization in high-risk situations. Taxonomically and biologically, the endemics from seven such islands are broadly representative of their regional faunas. As natal-site recruitment occurs among reef fishes in much less isolated situations, these characteristics of island endemics indicate that a wide range of reef fishes could have persistent self-sustaining local populations. Because small islands regularly support substantial reef fish faunas, regional systems of small reserves could preserve much of the diversity of these fishes. PMID:11331752

  10. Effects of stream acidification and habitat on fish populations of a North American river

    USGS Publications Warehouse

    Baldigo, Barry P.; Lawrence, G.B.

    2001-01-01

    Water quality, physical habitat, and fisheries at sixteen reaches in the Neversink River Basin were studied during 1991-95 to identify the effects of acidic precipitation on stream-water chemistry and on selected fish-species populations, and to test the hypothesis that the degree of stream acidification affected the spatial distribution of each fish-species population. Most sites on the East Branch Neversink were strongly to severely acidified, whereas most sites on the West Branch were minimally to moderately acidified. Mean density of fish populations ranged from 0 to 2.15 fish/m2; biomass ranged from 0 to 17.5 g/m2. Where brook trout were present, their population density ranged from 0.04 to 1.09 fish/m2, biomass ranged from 0.76 to 12.2 g/m2, and condition (K) ranged from 0.94 to 1.07. Regression analyses revealed strong relations (r2 ?? 0.41 to 0.99; p ??? 0.05) between characteristics of the two most common species (brook trout and slimy sculpin) populations and mean concentrations of inorganic monomeric aluminum (Alim), pH, Si, K+, NO3/-, NH4/+, DOC, Ca2+, and Na+; acid neutralizing capacity (ANC); and water temperature. Stream acidification may have adversely affected fish populations at most East Branch sites, but in other parts of the Neversink River Basin these effects were masked or mitigated by other physical habitat, geochemical, and biological factors.

  11. Space-time investigation of the effects of fishing on fish populations.

    PubMed

    Ono, Kotaro; Shelton, Andrew O; Ward, Eric J; Thorson, James T; Feist, Blake E; Hilborn, Ray

    2016-03-01

    Species distribution models (SDMs) are important statistical tools for obtaining ecological insight into species-habitat relationships and providing advice for natural resource management. Many SDMs have been developed over the past decades, with a focus on space- and more recently, time-dependence. However, most of these studies have been on terrestrial species and applications to marine species have been limited. In this study, we used three large spatio-temporal data sources (habitat maps, survey-based fish density estimates, and fishery catch data) and a novel space-time model to study how the distribution of fishing may affect the seasonal dynamics of a commercially important fish species (Pacific Dover sole, Microstomus pacificus) off the west coast of the USA. Dover sole showed a large scale change in seasonal and annual distribution of biomass, and its distribution shifted from mid-depth zones to inshore or deeper waters during late summer/early fall. In many cases, the scale of fishery removal was small compared to these broader changes in biomass, suggesting that seasonal dynamics were primarily driven by movement and not by fishing. The increasing availability of appropriate data and space-time modeling software should facilitate extending this work to many other species, particularly those in marine ecosystems, and help tease apart the role of growth, natural mortality, recruitment, movement, and fishing on spatial patterns of species distribution in marine systems.

  12. Sampling characteristics and calibration of snorkel counts to estimate stream fish populations

    USGS Publications Warehouse

    Weaver, D.; Kwak, Thomas J.; Pollock, Kenneth

    2014-01-01

    Snorkeling is a versatile technique for estimating lotic fish population characteristics; however, few investigators have evaluated its accuracy at population or assemblage levels. We evaluated the accuracy of snorkeling using prepositioned areal electrofishing (PAE) for estimating fish populations in a medium-sized Appalachian Mountain river during fall 2008 and summer 2009. Strip-transect snorkel counts were calibrated with PAE counts in identical locations among macrohabitats, fish species or taxa, and seasons. Mean snorkeling efficiency (i.e., the proportion of individuals counted from the true population) among all taxa and seasons was 14.7% (SE, 2.5%), and the highest efficiencies were for River Chub Nocomis micropogon at 21.1% (SE, 5.9%), Central Stoneroller Campostoma anomalum at 20.3% (SE, 9.6%), and darters (Percidae) at 17.1% (SE, 3.7%), whereas efficiencies were lower for shiners (Notropis spp., Cyprinella spp., Luxilus spp.) at 8.2% (SE, 2.2%) and suckers (Catostomidae) at 6.6% (SE, 3.2%). Macrohabitat type, fish taxon, or sampling season did not significantly explain variance in snorkeling efficiency. Mean snorkeling detection probability (i.e., probability of detecting at least one individual of a taxon) among fish taxa and seasons was 58.4% (SE, 6.1%). We applied the efficiencies from our calibration study to adjust snorkel counts from an intensive snorkeling survey conducted in a nearby reach. Total fish density estimates from strip-transect counts adjusted for snorkeling efficiency were 7,288 fish/ha (SE, 1,564) during summer and 15,805 fish/ha (SE, 4,947) during fall. Precision of fish density estimates is influenced by variation in snorkeling efficiency and sample size and may be increased with additional sampling effort. These results demonstrate the sampling properties and utility of snorkeling to characterize lotic fish assemblages with acceptable efficiency and detection probability, less effort, and no mortality, compared with traditional

  13. STREAM FISH HABITAT SUITABILITY AND THE RISK OF POPULATION DECLINE

    EPA Science Inventory

    Over half of the streams in the Mid-Atlantic Highlands have fish communities that are in fair or poor condition, and the EPA concluded that physical habitat alteration represents the greatest potential stressor across this region. A quantitative method for relating habitat quali...

  14. STREAM FISH HABITAT SUITABILITY AND THE RISK OF POPULATION DECLINE

    EPA Science Inventory

    Over half of the streams in the Mid-Atlantic Highlands have fish communities that are in fair or poor condition, and the EPA concluded that physical habitat alteration represents the greatest potential stressor across this region. A quantitative method for relating habitat quali...

  15. Pathogens associated with native and exotic trout populations in Shenandoah National Park and the relationships to fish stocking practices

    USGS Publications Warehouse

    Panek, Frank M.; Atkinson, James; Coll, John

    2008-01-01

    Restrictive fish stocking policies in National Parks were developed as early as 1936 in order to preserve native fish assemblages and historic genetic diversity. Despite recent efforts to understand the effects of non-native or exotic fish introductions, park managers have limited information regarding the effects of these introductions on native fish communities. Shenandoah National Park was established in 1936 and brook trout (Salvelinus fontinalis) restoration within selected streams in the park began in 1937 in collaboration with the Virginia Department of Game and Inland Fisheries (VDGIF). An analysis of tissue samples from brook, brown (Salmo trutta), and rainbow trout (Oncorhynchus mykiss) from 29 streams within the park from 1998–2002 revealed the presence of Renibacterium salmoninarum, Yersinia ruckeri, and infectious pancreatic necrosis virus (IPNv). In order to investigate the relationships of the occurrence of fish pathogens with stocking histories we classified the streams into three categories: 1) streams with no record of stocking, 2) streams that are known to have been stocked historically, and 3) streams that were historically stocked within the park and continue to be stocked downstream of the park boundary. The occurrences of pathogens were summarized relative to this stocking history. Renibacterium salmoninarum, the causative agent of bacterial kidney disease, was the most prevalent pathogen found, occurring in all three species and stream stocking categories, and appears to be endemic to the park. Two other pathogens, Yersinia ruckeri and infectious pancreatic necrosis virus were also described from brook trout populations within the park. IPNv was only found in brook trout populations in streams with prior stocking histories. Yersinia ruckeri was only found in brook trout in steams that have never been stocked and like R. salmoninarum, is likely endemic.

  16. Effects of a single intensive harvest event on fish populations inside a customary marine closure

    NASA Astrophysics Data System (ADS)

    Jupiter, S. D.; Weeks, R.; Jenkins, A. P.; Egli, D. P.; Cakacaka, A.

    2012-06-01

    In September 2008, the villagers of Kia Island, Fiji, opened their customary managed closure (Cakaulevu tabu) to fishing for a fundraiser that lasted for 5 weeks. We report on opportunistic before-after-control-impact surveys describing changes to coral reef communities both 4 weeks into the harvest and 1 year later compared with pre-harvest conditions. Prior to the harvest, there was a gradient in mean fish abundance and biomass per transect, with highest levels in the north of the closure (250 fish transect-1, 8,145.8 kg ha-1), intermediate levels in the south of the closure (159 fish transect-1, 4,672.1 kg ha-1) and lowest levels in the control area open to fishing (109 fish transect-1, 594.0 kg ha-1). During the harvest, there were extensive depletions in large-bodied, primary targeted fish species, with significant loss in biomass of Acanthuridae and Carangidae in the north and Lutjanidae and Serranidae in the south. We also observed significant increases in Acanthuridae, Lethrinidae and Scaridae in the control, suggesting a "bail-out" effect whereby fish left the closure in response to a rapid increase in fishing pressure. These changes were coupled with a large increase in turf algal cover at all survey areas, despite a large numerical increase in small, roving acanthurids (e.g., Ctenochaetus striatus) and scarids (e.g., Chlorurus sordidus). By 1 year later, fish biomass was significantly lower within the closure than before the harvest, while values in the control returned to pre-harvest levels, suggesting non-compliance with the reinstated fishing ban. We use the lessons learned from this event to suggest recommendations for promoting effective management of periodically harvested customary closures that are a common feature across much of Oceania.

  17. Recovery of a wild fish population from whole-lake additions of a synthetic estrogen.

    PubMed

    Blanchfield, Paul J; Kidd, Karen A; Docker, Margaret F; Palace, Vince P; Park, Brad J; Postma, Lianne D

    2015-03-03

    Despite widespread recognition that municipal wastewaters contain natural and synthetic estrogens, which interfere with development and reproduction of fishes in freshwaters worldwide, there are limited data on the extent to which natural populations of fish can recover from exposure to these compounds. We conducted whole-lake additions of an active component of the birth control pill (17α-ethynylestradiol; EE2) that resulted in the collapse of the fathead minnow (Pimephales promelas) population. Here we quantify physiological, population, and genetic characteristics of this population over the 7 years after EE2 additions stopped to determine if complete recovery was possible. By 3 years post-treatment, whole-body vitellogenin concentrations in male fathead minnow had returned to baseline, and testicular abnormalities were absent. In the spring of the fourth year, adult size-frequency distribution and abundance had returned to pretreatment levels. Microsatellite analyses clearly showed that postrecovery fish were descendants of the original EE2-treated population. Results from this whole-lake experiment demonstrate that fish can recover from EE2 exposure at the biochemical through population levels, although the timelines to do so are long for multigenerational exposures. These results suggest that wastewater treatment facilities that reduce discharges of estrogens and their mimics can improve the health of resident fish populations in their receiving environments.

  18. Fish Habitat and Fish Populations in a Southern Appalachian Watershed before and after Hurricane Hugo

    Treesearch

    C. Andrew Dolloff; Patricia A. Flebbe; Michael D. Owen

    1994-01-01

    Habitat features and relative abundance of all fish species were estimated in 8.4 km of a small mountain stream system before and 11 months after Hurricane Hugo crossed the southern Appalachians in September 1989. There was no change in the total amount (area) of each habitat type but the total number of habitat units decreased and average size and depth of habitat...

  19. Fishery-Independent Data Reveal Negative Effect of Human Population Density on Caribbean Predatory Fish Communities

    PubMed Central

    Stallings, Christopher D.

    2009-01-01

    Background Understanding the current status of predatory fish communities, and the effects fishing has on them, is vitally important information for management. However, data are often insufficient at region-wide scales to assess the effects of extraction in coral reef ecosystems of developing nations. Methodology/Principal Findings Here, I overcome this difficulty by using a publicly accessible, fisheries-independent database to provide a broad scale, comprehensive analysis of human impacts on predatory reef fish communities across the greater Caribbean region. Specifically, this study analyzed presence and diversity of predatory reef fishes over a gradient of human population density. Across the region, as human population density increases, presence of large-bodied fishes declines, and fish communities become dominated by a few smaller-bodied species. Conclusions/Significance Complete disappearance of several large-bodied fishes indicates ecological and local extinctions have occurred in some densely populated areas. These findings fill a fundamentally important gap in our knowledge of the ecosystem effects of artisanal fisheries in developing nations, and provide support for multiple approaches to data collection where they are commonly unavailable. PMID:19421312

  20. Modeling possible cooling-water intake system impacts on Ohio River fish populations.

    PubMed

    Perry, Elgin; Seegert, Greg; Vondruska, Joe; Lohner, Timothy; Lewis, Randy

    2002-04-26

    To assess the possible impacts caused by cooling-water intake system entrainment and impingement losses, populations of six target fish species near power plants on the Ohio River were modeled. A Leslie matrix model was constructed to allow an evaluation of bluegill, freshwater drum, emerald shiner, gizzard shad, sauger, and white bass populations within five river pools. Site-specific information on fish abundance and length-frequency distribution was obtained from long-term Ohio River Ecological Research Program and Ohio River Sanitation Commission (ORSANCO) electrofishing monitoring programs. Entrainment and impingement data were obtained from 316(b) demonstrations previously completed at eight Ohio River power plants. The model was first run under a scenario representative of current conditions, which included fish losses due to entrainment and impingement. The model was then rerun with these losses added back into the populations, representative of what would happen if all entrainment and impingement losses were eliminated. The model was run to represent a 50-year time period, which is a typical life span for an Ohio River coal-fired power plant. Percent changes between populations modeled with and without entrainment and impingement losses in each pool were compared to the mean interannual coefficient of variation (CV), a measure of normal fish population variability. In 6 of the 22 scenarios of fish species and river pools that were evaluated (6 species x 5 river pools, minus 8 species/river pool combinations that could not be evaluated due to insufficient fish data), the projected fish population change was greater than the expected variability of the existing fish population, indicating a possible adverse environmental impact. Given the number of other variables affecting fish populations and the conservative modeling approach, which assumed 100% mortality for all entrained fish and eggs, it was concluded that the likelihood of impact was by no means

  1. Temporal variation of blood and hair mercury levels in pregnancy in relation to fish consumption history in a population living along the St. Lawrence River.

    PubMed

    Morrissette, Joëlle; Takser, Larissa; St-Amour, Genevieve; Smargiassi, Audrey; Lafond, Julie; Mergler, Donna

    2004-07-01

    Fish consumption from the Great Lakes and the St. Lawrence River has been decreasing over the last years due to advisories and increased awareness of the presence of several contaminants. Methylmercury (MeHg), a well-established neurotoxicant even at low levels of exposure, bioaccumulates to differing degrees in various fish species and can have serious adverse effects on the development and functioning of the human central nervous system, especially during prenatal exposure. Most studies on MeHg exposure have focussed on high-level consumers from local fish sources, although mercury (Hg) is also present in fresh, frozen, and canned market fish. Moreover, little information exists on the temporal variation of blood and hair Hg in pregnant women, particularly in populations with low levels of Hg. The aim of the present study was to characterize the temporal variation of Hg during pregnancy and to investigate the relation between fish consumption from various sources prior to and during pregnancy and maternal cord blood and mother's hair Hg levels. We recruited 159 pregnant women from Southwest Quebec through two prenatal clinics of the Quebec Public Health System. All women completed two detailed questionnaires concerning their fish consumption (species and frequency) prior to and during pregnancy. The women also provided blood samples for all three trimesters of pregnancy and hair samples after delivery of up to 9 cm in length. Blood and hair Hg levels were analyzed by cold-vapor atomic-absorption and -fluorescence spectrometry methods, respectively. Results showed that maternal blood and hair Hg levels decreased significantly between the second and third trimesters of pregnancy. However, cord blood Hg was significantly higher than maternal blood at birth. Maternal hair was correlated with Hg blood concentration and was highly predictive of the organic fraction in cord blood. A strong dose relation was observed between the frequency of fish consumption before and

  2. Ocean Acidification Effects on Atlantic Cod Larval Survival and Recruitment to the Fished Population

    PubMed Central

    Stiasny, Martina H.; Mittermayer, Felix H.; Sswat, Michael; Voss, Rüdiger; Jutfelt, Fredrik; Chierici, Melissa; Puvanendran, Velmurugu; Mortensen, Atle; Reusch, Thorsten B. H.; Clemmesen, Catriona

    2016-01-01

    How fisheries will be impacted by climate change is far from understood. While some fish populations may be able to escape global warming via range shifts, they cannot escape ocean acidification (OA), an inevitable consequence of the dissolution of anthropogenic carbon dioxide (CO2) emissions in marine waters. How ocean acidification affects population dynamics of commercially important fish species is critical for adapting management practices of exploited fish populations. Ocean acidification has been shown to impair fish larvae’s sensory abilities, affect the morphology of otoliths, cause tissue damage and cause behavioural changes. Here, we obtain first experimental mortality estimates for Atlantic cod larvae under OA and incorporate these effects into recruitment models. End-of-century levels of ocean acidification (~1100 μatm according to the IPCC RCP 8.5) resulted in a doubling of daily mortality rates compared to present-day CO2 concentrations during the first 25 days post hatching (dph), a critical phase for population recruitment. These results were consistent under different feeding regimes, stocking densities and in two cod populations (Western Baltic and Barents Sea stock). When mortality data were included into Ricker-type stock-recruitment models, recruitment was reduced to an average of 8 and 24% of current recruitment for the two populations, respectively. Our results highlight the importance of including vulnerable early life stages when addressing effects of climate change on fish stocks. PMID:27551924

  3. Ocean Acidification Effects on Atlantic Cod Larval Survival and Recruitment to the Fished Population.

    PubMed

    Stiasny, Martina H; Mittermayer, Felix H; Sswat, Michael; Voss, Rüdiger; Jutfelt, Fredrik; Chierici, Melissa; Puvanendran, Velmurugu; Mortensen, Atle; Reusch, Thorsten B H; Clemmesen, Catriona

    2016-01-01

    How fisheries will be impacted by climate change is far from understood. While some fish populations may be able to escape global warming via range shifts, they cannot escape ocean acidification (OA), an inevitable consequence of the dissolution of anthropogenic carbon dioxide (CO2) emissions in marine waters. How ocean acidification affects population dynamics of commercially important fish species is critical for adapting management practices of exploited fish populations. Ocean acidification has been shown to impair fish larvae's sensory abilities, affect the morphology of otoliths, cause tissue damage and cause behavioural changes. Here, we obtain first experimental mortality estimates for Atlantic cod larvae under OA and incorporate these effects into recruitment models. End-of-century levels of ocean acidification (~1100 μatm according to the IPCC RCP 8.5) resulted in a doubling of daily mortality rates compared to present-day CO2 concentrations during the first 25 days post hatching (dph), a critical phase for population recruitment. These results were consistent under different feeding regimes, stocking densities and in two cod populations (Western Baltic and Barents Sea stock). When mortality data were included into Ricker-type stock-recruitment models, recruitment was reduced to an average of 8 and 24% of current recruitment for the two populations, respectively. Our results highlight the importance of including vulnerable early life stages when addressing effects of climate change on fish stocks.

  4. Length-based assessment of coral reef fish populations in the main and northwestern Hawaiian islands.

    PubMed

    Nadon, Marc O; Ault, Jerald S; Williams, Ivor D; Smith, Steven G; DiNardo, Gerard T

    2015-01-01

    The coral reef fish community of Hawaii is composed of hundreds of species, supports a multimillion dollar fishing and tourism industry, and is of great cultural importance to the local population. However, a major stock assessment of Hawaiian coral reef fish populations has not yet been conducted. Here we used the robust indicator variable "average length in the exploited phase of the population ([Formula: see text])", estimated from size composition data from commercial fisheries trip reports and fishery-independent diver surveys, to evaluate exploitation rates for 19 Hawaiian reef fishes. By and large, the average lengths obtained from diver surveys agreed well with those from commercial data. We used the estimated exploitation rates coupled with life history parameters synthesized from the literature to parameterize a numerical population model and generate stock sustainability metrics such as spawning potential ratios (SPR). We found good agreement between predicted average lengths in an unfished population (from our population model) and those observed from diver surveys in the largely unexploited Northwestern Hawaiian Islands. Of 19 exploited reef fish species assessed in the main Hawaiian Islands, 9 had SPRs close to or below the 30% overfishing threshold. In general, longer-lived species such as surgeonfishes, the redlip parrotfish (Scarus rubroviolaceus), and the gray snapper (Aprion virescens) had the lowest SPRs, while short-lived species such as goatfishes and jacks, as well as two invasive species (Lutjanus kasmira and Cephalopholis argus), had SPRs above the 30% threshold.

  5. Length-Based Assessment of Coral Reef Fish Populations in the Main and Northwestern Hawaiian Islands

    PubMed Central

    Nadon, Marc O.; Ault, Jerald S.; Williams, Ivor D.; Smith, Steven G.; DiNardo, Gerard T.

    2015-01-01

    The coral reef fish community of Hawaii is composed of hundreds of species, supports a multimillion dollar fishing and tourism industry, and is of great cultural importance to the local population. However, a major stock assessment of Hawaiian coral reef fish populations has not yet been conducted. Here we used the robust indicator variable “average length in the exploited phase of the population (L¯)”, estimated from size composition data from commercial fisheries trip reports and fishery-independent diver surveys, to evaluate exploitation rates for 19 Hawaiian reef fishes. By and large, the average lengths obtained from diver surveys agreed well with those from commercial data. We used the estimated exploitation rates coupled with life history parameters synthesized from the literature to parameterize a numerical population model and generate stock sustainability metrics such as spawning potential ratios (SPR). We found good agreement between predicted average lengths in an unfished population (from our population model) and those observed from diver surveys in the largely unexploited Northwestern Hawaiian Islands. Of 19 exploited reef fish species assessed in the main Hawaiian Islands, 9 had SPRs close to or below the 30% overfishing threshold. In general, longer-lived species such as surgeonfishes, the redlip parrotfish (Scarus rubroviolaceus), and the gray snapper (Aprion virescens) had the lowest SPRs, while short-lived species such as goatfishes and jacks, as well as two invasive species (Lutjanus kasmira and Cephalopholis argus), had SPRs above the 30% threshold. PMID:26267473

  6. Genetic evidence of population structuring in the neotropical freshwater fish Brycon hilarii (Valenciennes, 1850).

    PubMed

    Sanches, A; Galetti Jr, P M

    2007-12-01

    Brycon hilarii is a migratory fish widely distributed throughout the Paraguay River Basin. It is appreciated in sport fishing and for its superior meat quality. It is also the main species for tourist attraction in the Bonito region (State of Mato Grosso do Sul, Brazil). Considering the lack of information on the genetic structure of the fish of this species, the aim of the present study was to detect the genetic variability of Brycon hilarii through RAPD markers. A total of eighty specimens collected in different seasons at four sites of the Miranda River sub-basin (Paraguay River Basin, Brazil) were used for analysis. The results of genetic similarity, Shannon diversity, and AMOVA revealed differences between the sampling sites. Through AMOVA, differences between populations were more evident among the animals collected during the non-reproductive season, corresponding to a time of less movement of these fish. A population structuring model in which B. hilarii appears organized into genetically differentiated reproductive units that coexist and co-migrate through the studied system was suggested, contrasting the currently accepted idea that freshwater migratory fish form large panmictic populations in a determined hydrographic system. Despite the lack of a complete picture regarding the distribution of B. hilarii in the studied region, this initial idea on its population genetic structure could be an important contribution to providing aid for management and conservation programs of these fish.

  7. Assessing risks to fish populations near a proposed disposal facility for used nuclear fuel

    SciTech Connect

    Hart, D.; Miesenheimer, P.; Hull, R.

    1995-12-31

    The concept of used nuclear fuel disposal in the Canadian Shield is currently undergoing a federal environmental assessment review process. As part of this review, potential risks to brook trout populations in the vicinity of such an underground repository were considered. Chemical fate, transport and exposure models have been utilized to estimate the dose rates from released radionuclides and other fuel constituents, and these likely will not be sufficient to harm fish in nearby streams. However, other stressors such as habitat alteration (e.g., loss of upwelling) and/or fishing pressure associated with increased public access could have significant population impacts if the site is located in a pristine northern region. Population models are utilized to explore the risks of local population reduction for different combinations of fishing pressure and habitat degradation.

  8. Social-ecological interactions, management panaceas, and the future of wild fish populations

    PubMed Central

    van Poorten, Brett T.; Arlinghaus, Robert; Daedlow, Katrin; Haertel-Borer, Susanne S.

    2011-01-01

    We explored the social and ecological outcomes associated with emergence of a management panacea designed to govern a stochastic renewable natural resource. To that end, we constructed a model of a coupled social-ecological system of recreational fisheries in which a manager supports naturally fluctuating stocks by stocking fish in response to harvest-driven satisfaction of resource users. The realistic assumption of users remembering past harvest experiences when exploiting a stochastically fluctuating fish population facilitates the emergence of a stocking-based management panacea over time. The social benefits of panacea formation involve dampening natural population fluctuations and generating stability of user satisfaction. It also maintains the resource but promotes the eventual replacement of wild fish by hatchery-descended fish. Our analyses show this outcome is particularly likely when hatchery-descended fish are reasonably fit (e.g., characterized by similar survival relative to wild fish) and/or when natural recruitment of the wild population is low (e.g., attributable to habitat deterioration), which leaves the wild population with little buffer against competition by stocked fish. The potential for release-based panacea formation is particularly likely under user-based management regimes and should be common in a range of social-ecological systems (e.g., fisheries, forestry), whenever user groups are entitled to engage in release or replanting strategies. The net result will be the preservation of a renewable resource through user-based incentives, but the once natural populations are likely to be altered and to host nonnative genotypes. This risks other ecosystem services and the future of wild populations. PMID:21742983

  9. Influence of inocula with prior hydrocarbon exposure on biodegradation rates of diesel, synthetic diesel, and fish-biodiesel in soil.

    PubMed

    Horel, Agota; Schiewer, Silke

    2014-08-01

    To achieve effective bioremediation within short warm seasons of cold climates, microbial adaptation periods to the contaminant should be brief. The current study investigated growth phases for soil spiked with diesel, Syntroleum, or fish biodiesel, using microbial inocula adapted to the specific substrates. For modeling hydrocarbon degradation, multi-phase first order kinetics was assumed, comparing linear regression with nonlinear parameter optimization of rate constants and phase durations. Lag phase periods of 5 to >28d were followed by short and intense exponential growth phases with high rate constants (e.g. from kFish=0.0013±0.0002 to kSyntr=0.015±0.001d(-1)). Hydrocarbon mineralization was highest for Syntroleum contamination, where up to three times higher cumulative CO2 production was achieved than for diesel fuel, with fish biodiesel showing initially the slowest degradation. The amount of hydrocarbons recovered from the soil by GC-MS decreased in the order fish biodiesel>diesel>Syntroleum. During initial weeks, biodegradation was higher for microbial inocula adapted to a specific fuel type, whereby the main effect of the inoculum was to shorten the lag phase duration; however, the inoculum's importance diminished after daily respiration peaked. In conclusion, addition of an inoculum to increase biodegradation rates was not necessary.

  10. Kelp forest fish populations in marine reserves and adjacent exploited areas of central California

    USGS Publications Warehouse

    Paddack, M.J.; Estes, J.A.

    2000-01-01

    Population structure (density and size distribution) of 10 species of epibenthic kelp forest fishes was compared between three marine reserves and adjacent exploited areas in central California. We also contrasted substrate relief, algal turf cover, and kelp population density among these areas. Densities of fishes were 12-35% greater within the reserves, but this difference was not statistically) significant. Habitat features explained only 4% of the variation in fish density and did not vary consistently between reserves and nonreserves. The average length of rockfish (genus Sebastes) was significantly greater in two of the three reserve sites, as was the proportion of larger fish. Population density and size differences combined to produce substantially greater biomass and, therefore, greater reproductive potential per unit of area within the reserves. The magnitude of these effects seems to be influenced by the reserve's age. Our findings demonstrate that current levels of fishing pressure influence kelp forest rockfish populations and suggest that this effect is widespread in central California. Existing marine reserves in central California kelp forests may help sustain exploited populations both through adult emigration and larval pool augmentation. The magnitude of these effects remains uncertain, however, because the spatial scale of both larval and adult dispersal relative to the size of existing reserves is unknown.

  11. Putting pharmaceuticals into the wider context of challenges to fish populations in rivers

    PubMed Central

    Johnson, Andrew C.; Sumpter, John P.

    2014-01-01

    The natural range of fish species in our rivers is related to flow, elevation, temperature, local habitat and connectivity. For over 2000 years, humans have altered to varying degrees the river habitat. In the past 200 years, we added to the environmental disruption by discharging poorly treated sewage, nutrients and industrial waste into our rivers. For many rivers, the low point arrived during the period of 1950s–1970s, when rapid economic development overrode environmental concerns and dissolved oxygen concentrations dropped to zero. In these more enlightened times, gross river pollution is a thing of the past in the Developed World. However, persistent legacy chemical contaminants can be found in fish long after their discharge ceased. Changes in habitat quality and morphology caused and continue to cause the disappearance of fish species. The range of fish stressors has now increased as temperatures rise, and non-native fish introductions bring new diseases. The threat from pharmaceuticals to fish populations remains hypothetical, and no studies have yet linked change in fish populations to exposure. PMID:25405969

  12. Predation risk influences adaptive morphological variation in fish populations.

    PubMed

    Eklöv, Peter; Svanbäck, Richard

    2006-03-01

    Predators can cause a shift in both density and frequency of a prey phenotype that may lead to phenotypic divergence through natural selection. What is less investigated is that predators have a variety of indirect effects on prey that could potentially have large evolutionary responses. We conducted a pond experiment to test whether differences in predation risk in different habitats caused shifts in behavior of prey that, in turn, would affect their morphology. We also tested whether the experimental data could explain the morphological variation of perch in the natural environment. In the experiment, predators caused the prey fish to shift to the habitat with the lower predation risk. The prey specialized on habitat-specific resources, and there was a strong correlation between diet of the prey fish and morphological variation, suggesting that resource specialization ultimately affected the morphology. The lack of differences in competition and mortality suggest that the morphological variation among prey was induced by differences in predation risk among habitats. The field study demonstrated that there are differences in growth related to morphology of perch in two different habitats. Thus, a trade-off between foraging and predator avoidance could be responsible for adaptive morphological variation of young perch.

  13. Spatially explicit modeling of habitat dynamics and fish population persistence in an intermittent lowland stream.

    PubMed

    Perry, George L W; Bond, Nicholas R

    2009-04-01

    In temperate and arid climate zones many streams and rivers flow intermittently, seasonally contracting to a sequence of isolated pools or waterholes over the dry period, before reconnecting in the wetter parts of the year. This seasonal drying process is central to our understanding of the population dynamics of aquatic organisms such as fish and invertebrates in these systems. However, there is a dearth of empirical data on the temporal dynamics of such populations. We describe a spatially explicit individual-based model (SEIBM) of fish population dynamics in such systems, which we use to explore the long-term population viability of the carp gudgeon Hypseleotris spp. in a lowland stream in southeastern Australia. We explicitly consider the impacts of interannual variability in stream flow, for example, due to drought, on habitat availability and hence population persistence. Our results support observations that these populations are naturally highly variable, with simulated fish population sizes typically varying over four orders of magnitude within a 50-year simulation run. The most sensitive parameters in the model relate to the amount of water (habitat) in the system: annual rainfall, seepage loss from the pools, and the carrying capacity (number of individuals per cubic meter) of the pools as they dry down. It seems likely that temporal source sink dynamics allow the fish populations to persist in these systems, with good years (high rainfall and brief cease-to-flow [CTF] periods) buffering against periods of drought. In dry years during which the stream may contract to very low numbers of pools, each of these persistent pools becomes crucial for the persistence of the population in the system. Climate change projections for this area suggest decreases in rainfall and increased incidence of drought; under these environmental conditions the long-term persistence of these fish populations is uncertain.

  14. Contaminant effects on Great Lakes' fish-eating birds: a population perspective

    USGS Publications Warehouse

    Heinz, G.H.; Kendall, Ronald J.; Dickerson, Richard L.; Giesy, John P.; Suk, William P.

    1998-01-01

    Preventing environmental contaminants from reducing wildlife populations is the greatest concern in wildlife toxicology. In the Great Lakes, environmental contaminants have a history of reducing populations of many species of fish-eating birds. Endocrine effects may have contributed to declines in fish-eating bird populations, but the overriding harm was caused by DDE-induced eggshell thinning. Toxic effects may still be occurring today, but apparently they are not of a sufficient magnitude to depress populations of most fish-eating birds. Once DDE levels in the Great Lakes declined, eggshells of birds began to get thicker and reproductive success improved. Populations of double-crested cormorants (Phalacrocorax auritus) and ring-billed gulls (Larus delawarensis) have increased dramatically since the bans on DDT and other organochlorine pesticides. Bald eagles (Haliaeetus leucocephalus) are still not reproducing at a normal rate along the shores of the Great Lakes, but success is much improved compared to earlier records when eggshell thinning was worse. Other species, such as herring gulls (Larus argentatus) and black-crowned night-herons (Nycticorax nycticorax), seem to be having improved reproductive success, but data on Great Lakes'-wide population changes are incomplete. Reproductive success of common terns (Sterna hirundo), Caspian terns (Sterna caspia), and Forster's terns (Sterna forsteri) seems to have improved in recent years, but, again, data on population changes are not very complete, and these birds face many habitat related problems as well as contaminant problems. Although contaminants are still producing toxic effects, and these effects may include endocrine disfunction, fish-eating birds in the Great Lakes seem to be largely weathering these effects, at least as far as populations are concerned. A lack of obvious contaminant effects on populations of fish-eating birds in the Great Lakes, however, should not be equated with a lack of any harm to

  15. Using fish population models in hydro project evaluation

    SciTech Connect

    Power, M.V.; McKinley, R.S.

    1997-04-01

    Technical details of the use of population-level fisheries models in evaluating the environmental impacts of hydroelectric projects are described. Population models are grouped into four types, and evaluated in terms of usefulness of results, prediction uncertainty, and data requirements. The four types of models identified are stock-recruitment, Leslie matrix, life-cycle, and individual-based. Each model is discussed in some detail, with sample results and comparisons between models.

  16. Vertical and horizontal distributions of coral-reef fish larvae in open water immediately prior to reef colonization.

    PubMed

    Lecchini, D; Waqalevu, V P; Holles, S; Lerohellec, M; Brie, C; Simpson, S D

    2013-06-01

    To explore the vertical and horizontal distributions of fish larvae near the end of their pelagic period, six light traps were set up over four lunar months at different depths (sub-surface, midwater and bottom) and different habitat types (reef slope: 50 m horizontal distance from the reef crest; frontier zone: 110 m horizontal distance; sandy zone: 200 m horizontal distance) on the outer reef slope of Moorea Island, French Polynesia. The highest captures were in sub-surface traps on the reef slope and the frontier zone, and in bottom traps on the sandy zone and the frontier zone. It is hypothesized that fish larvae move towards the surface near the reef slope to avoid reef-based planktivores and to get into a favourable position for surfing over the reef crest.

  17. Fish abundance and population stability in a reservoir tailwater and an unregulated headwater stream

    USGS Publications Warehouse

    Jacobs, K.E.; Swink, W.D.

    1983-01-01

    Fish abundance and population stability were compared in the tailwater and in an unregulated tributary of Barren River Lake, a flood control reservoir in south central Kentucky. Fish abundance was greater in the tailwater near the dam and was dominated by three species common in the reservoir: gizzard shad (Dorosoma cepedianum), bluegills (Lepomis macrochirus), and white crappies (Pomoxis annularis). Three riverine suckers were less abundant in the tailwater than in the unregulated stream: northern hog suckers (Hypentelium nigricans), black redhorse (Moxostoma duquesnei), and golden redhorse (Moxostoma erythrurum). The fish populations in the tailwater, particularly common carp (Cyprinus carpio), northern hog suckers, black redhorse, and golden redhorse, were less stable than those in the unregulated stream. Population stability is defined as the extent to which fish remain in a stream section. This study suggests that the occurrence of reservoir species in the tailwater was the result of fish passage from the reservoir during high discharges in fall and winter. Reservoir operations (altered flow, low summer water temperature, and poor summer water quality) probably were responsible for the unstable populations of common carp and riverine suckers in the tailwater.

  18. Low genetic differentiation between two geographically separated populations of demersal gadiform fishes in the Southern Hemisphere.

    PubMed

    Takeshima, Hirohiko; Hatanaka, Akimasa; Yamada, Syo-ichi; Yamazaki, Yuji; Kimura, Ikuo; Nishida, Mutsumi

    2011-01-01

    The distribution patterns of many fishes between the three continents (Africa, Australia, and South America) in the Southern Hemisphere have been uncovered to be influenced by mostly vicariance or historical dispersal. Although some demersal fishes with intercontinental distribution are suggested to be more influenced by current/recent dispersal, few genetic studies have been made for demersal fishes so far. To provide more information for such fishes, genetic divergence was analyzed for two pairs of gadiform species and subspecies distributed around Australasia and South America: the blue grenadier, Macruronus novaezelandiae (from New Zealand) and the Patagonian grenadier, M. magellanicus (from South America) as well as two subspecies of the southern blue whiting, Micromesistius australis pallidus (from New Zealand) and M. a. australis (from South America). The sequence analyses of two mitochondrial DNA regions showed no divergence between Australasian and South American populations of the grenadiers and the southern blue whiting. The microsatellite DNA analysis also indicated significant but very minimal genetic differentiation between the two geographic populations of each pair. These results imply rather recent separation of the two geographic populations. Current/recent dispersal may be an important common factor for determining the distribution of demersal fishes in the Southern Hemisphere. Nonetheless, low but significant genetic differentiation observed requires treating the two populations of the economically important grenadiers and southern blue whiting, respectively, as different stocks for proper resource management.

  19. Fish population losses from Adirondack lakes: The role of surface water acidity and acidification

    SciTech Connect

    Baker, J.P. ); Warren-Hicks, W.J. ); Gallagher, J. ); Christensen, S.W. )

    1993-04-01

    Within the United States, the Adirondack region of New York State has the largest percentage of waters that are acidic and classified as deposition dominated. Thus, the Adirondacks have been the focus of much of the debate regarding the extent and magnitude of effects to date from acidic deposition. Completion of the Adirondack Lakes Survey in 1987, a survey of 1,469 lakes, in combination with the relatively extensive historical record on fish communities in the region, provided the opportunity for a thorough evaluation of changes in Adirondack fish communities over the last 50-60 years, and the degree to which these changes may have resulted from changes in surface water acid-base chemistry. Results indicate that 16-19% of the lakes with adequate historical data appeared to have lost one or more fish populations as a result of acidification. Brook trout and acid-sensitive minnows had experienced the most widespread effects, with losses in 11-19% of the lakes. Fish species occurring in lower elevation and larger lakes such as bass and brown trout, experienced little or no effects. Lakes judged to have lost fish populations to acidification had significantly lower pH and higher concentrations of inorganic aluminum and occurred at higher elevations than other lakes. No other lake characteristics showed consistent associations with fish population losses. Acidification is not the only factor, nor even the dominant factor affecting Adirondack fish communities, however. Other causes of fish loses include lake reclamation, changes in stocking policy, and the introduction (or invasion) of competitors or predators.

  20. Effects of Spearfishing on Reef Fish Populations in a Multi-Use Conservation Area

    PubMed Central

    Frisch, Ashley J.; Cole, Andrew J.; Hobbs, Jean-Paul A.; Rizzari, Justin R.; Munkres, Katherine P.

    2012-01-01

    Although spearfishing is a popular method of capturing fish, its ecological effects on fish populations are poorly understood, which makes it difficult to assess the legitimacy and desirability of spearfishing in multi-use marine reserves. Recent management changes within the Great Barrier Reef Marine Park (GBRMP) fortuitously created a unique scenario by which to quantify the effects of spearfishing on fish populations. As such, we employed underwater visual surveys and a before-after-control-impact experimental design to investigate the effects of spearfishing on the density and size structure of target and non-target fishes in a multi-use conservation park zone (CPZ) within the GBRMP. Three years after spearfishing was first allowed in the CPZ, there was a 54% reduction in density and a 27% reduction in mean size of coral trout (Plectropomus spp.), the primary target species. These changes were attributed to spearfishing because benthic habitat characteristics and the density of non-target fishes were stable through time, and the density and mean size of coral trout in a nearby control zone (where spearfishing was prohibited) remained unchanged. We conclude that spearfishing, like other forms of fishing, can have rapid and substantial negative effects on target fish populations. Careful management of spearfishing is therefore needed to ensure that conservation obligations are achieved and that fishery resources are harvested sustainably. This is particularly important both for the GBRMP, due to its extraordinarily high conservation value and world heritage status, and for tropical island nations where people depend on spearfishing for food and income. To minimize the effects of spearfishing on target species and to enhance protection of functionally important fishes (herbivores), we recommend that fishery managers adjust output controls such as size- and catch-limits, rather than prohibit spearfishing altogether. This will preserve the cultural and social

  1. It is the economy, stupid! Projecting the fate of fish populations using ecological-economic modeling.

    PubMed

    Quaas, Martin F; Reusch, Thorsten B H; Schmidt, Jörn O; Tahvonen, Olli; Voss, Rudi

    2016-01-01

    Four marine fish species are among the most important on the world market: cod, salmon, tuna, and sea bass. While the supply of North American and European markets for two of these species - Atlantic salmon and European sea bass - mainly comes from fish farming, Atlantic cod and tunas are mainly caught from wild stocks. We address the question what will be the status of these wild stocks in the midterm future, in the year 2048, to be specific. Whereas the effects of climate change and ecological driving forces on fish stocks have already gained much attention, our prime interest is in studying the effects of changing economic drivers, as well as the impact of variable management effectiveness. Using a process-based ecological-economic multispecies optimization model, we assess the future stock status under different scenarios of change. We simulate (i) technological progress in fishing, (ii) increasing demand for fish, and (iii) increasing supply of farmed fish, as well as the interplay of these driving forces under different scenarios of (limited) fishery management effectiveness. We find that economic change has a substantial effect on fish populations. Increasing aquaculture production can dampen the fishing pressure on wild stocks, but this effect is likely to be overwhelmed by increasing demand and technological progress, both increasing fishing pressure. The only solution to avoid collapse of the majority of stocks is institutional change to improve management effectiveness significantly above the current state. We conclude that full recognition of economic drivers of change will be needed to successfully develop an integrated ecosystem management and to sustain the wild fish stocks until 2048 and beyond. © 2015 John Wiley & Sons Ltd.

  2. Dietary fish intake and sleep quality: a population-based study.

    PubMed

    Del Brutto, Oscar H; Mera, Robertino M; Ha, Jung-Eun; Gillman, Jennifer; Zambrano, Mauricio; Castillo, Pablo R

    2016-01-01

    Due to the content of omega-3 and vitamin D, fish consumption is likely to be associated with better sleep. However, current data are limited to a single study that is not representative of the population at large. The present study aimed to assess the effects of oily fish consumption on sleep quality in community dwelling adults living in rural coastal Ecuador. Atahualpa residents aged ≥40 years and who were identified during a door-to-door survey were interviewed with field instruments directed at assessing cardiovascular risk factors, sleep quality, and fish consumption. Using parametric regression and generalized linear models adjusted for demographics and cardiovascular risk factors, the study evaluated whether oily fish consumption is associated with a lower Pittsburgh sleep quality index (PSQI). Out of 721 eligible people, 677 (94%) were enrolled. Mean oily fish consumption was 9 ± 6 servings per week (one serving = 140 grams). Poor sleep quality was noticed in 187 (28%) individuals. Oily fish intake was higher in individuals with good sleep quality (p = 0.013). There was an inverse association between the PSQI score and oily fish servings per week in both parametric regression (β = -0.040; 95% CI -0.690 to -0.011, p = 0.007) and the adjusted generalized linear model (β = -0.032; 95% CI -0.605 to -0.004, p = 0.025). Oily fish consumption is associated with better sleep quality. Even in people who ingest more than the recommended amount of fish, an increase in fish intake is associated with further improvement in the quality of sleep. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. A computer program for estimating fish population sizes and annual production rates

    SciTech Connect

    Railsback, S.F.; Holcomb, B.D.; Ryon, M.G.

    1989-10-01

    This report documents a program that estimates fish population sizes and annual production rates in small streams from multiple-pass sampling data. A maximum weighted likelihood method is used to estimate population sizes (Carle and Strub, 1978), and a size-frequency method is used to estimate production (Garman and Waters, 1983). The program performs the following steps: (1) reads in the data and performs error checking; (2) where required, uses length-weight regression to fill in missing weights; (3) assigns length classes to the fish; (4) for each date, species, and length class, estimates the population size and its variance; (5) for each date and species, estimates the total population size and its variance; and (6) for each species, estimates the annual production rate and its variance between sampling dates selected by the user. If data from only date are used, only populations are estimated. 9 refs.

  4. Dispersal capacity predicts both population genetic structure and species richness in reef fishes.

    PubMed

    Riginos, Cynthia; Buckley, Yvonne M; Blomberg, Simon P; Treml, Eric A

    2014-07-01

    Dispersal is a fundamental species characteristic that should directly affect both rates of gene flow among spatially distributed populations and opportunities for speciation. Yet no single trait associated with dispersal has been demonstrated to affect both micro- and macroevolutionary patterns of diversity across a diverse biological assemblage. Here, we examine patterns of genetic differentiation and species richness in reef fishes, an assemblage of over 7,000 species comprising approximately one-third of the extant bony fishes and over one-tenth of living vertebrates. In reef fishes, dispersal occurs primarily during a planktonic larval stage. There are two major reproductive and parental investment syndromes among reef fishes, and the differences between them have implications for dispersal: (1) benthic guarding fishes lay negatively buoyant eggs, typically guarded by the male parent, and from these eggs hatch large, strongly swimming larvae; in contrast, (2) pelagic spawning fishes release small floating eggs directly into the water column, which drift unprotected before small weakly swimming larvae hatch. Using phylogenetic comparative methods, we show that benthic guarders have significantly greater population structure than pelagic spawners and additionally that taxonomic families of benthic guarders are more species rich than families of pelagic spawners. Our findings provide a compelling case for the continuity between micro- and macroevolutionary processes of biological diversification and underscore the importance of dispersal-related traits in influencing the mode and tempo of evolution.

  5. Compensatory mechanisms in fish populations: Literature reviews: Volume 1, Critical evaluation of case histories of fish populations experiencing chronic exploitation or impact: Final report

    SciTech Connect

    Saila, S.B.; Chen, X.; Erzini, K.; Martin, B.

    1987-05-01

    This study includes case histories of certain fish species which are experiencing chronic perturbations and related literature pertaining to compensation processes. ''Compensation'' has been defined as the ability of fish to offset the population reduction caused by natural or man-induced stresses. Certain compensation methods are widely accepted, and include cannibalism, competition, disease, growth and predation, among others. These compensation methods are examined in relation to each fish species included in the study. Stock-recruit relationships and empirical observations of changes in growth and mortality have been the focus of much of the background on compensation. One of the conclusions drawn from this study is that a significant amount of recruitment variability exists and can be attributed to environmental (rather than compensatory) factors. The stock-recruitment problem appears to be the most significant scientific problem related to compensation in the types of fish included in this study. Results of the most recent studies of the American shad support this theory. Life histories, breeding biology and other pertinent data relating to each species included in the study will be found in the appendices.

  6. Evaluation of Midwater Trawl Selectivity and its Influence on Acoustic-Based Fish Population Surveys

    NASA Astrophysics Data System (ADS)

    Williams, Kresimir

    Trawls are used extensively during fisheries abundance surveys to derive estimates of fish density and, in the case of acoustic-based surveys, to identify acoustically sampled fish populations. However, trawls are selective in what fish they retain, resulting in biased estimates of density, species, and size compositions. Selectivity of the midwater trawl used in acoustic-based surveys of walleye pollock (Theragra chalcogramma) was evaluated using multiple methods. The effects of trawl selectivity on the acoustic-based survey abundance estimates and the stock assessment were evaluated for the Gulf of Alaska walleye pollock population. Selectivity was quantified using recapture, or pocket, nets attached to the outside of the trawl. Pocket net catches were modeled using a hierarchical Bayesian model to provide uncertainty in selectivity parameter estimates. Significant under-sampling of juvenile pollock by the midwater trawl was found, with lengths at 50% retention ranging from 14--26 cm over three experiments. Escapement was found to be light dependent, with more fish escaping in dark conditions. Highest escapement rates were observed in the aft of the trawl near to the codend though the bottom panel of the trawl. The behavioral mechanisms involved in the process of herding and escapement were evaluated using stereo-cameras, a DIDSON high frequency imaging sonar, and pocket nets. Fish maintained greater distances from the trawl panel during daylight, suggesting trawl modifications such as increased visibility of netting materials may evoke stronger herding responses and increased retention of fish. Selectivity and catchability of pollock by the midwater trawl was also investigated using acoustic density as an independent estimate of fish abundance to compare with trawl catches. A modeling framework was developed to evaluate potential explanatory factors for selectivity and catchability. Selectivity estimates were dependent on which vessel was used for the survey

  7. Discrimination of fish populations using parasites: Random Forests on a 'predictable' host-parasite system.

    PubMed

    Pérez-Del-Olmo, A; Montero, F E; Fernández, M; Barrett, J; Raga, J A; Kostadinova, A

    2010-10-01

    We address the effect of spatial scale and temporal variation on model generality when forming predictive models for fish assignment using a new data mining approach, Random Forests (RF), to variable biological markers (parasite community data). Models were implemented for a fish host-parasite system sampled along the Mediterranean and Atlantic coasts of Spain and were validated using independent datasets. We considered 2 basic classification problems in evaluating the importance of variations in parasite infracommunities for assignment of individual fish to their populations of origin: multiclass (2-5 population models, using 2 seasonal replicates from each of the populations) and 2-class task (using 4 seasonal replicates from 1 Atlantic and 1 Mediterranean population each). The main results are that (i) RF are well suited for multiclass population assignment using parasite communities in non-migratory fish; (ii) RF provide an efficient means for model cross-validation on the baseline data and this allows sample size limitations in parasite tag studies to be tackled effectively; (iii) the performance of RF is dependent on the complexity and spatial extent/configuration of the problem; and (iv) the development of predictive models is strongly influenced by seasonal change and this stresses the importance of both temporal replication and model validation in parasite tagging studies.

  8. Prevalence and Population Structure of Vibrio vulnificus on Fishes from the Northern Gulf of Mexico

    PubMed Central

    Tao, Zhen; Larsen, Andrea M.; Bullard, Stephen A.; Wright, Anita C.

    2012-01-01

    The prevalence of Vibrio vulnificus on the external surfaces of fish from the northern Gulf of Mexico was determined in this study. A collection of 242 fish comprising 28 species was analyzed during the course of 12 sampling trips over a 16-month period. The prevalence of V. vulnificus was 37% but increased up to 69% in summer. A positive correlation was found between the percentages of V. vulnificus-positive fish and water temperatures, while salinity and V. vulnificus-positive fish prevalence were inversely correlated. A general lineal model (percent V. vulnificus-positive fish = 0.5930 − 0.02818 × salinity + 0.01406 × water temperature) was applied to best fit the data. Analysis of the population structure was carried out using 244 isolates recovered from fish. Ascription to 16S rRNA gene types indicated that 157 isolates were type A (62%), 72 (29%) were type B, and 22 (9%) were type AB. The percentage of type B isolates, considered to have greater virulence potential, was higher than that previously reported in oyster samples from the northern Gulf of Mexico. Amplified fragment length polymorphism (AFLP) was used to resolve the genetic diversity within the species. One hundred twenty-one unique AFLP profiles were found among all analyzed isolates, resulting in a calculated Simpson's index of diversity of 0.991. AFLP profiles were not grouped on the basis of collection date, fish species, temperature, or salinity, but isolates were clustered into two main groups that correlated precisely with 16S rRNA gene type. The population of V. vulnificus associated with fishes from the northern Gulf of Mexico is heterogeneous and includes strains of great virulence potential. PMID:22923394

  9. Prevalence and population structure of Vibrio vulnificus on fishes from the northern Gulf of Mexico.

    PubMed

    Tao, Zhen; Larsen, Andrea M; Bullard, Stephen A; Wright, Anita C; Arias, Covadonga R

    2012-11-01

    The prevalence of Vibrio vulnificus on the external surfaces of fish from the northern Gulf of Mexico was determined in this study. A collection of 242 fish comprising 28 species was analyzed during the course of 12 sampling trips over a 16-month period. The prevalence of V. vulnificus was 37% but increased up to 69% in summer. A positive correlation was found between the percentages of V. vulnificus-positive fish and water temperatures, while salinity and V. vulnificus-positive fish prevalence were inversely correlated. A general lineal model (percent V. vulnificus-positive fish = 0.5930 - 0.02818 × salinity + 0.01406 × water temperature) was applied to best fit the data. Analysis of the population structure was carried out using 244 isolates recovered from fish. Ascription to 16S rRNA gene types indicated that 157 isolates were type A (62%), 72 (29%) were type B, and 22 (9%) were type AB. The percentage of type B isolates, considered to have greater virulence potential, was higher than that previously reported in oyster samples from the northern Gulf of Mexico. Amplified fragment length polymorphism (AFLP) was used to resolve the genetic diversity within the species. One hundred twenty-one unique AFLP profiles were found among all analyzed isolates, resulting in a calculated Simpson's index of diversity of 0.991. AFLP profiles were not grouped on the basis of collection date, fish species, temperature, or salinity, but isolates were clustered into two main groups that correlated precisely with 16S rRNA gene type. The population of V. vulnificus associated with fishes from the northern Gulf of Mexico is heterogeneous and includes strains of great virulence potential.

  10. An empirical model for estimating annual consumption by freshwater fish populations

    USGS Publications Warehouse

    Liao, H.; Pierce, C.L.; Larscheid, J.G.

    2005-01-01

    Population consumption is an important process linking predator populations to their prey resources. Simple tools are needed to enable fisheries managers to estimate population consumption. We assembled 74 individual estimates of annual consumption by freshwater fish populations and their mean annual population size, 41 of which also included estimates of mean annual biomass. The data set included 14 freshwater fish species from 10 different bodies of water. From this data set we developed two simple linear regression models predicting annual population consumption. Log-transformed population size explained 94% of the variation in log-transformed annual population consumption. Log-transformed biomass explained 98% of the variation in log-transformed annual population consumption. We quantified the accuracy of our regressions and three alternative consumption models as the mean percent difference from observed (bioenergetics-derived) estimates in a test data set. Predictions from our population-size regression matched observed consumption estimates poorly (mean percent difference = 222%). Predictions from our biomass regression matched observed consumption reasonably well (mean percent difference = 24%). The biomass regression was superior to an alternative model, similar in complexity, and comparable to two alternative models that were more complex and difficult to apply. Our biomass regression model, log10(consumption) = 0.5442 + 0.9962??log10(biomass), will be a useful tool for fishery managers, enabling them to make reasonably accurate annual population consumption predictions from mean annual biomass estimates. ?? Copyright by the American Fisheries Society 2005.

  11. Patterns of connectivity among populations of a coral reef fish

    NASA Astrophysics Data System (ADS)

    Chittaro, P. M.; Hogan, J. D.

    2013-06-01

    Knowledge of the patterns and scale of connectivity among populations is essential for the effective management of species, but our understanding is still poor for marine species. We used otolith microchemistry of newly settled bicolor damselfish ( Stegastes partitus) in the Mesoamerican Reef System (MRS), Western Caribbean, to investigate patterns of connectivity among populations over 2 years. First, we assessed spatial and temporal variability in trace elemental concentrations from the otolith edge to make a `chemical map' of potential source reef(s) in the region. Significant otolith chemical differences were detected at three spatial scales (within-atoll, between-atolls, and region-wide), such that individuals were classified to locations with moderate (52 % jackknife classification) to high (99 %) accuracy. Most sites at Turneffe Atoll, Belize showed significant temporal variability in otolith concentrations on the scale of 1-2 months. Using a maximum likelihood approach, we estimated the natal source of larvae recruiting to reefs across the MRS by comparing `natal' chemical signatures from the otolith of recruits to the `chemical map' of potential source reef(s). Our results indicated that populations at both Turneffe Atoll and Banco Chinchorro supply a substantial amount of individuals to their own reefs (i.e., self-recruitment) and thus emphasize that marine conservation and management in the MRS region would benefit from localized management efforts as well as international cooperation.

  12. Tuning stochastic matrix models with hydrologic data to predict the population dynamics of a riverine fish

    USGS Publications Warehouse

    Sakaris, P.C.; Irwin, E.R.

    2010-01-01

    We developed stochastic matrix models to evaluate the effects of hydrologic alteration and variable mortality on the population dynamics of a lotie fish in a regulated river system. Models were applied to a representative lotic fish species, the flathead catfish (Pylodictis olivaris), for which two populations were examined: a native population from a regulated reach of the Coosa River (Alabama, USA) and an introduced population from an unregulated section of the Ocmulgee River (Georgia, USA). Size-classified matrix models were constructed for both populations, and residuals from catch-curve regressions were used as indices of year class strength (i.e., recruitment). A multiple regression model indicated that recruitment of flathead catfish in the Coosa River was positively related to the frequency of spring pulses between 283 and 566 m3/s. For the Ocmulgee River population, multiple regression models indicated that year class strength was negatively related to mean March discharge and positively related to June low flow. When the Coosa population was modeled to experience five consecutive years of favorable hydrologic conditions during a 50-year projection period, it exhibited a substantial spike in size and increased at an overall 0.2% annual rate. When modeled to experience five years of unfavorable hydrologic conditions, the Coosa population initially exhibited a decrease in size but later stabilized and increased at a 0.4% annual rate following the decline. When the Ocmulgee River population was modeled to experience five years of favorable conditions, it exhibited a substantial spike in size and increased at an overall 0.4% annual rate. After the Ocmulgee population experienced five years of unfavorable conditions, a sharp decline in population size was predicted. However, the population quickly recovered, with population size increasing at a 0.3% annual rate following the decline. In general, stochastic population growth in the Ocmulgee River was more

  13. Toxic materials, fishing, and environmental variation: simulated effects on striped bass population trends

    SciTech Connect

    Goodyear, C.P.

    1985-01-01

    Decreased survival of larval striped bass Morone saxatilis resulting from toxic chemicals in the environment and decreased survival of adults caused by fishing both are suspected as agents contributing to the decline in the Chesapeake Bay stock since the mid-1970s. The relative power of each type of mortality to cause population declines was evaluated with simulation techniques. Equivalent levels of added mortality induced qualitatively identical and quantitatively similar trends in population simulations for all conditions examined except if strong density-dependent mortality preceded the contaminant toxicity. In this case the contaminant effect caused a greater reduction in yield, but the population did not tend toward extinction. The results indicate that the observed downward trend in the Chesapeake Bay population can be halted or reversed by a reduction in fishing mortality, even if contaminant toxicity is the proximate cause for the decline. 28 references, 1 figure, 1 table.

  14. Cell population structure prior to bifurcation predicts efficiency of directed differentiation in human induced pluripotent cells.

    PubMed

    Bargaje, Rhishikesh; Trachana, Kalliopi; Shelton, Martin N; McGinnis, Christopher S; Zhou, Joseph X; Chadick, Cora; Cook, Savannah; Cavanaugh, Christopher; Huang, Sui; Hood, Leroy

    2017-02-28

    Steering the differentiation of induced pluripotent stem cells (iPSCs) toward specific cell types is crucial for patient-specific disease modeling and drug testing. This effort requires the capacity to predict and control when and how multipotent progenitor cells commit to the desired cell fate. Cell fate commitment represents a critical state transition or "tipping point" at which complex systems undergo a sudden qualitative shift. To characterize such transitions during iPSC to cardiomyocyte differentiation, we analyzed the gene expression patterns of 96 developmental genes at single-cell resolution. We identified a bifurcation event early in the trajectory when a primitive streak-like cell population segregated into the mesodermal and endodermal lineages. Before this branching point, we could detect the signature of an imminent critical transition: increase in cell heterogeneity and coordination of gene expression. Correlation analysis of gene expression profiles at the tipping point indicates transcription factors that drive the state transition toward each alternative cell fate and their relationships with specific phenotypic readouts. The latter helps us to facilitate small molecule screening for differentiation efficiency. To this end, we set up an analysis of cell population structure at the tipping point after systematic variation of the protocol to bias the differentiation toward mesodermal or endodermal cell lineage. We were able to predict the proportion of cardiomyocytes many days before cells manifest the differentiated phenotype. The analysis of cell populations undergoing a critical state transition thus affords a tool to forecast cell fate outcomes and can be used to optimize differentiation protocols to obtain desired cell populations.

  15. Cell population structure prior to bifurcation predicts efficiency of directed differentiation in human induced pluripotent cells

    PubMed Central

    Bargaje, Rhishikesh; Trachana, Kalliopi; Shelton, Martin N.; McGinnis, Christopher S.; Zhou, Joseph X.; Chadick, Cora; Cook, Savannah; Cavanaugh, Christopher; Huang, Sui; Hood, Leroy

    2017-01-01

    Steering the differentiation of induced pluripotent stem cells (iPSCs) toward specific cell types is crucial for patient-specific disease modeling and drug testing. This effort requires the capacity to predict and control when and how multipotent progenitor cells commit to the desired cell fate. Cell fate commitment represents a critical state transition or “tipping point” at which complex systems undergo a sudden qualitative shift. To characterize such transitions during iPSC to cardiomyocyte differentiation, we analyzed the gene expression patterns of 96 developmental genes at single-cell resolution. We identified a bifurcation event early in the trajectory when a primitive streak-like cell population segregated into the mesodermal and endodermal lineages. Before this branching point, we could detect the signature of an imminent critical transition: increase in cell heterogeneity and coordination of gene expression. Correlation analysis of gene expression profiles at the tipping point indicates transcription factors that drive the state transition toward each alternative cell fate and their relationships with specific phenotypic readouts. The latter helps us to facilitate small molecule screening for differentiation efficiency. To this end, we set up an analysis of cell population structure at the tipping point after systematic variation of the protocol to bias the differentiation toward mesodermal or endodermal cell lineage. We were able to predict the proportion of cardiomyocytes many days before cells manifest the differentiated phenotype. The analysis of cell populations undergoing a critical state transition thus affords a tool to forecast cell fate outcomes and can be used to optimize differentiation protocols to obtain desired cell populations. PMID:28167799

  16. ECOLOGICAL ENDPOINT MODELING FOR TMDLS: EFFECTS OF SEDIMENT ON FISH POPULATIONS

    EPA Science Inventory

    Sediment is one of the primary stressors of concern for Total Maximum Daily Loads (TMDLs) for streams, and often it is a concern because of its impact on ecological endpoints. A modeling approach relating sediment to stream fish population dynamics is presented. Equations are d...

  17. Evaluating effects of fish stocking on amphibian populations in wilderness lakes

    Treesearch

    David S. Pilliod; Charles R. Peterson

    2000-01-01

    To balance wilderness lake use between recreational fisheries and protected habitat for native species, managers need to understand how stocking non-native predaceous fish affects amphibian populations within a landscape. The goal of this paper is to help managers design and conduct studies that will provide such information. Desirable study characteristics include...

  18. Estimating multi-factor cumulative watershed effects on fish populations with an individual-based model

    Treesearch

    Bret C. Harvey; Steven F. Railsback

    2007-01-01

    While the concept of cumulative effects is prominent in legislation governing environmental management, the ability to estimate cumulative effects remains limited. One reason for this limitation is that important natural resources such as fish populations may exhibit complex responses to changes in environmental conditions, particularly to alteration of multiple...

  19. Estimating fish populations by removal methods with minnow traps in southeast Alaska streams.

    Treesearch

    M.D. Bryant

    2002-01-01

    Passive capture methods, such as minnow traps, are commonly used to capture fish for mark-recapture population estimates; however, they have not been used for removal methods. Minnow traps set for 90-min periods during three or four sequential capture occasions during the summer of 1996 were used to capture coho salmon Oncorhynchus kisutch fry and...

  20. VARIATION IN RESPONSIVENESS TO CONTAMINANTS IN WILD POPULATIONS OF ESTUARINE FISH, FUNDULUS HETERCLITUS

    EPA Science Inventory

    Populations of the non-migratory estuarine fish species Fundulus heteroclitus indigenous to a PCB-contaminated Superfund site (New Bedford Harbor, MA, USA) are markedly less sensitive to the toxic effects of local contaminants than those from a reference site. We characterized th...

  1. Fish in offshore kelp forests affect recruitment to intertidal barnacle populations.

    PubMed

    Gaines, S D; Roughgarden, J

    1987-01-23

    Kelp forests along the coast of central California harbor juvenile rockfish that prey on the larvae of invertebrates from the rocky intertidal zone. This predation reduces recruitment to barnacle populations to 1/50 of the level in the absence of fish. The dynamics of the intertidal community are thus strongly coupled to the dynamics of the offshore kelp community.

  2. Risk of subsequent primary malignancies among patients with prior colorectal cancer: a population-based cohort study

    PubMed Central

    Yang, Jiao; Li, Shuting; Lv, Meng; Wu, Yinying; Chen, Zheling; Shen, Yanwei; Wang, Biyuan; Chen, Ling; Yi, Min; Yang, Jin

    2017-01-01

    Background The site-distribution pattern and relative risk of subsequent primary malignancies (SPMs) in colorectal cancer (CRC) patients remains to be determined. Materials and methods A population-based cohort of 288,390 CRC patients diagnosed between 1973 and 2012 from the Surveillance, Epidemiology, and End Results database was retrospectively reviewed. Standardized incidence ratios were calculated to estimate the relative risk for SPMs. Results The overall risk of SPMs increased in CRC patients (standardized incidence ratio 1.02) in the first 5 years after CRC diagnosis compared with that in the general population, and was negatively related to age at diagnosis. Risk increased significantly for cancers of the small intestine, ureter, colorectum, renal pelvis, endocrine system, and stomach, and decreased significantly for cancers of the gallbladder, liver, myeloma, and brain, as well as lymphoma. Patients with different prior CRC subsites showed specific sites at high risk of SPM. Prior right-sided colon cancer was associated with cancers of the small intestine, ureter, renal pelvis, thyroid, stomach, pancreas, and breast and prior left-sided colon cancer associated with secondary CRC, whereas rectal cancer was associated with cancers of the vagina, urinary bladder, and lung. Conclusion Risk of SPMs increases in CRC survivors, especially in the first 5 years after prior diagnosis. Intensive surveillance should be advocated among young patients, with specific attention to the small intestine, colorectum, renal pelvis, and ureter. The common sites at high risk of SPM originate from the embryonic endoderm. Genetic susceptibility may act as the main mechanism underlying the risk of multiple cancers. PMID:28352187

  3. Proxy Measures of Fitness Suggest Coastal Fish Farms Can Act as Population Sources and Not Ecological Traps for Wild Gadoid Fish

    PubMed Central

    Dempster, Tim; Sanchez-Jerez, Pablo; Fernandez-Jover, Damian; Bayle-Sempere, Just; Nilsen, Rune; Bjørn, Pal-Arne; Uglem, Ingebrigt

    2011-01-01

    Background Ecological traps form when artificial structures are added to natural habitats and induce mismatches between habitat preferences and fitness consequences. Their existence in terrestrial systems has been documented, yet little evidence suggests they occur in marine environments. Coastal fish farms are widespread artificial structures in coastal ecosystems and are highly attractive to wild fish. Methodology/Principal Findings To investigate if coastal salmon farms act as ecological traps for wild Atlantic cod (Gadus morhua) and saithe (Pollachius virens), we compared proxy measures of fitness between farm-associated fish and control fish caught distant from farms in nine locations throughout coastal Norway, the largest coastal fish farming industry in the world. Farms modified wild fish diets in both quality and quantity, thereby providing farm-associated wild fish with a strong trophic subsidy. This translated to greater somatic (saithe: 1.06–1.12 times; cod: 1.06–1.11 times) and liver condition indices (saithe: 1.4–1.8 times; cod: 2.0–2.8 times) than control fish caught distant from farms. Parasite loads of farm-associated wild fish were modified from control fish, with increased external and decreased internal parasites, however the strong effect of the trophic subsidy overrode any effects of altered loads upon condition. Conclusions and Significance Proxy measures of fitness provided no evidence that salmon farms function as ecological traps for wild fish. We suggest fish farms may act as population sources for wild fish, provided they are protected from fishing while resident at farms to allow their increased condition to manifest as greater reproductive output. PMID:21264217

  4. Morphological plasticity and phylogeny in a monogenean parasite transferring between wild and reared fish populations.

    PubMed

    Mladineo, Ivona; Šegvić-Bubić, Tanja; Stanić, Rino; Desdevises, Yves

    2013-01-01

    It is widely accepted that disease interactions between cultured and wild fish occur repeatedly, although reported cases have mainly relied just on the observation of similar symptoms in affected populations. Whether there is an explicit pathogen transfer between fish stocks, or each develops its own pathogen population, has been insufficiently studied and rarely supported by molecular tools. In this study, we used population dynamics and genetic structure of the monogenean Furnestinia echeneis in reared and neighbouring wild sea bream to indicate pathogen transfer, characterized by the phenotypic plasticity of the parasite attachment apparatus and the lack of phylogenetic differentiation. The observed pattern of genetic variation inferred by nuclear DNA Internal Transcribed Spacer 1 (ITS1) and mtDNA cytochrome C oxidase 1 (COI), between parasite populations is most likely caused by a recent shared demographic history like a reduced species area in the last glacial period. In spite of such recent expansion that populations underwent, F. echeneis shows differentiation in haptor morphometry as an adaptive trait in closely related populations at the aquaculture site. This suggests that differentiation in morphology may occur relatively rapidly in this species and that adaptive forces, not the speciation process, drives this monogenean parasitation. On the other hand, the observed phylogenetic inertia suggests a low to moderate gene flow (based on F ST ) between parasites in cultured and wild fish, evidencing for the first time the transfer of pathogens at the aquaculture site inferred by a molecular tool.

  5. Morphological Plasticity and Phylogeny in a Monogenean Parasite Transferring between Wild and Reared Fish Populations

    PubMed Central

    Mladineo, Ivona; Šegvić-Bubić, Tanja; Stanić, Rino; Desdevises, Yves

    2013-01-01

    It is widely accepted that disease interactions between cultured and wild fish occur repeatedly, although reported cases have mainly relied just on the observation of similar symptoms in affected populations. Whether there is an explicit pathogen transfer between fish stocks, or each develops its own pathogen population, has been insufficiently studied and rarely supported by molecular tools. In this study, we used population dynamics and genetic structure of the monogenean Furnestinia echeneis in reared and neighbouring wild sea bream to indicate pathogen transfer, characterized by the phenotypic plasticity of the parasite attachment apparatus and the lack of phylogenetic differentiation. The observed pattern of genetic variation inferred by nuclear DNA Internal Transcribed Spacer 1 (ITS1) and mtDNA cytochrome C oxidase 1 (COI), between parasite populations is most likely caused by a recent shared demographic history like a reduced species area in the last glacial period. In spite of such recent expansion that populations underwent, F. echeneis shows differentiation in haptor morphometry as an adaptive trait in closely related populations at the aquaculture site. This suggests that differentiation in morphology may occur relatively rapidly in this species and that adaptive forces, not the speciation process, drives this monogenean parasitation. On the other hand, the observed phylogenetic inertia suggests a low to moderate gene flow (based on FST) between parasites in cultured and wild fish, evidencing for the first time the transfer of pathogens at the aquaculture site inferred by a molecular tool. PMID:23620799

  6. Stabilization of population fluctuations due to cannibalism promotes resource polymorphism in fish.

    PubMed

    Andersson, Jens; Bystrom, Par; Claessen, David; Persson, Lennart; De Roos, Andre M

    2007-06-01

    Resource polymorphism is a well-known phenomenon in many taxa, assumed to be a consequence of strong competition for resources and to be facilitated by stable environments and the presence of several profitable resources on which to specialize. In fish, resource polymorphism, in the form of planktivore-benthivore pairs, is found in a number of species. We gathered literature data on life-history characteristics and population dynamics for 15 fish species and investigated factors related to the presence of such resource polymorphism. This investigation indicated that early cannibalism and low overall population variability are typically associated with the presence of resource polymorphism. These findings match previously reported patterns of population dynamics for size-structured fish populations, whereby early cannibalism has been shown to decrease temporal variation in population dynamics and to equalize the profitability of the zooplankton and macroinvertebrate resources. Our study suggests that competition alone is not a sufficient condition for the development of resource polymorphism because overly strong competition is typically associated with increased temporal variation (environmental instability). We conclude that although resource competition is an important factor regulating the development of resource polymorphism, cannibalism may also play a fundamental role by dampening population oscillations and possibly by equalizing the profitability of different resources.

  7. Investigating the effect of chemical stress and resource limitation on fish populations: A case study with Fundulus heteroclitus

    EPA Science Inventory

    Modeling exposure and recovery of fish and wildlife populations after stressor mitigation serves as a basis for evaluating population status and remediation success. The Atlantic killifish (Fundulus heteroclitus) is an important and well-studied model organism for understanding t...

  8. Fish populations associated with habitat-modified piers and natural woody debris in Piedmont Carolina reservoirs

    USGS Publications Warehouse

    Barwick, R.D.; Kwak, T.J.; Noble, R.L.; Barwick, D.H.

    2004-01-01

    A primary concern associated with reservoir shoreline residential development is reduction of littoral habitat complexity and diversity. One potential approach to compensate for this is the deployment of artificial-habitat modules under existing piers, but the benefit of this practice has not been demonstrated. To evaluate the effect of pier habitat modifications on fish populations in two Piedmont Carolina reservoirs, we studied 77 piers located on forty-seven, 100-m transects that were modified using plastic "fish hab" modules augmented with brush (brushed habs), hab modules alone (habs), or left unaltered for reference purposes. We sampled fish from all piers and transects during April, July, and October 2001 using a boat-mounted electrofisher. With few exceptions, catch rates were higher at brushed-hab piers and piers with habs than at reference piers during all seasons. Similarly, during spring and summer, fish abundance was generally higher on transects containing natural woody debris, brushed habs, and habs than on reference-developed transects; however, during fall, there were exceptions. Therefore, fish abundance associated with shorelines in these reservoirs appears to be related to the structural complexity of available habitat rather than structure composition. One year after installation, 92% of pier owners responding to a mail survey expressed satisfaction with pier modifications. Supplementing piers with habitat structures is recommended to enhance littoral habitat complexity for fishes in residentially developed reservoirs.

  9. Trophic status and helminth infracommunities of fish populations in Kashmir Himalayan lakes.

    PubMed

    Shah, H B; Yousuf, A R; Chishti, M Z; Shahnaz, S; Ahmad, F

    2014-09-01

    The present study considers the influence of the trophic status of three Kashmir Himalayan lakes on the patterns of helminth infracommunities in populations of three species of fish during 2006 to 2008. Data were collected from three lakes of differing trophic status in the Kashmir Himalayas, namely Anchar, a hyper(eu)trophic lake; Dal, a eutrophic lake; and Manasbal, a meso(eu)trophic lake. Three species of fish examined included the native fish Schizothorax niger Heckel and two exotic species--Carassius carassius (Linnaeus) and Cyprinus carpio Linnaeus. The analysis of data showed a clear habitat effect on the abundance pattern of helminth species, thus revealing lake-specific differences in parasite infracommunities of both S. niger and C. carassius. Helminth infracommunity richness was the highest in host populations from the Anchar lake compared to other two lakes. Low values in the Manasbal lake emphasize the low diversity of their helminth infracommunities. On the other hand, there was no observed pattern of community structure in the case of C. carpio in the three lake sites. However due to bias in sampling there was no distinct effect of fish body size on parasite infracommunity structure, although the present results do show that fish parasite data can be meaningful in diagnosing changes in the trophic condition of eutrophic lakes.

  10. Population persistence of stream fish in response to environmental change: integrating data and models across space

    NASA Astrophysics Data System (ADS)

    Letcher, B. H.; Schueller, P.; Bassar, R.; Coombs, J.; Rosner, A.; Sakrejda, K.; Kanno, Y.; Whiteley, A.; Nislow, K. H.

    2013-12-01

    For stream fishes, environmental variation is a key driver of individual body growth/movement/survival and, by extension, population dynamics. Identifying how stream fish respond to environmental variation can help clarify mechanisms responsible for population dynamics and can help provide tools to forecast relative resilience of populations across space. Forecasting dynamics across space is challenging, however, because it can be difficult to conduct enough studies with enough intensity to fully characterize broad-scale population response to environmental change. We have adopted a multi-scale approach, using detailed individual-based studies and analyses (integral projection matrix) to determine sensitivities of population growth to environmental variation combined with broad spatial data and analyses (occupancy and abundance models) to estimate patterns of population response across space. Population growth of brook trout was most sensitive to stream flow in the spring and winter, most sensitive to stream temperature in the fall and sensitive to both flow and temperature in the summer. High flow in the spring and winter had negative effects on population growth while high temperature had a negative effect in the fall. Flow had no effect when it was cold, but a positive effect when it was warm in the summer. Combined with occupancy and abundance models, these data give insight into the spatial structure of resilient populations and can help guide prioritization of management actions.

  11. Overestimating fish counts by non-instantaneous visual censuses: consequences for population and community descriptions.

    PubMed

    Ward-Paige, Christine; Mills Flemming, Joanna; Lotze, Heike K

    2010-07-22

    Increasingly, underwater visual censuses (UVC) are used to assess fish populations. Several studies have demonstrated the effectiveness of protected areas for increasing fish abundance or provided insight into the natural abundance and structure of reef fish communities in remote areas. Recently, high apex predator densities (>100,000 individuals x km(-2)) and biomasses (>4 tonnes x ha(-1)) have been reported for some remote islands suggesting the occurrence of inverted trophic biomass pyramids. However, few studies have critically evaluated the methods used for sampling conspicuous and highly mobile fish such as sharks. Ideally, UVC are done instantaneously, however, researchers often count animals that enter the survey area after the survey has started, thus performing non-instantaneous UVC. We developed a simulation model to evaluate counts obtained by divers deploying non-instantaneous belt-transect and stationary-point-count techniques. We assessed how fish speed and survey procedure (visibility, diver speed, survey time and dimensions) affect observed fish counts. Results indicate that the bias caused by fish speed alone is huge, while survey procedures had varying effects. Because the fastest fishes tend to be the largest, the bias would have significant implications on their biomass contribution. Therefore, caution is needed when describing abundance, biomass, and community structure based on non-instantaneous UVC, especially for highly mobile species such as sharks. Based on our results, we urge that published literature state explicitly whether instantaneous counts were made and that survey procedures be accounted for when non-instantaneous counts are used. Using published density and biomass values of communities that include sharks we explore the effect of this bias and suggest that further investigation may be needed to determine pristine shark abundances and the existence of inverted biomass pyramids. Because such studies are used to make important

  12. Importance of the habitat choice behavior assumed when modeling the effects of food and temperature on fish populations

    USGS Publications Warehouse

    Wildhaber, Mark L.; Lamberson, Peter J.

    2004-01-01

    Various mechanisms of habitat choice in fishes based on food and/or temperature have been proposed: optimal foraging for food alone; behavioral thermoregulation for temperature alone; and behavioral energetics and discounted matching for food and temperature combined. Along with development of habitat choice mechanisms, there has been a major push to develop and apply to fish populations individual-based models that incorporate various forms of these mechanisms. However, it is not known how the wide variation in observed and hypothesized mechanisms of fish habitat choice could alter fish population predictions (e.g. growth, size distributions, etc.). We used spatially explicit, individual-based modeling to compare predicted fish populations using different submodels of patch choice behavior under various food and temperature distributions. We compared predicted growth, temperature experience, food consumption, and final spatial distribution using the different models. Our results demonstrated that the habitat choice mechanism assumed in fish population modeling simulations was critical to predictions of fish distribution and growth rates. Hence, resource managers who use modeling results to predict fish population trends should be very aware of and understand the underlying patch choice mechanisms used in their models to assure that those mechanisms correctly represent the fish populations being modeled.

  13. Fish population studies using parasites from the Southeastern Pacific Ocean: considering host population changes and species body size as sources of variability of parasite communities.

    PubMed

    George-Nascimento, Mario; Oliva, Marcelo

    2015-01-01

    Research using parasites in fish population studies in the South Eastern Pacific (SEP) is summarized. There are 27 such studies (snapshots mainly) in single host species sampled at different geographic localities and at somewhat similar times. They have been devoted mainly to economically important species, though others on coastal and intertidal fish or on less- or non-commercial species provide insights on scales of temporal and spatial variation of parasite infracommunities. Later, we assess whether the probability of harbouring parasites depends on the host species body size. Our results indicate that a stronger tool for fish population studies may be developed under regular (long term) scrutiny of parasite communities, especially of small fish host species, due to their larger variability in richness, abundance and total biomass, than in large fish species. Finally, it might also be necessary to consider the effects of fishing on parasite communities as well as the natural oscillations (coupled or not) of host and parasite populations.

  14. Differences in male coloration are predicted by divergent sexual selection between populations of a cichlid fish.

    PubMed

    Selz, O M; Thommen, R; Pierotti, M E R; Anaya-Rojas, J M; Seehausen, O

    2016-05-11

    Female mating preferences can influence both intraspecific sexual selection and interspecific reproductive isolation, and have therefore been proposed to play a central role in speciation. Here, we investigate experimentally in the African cichlid fish Pundamilia nyererei if differences in male coloration between three para-allopatric populations (i.e. island populations with gene flow) of P. nyererei are predicted by differences in sexual selection by female mate choice between populations. Second, we investigate if female mating preferences are based on the same components of male coloration and go in the same direction when females choose among males of their own population, their own and other conspecific populations and a closely related para-allopatric sister-species, P. igneopinnis Mate-choice experiments revealed that females of the three populations mated species-assortatively, that populations varied in their extent of population-assortative mating and that females chose among males of their own population based on different male colours. Females of different populations exerted directional intrapopulation sexual selection on different male colours, and these differences corresponded in two of the populations to the observed differences in male coloration between the populations. Our results suggest that differences in male coloration between populations of P. nyererei can be explained by divergent sexual selection and that population-assortative mating may directly result from intrapopulation sexual selection. © 2016 The Author(s).

  15. Prior Population Immunity Reduces the Expected Impact of CTL-Inducing Vaccines for Pandemic Influenza Control

    PubMed Central

    Bolton, Kirsty J.; McCaw, James M.; Brown, Lorena; Jackson, David; Kedzierska, Katherine; McVernon, Jodie

    2015-01-01

    Vaccines that trigger an influenza-specific cytotoxic T cell (CTL) response may aid pandemic control by limiting the transmission of novel influenza A viruses (IAV). We consider interventions with hypothetical CTL-inducing vaccines in a range of epidemiologically plausible pandemic scenarios. We estimate the achievable reduction in the attack rate, and, by adopting a model linking epidemic progression to the emergence of IAV variants, the opportunity for antigenic drift. We demonstrate that CTL-inducing vaccines have limited utility for modifying population-level outcomes if influenza-specific T cells found widely in adults already suppress transmission and prove difficult to enhance. Administration of CTL-inducing vaccines that are efficacious in "influenza-experienced" and "influenza-naive" hosts can likely slow transmission sufficiently to mitigate a moderate IAV pandemic. However if neutralising cross-reactive antibody to an emerging IAV are common in influenza-experienced hosts, as for the swine-variant H3N2v, boosting CTL immunity may be ineffective at reducing population spread, indicating that CTL-inducing vaccines are best used against novel subtypes such as H7N9. Unless vaccines cannot readily suppress transmission from infected hosts with naive T cell pools, targeting influenza-naive hosts is preferable. Such strategies are of enhanced benefit if naive hosts are typically intensively mixing children and when a subset of experienced hosts have pre-existing neutralising cross-reactive antibody. We show that CTL-inducing vaccination campaigns may have greater power to suppress antigenic drift than previously suggested, and targeting adults may be the optimal strategy to achieve this when the vaccination campaign does not have the power to curtail the attack rate. Our results highlight the need to design interventions based on pre-existing cellular immunity and knowledge of the host determinants of vaccine efficacy, and provide a framework for assessing the

  16. Population pharmacokinetics of ticagrelor and AR-C124910XX in patients with prior myocardial infarction
.

    PubMed

    Röshammar, Daniel; Bergstrand, Martin; Andersson, Tomas; Storey, Robert F; Hamrén, Bengt

    2017-05-01

    The population pharmacokinetics of ticagrelor and its active metabolite AR-C124910XX were characterized following ticagrelor 60 mg or 90 mg twice daily oral long-term treatment in 4,426 patients with a history of myocardial infarction. The ticagrelor and AR-C124910XX plasma concentration-time data were described by one-compartment models with first-order absorption or metabolite formation and elimination. Systemic exposure to ticagrelor and AR-C124910XX were stable over time. Ticagrelor apparent clearance (CL/F) was 17 L/h for the 60-mg and 15.4 L/h for the 90-mg dose. The CL/F of AR-C124910XX was 11.1 L/h for the 60-mg and 9.95 L/h for the 90-mg dose. Both ticagrelor and AR-C124910XX CL/F were independently influenced by body weight, sex, age, smoking, and Japanese ethnicity. Female sex and age > 75 years were the only categorical covariates, having more than 20% effect on AR-C124910XX CL/F. Ticagrelor CL/F was 6% higher and 11% lower, whereas AR-C124910XX CL/F was 26% higher and 34% lower for patients weighing 110 and 50 kg, respectively, compared with an 83 kg patient. The small differences in exposure to both ticagrelor and AR-C124910XX between demographic subgroups were in accordance with the consistent efficacy and safety outcomes observed across the population. The results were similar to those observed previously in patients with acute coronary syndromes.
.

  17. Rain, fish and snakes: climatically driven population dynamics of Arafura filesnakes in tropical Australia.

    PubMed

    Madsen, T; Shine, R

    2000-08-01

    Arafura filesnakes (Acrochordus arafurae) are large (up to 2.5 m, 5 kg) aquatic nonvenomous snakes that feed entirely on fishes. A 10-year field study in the Australian wet-dry tropics revealed strong correlations between rainfall patterns, fish abundance, and snake population dynamics. All of these characteristics showed considerable annual variation. High rainfall late in the wet season (February-March) caused prolonged inundation of the floodplain. Following such years, dry-season sampling revealed that fishes were abundant, filesnakes were in good body condition, and a high proportion of adult female filesnakes were reproductive. Annual variation in recruitment to the population (as judged by the relative abundance of yearling snakes) was also correlated with fish abundance and thus, with rainfall patterns in the late-wet season. Our results fit well with those from other studies on a diverse array of aquatic and terrestrial species within the wet-dry tropics. Annual variation in rainfall patterns, via its effects on prey abundance, may drive the population dynamics of many tropical predators.

  18. An integrative approach to assess ecological risks of surface water contamination for fish populations.

    PubMed

    Santos, Raphael; Joyeux, Aude; Besnard, Aurélien; Blanchard, Christophe; Halkett, Cédric; Bony, Sylvie; Sanchez, Wilfried; Devaux, Alain

    2017-01-01

    Contamination of aquatic ecosystems is considered as one of the main threats to global freshwater biodiversity. Within the European Water Framework Directive (EU-WFD) a particular attention is dedicated to assess ecological risks of surface water contamination and mitigation of chemical pressures on aquatic ecosystems. In this work, we evaluated ecological risks of surface water contamination for fish populations in four EU-WFD rivers through an integrative approach investigating three Lines of Evidence (chemical contamination, biomarker responses as early warning signals of contamination impacting individuals and ecological analyses as an indicator of fish community disturbances). This work illustrates through 4 case studies the complementary role of biomarkers, chemical and ecological analyses which, used in combination, provide fundamental information to understand impacts of chemical pressures that can affect fish population dynamics. We discuss the limitations of this approach and future improvements needed within the EU-WFD to assess ecological risk of river contamination for fish populations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Indirect effect of temperature on fish population abundances through phenological changes.

    PubMed

    Kuczynski, Lucie; Chevalier, Mathieu; Laffaille, Pascal; Legrand, Marion; Grenouillet, Gaël

    2017-01-01

    In response to climate change, earlier phenological events have been reported for a large range of taxa such that phenological shifts are considered as one of the fingerprints of the effect of climate change on organisms. Evidence further suggests that changes in the timing of phenological events might decouple biotic interactions due to differential phenological adjustment among interacting species, ultimately leading to population declines. Nonetheless, few studies have investigated how climate-driven changes in the timing of phenological events influence population abundances. In this study, we investigated how two environmental variables known to influence the migration timing of freshwater fish (i.e. water discharge and temperature) directly or indirectly influenced abundances of 21 fish species using daily time series gathered at four sites located in France over a period spanning from 9 to 21 years. We found no evidence for long-term trends in migration timing or fish abundances over time. Using piecewise structural equation models, we demonstrate that inter-annual variations in abundances were driven by inter-annual variations in temperature through variations in migration timing. Overall, our results suggest that climate change may concomitantly influence different biological aspects (e.g. phenology, abundance) of fish species. We argue that considering different responses to climate change is paramount if we are to improve our understanding of how organisms and populations are influenced by climate change in order to set-up efficient conservation strategies.

  20. Trematode infection causes malformations and population effects in a declining New Zealand fish.

    PubMed

    Kelly, David W; Thomas, Harriet; Thieltges, David W; Poulin, Robert; Tompkins, Daniel M

    2010-03-01

    1. Animal malformations engender wide public and scientific concern because of associated environmental health risks. This is highlighted by increased incidence of limb malformations in amphibians associated with trematode infections and disturbance. Malformations may signal new emerging disease threats, but whether the phenomenon is broadly applicable across taxa, or has population-scale impacts, is unknown. 2. Malformations are widely reported in fish and, until now, have been attributed mainly to contaminants. We tested whether the trematode Telogaster opisthorchis caused severe malformations, leading to population effects, in Galaxias anomalus, a threatened New Zealand freshwater fish. 3. Experimental infection of larval fish caused increasing spinal malformation and mortality with infection intensity that closely matched field patterns. Field malformation frequency peaked in January (65%), before declining sharply in February (25%) and remaining low thereafter. 4. The peak occurred during a 'critical window' of larval development, with the decline coincident with a population crash, indicating that malformation was causing mortality in the field. 5. The occurrence of such critical developmental windows may explain why this mechanism of population impact has been overlooked. With global environmental stressors predicted to enhance trematode infections, our results show that parasite-induced malformation, and its population-scale impacts, could be more widespread than previously considered.

  1. Evaluation of general response patterns as a diagnostic tool to determining contaminant impacts on fish populations

    SciTech Connect

    Jaworska, J.S.; Barnthouse, L.W.; Rose, K.A.

    1995-12-31

    Five General Response Patterns by fish populations exposed to stress were hypothesized by P. Colby and K. Munkittrick and D. Dixon. The authors used an individual based model of walleye and yellow perch configured for Oneida Lake, NY to test the generality of these patterns. They compared the yellow perch population responses in mean age, size at age, fraction mature at age, individual fecundity and density under 5 stress conditions. The stresses imposed were: (1) adults mortality; (2) eggs mortality (3) metabolic impacts on juveniles; (4) indirect effects from predator level -- increased predator mortality; (5) indirect effects form prey level -- reduced carrying capacity. Modeled yellow perch responses different from the responses hypothesized by Colby/Munkittrick and Dixon. Their analysis shows that the strength of predator-prey coupling must be considered when using patterns of growth, mortality and reproduction to infer the identity of stressors influencing fish populations.

  2. Applying population genetics for authentication of marine fish: the case of saithe (Pollachius virens).

    PubMed

    Behrmann, Konstanze; Rehbein, Hartmut; von Appen, Annika; Fischer, Markus

    2015-01-28

    The number of fishery products with a quite detailed description of the origin is increasing. This trend is driven by the interest of consumers and the fight against illegal unregulated and unreported fisheries. Unfortunately, there is a lack of methods to prove this information experimentally besides the document-based traceability assessments. For marine fish population genetics is a promising strategy, but research is concentrated only on a few species. Saithe is a commercially important fish species, despite the fact that genetic knowledge is scarce regarding the specification of populations. For a comparative study cost- and time-effective strategies were tested: We found RAPD-PCR to be a useful method for low-budget research or prestudies. Adoption of microsatellites from closely related species turned out to be possible with limited success quota. Our results suggest a clustered structure of populations within the Northeast Atlantic, probably overlapping in the northern North Sea.

  3. Impact of climate change on fish population dynamics in the Baltic sea: a dynamical downscaling investigation.

    PubMed

    Mackenzie, Brian R; Meier, H E Markus; Lindegren, Martin; Neuenfeldt, Stefan; Eero, Margit; Blenckner, Thorsten; Tomczak, Maciej T; Niiranen, Susa

    2012-09-01

    Understanding how climate change, exploitation and eutrophication will affect populations and ecosystems of the Baltic Sea can be facilitated with models which realistically combine these forcings into common frameworks. Here, we evaluate sensitivity of fish recruitment and population dynamics to past and future environmental forcings provided by three ocean-biogeochemical models of the Baltic Sea. Modeled temperature explained nearly as much variability in reproductive success of sprat (Sprattus sprattus; Clupeidae) as measured temperatures during 1973-2005, and both the spawner biomass and the temperature have influenced recruitment for at least 50 years. The three Baltic Sea models estimate relatively similar developments (increases) in biomass and fishery yield during twenty-first century climate change (ca. 28 % range among models). However, this uncertainty is exceeded by the one associated with the fish population model, and by the source of global climate data used by regional models. Knowledge of processes and biases could reduce these uncertainties.

  4. Evidence for harvest-induced maternal influences on the reproductive rates of fish populations.

    PubMed

    Venturelli, Paul A; Shuter, Brian J; Murphy, Cheryl A

    2009-03-07

    Knowledge of the relationship between the number of offspring produced (recruitment) and adult abundance is fundamental to forecasting the dynamics of an exploited population. Although small-scale experiments have documented the importance of maternal quality to offspring survival in plants and animals, the effects of this association on the recruitment dynamics of exploited populations are largely unknown. Here, we present results from both a simple population model and a meta-analysis of time-series data from 25 species of exploited marine fishes that suggest that a population of older, larger individuals has a higher maximum reproductive rate than an equivalent population of younger, smaller individuals, and that this difference increases with the reproductive lifespan of the population. These findings (i) establish an empirical link between population age structure and reproductive rate that is consistent with strong effects of maternal quality on population dynamics and (ii) provide further evidence that extended age structure is essential to the sustainability of many exploited fish stocks.

  5. Evidence for harvest-induced maternal influences on the reproductive rates of fish populations

    PubMed Central

    Venturelli, Paul A.; Shuter, Brian J.; Murphy, Cheryl A.

    2008-01-01

    Knowledge of the relationship between the number of offspring produced (recruitment) and adult abundance is fundamental to forecasting the dynamics of an exploited population. Although small-scale experiments have documented the importance of maternal quality to offspring survival in plants and animals, the effects of this association on the recruitment dynamics of exploited populations are largely unknown. Here, we present results from both a simple population model and a meta-analysis of time-series data from 25 species of exploited marine fishes that suggest that a population of older, larger individuals has a higher maximum reproductive rate than an equivalent population of younger, smaller individuals, and that this difference increases with the reproductive lifespan of the population. These findings (i) establish an empirical link between population age structure and reproductive rate that is consistent with strong effects of maternal quality on population dynamics and (ii) provide further evidence that extended age structure is essential to the sustainability of many exploited fish stocks. PMID:19033140

  6. Geographic coupling of juvenile and adult habitat shapes spatial population dynamics of a coral reef fish.

    PubMed

    Huijbers, Chantal M; Nagelkerken, Ivan; Debrot, Adolphe O; Jongejans, Eelke

    2013-08-01

    Marine spatial population dynamics are often addressed with a focus on larval dispersal, without taking into account movement behavior of individuals in later life stages. Processes occurring during demersal life stages may also drive spatial population dynamics if habitat quality is perceived differently by animals belonging to different life stages. In this study, we used a dual approach to understand how stage-structured habitat use and dispersal ability of adults shape the population of a marine fish species. Our study area and focal species provided us with the unique opportunity to study a closed island population. A spatial simulation model was used to estimate dispersal distances along a coral reef that surrounds the island, while contributions of different nursery bays were determined based on otolith stable isotope signatures of adult reef fish. The model showed that adult dispersal away from reef areas near nursery bays is limited. The results further show that different bays contributed unequally to the adult population on the coral reef, with productivity of juveniles in bay nursery habitat determining the degree of mixing among local populations on the reef and with one highly productive area contributing most to the island's reef fish population. The contribution of the coral reef as a nursery habitat was minimal, even though it had a much larger surface area. These findings indicate that the geographic distribution of nursery areas and their productivity are important drivers for the spatial distribution patterns of adults on coral reefs. We suggest that limited dispersal of adults on reefs can lead to a source-sink structure in the adult stage, where reefs close to nurseries replenish more isolated reef areas. Understanding these spatial population dynamics of the demersal phase of marine animals is of major importance for the design and placement of marine reserves, as nursery areas contribute differently to maintain adult populations.

  7. Population divergence in fish elemental phenotypes associated with trophic phenotypes and lake trophic state.

    PubMed

    Tuckett, Quenton M; Kinnison, Michael T; Saros, Jasmine E; Simon, Kevin S

    2016-11-01

    Studies of ecological stoichiometry typically emphasize the role of interspecific variation in body elemental content and the effects of species or family identity. Recent work suggests substantial variation in body stoichiometry can also exist within species. The importance of this variation will depend on insights into its origins and consequences at various ecological scales, including the distribution of elemental phenotypes across landscapes and their role in nutrient recycling. We investigated whether trophic divergence can produce predictable patterns of elemental phenotypes among populations of an invasive fish, the white perch (Morone americana), and whether elemental phenotypes predict nutrient excretion. White perch populations exhibited a gradient of trophic phenotypes associated with landscape-scale variation in lake trophic state. Perch body chemistry varied considerably among lakes (from 0.09 for % C to 0.31-fold for % P) casting doubt on the assumption of homogenous elemental phenotypes. This variation was correlated with divergence in fish body shape and other trophic traits. Elemental phenotypes covaried (r (2) up to 0.84) with lake trophic state. This covariation likely arose in contemporary time since many of these perch populations were introduced in the last century and the trophic state in many of the lakes has changed in the past few decades. Nutrient excretion varied extensively among populations, but was not readily related to fish body chemistry or lake trophic state. This suggests that predictable patterns of fish body composition can arise quickly through trophic specialization to lake conditions, but such elemental phenotypes may not translate to altered nutrient recycling by fish.

  8. Effects of prior experience on host selection and host utilization by two populations of Anisopteromalus calandrae (Hymenoptera: Pteromalidae).

    PubMed

    Ghimire, Mukti N; Phillips, Thomas W

    2008-10-01

    The effect of adult learning through an oviposition and host feeding experience was studied in two populations of Anisopteromalus calandrae (Hymenoptera: Pteromalidae), in choice and no-choice experiments in the laboratory using last instars of rice weevil, Sitophilus oryzae L., and lesser grain borer, Rhyzopertha dominica (F.), as hosts. In choice experiments, 20 wheat kernels infested by rice weevil and 20 by lesser grain borer were placed randomly in petri dish (15 by 100 mm) arenas. In no-choice experiments, 10 host-infested wheat kernels, either with rice weevils or with lesser grain borers, were mixed thoroughly in 500 g of uninfested wheat placed in a 0.945-liter glass jar (75 by 170 mm) arenas. A. calandrae females from a laboratory and field populations that were experienced with host larvae or naïve were introduced singly into each experimental arena and allowed to sting and oviposit for 24 h. An oviposition experience with rice weevil or lesser grain borer had a stronger effect on host preference in choice experiments compared with experiments with naïve wasps. Host-finding and parasitism rates were increased by prior experience with rice weevils in no-choice experiments. A. calandrae females clearly preferred rice weevil larvae for parasitization over larvae of lesser grain borer regardless of parasitoid population or prior experience. Also, A. calandrae females chose rice weevil larvae for producing female progeny and lesser grain borer for male progeny in choice experiments. The implications of the results of this study are discussed in relation to host preference and the selection of parasitoid populations for biological control programs in stored grains.

  9. An observer for a nonlinear age-structured model of a harvested fish population.

    PubMed

    Ngom, Diène; Iggidr, Abderrahman; Guiro, Aboudramane; Ouahbi, Abderrahim

    2008-04-01

    We consider an age-structured model of a harvested population. This model is a discrete-time system that includes a nonlinear stock-recruitment relationship. Our purpose is to estimate the stock state. To achieve this goal, we built an observer, which is an auxiliary system that uses the total number of fish caught over each season and gives a dynamical estimation of the number of fish by age class. We analyse the convergence of the observer and we show that the error estimation tends to zero with exponential speed if a condition on the fishing effort is satisfied. Moreover the constructed observer (dynamical estimator) does not depend on the poorly understood stock-recruitment relationship. This study shows how some tools from nonlinear control theory can help to deal with the state estimation problem in the field of renewable resource management.

  10. Population and biological parameters of selected fish species from the middle Xingu River, Amazon Basin.

    PubMed

    Camargo, M; Giarrizzo, T; Isaac, V J

    2015-08-01

    This study estimates the main biological parameters, including growth rates, asymptotic length, mortality, consumption by biomass, biological yield, and biomass, for the most abundant fish species found on the middle Xingu River, prior to the construction of the Belo Monte Dam. The specimens collected in experimental catches were analysed with empirical equations and length-based FISAT methods. For the 63 fish species studied, high growth rates (K) and high natural mortality (M) were related to early sexual maturation and low longevity. The predominance of species with short life cycles and a reduced number of age classes, determines high rates of stock turnover, which indicates high productivity for fisheries, and a low risk of overfishing.

  11. Iodine nutritional status in the adult population of Shandong Province (China) prior to salt reduction program.

    PubMed

    Xu, Chunxiao; Guo, Xiaolei; Tang, Junli; Guo, Xiaowei; Lu, Zilong; Zhang, Jiyu; Bi, Zhenqiang

    2016-08-01

    Tremendous differences in iodine status and daily iodine intake persist across provinces of China. The objective of the present study was to evaluate the iodine status and dietary iodine intake of Shandong adults before the implementation of the salt reduction program and a new salt iodization standard. Data from a baseline survey of the Shandong and Ministry of Health Action on Salt Reduction and Hypertension project (2011) were analyzed. The iodine contents of 1949 24-h urine samples and 136 drinking water samples were assayed. Daily urinary iodine excretion and daily iodine intake were calculated, analyzed, stratified by different analytical variables and compared with Chinese Dietary Reference Values. The median urinary iodine concentration and median daily iodine intake of Shandong adults were 248.5 μg/L and 368.2 μg/day, respectively. The median iodine intake of different groups was between the estimated average requirements and the upper limit, except group in water iodine >300 μg/L with median iodine intake of 1200.7 μg/L. Salt intake and iodine levels in drinking water related to iodine intake significantly. Shandong adults had more than adequate iodine nutrition, and the dietary iodine intake of the population was generally appropriate and safe except residents in high water iodine areas. In the context of the implementation of a salt reduction program and a new salt iodization standard, the iodine status of high water iodine areas may remain in the recommended level, but in low water iodine areas, the risk of inadequate iodine intake may increase, needing monitoring of urine iodine excretion, dietary iodine intake and iodized salt consumption regularly.

  12. Fish population size and movement patterns in a small intermittently open South African estuary

    NASA Astrophysics Data System (ADS)

    Lukey, J. R.; Booth, A. J.; Froneman, P. W.

    2006-03-01

    The population size and movement patterns of small fish (>50 mm SL) in a small intermittently open estuary (Grant's Valley estuary: 33°40'12.1″S, 26°42'12.6″E) situated on the south-east Cape coast of South Africa were examined during the closed phase over the period May and August 2004. The estuary was subdivided into four discrete areas and the fish within each area sampled using a 30 m seine net (15 mm mesh). Fish captured were marked by fin clipping according to the area of capture. Fish population size was estimated by using three methods: the Schnabel estimator, the Hilborn estimator, and a derived estimator. A total of 12 species was captured and marked during the study. The total number of fish in the estuary was estimated at ca. 12 000 individuals (11 219-13 311). Marine-breeding species ( Rhabdosargus holubi, Monodactylus falciformis, and two mullet species) numerically dominated the ichthyofauna, possibly as a result of their effective use of overtopping events, when seawater washes over the sandbar, to enter the estuary during the closed mouth phase. The two mullet species, Myxus capensis and Liza richardsonii, and the Cape stumpnose, R. holubi moved extensively throughout the estuary, while the remaining species exhibited restricted movement patterns possibly due to the preference for refuge and foraging areas associated with reed beds. The observed movement patterns of individual fish species appeared to be associated with both foraging behaviour and habitat selection.

  13. Populations of a cyprinid fish are self-sustaining despite widespread feminization of males

    PubMed Central

    2014-01-01

    Background Treated effluents from wastewater treatment works can comprise a large proportion of the flow of rivers in the developed world. Exposure to these effluents, or the steroidal estrogens they contain, feminizes wild male fish and can reduce their reproductive fitness. Long-term experimental exposures have resulted in skewed sex ratios, reproductive failures in breeding colonies, and population collapse. This suggests that environmental estrogens could threaten the sustainability of wild fish populations. Results Here we tested this hypothesis by examining population genetic structures and effective population sizes (Ne) of wild roach (Rutilus rutilus L.) living in English rivers contaminated with estrogenic effluents. Ne was estimated from DNA microsatellite genotypes using approximate Bayesian computation and sibling assignment methods. We found no significant negative correlation between Ne and the predicted estrogen exposure at 28 sample sites. Furthermore, examination of the population genetic structure of roach in the region showed that some populations have been confined to stretches of river with a high proportion of estrogenic effluent for multiple generations and have survived, apparently without reliance on immigration of fish from less polluted sites. Conclusions These results demonstrate that roach populations living in some effluent-contaminated river stretches, where feminization is widespread, are self-sustaining. Although we found no evidence to suggest that exposure to estrogenic effluents is a significant driving factor in determining the size of roach breeding populations, a reduction in Ne of up to 65% is still possible for the most contaminated sites because of the wide confidence intervals associated with the statistical model. PMID:24417977

  14. High population density enhances recruitment and survival of a harvested coral reef fish.

    PubMed

    Wormald, Clare L; Steele, Mark A; Forrester, Graham E

    2013-03-01

    A negative relationship between population growth and population density (direct density dependence) is necessary for population regulation and is assumed in most models of harvested populations. Experimental tests for density dependence are lacking for large-bodied, harvested fish because of the difficulty of manipulating population density over large areas. We studied a harvested coral reef fish, Lutjanus apodus (schoolmaster snapper), using eight large, isolated natural reefs (0.4-1.6 ha) in the Bahamas as replicates. An initial observational test for density dependence was followed by a manipulation of population density. The manipulation weakened an association between density and shelter-providing habitat features and revealed a positive effect of population density on recruitment and survival (inverse density dependence), but no effect of density on somatic growth. The snappers on an individual reef were organized into a few shoals, and we hypothesize that large shoals on high-density reefs were less vulnerable to large piscivores (groupers and barracudas) than the small shoals on low-density reefs. Reductions in predation risk for individuals in large social groups are well documented, but because snapper shoals occupied reefs the size of small marine reserves, these ecological interactions may influence the outcome of management actions.

  15. Stochastic population dynamics and life-history variation in marine fish species.

    PubMed

    Bjørkvoll, Eirin; Grøtan, Vidar; Aanes, Sondre; Sæther, Bernt-Erik; Engen, Steinar; Aanes, Ronny

    2012-09-01

    We examined whether differences in life-history characteristics can explain interspecific variation in stochastic population dynamics in nine marine fish species living in the Barents Sea system. After observation errors in population estimates were accounted for, temporal variability in natural mortality rate, annual recruitment, and population growth rate was negatively related to generation time. Mean natural mortality rate, annual recruitment, and population growth rate were lower in long-lived species than in short-lived species. Thus, important species-specific characteristics of the population dynamics were related to the species position along the slow-fast continuum of life-history variation. These relationships were further associated with interspecific differences in ecology: species at the fast end were mainly pelagic, with short generation times and high natural mortality, annual recruitment, and population growth rates, and also showed high temporal variability in those demographic traits. In contrast, species at the slow end were long-lived, deepwater species with low rates and reduced temporal variability in the same demographic traits. These interspecific relationships show that the life-history characteristics of a species can predict basic features of interspecific variation in population dynamical characteristics of marine fish, which should have implications for the choice of harvest strategy to facilitate sustainable yields.

  16. [The economical and evolutionary aspects of the optimal catch of the fish population].

    PubMed

    Il'ichev, V G

    2003-01-01

    The natural interpretation of population value (internal cost) is used for the common mathematical problem of population exploitation. It is suggested that the population owner--the state--can use internal costs as a tax on fish caught by holders (fishermen). It turns out that such a tax outline make fisherman to establish an optimal long-term strategy of catch. Moreover, if there is several fishermen' the special tax, which makes them to be consistent with common cooperative strategy, can be worked out. According to the proposed hypothesis the changes in internal costs can be used as an adaptive response to the "demand and supply" deformation of the exploited population. The concept of "ecological-economical" niche (habitat + place of sale) was proposed to characterize the exploited population. Computer calculations revealed the specific variant of Gause principle: the co-existing of two similar populations is impossible within single "ecologic-economical" niche. On the contrary, exploited similar populations show co-existence while fish is sailed on different markets.

  17. Connectivity, passability and heterogeneity interact to determine fish population persistence in river networks

    PubMed Central

    Samia, Yasmine; Lutscher, Frithjof; Hastings, Alan

    2015-01-01

    The movement of fish in watersheds is frequently inhibited by human-made migration barriers such as dams or culverts. The resulting lack of connectivity of spatial subpopulations is often cited as a cause for observed population decline. We formulate a matrix model for a spatially distributed fish population in a watershed, and we investigate how location and other characteristics of a single movement barrier impact the asymptotic growth rate of the population. We find that while population growth rate often decreases with the introduction of a movement obstacle, it may also increase due to a ‘retention effect’. Furthermore, obstacle mortality greatly affects population growth rate. In practice, different connectivity indices are used to predict population effects of migration barriers, but the relation of these indices to population growth rates in demographic models is often unclear. When comparing our results with the dentritic connectivity index, we see that the index captures neither the retention effect nor the influences of obstacle mortality. We argue that structural indices cannot entirely replace more detailed demographic models to understand questions of persistence and extinction. We advocate the development of novel functional indices and characteristics. PMID:26311313

  18. Connectivity, passability and heterogeneity interact to determine fish population persistence in river networks.

    PubMed

    Samia, Yasmine; Lutscher, Frithjof; Hastings, Alan

    2015-09-06

    The movement of fish in watersheds is frequently inhibited by human-made migration barriers such as dams or culverts. The resulting lack of connectivity of spatial subpopulations is often cited as a cause for observed population decline. We formulate a matrix model for a spatially distributed fish population in a watershed, and we investigate how location and other characteristics of a single movement barrier impact the asymptotic growth rate of the population. We find that while population growth rate often decreases with the introduction of a movement obstacle, it may also increase due to a 'retention effect'. Furthermore, obstacle mortality greatly affects population growth rate. In practice, different connectivity indices are used to predict population effects of migration barriers, but the relation of these indices to population growth rates in demographic models is often unclear. When comparing our results with the dentritic connectivity index, we see that the index captures neither the retention effect nor the influences of obstacle mortality. We argue that structural indices cannot entirely replace more detailed demographic models to understand questions of persistence and extinction. We advocate the development of novel functional indices and characteristics. © 2015 The Author(s).

  19. Relationship of habitat variability to population size in a stream fish.

    PubMed

    Wood, Jacquelyn L A; Belmar-Lucero, Sebastian; Hutchings, I Jeffrey A; Fraser, Dylan J

    2014-07-01

    The relationship between habitat variability and population size in fragmented habitats is poorly understood, yet might have important evolutionary consequences. For instance, fragmentation could (1) shift habitat characteristics, and by extension, selective regimes, in a consistent direction as populations and the fragments they occupy are reduced in size (directional hypothesis): or (2) increase variability in habitats among similarly sized populations as fragment size decreases (variable hypothesis). We investigated these alternatives based on multiyear habitat, demographic, and genetic data from 19 fragmented populations of a stream fish varying in census size (N) and effective number of breeders (N(b)). Mean habitat parameters were significantly related to N and N(b), but the forms of the relationships varied, and there was no evidence of consistent directional differences in habitat parameters from small to large population size. Small populations exhibited a wider range of variances in habitat parameters than large populations, and to a lesser extent, small populations also had greater variability in mean habitat parameters, possibly signaling more diverse selective regimes. These results suggest that many different environments are associated with small population size in nature, counter to the frequently cited assumption that small populations tend to occur only in marginal environments. In addition to well-documented demographic and genetic stochasticity operating within small populations, our work raises the possibility that small populations exhibit more variable and potentially less predictable evolutionary responses to future environmental change.

  20. Removal of nonnative fish results in population expansion of a declining amphibian (mountain yellow-legged frog, Rana muscosa)

    PubMed Central

    KNAPP, Roland A.; BOIANO, Daniel M.; VREDENBURG, Vance T.

    2007-01-01

    The mountain yellow-legged frog (Rana muscosa) was once a common inhabitant of the Sierra Nevada (California, USA), but has declined precipitously during the past century due in part to the introduction of nonnative fish into naturally fishless habitats. The objectives of the current study were to describe (1) the effect of fish removal from three lakes (located in two watersheds) on the small, remnant R. muscosa populations inhabiting those lakes, and (2) the initial development of metapopulation structure in each watershed as R. muscosa from expanding populations in fish-removal lakes dispersed to adjacent habitats. At all three fish-removal lakes, R. muscosa population densities increased significantly following the removal of predatory fish. The magnitude of these increases was significantly greater than that observed over the same time period in R. muscosa populations inhabiting control lakes that remained in their natural fishless condition. Following these population increases, R. muscosa dispersed to adjacent suitable (but unoccupied) sites, moving between 200 and 900 m along streams or across dry land. Together, these results suggest that large-scale removal of introduced fish could result in at least partial reversal of the decline of R. muscosa. Continued monitoring of R. muscosa at the fish-removal sites will be necessary to determine whether the positive effects of fish eradication are sustained over the long-term, especially in light of the increasingly important role played by an emerging infectious disease (chytridiomycosis, caused by Batrachochytrium dendrobatidis) in influencing R. muscosa populations. PMID:17396156

  1. Adaptive divergence between lake and stream populations of an East African cichlid fish.

    PubMed

    Theis, Anya; Ronco, Fabrizia; Indermaur, Adrian; Salzburger, Walter; Egger, Bernd

    2014-11-01

    Divergent natural selection acting in different habitats may build up barriers to gene flow and initiate speciation. This speciation continuum can range from weak or no divergence to strong genetic differentiation between populations. Here, we focus on the early phases of adaptive divergence in the East African cichlid fish Astatotilapia burtoni, which occurs in both Lake Tanganyika (LT) and inflowing rivers. We first assessed the population structure and morphological differences in A. burtoni from southern LT. We then focused on four lake-stream systems and quantified body shape, ecologically relevant traits (gill raker and lower pharyngeal jaw) as well as stomach contents. Our study revealed the presence of several divergent lake-stream populations that rest at different stages of the speciation continuum, but show the same morphological and ecological trajectories along the lake-stream gradient. Lake fish have higher bodies, a more superior mouth position, longer gill rakers and more slender pharyngeal jaws, and they show a plant/algae and zooplankton-biased diet, whereas stream fish feed more on snails, insects and plant seeds. A test for reproductive isolation between closely related lake and stream populations did not detect population-assortative mating. Analyses of F1 offspring reared under common garden conditions indicate that the detected differences in body shape and gill raker length do not constitute pure plastic responses to different environmental conditions, but also have a genetic basis. Taken together, the A. burtoni lake-stream system constitutes a new model to study the factors that enhance and constrain progress towards speciation in cichlid fishes. © 2014 John Wiley & Sons Ltd.

  2. A moving target--incorporating knowledge of the spatial ecology of fish into the assessment and management of freshwater fish populations.

    PubMed

    Cooke, Steven J; Martins, Eduardo G; Struthers, Daniel P; Gutowsky, Lee F G; Power, Michael; Doka, Susan E; Dettmers, John M; Crook, David A; Lucas, Martyn C; Holbrook, Christopher M; Krueger, Charles C

    2016-04-01

    Freshwater fish move vertically and horizontally through the aquatic landscape for a variety of reasons, such as to find and exploit patchy resources or to locate essential habitats (e.g., for spawning). Inherent challenges exist with the assessment of fish populations because they are moving targets. We submit that quantifying and describing the spatial ecology of fish and their habitat is an important component of freshwater fishery assessment and management. With a growing number of tools available for studying the spatial ecology of fishes (e.g., telemetry, population genetics, hydroacoustics, otolith microchemistry, stable isotope analysis), new knowledge can now be generated and incorporated into biological assessment and fishery management. For example, knowing when, where, and how to deploy assessment gears is essential to inform, refine, or calibrate assessment protocols. Such information is also useful for quantifying or avoiding bycatch of imperiled species. Knowledge of habitat connectivity and usage can identify critically important migration corridors and habitats and can be used to improve our understanding of variables that influence spatial structuring of fish populations. Similarly, demographic processes are partly driven by the behavior of fish and mediated by environmental drivers. Information on these processes is critical to the development and application of realistic population dynamics models. Collectively, biological assessment, when informed by knowledge of spatial ecology, can provide managers with the ability to understand how and when fish and their habitats may be exposed to different threats. Naturally, this knowledge helps to better evaluate or develop strategies to protect the long-term viability of fishery production. Failure to understand the spatial ecology of fishes and to incorporate spatiotemporal data can bias population assessments and forecasts and potentially lead to ineffective or counterproductive management actions.

  3. A moving target—incorporating knowledge of the spatial ecology of fish into the assessment and management of freshwater fish populations

    USGS Publications Warehouse

    Cooke, Steven J.; Martins, Eduardo G; Struthers, Daniel P; Gutowsky, Lee F G; Powers, Michael H.; Doka, Susan E; Dettmers, John M.; Crook, David A; Lucas, Martyn C.; Holbrook, Christopher; Krueger, Charles C.

    2016-01-01

    Freshwater fish move vertically and horizontally through the aquatic landscape for a variety of reasons, such as to find and exploit patchy resources or to locate essential habitats (e.g., for spawning). Inherent challenges exist with the assessment of fish populations because they are moving targets. We submit that quantifying and describing the spatial ecology of fish and their habitat is an important component of freshwater fishery assessment and management. With a growing number of tools available for studying the spatial ecology of fishes (e.g., telemetry, population genetics, hydroacoustics, otolith microchemistry, stable isotope analysis), new knowledge can now be generated and incorporated into biological assessment and fishery management. For example, knowing when, where, and how to deploy assessment gears is essential to inform, refine, or calibrate assessment protocols. Such information is also useful for quantifying or avoiding bycatch of imperiled species. Knowledge of habitat connectivity and usage can identify critically important migration corridors and habitats and can be used to improve our understanding of variables that influence spatial structuring of fish populations. Similarly, demographic processes are partly driven by the behavior of fish and mediated by environmental drivers. Information on these processes is critical to the development and application of realistic population dynamics models. Collectively, biological assessment, when informed by knowledge of spatial ecology, can provide managers with the ability to understand how and when fish and their habitats may be exposed to different threats. Naturally, this knowledge helps to better evaluate or develop strategies to protect the long-term viability of fishery production. Failure to understand the spatial ecology of fishes and to incorporate spatiotemporal data can bias population assessments and forecasts and potentially lead to ineffective or counterproductive management actions.

  4. A systematic review of epidemiological literature on the eye health of marginalized fishing populations.

    PubMed

    Ahmad, Khabir; B Zwi, Anthony; J M Tarantola, Daniel; Chand, Bal

    2016-10-01

    A systematic review was conducted in December 2013 to examine the extent to which health research has been focused on the eye health issues of fishing communities. We searched multiple databases to identify relevant citations, using a combination of Medical Subject Headings (MeSH) and text words representing eye health, fishing populations and measures of disease frequency. The search yielded only 4 studies, described in 5 articles. Three studies (one each in Turkey, Egypt and Spain) provided data on self-reported eye problems in fishermen or fishery workers, with prevalence ranging from 38% to 81%. There was only one study in the literature that objectively assessed the burden and causes of vision impairment and blindness in fishing communities. None of the studies examined availability, accessibility, acceptability and quality of eye care services. We conclude that marginalized fishing communities are almost non-existent in eye health literature. Eye health needs of these and other marginalized populations must be identified and addressed in post-2015 health and development agenda.

  5. Component population study of Acanthocephalus tumescens (Acanthocephala) in fishes from Lake Moreno, Argentina.

    PubMed

    Rauque, Carlos A; Viozzi, Gustavo P; Semenas, Liliana G

    2003-03-01

    Seasonal samples of all fish species from Lake Moreno were taken in order to determine the presence of paratenia, to evaluate the status of the hosts and to characterise the transmission of Acanthocephalus tumescens (von Linstow, 1896) at the component population level. Prevalence, mean abundance, mean intensity, numbers of gravid females, relative abundance of the different fish species, relative output of eggs and relative flow rates for each host species were computed. Acanthocephalus tumescens showed low host specificity, successfully parasitizing six out of eight fish species present in the lake. No paratenic infection was registered. If prevalence, mean abundance, and number of gravid females are considered, host species can be placed in a continuum from the most to least suitable as follows: Galaxias platei Steindachner, Diplomystes viedmensis (Mac Donagh), Oncorhynchus mykiss (Walbaum), Salvelinus fontinalis (Mitchill), Percichthys trucha (Cuvier et Valenciennes) and Galaxias maculatus (Jenyns). However, when parasite flow rates and egg output were calculated, including relative abundance of each fish species, the continuum was rearranged as follows: P. trucha, O. mykiss, G. platei / G. maculatus, S. fontinalis and D. viedmensis. The first four species would be the main contributors to the population of A. tumescens in this lake, P. trucha being the major one. Different regulatory and non-regulatory mechanisms are suggested.

  6. Stochastic density effects on adult fish survival and implications for population fluctuations.

    PubMed

    Okamoto, Daniel K; Schmitt, Russell J; Holbrook, Sally J

    2015-11-26

    The degree to which population fluctuations arise from variable adult survival relative to variable recruitment has been debated widely for marine organisms. Disentangling these effects remains challenging because data generally are not sufficient to evaluate if and how adult survival rates are regulated by stochasticity and/or population density. Using unique time series for a largely unexploited reef fish, we found both population density and stochastic food supply impacted adult survival. The estimated effect of variable survival on adult abundance (both mean and variability) rivalled that of variable recruitment. Moreover, we show density-dependent adult survival can dampen impacts of stochastic recruitment. Thus, food variability may alter population fluctuations by simultaneously regulating recruitment and compensatory adult survival. These results provide an additional mechanism for why intensified density-independent mortality (via harvest or other means) amplifies population fluctuations and emphasises need for research evaluating the causes and consequences of variability in adult survival. © 2015 John Wiley & Sons Ltd/CNRS.

  7. Scale of Severe Channel Disturbances Relative to the Structure of Fish Populations

    NASA Astrophysics Data System (ADS)

    Luce, C. H.; Rieman, B. E.; King, J. G.; Dunham, J. B.

    2002-12-01

    Stream temperature and channel disturbance are two potentially important controls on the distribution and persistence of fish populations. Temperature regulates primary physiological processes that constrain the demographic response of populations to their environments. Ultimately temperature may be a first order determinant of the patterns of potential habitat and occurrence for many species. Stream temperature can be estimated from locally derived empirical relationships with elevation or based on detailed energy balances and thus used to model the distribution of potential habitats for fishes across whole landscapes. The role of disturbance is more hypothetical. Metapopulation theory proposes that environmental variation may have an important influence on the dynamics of populations. Disturbances may depress or even eliminate local populations, but a regional population may persist because other populations are not affected. Demographic support or recolonization may occur through dispersal among populations. Clearly the scale of disturbance and population structure can be important. If the characteristic size of disturbances is larger than the extent of a local population, then adjacent populations may decline simultaneously and metapopulation structure will offer little benefit. Conversely, if the characteristic size is smaller the benefit of structure could be important. In this paper we examine the spatial scale of large disturbances in the Boise River catchment over the last 50 years. We compare that to the scale of habitat patches for bull trout defined by stream temperature and the patterns of genetic variation detected by molecular techniques. Implications for species conservation are discussed in the context of climate change (influencing habitat patch size) and fire and fuels management (influencing the scale of disturbance).

  8. Communicating methylmercury risks and fish consumption benefits to vulnerable childbearing populations.

    PubMed

    Kuntz, Sandra W; Ricco, Jason A; Hill, Wade G; Anderko, Laura

    2010-01-01

    Methylmercury is a known neurotoxin especially harmful to the fetus, infant, and child. Preventing exposure to this environmental toxin is best accomplished through consumer messages specifically adapted for local populations. Health care providers play an important role in the dissemination of information. The purpose of this article is to review the benefits and risks of fish consumption and identify strategies for presenting effective risk communication messages to vulnerable groups, particularly women of childbearing age.

  9. Biomarkers in Natural Fish Populations Indicate Adverse Biological Effects of Offshore Oil Production

    PubMed Central

    Balk, Lennart; Hylland, Ketil; Hansson, Tomas; Berntssen, Marc H. G.; Beyer, Jonny; Jonsson, Grete; Melbye, Alf; Grung, Merete; Torstensen, Bente E.; Børseth, Jan Fredrik; Skarphedinsdottir, Halldora; Klungsøyr, Jarle

    2011-01-01

    Background Despite the growing awareness of the necessity of a sustainable development, the global economy continues to depend largely on the consumption of non-renewable energy resources. One such energy resource is fossil oil extracted from the seabed at offshore oil platforms. This type of oil production causes continuous environmental pollution from drilling waste, discharge of large amounts of produced water, and accidental spills. Methods and principal findings Samples from natural populations of haddock (Melanogrammus aeglefinus) and Atlantic cod (Gadus morhua) in two North Sea areas with extensive oil production were investigated. Exposure to and uptake of polycyclic aromatic hydrocarbons (PAHs) were demonstrated, and biomarker analyses revealed adverse biological effects, including induction of biotransformation enzymes, oxidative stress, altered fatty acid composition, and genotoxicity. Genotoxicity was reflected by a hepatic DNA adduct pattern typical for exposure to a mixture of PAHs. Control material was collected from a North Sea area without oil production and from remote Icelandic waters. The difference between the two control areas indicates significant background pollution in the North Sea. Conclusion It is most remarkable to obtain biomarker responses in natural fish populations in the open sea that are similar to the biomarker responses in fish from highly polluted areas close to a point source. Risk assessment of various threats to the marine fish populations in the North Sea, such as overfishing, global warming, and eutrophication, should also take into account the ecologically relevant impact of offshore oil production. PMID:21625421

  10. Fish population genetic structure shaped by hydroelectric power plants in the upper Rhine catchment.

    PubMed

    Gouskov, Alexandre; Reyes, Marta; Wirthner-Bitterlin, Lisa; Vorburger, Christoph

    2016-02-01

    The Rhine catchment in Switzerland has been transformed by a chain of hydroelectric power stations. We addressed the impact of fragmentation on the genetic structure of fish populations by focusing on the European chub (Squalius cephalus). This fish species is not stocked and copes well with altered habitats, enabling an assessment of the effects of fragmentation per se. Using microsatellites, we genotyped 2133 chub from 47 sites within the catchment fragmented by 37 hydroelectric power stations, two weirs and the Rhine Falls. The shallow genetic population structure reflected drainage topology and was affected significantly by barriers to migration. The effect of power stations equipped with fishpasses on genetic differentiation was detectable, albeit weaker than that of man-made barriers without fishpasses. The Rhine Falls as the only long-standing natural obstacle (formed 14 000 to 17 000 years ago) also had a strong effect. Man-made barriers also exacerbated the upstream decrease in allelic diversity in the catchment, particularly when lacking fishpasses. Thus, existing fishpasses do have the desired effect of mitigating fragmentation, but barriers still reduce population connectivity in a fish that traverses fishpasses better than many other species. Less mobile species are likely to be affected more severely.

  11. Population expansions dominate demographic histories of endemic and widespread Pacific reef fishes

    PubMed Central

    Delrieu-Trottin, Erwan; Mona, Stefano; Maynard, Jeffrey; Neglia, Valentina; Veuille, Michel; Planes, Serge

    2017-01-01

    Despite the unique nature of endemic species, their origin and population history remain poorly studied. We investigated the population history of 28 coral reef fish species, close related, from the Gambier and Marquesas Islands, from five families, with range size varying from widespread to small-range endemic. We analyzed both mitochondrial and nuclear sequence data using neutrality test and Bayesian analysis (EBSP and ABC). We found evidence for demographic expansions for most species (24 of 28), irrespective of range size, reproduction strategy or archipelago. The timing of the expansions varied greatly among species, from 8,000 to 2,000,000 years ago. The typical hypothesis for reef fish that links population expansions to the Last Glacial Maximum fit for 14 of the 24 demographic expansions. We propose two evolutionary processes that could lead to expansions older than the LGM: (a) we are retrieving the signature of an old colonization process for widespread, large-range endemic and paleoendemic species or (b) speciation; the expansion reflects the birth of the species for neoendemic species. We show for the first time that the demographic histories of endemic and widespread reef fish are not distinctly different and suggest that a number of processes drive endemism. PMID:28091580

  12. Biomarkers in natural fish populations indicate adverse biological effects of offshore oil production.

    PubMed

    Balk, Lennart; Hylland, Ketil; Hansson, Tomas; Berntssen, Marc H G; Beyer, Jonny; Jonsson, Grete; Melbye, Alf; Grung, Merete; Torstensen, Bente E; Børseth, Jan Fredrik; Skarphedinsdottir, Halldora; Klungsøyr, Jarle

    2011-01-01

    Despite the growing awareness of the necessity of a sustainable development, the global economy continues to depend largely on the consumption of non-renewable energy resources. One such energy resource is fossil oil extracted from the seabed at offshore oil platforms. This type of oil production causes continuous environmental pollution from drilling waste, discharge of large amounts of produced water, and accidental spills. Samples from natural populations of haddock (Melanogrammus aeglefinus) and Atlantic cod (Gadus morhua) in two North Sea areas with extensive oil production were investigated. Exposure to and uptake of polycyclic aromatic hydrocarbons (PAHs) were demonstrated, and biomarker analyses revealed adverse biological effects, including induction of biotransformation enzymes, oxidative stress, altered fatty acid composition, and genotoxicity. Genotoxicity was reflected by a hepatic DNA adduct pattern typical for exposure to a mixture of PAHs. Control material was collected from a North Sea area without oil production and from remote Icelandic waters. The difference between the two control areas indicates significant background pollution in the North Sea. It is most remarkable to obtain biomarker responses in natural fish populations in the open sea that are similar to the biomarker responses in fish from highly polluted areas close to a point source. Risk assessment of various threats to the marine fish populations in the North Sea, such as overfishing, global warming, and eutrophication, should also take into account the ecologically relevant impact of offshore oil production.

  13. Does exposure to domestic wastewater effluent (including steroid estrogens) harm fish populations in the UK?

    PubMed

    Johnson, Andrew C; Chen, Yihong

    2017-07-01

    Historic fisheries data collected from locations across the UK over several years were compared with predicted estrogen exposure derived from the resident human population. This estrogen exposure could be viewed as a proxy for general sewage (wastewater) exposure. With the assistance of the Environment Agency in the UK, fisheries abundance data for Rutilis rutilis (roach), Alburnus alburnus (bleak), Leuciscus leuciscus (dace) and Perca fluviatilis (perch) from 38 separate sites collected over 7 to 17year periods were retrieved. From these data the average density (fish/m(2)/year) were compared against average and peak predicted estrogen (wastewater) exposure for these sites. Estrogen concentrations were predicted using the LF2000-WQX model. No correlation between estrogen/wastewater exposure and fish density could be found for any of the species. Year on year temporal changes in roach population abundance at 3 sites on the middle River Thames and 4 sites on the Great Ouse were compared against estrogen exposure over the preceding year. In this case the estrogen prediction was calculated based on the upstream human population providing the estrogen load and the daily flow value allowing concentration to be estimated over time. At none of the sites on these rivers were temporal declines in abundance associated with preceding estrogen (effluent) exposure. The results indicate that, over the past decade, wastewater and estrogen exposure has not led to a catastrophic decline in these four species of cyprinid fish.

  14. Evidence of population resistance to extreme low flows in a fluvial-dependent fish species

    USGS Publications Warehouse

    Katz, Rachel A.; Freeman, Mary C.

    2015-01-01

    Extreme low streamflows are natural disturbances to aquatic populations. Species in naturally intermittent streams display adaptations that enhance persistence during extreme events; however, the fate of populations in perennial streams during unprecedented low-flow periods is not well-understood. Biota requiring swift-flowing habitats may be especially vulnerable to flow reductions. We estimated the abundance and local survival of a native fluvial-dependent fish species (Etheostoma inscriptum) across 5 years encompassing historic low flows in a sixth-order southeastern USA perennial river. Based on capturemark-recapture data, the study shoal may have acted as a refuge during severe drought, with increased young-of-the-year (YOY) recruitment and occasionally high adult immigration. Contrary to expectations, summer and autumn survival rates (30 days) were not strongly depressed during low-flow periods, despite 25%-80% reductions in monthly discharge. Instead, YOY survival increased with lower minimum discharge and in response to small rain events that increased low-flow variability. Age-1+ fish showed the opposite pattern, with survival decreasing in response to increasing low-flow variability. Results from this population dynamics study of a small fish in a perennial river suggest that fluvial-dependent species can be resistant to extreme flow reductions through enhanced YOY recruitment and high survival

  15. Population expansions dominate demographic histories of endemic and widespread Pacific reef fishes.

    PubMed

    Delrieu-Trottin, Erwan; Mona, Stefano; Maynard, Jeffrey; Neglia, Valentina; Veuille, Michel; Planes, Serge

    2017-01-16

    Despite the unique nature of endemic species, their origin and population history remain poorly studied. We investigated the population history of 28 coral reef fish species, close related, from the Gambier and Marquesas Islands, from five families, with range size varying from widespread to small-range endemic. We analyzed both mitochondrial and nuclear sequence data using neutrality test and Bayesian analysis (EBSP and ABC). We found evidence for demographic expansions for most species (24 of 28), irrespective of range size, reproduction strategy or archipelago. The timing of the expansions varied greatly among species, from 8,000 to 2,000,000 years ago. The typical hypothesis for reef fish that links population expansions to the Last Glacial Maximum fit for 14 of the 24 demographic expansions. We propose two evolutionary processes that could lead to expansions older than the LGM: (a) we are retrieving the signature of an old colonization process for widespread, large-range endemic and paleoendemic species or (b) speciation; the expansion reflects the birth of the species for neoendemic species. We show for the first time that the demographic histories of endemic and widespread reef fish are not distinctly different and suggest that a number of processes drive endemism.

  16. Connectivity of microbial populations in coral reef environments: microbiomes of sediment, fish and water

    NASA Astrophysics Data System (ADS)

    Biddle, J.; Leon, Z. R.; McCargar, M.; Drew, J.

    2016-12-01

    The benthic environments of coral reefs are heavily shaped by physiochemical factors, but also the ecological interactions of the animals and plants in the reef ecosystem. Microbial populations may be shared between the ecosystem of sediments, seagrasses and reef fish, however it is unknown to what degree. We investigated the potential connections between the microbiomes of sediments, seagrass blades and roots (Syringodium isoetifolium), Surgeonfish (A. nigricauda, Acanthurinae sp. unknown, C. striatus) and Parrotfish (C. spinidens) guts in reef areas of Fiji. We contrasted these with sediment samples from the Florida Keys and ocean water microbiomes from the Atlantic, Pacific and Indian Oceans. In general, we see a higher diversity of sediment microbial communities in Fiji compared to the Florida Keys. However, many of the same taxa are shared in these chemically similar environments, whereas the ocean water environments are completely distinct with few overlapping groups. We were able to show connectivity of a core microbiome between seagrass, fish and sediments in Fiji, including identifying a potential environmental reservoir of a surgeonfish symbiont, Epulopiscum. Finally, we show that fish guts have different microbial populations from crop to hindgut, and that microbial populations differ based on food source. The connection of these ecosystems suggest that the total microbiome of these environments may vary as their animal inhabitants shift in a changing ocean.

  17. Population expansions dominate demographic histories of endemic and widespread Pacific reef fishes

    NASA Astrophysics Data System (ADS)

    Delrieu-Trottin, Erwan; Mona, Stefano; Maynard, Jeffrey; Neglia, Valentina; Veuille, Michel; Planes, Serge

    2017-01-01

    Despite the unique nature of endemic species, their origin and population history remain poorly studied. We investigated the population history of 28 coral reef fish species, close related, from the Gambier and Marquesas Islands, from five families, with range size varying from widespread to small-range endemic. We analyzed both mitochondrial and nuclear sequence data using neutrality test and Bayesian analysis (EBSP and ABC). We found evidence for demographic expansions for most species (24 of 28), irrespective of range size, reproduction strategy or archipelago. The timing of the expansions varied greatly among species, from 8,000 to 2,000,000 years ago. The typical hypothesis for reef fish that links population expansions to the Last Glacial Maximum fit for 14 of the 24 demographic expansions. We propose two evolutionary processes that could lead to expansions older than the LGM: (a) we are retrieving the signature of an old colonization process for widespread, large-range endemic and paleoendemic species or (b) speciation; the expansion reflects the birth of the species for neoendemic species. We show for the first time that the demographic histories of endemic and widespread reef fish are not distinctly different and suggest that a number of processes drive endemism.

  18. Marine protected areas facilitate parasite populations among four fished host species of central Chile.

    PubMed

    Wood, Chelsea L; Micheli, Fiorenza; Fernández, Miriam; Gelcich, Stefan; Castilla, Juan Carlos; Carvajal, Juan

    2013-11-01

    1. Parasites comprise a substantial proportion of global biodiversity and exert important ecological influences on hosts, communities and ecosystems, but our knowledge of how parasite populations respond to human impacts is in its infancy. 2. Here, we present the results of a natural experiment in which we used a system of highly successful marine protected areas and matched open-access areas in central Chile to assess the influence of fishing-driven biodiversity loss on parasites of exploited fish and invertebrate hosts. We measured the burden of gill parasites for two reef fishes (Cheilodactylus variegatus and Aplodactylus punctatus), trematode parasites for a keyhole limpet (Fissurella latimarginata), and pinnotherid pea crab parasites for a sea urchin (Loxechinus albus). We also measured host density for all four hosts. 3. We found that nearly all parasite species exhibited substantially greater density (# parasites m(-2)) in protected than in open-access areas, but only one parasite species (a gill monogenean of C. variegatus) was more abundant within hosts collected from protected relative to open-access areas. 4. These data indicate that fishing can drive declines in parasite abundance at the parasite population level by reducing the availability of habitat and resources for parasites, but less commonly affects the abundance of parasites at the infrapopulation level (within individual hosts). 5. Considering the substantial ecological role that many parasites play in marine communities, fishing and other human impacts could exert cryptic but important effects on marine community structure and ecosystem functioning via reductions in parasite abundance. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.

  19. Population dynamics of wetland fishes: Spatio-temporal patterns synchronized by hydrological disturbance?

    USGS Publications Warehouse

    Ruetz, C. R.; Trexler, J.C.; Jordan, F.; Loftus, W.F.; Perry, S.A.

    2005-01-01

    1. Drought is a natural disturbance that can cause widespread mortality of aquatic organisms in wetlands. We hypothesized that seasonal drying of marsh surfaces (i.e. hydrological disturbance) shapes spatio-temporal patterns of fish populations. 2. We tested whether population dynamics of fishes were synchronized by hydrological disturbance (Moran effect) or distance separating study sites (dispersal). Spatio-temporal patterns were examined in local populations of five abundant species at 17 sites (sampled five times per year from 1996 to 2001) in a large oligotrophic wetland. 3. Fish densities differed significantly across spatio-temporal scales for all species. For all species except eastern mosquitofish (Gambusia holbrooki), a significant portion of spatio-temporal variation in density was attributed to drying events (used as a covariate). 4. We observed three patterns of response to hydrological disturbance. Densities of bluefin killifish (Lucania goodei), least killifish (Heterandria formosa), and golden top-minnow (Fundulus chrysotus) were usually lowest after a dry down and recovered slowly. Eastern mosquitofish showed no distinct response to marsh drying (i.e. they recovered quickly). Flagfish (Jordanella floridae) density was often highest after a dry down and then declined. Population growth after a dry down was often asymptotic for bluefin killifish and golden topminnow, with greatest asymptotic density and longest time to recovery at sites that dried infrequently. 5. Fish population dynamics were synchronized by hydrological disturbance (independent of distance) and distance separating study sites (independent of hydrological disturbance). Our ability to separate the relative importance of the Moran effect from dispersal was strengthened by a weak association between hydrological synchrony and distance among study sites. Dispersal was the primary mechanism for synchronous population dynamics of flagfish, whereas hydrological disturbance was the primary

  20. BayFish: Bayesian inference of transcription dynamics from population snapshots of single-molecule RNA FISH in single cells.

    PubMed

    Gómez-Schiavon, Mariana; Chen, Liang-Fu; West, Anne E; Buchler, Nicolas E

    2017-09-04

    Single-molecule RNA fluorescence in situ hybridization (smFISH) provides unparalleled resolution in the measurement of the abundance and localization of nascent and mature RNA transcripts in fixed, single cells. We developed a computational pipeline (BayFish) to infer the kinetic parameters of gene expression from smFISH data at multiple time points after gene induction. Given an underlying model of gene expression, BayFish uses a Monte Carlo method to estimate the Bayesian posterior probability of the model parameters and quantify the parameter uncertainty given the observed smFISH data. We tested BayFish on synthetic data and smFISH measurements of the neuronal activity-inducible gene Npas4 in primary neurons.

  1. Functional diversity of the lateral line system among populations of a native Australian freshwater fish.

    PubMed

    Spiller, Lindsey; Grierson, Pauline F; Davies, Peter M; Hemmi, Jan; Collin, Shaun P; Kelley, Jennifer L

    2017-06-15

    Fishes use their mechanoreceptive lateral line system to sense nearby objects by detecting slight fluctuations in hydrodynamic motion within their immediate environment. Species of fish from different habitats often display specialisations of the lateral line system, in particular the distribution and abundance of neuromasts, but the lateral line can also exhibit considerable diversity within a species. Here, we provide the first investigation of the lateral line system of the Australian western rainbowfish (Melanotaenia australis), a species that occupies a diversity of freshwater habitats across semi-arid northwest Australia. We collected 155 individuals from eight populations and surveyed each habitat for environmental factors that may contribute to lateral line specialisation, including water flow, predation risk, habitat structure and prey availability. Scanning electron microscopy and fluorescent dye labelling were used to describe the lateral line system in M. australis, and to examine whether the abundance and arrangement of superficial neuromasts (SNs) varied within and among populations. We found that the SNs of M. australis were present in distinct body regions rather than lines. The abundance of SNs within each body region was highly variable, and also differed among populations and individuals. Variation in SN abundance among populations was best explained by habitat structure and the availability of invertebrate prey. Our finding that specific environmental factors explain among-population variation in a key sensory system suggests that the ability to acquire sensory information is specialised for the particular behavioural needs of the animal. © 2017. Published by The Company of Biologists Ltd.

  2. Life cycle ecophysiology of small pelagic fish and climate-driven changes in populations

    NASA Astrophysics Data System (ADS)

    Peck, Myron A.; Reglero, Patricia; Takahashi, Motomitsu; Catalán, Ignacio A.

    2013-09-01

    Due to their population characteristics and trophodynamic role, small pelagic fishes are excellent bio-indicators of climate-driven changes in marine systems world-wide. We argue that making robust projections of future changes in the productivity and distribution of small pelagics will require a cause-and-effect understanding of historical changes based upon physiological principles. Here, we reviewed the ecophysiology of small pelagic (clupeiform) fishes including a matrix of abiotic and biotic extrinsic factors (e.g., temperature, salinity, light, and prey characteristics) and stage-specific vital rates: (1) adult spawning, (2) survival and development of eggs and yolk sac larvae, and (3) feeding and growth of larvae, post-larvae and juveniles. Emphasis was placed on species inhabiting Northwest Pacific and Northeast Atlantic (European) waters for which summary papers are particularly scarce compared to anchovy and sardine in upwelling systems. Our review revealed that thermal niches (optimal and sub-optimal ranges in temperatures) were species- and stage-specific but that temperature effects only partly explained observed changes in the distribution and/or productivity of populations in the Northwest Pacific and Northeast Atlantic; changes in temperature may be necessary but not sufficient to induce population-level shifts. Prey availability during the late larval and early juvenile period was a common, density-dependent mechanism linked to fluctuations in populations but recruitment mechanisms were system-specific suggesting that generalizations of climate drivers across systems should be avoided. We identified gaps in knowledge regarding basic elements of the growth physiology of each life stage that will require additional field and laboratory study. Avenues of research are recommended that will aid the development of models that provide more robust, physiological-based projections of the population dynamics of these and other small pelagic fish. In our

  3. Great Lakes prey fish populations: A cross-basin overview of status and trends in 2008

    USGS Publications Warehouse

    Gorman, Owen T.; Bunnell, David B.

    2009-01-01

    Assessments of prey fishes in the Great Lakes have been conducted annually since the 1970s by the Great Lakes Science Center, sometimes assisted by partner agencies. Prey fish assessments differ among lakes in the proportion of a lake covered, seasonal timing, bottom trawl gear used, sampling design, and the manner in which the trawl is towed (across or along bottom contours). Because each assessment is unique in one or more important aspects, a direct comparison of prey fish catches among lakes is problematic. All of the assessments, however, produce indices of abundance or biomass that can be standardized to facilitate comparisons of trends among lakes and to illustrate present status of the populations. We present indices of abundance for important prey fishes in the Great Lakes standardized to the highest value for a time series within each lake: cisco (Coregonus artedi), bloater (C. hoyi), rainbow smelt (Osmerus mordax), and alewife (Alosa pseudoharengus). We also provide indices for round goby (Neogobius melanostomus), an invasive fish presently spreading throughout the basin. Our intent is to provide a short, informal report emphasizing data presentation rather than synthesis; for this reason we intentionally avoid use of tables and cited references.For each lake, standardized relative indices for annual biomass and density estimates of important prey fishes were calculated as the fraction relative to the largest value observed in the times series. To determine whether basin-wide trends were apparent for each species, we first ranked standardized index values within each lake. When comparing ranked index values from three or more lakes, we calculated the Kendall coefficient of concordance (W), which can range from 0 (complete discordance or disagreement among trends) to 1 (complete concordance or agreement among trends). The P-value for W provides the probability of agreement across the lakes. When comparing ranked index values from two lakes, we calculated

  4. Scalable population estimates using spatial-stream-network (SSN) models, fish density surveys, and national geospatial database frameworks for streams

    Treesearch

    Daniel J. Isaak; Jay M. Ver Hoef; Erin E. Peterson; Dona L. Horan; David E. Nagel

    2016-01-01

    Population size estimates for stream fishes are important for conservation and management, but sampling costs limit the extent of most estimates to small portions of river networks that encompass 100s–10 000s of linear kilometres. However, the advent of large fish density data sets, spatial-stream-network (SSN) models that benefit from nonindependence among samples,...

  5. Framework for Evaluating Habitat Restoration Success with Respect to Fish Habitat- and Population-related Beneficial Use Impairments

    EPA Science Inventory

    A major challenge of evaluating restoration progress is establishing a cause-effect relationship between observed changes in fish abundance and ongoing aquatic habitat restoration. Since 1979, fish populations within the St. Louis River Area of Concern, which were severely degrad...

  6. Framework for Evaluating Habitat Restoration Success with Respect to Fish Habitat- and Population-related Beneficial Use Impairments

    EPA Science Inventory

    A major challenge of evaluating restoration progress is establishing a cause-effect relationship between observed changes in fish abundance and ongoing aquatic habitat restoration. Since 1979, fish populations within the St. Louis River Area of Concern, which were severely degrad...

  7. On the stability of populations of mammals, birds, fish and insects.

    PubMed

    Sibly, Richard M; Barker, Daniel; Hone, Jim; Pagel, Mark

    2007-10-01

    A key concern for conservation biologists is whether populations of plants and animals are likely to fluctuate widely in number or remain relatively stable around some steady-state value. In our study of 634 populations of mammals, birds, fish and insects, we find that most can be expected to remain stable despite year to year fluctuations caused by environmental factors. Mean return rates were generally around one but were higher in insects (1.09 +/- 0.02 SE) and declined with body size in mammals. In general, this is good news for conservation, as stable populations are less likely to go extinct. However, the lower return rates of the large mammals may make them more vulnerable to extinction. Our estimates of return rates were generally well below the threshold for chaos, which makes it unlikely that chaotic dynamics occur in natural populations--one of ecology's key unanswered questions.

  8. Expansion of Dreissena into offshore waters of Lake Michigan and potential impacts on fish populations

    USGS Publications Warehouse

    Bunnell, D.B.; Madenjian, C.P.; Holuszko, J.D.; Adams, J.V.; French, J. R. P.

    2009-01-01

    Lake Michigan was invaded by zebra mussels (Dreissena polymorpha) in the late 1980s and then followed by quagga mussels (D. bugensis) around 1997. Through 2000, both species (herein Dreissena) were largely restricted to depths less than 50??m. Herein, we provide results of an annual lake-wide bottom trawl survey in Lake Michigan that reveal the relative biomass and depth distribution of Dreissena between 1999 and 2007 (although biomass estimates from a bottom trawl are biased low). Lake-wide mean biomass density (g/m2) and mean depth of collection revealed no trend between 1999 and 2003 (mean = 0.7??g/m2 and 37??m, respectively). Between 2004 and 2007, however, mean lake-wide biomass density increased from 0.8??g/m2 to 7.0??g/m2, because of increased density at depths between 30 and 110??m, and mean depth of collection increased from 42 to 77??m. This pattern was confirmed by a generalized additive model. Coincident with the Dreissena expansion that occurred beginning in 2004, fish biomass density (generally planktivores) declined 71% between 2003 and 2007. Current understanding of fish population dynamics, however, indicates that Dreissena expansion is not the primary explanation for the decline of fish, and we provide a species-specific account for more likely underlying factors. Nonetheless, future sampling and research may reveal a better understanding of the potential negative interactions between Dreissena and fish in Lake Michigan and elsewhere.

  9. Large scale, synchronous variability of marine fish populations driven by commercial exploitation

    PubMed Central

    Frank, Kenneth T.; Petrie, Brian; Leggett, William C.; Boyce, Daniel G.

    2016-01-01

    Synchronous variations in the abundance of geographically distinct marine fish populations are known to occur across spatial scales on the order of 1,000 km and greater. The prevailing assumption is that this large-scale coherent variability is a response to coupled atmosphere–ocean dynamics, commonly represented by climate indexes, such as the Atlantic Multidecadal Oscillation and North Atlantic Oscillation. On the other hand, it has been suggested that exploitation might contribute to this coherent variability. This possibility has been generally ignored or dismissed on the grounds that exploitation is unlikely to operate synchronously at such large spatial scales. Our analysis of adult fishing mortality and spawning stock biomass of 22 North Atlantic cod (Gadus morhua) stocks revealed that both the temporal and spatial scales in fishing mortality and spawning stock biomass were equivalent to those of the climate drivers. From these results, we conclude that greater consideration must be given to the potential of exploitation as a driving force behind broad, coherent variability of heavily exploited fish species. PMID:27382163

  10. The use of tumors in wild populations of fish to assess ecosystem health

    USGS Publications Warehouse

    Baumann, Paul C.

    1992-01-01

    Evidence has linked toxicants in aquatic systems with cancer in fish and population level effects on species. Thus some types of tumors may be useful monitors of ecosystem health, at least as affected by genotoxins and promoters. However, tumors caused by purely genetic mechanisms or by virus would not be good indicators. Only neoplasms which have chemicals as a portion of their etiology (either as initiators or promoters) would be useful in assessing ecosystem health. Lesions which may fit these criteria include liver neoplasms (both biliary and hepatic) and skin lesions in a variety of primarily benthic fishes, and neural lesions in various drum species and in butterfly fish species. Two studies purporting to demonstrate a lack of tumors in fish from polluted areas have been reexamined and found either to have insufficient data on vulnerable species or to actually support a tumor-pollution linkage. Thus certain lesions in vulnerable species or species groups may serve as a mechanism to assess one facet of ecosystem health.

  11. Using Fish Population Metrics to Compare the Effects of Artificial Reef Density

    PubMed Central

    2015-01-01

    Artificial reefs continue to be added as habitat throughout the world, yet questions remain about how reef design affects fish diversity and abundance. In the present study, the effects of reef density were assessed for fish communities and sizes of economically valuable Lutjanus campechanus 13 km off Port Mansfield, Texas, at a reef composed of more than 4000 concrete culverts. The study spanned from May to June in 2013 and 2014, and sites sampled included natural reefs, bare areas, and varying culvert patch density categories, ranging from 1–190 culverts. Abundances of adults and species evenness of juvenile populations differed between the years. Fish communities did not significantly differ among density categories; however, highest species richness and total abundances were observed at intermediate culvert densities and at natural reefs. Whereas the abundance of L. campechanus did not differ among density categories, mean total lengths of L. campechanus were greatest at the lower density. Our findings suggest that reefs should be deployed with intermediate patch density of 71–120 culverts in a 30-m radius to yield the highest fish abundances. PMID:26422472

  12. Using Fish Population Metrics to Compare the Effects of Artificial Reef Density.

    PubMed

    Froehlich, Catheline Y M; Kline, Richard J

    2015-01-01

    Artificial reefs continue to be added as habitat throughout the world, yet questions remain about how reef design affects fish diversity and abundance. In the present study, the effects of reef density were assessed for fish communities and sizes of economically valuable Lutjanus campechanus 13 km off Port Mansfield, Texas, at a reef composed of more than 4000 concrete culverts. The study spanned from May to June in 2013 and 2014, and sites sampled included natural reefs, bare areas, and varying culvert patch density categories, ranging from 1-190 culverts. Abundances of adults and species evenness of juvenile populations differed between the years. Fish communities did not significantly differ among density categories; however, highest species richness and total abundances were observed at intermediate culvert densities and at natural reefs. Whereas the abundance of L. campechanus did not differ among density categories, mean total lengths of L. campechanus were greatest at the lower density. Our findings suggest that reefs should be deployed with intermediate patch density of 71-120 culverts in a 30-m radius to yield the highest fish abundances.

  13. Contrasting Genetic Structure among Populations of Two Amphidromous Fish Species (Sicydiinae) in the Central West Pacific

    PubMed Central

    Taillebois, Laura; Castelin, Magalie; Ovenden, Jennifer R.; Bonillo, Céline; Keith, Philippe

    2013-01-01

    Both present-day and past processes can shape connectivity of populations. Pleistocene vicariant events and dispersal have shaped the present distribution and connectivity patterns of aquatic species in the Indo-Pacific region. In particular, the processes that have shaped distribution of amphidromous goby species still remain unknown. Previous studies show that phylogeographic breaks are observed between populations in the Indian and Pacific Oceans where the shallow Sunda shelf constituted a geographical barrier to dispersal, or that the large spans of open ocean that isolate the Hawaiian or Polynesian Islands are also barriers for amphidromous species even though they have great dispersal capacity. Here we assess past and present genetic structure of populations of two amphidromous fish (gobies of the Sicydiinae) that are widely distributed in the Central West Pacific and which have similar pelagic larval durations. We analysed sections of mitochondrial COI, Cytb and nuclear Rhodospine genes in individuals sampled from different locations across their entire known range. Similar to other Sicydiinae fish, intraspecific mtDNA genetic diversity was high for all species (haplotype diversity between 0.9–0.96). Spatial analyses of genetic variation in Sicyopus zosterophorum demonstrated strong isolation across the Torres Strait, which was a geologically intermittent land barrier linking Australia to Papua New Guinea. There was a clear genetic break between the northwestern and the southwestern clusters in Si. zosterophorum (φST = 0.67502 for COI) and coalescent analyses revealed that the two populations split at 306 Kyr BP (95% HPD 79–625 Kyr BP), which is consistent with a Pleistocene separation caused by the Torres Strait barrier. However, this geographical barrier did not seem to affect Sm. fehlmanni. Historical and demographic hypotheses are raised to explain the different patterns of population structure and distribution between these species. Strategies

  14. Status and trends of prey fish populations in Lake Michigan, 2013

    USGS Publications Warehouse

    Madenjian, Charles P.; Bunnell, David B.; Desorcie, Timothy J.; Kostich, Melissa Jean; Armenio, Patricia M.; Adams, Jean V.

    2015-01-01

    The U.S. Geological Survey Great Lakes Science Center has conducted lake-wide surveys of the fish community in Lake Michigan each fall since 1973 using standard 12-m bottom trawls towed along contour at depths of 9 to 110 m at each of seven index transects. The resulting data on relative abundance, size and age structure, and condition of individual fishes are used to estimate various population parameters that are in turn used by state and tribal agencies in managing Lake Michigan fish stocks. All seven established index transects of the survey were completed in 2013. The survey provides relative abundance and biomass estimates between the 5-m and 114-m depth contours of the lake (herein, lake-wide) for prey fish populations, as well as burbot, yellow perch, and the introduced dreissenid mussels. Lake-wide biomass of alewives in 2013 was estimated at 29 kilotonnes (kt, 1 kt = 1000 metric tonnes), which was more than three times the 2012 estimate. However, the unusually high standard error associated with the 2013 estimate indicated no significant increase in lake-wide biomass between 2012 and 2013. Moreover, the age distribution of alewives remained truncated with no alewife exceeding an age of 5. The population of age-1 and older alewives was dominated (i.e., 88%) by the 2010 and 2012 year-classes. Record low biomass was observed for deepwater sculpin (1.3 kt) and ninespine stickleback (0.004 kt) in 2013, while bloater (1.6 kt) and rainbow smelt (0.2 kt) biomasses remained at low levels. Slimy sculpin lake-wide biomass was 0.32 kt in 2013, marking the fourth consecutive year of a decline. The 2013 biomass of round goby was estimated at 10.9 kt, which represented the peak estimate to date. Burbot lake-wide biomass (0.4 kt in 2013) has remained below 3 kt since 2001. Numeric density of age-0 yellow perch (i.e., < 100 mm) was only 1 fish per ha, which is indicative of a relatively poor year-class. Lake-wide biomass estimate of dreissenid mussels in 2013 was 23.2 kt

  15. Genetic diversity affects the strength of population regulation in a marine fish.

    PubMed

    Johnson, D W; Freiwald, J; Bernardi, G

    2016-03-01

    Variation is an essential feature of biological populations, yet much of ecological theory treats individuals as though they are identical. This simplifying assumption is often justified by the perception that variation among individuals does not have significant effects on the dynamics of whole populations. However, this perception may be skewed by a historic focus on studying single populations. A true evaluation of the extent to which among-individual variation affects the dynamics of populations requires the study of multiple populations. In this study, we examined variation in the dynamics of populations of a live-bearing, marine fish (black surfperch; Embiotoca jacksoni). In collaboration with an organization of citizen scientists (Reef Check California), we were able to examine the dynamics of eight populations that were distributed throughout approximately 700 km of coastline, a distance that encompasses much of this species' range. We hypothesized that genetic variation within a local population would be related to the intensity of competition and to the strength of population regulation. To test this hypothesis, we examined whether genetic diversity (measured by the diversity of mitochondrial DNA haplotypes) was related to the strength of population regulation. Low-diversity populations experienced strong density dependence in population growth rates and population sizes were regulated much more tightly than they were in high-diversity populations. Mechanisms that contributed to this pattern include links between genetic diversity, habitat use, and spatial crowding. On average, low-diversity populations used less of the available habitat and exhibited greater spatial clustering (and more intense competition) for a given level of density (measured at the scale of the reef). Although the populations we studied also varied with respect to exogenous characteristics (habitat complexity, densities of predators, and interspecific competitors), none of these

  16. POPULATION GENETIC STRUCTURE OF A NON-MIGRATORY MARINE FISH FUNDULUS HETERCLITUS ACROSS A STRONG GRADIENT OF PCB CONTAMINATION

    EPA Science Inventory

    Populations of the estuarine fish Fundulus heteroclitus indigenous to contaminated sites exhibit heritable resistance to some of the toxic effects of early life-stage exposure to polychlorinated biphenyls (PCBs). This evolved tolerance provides evidence of strong selection by PCB...

  17. POPULATION GENETIC STRUCTURE OF A NON-MIGRATORY MARINE FISH FUNDULUS HETERCLITUS ACROSS A STRONG GRADIENT OF PCB CONTAMINATION

    EPA Science Inventory

    Populations of the estuarine fish Fundulus heteroclitus indigenous to contaminated sites exhibit heritable resistance to some of the toxic effects of early life-stage exposure to polychlorinated biphenyls (PCBs). This evolved tolerance provides evidence of strong selection by PCB...

  18. Spatial synchrony in coral reef fish populations and the influence of climate.

    PubMed

    Cheal, A J; Delean, S; Sweatman, H; Thompson, A A

    2007-01-01

    We investigated spatial patterns of synchrony among coral reef fish populations and environmental variables over an eight-year period on the Great Barrier Reef, Australia. Our aims were to determine the spatial scale of intra- and interspecific synchrony of fluctuations in abundance of nine damselfish species (genus Pomacentrus) and assess whether environmental factors could have influenced population synchrony. All species showed intraspecific synchrony among populations on reefs separated by < or =100 km, and interspecific synchrony was also common at this scale. At greater spatial scales, only four species showed intraspecific synchrony, over distances ranging from 100-300 km to 500-800 km, and no cases of interspecific synchrony were recorded. The two mechanisms most likely to cause population synchrony are dispersal and environmental forcing through regionally correlated climate (the Moran effect). Dispersal may have influenced population synchrony over distances up to 100 km as this is the expected spatial range for ecologically significant reef fish dispersal. Environmental factors are also likely to have synchronized population fluctuations via the Moran effect for three reasons: (1) dispersal could not have caused interspecific synchrony that was common over distances < or =100 km because dispersal cannot link populations of different species, (2) variations in both sea surface temperature and wind speed were synchronized over greater spatial scales (>800 km) than fluctuations in damselfish abundance (< or =800 km) and were correlated with an index of global climate variability, the El Niño-Southern Oscillation (ENSO), and (3) synchronous population fluctuations of most damselfish species were correlated with ENSO; large population increases often followed ENSO events. We recorded regional variations in the strength of population synchrony that we suspect are due to spatial differences in geophysical, oceanographic, and population characteristics, which

  19. Microgeographic population structure of green swordail fish: genetic differentiation despite abundant migration.

    PubMed

    Tatarenkov, A; Healey, C I M; Avise, J C

    2010-01-01

    Swordtails (Xiphophorus; Poeciliidae) have figured prominently in research on fish mating behaviours, sexual selection, and carcinogenesis, but their population structures and dispersal patterns have been relatively neglected. Using nine microsatellite loci, we estimated genetic differentiation in Xiphophorus helleri within and between adjacent streams in Belize. The genetic data were complemented by a tagging study of movement within one stream. In the absence of physical dispersal barriers (waterfalls), population structure followed an isolation by distance (IBD) pattern. Genetic differentiation (F(ST) up to 0.07) was significant between and within creeks, despite high dispersal in the latter as judged by the tagging data. Such heterogeneity apparently was a result of genetic drift in local demes, due to small population sizes and highly skewed paternity. The IBD pattern was interrupted by waterfalls, boosting F(ST) above 0.30 between adjacent samples across these barriers. Overall, our results are helpful in understanding the interplay of evolutionary forces and population dynamics in a small fish living in a changeable habitat.

  20. Comparing climate change and species invasions as drivers of coldwater fish population extirpations.

    PubMed

    Sharma, Sapna; Vander Zanden, M Jake; Magnuson, John J; Lyons, John

    2011-01-01

    Species are influenced by multiple environmental stressors acting simultaneously. Our objective was to compare the expected effects of climate change and invasion of non-indigenous rainbow smelt (Osmerus mordax) on cisco (Coregonus artedii) population extirpations at a regional level. We assembled a database of over 13,000 lakes in Wisconsin, USA, summarising fish occurrence, lake morphology, water chemistry, and climate. We used A1, A2, and B1 scenarios from the Intergovernmental Panel on Climate Change (IPCC) of future temperature conditions for 15 general circulation models in 2046-2065 and 2081-2100 totalling 78 projections. Logistic regression indicated that cisco tended to occur in cooler, larger, and deeper lakes. Depending upon the amount of warming, 25-70% of cisco populations are predicted to be extirpated by 2100. In addition, cisco are influenced by the invasion of rainbow smelt, which prey on young cisco. Projecting current estimates of rainbow smelt spread and impact into the future will result in the extirpation of about 1% of cisco populations by 2100 in Wisconsin. Overall, the effect of climate change is expected to overshadow that of species invasion as a driver of coldwater fish population extirpations. Our results highlight the potentially dominant role of climate change as a driver of biotic change.

  1. Comparing Climate Change and Species Invasions as Drivers of Coldwater Fish Population Extirpations

    PubMed Central

    Sharma, Sapna; Vander Zanden, M. Jake; Magnuson, John J.; Lyons, John

    2011-01-01

    Species are influenced by multiple environmental stressors acting simultaneously. Our objective was to compare the expected effects of climate change and invasion of non-indigenous rainbow smelt (Osmerus mordax) on cisco (Coregonus artedii) population extirpations at a regional level. We assembled a database of over 13,000 lakes in Wisconsin, USA, summarising fish occurrence, lake morphology, water chemistry, and climate. We used A1, A2, and B1 scenarios from the Intergovernmental Panel on Climate Change (IPCC) of future temperature conditions for 15 general circulation models in 2046–2065 and 2081–2100 totalling 78 projections. Logistic regression indicated that cisco tended to occur in cooler, larger, and deeper lakes. Depending upon the amount of warming, 25–70% of cisco populations are predicted to be extirpated by 2100. In addition, cisco are influenced by the invasion of rainbow smelt, which prey on young cisco. Projecting current estimates of rainbow smelt spread and impact into the future will result in the extirpation of about 1% of cisco populations by 2100 in Wisconsin. Overall, the effect of climate change is expected to overshadow that of species invasion as a driver of coldwater fish population extirpations. Our results highlight the potentially dominant role of climate change as a driver of biotic change. PMID:21860661

  2. Compensatory mechanisms in fish populations: An EPRI research plan: Final report

    SciTech Connect

    Otto, R.G.

    1987-09-01

    This is a plan for Industry-sponsored research on compensation in fish populations impacted at steam-electric or hydro-power facilities. Compensation encompasses processes by which fishes self-regulate rates of reproduction and mortality as means of offsetting those impacts. EPRI's goal is the synthesis of a quantitative model sufficient to predict the direction and relative magnitude of fish population response to anticipated site specific impacts. Two parallel and interactive research efforts are proposed to meet this goal, a Key Species Program and a Fellowship Program. Both are empirical programs, the first emphasizing the generation of new data sets tailored to the needs of the modeling framework and the second testing and expanding the concepts on which the models are based. The Key Species Program is a series of studies of selected species chosen to represent the range of life history strategies encompassed by the modeling framework. The primary research activity is measurement of key life table parameters (reproduction, growth and mortality) across the geographic range of the test species and under circumstances in which the size or structure of the target populations can be manipulated. The Fellowship Program is a basic research effort to be conducted by senior graduate students working in the area of population dynamics. The Program relies on an oversight group of senior academic and industry scientists to set topical goals for research, oversee the selection and implementation of projects and assist with the consolidation and integration of outputs into the larger predictive framework provided by the Key Species studies.

  3. The power to detect trends in Missouri River fish populations within the Pallid Sturgeon Population Assessment Program

    USGS Publications Warehouse

    Bryan, Janice L.; Wildhaber, Mark L.; Gladish, Dan; Holan, Scott; Ellerseick, Mark

    2010-01-01

    As with all large rivers in the United States, the Missouri River has been altered, with approximately 32.5 percent of the main stem length impounded and 32.5 percent channelized. These physical alterations to the environment have had effects on the fisheries, but studies examining the effects of alterations have been localized and for short periods of time. In response to the U.S. Fish and Wildlife Service biological opinion, the U.S. Army Corps of Engineers initiated monitoring of the fish community of the Missouri River in 2003. The goal of the Pallid Sturgeon Population Assessment Program is to provide information to detect changes in populations and habitat preferences with time for pallid sturgeon (Scaphirhynchus albus) and native target species in the Missouri River Basin. To determine statistical power of the Pallid Sturgeon Population Assessment Program, a power analysis was conducted using a normal linear mixed model with variance component estimates based on the first 3 years of data (2003 to 2005). In cases where 3 years of data were unavailable, estimates were obtained using those data. It was determined that at least 20 years of data, sampling 12 bends with 8 subsamples per bend, would be required to detect a 5 percent annual decline in most of the target fish populations. Power varied between Zones. Zone 1 (upstream from Lake Sakakawea) did not have any species/gear type combinations with adequate power, whereas Zone 3 (downstream from Gavins Point Dam) had 19 species/gear type combinations with adequate power. With a slight increase in the sampling effort to 12 subsamples per bend, the Pallid Sturgeon Population Assessment Program has adequate power to detect declines in shovelnose sturgeon (S. platorynchus) throughout the entire Missouri River because of large catch rates. The lowest level of non-occurrence (in other words, zero catches) at the bend level for pallid sturgeon was 0.58 using otter trawls in Zone 1. Consequently, the power of the

  4. Status and trends of prey fish populations in Lake Michigan, 2012

    USGS Publications Warehouse

    Bunnell, David B.; Madenjian, Charles P.; Desorcie, Timothy J.; Kostich, Melissa Jean; Smith, Kelley R.; Adams, Jean V.

    2012-01-01

    The U.S. Geological Survey Great Lakes Science Center has conducted lake-wide surveys of the fish community in Lake Michigan each fall since 1973 using standard 12-m bottom trawls towed along contour at depths of 9 to 110 m at each of seven index transects. The resulting data on relative abundance, size and age structure, and condition of individual fishes are used to estimate various population parameters that are in turn used by state and tribal agencies in managing Lake Michigan fish stocks. All seven established index transects of the survey were completed in 2012. The survey provides relative abundance and biomass estimates between the 5-m and 114-m depth contours of the lake (herein, lake-wide) for prey fish populations, as well as burbot, yellow perch, and the introduced dreissenid mussels. Lake-wide biomass of alewives in 2012 was estimated at 9 kilotonnes (kt, 1 kt = 1000 metric tonnes), which continues the trend of unusually low alewife biomass since 2004 but represented a 20% increase from the 2011 estimate. The age distribution of alewives larger than 100 mm was dominated (i.e., 84%) by age-2. Record low biomass was observed for several species, including bloater (0.4 kt), rainbow smelt (0.1 kt), deepwater sculpin (1.5 kt), and ninespine stickleback (0.01 kt). Slimy sculpin lake-wide biomass was 0.73 kt in 2012, which was the third consecutive year revealing a decline. Estimated biomass of round goby increased by 79% to 3 kt. Burbot lake-wide biomass (0.5 kt in 2012) has remained below 3 kt since 2001. Numeric density of age-0 yellow perch (i.e., < 100 mm) was only 2 fish per ha, which is indicative of a relatively poor year-class. Lake-wide biomass estimates of dreissenid mussels have continued to increase from 2010, from 12 to 95 kt in 2012. Overall, the total lake-wide prey fish biomass estimate (sum of alewife, bloater, rainbow smelt, deepwater sculpin, slimy sculpin, round goby, and ninespine stickleback) in 2012 was 15 kt, which represented the

  5. Discrimination of Astyanax altiparanae (Characiformes, Characidae) populations by applying Fourier transform-infrared photoacoustic spectroscopy in the fish scales

    NASA Astrophysics Data System (ADS)

    de Almeida, F. S.; Santana, C. A.; Lima, D. M. V.; Andrade, L. H. C.; Súarez, Y. R.; Lima, S. M.

    2016-05-01

    Astyanax altiparanae fish species is considered very generalist and opportunist, occupying different types and sizes of environments. This characteristic turns it very appropriate as bioindicator or biomarked. Therefore, in this work, A. altiparanae fish species was used to identify populations by using the Fourier transform infrared spectroscopy directly in its scales. The discriminant analysis applied in the infrared spectra demonstrated a significant differentiation among the analyzed populations, with the first and second canonical roots explain together 100% of the data variation. The obtained results were correlated with environmental descriptors and diet of fishes, and a better agreement was obtained when spectroscopic data were compared with the composition of food present in the fish stomachs. However, this study indicates that the combination of infrared absorption spectroscopy with discriminant analysis is a very appropriate methodology to be used in fish scales as bioindicator for intraspecific study.

  6. Successional change in the Lake Superior fish community: population trends in ciscoes, rainbow smelt, and lake trout, 1958-2008

    USGS Publications Warehouse

    Gorman, Owen T.

    2012-01-01

    The Lake Superior fish community underwent massive changes in the second half of the 20th century. Those changes are largely reflected in changes in abundance of the adults of principal prey species, the ciscoes (Coregonus spp.), the invasive rainbow smelt (Osmerus mordax), and the principal predator, lake trout (Salvelinus namaycush). To better understand changes in species abundances, a comprehensive series of gillnet and bottom trawl data collected from 1958 to 2008 were examined. In the late 1950s/early 1960s, smelt abundance was at its maximum, wild lake trout was at its minimum, and an abundance of hatchery lake trout was increasing rapidly. The bloater (Coregonus hoyi) was the prevalent cisco in the lake; abundance was more than 300% greater than the next most abundant cisco, shortjaw cisco (C. zenithicus), followed by kiyi (C. kiyi) and lake cisco (C. artedi). By the mid-1960s, abundance of hatchery lake trout was nearing maximum, smelt abundance was beginning to decline, and abundances of all ciscoes declined, but especially that of shortjaw cisco and kiyi. By the late 1970s, recovery of wild lake trout stocks was well underway and abundances of hatchery lake trout and smelt were declining and the ciscoes were reaching their nadir. During 1980–1990, the fish community underwent a dramatic shift in organization and structure. The rapid increase in abundance of wild lake trout, concurrent with a rapid decline in hatchery lake trout, signaled the impending recovery. Rainbow smelt abundance dropped precipitously and within four years, lake cisco and bloater populations rebounded on the heels of a series of strong recruitment events. Kiyi populations showed signs of recovery by 1989, and shortjaw by 2000, though well below historic maximum abundances. High abundance of adult smelt prior to 1980 appears to be the only factor linked to recruitment failure in the ciscoes. Life history traits of the cisco species were examined to better understand their different

  7. Omics and Environmental Science Genomic Approaches With Natural Fish Populations From Polluted Environments

    PubMed Central

    Bozinovic, Goran; Oleksiak, Marjorie F.

    2010-01-01

    Transcriptomics and population genomics are two complementary genomic approaches that can be used to gain insight into pollutant effects in natural populations. Transcriptomics identify altered gene expression pathways while population genomics approaches more directly target the causative genomic polymorphisms. Neither approach is restricted to a pre-determined set of genes or loci. Instead, both approaches allow a broad overview of genomic processes. Transcriptomics and population genomic approaches have been used to explore genomic responses in populations of fish from polluted environments and have identified sets of candidate genes and loci that appear biologically important in response to pollution. Often differences in gene expression or loci between polluted and reference populations are not conserved among polluted populations suggesting a biological complexity that we do not yet fully understand. As genomic approaches become less expensive with the advent of new sequencing and genotyping technologies, they will be more widely used in complimentary studies. However, while these genomic approaches are immensely powerful for identifying candidate gene and loci, the challenge of determining biological mechanisms that link genotypes and phenotypes remains. PMID:21072843

  8. Predators inhibit brain cell proliferation in natural populations of electric fish, Brachyhypopomus occidentalis.

    PubMed

    Dunlap, Kent D; Tran, Alex; Ragazzi, Michael A; Krahe, Rüdiger; Salazar, Vielka L

    2016-02-10

    Compared with laboratory environments, complex natural environments promote brain cell proliferation and neurogenesis. Predators are one important feature of many natural environments, but, in the laboratory, predatory stimuli tend to inhibit brain cell proliferation. Often, laboratory predatory stimuli also elevate plasma glucocorticoids, which can then reduce brain cell proliferation. However, it is unknown how natural predators affect cell proliferation or whether glucocorticoids mediate the neurogenic response to natural predators. We examined brain cell proliferation in six populations of the electric fish, Brachyhypopomus occidentalis, exposed to three forms of predator stimuli: (i) natural variation in the density of predatory catfish; (ii) tail injury, presumably from predation attempts; and (iii) the acute stress of capture. Populations with higher predation pressure had lower density of proliferating (PCNA+) cells, and fish with injured tails had lower proliferating cell density than those with intact tails. However, plasma cortisol did not vary at the population level according to predation pressure or at the individual level according to tail injury. Capture stress significantly increased cortisol, but only marginally decreased cell proliferation. Thus, it appears that the presence of natural predators inhibits brain cell proliferation, but not via mechanisms that depend on changes in basal cortisol levels. This study is the first demonstration of predator-induced alteration of brain cell proliferation in a free-living vertebrate.

  9. Visual Basic, Excel-based fish population modeling tool - The pallid sturgeon example

    USGS Publications Warehouse

    Moran, Edward H.; Wildhaber, Mark L.; Green, Nicholas S.; Albers, Janice L.

    2016-02-10

    The model presented in this report is a spreadsheet-based model using Visual Basic for Applications within Microsoft Excel (http://dx.doi.org/10.5066/F7057D0Z) prepared in cooperation with the U.S. Army Corps of Engineers and U.S. Fish and Wildlife Service. It uses the same model structure and, initially, parameters as used by Wildhaber and others (2015) for pallid sturgeon. The difference between the model structure used for this report and that used by Wildhaber and others (2015) is that variance is not partitioned. For the model of this report, all variance is applied at the iteration and time-step levels of the model. Wildhaber and others (2015) partition variance into parameter variance (uncertainty about the value of a parameter itself) applied at the iteration level and temporal variance (uncertainty caused by random environmental fluctuations with time) applied at the time-step level. They included implicit individual variance (uncertainty caused by differences between individuals) within the time-step level.The interface developed for the model of this report is designed to allow the user the flexibility to change population model structure and parameter values and uncertainty separately for every component of the model. This flexibility makes the modeling tool potentially applicable to any fish species; however, the flexibility inherent in this modeling tool makes it possible for the user to obtain spurious outputs. The value and reliability of the model outputs are only as good as the model inputs. Using this modeling tool with improper or inaccurate parameter values, or for species for which the structure of the model is inappropriate, could lead to untenable management decisions. By facilitating fish population modeling, this modeling tool allows the user to evaluate a range of management options and implications. The goal of this modeling tool is to be a user-friendly modeling tool for developing fish population models useful to natural resource

  10. Does mobility explain variation in colonisation and population recovery among stream fishes?

    USGS Publications Warehouse

    Angermeier, Paul L.; Albanese, Brett; Peterson, James T.

    2009-01-01

    1. Colonisation and population recovery are crucial to species persistence in environmentally variable ecosystems, but are poorly understood processes. After documenting movement rates for several species of stream fish, we predicted that this variable would influence colonisation rates more strongly than local abundance, per cent occupancy, body size and taxonomic family. We also predicted that populations of species with higher movement rates would recover more rapidly than species with lower movement rates and that assemblage structure would change accordingly. 2. To test these predictions, we removed fishes from a headwater and a mainstem creek in southwest Virginia and monitored colonisation over a 2-year period. Using an information–theoretic approach, we evaluated the relative plausibility of 15 alternative models containing different combinations of our predictor variables. Our best-supported model contained movement rate and abundance and was 41 times more likely to account for observed patterns in colonisation rates than the next-best model. Movement rate and abundance were both positively related to colonisation rates and explained 88% of the variation in colonisation rates among species. 3. Population recovery, measured as the per cent of initial abundance restored, was also positively associated with movement rate. One species recovered within 3 months, most recovered within 2 years, but two species still had not recovered after 2 years. Despite high variation in recovery, the removal had only a slight impact on assemblage structure because species that were abundant in pre-removal samples were also abundant in post-removal samples. 4. The significance of interspecific variation in colonisation and recovery rates has been underappreciated because of the widely documented recovery of stream fish assemblages following fish kills and small-scale experimental defaunations. Our results indicate that recovery of the overall assemblage does not imply

  11. Cost-constrained optimal sampling for system identification in pharmacokinetics applications with population priors and nuisance parameters.

    PubMed

    Sorzano, Carlos Oscar S; Pérez-De-La-Cruz Moreno, Maria Angeles; Burguet-Castell, Jordi; Montejo, Consuelo; Ros, Antonio Aguilar

    2015-06-01

    Pharmacokinetics (PK) applications can be seen as a special case of nonlinear, causal systems with memory. There are cases in which prior knowledge exists about the distribution of the system parameters in a population. However, for a specific patient in a clinical setting, we need to determine her system parameters so that the therapy can be personalized. This system identification is performed many times by measuring drug concentrations in plasma. The objective of this work is to provide an irregular sampling strategy that minimizes the uncertainty about the system parameters with a fixed amount of samples (cost constrained). We use Monte Carlo simulations to estimate the average Fisher's information matrix associated to the PK problem, and then estimate the sampling points that minimize the maximum uncertainty associated to system parameters (a minimax criterion). The minimization is performed employing a genetic algorithm. We show that such a sampling scheme can be designed in a way that is adapted to a particular patient and that it can accommodate any dosing regimen as well as it allows flexible therapeutic strategies.

  12. Evaluation of fish population effects due to creosote exposure in aquatic mesocosms

    SciTech Connect

    Munro, K.A.; Bestari, K.T.; Robinson, R.D.; Gensemer, R.W.; Solomon, K.R.

    1995-12-31

    Creosote is a coal tar distillate, consisting primarily of a mixture of polycyclic aromatic hydrocarbons (PAHs). Its widespread use as a wood preservative presents a potential risk to aquatic ecosystems. Studying fish responses in mesocosms enabled evaluation of the total impact of creosote exposure, resulting from both direct toxic effects and indirect community-level interactions. Two methods of creosote application were used: liquid creosote treatment and creosote-impregnated pilings treatment. Survival and egg production of adult Fathead minnows (Pimephales promelas) were monitored for two successive 30-day periods (0--30 and 35--65 days posttreatment). In addition, juvenile Fatheads produced during these periods were harvested 90 days posttreatment, to determine impacts to population weight/frequency distributions. Results for both field seasons showed that higher creosote concentrations caused strong decreases in both adult and juvenile survival, as well as egg production. Bile fluorescence levels measured at intervals during the exposure period reflected changes in total aqueous PAH concentrations in the mesocosms. Effects of creosote exposure on survival of adult fish were markedly reduced for fish introduced to ponds 35 days posttreatment compared to those exposed in the initial 0--30 day period.

  13. Life-history correlates of maximum population growth rates in marine fishes.

    PubMed Central

    Denney, Nicola H; Jennings, Simon; Reynolds, John D

    2002-01-01

    Theory predicts that populations of animals with late maturity, low fecundity, large body size and low body growth rates will have low potential rates of population increase at low abundance. If this is true, then these traits may be used to predict the intrinsic rate of increase for species or populations, as well as extinction risks. We used life-history and population data for 63 stocks of commercially exploited fish species from the northeast Atlantic to test relationships between life-history parameters and the rate of population increase at low abundance. We used cross-taxonomic analyses among stocks and among species, and analyses that accounted for phylogenetic relationships. These analyses confirmed that large-bodied, slow-growing stocks and species had significantly lower rates of recruitment and adult production per spawning adult at low abundance. Furthermore, high ages at maturity were significantly correlated with low maximum recruit production. Contrary to expectation, fecundity was significantly negatively related to recruit production, due to its positive relationship with maximum body size. Our results support theoretical predictions, and suggest that a simply measured life-history parameter can provide a useful tool for predicting rates of recovery from low population abundance. PMID:12427316

  14. Status and trends of prey fish populations in Lake Michigan, 2008

    USGS Publications Warehouse

    Bunnell, David B.; Madenjian, Charles P.; Holuszko, Jeffrey D.; Desorcie, Timothy J.; Adams, Jean V.

    2009-01-01

    The Great Lakes Science Center (GLSC) has conducted lake-wide surveys of the fish community in Lake Michigan each fall since 1973 using standard 12-m bottom trawls towed along contour at depths of 9 to 110 m at each of seven index transects. The resulting data on relative abundance, size structure, and condition of individual fishes are used to estimate various population parameters that are in turn used by state and tribal agencies in managing Lake Michigan fish stocks. All seven established index transects of the survey were completed in 2008. The survey provides relative abundance and biomass estimates between the 5-m and 114-m depth contours of the lake (herein, lake-wide) for prey fish populations, as well as burbot, yellow perch, and the introduced dreissenid mussels. Lake-wide biomass of alewives in 2008 was estimated at 8.27 kilotonnes (kt) (1 kt = 1000 metric tons), which was the smallest biomass estimate in the entire time series and 29% lower than the 2007 estimate. Lake-wide biomass of bloater in 2008 was estimated at 3.33 kt, which was the lowest estimate since 1977 and 38% lower than the 2007 estimate. Rainbow smelt lake-wide biomass equaled 0.89 kt, which was only 0.01 kt higher than 2007, which is the lowest estimate in the time series. Deepwater sculpin lake-wide biomass equaled 5.23 kt, which is the fourth straight year of declining biomass. The 2008 estimate is the second smallest in the time series, and 39% lower than the 2007 estimate. Slimy sculpin lake-wide biomass remained relatively high in 2008 (2.75 kt), increasing 25% over 2007. Ninespine stickleback lake-wide biomass equaled only 0.50 kt in 2008, which was 79% lower than the 2007 estimate. The final prey fish, exotic round goby, increased two orders of magnitude between 2007 and 2008, from 0.02 to 4.65 kt. Round gobies now represent 18% of the prey fish biomass. Burbot lake-wide biomass (0.91 kt in 2008) has remained fairly constant since 2002. Numeric density of age-0 yellow perch (i

  15. Genetic structuring among silverside fish (Atherinella brasiliensis) populations from different Brazilian regions

    NASA Astrophysics Data System (ADS)

    da Silva Cortinhas, Maria Cristina; Kersanach, Ralf; Proietti, Maíra; Dumont, Luiz Felipe Cestari; D'Incao, Fernando; Lacerda, Ana Luzia F.; Prata, Pedro Sanmartin; Matoso, Daniele Aparecida; Noleto, Rafael Bueno; Ramsdorf, Wanessa; Boni, Talge Aiex; Prioli, Alberto José; Cestari, Marta Margarete

    2016-09-01

    Estuaries are dynamic environments, key for the survival of innumerous ecologically or economically important fish species. Among these species are Neotropical silversides (Atherinella brasiliensis), which are resident and abundant in Brazilian estuaries and used as a complementary source of income and food for local communities. To better understand silverside populations in Brazil, we evaluated the genetic diversity, structure and demography of fish sampled at six estuaries from the northeastern to the southern coast, using Random Amplified Polymorphic DNA and mitochondrial DNA (D-loop) markers. High haplotype diversities (h ranging from 0.75 to 0.99) were found in all populations except Carapebus, located in Southeast Brazil (h = 0.54). A total of 69 mtDNA haplotypes were found, with Itaparica (Northeast Brazil) and Carapebus presenting only exclusive haplotypes, while some were shared among populations in the South. Strong regional structure was observed, with very high differentiation between Itaparica and Carapebus, as well as among these two populations and the ones from the Southern region (Paranaguá, Conceição, Camacho and Patos). Among southern areas, low/moderate structure was detected. Most populations showed unimodal mismatch distributions indicating recent demographic expansion, while Carapebus presented a multimodal distribution characteristic of a stable or bottlenecked population. Times since possible population expansion were highest in Itaparica (32,500 ya) and Carapebus (29,540 ya), while in the Southern region longest time was observed at Conceição (25,540 ya) and shortest at Patos (9720 ya). In a general manner, haplotype diversities were directly related to times since population expansions; again, Carapebus was the exception, displaying long time since expansion but low diversity, possibly due to a recent bottleneck caused by the isolation and human impacts this lagoon is subject to. Isolation by Distance was significant for Itaparica

  16. CREATION OF A GEOGRAPHIC INFORMATION SYSTEM TO IDENTIFY AT-RISK POPULATIONS IN NEW JERSEY AND NEW YORK FOR CONSUMPTION OF CONTAMINATED FISH AND SEAFOOD

    EPA Science Inventory

    Project Objective: To identify at-risk populations, particularly women of child bearing years and young children, for consumption of contaminated fish and seafood via the use of geographically and demographically defined seafood consumption patterns and fish/seafood contaminatio...

  17. CREATION OF A GEOGRAPHIC INFORMATION SYSTEM TO IDENTIFY AT-RISK POPULATIONS IN NEW JERSEY AND NEW YORK FOR CONSUMPTION OF CONTAMINATED FISH AND SEAFOOD

    EPA Science Inventory

    Project Objective: To identify at-risk populations, particularly women of child bearing years and young children, for consumption of contaminated fish and seafood via the use of geographically and demographically defined seafood consumption patterns and fish/seafood contaminatio...

  18. Impact of entrainment and impingement on fish populations in the Hudson River estuary. Volume I. Entrainment-impact estimates for six fish populations inhabiting the Hudson River estuary

    SciTech Connect

    Boreman, J.; Barnthouse, L.W.; Vaughn, D.S.; Goodyear, C.P.; Christensen, S.W.; Kumar, K.D.; Kirk, B.L.; Van Winkle, W.

    1982-01-01

    This volume is concerned with the estimation of the direct (or annual) entrainment impact of power plants on populations of striped bass, white perch, Alosa spp. (blueback herring and alewife), American shad, Atlantic tomcod, and bay anchovy in the Hudson River estuary. Entrainment impact results from the killing of fish eggs, larvae, and young juveniles that are contained in the cooling water cycled through a power plant. An Empirical Transport Model (ETM) is presented as the means of estimating a conditional entrainment mortality rate (defined as the fraction of a year class which would be killed due to entrainment in the absence of any other source of mortality). Most of this volume is concerned with the estimation of several parameters required by the ETM: physical input parameters (e.g., power-plant withdrawal flow rates); the longitudinal distribution of ichthyoplankton in time and space; the duration of susceptibility of the vulnerable organisms; the W-factors, which express the ratios of densities of organisms in power plant intakes to densities of organisms in the river; and the entrainment mortality factors (f-factors), which express the probability that an organism will be killed if it is entrained. Once these values are obtained, the ETM is used to estimate entrainment impact for both historical and projected conditions.

  19. [Advanced approaches to studying the population diversity of marine fishes: new opportunities for fisheries control and management].

    PubMed

    Zelenina, D A; Martinson, Ia T; Ogden, R; Volkov, A A; Zelenina, I A; Carvalho, G R

    2011-12-01

    Recent conceptual and technological advances now enable fisheries geneticists to detect and monitor the dynamics and distribution of marine fish populations more effectively than ever before. Information on the extent of genetically-based divergence among populations, so-called "population diversity", is crucial in the quest to manage exploited living resources sustainably since it endows evolutionary potential in the face of environmental change. The generally limited dialogue between scientists, fisheries managers and policy makers, however, continues to constrain integration of population genetic data into tangible policy applications. Largely drawing on the approach and outputs from a European research project, FishPopTrace, we provide an example how the uncovering of marine fish population diversity enables players from genetics, forensics, management and the policy realm to generate a framework tackling key policy-led questions relating to illegal fishing and traceability. We focus on the use of single-nucleotide polymorphisms (SNPs) in European populations of cod, herring, hake and common sole, and explore how forensics together with a range of analytical approaches, and combined with improved communication of research results to stakeholders, can be used to secure sufficiently robust, tractable and targeted data for effective engagement between science and policy. The essentially binary nature of SNPs, together with generally elevated signals of population discrimination by SNPs under selection, allowed assignment of fish to populations from more areas and with higher certainty than previously possible, reaching standards suitable for use in a court of law. We argue that the use of such tools in enforcement and deterrence, together with the greater integration of population genetic principles and methods into fisheries management, provide tractable elements in the arsenal of tools to achieve sustainable exploitation and conservation of depleted marine fish

  20. The impact of United States recreational fisheries on marine fish populations.

    PubMed

    Coleman, Felicia C; Figueira, Will F; Ueland, Jeffrey S; Crowder, Larry B

    2004-09-24

    We evaluated the commercial and recreational fishery landings over the past 22 years, first at the national level, then for populations of concern (those that are overfished or experiencing overfishing), and finally by region. Recreational landings in 2002 account for 4% of total marine fish landed in the United States. With large industrial fisheries excluded (e.g., menhaden and pollock), the recreational component rises to 10%. Among populations of concern, recreational landings in 2002 account for 23% of the total nationwide, rising to 38% in the South Atlantic and 64% in the Gulf of Mexico. Moreover, it affects many of the most-valued overfished species-including red drum, bocaccio, and red snapper-all of which are taken primarily in the recreational fishery.

  1. Comparative cytogenetics among allopatric populations of the fish, Hoplias malabaricus. Cytotypes with 2n = 42 chromosomes.

    PubMed

    Born, G G; Bertollo, L A

    2000-01-01

    The available chromosomal data on Hoplias malabaricus make possible the identification of three major karyotypic forms in this fish group, all of them bearing 2n = 42 chromosomes, and named as Cytotypes A, B and E in previous studies. While Cytotype A and B share a general macrokaryotypic feature, Cytotype E is well differentiated concerning the morphology and size of some chromosome pairs. On the other hand, Cytotype B presents an exclusive XX/XY sex chromosome system. Six allopatric populations, belonging to Cytotype A, were subjected to cytogenetic analysis in the present study. Despite their basic karyotypic similarity, some differences in the chromosome formulae, as well as in the heterochromatin and Ag-NORs locations, were observed among populations indicating that they no more correspond to a unit, at least in the cytogenetical level.

  2. Early detection of nonnative alleles in fish populations: When sample size actually matters

    USGS Publications Warehouse

    Croce, Patrick Della; Poole, Geoffrey C.; Payne, Robert A.; Gresswell, Bob

    2017-01-01

    Reliable detection of nonnative alleles is crucial for the conservation of sensitive native fish populations at risk of introgression. Typically, nonnative alleles in a population are detected through the analysis of genetic markers in a sample of individuals. Here we show that common assumptions associated with such analyses yield substantial overestimates of the likelihood of detecting nonnative alleles. We present a revised equation to estimate the likelihood of detecting nonnative alleles in a population with a given level of admixture. The new equation incorporates the effects of the genotypic structure of the sampled population and shows that conventional methods overestimate the likelihood of detection, especially when nonnative or F-1 hybrid individuals are present. Under such circumstances—which are typical of early stages of introgression and therefore most important for conservation efforts—our results show that improved detection of nonnative alleles arises primarily from increasing the number of individuals sampled rather than increasing the number of genetic markers analyzed. Using the revised equation, we describe a new approach to determining the number of individuals to sample and the number of diagnostic markers to analyze when attempting to monitor the arrival of nonnative alleles in native populations.

  3. Embryonic IGF2 Expression Is Not Associated with Offspring Size among Populations of a Placental Fish

    PubMed Central

    Schrader, Matthew; Travis, Joseph

    2012-01-01

    In organisms that provision young between fertilization and birth, mothers and their developing embryos are expected to be in conflict over embryonic growth. In mammalian embryos, the expression of Insulin-like growth factor II (IGF2) plays a key role in maternal-fetal interactions and is thought to be a focus of maternal-fetal conflict. Recent studies have suggested that IGF2 is also a focus of maternal-fetal conflict in placental fish in the family Poeciliidae. However, whether the expression of IGF2 influences offspring size, the trait over which mothers and embryos are likely to be in conflict, has not been assessed in a poeciliid. We tested whether embryonic IGF2 expression varied among four populations of a placental poeciliid that display large and consistent differences in offspring size at birth. We found that IGF2 expression varied significantly among embryonic stages with expression being 50% higher in early stage embryos than late stage embryos. There were no significant differences among populations in IGF2 expression; small differences in expression between population pairs with different offspring sizes were comparable in magnitude to those between population pairs with the same offspring sizes. Our results indicate that variation in IGF2 transcript abundance does not contribute to differences in offspring size among H. formosa populations. PMID:23029026

  4. Population genetic structure of Earth's largest fish, the whale shark (Rhincodon typus).

    PubMed

    Castro, A L F; Stewart, B S; Wilson, S G; Hueter, R E; Meekan, M G; Motta, P J; Bowen, B W; Karl, S A

    2007-12-01

    Large pelagic vertebrates pose special conservation challenges because their movements generally exceed the boundaries of any single jurisdiction. To assess the population structure of whale sharks (Rhincodon typus), we sequenced complete mitochondrial DNA control regions from individuals collected across a global distribution. We observed 51 single site polymorphisms and 8 regions with indels comprising 44 haplotypes in 70 individuals, with high haplotype (h = 0.974 +/- 0.008) and nucleotide diversity (pi = 0.011 +/- 0.006). The control region has the largest length variation yet reported for an elasmobranch (1143-1332 bp). Phylogenetic analyses reveal no geographical clustering of lineages and the most common haplotype was distributed globally. The absence of population structure across the Indian and Pacific basins indicates that oceanic expanses and land barriers in Southeast Asia are not impediments to whale shark dispersal. We did, however, find significant haplotype frequency differences (AMOVA, Phi(ST) = 0.107, P < 0.001) principally between the Atlantic and Indo-Pacific populations. In contrast to other recent surveys of globally distributed sharks, we find much less population subdivision and no evidence for cryptic evolutionary partitions. Discovery of the mating and pupping areas of whale sharks is key to further population genetic studies. The global pattern of shared haplotypes in whale sharks provides a compelling argument for development of broad international approaches for management and conservation of Earth's largest fish.

  5. Genetic diversity despite population collapse in a critically endangered marine fish: the smalltooth sawfish (Pristis pectinata).

    PubMed

    Chapman, Demian D; Simpfendorfer, Colin A; Wiley, Tonya R; Poulakis, Gregg R; Curtis, Caitlin; Tringali, Michael; Carlson, John K; Feldheim, Kevin A

    2011-01-01

    Sawfish (family Pristidae) are among the most critically endangered marine fish in the world, yet very little is known about how genetic bottlenecks, genetic drift, and inbreeding depression may be affecting these elasmobranchs. In the US Atlantic, the smalltooth sawfish (Pristis pectinata) has declined to 1-5% of its abundance in the 1900s, and its core distribution has contracted to southwest Florida. We used 8 polymorphic microsatellite markers to show that this remnant population still exhibits high genetic diversity in terms of average allelic richness (18.23), average alleles per locus (18.75, standard deviation [SD] 6.6) and observed heterozygosity (0.43-0.98). Inbreeding is rare (mean individual internal relatedness = -0.02, SD 0.14; F(IS) = -0.011, 95% confidence interval [CI] = -0.039 to 0.011), even though the estimated effective population size (N(e)) is modest (250-350, 95% CI = 142-955). Simulations suggest that the remnant smalltooth sawfish population will probably retain >90% of its current genetic diversity over the next century even at the lower estimate of N(e). There is no evidence of a genetic bottleneck accompanying last century's demographic bottleneck, and we discuss hypotheses that could explain this. We also discuss features of elasmobranch life history and population biology that could make them less vulnerable than other large marine vertebrates to genetic change associated with reduced population size.

  6. Habitat Discontinuities Separate Genetically Divergent Populations of a Rocky Shore Marine Fish

    PubMed Central

    Knutsen, Halvor; Jorde, Per Erik

    2016-01-01

    Habitat fragmentation has been suggested to be responsible for major genetic differentiations in a range of marine organisms. In this study, we combined genetic data and environmental information to unravel the relative role of geography and habitat heterogeneity on patterns of genetic population structure of corkwing wrasse (Symphodus melops), a rocky shore species at the northern limit of its distribution range in Scandinavia. Our results revealed a major genetic break separating populations inhabiting the western and southern coasts of Norway. This genetic break coincides with the longest stretch of sand in the whole study area, suggesting habitat fragmentation as a major driver of genetic differentiation of this obligate rocky shore benthic fish in Scandinavia. The complex fjords systems extending along the western coast of Norway appeared responsible for further regional genetic structuring. Our findings indicate that habitat discontinuities may lead to significant genetic fragmentation over short geographical distances, even for marine species with a pelagic larval phase, as for this rocky shore fish. PMID:27706178

  7. Calcium regulation in wild populations of a freshwater cartilaginous fish, the lake sturgeon Acipenser fulvescens.

    PubMed

    Allen, Peter J; Webb, Molly A H; Cureton, Eli; Bruch, Ronald M; Barth, Cameron C; Peake, Stephan J; Anderson, W Gary

    2009-12-01

    Lake sturgeon, Acipenser fulvescens, are one of a few species of cartilaginous fishes that complete their life cycle entirely in freshwater. Sturgeons maintain very low concentrations of circulating calcium (Ca(2+)) compared with other vertebrates, and therefore, face unique challenges in regard to Ca(2+) regulation, which are likely to be magnified during vitellogenic stages of the reproductive cycle. In the present study, Ca(2+) concentrations and associated hormones of female and male lake sturgeon were examined in two wild populations, and were related to reproductive stage. In both populations, free, bound and total Ca(2+) were low, peaking in mid-late vitellogenic females. Internal Ca(2+) and phosphate (PO(4)(3-)) concentrations were inversely related to environmental concentrations, suggesting that these ions are preferentially retained and that mechanisms for mobilization are up-regulated under diminished environmental concentrations. Plasma 17beta-estradiol, 11-ketotestosterone and testosterone, peaked in mid-late vitellogenic females, while the androgens peaked in spawning males. Urine Ca(2+) was more tightly regulated than other divalent ions and decreased in spawning fish. Therefore, the increases in free plasma Ca(2+), the very low circulating concentrations of free and total Ca(2+), and the increase in PO(4)(3-) and bound Ca(2+) in low Ca(2+) environments indicate unique adaptations to Ca(2+) regulation in the lake sturgeon.

  8. Characterization of fish assemblages and population structure of freshwater fish in two Tunisian reservoirs: implications for fishery management.

    PubMed

    Mili, Sami; Ennouri, Rym; Dhib, Amel; Laouar, Houcine; Missaoui, Hechmi; Aleya, Lotfi

    2016-06-01

    To monitor and assess the state of Tunisian freshwater fisheries, two surveys were undertaken at Ghezala and Lahjar reservoirs. Samples were taken in April and May 2013, a period when the fish catchability is high. The selected reservoirs have different surface areas and bathymetries. Using multi-mesh gill nets (EN 14575 amended) designed for sampling fish in lakes, standard fishing methods were applied to estimate species composition, abundance, biomass, and size distribution. Four species were caught in the two reservoirs: barbel, mullet, pike-perch, and roach. Fish abundance showed significant change according to sampling sites, depth strata, and the different mesh sizes used. From the reservoir to the tributary, it was concluded that fish biomass distribution was governed by depth and was most abundant in the upper water layers. Species size distribution differed significantly between the two reservoirs, exceeding the length at first maturity. Species composition and abundance were greater in Lahjar reservoir than in Ghezala. Both reservoirs require support actions to improve fish productivity.

  9. Larval retention and connectivity among populations of corals and reef fishes: history, advances and challenges

    NASA Astrophysics Data System (ADS)

    Jones, G. P.; Almany, G. R.; Russ, G. R.; Sale, P. F.; Steneck, R. S.; van Oppen, M. J. H.; Willis, B. L.

    2009-06-01

    The extent of larval dispersal on coral reefs has important implications for the persistence of coral reef metapopulations, their resilience and recovery from an increasing array of threats, and the success of protective measures. This article highlights a recent dramatic increase in research effort and a growing diversity of approaches to the study of larval retention within (self-recruitment) and dispersal among (connectivity) isolated coral reef populations. Historically, researchers were motivated by alternative hypotheses concerning the processes limiting populations and structuring coral reef assemblages, whereas the recent impetus has come largely from the need to incorporate dispersal information into the design of no-take marine protected area (MPA) networks. Although the majority of studies continue to rely on population genetic approaches to make inferences about dispersal, a wide range of techniques are now being employed, from small-scale larval tagging and paternity analyses, to large-scale biophysical circulation models. Multiple approaches are increasingly being applied to cross-validate and provide more realistic estimates of larval dispersal. The vast majority of empirical studies have focused on corals and fishes, where evidence for both extremely local scale patterns of self-recruitment and ecologically significant connectivity among reefs at scales of tens of kilometers (and in some cases hundreds of kilometers) is accumulating. Levels of larval retention and the spatial extent of connectivity in both corals and fishes appear to be largely independent of larval duration or reef size, but may be strongly influenced by geographic setting. It is argued that high levels of both self-recruitment and larval import can contribute to the resilience of reef populations and MPA networks, but these benefits will erode in degrading reef environments.

  10. Screening for latent TB in patients with rheumatic disorders prior to biologic agents in a 'high-risk' TB population: comparison of two interferon gamma release assays.

    PubMed

    Melath, Sunil; Ismajli, Mediola; Smith, Robin; Patel, Ishita; Steuer, Alan

    2014-01-01

    Patients with rheumatic disorders treated with TNF inhibitors are at increased risk of developing TB. There is no 'gold-standard' for the diagnosis of latent TB prior to initiation of biologic agents. We report our own experience of comparing two interferon gamma release assays (IGRAs) in screening for latent TB in a 'high-risk' TB area in patients with rheumatic disorders. The study demonstrated good concordance between the two tests. We believe the additional cost of these assays is justified in high-risk populations prior to biologic agents, with 16% of the current study population with at least one positive IGRA assay.

  11. The requirement for prior consent to participate on survey response rates: a population-based survey in Grampian

    PubMed Central

    Angus, Val C; Entwistle, Vikki A; Emslie, Margaret J; Walker, Kim A; Andrew, Jane E

    2003-01-01

    Background A survey was carried out in the Grampian region of Scotland with a random sample of 10,000 adults registered with a General Practitioner in Grampian. The study complied with new legislation requiring a two-stage approach to identify and recruit participants, and examined the implications of this for response rates, non-response bias and speed of response. Methods A two-stage survey was carried out consistent with new confidentiality guidelines. Individuals were contacted by post and asked by the Director of Public Health to consent to receive a postal or electronic questionnaire about communicating their views to the NHS. Those who consented were then sent questionnaires. Response rates at both stages were measured. Results 25% of people returned signed consent forms and were invited to complete questionnaires. Respondents at the consent stage were more likely to be female (odds ratio (OR) response rate of women compared to men = 1.5, 95% CI 1.4, 1.7), less likely to live in deprived postal areas (OR = 0.59, 95% CI 0.45, 0.78) and more likely to be older (OR for people born in 1930–39 compared to people born in 1970–79 = 2.82, 95% CI 2.36, 3.37). 80% of people who were invited to complete questionnaires returned them. Response rates were higher among older age groups. The overall response rate to the survey was 20%, relative to the original number approached for consent (1951/10000). Conclusion The requirement of a separate, prior consent stage may significantly reduce overall survey response rates and necessitate the use of substantially larger initial samples for population surveys. It may also exacerbate non-response bias with respect to demographic variables. PMID:14622444

  12. Population genomics of local adaptation versus speciation in coral reef fishes (Hypoplectrus spp, Serranidae).

    PubMed

    Picq, Sophie; McMillan, W Owen; Puebla, Oscar

    2016-04-01

    Are the population genomic patterns underlying local adaptation and the early stages of speciation similar? Addressing this question requires a system in which (i) local adaptation and the early stages of speciation can be clearly identified and distinguished, (ii) the amount of genetic divergence driven by the two processes is similar, and (iii) comparisons can be repeated both taxonomically (for local adaptation) and geographically (for speciation). Here, we report just such a situation in the hamlets (Hypoplectrus spp), brightly colored reef fishes from the wider Caribbean. Close to 100,000 SNPs genotyped in 126 individuals from three sympatric species sampled in three repeated populations provide genome-wide levels of divergence that are comparable among allopatric populations (F st estimate = 0.0042) and sympatric species (F st estimate = 0.0038). Population genetic, clustering, and phylogenetic analyses reveal very similar patterns for local adaptation and speciation, with a large fraction of the genome undifferentiated (F st estimate ≈ 0), a very small proportion of F st outlier loci (0.05-0.07%), and remarkably few repeated outliers (1-3). Nevertheless, different loci appear to be involved in the two processes in Hypoplectrus, with only 7% of the most differentiated SNPs and outliers shared between populations and species comparisons. In particular, a tropomyosin (Tpm4) and a previously identified hox (HoxCa) locus emerge as candidate loci (repeated outliers) for local adaptation and speciation, respectively. We conclude that marine populations may be locally adapted notwithstanding shallow levels of genetic divergence, and that from a population genomic perspective, this process does not appear to differ fundamentally from the early stages of speciation.

  13. Effect of temperature-transfer on growth of laboratory populations of a South American annual fish Cynolebias bellottii.

    PubMed

    Liu, R K; Leung, B E; Walford, R L

    1975-09-01

    Previous observation had shown that annual fish living at 15 degrees C grow faster and live longer than those at 20 degrees C. We now demonstrate that when populations of these fish undergo reciprocal transfer between these two temperatures, their growth rates change to that of animals living at the temperature into which they have been transferred. These growth rates do not entirely correlate with the longevity patterns observed in annual fish subjected to temperature-transfer, nor to certain other observations of the relationships among growth, temperature and longevity as reported in the literature.

  14. The impacts of mobile fishing gear on seafloor habitats in the Gulf of Maine (Northwest Atlantic): implications for conservation of fish populations

    USGS Publications Warehouse

    Auster, Peter J.; Malatesta, Richard J.; Langton, Richard W.; Watting, Les; Valentine, Page C.; Donaldson, Carol Lee S.; Langton, Elizabeth W.; Shepard, Andrew N.; Babb, War G.

    1997-01-01

    Fishing gear alters seafloor habitats, but the extent of these alterations, and their effects, have not been quantified extensively in the northwest Atlantic. Understanding the extent of these impacts, and their effects on populations of living marine resources, is needed to properly manage current and future levels of fishing effort and fishing power. For example, the entire U.S. side of the Gulf of Maine was impacted annually by mobile fishing gear between 1984 and 1990, based on calculations of area swept by trawl and dredge gear. Georges Bank was imparted three to nearly four times annually during the same period. Studies at three sites in the Gulf of Maine (off Swans Island, Jeffreys Bank, and Stellwagen Bank) showed that mobile fishing gear altered the physical structure (=complexity) of benthic habitats. Complexity was reduced by direct removal of biogenic (e.g., sponges, hydrozoans, bryozoans, amphipod tubes, holothurians, shell aggregates) and‐ sedimentary (e.g., sand waves, depressions) structures. Also, removal of organisms that create.structures (e.g., crabs, scallops) indirectly reduced complexity. Reductions in habitat complexity may lead to increased predation on juveniles of harvested species and ultimately recruitment to the harvestable stock. Because of a lack of reference sites, where use of mobile fishing is prohibited, no empirical studies have yet been conducted on a scale that could demonstrate population level effects of habitat‐management options. If marine fisheries management is to evolve toward an ecosystem or habitat management approach, experiments are required on the effects of habitat change, both anthropogenic and natural.

  15. The impacts of mobile fishing gear on seafloor habitats in the gulf of maine (Northwest Atlantic): Implications for conservation of fish populations

    USGS Publications Warehouse

    Auster, P.J.; Malatesta, R.J.; Langton, R.W.; Watling, Les; Valentine, P.C.; Donaldson, C.L.S.; Langton, E.W.; Shepard, A.N.; Babb, Ivar G.

    1996-01-01

    Fishing gear alters seafloor habitats, but the extent of these alterations, and their effects, have not been quantified extensively in the northwest Atlantic. Understanding the extent of these impacts, and their effects on populations of living marine resources, is needed to properly manage current and future levels of fishing effort and fishing power. For example, the entire U.S. side of the Gulf of Maine was impacted annually by mobile fishing gear between 1984 and 1990, based on calculations of area swept by trawl and dredge gear. Georges Bank was impacted three to nearly four times annually during the same period. Studies at three sites in the Gulf of Maine (off Swans Island, Jeffreys Bank, and Stellwagen Bank) showed that mobile fishing gear altered the physical structure (=complexity) of benthic habitats. Complexity was reduced by direct removal of biogenic (e.g., sponges, hydrozoans, bryozoans, amphipod tubes, holothurians, shell aggregates) and sedimentary (e.g., sand waves, depressions) structures. Also, removal of organisms that create structures (e.g., crabs, scallops) indirectly reduced complexity. Reductions in habitat complexity may lead to increased predation on juveniles of harvested species and ultimately recruitment to the harvestable stock. Because of a lack of reference sites, where use of mobile fishing is prohibited, no empirical studies have yet been conducted on a scale that could demonstrate population level effects of habitat-management options. If marine fisheries management is to evolve toward an ecosystem or habitat management approach, experiments are required on the effects of habitat change, both anthropogenic and natural.

  16. Relationship between snail population density and infection status of snails and fish with zoonotic trematodes in Vietnamese carp nurseries.

    PubMed

    Clausen, Jesper Hedegaard; Madsen, Henry; Murrell, K Darwin; Phan Thi, Van; Nguyen Manh, Hung; Viet, Khue Nguyen; Dalsgaard, Anders

    2012-01-01

    Fish-borne zoonotic trematodes (FZT) are a food safety and health concern in Vietnam. Humans and other final hosts acquire these parasites from eating raw or under-cooked fish with FZT metacercariae. Fish raised in ponds are exposed to cercariae shed by snail hosts that are common in fish farm ponds. Previous risk assessment on FZT transmission in the Red River Delta of Vietnam identified carp nursery ponds as major sites of transmission. In this study, we analyzed the association between snail population density and heterophyid trematode infection in snails with the rate of FZT transmission to juvenile fish raised in carp nurseries. Snail population density and prevalence of trematode (Heterophyidae) infections were determined in 48 carp nurseries producing Rohu juveniles, (Labeo rohita) in the Red River Delta area. Fish samples were examined at 3, 6 and 9 weeks after the juvenile fish were introduced into the ponds. There was a significant positive correlation between prevalence of FZT metacercariae in juvenile fish and density of infected snails. Thus, the odds of infection in juvenile fish were 4.36 and 11.32 times higher for ponds with medium and high density of snails, respectively, compared to ponds where no infected snails were found. Further, the intensity of fish FZT infections increased with the density of infected snails. Interestingly, however, some ponds with no or few infected snails were collected also had high prevalence and intensity of FZT in juvenile fish. This may be due to immigration of cercariae into the pond from external water sources. The total number and density of potential host snails and density of host snails infected with heterophyid trematodes in the aquaculture pond is a useful predictor for infections in juvenile fish, although infection levels in juvenile fish can occur despite low density or absence infected snails. This suggests that intervention programs to control FZT infection of fish should include not only intra

  17. Complexities of gene expression patterns in natural populations of an extremophile fish (Poecilia mexicana, Poeciliidae).

    PubMed

    Passow, Courtney N; Brown, Anthony P; Arias-Rodriguez, Lenin; Yee, Muh-Ching; Sockell, Alexandra; Schartl, Manfred; Warren, Wesley C; Bustamante, Carlos; Kelley, Joanna L; Tobler, Michael

    2017-08-01

    Variation in gene expression can provide insights into organismal responses to environmental stress and physiological mechanisms mediating adaptation to habitats with contrasting environmental conditions. We performed an RNA-sequencing experiment to quantify gene expression patterns in fish adapted to habitats with different combinations of environmental stressors, including the presence of toxic hydrogen sulphide (H2 S) and the absence of light in caves. We specifically asked how gene expression varies among populations living in different habitats, whether population differences were consistent among organs, and whether there is evidence for shared expression responses in populations exposed to the same stressors. We analysed organ-specific transcriptome-wide data from four ecotypes of Poecilia mexicana (nonsulphidic surface, sulphidic surface, nonsulphidic cave and sulphidic cave). The majority of variation in gene expression was correlated with organ type, and the presence of specific environmental stressors elicited unique expression differences among organs. Shared patterns of gene expression between populations exposed to the same environmental stressors increased with levels of organismal organization (from transcript to gene to physiological pathway). In addition, shared patterns of gene expression were more common between populations from sulphidic than populations from cave habitats, potentially indicating that physiochemical stressors with clear biochemical consequences can constrain the diversity of adaptive solutions that mitigate their adverse effects. Overall, our analyses provided insights into transcriptional variation in a unique system, in which adaptation to H2 S and darkness coincide. Functional annotations of differentially expressed genes provide a springboard for investigating physiological mechanisms putatively underlying adaptation to extreme environments. © 2017 John Wiley & Sons Ltd.

  18. Resilience and tipping points of an exploited fish population over six decades.

    PubMed

    Vasilakopoulos, Paraskevas; Marshall, C Tara

    2015-05-01

    Complex natural systems with eroded resilience, such as populations, ecosystems and socio-ecological systems, respond to small perturbations with abrupt, discontinuous state shifts, or critical transitions. Theory of critical transitions suggests that such systems exhibit fold bifurcations featuring folded response curves, tipping points and alternate attractors. However, there is little empirical evidence of fold bifurcations occurring in actual complex natural systems impacted by multiple stressors. Moreover, resilience of complex systems to change currently lacks clear operational measures with generic application. Here, we provide empirical evidence for the occurrence of a fold bifurcation in an exploited fish population and introduce a generic measure of ecological resilience based on the observed fold bifurcation attributes. We analyse the multivariate development of Barents Sea cod (Gadus morhua), which is currently the world's largest cod stock, over six decades (1949-2009), and identify a population state shift in 1981. By plotting a multivariate population index against a multivariate stressor index, the shift mechanism was revealed suggesting that the observed population shift was a nonlinear response to the combined effects of overfishing and climate change. Annual resilience values were estimated based on the position of each year in relation to the fitted attractors and assumed tipping points of the fold bifurcation. By interpolating the annual resilience values, a folded stability landscape was fit, which was shaped as predicted by theory. The resilience assessment suggested that the population may be close to another tipping point. This study illustrates how a multivariate analysis, supported by theory of critical transitions and accompanied by a quantitative resilience assessment, can clarify shift mechanisms in data-rich complex natural systems.

  19. The theoretical reliability of PCR-based fish viral diagnostic methods is critically affected when they are applied to fish populations with low prevalence and virus loads.

    PubMed

    Dopazo, C P; Moreno, P; Olveira, J G; Borrego, J J

    2017-09-15

    The reliability of PCR techniques is an important issue in viral diagnosis, and it is even crucial when they must be applied for detection of viruses in asymptomatic carriers. The problems will arise when the aim is to study fish wild populations, where the viral loads and prevalence values are extremely low. We have evaluated several PCR procedures employed by two laboratories for monitoring fish captured in several oceanographic campaigns performed in the Gulf of Cádiz. To evaluate the reliability of different diagnostics test used, we have re-analyzed fish samples that had been previously subjected to diagnosis for a surveillance of viruses performed in 2010-2011 in wild fish populations. The following parameters were employed: the clinical sensitivity (Ss), the clinical specificity (Sp), the predictive positive value (PPV), the predictive negative value (PNV), and the positive and negative likelihood ratio (LR(+) and LR(-) ). For viral nervious necrosis virus (VNNV), a RT-PCR procedure supplemented by nested PCR showed the highest values (100%) for all the parameters. For viral hemorrhagic septicemia virus (VHSV), the highest values were provided by RT-PCR supplemented by dot blot hybridization. In the case of Infectious pancreatic necrosis virus (IPNV), none of the procedures yielded 100% for any parameter. The results obtained for viral prevalence indicate: (i) that the conservation of the samples at -80 °C did not affect to the capacity of detection of the virus in the tissues, and (ii) that the reproducibility of the diagnosis can be affected by factors including the staff experience and/or the materials employed. Finally, the use of a combination of procedures in advised to ensure the maximum reliability of the diagnosis when it is applied to asymptomatic fish populations. This paper describes a strategy of combining diagnostic tests for the surveillance and monitoring of wild fish populations to reduce underestimation of the prevalence of viruses this

  20. Potential population and assemblage influences of non-native trout on native nongame fish in Nebraska headwater streams

    USGS Publications Warehouse

    Turek, Kelly C.; Pegg, Mark A.; Pope, Kevin L.; Schainost, Steve

    2014-01-01

    Non-native trout are currently stocked to support recreational fisheries in headwater streams throughout Nebraska. The influence of non-native trout introductions on native fish populations and their role in structuring fish assemblages in these systems is unknown. The objectives of this study were to determine (i) if the size structure or relative abundance of native fish differs in the presence and absence of non-native trout, (ii) if native fish-assemblage structure differs in the presence and absence of non-native trout and (iii) if native fish-assemblage structure differs across a gradient in abundances of non-native trout. Longnose dace Rhinichthys cataractae were larger in the presence of brown trout Salmo trutta and smaller in the presence of rainbow trout Oncorhynchus mykiss compared to sites without trout. There was also a greater proportion of larger white suckers Catostomus commersonii in the presence of brown trout. Creek chub Semotilus atromaculatus and fathead minnow Pimephales promelas size structures were similar in the presence and absence of trout. Relative abundances of longnose dace, white sucker, creek chub and fathead minnow were similar in the presence and absence of trout, but there was greater distinction in native fish-assemblage structure between sites with trout compared to sites without trout as trout abundances increased. These results suggest increased risk to native fish assemblages in sites with high abundances of trout. However, more research is needed to determine the role of non-native trout in structuring native fish assemblages in streams, and the mechanisms through which introduced trout may influence native fish populations.

  1. Evaluation of marine subareas of Europe using life history parameters and trophic levels of selected fish populations.

    PubMed

    Jayasinghe, R P Prabath K; Amarasinghe, Upali S; Newton, Alice

    2015-12-01

    European marine waters include four regional seas that provide valuable ecosystem services to humans, including fish and other seafood. However, these marine environments are threatened by pressures from multiple anthropogenic activities and climate change. The European Marine Strategy Framework Directive (MSFD) was adopted in 2008 to achieve good environmental status (GEnS) in European Seas by year 2020, using an Ecosystem Approach. GEnS is to be assessed using 11 descriptors and up to 56 indicators. In the present analysis two descriptors namely "commercially exploited fish and shellfish populations" and "food webs" were used to evaluate the status of subareas of FAO 27 area. Data on life history parameters, trophic levels and fisheries related data of cod, haddock, saithe, herring, plaice, whiting, hake and sprat were obtained from the FishBase online database and advisory reports of International Council for the Exploration of the Sea (ICES). Subareas inhabited by r and K strategists were identified using interrelationships of life history parameters of commercially important fish stocks. Mean trophic level (MTL) of fish community each subarea was calculated and subareas with species of high and low trophic level were identified. The Fish in Balance (FiB) index was computed for each subarea and recent trends of FiB indices were analysed. The overall environmental status of each subarea was evaluated considering life history trends, MTL and FiB Index. The analysis showed that subareas I, II, V, VIII and IX were assessed as "good" whereas subareas III, IV, VI and VII were assessed as "poor". The subareas assessed as "good" were subject to lower environmental pressures, (less fishing pressure, less eutrophication and more water circulation), while the areas with "poor" environment experienced excessive fishing pressure, eutrophication and disturbed seabed. The evaluation was based on two qualitative descriptors ("commercially exploited fish and shellfish

  2. Intersex in fishes and amphibians: population implications, prevalence, mechanisms and molecular biomarkers.

    PubMed

    Abdel-Moneim, Ahmed; Coulter, David P; Mahapatra, Cecon T; Sepúlveda, Maria S

    2015-11-01

    Intersex is defined as the abnormal presence of both testicular and ovarian cells in gonads of gonochoristic animals. Its occurrence is widespread and reports on its presence in the gonads of vertebrates continues to increase. In this review, we use standardized terminology to summarize the current knowledge of intersex in gonochoristic fishes and amphibians. We describe the different indices that have been used to assess the severity of intersex and synthesize reports discussing the prevalence of intersex in relation to different types of pollutants. In addition, we evaluate the geographic distribution and chronology of the reported cases of intersex in fishes and amphibians, their pathological descriptions and severity and discuss species sensitivities. We also summarize molecular biomarkers that have been tested for early detection of intersex in wild populations and highlight additional biomarkers that target molecular pathways involved in gonadal development that require further investigation for use in the diagnosis of intersex. Finally, we discuss the needs for future research in this field. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Time trends in fish populations in metropolitan France: insights from national monitoring data.

    PubMed

    Poulet, N; Beaulaton, L; Dembski, S

    2011-12-01

    Using the electrofishing database of the French National Agency for Water and Aquatic Environment (Onema), the time trends of 48 freshwater fish taxa at 590 sites monitored for at least 8 years from 1990 to 2009 were investigated. The results demonstrated that species richness increased steadily from the beginning of the monitoring period. This is congruent with the finding that the number of species displaying a significant increase in spatial distribution or abundance was greater than those showing a significant decrease. Some species, however, had declined both in occurrence and abundance, e.g. tench Tinca tinca, common bream Abramis brama, brown trout Salmo trutta and European eel Anguilla anguilla. The species showing the most spectacular colonization were non-native, e.g. topmouth gudgeon Pseudorasbora parva, wels catfish Silurus glanis and asp Aspius aspius. The time trends in population density were related to the maximal body size, habitat requirement, occurrence and abundance and the status (i.e. native or exotic) but not to the spawning temperature. © 2011 The Authors. Journal of Fish Biology © 2011 The Fisheries Society of the British Isles.

  4. Projected risk of population declines for native fish species in the Upper Mississippi River

    USGS Publications Warehouse

    Crimmins, S.M.; Boma, P.; Thogmartin, W.E.

    2015-01-01

    Conservationists are in need of objective metrics for prioritizing the management of habitats. For individual species, the threat of extinction is often used to prioritize what species are in need of conservation action. Using long-term monitoring data, we applied a Bayesian diffusion approximation to estimate quasi-extinction risk for 54 native fish species within six commercial navigation reaches along a 1350-km gradient of the upper Mississippi River system. We found a strong negative linear relationship between quasi-extinction risk and distance upstream. For some species, quasi-extinction estimates ranged from nearly zero in some reaches to one in others, suggesting substantial variability in threats facing individual river reaches. We found no evidence that species traits affected quasi-extinction risk across the entire system. Our results indicate that fishes within the upper Mississippi River system face localized threats that vary across river impact gradients. This suggests that conservation actions should be focused on local habitat scales but should also consider the additive effects on downstream conditions. We also emphasize the need for identification of proximate mechanisms behind observed and predicted population declines, as conservation actions will require mitigation of such mechanisms. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  5. ShapeR: an R package to study otolith shape variation among fish populations.

    PubMed

    Libungan, Lísa Anne; Pálsson, Snæbjörn

    2015-01-01

    ShapeR is an open source software package that runs on the R platform and is specifically designed to study otolith shape variation among fish populations. The package extends previously described software used for otolith shape analysis by allowing the user to automatically extract closed contour outlines from a large number of images, perform smoothing to eliminate pixel noise, choose from conducting either a Fourier or Wavelet transform to the outlines and visualize the mean shape. The output of the package are independent Fourier or Wavelet coefficients which can be directly imported into a wide range of statistical packages in R. The package might prove useful in studies of any two dimensional objects.

  6. ShapeR: An R Package to Study Otolith Shape Variation among Fish Populations

    PubMed Central

    Libungan, Lísa Anne; Pálsson, Snæbjörn

    2015-01-01

    ShapeR is an open source software package that runs on the R platform and is specifically designed to study otolith shape variation among fish populations. The package extends previously described software used for otolith shape analysis by allowing the user to automatically extract closed contour outlines from a large number of images, perform smoothing to eliminate pixel noise, choose from conducting either a Fourier or Wavelet transform to the outlines and visualize the mean shape. The output of the package are independent Fourier or Wavelet coefficients which can be directly imported into a wide range of statistical packages in R. The package might prove useful in studies of any two dimensional objects. PMID:25803855

  7. Power to Detect Trends in Missouri River Fish Populations within the Habitat Assessment Monitoring Program

    USGS Publications Warehouse

    Bryan, Janice L.; Wildhaber, Mark L.; Gladish, Dan W.

    2010-01-01

    As with all large rivers in the United States, the Missouri River has been altered, with approximately one-third of the mainstem length impounded and one-third channelized. These physical alterations to the environment have affected the fish populations, but studies examining the effects of alterations have been localized and for short periods of time, thereby preventing generalization. In response to the U.S. Fish and Wildlife Service Biological Opinion, the U.S. Army Corps of Engineers (USACE) initiated monitoring of habitat improvements of the Missouri River in 2005. The goal of the Habitat Assessment Monitoring Program (HAMP) is to provide information on the response of target fish species to the USACE habitat creation on the Lower Missouri River. To determine the statistical power of the HAMP and in cooperation with USACE, a power analysis was conducted using a normal linear mixed model with variance component estimates based on the first complete year of data. At a level of 20/16 (20 bends with 16 subsamples in each bend), at least one species/month/gear model has the power to determine differences between treated and untreated bends. The trammel net in September had the most species models with adequate power at the 20/16 level and overall, the trammel net had the most species/month models with adequate power at the 20/16 level. However, using only one gear or gear/month combination would eliminate other species of interest, such as three chub species (Macrhybopsis meeki, Macrhybopsis aestivalis, and Macrhybopsis gelida), sand shiners (Notropis stramineus), pallid sturgeon (Scaphirhynchus albus), and juvenile sauger (Sander canadensis). Since gear types are selective in their species efficiency, the strength of the HAMP approach is using multiple gears that have statistical power to differentiate habitat treatment differences in different fish species within the Missouri River. As is often the case with sampling rare species like the pallid sturgeon, the

  8. Power to detect trends in Missouri River fish populations within the Habitat Assessment Monitoring Program

    USGS Publications Warehouse

    Bryan, Janice L.; Wildhaber, Mark L.; Gladish, Dan W.

    2010-01-01

    As with all large rivers in the United States, the Missouri River has been altered, with approximately one-third of the mainstem length impounded and one-third channelized. These physical alterations to the environment have affected the fish populations, but studies examining the effects of alterations have been localized and for short periods of time, thereby preventing generalization. In response to the U.S. Fish and Wildlife Service Biological Opinion, the U.S. Army Corps of Engineers (USACE) initiated monitoring of habitat improvements of the Missouri River in 2005. The goal of the Habitat Assessment Monitoring Program (HAMP) is to provide information on the response of target fish species to the USACE habitat creation on the Lower Missouri River. To determine the statistical power of the HAMP and in cooperation with USACE, a power analysis was conducted using a normal linear mixed model with variance component estimates based on the first complete year of data. At a level of 20/16 (20 bends with 16 subsamples in each bend), at least one species/month/gear model has the power to determine differences between treated and untreated bends. The trammel net in September had the most species models with adequate power at the 20/16 level and overall, the trammel net had the most species/month models with adequate power at the 20/16 level. However, using only one gear or gear/month combination would eliminate other species of interest, such as three chub species (Macrhybopsis meeki, Macrhybopsis aestivalis, and Macrhybopsis gelida), sand shiners (Notropis stramineus), pallid sturgeon (Scaphirhynchus albus), and juvenile sauger (Sander canadensis). Since gear types are selective in their species efficiency, the strength of the HAMP approach is using multiple gears that have statistical power to differentiate habitat treatment differences in different fish species within the Missouri River. As is often the case with sampling rare species like the pallid sturgeon, the

  9. Oceanography and life history predict contrasting genetic population structure in two Antarctic fish species.

    PubMed

    Young, Emma F; Belchier, Mark; Hauser, Lorenz; Horsburgh, Gavin J; Meredith, Michael P; Murphy, Eugene J; Pascoal, Sonia; Rock, Jennifer; Tysklind, Niklas; Carvalho, Gary R

    2015-06-01

    Understanding the key drivers of population connectivity in the marine environment is essential for the effective management of natural resources. Although several different approaches to evaluating connectivity have been used, they are rarely integrated quantitatively. Here, we use a 'seascape genetics' approach, by combining oceanographic modelling and microsatellite analyses, to understand the dominant influences on the population genetic structure of two Antarctic fishes with contrasting life histories, Champsocephalus gunnari and Notothenia rossii. The close accord between the model projections and empirical genetic structure demonstrated that passive dispersal during the planktonic early life stages is the dominant influence on patterns and extent of genetic structuring in both species. The shorter planktonic phase of C. gunnari restricts direct transport of larvae between distant populations, leading to stronger regional differentiation. By contrast, geographic distance did not affect differentiation in N. rossii, whose longer larval period promotes long-distance dispersal. Interannual variability in oceanographic flows strongly influenced the projected genetic structure, suggesting that shifts in circulation patterns due to climate change are likely to impact future genetic connectivity and opportunities for local adaptation, resilience and recovery from perturbations. Further development of realistic climate models is required to fully assess such potential impacts.

  10. Subtle genetic structure reveals restricted connectivity among populations of a coral reef fish inhabiting remote atolls.

    PubMed

    Underwood, Jim N; Travers, Michael J; Gilmour, James P

    2012-03-01

    We utilized a spatial and temporal analyses of genetic structure, supplemented with ecological and oceanographic analysis, to assess patterns of population connectivity in a coral reef fish Chromis margaritifer among the unique and remote atolls in the eastern Indian Ocean. A subtle, but significant genetic discontinuity at 10 microsatellite DNA loci was detected between atoll systems corresponding with a low (≤ 1%) probability of advection across the hundreds of kilometers of open ocean that separates them. Thus, although genetic connections between systems are likely maintained by occasional long-distance dispersal of C. margaritifer larvae, ecological population connectivity at this spatial scale appears to be restricted. Further, within one of these atoll systems, significant spatial differentiation among samples was accompanied by a lack of temporal pairwise differentiation between recruit and adult samples, indicating that restrictions to connectivity also occur at a local scale (tens of kilometers). In contrast, a signal of panmixia was detected at the other atoll system studied. Lastly, greater relatedness and reduced genetic diversity within recruit samples was associated with relatively large differences among them, indicating the presence of sweepstakes reproduction whereby a small proportion of adults contributes to recruitment in the next generation. These results are congruent with earlier work on hard corals, suggesting that local production of larvae drives population replenishment in these atoll systems for a range of coral reef species.

  11. Subtle genetic structure reveals restricted connectivity among populations of a coral reef fish inhabiting remote atolls

    PubMed Central

    Underwood, Jim N; Travers, Michael J; Gilmour, James P

    2012-01-01

    We utilized a spatial and temporal analyses of genetic structure, supplemented with ecological and oceanographic analysis, to assess patterns of population connectivity in a coral reef fish Chromis margaritifer among the unique and remote atolls in the eastern Indian Ocean. A subtle, but significant genetic discontinuity at 10 microsatellite DNA loci was detected between atoll systems corresponding with a low (≤ 1%) probability of advection across the hundreds of kilometers of open ocean that separates them. Thus, although genetic connections between systems are likely maintained by occasional long-distance dispersal of C. margaritifer larvae, ecological population connectivity at this spatial scale appears to be restricted. Further, within one of these atoll systems, significant spatial differentiation among samples was accompanied by a lack of temporal pairwise differentiation between recruit and adult samples, indicating that restrictions to connectivity also occur at a local scale (tens of kilometers). In contrast, a signal of panmixia was detected at the other atoll system studied. Lastly, greater relatedness and reduced genetic diversity within recruit samples was associated with relatively large differences among them, indicating the presence of sweepstakes reproduction whereby a small proportion of adults contributes to recruitment in the next generation. These results are congruent with earlier work on hard corals, suggesting that local production of larvae drives population replenishment in these atoll systems for a range of coral reef species. PMID:22822442

  12. Distinct population structure in a phenotypically homogeneous rock-dwelling cichlid fish from Lake Tanganyika.

    PubMed

    Duftner, Nina; Sefc, Kristina M; Koblmüller, Stephan; Nevado, Bruno; Verheyen, Erik; Phiri, Harris; Sturmbauer, Christian

    2006-08-01

    Several lineages of cichlid fishes in the East African Great Lakes display stunning levels of morphological diversification. The rapid evolution of rock-dwelling polygynous mouthbrooders in Lake Malawi, for example, was in part ascribed to their allopatric distribution on disjunct stretches of rocky coast, where even short habitat discontinuities reduce gene flow effectively. However, as seen in other cichlids, ecological barriers do not always prevent gene flow, whereas genetic structure can develop along continuous habitat, and morphological diversification does not necessarily accompany genetic differentiation. The present study investigates the population structure of Variabilichromis moorii, a monogamous substrate-brooding lamprologine of rocky coasts in Lake Tanganyika, which occurs over about 1000 km of shoreline almost without phenotypic variation. Phylogeographic analyses of mitochondrial DNA sequences indicated that dispersal is infrequent and generally occurs between adjacent locations only. Exceptions to this pattern are closely related haplotypes from certain locations on opposite lakeshores, a phenomenon which has been observed in other species and is thought to reflect lake crossing along an underwater ridge in times of low water level. Genetic population differentiation, estimated from mitochondrial DNA and microsatellite data in six adjacent populations, was equally high across localities separated by sandy shores and along uninterrupted stretches of rocky shore. Our results suggest that ecological barriers are not required to induce philopatric behavior in Variabilichromis, and that morphological stasis persists in the face of high levels of neutral genetic differentiation.

  13. Oceanography and life history predict contrasting genetic population structure in two Antarctic fish species

    PubMed Central

    Young, Emma F; Belchier, Mark; Hauser, Lorenz; Horsburgh, Gavin J; Meredith, Michael P; Murphy, Eugene J; Pascoal, Sonia; Rock, Jennifer; Tysklind, Niklas; Carvalho, Gary R

    2015-01-01

    Understanding the key drivers of population connectivity in the marine environment is essential for the effective management of natural resources. Although several different approaches to evaluating connectivity have been used, they are rarely integrated quantitatively. Here, we use a ‘seascape genetics’ approach, by combining oceanographic modelling and microsatellite analyses, to understand the dominant influences on the population genetic structure of two Antarctic fishes with contrasting life histories, Champsocephalus gunnari and Notothenia rossii. The close accord between the model projections and empirical genetic structure demonstrated that passive dispersal during the planktonic early life stages is the dominant influence on patterns and extent of genetic structuring in both species. The shorter planktonic phase of C. gunnari restricts direct transport of larvae between distant populations, leading to stronger regional differentiation. By contrast, geographic distance did not affect differentiation in N. rossii, whose longer larval period promotes long-distance dispersal. Interannual variability in oceanographic flows strongly influenced the projected genetic structure, suggesting that shifts in circulation patterns due to climate change are likely to impact future genetic connectivity and opportunities for local adaptation, resilience and recovery from perturbations. Further development of realistic climate models is required to fully assess such potential impacts. PMID:26029262

  14. Prior Hysterectomy and Oophorectomy and Incident Venous Thrombosis Risk among Postmenopausal Women: a Population-based, Case-control Study

    PubMed Central

    Harrington, Laura B.; Weiss, Noel S.; Wiggins, Kerri L.; Heckbert, Susan R.; McKnight, Barbara; Blondon, Marc; Woods, Nancy F.; LaCroix, Andrea Z.; Psaty, Bruce M.; Smith, Nicholas L.

    2015-01-01

    Objective Hysterectomy and bilateral salpingo-oophorectomy (BSO) are associated with changes in endogenous hormone levels, yet the risk of venous thrombosis (VT) associated with hysterectomy and BSO is incompletely characterized. This study evaluated the risk of incident VT among postmenopausal women associated with combined prior hysterectomy/oophorectomy status and current use of hormone therapy (HT). Methods In a case-control study, we identified incident VT cases (n=1,623) among postmenopausal Group Health Cooperative enrollees without reproductive cancer, defining their “index date” as their VT diagnosis date (1995-2010). Matched controls had not experienced a prior VT (n=4,480). Multiple logistic regression models estimated adjusted relative risks for VT associated with combinations of prior hysterectomy/oophorectomy status and HT use at the index date. Results Compared with women with an intact uterus who were not using HT, there was no suggestion of greater VT risk in women with prior hysterectomy without BSO, whether they were (adjusted odds ratio (aOR)=0.80 [95% confidence interval (CI): 0.57, 1.12]) or were not using HT (aOR=1.09 [95% CI: 0.89, 1.35]). Women with prior hysterectomy and BSO who were using HT were not at a greater VT risk (OR=1.00 [95% CI: 0.78, 1.27]), but there was evidence of a 25% greater risk associated with prior hysterectomy with BSO and no current HT use (OR=1.25 [95% CI: 1.05, 1.49]). Conclusions Collectively, these and prior data do not suggest a substantial impact of hysterectomy, with or without BSO, on the risk of VT among postmenopausal women. PMID:26757272

  15. Body Size and Geographic Range Do Not Explain Long Term Variation in Fish Populations: A Bayesian Phylogenetic Approach to Testing Assembly Processes in Stream Fish Assemblages

    PubMed Central

    Jacquemin, Stephen J.; Doll, Jason C.

    2014-01-01

    We combine evolutionary biology and community ecology to test whether two species traits, body size and geographic range, explain long term variation in local scale freshwater stream fish assemblages. Body size and geographic range are expected to influence several aspects of fish ecology, via relationships with niche breadth, dispersal, and abundance. These traits are expected to scale inversely with niche breadth or current abundance, and to scale directly with dispersal potential. However, their utility to explain long term temporal patterns in local scale abundance is not known. Comparative methods employing an existing molecular phylogeny were used to incorporate evolutionary relatedness in a test for covariation of body size and geographic range with long term (1983 – 2010) local scale population variation of fishes in West Fork White River (Indiana, USA). The Bayesian model incorporating phylogenetic uncertainty and correlated predictors indicated that neither body size nor geographic range explained significant variation in population fluctuations over a 28 year period. Phylogenetic signal data indicated that body size and geographic range were less similar among taxa than expected if trait evolution followed a purely random walk. We interpret this as evidence that local scale population variation may be influenced less by species-level traits such as body size or geographic range, and instead may be influenced more strongly by a taxon’s local scale habitat and biotic assemblages. PMID:24691075

  16. Use of population viability analysis to evaluate CITES trade-management options for threatened marine fishes.

    PubMed

    Curtis, Janelle M R; Vincent, Amanda C J

    2008-10-01

    Achieving multiple conservation objectives can be challenging, particularly under high uncertainty. Having agreed to limit seahorse (Hippocampus) exports to sustainable levels, signatories to the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) were offered the option of a single 10-cm minimum size limit (MSL) as an interim management measure for all Hippocampus species (> or =34). Although diverse stakeholders supported the recommended MSL, its biological and socioeconomic implications were not assessed quantitatively. We combined population viability analysis, model sensitivity analysis, and economic information to evaluate the trade-off between conservation threat to and long-term cumulative income from these exploited marine fishes of high conservation concern. We used the European long-snouted seahorse (Hippocampus guttulatus) as a representative species to compare the performance of MSLs set at alternative biological reference points. Our sensitivity analyses showed that in most of our scenarios, setting the MSL just above size at maturity (9.7 cm in H. guttulatus) would not prevent exploited populations from becoming listed as vulnerable. By contrast, the relative risk of decline and extinction were almost halved--at a cost of only a 5.6% reduction in long-term catches--by increasing the MSL to the size reached after at least one full reproductive season. On the basis of our analysis, a precautionary increase in the MSL could be compatible with sustaining fishers' livelihoods and international trade. Such management tactics that aid species conservation and have minimal effects on long term catch trends may help bolster the case for CITES trade management of other valuable marine fishes.

  17. Mercury (Hg) in fish consumed by the local population of the Jaguaribe River lower basin, Northeast Brazil.

    PubMed

    Costa, B G B; Lacerda, L D

    2014-12-01

    The knowledge of Hg concentrations in fish is of considerable interest since these organisms are a major source of protein to coastal human populations and fishing communities. The main source of human exposure to Hg contamination occurs through the consumption of fish. In this paper, we compare Hg concentration in 13 fish species from Jaguaribe River lower basin and an adjacent coastal region in the northeastern coast of Brazil. We sampled fish from three stretches of the river: fluvial, estuarine, and marine regions. We tested the hypothesis that Hg concentration in muscle tissue vary according to species, location, and trophic level. Significant differences were observed among species and trophic level, but these could not be observed among the regions studied. As expected, the highest concentrations were observed in carnivorous fish (5.6-107.5; 26.9 ± 18.8 ng g(-1)). Hg concentrations observed in this study are similar to those observed in regions of low environmental contamination. We estimated Hg intake to vary between 0.02 and 0.22 ng Hg kg body weight(-1) week(-1), for the average body weight of 56.7 kg, which was considered as low exposure and therefore, a low risk to consumers of fish from the regions studied.

  18. Segmentation of densely populated cell nuclei from confocal image stacks using 3D non-parametric shape priors.

    PubMed

    Ong, Lee-Ling S; Wang, Mengmeng; Dauwels, Justin; Asada, H Harry

    2014-01-01

    An approach to jointly estimate 3D shapes and poses of stained nuclei from confocal microscopy images, using statistical prior information, is presented. Extracting nuclei boundaries from our experimental images of cell migration is challenging due to clustered nuclei and variations in their shapes. This issue is formulated as a maximum a posteriori estimation problem. By incorporating statistical prior models of 3D nuclei shapes into level set functions, the active contour evolutions applied on the images is constrained. A 3D alignment algorithm is developed to build the training databases and to match contours obtained from the images to them. To address the issue of aligning the model over multiple clustered nuclei, a watershed-like technique is used to detect and separate clustered regions prior to active contour evolution. Our method is tested on confocal images of endothelial cells in microfluidic devices, compared with existing approaches.

  19. Understanding the determinate-indeterminate fecundity dichotomy in fish populations using a temperature dependent oocyte growth model

    NASA Astrophysics Data System (ADS)

    Ganias, Kostas; Lowerre-Barbieri, Susan K.; Cooper, Wade

    2015-02-01

    The fecundity type (determinate vs. indeterminate) is still uncertain for many commercially important fish populations affecting accuracy in fecundity estimations and hindering the selection of appropriate egg production methods for stock assessment purposes. It is broadly considered that boreal fish populations living in colder habitats are determinate spawners whilst populations residing in warmer habitats tend to be indeterminate spawners. In the present study we modelled the determinate-indeterminate fecundity type in batch spawning fishes, i.e. fish that spawn several batches of eggs per spawning season, based on the relationship between oocyte growth period and the duration of the spawning period considering that both variables can be affected by water temperature and latitudinal distributions. Individual based models (IBMs) were developed to explore how the interaction of these variables can result in a series of patterns along the continuum from extreme determinacy, i.e. annual fecundity being recruited long before the onset of the spawning period, to indeterminacy. Model simulations showed that fish stocks with oocyte growth periods longer than the spawning period are predicted to exhibit determinate fecundity which provides a fair justification for why cold water species with slow oocyte growth and limited spawning periods are determinate spawners and vice versa.

  20. Evaluation of Fluoride Retention Due to Most Commonly Consumed Estuarine Fishes Among Fish Consuming Population of Andhra Pradesh as a Contributing Factor to Dental Fluorosis: A Cross-Sectional Study

    PubMed Central

    Ganta, Shravani; Nagaraj, Anup; Pareek, Sonia; Sidiq, Mohsin; Singh, Kushpal; Vishnani, Preeti

    2015-01-01

    Background Fluoride in drinking water is known for both beneficial and detrimental effects on health. The principal sources of fluoride include water, some species of vegetation, certain edible marine animals, dust and industrial processes. The purpose of this study was to evaluate the fluoride retention of most commonly consumed estuarine fishes among fish consuming population of Andhra Pradesh. Materials and Methods A cross-sectional study was conducted to evaluate the amount of fluoride retention due to ten most commonly consumed estuarine fishes as a contributing factor to Fluorosis by SPADNS Spectrophotometric method. The presence and severity of dental fluorosis among fish consuming population was recorded using Community Fluorosis Index. Statistical analysis was done using MedCalc v12.2.1.0 software. Results For Sea water fishes, the fluoride levels in bone were maximum in Indian Sardine (4.22 ppm). Amongst the river water fishes, the fluoride levels in bone were maximum in Catla (1.51 ppm). Also, the mean total fluoride concentrations of all the river fishes in skin, muscle and bone were less (0.86 ppm) as compared to the sea water fishes (2.59 ppm). It was unveiled that sea fishes accumulate relatively large amounts of Fluoride as compared to the river water fishes. The mean Community Fluorosis Index was found to be 1.06 amongst a sampled fish consuming population. Evaluation by Community Index for Dental fluorosis (CFI) suggested that fluorosis is of medium public health importance. Conclusion It was analysed that bone tends to accumulate more amount of fluoride followed by muscle and skin which might be due to the increased permeability and chemical trapping of fluoride inside the tissues. The amount of fluoride present in the fishes is directly related to the severity of fluorosis amongst fish consuming population, suggesting fishes as a contributing factor to fluorosis depending upon the dietary consumption. PMID:26266208

  1. Evaluation of Fluoride Retention Due to Most Commonly Consumed Estuarine Fishes Among Fish Consuming Population of Andhra Pradesh as a Contributing Factor to Dental Fluorosis: A Cross-Sectional Study.

    PubMed

    Ganta, Shravani; Yousuf, Asif; Nagaraj, Anup; Pareek, Sonia; Sidiq, Mohsin; Singh, Kushpal; Vishnani, Preeti

    2015-06-01

    Fluoride in drinking water is known for both beneficial and detrimental effects on health. The principal sources of fluoride include water, some species of vegetation, certain edible marine animals, dust and industrial processes. The purpose of this study was to evaluate the fluoride retention of most commonly consumed estuarine fishes among fish consuming population of Andhra Pradesh. A cross-sectional study was conducted to evaluate the amount of fluoride retention due to ten most commonly consumed estuarine fishes as a contributing factor to Fluorosis by SPADNS Spectrophotometric method. The presence and severity of dental fluorosis among fish consuming population was recorded using Community Fluorosis Index. Statistical analysis was done using MedCalc v12.2.1.0 software. For Sea water fishes, the fluoride levels in bone were maximum in Indian Sardine (4.22 ppm). Amongst the river water fishes, the fluoride levels in bone were maximum in Catla (1.51 ppm). Also, the mean total fluoride concentrations of all the river fishes in skin, muscle and bone were less (0.86 ppm) as compared to the sea water fishes (2.59 ppm). It was unveiled that sea fishes accumulate relatively large amounts of Fluoride as compared to the river water fishes. The mean Community Fluorosis Index was found to be 1.06 amongst a sampled fish consuming population. Evaluation by Community Index for Dental fluorosis (CFI) suggested that fluorosis is of medium public health importance. It was analysed that bone tends to accumulate more amount of fluoride followed by muscle and skin which might be due to the increased permeability and chemical trapping of fluoride inside the tissues. The amount of fluoride present in the fishes is directly related to the severity of fluorosis amongst fish consuming population, suggesting fishes as a contributing factor to fluorosis depending upon the dietary consumption.

  2. Toxicology across scales: Cell population growth in vitro predicts reduced fish growth.

    PubMed

    Stadnicka-Michalak, Julita; Schirmer, Kristin; Ashauer, Roman

    2015-08-01

    Environmental risk assessment of chemicals is essential but often relies on ethically controversial and expensive methods. We show that tests using cell cultures, combined with modeling of toxicological effects, can replace tests with juvenile fish. Hundreds of thousands of fish at this developmental stage are annually used to assess the influence of chemicals on growth. Juveniles are more sensitive than adult fish, and their growth can affect their chances to survive and reproduce. Thus, to reduce the number of fish used for such tests, we propose a method that can quantitatively predict chemical impact on fish growth based on in vitro data. Our model predicts reduced fish growth in two fish species in excellent agreement with measured in vivo data of two pesticides. This promising step toward alternatives to fish toxicity testing is simple, inexpensive, and fast and only requires in vitro data for model calibration.

  3. COLLAPSE OF A FISH POPULATION FOLLOWING EXPOSURE TO A SYNTHETIC ESTROGEN

    EPA Science Inventory

    Municipal wastewaters are a complex mixture containing estrogens and estrogen mimics that are known to affect the reproductive health of wild fishes. Male fishes downstream of some wastewater outfalls produce vitellogenin (VTG) (a protein normally synthesized by females during oo...

  4. COLLAPSE OF A FISH POPULATION FOLLOWING EXPOSURE TO A SYNTHETIC ESTROGEN

    EPA Science Inventory

    Municipal wastewaters are a complex mixture containing estrogens and estrogen mimics that are known to affect the reproductive health of wild fishes. Male fishes downstream of some wastewater outfalls produce vitellogenin (VTG) (a protein normally synthesized by females during oo...

  5. Effects of environmental covariates and density on the catchability of fish populations and interpretation of catch per unit effort trends

    USGS Publications Warehouse

    Korman, Josh; Yard, Mike

    2017-01-01

    Article for outlet: Fisheries Research. Abstract: Quantifying temporal and spatial trends in abundance or relative abundance is required to evaluate effects of harvest and changes in habitat for exploited and endangered fish populations. In many cases, the proportion of the population or stock that is captured (catchability or capture probability) is unknown but is often assumed to be constant over space and time. We used data from a large-scale mark-recapture study to evaluate the extent of spatial and temporal variation, and the effects of fish density, fish size, and environmental covariates, on the capture probability of rainbow trout (Oncorhynchus mykiss) in the Colorado River, AZ. Estimates of capture probability for boat electrofishing varied 5-fold across five reaches, 2.8-fold across the range of fish densities that were encountered, 2.1-fold over 19 trips, and 1.6-fold over five fish size classes. Shoreline angle and turbidity were the best covariates explaining variation in capture probability across reaches and trips. Patterns in capture probability were driven by changes in gear efficiency and spatial aggregation, but the latter was more important. Failure to account for effects of fish density on capture probability when translating a historical catch per unit effort time series into a time series of abundance, led to 2.5-fold underestimation of the maximum extent of variation in abundance over the period of record, and resulted in unreliable estimates of relative change in critical years. Catch per unit effort surveys have utility for monitoring long-term trends in relative abundance, but are too imprecise and potentially biased to evaluate population response to habitat changes or to modest changes in fishing effort.

  6. Low levels of genetic differentiation among populations of the freshwater fish Hypseleotris compressa (Gobiidae: Eleotridinae): implications for its biology, population connectivity and history.

    PubMed

    McGlashan, D J; Hughes, J M

    2001-02-01

    The isolating nature of freshwater systems may lead to expectations of substantial genetic subdivision among populations of obligate freshwater species. We examined the genetic structure of populations of the freshwater fish Hypseleotris compressa (Gobiidae) using allozyme and mtDNA markers. Fifteen east coast Queensland populations and one Northern Territory population were sampled to examine levels of differentiation within and between drainages at near, medium and broad scales. Initial allozyme data suggested high levels of gene flow and connectivity among populations at broad spatial scales. However there was no significant relationship between geographical distance and gene flow among east coast populations which may indicate, among other possibilities, that these populations are not at equilibrium between gene flow and genetic drift. Analyses of a 567-bp fragment of the ATPase6 mtDNA gene revealed a star-shaped phylogeny, with many singleton, recently derived haplotypes. Tajima's test of neutrality was significantly negative. The allozyme and mtDNA data may be indicative of an historical demographic change that was reflected in the nonequilibrium pattern exhibited by contemporary populations. As estimating current levels of gene flow would violate basic assumptions of underlying models, approximations were not made. Nevertheless, patterns of genetic variation among populations of H. compressa do not match traditional expectations for a freshwater fish, and it would appear that there has been at least historical connectivity between populations now inhabiting different drainages.

  7. Spotlight on "Long-Term English Language Learners": Characteristics and Prior Schooling Experiences of an Invisible Population

    ERIC Educational Resources Information Center

    Menken, Kate; Kleyn, Tatyana; Chae, Nabin

    2012-01-01

    This article presents qualitative research findings about the characteristics and prior schooling experiences of "long-term English language learners" (LTELLs), who have attended U.S. schools for 7 years or more, and about whom there is little empirical research, despite their significant numbers. Findings indicate that these students are orally…

  8. Spotlight on "Long-Term English Language Learners": Characteristics and Prior Schooling Experiences of an Invisible Population

    ERIC Educational Resources Information Center

    Menken, Kate; Kleyn, Tatyana; Chae, Nabin

    2012-01-01

    This article presents qualitative research findings about the characteristics and prior schooling experiences of "long-term English language learners" (LTELLs), who have attended U.S. schools for 7 years or more, and about whom there is little empirical research, despite their significant numbers. Findings indicate that these students are orally…

  9. Exposure to physical and sexual violence prior to imprisonment predicts mental health and substance use treatments in prison populations.

    PubMed

    Sánchez, Francisco Caravaca; Luna, Aurelio; Mundt, Adrian

    2016-08-01

    The present study aimed to establish rates of exposure to physical or sexual violence (PSV) prior to imprisonment for prisoners in Spain and to explore whether people exposed to PSV access mental health treatment during imprisonment. In a sample of 2484 male and 225 female prisoners, socio-demographic variables, exposure to PSV prior to imprisonment and mental health treatments during imprisonment were assessed. Frequencies were calculated as per cent values with 95% confidence intervals (CI). The Risk Ratio (RR) of PSV and other socio-demographic variables to associate with mental health treatment during imprisonment was established. History of PSV was present in 35.2% (95% CI: 33.3-37.0) of the male and 40.0% (95% CI: 33.9-46.8) of the female prisoners. 70.7% (95% CI: 67.8-73.9) of the male and 76.9% (95% CI: 67.7-86.0) of the female prisoners with prior exposure to PSV were in mental health treatment during imprisonment. PSV was a significant predictor of mental health treatment during imprisonment in male (RR: 2.79; 95% CI 2.44-2.92) and female (RR: 1.94; 95% CI 1.76-2.23) prisoners. Most people with exposure to PSV prior to imprisonment access mental health treatment during imprisonment. Treatments may have to focus more on traumatic experiences.

  10. Estimating fish consumption and targeting high risk consumer populations in NJ and NY

    EPA Science Inventory

    An estimated 16.4% of US females of reproductive age (15 to 45 years) eat fish at least once per day. While fish is a good source of protein, with some species high in the omega-3 fatty acids that are associated with cardiovascular health, studies also indicate some fish and she...

  11. A Teratogenic Deformity Index for Evaluating Impacts of Selenium on Fish Populations

    Treesearch

    A. Dennis Lemly

    1997-01-01

    This paper describes a method for using teratogenic deformities in fish as the basis for evaluating impacts of selenium contamination. Teratogenicde deformaties are reliable bioindicators of selenium toxicosis in fish. They are produced in response to dietary exposure of parent fish and subsequent deposition of selenium in eggs. There is a close parallel between...

  12. Estimating fish consumption and targeting high risk consumer populations in NJ and NY

    EPA Science Inventory

    An estimated 16.4% of US females of reproductive age (15 to 45 years) eat fish at least once per day. While fish is a good source of protein, with some species high in the omega-3 fatty acids that are associated with cardiovascular health, studies also indicate some fish and she...

  13. Diagnostic methodology is critical for accurately determining the prevalence of ichthyophonus infections in wild fish populations

    USGS Publications Warehouse

    Kocan, R.; Dolan, H.; Hershberger, P.

    2011-01-01

    Several different techniques have been employed to detect and identify Ichthyophonus spp. in infected fish hosts; these include macroscopic observation, microscopic examination of tissue squashes, histological evaluation, in vitro culture, and molecular techniques. Examination of the peer-reviewed literature revealed that when more than 1 diagnostic method is used, they often result in significantly different results; for example, when in vitro culture was used to identify infected trout in an experimentally exposed population, 98.7% of infected trout were detected, but when standard histology was used to confirm known infected tissues from wild salmon, it detected ~50% of low-intensity infections and ~85% of high-intensity infections. Other studies on different species reported similar differences. When we examined a possible mechanism to explain the disparity between different diagnostic techniques, we observed non-random distribution of the parasite in 3-dimensionally visualized tissue sections from infected hosts, thus providing a possible explanation for the different sensitivities of commonly used diagnostic techniques. Based on experimental evidence and a review of the peer-reviewed literature, we have concluded that in vitro culture is currently the most accurate diagnostic technique for determining infection prevalence of Ichthyophonus, particularly when the exposure history of the population is not known.

  14. Population genomics reveals a possible history of backcrossing and recombination in the gynogenetic fish Poecilia formosa

    PubMed Central

    Alberici da Barbiano, Laura; Gompert, Zachariah; Aspbury, Andrea S.; Gabor, Caitlin R.; Nice, Chris C.

    2013-01-01

    Unisexual sperm-dependent vertebrates are of hybrid origins, rare, and predicted to be short-lived as a result of several challenges arising from their mode of reproduction. In particular, because of a lack of recombination, clonal species are predicted to have a low potential to respond to natural selection. However, many unisexual sperm-dependent species persist, and assessing the genetic diversity present in these species is fundamental to understanding how they avoid extinction. We used population genomic methods to assess genotypic variation within the unisexual fish Poecilia formosa. Measures of admixture and population differentiation, as well as clustering analyses, indicate that the genomes of individuals of P. formosa are admixed and intermediate between Poecilia latipinna and Poecilia mexicana, consistent with the hypothesis of their hybrid origins. Bayesian genomic cline analyses indicate that about 12% of sampled loci exhibit patterns consistent with inheritance from only one parent. The estimation of observed heterozygosity clearly suggests that P. formosa is not comprised of direct descendants of a single nonrecombining asexual F1 hybrid individual. Additionally, the estimation of observed heterozygosity provides support for the hypothesis that the history of this unisexual species has included backcrossing with the parent species before the onset of gynogenesis. We also document high levels of variation among asexual individuals, which is attributable to recombination (historical or ongoing) and the accumulation of mutations. The high genetic variation suggests that this unisexual vertebrate has more potential to respond to natural selection than if they were frozen F1 hybrids. PMID:23918384

  15. Effects of crossovers between homeologs on inheritance and population genomics in polyploid-derived salmonid fishes.

    PubMed

    Allendorf, Fred W; Bassham, Susan; Cresko, William A; Limborg, Morten T; Seeb, Lisa W; Seeb, James E

    2015-01-01

    A whole genome duplication occurred in the ancestor of all salmonid fishes some 50-100 million years ago. Early inheritance studies with allozymes indicated that loci in the salmonid genome are inherited disomically in females. However, some pairs of duplicated loci showed patterns of inheritance in males indicating pairing and recombination between homeologous chromosomes. Nearly 20% of loci in the salmonid genome are duplicated and share the same alleles (isoloci), apparently due to homeologous recombination. Half-tetrad analysis revealed that isoloci tend to be telomeric. These results suggested that residual tetrasomic inheritance of isoloci results from homeologous recombination near chromosome ends and that continued disomic inheritance resulted from homologous pairing of centromeric regions. Many current genetic maps of salmonids are based on single nucleotide polymorphisms and microsatellites that are no longer duplicated. Therefore, long sections of chromosomes on these maps are poorly represented, especially telomeric regions. In addition, preferential multivalent pairing of homeologs from the same species in F1 hybrids results in an excess of nonparental gametes (so-called pseudolinkage). We consider how not including duplicated loci has affected our understanding of population and evolutionary genetics of salmonids, and we discuss how incorporating these loci will benefit our understanding of population genomics.

  16. Population genomics reveals a possible history of backcrossing and recombination in the gynogenetic fish Poecilia formosa.

    PubMed

    Alberici da Barbiano, Laura; Gompert, Zachariah; Aspbury, Andrea S; Gabor, Caitlin R; Nice, Chris C

    2013-08-20

    Unisexual sperm-dependent vertebrates are of hybrid origins, rare, and predicted to be short-lived as a result of several challenges arising from their mode of reproduction. In particular, because of a lack of recombination, clonal species are predicted to have a low potential to respond to natural selection. However, many unisexual sperm-dependent species persist, and assessing the genetic diversity present in these species is fundamental to understanding how they avoid extinction. We used population genomic methods to assess genotypic variation within the unisexual fish Poecilia formosa. Measures of admixture and population differentiation, as well as clustering analyses, indicate that the genomes of individuals of P. formosa are admixed and intermediate between Poecilia latipinna and Poecilia mexicana, consistent with the hypothesis of their hybrid origins. Bayesian genomic cline analyses indicate that about 12% of sampled loci exhibit patterns consistent with inheritance from only one parent. The estimation of observed heterozygosity clearly suggests that P. formosa is not comprised of direct descendants of a single nonrecombining asexual F1 hybrid individual. Additionally, the estimation of observed heterozygosity provides support for the hypothesis that the history of this unisexual species has included backcrossing with the parent species before the onset of gynogenesis. We also document high levels of variation among asexual individuals, which is attributable to recombination (historical or ongoing) and the accumulation of mutations. The high genetic variation suggests that this unisexual vertebrate has more potential to respond to natural selection than if they were frozen F1 hybrids.

  17. Population genomic tests of models of adaptive radiation in Lake Victoria region cichlid fish.

    PubMed

    Bezault, Etienne; Mwaiko, Salome; Seehausen, Ole

    2011-12-01

    Adaptive radiation is usually thought to be associated with speciation, but the evolution of intraspecific polymorphisms without speciation is also possible. The radiation of cichlid fish in Lake Victoria (LV) is perhaps the most impressive example of a recent rapid adaptive radiation, with 600+ very young species. Key questions about its origin remain poorly characterized, such as the importance of speciation versus polymorphism, whether species persist on evolutionary time scales, and if speciation happens more commonly in small isolated or in large connected populations. We used 320 individuals from 105 putative species from Lakes Victoria, Edward, Kivu, Albert, Nabugabo and Saka, in a radiation-wide amplified fragment length polymorphism (AFLP) genome scan to address some of these questions. We demonstrate pervasive signatures of speciation supporting the classical model of adaptive radiation associated with speciation. A positive relationship between the age of lakes and the average genomic differentiation of their species, and a significant fraction of molecular variance explained by above-species level taxonomy suggest the persistence of species on evolutionary time scales, with radiation through sequential speciation rather than a single starburst. Finally the large gene diversity retained from colonization to individual species in every radiation suggests large effective population sizes and makes speciation in small geographical isolates unlikely.

  18. Opisthorchiasis in Western Siberia: Epidemiology and distribution in human, fish, snail, and animal populations.

    PubMed

    Yurlova, Natalia I; Yadrenkina, Elena N; Rastyazhenko, Natalia M; Serbina, Elena А; Glupov, Viktor V

    2017-08-01

    Opisthorchiasis is a widespread helminth infection in Russia. The largest opisthorchiasis endemic focus in the world is the Ob river watershed in Western Siberia. The main causative agent of this condition is the liver fluke, Opisthorchis felineus. In addition, another liver fluke species in the Opisthorchiidae family, Metorchis bilis, causes a symptomatically similar disease, metorchiasis. Despite a long research history going back to 1927, opisthorchiasis remains a serious problem in Russia, and numerous questions related to the epidemiology of these liver fluke infections and their patterns of distribution in Western Siberia, the causes of high prevalence in different populations, and the prognosis of the epidemiological situation remain to be answered. In this review, we first briefly describe the life cycle of O. felineus and then summarize the available published data on the epidemiological aspects of O. felineus infection among populations in Western Siberia. Additionally, the geographical distribution and rates of infection with the two major small liver flukes, O. felineus and M. bilis, in the intermediate (Bithyniidae snails and cyprinid fish) and definitive (humans, wild and domestic carnivorous animals and birds) hosts are described to assess their role in the transmission cycle. Moreover, species in the genus Opisthorchis and the genus Metorchis that have been reported in carnivorous mammals and birds in Western Siberia are listed and their potential to serve as the agents of opisthorchiasis transmission is discussed. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Proposed methods and endpoints for defining and assessing adverse environmental impact (AEI) on fish communities/populations in Tennessee River reservoirs.

    PubMed

    Hickman, Gary D; Brown, Mary L

    2002-06-07

    Two multimetric indices have been developed to help address fish community (reservoir fish assemblage index [RFAI]) and individual population quality (sport fishing index [SFI]) in Tennessee River reservoirs. The RFAI, with characteristics similar to the index of biotic integrity (IBI) used in stream fish community determinations, was developed to monitor the existing condition of resident fish communities. The index, which incorporates standardized electrofishing of littoral areas and experimental gill netting for limnetic bottom-dwelling species, has been used to determine residential fish community response to various anthropogenic impacts in southeastern reservoirs. The SFI is a multimetric index designed to address the quality of the fishery for individual resident sport fish species in a particular lake or reservoir[4]. The SFI incorporates measures of fish population aspects and angler catch and pressure estimates. This paper proposes 70% of the maximum RFAI score and 10% above the average SFI score for individual species as "screening" endpoints for balanced indigenous populations (BIP) or adverse environmental impact (AEI). Endpoints for these indices indicate: (1) communities/populations are obviously balanced indigenous populations (BIP) indicating no adverse environmental impact (AEI), or are "screened out"; (2) communities/populations are considered to be potentially impacted; and (3) where the resident fish community/population should be considered adversely impacted. Suggestions are also made concerning how examination of individual metric scores can help determine the source or cause of the impact.

  20. Characterization of MHC class IIB for four endangered Australian freshwater fishes obtained from ecologically divergent populations.

    PubMed

    Bracamonte, Seraina E; Smith, Steve; Hammer, Michael; Pavey, Scott A; Sunnucks, Paul; Beheregaray, Luciano B

    2015-10-01

    Genetic diversity is an essential aspect of species viability, and assessments of neutral genetic diversity are regularly implemented in captive breeding and conservation programs. Despite their importance, information from adaptive markers is rarely included in such programs. A promising marker of significance in fitness and adaptive potential is the major histocompatibility complex (MHC), a key component of the adaptive immune system. Populations of Australian freshwater fishes are generally declining in numbers due to human impacts and the introduction of exotic species, a scenario of particular concern for members of the family Percichthyidae, several of which are listed as nationally vulnerable or endangered, and hence subject to management plans, captive breeding, and restoration plans. We used a next-generation sequencing approach to characterize the MHC IIB locus and provide a conservative description of its levels of diversity in four endangered percichthyids: Gadopsis marmoratus, Macquaria australasica, Nannoperca australis, and Nannoperca obscura. Evidence is presented for a duplicated MHC IIB locus, positively selected sites and recombination of MHC alleles. Relatively moderate levels of diversity were detected in the four species, as well as in different ecotypes within each species. Phylogenetic analyses revealed genus specific clustering of alleles and no allele sharing among species. There were also no shared alleles observed between two ecotypes within G. marmoratus and within M. australasica, which might be indicative of ecologically-driven divergence and/or long divergence times. This represents the first characterization and assessment of MHC diversity for Percichthyidae, and also for Australian freshwater fishes in general, providing key genetic resources for a vertebrate group of increasing conservation concern.

  1. The species flocks of East African cichlid fishes: recent advances in molecular phylogenetics and population genetics

    NASA Astrophysics Data System (ADS)

    Salzburger, Walter; Meyer, Axel

    With more than 3,000 species, the fish family Cichlidae is one of the most species-rich families of vertebrates. Cichlids occur in southern and central America, Africa, Madagascar, and India. The hotspot of their biodiversity is East Africa, where they form adaptive radiations composed of hundreds of endemic species in several lakes of various sizes and ages. The unparalleled species richness of East African cichlids has been something of a conundrum for evolutionary biologists and ecologists, since it has been in doubt whether these hundreds of species arose by allopatric speciation or whether it is necessary to invoke somewhat less traditional models of speciation, such as micro-allopatric, peripatric, or even sympatric speciation or evolution through sexual selection mediated by female choice. Ernst Mayr's analyses of these evolutionary uniquely diverse species assemblages have contributed to a more direct approach to this problem and have led to a deeper understanding of the patterns and processes that caused the formation of these huge groups of species. We review here recent molecular data on population differentiation and phylogenetics, which have helped to unravel, to some extent, the patterns and processes that led to the formation and ecological maintenance of cichlid species flocks. It is becoming apparent that sexually selected traits do play an important role in speciation in micro-allopatric or even sympatric settings. Species richness seems to be roughly correlated with the surface area, but not the age, of the lakes. We observe that the oldest lineages of a species flock of cichlids are often less species-rich and live in the open water or deepwater habitats. While the species flocks of the Lake Malawai and the Lake Victoria areas were shown to be monophyletic, the cichlid assemblage of Lake Tanganyika seems to consist of several independent species flocks. Cichlids emerge as an evolutionary model system in which many fundamental questions in

  2. Population growth rates of reef sharks with and without fishing on the great barrier reef: robust estimation with multiple models.

    PubMed

    Hisano, Mizue; Connolly, Sean R; Robbins, William D

    2011-01-01

    Overfishing of sharks is a global concern, with increasing numbers of species threatened by overfishing. For many sharks, both catch rates and underwater visual surveys have been criticized as indices of abundance. In this context, estimation of population trends using individual demographic rates provides an important alternative means of assessing population status. However, such estimates involve uncertainties that must be appropriately characterized to credibly and effectively inform conservation efforts and management. Incorporating uncertainties into population assessment is especially important when key demographic rates are obtained via indirect methods, as is often the case for mortality rates of marine organisms subject to fishing. Here, focusing on two reef shark species on the Great Barrier Reef, Australia, we estimated natural and total mortality rates using several indirect methods, and determined the population growth rates resulting from each. We used bootstrapping to quantify the uncertainty associated with each estimate, and to evaluate the extent of agreement between estimates. Multiple models produced highly concordant natural and total mortality rates, and associated population growth rates, once the uncertainties associated with the individual estimates were taken into account. Consensus estimates of natural and total population growth across multiple models support the hypothesis that these species are declining rapidly due to fishing, in contrast to conclusions previously drawn from catch rate trends. Moreover, quantitative projections of abundance differences on fished versus unfished reefs, based on the population growth rate estimates, are comparable to those found in previous studies using underwater visual surveys. These findings appear to justify management actions to substantially reduce the fishing mortality of reef sharks. They also highlight the potential utility of rigorously characterizing uncertainty, and applying multiple

  3. Population Growth Rates of Reef Sharks with and without Fishing on the Great Barrier Reef: Robust Estimation with Multiple Models

    PubMed Central

    Hisano, Mizue; Connolly, Sean R.; Robbins, William D.

    2011-01-01

    Overfishing of sharks is a global concern, with increasing numbers of species threatened by overfishing. For many sharks, both catch rates and underwater visual surveys have been criticized as indices of abundance. In this context, estimation of population trends using individual demographic rates provides an important alternative means of assessing population status. However, such estimates involve uncertainties that must be appropriately characterized to credibly and effectively inform conservation efforts and management. Incorporating uncertainties into population assessment is especially important when key demographic rates are obtained via indirect methods, as is often the case for mortality rates of marine organisms subject to fishing. Here, focusing on two reef shark species on the Great Barrier Reef, Australia, we estimated natural and total mortality rates using several indirect methods, and determined the population growth rates resulting from each. We used bootstrapping to quantify the uncertainty associated with each estimate, and to evaluate the extent of agreement between estimates. Multiple models produced highly concordant natural and total mortality rates, and associated population growth rates, once the uncertainties associated with the individual estimates were taken into account. Consensus estimates of natural and total population growth across multiple models support the hypothesis that these species are declining rapidly due to fishing, in contrast to conclusions previously drawn from catch rate trends. Moreover, quantitative projections of abundance differences on fished versus unfished reefs, based on the population growth rate estimates, are comparable to those found in previous studies using underwater visual surveys. These findings appear to justify management actions to substantially reduce the fishing mortality of reef sharks. They also highlight the potential utility of rigorously characterizing uncertainty, and applying multiple

  4. Habitat selection by breeding waterbirds at ponds with size-structured fish populations

    NASA Astrophysics Data System (ADS)

    Kloskowski, Janusz; Nieoczym, Marek; Polak, Marcin; Pitucha, Piotr

    2010-07-01

    Fish may significantly affect habitat use by birds, either as their prey or as competitors. Fish communities are often distinctly size-structured, but the consequences for waterbird assemblages remain poorly understood. We examined the effects of size structure of common carp ( Cyprinus carpio) cohorts together with other biotic and abiotic pond characteristics on the distribution of breeding waterbirds in a seminatural system of monocultured ponds, where three fish age classes were separately stocked. Fish age corresponded to a distinct fish size gradient. Fish age and total biomass, macroinvertebrate and amphibian abundance, and emergent vegetation best explained the differences in bird density between ponds. Abundance of animal prey other than fish (aquatic macroinvertebrates and larval amphibians) decreased with increasing carp age in the ponds. Densities of ducks and smaller grebes were strongly negatively associated with fish age/size gradient. The largest of the grebes, the piscivorous great crested grebe ( Podiceps cristatus), was the only species that preferred ponds with medium-sized fish and was positively associated with total fish biomass. Habitat selection by bitterns and most rallids was instead strongly influenced by the relative amount of emergent vegetation cover in the ponds. Our results show that fish size structure may be an important cue for breeding habitat choice and a factor affording an opportunity for niche diversification in avian communities.

  5. Assessing the tolerance of fish and fish populations to environmental stress: The problems and methods of monitoring

    USGS Publications Warehouse

    Wedemeyer, G.A.; McLeay, D.; Goodyear, C.P.; Carins, V.W.; Hodson, P.V.; Nriagu, J.

    1984-01-01

    Environmental stress is an inescapable aspect of life in the aquatic environment. The chemical and physical demands of life underwater impose somewhat rigorous constraints on aquatic species (Smith, 1982a). Superimposed on such demands may be the additional. physiological constraints of particular ecological niches. It is true that aquatic species are adapted to these conditions, but this does not imply the absence of energy drains (Lugo, 1978). For example, thermophilic fishes must still cope physiologically with the demands of high temperatures even though they are adapted to high temperatures per se.

  6. Determination of a site-specific reference dose for methylmercury for fish-eating populations.

    PubMed

    Shipp, A M; Gentry, P R; Lawrence, G; Van Landingham, C; Covington, T; Clewell, H J; Gribben, K; Crump, K

    2000-11-01

    methylmercury, the exposures of concern for the Point Comfort site are from the chronic consumption of relatively low concentrations of methylmercury in fish. Since the publication of the USEPA RfD, several analyses of chronic exposure to methylmercury in fish-eating populations have been reported. The purpose of the analysis reported here was to evaluate the possibility of deriving an RfD for methylmercury, specifically for the case of fish ingestion, on the basis of these new studies. In order to better support the risk-management decisions associated with developing a remediation approach for the site in question, the analysis was designed to provide information on the distribution of acceptable ingestion rates across a population, which could reasonably be expected to be consistent with the results of the epidemiological studies of other fish-eating populations. Based on a review of the available literature on the effects of methylmercury, a study conducted with a population in the Seychelles Islands was selected as the critical study for this analysis. The exposures to methylmercury in this population result from chronic, multigenerational ingestion of contaminated fish. This prospective study was carefully conducted and analyzed, included a large cohort of mother-infant pairs, and was relatively free of confounding factors. The results of this study are essentially negative, and a no-observed-adverse-effect level (NOAEL) derived from the estimated exposures has recently been used by the Agency for Toxic Substances and Disease Registry (ATSDR) as the basis for a chronic oral minimal risk level (MRL) for methylmercury. In spite of the fact that no statistically significant effects were observed in this study, the data as reported are suitable for dose-response analysis using the BMD method. Evaluation of the BMD method used in this analysis, as well as in the current USEPA RfD, has demonstrated that the resulting 95% lower bound on the 10% benchmark dose (BMDL) represents a

  7. Larval dispersal connects fish populations in a network of marine protected areas

    PubMed Central

    Planes, Serge; Jones, Geoffrey P.; Thorrold, Simon R.

    2009-01-01

    Networks of no-take marine protected areas (MPAs) have been widely advocated for the conservation of marine biodiversity. But for MPA networks to be successful in protecting marine populations, individual MPAs must be self-sustaining or adequately connected to other MPAs via dispersal. For marine species with a dispersive larval stage, populations within MPAs require either the return of settlement-stage larvae to their natal reserve or connectivity among reserves at the spatial scales at which MPA networks are implemented. To date, larvae have not been tracked when dispersing from one MPA to another, and the relative magnitude of local retention and connectivity among MPAs remains unknown. Here we use DNA parentage analysis to provide the first direct estimates of connectivity of a marine fish, the orange clownfish (Amphiprion percula), in a proposed network of marine reserves in Kimbe Bay, Papua New Guinea. Approximately 40% of A. percula larvae settling into anemones in an island MPA at 2 different times were derived from parents resident in the reserve. We also located juveniles spawned by Kimbe Island residents that had dispersed as far as 35 km to other proposed MPAs, the longest distance that marine larvae have been directly tracked. These dispersers accounted for up to 10% of the recruitment in the adjacent MPAs. Our findings suggest that MPA networks can function to sustain resident populations both by local replenishment and through larval dispersal from other reserves. More generally, DNA parentage analysis provides a direct method for measuring larval dispersal for other marine organisms. PMID:19307588

  8. Biomarker measurements in a coastal fish-eating population environmentally exposed to organochlorines.

    PubMed

    Ayotte, Pierre; Dewailly, Eric; Lambert, George H; Perkins, Sherry L; Poon, Raymond; Feeley, Mark; Larochelle, Christian; Pereg, Daria

    2005-10-01

    The Lower North Shore region of the St. Lawrence River is home to a fish-eating population that displays an unusually high body burden of several organochlorines, including polychlorinated biphenyls (PCBs) and dioxin-like compounds (DLCs). We measured biomarkers indicative of liver enzyme induction and investigated the relationship with organochlorine body burden in adult volunteers from this population. We determined plasma concentrations of PCBs and chlorinated pesticides by high-resolution gas chromatography (HRGC) with electron capture detection. DLC concentrations were measured by the dioxin-receptor chemically activated luciferase expression (DR-CALUX) assay and in a subset of participants, by HRGC/high-resolution mass spectrometry. We measured cotinine, d-glucaric acid, and porphyrins in morning urine samples and determined liver CYP1A2 activity in vivo using the caffeine breath test. Neither DLC concentrations as measured by the DR-CALUX nor PCB-153 concentrations, the latter representing total PCB exposure, were correlated with biomarkers of effects. Smoking (morning urinary cotinine concentration) was positively related to CYP1A2 activity as measured by the caffeine breath test (p < 0.01). Liver CYP1A2 activity was in turn negatively correlated with PCB-105:PCB-153 and PCB-118:PCB-153 congener ratios (p < 0.05). Hence, despite the relatively high body burden of PCBs and DLCs in this population, only smoking had a significant correlation with biomarkers of hepatic enzyme induction. Our data are consistent with smoking-induced liver CYP1A2 activity altering heme metabolism and increasing the biotransformation of mono-ortho PCB congeners.

  9. Climate control on ancestral population dynamics: insight from Patagonian fish phylogeography.

    PubMed

    Ruzzante, Daniel E; Walde, Sandra J; Gosse, John C; Cussac, Victor E; Habit, Evelyn; Zemlak, Tyler S; Adams, Emily D M

    2008-05-01

    Changes in lake and stream habitats during the growth and retreat of Pleistocene glaciers repeatedly altered the spatial distributions and population sizes of the aquatic fauna of the southern Andes. Here, we use variation in mtDNA control region sequences to infer the temporal dynamics of two species of southern Andean fish during the past few million years. At least five important climate events were associated with major demographic changes: (i) the widespread glaciations of the mid-Pliocene (c. 3.5 Ma); (ii) the largest Patagonian glaciation (1.1 Ma); (iii) the coldest Pleistocene glaciation as indicated by stacked marine delta(18)O (c. 0.7 Ma); (iv) the last southern Patagonian glaciation to reach the Atlantic coast (180 ka); and (v) the last glacial maximum (LGM, 23-25,000 years ago). The colder-water inhabitant, Galaxias platei, underwent a strong bottleneck during the LGM and its haplotype diversity coalesces c. 0.7 Ma. In contrast, the more warm-adapted and widely distributed Percichthys trucha showed continuous growth through the last two glacial cycles but went through an important bottleneck c. 180,000 years ago, at which time populations east of the Andes may have been eliminated. Haplotype diversity of the most divergent P. trucha populations, found west of the Andes, coalesces c. 3.2 Ma. The demographic timelines obtained for the two species thus illustrate the continent-wide response of aquatic life in Patagonia to climate change during the Pleistocene, but also show how differing ecological traits and distributions led to distinctive responses.

  10. Incidence of Sepsis and Mortality With Prior Exposure of HMG-COA Reductase Inhibitors in a Surgical Intensive Care Population.

    PubMed

    Schurr, James W; Wu, Wenchen; Smith-Hannah, Alexandria; Smith, Candace J; Barrera, Rafael

    2016-01-01

    The anti-inflammatory properties of hydroxymethylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) may reduce the risk of developing sepsis in surgical intensive care patients and improve outcomes in those who do become septic. The objective of this study was to assess whether surgical intensive care unit (SICU) patients with prior exposure to HMG-CoA reductase inhibitors had a lower incidence of developing sepsis and improved outcomes. A retrospective cohort study was conducted. Patient demographic data, statin use, sequential organ failure assessment (SOFA) scores, vasopressor requirements, ventilator days, length of SICU stay, and mortality in septic patients were collected. Incidence of development of sepsis was determined using systemic inflammatory response syndrome criteria. Patients were grouped into cohorts based on whether they met the sepsis criteria and if they had previously received statins. Cohorts of patients who did and did not become septic with prior statin exposure were compared and an odds ratio was calculated to determine a protective effect. The setting was a SICU. The study comprised of 455 SICU patients and had no interventions. Among the 455 SICU patients, 427 patients were included for the final results. Patients receiving statins verses not receiving statins were similar in demographics. Previous statin exposure had a protective effect in the development of sepsis (9.77% on statins vs. 33.6% without statins; odds ratio 0.203, confidence interval 0.118-0.351). Of those patients who developed sepsis, there was a statistically significant decrease in 28-day mortality in patients with prior statin exposure (P = 0.0341). No statistical difference was noted in length of stay, vasopressor requirements, or days on mechanical ventilation. Prior exposure to statins may have a protective effect on the development of sepsis and decrease mortality in critically ill surgical patients.

  11. Can Intrapartum Cardiotocography Predict Uterine Rupture among Women with Prior Caesarean Delivery?: A Population Based Case-Control Study.

    PubMed

    Andersen, Malene M; Thisted, Dorthe L A; Amer-Wåhlin, Isis; Krebs, Lone

    2016-01-01

    To compare cardiotocographic abnormalities recorded during labour in women with prior caesarean delivery (CD) and complete uterine rupture with those recorded in controls with prior CD without uterine rupture. Women with complete uterine rupture during labour between 1997 and 2008 were identified in the Danish Medical Birth Registry (n = 181). Cases were validated by review of medical records and 53 cases with prior CD, trial of labour, available cardiotocogram (CTG) and complete uterine rupture were included and compared with 43 controls with prior CD, trial of labour and available CTG. The CTG tracings were assessed by 19 independent experts divided into groups of three different experts for each tracing. The assessors were blinded to group, outcome and clinical data. They analyzed occurrence of defined abnormalities and classified the traces as normal, suspicious, pathological or pre-terminal according to international guidelines (FIGO). A pathological CTG during the first stage of labour was present in 77% of cases and in 53% of the controls (OR 2.58 [CI: 0.96-6.94] P = 0.066). Fetal tachycardia was more frequent in cases with uterine rupture (OR 2.50 [CI: 1.0-6.26] P = 0.053). Significantly more cases showed more than 10 severe variable decelerations compared with controls (OR 22 [CI: 1.54-314.2] P = 0.022). Uterine tachysystole was not correlated with the presence of uterine rupture. A pathological cardiotocogram should lead to particular attention on threatening uterine rupture but cannot be considered a strong predictor as it is common in all women with trial of labour after caesarean delivery.

  12. Development of an autonomous treatment planning strategy for radiation therapy with effective use of population-based prior data.

    PubMed

    Wang, Huan; Dong, Peng; Liu, Hongcheng; Xing, Lei

    2017-02-01

    Current treatment planning remains a costly and labor intensive procedure and requires multiple trial-and-error adjustments of system parameters such as the weighting factors and prescriptions. The purpose of this work is to develop an autonomous treatment planning strategy with effective use of prior knowledge and in a clinically realistic treatment planning platform to facilitate radiation therapy workflow. Our technique consists of three major components: (i) a clinical treatment planning system (TPS); (ii) a formulation of decision-function constructed using an assemble of prior treatment plans; (iii) a plan evaluator or decision-function and an outer-loop optimization independent of the clinical TPS to assess the TPS-generated plan and to drive the search toward a solution optimizing the decision-function. Microsoft (MS) Visual Studio Coded UI is applied to record some common planner-TPS interactions as subroutines for querying and interacting with the TPS. These subroutines are called back in the outer-loop optimization program to navigate the plan selection process through the solution space iteratively. The utility of the approach is demonstrated by using clinical prostate and head-and-neck cases. An autonomous treatment planning technique with effective use of an assemble of prior treatment plans is developed to automatically maneuver the clinical treatment planning process in the platform of a commercial TPS. The process mimics the decision-making process of a human planner and provides a clinically sensible treatment plan automatically, thus reducing/eliminating the tedious manual trial-and-errors of treatment planning. It is found that the prostate and head-and-neck treatment plans generated using the approach compare favorably with that used for the patients' actual treatments. Clinical inverse treatment planning process can be automated effectively with the guidance of an assemble of prior treatment plans. The approach has the potential to

  13. Bioaccumulation of trace metals and total petroleum and genotoxicity responses in an edible fish population as indicators of marine pollution.

    PubMed

    D'Costa, Avelyno; Shyama, S K; Praveen Kumar, M K

    2017-08-01

    The present study reports the genetic damage and the concentrations of trace metals and total petroleum hydrocarbons prevailing in natural populations of an edible fish, Arius arius in different seasons along the coast of Goa, India as an indicator of the pollution status of coastal water. Fish were collected from a suspected polluted site and a reference site in the pre-monsoon, monsoon and post-monsoon seasons. Physico-chemical parameters as well as the concentrations of total petroleum hydrocarbons (TPH) and trace metals in the water and sediment as well as the tissues of fish collected from these sites were recorded. The genotoxicity status of the fish was assessed employing the micronucleus test and comet assay. A positive correlation (p<0.001) was observed between the tail DNA and micronuclei in all the fish collected. Multiple regression analysis revealed that tissue and environmental pollutant concentrations and genotoxicity were positively associated and higher in the tissues of the fish collected from the polluted site. Pollution indicators and genotoxicity tests, combined with other physiological or biochemical parameters represent an essential integrated approach for efficient monitoring of aquatic ecosystems in Goa. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Composition and Relative Abundance of Fish Species in the Lower White Salmon River, Washington, Prior to the Removal of Condit Dam

    USGS Publications Warehouse

    Allen, M. Brady; Connolly, Patrick J.

    2011-01-01

    Information about the composition and relative abundance of fish species was collected by a rotary screw trap and backpack electrofishing in the lower White Salmon River, Washington. The information was collected downstream of Condit Dam, which is at river kilometer (rkm) 5.2, and is proposed for removal in October 2011. A rotary screw trap was installed in the White Salmon River at rkm 1.5 and operated from March through June during 2006-09. All captured fish were identified to species and enumerated. Daily subsets of fish were weighed, measured, and fin clipped for a genetic analysis by the U.S. Fish and Wildlife Service. *Fall Chinook salmon (Oncorhynchus tshawytscha) were captured in the highest numbers (n=18, 640), and were composed of two stocks: tule and upriver bright. Almost all captured fall Chinook salmon were age-0, with only 16 (0.09 percent) being age-1 or older. *Tule fall Chinook salmon, the native stock, generally out-migrated from mid-March through early April. The tule stock was the more abundant fall Chinook salmon subspecies, comprising 85 percent of those captured in the trap. *Upriver bright fall Chinook salmon comprised 15 percent of the Chinook salmon catch and generally out-migrated from late May to early June. *Coho salmon (O. kisutch) and steelhead trout (O. mykiss) were captured by the rotary screw trap in all years. Coho salmon were caught in low numbers (n=661) and 69 percent were age-0 fish. Steelhead were slightly more abundant (n=679) than coho salmon and 84 percent were age-1 or older fish. Trap efficiency estimates varied widely (range, 0-10 percent) by species, fish size, and time of year. However, if we use only the estimates from efficiency tests where more than 300 wild age-0 Chinook salmon were released, there was a mean trapping efficiency of 1.4 percent (n=4, median, 1.3 percent, range, 0.3-2.4 percent) during the tule out-migration period, and a mean trapping efficiency of 0.8 percent (n=2, range, 0.3-1.2 percent) during

  15. High site fidelity and low site connectivity in temperate salt marsh fish populations: a stable isotope approach.

    PubMed

    Green, Benjamin C; Smith, David J; Grey, Jonathan; Underwood, Graham J C

    2012-01-01

    Adult and juvenile fish utilise salt marshes for food and shelter at high tide, moving into adjacent sublittoral regions during low tide. Understanding whether there are high levels of site fidelity for different species of coastal fish has important implications for habitat conservation and the design of marine protected areas. We hypothesised that common salt marsh fish species would demonstrate a high site fidelity, resulting in minimal inter-marsh connectivity. Carbon ((13)C) and nitrogen ((15)N) stable isotope ratios of larvae and juveniles of five common salt marsh fish (Atherina presbyter, Chelon labrosus, Clupea harengus, Dicentrarchus labrax, Pomatoschistus microps), seven types of primary producer and seven secondary consumer food sources were sampled in five salt marshes within two estuary complexes along the coast of south-east England. Significant differences in (13)C and (15)N signatures between salt marshes indicated distinct sub-populations utilising the area of estuary around each salt marsh, and limited connectivity, even within the same estuary complex. (15)N ratios were responsible for the majority of inter-marsh differences for each species and showed similar site-specific patterns in ratios in primary producers, secondary consumers and fish. Fish diets (derived from isotope mixing models) varied between species but were mostly consistent between marsh sites, indicating that dietary shifts were not the source of variability of the inter-marsh isotopic signatures within species. These results demonstrate that for some common coastal fish species, high levels of site fidelity result in individual salt marshes operating as discrete habitats for fish assemblages.

  16. Raw Fish Consuming Behavior Related to Liver Fluke Infection among Populations at Risk of Cholangiocarcinoma in Nakhon Ratchasima Province, Thailand.

    PubMed

    Chavengkun, Wasugree; Kompor, Pontip; Norkaew, Jun; Kujapun, Jirawoot; Pothipim, Mali; Ponphimai, Sukanya; Kaewpitoon, Soraya J; Padchasuwan, Natnapa; Kaewpitoon, Natthawut

    2016-01-01

    Opisthorchiasis is a health problem in rural communities of Thailand, particularly in the northeast and north regions. Therefore, this study aimed to investigate raw fish consuming behavior related to liver fluke infection among the population at risk for opisthorchiasis and cholangiocarcinoma (CCA). A cross-sectional descriptive study was conducted in Meuang Yang district, Nakhon Ratchasima province, northeast Thailand, between June and October 2015. Participants were screened for CCA, and samples who had a high score of CCA risk were purposively selected. A predesigned questionnaire was utilized to collect the data from all participants. X2-test was used for analysis of associations between demographic data and raw fish consumption. The results revealed that participants had past histories of stool examination (33.0%), liver fluke infection (21.0%), praziquantel use (24.0%), raw fish consumption (78.0%), relatives family consuming raw fish (73.0%), and relatives family with CCA (3.0%). Participants consumed several dished related to liver fluke infection, mainly raw fermented fish (13.0%), under smoked catfish (5.00%), raw pickled fish (4.00%), and raw spicy minced fish salad (3.00%). The most common types of cyprinoid fish were Barbodes gonionotus (39%), Hampala dispar (38%), Puntius brevis (37%), Cyclocheilichthys armatus (33%), Puntioplites proctozysron (32%), and Luciosoma bleekeri (30%), respectively. Participants had a low level of knowledge (mean=3.79, SD=0.74), moderate attitude (mean=7.31, SD=7.31) and practice (mean=38.64, SD=6.95) regarding liver fluke prevention and control. Demographic variables like age (>36 years old; X2-test=17.794, p-value=0.001), education (primary school; X2-test=18.952, p-value=0.001), marital status (married; X2-test=12.399, p-value=0.002), and income (<5,000 baht; X2-test=27.757, p-value=0.015) were significantly associated with raw fish consumption. This result indicates that the population had risk consumption for liver

  17. Population-level assessments should be emphasized over community/ecosystem-level assessments. Environmental Sciences Division Publication No. 1535. [Concerning the impact of power plants on fish populations

    SciTech Connect

    Van Winkle, W

    1980-01-01

    Arguments are presented in favor of emphasizing population-level assessments over community/ecosystem-level assessments. The two approaches are compared on each of four issues: (1) the nature of entrainment/impingement impacts; (2) the ability to forecast reliably for a single fish population as contrasted to the ability to forecast for an aquatic community or ecosystem; (3) practical considerations involving money, manpower, time, and the need to make decisions; and (4) the nature of societal and economic concerns. The conclusion on each of these four issues is that population-level assessments provide the optimal approach for evaluating the effects of entrainment and impingement mortality.

  18. Ancient DNA reveals substantial genetic diversity in the California Condor (Gymnogyps californianus) prior to a population bottleneck

    USGS Publications Warehouse

    D'Elia, Jesse; Haig, Susan M.; Mullins, Thomas D.; Miller, Mark P.

    2016-01-01

    Critically endangered species that have undergone severe population bottlenecks often have little remaining genetic variation, making it difficult to reconstruct population histories to apply in reintroduction and recovery strategies. By using ancient DNA techniques, it is possible to combine genetic evidence from the historical population with contemporary samples to provide a more complete picture of a species' genetic variation across its historical range and through time. Applying this approach, we examined changes in the mitochondrial DNA (mtDNA) control region (526 base pairs) of the endangered California Condor (Gymnogyps californianus). Results showed a >80% reduction in unique haplotypes over the past 2 centuries. We found no spatial sorting of haplotypes in the historical population; the periphery of the range contained haplotypes that were common throughout the historical range. Direct examination of mtDNA from California Condor museum specimens provided a new window into historical population connectivity and genetic diversity showing: (1) a substantial loss of haplotypes, which is consistent with the hypothesis that condors were relatively abundant in the nineteenth century, but declined rapidly as a result of human-caused mortality; and (2) no evidence of historical population segregation, meaning that the available genetic data offer no cause to avoid releasing condors in unoccupied portions of their historical range.

  19. Population Structure and Adaptive Divergence in a High Gene Flow Marine Fish: The Small Yellow Croaker (Larimichthys polyactis).

    PubMed

    Liu, Bing-Jian; Zhang, Bai-Dong; Xue, Dong-Xiu; Gao, Tian-Xiang; Liu, Jin-Xian

    2016-01-01

    The spatial distribution of genetic diversity has been long considered as a key component of policy development for management and conservation of marine fishes. However, unraveling the population genetic structure of migratory fish species is challenging due to high potential for gene flow. Despite the shallow population differentiation revealed by putatively neutral loci, the higher genetic differentiation with panels of putatively adaptive loci could provide greater resolution for stock identification. Here, patterns of population differentiation of small yellow croaker (Larimichthys polyactis) were investigated by genotyping 15 highly polymorphic microsatellites in 337 individuals of 15 geographic populations collected from both spawning and overwintering grounds. Outlier analyses indicated that the locus Lpol03 might be under directional selection, which showed a strong homology with Grid2 gene encoding the glutamate receptor δ2 protein (GluRδ2). Based on Lpol03, two distinct clusters were identified by both STRUCTURE and PCoA analyses, suggesting that there were two overwintering aggregations of L. polyactis. A novel migration pattern was suggested for L. polyactis, which was inconsistent with results of previous studies based on historical fishing yield statistics. These results provided new perspectives on the population genetic structure and migratory routes of L. polyactis, which could have significant implications for sustainable management and utilization of this important fishery resource.

  20. Population Structure and Adaptive Divergence in a High Gene Flow Marine Fish: The Small Yellow Croaker (Larimichthys polyactis)

    PubMed Central

    Xue, Dong-Xiu; Gao, Tian-Xiang; Liu, Jin-Xian

    2016-01-01

    The spatial distribution of genetic diversity has been long considered as a key component of policy development for management and conservation of marine fishes. However, unraveling the population genetic structure of migratory fish species is challenging due to high potential for gene flow. Despite the shallow population differentiation revealed by putatively neutral loci, the higher genetic differentiation with panels of putatively adaptive loci could provide greater resolution for stock identification. Here, patterns of population differentiation of small yellow croaker (Larimichthys polyactis) were investigated by genotyping 15 highly polymorphic microsatellites in 337 individuals of 15 geographic populations collected from both spawning and overwintering grounds. Outlier analyses indicated that the locus Lpol03 might be under directional selection, which showed a strong homology with Grid2 gene encoding the glutamate receptor δ2 protein (GluRδ2). Based on Lpol03, two distinct clusters were identified by both STRUCTURE and PCoA analyses, suggesting that there were two overwintering aggregations of L. polyactis. A novel migration pattern was suggested for L. polyactis, which was inconsistent with results of previous studies based on historical fishing yield statistics. These results provided new perspectives on the population genetic structure and migratory routes of L. polyactis, which could have significant implications for sustainable management and utilization of this important fishery resource. PMID:27100462

  1. Differences in the Metabolic Rates of Exploited and Unexploited Fish Populations: A Signature of Recreational Fisheries Induced Evolution?

    PubMed Central

    Hessenauer, Jan-Michael; Vokoun, Jason C.; Suski, Cory D.; Davis, Justin; Jacobs, Robert; O’Donnell, Eileen

    2015-01-01

    Non-random mortality associated with commercial and recreational fisheries have the potential to cause evolutionary changes in fish populations. Inland recreational fisheries offer unique opportunities for the study of fisheries induced evolution due to the ability to replicate study systems, limited gene flow among populations, and the existence of unexploited reference populations. Experimental research has demonstrated that angling vulnerability is heritable in Largemouth Bass Micropterus salmoides, and is correlated with elevated resting metabolic rates (RMR) and higher fitness. However, whether such differences are present in wild populations is unclear. This study sought to quantify differences in RMR among replicated exploited and unexploited populations of Largemouth Bass. We collected age-0 Largemouth Bass from two Connecticut drinking water reservoirs unexploited by anglers for almost a century, and two exploited lakes, then transported and reared them in the same pond. Field RMR of individuals from each population was quantified using intermittent-flow respirometry. Individuals from unexploited reservoirs had a significantly higher mean RMR (6%) than individuals from exploited populations. These findings are consistent with expectations derived from artificial selection by angling on Largemouth Bass, suggesting that recreational angling may act as an evolutionary force influencing the metabolic rates of fishes in the wild. Reduced RMR as a result of fisheries induced evolution may have ecosystem level effects on energy demand, and be common in exploited recreational populations globally. PMID:26039091

  2. Differences in the metabolic rates of exploited and unexploited fish populations: a signature of recreational fisheries induced evolution?

    PubMed

    Hessenauer, Jan-Michael; Vokoun, Jason C; Suski, Cory D; Davis, Justin; Jacobs, Robert; O'Donnell, Eileen

    2015-01-01

    Non-random mortality associated with commercial and recreational fisheries have the potential to cause evolutionary changes in fish populations. Inland recreational fisheries offer unique opportunities for the study of fisheries induced evolution due to the ability to replicate study systems, limited gene flow among populations, and the existence of unexploited reference populations. Experimental research has demonstrated that angling vulnerability is heritable in Largemouth Bass Micropterus salmoides, and is correlated with elevated resting metabolic rates (RMR) and higher fitness. However, whether such differences are present in wild populations is unclear. This study sought to quantify differences in RMR among replicated exploited and unexploited populations of Largemouth Bass. We collected age-0 Largemouth Bass from two Connecticut drinking water reservoirs unexploited by anglers for almost a century, and two exploited lakes, then transported and reared them in the same pond. Field RMR of individuals from each population was quantified using intermittent-flow respirometry. Individuals from unexploited reservoirs had a significantly higher mean RMR (6%) than individuals from exploited populations. These findings are consistent with expectations derived from artificial selection by angling on Largemouth Bass, suggesting that recreational angling may act as an evolutionary force influencing the metabolic rates of fishes in the wild. Reduced RMR as a result of fisheries induced evolution may have ecosystem level effects on energy demand, and be common in exploited recreational populations globally.

  3. Large-scale, multidirectional larval connectivity among coral reef fish populations in the Great Barrier Reef Marine Park.

    PubMed

    Williamson, David H; Harrison, Hugo B; Almany, Glenn R; Berumen, Michael L; Bode, Michael; Bonin, Mary C; Choukroun, Severine; Doherty, Peter J; Frisch, Ashley J; Saenz-Agudelo, Pablo; Jones, Geoffrey P

    2016-12-01

    Larval dispersal is the key process by which populations of most marine fishes and invertebrates are connected and replenished. Advances in larval tagging and genetics have enhanced our capacity to track larval dispersal, assess scales of population connectivity, and quantify larval exchange among no-take marine reserves and fished areas. Recent studies have found that reserves can be a significant source of recruits for populations up to 40 km away, but the scale and direction of larval connectivity across larger seascapes remain unknown. Here, we apply genetic parentage analysis to investigate larval dispersal patterns for two exploited coral reef groupers (Plectropomus maculatus and Plectropomus leopardus) within and among three clusters of reefs separated by 60-220 km within the Great Barrier Reef Marine Park, Australia. A total of 69 juvenile P. maculatus and 17 juvenile P. leopardus (representing 6% and 9% of the total juveniles sampled, respectively) were genetically assigned to parent individuals on reefs within the study area. We identified both short-distance larval dispersal within regions (200 m to 50 km) and long-distance, multidirectional dispersal of up to ~250 km among regions. Dispersal strength declined significantly with distance, with best-fit dispersal kernels estimating median dispersal distances of ~110 km for P. maculatus and ~190 km for P. leopardus. Larval exchange among reefs demonstrates that established reserves form a highly connected network and contribute larvae for the replenishment of fished reefs at multiple spatial scales. Our findings highlight the potential for long-distance dispersal in an important group of reef fishes, and provide further evidence that effectively protected reserves can yield recruitment and sustainability benefits for exploited fish populations.

  4. Response of fish populations to natural channel design restoration in streams of the Catskill Mountains, New York

    USGS Publications Warehouse

    Baldigo, Barry P.; Warren, D.R.; Ernst, A.G.; Mulvihill, C.I.

    2008-01-01

    Many streams and rivers throughout North America have been extensively straightened, widened, and hardened since the middle 1800s, but related effects on aquatic ecosystems have seldom been monitored, described, or published. Beginning in the early 1990s, reach-level restoration efforts began to base projects on natural channel design (NCD) techniques and Rosgen's (1994b, 1996) river classification system in an effort to duplicate or mimic stable reference reach geomorphology. Four reaches in three streams of the Catskill Mountains, New York, were restored from 2000 to 2002 using NCD techniques to decrease bed and bank erosion rates, decrease sediment loads, and improve water quality. The effects of restoration on the health of fish assemblages were assessed through a before-after, control-impact (BACI) study design to quantify the net changes in population and community indices at treatment reaches relative to index changes at unaltered reference reaches from 1999 to 2004. After restoration, community richness and biomass at treatment reaches increased by more than one-third. Changes in fish communities were caused mainly by shifts in dominant species populations; fish community biomass and total fish abundance were generally dominated by daces or daces and sculpins before restoration and by one or more salmonid species after restoration. Density and biomass of eastern blacknose dace Rhinichthys atratulus, longnose dace R. cataractae, and slimy sculpin Cottus cognatus did not change appreciably, whereas net salmonid density and biomass increased substantially after restoration. These changes were driven primarily by large increases in populations of brown trout Salmo trutta. The findings demonstrate that the structure, function, and ultimately the health of resident fish populations and communities can be improved, at least over the short term, through NCD restoration in perturbed streams of the Catskill Mountains. ?? Copyright by the American Fisheries Society

  5. Contrasting Population and Diet Influences on Gut Length of an Omnivorous Tropical Fish, the Trinidadian Guppy (Poecilia reticulata).

    PubMed

    Zandonà, Eugenia; Auer, Sonya K; Kilham, Susan S; Reznick, David N

    2015-01-01

    Phenotypic plasticity is advantageous for organisms that live in variable environments. The digestive system is particularly plastic, responding to changes in diet. Gut length is the result of a trade-off between maximum nutrient absorption and minimum cost for its maintenance and it can be influenced by diet and by evolutionary history. We assessed variation in gut length of Trinidadian guppies (Poecilia reticulata) as a function of diet, season, ontogeny, and local adaptation. Populations of guppies adapted to different predation levels have evolved different life history traits and have different diets. We sampled guppies from sites with low (LP) and high predation (HP) pressure in the Aripo and Guanapo Rivers in Trinidad. We collected fish during both the dry and wet season and assessed their diet and gut length. During the dry season, guppies from HP sites fed mostly on invertebrates, while guppies in the LP sites fed mainly on detritus. During the wet season, the diet of LP and HP populations became very similar. We did not find strong evidence of an ontogenetic diet shift. Gut length was negatively correlated with the proportion of invertebrates in diet across fish from all sites, supporting the hypothesis that guppy digestive systems adapt in length to changes in diet. Population of origin also had an effect on gut length, as HP and LP fish maintained different gut lengths even in the wet season, when their diets were very similar and individuals in both types of populations fed mostly on detritus. Thus, both environment and population of origin influenced guppies gut length, but population of origin seemed to have a stronger effect. Our study also showed that, even in omnivorous fish, gut length adapted to different diets, being more evident when the magnitude of difference between animal and plant material in the diet was very large.

  6. Health risk from As contaminated fish consumption by population living around River Chenab, Pakistan.

    PubMed

    Waheed, Sidra; Malik, Riffat Naseem; Jahan, Sarwat

    2013-09-01

    We analyzed six edible fish species (Securicola gora; Cirrhinus reba; Rita rita; Sperata sarvari; Culpisoma naziri and Labeo kalbasu) to evaluation As contamination. These species were caught from the River Chenab of Pakistan. The aim of this study was to determine the concentration of arsenic (As) and the antioxidant response in the muscle, liver and gills. The sampling sites were divided into agricultural, industrial and urban land uses. Although, the highest concentration of As, and the antioxidant activity was found in the liver, but the muscles also had a high concentration of As than that of gills. The range of As detected in these tissues was in the following order: Liver (0.009-3.95μgg(-1))>muscles (0.006-3.5μgg(-1))>gills (0.002-2.96μgg(-1)). Furthermore, the R. rita showed the highest concentration of As (2.18μgg(-1)) followed by S. sarvari (1.98μgg(-1)). The median concentrations of As, in the liver and muscles were also above the FAO/WHO, EPA permissible limits. The LPO activity was significantly related to As, which showed a possibility of cell membrane damage in these species. The human health risk assessment revealed that higher than normal concentration of As in muscle was particularly hazardous for the younger population.

  7. Studies of the limnology, fish populations, and fishery of Turquoise Lake, Colorado - 1979-80

    SciTech Connect

    Nesler, T.P.

    1981-07-01

    Turquoise Lake is one of the primary storage reservoirs in the Fryingpan-Arkansas Water Project and provides supplementary water by conduit to the MT. Elbert Forebay-Twin Lakes system for pump-back storage power generation. The reservoir may be characterized as a dimictic, cold-water lake that is well oxygenated, relatively unbuffed, and slightly acidic. The lake may be classified as oligotrophic on the basis of total dissolved solids, algal nutrients (N-P), and chlorophyll concentrations. Depletion of dissolved oxygen occurs regularly in the hypolimnion during late summer and late winter. Turquoise Lake is limnologically similar to Twin Lakes (Colo.) in most respects. Data contained in this report are useful to those interested in the limnology of high mountain lakes, including physical-chemical parameters, chlorophyll, plankton, and fish populations. Turquoise Lake provides source water to the Mt. Elbert forebay. Thus the baseline data provided here will be helpful in assessing the effects of pumped-storage powerplant operation on the limnology of Twin Lakes, Colo.

  8. Limited variability in upper thermal tolerance among pure and hybrid populations of a cold-water fish

    PubMed Central

    Wells, Zachery R. R.; McDonnell, Laura H.; Chapman, Lauren J.; Fraser, Dylan J.

    2016-01-01

    As climate warming threatens the persistence of many species and populations, it is important to forecast their responses to warming thermal regimes. Climate warming often traps populations in smaller habitat fragments, not only changing biotic parameters, but potentially decreasing adaptive potential by decreasing genetic variability. We examined the ability of six genetically distinct and different-sized populations of a cold-water fish (brook trout, Salvelinus fontinalis) to tolerate acute thermal warming and whether this tolerance could be altered by hybridizing populations. Critical thermal maximum (CTmax) assays were conducted on juveniles from each population to assess thermal tolerance, and the agitation temperature was recorded for assessing behavioural changes to elevated temperatures. An additional metric, which we have called the ‘CTmax–agitation window’ (CTmax minus agitation temperature), was also assessed. The CTmax differed between five out of 15 population pairs, although the maximal CTmax difference was only 0.68°C (29.11–29.79°C). Hybridization between one large population and two small populations yielded no obvious heterosis in mean CTmax, and no differences in agitation temperature or CTmax–agitation window were detected among pure populations or hybrids. Summer variation in temperature within each stream was negatively correlated with mean CTmax and mean CTmax–agitation window, although the maximal difference was small. Despite being one of the most phenotypically divergent and plastic north temperate freshwater fishes, our results suggest that limited variability exists in CTmax among populations of brook trout, regardless of their population size, standing genetic variation and differing natural thermal regimes (temperature variation, minimum and maximum). This study highlights the level to which thermal tolerance is conserved between isolated populations of a vertebrate species, in the face of climate warming. PMID:27990291

  9. Effects on life history variables and population dynamics following maternal metal exposure in the live-bearing fish Gambusia affinis.

    PubMed

    Cazan, Alfy Morales; Klerks, Paul L

    2015-04-01

    This study investigated the effect of maternal copper and maternal cadmium exposure on life history variables and population dynamics in a live-bearing fish species. Gravid females were exposed to copper, cadmium, or background metal levels (control); maternal transfer of the metals was previously demonstrated using the exact same design. Each female's first brood, born after the exposure, was subdivided into two groups. One group was raised in the laboratory, to assess time-to and size-at sexual maturity, reproductive output and other life history variables. Offspring from the other group were used to start four mesocosm populations for each treatment. These populations were sampled monthly, for about 18 months, to assess population dynamics. For the laboratory-reared fish, offspring of copper-exposed females reached sexual maturity at a smaller size than did offspring from the other treatments. Maternal copper exposure and maternal cadmium exposure both resulted in fewer broods and an increase in gestation time. No impacts were detected for brood size, inter-brood interval, time-to-sexual-maturity, or life span. In the greenhouse population study, no effect of maternal copper or cadmium exposure was evident for population parameters, other than that the relative abundance of juveniles and/or newborns was reduced in populations established with offspring of the exposed females. This study provided evidence that a short-term metal exposure of gravid females can negatively affect their offspring's life history variables and potentially influence population dynamics in a life-bearing fish species.

  10. Fish consumption and plasma levels of organochlorines in a female population in Northern Norway.

    PubMed

    Furberg, Anne-Sofie; Sandanger, Torkjel; Thune, Inger; Burkow, Ivan C; Lun, Eiliv

    2002-02-01

    Increased cancer incidence and mortality have been found among humans exposed to high levels of organochlorines (OCs), either accidentally or as industrial workers. In order to assess levels of OCs in Norwegian women north of the Arctic Circle and validate self-reported fish consumption as a surrogate measure of organochlorine body burden, concentrations of seven polychlorinated biphenyl (PCB) congeners [IUPAC Nos. CB-105, CB-118, CB-138 (+ CB-163), CB-153, CB-180, CB-183, CB-187], beta-hexachlorocyclohexane (beta-HCH), 2,2'-bis(p-chlorophenyl)-1,1-dichloroethylene (p,p'-DDE) and cis- and trains-chlordane (c-CD and t-CD) were examined in plasma samples of middle-aged women attending for health screening. Altogether, 47 of those invited (81%) completed a questionnaire and donated a suitable blood sample. The ability of questionnaire data to predict plasma levels of OCs was tested in linear and logistic regression analyses. Measured plasma concentrations were in the range reported for the general female population of other Western countries and the relative amounts of PCBs were similar to the circumpolar pattern. Intake of seagulls' eggs was a predictor of PCB congeners CB-138 (+CB-163) (p<0.05) and CB-153 (p<0.01). No other food category was positively associated with any compound. In contrast, duration of residence in the study municipality, body mass index (BMI) and lifetime lactation (months) were the best univariate predictors. There was an increase in beta-HCH, p,p'-DDE and most of the PCBs (p<0.05 for all) with increasing length of time a subject had lived in the municipality. BMI was a positive predictor for beta-HCH (OR=3.10, 95% CI 1.50-6.43, per 5 kgm(-2)), chlordane (OR=2.13, 95% CI 1.12-4.05, per 5 kgm(-2)) and CB-105 and CB-153 (p<0.05 for both). Lactation was negatively associated with all OCs (p<0.05), except chlordane and two of the PCB congeners. Time living in the municipality and lactation explained 34%, of the variance in concentration of total

  11. Population structure and reproductive period of two introduced fish species in a Brazilian semiarid region reservoir.

    PubMed

    Sousa, Marla Melise de Oliveira; Lopes, Suzany Iasnaya Moreira; da Costa, Rodrigo Silva; Novaes, José Luís Costa

    2015-09-01

    The Amazonian fish species Plagioscion squamosissimus (Sciaenidae) and Cichla monoculus Cichlidae), have been widely introduced into different reservoirs in Brazil, and have caused many negative mpacts on local fish fauna. The aim of this study was to evaluate the population structure (abundance, length structure, length-weight relationship, sex ratio, and length at first maturity) and the reprodutive period of these wo species in the Santa Cruz Reservoir (built in 2002), located in the Brazilian semiarid region, for their adequate management and local species conservation policies. Specimens were collected quarterly in eight sites from February 2010 to November 2013 using gillnets (12 to 70 mm mesh between adjacent knots). The specimens captured were counted and the following biometric and biological data were analysed: standard length, total weight, and reproductive data, such as, sex, weight and gonadal maturity stage. The species abundances were estimated by CPUE and expressed as the number of individuals per gill net area x gill net exposition time (m2 x h); length frequency histograms were built with intervals of 5 cm. The length-weight parameters were estimated with a linear regression after a logarithmic transformation of the data. With the reproductive data we estimated sex ratio, reproduction period and length at first maturity (L50). We captured a total of 1,071 specimens of P. squamosissimus and 156 specimens of C. monoculus. Both species showed higher abundances in 2010, 0.004306 m2 x h and 0.00022 m2 x h, respectively, but this parameter decreased from 2010 to 2013. Standard length ranged between 6.4 and 46.2 cm for P. squamosissimus (20.025.0 cm was the most frequent class), and 7.0 and 38.7 cm for C. monocidus (10.0-15.0 cm was the most frequent class). The length-weight relationships were described by the following equations: log10Wt = -1.8349+3.0899log10Lp and R2= 0.9795 for P. squamosissimus, and log10 Wt = -1.7944+3.0885log10Lp and Wt = 0

  12. Population structure of the fish pathogen Flavobacterium psychrophilum at whole-country and model river levels in Japan

    PubMed Central

    2013-01-01

    The bacterium Flavobacterium psychrophilum is a serious problem for salmonid farming worldwide. This study investigates by multilocus sequence typing (MLST) the population structure of this pathogen in Japan where it is also a major concern for ayu, a popular game fish related to salmoniforms. A total of 34 isolates collected across the country and 80 isolates sampled in a single model river by electrofishing were genotyped. The data accounting for 15 fish species allowed identifying 35 distinct sequence types (ST) in Japan. These ST are distinct from those reported elsewhere, except for some ST found in rainbow trout and coho salmon, two fish that have been the subject of intensive international trade. The pattern of polymorphism is, however, strikingly similar across geographical scales (model river, Japan, world) in terms of the fraction of molecular variance linked to the fish host (~50%) and of pairwise nucleotide diversity between ST (~5 Kbp-1). These observations go against the hypothesis of a recent introduction of F. psychrophilum in Japan. Two findings were made that are important for disease control: 1) at least two independent F. psychrophilum lineages infect ayu and 2) co-infections of the same individual fish by different strains occur. PMID:23682575

  13. Population structure of the fish pathogen Flavobacterium psychrophilum at whole-country and model river levels in Japan.

    PubMed

    Fujiwara-Nagata, Erina; Chantry-Darmon, Céline; Bernardet, Jean-François; Eguchi, Mitsuru; Duchaud, Eric; Nicolas, Pierre

    2013-05-17

    The bacterium Flavobacterium psychrophilum is a serious problem for salmonid farming worldwide. This study investigates by multilocus sequence typing (MLST) the population structure of this pathogen in Japan where it is also a major concern for ayu, a popular game fish related to salmoniforms. A total of 34 isolates collected across the country and 80 isolates sampled in a single model river by electrofishing were genotyped. The data accounting for 15 fish species allowed identifying 35 distinct sequence types (ST) in Japan. These ST are distinct from those reported elsewhere, except for some ST found in rainbow trout and coho salmon, two fish that have been the subject of intensive international trade. The pattern of polymorphism is, however, strikingly similar across geographical scales (model river, Japan, world) in terms of the fraction of molecular variance linked to the fish host (~50%) and of pairwise nucleotide diversity between ST (~5 Kbp(-1)). These observations go against the hypothesis of a recent introduction of F. psychrophilum in Japan. Two findings were made that are important for disease control: 1) at least two independent F. psychrophilum lineages infect ayu and 2) co-infections of the same individual fish by different strains occur.

  14. Computer program for sample sizes required to determine disease incidence in fish populations

    USGS Publications Warehouse

    Ossiander, Frank J.; Wedemeyer, Gary

    1973-01-01

    A computer program is described for generating the sample size tables required in fish hatchery disease inspection and certification. The program was designed to aid in detection of infectious pancreatic necrosis (IPN) in salmonids, but it is applicable to any fish disease inspection when the sampling plan follows the hypergeometric distribution.

  15. Distribution and abundance of fish populations in Harike wetland--a Ramsar site in India.

    PubMed

    Dua, Anish; Parkash, Chander

    2009-03-01

    Harike wetland was declared a Ramsar site in 1990. It is located at the confluence of two major rivers of Indus rivers system, the Beas and the Sutlej, but was never explored extensively for its existing fish biodiversity. Earlier only 27 fish species of commercial value were reported from the wetland. Acknowledging its importance for rich diversity fish assemblages in seven different reaches of Harike wetland were studied to determine their abundance and distribution. 61 fish species of 35 genera were recorded from Harike wetland during the present study. Cirrihinus mrigala and Cyprinus carpio belonging to family Cyprinidae were the dominant fish species. Lake and Riyasat having many microhabitats supported highest diversity of fishes (60 and 56 respectively) followed by Beas (20) Sutlej (14), Confluence (12), Reservoir (9) and Downstream (8). Among the IUCN designated threatened species, 1 Critically Endangered, 4 Endangered and 13 Vulnerable fish species of India are found in Harike wetland. Species diversity index, dominance, evenness and catch per unit effort were calculated to ascertain the fish distribution in Harike wetland.

  16. Fisheries-induced neutral and adaptive evolution in exploited fish populations and consequences for their adaptive potential

    PubMed Central

    Marty, Lise; Dieckmann, Ulf; Ernande, Bruno

    2015-01-01

    Fishing may induce neutral and adaptive evolution affecting life-history traits, and molecular evidence has shown that neutral genetic diversity has declined in some exploited populations. Here, we theoretically study the interplay between neutral and adaptive evolution caused by fishing. An individual-based eco-genetic model is devised that includes neutral and functional loci in a realistic ecological setting. In line with theoretical expectations, we find that fishing induces evolution towards slow growth, early maturation at small size and higher reproductive investment. We show, first, that the choice of genetic model (based on either quantitative genetics or gametic inheritance) influences the evolutionary recovery of traits after fishing ceases. Second, we analyse the influence of three factors possibly involved in the lack of evolutionary recovery: the strength of selection, the effect of genetic drift and the loss of adaptive potential. We find that evolutionary recovery is hampered by an association of weak selection differentials with reduced additive genetic variances. Third, the contribution of fisheries-induced selection to the erosion of functional genetic diversity clearly dominates that of genetic drift only for the traits related to maturation. Together, our results highlight the importance of taking into account population genetic variability in predictions of eco-evolutionary dynamics. PMID:25667602

  17. Fisheries-induced neutral and adaptive evolution in exploited fish populations and consequences for their adaptive potential.

    PubMed

    Marty, Lise; Dieckmann, Ulf; Ernande, Bruno

    2015-01-01

    Fishing may induce neutral and adaptive evolution affecting life-history traits, and molecular evidence has shown that neutral genetic diversity has declined in some exploited populations. Here, we theoretically study the interplay between neutral and adaptive evolution caused by fishing. An individual-based eco-genetic model is devised that includes neutral and functional loci in a realistic ecological setting. In line with theoretical expectations, we find that fishing induces evolution towards slow growth, early maturation at small size and higher reproductive investment. We show, first, that the choice of genetic model (based on either quantitative genetics or gametic inheritance) influences the evolutionary recovery of traits after fishing ceases. Second, we analyse the influence of three factors possibly involved in the lack of evolutionary recovery: the strength of selection, the effect of genetic drift and the loss of adaptive potential. We find that evolutionary recovery is hampered by an association of weak selection differentials with reduced additive genetic variances. Third, the contribution of fisheries-induced selection to the erosion of functional genetic diversity clearly dominates that of genetic drift only for the traits related to maturation. Together, our results highlight the importance of taking into account population genetic variability in predictions of eco-evolutionary dynamics.

  18. Degrees of Isolation: The Impact of Climate Change on the Dispersal and Population Genetic Structure of Two Antarctic Fish Species

    NASA Astrophysics Data System (ADS)

    Young, E. F.; Belchier, M.; Meredith, M. P.; Tysklind, N.; Carvalho, G. R.

    2016-02-01

    Understanding the key drivers of larval dispersal and population connectivity in the marine environment is essential for estimating the potential impacts of climate change on the genetic structure and resilience of populations. Small, isolated and fragmented communities will differ fundamentally in their response and resilience to environmental stress, compared with species that are broadly distributed, abundant, and with a frequent exchange of members. Using a `seascape genetics' approach, combining oceanographic modelling and genetic analyses, we have elucidated the fundamental roles of oceanographic transport and planktonic duration on the connectivity and population genetic structure of two Antarctic fish species with contrasting early life histories, Champsocephalus gunnari and Notothenia rossii. Here, we extend these analyses to consider the impact of rising sea temperatures due to climate change on planktonic dispersal and population connectivity. Using a theoretical approach, the effect of increased water temperatures on mortality rates and species-specific egg and larval phase durations has been incorporated into the models, and the relative impact of these climate-related influences on connectivity and population genetic structure has been investigated. Here we present the key findings of our research and consider the roles of early life history and oceanography in the response of fragmented fish populations to climate change.

  19. Importance of floodplain connectivity to fish populations in the Apalachicola River, Florida

    USGS Publications Warehouse

    Burgess, O.T.; Pine, William E.; Walsh, S.J.

    2013-01-01

    Floodplain habitats provide critical spawning and rearing habitats for many large-river fishes. The paradigm that floodplains are essential habitats is often a key reason for restoring altered rivers to natural flow regimes. However, few studies have documented spatial and temporal utilization of floodplain habitats by adult fish of sport or commercial management interest or assessed obligatory access to floodplain habitats for species' persistence. In this study, we applied telemetry techniques to examine adult fish movements between floodplain and mainstem habitats, paired with intensive light trap sampling of larval fish in these same habitats, to assess the relationships between riverine flows and fish movement and spawning patterns in restored and unmodified floodplain distributaries of the Apalachicola River, Florida. Our intent is to inform resource managers on the relationships between the timing, magnitude and duration of flow events and fish spawning as part of river management actions. Our results demonstrate spawning by all study species in floodplain and mainstem river habitat types, apparent migratory movements of some species between these habitats, and distinct spawning events for each study species on the basis of fish movement patterns and light trap catches. Additionally, Micropterus spp., Lepomis spp. and, to a lesser degree, Minytrema melanops used floodplain channel habitat that was experimentally reconnected to the mainstem within a few weeks of completing the restoration. This result is of interest to managers assessing restoration activities to reconnect these habitats as part of riverine restoration programmes globally.

  20. Selective exploitation of large pike Esox lucius--effects on mercury concentrations in fish populations.

    PubMed

    Sharma, Chhatra Mani; Borgstrøm, Reidar; Huitfeldt, Jørgen Sinkaberg; Rosseland, Bjørn Olav

    2008-07-25

    The present study outlines two main trends of mercury transfer patterns through the fish community: 1) the Hg concentrations increase with increase in the trophic level, with top predators having the highest concentrations, and 2) a fast growth rate may dilute the concentrations of Hg in fish muscle tissue (growth biodilution). In 2004, an extensive reduction in number of large pike (Esox lucius L.), was initiated by selective gillnet fishing in Lake Arungen, Norway, in order to increase the pike recruitment due to an expected reduction in cannibalism. In this connection, total mercury (THg) concentrations in the fish community were studied both before (2003) and after (2005) the removal of large pike. The delta(15)N signatures and stomach content analyses indicated that pike and perch (Perca fluviatilis L.) occupied the highest trophic position, while roach (Rutilus rutilus (L.)) was at the lower level, and rudd (Scardinius erythrophthalmus L.) at the lowest. The piscivores, pike and perch, had the highest concentrations of THg. The biomagnification rate of THg through the food web in the fish community was 0.163 (per thousand delta(15)N), with the highest uptake rate (0.232) in perch. A significant decrease in THg concentrations was found in all fish species in 2005 compared to 2003. Removal of the top predators in an Hg contaminated lake might thus be an important management tool for reducing Hg levels in fish, thereby reducing health risk to humans.

  1. Influence of offence type and prior imprisonment on risk of death following release from prison: a whole-population linked data study.

    PubMed

    Jama-Alol, Khadra Abdi; Malacova, Eva; Ferrante, Anna; Alan, Janine; Stewart, Louise; Preen, David

    2015-01-01

    The purpose of this paper is to examine the influence of offence type, prior imprisonment and various socio-demographic characteristics on mortality at 28 and 365 days following prison release. Using whole-population linked, routinely collected administrative state-based imprisonment and mortality data, the authors conducted a retrospective study of 12,677 offenders released from Western Australian prisons in the period 1994-2003. Cox proportional hazards regression was used to examine the association between mortality at 28 and 365 days post-release and offence type, prior imprisonment, and a range of socio-demographic characteristics (age, gender, social disadvantage and Indigenous status). Overall, 135 (1.1 per cent) died during the 365 days follow-up period, of these, 17.8 per cent (n=24) died within the first 28 days (four weeks) of their index release. Ex-prisoners who had committed drug-related offences had significantly higher risk of 28-day post-release mortality (HR=28.4; 95 per cent CI: 1.3-615.3, p=0.033), than those who had committed violent (non-sexual) offences. A significant association was also found between the number of previous incarcerations and post-release mortality at 28 days post-release, with three prior prison terms carrying the highest mortality risk (HR=73.8; 95 per cent CI: 1.8-3,092.5, p=0.024). No association between mortality and either offence type or prior imprisonment was seen at 365 days post-release. Post-release mortality at 28 days was significantly associated with offence type (with drug-related offences carrying the greatest risk) and with prior imprisonment, but associations did not persist to 365 days after release. Targeting of short-term transitional programmes to reduce preventable deaths after return to the community could be tailored to these high-risk ex-prisoners.

  2. Population interactions among free-living bluefish and prey fish in an ocean environment.

    PubMed

    Safina, Carl; Burger, Joanna

    1989-04-01

    We used sonar to measure relative abundance, location, and depth of prey fish schools (primarily Anchoa and Ammodytes) in the ocean near Fire Island Inlet, New York from May to August for 4 years to examine predatorprey interactions. Prey fish numbers built through May, peaked in June, and thereafter declined coincident with the arrival of predatory bluefish. Bluefish abundance and feeding behavior correlated inversely with prey fish abundance and depth. Bluefish may drive seasonal patterns of prey abundance and distribution in this area through direct predation and by causing prey to flee.

  3. Status and trends of prey fish populations in Lake Superior, 2008

    USGS Publications Warehouse

    Gorman, Owen T.; Evrard, Lori M.; Cholwek, Gary A.; Falck, Jill M.; Yule, Daniel

    2009-01-01

    The Great Lakes Science Center has conducted annual daytime bottom trawl surveys of the Lake Superior nearshore (15-80 m bathymetric depth zone) every spring since 1978 to provide a long-term index of relative abundance and biomass of the fish community. Between May 5 and June 14, 2008, 58 stations were sampled around the perimeter of the lake with 12-m wide bottom trawls. Trawls were deployed cross-contour at median start and end depths of 17 and 55 m, respectively. The lakewide mean relative biomass estimate for the entire fish community was 4.61 kg/ha which was similar to that measured in 2007, 4.81 kg/ha. Dominant species in the catch were lake whitefish, rainbow smelt, longnose sucker and cisco, which represented 49, 18, 11, and 7 % of the total community biomass, respectively. Compared to 2007 levels, lake whitefish and cisco biomass increased 35% and 55%, respectively, while bloater and rainbow smelt biomass declined 69% and 41%, respectively. Increased biomass of lake whitefish and decreased biomass in bloater represent trends observed since 2007; however, reversed trends in biomass were observed for cisco and rainbow smelt. Year-class strength for the 2007 cisco cohort (0.20 fish/ha) was below the long-term (1977-2007) average (73.31 fish/ha), as was year-class strength for the 2007 bloater cohort (0.33 fish/ha) compared to the long-term average (11.11 fish/ha). Smelt year class strength (226.26 fish/ha) continues a trend of increasing strength from a 31-year low of 56.75 fish/ha in 2001 and was above the long-term average of 193.81 fish/ha. The 2008 cisco age structure was dominated by age 5 and older fish, which accounted for 82% of the mean relative density. Wisconsin waters continue to be the most productive (mean total community biomass of 17.09 kg/ha), followed by western Ontario (5.40 kg/ha), eastern Ontario (3.08 kg/ha), Michigan (2.82 kg/ha), and Minnesota (0.89 kg/ha).Densities of small (400 mm) hatchery lake trout continued a pattern of decline

  4. Multi-decadal responses of a cod (Gadus morhua) population to human-induced trophic changes, fishing, and climate.

    PubMed

    Eero, Margit; MacKenzie, Brian R; Köster, Friedrich W; Gislason, Henrik

    2011-01-01

    Understanding how human impacts have interacted with natural variability to affect populations and ecosystems is required for sustainable management and conservation. The Baltic Sea is one of the few large marine ecosystems worldwide where the relative contribution of several key forcings to changes in fish populations can be analyzed with empirical data. In this study we investigate how climate variability and multiple human impacts (fishing, marine mammal hunting, eutrophication) have affected multi-decadal scale dynamics of cod in the Baltic Sea during the 20th century. We document significant climate-driven variations in cod recruitment production at multi-annual timescales, which had major impacts on population dynamics and the yields to commercial fisheries. We also quantify the roles of marine mammal predation, eutrophication, and exploitation on the development of the cod population using simulation analyses, and show how the intensity of these forcings differed over time. In the early decades of the 20th century, marine mammal predation and nutrient availability were the main limiting factors; exploitation of cod was still relatively low. During the 1940s and subsequent decades, exploitation increased and became a dominant forcing on the population. Eutrophication had a relatively minor positive influence on cod biomass until the 1980s. The largest increase in cod biomass occurred during the late 1970s, following a long period of hydrographically related above-average cod productivity coupled to a temporary reduction in fishing pressure. The Baltic cod example demonstrates how combinations of different forcings can have synergistic effects and consequently dramatic impacts on population dynamics. Our results highlight the potential and limitations of human manipulations to influence predator species and show that sustainable management can only be achieved by considering both anthropogenic and naturally varying processes in a common framework.

  5. Population Variation in the Life History of a Land Fish, Alticus arnoldorum, and the Effects of Predation and Density

    PubMed Central

    Platt, Edward R. M.; Ord, Terry J.

    2015-01-01

    Life history variation can often reflect differences in age-specific mortality within populations, with the general expectation that reproduction should be shifted away from ages experiencing increased mortality. Investigators of life history in vertebrates frequently focus on the impact of predation, but there is increasing evidence that predation may have unexpected impacts on population density that in turn prompt unexpected changes in life history. There are also other reasons why density might impact life history independently of predation or mortality more generally. We investigated the consequences of predation and density on life history variation among populations of the Pacific leaping blenny, Alticus arnoldorum. This fish from the island of Guam spends its adult life out of the water on rocks in the splash zone, where it is vulnerable to predation and can be expected to be sensitive to changes in population density that impact resource availability. We found populations invested more in reproduction as predation decreased, while growth rate varied primarily in response to population density. These differences in life history among populations are likely plastic given the extensive gene flow among populations revealed by a previous study. The influence of predation and density on life history was unlikely to have operated independently of each other, with predation rate tending to be associated with reduced population densities. Taken together, our results suggest predation and density can have complex influences on life history, and that plastic life history traits could allow populations to persist in new or rapidly changing environments. PMID:26398191

  6. Population Variation in the Life History of a Land Fish, Alticus arnoldorum, and the Effects of Predation and Density.

    PubMed

    Platt, Edward R M; Ord, Terry J

    2015-01-01

    Life history variation can often reflect differences in age-specific mortality within populations, with the general expectation that reproduction should be shifted away from ages experiencing increased mortality. Investigators of life history in vertebrates frequently focus on the impact of predation, but there is increasing evidence that predation may have unexpected impacts on population density that in turn prompt unexpected changes in life history. There are also other reasons why density might impact life history independently of predation or mortality more generally. We investigated the consequences of predation and density on life history variation among populations of the Pacific leaping blenny, Alticus arnoldorum. This fish from the island of Guam spends its adult life out of the water on rocks in the splash zone, where it is vulnerable to predation and can be expected to be sensitive to changes in population density that impact resource availability. We found populations invested more in reproduction as predation decreased, while growth rate varied primarily in response to population density. These differences in life history among populations are likely plastic given the extensive gene flow among populations revealed by a previous study. The influence of predation and density on life history was unlikely to have operated independently of each other, with predation rate tending to be associated with reduced population densities. Taken together, our results suggest predation and density can have complex influences on life history, and that plastic life history traits could allow populations to persist in new or rapidly changing environments.

  7. Genetic variation of fish parasite populations in historically connected habitats: undetected habitat fragmentation effect on populations of the nematode Procamallanus fulvidraconis in the catfish Pelteobagrus fulvidraco.

    PubMed

    Li, Wen X; Wang, Gui T; Nie, P

    2008-06-01

    Habitat fragmentation may have some significant effects on population genetic structure because geographic distance and physical barriers may impede gene flow between populations. In this study, we investigated whether recent habitat fragmentation affected genetic structure and diversity of populations of the nematode Procamallanus fulvidraconis in the yellowhead catfish, Pelteobagrus fulvidraco. The nematode was collected from 12 localities in 7 floodplain lakes of the Yangtze River. Using 11 intersimple sequence repeat markers, analysis of molecular variance showed that genetic diversity occurred mainly within populations (70.26%). Expected heterozygosity (He) of P. fulvidraconis was barely different between connected (0.2105) and unconnected lakes (0.2083). Population subdivision (Fst) between connected lakes (0.2177) was higher than in unconnected lakes (0.1676). However, the connected and unconnected lakes did not cluster into 2 clades. A Mantel test revealed significant positive correlation between genetic and geographic distances (R = 0.5335, P < 0.01). These results suggest that habitat fragmentation did not cause genetic differentiation among populations or a reduction of diversity in isolated populations of P. fulvidraconis. At least 2 factors may increase the dispersal range of the nematode, i.e., flash flooding in summer and other species of fish that may serve as the definitive hosts. Moreover, lake fragmentation is probably a recent process; population size of the nematode in these lakes is large enough to maintain population structure.

  8. EFFECTS OF SEASONAL AND WATER QUALITY PARAMETERS ON OYSTERS (CRASSOSTREA VIRGINICA) AND ASSOCIATED FISH POPULATIONS.

    EPA Science Inventory

    Influence of water quality and seasonal changes on disease prevalence and intensity of Perkinsus marinus, gonadal condition, recruitment potential, growth of caged juvenile oysters, and habitat suitability of reefs for fishes and macrobenthic invertebrates were measured in Callos...

  9. EFFECTS OF SEASONAL AND WATER QUALITY PARAMETERS ON OYSTERS (CRASSOSTREA VIRGINICA) AND ASSOCIATED FISH POPULATIONS.

    EPA Science Inventory

    Influence of water quality and seasonal changes on disease prevalence and intensity of Perkinsus marinus, gonadal condition, recruitment potential, growth of caged juvenile oysters, and habitat suitability of reefs for fishes and macrobenthic invertebrates were measured in Callos...

  10. Variation in predation pressure as a mechanism underlying differences in numerical abundance between populations of the poeciliid fish Heterandria formosa

    USGS Publications Warehouse

    Richardson, J.M.L.; Gunzburger, M.S.; Travis, J.

    2006-01-01

    We explored whether a variation in predation and habitat complexity between conspecific populations can drive qualitatively different numerical dynamics in those populations. We considered two disjunct populations of the least killifish, Heterandria formosa, that exhibit long-term differences in density, top fish predator species, and dominant aquatic vegetation. Monthly censuses over a 3-year period found that in the higher density population, changes in H. formosa density exhibited a strong negative autocorrelation structure: increases (decreases) at one census tended to be followed by decreases (increases) at the next one. However, no such correlation was present in the lower density population. Monthly census data also revealed that predators, especially Lepomis sp., were considerably more abundant at the site with lower H. formosa densities. Experimental studies showed that the predation by Lepomis gulosus occurred at a much higher rate than predation by two other fish and two dragonfly species, although L. gulosus and L. punctatus had similar predation rates when the amount of vegetative cover was high. The most effective predator, L. gulosus, did not discriminate among life stages (males, females, and juveniles) of H. formosa. Increased predation rates by L. gulosus could keep H. formosa low in one population, thereby eliminating strong negative density-dependent regulation. In support of this, changes in H. formosa density were positively correlated with changes in vegetative cover for the population with a history of lower density, but not for the population with a history of higher density. Our results are consistent with the hypothesis that the observed differences among natural populations in numerical abundance and dynamics are caused in part by the differences in habitat complexity and the predator community. ?? Springer-Verlag 2005.

  11. A Novel Technique to Detect Epipelagic Fish Populations and Map their Habitat

    DTIC Science & Technology

    2009-09-30

    throughout the water column both vertically and horizontally. So, to assess the total availability of plankton prey to foraging sardines, acoustic...available to fish predators during nighttime foraging hours (Figure 4). The opposite pattern of prey availability was observed in Monterey Bay, with the...influence of prey abundance was investigated to determine what impact prey availability has on fish schooling behavior. This information will be used

  12. Reduced Spill at Hydropower Dams: Opportunities for More Generation and Increased Fish Population

    SciTech Connect

    Coutant, Charles C; Mann, Roger; Sale, Michael J

    2006-09-01

    This report indicates that reduction of managed spill at hydropower dams can speed implementation of technologies for fish protection and achieve economic goals. Spill of water over spillways is managed in the Columbia River basin to assist downstream-migrating juvenile salmon, and is generally believed to be the most similar to natural migration, benign and effective passage route; other routes include turbines, intake screens with bypasses, and surface bypasses. However, this belief may be misguided, because spill is becoming recognized as less than natural, with deep intakes below normal migration depths, and likely causing physical damages from severe shear on spillways, high turbulence in tail waters, and collisions with baffle blocks that lead to disorientation and predation. Some spillways induce mortalities comparable to turbines. Spill is expensive in lost generation, and controversial. Fish-passage research is leading to more fish-friendly turbines, screens and bypasses that are more effective and less damaging, and surface bypasses that offer passage of more fish per unit water volume than does spill (leaving more water for generation). Analyses by independent economists demonstrated that goals of increased fish survival over the long term and net gain to the economy can be obtained by selectively reducing spill and diverting some of the income from added power generation to research, development, and installation of fish-passage technologies. Such a plan would selectively reduce spill when and where least damaging to fish, increase electricity generation using the water not spilled and use innovative financing to direct monetary gains to improving fish passage.

  13. Mercury in southeastern U.S. riverine fish populations linked to water body type.

    PubMed

    Rypel, Andrew L; Arrington, D Albrey; Findlay, Robert H

    2008-07-15

    We compared Hg concentrations in fishes from the regulated Black Warrior River and the unregulated Sipsey River in west Alabama whose neighboring watersheds receive equivalent atmospheric Hg deposition. Average fish fillet Hg concentrations were 3-fold higher in the unregulated river compared to the regulated river. Between river differences in Hg fish concentrations likely originate from structural (e.g., species composition) and functional (e.g., energy flow pathways) differences between the two ecosystems. We tested the generality of these findings by comparing largemouth bass Hg concentrations among unregulated rivers (n=6) and reservoirs (n=11) throughout the southern Coastal Plain geologic region. ANCOVA revealed that at a given bass length, Hg concentrations were approximately 1.75 times higher in unregulated rivers compared to regulated rivers. Aerial deposition of Hg was not correlated to largemouth bass Hg concentrations. We suggest that the link between atmospheric Hg deposition and fish Hg concentrations is significantly modulated by the structure and function of aquatic ecosystems and this accounts for much of the variation in fish Hg concentrations among systems. Unregulated floodplain-rivers in the south have some of the highest fish Hg concentrations on record and should be intensely monitored to establish human consumption risks.

  14. Modeling responses of large-river fish populations to global climate change through downscaling and incorporation of predictive uncertainty

    USGS Publications Warehouse

    Wildhaber, Mark L.; Wikle, Christopher K.; Anderson, Christopher J.; Franz, Kristie J.; Moran, Edward H.; Dey, Rima; Mader, Helmut; Kraml, Julia

    2012-01-01

    Climate change operates over a broad range of spatial and temporal scales. Understanding its effects on ecosystems requires multi-scale models. For understanding effects on fish populations of riverine ecosystems, climate predicted by coarse-resolution Global Climate Models must be downscaled to Regional Climate Models to watersheds to river hydrology to population response. An additional challenge is quantifying sources of uncertainty given the highly nonlinear nature of interactions between climate variables and community level processes. We present a modeling approach for understanding and accomodating uncertainty by applying multi-scale climate models and a hierarchical Bayesian modeling framework to Midwest fish population dynamics and by linking models for system components together by formal rules of probability. The proposed hierarchical modeling approach will account for sources of uncertainty in forecasts of community or population response. The goal is to evaluate the potential distributional changes in an ecological system, given distributional changes implied by a series of linked climate and system models under various emissions/use scenarios. This understanding will aid evaluation of management options for coping with global climate change. In our initial analyses, we found that predicted pallid sturgeon population responses were dependent on the climate scenario considered.

  15. Old fish in a young lake: stone loach (Pisces: Barbatula barbatula) populations in Lake Constance are genetically isolated by distance.

    PubMed

    Barluenga, Marta; Meyer, Axel

    2005-04-01

    The genetic structure of 10 populations (453 individuals) of stone loach (Barbatula barbatula L.), a small bottom-dwelling cyprinid fish, in the littoral zone of Lake Constance, central Europe, was investigated by analysing the mitochondrial control region sequences and five microsatellite loci. An unexpectedly high degree of genetic diversity (up to 0.36%) and old estimated age of these populations (> 150 000 years) based on mitochondrial DNA (mtDNA) was found. These findings contrast with the relatively young age of the lake, which could be colonized by fish only after the last ice age around 15 000 bp. Stone loach appears to be an old species in a young lake. Both types of molecular markers showed population genetic structure pronounced in mtDNA (overall F(ST) = 0.15) but moderate in microsatellites (F(ST) = 0.03). As predicted by its life history, philopatry, and limited capacity for dispersal, stone loach populations of Lake Constance show a clear pattern of isolation by distance. Geographic distances along the shores are the best explanation for the observed geographical distribution of genetic differentiation (r = 0.88), indicating that open water represents a barrier for the dispersal of the stone loach. The colonization of Lake Constance might have occurred initially at one location and then populations spread throughout the lake in a stepwise manner following the shoreline, and subsequently remained largely genetically isolated as suggested by the large observed differences among them.

  16. Influence of Habitat Modifications on Habitat Composition and Anadromous Salmonid Populations in Fish Creek, Oregon, 1983-1988 Annual Report.

    SciTech Connect

    Reeves, Gordon H.; Everest, Fred H.; Hohler, David B.

    1990-05-01

    Modification of degraded habitats to increase populations of anadromous salmonids is a major focus of management agencies throughout the Pacific Northwest. Millions of dollars are spent annually on such efforts. Inherent in implementing habitat improvements is the need for quantitative evaluation of the biological and physical effects of such work. Reeves et al. (in press), however, noted that such evaluations are rare, making it difficult to assess the true results of habitat work. While it is not economically possible to thoroughly evaluate every habitat project, it is essential that intensive evaluations be done on selected representative projects. One such evaluation program has been underway since 1982 on Fish Creek, a tributary of the Clackamas River near Estacada, OR. Habitat modification has been done by the USDA Forest Service, Estacada Ranger District, Mt. Hood National Forest with funding provided in part by the Bonneville Power Administration (BPA). The USDA Forest Service, Anadromous Fish Habitat Research Unit, Pacific Northwest Research Station (PNW), Corvallis, OR is charged with: (1) evaluating the biological and physical responses to habitat modifications on a basin scale; and (2) developing a cost-benefit analysis of the program. Preliminary results have been reported in a series of annual publications, Everest and Sedell 1983, 1984 and Everest et al. 1985, 1986, 1987, 1988. The objectives of this paper are to: (1) report 1988 observations of biological and physical changes in habitat, salmonid populations, and smolt production in Fish Creek, and (2) examine preliminary trends in fish habitat and populations related to habitat improvement over the period 1983-1988. We have prefaced the trends in the latter objective as preliminary because we believe it could take a minimum of 10 years before the full biological and physical responses to habitat work are realized. We therefore urge caution in interpreting these preliminary results.

  17. Variation in Rapa Nui (Easter Island) land use indicates production and population peaks prior to European contact.

    PubMed

    Stevenson, Christopher M; Puleston, Cedric O; Vitousek, Peter M; Chadwick, Oliver A; Haoa, Sonia; Ladefoged, Thegn N

    2015-01-27

    Many researchers believe that prehistoric Rapa Nui society collapsed because of centuries of unchecked population growth within a fragile environment. Recently, the notion of societal collapse has been questioned with the suggestion that extreme societal and demographic change occurred only after European contact in AD 1722. Establishing the veracity of demographic dynamics has been hindered by the lack of empirical evidence and the inability to establish a precise chronological framework. We use chronometric dates from hydrated obsidian artifacts recovered from habitation sites in regional study areas to evaluate regional land-use within Rapa Nui. The analysis suggests region-specific dynamics including precontact land use decline in some near-coastal and upland areas and postcontact increases and subsequent declines in other coastal locations. These temporal land-use patterns correlate with rainfall variation and soil quality, with poorer environmental locations declining earlier. This analysis confirms that the intensity of land use decreased substantially in some areas of the island before European contact.

  18. Variation in Rapa Nui (Easter Island) land use indicates production and population peaks prior to European contact

    PubMed Central

    Stevenson, Christopher M.; Puleston, Cedric O.; Vitousek, Peter M.; Chadwick, Oliver A.; Haoa, Sonia; Ladefoged, Thegn N.

    2015-01-01

    Many researchers believe that prehistoric Rapa Nui society collapsed because of centuries of unchecked population growth within a fragile environment. Recently, the notion of societal collapse has been questioned with the suggestion that extreme societal and demographic change occurred only after European contact in AD 1722. Establishing the veracity of demographic dynamics has been hindered by the lack of empirical evidence and the inability to establish a precise chronological framework. We use chronometric dates from hydrated obsidian artifacts recovered from habitation sites in regional study areas to evaluate regional land-use within Rapa Nui. The analysis suggests region-specific dynamics including precontact land use decline in some near-coastal and upland areas and postcontact increases and subsequent declines in other coastal locations. These temporal land-use patterns correlate with rainfall variation and soil quality, with poorer environmental locations declining earlier. This analysis confirms that the intensity of land use decreased substantially in some areas of the island before European contact. PMID:25561523

  19. Mitochondrial diversity in European and Chinese pigs is consistent with population expansions that occurred prior to domestication

    PubMed Central

    Fang, Meiying; Andersson, Leif

    2006-01-01

    Mitochondrial DNA (mtDNA) diversity in European and Asian pigs was assessed using 1536 samples representing 45 European and 21 Chinese breeds. Diagnostic nucleotide differences in the cytochrome b (Cytb) gene between the European and Asian mtDNA variants were determined by pyrosequencing as a rapid screening method. Subsequently, 637 bp of the hypervariable control region was sequenced to further characterize mtDNA diversity. All sequences belonged to the D1 and D2 clusters of pig mtDNA originating from ancestral wild boar populations in Europe and Asia, respectively. The average frequency of Asian mtDNA haplotypes was 29% across European breeds, but varied from 0 to 100% within individual breeds. A neighbour-joining (NJ) tree of control region sequences showed that European and Asian haplotypes form distinct clusters consistent with the independent domestication of pigs in Asia and Europe. The Asian haplotypes found in the European pigs were identical or closely related to those found in domestic pigs from Southeast China. The star-like pattern detected by network analysis for both the European and Asian haplotypes was consistent with a previous demographic expansion. Mismatch analysis supported this notion and suggested that the expansion was initiated before domestication. PMID:16790414

  20. [Fish population structure in the fishway of Changzhou hydro-junction].

    PubMed

    Tan, Xi-chang; Huang, He; Tao, Jiang-ping; Li, Si-jia

    2015-05-01

    The fishway of Changzhou hydro-junction, located in the main stream of Xijiang River, is the biggest fishway in China up to now. Efficiency assessment of the Changzhou fishway is important for fish resource and ecosystem protection of the Pearl River, and can provide basic data for design, construction and management of other fishways in China. A total of 40 fish species in the Changzhou fishway were sampled on 11 occasions from April to June during 2011-2014 by using blocking method. Migratory species such as marbled eel, eel, Fugu ocellatus and the four domestic fish ( black carp, grass carp, silver carp and bighead carp) appeared in the fishway. The dominant species included Pelteobagrus vachelli (29.1%), Spualiobarbus' curriculus (16.8%), Hemiculter leucisculus (14.7%), Pseudolaubuca sinensis (12.0%), Squalidus argentatus (10.8%), Anguilla japonica (7.3%) and Cirrhinus molitorella (2.7%). Species accumulation curve indicated that up to 61 species would be monitored in the fishway with increasing the sampling frequency, indicating its good passage efficiency. Fish diversity in the Changzhou fishway was significantly lower than that in the downstream in Xijiang River, and two dominant species in the downstream of the Changzhou Dam, Megalobrama hoffmanni and Mystus guttatus, were not monitored in the fishway in this study, revealing that attraction efficiency of the fishway was different for different fish species. The canonical correspondence analysis showed that dam water level was the most important factor for the fishway effectiveness, it was necessary to adjust the operation mode of the Changzhou dam to instigate more fish migration by the fishway. According to the present situation of fishery resources of the Pearl River, it was suggested to include four domestic fish, M. hoffmanni, S. curriculus and C. molitorella as target species of the Changzhou fishway, and consider more about ecological characteristics of these species.

  1. Fish assemblage, density, and growth in lateral habitats within natural and regulated sections of Washington's Elwha River prior to dam removal

    USGS Publications Warehouse

    Connolly, P.J.; Brenkman, S.J.

    2008-01-01

    We characterized seasonal fish assemblage, relative density, and growth in river margins above and between two Elwha River dams scheduled for removal. Fish assemblage and relative density differed in the lateral habitats of the middle-regulated and upper-unregulated sections of the Elwha River. Rainbow trout was the numerically dominant salmonid in both sections, with bull trout present in low numbers. Sculpin were common in the middle section, but not detected in the upper section. In 2004, mean length and biomass of age-0 rainbow trout were significantly smaller in the middle section than in the upper section by the end of the growing season (September). In 2005, an earlier emergence of rainbow trout in the middle section (July) compared to the upper section (August) corresponded with warmer water temperatures in the middle section. Despite lower growth, the margins of mainstem units in the middle section supported higher mean areal densities and biomass of age-0 rainbow trout than the up-per section. These results suggest that growth performance of age-0 rainbow trout was lower in the middle section than in the upper section, which could have been a density-dependent response, or a result of poor food production in the sediment-starved regulated section, or both. Based on our findings, we believe that seasonal sampling of river margins within reference reaches is a cost effective and repeatable method for detection of biologically important short- and long-term changes in emergence timing, density, and growth of rainbow trout before and after dam removals in the Elwha River.

  2. Serosurvey Reveals Exposure to West Nile Virus in Asymptomatic Horse Populations in Central Spain Prior to Recent Disease Foci.

    PubMed

    Abad-Cobo, A; Llorente, F; Barbero, M Del Carmen; Cruz-López, F; Forés, P; Jiménez-Clavero, M Á

    2017-10-01

    West Nile fever/encephalitis (WNF) is an infectious disease affecting horses, birds and humans, with a cycle involving birds as natural reservoirs and mosquitoes as transmission vectors. It is a notifiable disease, re-emerging in Europe. In Spain, it first appeared in horses in the south (Andalusia) in 2010, where outbreaks occur every year since. However, in 2014, an outbreak was declared in horses in central Spain, approximately 200 km away from the closest foci in Andalusia. Before that, evidence of West Nile virus (WNV) circulation in central Spain had been obtained only from wildlife, but never in horses. The purpose of this work was to perform a serosurvey to retrospectively detect West Nile virus infections in asymptomatic horses in central Spain from 2011 to 2013, that is before the occurrence of the first outbreaks in the area. For that, serum samples from 369 horses, collected between September 2011 and November 2013 in central Spain, were analysed by ELISA (blocking and IgM) and confirmed by virus neutralization, proving its specificity using parallel titration with another flavivirus (Usutu virus). As a result, 10 of 369 horse serum samples analysed gave positive results by competitive ELISA, 5 of which were confirmed as positive to WNV by virus neutralization (seropositivity rate: 1.35%). One of these WNV seropositive samples was IgM-positive. Chronologically, the first positive samples, including the IgM-positive, corresponded to sera collected in 2012 in Madrid province. From these results, we concluded that WNV circulated in asymptomatic equine populations of central Spain at least since 2012, before the first disease outbreak reported in this area. © 2016 Blackwell Verlag GmbH.

  3. Fish community changes in the St. Louis River estuary, Lake Superior, 1989-1996: Is it ruffe or population dynamics?

    USGS Publications Warehouse

    Bronte, Charles R.; Evrard, Lori M.; Brown, William P.; Mayo, Kathleen R.; Edwards, Andrew J.

    1998-01-01

    Ruffe (Gymnocephalus cernuus) have been implicated in density declines of native species through egg predation and competition for food in some European waters where they were introduced. Density estimates for ruffe and principal native fishes in the St. Louis River estuary (western Lake Superior) were developed for 1989 to 1996 to measure changes in the fish community in response to an unintentional introduction of ruffe. During the study, ruffe density increased and the densities of several native species decreased. The reductions of native stocks to the natural population dynamics of the same species from Chequamegon Bay, Lake Superior (an area with very few ruffe) were developed, where there was a 24-year record of density. Using these data, short- and long-term variations in catch and correlations among species within years were compared, and species-specific distributions were developed of observed trends in abundance of native fishes in Chequamegon Bay indexed by the slopes of densities across years. From these distributions and our observed trend-line slopes from the St. Louis River, probabilities of measuring negative change at the magnitude observed in the St. Louis River were estimated. Compared with trends in Chequamegon Bay, there was a high probability of obtaining the negative slopes measured for most species, which suggests natural population dynamics could explain, the declines rather than interactions with ruffe. Variable recruitment, which was not related to ruffe density, and associated density-dependent changes in mortality likely were responsible for density declines of native species.

  4. Mercury exposure in a high fish eating Bolivian Amazonian population with intense small-scale gold-mining activities.

    PubMed

    Barbieri, Flavia Laura; Cournil, Amandine; Gardon, Jacques

    2009-08-01

    Methylmercury exposure in Amazonian communities through fish consumption has been widely documented in Brazil. There is still a lack of data in other Amazonian countries, which is why we conducted this study in the Bolivian Amazon basin. Simple random sampling was used from a small village located in the lower Beni River, where there is intense gold mining and high fish consumption. All participants were interviewed and hair samples were taken to measure total mercury concentrations. The hair mercury geometric mean in the general population was 3.02 microg/g (CI: 2.69-3.37; range: 0.42-15.65). Age and gender were not directly associated with mercury levels. Fish consumption showed a positive relation and so did occupation, especially small-scale gold mining. Hair mercury levels were lower than those found in Brazilian studies, but still higher than in non-exposed populations. It is necessary to assess mercury exposure in the Amazonian regions where data is still lacking, using a standardized indicator.

  5. Episodic acidification of small streams in the northeastern united states: Effects on fish populations

    USGS Publications Warehouse

    Baker, J.P.; Van Sickle, J.; Gagen, C.J.; DeWalle, David R.; Sharpe, W.E.; Carline, R.F.; Baldigo, Barry P.; Murdoch, Peter S.; Bath, D.W.; Kretser, W.A.; Simonin, H.A.; Wigington, P.J.

    1996-01-01

    As part of the Episodic Response Project (ERP), we studied the effects of episodic acidification on fish in 13 small streams in the northeastern United States: four streams in the Adirondack region of New York, four streams in the Catskills, New York, and five streams in the northern Appalachian Plateau, Pennsylvania. In situ bioassays with brook trout (Salvelinus fontinalis) and a forage fish species (blacknose dace (Rhinichthys atratulus], mottled sculpin (Cottus bairdi), or slimy sculpin (Cottus cognatus), depending on the region) measured direct toxicity. Movements of individual brook trout, in relation to stream chemistry, were monitored using radiotelemetry. Electrofishing surveys assessed fish community status and the density and biomass of brook trout in each stream. During low flow, all streams except one had chemical conditions considered suitable for the survival and reproduction of most fish species (median pH 6.0-7.2 during low flow; inorganic Al 100-200 ??g/L. We conclude that episodic acidification can have long-term effects on fish communities in small streams.

  6. Carbon budgets for a phytoplanktivorous fish fed three different unialgal populations.

    PubMed

    McDonald, Michael E

    1985-05-01

    The filter feeding blue tilapia, Tilapia aurea, was fed three different algae. Blue tilapia ingestion of two green algae, Chlamydomonas sp. and Ankistrodesmus falcatus and the filamentous blue-green alga, Anabaena flos-aquae, ranged from 21%-89% of the available cells. There were significant differences in the assimilation of algal carbon by the fish depending on the alga fed; A. flos-aquae was the easiest to assimilate (83%). The fish respired significantly less of the Chlamydomonas sp. ingested carbon (15%). The gross growth efficiency of fishes fed either green alga was not significantly different (22%-24%), but these efficiencies were significantly less than the gross growth efficiency of fish fed A. flos-aquae (46%). The carbon budgets for fish feeding on the green algae were similar to that constructed from the literature for a congener fed a mixed algae diet. However, the assimilation component of the budget for blue tilapia fed A. flos-aquae was 2 times greater than that of the literature budget.

  7. Population Models for Stream Fish Response to Habitat and Hydrologic Alteration: the CVI Watershed Tool. EPA/600/R-04/190

    EPA Pesticide Factsheets

    Models that predict the responses of fish populations and communities to key habitat characteristics are necessary for CVIs watershed management goals, for determining where to restore and how, as well as evaluating the most probable outcome.

  8. Population-structure and genetic diversity in a haplochromine cichlid fish [corrected] of a satellite lake of Lake Victoria.

    PubMed

    Abila, Romulus; Barluenga, Marta; Engelken, Johannes; Meyer, Axel; Salzburger, Walter

    2004-09-01

    The approximately 500 species of the cichlid fish species flock of Lake Victoria, East Africa, have evolved in a record-setting 100,000 years and represent one of the largest adaptive radiations. We examined the population structure of the endangered cichlid species Xystichromis phytophagus from Lake Kanyaboli, a satellite lake to Lake Victoria in the Kenyan Yala wetlands. Two sets of molecular markers were analysed--sequences of the mitochondrial control region as well as six microsatellite loci--and revealed surprisingly high levels of genetic variability in this species. Mitochondrial DNA sequences failed to detect population structuring among the three sample populations. A model-based population assignment test based on microsatellite data revealed that the three populations most probably aggregate into a larger panmictic population. However, values of population pairwise FST indicated moderate levels of genetic differentiation for one population. Eleven distinct mitochondrial haplotypes were found among 205 specimens of X. phytophagus, a relatively high number compared to the total number of 54 haplotypes that were recovered from hundreds of specimens of the entire cichlid species flock of Lake Victoria. Most of the X. phytophagus mitochondrial DNA haplotypes were absent from the main Lake Victoria, corroborating the putative importance of satellite lakes as refugia for haplochromine cichlids that went extinct from the main lake in the last decades and possibly during the Late Pleistocene desiccation of Lake Victoria.

  9. Linking temporal changes in the demographic structure and individual growth to the decline in the population of a tropical fish

    NASA Astrophysics Data System (ADS)

    Sirot, Charlotte; Darnaude, Audrey M.; Guilhaumon, François; Ramos-Miranda, Julia; Flores-Hernandez, Domingo; Panfili, Jacques

    2015-11-01

    The exceptional biodiversity and productivity of tropical coastal lagoons can only be preserved by identifying the causes for the decline in the populations living in these vulnerable ecosystems. The Terminos lagoon in Mexico provided an opportunity for studying this issue as some of its fish populations, in particular the Silver Perch (Bairdiella chrysoura), have declined significantly since the 1980s. Fish sampling campaigns carried out over the whole lagoon area in 1979-81 and again in 2006-2011 revealed the mechanisms which may have been responsible for this decline. Based on biometrical data for 295 juveniles and adults from the two periods and on somatic growth derived from 173 otoliths, a study of the temporal changes in the demographic structure and life history traits (individual growth and body condition) made it possible to distinguish the causes of the decline in the B. chrysoura population. Growth models for the lagoon in 1980-1981 and 2006-2011 showed no significant change in the growth parameters of the population over the last 30 years with a logistic model giving an accurate estimate (R2 = 0.66) of the size-at-age for both periods. The decline in the B. chrysoura population could not be explained by an overall decrease in individual size and condition in the lagoon, the average standard length (SL) and Fulton index (FI) having increased slightly since 1980-1981 (4.6 mm and 0.02 for juveniles and 5.42 mm and 0.07 for adults). However, the size structure of the population in the lagoon has changed, with a significant shift in the size distribution of juveniles with a marked reduction in the proportion of juveniles ≤ 60 mm in the captures (90.9% fewer than in 1980-1981). As the otolith growth rate of fish during the first 4 months also decreased significantly between the two sampling periods (-15%), it is suggested that the main reason for the decline in the abundance and biomass of B. chrysoura within this system may be that its habitats are less

  10. Novel mobbing strategies of a fish population against a sessile annelid predator

    PubMed Central

    Lachat, Jose; Haag-Wackernagel, Daniel

    2016-01-01

    When searching for food, foraging fishes expose themselves to hidden predators. The strategies that maximize the survival of foraging fishes are not well understood. Here, we describe a novel type of mobbing behaviour displayed by foraging Scolopsis affinis. The fish direct sharp water jets towards the hidden sessile annelid predator Eunice aphroditois (Bobbit worm). We recognized two different behavioural roles for mobbers (i.e., initiator and subsequent participants). The first individual to exhibit behaviour indicating the discovery of the Bobbit directed, absolutely and per time unit, more water jets than the subsequent individuals that joined the mobbing. We found evidence that the mobbing impacted the behaviour of the Bobbit, e.g., by inducing retraction. S. affinis individuals either mob alone or form mobbing groups. We speculate that this behaviour may provide social benefits for its conspecifics by securing foraging territories for S. affinis. Our results reveal a sophisticated and complex behavioural strategy to protect against a hidden predator. PMID:27615670

  11. Novel mobbing strategies of a fish population against a sessile annelid predator.

    PubMed

    Lachat, Jose; Haag-Wackernagel, Daniel

    2016-09-12

    When searching for food, foraging fishes expose themselves to hidden predators. The strategies that maximize the survival of foraging fishes are not well understood. Here, we describe a novel type of mobbing behaviour displayed by foraging Scolopsis affinis. The fish direct sharp water jets towards the hidden sessile annelid predator Eunice aphroditois (Bobbit worm). We recognized two different behavioural roles for mobbers (i.e., initiator and subsequent participants). The first individual to exhibit behaviour indicating the discovery of the Bobbit directed, absolutely and per time unit, more water jets than the subsequent individuals that joined the mobbing. We found evidence that the mobbing impacted the behaviour of the Bobbit, e.g., by inducing retraction. S. affinis individuals either mob alone or form mobbing groups. We speculate that this behaviour may provide social benefits for its conspecifics by securing foraging territories for S. affinis. Our results reveal a sophisticated and complex behavioural strategy to protect against a hidden predator.

  12. Assessing power of large river fish monitoring programs to detect population changes: the Missouri River sturgeon example

    USGS Publications Warehouse

    Wildhaber, M.L.; Holan, S.H.; Bryan, J.L.; Gladish, D.W.; Ellersieck, M.

    2011-01-01

    In 2003, the US Army Corps of Engineers initiated the Pallid Sturgeon Population Assessment Program (PSPAP) to monitor pallid sturgeon and the fish community of the Missouri River. The power analysis of PSPAP presented here was conducted to guide sampling design and effort decisions. The PSPAP sampling design has a nested structure with multiple gear subsamples within a river bend. Power analyses were based on a normal linear mixed model, using a mixed cell means approach, with variance estimates from the original data. It was found that, at current effort levels, at least 20 years for pallid and 10 years for shovelnose sturgeon is needed to detect a 5% annual decline. Modified bootstrap simulations suggest power estimates from the original data are conservative due to excessive zero fish counts. In general, the approach presented is applicable to a wide array of animal monitoring programs.

  13. Population and osmoregulatory responses of a euryhaline fish to extreme salinity fluctuations in coastal lagoons of the Coorong, Australia

    NASA Astrophysics Data System (ADS)

    Wedderburn, Scotte D.; Bailey, Colin P.; Delean, Steven; Paton, David C.

    2016-01-01

    River flows and salinity are key factors structuring fish assemblages in estuaries. The osmoregulatory ability of a fish determines its capacity to tolerate rising salt levels when dispersal is unfeasible. Estuarine fishes can tolerate minor fluctuations in salinity, but a relatively small number of species in a few families can inhabit extreme hypersaline waters. The Murray-Darling Basin drains an extensive area of south-eastern Australia and river flows end at the mouth of the River Murray. The system is characterized by erratic rainfall and highly variable flows which have been reduced by intensive river regulation and water extraction. The Coorong is a coastal lagoon system extending some 110 km south-eastwards from the mouth. It is an inverted estuary with a salinity gradient that typically ranges from estuarine to triple that of sea water. Hypersalinity in the southern region suits a select suite of biota, including the smallmouth hardyhead Atherinosoma microstoma - a small-bodied, euryhaline fish with an annual life cycle. The population response of A. microstoma in the Coorong was examined during a period of considerable hydrological variation and extreme salinity fluctuations (2001-2014), and the findings were related to its osmoregulatory ability. Most notably, the species was extirpated from over 50% of its range during four continuous years without river flows when salinities exceeded 120 (2007-2010). These salinities exceeded the osmoregulatory ability of A. microstoma. Substantial river flows that reached the Coorong in late 2010 and continued into 2011 led salinities to fall below 100 throughout the Coorong by January 2012. Subsequently, A. microstoma recovered to its former range by January 2012. The findings show that the consequences of prolonged periods of insufficient river flows to temperate inverted estuaries will include substantial declines in the range of highly euryhaline fishes, which also may have wider ecological consequences.

  14. Atlantic wolf-fish Anarhichas lupus population diversity: growth and maturation.

    PubMed

    Gunnarsson, Á

    2014-02-01

    Biological data from 1125 female Atlantic wolf-fish Anarhichas lupus were collected during 2002-2006 at their main spawning and fishing grounds in Iceland. The results demonstrated substantial annual variation in growth and maturity of female A. lupus. The fast growing females mature earlier than the slow growing ones. In addition, females mature at a larger size and greater age in warmer temperatures than colder ones. There was a strong negative relationship between temperature and growth, which may indicate that the sea temperature west of Iceland has risen above the optimum for growth of female A. lupus and thereby reduced the reproductive potential of the species.

  15. How Nemo finds home: the neuroecology of dispersal and of population connectivity in larvae of marine fishes.

    PubMed

    Leis, Jeffrey M; Siebeck, Ulrike; Dixson, Danielle L

    2011-11-01

    Nearly all demersal teleost marine fishes have pelagic larval stages lasting from several days to several weeks, during which time they are subject to dispersal. Fish larvae have considerable swimming abilities, and swim in an oriented manner in the sea. Thus, they can influence their dispersal and thereby, the connectivity of their populations. However, the sensory cues marine fish larvae use for orientation in the pelagic environment remain unclear. We review current understanding of these cues and how sensory abilities of larvae develop and are used to achieve orientation with particular emphasis on coral-reef fishes. The use of sound is best understood; it travels well underwater with little attenuation, and is current-independent but location-dependent, so species that primarily utilize sound for orientation will have location-dependent orientation. Larvae of many species and families can hear over a range of ~100-1000 Hz, and can distinguish among sounds. They can localize sources of sounds, but the means by which they do so is unclear. Larvae can hear during much of their pelagic larval phase, and ontogenetically, hearing sensitivity, and frequency range improve dramatically. Species differ in sensitivity to sound and in the rate of improvement in hearing during ontogeny. Due to large differences among-species within families, no significant differences in hearing sensitivity among families have been identified. Thus, distances over which larvae can detect a given sound vary among species and greatly increase ontogenetically. Olfactory cues are current-dependent and location-dependent, so species that primarily utilize olfactory cues will have location-dependent orientation, but must be able to swim upstream to locate sources of odor. Larvae can detect odors (e.g., predators, conspecifics), during most of their pelagic phase, and at least on small scales, can localize sources of odors in shallow water, although whether they can do this in pelagic

  16. On the maintenance of genetic variation and adaptation to environmental change: considerations from population genomics in fishes.

    PubMed

    Bernatchez, L

    2016-12-01

    The first goal of this paper was to overview modern approaches to local adaptation, with a focus on the use of population genomics data to detect signals of natural selection in fishes. Several mechanisms are discussed that may enhance the maintenance of genetic variation and evolutionary potential, which have been overlooked and should be considered in future theoretical development and predictive models: the prevalence of soft sweeps, polygenic basis of adaptation, balancing selection and transient polymorphisms, parallel evolution, as well as epigenetic variation. Research on fish population genomics has provided ample evidence for local adaptation at the genome level. Pervasive adaptive evolution, however, seems to almost never involve the fixation of beneficial alleles. Instead, adaptation apparently proceeds most commonly by soft sweeps entailing shifts in frequencies of alleles being shared between differentially adapted populations. One obvious factor contributing to the maintenance of standing genetic variation in the face of selective pressures is that adaptive phenotypic traits are most often highly polygenic, and consequently the response to selection should derive mostly from allelic co-variances among causative loci rather than pronounced allele frequency changes. Balancing selection in its various forms may also play an important role in maintaining adaptive genetic variation and the evolutionary potential of species to cope with environmental change. A large body of literature on fishes also shows that repeated evolution of adaptive phenotypes is a ubiquitous evolutionary phenomenon that seems to occur most often via different genetic solutions, further adding to the potential options of species to cope with a changing environment. Moreover, a paradox is emerging from recent fish studies whereby populations of highly reduced effective population sizes and impoverished genetic diversity can apparently retain their adaptive potential in some

  17. Drought survival is a threshold function of habitat size and population density in a fish metapopulation.

    PubMed

    White, Richard S A; McHugh, Peter A; McIntosh, Angus R

    2016-10-01

    Because smaller habitats dry more frequently and severely during droughts, habitat size is likely a key driver of survival in populations during climate change and associated increased extreme drought frequency. Here, we show that survival in populations during droughts is a threshold function of habitat size driven by an interaction with population density in metapopulations of the forest pool dwelling fish, Neochanna apoda. A mark-recapture study involving 830 N. apoda individuals during a one-in-seventy-year extreme drought revealed that survival during droughts was high for populations occupying pools deeper than 139 mm, but declined steeply in shallower pools. This threshold was caused by an interaction between increasing population density and drought magnitude associated with decreasing habitat size, which acted synergistically to increase physiological stress and mortality. This confirmed two long-held hypotheses, firstly concerning the interactive role of population density and physiological stress, herein driven by habitat size, and secondly, the occurrence of drought survival thresholds. Our results demonstrate how survival in populations during droughts will depend strongly on habitat size and highlight that minimum habitat size thresholds will likely be required to maximize survival as the frequency and intensity of droughts are projected to increase as a result of global climate change. © 2016 John Wiley & Sons Ltd.

  18. Application of Biochemical and Physiological Indicators for Assessing Recovery of Fish Populations in a Disturbed Stream

    SciTech Connect

    Adams, S. M.; Ham, Kenneth D.

    2011-06-01

    Recovery dynamics in a previously disturbed streamwere investigated to determine the influence of a series of remedial actions on stream recovery and to evaluate the potential application of bioindicators as an environmental management tool. A suite of bioindicators, representing five different functional response groups, were measured annually for a sentinel fish species over a 15 year period during which a variety of remedial and pollution abatement actions were implemented. Trends in biochemical, physiological, condition, growth, bioenergetic, and nutritional responses demonstrated that the health status of a sentinel fish species in the disturbed stream approached that of fish in the reference stream by the end of the study. Two major remedial actions, dechlorination and water flow management, had large effects on stream recovery resulting in an improvement in the bioenergetic, disease, nutritional, and organ condition status of the sentinel fish species. A subset of bioindicators responded rather dramatically to temporal trends affecting all sites, but some indicators showed little response to disturbance or to restoration activities. In assessing recovery of aquatic systems, application of appropriate integrative structural indices along with a variety of sensitive functional bioindicators should be used to understand the mechanistic basis of stress and recovery and to reduce the risk of false positives. Understanding the mechanistic processes involved between stressors, stress responses of biota, and the recovery dynamics of aquatic systems reduces the uncertainty involved in environmental management and regulatory decisions resulting in an increased ability to predict the consequences of restoration and remedial actions for aquatic systems.

  19. RETINOID METABOLISM IN FISH EMBRYOS FROM SENSITIVE AND RESISTANT POPULATIONS EXPOSED TO DIOXIN-LIKE COMPOUNDS

    EPA Science Inventory

    Early developmental stages of fish are extremely sensitive to a class of toxic and persistent environmental contaminants known as dioxin-like compounds (DLCs). Most of the toxicological actions of DLCs are mediated via the Aryl hydrocarbon Receptor (AhR) that regulates transcript...

  20. Past and present aquatic habitats and fish populations of the Yazoo-Mississippi Delta

    Treesearch

    M.D. Bryant

    2010-01-01

    The goal of this review and synthesis of the literature, published and unpublished, is to describe the major processes that shape and influence the aquatic habitats and fish communities in the Yazoo-Mississippi Delta (YMD) and to outline a program of research. The YMD is influenced by the large geographic and temporal scales of the Mississippi River watershed. It...

  1. Effects of hydrologic infrastructure on flow regimes of California's Central Valley rivers: Implications for fish populations

    USGS Publications Warehouse

    Brown, Larry R.; Bauer, Marissa L.

    2010-01-01

    Alteration of natural flow regimes is generally acknowledged to have negative effects on native biota; however, methods for defining ecologically appropriate flow regimes in managed river systems are only beginning to be developed. Understanding how past and present water management has affected rivers is an important part of developing such tools. In this paper, we evaluate how existing hydrologic infrastructure and management affect streamflow characteristics of rivers in the Central Valley, California and discuss those characteristics in the context of habitat requirements of native and alien fishes. We evaluated the effects of water management by comparing observed discharges with estimated discharges assuming no water management ("full natural runoff"). Rivers in the Sacramento River drainage were characterized by reduced winter–spring discharges and augmented discharges in other months. Rivers in the San Joaquin River drainage were characterized by reduced discharges in all months but particularly in winter and spring. Two largely unaltered streams had hydrographs similar to those based on full natural runoff of the regulated rivers. The reduced discharges in the San Joaquin River drainage streams are favourable for spawning of many alien species, which is consistent with observed patterns of fish distribution and abundance in the Central Valley. However, other factors, such as water temperature, are also important to the relative success of native and alien resident fishes. As water management changes in response to climate change and societal demands, interdisciplinary programs of research and monitoring will be essential for anticipating effects on fishes and to avoid unanticipated ecological outcomes.

  2. Mercury concentrations in lentic fish populations related to ecosystem and watershed characteristics

    Treesearch

    Andrew L. Rypel

    2010-01-01

    Predicting mercury (Hg) concentrations of fishes at large spatial scales is a fundamental environmental challenge with the potential to improve human health. In this study, mercury concentrations were examined for five species across 161 lakes and ecosystem, and watershed parameters were investigated as explanatory variables in statistical models. For all species, Hg...

  3. Application of Biochemical and Physiological Indicators for Assessing Recovery of Fish Populations in a Disturbed Stream

    SciTech Connect

    Adams, Marshall; Ham, Kenneth

    2011-01-01

    Recovery dynamics in a previously disturbed streamwere investigated to determine the influence of a series of remedial actions on stream recovery and to evaluate the potential application of bioindicators as an environmental management tool. A suite of bioindicators, representing five different functional response groups, were measured annually for a sentinel fish species over a 15 year period during which a variety of remedial and pollution abatement actions were implemented. Trends in biochemical, physiological, condition, growth, bioenergetic, and nutritional responses demonstrated that the health status of a sentinel fish species in the disturbed stream approached that of fish in the reference stream by the end of the study. Two major remedial actions, dechlorination and water flow management, had large effects on stream recovery resulting in an improvement in the bioenergetic, disease, nutritional, and organ condition status of the sentinel fish species. A subset of bioindicators responded rather dramatically to temporal trends affecting all sites, but some indicators showed little response to disturbance or to restoration activities. In assessing recovery of aquatic systems, application of appropriate integrative structural indices along with a variety of sensitive functional bioindicators should be used to understand the mechanistic basis of stress and recovery and to reduce the risk of false positives. Understanding the mechanistic processes involved between stressors, stress responses of biota, and the recovery dynamics of aquatic systems reduces the uncertainty involved in environmental management and regulatory decisions resulting in an increased ability to predict the consequences of restoration and remedial actions for aquatic systems.

  4. RETINOID METABOLISM IN FISH EMBRYOS FROM SENSITIVE AND RESISTANT POPULATIONS EXPOSED TO DIOXIN-LIKE COMPOUNDS

    EPA Science Inventory

    Early developmental stages of fish are extremely sensitive to a class of toxic and persistent environmental contaminants known as dioxin-like compounds (DLCs). Most of the toxicological actions of DLCs are mediated via the Aryl hydrocarbon Receptor (AhR) that regulates transcript...

  5. HISTOPATHOLOGIC BIOMARKERS IN FERAL FRESHWATER FISH POPULATIONS EXPOSED TO DIFFERENT TYPES OF CONTAMINANT STRESS. (R825433)

    EPA Science Inventory

    Histopathologic alterations of gill, liver, and spleen were studied in feral fish from three freshwater ecosystems that experience different types of contaminant stress. East Fork Poplar Creek (EFPC), a third-order stream in East Tennessee, receives point source discharges of ...

  6. HISTOPATHOLOGIC BIOMARKERS IN FERAL FRESHWATER FISH POPULATIONS EXPOSED TO DIFFERENT TYPES OF CONTAMINANT STRESS. (R825433)

    EPA Science Inventory

    Histopathologic alterations of gill, liver, and spleen were studied in feral fish from three freshwater ecosystems that experience different types of contaminant stress. East Fork Poplar Creek (EFPC), a third-order stream in East Tennessee, receives point source discharges of ...

  7. Restoring piscivorous fish populations in the Laurentian Great Lakes causes seabird dietary change

    USGS Publications Warehouse

    Hebert, C.E.; Weseloh, D.V.C.; Idrissi, A.; Arts, M.T.; O'Gorman, R.; Gorman, O.T.; Locke, B.; Madenjian, C.P.; Roseman, E.F.

    2008-01-01

    Ecosystem change often affects the structure of aquatic communities thereby regulating how much and by what pathways energy and critical nutrients flow through food webs. The availability of energy and essential nutrients to top predators such as seabirds that rely on resources near the water's surface will be affected by changes in pelagic prey abundance. Here, we present results from analysis of a 25-year data set documenting dietary change in a predatory seabird from the Laurentian Great Lakes. We reveal significant declines in trophic position and alterations in energy and nutrient flow over time. Temporal changes in seabird diet tracked decreases in pelagic prey fish abundance. As pelagic prey abundance declined, birds consumed less aquatic prey and more terrestrial food. This pattern was consistent across all five large lake ecosystems. Declines in prey fish abundance may have primarily been the result of predation by stocked piscivorous fishes, but other lake-specific factors were likely also important. Natural resource management activities can have unintended consequences for nontarget ecosystem components. Reductions in pelagic prey abundance have reduced the capacity of the Great Lakes to support the energetic requirements of surface-feeding seabirds. In an environment characterized by increasingly limited pelagic fish resources, they are being offered a Hobsonian choice: switch to less nutritious terrestrial prey or go hungry. ?? 2008 by the Ecological Society of America.

  8. Assessing Changes in Amphibian Population Dynamics Following Experimental Manipulations of Introduced Fish

    Treesearch

    Karen L. Pope

    2008-01-01

    Sport-fish introductions are now recognized as an important cause of amphibian decline, but few researchers have quantified the demographic responses of amphibians to current options in fisheries management designed to minimize effects on sensitive amphibians. Demographic analyses with mark–recapture data allow researchers to assess the relative importance of...

  9. Topographic and Genetic Markers of Landscape Change: Landslides and Isolated Fish Populations Demarcating Basin-wide Erosional Waves Above the Cascadia Subduction Zone

    NASA Astrophysics Data System (ADS)

    Lyons, N. J.; Wegmann, K. W.; Raley, M.

    2013-12-01

    A cascade of geomorphic and biotic responses to river incision can be modulated by glacial-interglacial cycles. Prior investigations have revealed the complex fluvial responses to climate and tectonic uplift above the Cascadia margin. Reduced sediment supply or increased stream discharge during interglacials is responsible for incision and preservation of terraces, whose basal strath unconformities were formed during glacial periods. A river incision record is provided by a flight of well-preserved stream terraces in the Clearwater River basin of the Olympic Mountains. Using numerical modeling and field observations, we will present analyses of stream topography and geometry, knickpoint location and age, and landslide frequency to assess hillslope and stream coupling in response to millennium-scale stream incision in the Clearwater River basin. We hypothesize that incision into a late Pleistocene terrace initiated a wave of erosion that is now expressed as increased landslide frequency on hillslopes, and as knickpoints on streams. Hillslopes are steepened to critical landslide thresholds as the erosional wave propagates through the basin. Aerial photographs and landslide inventories reveal that landslide scars cluster along the lower hillslopes below a network of stream knickpoints present in many Clearwater tributaries. Also within the premise of this hypothesis, aquatic organisms would become isolated above knickpoints once waterfalls reach an impassable height. Knickpoints then block upstream passage of fish, which instigates genetic drift and decreases population genetic variation. Introduction of alleles--alternative forms of a gene--to fish populations upstream of knickpoints is then limited to mutations, which along with the genetic mutation rate of a species, operates as a 'molecular clock' that records the time since knickpoint formation. We collected and analyzed DNA from Cutthroat trout (Oncorhynchus clarkii) specimens above knickpoints to assess the

  10. Population synchrony of a native fish across three Laurentian Great Lakes: Evaluating the effects of dispersal and climate

    USGS Publications Warehouse

    Bunnell, D.B.; Adams, J.V.; Gorman, O.T.; Madenjian, C.P.; Riley, S.C.; Roseman, E.F.; Schaeffer, J.S.

    2010-01-01

    Climate and dispersal are the two most commonly cited mechanisms to explain spatial synchrony among time series of animal populations, and climate is typically most important for fishes. Using data from 1978-2006, we quantified the spatial synchrony in recruitment and population catch-per-unit-effort (CPUE) for bloater (Coregonus hoyi) populations across lakes Superior, Michigan, and Huron. In this natural field experiment, climate was highly synchronous across lakes but the likelihood of dispersal between lakes differed. When data from all lakes were pooled, modified correlograms revealed spatial synchrony to occur up to 800 km for long-term (data not detrended) trends and up to 600 km for short-term (data detrended by the annual rate of change) trends. This large spatial synchrony more than doubles the scale previously observed in freshwater fish populations, and exceeds the scale found in most marine or estuarine populations. When analyzing the data separately for within- and between-lake pairs, spatial synchrony was always observed within lakes, up to 400 or 600 km. Conversely, between-lake synchrony did not occur among short-term trends, and for long-term trends, the scale of synchrony was highly variable. For recruit CPUE, synchrony occurred up to 600 km between both lakes Michigan and Huron (where dispersal was most likely) and lakes Michigan and Superior (where dispersal was least likely), but failed to occur between lakes Huron and Superior (where dispersal likelihood was intermediate). When considering the scale of putative bloater dispersal and genetic information from previous studies, we concluded that dispersal was likely underlying within-lake synchrony but climate was more likely underlying between-lake synchrony. The broad scale of synchrony in Great Lakes bloater populations increases their probability of extirpation, a timely message for fishery managers given current low levels of bloater abundance. ?? Springer-Verlag 2009.

  11. Fine-scale population dynamics in a marine fish species inferred from dynamic state-space models.

    PubMed

    Rogers, Lauren A; Storvik, Geir O; Knutsen, Halvor; Olsen, Esben M; Stenseth, Nils C

    2017-07-01

    Identifying the spatial scale of population structuring is critical for the conservation of natural populations and for drawing accurate ecological inferences. However, population studies often use spatially aggregated data to draw inferences about population trends and drivers, potentially masking ecologically relevant population sub-structure and dynamics. The goals of this study were to investigate how population dynamics models with and without spatial structure affect inferences on population trends and the identification of intrinsic drivers of population dynamics (e.g. density dependence). Specifically, we developed dynamic, age-structured, state-space models to test different hypotheses regarding the spatial structure of a population complex of coastal Atlantic cod (Gadus morhua). Data were from a 93-year survey of juvenile (age 0 and 1) cod sampled along >200 km of the Norwegian Skagerrak coast. We compared two models: one which assumes all sampled cod belong to one larger population, and a second which assumes that each fjord contains a unique population with locally determined dynamics. Using the best supported model, we then reconstructed the historical spatial and temporal dynamics of Skagerrak coastal cod. Cross-validation showed that the spatially structured model with local dynamics had better predictive ability. Furthermore, posterior predictive checks showed that a model which assumes one homogeneous population failed to capture the spatial correlation pattern present in the survey data. The spatially structured model indicated that population trends differed markedly among fjords, as did estimates of population parameters including density-dependent survival. Recent biomass was estimated to be at a near-record low all along the coast, but the finer scale model indicated that the decline occurred at different times in different regions. Warm temperatures were associated with poor recruitment, but local changes in habitat and fishing pressure may

  12. Little Polymorphism at the K13 Propeller Locus in Worldwide Plasmodium falciparum Populations Prior to the Introduction of Artemisinin Combination Therapies

    PubMed Central

    Culleton, Richard; Takahashi, Nobuyuki; Nakamura, Masatoshi; Tsukahara, Takahiro; Hunja, Carol W.; Win, Zin Zayar; Htike, Wah Win; Marma, Aung S.; Dysoley, Lek; Ndounga, Mathieu; Dzodzomenyo, Mawuli; Akhwale, Willis S.; Kobayashi, Jun; Uemura, Haruki; Kaneko, Akira; Hombhanje, Francis; Ferreira, Marcelo U.; Björkman, Anders; Endo, Hiroyoshi; Ohashi, Jun

    2016-01-01

    The emergence and spread of artemisinin-resistant Plasmodium falciparum is of huge concern for the global effort toward malaria control and elimination. Artemisinin resistance, defined as a delayed time to parasite clearance following administration of artemisinin, is associated with mutations in the Pfkelch13 gene of resistant parasites. To date, as many as 60 nonsynonymous mutations have been identified in this gene, but whether these mutations have been selected by artemisinin usage or merely reflect natural polymorphism independent of selection is currently unknown. To clarify this, we sequenced the Pfkelch13 propeller domain in 581 isolates collected before (420 isolates) and after (161 isolates) the implementation of artemisinin combination therapies (ACTs), from various regions of endemicity worldwide. Nonsynonymous mutations were observed in 1% of parasites isolated prior to the introduction of ACTs. Frequencies of mutant isolates, nucleotide diversity, and haplotype diversity were significantly higher in the parasites isolated from populations exposed to artemisinin than in those from populations that had not been exposed to the drug. In the artemisinin-exposed population, a significant excess of dN compared to dS was observed, suggesting the presence of positive selection. In contrast, pairwise comparison of dN and dS and the McDonald and Kreitman test indicate that purifying selection acts on the Pfkelch13 propeller domain in populations not exposed to ACTs. These population genetic analyses reveal a low baseline of Pfkelch13 polymorphism, probably due to purifying selection in the absence of artemisinin selection. In contrast, various Pfkelch13 mutations have been selected under artemisinin pressure. PMID:27001814

  13. Is there enough zooplankton to feed forage fish populations off Peru? An acoustic (positive) answer

    NASA Astrophysics Data System (ADS)

    Ballón, Michael; Bertrand, Arnaud; Lebourges-Dhaussy, Anne; Gutiérrez, Mariano; Ayón, Patricia; Grados, Daniel; Gerlotto, François

    2011-12-01

    The Northern Humboldt Current system (NHCS) produces more fish per unit area than any other region in the world. Although the system produces enough macrozooplankton to sustain its high production of forage fish, the paucity of information on macrozooplankton hampers research into the system. In this study, we estimated the biomass of the epipelagic crustacean macrozooplankton from the NHCS during both austral summer and spring 2005. To do this, we developed a bi-frequency acoustic method and extracted high-resolution information on the biomass and the patterns of distribution of crustacean macrozooplankton, fish and other marine compartments. We found that, although macrozooplankton comprises a number of distinct organisms, the euphausiids were the zooplankton group that better fitted the patterns from independent net sampling zooplankton data. Also, the similarities between the nocturnal patterns of size and biomass macrozooplankton distribution from this study and the known patterns of euphausiids, in particular Euphausia mucronata, suggest that euphausiids were the main constituent of the estimated nocturnal acoustic macrozooplankton biomass even if other organisms such as large copepods may have contributed considerably to the macrozooplankton biomass. The total macrozooplankton biomass was estimated to about 105 g m -2, i.e., two to five times more than previous estimates. This direct biomass estimation of macrozooplankton is in agreement with the new findings in trophic ecology indicating that forage fish consume mainly macrozooplankton. This high biomass also supports the current hypotheses explaining the NHCS high fish production. Using the method, we are able to revisit present-day and historical acoustic databases and extract high-resolution data on macrozooplankton, a key ecological compartment of the ecosystem. Since zooplankton is the link between the physically driven primary producers and the biologically driven tertiary consumers, this information

  14. Population size, habitat fragmentation, and the nature of adaptive variation in a stream fish.

    PubMed

    Fraser, Dylan J; Debes, Paul V; Bernatchez, Louis; Hutchings, Jeffrey A

    2014-09-07

    Whether and how habitat fragmentation and population size jointly affect adaptive genetic variation and adaptive population differentiation are largely unexplored. Owing to pronounced genetic drift, small, fragmented populations are thought to exhibit reduced adaptive genetic variation relative to large populations. Yet fragmentation is known to increase variability within and among habitats as population size decreases. Such variability might instead favour the maintenance of adaptive polymorphisms and/or generate more variability in adaptive differentiation at smaller population size. We investigated these alternative hypotheses by analysing coding-gene, single-nucleotide polymorphisms associated with different biological functions in fragmented brook trout populations of variable sizes. Putative adaptive differentiation was greater between small and large populations or among small populations than among large populations. These trends were stronger for genetic population size measures than demographic ones and were present despite pronounced drift in small populations. Our results suggest that fragmentation affects natural selection and that the changes elicited in the adaptive genetic composition and differentiation of fragmented populations vary with population size. By generating more variable evolutionary responses, the alteration of selective pressures during habitat fragmentation may affect future population persistence independently of, and perhaps long before, the effects of demographic and genetic stochasticity are manifest. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  15. Peripatric differentiation among adjacent marine lake and lagoon populations of a coastal fish, Sphaeramia orbicularis (Apogonidae, Perciformes, Teleostei).

    PubMed

    Gotoh, Ryo O; Sekimoto, Hidekatsu; Chiba, Satoru N; Hanzawa, Naoto

    2009-08-01

    The effect of geographical isolation on speciation, particularly within short geographical ranges, is poorly understood among marine organisms. Focusing on marine lakes of the Palau Islands, we investigated the effect of geographical isolation on Sphaeramia orbicularis, a coastal fish inhabiting marine lakes and lagoons. We collected a total of 157 individuals from three meromictic marine lakes and three lagoon sites, and analyzed the genetic diversity and differentiation of the populations based on complete sequences of the mitochondrial control region (824 bp). The analyses show that the genetic diversity of marine lake populations is much lower than that of lagoon populations. Moreover, a mismatch distribution analysis suggests that marine lake populations have experienced a decrease followed by a rapid expansion of their population size. These results reveal that marine lake populations have experienced severe founder and/or bottleneck events during the last thousand to tens of thousand years. Pairwise Phi(ST )values ranged from 0.531 to 0.848 between marine lake and lagoon populations and from 0.429 to 0.870 among marine lake populations, indicating a high degree of genetic differentiation. We speculate that such peripatric differentiation between marine lake and lagoon populations was caused by a small number of individuals colonizing the lakes from the lagoon (founder event) followed by repetitive bottleneck events, such as those generated by the El Niño-Southern Oscillation (ENSO). So far, such high genetic divergences in extremely short geographical ranges (approximately 150-250 m) have scarcely been reported for marine organisms. We suggest that the marine lake is one of the good model of geographical isolation in marine organisms and each marine lake population is in the early stages of speciation.

  16. Increased Extinction Potential of Insular Fish Populations with Reduced Life History Variation and Low Genetic Diversity

    PubMed Central

    Hellmair, Michael; Kinziger, Andrew P.

    2014-01-01

    Theoretical work has shown that reduced phenotypic heterogeneity leads to population instability and can increase extinction potential, yet few examples exist of natural populations that illustrate how varying levels expressed diversity may influence population persistence, particularly during periods of stochastic environmental fluctuation. In this study, we assess levels of expressed variation and genetic diversity among demographically independent populations of tidewater goby (Eucyclogobius newberryi), show that reductions in both factors typically coincide, and describe how low levels of diversity contribute to the extinction risk of these isolated populations. We illustrate that, for this annual species, continuous reproduction is a safeguard against reproductive failure by any one population segment, as natural, stochastically driven salinity increases frequently result in high mortality among juvenile individuals. Several study populations deviated from the natural pattern of year-round reproduction typical for the species, rendering those with severely truncated reproductive periods vulnerable to extinction in the event of environmental fluctuation. In contrast, demographically diverse populations are more likely to persist through such periods through the continuous presence of adults with broader physiological tolerance to abrupt salinity changes. Notably, we found a significant correlation between genetic diversity and demographic variation in the study populations, which could be the result of population stressors that restrict both of these diversity measures simultaneously, or suggestive of a causative relationship between these population characteristics. These findings demonstrate the importance of biocomplexity at the population level, and assert that the maintenance of diversity contributes to population resilience and conservation of this endangered species. PMID:25409501

  17. Thermal and maternal environments shape the value of early hatching in a natural population of a strongly cannibalistic freshwater fish.

    PubMed

    Pagel, Thilo; Bekkevold, Dorte; Pohlmeier, Stefan; Wolter, Christian; Arlinghaus, Robert

    2015-08-01

    Hatching early in the season is often assumed to elevate fitness, particularly in cannibalistic fish in which size-dependent predation mortality is a major selective force. While the importance of the thermal environment for the growth of fish is undisputed, the relevance of maternal effects for offspring growth in the wild is largely unknown. Otoliths of 366 age-0 pike (Esox lucius L.) were sampled in a natural lake over three seasons. All offspring were assigned to more than 330 potential mothers using 16 informative microsatellites. We found temperature and past maternal environment (as represented by juvenile growth rate), but not female total length, to jointly contribute to explain within- and among-season size variation in juvenile pike. While there was no statistical evidence for maternal effects on offspring growth rate, fast female juvenile growth positively correlated with the offspring length in early summer. One mechanism could be related to fast-growing females spawning somewhat earlier in the season. However, the more likely mechanism emerging in our study was that fast-growing females could have been in better condition prior to spawning, in turn possibly producing higher numbers of high-quality eggs. Our study is among the few to reveal carry-over effects related to past maternal environments on offspring performance in a naturally reproducing fish stock. At the same time, our study underscores recent arguments that size-dependent maternal effects may not be expressed in the wild and that early hatching does not generally produce size advantages in light of stochastically varying temperature conditions.

  18. DEVELOPMENT OF A DNA ARCHIVE FOR GENETIC MONITORING OF FISH POPULATIONS

    EPA Science Inventory

    Analysis of intraspecific genetic diversity provides a potentially powerful tool to estimate the impacts of environmental stressors on populations. Genetic responses of populations to novel stressors include dramatic shifts in genotype frequencies at loci under selection (i.e. ad...

  19. FINE-SCALE GENETIC DIFFERENTIATION BETWEEN CONTAMINANT-TOLERANT AND CONTAMINANT SENSITIVE FISH POPULATIONS

    EPA Science Inventory

    Studies have suggested that environmental contaminants can act as selective forces on exposed populations of wildlife species. Chronically exposed populations have shown reduced genetic diversity and/or demonstrated other genetic changes. We evaluated the genetic structure of pop...

  20. INDIVIDUAL EFFECTS OF THREE STEROIDAL ESTROGENS ON A FISH EXTRAPOLATED TO THE POPULATION LEVEL

    EPA Science Inventory

    Endocrine disrupting chemicals (EDCs) in the environment may disturb the population dynamics of wildlife by affecting reproductive output and early life survival of organisms. This study used a population model and data obtained from laboratory experimentation and the literature ...

  1. FINE-SCALE GENETIC DIFFERENTIATION BETWEEN CONTAMINANT-TOLERANT AND CONTAMINANT SENSITIVE FISH POPULATIONS

    EPA Science Inventory

    Studies have suggested that environmental contaminants can act as selective forces on exposed populations of wildlife species. Chronically exposed populations have shown reduced genetic diversity and/or demonstrated other genetic changes. We evaluated the genetic structure of pop...

  2. DEVELOPMENT OF A DNA ARCHIVE FOR GENETIC MONITORING OF FISH POPULATIONS

    EPA Science Inventory

    Analysis of intraspecific genetic diversity provides a potentially powerful tool to estimate the impacts of environmental stressors on populations. Genetic responses of populations to novel stressors include dramatic shifts in genotype frequencies at loci under selection (i.e. ad...

  3. Relationship between mercury levels in hair and fish consumption in a population living near a hydroelectric tropical dam.

    PubMed

    Marrugo-Negrete, José Luis; Ruiz-Guzmán, Javier Alonso; Díez, Sergi

    2013-02-01

    In the present study, total mercury (T-Hg) concentrations were assessed in human hair samples (n = 76) and fish muscle (n = 33) collected at Urrá dam, upstream Sinú river, northwestern Colombia. Based on interviews with study participants, weekly intakes of total mercury (WIT-Hg) and methylmercury (WIMeHg) by fish consumption were also estimated. T-Hg concentrations in hair samples ranged from 0.40 to 24.56 μg/g dw. The highest concentrations were recorded in children (CH) (2-15 years old, n = 24) with significant differences (p < 0.05) with respect to women of childbearing age (WCHA) (16-49 years old, n = 29) and the rest of the population (RP) (n = 23), which were not significantly different. The highest T-Hg concentrations in muscle tissue were recorded in the carnivorous fish (0.65-2.25 μg/g wet weight, ww), with significant differences (p < 0.05) compared to non-carnivorous fish (0.16-0.54 μg/g ww). WIT-Hg recorded the highest values in CH (2.18-50.41 μg/kg/week), with significant differences (p < 0.05) with respect to WCHA (2.02-23.54 μg/kg/week) and RP (1.09-24.71 μg/kg/week), which were not significantly different. Correlation analysis showed a significant relationship between weekly fish consumption and hair T-Hg in CH (r = 0.37, p < 0.05) and WCHA (r = 0.44, p < 0.05). This association was also observed with the number of days per week with fish consumption in CH (r = 0.37, p < 0.05) and WCHA (r = 0.45, p < 0.05). These results suggest that Hg exposure in people inhabiting the Urrá dam should be carefully monitored, particularly in vulnerable groups such as CH and WCHA.

  4. Evaluation and management implications of uncertainty in a multispecies size-structured model of population and community responses to fishing.

    PubMed

    Thorpe, Robert B; Le Quesne, Will J F; Luxford, Fay; Collie, Jeremy S; Jennings, Simon

    2015-01-01

    Implementation of an ecosystem approach to fisheries requires advice on trade-offs among fished species and between fisheries yields and biodiversity or food web properties. However, the lack of explicit representation, analysis and consideration of uncertainty in most multispecies models has limited their application in analyses that could support management advice.We assessed the consequences of parameter uncertainty by developing 78 125 multispecies size-structured fish community models, with all combinations of parameters drawn from ranges that spanned parameter values estimated from data and literature. This unfiltered ensemble was reduced to 188 plausible models, the filtered ensemble (FE), by screening outputs against fish abundance data and ecological principles such as requiring species' persistence.Effects of parameter uncertainty on estimates of single-species management reference points for fishing mortality (FMSY, fishing mortality rate providing MSY, the maximum sustainable yield) and biomass (BMSY, biomass at MSY) were evaluated by calculating probability distributions of estimated reference points with the FE. There was a 50% probability that multispecies FMSY could be estimated to within ±25% of its actual value, and a 50% probability that BMSY could be estimated to within ±40% of its actual value.Signal-to-noise ratio was assessed for four community indicators when mortality rates were reduced from current rates to FMSY. The slope of the community size spectrum showed the greatest signal-to-noise ratio, indicating that it would be the most responsive indicator to the change in fishing mortality F. Further, the power of an ongoing international monitoring survey to detect predicted responses of size spectrum slope was higher than for other size-based metrics.Synthesis and applications: Application of the ensemble model approach allows explicit representation of parameter uncertainty and supports advice and management by (i) providing uncertainty

  5. Elucidating dynamic responses of North Pacific fish populations to climatic forcing: Influence of life-history strategy

    NASA Astrophysics Data System (ADS)

    Yatsu, A.; Aydin, K. Y.; King, J. R.; McFarlane, G. A.; Chiba, S.; Tadokoro, K.; Kaeriyama, M.; Watanabe, Y.

    2008-05-01

    In order to explore mechanistic linkages between low-frequency ocean/climate variability, and fish population responses, we undertook comparative studies of time-series of recruitment-related productivity and the biomass levels of fish stocks representing five life-history strategies in the northern North Pacific between the 1950s and the present. We selected seven species: Japanese sardine ( Sardinopus melanostictus) and California sardine ( Sardinopus sagax) (opportunistic strategists), walleye pollock ( Theragra chalcogramma, intermediate strategist), pink salmon ( Oncorhynchus gorbuscha, salmonic strategist), sablefish ( Anoplopoma fimbria) and Pacific halibut ( Hippoglossus stenolepis) (periodic strategists) and spiny dogfish ( Squalus acanthias, equilibrium strategist). The responses in terms of productivity of sardine, pink salmon, sablefish and halibut to climatic regime shifts were generally immediate, delayed, or no substantial responses depending on the particular regime shift year and fish stock (population). In walleye pollock, there were some periods of high productivity and low productivity, but not coincidental to climatic regime shifts, likely due to indirect climate forcing impacts on both bottom-up and top-down processes. Biomass of zooplankton and all fish stocks examined, except for spiny dogfish whose data were limited, indicated a decadal pattern with the most gradual changes in periodic strategists and most intensive and rapid changes in opportunistic strategists. Responses of sardine productivity to regime shifts were the most intense, probably due to the absence of density-dependent effects and the availability of refuges from predators when sardine biomass was extremely low. Spiny dogfish were least affected by environmental variability. Conversely, spiny dogfish are likely to withstand only modest harvest rates due to their very low intrinsic rate of increase. Thus, each life-history strategy type had a unique response to climatic

  6. Mercury concentrations in lentic fish populations related to ecosystem and watershed characteristics.

    PubMed

    Rypel, Andrew L

    2010-02-01

    Predicting mercury (Hg) concentrations of fishes at large spatial scales is a fundamental environmental challenge with the potential to improve human health. In this study, mercury concentrations were examined for five species across 161 lakes and ecosystem, and watershed parameters were investigated as explanatory variables in statistical models. For all species, Hg concentrations were significantly, positively related to wetland coverage. For three species (largemouth bass, pike, and walleye), Hg concentrations were significantly, negatively related to lake trophic state index (TSI), suggestive of growth biodilution. There were no significant relationships between ecosystem size and mercury concentrations. However, Hg concentrations were strongly, positively related to ecosystem size across species. Scores of small or remote lakes that have never been tested could be prioritized for testing using models akin to those presented in this article. Such an approach could also be useful for exploring how Hg concentrations of fishes might respond to natural or anthropogenic changes to ecosystems over time.

  7. Influence of natural acidity and fisheries management activities upon the status of Adirondack fish populations

    SciTech Connect

    Retzsch, W.C.; Everett, A.G.

    1981-01-01

    Acidification and the disappearance of fish from some Adirondack waters does not appear to be caused solely by acid rain. Acidification is a natural process under certain conditions and precipitation acidified by industrial emissions appears to be only one of many possible causes of pond, lake and stream acidification. Factors other than acid precipitation can cause acidification or reduce fish stocks. As a result of glaciation, northern New York State has hundreds of glacial ponds and lakes, most of which are dystrophic or oligotrophic. Many such waters are located in the western and central portions of the Adirondacks, an area frequently cited as exhibiting the most pronounced effects of acid rain. It is widely recognized that natural unpolluted bogs and peat deposits result in low pH environments. Seasonal and weather conditions also appear to have a substantial effect upon the acidity of peat-bog outflows. An evaluation of recent survey data on critically acidified Adirondack waters indicates that of 192 waters with values less than pH 5.0, approximately 61 percent appear to be directly influenced by natural bog conditions and an additional 14 percent are probably influenced. A review of historical and recent survey data suggest that significant factors, such as natural causes of acidification, low oxygen concentrations, high CO/sub 2/ and H/sub 2/S concentrations, and extreme temperatures may have been ignored or underestimated in evaluating the cause of acidification and fish disappearances in some Adirondack waters. Another factor responsible for the current status of fish stocks in the Adirondacks involves past and present fishery resource management activities.

  8. Environmental Assessment: Lake Yankton Fish Population Renovation Project Yankton County, South Dakota and Cedar County, Nebraska

    DTIC Science & Technology

    2014-08-01

    west of Yankton, South Dakota. The project vicinity consists of the grounds surrounding the Gavins Point Dam National Fish Hatchery and Aquarium...Yankton outlet will be measured to determine any ground water influence. A water budget will be developed to determine water input sources and allow...deer, waterfowl, turkey, squirrel , and rabbit. Bald eagles, golden eagles, osprey, owls, and other raptors pass through the Lake Yankton Area and

  9. Prevalence of hepatitis B surface antigen (HBsAg) in a blood donor population born prior to and after implementation of universal HBV vaccination in Shenzhen, China.

    PubMed

    Wang, Zhen; Zeng, Jinfeng; Li, Tingting; Zheng, Xin; Xu, Xiaoxuan; Ye, Xianlin; Lu, Liang; Zhu, Weigang; Yang, Baocheng; Allain, Jean-Pierre; Li, Chengyao

    2016-09-20

    Neonatal hepatitis B vaccination program at birth has been implemented nationwide since 1992 in China. However, current HBV prevalence status in blood donors has not been entirely examined, which may impact HBV safety in blood donations as the vaccinees over 18 years old progressively become the majority population of blood donors. In this study, 569,145 blood donors were screened for HBsAg by rapid tests and enzyme immunoassays, among them 475,538 blood samples with negative HBsAg were further screened for HBV DNA by nucleic acid testing between 2005 and 2014 at Shenzhen blood center. An overall 2.3 % HBsAg prevalence was found in the blood donor population during the past 10 years (2.86 % in 2005, 1.76 % in 2010, and 2.79 % in 2014, respectively). HBsAg seroconversion occurred in 0.37 % of repeat-donors. When stratified by age, the prevalence of HBsAg was found significantly higher in younger donors age 18-25 years (2.73 %) than in those 26-35 years (2.13 %), 36-45 years (2.03 %) and 46-58 years (1.71 %) (P < 0.001), unexpectedly suggesting that younger donors remained at risk of chronic HBV infection. Assuming that donors aged 18-22 born before or after 1992 were non-vaccinated and vaccinated, respectively, HBsAg prevalence was higher in first-time donors born ≥1992 (3.9 %) than prior to 1992 (3.5 %, P = 0.005). The incidence of HBV infection in the 5-year period examined was significantly lower in repeat-donors born ≥1992 (0.27 %) than prior to 1992 (0.6 %, P = 0.008). The yield of HBV DNA+/HBsAg- donors was 1:3,302, including 1:4,486 occult infections and 1:43,231 window period infections. Young blood donors born after implementation of universal HBV vaccination in China presented higher prevalence of HBsAg but lower incidence of HBsAg seroconversion than older, presumed unvaccinated, donors. HBV vaccine boosting for adolescents at 15-17 years old prior to reaching blood donor age might help improve blood safety.

  10. Population size is weakly related to quantitative genetic variation and trait differentiation in a stream fish.

    PubMed

    Wood, Jacquelyn L A; Tezel, Defne; Joyal, Destin; Fraser, Dylan J

    2015-09-01

    How population size influences quantitative genetic variation and differentiation among natural, fragmented populations remains unresolved. Small, isolated populations might occupy poor quality habitats and lose genetic variation more rapidly due to genetic drift than large populations. Genetic drift might furthermore overcome selection as population size decreases. Collectively, this might result in directional changes in additive genetic variation (VA ) and trait differentiation (QST ) from small to large population size. Alternatively, small populations might exhibit larger variation in VA and QST if habitat fragmentation increases variability in habitat types. We explored these alternatives by investigating VA and QST using nine fragmented populations of brook trout varying 50-fold in census size N (179-8416) and 10-fold in effective number of breeders, Nb (18-135). Across 15 traits, no evidence was found for consistent differences in VA and QST with population size and almost no evidence for increased variability of VA or QST estimates at small population size. This suggests that (i) small populations of some species may retain adaptive potential according to commonly adopted quantitative genetic measures and (ii) populations of varying sizes experience a variety of environmental conditions in nature, however extremely large studies are likely required before any firm conclusions can be made. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  11. Multiple regression models of δ13C and δ15N for fish populations in the eastern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Radabaugh, Kara R.; Peebles, Ernst B.

    2014-08-01

    Multiple regression models were created to explain spatial and temporal variation in the δ13C and δ15N values of fish populations on the West Florida Shelf (eastern Gulf of Mexico, USA). Extensive trawl surveys from three time periods were used to acquire muscle samples from seven groundfish species. Isotopic variation (δ13Cvar and δ15Nvar) was calculated as the deviation from the isotopic mean of each fish species. Static spatial data and dynamic water quality parameters were used to create models predicting δ13Cvar and δ15Nvar in three fish species that were caught in the summers of 2009 and 2010. Additional data sets were then used to determine the accuracy of the models for predicting isotopic variation (1) in a different time period (fall 2010) and (2) among four entirely different fish species that were collected during summer 2009. The δ15Nvar model was relatively stable and could be applied to different time periods and species with similar accuracy (mean absolute errors 0.31-0.33‰). The δ13Cvar model had a lower predictive capability and mean absolute errors ranged from 0.42 to 0.48‰. δ15N trends are likely linked to gradients in nitrogen fixation and Mississippi River influence on the West Florida Shelf, while δ13C trends may be linked to changes in algal species, photosynthetic fractionation, and abundance of benthic vs. planktonic basal resources. These models of isotopic variability may be useful for future stable isotope investigations of trophic level, basal resource use, and animal migration on the West Florida Shelf.

  12. A fully-stochasticized, age-structured population model for population viability analysis of fish: Lower Missouri River endangered pallid sturgeon example

    USGS Publications Warehouse

    Wildhaber, Mark L.; Albers, Janice; Green, Nicholas; Moran, Edward H.

    2017-01-01

    We develop a fully-stochasticized, age-structured population model suitable for population viability analysis (PVA) of fish and demonstrate its use with the endangered pallid sturgeon (Scaphirhynchus albus) of the Lower Missouri River as an example. The model incorporates three levels of variance: parameter variance (uncertainty about the value of a parameter itself) applied at the iteration level, temporal variance (uncertainty caused by random environmental fluctuations over time) applied at the time-step level, and implicit individual variance (uncertainty caused by differences between individuals) applied within the time-step level. We found that population dynamics were most sensitive to survival rates, particularly age-2+ survival, and to fecundity-at-length. The inclusion of variance (unpartitioned or partitioned), stocking, or both generally decreased the influence of individual parameters on population growth rate. The partitioning of variance into parameter and temporal components had a strong influence on the importance of individual parameters, uncertainty of model predictions, and quasiextinction risk (i.e., pallid sturgeon population size falling below 50 age-1+ individuals). Our findings show that appropriately applying variance in PVA is important when evaluating the relative importance of parameters, and reinforce the need for better and more precise estimates of crucial life-history parameters for pallid sturgeon.

  13. Population Structure and Phylogeography in Nassau Grouper (Epinephelus striatus), a Mass-Aggregating Marine Fish

    PubMed Central

    Jackson, Alexis M.; Semmens, Brice X.; Sadovy de Mitcheson, Yvonne; Nemeth, Richard S.; Heppell, Scott A.; Bush, Phillippe G.; Aguilar-Perera, Alfonso; Claydon, John A. B.; Calosso, Marta C.; Sealey, Kathleen S.; Schärer, Michelle T.; Bernardi, Giacomo

    2014-01-01

    To address patterns of genetic connectivity in a mass-aggregating marine fish, we analyzed genetic variation in mitochondrial DNA (mtDNA), microsatellites, and single nucleotide polymorphisms (SNPs) for Nassau grouper (Epinephelus striatus). We expected Nassau grouper to exhibit genetic differentiation among its subpopulations due to its reproductive behavior and retentive oceanographic conditions experienced across the Caribbean basin. All samples were genotyped for two mitochondrial markers and 9 microsatellite loci, and a subset of samples were genotyped for 4,234 SNPs. We found evidence of genetic differentiation in a Caribbean-wide study of this mass-aggregating marine fish using mtDNA (FST = 0.206, p<0.001), microsatellites (FST = 0.002, p = 0.004) and SNPs (FST = 0.002, p = 0.014), and identified three potential barriers to larval dispersal. Genetically isolated regions identified in our work mirror those seen for other invertebrate and fish species in the Caribbean basin. Oceanographic regimes in the Caribbean may largely explain patterns of genetic differentiation among Nassau grouper subpopulations. Regional patterns observed warrant standardization of fisheries management and conservation initiatives among countries within genetically isolated regions. PMID:24830641

  14. Context dependency of trait repeatability and its relevance for management and conservation of fish populations.

    PubMed

    Killen, S S; Adriaenssens, B; Marras, S; Claireaux, G; Cooke, S J

    2016-01-01

    Repeatability of behavioural and physiological traits is increasingly a focus for animal researchers, for which fish have become important models. Almost all of this work has been done in the context of evolutionary ecology, with few explicit attempts to apply repeatability and context dependency of trait variation toward understanding conservation-related issues. Here, we review work examining the degree to which repeatability of traits (such as boldness, swimming performance, metabolic rate and stress responsiveness) is context dependent. We review methods for quantifying repeatability (distinguishing between within-context and across-context repeatability) and confounding factors that may be especially problematic when attempting to measure repeatability in wild fish. Environmental factors such temperature, food availability, oxygen availability, hypercapnia, flow regime and pollutants all appear to alter trait repeatability in fishes. This suggests that anthropogenic environmental change could alter evolutionary trajectories by changing which individuals achieve the greatest fitness in a given set of conditions. Gaining a greater understanding of these effects will be crucial for our ability to forecast the effects of gradual environmental change, such as climate change and ocean acidification, the study of which is currently limited by our ability to examine trait changes over relatively short time scales. Also discussed are situations in which recent advances in technologies associated with electronic tags (biotelemetry and biologging) and respirometry will help to facilitate increased quantification of repeatability for physiological and integrative traits, which so far lag behind measures of repeatability of behavioural traits.

  15. Context dependency of trait repeatability and its relevance for management and conservation of fish populations

    PubMed Central

    Killen, S. S.; Adriaenssens, B.; Marras, S.; Claireaux, G.; Cooke, S. J.

    2016-01-01

    Repeatability of behavioural and physiological traits is increasingly a focus for animal researchers, for which fish have become important models. Almost all of this work has been done in the context of evolutionary ecology, with few explicit attempts to apply repeatability and context dependency of trait variation toward understanding conservation-related issues. Here, we review work examining the degree to which repeatability of traits (such as boldness, swimming performance, metabolic rate and stress responsiveness) is context dependent. We review methods for quantifying repeatability (distinguishing between within-context and across-context repeatability) and confounding factors that may be especially problematic when attempting to measure repeatability in wild fish. Environmental factors such temperature, food availability, oxygen availability, hypercapnia, flow regime and pollutants all appear to alter trait repeatability in fishes. This suggests that anthropogenic environmental change could alter evolutionary trajectories by changing which individuals achieve the greatest fitness in a given set of conditions. Gaining a greater understanding of these effects will be crucial for our ability to forecast the effects of gradual environmental change, such as climate change and ocean acidification, the study of which is currently limited by our ability to examine trait changes over relatively short time scales. Also discussed are situations in which recent advances in technologies associated with electronic tags (biotelemetry and biologging) and respirometry will help to facilitate increased quantification of repeatability for physiological and integrative traits, which so far lag behind measures of repeatability of behavioural traits. PMID:27382470

  16. The role of spatial dynamics in the stability, resilience, and productivity of an estuarine fish population.

    PubMed

    Kerr, L A; Cadrin, S X; Secor, D H

    2010-03-01

    Understanding mechanisms that support long-term persistence of populations and sustainability of productive fisheries is a priority in fisheries management. Complex spatial structure within populations is increasingly viewed as a result of a plastic behavioral response that can have consequences for the dynamics of a population. We incorporated spatial structure and environmental forcing into a population model to examine the consequences for population stability (coefficient of variation of spawning-stock biomass), resilience (time to recover from disturbance), and productivity (spawning-stock biomass). White perch (Morone americana) served as a model species that exhibits simultaneous occurrence of migratory and resident groups within a population. We evaluated the role that contingents (behavioral groups within populations that exhibit divergent life histories) play in mitigating population responses to unfavorable environmental conditions. We used age-structured models that incorporated contingent-specific vital rates to simulate population dynamics of white perch in a sub-estuary of Chesapeake Bay, USA. The dynamics of the population were most sensitive to the proportion of individuals within each contingent and to a lesser degree to the level of correlation in recruitment between contingents in their responses to the environment. Increased representation of the dispersive contingent within populations resulted in increased productivity and resilience, but decreased stability. Empirical evidence from the Patuxent River white perch population was consistent with these findings. A high negative correlation in resident and dispersive contingent recruitment dynamics resulted in increased productivity and stability, with little effect on resilience. With high positive correlation between contingent recruitments, the model showed similar responses in population productivity and resilience, but decreased stability. Because contingent structure involves differing

  17. Effects of changes in food supply at the time of sex differentiation on the gonadal transcriptome of juvenile fish. Implications for natural and farmed populations.

    PubMed

    Díaz, Noelia; Ribas, Laia; Piferrer, Francesc

    2014-01-01

    Food supply is a major factor influencing growth rates in animals. This has important implications for both natural and farmed fish populations, since food restriction may difficult reproduction. However, a study on the effects of food supply on the development of juvenile gonads has never been transcriptionally described in fish. This study investigated the consequences of growth on gonadal transcriptome of European sea bass in: 1) 4-month-old sexually undifferentiated fish, comparing the gonads of fish with the highest vs. the lowest growth, to explore a possible link between transcriptome and future sex, and 2) testis from 11-month-old juveniles where growth had been manipulated through changes in food supply. The four groups used were: i) sustained fast growth, ii) sustained slow growth, iii) accelerated growth, iv) decelerated growth. The transcriptome of undifferentiated gonads was not drastically affected by initial natural differences in growth. Further, changes in the expression of genes associated with protein turnover were seen, favoring catabolism in slow-growing fish and anabolism in fast-growing fish. Moreover, while fast-growing fish took energy from glucose, as deduced from the pathways affected and the analysis of protein-protein interactions examined, in slow-growing fish lipid metabolism and gluconeogenesis was favored. Interestingly, the highest transcriptomic differences were found when forcing initially fast-growing fish to decelerate their growth, while accelerating growth of initially slow-growing fish resulted in full transcriptomic convergence with sustained fast-growing fish. Food availability during sex differentiation shapes the juvenile testis transcriptome, as evidenced by adaptations to different energy balances. Remarkably, this occurs in absence of major histological changes in the testis. Thus, fish are able to recover transcriptionally their testes if they are provided with enough food supply during sex differentiation; however

  18. Effects of Changes in Food Supply at the Time of Sex Differentiation on the Gonadal Transcriptome of Juvenile Fish. Implications for Natural and Farmed Populations

    PubMed Central

    Díaz, Noelia; Ribas, Laia; Piferrer, Francesc

    2014-01-01

    Background Food supply is a major factor influencing growth rates in animals. This has important implications for both natural and farmed fish populations, since food restriction may difficult reproduction. However, a study on the effects of food supply on the development of juvenile gonads has never been transcriptionally described in fish. Methods and Findings This study investigated the consequences of growth on gonadal transcriptome of European sea bass in: 1) 4-month-old sexually undifferentiated fish, comparing the gonads of fish with the highest vs. the lowest growth, to explore a possible link between transcriptome and future sex, and 2) testis from 11-month-old juveniles where growth had been manipulated through changes in food supply. The four groups used were: i) sustained fast growth, ii) sustained slow growth, iii) accelerated growth, iv) decelerated growth. The transcriptome of undifferentiated gonads was not drastically affected by initial natural differences in growth. Further, changes in the expression of genes associated with protein turnover were seen, favoring catabolism in slow-growing fish and anabolism in fast-growing fish. Moreover, while fast-growing fish took energy from glucose, as deduced from the pathways affected and the analysis of protein-protein interactions examined, in slow-growing fish lipid metabolism and gluconeogenesis was favored. Interestingly, the highest transcriptomic differences were found when forcing initially fast-growing fish to decelerate their growth, while accelerating growth of initially slow-growing fish resulted in full transcriptomic convergence with sustained fast-growing fish. Conclusions Food availability during sex differentiation shapes the juvenile testis transcriptome, as evidenced by adaptations to different energy balances. Remarkably, this occurs in absence of major histological changes in the testis. Thus, fish are able to recover transcriptionally their testes if they are provided with enough food

  19. Population cage experiments with a vertebrate: The temporal demography and cytonuclear genetics of hybridization on Gambusia fishes

    USGS Publications Warehouse

    Scribner, Kim T.; Avise, John C.

    1994-01-01

    The dynamics of mitochondrial and multilocus nuclear genotypic frequencies were monitored for 2 yr in experimental populations established with equal numbers of two poeciliid fishes (Gambusia affinis and Gambusia holbrooki) that hybridize naturally in the southeastern United States. In replicated "small-pool" populations (experiment I), 1018 sampled individuals at six time periods revealed an initial flush of hybridization, followed by a rapid decline in frequencies of G. affinis nuclear and mitochondrial alleles over 64 wk. Decay of gametic and cytonuclear disequilibria differed from expectations under random mating as well as under a model of assortative mating involving empirically estimated mating propensities. In two replicate "large-pond" populations (experiment II), 841 sampled individuals across four reproductive cohorts revealed lower initial frequencies of F1 hybrids than in experiment I, but again G. holbrooki alleles achieved high frequencies over four generations (72 wk). Thus, evolution within experimental Gambusia hybrid populations can be extremely rapid, resulting in consistent loss of G. affinis nuclear and cytoplasmic alleles. Concordance in results between experiments and across genetic markers suggests strong directional selection favoring G. holbrooki genotypes. Results are interpreted in light of previous reports of genotype-specific differences in life-history traits, reproductive ecology, patterns of recruitment, and size-specific mortality, and in the context of patterns of introgression previously studied indirectly from spatial observations on cytonuclear genotypes in natural Gambusia populations.

  20. Observations of migrant exchange and mixing in a coral reef fish metapopulation link scales of marine population connectivity.

    PubMed

    Horne, John B; van Herwerden, Lynne; Abellana, Sheena; McIlwain, Jennifer L

    2013-01-01

    Much progress has been made toward understanding marine metapopulation dynamics, largely because of multilocus microsatellite surveys able to connect related individuals within the metapopulation. However, most studies are focused on small spatial scales, tens of kilometers, while demographic exchange at larger spatial scales remains poorly documented. Additionally, many small-scale demographic studies conflict with broad-scale phylogeographic patterns concerning levels of marine population connectivity, highlighting a need for data on more intermediate scales. Here, we investigated demographic recruitment processes of a commercially important coral reef fish, the bluespine unicornfish (Naso unicornis) using a suite of mitochondrial DNA (mtDNA) and microsatellite markers. Sampling for this study ranged across the southern Marianas Islands, a linear distance of 250 km and included 386 newly settled postlarval recruits. In contrast with other studies, we report that cohorts of recruits were genetically homogeneous in space and time, with no evidence of temporally stochastic sweepstakes reproduction. The genetic diversity of recruits was high and commensurate with that of the adult population. In addition, there is substantial evidence that 2 recruits, separated by 250 km, were full siblings. This is the largest direct observation of dispersal to date for a coral reef fish. All indications suggest that subpopulations of N. unicornis experience high levels of demographic migrant exchange and metapopulation mixing on a spatial scale of hundreds of kilometers, consistent with high levels of broad-scale genetic connectivity previously reported in this species.

  1. Electrofishing as a sampling technique for coastal stream fish populations and communities in the Southeast of Brazil.

    PubMed

    Mazzoni; Fenerich-Verani; Caramaschi

    2000-05-01

    Electrofishing adequacy was tested as a technique to obtain quantitative data of coastal stream fish populations and communities in the Southeast of Brazil. Seven field trips, between July/94 and July/95, were done in 5 localities of the Ubatiba fluvial system (Maricá, RJ). Seventeen species, among the 22 collected, had their numbers estimated through the Zipping method, the model used to test the sampling methodology. At each field trip, three removals with electrofishing were done in each locality and, according to the number of obtained species at each locality/field trip, we analysed 315 cases. Nineteen cases, among 315, showed failure condition. Estimates were significant (p < 0.01) in 96% of the studied cases. Non-significant cases were obtained for rare species due to over and randomly efficient electrofishing in 63.3% and 36.4% of the cases, respectively. No correlation was found between catchability and the estimated number of individuals and/or environmental characteristics. High values for sampling efficiency (> 85%) were found for all estimates. An experimental analyses were done for one locality and, the comparison between the estimates for 3 and 6 successive removals showed a mean error and a standard deviation of 5.5% and 2.1% respectively. Therefore, it can be concluded that electrofishing was an efficient method for quantitative data analysis of fish populations and communities in the Ubatiba fluvial system.

  2. Colour-assortative mating among populations of Tropheus moorii, a cichlid fish from Lake Tanganyika, East Africa.

    PubMed

    Salzburger, Walter; Niederstätter, Harald; Brandstätter, Anita; Berger, Burkhard; Parson, Walther; Snoeks, Jos; Sturmbauer, Christian

    2006-02-07

    The species flocks of cichlid fishes in the East African Lakes Tanganyika, Malawi and Victoria are prime examples of adaptive radiation and explosive speciation. Several hundreds of endemic species have evolved in each of the lakes over the past several thousands to a few millions years. Sexual selection via colour-assortative mating has often been proposed as a probable causal factor for initiating and maintaining reproductive isolation. Here, we report the consequences of human-mediated admixis among differentially coloured populations of the endemic cichlid fish Tropheus moorii from several localities that have accidentally been put in sympatry in a small harbour bay in the very south of Lake Tanganyika. We analysed the phenotypes (coloration) and genotypes (mitochondrial control region and five microsatellite loci) of almost 500 individuals, sampled over 3 consecutive years. Maximum-likelihood-based parenthood analyses and Bayesian inference of population structure revealed that significantly more juveniles are the product of within-colour-morph matings than could be expected under the assumption of random mating. Our results clearly indicate a marked degree of assortative mating with respect to the different colour morphs. Therefore, we postulate that sexual selection based on social interactions and female mate choice has played an important role in the formation and maintenance of the different colour morphs in Tropheus, and is probably common in other maternally mouthbrooding cichlids as well.

  3. Population substructuring in a migratory freshwater fish Prochilodus argenteus (Characiformes, Prochilodontidae) from the São Francisco River.

    PubMed

    Hatanaka, Terumi; Henrique-Silva, Flávio; Galetti, Pedro Manoel

    2006-01-01

    The construction of hydroelectric dams, pollution of rivers and other environmental changes are responsible for the disappearance of many natural fish stocks. The purpose of this work was to analyze the fish Prochilodus argenteus inhabiting the region of the Três Marias dam in the São Francisco River (Brazil) collected in two sites having distinct environmental characteristics. Three novel homologous and one known cross-specific microsatellites were used to assess genetic variation within and between the two collection sites (namely A and B) in order to confirm the occurrence of population substructuring previously suggested using RAPD markers. A higher number of exclusive alleles and a greater genetic variability in region B strongly reinforce the co-existence of different reproductive units in this area. F(ST) estimates showed a significant population differentiation between the two sites, indicating the possible existence of distinct gene pools. Considering the economic importance of this fishery resource in the São Francisco River, these findings could provide very important information for fisheries management, aquaculture and conservation of the stocks of this species.

  4. Ice age fish in a warming world: minimal variation in thermal acclimation capacity among lake trout (Salvelinus namaycush) populations

    PubMed Central

    Kelly, Nicholas I.; Burness, Gary; McDermid, Jenni L.; Wilson, Chris C.

    2014-01-01

    In the face of climate change, the persistence of cold-adapted species will depend on their adaptive capacity for physiological traits within and among populations. The lake trout (Salvelinus namaycush) is a cold-adapted salmonid and a relict from the last ice age that is well suited as a model species for studying the predicted effects of climate change on coldwater fishes. We investigated the thermal acclimation capacity of upper temperature resistance and metabolism of lake trout from four populations across four acclimation temperatures. Individuals were reared from egg fertilization onward in a common environment and, at 2 years of age, were acclimated to 8, 11, 15 or 19°C. Although one population had a slightly higher maximal metabolic rate (MMR), higher metabolic scope for activity and faster metabolic recovery across all temperatures, there was no interpopulation variation for critical thermal maximum (CTM) or routine metabolic rate (RMR) or for the thermal acclimation capacity of CTM, RMR, MMR or metabolic scope. Across the four acclimation temperatures, there was a 3°C maximal increase in CTM and 3-fold increase in RMR for all populations. Above 15°C, a decline in MMR and increase in RMR resulted in sharply reduced metabolic scope for all populations acclimated at 19°C. Together, these data suggest there is limited variation among lake trout populations in thermal physiology or capacity for thermal acclimatization, and that climate change may impact lake trout populations in a similar manner across a wide geographical range. Understanding the effect of elevated temperatures on the thermal physiology of this economically and ecologically important cold-adapted species will help inform management and conservation strategies for the long-term sustainability of lake trout populations. PMID:27293646

  5. Ice age fish in a warming world: minimal variation in thermal acclimation capacity among lake trout (Salvelinus namaycush) populations.

    PubMed

    Kelly, Nicholas I; Burness, Gary; McDermid, Jenni L; Wilson, Chris C

    2014-01-01

    In the face of climate change, the persistence of cold-adapted species will depend on their adaptive capacity for physiological traits within and among populations. The lake trout (Salvelinus namaycush) is a cold-adapted salmonid and a relict from the last ice age that is well suited as a model species for studying the predicted effects of climate change on coldwater fishes. We investigated the thermal acclimation capacity of upper temperature resistance and metabolism of lake trout from four populations across four acclimation temperatures. Individuals were reared from egg fertilization onward in a common environment and, at 2 years of age, were acclimated to 8, 11, 15 or 19°C. Although one population had a slightly higher maximal metabolic rate (MMR), higher metabolic scope for activity and faster metabolic recovery across all temperatures, there was no interpopulation variation for critical thermal maximum (CTM) or routine metabolic rate (RMR) or for the thermal acclimation capacity of CTM, RMR, MMR or metabolic scope. Across the four acclimation temperatures, there was a 3°C maximal increase in CTM and 3-fold increase in RMR for all populations. Above 15°C, a decline in MMR and increase in RMR resulted in sharply reduced metabolic scope for all populations acclimated at 19°C. Together, these data suggest there is limited variation among lake trout populations in thermal physiology or capacity for thermal acclimatization, and that climate change may impact lake trout populations in a similar manner across a wide geographical range. Understanding the effect of elevated temperatures on the thermal physiology of this economically and ecologically important cold-adapted species will help inform management and conservation strategies for the long-term sustainability of lake trout populations.

  6. Multiple risk factors and ischaemic stroke in the elderly Asian population with and without atrial fibrillation. An analysis of 425,600 Chinese individuals without prior stroke.

    PubMed

    Guo, Yutao; Wang, Hao; Tian, Yingchun; Wang, Yutang; Lip, Gregory Y H

    2016-01-01

    Ischaemic stroke risk rises with the increasing cardiovascular risk factors. How atrial fibrillation (AF) incrementally contributes to the risk for ischaemic stroke with increasing age and multiple cardiovascular risk factors is unclear. In an individual patient with AF the mechanism of ischaemic stroke may be related directly to AF itself or to risk factors associated with AF. It was this study's objective to investigate incident ischaemic stroke in relation to age and increasing cardiovascular risk factor(s), and the incremental impact of AF on stroke rates. We studied a 5% random sampling from Chinese medical insurance data covering more than 10 million individuals, for the years 2001 to 2012. The rate of ischaemic stroke was calculated amongst the individuals with no prior history of ischaemic stroke, in relation to age groups (aged < 65, 65-74, ≥ 75 years old; n = 348,431, n = 56,952, n = 20,217, respectively), and increasing risk factors using the CHA2DS2-VASc score. Among the randomly sampled 425,600 individuals with total follow-up of 1,864,232 patient-years [63.8% male, mean age 60 years; 880 with AF, vs 424,720 non-AF], there were 13,242 (3.1%) ischaemic strokes after 64,834 person-years follow-up. Overall, ischaemic stroke incidence (per 100 person-years) was 0.35 (95%CI 0.34-0.35) in the non-AF population and 1.11 (0.84-1.45) with AF. The AF population age < 65 and 65-74 had higher CHA2DS2-VASc scores than the non-AF population (p< 0.001), but this was non-significant between the non-AF and AF population age ≥ 75 (p=0.086). For the population age ≥ 75 years, incident stroke rates were 2.07 (0.86-4.76) and 4.29 (4.08-4.51) in non-AF and AF populations, respectively. The non-AF population age ≥ 65 years with ≥ 2 additional comorbidities (hypertension, vascular disease, diabetic, or heart failure) had ischaemic stroke rates similar to an AF population with CHA2DS2-VASc ≥ 4. In both non-AF and AF populations, those with CHA2DS2

  7. Impacts of golden alga Prymnesium parvum on fish populations in reservoirs of the upper Colorado River and Brazos River basins, Texas

    USGS Publications Warehouse

    VanLandeghem, Matthew M.; Farooqi, Mukhtar; Farquhar, B.; Patino, Reynaldo

    2013-01-01

    Several reservoirs in the upper Colorado River and Brazos River basins in Texas have experienced toxic blooms of golden alga Prymnesium parvum and associated fish kills since 2001. There is a paucity of information, however, regarding the population-level effects of such kills in large reservoirs, species-specific resistance to or recovery from kills, or potential differences in the patterns of impacts among basins. We used multiple before-after, control-impact analysis to determine whether repeated golden alga blooms have led to declines in the relative abundance and size structure of fish populations. Sustained declines were noted for 9 of 12 fish species surveyed in the upper Colorado River, whereas only one of eight species was impacted by golden alga in the Brazos River. In the upper Colorado River, White Bass Morone chrysops, White Crappie Pomoxis annularis, Largemouth Bass Micropterus salmoides, Bluegill Lepomis macrochirus, River Carpsucker Carpiodes carpio, Freshwater Drum Aplodinotus grunniens, Channel Catfish Ictalurus punctatus, Flathead Catfish Pylodictis olivaris, and Blue Catfish I. furcatus exhibited sustained declines in relative abundance, size structure, or both; Gizzard Shad Dorosoma cepedianum, Longnose Gar Lepisosteus osseus, and Common Carp Cyprinus carpio did not exhibit those declines. In the Brazos River, only the relative abundance of Blue Catfish was impacted. Overall, toxic golden alga blooms can negatively impact fish populations over the long-term, but the patterns of impact can vary considerably among river basins and species. In the Brazos River, populations of most fish species appear to be healthy, suggesting a positive angling outlook for this basin. In the upper Colorado River, fish populations have been severely impacted, and angling opportunities have been reduced. Basin-specific management plans aimed at improving water quality and quantity will likely reduce bloom intensity and allow recovery of fish populations to the

  8. Strong population genetic structuring in an annual fish, Nothobranchius furzeri, suggests multiple savannah refugia in southern Mozambique.

    PubMed

    Bartáková, Veronika; Reichard, Martin; Janko, Karel; Polačik, Matej; Blažek, Radim; Reichwald, Kathrin; Cellerino, Alessandro; Bryja, Josef

    2013-09-12

    Intraspecific genetic variation of African fauna has been significantly affected by pronounced climatic fluctuations in Plio-Pleistocene, but, with the exception of large mammals, very limited empirical data on diversity of natural populations are available for savanna-dwelling animals. Nothobranchius furzeri is an annual fish from south-eastern Africa, inhabiting discrete temporary savannah pools outside main river alluvia. Their dispersal is limited and population processes affecting its genetic structure are likely a combination of those affecting terrestrial and aquatic taxa. N. furzeri is a model taxon in ageing research and several populations of known geographical origin are used in laboratory studies. Here, we analysed the genetic structure, diversity, historical demography and temporal patterns of divergence in natural populations of N. furzeri across its entire distribution range. Genetic structure and historical demography of N. furzeri were analysed using a combination of mitochondrial (partial cytochrome b sequences, 687 bp) and nuclear (13 microsatellites) markers in 693 fish from 36 populations. Genetic markers consistently demonstrated strong population structuring and suggested two main genetic groups associated with river basins. The split was dated to the Pliocene (>2 Mya). The northern group inhabits savannah pools across the basin of the intermittent river Chefu in south-western Mozambique and eastern Zimbabwe. The southern group (from southernmost Mozambique) is subdivided, with the River Limpopo forming a barrier (maximum divergence time 1 Mya). A strong habitat fragmentation (isolated temporary pools) is reflected in significant genetic structuring even between adjacent pools, with a major influence of genetic drift and significant isolation-by-distance. Analysis of historical demography revealed that the expansion of both groups is ongoing, supported by frequent founder effects in marginal parts of the range and evidence of secondary

  9. Strong population genetic structuring in an annual fish, Nothobranchius furzeri, suggests multiple savannah refugia in southern Mozambique

    PubMed Central

    2013-01-01

    Background Intraspecific genetic variation of African fauna has been significantly affected by pronounced climatic fluctuations in Plio-Pleistocene, but, with the exception of large mammals, very limited empirical data on diversity of natural populations are available for savanna-dwelling animals. Nothobranchius furzeri is an annual fish from south-eastern Africa, inhabiting discrete temporary savannah pools outside main river alluvia. Their dispersal is limited and population processes affecting its genetic structure are likely a combination of those affecting terrestrial and aquatic taxa. N. furzeri is a model taxon in ageing research and several populations of known geographical origin are used in laboratory studies. Here, we analysed the genetic structure, diversity, historical demography and temporal patterns of divergence in natural populations of N. furzeri across its entire distribution range. Results Genetic structure and historical demography of N. furzeri were analysed using a combination of mitochondrial (partial cytochrome b sequences, 687 bp) and nuclear (13 microsatellites) markers in 693 fish from 36 populations. Genetic markers consistently demonstrated strong population structuring and suggested two main genetic groups associated with river basins. The split was dated to the Pliocene (>2 Mya). The northern group inhabits savannah pools across the basin of the intermittent river Chefu in south-western Mozambique and eastern Zimbabwe. The southern group (from southernmost Mozambique) is subdivided, with the River Limpopo forming a barrier (maximum divergence time 1 Mya). A strong habitat fragmentation (isolated temporary pools) is reflected in significant genetic structuring even between adjacent pools, with a major influence of genetic drift and significant isolation-by-distance. Analysis of historical demography revealed that the expansion of both groups is ongoing, supported by frequent founder effects in marginal parts of the range and evidence

  10. Fish Rhabdoviruses

    USGS Publications Warehouse

    Kurath, G.; Winton, J.

    2008-01-01

    Many important viral pathogens of fish are members of the family Rhabdoviridae. The viruses in this large group cause significant losses in populations of wild fish as well as among fish reared in aquaculture. Fish rhabdoviruses often have a wide host and geographic range, and infect aquatic animals in both freshwater and seawater. The fish rhabdoviruses comprise a diverse collection of isolates that can be placed in one of two quite different groups: isolates that are members of the established genusNovirhabdovirus, and those that are most similar to members of the genus Vesiculovirus. Because the diseases caused by fish rhabdoviruses are important to aquaculture, diagnostic methods for their detection and identification are well established. In addition to regulations designed to reduce the spread of fish viruses, a significant body of research has addressed methods for the control or prevention of diseases caused by fish rhabdoviruses, including vaccination. The number of reported fish rhabdoviruses continues to grow as a result of the expansion of aquaculture, the increase in global trade, the development of improved diagnostic methods, and heightened surveillance activities. Fish rhabdoviruses serve as useful components of model systems to study vertebrate virus disease, epidemiology, and immunology.

  11. Intraspecific Genetic Admixture and the Morphological Diversification of an Estuarine Fish Population Complex

    PubMed Central

    Legault, Michel

    2015-01-01

    The North-east American Rainbow smelt (Osmerus mordax) is composed of two glacial races first identified through the spatial distribution of two distinct mtDNA lineages. Contemporary breeding populations of smelt in the St. Lawrence estuary comprise contrasting mixtures of both lineages, suggesting that the two races came into secondary contact in this estuary. The overall objective of this study was to assess the role of intraspecific genetic admixture in the morphological diversification of the estuarine rainbow smelt population complex. The morphology of mixed-ancestry populations varied as a function of the relative contribution of the two races to estuarine populations, supporting the hypothesis of genetic admixture. Populations comprising both ancestral mtDNA races did not exhibit intermediate morphologies relative to pure populations but rather exhibited many traits that exceeded the parental trait values, consistent with the hypothesis of transgressive segregation. Evidence for genetic admixture at the level of the nuclear gene pool, however, provided only partial support for this hypothesis. Variation at nuclear AFLP markers revealed clear evidence of the two corresponding mtDNA glacial races. The admixture of the two races at the nuclear level is only pronounced in mixed-ancestry populations dominated by one of the mtDNA lineages, the same populations showing the greatest degree of morphological diversification and population structure. In contrast, mixed-ancestry populations dominated by the alternate mtDNA lineage showed little evidence of introgression of the nuclear genome, little morphological diversification and little contemporary population genetic structure. These results only partially support the hypothesis of transgressive segregation and may be the result of the differential effects of natural selection acting on admixed genomes from different sources. PMID:25856193

  12. Intraspecific genetic admixture and the morphological diversification of an estuarine fish population complex.

    PubMed