Science.gov

Sample records for fish swimming mechanics

  1. Fish Swimming: Patternsin the Mechanical Energy Generation, Transmission and Dissipation from Muscle Activation to Body Movement

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Yu, Y. L.; Tong, B. G.

    2011-09-01

    The power consumption of the undulatory fish swimming is produced by active muscles. The mechanical energy generated by stimulated muscles is dissipated partly by the passive tissues of fish while it is being transmitted to the fluid medium. Furthermore, the effective energy, propelling fish movement, is a part of that delivered by the fish body. The process depends on the interactions of the active muscles, the passive tissues, and the water surrounding the fish body. In the previous works, the body-fluid interactions have been investigated widely, but it is rarely considered how the mechanical energy generates, transmits and dissipates in fish swimming. This paper addresses the regular patterns of energy transfer process from muscle activation to body movement for a cruising lamprey (LAMPREY), a kind of anguilliform swimmer. It is necessary to propose a global modelling of the kinematic chain, which is composed of active muscle force-moment model, fish-body dynamic model and hydrodynamic model in order. The present results show that there are traveling energy waves along the fish body from anterior to posterior, accompanied with energy storing and dissipating due to the viscoelastic property of internal tissues. This study is a preliminary research on the framework of kinematic chain coordination performance in fish swimming.

  2. A fish-like robot: Mechanics of swimming due to constraints

    NASA Astrophysics Data System (ADS)

    Tallapragada, Phanindra; Malla, Rijan

    2014-11-01

    It is well known that due to reasons of symmetry, a body with one degree of actuation cannot swim in an ideal fluid. However certain velocity constraints arising in fluid-body interactions, such as the Kutta condition classically applied at the trailing cusp of a Joukowski hydrofoil break this symmetry through vortex shedding. Thus Joukowski foils that vary shape periodically can be shown to be able to swim through vortex shedding. In general it can be shown that vortex shedding due to the Kutta condition is equivalent to nonintegrable constraints arising in the mechanics of finite-dimensional mechanical systems. This equivalence allows hydrodynamic problems involving vortex shedding, especially those pertaining to swimming and related phenomena to be framed in the context of geometric mechanics on manifolds. This formal equivalence also allows the design of bio inspired robots that swim not due to shape change but due to internal moving masses and rotors. Such robots lacking articulated joints are easy to design, build and control. We present such a fish-like robot that swims due to the rotation of internal rotors.

  3. The role of mechanical resonance in the neural control of swimming in fishes.

    PubMed

    Tytell, Eric D; Hsu, Chia-Yu; Fauci, Lisa J

    2014-02-01

    The bodies of many fishes are flexible, elastic structures; if you bend them, they spring back. Therefore, they should have a resonant frequency: a bending frequency at which the output amplitude is maximized for a particular input. Previous groups have hypothesized that swimming at this resonant frequency could maximize efficiency, and that a neural circuit called the central pattern generator might be able to entrain to a mechanical resonance. However, fishes swim in water, which may potentially damp out many resonant effects. Additionally, their bodies are elongated, which means that bending can occur in complicated ways along the length of the body. We review previous studies of the mechanical properties of fish bodies, and then present new data that demonstrate complex bending properties of elongated fish bodies. Resonant peaks in amplitude exist, but there may be many of them depending on the body wavelength. Additionally, they may not correspond to the maximum swimming speed. Next, we describe experiments using a closed-loop preparation of the lamprey, in which a preparation of the spinal cord is linked to a real-time simulation of the muscle and body properties, allowing us to examine resonance entrainment as we vary the simulated resonant frequency. We find that resonance entrainment does occur, but is rare. Gain had a significant, though weak, effect, and a nonlinear muscle model produced resonance entrainment more often than a linear filter. We speculate that resonance may not be a critical effect for efficient swimming in elongate, anguilliform swimmers, though it may be more important for stiffer carangiform and thunniform fishes. Copyright © 2014 Elsevier GmbH. All rights reserved.

  4. Large-amplitude undulatory fish swimming: fluid mechanics coupled to internal mechanics.

    PubMed

    Pedley, T J; Hill, S J

    1999-12-01

    The load against which the swimming muscles contract, during the undulatory swimming of a fish, is composed principally of hydrodynamic pressure forces and body inertia. In the past this has been analysed, through an equation for bending moments, for small-amplitude swimming, using Lighthill's elongated-body theory and a 'vortex-ring panel method', respectively, to compute the hydrodynamic forces. Those models are outlined in this review, and a summary is given of recent work on large-amplitude swimming that has (a) extended the bending moment equation to large amplitude, which involves the introduction of a new (though probably usually small) term, and (b) developed a large-amplitude vortex-ring panel method. The latter requires computation of the wake, which rolls up into concentrated vortex rings and filaments, and has a significant effect on the pressure on the body. Application is principally made to the saithe (Pollachius virens). The calculations confirm that the wave of muscle activation travels down the fish much more rapidly than the wave of bending.

  5. Where is the rudder of a fish?: the mechanism of swimming and control of self-propelled fish school

    NASA Astrophysics Data System (ADS)

    Wu, Chuijie; Wang, Liang

    2010-03-01

    Numerical simulation and control of self-propelled swimming of two- and three-dimensional biomimetic fish school in a viscous flow are investigated. With a parallel computational fluid dynamics package for the two- and three-dimensional moving boundary problem, which combines the adaptive multi-grid finite volume method and the methods of immersed boundary and volume of fluid, it is found that due to the interactions of vortices in the wakes, without proper control, a fish school swim with a given flapping rule can not keep the fixed shape of a queue. In order to understand the secret of fish swimming, a new feedback control strategy of fish motion is proposed for the first time, i.e., the locomotion speed is adjusted by the flapping frequency of the caudal, and the direction of swimming is controlled by the swinging of the head of a fish. Results show that with this feedback control strategy, a fish school can keep the good order of a queue in cruising, turning or swimming around circles. This new control strategy, which separates the speed control and direction control, is important in the construction of biomimetic robot fish, with which it greatly simplifies the control devices of a biomimetic robot fish.

  6. Prediction of fish body's passive visco-elastic properties and related muscle mechanical performance in vivo during steady swimming

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Yu, YongLiang; Tong, BingGang

    2014-01-01

    For attaining the optimized locomotory performance of swimming fishes, both the passive visco-elastic properties of the fish body and the mechanical behavior of the active muscles should coordinate with the fish body's undulatory motion pattern. However, it is difficult to directly measure the visco-elastic constitutive relation and the muscular mechanical performance in vivo. In the present paper, a new approach based on the continuous beam model for steady swimming fish is proposed to predict the fish body's visco-elastic properties and the related muscle mechanical behavior in vivo. Given the lateral travelling-wave-like movement as the input condition, the required muscle force and the energy consumption are functions of the fish body's visco-elastic parameters, i.e. the Young's modulus E and the viscosity coefficient µ in the Kelvin model. After investigating the variations of the propagating speed of the required muscle force with the fish body's visco-elastic parameters, we analyze the impacts of the visco-elastic properties on the energy efficiencies, including the energy utilization ratios of each element of the kinematic chain in fish swimming and the overall efficiency. Under the constraints of reasonable wave speed of muscle activation and the physiological feasibility, the optimal design of the passive visco-elastic properties can be predicted aiming at maximizing the overall efficiency. The analysis is based on the small-amplitude steady swimming of the carangiform swimmer, with typical Reynolds number varying from 2.5×104 to 2.5×105, and the present results show that the non-dimensional Young's modulus is 112±34, and the non-dimensional viscosity coefficient is 13 approximately. In the present estimated ranges, the overall efficiency of the swimming fish is insensitive to the viscosity, and its magnitude is about 0.11±0.02, in the predicted range given by previous study.

  7. Fish Swimming and Bird/Insect Flight

    NASA Astrophysics Data System (ADS)

    Wu, Theodore Yaotsu

    2011-01-01

    This expository review is devoted to fish swimming and bird/insect flight. (a) The simple waving motion of an elongated flexible ribbon plate of constant width propagating a wave distally down the plate to swim forward in a fluid, initially at rest, is first considered to provide a fundamental concept on energy conservation. It is generalized to include variations in body width and thickness, with appended dorsal, ventral and caudal fins shedding vortices to closely simulate fish swimming, for which a nonlinear theory is presented for large-amplitude propulsion. (b) For bird flight, the pioneering studies on oscillatory rigid wings are discussed with delineating a fully nonlinear unsteady theory for a two-dimensional flexible wing with arbitrary variations in shape and trajectory to provide a comparative study with experiments. (c) For insect flight, recent advances are reviewed by items on aerodynamic theory and modeling, computational methods, and experiments, for forward and hovering flights with producing leading-edge vortex to yield unsteady high lift. (d) Prospects are explored on extracting prevailing intrinsic flow energy by fish and bird to enhance thrust for propulsion. (e) The mechanical and biological principles are drawn together for unified studies on the energetics in deriving metabolic power for animal locomotion, leading to the surprising discovery that the hydrodynamic viscous drag on swimming fish is largely associated with laminar boundary layers, thus drawing valid and sound evidences for a resounding resolution to the long-standing fish-swim paradox proclaimed by Gray (1936, 1968 ).

  8. Synchronized Swimming of Two Fish

    NASA Astrophysics Data System (ADS)

    Koumoutsakos, Petros; Novati, Guido; Abbati, Gabriele; Hejazialhosseini, Babak; van Rees, Wim

    2015-11-01

    We present simulations of two, self-propelled, fish-like swimmers that perform synchronized moves in a two-dimensional, viscous fluid. The swimmers learn to coordinate by receiving a reward for their synchronized actions. We analyze the swimming patterns emerging for different rewards in terms of their hydrodynamic efficiency and artistic impression. European Research Council (ERC) Advanced Investigator Award (No. 2-73985-14).

  9. Swimming in air-breathing fishes.

    PubMed

    Lefevre, S; Domenici, P; McKenzie, D J

    2014-03-01

    Fishes with bimodal respiration differ in the extent of their reliance on air breathing to support aerobic metabolism, which is reflected in their lifestyles and ecologies. Many freshwater species undertake seasonal and reproductive migrations that presumably involve sustained aerobic exercise. In the six species studied to date, aerobic exercise in swim flumes stimulated air-breathing behaviour, and there is evidence that surfacing frequency and oxygen uptake from air show an exponential increase with increasing swimming speed. In some species, this was associated with an increase in the proportion of aerobic metabolism met by aerial respiration, while in others the proportion remained relatively constant. The ecological significance of anaerobic swimming activities, such as sprinting and fast-start manoeuvres during predator-prey interactions, has been little studied in air-breathing fishes. Some species practise air breathing during recovery itself, while others prefer to increase aquatic respiration, possibly to promote branchial ion exchange to restore acid-base balance, and to remain quiescent and avoid being visible to predators. Overall, the diversity of air-breathing fishes is reflected in their swimming physiology as well, and further research is needed to increase the understanding of the differences and the mechanisms through which air breathing is controlled and used during exercise.

  10. Emulating a Fish Swim Bladder

    NASA Astrophysics Data System (ADS)

    Vesenka, James; Meredith, Dawn; Bolker, Jessica; Schubert, Christopher; Kraut, Gertrud

    2009-10-01

    The University of New Hampshire and the University of New England are developing biologically relevant physics laboratories for their predominantly health science audiences. Buoyancy plays an important role in a variety of biological processes. We describe an inexpensive laboratory activity based on the Cartesian Diver that allows students to quantitatively emulate the swim bladder of a fish. Inflation of the ``bladder'' is externally controlled through an external gas syringe or squeezing on the plastic water containment vessel (a 2L soda bottle). The students can accurately determine the volume of a ``fish'' at the point of neutral buoyancy by visual measurement of the trapped air pocket. A simple electronic gas pressure sensor allows the hydrostatic pressure on the fish to be analyzed simultaneously.

  11. Swimming Performance of Toy Robotic Fish

    NASA Astrophysics Data System (ADS)

    Petelina, Nina; Mendelson, Leah; Techet, Alexandra

    2015-11-01

    HEXBUG AquaBotsTM are a commercially available small robot fish that come in a variety of ``species''. These models have varying caudal fin shapes and randomly-varied modes of swimming including forward locomotion, diving, and turning. In this study, we assess the repeatability and performance of the HEXBUG swimming behaviors and discuss the use of these toys to develop experimental techniques and analysis methods to study live fish swimming. In order to determine whether these simple, affordable model fish can be a valid representation for live fish movement, two models, an angelfish and a shark, were studied using 2D Particle Image Velocimetry (PIV) and 3D Synthetic Aperture PIV. In a series of experiments, the robotic fish were either allowed to swim freely or towed in one direction at a constant speed. The resultant measurements of the caudal fin wake are compared to data from previous studies of a real fish and simplified flapping propulsors.

  12. A mechanism for efficient swimming

    NASA Astrophysics Data System (ADS)

    Haj-Hariri, Hossein; Saadat, Mehdi; Brandes, Aaron; Saraiya, Vishaal; Bart-Smith, Hilary

    2015-11-01

    We present experimental measurements of hydrodynamic performance as well as wake visualization for a freely swimming 3D foil with pure pitching motion. The foil is constrained to move in its axial direction. It is shown that the iso-lines for speed and input power (or economy) coincide in the dimensional frequency versus amplitude plane, up to a critical amplitude. The critical amplitude is independent from swimming speed. It is shown that all swimming gaits (combination of frequency and amplitude) share a single value for Strouhal number (for amplitudes below the critical amplitude), when plotted in non-dimensional frequency vs. amplitude plane. Additionally, it is shown that the swimming gaits with amplitudes equal to the critical amplitude are energetically superior to others. This finding provides a fundamental mechanism for an important observation made by Bainbridge (1958) namely, most fish (such as trout, dace, goldfish, cod and dolphins) maintain constant tail-beat amplitude during cruise, and their speed is correlated linearly with their tail-beat frequency. The results also support prior findings of Saadat and Haj-Hariri (2013). Supported by ONR MURI Grant N00014-14-1-0533.

  13. Passive elastic mechanism to mimic fish-muscle action in anguilliform swimming

    PubMed Central

    Ramananarivo, Sophie; Godoy-Diana, Ramiro; Thiria, Benjamin

    2013-01-01

    Swimmers in nature use body undulations to generate propulsive and manoeuvring forces. The anguilliform kinematics is driven by muscular actions all along the body, involving a complex temporal and spatial coordination of all the local actuations. Such swimming kinematics can be reproduced artificially, in a simpler way, by using the elasticity of the body passively. Here, we present experiments on self-propelled elastic swimmers at a free surface in the inertial regime. By addressing the fluid–structure interaction problem of anguilliform swimming, we show that our artificial swimmers are well described by coupling a beam theory with the potential flow model of Lighthill. In particular, we show that the propagative nature of the elastic wave producing the propulsive force is strongly dependent on the dissipation of energy along the body of the swimmer. PMID:23985737

  14. Swimming Efficiently: An Analytical Study of Optimal Swimming in Fish

    NASA Astrophysics Data System (ADS)

    Wiens, A. Josh; Hosoi, Anette

    2014-11-01

    The Strouhal Number (St) , is widely considered to be the defining parameter for efficient undulatory swimming. Biological studies have shown that fish species across a broad range of shapes and sizes adhere to a narrow St range (0 . 2 < St < 0 . 4). Despite its significance, St alone provides an incomplete description of the kinematics and geometry of a swimming fish. The dimensionless speed and amplitude of the body wave, along with the size and shape of the body can also play a significant role in swimming performance. We apply Lighthill's elongated body theory to construct a simple but powerful reduction of the steady-swimming problem. Through this reduction, the energetic efficiency of a swimming fish can be directly expressed as an analytical function of body geometry and kinematics. In this reduced form, the interplay between the parameters of the system, and their collective role in determining the performance of the swimmer can be readily observed and understood. In particular, the reduced model is applied to understand how wave amplitude, wave speed, and St must relate for optimal swimming efficiency. Following this, we then explore how these relationships are altered by geometric factors such as tail size and compliance.

  15. Mechanics of Mammalian Swimming

    NASA Astrophysics Data System (ADS)

    Wei, Timothy; Legac, Paul; Fish, Frank; Williams, Terrie; Mark, Russell; Hutchison, Sean

    2008-03-01

    Propulsion of large mammals (i.e. dolphins and humans) has been of great interest for both technological and athletic reasons. The foundational question is how fast can a mammal swim? Digital Particle Image Velocimetry (DPIV) has been modified to be safely used on swimmers and dolphins. Experiments of dolphins performing various swimming behaviors were performed at the Long Marine Laboratory, University of California, Santa Cruz. Vortices generated by the dolphins' tail motions were used to estimate thrust production. Also, a two-dimensional dynamic force balance was constructed to study and improve the mechanics of elite swimmers. Paired with an underwater video camera, the forces seen could be directly related to the motion of the swimmer. These force measurements could be correlated to time resolved DPIV measurements of flow around the swimmers. Measurements made with swimmers, Megan Jendrick (2000 Olympic gold medalist) and Ariana Kukors (4x US National Champion), as well as data from trials with two dolphins will be presented.

  16. Towards direct numerical simulation of freely swimming fish.

    NASA Astrophysics Data System (ADS)

    Curet, Oscar; Patankar, Neelesh; Maciver, Malcolm

    2006-11-01

    Swimming mechanisms employed by fish are currently inspiring unique underwater vehicles and robotic devices as well as basic science research into the neural control of movement. Key engineering issues include propulsion efficiency, precise motion control and maneuverability. A numerical scheme that simulates the motion of freely swimming fish will be a valuable design and research tool. We are working towards this goal. In particular we are interested in simulating the motion of a gymnotiform fish that swims by producing undulations of a ventral ribbon fin while keeping its body rigid. We model the fish as a rigid body with an attached undulating membrane. In our numerical scheme the key idea is to assume that the entire fluid-fish domain is a fluid. Then we impose two constraints: the first requires that the fluid in the region occupied by the fish body moves rigidly (a fictitious domain approach), and the second requires that the fluid at the location of the fin has the traveling wave velocity of the fin (an immersed boundary approach). Given the traveling wave form of the fin, the objective is for the numerical scheme to give the swimming velocity of the fish by solving the coupled fluid-fish problem. We will present results for the forces generated by a fin attached to a fixed body and preliminary results for freely swimming fish.

  17. Swimming and other activities: applied aspects of fish swimming performance

    USGS Publications Warehouse

    Castro-Santos, Theodore R.; Farrell, A.P.

    2011-01-01

    Human activities such as hydropower development, water withdrawals, and commercial fisheries often put fish species at risk. Engineered solutions designed to protect species or their life stages are frequently based on assumptions about swimming performance and behaviors. In many cases, however, the appropriate data to support these designs are either unavailable or misapplied. This article provides an overview of the state of knowledge of fish swimming performance – where the data come from and how they are applied – identifying both gaps in knowledge and common errors in application, with guidance on how to avoid repeating mistakes, as well as suggestions for further study.

  18. Investigation of flow mechanism of a robotic fish swimming by using flow visualization synchronized with hydrodynamic force measurement

    NASA Astrophysics Data System (ADS)

    Tan, Guang-Kun; Shen, Gong-Xin; Huang, Shuo-Qiao; Su, Wen-Han; Ke, Yu

    When swimming in water by flapping its tail, a fish can overcome the drag from uniform flow and propel its body. The involved flow mechanism concerns 3-D and unsteady effects. This paper presents the investigation of the flow mechanism on the basis of a 3-D robotic fish model which has the typical geometry of body and tail with periodic flapping 2-freedom kinematical motion testing in the case of St = 0.78, Re = 6,600 and phase delay mode (φ = - 75°), in which may have a greater or maximum propulsion (without consideration of the optimal efficiency). Using a special technique of dye visualization which can clearly show vortex sheet and vortices in detail and using the inner 3-component force balance and cable supporting system with the phase-lock technique, the 3-D flow structure visualized in the wake of fish and the hydrodynamic force measurement were synchronized and obtained. Under the mentioned flapping parameters, we found the key flow structure and its evolution, a pair of complex 3-D chain-shape vortex (S-H vortex-rings, S1 - H1 and S2 - H2, and their legs L1 and L2) flow structures, which attach the leading edge and the trailing edge, then shed, move downstream and outwards and distribute two antisymmetric staggering arrays along with the wake of the fish model in different phase stages during the flapping period. It is different with in the case of St = 0.25-0.35. Its typical flow structure and evolution are described and the results prove that they are different from the viewpoints based on the investigation of 2-D cases. For precision of the dynamic force measurement, in this paper it was provided with the method and techniques by subtracting the inertial forces and the forces induced by buoyancy and gravity effect in water, etc. from original data measured. The evolution of the synchronized measuring forces directly matching with the flow structure was also described in this paper.

  19. Investigation of flow mechanism of a robotic fish swimming by using flow visualization synchronized with hydrodynamic force measurement

    NASA Astrophysics Data System (ADS)

    Tan, Guang-Kun; Shen, Gong-Xin; Huang, Shuo-Qiao; Su, Wen-Han; Ke, Yu

    2007-11-01

    When swimming in water by flapping its tail, a fish can overcome the drag from uniform flow and propel its body. The involved flow mechanism concerns 3-D and unsteady effects. This paper presents the investigation of the flow mechanism on the basis of a 3-D robotic fish model which has the typical geometry of body and tail with periodic flapping 2-freedom kinematical motion testing in the case of St = 0.78, Re = 6,600 and phase delay mode ( φ = -75°), in which may have a greater or maximum propulsion (without consideration of the optimal efficiency). Using a special technique of dye visualization which can clearly show vortex sheet and vortices in detail and using the inner 3-component force balance and cable supporting system with the phase-lock technique, the 3-D flow structure visualized in the wake of fish and the hydrodynamic force measurement were synchronized and obtained. Under the mentioned flapping parameters, we found the key flow structure and its evolution, a pair of complex 3-D chain-shape vortex (S-H vortex-rings, S1-H1 and S2-H2, and their legs L1 and L2) flow structures, which attach the leading edge and the trailing edge, then shed, move downstream and outwards and distribute two anti-symmetric staggering arrays along with the wake of the fish model in different phase stages during the flapping period. It is different with in the case of St = 0.25-0.35. Its typical flow structure and evolution are described and the results prove that they are different from the viewpoints based on the investigation of 2-D cases. For precision of the dynamic force measurement, in this paper it was provided with the method and techniques by subtracting the inertial forces and the forces induced by buoyancy and gravity effect in water, etc. from original data measured. The evolution of the synchronized measuring forces directly matching with the flow structure was also described in this paper.

  20. Flow Structures and Efficiency of Swimming Fish school: Numerical Study

    NASA Astrophysics Data System (ADS)

    Yatagai, Yuzuru; Hattori, Yuji

    2013-11-01

    The flow structure and energy-saving mechanism in fish school is numerically investigated by using the volume penalization method. We calculate the various patterns of configuration of fishes and investigate the relation between spatial arrangement and the performance of fish. It is found that the down-stream fish gains a hydrodynamic advantage from the upstream wake shed by the upstream fish. The most efficient configuration is that the downstream fish is placed in the wake. It reduces the drag force of the downstream fish in comparison with that in solo swimming.

  1. On the efficiency of fish like swimming

    NASA Astrophysics Data System (ADS)

    Bergmann, Michel; Iollo, Angelo; Inria Team Mc2 Team

    2012-11-01

    The aim of this talk is to present a parametric study of underwater locomotion via numerical simulations. The Navier-Stokes equations are discretized onto a cartesian mesh and the interface between the fluid and the fish is computed using an immersed boundary method. The lagrangian motion of the swimmer is computed from the Newton's laws. We present results showing how the swimming efficiency is influenced by the reynolds number and the swimming law. This work has been supported by French National Research Agency (ANR) through COSINUS program (project CARPEINTER no. ANR-08-COSI-002).

  2. Analytical insights into optimality and resonance in fish swimming

    PubMed Central

    Kohannim, Saba; Iwasaki, Tetsuya

    2014-01-01

    This paper provides analytical insights into the hypothesis that fish exploit resonance to reduce the mechanical cost of swimming. A simple body–fluid fish model, representing carangiform locomotion, is developed. Steady swimming at various speeds is analysed using optimal gait theory by minimizing bending moment over tail movements and stiffness, and the results are shown to match with data from observed swimming. Our analysis indicates the following: thrust–drag balance leads to the Strouhal number being predetermined based on the drag coefficient and the ratio of wetted body area to cross-sectional area of accelerated fluid. Muscle tension is reduced when undulation frequency matches resonance frequency, which maximizes the ratio of tail-tip velocity to bending moment. Finally, hydrodynamic resonance determines tail-beat frequency, whereas muscle stiffness is actively adjusted, so that overall body–fluid resonance is exploited. PMID:24430125

  3. Analytical insights into optimality and resonance in fish swimming.

    PubMed

    Kohannim, Saba; Iwasaki, Tetsuya

    2014-03-06

    This paper provides analytical insights into the hypothesis that fish exploit resonance to reduce the mechanical cost of swimming. A simple body-fluid fish model, representing carangiform locomotion, is developed. Steady swimming at various speeds is analysed using optimal gait theory by minimizing bending moment over tail movements and stiffness, and the results are shown to match with data from observed swimming. Our analysis indicates the following: thrust-drag balance leads to the Strouhal number being predetermined based on the drag coefficient and the ratio of wetted body area to cross-sectional area of accelerated fluid. Muscle tension is reduced when undulation frequency matches resonance frequency, which maximizes the ratio of tail-tip velocity to bending moment. Finally, hydrodynamic resonance determines tail-beat frequency, whereas muscle stiffness is actively adjusted, so that overall body-fluid resonance is exploited.

  4. Vorticity Dynamics of Self-Propelled Swimming of 3D Bionic Fish

    NASA Astrophysics Data System (ADS)

    Xin, Z. Q.; Wu, C. J.

    2011-09-01

    Numerical simulations and control of tail-swaying swim of three-dimensional biomimetic fish in a viscous flow and the vorticity dynamics of fish swimming have been investigated in this paper, with a computational fluid dynamics package, which combines the adaptive multi-grid finite volume method and the methods of immersed boundary and volume of fluid, and the control strategy of fish motion. Using boundary vorticity-flux (BVF) theory, we have studied the mechanism of fish swimming and trace the physical root to the moving body surface. With the change of swimming speed, the effects of fish body and caudalfin on thrust, is analysed quantitatively. Finally the relationship between the forces exerted on fish body and vortex structures of fish swimming has been presented in this paper.

  5. Numerical simulations and vorticity dynamics of self-propelled swimming of 3D bionic fish

    NASA Astrophysics Data System (ADS)

    Xin, ZhiQiang; Wu, ChuiJie

    2012-02-01

    Numerical simulations and the control of self-propelled swimming of three-dimensional bionic fish in a viscous flow and the mechanism of fish swimming are carried out in this study, with a 3D computational fluid dynamics package, which includes the immersed boundary method and the volume of fluid method, the adaptive multi-grid finite volume method, and the control strategy of fish swimming. Firstly, the mechanism of 3D fish swimming was studied and the vorticity dynamics root was traced to the moving body surface by using the boundary vorticity-flux theory. With the change of swimming speed, the contributions of the fish body and caudal fin to thrust are analyzed quantitatively. The relationship between vortex structures of fish swimming and the forces exerted on the fish body are also given in this paper. Finally, the 3D wake structure of self-propelled swimming of 3D bionic fish is presented. The in-depth analysis of the 3D vortex structure in the role of 3D biomimetic fish swimming is also performed.

  6. Emulating the Fast-Start Swimming Performance of the Chain Pickerel (Esox niger) Using a Mechanical Fish Design

    DTIC Science & Technology

    2006-09-01

    fuels the mechanical fish is introduced by deflecting the stiff beam. The greater the deflection, the more energy that is imparted to the system. For...peak velocity continue to fuel the second vortex induced propulsive jet for a short time. Further images, not displayed here, show the steady

  7. Hydrokinetic Turbine Effects on Fish Swimming Behaviour

    PubMed Central

    Hammar, Linus; Andersson, Sandra; Eggertsen, Linda; Haglund, Johan; Gullström, Martin; Ehnberg, Jimmy; Molander, Sverker

    2013-01-01

    Hydrokinetic turbines, targeting the kinetic energy of fast-flowing currents, are under development with some turbines already deployed at ocean sites around the world. It remains virtually unknown as to how these technologies affect fish, and rotor collisions have been postulated as a major concern. In this study the effects of a vertical axis hydrokinetic rotor with rotational speeds up to 70 rpm were tested on the swimming patterns of naturally occurring fish in a subtropical tidal channel. Fish movements were recorded with and without the rotor in place. Results showed that no fish collided with the rotor and only a few specimens passed through rotor blades. Overall, fish reduced their movements through the area when the rotor was present. This deterrent effect on fish increased with current speed. Fish that passed the rotor avoided the near-field, about 0.3 m from the rotor for benthic reef fish. Large predatory fish were particularly cautious of the rotor and never moved closer than 1.7 m in current speeds above 0.6 ms-1. The effects of the rotor differed among taxa and feeding guilds and it is suggested that fish boldness and body shape influenced responses. In conclusion, the tested hydrokinetic turbine rotor proved non-hazardous to fish during the investigated conditions. However, the results indicate that arrays comprising multiple turbines may restrict fish movements, particularly for large species, with possible effects on habitat connectivity if migration routes are exploited. Arrays of the investigated turbine type and comparable systems should therefore be designed with gaps of several metres width to allow large fish to pass through. In combination with further research the insights from this study can be used for guiding the design of hydrokinetic turbine arrays where needed, so preventing ecological impacts. PMID:24358334

  8. Hydrokinetic turbine effects on fish swimming behaviour.

    PubMed

    Hammar, Linus; Andersson, Sandra; Eggertsen, Linda; Haglund, Johan; Gullström, Martin; Ehnberg, Jimmy; Molander, Sverker

    2013-01-01

    Hydrokinetic turbines, targeting the kinetic energy of fast-flowing currents, are under development with some turbines already deployed at ocean sites around the world. It remains virtually unknown as to how these technologies affect fish, and rotor collisions have been postulated as a major concern. In this study the effects of a vertical axis hydrokinetic rotor with rotational speeds up to 70 rpm were tested on the swimming patterns of naturally occurring fish in a subtropical tidal channel. Fish movements were recorded with and without the rotor in place. Results showed that no fish collided with the rotor and only a few specimens passed through rotor blades. Overall, fish reduced their movements through the area when the rotor was present. This deterrent effect on fish increased with current speed. Fish that passed the rotor avoided the near-field, about 0.3 m from the rotor for benthic reef fish. Large predatory fish were particularly cautious of the rotor and never moved closer than 1.7 m in current speeds above 0.6 ms(-1). The effects of the rotor differed among taxa and feeding guilds and it is suggested that fish boldness and body shape influenced responses. In conclusion, the tested hydrokinetic turbine rotor proved non-hazardous to fish during the investigated conditions. However, the results indicate that arrays comprising multiple turbines may restrict fish movements, particularly for large species, with possible effects on habitat connectivity if migration routes are exploited. Arrays of the investigated turbine type and comparable systems should therefore be designed with gaps of several metres width to allow large fish to pass through. In combination with further research the insights from this study can be used for guiding the design of hydrokinetic turbine arrays where needed, so preventing ecological impacts.

  9. Importance of mechanics and kinematics in determining the stiffness contribution of the vertebral column during body-caudal-fin swimming in fishes.

    PubMed

    Nowroozi, Bryan N; Brainerd, Elizabeth L

    2014-02-01

    Whole-body stiffness in fishes has important consequences for swimming mode, speed and efficiency, but the contribution of vertebral column stiffness to whole-body stiffness is unclear. In our opinion, this lack of clarity is due in part to the lack of studies that have measured both in vitro mechanical properties of the vertebral column as well as in vivo vertebral kinematics in the same species. Some lack of clarity may also come from real variation in the mechanical role of the vertebral column across species. Previous studies, based on either mechanics or kinematics alone, suggest species-specific variation in vertebral column locomotor function that ranges from highly stiff regimes that contribute greatly to whole-body stiffness, and potentially act as a spring, to highly compliant regimes that only prohibit excessive flexion of the intervertebral joints. We review data collected in combined investigations of both mechanics and kinematics of three species, Myxine glutinosa, Acipenser transmontanus, and Morone saxatilis, to illustrate how mechanical testing within the context of the in vivo kinematics more clearly distinguishes the role of the vertebral column in each species. In addition, we identify species for which kinematic data are available, but mechanical data are lacking. We encourage further investigation of these species to fill these mechanical data gaps. Finally, we hope these future combined analyses will identify certain morphological, mechanical, or kinematic parameters that might be associated with certain vertebral column functional regimes with respect to body stiffness.

  10. Dimentionality and behavior of swimming Zebrafish: ``The EigenFish''

    NASA Astrophysics Data System (ADS)

    Girdhar, Kiran; Gruebele, Martin; Chemla, Yann

    2013-03-01

    How simple is the underlying control mechanism for the complex locomotion of vertebrates? To answer this question, we study the swimming behavior of zebrafish larvae. A dimensionality reduction method (singular value decomposition), in analogy to previous studies of worms, is used to analyze swimming movies of fish. That way, the animals can directly provide us with a minimal set of shapes to describe their motion, rather than us imposing arbitrary coordinates. We show that two low imensional attractors (an ellipse and a distorted ellipse) embedded in a threedimensional space of motion coordinates are sufficient to describe > 95% of the locomotion. We also show that scoots and R-turns, previously thought to be independent behaviors based on qualitative studies, are in fact just extremes of a continuous family of motions bounded by the two attractors.

  11. Swimming behavior of larval Medaka fish under microgravity

    NASA Astrophysics Data System (ADS)

    Furukawa, R.; Ijiri, K.

    Fish exhibit looping and rolling behaviors when subjected to short periods of microgravity during parabolic flight. Strain-differences in the behavioral response of adult Medaka fish ( Oryzias latipes) were reported previously, however, there have been few studies of larval fish behavior under microgravity. In the present study, we investigated whether microgravity affects the swimming behavior of larvae at various ages (0 to 20 days after hatching), using different strains: HNI-II, HO5, ha strain, and variety of different strains (variety). The preliminary experiments were done in the ground laboratory: the development of eyesight was examined using optokinetic response for the different strains. The visual acuity of larvae improved drastically during 20 days after hatching. Strain differences of response were noted for the development of their visual acuity. In microgravity, the results were significantly different from those of adult Medaka. The larval fish appeared to maintain their orientation, except that a few of them exhibited looping and rolling behavior. Further, most larvae swam normally with their backs turning toward the light source (dorsal light response, DLR), and the rest of them stayed with their abdomen touching the surface of the container (ventral substrate response, VSR). For larval stages, strain-differences and age-differences in behavior were observed, but less pronounced than with adult fish under microgravity. Our observations suggest that adaptability of larval fish to the gravitational change and the mechanism of their postural control in microgravity are more variable than in adult fish.

  12. Synthetic C-start maneuver in fish-like swimming

    NASA Astrophysics Data System (ADS)

    Zenit, R.; Godoy-Diana, R.

    2013-11-01

    We investigate the mechanics of the unsteady fish-like swimming maneuver using a simplified experimental model in a water tank. A flexible foil (which emulates the fish body) is impulsively actuated by rotating a cylindrical rod that holds the foil. This rod constitutes the head of the swimmer and is mounted through the shaft of the driving motor on an rail with an air bearing. The foil is initially positioned at a start angle and then rapidly rotated to a final angle, which coincides with the free-moving direction of the rail. As the foil rotates, it pushes the surrounding fluid, it deforms and stores elastic energy which drive the recovery of the straight body shape after the motor actuation has stopped; during the rotation, a trust force is induced which accelerates the array. We measure the resulting escape velocity and acceleration as a function of the beam stiffness, size, initial angle, etc. Some measurements of the velocity field during the escape were obtained using a PIV technique. The measurements agree well with a simple mechanical model that quantifies the impulse of the maneuver. The objective of this work is to understand the fundamental mechanisms of thrust generation in unsteady fast-start swimming. We acknowledge support of EADS Foundation through the project ``Fluids and elasticity in biomimetic propulsion'' and of the Chaire Total for RZ as a visiting professor at ESPCI ParisTech.

  13. Swimming efficiency and the influence of morphology on swimming costs in fishes.

    PubMed

    Ohlberger, J; Staaks, G; Hölker, F

    2006-01-01

    Swimming performance is considered a main character determining survival in many aquatic animals. Body morphology highly influences the energetic costs and efficiency of swimming and sets general limits on a species capacity to use habitats and foods. For two cyprinid fishes with different morphological characteristics, carp (Cyprinus carpio L.) and roach (Rutilus rutilus (L.)), optimum swimming speeds (U(mc)) as well as total and net costs of transport (COT, NCOT) were determined to evaluate differences in their swimming efficiency. Costs of transport and optimum speeds proved to be allometric functions of fish mass. NCOT was higher but U(mc) was lower in carp, indicating a lower swimming efficiency compared to roach. The differences in swimming costs are attributed to the different ecological demands of the species and could partly be explained by their morphological characteristics. Body fineness ratios were used to quantify the influence of body shape on activity costs. This factor proved to be significantly different between the species, indicating a better streamlining in roach with values closer to the optimum body form for efficient swimming. Net swimming costs were directly related to fish morphology.

  14. Ectoparasites increase swimming costs in a coral reef fish.

    PubMed

    Binning, Sandra A; Roche, Dominique G; Layton, Cayne

    2013-02-23

    Ectoparasites can reduce individual fitness by negatively affecting behavioural, morphological and physiological traits. In fishes, there are potential costs if ectoparasites decrease streamlining, thereby directly compromising swimming performance. Few studies have examined the effects of ectoparasites on fish swimming performance and none distinguish between energetic costs imposed by changes in streamlining and effects on host physiology. The bridled monocle bream (Scolopsis bilineatus) is parasitized by an isopod (Anilocra nemipteri), which attaches above the eye. We show that parasitized fish have higher standard metabolic rates (SMRs), poorer aerobic capacities and lower maximum swimming speeds than non-parasitized fish. Adding a model parasite did not affect SMR, but reduced maximum swimming speed and elevated oxygen consumption rates at high speeds to levels observed in naturally parasitized fish. This demonstrates that ectoparasites create drag effects that are important at high speeds. The higher SMR of naturally parasitized fish does, however, reveal an effect of parasitism on host physiology. This effect was easily reversed: fish whose parasite was removed 24 h earlier did not differ from unparasitized fish in any performance metrics. In sum, the main cost of this ectoparasite is probably its direct effect on streamlining, reducing swimming performance at high speeds.

  15. Ectoparasites increase swimming costs in a coral reef fish

    PubMed Central

    Binning, Sandra A.; Roche, Dominique G.; Layton, Cayne

    2013-01-01

    Ectoparasites can reduce individual fitness by negatively affecting behavioural, morphological and physiological traits. In fishes, there are potential costs if ectoparasites decrease streamlining, thereby directly compromising swimming performance. Few studies have examined the effects of ectoparasites on fish swimming performance and none distinguish between energetic costs imposed by changes in streamlining and effects on host physiology. The bridled monocle bream (Scolopsis bilineatus) is parasitized by an isopod (Anilocra nemipteri), which attaches above the eye. We show that parasitized fish have higher standard metabolic rates (SMRs), poorer aerobic capacities and lower maximum swimming speeds than non-parasitized fish. Adding a model parasite did not affect SMR, but reduced maximum swimming speed and elevated oxygen consumption rates at high speeds to levels observed in naturally parasitized fish. This demonstrates that ectoparasites create drag effects that are important at high speeds. The higher SMR of naturally parasitized fish does, however, reveal an effect of parasitism on host physiology. This effect was easily reversed: fish whose parasite was removed 24 h earlier did not differ from unparasitized fish in any performance metrics. In sum, the main cost of this ectoparasite is probably its direct effect on streamlining, reducing swimming performance at high speeds. PMID:23193046

  16. Resolving Shifting Patterns of Muscle Energy Use in Swimming Fish

    PubMed Central

    Gerry, Shannon P.; Ellerby, David J.

    2014-01-01

    Muscle metabolism dominates the energy costs of locomotion. Although in vivo measures of muscle strain, activity and force can indicate mechanical function, similar muscle-level measures of energy use are challenging to obtain. Without this information locomotor systems are essentially a black box in terms of the distribution of metabolic energy. Although in situ measurements of muscle metabolism are not practical in multiple muscles, the rate of blood flow to skeletal muscle tissue can be used as a proxy for aerobic metabolism, allowing the cost of particular muscle functions to be estimated. Axial, undulatory swimming is one of the most common modes of vertebrate locomotion. In fish, segmented myotomal muscles are the primary power source, driving undulations of the body axis that transfer momentum to the water. Multiple fins and the associated fin muscles also contribute to thrust production, and stabilization and control of the swimming trajectory. We have used blood flow tracers in swimming rainbow trout (Oncorhynchus mykiss) to estimate the regional distribution of energy use across the myotomal and fin muscle groups to reveal the functional distribution of metabolic energy use within a swimming animal for the first time. Energy use by the myotomal muscle increased with speed to meet thrust requirements, particularly in posterior myotomes where muscle power outputs are greatest. At low speeds, there was high fin muscle energy use, consistent with active stability control. As speed increased, and fins were adducted, overall fin muscle energy use declined, except in the caudal fin muscles where active fin stiffening is required to maintain power transfer to the wake. The present data were obtained under steady-state conditions which rarely apply in natural, physical environments. This approach also has potential to reveal the mechanical factors that underlie changes in locomotor cost associated with movement through unsteady flow regimes. PMID:25165858

  17. THE IPOS FRAMEWORK: LINKING FISH SWIMMING PERFORMANCE IN ALTERED FLOWS FROM LABORATORY EXPERIMENTS TO RIVERS

    SciTech Connect

    Neary, Vincent S

    2011-01-01

    Current understanding of the effects of turbulence on the swimming performance of fish 32 is primarily derived from laboratory experiments under pressurized flow swim tunnels 33 and open channel flow facilities. These studies have produced valuable information on 34 the swimming mechanics and behavior of fish in turbulent flow. However, laboratory 35 studies have limited representation of the flows fish experience in nature. The complex 36 flow structure in rivers is imparted primarily by the highly heterogeneous and non37 uniform bed and planform geometry. Our goal is to direct future laboratory and field 38 studies to adopt a common framework that will shape the integration of both approaches. 39 This paper outlines four characteristics of turbulent flow, which we suggest should be 40 evaluated when generalizing results from fish turbulent studies in both the laboratory and 41 the field. The framework is based on four turbulence characteristics that are summarized 42 under the acronym IPOS: Intensity, Periodicity, Orientation, and Scale.

  18. Locomotion Performance of Biomimetic Fish-like Swimming Devices

    NASA Astrophysics Data System (ADS)

    Epps, Brenden P.; Valdivia Y Alvarado, Pablo; Techet, Alexandra H.

    2007-11-01

    The swimming performance of a biomimetic, fish-like swimming device, designed to exploit the natural dynamics of its compliant body to achieve locomotion, is studied experimentally. A theoretical model combines beam-bending stress analysis and unsteady hydrodynamic forcing with known material properties of the robot to reveal desired geometry distributions and actuation modes. Swimming kinematics and corresponding performance of the device are also predicted and tested for a carangiform prototype device in a quiescent tank of water. Experimental swimming tests show good agreement with the simplified theoretical models. The hydrodynamic characteristics of the wake behind the device are investigated using time-resolved particle imaging velocimetry (PIV) over a range of tail beat frequencies, from 1 to 4 Hz, to asses vortical wake patterns and hydrodynamic forces. PIV data are compared to theoretical model predictions. Reynolds numbers for the swimming device are between 2500 and 8500 based on body length.

  19. Swimming performance of a biomimetic compliant fish-like robot

    NASA Astrophysics Data System (ADS)

    Epps, Brenden P.; Valdivia Y Alvarado, Pablo; Youcef-Toumi, Kamal; Techet, Alexandra H.

    2009-12-01

    Digital particle image velocimetry and fluorescent dye visualization are used to characterize the performance of fish-like swimming robots. During nominal swimming, these robots produce a ‘V’-shaped double wake, with two reverse-Kármán streets in the far wake. The Reynolds number based on swimming speed and body length is approximately 7500, and the Strouhal number based on flapping frequency, flapping amplitude, and swimming speed is 0.86. It is found that swimming speed scales with the strength and geometry of a composite wake, which is constructed by freezing each vortex at the location of its centroid at the time of shedding. Specifically, we find that swimming speed scales linearly with vortex circulation. Also, swimming speed scales linearly with flapping frequency and the width of the composite wake. The thrust produced by the swimming robot is estimated using a simple vortex dynamics model, and we find satisfactory agreement between this estimate and measurements made during static load tests.

  20. Impulse generated during unsteady maneuvering of swimming fish

    NASA Astrophysics Data System (ADS)

    Epps, Brenden P.; Techet, Alexandra H.

    2007-11-01

    The relationship between the maneuvering kinematics of a Giant Danio ( Danio aequipinnatus) and the resulting vortical wake is investigated for a rapid, ‘C’-start maneuver using fully time-resolved (500 Hz) particle image velocimetry (PIV). PIV illuminates the two distinct vortices formed during the turn. The fish body rotation is facilitated by the initial, or “maneuvering” vortex formation, and the final fish velocity is augmented by the strength of the second, “propulsive” vortex. Results confirm that the axisymmetric vortex ring model is reasonable to use in calculating the hydrodynamic impulse acting on the fish. The total linear momentum change of the fish from its initial swimming trajectory to its final swimming trajectory is balanced by the vector sum of the impulses of both vortex rings. The timing of vortex formation is uniquely synchronized with the fish motion, and the choreography of the maneuver is addressed in the context of the resulting hydrodynamic forces.

  1. Impulse generated during unsteady maneuvering of swimming fish

    NASA Astrophysics Data System (ADS)

    Epps, Brenden P.; Techet, Alexandra H.

    The relationship between the maneuvering kinematics of a Giant Danio (Danio aequipinnatus) and the resulting vortical wake is investigated for a rapid, 'C'-start maneuver using fully time-resolved (500 Hz) particle image velocimetry (PIV). PIV illuminates the two distinct vortices formed during the turn. The fish body rotation is facilitated by the initial, or "maneuvering" vortex formation, and the final fish velocity is augmented by the strength of the second, "propulsive" vortex. Results confirm that the axisymmetric vortex ring model is reasonable to use in calculating the hydrodynamic impulse acting on the fish. The total linear momentum change of the fish from its initial swimming trajectory to its final swimming trajectory is balanced by the vector sum of the impulses of both vortex rings. The timing of vortex formation is uniquely synchronized with the fish motion, and the choreography of the maneuver is addressed in the context of the resulting hydrodynamic forces.

  2. Fin-Body Interaction and its Hydrodynamic Benefits in Fish's Steady Swimming

    NASA Astrophysics Data System (ADS)

    Liu, Geng; Ren, Yan; Dong, Haibo; Lauder, George

    2016-11-01

    In many past studies on fish swimming, the hydrodynamics of fish caudal fins were investigated separately. However, fish body inevitably interacts with the caudal fin since the fin flaps in the wake of the body during swimming. In this work, an integrated experimental and computational approach has been used to investigate hydrodynamic performance improvement and the vortex dynamics associated with the fin-body interactions of a jack fish in steady swimming. Realistic 3D jack fish geometry and the undulatory kinematics are reconstructed based on the output of a high-speed photogrammetry system. Hydrodynamic performance and wake structures are simulated by an in-house immersed-boundary-method flow solver. It is found that the body-fin interactions enhance the thrust production of the caudal fin by more than 30% compared to that produced by an isolated caudal fin. Further analysis on the vortex dynamics has shown that the vortices shed from the posterior part of the fish body are captured by the leading edge portion of the caudal fin. This further enhances the strength of the leading-edge vortex attaching to the caudal fin and results in larger thrust production. This work reveals a potential performance enhancement mechanism in fish's steady swimming. This work was supported by NSF CBET-1313217 and ONR MURI N00014-14-1-0533.

  3. A Study of a Mechanical Swimming Lamprey

    NASA Astrophysics Data System (ADS)

    Leftwich, Megan; Smits, Alexander

    2006-11-01

    To develop a comprehensive model of lamprey swimming, the wake structure generated by a swimming mechanical model is investigated using dye flow visualization. The eel is activated by 13 programmable servomotors and a traveling wave is generated along the length of the body. The waveform is based on the motion of an American eel (Anguilla rostrata) of Tytell and Lauder (2004). A laser scanning system is used to visualize the three-dimensional unsteady wake structure.

  4. Disentangling the Functional Roles of Morphology and Motion in the Swimming of Fish

    PubMed Central

    Tytell, Eric D.; Borazjani, Iman; Sotiropoulos, Fotis; Baker, T. Vernon; Anderson, Erik J.; Lauder, George V.

    2010-01-01

    In fishes the shape of the body and the swimming mode generally are correlated. Slender-bodied fishes such as eels, lampreys, and many sharks tend to swim in the anguilliform mode, in which much of the body undulates at high amplitude. Fishes with broad tails and a narrow caudal peduncle, in contrast, tend to swim in the carangiform mode, in which the tail undulates at high amplitude. Such fishes also tend to have different wake structures. Carangiform swimmers generally produce two staggered vortices per tail beat and a strong downstream jet, while anguilliform swimmers produce a more complex wake, containing at least two pairs of vortices per tail beat and relatively little downstream flow. Are these differences a result of the different swimming modes or of the different body shapes, or both? Disentangling the functional roles requires a multipronged approach, using experiments on live fishes as well as computational simulations and physical models. We present experimental results from swimming eels (anguilliform), bluegill sunfish (carangiform), and rainbow trout (subcarangiform) that demonstrate differences in the wakes and in swimming performance. The swimming of mackerel and lamprey was also simulated computationally with realistic body shapes and both swimming modes: the normal carangiform mackerel and anguilliform lamprey, then an anguilliform mackerel and carangiform lamprey. The gross structure of simulated wakes (single versus double vortex row) depended strongly on Strouhal number, while body shape influenced the complexity of the vortex row, and the swimming mode had the weakest effect. Performance was affected even by small differences in the wakes: both experimental and computational results indicate that anguilliform swimmers are more efficient at lower swimming speeds, while carangiform swimmers are more efficient at high speed. At high Reynolds number, the lamprey-shaped swimmer produced a more complex wake than the mackerel-shaped swimmer

  5. Disentangling the functional roles of morphology and motion in the swimming of fish.

    PubMed

    Tytell, Eric D; Borazjani, Iman; Sotiropoulos, Fotis; Baker, T Vernon; Anderson, Erik J; Lauder, George V

    2010-12-01

    In fishes the shape of the body and the swimming mode generally are correlated. Slender-bodied fishes such as eels, lampreys, and many sharks tend to swim in the anguilliform mode, in which much of the body undulates at high amplitude. Fishes with broad tails and a narrow caudal peduncle, in contrast, tend to swim in the carangiform mode, in which the tail undulates at high amplitude. Such fishes also tend to have different wake structures. Carangiform swimmers generally produce two staggered vortices per tail beat and a strong downstream jet, while anguilliform swimmers produce a more complex wake, containing at least two pairs of vortices per tail beat and relatively little downstream flow. Are these differences a result of the different swimming modes or of the different body shapes, or both? Disentangling the functional roles requires a multipronged approach, using experiments on live fishes as well as computational simulations and physical models. We present experimental results from swimming eels (anguilliform), bluegill sunfish (carangiform), and rainbow trout (subcarangiform) that demonstrate differences in the wakes and in swimming performance. The swimming of mackerel and lamprey was also simulated computationally with realistic body shapes and both swimming modes: the normal carangiform mackerel and anguilliform lamprey, then an anguilliform mackerel and carangiform lamprey. The gross structure of simulated wakes (single versus double vortex row) depended strongly on Strouhal number, while body shape influenced the complexity of the vortex row, and the swimming mode had the weakest effect. Performance was affected even by small differences in the wakes: both experimental and computational results indicate that anguilliform swimmers are more efficient at lower swimming speeds, while carangiform swimmers are more efficient at high speed. At high Reynolds number, the lamprey-shaped swimmer produced a more complex wake than the mackerel-shaped swimmer

  6. "Spilling Over": Fish Swimming Kinematics in Cylinder Wakes

    NASA Astrophysics Data System (ADS)

    Wilson, C. A.; Muhawenimana, V.; Cable, J.

    2016-12-01

    Our understanding of fish swimming kinematics and behaviour in turbulent altered and pseudo-natural flows remains incomplete. This study aims to examine velocity, turbulence and wake metrics that govern fish stability and other behavioural traits in the turbulent wake of a horizontal cylinder. In a free surface flume, the swimming behaviour of Nile tilapia (Oreochromis niloticus, Silver strain) was monitored over a range of cylinder diameter (D) Reynolds numbers from 2.8 x103 to 25.8 x103. Spills, defined as loss of both balance and posture, were inversely correlated with fish length and weight; where smaller fish in the 50th percentile of standard length, lost balance more often and accounted for 65% of the total number (533) of spills. Additionally, the bigger fish in the 95th percentile, experienced <0.5% of all recorded spills. Such findings are in keeping with a previous study where the spill occurrence increased with decreasing fish length to eddy size ratio. Fish spent the majority of station holding time within a two diameter (2D) distance closest to the flume bed and in a downstream distance of 3D to 6D from the cylinder. The frequency of occurrence of spills increased with increasing Reynolds number for the whole fish population until an intermediate Reynolds number of 11.5 x103 was reached, where the frequency in spills steadily declined with increasing Reynolds number until the end of the test duration. The spill frequency-Reynolds number relationship indicates a shift in cylinder wake dynamics. Further analysis of the measured velocity statistics will help determine the intensity, periodicity and the turbulence length scale of the wake structure and their correlations with the observed fish swimming kinematics.

  7. Simulations of the burst and coast swimming behavior of fish

    NASA Astrophysics Data System (ADS)

    Zhou, Quan; Moored, Keith; Smits, Alexander

    2013-11-01

    An investigation into the burst and coast swimming behavior of fish is simulated with a 2-D, inviscid Boundary Element Method. The fish is modeled as a thin pitching panel that is allowed to free swim. A simple drag model is used where drag is proportional to the velocity squared in order to calculate the cruising velocity. The burst-coast behavior is modeled by a coasting phase, where the panel is motionless, and a burst phase, where the panel pitches with a single sine wave motion. Varying the frequency of the fin-beat and the duration of the duty cycle (the ratio of the burst-phase to the entire period), it is found that it is possible to alter swimming motion to yield a decrease of 50% in the cost of transport with no sacrifice of time-averaged cruising velocity. The analyses of the wake structure demonstrate how vortices shed by the fish affect and shape swimming dynamics. Supported by the Office of Naval Research under Program Director Dr. Bob Brizzolara, MURI grant number N00014-08-1-0642.

  8. How the body contributes to the wake in undulatory fish swimming: flow fields of a swimming eel (Anguilla anguilla).

    PubMed

    Müller, U K; Smit, J; Stamhuis, E J; Videler, J J

    2001-08-01

    Undulatory swimmers generate thrust by passing a transverse wave down their body. Thrust is generated not just at the tail, but also to a varying degree by the body, depending on the fish's morphology and swimming movements. To examine the mechanisms by which the body in particular contributes to thrust production, we chose eels, which have no pronounced tail fin and hence are thought to generate all their thrust with their body. We investigated the interaction between body movements and the flow around swimming eels using two-dimensional particle image velocimetry. Maximum flow velocities adjacent to the eel's body increase almost linearly from head to tail, suggesting that eels generate thrust continuously along their body. The wake behind eels swimming at 1.5 Ls(-1), where L is body length, consisted of a double row of double vortices with little backward momentum. The eel sheds two vortices per half tail-beat, which can be identified by their shedding dynamics as a start-stop vortex of the tail and a vortex shed when the body-generated flows reach the 'trailing edge' and cause separation. Two consecutively shed ipsilateral body and tail vortices combine to form a vortex pair that moves away from the mean path of motion. This wake shape resembles flow patterns described previously for a propulsive mode in which neither swimming efficiency nor thrust is maximised but sideways forces are high. This swimming mode is suited to high manoeuvrability. Earlier recordings show that eels also generate a wake reflective of maximum swimming efficiency. The combined findings suggest that eels can modify their body wave to generate wakes that reflect their propulsive mode.

  9. Body dynamics and hydrodynamics of swimming fish larvae: a computational study.

    PubMed

    Li, Gen; Müller, Ulrike K; van Leeuwen, Johan L; Liu, Hao

    2012-11-15

    To understand the mechanics of fish swimming, we need to know the forces exerted by the fluid and how these forces affect the motion of the fish. To this end, we developed a 3-D computational approach that integrates hydrodynamics and body dynamics. This study quantifies the flow around a swimming zebrafish (Danio rerio) larva. We used morphological and kinematics data from actual fish larvae aged 3 and 5 days post fertilization as input for a computational model that predicted free-swimming dynamics from prescribed changes in body shape. We simulated cyclic swimming and a spontaneous C-start. A rigorous comparison with 2-D particle image velocimetry and kinematics data revealed that the computational model accurately predicted the motion of the fish's centre of mass as well as the spatial and temporal characteristics of the flow. The distribution of pressure and shear forces along the body showed that thrust is mainly produced in the posterior half of the body. We also explored the effect of the body wave amplitude on swimming performance by considering wave amplitudes that were up to 40% larger or smaller than the experimentally observed value. Increasing the body wave amplitude increased forward swimming speed from 7 to 21 body lengths per second, which is consistent with experimental observations. The model also predicted a non-linear increase in propulsive efficiency from 0.22 to 0.32 while the required mechanical power quadrupled. The efficiency increase was only minor for wave amplitudes above the experimental reference value, whereas the cost of transport rose significantly.

  10. Effects of altered gravity on the swimming behaviour of fish

    NASA Astrophysics Data System (ADS)

    Hilbig, R.; Anken, R. H.; Sonntag, G.; Höhne, S.; Henneberg, J.; Kretschmer, N.; Rahmann, H.

    Humans taking part in parabolic aircraft flights (PAFs) may suffer from space motion sickness-phenomena (SMS, a kinetosis). It has been argued that SMS during PAFs might not be based on microgravity alone but rather on changing accelerations from 0g to 2g. We test here the hypothesis that PAF-induced kinetosis is based on asymmetric statoliths (i.e., differently weighed statoliths on the right and the left side of the head), with asymmetric inputs to the brain being disclosed at microgravity. Since fish frequently reveal kinetotic behaviour during PAFs (especially so-called spinning movements and looping responses), we investigated (1) whether or not kinetotically swimming fish at microgravity would have a pronounced inner ear otolith asymmetry and (2) whether or not slow translational and continuously changing linear (vertical) acceleration on ground induced kinetosis. These latter accelerations were applied using a specially developed parabel-animal-container (PAC) to stimulate the cupular organs. The results suggest that the fish tested on ground can counter changing accelerations successfully without revealing kinetotic swimming patterns. Kinetosis could only be induced by PAFs. This finding suggests that it is indeed microgravity rather than changing accelerations, which induces kinetosis. Moreover, we demonstrate that fish swimming kinetotically during PAFs correlates with a higher otolith asymmetry in comparison to normally behaving animals in PAFs.

  11. Three-dimensional spatial representation in freely swimming fish.

    PubMed

    Burt de Perera, Theresa; Holbrook, Robert I

    2012-08-01

    Research on spatial cognition has focused on how animals encode the horizontal component of space. However, most animals travel vertically within their environments, particularly those that fly or swim. Pelagic fish move with six degrees of freedom and must integrate these components to navigate accurately--how do they do this? Using an assay based on associative learning of the vertical and horizontal components of space within a rotating Y-maze, we found that fish (Astyanax fasciatus) learned and remembered information from both horizontal and vertical axes when they were presented either separately or as an integrated three-dimensional unit. When information from the two components conflicted, the fish used the previously learned vertical information in preference to the horizontal. This not only demonstrates that the horizontal and vertical components are stored separately in the fishes' representation of space (simplifying the problem of 3D navigation), but also suggests that the vertical axis contains particularly salient spatial cues--presumably including hydrostatic pressure. To explore this latter possibility, we developed a physical theoretical model that shows how fish could determine their absolute depth using pressure. We next considered full volumetric spatial cognition. Astyanax were trained to swim towards a reward in a Y-maze that could be rotated, before the arms were removed during probe trials. The subjects were tracked in three dimensions as they swam freely through the surrounding cubic tank. The results revealed that fish are able to accurately encode metric information in a volume, and that the error accrued in the horizontal and vertical axes whilst swimming in probe trials was similar. Together, these experiments demonstrate that unlike in surface-bound rats, the vertical component of the representation of space is vitally important to fishes. We hypothesise that the representation of space in the brain of vertebrates could ultimately be

  12. Modeling and simulation of fish swimming with active muscles.

    PubMed

    Curatolo, Michele; Teresi, Luciano

    2016-11-21

    Our goal is to reproduce the key features of carangiform swimming by modeling muscle functioning using the notion of active distortions, thus emphasizing the kinematical role of muscle, the generation of movement, rather than the dynamical one, the production of force. This approach, already proposed to model the action of muscles in different contexts, is here tested again for the problem of developing an effective and reliable framework to model and simulate swimming. A proper undulatory movement of a fish-like body is reproduced by defining a pattern of distortions, tuned in both space and time, meant to model the muscles activation which produce the flexural motion of body fish; eventually, interactions with the surrounding water yields the desired thrust. Carangiform swimmers have a relatively inflexible anterior body section and a generally flat, flexible posterior section. Because of this configuration, undulations sent rearward along the body attain a significant amplitude only in the posterior section. We compare the performances of different swimming gaits, and we are able to find some important relations between key parameters such as frequencies, wavelength, tail amplitude, and the achieved swim velocity, or the generated thrust, which summarize the swimming performance. In particular, an interesting relation is found between the Strouhal number and the wavelength of muscles activation. We highlight the muscle function during fish locomotion describing the activation of muscles and the relation between the force production and the shortening-lengthening cycle of muscle. We found a great accordance between results and empirical relations, giving an implicit validation of our models. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Evolutionarily Stable Strategies for Fecundity and Swimming Speed of Fish.

    PubMed

    Plank, Michael J; Pitchford, Jonathan W; James, Alex

    2016-02-01

    Many pelagic fish species have a life history that involves producing a large number of small eggs. This is the result of a trade-off between fecundity and larval survival probability. There are also trade-offs involving other traits, such as larval swimming speed. Swimming faster increases the average food encounter rate but also increases the metabolic cost. Here we introduce an evolutionary model comprising fecundity and swimming speed as heritable traits. We show that there can be two evolutionary stable strategies. In environments where there is little noise in the food encounter rate, the stable strategy is a low-fecundity strategy with a swimming speed that minimises the mean time taken to reach reproductive maturity. However, in noisy environments, for example where the prey distribution is patchy or the water is turbulent, strategies that optimise mean outcomes are often outperformed by strategies that increase inter-individual variance. We show that, when larval growth rates are unpredictable, a high-fecundity strategy is evolutionarily stable. In a population following this strategy, the swimming speed is higher than would be anticipated by maximising the mean growth rate.

  14. Modeling the effect of varying swim speeds on fish passage through velocity barriers

    USGS Publications Warehouse

    Castro-Santos, T.

    2006-01-01

    The distance fish can swim through zones of high-velocity flow is an important factor limiting the distribution and conservation of riverine and diadromous fishes. Often, these barriers are characterized by nonuniform flow conditions, and it is likely that fish will swim at varying speeds to traverse them. Existing models used to predict passage success, however, typically include the unrealistic assumption that fish swim at a constant speed regardless of the speed of flow. This paper demonstrates how the maximum distance of ascent through velocity barriers can be estimated from the swim speed-fatigue time relationship, allowing for variation in both swim speed and water velocity.

  15. A Study of a Mechanical Swimming Dolphin

    NASA Astrophysics Data System (ADS)

    Fang, Lilly; Maass, Daniel; Leftwich, Megan; Smits, Alexander

    2007-11-01

    A one-third scale dolphin model was constructed to investigate dolphin swimming hydrodynamics. Design and construction of the model were achieved using body coordinate data from the common dolphin (Delphinus delphis) to ensure geometric similarity. The front two-thirds of the model are rigid and stationary, while an external mechanism drives the rear third. This motion mimics the kinematics of dolphin swimming. Planar laser induced florescence (PLIF) and particle image velocimetry (PIV) are used to study the hydrodynamics of the wake and to develop a vortex skeleton model.

  16. The swimming mechanics of Artemia Salina

    NASA Astrophysics Data System (ADS)

    Ruiz-Angulo, A.; Ramos-Musalem, A. K.; Zenit, R.

    2013-11-01

    An experimental study to analyze the swimming strategy of a small crustacean (Artemia Salina) was conducted. This animal has a series of eleven pairs of paddle-like appendices in its thorax. These legs move in metachronal-wave fashion to achieve locomotion. To quantify the swimming performance, both high speed video recordings of the legs motion and time-resolved PIV measurements of the induced propulsive jet were conducted. Experiments were conducted for both tethered and freely swimming specimens. We found that despite their small size, the propulsion is achieved by an inertial mechanism. An analysis of the efficiency of the leg wave-like motion is presented and discussed. A brief discussion on the mixing capability of the induced flow is also presented.

  17. Optimum swimming pathways of fish spawning migrations in rivers

    USGS Publications Warehouse

    McElroy, Brandon; DeLonay, Aaron; Jacobson, Robert

    2012-01-01

    Fishes that swim upstream in rivers to spawn must navigate complex fluvial velocity fields to arrive at their ultimate locations. One hypothesis with substantial implications is that fish traverse pathways that minimize their energy expenditure during migration. Here we present the methodological and theoretical developments necessary to test this and similar hypotheses. First, a cost function is derived for upstream migration that relates work done by a fish to swimming drag. The energetic cost scales with the cube of a fish's relative velocity integrated along its path. By normalizing to the energy requirements of holding a position in the slowest waters at the path's origin, a cost function is derived that depends only on the physical environment and not on specifics of individual fish. Then, as an example, we demonstrate the analysis of a migration pathway of a telemetrically tracked pallid sturgeon (Scaphirhynchus albus) in the Missouri River (USA). The actual pathway cost is lower than 105 random paths through the surveyed reach and is consistent with the optimization hypothesis. The implication—subject to more extensive validation—is that reproductive success in managed rivers could be increased through manipulation of reservoir releases or channel morphology to increase abundance of lower-cost migration pathways.

  18. Optimum swimming pathways of fish spawning migrations in rivers

    USGS Publications Warehouse

    McElroy, Brandon; DeLonay, Aaron; Jacobson, Robert

    2012-01-01

    Fishes that swim upstream in rivers to spawn must navigate complex fluvial velocity fields to arrive at their ultimate locations. One hypothesis with substantial implications is that fish traverse pathways that minimize their energy expenditure during migration. Here we present the methodological and theoretical developments necessary to test this and similar hypotheses. First, a cost function is derived for upstream migration that relates work done by a fish to swimming drag. The energetic cost scales with the cube of a fish's relative velocity integrated along its path. By normalizing to the energy requirements of holding a position in the slowest waters at the path's origin, a cost function is derived that depends only on the physical environment and not on specifics of individual fish. Then, as an example, we demonstrate the analysis of a migration pathway of a telemetrically tracked pallid sturgeon (Scaphirhynchus albus) in the Missouri River (USA). The actual pathway cost is lower than 105 random paths through the surveyed reach and is consistent with the optimization hypothesis. The implication—subject to more extensive validation—is that reproductive success in managed rivers could be increased through manipulation of reservoir releases or channel morphology to increase abundance of lower-cost migration pathways.

  19. The effects of steady swimming on fish escape performance.

    PubMed

    Anwar, Sanam B; Cathcart, Kelsey; Darakananda, Karin; Gaing, Ashley N; Shin, Seo Yim; Vronay, Xena; Wright, Dania N; Ellerby, David J

    2016-06-01

    Escape maneuvers are essential to the survival and fitness of many animals. Escapes are frequently initiated when an animal is already in motion. This may introduce constraints that alter the escape performance. In fish, escape maneuvers and steady, body caudal fin (BCF) swimming are driven by distinct patterns of curvature of the body axis. Pre-existing muscle activity may therefore delay or diminish a response. To quantify the performance consequences of escaping in flow, escape behavior was examined in bluegill sunfish (Lepomis macrochirus) in both still-water and during steady swimming. Escapes executed during swimming were kinematically less variable than those made in still-water. Swimming escapes also had increased response latencies and lower peak velocities and accelerations than those made in still-water. Performance was also lower for escapes made up rather than down-stream, and a preference for down-stream escapes may be associated with maximizing performance. The constraints imposed by pre-existing motion and flow, therefore, have the potential to shape predator-prey interactions under field conditions by shifting the optimal strategies for both predators and prey.

  20. Stability versus Maneuvering: Challenges for Stability during Swimming by Fishes.

    PubMed

    Webb, Paul W; Weihs, Daniel

    2015-10-01

    Fishes are well known for their remarkable maneuverability and agility. Less visible is the continuous control of stability essential for the exploitation of the full range of aquatic resources. Perturbations to posture and trajectory arise from hydrostatic and hydrodynamic forces centered in a fish (intrinsic) and from the environment (extrinsic). Hydrostatic instabilities arise from vertical and horizontal separation of the centers of mass (CM) and of buoyancy, thereby creating perturbations in roll, yaw, and pitch, with largely neglected implications for behavioral ecology. Among various forms of hydrodynamic stability, the need for stability in the face of recoil forces from propulsors is close to universal. Destabilizing torques in body-caudal fin swimming is created by inertial and viscous forces through a propulsor beat. The recoil component is reduced, damped, and corrected in various ways, including kinematics, shape of the body and fins, and deployment of the fins. We postulate that control of the angle of orientation, θ, of the trailing edge is especially important in the evolution and lifestyles of fishes, but studies are few. Control of stability and maneuvering are reflected in accelerations around the CM. Accelerations for such motions may give insight into time-behavior patterns in the wild but cannot be used to determine the expenditure of energy by free-swimming fishes.

  1. Metabolic fuel kinetics in fish: swimming, hypoxia and muscle membranes.

    PubMed

    Weber, Jean-Michel; Choi, Kevin; Gonzalez, Alex; Omlin, Teye

    2016-01-01

    Muscle performance depends on the supply of metabolic fuels and disposal of end-products. Using circulating metabolite concentrations to infer changes in fluxes is highly unreliable because the relationship between these parameters varies greatly with physiological state. Quantifying fuel kinetics directly is therefore crucial to the understanding of muscle metabolism. This review focuses on how carbohydrates, lipids and amino acids are provided to fish muscles during hypoxia and swimming. Both stresses force white muscle to produce lactate at higher rates than it can be processed by aerobic tissues. However, lactate accumulation is minimized because disposal is also strongly stimulated. Exogenous supply shows that trout have a much higher capacity to metabolize lactate than observed during hypoxia or intense swimming. The low density of monocarboxylate transporters and their lack of upregulation with exercise explain the phenomenon of white muscle lactate retention. This tissue operates as a quasi-closed system, where glycogen stores act as an 'energy spring' that alternates between explosive power release during swimming and slow recoil from lactate in situ during recovery. To cope with exogenous glucose, trout can completely suppress hepatic production and boost glucose disposal. Without these responses, glycemia would increase four times faster and reach dangerous levels. The capacity of salmonids for glucoregulation is therefore much better than presently described in the literature. Instead of albumin-bound fatty acids, fish use lipoproteins to shuttle energy from adipose tissue to working muscles during prolonged exercise. Proteins may play an important role in fueling muscle work in fish, but their exact contribution is yet to be established. The membrane pacemaker theory of metabolism accurately predicts general properties of muscle membranes such as unsaturation, but it does not explain allometric patterns of specific fatty acids. Investigations of

  2. Fish swimming in schools save energy regardless of their spatial position.

    PubMed

    Marras, Stefano; Killen, Shaun S; Lindström, Jan; McKenzie, David J; Steffensen, John F; Domenici, Paolo

    For animals, being a member of a group provides various advantages, such as reduced vulnerability to predators, increased foraging opportunities and reduced energetic costs of locomotion. In moving groups such as fish schools, there are benefits of group membership for trailing individuals, who can reduce the cost of movement by exploiting the flow patterns generated by the individuals swimming ahead of them. However, whether positions relative to the closest neighbours (e.g. ahead, sided by side or behind) modulate the individual energetic cost of swimming is still unknown. Here, we addressed these questions in grey mullet Liza aurata by measuring tail-beat frequency and amplitude of 15 focal fish, swimming in separate schools, while swimming in isolation and in various positions relative to their closest neighbours, at three speeds. Our results demonstrate that, in a fish school, individuals in any position have reduced costs of swimming, compared to when they swim at the same speed but alone. Although fish swimming behind their neighbours save the most energy, even fish swimming ahead of their nearest neighbour were able to gain a net energetic benefit over swimming in isolation, including those swimming at the front of a school. Interestingly, this energetic saving was greatest at the lowest swimming speed measured in our study. Because any member of a school gains an energetic benefit compared to swimming alone, we suggest that the benefits of membership in moving groups may be more strongly linked to reducing the costs of locomotion than previously appreciated.

  3. 3D Synthetic Aperture PIV of a Freely Swimming Fish

    NASA Astrophysics Data System (ADS)

    Mendelson, Leah; Techet, Alexandra

    2012-11-01

    Fish owe much of their locomotive success to complex body geometries and wake interactions that cannot be fully characterized by planar experimental techniques including 2D PIV. Volumetric methods are valuable to illustrate and quantify these features, thus providing new insights for bioinspired design. In particular, synthetic aperture particle image velocimetry (SAPIV) uses light field imaging algorithms to reconstruct a 3D particle field which can then be analyzed using a 3D cross-correlation. Previous studies have shown that this technique is able to resolve all three velocity components on the same order length scale and to see around partial occlusions, such as a caudal fin, through the use of multiple cameras. To harness these capabilities for biomimetic use, SAPIV is used to depict the three-dimensional velocity field and vortical structures surrounding a freely swimming Giant danio (Devario aequipinnatus) during straight swims and turning maneuvers.

  4. Three-dimensional flow structures and vorticity control in fish-like swimming

    NASA Astrophysics Data System (ADS)

    Zhu, Q.; Wolfgang, M. J.; Yue, D. K. P.; Triantafyllou, M. S.

    2002-10-01

    We employ a three-dimensional, nonlinear inviscid numerical method, in conjunction with experimental data from live fish and from a fish-like robotic mechanism, to establish the three-dimensional features of the flow around a fish-like body swimming in a straight line, and to identify the principal mechanisms of vorticity control employed in fish-like swimming. The computations contain no structural model for the fish and hence no recoil correction. First, we show the near-body flow structure produced by the travelling-wave undulations of the bodies of a tuna and a giant danio. As revealed in cross-sectional planes, for tuna the flow contains dominant features resembling the flow around a two-dimensional oscillating plate over most of the length of the fish body. For the giant danio, on the other hand, a mixed longitudinal transverse structure appears along the hind part of the body. We also investigate the interaction of the body-generated vortices with the oscillating caudal fin and with tail-generated vorticity. Two distinct vorticity interaction modes are identified: the first mode results in high thrust and is generated by constructive pairing of body-generated vorticity with same-sign tail-generated vorticity, resulting in the formation of a strong thrust wake; the second corresponds to high propulsive efficiency and is generated by destructive pairing of body-generated vorticity with opposite-sign tail-generated vorticity, resulting in the formation of a weak thrust wake.

  5. Adjoint-based optimization of fish swimming gaits

    NASA Astrophysics Data System (ADS)

    Floryan, Daniel; Rowley, Clarence W.; Smits, Alexander J.

    2016-11-01

    We study a simplified model of fish swimming, namely a flat plate periodically pitching about its leading edge. Using gradient-based optimization, we seek periodic gaits that are optimal in regards to a particular objective (e.g. maximal thrust). The two-dimensional immersed boundary projection method is used to investigate the flow states, and its adjoint formulation is used to efficiently calculate the gradient of the objective function needed for optimization. The adjoint method also provides sensitivity information, which may be used to elucidate the physics responsible for optimality. Supported under ONR MURI Grants N00014-14-1-0533, Program Manager Bob Brizzolara.

  6. Modeling and simulation of fish-like swimming

    NASA Astrophysics Data System (ADS)

    Bergmann, M.; Iollo, A.

    2011-01-01

    Modeling and simulation of two-dimensional flows past deformable bodies are considered. The incompressible Navier-Stokes equations are discretized in space onto a fixed cartesian mesh and the displacement of deformable objects through the fluid is taken into account using a penalization method. The interface between the solid and the fluid is tracked using a level-set description so that it is possible to simulate several bodies freely evolving in the fluid. As an illustration of the methods, fish-like locomotion is analyzed in terms of propulsion efficiency. Underwater maneuvering and school swimming are also explored.

  7. Applying Mechanics to Swimming Performance Analysis.

    ERIC Educational Resources Information Center

    Barthels, Katharine

    1989-01-01

    Swimming teachers and coaches can improve their feedback to swimmers, when correcting or refining swim movements, by applying some basic biomechanical concepts relevant to swimming. This article focuses on the biomechanical considerations used in analyzing swimming performance. Techniques for spotting and correcting problems that impede…

  8. Different ossification patterns of intermuscular bones in fish with different swimming modes

    PubMed Central

    Yao, Wenjie; Lv, Yaoping; Gong, Xiaoling; Wu, Jiaming; Bao, Baolong

    2015-01-01

    ABSTRACT Intermuscular bones are found in the myosepta in teleosts. However, there is very little information on the development and ossification of these intermuscular bones. In this study, we performed an in-depth investigation of the ossification process during development in zebrafish (Danio rerio) and Japanese eel (Anguilla japonica). In Japanese eel, a typical anguilliform swimmer, the intermuscular bones ossified predominantly from the anterior to the posterior. By contrast, in the zebrafish, a sub-carangiform or carangiform swimmer, the intermuscular bones ossified predominantly from the posterior to the anterior regions of the fish. Furthermore, tail amputation affected the ossification of the intermuscular bones. The length of the intermuscular bones in the posterior area became significantly shorter in tail-amputated zebrafish and Japanese eels, and both had less active and lower swimming speeds; this indicates that swimming might induce the ossification of the intermuscular bones. Moreover, when a greater length of tail was amputated in the zebrafish, the intermuscular bones became even shorter. Tail amputation affected the length and ossification of intermuscular bones in the anterior part of the fish, close to the head, differently between the two fish: they became significantly shorter in the zebrafish, but did not in the Japanese eel. This might be because tail amputation did not significantly affect the undulations in the anterior of the Japanese eel, especially near the head. This study shows that the ossification of intermuscular bones might be induced through mechanical force loadings that are produced by swimming. PMID:26603470

  9. Optimal swim speeds for traversing velocity barriers: An analysis of volitional high-speed swimming behavior of migratory fishes

    USGS Publications Warehouse

    Castro-Santos, T.

    2005-01-01

    Migrating fish traversing velocity barriers are often forced to swim at speeds greater than their maximum sustained speed (Ums). Failure to select an appropriate swim speed under these conditions can prevent fish from successfully negotiating otherwise passable barriers. I propose a new model of a distance-maximizing strategy for fishes traversing velocity barriers, derived from the relationships between swim speed and fatigue time in both prolonged and sprint modes. The model predicts that fish will maximize traversed distance by swimming at a constant groundspeed against a range of flow velocities, and this groundspeed is equal to the negative inverse of the slope of the swim speed-fatigue time relationship for each mode. At a predictable flow velocity, they should switch from the optimal groundspeed for prolonged mode to that for sprint mode. Data from six migratory fish species (anadromous clupeids: American shad Alosa sapidissima, alewife A. pseudoharengus and blueback herring A. aestivalis; amphidromous: striped bass Morone saxatilis; and potomodromous species: walleye (previously known as Stizostedion vitrium) and white sucker Catostomus commersonii) were used to explore the ability of fish to approximate the predicted distance-maximizing behaviors, as well as the consequences of deviating from the optima. Fish volitionally sprinted up an open-channel flume against fixed flow velocities of 1.5-4.5 m s-1, providing data on swim speeds and fatigue times, as well as their groundspeeds. Only anadromous clupeids selected the appropriate distance-maximizing groundspeed at both prolonged and sprint modes. The other three species maintained groundspeeds appropriate to the prolonged mode, even when they should have switched to the sprint optima. Because of this, these species failed to maximize distance of ascent. The observed behavioral variability has important implications both for distributional limits and fishway design.

  10. Effects of non-uniform stiffness on the swimming performance of a passively-flexing, fish-like foil model.

    PubMed

    Lucas, Kelsey N; Thornycroft, Patrick J M; Gemmell, Brad J; Colin, Sean P; Costello, John H; Lauder, George V

    2015-10-08

    Simple mechanical models emulating fish have been used recently to enable targeted study of individual factors contributing to swimming locomotion without the confounding complexity of the whole fish body. Yet, unlike these uniform models, the fish body is notable for its non-uniform material properties. In particular, flexural stiffness decreases along the fish's anterior-posterior axis. To identify the role of non-uniform bending stiffness during fish-like propulsion, we studied four foil model configurations made by adhering layers of plastic sheets to produce discrete regions of high (5.5 × 10(-5) Nm(2)) and low (1.9 × 10(-5) Nm(2)) flexural stiffness of biologically-relevant magnitudes. This resulted in two uniform control foils and two foils with anterior regions of high stiffness and posterior regions of low stiffness. With a mechanical flapping foil controller, we measured forces and torques in three directions and quantified swimming performance under both heaving (no pitch) and constant 0° angle of attack programs. Foils self-propelled at Reynolds number 21 000-115 000 and Strouhal number ∼0.20-0.25, values characteristic of fish locomotion. Although previous models have emphasized uniform distributions and heaving motions, the combination of non-uniform stiffness distributions and 0° angle of attack pitching program was better able to reproduce the kinematics of freely-swimming fish. This combination was likewise crucial in maximizing swimming performance and resulted in high self-propelled speeds at low costs of transport and large thrust coefficients at relatively high efficiency. Because these metrics were not all maximized together, selection of the 'best' stiffness distribution will depend on actuation constraints and performance goals. These improved models enable more detailed, accurate analyses of fish-like swimming.

  11. Concentration-dependent toxicity effect of SDBS on swimming behavior of freshwater fishes.

    PubMed

    Zhang, Ying; Ma, Jing; Zhou, Siyun; Ma, Fang

    2015-07-01

    Sodium dodecyl benzene sulfonate (SDBS) is a kind of widely used anionic surfactant and its discharge may pose potential risk to the receiving aquatic ecosystem. The aim of our study is to investigate the toxic effect of SDBS on fish swimming behavior quantitatively, followed by examination whether there are significant differences of swimming behavior among applied fish species (i.e. zebra fish (Danio rerio), Japanese medaka (Oryzias latipes) and red carp (Cyprinus carpio)). The swimming speed and vertical position were analyzed after the fish exposed to SDBS aiming to reflect the toxicity of SDBS on fish. Our results showed that the swimming behavior of three fishes was significantly affected by SDBS, although there were slight differences of swimming pattern changes among three fish species when they exposed to the same concentration of SDBS. It could be seen that red carp, one of the native fish species in China, can be used as a model fish to reflect the water quality changes as well as zebra fish and Japanese medaka which are commonly used as model fishes. Our study also illustrated that the swimming behavior monitoring may have a good application prospect in pre-warning of water quality.

  12. On burst-and-coast swimming performance in fish-like locomotion.

    PubMed

    Chung, M-H

    2009-09-01

    Burst-and-coast swimming performance in fish-like locomotion is studied via two-dimensional numerical simulation. The numerical method used is the collocated finite-volume adaptive Cartesian cut-cell method developed previously. The NACA00xx airfoil shape is used as an equilibrium fish-body form. Swimming in a burst-and-coast style is computed assuming that the burst phase is composed of a single tail-beat. Swimming efficiency is evaluated in terms of the mass-specific cost of transport instead of the Froude efficiency. The effects of the Reynolds number (based on the body length and burst time), duty cycle and fineness ratio (the body length over the largest thickness) on swimming performance (momentum capacity and the mass-specific cost of transport) are studied quantitatively. The results lead to a conclusion consistent with previous findings that a larval fish seldom swims in a burst-and-coast style. Given mass and swimming speed, a fish needs the least cost if it swims in a burst-and-coast style with a fineness ratio of 8.33. This energetically optimal fineness ratio is larger than that derived from the simple hydromechanical model proposed in literature. The calculated amount of energy saving in burst-and-coast swimming is comparable with the real-fish estimation in the literature. Finally, the predicted wake-vortex structures of both continuous and burst-and-coast swimming are biologically relevant.

  13. Mechanical krill models for studying coordinated swimming

    NASA Astrophysics Data System (ADS)

    Montague, Alice; Lai, Hong Kuan; Samaee, Milad; Santhanakrishnan, Arvind

    2016-11-01

    The global biomass of Homo sapiens is about a third of the biomass of Euphausia superba, commonly known as the Antarctic krill. Krill participate in organized social behavior. Propulsive jets generated by individual krill in a school have been suggested to be important in providing hydrodynamic sensory cues. The importance of body positions and body angles on the wakes generated is challenging to study in free swimming krill. Our solution to study the flow fields of multiple krill was to develop mechanical krill robots. We designed krillbots using mostly 3D printed parts that are actuated by stepper motors. The krillbot limb lengths, angles, inter-limb spacing and pleopod stroke frequency were dynamically scaled using published data on free-swimming krill kinematics. The vertical and horizontal spacing between krillbots, as well as the body angle, are adjustable. In this study, we conducted particle image velocimetry (PIV) measurements with two tethered krillbots in a flow tank with no background flow. One krillbot was placed above and behind the other. Both krillbots were at a zero-degree body angle. Wake-body interactions visualized from PIV data will be presented.

  14. Go reconfigure: how fish change shape as they swim and evolve.

    PubMed

    Long, John H; Porter, Marianne E; Root, Robert G; Liew, Chun Wai

    2010-12-01

    The bodies of fish change shape over propulsive, behavioral, developmental, and evolutionary time scales, a general phenomenon that we call "reconfiguration". Undulatory, postural, and form-reconfiguration can be distinguished, studied independently, and examined in terms of mechanical interactions and evolutionary importance. Using a combination of live, swimming fishes and digital robotic fish that are autonomous and self-propelled, we examined the functional relation between undulatory and postural reconfiguration in forward swimming, backward swimming, and yaw turning. To probe how postural and form reconfiguration interact, the yaw turning of leopard sharks was examined using morphometric and kinematic analyses. To test how undulatory reconfiguration might evolve, the digital robotic fish were subjected to selection for enhanced performance in a simulated ecology in which each individual had to detect and move towards a food source. In addition to the general issue of reconfiguration, these investigations are united by the fact that the dynamics of undulatory and postural reconfigurations are predicted to be determined, in part, by the structural stiffness of the fish's body. Our method defines undulatory reconfiguration as the combined, point-by-point periodic motion of the body, leaving postural reconfiguration as the combined deviations from undulatory reconfiguration. While undulatory reconfiguration appears to be the sole or primary propulsive driver, postural reconfiguration may contribute to propulsion in hagfish and it is correlated with differences in forward, and backward, swimming in lamprey. Form reconfigures over developmental time in leopard sharks in a manner that is consistent with an allometric scaling theory in which structural stiffness of the body is held constant. However, correlation of a form proxy for structural stiffness of the body suggests that body stiffness may scale in order to limit maximum postural reconfiguration during routine

  15. Passive and Active Flow Control by Swimming Fishes and Mammals

    NASA Astrophysics Data System (ADS)

    Fish, F. E.; Lauder, G. V.

    2006-01-01

    What mechanisms of flow control do animals use to enhance hydrodynamic performance? Animals are capable of manipulating flow around the body and appendages both passively and actively. Passive mechanisms rely on structural and morphological components of the body (i.e., humpback whale tubercles, riblets). Active flow control mechanisms use appendage or body musculature to directly generate wake flow structures or stiffen fins against external hydrodynamic loads. Fish can actively control fin curvature, displacement, and area. The vortex wake shed by the tail differs between eel-like fishes and fishes with a discrete narrowing of the body in front of the tail, and three-dimensional effects may play a major role in determining wake structure in most fishes.

  16. Assessing possible effects of fish-culture systems on fish swimming: the role of stability in turbulent flows.

    PubMed

    Webb, Paul W; Cotel, Aline J

    2011-06-01

    Fish are cultured in ponds, recirculating systems, raceways, and cages. Turbulence is associated with one or more of mechanisms to facilitate food accessibility, maintain adequate levels of oxygen, remove carbon dioxide, urinary and fecal wastes, as well as from locomotion of fishes themselves. Turbulence has been shown to have positive and negative effects on fish swimming, feeding, and energetics, usually with negative impacts at very low and at high levels, and least effects and sometimes positive effects at intermediate levels. Differences in responses of fishes with varying levels of turbulence are related to the size of eddies relative to the size of a fish (larvae, juveniles, and adults). Impacts on locomotor functions are associated with eddy diameters of the order of 0.5-1L, where L is the total length of a fish. Negative locomotor impacts of turbulence are associated with eddies challenging stability, while positive effects promote drafting and station holding with reduced locomotor motions. Deployment of control surfaces increases with the level of turbulence up to a threshold where control is overwhelmed. The design of culture facilities is expected to affect levels of turbulence and may be engineered to provide optimal levels facilitating high growth.

  17. Hypothesised mechanisms of swimming-related death: a systematic review.

    PubMed

    Asplund, Chad A; Creswell, Lawrence L

    2016-11-01

    Recent reports from triathlon and competitive open-water swimming indicate that these events have higher rates of death compared with other forms of endurance sport. The potential causal mechanism for swimming-related death is unclear. To examine available studies on the hypothesised mechanisms of swimming-related death to determine the most likely aetiologies. MEDLINE, EMBASE and the Cochrane Database of Systematic Reviews (1950 to present) were searched, yielding 1950 potential results, which after title and citation reviews were reduced to 83 possible reports. Studies included discussed mechanisms of death during swimming in humans, and were Level 4 evidence or higher. A total of 17 studies (366 total swimmers) were included for further analysis: 5 investigating hyperthermia/hypothermia, 7 examining cardiac mechanisms and responses, and 5 determining the presence of pulmonary edema. The studies provide inconsistent and limited-quality or disease-oriented evidence that make definitive conclusions difficult. The available evidence is limited but may suggest that cardiac arrhythmias are the most likely aetiology of swimming-related death. While symptoms of pulmonary edema may occur during swimming, current evidence does not support swimming-induced pulmonary edema as a frequent cause of swimming-related death, nor is there evidence to link hypothermia or hyperthermia as a causal mechanism. Further higher level studies are needed. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  18. Optimal Swimming Speed in Head Currents and Effects on Distance Movement of Winter-Migrating Fish

    PubMed Central

    Brodersen, Jakob; Nilsson, P. Anders; Ammitzbøll, Jeppe; Hansson, Lars-Anders; Skov, Christian; Brönmark, Christer

    2008-01-01

    Migration is a commonly described phenomenon in nature that is often caused by spatial and temporal differences in habitat quality. However, as migration requires energy, the timing of migration may depend not only on differences in habitat quality, but also on temporal variation in migration costs. Such variation can, for instance, arise from changes in wind or current velocity for migrating birds and fish, respectively. Whereas behavioural responses of birds to such changing environmental conditions have been relatively well described, this is not the case for fish, although fish migrations are both ecologically and economically important. We here use passive and active telemetry to study how winter migrating roach regulate swimming speed and distance travelled per day in response to variations in head current velocity. Furthermore, we provide theoretical predictions on optimal swimming speeds in head currents and relate these to our empirical results. We show that fish migrate farther on days with low current velocity, but travel at a greater ground speed on days with high current velocity. The latter result agrees with our predictions on optimal swimming speed in head currents, but disagrees with previously reported predictions suggesting that fish ground speed should not change with head current velocity. We suggest that this difference is due to different assumptions on fish swimming energetics. We conclude that fish are able to adjust both swimming speed and timing of swimming activity during migration to changes in head current velocity in order to minimize energy use. PMID:18478053

  19. Development of a Transient Acoustic Boundary Element Method to Predict the Noise Signature of Swimming Fish

    NASA Astrophysics Data System (ADS)

    Wagenhoffer, Nathan; Moored, Keith; Jaworski, Justin

    2015-11-01

    Animals have evolved flexible wings and fins to efficiently and quietly propel themselves through the air and water. The design of quiet and efficient bio-inspired propulsive concepts requires a rapid, unified computational framework that integrates three essential features: the fluid mechanics, the elastic structural response, and the noise generation. This study focuses on the development, validation, and demonstration of a transient, two-dimensional acoustic boundary element solver accelerated by a fast multipole algorithm. The resulting acoustic solver is used to characterize the acoustic signature produced by a vortex street advecting over a NACA 0012 airfoil, which is representative of vortex-body interactions that occur in schools of swimming fish. Both 2S and 2P canonical vortex streets generated by fish are investigated over the range of Strouhal number 0 . 2 < St < 0 . 4 , and the acoustic signature of the airfoil is quantified. This study provides the first estimate of the noise signature of a school of swimming fish. Lehigh University CORE Grant.

  20. Swimming

    MedlinePlus

    ... eat while you swim — you could choke. continue Lakes and Ponds Lots of kids swim in streams, lakes, or ponds. Take extra care when swimming in ... can't always see the bottom of the lake or pond, so you don't always know ...

  1. Swimming kinematics and hydrodynamic imaging in the blind Mexican cave fish (Astyanax fasciatus).

    PubMed

    Windsor, Shane P; Tan, Delfinn; Montgomery, John C

    2008-09-01

    Blind Mexican cave fish (Astyanax fasciatus) lack a functioning visual system, and are known to use self-generated water motion to sense their surroundings; an ability termed hydrodynamic imaging. Nearby objects distort the flow field created by the motion of the fish. These flow distortions are sensed by the mechanosensory lateral line. Here we used image processing to measure detailed kinematics, along with a new behavioural technique, to investigate the effectiveness of hydrodynamic imaging. In a head-on approach to a wall, fish reacted to avoid collision with the wall at an average distance of only 4.0+/-0.2 mm. Contrary to previous expectation, there was no significant correlation between the swimming velocity of the fish and the distance at which they reacted to the wall. Hydrodynamic imaging appeared to be most effective when the fish were gliding with their bodies held straight, with the proportion of approaches to the wall that resulted in collision increasing from 11% to 73% if the fish were beating their tails rather than gliding as they neared the wall. The swimming kinematics of the fish were significantly different when swimming beside a wall compared with when swimming away from any walls. Blind cave fish frequently touched walls when swimming alongside them, indicating that they use both tactile and hydrodynamic information in this situation. We conclude that although hydrodynamic imaging can provide effective collision avoidance, it is a short-range sense that may often be used synergistically with direct touch.

  2. Learning to swim, again: Axon regeneration in fish.

    PubMed

    Rasmussen, Jeffrey P; Sagasti, Alvaro

    2017-01-01

    Damage to the central nervous system (CNS) of fish can often be repaired to restore function, but in mammals recovery from CNS injuries usually fails due to a lack of axon regeneration. The relatively growth-permissive environment of the fish CNS may reflect both the absence of axon inhibitors found in the mammalian CNS and the presence of pro-regenerative environmental factors. Despite their different capacities for axon regeneration, many of the physiological processes, intrinsic molecular pathways, and cellular behaviors that control an axon's ability to regrow are conserved between fish and mammals. Fish models have thus been useful both for identifying factors differing between mammals and fish that may account for differences in CNS regeneration and for characterizing conserved intrinsic pathways that regulate axon regeneration in all vertebrates. The majority of adult axon regeneration studies have focused on the optic nerve or spinal axons of the teleosts goldfish and zebrafish, which have been productive models for identifying genes associated with axon regeneration, cellular mechanisms of circuit reestablishment, and the basis of functional recovery. Lampreys, which are jawless fish lacking myelin, have provided an opportunity to study regeneration of well defined spinal cord circuits. Newer larval zebrafish models offer numerous genetic tools and the ability to monitor the dynamic behaviors of extrinsic cell types regulating axon regeneration in live animals. Recent advances in imaging and gene editing methods are making fish models yet more powerful for investigating the cellular and molecular underpinnings of axon regeneration. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Mathematical Modeling of Space-time Variations in Acoustic Transmission and Scattering from Schools of Swim Bladder Fish (FY14 Annual Report)

    DTIC Science & Technology

    2014-09-30

    Mathematical modeling of space-time variations in acoustic transmission and scattering from schools of swim bladder fish (FY14 Annual Report...domain theory of acoustic scattering from, and propagation through, schools of swim bladder fish at and near the swim bladder resonance frequency...coupled differential equations. It incorporates a verified swim bladder scattering kernel for the individual fish, includes multiple scattering

  4. Fish locomotion: insights from both simple and complex mechanical models

    NASA Astrophysics Data System (ADS)

    Lauder, George

    2015-11-01

    Fishes are well-known for their ability to swim and maneuver effectively in the water, and recent years have seen great progress in understanding the hydrodynamics of aquatic locomotion. But studying freely-swimming fishes is challenging due to difficulties in controlling fish behavior. Mechanical models of aquatic locomotion have many advantages over studying live animals, including the ability to manipulate and control individual structural or kinematic factors, easier measurement of forces and torques, and the ability to abstract complex animal designs into simpler components. Such simplifications, while not without their drawbacks, facilitate interpretation of how individual traits alter swimming performance and the discovery of underlying physical principles. In this presentation I will discuss the use of a variety of mechanical models for fish locomotion, ranging from simple flexing panels to complex biomimetic designs incorporating flexible, actively moved, fin rays on multiple fins. Mechanical devices have provided great insight into the dynamics of aquatic propulsion and, integrated with studies of locomotion in freely-swimming fishes, provide new insights into how fishes move through the water.

  5. Mathematical Modeling of Space-Time Variations in Acoustic Transmission and Scattering from Schools of Swim Bladder Fish

    DTIC Science & Technology

    2015-09-30

    transmission and scattering from schools of swim bladder fish Christopher Feuillade Instituto de Física, Pontificia Universidad Católica de Chile Avenida...activities, accomplishments, and publications, of this project, which was part of the ONR Fish Acoustics Basic Research Challenge. Swim Bladder Fish...public release; distribution is unlimited. Mathematical modeling of space-time variations in acoustic transmission and scattering from schools of swim

  6. The rising cost of warming waters: effects of temperature on the cost of swimming in fishes.

    PubMed

    Hein, Andrew M; Keirsted, Katrina J

    2012-04-23

    Understanding the effects of water temperature on the swimming performance of fishes is central in understanding how fish species will respond to global climate change. Metabolic cost of transport (COT)-a measure of the energy required to swim a given distance-is a key performance parameter linked to many aspects of fish life history. We develop a quantitative model to predict the effect of water temperature on COT. The model facilitates comparisons among species that differ in body size by incorporating the body mass-dependence of COT. Data from 22 fish species support the temperature and mass dependencies of COT predicted by our model, and demonstrate that modest differences in water temperature can result in substantial differences in the energetic cost of swimming.

  7. Flapping flexible fish. Periodic and secular body reconfigurations in swimming lamprey, Petromyzon marinus

    NASA Astrophysics Data System (ADS)

    Root, Robert G.; Courtland, Hayden-William; Shepherd, William; Long, John H.

    2007-11-01

    In order to analyze and model the body kinematics used by fish in a wide range of swimming behaviors, we developed a technique to separate the periodic whole-body motions that characterize steady swimming from the secular motions that characterize changes in whole-body shape. We applied this harmonic analysis technique to the study of the forward and backward swimming of lamprey. We found that in order to vary the unsteadiness of swimming, lamprey superimpose periodic and secular components of their body motion, modulate the patterns and magnitudes of those components, and change shape. These kinematic results suggest the following hydromechanical hypothesis: steady swimming is a maneuver that requires active suppression of secular body reconfigurations.

  8. Flow patterns of larval fish: undulatory swimming in the intermediate flow regime.

    PubMed

    Müller, Ulrike K; van den Boogaart, Jos G M; van Leeuwen, Johan L

    2008-01-01

    Fish larvae, like many adult fish, swim by undulating their body. However, their body size and swimming speeds put them in the intermediate flow regime, where viscous and inertial forces both play an important role in the interaction between fish and water. To study the influence of the relatively high viscous forces compared with adult fish, we mapped the flow around swimming zebrafish (Danio rerio) larvae using two-dimensional digital particle image velocimetry (2D-DPIV) in the horizontal and transverse plane of the fish. Fish larvae initiate a swimming bout by bending their body into a C shape. During this initial tail-beat cycle, larvae shed two vortex pairs in the horizontal plane of their wake, one during the preparatory and one during the subsequent propulsive stroke. When they swim ;cyclically' (mean swimming speed does not change significantly between tail beats), fish larvae generate a wide drag wake along their head and anterior body. The flow along the posterior body is dominated by the undulating body movements that cause jet flows into the concave bends of the body wave. Patches of elevated vorticity form around the jets, and travel posteriorly along with the body wave, until they are ultimately shed at the tail near the moment of stroke reversal. Behind the larva, two vortex pairs are formed per tail-beat cycle (the tail beating once left-to-right and then right-to-left) in the horizontal plane of the larval wake. By combining transverse and horizontal cross sections of the wake, we inferred that the wake behind a cyclically swimming zebrafish larva contains two diverging rows of vortex rings to the left and right of the mean path of motion, resembling the wake of steadily swimming adult eels. When the fish larva slows down at the end of a swimming bout, it gradually reduces its tail-beat frequency and amplitude, while the separated boundary layer and drag wake of the anterior body extend posteriorly to envelope the entire larva. This drag wake is

  9. Body fineness ratio as a predictor of maximum prolonged-swimming speed in coral reef fishes.

    PubMed

    Walker, Jeffrey A; Alfaro, Michael E; Noble, Mae M; Fulton, Christopher J

    2013-01-01

    The ability to sustain high swimming speeds is believed to be an important factor affecting resource acquisition in fishes. While we have gained insights into how fin morphology and motion influences swimming performance in coral reef fishes, the role of other traits, such as body shape, remains poorly understood. We explore the ability of two mechanistic models of the causal relationship between body fineness ratio and endurance swimming-performance to predict maximum prolonged-swimming speed (Umax ) among 84 fish species from the Great Barrier Reef, Australia. A drag model, based on semi-empirical data on the drag of rigid, submerged bodies of revolution, was applied to species that employ pectoral-fin propulsion with a rigid body at U max. An alternative model, based on the results of computer simulations of optimal shape in self-propelled undulating bodies, was applied to the species that swim by body-caudal-fin propulsion at Umax . For pectoral-fin swimmers, Umax increased with fineness, and the rate of increase decreased with fineness, as predicted by the drag model. While the mechanistic and statistical models of the relationship between fineness and Umax were very similar, the mechanistic (and statistical) model explained only a small fraction of the variance in Umax . For body-caudal-fin swimmers, we found a non-linear relationship between fineness and Umax , which was largely negative over most of the range of fineness. This pattern fails to support either predictions from the computational models or standard functional interpretations of body shape variation in fishes. Our results suggest that the widespread hypothesis that a more optimal fineness increases endurance-swimming performance via reduced drag should be limited to fishes that swim with rigid bodies.

  10. Body Fineness Ratio as a Predictor of Maximum Prolonged-Swimming Speed in Coral Reef Fishes

    PubMed Central

    Walker, Jeffrey A.; Alfaro, Michael E.; Noble, Mae M.; Fulton, Christopher J.

    2013-01-01

    The ability to sustain high swimming speeds is believed to be an important factor affecting resource acquisition in fishes. While we have gained insights into how fin morphology and motion influences swimming performance in coral reef fishes, the role of other traits, such as body shape, remains poorly understood. We explore the ability of two mechanistic models of the causal relationship between body fineness ratio and endurance swimming-performance to predict maximum prolonged-swimming speed (Umax) among 84 fish species from the Great Barrier Reef, Australia. A drag model, based on semi-empirical data on the drag of rigid, submerged bodies of revolution, was applied to species that employ pectoral-fin propulsion with a rigid body at Umax. An alternative model, based on the results of computer simulations of optimal shape in self-propelled undulating bodies, was applied to the species that swim by body-caudal-fin propulsion at Umax. For pectoral-fin swimmers, Umax increased with fineness, and the rate of increase decreased with fineness, as predicted by the drag model. While the mechanistic and statistical models of the relationship between fineness and Umax were very similar, the mechanistic (and statistical) model explained only a small fraction of the variance in Umax. For body-caudal-fin swimmers, we found a non-linear relationship between fineness and Umax, which was largely negative over most of the range of fineness. This pattern fails to support either predictions from the computational models or standard functional interpretations of body shape variation in fishes. Our results suggest that the widespread hypothesis that a more optimal fineness increases endurance-swimming performance via reduced drag should be limited to fishes that swim with rigid bodies. PMID:24204575

  11. A hydrodynamic analysis of fish swimming speed: wake structure and locomotor force in slow and fast labriform swimmers.

    PubMed

    Drucker, E G; Lauder, G V

    2000-08-01

    Past study of interspecific variation in the swimming speed of fishes has focused on internal physiological mechanisms that may limit the ability of locomotor muscle to generate power. In this paper, we approach the question of why some fishes are able to swim faster than others from a hydrodynamic perspective, using the technique of digital particle image velocimetry which allows measurement of fluid velocity and estimation of wake momentum and mechanical forces for locomotion. We investigate the structure and strength of the wake in three dimensions to determine how hydrodynamic force varies in two species that differ markedly in maximum swimming speed. Black surfperch (Embiotoca jacksoni) and bluegill sunfish (Lepomis macrochirus) swim at low speeds using their pectoral fins exclusively, and at higher speeds switch to combined pectoral and caudal fin locomotion. E. jacksoni can swim twice as fast as similarly sized L. macrochirus using the pectoral fins alone. The pectoral fin wake of black surfperch at all speeds consists of two distinct vortex rings linked ventrally. As speed increases from 1.0 to 3.0 L s(-)(1), where L is total body length, the vortex ring formed on the fin downstroke reorients to direct force increasingly downstream, parallel to the direction of locomotion. The ratio of laterally to downstream-directed force declines from 0.93 to 0.07 as speed increases. In contrast, the sunfish pectoral fin generates a single vortex ring per fin beat at low swimming speeds and a pair of linked vortex rings (with one ring only partially complete and attached to the body) at maximal labriform speeds. Across a biologically relevant range of swimming speeds, bluegill sunfish generate relatively large lateral forces with the paired fins: the ratio of lateral to downstream force remains at or above 1.0 at all speeds. By increasing wake momentum and by orienting this momentum in a direction more favorable for thrust than for lateral force, black surfperch are able

  12. Ontogeny of critical and prolonged swimming performance for the larvae of six Australian freshwater fish species.

    PubMed

    Kopf, S M; Humphries, P; Watts, R J

    2014-06-01

    Critical (<30 min) and prolonged (>60 min) swimming speeds in laboratory chambers were determined for larvae of six species of Australian freshwater fishes: trout cod Maccullochella macquariensis, Murray cod Maccullochella peelii, golden perch Macquaria ambigua, silver perch Bidyanus bidyanus, carp gudgeon Hypseleotris spp. and Murray River rainbowfish Melanotaenia fluviatilis. Developmental stage (preflexion, flexion, postflexion and metalarva) better explained swimming ability than did length, size or age (days after hatch). Critical speed increased with larval development, and metalarvae were the fastest swimmers for all species. Maccullochella macquariensis larvae had the highest critical [maximum absolute 46.4 cm s(-1) and 44.6 relative body lengths (L(B)) s(-1)] and prolonged (maximum 15.4 cm s(-1), 15.6 L(B) s(-1)) swimming speeds and B. bidyanus larvae the lowest critical (minimum 0.1 cm s(-1), 0.3 L(B) s(-1)) and prolonged swimming speeds (minimum 1.1 cm s(-1), 1.0 L(B) s(-1)). Prolonged swimming trials determined that the larvae of some species could not swim for 60 min at any speed, whereas the larvae of the best swimming species, M. macquariensis, could swim for 60 min at 44% of the critical speed. The swimming performance of species with precocial life-history strategies, with well-developed larvae at hatch, was comparatively better and potentially had greater ability to influence their dispersal by actively swimming than species with altricial life-history strategies, with poorly developed larvae at hatch.

  13. Fish optimize sensing and respiration during undulatory swimming

    PubMed Central

    Akanyeti, O.; Thornycroft, P. J. M.; Lauder, G. V.; Yanagitsuru, Y. R.; Peterson, A. N.; Liao, J. C.

    2016-01-01

    Previous work in fishes considers undulation as a means of propulsion without addressing how it may affect other functions such as sensing and respiration. Here we show that undulation can optimize propulsion, flow sensing and respiration concurrently without any apparent tradeoffs when head movements are coupled correctly with the movements of the body. This finding challenges a long-held assumption that head movements are simply an unintended consequence of undulation, existing only because of the recoil of an oscillating tail. We use a combination of theoretical, biological and physical experiments to reveal the hydrodynamic mechanisms underlying this concerted optimization. Based on our results we develop a parsimonious control architecture that can be used by both undulatory animals and machines in dynamic environments. PMID:27009352

  14. Fish optimize sensing and respiration during undulatory swimming.

    PubMed

    Akanyeti, O; Thornycroft, P J M; Lauder, G V; Yanagitsuru, Y R; Peterson, A N; Liao, J C

    2016-03-24

    Previous work in fishes considers undulation as a means of propulsion without addressing how it may affect other functions such as sensing and respiration. Here we show that undulation can optimize propulsion, flow sensing and respiration concurrently without any apparent tradeoffs when head movements are coupled correctly with the movements of the body. This finding challenges a long-held assumption that head movements are simply an unintended consequence of undulation, existing only because of the recoil of an oscillating tail. We use a combination of theoretical, biological and physical experiments to reveal the hydrodynamic mechanisms underlying this concerted optimization. Based on our results we develop a parsimonious control architecture that can be used by both undulatory animals and machines in dynamic environments.

  15. Hydrodynamic study of freely swimming shark fish propulsion for marine vehicles using 2D particle image velocimetry.

    PubMed

    Babu, Mannam Naga Praveen; Mallikarjuna, J M; Krishnankutty, P

    Two-dimensional velocity fields around a freely swimming freshwater black shark fish in longitudinal (XZ) plane and transverse (YZ) plane are measured using digital particle image velocimetry (DPIV). By transferring momentum to the fluid, fishes generate thrust. Thrust is generated not only by its caudal fin, but also using pectoral and anal fins, the contribution of which depends on the fish's morphology and swimming movements. These fins also act as roll and pitch stabilizers for the swimming fish. In this paper, studies are performed on the flow induced by fins of freely swimming undulatory carangiform swimming fish (freshwater black shark, L = 26 cm) by an experimental hydrodynamic approach based on quantitative flow visualization technique. We used 2D PIV to visualize water flow pattern in the wake of the caudal, pectoral and anal fins of swimming fish at a speed of 0.5-1.5 times of body length per second. The kinematic analysis and pressure distribution of carangiform fish are presented here. The fish body and fin undulations create circular flow patterns (vortices) that travel along with the body waves and change the flow around its tail to increase the swimming efficiency. The wake of different fins of the swimming fish consists of two counter-rotating vortices about the mean path of fish motion. These wakes resemble like reverse von Karman vortex street which is nothing but a thrust-producing wake. The velocity vectors around a C-start (a straight swimming fish bends into C-shape) maneuvering fish are also discussed in this paper. Studying flows around flapping fins will contribute to design of bioinspired propulsors for marine vehicles.

  16. A Study of a Mechanical Swimming Lamprey

    NASA Astrophysics Data System (ADS)

    Leftwich, Megan; Hultmark, Marcus; Smits, Alexander

    2007-11-01

    In order to develop a comprehensive model of lamprey locomotion, we use a swimming robotic lamprey as a means of investigating the surface pressure, thrust and wake structure. A programmable microcomputer actuates 13 servomotors that produce a traveling wave along the length of the lamprey's body. This waveform is based on the motion of the American eel (Anguilla rostrata), as described by Tytell and Lauder (2004). Dye flow visualization and particle image velocimetry (PIV) are used to study the wake structure generated by the robot and the flowfield along the body. These visualization methods show that two distinct, oppositely signed vortices are shed each half cycle; whereas along the body, no large scale vortical shedding can be observed, suggesting that most of the thrust is produced by the tail. Thrust data based on momentum balances support this suggestion. The project is supported by NIH Grant 1RO1NS054271.

  17. Thrust Production in a Mechanical Swimming Lamprey

    NASA Astrophysics Data System (ADS)

    Leftwich, Megan; Smits, Alexander

    2008-11-01

    To develop a comprehensive model of lamprey locomotion, we use a robotic lamprey as a means of investigating the surface pressure and wake structure during swimming. A programmable microcomputer actuates 11 servomotors that produce a traveling wave along the length of the lamprey body. The waveform is based on the motion of the American eel (Anguilla rostrata), as described by Tytell and Lauder (2004) and kinematic studies of living lamprey. The amplitude of the phase-averaged surface pressure distribution along the centerline of the robot increases toward the tail, which is consistent with previous momentum balance experiments indicating that thrust is produced mainly at the tail. The phase relationship between the pressure signal and the vortex shedding from the tail is also examined. The project is supported by NIH CNRS Grant 1R01NS054271.

  18. Thrust production by a mechanical swimming lamprey

    NASA Astrophysics Data System (ADS)

    Leftwich, M. C.; Smits, A. J.

    2011-05-01

    To develop a comprehensive model of lamprey locomotion, we use a robotic lamprey to investigate the formation of the wake structure, the shedding vorticity from the body, and the relationship between thrust production and pressure on the surface of the robot. The robot mimics the motion of living lamprey in steady swimming by using a programmable microcomputer to actuate 13 servomotors that produce a traveling wave along the length of the lamprey body. The amplitude of the phase-averaged surface pressure distribution along the centerline of the robot increases toward the tail, which is consistent with previous momentum balance experiments. This indicates that thrust is produced mainly at the tail. The phase relationship between the pressure signal and the vortex shedding from the tail is also examined, showing a clear connection between the location of vortex structures and the fluctuations of the pressure signal.

  19. Digesting or swimming? Integration of the postprandial metabolism, behavior and locomotion in a frequently foraging fish.

    PubMed

    Nie, Li-Juan; Cao, Zhen-Dong; Fu, Shi-Jian

    2017-02-01

    Fish that are active foragers usually perform routine activities while digesting their food; thus, their postprandial swimming capacity and related behavior adjustments might be ecologically important. To test whether digestion affect swimming performance and the relationships of digestion with metabolism and behavior in an active forager, we investigated the postprandial metabolic response, spontaneous swimming activities, critical swimming speed (Ucrit), and fast-start escape performance of both fasted and digesting (3h after feeding to satiation) juvenile rose bitterling (Rhodeus ocellatus). Feeding to satiation elicited a 50% increase in the oxygen consumption rate, which peaked at 3h after feeding and returned to the prefeeding state after another 3h. However, approximately 50% and 90% of individuals resumed feeding behavior at 2 and 3h postfeeding, respectively, although the meal size varied substantially. Digestion showed no effect on either steady swimming performance as suggested by the Ucrit or unsteady swimming performance indicated by the maximum linear velocity in fast-start escape movement. However, digesting fish showed more spontaneous activity as indicated by the longer total distance traveled, mainly through an increased percentage of time spent moving (PTM). A further analysis found that fasting individuals with high swimming speed were more inclined to increase their PTM during digestive processes. The present study suggests that as an active forager With a small meal size and hence limited postprandial physiological and morphological changes, the swimming performance of rose bitterling is maintained during digestion, which might be crucial for its active foraging mode and anti-predation strategy. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Mosquitofish (Gambusia affinis) responds differentially to a robotic fish of varying swimming depth and aspect ratio.

    PubMed

    Polverino, Giovanni; Porfiri, Maurizio

    2013-08-01

    In this study, we explore the feasibility of using bioinspired robotics to influence the behaviour of mosquitofish (Gambusia affinis), a social freshwater fish species that is extensively studied for the ecological issues associated with its diffusion in non-native environments. Specifically, in a dichotomous choice test, we investigate the behavioural response of small shoals of mosquitofish to a robotic fish inspired by mosquitofish in its colouration, shape, aspect ratio, and locomotion. Our results indicate that the swimming depth and the aspect ratio of the robotic fish are both determinants of mosquitofish preference. In particular, we find that mosquitofish are never attracted by a robotic fish whose colouration and shape are inspired by live subjects and that the degree of repulsion varies as a function of the swimming depth and the aspect ratio.

  1. Unsteady flow affects swimming energetics in a labriform fish (Cymatogaster aggregata).

    PubMed

    Roche, D G; Taylor, M K; Binning, S A; Johansen, J L; Domenici, P; Steffensen, J F

    2014-02-01

    Unsteady water flows are common in nature, yet the swimming performance of fishes is typically evaluated at constant, steady speeds in the laboratory. We examined how cyclic changes in water flow velocity affect the swimming performance and energetics of a labriform swimmer, the shiner surfperch, Cymatogaster aggregata, during station holding. Using intermittent-flow respirometry, we measured critical swimming speed (Ucrit), oxygen consumption rates (O2) and pectoral fin use in steady flow versus unsteady flows with either low- [0.5 body lengths (BL) s(-1)] or high-amplitude (1.0 BL s(-1)) velocity fluctuations, with a 5 s period. Individuals in low-amplitude unsteady flow performed as well as fish in steady flow. However, swimming costs in high-amplitude unsteady flow were on average 25.3% higher than in steady flow and 14.2% higher than estimated values obtained from simulations based on the non-linear relationship between swimming speed and oxygen consumption rate in steady flow. Time-averaged pectoral fin use (fin-beat frequency measured over 300 s) was similar among treatments. However, measures of instantaneous fin use (fin-beat period) and body movement in high-amplitude unsteady flow indicate that individuals with greater variation in the duration of their fin beats were better at holding station and consumed less oxygen than fish with low variation in fin-beat period. These results suggest that the costs of swimming in unsteady flows are context dependent in labriform swimmers, and may be influenced by individual differences in the ability of fishes to adjust their fin beats to the flow environment.

  2. Fish and Robots Swimming Together in a Water Tunnel: Robot Color and Tail-Beat Frequency Influence Fish Behavior

    PubMed Central

    Polverino, Giovanni; Phamduy, Paul; Porfiri, Maurizio

    2013-01-01

    The possibility of integrating bioinspired robots in groups of live social animals may constitute a valuable tool to study the basis of social behavior and uncover the fundamental determinants of animal functions and dysfunctions. In this study, we investigate the interactions between individual golden shiners (Notemigonus crysoleucas) and robotic fish swimming together in a water tunnel at constant flow velocity. The robotic fish is designed to mimic its live counterpart in the aspect ratio, body shape, dimension, and locomotory pattern. Fish positional preference with respect to the robot is experimentally analyzed as the robot's color pattern and tail-beat frequency are varied. Behavioral observations are corroborated by particle image velocimetry studies aimed at investigating the flow structure behind the robotic fish. Experimental results show that the time spent by golden shiners in the vicinity of the bioinspired robotic fish is the highest when the robot mimics their natural color pattern and beats its tail at the same frequency. In these conditions, fish tend to swim at the same depth of the robotic fish, where the wake from the robotic fish is stronger and hydrodynamic return is most likely to be effective. PMID:24204882

  3. Fish and robots swimming together in a water tunnel: robot color and tail-beat frequency influence fish behavior.

    PubMed

    Polverino, Giovanni; Phamduy, Paul; Porfiri, Maurizio

    2013-01-01

    The possibility of integrating bioinspired robots in groups of live social animals may constitute a valuable tool to study the basis of social behavior and uncover the fundamental determinants of animal functions and dysfunctions. In this study, we investigate the interactions between individual golden shiners (Notemigonus crysoleucas) and robotic fish swimming together in a water tunnel at constant flow velocity. The robotic fish is designed to mimic its live counterpart in the aspect ratio, body shape, dimension, and locomotory pattern. Fish positional preference with respect to the robot is experimentally analyzed as the robot's color pattern and tail-beat frequency are varied. Behavioral observations are corroborated by particle image velocimetry studies aimed at investigating the flow structure behind the robotic fish. Experimental results show that the time spent by golden shiners in the vicinity of the bioinspired robotic fish is the highest when the robot mimics their natural color pattern and beats its tail at the same frequency. In these conditions, fish tend to swim at the same depth of the robotic fish, where the wake from the robotic fish is stronger and hydrodynamic return is most likely to be effective.

  4. Swimming

    MedlinePlus

    ... hurt your neck very badly. Test the pool's water temperature before you plunge in. Cold water can shock your body and make your blood ... t swim in the dark. Go into the water slowly to make sure the temperature feels comfortable and it's not too cold. If ...

  5. Effects of crude oil and dispersed crude oil on the critical swimming speed of puffer fish, Takifugu rubripes.

    PubMed

    Yu, Xiaoming; Xu, Chuancai; Liu, Haiying; Xing, Binbin; Chen, Lei; Zhang, Guosheng

    2015-05-01

    In order to examine the effects of crude oil and dispersed crude oil (DCO) on the swimming ability of puffer fish, Takifugu rubripes, the critical swimming speeds (U crit) of fish exposed to different concentrations of water-soluble fraction (WSF) of crude oil and DCO solution were determined in a swimming flume. WSF and DCO significantly affected the U crit of puffer fish (p < 0.05). The U crit of puffer fish exposed to 136 mg L(-1) WSF and 56.4 mg L(-1) DCO decreased 48.7 % and 43.4 %, respectively. DCO was more toxic to puffer fish than WSF. These results suggested that crude oil and chemically dispersed oil could weaken the swimming ability of puffer fish.

  6. Fish-robot interactions in a free-swimming environment: Effects of speed and configuration of robots on live fish

    NASA Astrophysics Data System (ADS)

    Butail, Sachit; Polverino, Giovanni; Phamduy, Paul; Del Sette, Fausto; Porfiri, Maurizio

    2014-03-01

    We explore fish-robot interactions in a comprehensive set of experiments designed to highlight the effects of speed and configuration of bioinspired robots on live zebrafish. The robot design and movement is inspired by salient features of attraction in zebrafish and includes enhanced coloration, aspect ratio of a fertile female, and carangiform/subcarangiformlocomotion. The robots are autonomously controlled to swim in circular trajectories in the presence of live fish. Our results indicate that robot configuration significantly affects both the fish distance to the robots and the time spent near them.

  7. Activity Counts: The Effect of Swimming Activity on Quantity Discrimination in Fish

    PubMed Central

    Gómez-Laplaza, Luis M.; Gerlai, Robert

    2012-01-01

    Human infants and non-human animals can discriminate the larger of two sets of discrete items. This quantity discrimination may be based upon the number of items, or upon non-numerical variables of the sets that co-vary with number. We have demonstrated that angelfish select the larger of two shoals of conspecifics without using inter-fish distance or space occupied by the stimuli as cues. However, density appeared to influence the choice between large shoals. Here, we examine the role of another non-numerical cue, swimming activity of the stimulus fish, in quantity discrimination by angelfish. To control this variable, we varied the water temperature of the stimulus aquaria or restricted the space occupied by each fish in the stimulus shoals. We used the previously successfully discriminated contrasts consisting of large (10 vs. 5) and small (3 vs. 2) shoals. We also studied whether more active or less active shoals are preferred in case of equally sized shoals (10 vs. 10, 5 vs. 5, and 3 vs. 3). When differences in stimulus fish activity were minimized by temperature manipulation we found angelfish to prefer the larger shoal in the 3 vs. 2 comparison, but not in the 10 vs. 5 comparison. When activity was controlled by space restriction, angelfish preferred the larger shoal in both numerical contrasts. These results imply that the overall activity level of the contrasted shoals is not a necessary condition for small shoals discrimination in angelfish. On the other hand, the results obtained for the large shoals, together with results obtained in the control treatments (equal numerical contrasts and differing activity levels), suggest that activity is a sufficient condition for discrimination when large shoals are involved. Further experiments are needed to evaluate the influence of other continuous variables, and to assess whether the mechanisms underlying performance are comparable to those suggested for other animals. PMID:23162518

  8. Thermal acclimation effects differ between voluntary, maximum, and critical swimming velocities in two cyprinid fishes.

    PubMed

    O'Steen, Shyril; Bennett, Albert F

    2003-01-01

    Temperature acclimation may be a critical component of the locomotor physiology and ecology of ectothermic animals, particularly those living in eurythermal environments. Several studies of fish report striking acclimation of biochemical and kinetic properties in isolated muscle. However, the relatively few studies of whole-animal performance report variable acclimation responses. We test the hypothesis that different types of whole-animal locomotion will respond differently to temperature acclimation, probably due to divergent physiological bases of locomotion. We studied two cyprinid fishes, tinfoil barbs (Puntius schwanenfeldii) and river barbels (Barbus barbus). Study fish were acclimated to either cold or warm temperatures for at least 6 wk and then assayed at four test temperatures for three types of swimming performance. We measured voluntary swimming velocity to estimate routine locomotor behavior, maximum fast start velocity to estimate anaerobic capacity, and critical swimming velocity to estimate primarily aerobic capacity. All three performance measures showed some acute thermal dependence, generally a positive correlation between swimming speed and test temperature. However, each performance measure responded quite differently to acclimation. Critical speeds acclimated strongly, maximum speeds not at all, and voluntary speeds uniquely in each species. Thus we conclude that long-term temperature exposure can have very different consequences for different types of locomotion, consistent with our hypothesis. The data also address previous hypotheses that predict that polyploid and eurythermal fish will have greater acclimation abilities than other fish, due to increased genetic flexibility and ecological selection, respectively. Our results conflict with these predictions. River barbels are eurythermal polyploids and tinfoil barbs stenothermal diploids, yet voluntary swimming acclimated strongly in tinfoil barbs and minimally in river barbels, and

  9. Reduced-order model of fish-like swimming due to shedding of unsteady point vortices

    NASA Astrophysics Data System (ADS)

    Tallapragada, Phanindra

    2013-11-01

    Reduced order models of biomimetic swimming in an ideal fluid, relying on the shedding of point vortices at short intervals of time, are useful to illuminate the essential underlying dynamics of locomotion in fluids. However these reduced order models still possess a state space that is very high dimensional, thus presenting challenges to develop control algorithms. A two-dimensional model that fully couples the motion of the solid boundary and the fluid containing singular distributions of vorticity is presented. The model relies on the shedding of unsteady point vortices, from the tip of a fish-like hydrofoil, in place of many steady point vortices. The subsequent reduction in the dimension of the state space makes the model more amenable to control algorithms. A simple case of the heading-angle control of a fish-like body will be illustrated. The model also has the advantage of being computationally significantly less demanding. More interestingly from a theoretical point of view, the reduced order model illustrates the connection between vortex shedding and velocity constraints encountered in rigid body mechanics.

  10. Center of mass motion in swimming fish: effects of speed and locomotor mode during undulatory propulsion.

    PubMed

    Xiong, Grace; Lauder, George V

    2014-08-01

    Studies of center of mass (COM) motion are fundamental to understanding the dynamics of animal movement, and have been carried out extensively for terrestrial and aerial locomotion. But despite a large amount of literature describing different body movement patterns in fishes, analyses of how the center of mass moves during undulatory propulsion are not available. These data would be valuable for understanding the dynamics of different body movement patterns and the effect of differing body shapes on locomotor force production. In the present study, we analyzed the magnitude and frequency components of COM motion in three dimensions (x: surge, y: sway, z: heave) in three fish species (eel, bluegill sunfish, and clown knifefish) swimming with four locomotor modes at three speeds using high-speed video, and used an image cross-correlation technique to estimate COM motion, thus enabling untethered and unrestrained locomotion. Anguilliform swimming by eels shows reduced COM surge oscillation magnitude relative to carangiform swimming, but not compared to knifefish using a gymnotiform locomotor style. Labriform swimming (bluegill at 0.5 body lengths/s) displays reduced COM sway oscillation relative to swimming in a carangiform style at higher speeds. Oscillation frequency of the COM in the surge direction occurs at twice the tail beat frequency for carangiform and anguilliform swimming, but at the same frequency as the tail beat for gymnotiform locomotion in clown knifefish. Scaling analysis of COM heave oscillation for terrestrial locomotion suggests that COM heave motion scales with positive allometry, and that fish have relatively low COM oscillations for their body size. Copyright © 2014 Elsevier GmbH. All rights reserved.

  11. Speed limits on swimming of fishes and cetaceans.

    PubMed

    Iosilevskii, G; Weihs, D

    2008-03-06

    Physical limits on swimming speed of lunate tail propelled aquatic animals are proposed. A hydrodynamic analysis, applying experimental data wherever possible, is used to show that small swimmers (roughly less than a metre long) are limited by the available power, while larger swimmers at a few metres below the water surface are limited by cavitation. Depending on the caudal fin cross-section, 10-15 m s(-1) is shown to be the maximum cavitation-free velocity for all swimmers at a shallow depth.

  12. Mechanics of Undulatory Swimming in a Frictional Fluid

    PubMed Central

    Ding, Yang; Sharpe, Sarah S.; Masse, Andrew; Goldman, Daniel I.

    2012-01-01

    The sandfish lizard (Scincus scincus) swims within granular media (sand) using axial body undulations to propel itself without the use of limbs. In previous work we predicted average swimming speed by developing a numerical simulation that incorporated experimentally measured biological kinematics into a multibody sandfish model. The model was coupled to an experimentally validated soft sphere discrete element method simulation of the granular medium. In this paper, we use the simulation to study the detailed mechanics of undulatory swimming in a “granular frictional fluid” and compare the predictions to our previously developed resistive force theory (RFT) which models sand-swimming using empirically determined granular drag laws. The simulation reveals that the forward speed of the center of mass (CoM) oscillates about its average speed in antiphase with head drag. The coupling between overall body motion and body deformation results in a non-trivial pattern in the magnitude of lateral displacement of the segments along the body. The actuator torque and segment power are maximal near the center of the body and decrease to zero toward the head and the tail. Approximately 30% of the net swimming power is dissipated in head drag. The power consumption is proportional to the frequency in the biologically relevant range, which confirms that frictional forces dominate during sand-swimming by the sandfish. Comparison of the segmental forces measured in simulation with the force on a laterally oscillating rod reveals that a granular hysteresis effect causes the overestimation of the body thrust forces in the RFT. Our models provide detailed testable predictions for biological locomotion in a granular environment. PMID:23300407

  13. Mechanics of undulatory swimming in a frictional fluid.

    PubMed

    Ding, Yang; Sharpe, Sarah S; Masse, Andrew; Goldman, Daniel I

    2012-01-01

    The sandfish lizard (Scincus scincus) swims within granular media (sand) using axial body undulations to propel itself without the use of limbs. In previous work we predicted average swimming speed by developing a numerical simulation that incorporated experimentally measured biological kinematics into a multibody sandfish model. The model was coupled to an experimentally validated soft sphere discrete element method simulation of the granular medium. In this paper, we use the simulation to study the detailed mechanics of undulatory swimming in a "granular frictional fluid" and compare the predictions to our previously developed resistive force theory (RFT) which models sand-swimming using empirically determined granular drag laws. The simulation reveals that the forward speed of the center of mass (CoM) oscillates about its average speed in antiphase with head drag. The coupling between overall body motion and body deformation results in a non-trivial pattern in the magnitude of lateral displacement of the segments along the body. The actuator torque and segment power are maximal near the center of the body and decrease to zero toward the head and the tail. Approximately 30% of the net swimming power is dissipated in head drag. The power consumption is proportional to the frequency in the biologically relevant range, which confirms that frictional forces dominate during sand-swimming by the sandfish. Comparison of the segmental forces measured in simulation with the force on a laterally oscillating rod reveals that a granular hysteresis effect causes the overestimation of the body thrust forces in the RFT. Our models provide detailed testable predictions for biological locomotion in a granular environment.

  14. Advances in the Visualization and Analysis of Boundary Layer Flow in Swimming Fish

    DTIC Science & Technology

    2005-02-01

    3.1.1 Fish Scup, Stenotomus chrysops, (n = 9) and smooth dogfish , Mustelus canis, (n = 1), were caught in traps or by hook and line in Nantucket Sound...the experiments. The body length, L, of scup averaged 19.5 ± 1.8 cm (mean ± S.D.). The dogfish measured 44.4 cm. 3.1.2 Swimming conditions Scup were...The dogfish was observed swimming 20 - 65 cm s" in the flume at 22 - 23 C. In flume trials, observations from three positions along the midline of each

  15. Fish and robots swimming together: attraction towards the robot demands biomimetic locomotion.

    PubMed

    Marras, Stefano; Porfiri, Maurizio

    2012-08-07

    The integration of biomimetic robots in a fish school may enable a better understanding of collective behaviour, offering a new experimental method to test group feedback in response to behavioural modulations of its 'engineered' member. Here, we analyse a robotic fish and individual golden shiners (Notemigonus crysoleucas) swimming together in a water tunnel at different flow velocities. We determine the positional preference of fish with respect to the robot, and we study the flow structure using a digital particle image velocimetry system. We find that biomimetic locomotion is a determinant of fish preference as fish are more attracted towards the robot when its tail is beating rather than when it is statically immersed in the water as a 'dummy'. At specific conditions, the fish hold station behind the robot, which may be due to the hydrodynamic advantage obtained by swimming in the robot's wake. This work makes a compelling case for the need of biomimetic locomotion in promoting robot-animal interactions and it strengthens the hypothesis that biomimetic robots can be used to study and modulate collective animal behaviour.

  16. Fish and robots swimming together: attraction towards the robot demands biomimetic locomotion

    PubMed Central

    Marras, Stefano; Porfiri, Maurizio

    2012-01-01

    The integration of biomimetic robots in a fish school may enable a better understanding of collective behaviour, offering a new experimental method to test group feedback in response to behavioural modulations of its ‘engineered’ member. Here, we analyse a robotic fish and individual golden shiners (Notemigonus crysoleucas) swimming together in a water tunnel at different flow velocities. We determine the positional preference of fish with respect to the robot, and we study the flow structure using a digital particle image velocimetry system. We find that biomimetic locomotion is a determinant of fish preference as fish are more attracted towards the robot when its tail is beating rather than when it is statically immersed in the water as a ‘dummy’. At specific conditions, the fish hold station behind the robot, which may be due to the hydrodynamic advantage obtained by swimming in the robot's wake. This work makes a compelling case for the need of biomimetic locomotion in promoting robot–animal interactions and it strengthens the hypothesis that biomimetic robots can be used to study and modulate collective animal behaviour. PMID:22356819

  17. Individual variation in the swimming performance of fishes: An overlooked source of variation in toxicity studies

    SciTech Connect

    Kolok, A.S. ||; Plaisance, E.P.; Abdelghani, A.

    1998-02-01

    A commonly used indicator of sublethal stress in fish is impaired swimming performance. Analysis of performance data usually employs a simple comparison, in which the mean of a stressed group of fish is compared to that of a control group. Although such a comparison is satisfactory in many cases, a comparison emphasizing individual variation in performance can yield valuable information unattainable by a means comparison. In this experiment, the authors determined critical swimming speeds of subadult male fathead minnows before and after exposure to contaminated sediments from Devil`s Swamp, Louisiana, USA. The data were then analyzed using a means comparison and an individual approach to illustrate the differences in explanatory power between the two approaches.

  18. Swimming behaviour of fish under diminished gravity conditions - a review

    NASA Astrophysics Data System (ADS)

    Anken, Ralf; Hilbig, Reinhard; Anken, Ralf

    In vertebrates (including humans) altered gravitational environments (∆g) such as weightlessness (microgravity, µg) can induce malfunctions of the inner ears leading to severe sensorymotor disorders (intersensory-conflict-theory) including space motion sickness (SMS), a kinetosis. SMS is an important operational problem, since the sensorimotor performance of an affected astronaut is severely impaired especially in the first two to three days of a space mission. Of course human subjects are not amenable to invasive research techniques for studying the basis of SMS and related kinetoses. Other vertebrates such as fish are therefore used as model systems since their peripheral and central vestibular system - at least at the level of primary vestibular brain nuclei - is largely homologous to that of humans. Moreover, fish are capable to maintain spatial orientation and postural control in 3 dimensions even in dark or turbid waters, because they are particularly sensitive to ∆g. The observations made, using fish as a model system, to contribute to the understanding of human kinetosis susceptibility will be reviewed. A conclusion will address lessions learned. Acknowledgement: Numerous of the studies to be reviewed were financially supported by the German Aerospace Center (DLR) (FKZ: 50 WB 9997/50 WB 0527).

  19. Unveiling the neurotoxicity of methylmercury in fish (Diplodus sargus) through a regional morphometric analysis of brain and swimming behavior assessment.

    PubMed

    Puga, Sónia; Pereira, Patrícia; Pinto-Ribeiro, Filipa; O'Driscoll, Nelson J; Mann, Erin; Barata, Marisa; Pousão-Ferreira, Pedro; Canário, João; Almeida, Armando; Pacheco, Mário

    2016-11-01

    The current study aims to shed light on the neurotoxicity of MeHg in fish (white seabream - Diplodus sargus) by the combined assessment of: (i) MeHg toxicokinetics in the brain, (ii) brain morphometry (volume and number of neurons plus glial cells in specific brain regions) and (iii) fish swimming behavior (endpoints associated with the motor performance and the fear/anxiety-like status). Fish were surveyed for all the components after 7 (E7) and 14 (E14) days of dietary exposure to MeHg (8.7μgg(-1)), as well as after a post-exposure period of 28days (PE28). MeHg was accumulated in the brain of D. sargus after a short time (E7) and reached a maximum at the end of the exposure period (E14), suggesting an efficient transport of this toxicant into fish brain. Divalent inorganic Hg was also detected in fish brain along the experiment (indicating demethylation reactions), although levels were 100-200 times lower than MeHg, which pinpoints the organic counterpart as the great liable for the recorded effects. In this regard, a decreased number of cells in medial pallium and optic tectum, as well as an increased hypothalamic volume, occurred at E7. Such morphometric alterations were followed by an impairment of fish motor condition as evidenced by a decrease in the total swimming time, while the fear/anxiety-like status was not altered. Moreover, at E14 fish swam a greater distance, although no morphometric alterations were found in any of the brain areas, probably due to compensatory mechanisms. Additionally, although MeHg decreased almost two-fold in the brain during post-exposure, the levels were still high and led to a loss of cells in the optic tectum at PE28. This is an interesting result that highlights the optic tectum as particularly vulnerable to MeHg exposure in fish. Despite the morphometric alterations reported in the optic tectum at PE28, no significant changes were found in fish behavior. Globally, the effects of MeHg followed a multiphasic profile, where

  20. Parametric study of the swimming performance of a fish robot propelled by a flexible caudal fin.

    PubMed

    Low, K H; Chong, C W

    2010-12-01

    In this paper, we aim to study the swimming performance of fish robots by using a statistical approach. A fish robot employing a carangiform swimming mode had been used as an experimental platform for the performance study. The experiments conducted aim to investigate the effect of various design parameters on the thrust capability of the fish robot with a flexible caudal fin. The controllable parameters associated with the fin include frequency, amplitude of oscillation, aspect ratio and the rigidity of the caudal fin. The significance of these parameters was determined in the first set of experiments by using a statistical approach. A more detailed parametric experimental study was then conducted with only those significant parameters. As a result, the parametric study could be completed with a reduced number of experiments and time spent. With the obtained experimental result, we were able to understand the relationship between various parameters and a possible adjustment of parameters to obtain a higher thrust. The proposed statistical method for experimentation provides an objective and thorough analysis of the effects of individual or combinations of parameters on the swimming performance. Such an efficient experimental design helps to optimize the process and determine factors that influence variability.

  1. The influence of thermal acclimation on power production during swimming. II. Mechanics of scup red muscle under in vivo conditions.

    PubMed

    Swank, D M; Rome, L C

    2001-02-01

    We have previously shown that the power output of red muscle from warm-acclimated scup is greatly reduced when the fish swim at low temperatures. This reduction occurs primarily because, despite the slowing of muscle relaxation rate at cold temperatures, warm-acclimated scup swim with the same tail-beat frequency and the same stimulation durations, thereby not affording the slower-relaxing muscle any extra time to relax. We hypothesize that power output during swimming could be increased if the stimulus duration were reduced or if the relaxation rate of the red muscle were increased during cold acclimation. Scup were acclimated to 10 degrees C (cold-acclimated) and 20 degrees C (warm-acclimated) for at least 6 weeks. Cold acclimation dramatically increased the ability of scup red muscle to produce power at 10 degrees C. Power output measured from cold-acclimated muscle bundles driven through in vivo conditions measured from cold-acclimated scup swimming at 10 degrees C (i.e. work loops) was generally much greater than that from warm-acclimated muscle driven through its respective in vivo conditions at 10 degrees C. The magnitude of the increase depended both on the anatomical location of the muscle and on swimming speed. Integrated over the length of the fish, the red musculature from cold-acclimated fish generated 2.7, 8.9 and 5.8 times more power than the red musculature from warm-acclimated fish while swimming at 30 cm s(-)(1), 40 cm s(-)(1) and 50 cm s(-)(1), respectively. Our analysis suggests that the cold-acclimated fish should be able to swim in excess of 40 cm s(-)(1) with just their red muscle whereas the warm-acclimated fish must recruit their pink muscle well below this speed. Because the red muscle is more aerobic than the pink muscle, cold acclimation may increase the sustained swimming speed at which scup perform their long seasonal migrations at cool temperatures. We then explored the underlying mechanisms for the increase in muscle power output in

  2. The effects of caudal fin loss and regeneration on the swimming performance of three cyprinid fish species with different swimming capacities.

    PubMed

    Fu, Cheng; Cao, Zhen-Dong; Fu, Shi-Jian

    2013-08-15

    In nature, the caudal fins of fish species are frequently lost to some extent by aggressive behaviour, predation and diseases. To test whether the swimming performance of fish with different swimming capacities would be differentially affected due to caudal fin loss and regeneration, we investigated the critical swimming speed (Ucrit), swimming metabolic rate (M(O2)), tail beat frequency (f(TB)) and tail beat amplitude (A(TB)) after caudal fin loss and regeneration (20 days) in juveniles of three cyprinid fish species: the qingbo (Spinibarbus sinensis; strong swimmer), the common carp (Cyprinus carpio; intermediate swimmer) and the goldfish (Carassius auratus; poor swimmer). The Ucrit values of the caudal-fin-lost qingbo, common carp and goldfish were 49, 32 and 35% significantly lower than those of the control groups, respectively. The maximum tail beat amplitude (A(TBmax)) (all three fishes), the maximum tail beat frequency (f(TBmax)) (only the common carp and the goldfish) and/or the active metabolic rate (M(O2active)) (only the common carp) of the caudal-fin-lost fish were significantly higher than those of the control groups. After 20 days of recovery, the caudal fins recovered to 41, 47 and 24% of those of the control groups for the qingbo, the common carp and the goldfish, respectively. However, the Ucrit values of the fin-regenerated qingbo, common carp and goldfish recovered to 86, 91 and 95% of those of the control group, respectively. The caudal-fin-regenerated qingbo and common carp showed a significantly higher A(TBmax) and f(TBmax), respectively, compared with those of the control groups. The qingbo had a higher f(TBmax) but a lower A(TBmax) than the common carp and the goldfish, which suggested that a strong swimmer may maintain swimming speed primarily by maintaining a greater f(TBmax), for which the caudal fin plays a more important role during swimming, than a poor swimmer. The M(O2active) of fish (common carp) with a redundant respiratory

  3. Mechanical and scaling considerations for efficient jellyfish swimming

    NASA Astrophysics Data System (ADS)

    Hoover, Alexander; Miller, Laura; Griffith, Boyce

    2015-11-01

    With a fossil record dating over half a billion years, jellyfish represent one of the earliest examples of how multicellular organisms first organized into moving systems. Lacking an agonist-antagonist muscle pairing, jellyfish swim via a process of elastic deformation and recoil. Jellyfish propulsion is generated via the coordinated contraction of its elastic bell by its coronal swimming muscles and a complementary re-expansion that is passively driven by stored elastic energy. Recent studies have found jellyfish to be one of the most efficient swimmers due to its low energy expenditure in their forward movement. Using an immersed boundary framework, we will further examine the efficiency of jellyfish swimming by incorporating material models that are informed by the musculature present in jellyfish into a model of the elastic jellyfish bell in three dimensions. The fully-coupled fluid structure interaction problem is solved using an adaptive and parallelized version of the immersed boundary method (IBAMR). This model is then used to explore how variability in the mechanical properties of the bell affect the work done by the bell as well as the cost of transport related to jellyfish locomotion. We then examine how the efficiency of this system is affected by the Reynolds number.

  4. Mechanical and scaling considerations for efficient jellyfish swimming

    NASA Astrophysics Data System (ADS)

    Hoover, A. P.; Miller, L.

    2016-02-01

    With a fossil record dating over half a billion years, jellyfish represent one of the earliest examples of how multicellular organisms first organized into moving systems. Lacking an agonist-antagonist muscle pairing, jellyfish swim via a process of elastic deformation and recoil. Jellyfish propulsion is generated via the coordinated contraction of its elastic bell by its coronal swimming muscles and a complementary re-expansion that is passively driven by stored elastic energy. Recent studies have found jellyfish to be one of the most efficient swimmers due to its low energy expenditure in their forward movement. Using an immersed boundary framework, we will further examine the performance of jellyfish swimming by incorporating material models that are informed by the musculature present in jellyfish into a model of the elastic jellyfish bell in three dimensions. The fully-coupled fluid structure interaction problem is solved using an adaptive and parallelized version of the immersed boundary method (IBAMR). This model is then used to explore how variability in the mechanical properties of the bell affect the work done by the bell as well as the cost of transport related to jellyfish locomotion. We then examine how the cost of transport of this system is affected by the Reynolds number.

  5. Size and cell number of the utricle in kinetotically swimming fish: a parabolic aircraft flight study

    NASA Astrophysics Data System (ADS)

    Bäuerle, A.; Anken, R. H.; Hilbig, R.; Baumhauer, N.; Rahmann, H.

    2004-01-01

    Humans taking part in parabolic aircraft flights (PAFs) may suffer from space motion sickness (SMS, a kinetosis). Since it has been repeatedly shown earlier that some fish of a given batch also reveal a kinetotic behavior during PAFs (especially so-called spinning movements and looping responses) and due to the homology of the vestibular apparatus among all vertebrates, fish can be used as model systems to investigate the origin of susceptibility to motion sickness. Therefore, we examined the utricular maculae (they are responsible for the internalization of gravity in teleosteans) of fish swimming kinetotically at microgravity in comparison with animals from the same batch who swam normally. On the histological level, it was found that the total number of both sensory and supporting cells of the utricular maculae did not differ between kinetotic animals as compared to normally swimming fish. Cell density (sensory and supporting cells/100 μm 2), however, was reduced in kinetotic animals ( p < 0.0001), which seemed to be due to malformed epithelial cells (increase in cell size) of the kinetotic specimens. Susceptibility to kinetoses may therefore originate in malformed sensory epithelia.

  6. Size and Cell Number of the Utricle in kinetotically swimming Fish: A parabolic Aircraft Flight Study

    NASA Astrophysics Data System (ADS)

    Baeuerle, A.; Anken, R.; Baumhauer, N.; Hilbig, R.; Rahmann, H.

    Humans taking part in parabolic aircraft flights (PAFs) may suffer from space motion sickness (SMS, a kinetosis). Since it has been repeatedly shown earlier that some fish of a given batch also reveal a kinetotic behaviour during PAFs (especially so-called spinning movements and looping responses), and due to the homology of the vestibular apparatus among all vertebrates, fish can be used as model systems to investigate the origin of susceptibility to motion sickness. Therefore, we examined the utricular maculae (they are responsible for the internalisation of gravity in teleosteans) of fish swimming kinetotically during the μg-phases in the course of PAFs in comparison with animals from the same batch who swam normally. On the light microscopical level, it was found that the total number of both sensory and supporting cells of the utricular maculae did not differ between kinetotic animals as compared to normally swimming fish. Cell density (sensory and supporting cells/100μm -μm), however, was reduced in kinetotic animals (p<0.0001), which seemed to be due to malformed epithelial cells (increase in cell size) of the kinetotic specimens. Susceptibility to kinetoses may therefore originate in asymmetric inner ear otoliths as has been suggested earlier, but also in genetically predispositioned, malformed sensory epithelia. This work was financially supported by the German Aerospace Center (DLR) e.V. (FKZ: 50 WB 9997).

  7. Statistics of the electrosensory input in the freely swimming weakly electric fish Apteronotus leptorhynchus.

    PubMed

    Fotowat, Haleh; Harrison, Reid R; Krahe, Rüdiger

    2013-08-21

    The neural computations underlying sensory-guided behaviors can best be understood in view of the sensory stimuli to be processed under natural conditions. This input is often actively shaped by the movements of the animal and its sensory receptors. Little is known about natural sensory scene statistics taking into account the concomitant movement of sensory receptors in freely moving animals. South American weakly electric fish use a self-generated quasi-sinusoidal electric field for electrolocation and electrocommunication. Thousands of cutaneous electroreceptors detect changes in the transdermal potential (TDP) as the fish interact with conspecifics and the environment. Despite substantial knowledge about the circuitry and physiology of the electrosensory system, the statistical properties of the electrosensory input evoked by natural swimming movements have never been measured directly. Using underwater wireless telemetry, we recorded the TDP of Apteronotus leptorhynchus as they swam freely by themselves and during interaction with a conspecific. Swimming movements caused low-frequency TDP amplitude modulations (AMs). Interacting with a conspecific caused additional AMs around the difference frequency of their electric fields, with the amplitude of the AMs (envelope) varying at low frequencies due to mutual movements. Both AMs and envelopes showed a power-law relationship with frequency, indicating spectral scale invariance. Combining a computational model of the electric field with video tracking of movements, we show that specific swimming patterns cause characteristic spatiotemporal sensory input correlations that contain information that may be used by the brain to guide behavior.

  8. Lateral Line Layout Correlates with the Differential Hydrodynamic Pressure on Swimming Fish

    NASA Astrophysics Data System (ADS)

    Ristroph, Leif; Liao, James C.; Zhang, Jun

    2015-01-01

    The lateral line of fish includes the canal subsystem that detects hydrodynamic pressure gradients and is thought to be important in swimming behaviors such as rheotaxis and prey tracking. Here, we explore the hypothesis that this sensory system is concentrated at locations where changes in pressure are greatest during motion through water. Using high-fidelity models of rainbow trout, we mimic the flows encountered during swimming while measuring pressure with fine spatial and temporal resolution. The variations in pressure for perturbations in body orientation and for disturbances to the incoming stream are seen to correlate with the sensory network. These findings support a view of the lateral line as a "hydrodynamic antenna" that is configured to retrieve flow signals and also suggest a physical explanation for the nearly universal sensory layout across diverse species.

  9. Effects of prolonged weightlessness on the swimming pattern of fish aboard Skylab 3

    NASA Technical Reports Server (NTRS)

    Von Baumgarten, R. J.; Simmonds, R. C.; Boyd, J. F.; Garriott, O. K.

    1975-01-01

    Looping behavior of minnows aboard Skylab 3 is analyzed. Extensive looping patterns were observed at first look on the third day of weightlessness; thereafter, the frequency of the looping episodes diminished until complete adaptation on the twenty-first day, at which time the fish oriented themselves with their backs to the light. The swimming anomaly could be due to (1) absence of continuous bending of sense hairs to a certain extent by gravity, causing the fish to tilt forward in an attempt to increase leverage on the hairs - in the absence of all gravity, tilting is continued into looping (this hypothesis is supported by parabolic flight experiments with partial gravity, in which only tilting was seen); or (2) an attempt by the fish to create a gravitoinertial stimulus by 'centrifuging' its otoliths by looping.

  10. Effects of prolonged weightlessness on the swimming pattern of fish aboard Skylab 3

    NASA Technical Reports Server (NTRS)

    Von Baumgarten, R. J.; Simmonds, R. C.; Boyd, J. F.; Garriott, O. K.

    1975-01-01

    Looping behavior of minnows aboard Skylab 3 is analyzed. Extensive looping patterns were observed at first look on the third day of weightlessness; thereafter, the frequency of the looping episodes diminished until complete adaptation on the twenty-first day, at which time the fish oriented themselves with their backs to the light. The swimming anomaly could be due to (1) absence of continuous bending of sense hairs to a certain extent by gravity, causing the fish to tilt forward in an attempt to increase leverage on the hairs - in the absence of all gravity, tilting is continued into looping (this hypothesis is supported by parabolic flight experiments with partial gravity, in which only tilting was seen); or (2) an attempt by the fish to create a gravitoinertial stimulus by 'centrifuging' its otoliths by looping.

  11. Riding the waves: the role of the body wave in undulatory fish swimming.

    PubMed

    Müller, Ulrike K; Stamhuis, Eize J; Videler, John J

    2002-11-01

    A continuously swimming mullet modulates its thrust production by changing slip-the ratio between its swimming speed U and the speed V with which the body wave travels down its body. This variation in thrust is reflected in the wake of the fish. We obtained 2-dimensional impressions of the wake behind a mullet swimming at a slip of 0.7 equivalent to active swimming, at a slip of 0.9 close to free-wheeling, and at a slip of 1.1 when the fish is braking. Independent of the slip, vortices are shed at the tail when the tail tip reaches its maximum lateral excursion. The manner in which the wake changes as it decays depends on the degree of slip: At a slip well below unity, the wake decays without any qualitative changes in shape, the medio-frontal cross section of the mature wake consists of a double row of alternating vortices separated by an undulating jet, and the angle between the jet flow and the mean path of motion is close to 45°; at a slip above unity, the vortices stretch out laterally and the mature wake resembles a single row of oval vortices with two vortex cores, and the jet between the vortices is almost perpendicular to the mean path of motion; the wake at slip of 0.9 exhibits a pattern intermediate between the wakes at slips 0.7 and 0.9 with slightly elongate vortices and a jet angle of 61°.

  12. Neural mechanism of optimal limb coordination in crustacean swimming.

    PubMed

    Zhang, Calvin; Guy, Robert D; Mulloney, Brian; Zhang, Qinghai; Lewis, Timothy J

    2014-09-23

    A fundamental challenge in neuroscience is to understand how biologically salient motor behaviors emerge from properties of the underlying neural circuits. Crayfish, krill, prawns, lobsters, and other long-tailed crustaceans swim by rhythmically moving limbs called swimmerets. Over the entire biological range of animal size and paddling frequency, movements of adjacent swimmerets maintain an approximate quarter-period phase difference with the more posterior limbs leading the cycle. We use a computational fluid dynamics model to show that this frequency-invariant stroke pattern is the most effective and mechanically efficient paddling rhythm across the full range of biologically relevant Reynolds numbers in crustacean swimming. We then show that the organization of the neural circuit underlying swimmeret coordination provides a robust mechanism for generating this stroke pattern. Specifically, the wave-like limb coordination emerges robustly from a combination of the half-center structure of the local central pattern generating circuits (CPGs) that drive the movements of each limb, the asymmetric network topology of the connections between local CPGs, and the phase response properties of the local CPGs, which we measure experimentally. Thus, the crustacean swimmeret system serves as a concrete example in which the architecture of a neural circuit leads to optimal behavior in a robust manner. Furthermore, we consider all possible connection topologies between local CPGs and show that the natural connectivity pattern generates the biomechanically optimal stroke pattern most robustly. Given the high metabolic cost of crustacean swimming, our results suggest that natural selection has pushed the swimmeret neural circuit toward a connection topology that produces optimal behavior.

  13. Neural mechanism of optimal limb coordination in crustacean swimming

    PubMed Central

    Zhang, Calvin; Guy, Robert D.; Mulloney, Brian; Zhang, Qinghai; Lewis, Timothy J.

    2014-01-01

    A fundamental challenge in neuroscience is to understand how biologically salient motor behaviors emerge from properties of the underlying neural circuits. Crayfish, krill, prawns, lobsters, and other long-tailed crustaceans swim by rhythmically moving limbs called swimmerets. Over the entire biological range of animal size and paddling frequency, movements of adjacent swimmerets maintain an approximate quarter-period phase difference with the more posterior limbs leading the cycle. We use a computational fluid dynamics model to show that this frequency-invariant stroke pattern is the most effective and mechanically efficient paddling rhythm across the full range of biologically relevant Reynolds numbers in crustacean swimming. We then show that the organization of the neural circuit underlying swimmeret coordination provides a robust mechanism for generating this stroke pattern. Specifically, the wave-like limb coordination emerges robustly from a combination of the half-center structure of the local central pattern generating circuits (CPGs) that drive the movements of each limb, the asymmetric network topology of the connections between local CPGs, and the phase response properties of the local CPGs, which we measure experimentally. Thus, the crustacean swimmeret system serves as a concrete example in which the architecture of a neural circuit leads to optimal behavior in a robust manner. Furthermore, we consider all possible connection topologies between local CPGs and show that the natural connectivity pattern generates the biomechanically optimal stroke pattern most robustly. Given the high metabolic cost of crustacean swimming, our results suggest that natural selection has pushed the swimmeret neural circuit toward a connection topology that produces optimal behavior. PMID:25201976

  14. The physiology and mechanics of undulatory swimming: a student laboratory exercise using medicinal leeches.

    PubMed

    Ellerby, David J

    2009-09-01

    The medicinal leech is a useful animal model for investigating undulatory swimming in the classroom. Unlike many swimming organisms, its swimming performance can be quantified without specialized equipment. A large blood meal alters swimming behavior in a way that can be used to generate a discussion of the hydrodynamics of swimming, muscle mechanics, hydrostatic skeletons, and the physiological features that allow leeches to deal with the volume increase and osmotic load imposed by the meal. Analyses can be carried out at a range of levels tailored to suit a particular class.

  15. Slip, Swim, Mix, Pack: Fluid Mechanics at the Micron Scale

    NASA Astrophysics Data System (ADS)

    Lauga, Eric

    2006-11-01

    This talk summarizes my thesis work which was advised by Michael P. Brenner and Howard A. Stone at Harvard University and is devoted to fluid behavior at the micrometer length scale. We consider four different problems. We first address the topic of the no-slip boundary condition in Newtonian liquids. After briefly reviewing the field, we (1) present models for apparent slip in three distinct experimental settings, (2) propose a new method to probe slip and (3) show that slip has virtually no influence on the non-modal stability of shear flows. The second problem we consider addresses mixing in micro-devices. We show that microchannels which are obtained with a single step of microfabrication (that is, have constant height) are able to generate fully three-dimensional flows. The third problem we present proposes a mechanical model for the motion of the bacterium E. coli near solid boundaries. It has been observed that, near a solid surface, E. coli does not swim in a straight line but in clockwise circles, which we show is a consequence of the hydrodynamic interactions between the free- swimming bacterium and the surface. The final problem we consider addresses self-assembly of micro- particles. We show that when spherical particles located on a liquid droplet are forced to come together by evaporation of the droplet, the geometrical and mechanical constraints arising during the process lead to unique final clusters.

  16. Automatically detect and track multiple fish swimming in shallow water with frequent occlusion.

    PubMed

    Qian, Zhi-Ming; Cheng, Xi En; Chen, Yan Qiu

    2014-01-01

    Due to its universality, swarm behavior in nature attracts much attention of scientists from many fields. Fish schools are examples of biological communities that demonstrate swarm behavior. The detection and tracking of fish in a school are of important significance for the quantitative research on swarm behavior. However, different from other biological communities, there are three problems in the detection and tracking of fish school, that is, variable appearances, complex motion and frequent occlusion. To solve these problems, we propose an effective method of fish detection and tracking. In this method, first, the fish head region is positioned through extremum detection and ellipse fitting; second, The Kalman filtering and feature matching are used to track the target in complex motion; finally, according to the feature information obtained by the detection and tracking, the tracking problems caused by frequent occlusion are processed through trajectory linking. We apply this method to track swimming fish school of different densities. The experimental results show that the proposed method is both accurate and reliable.

  17. Evaluation of swimming performance for fish passage of longnose dace Rhinichthys cataractae using an experimental flume.

    PubMed

    Dockery, D R; McMahon, T E; Kappenman, K M; Blank, M

    2017-03-01

    The swimming performance of longnose dace Rhinichthys cataractae, the most widely distributed minnow (Cyprinidae) in North America, was assessed in relation to potential passage barriers. The study estimated passage success, maximum ascent distances and maximum sprint speed in an open-channel flume over a range of water velocities and temperatures (10·7, 15·3 and 19·3° C). Rhinichthys cataractae had high passage success (95%) in a 9·2 m flume section at mean test velocities of 39 and 64 cm s(-1) , but success rate dropped to 66% at 78 cm s(-1) . Only 20% of fish were able to ascend a 2·7 m section with a mean velocity of 122 cm s(-1) . Rhinichthys cataractae actively selected low-velocity pathways located along the bottom and corners of the flume at all test velocities and adopted position-holding behaviour at higher water velocities. Mean volitional sprint speed was 174 cm s(-1) when fish volitionally sprinted in areas of high water velocities. Swimming performance generally increased with water temperature and fish length. Based on these results, fishways with mean velocities <64 cm s(-1) should allow passage of most R. cataractae. Water velocities >100 cm s(-1) within structures should be limited to short distance (<1 m) and structures with velocities ≥158 cm s(-1) would probably represent movement barriers. Study results highlighted the advantages of evaluating a multitude of swimming performance metrics in an open-channel flume, which can simulate the hydraulic features of fishways and allow for behavioural observations that can facilitate the design of effective passage structures. © 2016 The Fisheries Society of the British Isles.

  18. Scaling in Free-Swimming Fish and Implications for Measuring Size-at-Time in the Wild

    PubMed Central

    Broell, Franziska; Taggart, Christopher T.

    2015-01-01

    This study was motivated by the need to measure size-at-age, and thus growth rate, in fish in the wild. We postulated that this could be achieved using accelerometer tags based first on early isometric scaling models that hypothesize that similar animals should move at the same speed with a stroke frequency that scales with length-1, and second on observations that the speed of primarily air-breathing free-swimming animals, presumably swimming ‘efficiently’, is independent of size, confirming that stroke frequency scales as length-1. However, such scaling relations between size and swimming parameters for fish remain mostly theoretical. Based on free-swimming saithe and sturgeon tagged with accelerometers, we introduce a species-specific scaling relationship between dominant tail beat frequency (TBF) and fork length. Dominant TBF was proportional to length-1 (r2 = 0.73, n = 40), and estimated swimming speed within species was independent of length. Similar scaling relations accrued in relation to body mass-0.29. We demonstrate that the dominant TBF can be used to estimate size-at-time and that accelerometer tags with onboard processing may be able to provide size-at-time estimates among free-swimming fish and thus the estimation of growth rate (change in size-at-time) in the wild. PMID:26673777

  19. Scaling in Free-Swimming Fish and Implications for Measuring Size-at-Time in the Wild.

    PubMed

    Broell, Franziska; Taggart, Christopher T

    2015-01-01

    This study was motivated by the need to measure size-at-age, and thus growth rate, in fish in the wild. We postulated that this could be achieved using accelerometer tags based first on early isometric scaling models that hypothesize that similar animals should move at the same speed with a stroke frequency that scales with length-1, and second on observations that the speed of primarily air-breathing free-swimming animals, presumably swimming 'efficiently', is independent of size, confirming that stroke frequency scales as length-1. However, such scaling relations between size and swimming parameters for fish remain mostly theoretical. Based on free-swimming saithe and sturgeon tagged with accelerometers, we introduce a species-specific scaling relationship between dominant tail beat frequency (TBF) and fork length. Dominant TBF was proportional to length-1 (r2 = 0.73, n = 40), and estimated swimming speed within species was independent of length. Similar scaling relations accrued in relation to body mass-0.29. We demonstrate that the dominant TBF can be used to estimate size-at-time and that accelerometer tags with onboard processing may be able to provide size-at-time estimates among free-swimming fish and thus the estimation of growth rate (change in size-at-time) in the wild.

  20. Evaluation of a new coded electromyogram transmitter for studying swimming behavior and energetics in free-ranging fish

    SciTech Connect

    Brown, Richard S.; Tatara, Chris P.; Stephenson, John R.; Berejikian, Barry A.

    2007-06-25

    A new coded electromyogram (CEMG) transmitter was recently introduced to the market to allow broader application and greater flexibility of configurations. CEMG transmitters were implanted into twenty steelhead (Oncorhynchus mykiss) and calibrated to swimming speed in a respirometer. Linear regression models showed a strong positive relationship between output from CEMG transmitters and swimming speed. However, when signals from multiple transmitters were grouped, the relationship between CEMG output and swimming speed was less accurate than if signals from individual transmitters were used. The results, therefore, do not suggest that the CEMG transmitters acted similarly in all fish. Calibration data from one transmitter was not readily transferable among multiple fish implanted with the same transmitter, suggesting that the same transmitter implanted in multiple fish also performed dissimilarly. Variation in fish length, fish weight, location of transmitter implantation (distance from snout), and distance between the electrode tips did not account for the variation in models. Transmitters also had a relatively small working range of output at the swimming speeds tested. Nevertheless, new CEMG transmitters appear to have improved capabilities and should allow researchers to examine the locomotory behavior and energetics of smaller fish than previously possible with greater ease and less expense.

  1. Long-term Behavioral Tracking of Freely Swimming Weakly Electric Fish

    PubMed Central

    Jun, James J.; Longtin, André; Maler, Leonard

    2014-01-01

    Long-term behavioral tracking can capture and quantify natural animal behaviors, including those occurring infrequently. Behaviors such as exploration and social interactions can be best studied by observing unrestrained, freely behaving animals. Weakly electric fish (WEF) display readily observable exploratory and social behaviors by emitting electric organ discharge (EOD). Here, we describe three effective techniques to synchronously measure the EOD, body position, and posture of a free-swimming WEF for an extended period of time. First, we describe the construction of an experimental tank inside of an isolation chamber designed to block external sources of sensory stimuli such as light, sound, and vibration. The aquarium was partitioned to accommodate four test specimens, and automated gates remotely control the animals' access to the central arena. Second, we describe a precise and reliable real-time EOD timing measurement method from freely swimming WEF. Signal distortions caused by the animal's body movements are corrected by spatial averaging and temporal processing stages. Third, we describe an underwater near-infrared imaging setup to observe unperturbed nocturnal animal behaviors. Infrared light pulses were used to synchronize the timing between the video and the physiological signal over a long recording duration. Our automated tracking software measures the animal's body position and posture reliably in an aquatic scene. In combination, these techniques enable long term observation of spontaneous behavior of freely swimming weakly electric fish in a reliable and precise manner. We believe our method can be similarly applied to the study of other aquatic animals by relating their physiological signals with exploratory or social behaviors. PMID:24637642

  2. Slip, swim, mix, pack: Fluid mechanics at the micron scale

    NASA Astrophysics Data System (ADS)

    Lauga, Eric

    This thesis is devoted to fluid behavior at the micrometer length scale and considers four different problems. We first address the topic of the no-slip boundary condition in Newtonian liquids. After reviewing the field, we present models for apparent slip in three distinct experimental settings: Steady pressure-driven flow over heterogeneous surfaces, unsteady drainage flow over surface-attached bubbles, and flow of passive tracers affected by electrical forces. In all cases, we evaluate the apparent slip lengths and compare them to experimental results. We then propose a new method to probe slip, based on the influence of surface slip on the Brownian motion near a surface of a colloidal particle. We finish by showing that slip has virtually no influence on the non-modal stability of shear flows, despite its strong influence on unstable modes. The second problem we consider addresses mixing in micro-devices. We show that microchannels which are obtained with a single step of microfabrication (that is, have constant height) are able to generate fully three-dimensional flows, and could therefore be used as single-step passive micro-mixers. The third problem we present proposes a mechanical model for the motion of the bacterium E. coli near solid boundaries. It has been observed that, near a solid surface, E. coli does not swim in a straight line but in clockwise circles, which we show is a consequence of the hydrodynamic interactions between the free-swimming bacterium and the surface. The final problem we consider addresses self-assembly of micro-particles. We show that when spherical particles located on a liquid droplet are forced to come together by evaporation of the droplet, the geometrical and mechanical constraints arising during the process lead to unique final clusters. This allows us to propose a methodology to fabricate different clusters.

  3. Fractional rate of change of swim-bladder volume is reliably related to absolute depth during vertical displacements in teleost fish.

    PubMed

    Taylor, Graham K; Holbrook, Robert Iain; de Perera, Theresa Burt

    2010-09-06

    Fish must orient in three dimensions as they navigate through space, but it is unknown whether they are assisted by a sense of depth. In principle, depth can be estimated directly from hydrostatic pressure, but although teleost fish are exquisitely sensitive to changes in pressure, they appear unable to measure absolute pressure. Teleosts sense changes in pressure via changes in the volume of their gas-filled swim-bladder, but because the amount of gas it contains is varied to regulate buoyancy, this cannot act as a long-term steady reference for inferring absolute pressure. In consequence, it is generally thought that teleosts are unable to sense depth using hydrostatic pressure. Here, we overturn this received wisdom by showing from a theoretical physical perspective that absolute depth could be estimated during fast, steady vertical displacements by combining a measurement of vertical speed with a measurement of the fractional rate of change of swim-bladder volume. This mechanism works even if the amount of gas in the swim-bladder varies, provided that this variation occurs over much longer time scales than changes in volume during displacements. There is therefore no a priori physical justification for assuming that teleost fish cannot sense absolute depth by using hydrostatic pressure cues.

  4. Investigation of the swimming mechanics of Schistosoma cercariae and its role in disease transmission

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, Deepak; Bhargava, Arjun; Katsikis, Georgios; Prakash, Manu

    2015-11-01

    Schistosomiasis is a Neglected Tropical Disease responsible for the deaths of an estimated 200,000 people annually. Human infection occurs when the infectious forms of the worm known as cercariae swim through freshwater, detect humans and penetrate the skin. Cercarial swimming is a bottleneck in disease transmission since cercariae have finite energy reserves, hence motivating studies of their swimming mechanics. Here we build on earlier studies which revealed the existence of two swimming modes: the tail-first and head-first modes. Of these the former was shown to display a novel symmetry breaking mechanism enabling locomotion at low Reynolds numbers. Here we propose simple models for the two swimming modes based on a three-link swimmer geometry. Using local slender-body-theory, we calculate the swimming gait for these model swimmers and compare with experiments, both on live cercariae and on scaled-up robotic swimmers. We use data from these experiments and the models to calculate the energy expended while swimming in the two modes. This along with long-time tracking of swimming cercariae in a lab setting allows estimation of the decrease in activity of the swimmer as a function of time which is an important factor in cercarial infectivity. Finally, we consider, through experiments and theoretical models, the effects of gravity since cercariae are negatively buoyant and sink in the water column while not swimming. This sinking affects cercarial spatial distribution which is important from a disease perspective.

  5. Mechanisms of anguilliform locomotion in fishes studied using simple three-dimensional physical models.

    PubMed

    Lim, Jeanette L; Lauder, George V

    2016-07-05

    Physical models enable researchers to systematically examine complex and dynamic mechanisms of underwater locomotion in ways that would be challenging with freely swimming animals. Previous research on undulatory locomotion, for example, has used rectangular flexible panels that are effectively two-dimensional as proxies for the propulsive surfaces of swimming fishes, but these bear little resemblance to the bodies of elongate eel-like swimming animals. In this paper we use a polyurethane rod (round cross-section) and bar (square cross-section) to represent the body of a swimming Pacific hagfish (Eptatretus stoutii). We actuated the rod and bar in both heave and pitch using a mechanical controller to generate a propulsive wave at frequencies between 0.5 and 2.5 Hz. We present data on (1) how kinematic swimming patterns change with driving frequency in these elongate fish-like models, (2) the thrust-generating capability of these simple models, (3) how forces and work done during propulsion compare between cross-sectional shapes, (4) the wake flow patterns in these swimming models using particle image velocimetry. We also contrast kinematic and hydrodynamic patterns produced by bar and rod models to comparable new experimental data on kinematics and wake flow patterns from freely swimming hagfish. Increasing the driving frequency of bar and rod models reduced trailing edge amplitude and wavelength, and above 2 Hz a nodal point appeared in the kinematic wave. Above 1 Hz, both the rod and bar generated net thrust, with the work per cycle reaching a minimum at 1.5 Hz, and the bar always requiring more work per cycle than the rod. Wake flow patterns generated by the swimming rod and bar included clearly visible lateral jets, but not the caudolaterally directed flows seen in the wakes from freely swimming hagfish.

  6. Effects of longitudinal body position and swimming speed on mechanical power of deep red muscle from skipjack tuna (Katsuwonus pelamis).

    PubMed

    Syme, Douglas A; Shadwick, Robert E

    2002-01-01

    The mechanical power output of deep, red muscle from skipjack tuna (Katsuwonus pelamis) was studied to investigate (i) whether this muscle generates maximum power during cruise swimming, (ii) how the differences in strain experienced by red muscle at different axial body locations affect its performance and (iii) how swimming speed affects muscle work and power output. Red muscle was isolated from approximately mid-way through the deep wedge that lies next to the backbone; anterior (0.44 fork lengths, ANT) and posterior (0.70 fork lengths, POST) samples were studied. Work and power were measured at 25 degrees C using the work loop technique. Stimulus phases and durations and muscle strains (+/- 5.5 % in ANT and +/- 8 % in POST locations) experienced during cruise swimming at different speeds were obtained from previous studies and used during work loop recordings. In addition, stimulus conditions that maximized work were determined. The stimulus durations and phases yielding maximum work decreased with increasing cycle frequency (analogous to tail-beat frequency), were the same at both axial locations and were almost identical to those used by the fish during swimming, indicating that the muscle produces near-maximal work under most conditions in swimming fish. While muscle in the posterior region undergoes larger strain and thus produces more mass-specific power than muscle in the anterior region, when the longitudinal distribution of red muscle mass is considered, the anterior muscles appear to contribute approximately 40% more total power. Mechanical work per length cycle was maximal at a cycle frequency of 2-3 Hz, dropping to near zero at 15 Hz and by 20-50% at 1 Hz. Mechanical power was maximal at a cycle frequency of 5 Hz, dropping to near zero at 15 Hz. These fish typically cruise with tail-beat frequencies of 2.8-5.2 Hz, frequencies at which power from cyclic contractions of deep red muscles was 75-100% maximal. At any given frequency over this range, power

  7. Deep RNA Sequencing of the Skeletal Muscle Transcriptome in Swimming Fish

    PubMed Central

    Palstra, Arjan P.; Beltran, Sergi; Burgerhout, Erik; Brittijn, Sebastiaan A.; Magnoni, Leonardo J.; Henkel, Christiaan V.; Jansen, Hans J.; van den Thillart, Guido E. E. J. M.; Spaink, Herman P.; Planas, Josep V.

    2013-01-01

    Deep RNA sequencing (RNA-seq) was performed to provide an in-depth view of the transcriptome of red and white skeletal muscle of exercised and non-exercised rainbow trout (Oncorhynchus mykiss) with the specific objective to identify expressed genes and quantify the transcriptomic effects of swimming-induced exercise. Pubertal autumn-spawning seawater-raised female rainbow trout were rested (n = 10) or swum (n = 10) for 1176 km at 0.75 body-lengths per second in a 6,000-L swim-flume under reproductive conditions for 40 days. Red and white muscle RNA of exercised and non-exercised fish (4 lanes) was sequenced and resulted in 15–17 million reads per lane that, after de novo assembly, yielded 149,159 red and 118,572 white muscle contigs. Most contigs were annotated using an iterative homology search strategy against salmonid ESTs, the zebrafish Danio rerio genome and general Metazoan genes. When selecting for large contigs (>500 nucleotides), a number of novel rainbow trout gene sequences were identified in this study: 1,085 and 1,228 novel gene sequences for red and white muscle, respectively, which included a number of important molecules for skeletal muscle function. Transcriptomic analysis revealed that sustained swimming increased transcriptional activity in skeletal muscle and specifically an up-regulation of genes involved in muscle growth and developmental processes in white muscle. The unique collection of transcripts will contribute to our understanding of red and white muscle physiology, specifically during the long-term reproductive migration of salmonids. PMID:23308156

  8. Three-dimensional numerical simulation of hydrodynamic interactions between pectoral-fin vortices and body undulation in a swimming fish

    NASA Astrophysics Data System (ADS)

    Yu, Cheng-Lun; Ting, Shang-Chieh; Yeh, Meng-Kao; Yang, Jing-Tang

    2011-09-01

    We investigated numerically the hydrodynamic interactions between pectoral-fin vortices and body undulation in a fish swimming with carangiform locomotion at a Reynolds number of 3.3 × 104; the three-dimensional, viscous, incompressible, Navier-Stokes equations were solved with a finite-volume method. For a fish swimming with the pectoral fins abducted, we characterized the wake flow structures, forces, and power consumption with respect to various Strouhal numbers. The numerical results reveal that a pair of vortices is formed immediately behind the abducted pectoral fins of a swimming fish. There exist hydrodynamic interactions between the pectoral-fin vortices and the undulating fish body. For Strouhal numbers in a range 0.2-0.8, the body undulation impedes the shedding of pectoral-fin vortices, resulting in vortices closely attached to the pectoral fins. In contrast, for Strouhal number = 0.1, the pectoral-fin vortices are shed from the pectoral fins and drift downstream. The low-pressure suction forces arising from the shed pectoral-fin vortices facilitate lateral movements of the fish body, decreasing the power consumption. This phenomenon indicates the possibility for an actual fish to harvest energy from the shed pectoral-fin vortices.

  9. Collective Response of Zebrafish Shoals to a Free-Swimming Robotic Fish

    PubMed Central

    Butail, Sachit; Bartolini, Tiziana; Porfiri, Maurizio

    2013-01-01

    In this work, we explore the feasibility of regulating the collective behavior of zebrafish with a free-swimming robotic fish. The visual cues elicited by the robot are inspired by salient features of attraction in zebrafish and include enhanced coloration, aspect ratio of a fertile female, and carangiform/subcarangiform locomotion. The robot is autonomously controlled with an online multi-target tracking system and swims in circular trajectories in the presence of groups of zebrafish. We investigate the collective response of zebrafish to changes in robot speed, achieved by varying its tail-beat frequency. Our results show that the speed of the robot is a determinant of group cohesion, quantified through zebrafish nearest-neighbor distance, which increases with the speed of the robot until it reaches . We also find that the presence of the robot causes a significant decrease in the group speed, which is not accompanied by an increase in the freezing response of the subjects. Findings of this study are expected to inform the design of experimental protocols that leverage the use of robots to study the zebrafish animal model. PMID:24146825

  10. Collective response of zebrafish shoals to a free-swimming robotic fish.

    PubMed

    Butail, Sachit; Bartolini, Tiziana; Porfiri, Maurizio

    2013-01-01

    In this work, we explore the feasibility of regulating the collective behavior of zebrafish with a free-swimming robotic fish. The visual cues elicited by the robot are inspired by salient features of attraction in zebrafish and include enhanced coloration, aspect ratio of a fertile female, and carangiform/subcarangiform locomotion. The robot is autonomously controlled with an online multi-target tracking system and swims in circular trajectories in the presence of groups of zebrafish. We investigate the collective response of zebrafish to changes in robot speed, achieved by varying its tail-beat frequency. Our results show that the speed of the robot is a determinant of group cohesion, quantified through zebrafish nearest-neighbor distance, which increases with the speed of the robot until it reaches [Formula: see text]. We also find that the presence of the robot causes a significant decrease in the group speed, which is not accompanied by an increase in the freezing response of the subjects. Findings of this study are expected to inform the design of experimental protocols that leverage the use of robots to study the zebrafish animal model.

  11. Bottles as models: predicting the effects of varying swimming speed and morphology on size selectivity and filtering efficiency in fishes.

    PubMed

    Paig-Tran, E W Misty; Bizzarro, Joseph J; Strother, James A; Summers, Adam P

    2011-05-15

    We created physical models based on the morphology of ram suspension-feeding fishes to better understand the roles morphology and swimming speed play in particle retention, size selectivity and filtration efficiency during feeding events. We varied the buccal length, flow speed and architecture of the gills slits, including the number, size, orientation and pore size/permeability, in our models. Models were placed in a recirculating flow tank with slightly negatively buoyant plankton-like particles (~20-2000 μm) collected at the simulated esophagus and gill rakers to locate the highest density of particle accumulation. Particles were captured through sieve filtration, direct interception and inertial impaction. Changing the number of gill slits resulted in a change in the filtration mechanism of particles from a bimodal filter, with very small (≤ 50 μm) and very large (>1000 μm) particles collected, to a filter that captured medium-sized particles (101-1000 μm). The number of particles collected on the gill rakers increased with flow speed and skewed the size distribution towards smaller particles (51-500 μm). Small pore sizes (105 and 200 μm mesh size) had the highest filtration efficiencies, presumably because sieve filtration played a significant role. We used our model to make predictions about the filtering capacity and efficiency of neonatal whale sharks. These results suggest that the filtration mechanics of suspension feeding are closely linked to an animal's swimming speed and the structural design of the buccal cavity and gill slits.

  12. Antimicrobial mechanisms of fish leukocytes.

    PubMed

    Rieger, Aja M; Barreda, Daniel R

    2011-12-01

    Early activation and coordination of innate defenses are critical for effective responses against infiltrating pathogens. Rapid engagement of immune cells provides a critical first line of defense soon after pathogen infiltration. Activation leads to a well-orchestrated set of events that sees the induction and regulation of intracellular and extracellular antimicrobial defenses. An array of regulatory mediators, highly toxic soluble molecules, degradative enzymes and antimicrobial peptides provides maximal protection against a wide range of pathogens while limiting endogenous damage to host tissues. In this review we highlight recent advances in our understanding of innate cellular antimicrobial responses of teleost fish and discuss their implications to cell survival, immunomodulation and death. The evolutionary conservation of these responses is a testament to their effectiveness against pathogen infiltration and their commitment to effective maintenance of host homeostasis. Importantly, recent developments in teleost fish systems have identified novel host defense strategies that may be unique to this lower vertebrate group or may point to previously unknown innate mechanisms that also play a significant role in higher vertebrate host immunity.

  13. The origin and evolution of the surfactant system in fish: insights into the evolution of lungs and swim bladders.

    PubMed

    Daniels, Christopher B; Orgeig, Sandra; Sullivan, Lucy C; Ling, Nicholas; Bennett, Michael B; Schürch, Samuel; Val, Adalberto Luis; Brauner, Colin J

    2004-01-01

    Several times throughout their radiation fish have evolved either lungs or swim bladders as gas-holding structures. Lungs and swim bladders have different ontogenetic origins and can be used either for buoyancy or as an accessory respiratory organ. Therefore, the presence of air-filled bladders or lungs in different groups of fishes is an example of convergent evolution. We propose that air breathing could not occur without the presence of a surfactant system and suggest that this system may have originated in epithelial cells lining the pharynx. Here we present new data on the surfactant system in swim bladders of three teleost fish (the air-breathing pirarucu Arapaima gigas and tarpon Megalops cyprinoides and the non-air-breathing New Zealand snapper Pagrus auratus). We determined the presence of surfactant using biochemical, biophysical, and morphological analyses and determined homology using immunohistochemical analysis of the surfactant proteins (SPs). We relate the presence and structure of the surfactant system to those previously described in the swim bladders of another teleost, the goldfish, and those of the air-breathing organs of the other members of the Osteichthyes, the more primitive air-breathing Actinopterygii and the Sarcopterygii. Snapper and tarpon swim bladders are lined with squamous and cuboidal epithelial cells, respectively, containing membrane-bound lamellar bodies. Phosphatidylcholine dominates the phospholipid (PL) profile of lavage material from all fish analyzed to date. The presence of the characteristic surfactant lipids in pirarucu and tarpon, lamellar bodies in tarpon and snapper, SP-B in tarpon and pirarucu lavage, and SPs (A, B, and D) in swim bladder tissue of the tarpon provide strong evidence that the surfactant system of teleosts is homologous with that of other fish and of tetrapods. This study is the first demonstration of the presence of SP-D in the air-breathing organs of nonmammalian species and SP-B in actinopterygian

  14. Passive mechanical models of fish caudal fins: effects of shape and stiffness on self-propulsion.

    PubMed

    Feilich, Kara L; Lauder, George V

    2015-04-16

    Fishes are found in a great variety of body forms with tail shapes that vary from forked tuna-like tails to the square-shaped tails found in some deep-bodied species. Hydrodynamic theory suggests that a fish's body and tail shape affects undulatory swimming performance. For example, a narrow caudal peduncle is believed to reduce drag, and a tuna-like tail to increase thrust. Despite the prevalence of these assertions, there is no experimental verification of the hydrodynamic mechanisms that may confer advantages on specific forms. Here, we use a mechanically-actuated flapping foil model to study how two aspects of shape, caudal peduncle depth and presence or absence of a forked caudal fin, may affect different aspects of swimming performance. Four different foil shapes were each made of plastics of three different flexural stiffnesses, permitting us to study how shape might interact with stiffness to produce swimming performance. For each foil, we measured the self-propelling swimming speed. In addition, we measured the forces, torques, cost of transport and power coefficient of each foil swimming at its self-propelling speed. There was no single 'optimal' foil exhibiting the highest performance in all metrics, and for almost all measures of swimming performance, foil shape and flexural stiffness interacted in complicated ways. Particle image velocimetry of several foils suggested that stiffness might affect the relative phasing of the body trailing edge and the caudal fin leading edge, changing the flow incident to the tail, and affecting hydrodynamics of the entire foil. The results of this study of a simplified model of fish body and tail morphology suggest that considerable caution should be used when inferring a swimming performance advantage from body and tail shape alone.

  15. Anthropogenic chemical cues can alter the swimming behaviour of juvenile stages of a temperate fish.

    PubMed

    Díaz-Gil, Carlos; Cotgrove, Lucy; Smee, Sarah Louise; Simón-Otegui, David; Hinz, Hilmar; Grau, Amalia; Palmer, Miquel; Catalán, Ignacio A

    2017-04-01

    Human pressure on coastal areas is affecting essential ecosystems including fish nursery habitats. Among these anthropogenic uses, the seasonal increment in the pressure due to leisure activities such as coastal tourism and yachting is an important environmental stressor in many coastal zones. These pressures may elicit understudied impacts due to, for example, sunscreens or other seasonal pollutants. The island of Majorca, northwest Mediterranean Sea, experiences one of the highest number of tourist visits per capita in the world, thus the surrounding coastal habitat is subject to high anthropogenic seasonal stress. Studies on early stages of fishes have observed responses to coastal chemical cues for the selection or avoidance of habitats. However, the potential interferences of human impacts on these signals are largely unknown. A choice chamber was used to determine water type preference and behaviour in naïve settled juvenile gilt-head sea bream (Sparus aurata), a temperate species of commercial interest. Fish were tested individually for behavioural changes with respect to water types from potential beneficial habitats, such as seawater with extract of the endemic seagrass Posidonia oceanica, anthropogenically influenced habitats such as water extracted from a commercial and recreational harbour and seawater mixed with sunscreen at concentrations observed in coastal waters. Using a Bayesian approach, we investigated a) water type preference; b) mean speed; and c) variance in the movement (as an indicator of burst swimming activity, or "sprint" behaviour) as behavioural descriptors with respect to water type. Fish spent similar percentage of time in treatment and control water types. However, movement descriptors showed that fish in sunscreen water moved slower (98.43% probability of being slower) and performed fewer sprints (90.1% probability of having less burst in speed) compared to control water. Less evident increases in sprints were observed in harbour

  16. Modelling the mechanics and hydrodynamics of swimming E. coli.

    PubMed

    Hu, Jinglei; Yang, Mingcheng; Gompper, Gerhard; Winkler, Roland G

    2015-10-28

    The swimming properties of an E. coli-type model bacterium are investigated by mesoscale hydrodynamic simulations, combining molecular dynamics simulations of the bacterium with the multiparticle particle collision dynamics method for the embedding fluid. The bacterium is composed of a spherocylindrical body with attached helical flagella, built up from discrete particles for an efficient coupling with the fluid. We measure the hydrodynamic friction coefficients of the bacterium and find quantitative agreement with experimental results of swimming E. coli. The flow field of the bacterium shows a force-dipole-like pattern in the swimming plane and two vortices perpendicular to its swimming direction arising from counterrotation of the cell body and the flagella. By comparison with the flow field of a force dipole and rotlet dipole, we extract the force-dipole and rotlet-dipole strengths for the bacterium and find that counterrotation of the cell body and the flagella is essential for describing the near-field hydrodynamics of the bacterium.

  17. Maximum sustainable speed, energetics and swimming kinematics of a tropical carangid fish, the green jack Caranx caballus.

    PubMed

    Dickson, K A; Donley, J M; Hansen, M W; Peters, J A

    2012-06-01

    Maximum sustained swimming speeds, swimming energetics and swimming kinematics were measured in the green jack Caranx caballus (Teleostei: Carangidae) using a 41 l temperature-controlled, Brett-type swimming-tunnel respirometer. In individual C. caballus [mean ±s.d. of 22·1 ± 2·2 cm fork length (L(F) ), 190 ± 61 g, n = 11] at 27·2 ± 0·7° C, mean critical speed (U(crit)) was 102·5 ± 13·7 cm s⁻¹ or 4·6 ± 0·9 L(F) s⁻¹. The maximum speed that was maintained for a 30 min period while swimming steadily using the slow, oxidative locomotor muscle (U(max,c)) was 99·4 ± 14·4 cm s⁻¹ or 4·5 ± 0·9 L(F) s⁻¹. Oxygen consumption rate (M in mg O₂ min⁻¹) increased with swimming speed and with fish mass, but mass-specific M (mg O₂ kg⁻¹ h⁻¹) as a function of relative speed (L(F) s⁻¹) did not vary significantly with fish size. Mean standard metabolic rate (R(S) ) was 170 ± 38 mg O₂ kg⁻¹ h⁻¹, and the mean ratio of M at U(max,c) to R(S) , an estimate of factorial aerobic scope, was 3·6 ± 1·0. The optimal speed (U(opt) ), at which the gross cost of transport was a minimum of 2·14 J kg⁻¹ m⁻¹, was 3·8 L(F) s⁻¹. In a subset of the fish studied (19·7-22·7 cm L(F) , 106-164 g, n = 5), the swimming kinematic variables of tailbeat frequency, yaw and stride length all increased significantly with swimming speed but not fish size, whereas tailbeat amplitude varied significantly with speed, fish mass and L(F) . The mean propulsive wavelength was 86·7 ± 5·6 %L(F) or 73·7 ± 5·2 %L(T) . Mean ±s.d. yaw and tailbeat amplitude values, calculated from lateral displacement of each intervertebral joint during a complete tailbeat cycle in three C. caballus (19·7, 21·6 and 22·7 cm L(F) ; 23·4, 25·3 and 26·4 cm L(T) ), were 4·6 ± 0·1 and 17·1 ± 2·2 %L(T) , respectively. Overall, the sustained swimming performance, energetics, kinematics, lateral displacement and intervertebral bending angles measured in C. caballus

  18. Mechanical and propelling efficiency in swimming derived from exercise using a laboratory-based whole-body swimming ergometer.

    PubMed

    Zamparo, Paola; Swaine, Ian L

    2012-08-15

    Determining the efficiency of a swimming stroke is difficult because different "efficiencies" can be computed based on the partitioning of mechanical power output (W) into its useful and nonuseful components, as well as because of the difficulties in measuring the forces that a swimmer can exert in water. In this paper, overall efficiency (η(O) = W(TOT)/Ė, where W(TOT) is total mechanical power output, and Ė is overall metabolic power input) was calculated in 10 swimmers by means of a laboratory-based whole-body swimming ergometer, whereas propelling efficiency (η(P) = W(D)/W(TOT), where W(D) is the power to overcome drag) was estimated based on these values and on values of drag efficiency (η(D) = W(D)/Ė): η(P) = η(D)/η(O). The values of η(D) reported in the literature range from 0.03 to 0.09 (based on data for passive and active drag, respectively). η(O) was 0.28 ± 0.01, and η(P) was estimated to range from ≈ 0.10 (η(D) = 0.03) to 0.35 (η(D) = 0.09). Even if there are obvious limitations to exact simulation of the whole swimming stroke within the laboratory, these calculations suggest that the data reported in the literature for η(O) are probably underestimated, because not all components of W(TOT) can be measured accurately in this environment. Similarly, our estimations of η(P) suggest that the data reported in the literature are probably overestimated.

  19. Embryogenesis and swimming behavior of Medaka fish in JUSTSAP STARS Program (STS-107).

    PubMed

    Niihori, Maki; Mogami, Yoshihiro; Naruse, Kiyoshi; Baba, Shoji A

    2003-10-01

    JUSTSAP (Japan-US Science, Technology and Space Application Program) Medaka fish experiment was carried out as a part of STARS (Space Technology and Research for Student) experiment, a space shuttle mission, STS-107 in January 2003. Four eggs laid on earth under artificially controlled environment were put in a closed ecological system, AHAB (Aquatic Habitat), and launched by Space Shuttle Columbia. For the control experiment, four eggs were put in the AHAB and remained on the ground. There was no remarkable difference in the time course of the development. In ground experiment embryos were observed to rotate in the egg membrane, whereas in flight unit they did not rotate. One egg hatched out on L (Launch) +8 days in flight unit. Four eggs hatched out in ground unit. Fry in flight unit was observed to face its back usually to the camera with little swimming movement. Fry in ground unit were observed to move actively and also to control their posture with respect to gravity vector.

  20. Sublethal effects of mosquito larvicides on swimming performance of larvivorous fish Melanotaenia duboulayi (Atheriniformes: Melanotaeniidae).

    PubMed

    Hurst, T P; Kay, B H; Ryan, P A; Brown, M D

    2007-02-01

    Laboratory studies were conducted to determine the sublethal effects of exposure to selected larvicides on the critical swimming speed (Ucrit) of crimson-spotted rainbowfish, Melanotaenia duboulayi (Castlenau). This native fish is common throughout southeastern Queensland, and it is increasingly being distributed as a biological control agent of mosquitoes. The selected larvicides included, two organophosphate (OP) compounds (temephos and pirimiphos-methyl), two microbial larvicides (Bacillus thuringiensis spp. israelensis [Bti] de Barjac and Bacillus sphaericus [Bs] Neide), and an insect growth regulator (IGR) (s-methoprene). Exposure to the OP temephos at 10 times the effective field concentration (EFC; 0.33 mg/liter), and OP pirimiphos-methyl at the EFC (0.50 mg/liter), resulted in a significant reduction in the Ucrit of M. duboulayi under controlled conditions. Conversely, exposure to the microbial (Bti and Bs) and IGR (s-methoprene) larvicides at 10 times the EFC had no effect on the Ucrit of M. duboulayi. Accordingly, these products are suitable for integrated pest management programs in Australia.

  1. Optimal undulatory swimming for a single fish-like body and for a pair of interacting swimmers

    NASA Astrophysics Data System (ADS)

    Maertens, Audrey P.; Gao, Amy; Triantafyllou, Michael S.

    2017-02-01

    We establish through numerical simulation conditions for optimal undulatory propulsion for a single fish, and for a pair of hydrodynamically interacting fish, accounting for linear and angular recoil. We first employ systematic 2D simulations to identify conditions for minimal propulsive power of a self-propelled fish, and continue with targeted 3D simulations for a danio-like fish. We find that the Strouhal number, phase angle between heave and pitch at the trailing edge, and angle of attack are principal parameters. Angular recoil has significant impact on efficiency, while optimized body bending requires maximum bending amplitude upstream of the trailing edge. For 2D simulations, imposing a deformation based on measured displacement for carangiform swimming provides efficiency of 40%, which increases for an optimized profile to 57%; for a 3D fish, the corresponding increase is from 22% to 35%; all at Reynolds number 5000. Next, we turn to 2D simulation of two hydrodynamically interacting fish. We find that the upstream fish benefits energetically only for small distances. In contrast, the downstream fish can benefit at any position that allows interaction with the upstream wake, provided its body motion is timed appropriately with respect to the oncoming vortices. For an in-line configuration, one body length apart, the optimal efficiency of the downstream fish can increase to 66%; for an offset arrangement it can reach 81%. This proves that in groups of fish, energy savings can be achieved for downstream fish through interaction with oncoming vortices, even when the downstream fish lies directly inside the jet-like flow of an upstream fish.

  2. Fluid mechanics of swimming bacteria with multiple flagella.

    PubMed

    Kanehl, Philipp; Ishikawa, Takuji

    2014-04-01

    It is known that some kinds of bacteria swim by forming a bundle of their multiple flagella. However, the details of flagella synchronization as well as the swimming efficiency of such bacteria have not been fully understood. In this study, swimming of multiflagellated bacteria is investigated numerically by the boundary element method. We assume that the cell body is a rigid ellipsoid and the flagella are rigid helices suspended on flexible hooks. Motors apply constant torque to the hooks, rotating the flagella either clockwise or counterclockwise. Rotating all flagella clockwise, bundling of all flagella is observed in every simulated case. It is demonstrated that the counter rotation of the body speeds up the bundling process. During this procedure the flagella synchronize due to hydrodynamic interactions. Moreover, the results illustrated that during running the multiflagellated bacterium shows higher propulsive efficiency (distance traveled per one flagellar rotation) over a bacterium with a single thick helix. With an increasing number of flagella the propulsive efficiency increases, whereas the energetic efficiency decreases, which indicates that efficiency is something multiflagellated bacteria are assigning less priority to than to motility. These findings form a fundamental basis in understanding bacterial physiology and metabolism.

  3. Fluid mechanics of swimming bacteria with multiple flagella

    NASA Astrophysics Data System (ADS)

    Kanehl, Philipp; Ishikawa, Takuji

    2014-04-01

    It is known that some kinds of bacteria swim by forming a bundle of their multiple flagella. However, the details of flagella synchronization as well as the swimming efficiency of such bacteria have not been fully understood. In this study, swimming of multiflagellated bacteria is investigated numerically by the boundary element method. We assume that the cell body is a rigid ellipsoid and the flagella are rigid helices suspended on flexible hooks. Motors apply constant torque to the hooks, rotating the flagella either clockwise or counterclockwise. Rotating all flagella clockwise, bundling of all flagella is observed in every simulated case. It is demonstrated that the counter rotation of the body speeds up the bundling process. During this procedure the flagella synchronize due to hydrodynamic interactions. Moreover, the results illustrated that during running the multiflagellated bacterium shows higher propulsive efficiency (distance traveled per one flagellar rotation) over a bacterium with a single thick helix. With an increasing number of flagella the propulsive efficiency increases, whereas the energetic efficiency decreases, which indicates that efficiency is something multiflagellated bacteria are assigning less priority to than to motility. These findings form a fundamental basis in understanding bacterial physiology and metabolism.

  4. Ichthyophonus-induced cardiac damage: a mechanism for reduced swimming stamina in salmonids

    USGS Publications Warehouse

    Kocan, R.; LaPatra, S.; Gregg, J.; Winton, J.; Hershberger, P.

    2006-01-01

    Swimming stamina, measured as time-to-fatigue, was reduced by approximately two-thirds in rainbow trout experimentally infected with Ichthyophonus. Intensity of Ichthyophonus infection was most severe in cardiac muscle but multiple organs were infected to a lesser extent. The mean heart weight of infected fish was 40% greater than that of uninfected fish, the result of parasite biomass, infiltration of immune cells and fibrotic (granuloma) tissue surrounding the parasite. Diminished swimming stamina is hypothesized to be due to cardiac failure resulting from the combination of parasite-damaged heart muscle and low myocardial oxygen supply during sustained aerobic exercise. Loss of stamina in Ichthyophonus-infected salmonids could explain the poor performance previously reported for wild Chinook and sockeye salmon stocks during their spawning migration. ?? 2006 Blackwell Publishing Ltd.

  5. Sustained impairment of respiratory function and swim performance following acute oil exposure in a coastal marine fish.

    PubMed

    Johansen, J L; Esbaugh, A J

    2017-06-01

    Acute exposure to crude oil polycyclic aromatic hydrocarbons (PAH) can severely impair cardiorespiratory function and swim performance of larval fish; however, the effects of acute oil exposure on later life stages and the capacity for subsequent recovery is less clear. Red drum (Sciaenops ocellatus) is an economically important apex predator native to the Gulf of Mexico, which was directly exposed to the 2010 Deep Water Horizon (DWH) oil spill. Here we examine impact and recovery of young adult red drum from exposure to concentrations of 0, 4.1, and 12.1μgL(-1) ΣPAH50 naturally weathered oil-water accommodated fractions (geometric mean), which are well within the range of concentrations measured during the DWH incident. We focused on aerobic scope (ASc), burst- and critical swimming speeds (Uburst and Ucrit), cost of transport (COT), as well as the capacity to repay oxygen debt following exhaustive exercise (EPOC), which are critical parameters for success of all life stages of fishes. A 24h acute exposure to 4.1μgL(-1) ΣPAH caused a significant 9.7 and 12.6% reduction of Uburst and Ucrit respectively, but no change in ASc, COT or EPOC, highlighting a decoupled effect on the respiratory and swimming systems. A higher exposure concentration, 12.1μgL(-1) ΣPAH, caused an 8.6 and 8.4% impairment of Uburst and Ucrit, as well as an 18.4% reduction in ASc. These impairments persisted six weeks post-exposure, suggesting that recorded impacts are entrenched. Large predatory fishes are critically dependent on the cardiorespiratory and swimming systems for ecological fitness, and long-term impairment of performance due to acute oil exposure suggests that even acute exposure events may have long lasting impacts on the ecological fitness of affected populations. Copyright © 2017. Published by Elsevier B.V.

  6. Cardiac Molecular-Acclimation Mechanisms in Response to Swimming-Induced Exercise in Atlantic Salmon

    PubMed Central

    Castro, Vicente; Grisdale-Helland, Barbara; Helland, Ståle J.; Torgersen, Jacob; Kristensen, Torstein; Claireaux, Guy; Farrell, Anthony P.; Takle, Harald

    2013-01-01

    Cardiac muscle is a principal target organ for exercise-induced acclimation mechanisms in fish and mammals, given that sustained aerobic exercise training improves cardiac output. Yet, the molecular mechanisms underlying such cardiac acclimation have been scarcely investigated in teleosts. Consequently, we studied mechanisms related to cardiac growth, contractility, vascularization, energy metabolism and myokine production in Atlantic salmon pre-smolts resulting from 10 weeks exercise-training at three different swimming intensities: 0.32 (control), 0.65 (medium intensity) and 1.31 (high intensity) body lengths s−1. Cardiac responses were characterized using growth, immunofluorescence and qPCR analysis of a large number of target genes encoding proteins with significant and well-characterized function. The overall stimulatory effect of exercise on cardiac muscle was dependent on training intensity, with changes elicited by high intensity training being of greater magnitude than either medium intensity or control. Higher protein levels of PCNA were indicative of cardiac growth being driven by cardiomyocyte hyperplasia, while elevated cardiac mRNA levels of MEF2C, GATA4 and ACTA1 suggested cardiomyocyte hypertrophy. In addition, up-regulation of EC coupling-related genes suggested that exercised hearts may have improved contractile function, while higher mRNA levels of EPO and VEGF were suggestive of a more efficient oxygen supply network. Furthermore, higher mRNA levels of PPARα, PGC1α and CPT1 all suggested a higher capacity for lipid oxidation, which along with a significant enlargement of mitochondrial size in cardiac myocytes of the compact layer of fish exercised at high intensity, suggested an enhanced energetic support system. Training also elevated transcription of a set of myokines and other gene products related to the inflammatory process, such as TNFα, NFκB, COX2, IL1RA and TNF decoy receptor. This study provides the first characterization of the

  7. Cardiac molecular-acclimation mechanisms in response to swimming-induced exercise in Atlantic salmon.

    PubMed

    Castro, Vicente; Grisdale-Helland, Barbara; Helland, Ståle J; Torgersen, Jacob; Kristensen, Torstein; Claireaux, Guy; Farrell, Anthony P; Takle, Harald

    2013-01-01

    Cardiac muscle is a principal target organ for exercise-induced acclimation mechanisms in fish and mammals, given that sustained aerobic exercise training improves cardiac output. Yet, the molecular mechanisms underlying such cardiac acclimation have been scarcely investigated in teleosts. Consequently, we studied mechanisms related to cardiac growth, contractility, vascularization, energy metabolism and myokine production in Atlantic salmon pre-smolts resulting from 10 weeks exercise-training at three different swimming intensities: 0.32 (control), 0.65 (medium intensity) and 1.31 (high intensity) body lengths s(-1). Cardiac responses were characterized using growth, immunofluorescence and qPCR analysis of a large number of target genes encoding proteins with significant and well-characterized function. The overall stimulatory effect of exercise on cardiac muscle was dependent on training intensity, with changes elicited by high intensity training being of greater magnitude than either medium intensity or control. Higher protein levels of PCNA were indicative of cardiac growth being driven by cardiomyocyte hyperplasia, while elevated cardiac mRNA levels of MEF2C, GATA4 and ACTA1 suggested cardiomyocyte hypertrophy. In addition, up-regulation of EC coupling-related genes suggested that exercised hearts may have improved contractile function, while higher mRNA levels of EPO and VEGF were suggestive of a more efficient oxygen supply network. Furthermore, higher mRNA levels of PPARα, PGC1α and CPT1 all suggested a higher capacity for lipid oxidation, which along with a significant enlargement of mitochondrial size in cardiac myocytes of the compact layer of fish exercised at high intensity, suggested an enhanced energetic support system. Training also elevated transcription of a set of myokines and other gene products related to the inflammatory process, such as TNFα, NFκB, COX2, IL1RA and TNF decoy receptor. This study provides the first characterization of the

  8. Spiral swimming behavior due to cranial and vertebral lesions associated with Cytophaga psychrophila infections in salmonid fishes

    USGS Publications Warehouse

    Kent, M.L.; Groff, J.M.; Morrison, J.K.; Yasutake, W.T.; Holt, R.A.

    1989-01-01

    C. psychrophila infections of the cranium and anterior vertebrae in salmonid fishes were associated with ataxia, spiral swimming along the axis of the fish, and death. The syndrome was observed in 2-10% of underyearling coho salmon Oncorhynchus kisutch, rainbow troutSalmo gairdneri, and steelhead trout S. gairdneri at several private, state, and federal hatcheries in Washington and Oregon, USA, between 1963 and 1987. Affected fish did not recover and ultimately died. Histological examination consistently revealed subacute to chronic periostitis, osteitis, meningitis, and ganglioneuritis. Inflammation and periosteal proliferation of the anterior vertebrae at the junction of the vertebral column with the cranium with extension into the cranial case was a consistent feature. The adjacent nervous tissue, particularly the medulla, was often compressed by the proliferative lesion, and this may have caused the ataxia. Though bacteria were seldom observed in these lesions. C. psychrophilawas isolated in culture from the cranial cavity of all affected fish that were tested. Epidemiological observations suggested that this bacterium is the causative agent because the spiral swimming behaviour and lesions were observed only in populations that had recovered from acute C. psychrophila infections.

  9. The Inner Ear and its Coupling to the Swim Bladder in the Deep-Sea Fish Antimora rostrata (Teleostei: Moridae)

    PubMed Central

    Deng, Xiaohong; Wagner, Hans-Joachim; Popper, Arthur N.

    2011-01-01

    The inner ear structure of Antimora rostrata and its coupling to the swim bladder were analyzed and compared with the inner ears of several shallow-water species that also have similar coupling. The inner ear of Antimora has a long saccular otolith and sensory epithelium as compared to many other fishes. Some parts of the membranous labyrinth are thick and rigid, while other parts are thinner but attached tightly to the bony capsule. The partially rigid membranous labyrinth, along with its intimate connection to the swim bladder, may help the inner ear follow the sound oscillations from the swim bladder with better precision than would occur in a less rigid inner ear. In addition, the saccular sensory epithelium has an elaborate structure and an anterior enlargement that may be correlated with increased hearing sensitivity. Some of the features in the inner ear of Antimora may reflect the functional specialization of deep-water living and support the hypothesis that there is enhanced inner ear sensitivity in some deep-sea fishes. PMID:21532967

  10. Quantifying Fish Swimming Behavior in Response to Acute Exposure of Aqueous Copper Using Computer Assisted Video and Digital Image Analysis

    PubMed Central

    Calfee, Robin D.; Puglis, Holly J.; Little, Edward E.; Brumbaugh, William G.; Mebane, Christopher A.

    2016-01-01

    Behavioral responses of aquatic organisms to environmental contaminants can be precursors of other effects such as survival, growth, or reproduction. However, these responses may be subtle, and measurement can be challenging. Using juvenile white sturgeon (Acipenser transmontanus) with copper exposures, this paper illustrates techniques used for quantifying behavioral responses using computer assisted video and digital image analysis. In previous studies severe impairments in swimming behavior were observed among early life stage white sturgeon during acute and chronic exposures to copper. Sturgeon behavior was rapidly impaired and to the extent that survival in the field would be jeopardized, as fish would be swept downstream, or readily captured by predators. The objectives of this investigation were to illustrate protocols to quantify swimming activity during a series of acute copper exposures to determine time to effect during early lifestage development, and to understand the significance of these responses relative to survival of these vulnerable early lifestage fish. With mortality being on a time continuum, determining when copper first affects swimming ability helps us to understand the implications for population level effects. The techniques used are readily adaptable to experimental designs with other organisms and stressors. PMID:26967350

  11. Quantifying fish swimming behavior in response to acute exposure of aqueous copper using computer assisted video and digital image analysis

    USGS Publications Warehouse

    Calfee, Robin D.; Puglis, Holly J.; Little, Edward E.; Brumbaugh, William G.; Mebane, Christopher A.

    2016-01-01

    Behavioral responses of aquatic organisms to environmental contaminants can be precursors of other effects such as survival, growth, or reproduction. However, these responses may be subtle, and measurement can be challenging. Using juvenile white sturgeon (Acipenser transmontanus) with copper exposures, this paper illustrates techniques used for quantifying behavioral responses using computer assisted video and digital image analysis. In previous studies severe impairments in swimming behavior were observed among early life stage white sturgeon during acute and chronic exposures to copper. Sturgeon behavior was rapidly impaired and to the extent that survival in the field would be jeopardized, as fish would be swept downstream, or readily captured by predators. The objectives of this investigation were to illustrate protocols to quantify swimming activity during a series of acute copper exposures to determine time to effect during early lifestage development, and to understand the significance of these responses relative to survival of these vulnerable early lifestage fish. With mortality being on a time continuum, determining when copper first affects swimming ability helps us to understand the implications for population level effects. The techniques used are readily adaptable to experimental designs with other organisms and stressors.

  12. Burrowing and subsurface locomotion in anguilliform fish: behavioral specializations and mechanical constraints.

    PubMed

    Herrel, Anthony; Choi, Hon Fai; Dumont, Elizabeth; De Schepper, Natalie; Vanhooydonck, Bieke; Aerts, Peter; Adriaens, Dominique

    2011-04-15

    Fish swimming is probably one of the most studied and best understood locomotor behaviors in vertebrates. However, many fish also actively exploit sediments. Because of their elongate body shape, anguilliform fishes are not only efficient swimmers but also very maneuverable. Consequently, many species live in complexly structured environments near the bottom and many are known to burrow into the sediment. To better understand burrowing and subsurface locomotion in anguilliform fish we provide descriptive kinematic data on subsurface locomotion in a burrowing eel (Pisodonophis boro) using videofluoroscopy. We also measured the maximal forces that can be exerted by this species during head-first and tail-first burrowing, and explored the implications of head-first burrowing on mechanical stress distribution in the skull. Our data show that P. boro uses lateral undulation to penetrate and move in sandy sediments under water. The kinematics of subsurface locomotion are different from those observed during swimming and are characterized by a very high slip factor. These observations differ considerably from recently published data in terrestrial sand-swimming lizards, and suggest that the sediment behaves like a solid rather than a frictional fluid. Finally, our finite element models show that the cranial shape and structure in the head-first burrowing P. boro is mechanically more suited for head-first burrowing than that of an obligate tail-first burrowing species, Heteroconger hassi.

  13. Substrate roughening improves swimming performance in two small-bodied riverine fishes: implications for culvert remediation and design

    PubMed Central

    Rodgers, Essie M.; Heaslip, Breeana M.; Cramp, Rebecca L.; Riches, Marcus; Gordos, Matthew A.

    2017-01-01

    Abstract Worldwide declines in riverine fish abundance and diversity have been linked to the fragmentation of aquatic habitats through the installation of instream structures (e.g. culverts, dams, weirs and barrages). Restoring riverine connectivity can be achieved by remediating structures impeding fish movements by, for example, replacing smooth substrates of pipe culverts with naturalistic substrates (i.e. river stones; culvert roughening). However, empirical evaluations of the efficacy of such remediation efforts are often lacking despite the high economic cost. We assessed the effectiveness of substrate roughening in improving fish swimming performance and linked this to estimates of upstream passage success. Critical swimming speeds (Ucrit) of two small-bodied fish, purple-spotted gudgeon (Mogurnda adspersa; 7.7–11.6 cm total length, BL) and crimson-spotted rainbowfish (Melanotaenia duboulayi; 4.2–8.7 cm BL) were examined. Swimming trials were conducted in a hydraulic flume fitted with either a smooth acrylic substrate (control) or a rough substrate with fixed river stones. Swimming performance was improved on the rough compared to the smooth substrate, with Mo. adspersa (Ucrit-smooth = 0.28 ± 0.0 m s−1, 2.89 ± 0.1 BL s−1, Ucrit-rough = 0.36 ± 0.02 m s−1, 3.66 ± 0.22 BL s−1, mean ± s.e) and Me. duboulayi (Ucrit-smooth = 0.46 ± 0.01 m s−1, 7.79 ± 0.33 BL s−1; Ucrit-rough = = 0.55 ± 0.03 m s−1, 9.83 ± 0.67 BL s−1, mean ± s.e.) both experiencing a 26% increase in relative Ucrit. Traversable water velocity models predicted maximum water speeds allowing successful upstream passage of both species to substantially increase following roughening remediation. Together these findings suggest culvert roughening may be a solution which allows hydraulic efficiency goals to be met, without compromising fish passage. PMID:28567285

  14. Substrate roughening improves swimming performance in two small-bodied riverine fishes: implications for culvert remediation and design.

    PubMed

    Rodgers, Essie M; Heaslip, Breeana M; Cramp, Rebecca L; Riches, Marcus; Gordos, Matthew A; Franklin, Craig E

    2017-01-01

    Worldwide declines in riverine fish abundance and diversity have been linked to the fragmentation of aquatic habitats through the installation of instream structures (e.g. culverts, dams, weirs and barrages). Restoring riverine connectivity can be achieved by remediating structures impeding fish movements by, for example, replacing smooth substrates of pipe culverts with naturalistic substrates (i.e. river stones; culvert roughening). However, empirical evaluations of the efficacy of such remediation efforts are often lacking despite the high economic cost. We assessed the effectiveness of substrate roughening in improving fish swimming performance and linked this to estimates of upstream passage success. Critical swimming speeds (Ucrit) of two small-bodied fish, purple-spotted gudgeon (Mogurnda adspersa; 7.7-11.6 cm total length, BL) and crimson-spotted rainbowfish (Melanotaenia duboulayi; 4.2-8.7 cm BL) were examined. Swimming trials were conducted in a hydraulic flume fitted with either a smooth acrylic substrate (control) or a rough substrate with fixed river stones. Swimming performance was improved on the rough compared to the smooth substrate, with Mo. adspersa (Ucrit-smooth = 0.28 ± 0.0 m s(-1), 2.89 ± 0.1 BL s(-1), Ucrit-rough = 0.36 ± 0.02 m s(-1), 3.66 ± 0.22 BL s(-1), mean ± s.e) and Me. duboulayi (Ucrit-smooth = 0.46 ± 0.01 m s(-1), 7.79 ± 0.33 BL s(-1); Ucrit-rough = = 0.55 ± 0.03 m s(-1), 9.83 ± 0.67 BL s(-1), mean ± s.e.) both experiencing a 26% increase in relative Ucrit. Traversable water velocity models predicted maximum water speeds allowing successful upstream passage of both species to substantially increase following roughening remediation. Together these findings suggest culvert roughening may be a solution which allows hydraulic efficiency goals to be met, without compromising fish passage.

  15. Visual cues eliciting the feeding reaction of a planktivorous fish swimming in a current.

    PubMed

    Mussi, Martina; McFarland, William N; Domenici, Paolo

    2005-03-01

    The visual plankivorous feeding behaviour of the shiner perch (Cymatogaster aggregata) was investigated by means of a flow tank operated at various current speeds. Artemia salina was used as prey. In a second set of experiments, Artemia was darkened with black ink, to compare the visually mediated behaviour of C. aggregata while feeding on dark prey vs feeding on natural (i.e. semi-transparent) prey. The positions of the fish and its prey at the time of the feeding reaction of C. aggregata were measured in three dimensions. Prey were on average closer and more in line with the fish's axis when feeding reactions to darkened Artemia were considered, in comparison with natural Artemia. Three potential mechanisms triggering the feeding reaction of C. aggregata were explored: the prey may trigger a reaction in C. aggregata when it reaches a threshold (1) angular size, (2) angular velocity, or (3) rate of change of the angular size (i.e. loom) of the prey as it is carried passively by the current towards the fish. Our results show that angular velocity may trigger the fish's reaction when using semi-transparent prey, while loom may trigger the reaction to darkened prey. This suggests that feeding behaviour of planktivorous fish is flexible and can use different cues to trigger a motor reaction to prey with different visual characteristics. The feeding reaction appeared to occur at longer distances for semi-transparent rather than darkened Artemia. We suggest that semi-transparent Artemia were visible at greater distances because of their higher scattering (i.e. diffuse reflectance) that made them appear brighter when viewed against a dark background.

  16. Mechanisms underlying rhythmic locomotion: body–fluid interaction in undulatory swimming

    PubMed Central

    Chen, J.; Friesen, W. O.; Iwasaki, T.

    2011-01-01

    Swimming of fish and other animals results from interactions of rhythmic body movements with the surrounding fluid. This paper develops a model for the body–fluid interaction in undulatory swimming of leeches, where the body is represented by a chain of rigid links and the hydrodynamic force model is based on resistive and reactive force theories. The drag and added-mass coefficients for the fluid force model were determined from experimental data of kinematic variables during intact swimming, measured through video recording and image processing. Parameter optimizations to minimize errors in simulated model behaviors revealed that the resistive force is dominant, and a simple static function of relative velocity captures the essence of hydrodynamic forces acting on the body. The model thus developed, together with the experimental kinematic data, allows us to investigate temporal and spatial (along the body) distributions of muscle actuation, body curvature, hydrodynamic thrust and drag, muscle power supply and energy dissipation into the fluid. We have found that: (1) thrust is generated continuously along the body with increasing magnitude toward the tail, (2) drag is nearly constant along the body, (3) muscle actuation waves travel two or three times faster than the body curvature waves and (4) energy for swimming is supplied primarily by the mid-body muscles, transmitted through the body in the form of elastic energy, and dissipated into the water near the tail. PMID:21270304

  17. Mechanisms underlying rhythmic locomotion: body-fluid interaction in undulatory swimming.

    PubMed

    Chen, J; Friesen, W O; Iwasaki, T

    2011-02-15

    Swimming of fish and other animals results from interactions of rhythmic body movements with the surrounding fluid. This paper develops a model for the body-fluid interaction in undulatory swimming of leeches, where the body is represented by a chain of rigid links and the hydrodynamic force model is based on resistive and reactive force theories. The drag and added-mass coefficients for the fluid force model were determined from experimental data of kinematic variables during intact swimming, measured through video recording and image processing. Parameter optimizations to minimize errors in simulated model behaviors revealed that the resistive force is dominant, and a simple static function of relative velocity captures the essence of hydrodynamic forces acting on the body. The model thus developed, together with the experimental kinematic data, allows us to investigate temporal and spatial (along the body) distributions of muscle actuation, body curvature, hydrodynamic thrust and drag, muscle power supply and energy dissipation into the fluid. We have found that: (1) thrust is generated continuously along the body with increasing magnitude toward the tail, (2) drag is nearly constant along the body, (3) muscle actuation waves travel two or three times faster than the body curvature waves and (4) energy for swimming is supplied primarily by the mid-body muscles, transmitted through the body in the form of elastic energy, and dissipated into the water near the tail.

  18. Locomotor forces on a swimming fish: three-dimensional vortex wake dynamics quantified using digital particle image velocimetry.

    PubMed

    Drucker; Lauder

    1999-01-01

    Quantifying the locomotor forces experienced by swimming fishes represents a significant challenge because direct measurements of force applied to the aquatic medium are not feasible. However, using the technique of digital particle image velocimetry (DPIV), it is possible to quantify the effect of fish fins on water movement and hence to estimate momentum transfer from the animal to the fluid. We used DPIV to visualize water flow in the wake of the pectoral fins of bluegill sunfish (Lepomis macrochirus) swimming at speeds of 0.5-1.5 L s(-)(1), where L is total body length. Velocity fields quantified in three perpendicular planes in the wake of the fins allowed three-dimensional reconstruction of downstream vortex structures. At low swimming speed (0.5 L s(-)(1)), vorticity is shed by each fin during the downstroke and stroke reversal to generate discrete, roughly symmetrical, vortex rings of near-uniform circulation with a central jet of high-velocity flow. At and above the maximum sustainable labriform swimming speed of 1.0 L s(-)(1), additional vorticity appears on the upstroke, indicating the production of linked pairs of rings by each fin. Fluid velocity measured in the vicinity of the fin indicates that substantial spanwise flow during the downstroke may occur as vortex rings are formed. The forces exerted by the fins on the water in three dimensions were calculated from vortex ring orientation and momentum. Mean wake-derived thrust (11.1 mN) and lift (3.2 mN) forces produced by both fins per stride at 0.5 L s(-)(1) were found to match closely empirically determined counter-forces of body drag and weight. Medially directed reaction forces were unexpectedly large, averaging 125 % of the thrust force for each fin. Such large inward forces and a deep body that isolates left- and right-side vortex rings are predicted to aid maneuverability. The observed force balance indicates that DPIV can be used to measure accurately large-scale vorticity in the wake of

  19. Entrainment, retention, and transport of freely swimming fish in junction gaps between commercial barges operating on the Illinois Waterway

    USGS Publications Warehouse

    Davis, Jeremiah J.; Jackson, P. Ryan; Engel, Frank; LeRoy, Jessica Z.; Neeley, Rebecca N.; Finney, Samuel T.; Murphy, Elizabeth A.

    2016-01-01

    Large Electric Dispersal Barriers were constructed in the Chicago Sanitary and Ship Canal (CSSC) to prevent the transfer of invasive fish species between the Mississippi River Basin and the Great Lakes Basin while simultaneously allowing the passage of commercial barge traffic. We investigated the potential for entrainment, retention, and transport of freely swimming fish within large gaps (> 50 m3) created at junction points between barges. Modified mark and capture trials were employed to assess fish entrainment, retention, and transport by barge tows. A multi-beam sonar system enabled estimation of fish abundance within barge junction gaps. Barges were also instrumented with acoustic Doppler velocity meters to map the velocity distribution in the water surrounding the barge and in the gap formed at the junction of two barges. Results indicate that the water inside the gap can move upstream with a barge tow at speeds near the barge tow travel speed. Water within 1 m to the side of the barge junction gaps was observed to move upstream with the barge tow. Observed transverse and vertical water velocities suggest pathways by which fish may potentially be entrained into barge junction gaps. Results of mark and capture trials provide direct evidence that small fish can become entrained by barges, retained within junction gaps, and transported over distances of at least 15.5 km. Fish entrained within the barge junction gap were retained in that space as the barge tow transited through locks and the Electric Dispersal Barriers, which would be expected to impede fish movement upstream.

  20. A numerical study of linear and nonlinear kinematic models in fish swimming with the DSD/SST method

    NASA Astrophysics Data System (ADS)

    Tian, Fang-Bao

    2015-03-01

    Flow over two fish (modeled by two flexible plates) in tandem arrangement is investigated by solving the incompressible Navier-Stokes equations numerically with the DSD/SST method to understand the differences between the geometrically linear and nonlinear models. In the simulation, the motions of the plates are reconstructed from a vertically flowing soap film tunnel experiment with linear and nonlinear kinematic models. Based on the simulations, the drag, lift, power consumption, vorticity and pressure fields are discussed in detail. It is found that the linear and nonlinear models are able to reasonably predict the forces and power consumption of a single plate in flow. Moreover, if multiple plates are considered, these two models yield totally different results, which implies that the nonlinear model should be used. The results presented in this work provide a guideline for future studies in fish swimming.

  1. Mechanisms of temperature-dependent swimming: the importance of physics, physiology and body size in determining protist swimming speed.

    PubMed

    Beveridge, Oliver S; Petchey, Owen L; Humphries, Stuart

    2010-12-15

    Body temperatures and thus physiological rates of poikilothermic organisms are determined by environmental temperature. The power an organism has available for swimming is largely dependent on physiological rates and thus body temperature. However, retarding forces such as drag are contingent on the temperature-dependent physical properties of water and on an organism's size. Consequently, the swimming ability of poikilotherms is highly temperature dependent. The importance of the temperature-dependent physical properties of water (e.g. viscosity) in determining swimming speed is poorly understood. Here we propose a semi-mechanistic model to describe how biological rates, size and the physics of the environment contribute to the temperature dependency of microbial swimming speed. Data on the swimming speed and size of a predatory protist and its protist prey were collected and used to test our model. Data were collected by manipulating both the temperature and the viscosity (independently of temperature) of the organism's environment. Protists were either cultured in their test environment (for several generations) or rapidly exposed to their test environment to assess their ability to adapt or acclimate to treatments. Both biological rates and the physics of the environment were predicted to and observed to contribute to the swimming speed of protists. Body size was not temperature dependent, and protists expressed some ability to acclimate to changes in either temperature or viscosity. Overall, using our parameter estimates and novel model, we are able to suggest that 30 to 40% (depending on species) of the response in swimming speed associated with a reduction in temperature from 20 to 5°C is due to viscosity. Because encounter rates between protist predators and their prey are determined by swimming speed, temperature- and viscosity-dependent swimming speeds are likely to result in temperature- and viscosity-dependent trophic interactions.

  2. Effects of nitrite exposure on functional haemoglobin levels, bimodal respiration, and swimming performance in the facultative air-breathing fish Pangasianodon hypophthalmus.

    PubMed

    Lefevre, Sjannie; Jensen, Frank B; Huong, Do T T; Wang, Tobias; Phuong, Nguyen T; Bayley, Mark

    2011-07-01

    In this study we investigated nitrite (NO₂⁻) effects in striped catfish, a facultative air-breather. Fish were exposed to 0, 0.4, and 0.9 mM nitrite for 0, 1, 2, 4, and 7 days, and levels of functional haemoglobin, methaemoglobin (metHb) and nitrosyl haemoglobin (HbNO) were assessed using spectral deconvolution. Plasma concentrations of nitrite, nitrate, chloride, potassium, and sodium were also measured. Partitioning of oxygen consumption was determined to reveal whether elevated metHb (causing functional hypoxia) induced air-breathing. The effects of nitrite on maximum oxygen uptake (MO(2max)) and critical swimming speed (U(crit)) were also assessed. Striped catfish was highly tolerant to nitrite exposure, as reflected by a 96 h LC₅₀ of 1.65 mM and a moderate nitrite uptake into the blood. Plasma levels of nitrite reached a maximum after 1 day of exposure, and then decreased, never exceeding ambient levels. MetHb, HbNO and nitrate (a nitrite detoxification product) also peaked after 1 day and then decreased. Only high levels of nitrite and metHb caused reductions in MO(2max) and U(crit). The response of striped catfish contrasts with that seen in most other fish species and discloses efficient mechanisms of combating nitrite threats. Furthermore, even though striped catfish is an efficient air-breather, this species has the ability to sustain aerobic scope and swimming performance without air-breathing, even when faced with nitrite-induced reductions in blood oxygen carrying capacity. Our study is the first to confirm that high levels of nitrite and metHb reduce MO(2max) and thereby aerobic scope, while more moderate elevations fail to do so. Further studies are needed to elucidate the mechanisms underlying the low nitrite accumulation in striped catfish.

  3. A bio-robotic platform for integrating internal and external mechanics during muscle-powered swimming.

    PubMed

    Richards, Christopher T; Clemente, Christofer J

    2012-03-01

    To explore the interplay between muscle function and propulsor shape in swimming animals, we built a robotic foot to mimic the morphology and hind limb kinematics of Xenopus laevis frogs. Four foot shapes ranging from low aspect ratio (AR = 0.74) to high (AR = 5) were compared to test whether low-AR feet produce higher propulsive drag force resulting in faster swimming. Using feedback loops, two complementary control modes were used to rotate the foot: force was transmitted to the foot either from (1) a living plantaris longus (PL) muscle stimulated in vitro or (2) an in silico mathematical model of the PL. To mimic forward swimming, foot translation was calculated in real time from fluid force measured at the foot. Therefore, bio-robot swimming emerged from muscle-fluid interactions via the feedback loop. Among in vitro-robotic trials, muscle impulse ranged from 0.12 ± 0.002 to 0.18 ± 0.007 N s and swimming velocities from 0.41 ± 0.01 to 0.43 ± 0.00 m s(-1), similar to in vivo values from prior studies. Trends in in silico-robotic data mirrored in vitro-robotic observations. Increasing AR caused a small (∼10%) increase in peak bio-robot swimming velocity. In contrast, muscle force-velocity effects were strongly dependent on foot shape. Between low- and high-AR feet, muscle impulse increased ∼50%, while peak shortening velocity decreased ∼50% resulting in a ∼20% increase in net work. However, muscle-propulsion efficiency (body center of mass work/muscle work) remained independent of AR. Thus, we demonstrate how our experimental technique is useful for quantifying the complex interplay among limb morphology, muscle mechanics and hydrodynamics.

  4. A Mechanical Fish to Emulate the Fast-Start Performance of Pike

    NASA Astrophysics Data System (ADS)

    Feng, Chengcheng; Modarres-Sadeghi, Yahya

    2010-11-01

    A northern pike is capable of achieving an instantaneous acceleration of 25g, far greater than that achieved by any manmade vehicle. In order to understand the secrets behind achieving such high accelerations, we have built a mechanical fish to emulate the motion of a pike, a fast-start specialist. A live pike bends its body into a C-shaped curve and then uncoils it very quickly to send a traveling wave along its body in order to achieve high acceleration. We have designed a mechanical fish whose motion is accurately controlled by servo motors, to emulate the fast-start by bending its body to a C-shape from its original straight position, and then back to its straight position. An earlier design of a mechanical fish, which could start from an initial C-shaped curve, shed two vortex rings downstream, resulting in a transfer of energy from the fish to water, and therefore, a reaction force from the fluid to the fish. A maximum acceleration of around 4g was achieved in that design. Our new design adds an additional motion to the sequence by first bending the fish from its straight position into a C-shaped curve. Furthermore, this new mechanical fish is designed to be adjustable in swimming pattern, tail shape, tail rigidity, and body rigidity, making it possible to study the influence of all of these parameters on the fast-start performance.

  5. Swimming performance of upstream migrant fishes in open-channel flow: A new approach to predicting passage through velocity barriers

    USGS Publications Warehouse

    Haro, A.; Castro-Santos, T.; Noreika, J.; Odeh, M.

    2004-01-01

    The ability to traverse barriers of high-velocity flow limits the distributions of many diadromous and other migratory fish species, yet very few data exist that quantify this ability. We provide a detailed analysis of sprint swimming ability of six migratory fish species (American shad (Alosa sapidissima), alewife (Alosa pseudoharengus), blueback herring (Alosa aestivalis), striped bass (Morone saxatilis), walleye (Stizostedion vitreum), and white sucker (Catostomus commersoni)) against controlled water velocities of 1.5-4.5 m??s-1 in a large, open-channel flume. Performance was strictly voluntary: no coercive incentives were used to motivate fish to sprint. We used these data to generate models of maximum distance traversed, taking into account effects of flow velocity, body length, and temperature. Although the maximum distance traversed decreased with increasing velocity, the magnitude of this effect varied among species. Other covariate effects were likewise variable, with divergent effects of temperature and nonuniform length effects. These effects do not account for all of the variability in performance, however, and behavioral traits may account for observed interspecific differences. We propose the models be used to develop criteria for fish passage structures, culverts, and breached dams.

  6. Mechanisms of helical swimming: asymmetries in the morphology, movement and mechanics of larvae of the ascidian Distaplia occidentalis.

    PubMed

    McHenry, M J

    2001-09-01

    A great diversity of unicellular and invertebrate organisms swim along a helical path, but it is not well understood how asymmetries in the body shape or the movement of propulsive structures affect a swimmer's ability to perform the body rotation necessary to move helically. The present study found no significant asymmetries in the body shape of ascidian larvae (Distaplia occidentalis) that could operate to rotate the body during swimming. By recording the three-dimensional movement of free-swimming larvae, it was found that the tail possessed two bends, each with constant curvature along their length. As these bends traveled posteriorly, the amplitude of curvature changes was significantly greater in the concave-left direction than in the concave-right direction. In addition to this asymmetry, the tail oscillated at an oblique angle to the midline of the trunk. These asymmetries generated a yawing moment that rotated the body in the counterclockwise direction from a dorsal view, according to calculations from hydrodynamic theory. The tails of resting larvae were bent in the concave-left direction with a curvature statistically indistinguishable from the median value for tail curvature during swimming. The flexural stiffness of the tails of larvae, measured in three-point bending, may be great enough to allow the resting curvature of the tail to have an effect on the symmetry of kinematics. This work suggests that asymmetrical tail motion is an important mechanism for generating a yawing moment during swimming in ascidian larvae and that these asymmetries may be caused by the tail's bent shape. Since helical motion requires that moments also be generated in the pitching or rolling directions, other mechanisms are required to explain fully how ascidian larvae generate and control helical swimming.

  7. The Physiology and Mechanics of Undulatory Swimming: A Student Laboratory Exercise Using Medicinal Leeches

    ERIC Educational Resources Information Center

    Ellerby, David J.

    2009-01-01

    The medicinal leech is a useful animal model for investigating undulatory swimming in the classroom. Unlike many swimming organisms, its swimming performance can be quantified without specialized equipment. A large blood meal alters swimming behavior in a way that can be used to generate a discussion of the hydrodynamics of swimming, muscle…

  8. The Physiology and Mechanics of Undulatory Swimming: A Student Laboratory Exercise Using Medicinal Leeches

    ERIC Educational Resources Information Center

    Ellerby, David J.

    2009-01-01

    The medicinal leech is a useful animal model for investigating undulatory swimming in the classroom. Unlike many swimming organisms, its swimming performance can be quantified without specialized equipment. A large blood meal alters swimming behavior in a way that can be used to generate a discussion of the hydrodynamics of swimming, muscle…

  9. Three-dimensional reconstruction of the fast-start swimming kinematics of densely schooling fish

    PubMed Central

    Paley, Derek A.

    2012-01-01

    Information transmission via non-verbal cues such as a fright response can be quantified in a fish school by reconstructing individual fish motion in three dimensions. In this paper, we describe an automated tracking framework to reconstruct the full-body trajectories of densely schooling fish using two-dimensional silhouettes in multiple cameras. We model the shape of each fish as a series of elliptical cross sections along a flexible midline. We estimate the size of each ellipse using an iterated extended Kalman filter. The shape model is used in a model-based tracking framework in which simulated annealing is applied at each step to estimate the midline. Results are presented for eight fish with occlusions. The tracking system is currently being used to investigate fast-start behaviour of schooling fish in response to looming stimuli. PMID:21642367

  10. Three-dimensional reconstruction of the fast-start swimming kinematics of densely schooling fish.

    PubMed

    Butail, Sachit; Paley, Derek A

    2012-01-07

    Information transmission via non-verbal cues such as a fright response can be quantified in a fish school by reconstructing individual fish motion in three dimensions. In this paper, we describe an automated tracking framework to reconstruct the full-body trajectories of densely schooling fish using two-dimensional silhouettes in multiple cameras. We model the shape of each fish as a series of elliptical cross sections along a flexible midline. We estimate the size of each ellipse using an iterated extended Kalman filter. The shape model is used in a model-based tracking framework in which simulated annealing is applied at each step to estimate the midline. Results are presented for eight fish with occlusions. The tracking system is currently being used to investigate fast-start behaviour of schooling fish in response to looming stimuli.

  11. Establishment of gel materials with different mechanical properties by 3D gel printer SWIM-ER

    NASA Astrophysics Data System (ADS)

    Ota, Takafumi; Tase, Taishi; Okada, Koji; Saito, Azusa; Takamatsu, Kyuuichiro; Kawakami, Masaru; Furukawa, Hidemitsu

    2016-04-01

    A 3D printer is a device which can directly produce objects whose shape is the same as the original 3D digital data. Hydrogels have unique properties such as high water content, low frictional properties, biocompatibility, material permeability and high transparency, which are rare in hard and dry materials. These superior characteristics of gels promise useful medical applications. We have been working on the development of a 3D gel printer, SWIM-ER (Soft and Wet Industrial - Easy Realizer), which can make models of organs and artificial blood vessels with gel material. However, 3D printing has a problem: the mechanical properties of the printed object vary depending on printing conditions, and this matter was investigated with SWIM-ER. In the past, we found that mechanical properties of 3D gel objects depend on the deposition orientation in SWIM-ER. In this study, gels were printed with different laser scanning speeds. The mechanical properties of these gels were investigated by compression tests, water content measurements and SMILS (Scanning Microscopic Light Scattering).

  12. Boundary layer control by a fish: Unsteady laminar boundary layers of rainbow trout swimming in turbulent flows

    PubMed Central

    Saarenrinne, Pentti

    2016-01-01

    ABSTRACT The boundary layers of rainbow trout, Oncorhynchus mykiss [0.231±0.016 m total body length (L) (mean±s.d.); N=6], swimming at 1.6±0.09 L s−1 (N=6) in an experimental flow channel (Reynolds number, Re=4×105) with medium turbulence (5.6% intensity) were examined using the particle image velocimetry technique. The tangential flow velocity distributions in the pectoral and pelvic surface regions (arc length from the rostrum, lx=71±8 mm, N=3, and lx=110±13 mm, N=4, respectively) were approximated by a laminar boundary layer model, the Falkner−Skan equation. The flow regime over the pectoral and pelvic surfaces was regarded as a laminar flow, which could create less skin-friction drag than would be the case with turbulent flow. Flow separation was postponed until vortex shedding occurred over the posterior surface (lx=163±22 mm, N=3). The ratio of the body-wave velocity to the swimming speed was in the order of 1.2. This was consistent with the condition of the boundary layer laminarization that had been confirmed earlier using a mechanical model. These findings suggest an energy-efficient swimming strategy for rainbow trout in a turbulent environment. PMID:27815242

  13. Effect of drying and frying conditions on physical and chemical characteristics of fish maw from swim bladder of seabass (Lates calcarifer).

    PubMed

    Sinthusamran, Sittichoke; Benjakul, Soottawat

    2015-12-01

    Swim bladder is generated as a by-product during evisceration. It has been used for the production of fish maw, in which several processing parameters determine the characteristics or quality of the resulting fish maw. The present study aimed to investigate the characteristics of fish maws from seabass swim bladder as influenced by drying and frying conditions. The expansion ratio and oil uptake content of fish maw increased as the moisture content of swim bladder increased (P < 0.05). Nevertheless, the expansion ratio of fish maw decreased when the moisture content was higher than 150 g kg(-1) . The L*-value decreased, whilst the a*- and b*-values of fish maw increased with increasing moisture content. When pre-frying and frying temperatures increased, the expansion ratio of fish maw increased (P < 0.05). However, the expansion ratio decreased when the frying was performed at a temperature higher than 200 °C. The oil uptake contents of fish maw with frying temperatures of 180 and 200 °C were in the range of 451.06-578.06 g kg(-1) , whereas the lower contents (378.60-417.17 g kg(-1) ) were found in those having frying temperatures of 220-240 °C. Hardness of fish maw decreased but no changes in fracturability were observed with increasing pre-frying temperature when subsequent frying was carried out 200 °C. Drying temperatures, moisture content, pre-frying and frying temperatures were the factors influencing the characteristics and properties of fish maws from seabass swim bladder. Fish maw could be prepared by pre-frying swim bladder, dried at 60 °C to obtain 150 g kg(-1) moisture content, at 110 °C for 5 min, followed by frying at 200 °C for 20 s. © 2014 Society of Chemical Industry.

  14. Mechanics of swimming of multi-body bacterial swarmers using non-labeled cell tracking algorithm

    NASA Astrophysics Data System (ADS)

    Phuyal, Kiran; Kim, Min Jun

    2013-01-01

    To better understand the survival strategy of bacterial swarmers and the mechanical advantages offered by the linear chain (head-tail) attachment of the multiple bacterial bodies in an individual swarmer cell at low Reynolds number, a non-labeled cell tracking algorithm was used to quantify the mechanics of multi-body flagellated bacteria, Serratia marcescens, swimming in a motility buffer that originally exhibited the swarming motility. Swarming is a type of bacterial motility that is characterized by the collective coordinated motion of differentiated swarmer cells on a two-dimensional surface such as agar. In this study, the bacterial swarmers with multiple cell bodies (2, 3, and 4) were extracted from the swarm plate, and then tracked individually after resuspending in the motility medium. Their motion was investigated and compared with individual undifferentiated swimming bacterial cells. The swarmers when released into the motility buffer swam actively without tumbles. Their speeds, orientations, and the diffusive properties were studied by tracking the individual cell trajectories over a short distance in two-dimensional field when the cells are swimming at a constant depth in a bulk aqueous environment. At short time scales, the ballistic trajectory was dominant for both multi-body swarmers and undifferentiated cells.

  15. On inappropriately used neuronal circuits as a possible basis of the ``loop-swimming'' behaviour of fish under reduced gravity: a theoretical study

    NASA Astrophysics Data System (ADS)

    Anken, R. H.; Rahmann, H.

    One hypothesis for the explanation of the so-called ``loop-swimming'' behaviour in fish when being subjected to reduced gravity assumes that the activities of the differently weighted otoliths of the two labyrinths are well compensated on ground but that a functional asymmetry is induced in weightlessness, resulting in a tonus asymmetry of the body and by this generating the ``loop-swimming'' behaviour. The basis of this abnormal behaviour has to be searched for in the central nervous system (cns), where the signal-transduction from the inner ear- related signal internalisation to the signal response takes place. Circuits within the CNS of fish, that could possibly generate the ``loop-swimming'', might be as follows: An asymmetric activation of vestibulospinal circuits would directly result in a tonus asymmetry of the body. An asymmetric activation of the oculomotor nucleus would generate an asymmetrical rotation of the eyes. This would cause in its turn asymmetric images on the two retinas, which were forwarded to the diencephalic accessory optic system (AOS). It is the task of the AOS to stabilize retinal images, thereby involving the cerebellum, which is the main integration center for sensory and motor modalities. With this, the cerebellar output would generate a tonus asymmetry of the body in order to make the body of the fish follow its eyes. Such movements (especially when assuming an open loop control) would end up in the aforementioned ``loop-swimming'' behaviour.

  16. A unique swim bladder-inner ear connection in a teleost fish revealed by a combined high-resolution microtomographic and three-dimensional histological study

    PubMed Central

    2013-01-01

    Background In most modern bony fishes (teleosts) hearing improvement is often correlated with a close morphological relationship between the swim bladder or other gas-filled cavities and the saccule or more rarely with the utricle. A connection of an accessory hearing structure to the third end organ, the lagena, has not yet been reported. A recent study in the Asian cichlid Etroplus maculatus provided the first evidence that a swim bladder may come close to the lagena. Our study was designed to uncover the swim bladder-inner ear relationship in this species. We used a new approach by applying a combination of two high-resolution techniques, namely microtomographic (microCT) imaging and histological serial semithin sectioning, providing the basis for subsequent three-dimensional reconstructions. Prior to the morphological study, we additionally measured auditory evoked potentials at four frequencies (0.5, 1, 2, 3 kHz) to test the hearing abilities of the fish. Results E. maculatus revealed a complex swim bladder-inner ear connection in which a bipartite swim bladder extension contacts the upper as well as the lower parts of each inner ear, a condition not observed in any other teleost species studied so far. The gas-filled part of the extension is connected to the lagena via a thin bony lamella and is firmly attached to this bony lamella with connective material. The second part of the extension, a pad-like structure, approaches the posterior and horizontal semicircular canals and a recessus located posterior to the utricle. Conclusions Our study is the first detailed report of a link between the swim bladder and the lagena in a teleost species. We suggest that the lagena has an auditory function in this species because the most intimate contact exists between the swim bladder and this end organ. The specialized attachment of the saccule to the cranial bone and the close proximity of the swim bladder extension to the recessus located posterior to the utricle

  17. Do swimming fish always grow fast? Investigating the magnitude and physiological basis of exercise-induced growth in juvenile New Zealand yellowtail kingfish, Seriola lalandi.

    PubMed

    Brown, Elliot J; Bruce, Michael; Pether, Steve; Herbert, Neill A

    2011-06-01

    There is a wealth of evidence showing that a moderate level of non-stop exercise improves the growth and feed conversion of many active fishes. A diverse number of active fish are currently being farmed, and an optimal level of exercise may feasibly improve the production efficiency of these species in intensive culture systems. Our experiments have set out to resolve the growth benefits of juvenile New Zealand yellowtail kingfish (Seriola lalandi) enforced to swim in currents at various speeds over two temperatures (14.9 and 21.1 °C). We also probed potential sources of physiological efficiency in an attempt to resolve how growth is enhanced at a time of high energetic expenditure. Results show that long-term exercise yields a 10% increase in growth but this occurs in surprisingly low flows (0.75 BL s⁻¹) and only under favourable environmental temperatures (21.1 °C). Experiments using a swim flume respirometer indicate that exercise training has no effect on metabolic scope or critical swimming speeds but it does improve swimming efficiency (lower gross costs of transport, GCOT). Such efficiency may potentially help reconcile the costs of growth and exercise within the range of available metabolic energy (scope). With growth boosted in surprisingly low flows and elevated water temperatures only, further investigations are required to understand the bioenergetics and partitioning of costs in the New Zealand yellowtail kingfish.

  18. Not all sharks are "swimming noses": variation in olfactory bulb size in cartilaginous fishes.

    PubMed

    Yopak, Kara E; Lisney, Thomas J; Collin, Shaun P

    2015-03-01

    Olfaction is a universal modality by which all animals sample chemical stimuli from their environment. In cartilaginous fishes, olfaction is critical for various survival tasks including localizing prey, avoiding predators, and chemosensory communication with conspecifics. Little is known, however, about interspecific variation in olfactory capability in these fishes, or whether the relative importance of olfaction in relation to other sensory systems varies with regard to ecological factors, such as habitat and lifestyle. In this study, we have addressed these questions by directly examining interspecific variation in the size of the olfactory bulbs (OB), the region of the brain that receives the primary sensory projections from the olfactory nerve, in 58 species of cartilaginous fishes. Relative OB size was compared among species occupying different ecological niches. Our results show that the OBs maintain a substantial level of allometric independence from the rest of the brain across cartilaginous fishes and that OB size is highly variable among species. These findings are supported by phylogenetic generalized least-squares models, which show that this variability is correlated with ecological niche, particularly habitat. The relatively largest OBs were found in pelagic-coastal/oceanic sharks, especially migratory species such as Carcharodon carcharias and Galeocerdo cuvier. Deep-sea species also possess large OBs, suggesting a greater reliance on olfaction in habitats where vision may be compromised. In contrast, the smallest OBs were found in the majority of reef-associated species, including sharks from the families Carcharhinidae and Hemiscyllidae and dasyatid batoids. These results suggest that there is great variability in the degree to which these fishes rely on olfactory cues. The OBs have been widely used as a neuroanatomical proxy for olfactory capability in vertebrates, and we speculate that differences in olfactory capabilities may be the result of

  19. Mathematical Modeling of Space-Time Variations in Acoustic Transmission and Scattering from Schools of Swim Bladder Fish (FY11 Annual Report)

    DTIC Science & Technology

    2011-09-01

    Chile Facultad de Fı́sica Av. Vicuña Mackenna 4860 Santiago, Chile phone: +56 2 354 4800 fax: +56 2 354 4491 email: chris.feuillade@gmail.com...differential equations, and incorporates a verified swim bladder scattering kernel (Ref. 2 ) for an individual fish. All orders of multiple scattering...currently valid OMB control number. 1. REPORT DATE SEP 2011 2 . REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE

  20. Investigation on 3D t wake flow structures of swimming bionic fish

    NASA Astrophysics Data System (ADS)

    Shen, G.-X.; Tan, G.-K.; Lai, G.-J.

    2012-10-01

    A bionic experimental platform was designed for the purpose of investigating time accurate three-dimensional flow field, using digital particle image velocimetry (DSPIV). The wake behind the flapping trail of a robotic fish model was studied at high spatial resolution. The study was performed in a water channel. A robot fish model was designed and built. The model was fixed onto a rigid support framework using a cable-supporting method, with twelve stretched wires. The entire tail of the model can perform prescribed motions in two degrees of freedom, mainly in carangiform mode, by driving its afterbody and lunate caudal fin respectively. The DSPIV system was set up to operate in a translational manner, measuring velocity field in a series of parallel slices. Phase locked measurements were repeated for a number of runs, allowing reconstruction of phase average flow field. Vortex structures with phase history of the wake were obtained. The study reveals some new and complex three-dimensional flow structures in the wake of the fish, including "reverse hairpin vortex" and "reverse Karman S-H vortex rings", allowing insight into physics of this complex flow.

  1. Modeling of breaststroke swimming

    NASA Astrophysics Data System (ADS)

    Karmanov, S. P.; Chernous'ko, F. L.

    2014-02-01

    A mechanical system that models swimming using a pair of two-chain extremities is considered. The motion of the system under study is similar to swimming of a frog and some other animals, in which lower extremities play the main role. This type of motion is characteristic of competitive breaststroke swimming.

  2. Real-Time Localization of Moving Dipole Sources for Tracking Multiple Free-Swimming Weakly Electric Fish.

    PubMed

    Jun, James Jaeyoon; Longtin, André; Maler, Leonard

    2013-01-01

    In order to survive, animals must quickly and accurately locate prey, predators, and conspecifics using the signals they generate. The signal source location can be estimated using multiple detectors and the inverse relationship between the received signal intensity (RSI) and the distance, but difficulty of the source localization increases if there is an additional dependence on the orientation of a signal source. In such cases, the signal source could be approximated as an ideal dipole for simplification. Based on a theoretical model, the RSI can be directly predicted from a known dipole location; but estimating a dipole location from RSIs has no direct analytical solution. Here, we propose an efficient solution to the dipole localization problem by using a lookup table (LUT) to store RSIs predicted by our theoretically derived dipole model at many possible dipole positions and orientations. For a given set of RSIs measured at multiple detectors, our algorithm found a dipole location having the closest matching normalized RSIs from the LUT, and further refined the location at higher resolution. Studying the natural behavior of weakly electric fish (WEF) requires efficiently computing their location and the temporal pattern of their electric signals over extended periods. Our dipole localization method was successfully applied to track single or multiple freely swimming WEF in shallow water in real-time, as each fish could be closely approximated by an ideal current dipole in two dimensions. Our optimized search algorithm found the animal's positions, orientations, and tail-bending angles quickly and accurately under various conditions, without the need for calibrating individual-specific parameters. Our dipole localization method is directly applicable to studying the role of active sensing during spatial navigation, or social interactions between multiple WEF. Furthermore, our method could be extended to other application areas involving dipole source

  3. Real-Time Localization of Moving Dipole Sources for Tracking Multiple Free-Swimming Weakly Electric Fish

    PubMed Central

    Jun, James Jaeyoon; Longtin, André; Maler, Leonard

    2013-01-01

    In order to survive, animals must quickly and accurately locate prey, predators, and conspecifics using the signals they generate. The signal source location can be estimated using multiple detectors and the inverse relationship between the received signal intensity (RSI) and the distance, but difficulty of the source localization increases if there is an additional dependence on the orientation of a signal source. In such cases, the signal source could be approximated as an ideal dipole for simplification. Based on a theoretical model, the RSI can be directly predicted from a known dipole location; but estimating a dipole location from RSIs has no direct analytical solution. Here, we propose an efficient solution to the dipole localization problem by using a lookup table (LUT) to store RSIs predicted by our theoretically derived dipole model at many possible dipole positions and orientations. For a given set of RSIs measured at multiple detectors, our algorithm found a dipole location having the closest matching normalized RSIs from the LUT, and further refined the location at higher resolution. Studying the natural behavior of weakly electric fish (WEF) requires efficiently computing their location and the temporal pattern of their electric signals over extended periods. Our dipole localization method was successfully applied to track single or multiple freely swimming WEF in shallow water in real-time, as each fish could be closely approximated by an ideal current dipole in two dimensions. Our optimized search algorithm found the animal’s positions, orientations, and tail-bending angles quickly and accurately under various conditions, without the need for calibrating individual-specific parameters. Our dipole localization method is directly applicable to studying the role of active sensing during spatial navigation, or social interactions between multiple WEF. Furthermore, our method could be extended to other application areas involving dipole source

  4. "The fish becomes aware of the water in which it swims": revealing the power of culture in shaping teaching identity

    NASA Astrophysics Data System (ADS)

    Rahmawati, Yuli; Taylor, Peter Charles

    2017-08-01

    "The fish becomes aware of the water in which it swims" is a metaphor that represents Yuli's revelatory journey about the hidden power of culture in her personal identity and professional teaching practice. While engaging in a critical auto/ethnographic inquiry into her lived experience as a science teacher in Indonesian and Australian schools, she came to understand the powerful role of culture in shaping her teaching identity. Yuli realised that she is a product of cultural hybridity resulting from interactions of very different cultures—Javanese, Bimanese, Indonesian and Australian. Traditionally, Javanese and Indonesian cultures do not permit direct criticism of others. This influenced strongly the way she had learned to interact with students and caused her to be very sensitive to others. During this inquiry she learned the value of engaging students in open discourse and overt caring, and came to realise that teachers bringing their own cultures to the classroom can be both a source of power and a problem. In this journey, Yuli came to understand the hegemonic power of culture in her teaching identity, and envisioned how to empower herself as a good teacher educator of pre-service science teachers.

  5. The IL-1 family in fish: swimming through the muddy waters of inflammasome evolution.

    PubMed

    Ogryzko, Nikolay V; Renshaw, Stephen A; Wilson, Heather L

    2014-09-01

    Inflammatory diseases are a significant burden on global healthcare systems, and tackling these diseases is a major focus of modern medicine. Key to many inflammatory diseases is the cytokine, Interleukin-1 (IL-1). Due to its apical role in initiating the inflammatory response, dysregulated IL-1 signalling results in a number of pathologies. Treatment of inflammatory diseases with anti-IL-1 therapies has offered many therapeutic benefits, however current therapies are protein based, with all the accompanying limitations. The non-conventional pathways involved in IL-1 signalling provide a number of potential therapeutic targets for clinical intervention and this has led to the exploitation of a number of model organisms for the study of IL-1 biology. Murine models have long been used to study IL-1 processing and release, but do not allow direct visualisation in vivo. Recently, fish models have emerged as genetically tractable and optically transparent inflammatory disease models. These models have raised questions on the evolutionary origins of the IL-1 family and the conservation in its processing and activation. Here we review the current understanding of IL-1 evolution in fish and discuss the study of IL-1 processing in these models.

  6. Inorganic mercury accumulation in brain following waterborne exposure elicits a deficit on the number of brain cells and impairs swimming behavior in fish (white seabream-Diplodus sargus).

    PubMed

    Pereira, Patrícia; Puga, Sónia; Cardoso, Vera; Pinto-Ribeiro, Filipa; Raimundo, Joana; Barata, Marisa; Pousão-Ferreira, Pedro; Pacheco, Mário; Almeida, Armando

    2016-01-01

    The current study contributes to fill the knowledge gap on the neurotoxicity of inorganic mercury (iHg) in fish through the implementation of a combined evaluation of brain morphometric alterations (volume and total number of neurons plus glial cells in specific regions of the brain) and swimming behavior (endpoints related with the motor activity and mood/anxiety-like status). White seabream (Diplodus sargus) was exposed to realistic levels of iHg in water (2μgL(-1)) during 7 (E7) and 14 days (E14). After that, fish were allowed to recover for 28 days (PE28) in order to evaluate brain regeneration and reversibility of behavioral syndromes. A significant reduction in the number of cells in hypothalamus, optic tectum and cerebellum was found at E7, accompanied by relevant changes on swimming behavior. Moreover, the decrease in the number of neurons and glia in the molecular layer of the cerebellum was followed by a contraction of its volume. This is the first time that a deficit on the number of cells is reported in fish brain after iHg exposure. Interestingly, a recovery of hypothalamus and cerebellum occurred at E14, as evidenced by the identical number of cells found in exposed and control fish, and volume of cerebellum, which might be associated with an adaptive phenomenon. After 28 days post-exposure, the optic tectum continued to show a decrease in the number of cells, pointing out a higher vulnerability of this region. These morphometric alterations coincided with numerous changes on swimming behavior, related both with fish motor function and mood/anxiety-like status. Overall, current data pointed out the iHg potential to induce brain morphometric alterations, emphasizing a long-lasting neurobehavioral hazard. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Holographic Imaging Reveals the Mechanism of Wall Entrapment in Swimming Bacteria

    NASA Astrophysics Data System (ADS)

    Bianchi, Silvio; Saglimbeni, Filippo; Di Leonardo, Roberto

    2017-01-01

    Self-propelled particles, both biological and synthetic, are stably trapped by walls and develop high concentration peaks over bounding surfaces. In swimming bacteria, like E. coli, the physical mechanism behind wall entrapment is an intricate mixture of hydrodynamic and steric interactions with a strongly anisotropic character. The building of a clear physical picture of this phenomenon demands direct and full three-dimensional experimental observations of individual wall entrapment events. Here, we demonstrate that, by using a combination of three-axis holographic microscopy and optical tweezers, it is possible to obtain volumetric reconstructions of individual E. coli cells that are sequentially released at a controlled distance and angle from a flat solid wall. We find that hydrodynamic couplings can slow down the cell before collision, but reorientation only occurs while the cell is in constant contact with the wall. In the trapped state, all cells swim with the average body axis pointing into the surface. The amplitude of this pitch angle is anticorrelated to the amplitude of wobbling, thus indicating that entrapment is dominated by near-field couplings between the cell body and the wall. Our approach opens the way to three-dimensional quantitative studies of a broad range of fast dynamical processes in motile bacteria and eukaryotic cells.

  8. Altered burst swimming in rainbow trout Oncorhynchus mykiss exposed to natural and synthetic oestrogens.

    PubMed

    Osachoff, H L; Osachoff, K N; Wickramaratne, A E; Gunawardane, E K; Venturini, F P; Kennedy, C J

    2014-08-01

    Juvenile rainbow trout Oncorhynchus mykiss were exposed to two concentrations each of 17β-oestradiol (E2; natural oestrogen hormone) or 17α-ethinyl oestradiol (EE2; a potent synthetic oestrogen hormone) to evaluate their potential effects on burst-swimming performance. In each of six successive burst-swimming assays, burst-swimming speed (Uburst ) was lower in fish exposed to 0.5 and 1 µg l(-1) E2 and EE2 for four days compared with control fish. A practice swim (2 days prior to exposure initiation) in control fish elevated initial Uburst values, but this training effect was not evident in the 1 µg l(-1) EE2-exposed fish. Several potential oestrogen-mediated mechanisms for Uburst reductions were investigated, including effects on metabolic products, osmoregulation and blood oxygen-carrying capacity. Prior to burst-swimming trials, fish exposed to E2 and EE2 for 4 days had significantly reduced erythrocyte numbers and lower plasma glucose concentrations. After six repeated burst-swimming trials, plasma glucose, lactate and creatinine concentrations were not significantly different among treatment groups; however, plasma Cl(-) concentrations were significantly reduced in E2- and EE2-treated fish. In summary, E2 and EE2 exposure altered oxygen-carrying capacity ([erythrocytes]) and an osmoregulatory-related variable ([Cl(-) ]), effects that may underlie reductions in burst-swimming speed, which will have implications for fish performance in the wild.

  9. Developmental intervals during the larval and juvenile stages of the Antarctic myctophid fish Electrona antarctica in relation to changes in feeding and swimming functions

    NASA Astrophysics Data System (ADS)

    Moteki, Masato; Tsujimura, Eri; Hulley, Percy-Alexander

    2017-06-01

    The Antarctic myctophid fish species Electrona antarctica is believed to play a key role in the Southern Ocean food web, but there have been few studies on its early life history. This study examined the developmental changes in the external morphology and osteology of E. antarctica from the early larva to juvenile stages through the transformation phase and inferred changes in its behaviour and feeding mode. Once the larvae reached 12-13 mm body length (BL), they adopted a primordial suction feeding mode along with the acquisition of early swimming capabilities. Thereafter, both swimming and feeding functions were enhanced through fin development and ossification and acquisition of elements of the jaw and suspensorium. These processes indicate that larvae transition from the planktonic to nektonic phase upon reaching 12-13 mm BL when they enhance their both swimming and feeding abilities with growth. Transformation occurred when larvae reached 19-21 mm BL with changes such as discontinuous increases in eye diameter and upper jaw length and the appearance of photophores and dense body pigmentation. Osteological development of swimming- and feeding-related structures were mostly complete after transformation. Rapid changes in external morphology and osteology during the transformation stage are most likely related to ontogenetic vertical migration into deep waters.

  10. Strategies for swimming: explorations of the behaviour of a neuro-musculo-mechanical model of the lamprey.

    PubMed

    Williams, Thelma L; McMillen, Tyler

    2015-02-06

    Experiments were performed on a neuro-musculo-mechanical model of a lamprey, to explore the strategies for controlling swimming speed. The muscle component of the model was based on previous experiments on isolated lamprey muscle. The patterns of muscle activation were those found in EMG studies on swimming lampreys. The fluid mechanics were modelled with G.I. Taylor's simplification. Tail beat frequencies of 2-6 sec(-1) were combined with muscle activation strengths of 0.1% to 20% of maximum tetanic isometric strength. The resulting forward swimming speed and changing body shape were recorded. From the changing body shape the speed of the backward-travelling wave of curvature was calculated, as well as the ratio between the speeds of the waves of activation and curvature. For any given activation strength there was a tail beat frequency that gave maximal forward speed. Furthermore, for all the combinations of activation strength and tail beat frequency that gave such maximum swimming speeds, the ratio of the speed of the wave of curvature to the wave of muscle activation was approximately 0.75. This is similar to the ratio found in swimming lampreys. © 2015. Published by The Company of Biologists Ltd.

  11. Strategies for swimming: explorations of the behaviour of a neuro-musculo-mechanical model of the lamprey

    PubMed Central

    Williams, Thelma L.; McMillen, Tyler

    2015-01-01

    ABSTRACT Experiments were performed on a neuro-musculo-mechanical model of a lamprey, to explore the strategies for controlling swimming speed. The muscle component of the model was based on previous experiments on isolated lamprey muscle. The patterns of muscle activation were those found in EMG studies on swimming lampreys. The fluid mechanics were modelled with G.I. Taylor's simplification. Tail beat frequencies of 2–6 sec−1 were combined with muscle activation strengths of 0.1% to 20% of maximum tetanic isometric strength. The resulting forward swimming speed and changing body shape were recorded. From the changing body shape the speed of the backward-travelling wave of curvature was calculated, as well as the ratio between the speeds of the waves of activation and curvature. For any given activation strength there was a tail beat frequency that gave maximal forward speed. Furthermore, for all the combinations of activation strength and tail beat frequency that gave such maximum swimming speeds, the ratio of the speed of the wave of curvature to the wave of muscle activation was approximately 0.75. This is similar to the ratio found in swimming lampreys. PMID:25661866

  12. The Complex Hydrodynamics of Swimming in the Spanish Dancer

    NASA Astrophysics Data System (ADS)

    Zhou, Zhuoyu; Mittal, Rajat

    2016-11-01

    The lack of a vertebra seems to have freed marine gastropods to explore and exploit a stupendous variety of swimming kinematics. In fact, examination of just a few animals in this group reveal locomotory modes ranging from insect-like flapping, to fish-like undulatory swimming, jet propulsion, and rajiform (manta-like) swimming. There are also a number of marine gastropods that have bizarre swimming gaits with no equivalent among fish or marine mammals. In this latter category is the Spanish Dancer (Hexabranchus sanguineus) a sea slug that swims with a complex combination of body undulations and flapping parapodia. While the neurobiology of these animals has been relatively well-studied, less is known about their propulsive mechanism and swimming energetics. In this study, we focus on the hydrodynamics of two distinct swimmers: the Spanish Dancer, and the sea hare Aplysia; the latter adopts a rajiform-like mode of swimming by passing travelling waves along its parapodia. In the present study an immersed boundary method is employed to examine the vortex structures, hydrodynamic forces and energy costs of the swimming in these animals. NSF Grant No. 1246317.

  13. [Process, mechanism, and research method of fish invasion].

    PubMed

    Pan, Yong; Cao, Wen-Xuan; Xu, Li-Pu; Yin, Shou-Ren; Bai, Lu

    2007-03-01

    Fish invasion has become a serious environmental and economic damage, and obtained a priority concern by the conservation ichthyologists and land managers. A better understanding of the invasive mechanisms is of significance in developing ecological theories and in controlling exotic pests. In this paper, the progress in studying the mechanisms of fish invasion was reviewed, involving the biological characteristics of exotic fish, their adaptive evolution, interactions among exotic and indigenous fish, and relationships between species diversity and community resistance to invasion, etc. The study of invasive process and the progress of research methods were discussed.

  14. Maximum swimming speeds of sailfish and three other large marine predatory fish species based on muscle contraction time and stride length: a myth revisited.

    PubMed

    Svendsen, Morten B S; Domenici, Paolo; Marras, Stefano; Krause, Jens; Boswell, Kevin M; Rodriguez-Pinto, Ivan; Wilson, Alexander D M; Kurvers, Ralf H J M; Viblanc, Paul E; Finger, Jean S; Steffensen, John F

    2016-10-15

    Billfishes are considered to be among the fastest swimmers in the oceans. Previous studies have estimated maximum speed of sailfish and black marlin at around 35 m s(-1) but theoretical work on cavitation predicts that such extreme speed is unlikely. Here we investigated maximum speed of sailfish, and three other large marine pelagic predatory fish species, by measuring the twitch contraction time of anaerobic swimming muscle. The highest estimated maximum swimming speeds were found in sailfish (8.3±1.4 m s(-1)), followed by barracuda (6.2±1.0 m s(-1)), little tunny (5.6±0.2 m s(-1)) and dorado (4.0±0.9 m s(-1)); although size-corrected performance was highest in little tunny and lowest in sailfish. Contrary to previously reported estimates, our results suggest that sailfish are incapable of exceeding swimming speeds of 10-15 m s(-1), which corresponds to the speed at which cavitation is predicted to occur, with destructive consequences for fin tissues. © 2016. Published by The Company of Biologists Ltd.

  15. Maximum swimming speeds of sailfish and three other large marine predatory fish species based on muscle contraction time and stride length: a myth revisited

    PubMed Central

    Svendsen, Morten B. S.; Domenici, Paolo; Marras, Stefano; Krause, Jens; Boswell, Kevin M.; Rodriguez-Pinto, Ivan; Wilson, Alexander D. M.; Kurvers, Ralf H. J. M.; Viblanc, Paul E.; Finger, Jean S.; Steffensen, John F.

    2016-01-01

    ABSTRACT Billfishes are considered to be among the fastest swimmers in the oceans. Previous studies have estimated maximum speed of sailfish and black marlin at around 35 m s−1 but theoretical work on cavitation predicts that such extreme speed is unlikely. Here we investigated maximum speed of sailfish, and three other large marine pelagic predatory fish species, by measuring the twitch contraction time of anaerobic swimming muscle. The highest estimated maximum swimming speeds were found in sailfish (8.3±1.4 m s−1), followed by barracuda (6.2±1.0 m s−1), little tunny (5.6±0.2 m s−1) and dorado (4.0±0.9 m s−1); although size-corrected performance was highest in little tunny and lowest in sailfish. Contrary to previously reported estimates, our results suggest that sailfish are incapable of exceeding swimming speeds of 10-15 m s−1, which corresponds to the speed at which cavitation is predicted to occur, with destructive consequences for fin tissues. PMID:27543056

  16. A coordinated molecular 'fishing' mechanism in heterodimeric kinesin

    NASA Astrophysics Data System (ADS)

    Hou, Ruizheng; Wang, Zhisong

    2010-09-01

    Kar3 is a kinesin motor that facilitates chromosome segregation during cell division. Unlike many members of the kinesin superfamily, Kar3 forms a heterodimer with non-motor protein Vik1 or Cik1 in vivo. The heterodimers show ATP-driven minus-end directed motility along a microtubule (MT) lattice, and also serve as depolymerase at the MT ends. The molecular mechanisms behind this dual functionality remain mysterious. Here, a molecular mechanical model for the Kar3/Vik1 heterodimer based on structural, kinetic and motility data reveals a long-range chemomechanical transmission mechanism that resembles a familiar fishing tactic. By this molecular 'fishing', ATP-binding to Kar3 dissociates catalytically inactive Vik1 off MT to facilitate minus-end sliding of the dimer on the MT lattice. When the dimer binds the frayed ends of MT, the fishing channels ATP hydrolysis energy into MT deploymerization by a mechanochemical effect. The molecular fishing thus provides a unified mechanistic ground for Kar3's dual functionality. The fishing-promoted depolymerization differs from the depolymerase mechanisms found in homodimeric kinesins. The fishing also enables intermolecular coordination with a chemomechanical coupling feature different from the paradigmatic pattern of homodimeric motors. This study rationalizes some puzzling experimental observation, and suggests new experiments for further elucidation of the fishing mechanism.

  17. Cell-body rocking is a dominant mechanism for flagellar synchronization in a swimming alga.

    PubMed

    Geyer, Veikko F; Jülicher, Frank; Howard, Jonathon; Friedrich, Benjamin M

    2013-11-05

    The unicellular green alga Chlamydomonas swims with two flagella that can synchronize their beat. Synchronized beating is required to swim both fast and straight. A long-standing hypothesis proposes that synchronization of flagella results from hydrodynamic coupling, but the details are not understood. Here, we present realistic hydrodynamic computations and high-speed tracking experiments of swimming cells that show how a perturbation from the synchronized state causes rotational motion of the cell body. This rotation feeds back on the flagellar dynamics via hydrodynamic friction forces and rapidly restores the synchronized state in our theory. We calculate that this "cell-body rocking" provides the dominant contribution to synchronization in swimming cells, whereas direct hydrodynamic interactions between the flagella contribute negligibly. We experimentally confirmed the two-way coupling between flagellar beating and cell-body rocking predicted by our theory.

  18. Cell-body rocking is a dominant mechanism for flagellar synchronization in a swimming alga

    PubMed Central

    Geyer, Veikko F.; Jülicher, Frank; Howard, Jonathon; Friedrich, Benjamin M.

    2013-01-01

    The unicellular green alga Chlamydomonas swims with two flagella that can synchronize their beat. Synchronized beating is required to swim both fast and straight. A long-standing hypothesis proposes that synchronization of flagella results from hydrodynamic coupling, but the details are not understood. Here, we present realistic hydrodynamic computations and high-speed tracking experiments of swimming cells that show how a perturbation from the synchronized state causes rotational motion of the cell body. This rotation feeds back on the flagellar dynamics via hydrodynamic friction forces and rapidly restores the synchronized state in our theory. We calculate that this “cell-body rocking” provides the dominant contribution to synchronization in swimming cells, whereas direct hydrodynamic interactions between the flagella contribute negligibly. We experimentally confirmed the two-way coupling between flagellar beating and cell-body rocking predicted by our theory. PMID:24145440

  19. Physiological mechanisms used by fish to cope with salinity stress.

    PubMed

    Kültz, Dietmar

    2015-06-01

    Salinity represents a critical environmental factor for all aquatic organisms, including fishes. Environments of stable salinity are inhabited by stenohaline fishes having narrow salinity tolerance ranges. Environments of variable salinity are inhabited by euryhaline fishes having wide salinity tolerance ranges. Euryhaline fishes harbor mechanisms that control dynamic changes in osmoregulatory strategy from active salt absorption to salt secretion and from water excretion to water retention. These mechanisms of dynamic control of osmoregulatory strategy include the ability to perceive changes in environmental salinity that perturb body water and salt homeostasis (osmosensing), signaling networks that encode information about the direction and magnitude of salinity change, and epithelial transport and permeability effectors. These mechanisms of euryhalinity likely arose by mosaic evolution involving ancestral and derived protein functions. Most proteins necessary for euryhalinity are also critical for other biological functions and are preserved even in stenohaline fish. Only a few proteins have evolved functions specific to euryhaline fish and they may vary in different fish taxa because of multiple independent phylogenetic origins of euryhalinity in fish. Moreover, proteins involved in combinatorial osmosensing are likely interchangeable. Most euryhaline fishes have an upper salinity tolerance limit of approximately 2× seawater (60 g kg(-1)). However, some species tolerate up to 130 g kg(-1) salinity and they may be able to do so by switching their adaptive strategy when the salinity exceeds 60 g kg(-1). The superior salinity stress tolerance of euryhaline fishes represents an evolutionary advantage favoring their expansion and adaptive radiation in a climate of rapidly changing and pulsatory fluctuating salinity. Because such a climate scenario has been predicted, it is intriguing to mechanistically understand euryhalinity and how this complex

  20. An integrative CFD model of lamprey swimming

    NASA Astrophysics Data System (ADS)

    Hsu, Chia-Yu; McMillen, Tyler; Fauci, Lisa

    2008-11-01

    Swimming due to sinusoidal body undulations is observed across the full spectrum of swimming organisms, from microscopic flagella to fish. These undulations are achieved due to internal force-generating mechanisms, which, in the case of lamprey are due to a wave of neural activation from head to tail which gives rise to a wave of muscle activation. These active forces are also mediated by passive structural forces. Here we present recent results on a computational model of a swimming lamprey that couples activation of discrete muscle segments, passive elastic forces, and a surrounding viscous, incompressible fluid. The fluid dynamics is modeled by the Navier-Stokes equations at appropriate Reynolds numbers, where the resulting flow field and vortex shedding may be measured.

  1. Use of biorobotic models of highly deformable fins for studying the mechanics and control of fin forces in fishes.

    PubMed

    Tangorra, James; Phelan, Chris; Esposito, Chris; Lauder, George

    2011-07-01

    Bony fish swim with a level of agility that is unmatched in human-developed systems. This is due, in part, to the ability of the fish to carefully control hydrodynamic forces through the active modulation of the fins' kinematics and mechanical properties. To better understand how fish produce and control forces, biorobotic models of the bluegill sunfish's (Lepomis macrochirus) caudal fin and pectoral fins were developed. The designs of these systems were based on detailed analyses of the anatomy, kinematics, and hydrodynamics of the biological fins. The fin models have been used to investigate how fin kinematics and the mechanical properties of the fin-rays influence propulsive forces and to explore kinematic patterns that were inspired by biological motions but that were not explicitly performed by the fish. Results from studies conducted with the fin models indicate that subtle changes to the kinematics and mechanical properties of fin rays can significantly impact the magnitude, direction, and time course of the 3D forces used for propulsion and maneuvers. The magnitude of the force tends to scale with the fin's stiffness, but the direction of the force is not invariant, and this causes disproportional changes in the magnitude of the thrust, lift, and lateral components of force. Results from these studies shed light on the multiple strategies that are available to the fish to modulate fin forces.

  2. Ventral tegmental area cholinergic mechanisms mediate behavioral responses in the forced swim test.

    PubMed

    Addy, N A; Nunes, E J; Wickham, R J

    2015-07-15

    Recent studies revealed a causal link between ventral tegmental area (VTA) phasic dopamine (DA) activity and pro-depressive and antidepressant-like behavioral responses in rodent models of depression. Cholinergic activity in the VTA has been demonstrated to regulate phasic DA activity, but the role of VTA cholinergic mechanisms in depression-related behavior is unclear. The goal of this study was to determine whether pharmacological manipulation of VTA cholinergic activity altered behavioral responding in the forced swim test (FST) in rats. Here, male Sprague-Dawley rats received systemic or VTA-specific administration of the acetylcholinesterase inhibitor, physostigmine (systemic; 0.06 or 0.125mg/kg, intra-cranial; 1 or 2μg/side), the muscarinic acetylcholine receptor (AChR) antagonist scopolamine (2.4 or 24μg/side), or the nicotinic AChR antagonist mecamylamine (3 or 30μg/side), prior to the FST test session. In control experiments, locomotor activity was also examined following systemic and intra-cranial administration of cholinergic drugs. Physostigmine administration, either systemically or directly into the VTA, significantly increased immobility time in FST, whereas physostigmine infusion into a dorsal control site did not alter immobility time. In contrast, VTA infusion of either scopolamine or mecamylamine decreased immobility time, consistent with an antidepressant-like effect. Finally, the VTA physostigmine-induced increase in immobility was blocked by co-administration with scopolamine, but unaltered by co-administration with mecamylamine. These data show that enhancing VTA cholinergic tone and blocking VTA AChRs has opposing effects in FST. Together, the findings provide evidence for a role of VTA cholinergic mechanisms in behavioral responses in FST.

  3. Bioinspired swimming simulations

    NASA Astrophysics Data System (ADS)

    Bergmann, Michel; Iollo, Angelo

    2016-10-01

    We present a method to simulate the flow past bioinspired swimmers starting from pictures of an actual fish. The overall approach requires i) a skeleton graph generation to get a level-set function from pictures; ii) optimal transportation to obtain the velocity on the body surface; iii) flow simulations realized with a Cartesian method based on penalization. This technique can be used to automate modeling swimming motion from data collected by biologists. We illustrate this paradigm by simulating the swimming of a mackerel fish.

  4. Repeated swim impairs serotonin clearance via a corticosterone-sensitive mechanism: organic cation transporter 3, the smoking gun.

    PubMed

    Baganz, Nicole; Horton, Rebecca; Martin, Kathryn; Holmes, Andrew; Daws, Lynette C

    2010-11-10

    Activation of the hypothalamic-pituitary-adrenal (HPA) axis is associated with increased extracellular serotonin (5-HT) in limbic brain regions. The mechanism through which this occurs remains unclear. One way could be via HPA axis-dependent impairment of serotonin transporter (SERT) function, the high-affinity uptake mechanism for 5-HT. Consistent with this idea, we found that 5-HT clearance rate in hippocampus was dramatically reduced in mice exposed to repeated swim, a stimulus known to activate the HPA axis. However, this phenomenon also occurred in mice lacking SERT, ruling out SERT as a mechanism. The organic cation transporter 3 (OCT3) is emerging as an important regulator of brain 5-HT. Moreover, corticosterone, which is released upon HPA axis activation, blocks 5-HT uptake by OCT3. Repeated swim produced a persistent elevation in plasma corticosterone, and, consistent with prolonged blockade by corticosterone, we found that OCT3 expression and function were reduced in these mice. Importantly, this effect of repeated swim to reduce 5-HT clearance rate was corticosterone dependent, as evidenced by its absence in adrenalectomized mice, in which plasma corticosterone levels were essentially undetectable. Behaviorally, mice subjected to repeated swim spent less time immobile in the tail suspension test than control mice, but responded similarly to SERT- and norepinephrine transporter-selective antidepressants. Together, these results show that reduced 5-HT clearance following HPA axis activation is likely mediated, at least in part, by the corticosterone-sensitive OCT3, and that drugs developed to selectively target OCT3 (unlike corticosterone) may be candidates for the development of novel antidepressant medications.

  5. Fish Oil in Critical Illness: Mechanisms and Clinical Applications

    PubMed Central

    Stapleton, Renee D.; Martin, Julie M.; Mayer, Konstantin

    2015-01-01

    SYNOPSIS Fish oil is rich in omega-3 fatty acids which have been shown to be beneficial in multiple disease states that involve an inflammatory process. It is now hypothesized that omega-3 fatty acids may decrease the inflammatory response and be beneficial in critical illness. After a review of the mechanisms of omega-3 fatty acids in inflammation, research using enteral nutrition formulas and parenteral nutrition lipid emulsions fortified with fish oil are examined. The results of this research to date are inconclusive for both enteral and parenteral omega-3 fatty acid administration. More research is required before definitive recommendations can be made on fish oil supplementation in critical illness. PMID:20643303

  6. Swimming ability and behaviour of post-larvae of a temperate marine fish re-entrained in the pelagic environment.

    PubMed

    Hindell, Jeremy S; Jenkins, Gregory P; Moran, Sean M; Keough, Michael J

    2003-03-01

    The degree to which behaviour, vertical movement and horizontal transport, in relation to local hydrodynamics, may facilitate secondary dispersal in the water column was studied in post-larval Sillaginodes punctata in Port Phillip Bay, Australia. S. punctata were captured in shallow seagrass beds and released at the surface in three depth zones (1.5, 3 and 7 m) off-shore at each of two sites to mimic the re-entrainment of fish. The behaviour, depth and position of S. punctata were recorded through time. The direction and speed of local currents were described using an S4 current meter and the movement of drogues. Regardless of site, fish immediately oriented toward the bottom, and into the current after release. In shallow water (1.5 m), 86% of fish swam to the bottom within 2 min of release. At one site, the net horizontal displacement of fish was largely unrelated to the speed and direction of local currents; at a second site, fish could not maintain their position against the current, and the net horizontal displacement was related to the speed and direction of currents. In the intermediate depth zone, wide variability in depths of individual fish through time led to an average depth reached by fish that was between the shallow and deep zones. Based on daily increments in the otoliths, however, this variability was not related significantly to the time since entry of fish into Port Phillip Bay. In the deepest depth zone, 81% of fish remained within 1 m of the surface and their horizontal displacement was significantly related to the direction and speed of currents. Secondary dispersal of post-larval fish in the water column may be facilitated by the behaviour and vertical movements of fish, but only if fish reach deeper water, where their displacement (direction and distance) closely resembles local hydrodynamic regimes. In shallow water, fish behaviour and vertical migration actually reduce the potential for secondary dispersal.

  7. Novel design solutions for fishing reel mechanisms

    NASA Astrophysics Data System (ADS)

    Lovasz, Erwin-Christian; Modler, Karl-Heinz; Neumann, Rudolf; Gruescu, Corina Mihaela; Perju, Dan; Ciupe, Valentin; Maniu, Inocentiu

    2015-07-01

    Currently, there are various reels on the market regarding the type of mechanism, which achieves the winding and unwinding of the line. The designers have the purpose of obtaining a linear transmission function, by means of a simple and small-sized mechanism. However, the present solutions are not satisfactory because of large deviations from linearity of the transmission function and complexity of mechanical schema. A novel solution for the reel spool mechanism is proposed. Its kinematic schema and synthesis method are described. The kinematic schema of the chosen mechanism is based on a noncircular gear in series with a scotch-yoke mechanism. The yoke is driven by a stud fixed on the driving noncircular gear. The drawbacks of other models regarding the effects occurring at the ends of the spool are eliminated through achieving an appropriate transmission function of the spool. The linear function approximation with curved end-arches appropriately computed to ensure mathematical continuity is very good. The experimental results on the mechanism model validate the theoretical approach. The developed mechanism solution is recorded under a reel spool mechanism patent.

  8. Automatic realistic real time stimulation/recording in weakly electric fish: long time behavior characterization in freely swimming fish and stimuli discrimination.

    PubMed

    Forlim, Caroline G; Pinto, Reynaldo D

    2014-01-01

    Weakly electric fish are unique model systems in neuroethology, that allow experimentalists to non-invasively, access, central nervous system generated spatio-temporal electric patterns of pulses with roles in at least 2 complex and incompletely understood abilities: electrocommunication and electrolocation. Pulse-type electric fish alter their inter pulse intervals (IPIs) according to different behavioral contexts as aggression, hiding and mating. Nevertheless, only a few behavioral studies comparing the influence of different stimuli IPIs in the fish electric response have been conducted. We developed an apparatus that allows real time automatic realistic stimulation and simultaneous recording of electric pulses in freely moving Gymnotus carapo for several days. We detected and recorded pulse timestamps independently of the fish's position for days. A stimulus fish was mimicked by a dipole electrode that reproduced the voltage time series of real conspecific according to previously recorded timestamp sequences. We characterized fish behavior and the eletrocommunication in 2 conditions: stimulated by IPIs pre-recorded from other fish and random IPI ones. All stimuli pulses had the exact Gymontus carapo waveform. All fish presented a surprisingly long transient exploratory behavior (more than 8 h) when exposed to a new environment in the absence of electrical stimuli. Further, we also show that fish are able to discriminate between real and random stimuli distributions by changing several characteristics of their IPI distribution.

  9. PFOS affects posterior swim bladder chamber inflation and swimming performance of zebrafish larvae.

    PubMed

    Hagenaars, A; Stinckens, E; Vergauwen, L; Bervoets, L; Knapen, D

    2014-12-01

    Perfluorooctane sulphonate (PFOS) is one of the most commonly detected perfluorinated alkylated substances in the aquatic environment due to its persistence and the degradation of less stable compounds to PFOS. PFOS is known to cause developmental effects in fish. The main effect of PFOS in zebrafish larvae is an uninflated swim bladder. As no previous studies have focused on the effect of PFOS on zebrafish swim bladder inflation, the exact mechanisms leading to this effect are currently unknown. The objective of this study was to determine the exposure windows during early zebrafish development that are sensitive to PFOS exposure and result in impaired swim bladder inflation in order to specify the mechanisms by which this effect might be caused. Seven different time windows of exposure (1-48, 1-72, 1-120, 1-144, 48-144, 72-144, 120-144h post fertilization (hpf)) were tested based on the different developmental stages of the swim bladder. These seven time windows were tested for four concentrations corresponding to the EC-values of 1, 10, 80 and 95% impaired swim bladder inflation (EC1=0.70 mg L(-1), EC10=1.14 mg L(-1), EC80=3.07 mg L(-1) and EC95=4.28 mg L(-1)). At 6 days post fertilization, effects on survival, hatching, swim bladder inflation and size, larval length and swimming performance were assessed. For 0.70 mg L(-1), no significant effects were found for the tested parameters while 1.14 mg L(-1) resulted in a reduction of larval length. For 3.07 and 4.28 mg L(-1), the number of larvae affected and the severity of effects caused by PFOS were dependent on the time window of exposure. Exposure for 3 days or more resulted in significant reductions of swim bladder size, larval length and swimming speed with increasing severity of effects when the duration of exposure was longer, suggesting a possible effect of accumulated dose. Larvae that were only exposed early (1-48 hpf) or late (120-144 hpf) during development showed no effects on the studied endpoints

  10. Theoretical considerations underlying Na(+) uptake mechanisms in freshwater fishes.

    PubMed

    Parks, Scott K; Tresguerres, Martin; Goss, Greg G

    2008-11-01

    Ion and acid-base regulating mechanisms have been studied at the fish gill for almost a century. Original models proposed for Na(+) and Cl(-) uptake, and their linkage with H(+) and HCO(3)(-) secretion have changed substantially with the development of more sophisticated physiological techniques. At the freshwater fish gill, two dominant mechanisms for Na(+) uptake from dilute environments have persisted in the literature. The use of an apical Na(+)/H(+) exchanger driven by a basolateral Na(+)/K(+)-ATPase versus an apical Na(+) channel electrogenically coupled to an apical H(+)-ATPase have been the source of debate for a number of years. Advances in molecular biology have greatly enhanced our understanding of the basic ion transport mechanisms at the fish gill. However, it is imperative to ensure that thermodynamic principles are followed in the development of new models for gill ion transport. This review will focus on the recent molecular advances for Na(+) uptake in freshwater fish. Emphasis will be placed on thermodynamic constraints that prevent electroneutral apical NHE function in most freshwater environments. By combining recent advances in molecular and functional physiology of fish gills with thermodynamic considerations of ion transport, our knowledge in the field should continue to grow in a logical manner.

  11. Optimality Principles of Undulatory Swimming

    NASA Astrophysics Data System (ADS)

    Nangia, Nishant; Bale, Rahul; Patankar, Neelesh

    2015-11-01

    A number of dimensionless quantities derived from a fish's kinematic and morphological parameters have been used to describe the hydrodynamics of swimming. In particular, body/caudal fin swimmers have been found to swim within a relatively narrow range of these quantities in nature, e.g., Strouhal number or the optimal specific wavelength. It has been hypothesized or shown that these constraints arise due to maximization of swimming speed, efficiency, or cost of transport in certain domains of this large dimensionless parameter space. Using fully resolved simulations of undulatory patterns, we investigate the existence of various optimality principles in fish swimming. Using scaling arguments, we relate various dimensionless parameters to each other. Based on these findings, we make design recommendations on how kinematic parameters for a swimming robot or vehicle should be chosen. This work is supported by NSF Grants CBET-0828749, CMMI-0941674, CBET-1066575 and the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1324585.

  12. Two-Swim Operators in the Modified Bacterial Foraging Algorithm for the Optimal Synthesis of Four-Bar Mechanisms.

    PubMed

    Hernández-Ocaña, Betania; Pozos-Parra, Ma Del Pilar; Mezura-Montes, Efrén; Portilla-Flores, Edgar Alfredo; Vega-Alvarado, Eduardo; Calva-Yáñez, Maria Bárbara

    2016-01-01

    This paper presents two-swim operators to be added to the chemotaxis process of the modified bacterial foraging optimization algorithm to solve three instances of the synthesis of four-bar planar mechanisms. One swim favors exploration while the second one promotes fine movements in the neighborhood of each bacterium. The combined effect of the new operators looks to increase the production of better solutions during the search. As a consequence, the ability of the algorithm to escape from local optimum solutions is enhanced. The algorithm is tested through four experiments and its results are compared against two BFOA-based algorithms and also against a differential evolution algorithm designed for mechanical design problems. The overall results indicate that the proposed algorithm outperforms other BFOA-based approaches and finds highly competitive mechanisms, with a single set of parameter values and with less evaluations in the first synthesis problem, with respect to those mechanisms obtained by the differential evolution algorithm, which needed a parameter fine-tuning process for each optimization problem.

  13. Two-Swim Operators in the Modified Bacterial Foraging Algorithm for the Optimal Synthesis of Four-Bar Mechanisms

    PubMed Central

    Hernández-Ocaña, Betania; Pozos-Parra, Ma. Del Pilar; Mezura-Montes, Efrén; Portilla-Flores, Edgar Alfredo; Vega-Alvarado, Eduardo; Calva-Yáñez, Maria Bárbara

    2016-01-01

    This paper presents two-swim operators to be added to the chemotaxis process of the modified bacterial foraging optimization algorithm to solve three instances of the synthesis of four-bar planar mechanisms. One swim favors exploration while the second one promotes fine movements in the neighborhood of each bacterium. The combined effect of the new operators looks to increase the production of better solutions during the search. As a consequence, the ability of the algorithm to escape from local optimum solutions is enhanced. The algorithm is tested through four experiments and its results are compared against two BFOA-based algorithms and also against a differential evolution algorithm designed for mechanical design problems. The overall results indicate that the proposed algorithm outperforms other BFOA-based approaches and finds highly competitive mechanisms, with a single set of parameter values and with less evaluations in the first synthesis problem, with respect to those mechanisms obtained by the differential evolution algorithm, which needed a parameter fine-tuning process for each optimization problem. PMID:27057156

  14. Female "Big Fish" Swimming against the Tide: The "Big-Fish-Little-Pond Effect" and Gender-Ratio in Special Gifted Classes

    ERIC Educational Resources Information Center

    Preckel, Franzis; Zeidner, Moshe; Goetz, Thomas; Schleyer, Esther Jane

    2008-01-01

    This study takes a second look at the "big-fish-little-pond effect" (BFLPE) on a national sample of 769 gifted Israeli students (32% female) previously investigated by Zeidner and Schleyer (Zeidner, M., & Schleyer, E. J., (1999a). "The big-fish-little-pond effect for academic self-concept, test anxiety, and school grades in…

  15. Automatic Realistic Real Time Stimulation/Recording in Weakly Electric Fish: Long Time Behavior Characterization in Freely Swimming Fish and Stimuli Discrimination

    PubMed Central

    Forlim, Caroline G.; Pinto, Reynaldo D.

    2014-01-01

    Weakly electric fish are unique model systems in neuroethology, that allow experimentalists to non-invasively, access, central nervous system generated spatio-temporal electric patterns of pulses with roles in at least 2 complex and incompletely understood abilities: electrocommunication and electrolocation. Pulse-type electric fish alter their inter pulse intervals (IPIs) according to different behavioral contexts as aggression, hiding and mating. Nevertheless, only a few behavioral studies comparing the influence of different stimuli IPIs in the fish electric response have been conducted. We developed an apparatus that allows real time automatic realistic stimulation and simultaneous recording of electric pulses in freely moving Gymnotus carapo for several days. We detected and recorded pulse timestamps independently of the fish’s position for days. A stimulus fish was mimicked by a dipole electrode that reproduced the voltage time series of real conspecific according to previously recorded timestamp sequences. We characterized fish behavior and the eletrocommunication in 2 conditions: stimulated by IPIs pre-recorded from other fish and random IPI ones. All stimuli pulses had the exact Gymontus carapo waveform. All fish presented a surprisingly long transient exploratory behavior (more than 8 h) when exposed to a new environment in the absence of electrical stimuli. Further, we also show that fish are able to discriminate between real and random stimuli distributions by changing several characteristics of their IPI distribution. PMID:24400122

  16. Female "Big Fish" Swimming against the Tide: The "Big-Fish-Little-Pond Effect" and Gender-Ratio in Special Gifted Classes

    ERIC Educational Resources Information Center

    Preckel, Franzis; Zeidner, Moshe; Goetz, Thomas; Schleyer, Esther Jane

    2008-01-01

    This study takes a second look at the "big-fish-little-pond effect" (BFLPE) on a national sample of 769 gifted Israeli students (32% female) previously investigated by Zeidner and Schleyer (Zeidner, M., & Schleyer, E. J., (1999a). "The big-fish-little-pond effect for academic self-concept, test anxiety, and school grades in…

  17. Coping with the Forced Swim Stressor: Towards Understanding an Adaptive Mechanism

    PubMed Central

    de Kloet, E. R.; Molendijk, M. L.

    2016-01-01

    In the forced swim test (FST) rodents progressively show increased episodes of immobility if immersed in a beaker with water from where escape is not possible. In this test, a compound qualifies as a potential antidepressant if it prevents or delays the transition to this passive (energy conserving) behavioural style. In the past decade however the switch from active to passive “coping” was used increasingly to describe the phenotype of an animal that has been exposed to a stressful history and/or genetic modification. A PubMed analysis revealed that in a rapidly increasing number of papers (currently more than 2,000) stress-related immobility in the FST is labeled as a depression-like phenotype. In this contribution we will examine the different phases of information processing during coping with the forced swim stressor. For this purpose we focus on the action of corticosterone that is mediated by the closely related mineralocorticoid receptors (MR) and glucocorticoid receptors (GR) in the limbic brain. The evidence available suggests a model in which we propose that the limbic MR-mediated response selection operates in complementary fashion with dopaminergic accumbens/prefrontal executive functions to regulate the transition between active and passive coping styles. Upon rescue from the beaker the preferred, mostly passive, coping style is stored in the memory via a GR-dependent action in the hippocampal dentate gyrus. It is concluded that the rodent's behavioural response to a forced swim stressor does not reflect depression. Rather the forced swim experience provides a unique paradigm to investigate the mechanistic underpinning of stress coping and adaptation. PMID:27034848

  18. Coping with the Forced Swim Stressor: Towards Understanding an Adaptive Mechanism.

    PubMed

    de Kloet, E R; Molendijk, M L

    2016-01-01

    In the forced swim test (FST) rodents progressively show increased episodes of immobility if immersed in a beaker with water from where escape is not possible. In this test, a compound qualifies as a potential antidepressant if it prevents or delays the transition to this passive (energy conserving) behavioural style. In the past decade however the switch from active to passive "coping" was used increasingly to describe the phenotype of an animal that has been exposed to a stressful history and/or genetic modification. A PubMed analysis revealed that in a rapidly increasing number of papers (currently more than 2,000) stress-related immobility in the FST is labeled as a depression-like phenotype. In this contribution we will examine the different phases of information processing during coping with the forced swim stressor. For this purpose we focus on the action of corticosterone that is mediated by the closely related mineralocorticoid receptors (MR) and glucocorticoid receptors (GR) in the limbic brain. The evidence available suggests a model in which we propose that the limbic MR-mediated response selection operates in complementary fashion with dopaminergic accumbens/prefrontal executive functions to regulate the transition between active and passive coping styles. Upon rescue from the beaker the preferred, mostly passive, coping style is stored in the memory via a GR-dependent action in the hippocampal dentate gyrus. It is concluded that the rodent's behavioural response to a forced swim stressor does not reflect depression. Rather the forced swim experience provides a unique paradigm to investigate the mechanistic underpinning of stress coping and adaptation.

  19. Mechanical models of sandfish locomotion reveal principles of high performance subsurface sand-swimming

    PubMed Central

    Maladen, Ryan D.; Ding, Yang; Umbanhowar, Paul B.; Kamor, Adam; Goldman, Daniel I.

    2011-01-01

    We integrate biological experiment, empirical theory, numerical simulation and a physical model to reveal principles of undulatory locomotion in granular media. High-speed X-ray imaging of the sandfish lizard, Scincus scincus, in 3 mm glass particles shows that it swims within the medium without using its limbs by propagating a single-period travelling sinusoidal wave down its body, resulting in a wave efficiency, η, the ratio of its average forward speed to the wave speed, of approximately 0.5. A resistive force theory (RFT) that balances granular thrust and drag forces along the body predicts η close to the observed value. We test this prediction against two other more detailed modelling approaches: a numerical model of the sandfish coupled to a discrete particle simulation of the granular medium, and an undulatory robot that swims within granular media. Using these models and analytical solutions of the RFT, we vary the ratio of undulation amplitude to wavelength (A/λ) and demonstrate an optimal condition for sand-swimming, which for a given A results from the competition between η and λ. The RFT, in agreement with the simulated and physical models, predicts that for a single-period sinusoidal wave, maximal speed occurs for A/λ ≈ 0.2, the same kinematics used by the sandfish. PMID:21378020

  20. Mechanical models of sandfish locomotion reveal principles of high performance subsurface sand-swimming.

    PubMed

    Maladen, Ryan D; Ding, Yang; Umbanhowar, Paul B; Kamor, Adam; Goldman, Daniel I

    2011-09-07

    We integrate biological experiment, empirical theory, numerical simulation and a physical model to reveal principles of undulatory locomotion in granular media. High-speed X-ray imaging of the sandfish lizard, Scincus scincus, in 3 mm glass particles shows that it swims within the medium without using its limbs by propagating a single-period travelling sinusoidal wave down its body, resulting in a wave efficiency, η, the ratio of its average forward speed to the wave speed, of approximately 0.5. A resistive force theory (RFT) that balances granular thrust and drag forces along the body predicts η close to the observed value. We test this prediction against two other more detailed modelling approaches: a numerical model of the sandfish coupled to a discrete particle simulation of the granular medium, and an undulatory robot that swims within granular media. Using these models and analytical solutions of the RFT, we vary the ratio of undulation amplitude to wavelength (A/λ) and demonstrate an optimal condition for sand-swimming, which for a given A results from the competition between η and λ. The RFT, in agreement with the simulated and physical models, predicts that for a single-period sinusoidal wave, maximal speed occurs for A/λ ≈ 0.2, the same kinematics used by the sandfish.

  1. An implantable two axis micromanipulator made with a 3D printer for recording neural activity in free-swimming fish.

    PubMed

    Rogers, Loranzie S; Van Wert, Jacey C; Mensinger, Allen F

    2017-08-15

    Chronically implanted electrodes allow monitoring neural activity from free moving animals. While a wide variety of implanted headstages, microdrives and electrodes exist for terrestrial animals, few have been developed for use with aquatic animals. A two axis micromanipulator was fabricated with a Formlabs 3D printer for implanting electrodes into free-swimming oyster toadfish (Opsanus tau). The five piece manipulator consisted of a base, body, electrode holder, manual screw drive and locking nut. The manipulator measured approximately 25×20×30mm (l×w×h) and weighed 5.28g after hand assembly. Microwire electrodes were inserted successfully with the manipulator to record high fidelity signals from the anterior lateral line nerve of the toadfish. The micromanipulator allowed the chronically implanted electrodes to be repositioned numerous times to record from multiple sites and extended successful recording time in the toadfish by several days. Three dimensional printing allowed an inexpensive (<$US 5 material), two axis micromanipulator to be printed relatively rapidly (<2h) to successfully record from multiple sites in the anterior lateral line nerve of free-swimming toadfish. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Automated pulse discrimination of two freely-swimming weakly electric fish and analysis of their electrical behavior during dominance contest.

    PubMed

    Guariento, Rafael T; Mosqueiro, Thiago S; Matias, Paulo; Cesarino, Vinicius B; Almeida, Lirio O B; Slaets, Jan F W; Maia, Leonardo P; Pinto, Reynaldo D

    2017-02-07

    Electric fishes modulate their electric organ discharges with a remarkable variability. Some patterns can be easily identified, such as pulse rate changes, offs and chirps, which are often associated with important behavioral contexts, including aggression, hiding and mating. However, these behaviors are only observed when at least two fish are freely interacting. Although their electrical pulses can be easily recorded by non-invasive techniques, discriminating the emitter of each pulse is challenging when physically similar fish are allowed to freely move and interact. Here we optimized a custom-made software recently designed to identify the emitter of pulses by using automated chirp detection, adaptive threshold for pulse detection and slightly changing how the recorded signals are integrated. With these optimizations, we performed a quantitative analysis of the statistical changes throughout the dominance contest with respect to Inter Pulse Intervals, Chirps and Offs dyads of freely moving Gymnotus carapo. In all dyads, chirps were signatures of subsequent submission, even when they occurred early in the contest. Although offs were observed in both dominant and submissive fish, they were substantially more frequent in submissive individuals, in agreement with the idea from previous studies that offs are electric cues of submission. In general, after the dominance is established the submissive fish significantly changes its average pulse rate, while the pulse rate of the dominant remained unchanged. Additionally, no chirps or offs were observed when two fish were manually kept in direct physical contact, suggesting that these electric behaviors are not automatic responses to physical contact.

  3. Seahorses under a changing ocean: the impact of warming and acidification on the behaviour and physiology of a poor-swimming bony-armoured fish.

    PubMed

    Faleiro, Filipa; Baptista, Miguel; Santos, Catarina; Aurélio, Maria L; Pimentel, Marta; Pegado, Maria Rita; Paula, José Ricardo; Calado, Ricardo; Repolho, Tiago; Rosa, Rui

    2015-01-01

    Seahorses are currently facing great challenges in the wild, including habitat degradation and overexploitation, and how they will endure additional stress from rapid climate change has yet to be determined. Unlike most fishes, the poor swimming skills of seahorses, along with the ecological and biological constraints of their unique lifestyle, place great weight on their physiological ability to cope with climate changes. In the present study, we evaluate the effects of ocean warming (+4°C) and acidification (ΔpH = -0.5 units) on the physiological and behavioural ecology of adult temperate seahorses, Hippocampus guttulatus. Adult seahorses were found to be relatively well prepared to face future changes in ocean temperature, but not the combined effect of warming and acidification. Seahorse metabolism increased normally with warming, and behavioural and feeding responses were not significantly affected. However, during hypercapnia the seahorses exhibited signs of lethargy (i.e. reduced activity levels) combined with a reduction of feeding and ventilation rates. Nonetheless, metabolic rates were not significantly affected. Future ocean changes, particularly ocean acidification, may further threaten seahorse conservation, turning these charismatic fishes into important flagship species for global climate change issues.

  4. Biofluid Mechanics

    NASA Astrophysics Data System (ADS)

    Oertel, Herbert

    In contrast to the topics discussed in previous chapters, biofluid mechanics is concerned with flows that are influenced by flexible biological surfaces. We distinguish between flows past living bodies in air or in water, such as bird flight or the swimming of fish, and internal flows, such as the closed blood circulation of living beings. In the previous millions of years, evolution has developed crawling, running, swimming, gliding, and flying as methods of motion of living beings, depending on their size and weight.

  5. Neuroendocrine mechanisms for immune system regulation during stress in fish.

    PubMed

    Nardocci, Gino; Navarro, Cristina; Cortés, Paula P; Imarai, Mónica; Montoya, Margarita; Valenzuela, Beatriz; Jara, Pablo; Acuña-Castillo, Claudio; Fernández, Ricardo

    2014-10-01

    In the last years, the aquaculture crops have experienced an explosive and intensive growth, because of the high demand for protein. This growth has increased fish susceptibility to diseases and subsequent death. The constant biotic and abiotic changes experienced by fish species in culture are challenges that induce physiological, endocrine and immunological responses. These changes mitigate stress effects at the cellular level to maintain homeostasis. The effects of stress on the immune system have been studied for many years. While acute stress can have beneficial effects, chronic stress inhibits the immune response in mammals and teleost fish. In response to stress, a signaling cascade is triggered by the activation of neural circuits in the central nervous system because the hypothalamus is the central modulator of stress. This leads to the production of catecholamines, corticosteroid-releasing hormone, adrenocorticotropic hormone and glucocorticoids, which are the essential neuroendocrine mediators for this activation. Because stress situations are energetically demanding, the neuroendocrine signals are involved in metabolic support and will suppress the "less important" immune function. Understanding the cellular mechanisms of the neuroendocrine regulation of immunity in fish will allow the development of new pharmaceutical strategies and therapeutics for the prevention and treatment of diseases triggered by stress at all stages of fish cultures for commercial production.

  6. Fish and chips: implementation of a neural network model into computer chips to maximize swimming efficiency in autonomous underwater vehicles.

    PubMed

    Blake, R W; Ng, H; Chan, K H S; Li, J

    2008-09-01

    Recent developments in the design and propulsion of biomimetic autonomous underwater vehicles (AUVs) have focused on boxfish as models (e.g. Deng and Avadhanula 2005 Biomimetic micro underwater vehicle with oscillating fin propulsion: system design and force measurement Proc. 2005 IEEE Int. Conf. Robot. Auto. (Barcelona, Spain) pp 3312-7). Whilst such vehicles have many potential advantages in operating in complex environments (e.g. high manoeuvrability and stability), limited battery life and payload capacity are likely functional disadvantages. Boxfish employ undulatory median and paired fins during routine swimming which are characterized by high hydromechanical Froude efficiencies (approximately 0.9) at low forward speeds. Current boxfish-inspired vehicles are propelled by a low aspect ratio, 'plate-like' caudal fin (ostraciiform tail) which can be shown to operate at a relatively low maximum Froude efficiency (approximately 0.5) and is mainly employed as a rudder for steering and in rapid swimming bouts (e.g. escape responses). Given this and the fact that bioinspired engineering designs are not obligated to wholly duplicate a biological model, computer chips were developed using a multilayer perception neural network model of undulatory fin propulsion in the knifefish Xenomystus nigri that would potentially allow an AUV to achieve high optimum values of propulsive efficiency at any given forward velocity, giving a minimum energy drain on the battery. We envisage that externally monitored information on flow velocity (sensory system) would be conveyed to the chips residing in the vehicle's control unit, which in turn would signal the locomotor unit to adopt kinematics (e.g. fin frequency, amplitude) associated with optimal propulsion efficiency. Power savings could protract vehicle operational life and/or provide more power to other functions (e.g. communications).

  7. Development of a vortex generator to perturb fish locomotion.

    PubMed

    Seth, Deeksha; Flammang, Brooke E; Lauder, George V; Tangorra, James L

    2017-03-15

    Knowledge about the stiffness of fish fins, and whether stiffness is modulated during swimming, is important for understanding the mechanics of a fin's force production. However, the mechanical properties of fins have not been studied during natural swimming, in part because of a lack of instrumentation. To remedy this, a vortex generator was developed that produces traveling vortices of adjustable strength which can be used to perturb the fins of swimming fish. Experiments were conducted to understand how the generator's settings affected the resulting vortex rings. A variety of vortices (14-32 mm diameter traveling at 371-2155 mm s(-1)) were produced that elicited adequate responses from the fish fins to help us to understand the fin's mechanical properties at various swimming speeds (0-350 mm s(-1)).

  8. Self-entrainment to optimal gaits of an underactuated biomimetic swimming robot using adaptive frequency oscillators.

    PubMed

    Alessi, Alessio; Accoto, Dino; Guglielmelli, Eugenio

    2015-08-01

    Underactuated compliant swimming robots are characterized by a simple mechanical structure, capable to mimic the body undulation of many fish species. One of the design issue for these robots is the generation and control of best performing swimming gaits. In this paper we propose a new controller, based on AFO oscillators, to address this issue. After analyzing the effects of the motion on the robot natural frequencies, we show that the closed loop system is able to generate self-sustained oscillations, at a characteristic frequency, while maximizing swimming velocity.

  9. Swimming Stroke Mechanical Efficiency and Physiological Responses of 100-m Backstroke with and without the use of paddles

    PubMed Central

    Messinis, Spilios; Beidaris, Nikos; Messinis, Spyros; Soultanakis, Helen; Botonis, Petros; Platanou, Theodoros

    2014-01-01

    The use of swimming aids during training contributes to greater swimming efficiency by the improvement of the swimming specific power of the athlete. The purpose of this study was to compare the swimming stroke technical characteristics and the physiological responses of swimming 100-m backstroke, with and without the use of paddles at maximum and sub-maximum intensities at the same swimming speed. Eight swimmers competing at the national level participated in this study. The measurements took place at 4 different sessions. At every session, each participant swam individually one 100-m backstroke swimming trial with or without paddles at the same speed and two levels of intensity (100% and 85% of maximum speed). The results revealed lower stroke length, greater stroke number and gliding length without the use of swimming paddles at both intensities. Blood lactate concentration (10.03±2.96 vs. 5.85±2.23 mmol/l) and Rating of Perceived Exertion (17.43±2.07 vs. 12±2.82) were greater without the use of swimming paddles only at 100% of maximum speed. Thus, swimming backstroke with paddles compared to unaided swimming, at a similar speed, showed a greater efficiency at maximal but not at sub-maximal intensity. PMID:25031685

  10. Design of the mechanical properties of the gel by the 3D gel printer "SWIM-ER"

    NASA Astrophysics Data System (ADS)

    Saito, Azusa; Ota, Takafumi; Tase, Taishi; Takamatsu, Kyuichiro; Kawakami, Masaru; Furukawa, Hidemitsu

    2017-04-01

    In this study, we evaluated the mechanical properties of printed structures with respect to the printing orientation for "SWIM-ER". The fracture surface of the 3D modeled object of the gel does not break along the stacked line, and the maximum stress at that time is the breaking strength. Moreover, the dependency in the stacking direction is weak in the 3D model of the gel. The gel printed at high speed scan showed lower elastic modulus and higher moisture content than gel printed at low speed scan. We discussed about crosslinking density calculated based on the compressive elastic modulus and moisture content, respectively. It was found that gels having different crosslinking density can be formed by the scanning speed of UV laser. In addition, we made a prototype of a gel finger model with different mechanical properties within the model.

  11. Luxatio erecta humeri: Report of a swimming injury with analysis of the mechanism of the injury and associated injuries in literature

    PubMed Central

    Gökkuş, Kemal; Sagtas, Ergin; Saylik, Murat; Aydın, Ahmet Turan; Atmaca, Halil

    2015-01-01

    Inferior shoulder dislocation also referred to as luxatio erecta is an unusual and rare type of shoulder dislocation. Its incidence is about 0.5% among all shoulder dislocations. After an exhaustive search of all the available literature we were unable to find a swimming accident case that did not have other associated injuries and an uneventful reduction. The mechanism of the injury was mostly related to direct axial loading and indirect hyperabduction lever arm. We would like to emphasize the importance of this being a swimming accident, a type of accident that requires awareness of the possibility of dangerous asphyxia injuries caused by panic in the water (swimming pool, river, lake, sea, etc.). We described the nature of the injury and review the literature concerning the mechanism of the injury and associated neurovascular impairment at admission time. We also presented a supplemental video to contribute to the education of young residents and orthopedic surgeons. PMID:25709253

  12. Role of Flexibility in Thrust Production of a Mechanical Swimming Lamprey

    NASA Astrophysics Data System (ADS)

    Leftwich, Megan; Smits, Alexander

    2009-11-01

    To develop a comprehensive model of lamprey locomotion, we use a robotic lamprey as a means of investigating the wake structure during swimming with an anatomically designed tail of varying degrees of flexibility. A programmable microcomputer actuates 11 servomotors that produce a traveling wave along the length of the lamprey body. The waveform is based on kinematic studies of living lamprey. The shape of the tail is taken from CT scan data of the silver lamprey, and it is constructed of flexible PVC gel. Plastic inserts allow the the degree of flexibility to be changed. PIV measurements in the wake behind the most flexible tail show a 2P wake structure that quickly looses coherence as it is convected downstream. This is in contrast to the strongly coherent and symmetrical 2P wake seen in previous experiments using a rigid, rectangular tail. The project is supported by NIH CNRS Grant 1R01NS054271.

  13. Bacteria swimming in circles

    NASA Astrophysics Data System (ADS)

    Lauga, Eric; Diluzio, Willow; Garstecki, Piotr; Whitesides, George; Stone, Howard

    2004-11-01

    The bacteria E.coli, which lives in our stomach, swims in a viscous fluid by rotating its flagella together in a helical bundle. The rotation is due to the action of rotary motors embedded in the cell wall. Motivated by experimental observations (Frymier et al., 1995, PNAS vol. 92), as well as our own extensive experiments, that bacteria near solid surfaces do not swim in a straight line but swim in circles, we present a mechanical model for a swimming microorganism near a solid boundary. We show that the combination of a rotating helical bundle and a solid boundary leads to a circular motion to the right of the bacterium (as viewed from above), in accordance with experimental observations. Values of the radii of the circle and the rotation rate are predicted and compared with experimental data.

  14. Unsteady bio-fluid dynamics in flying and swimming

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Kolomenskiy, Dmitry; Nakata, Toshiyuki; Li, Gen

    2017-08-01

    Flying and swimming in nature present sophisticated and exciting ventures in biomimetics, which seeks sustainable solutions and solves practical problems by emulating nature's time-tested patterns, functions, and strategies. Bio-fluids in insect and bird flight, as well as in fish swimming are highly dynamic and unsteady; however, they have been studied mostly with a focus on the phenomena associated with a body or wings moving in a steady flow. Characterized by unsteady wing flapping and body undulation, fluid-structure interactions, flexible wings and bodies, turbulent environments, and complex maneuver, bio-fluid dynamics normally have challenges associated with low Reynolds number regime and high unsteadiness in modeling and analysis of flow physics. In this article, we review and highlight recent advances in unsteady bio-fluid dynamics in terms of leading-edge vortices, passive mechanisms in flexible wings and hinges, flapping flight in unsteady environments, and micro-structured aerodynamics in flapping flight, as well as undulatory swimming, flapping-fin hydrodynamics, body-fin interaction, C-start and maneuvering, swimming in turbulence, collective swimming, and micro-structured hydrodynamics in swimming. We further give a perspective outlook on future challenges and tasks of several key issues of the field.

  15. Unsteady bio-fluid dynamics in flying and swimming

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Kolomenskiy, Dmitry; Nakata, Toshiyuki; Li, Gen

    2017-06-01

    Flying and swimming in nature present sophisticated and exciting ventures in biomimetics, which seeks sustainable solutions and solves practical problems by emulating nature's time-tested patterns, functions, and strategies. Bio-fluids in insect and bird flight, as well as in fish swimming are highly dynamic and unsteady; however, they have been studied mostly with a focus on the phenomena associated with a body or wings moving in a steady flow. Characterized by unsteady wing flapping and body undulation, fluid-structure interactions, flexible wings and bodies, turbulent environments, and complex maneuver, bio-fluid dynamics normally have challenges associated with low Reynolds number regime and high unsteadiness in modeling and analysis of flow physics. In this article, we review and highlight recent advances in unsteady bio-fluid dynamics in terms of leading-edge vortices, passive mechanisms in flexible wings and hinges, flapping flight in unsteady environments, and micro-structured aerodynamics in flapping flight, as well as undulatory swimming, flapping-fin hydrodynamics, body-fin interaction, C-start and maneuvering, swimming in turbulence, collective swimming, and micro-structured hydrodynamics in swimming. We further give a perspective outlook on future challenges and tasks of several key issues of the field.

  16. Bobcat Walking and Swimming

    NASA Image and Video Library

    2014-03-06

    CAPE CANAVERAL, Fla. – A bobcat leaves a trail as it swims across an algae-covered canal near the NASA News Center at Kennedy Space Center in Florida. The center shares a boundary with the Merritt Island National Wildlife Refuge. The refuge encompasses 140,000 acres that are a habitat for more than 330 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles. Photo credit: NASA/Daniel Casper

  17. Cruise and turning performance of an improved fish robot actuated by piezoceramic actuators

    NASA Astrophysics Data System (ADS)

    Nguyen, Quang Sang; Heo, Seok; Park, Hoon Cheol; Goo, Nam Seo; Byun, Doyoung

    2009-03-01

    The purpose of this study is improvement of a fish robot actuated by four light-weight piezocomposite actuators (LIPCAs). In the fish robot, we developed a new actuation mechanism working without any gear and thus the actuation mechanism was simple in fabrication. By using the new actuation mechanism, cross section of the fish robot became 30% smaller than that of the previous model. Performance tests of the fish robot in water were carried out to measure tail-beat angle, thrust force, swimming speed and turning radius for tail-beat frequencies from 1Hz to 5Hz. The maximum swimming speed of the fish robot was 7.7 cm/s at 3.9Hz tail-beat frequency. Turning experiment showed that swimming direction of the fish robot could be controlled with 0.41 m turning radius by controlling tail-beat angle.

  18. [Progress on the degeneration mechanism of cave fishes' eyes].

    PubMed

    Gu, Xian; Ning, Tiao; Xiao, Heng

    2012-08-01

    Attempts to understand the degeneration of the eyes in cave fish has largely been explained by either various extents of gradual degeneration, ranging from partial to total loss, observed in various species or by acceleration of loss caused by dark environments. However, neither the theory of biological evolution developed by Charles Darwin nor the neutral theory of molecular evolution formulated by Kimura Motoo adequately explains these phenomena. Recent trends in utilizing multidisciplinary research, however, have yielded better results, helping reveal a more complex picture of the mechanisms of degeneration. Here, we summarize the current progress of the research via morphology and anatomy, development biology, animal behavior science and molecular genetics, and offer some perspectives on the ongoing research into the development and degeneration of eyes in cave fish.

  19. Mechanisms and regulation of Na(+) uptake by freshwater fish.

    PubMed

    Kumai, Yusuke; Perry, Steve F

    2012-12-01

    Mechanisms of ion uptake by freshwater (FW) fish have received considerable attention over the past 80 years. Through an assortment of techniques incorporating whole animal physiology, electrophysiology and molecular biological approaches, three models have been proposed to account for Na(+) uptake. (1) Direct exchange of Na(+) and H(+) via one or more types of Na(+)/H(+) exchanger (slc9), (2) uptake of Na(+) through epithelial Na(+) channels energized by an electrical gradient created by H(+)-ATPase and (3) Na(+)/Cl(-) co-transport (slc12). While each mechanism is supported at least in part by theoretical or experimental data, there are several outstanding questions that have not yet been fully resolved. Furthermore, there are few details concerning how these Na(+) uptake mechanisms are fine tuned in response to the fluctuating FW environments. In this review, we summarize the current understanding of these three Na(+) uptake mechanisms and discuss their regulation by endocrine (cortisol and prolactin) and neurohumoral (catecholamines) factors.

  20. Similarities and Differences for Swimming in Larval and Adult Lampreys.

    PubMed

    McClellan, Andrew D; Pale, Timothée; Messina, J Alex; Buso, Scott; Shebib, Ahmad

    2016-01-01

    The spinal locomotor networks controlling swimming behavior in larval and adult lampreys may have some important differences. As an initial step in comparing the locomotor systems in lampreys, in larval animals the relative timing of locomotor movements and muscle burst activity were determined and compared to those previously published for adults. In addition, the kinematics for free swimming in larval and adult lampreys was compared in detail for the first time. First, for swimming in larval animals, the neuromechanical phase lag between the onsets or terminations of muscle burst activity and maximum concave curvature of the body increased with increasing distance along the body, similar to that previously shown in adults. Second, in larval lampreys, but not adults, absolute swimming speed (U; mm s(-1)) increased with animal length (L). In contrast, normalized swimming speed (U'; body lengths [bl] s(-1)) did not increase with L in larval or adult animals. In both larval and adult lampreys, U' and normalized wave speed (V') increased with increasing tail-beat frequency. Wavelength and mechanical phase lag did not vary significantly with tail-beat frequency but were significantly different in larval and adult animals. Swimming in larval animals was characterized by a smaller U/V ratio, Froude efficiency, and Strouhal number than in adults, suggesting less efficient swimming for larval animals. In addition, during swimming in larval lampreys, normalized lateral head movements were larger and normalized lateral tail movements were smaller than for adults. Finally, larval animals had proportionally smaller lateral surface areas of the caudal body and fin areas than adults. These differences are well suited for larval sea lampreys that spend most of the time buried in mud/sand, in which swimming efficiency is not critical, compared to adults that would experience significant selection pressure to evolve higher-efficiency swimming to catch up to and attach to fish for

  1. A mechanical analysis of myomere shape in fish.

    PubMed

    Van Leeuwen, J L

    1999-12-01

    An architectural analysis is offered of the trunk muscles in fish, which are arranged in a longitudinal series of geometrically complex myomeres. The myomeres are separated by myosepta, collagenous sheets with complex fibre patterns. The muscle fibres in the myomeres are also arranged in complex three-dimensional patterns. Previously, it has been proposed that the muscle fibre arrangement allows for a uniform strain distribution within the muscle. Physical constraints limit the range of shapes that fibre-reinforced materials such as muscles can adopt, irrespective of their genetic profile. The three-dimensional shapes of myosepta are predicted by mechanical modelling from the requirements for mechanical stability and prescribed muscle fibre arrangements. The model can also be used to study the force transmission and likely locations of ligaments and bones in the myosepta. The model shows that the dorsal and ventral fins are located such that unfavourable mechanical interactions with the trunk muscles are avoided. In bony fish, extensive muscular deformations (notably in the region of the horizontal septum) that would not contribute to bending are avoided by the mechanical support of the skin, intramuscular bones and ribs. In sharks, the skin plays a more prominent role in avoiding such deformations because of the absence of bony elements.

  2. Traits of acoustic signalization and generation of sounds by some schooling physostomous fish

    NASA Astrophysics Data System (ADS)

    Kuznetsov, M. Yu.

    2009-11-01

    The results of experimental investigations of acoustic activity of schooling physostomous fish are discussed, made with reference to chum salmon, pink salmon, Pacific herring, and sardine. Dynamic spectra of most investigated fish are concentrated within two subranges of frequency, according to each investigated fish species. Direct participation of the swimming bladder in sound formation in the investigated fish is shown. Morphological traits of sound-producing organs of salmons and herrings are considered. Mechanisms of generation of signals in physotmous fish involving the muscular sphincter and swimming bladder are analyzed.

  3. Fish gotta swim, Birds gotta fly, I gotta do Feynmann Graphs 'til I die: A continuum Theory of Flocking

    NASA Astrophysics Data System (ADS)

    Toner, John; Tu, Yu-Hai

    2002-05-01

    We have developed a new continuum dynamical model for the collective motion of large "flocks" of biological organisms (e.g., flocks of birds, schools of fish, herds of wildebeest, hordes of bacteria, slime molds, etc.) . This model does for flocks what the Navier-Stokes equation does for fluids. The model predicts that, unlike simple fluids, flocks show huge fluctuation effects in spatial dimensions d < 4 that radically change their behavior. In d=2, it is only these effects that make it possible for the flock to move coherently at all. This explains why a million wildebeest can march together across the Serengeti plain, despite the fact that a million physicists gathered on the same plane could NOT all POINT in the same direction. Detailed quantitative predictions of this theory agree beautifully with computer simulations of flock motion.

  4. Flexibility and Resonance in Thrust Production of a Mechanical Swimming Lamprey

    NASA Astrophysics Data System (ADS)

    Leftwich, Megan; Smits, Alexander

    2010-11-01

    We use a robotic lamprey as a means of investigating the influence of flexibility on the wake structure and thrust production during anguilliform swimming. A programmable microcomputer actuates 11 servomotors that produce a traveling wave along the length of the lamprey body. The waveform is based on kinematic studies of living lamprey. The shape of the tail is taken from CT scan data of the silver lamprey, and it is constructed of flexible PVC gel. Plastic inserts allow the the degree of flexibility to be changed. PIV measurements in the wake of the robot with three different flexible tails show that a 2P structure dominates the flexible wake. However, the large structure is composed of several small vortices (as opposed to the large coherent vortex seen behind a stiff tailed robot). Furthermore, the wake loses coherence as flexibility is increased. Additionally, momentum balance calculations indicate that increasing the tail flexibility yields less thrust. Finally, we find that changing the cycle frequency to match the resonance frequency of the tail increases the thrust production. The project is supported by NIH CNRS Grant 1R01NS054271.

  5. Factors affecting swimming performance of fasted rainbow trout with implications of exhaustive exercise on overwinter mortality

    USGS Publications Warehouse

    Simpkins, D.G.; Hubert, W.A.; Del Rio, C.M.; Rule, D.C.

    2004-01-01

    We evaluated the effects of body size, water temperature, and sustained swimming activity on swimming performance and the effects of exhaustive exercise on mortality of fasted juvenile rainbow trout. Fasting caused swimming performance to decline more rapidly for small fish than large fish, and warmer water temperatures and sustained swimming activity further decreased swimming performance. Exhaustive exercise increased mortality among fasted fish. Our observations suggest that juvenile rainbow trout with little or no food intake during winter can swim for long periods of time with little effect on mortality, but swimming to exhaustion can enhance mortality, especially among the smallest juveniles.

  6. Seasonal changes in the assembly mechanisms structuring tropical fish communities.

    PubMed

    Fitzgerald, Daniel B; Winemiller, Kirk O; Sabaj Pérez, Mark H; Sousa, Leandro M

    2017-01-01

    Despite growing interest in trait-based approaches to community assembly, little attention has been given to seasonal variation in trait distribution patterns. Mobile animals can rapidly mediate influences of environmental factors and species interactions through dispersal, suggesting that the relative importance of different assembly mechanisms can vary over short time scales. This study analyzes seasonal changes in functional trait distributions of tropical fishes in the Xingu River, a major tributary of the Amazon with large predictable temporal variation in hydrologic conditions and species density. Comparison of observed functional diversity revealed that species within wet-season assemblages were more functionally similar than those in dry-season assemblages. Further, species within wet-season assemblages were more similar than random expectations based on null model predictions. Higher functional richness within dry season communities is consistent with increased niche complementarity during the period when fish densities are highest and biotic interactions should be stronger; however, null model tests suggest that stochastic factors or a combination of assembly mechanisms influence dry-season assemblages. These results demonstrate that the relative influence of community assembly mechanisms can vary seasonally in response to changing abiotic conditions, and suggest that studies attempting to infer a single dominant mechanism from functional patterns may overlook important aspects of the assembly process. During the prolonged flood pulse of the wet season, expanded habitat and lower densities of aquatic organisms likely reduce the influence of competition and predation. This temporal shift in the influence of different assembly mechanisms, rather than any single mechanism, may play a large role in maintaining the structure and diversity of tropical rivers and perhaps other dynamic and biodiverse systems.

  7. Sink or swim? Bone density as a mechanism for buoyancy control in early cetaceans.

    PubMed

    Gray, Noel-Marie; Kainec, Kimberly; Madar, Sandra; Tomko, Lucas; Wolfe, Scott

    2007-06-01

    Previous analyses have shown that secondarily aquatic tetrapods, including whales, exhibit osteological adaptations to life in water as part of their complex buoyancy control systems. These structural specializations of bone span hyperostosis through osteoporosis. The past 15 years of paleontological effort has provided an unprecedented opportunity to examine the osteological transformation of whales as they make their transition to an obligate aquatic lifestyle over a 10-million-year period. It is hypothesized that whales manifest their osteological specialization in the same manner as extant semiaquatic and fully aquatic mammals. This study presents and analysis of the microstructural features of bone in early and late archaic cetaceans, and in a comparative sample of modern terrestrial, semiaquatic, and aquatic mammals. Bone histology was examined from the ribs of 10 fossilized individuals representing five early cetacean families, including Pakicetidae, Ambulocetidae, Protocetidae, Remintonocetidae, and Basilosauridae. Comparisons were then made with rib histology from nine genera of extant mammals including: Odocoileus (deer), Bos (cow), Equus (horse), Canis (dog), Lutra (river otter), Enhydra (sea otter), Choeropsis (pygmy hippo), Trichechus (sea cow), and Delphinus (dolphin). Results show that the transition from terrestrial, to semiaquatic, to obligate aquatic locomotion in archaeocetes involved a radical shift in bone function achieved by means of profound changes at the microstructural level. A surprising finding was that microstructural change predates gross anatomical shift in archaeocetes associated with swimming. Histological analysis shows that high bone density is an aquatic specialization that provides static buoyancy control (ballast) for animals living in shallow water, while low bone density is associated with dynamic buoyancy control for animals living in deep water. Thus, there was a shift from the typical terrestrial form, to osteopetrosis

  8. Performance evaluation of an improved fish robot actuated by piezoceramic actuators

    NASA Astrophysics Data System (ADS)

    Nguyen, Q. S.; Heo, S.; Park, H. C.; Byun, D.

    2010-03-01

    This paper presents an improved fish robot actuated by four lightweight piezocomposite actuators. Our newly developed actuation mechanism is simple to fabricate because it works without gears. With the new actuation mechanism, the fish robot has a 30% smaller cross section than our previous model. Performance tests of the fish robot in water were carried out to measure the tail-beat angle, the thrust force, the swimming speed for various tail-beat frequencies from 1 to 5 Hz and the turning radius at the optimal frequency. The maximum swimming speed of the fish robot is 7.7 cm s - 1 at a tail-beat frequency of 3.9 Hz. A turning experiment shows that the swimming direction of the fish robot can be controlled by changing the duty ratio of the driving voltage; the fish robot has a turning radius of 0.41 m for a left turn and 0.68 m for a right turn.

  9. The toxic effects of chlorophenols and associated mechanisms in fish.

    PubMed

    Ge, Tingting; Han, Jiangyuan; Qi, Yongmei; Gu, Xueyan; Ma, Lin; Zhang, Chen; Naeem, Sajid; Huang, Dejun

    2017-03-01

    Chlorophenols (CPs) are ubiquitous contaminants in the environment primarily released from agricultural and industrial wastewater. These compounds are not readily degraded naturally, and easily accumulate in organs, tissues and cells via food chains, further leading to acute and chronic toxic effects on aquatic organisms. Herein, we review the available literature regarding CP toxicity in fish, with special emphasis on the potential toxic mechanisms. CPs cause oxidative stress via generation of reactive oxygen species, induction of lipid peroxidation and/or oxidative DNA damage along with inhibition of antioxidant systems. CPs affect immune system by altering the number of mature B cells and macrophages, while suppressing phagocytosis and down-regulating the expression of immune factors. CPs also disrupt endocrine function by affecting hormone levels, or inducing abnormal gene expression and interference with hormone receptors. CPs at relatively higher concentrations induce apoptosis via mitochondria-mediated pathway, cell death receptor-mediated pathway, and/or DNA damage-mediated pathway. CPs at relatively lower concentrations promote cell proliferation, and foster cancers-prone environment by increasing the rate of point mutations and oxidative DNA lesions. These toxic effects in fish are induced directly by CPs per se or indirectly by their metabolic products. In addition, recent studies on the alteration of DNA methylation by CPs through high-throughput DNA sequencing analysis provide new insights into our understanding of the epigenetic mechanisms underlying CPs toxicity.

  10. NMDA/glutamate mechanism of antidepressant-like action of magnesium in forced swim test in mice.

    PubMed

    Poleszak, Ewa; Wlaź, Piotr; Kedzierska, Ewa; Nieoczym, Dorota; Wróbel, Andrzej; Fidecka, Sylwia; Pilc, Andrzej; Nowak, Gabriel

    2007-12-01

    Antidepressant-like activity of magnesium in forced swim test (FST) was demonstrated previously. Also, enhancement of such activity by joint administration of magnesium and antidepressants was shown. However, the mechanism(s) involved in such activity remain to be established. In the present study we examined the involvement of NMDA/glutamate pathway in the magnesium activity in FST in mice. In the present study we investigated the effect of NMDA agonists on magnesium-induced activity in FST and the influence of NMDA antagonists with sub-effective doses of magnesium in this test. Magnesium-induced antidepressant-like activity was antagonized by N-methyl-d-aspartic acid (NMDA). Moreover, low, ineffective doses of NMDA antagonists (CGP 37849, L-701,324, d-cycloserine, and MK-801) administered together with low and ineffective doses of magnesium exhibit significant reduction of immobility time in FST. The active in FST doses of examined agents did not alter the locomotor activity (with an exception of increased activity induced by MK-801). The present study indicates the involvement of NMDA/glutamate pathway in the antidepressant-like activity of magnesium in mouse FST and further suggests antidepressant properties of magnesium.

  11. Swim pressure of active matter

    NASA Astrophysics Data System (ADS)

    Takatori, Sho; Yan, Wen; Brady, John; Caltech Team

    2014-11-01

    Through their self-motion, all active matter systems generate a unique ``swim pressure'' that is entirely athermal in origin. This new source for the active stress exists at all scales in both living and nonliving active systems, and also applies to larger organisms where inertia is important (i.e., the Stokes number is not small). Here we explain the origin of the swim stress and develop a simple thermodynamic model to study the self-assembly and phase separation in active soft matter. Our new swim stress perspective can help analyze and exploit a wide class of active soft matter, from swimming bacteria and catalytic nanobots, schools of fish and birds, and molecular motors that activate the cellular cytoskeleton.

  12. The Swim Pressure of Active Matter

    NASA Astrophysics Data System (ADS)

    Brady, John; Takatori, Sho; Yan, Wen

    2015-03-01

    Through their self-motion, active matter systems generate a unique ``swim pressure'' that is entirely athermal in origin. This new source for the active stress exists at all scales in both living and nonliving active systems, and also applies to larger organisms where inertia is important. Here we explain the origin of the swim stress and develop a simple thermodynamic model to study the self-assembly and phase separation in active soft matter. Our new swim stress perspective may help analyze and exploit a wide class of active soft matter, from swimming bacteria and catalytic nanobots, schools of fish and birds, and molecular motors that activate the cellular cytoskeleton.

  13. Elastic swimming II: Experiments

    NASA Astrophysics Data System (ADS)

    Yu, Tony; Lauga, Eric; Hosoi, Anette

    2006-03-01

    We consider the problem of swimming at low Reynolds number by oscillating an elastic filament in a viscous liquid, as investigated by Wiggins and Goldstein (1998, Phys Rev Lett). In this second part of the study, we present results of a series of experiments characterizing the performance of the propulsive mechanism.

  14. Swimming Emergencies

    PubMed Central

    Beerman, Stephen B.

    1988-01-01

    Persons who have undergone swimming emergencies are seen in emergency departments everywhere. They are frequently young healthy citizens. In some instances they will receive better care in large specialized referral hospitals. Other problems can be managed well at local facilities. This article attempts to equip all family physicians with some knowledge and management guidelines for dealing with swimming emergencies, submersion injuries including near-drowning, accidental hypothermia, and triathalon hypothermia. The unique problems of hot tub near-drowning, infant water intoxication, and spinal injuries caused by diving are presented. PMID:21253260

  15. Computational hydrodynamics of animal swimming: boundary element method and three-dimensional vortex wake structure.

    PubMed

    Cheng, J Y; Chahine, G L

    2001-12-01

    The slender body theory, lifting surface theories, and more recently panel methods and Navier-Stokes solvers have been used to study the hydrodynamics of fish swimming. This paper presents progress on swimming hydrodynamics using a boundary integral equation method (or boundary element method) based on potential flow model. The unsteady three-dimensional BEM code 3DynaFS that we developed and used is able to model realistic body geometries, arbitrary movements, and resulting wake evolution. Pressure distribution over the body surface, vorticity in the wake, and the velocity field around the body can be computed. The structure and dynamic behavior of the vortex wakes generated by the swimming body are responsible for the underlying fluid dynamic mechanisms to realize the high-efficiency propulsion and high-agility maneuvering. Three-dimensional vortex wake structures are not well known, although two-dimensional structures termed 'reverse Karman Vortex Street' have been observed and studied. In this paper, simulations about a swimming saithe (Pollachius virens) using our BEM code have demonstrated that undulatory swimming reduces three-dimensional effects due to substantially weakened tail tip vortex, resulting in a reverse Karman Vortex Street as the major flow pattern in the three-dimensional wake of an undulating swimming fish.

  16. Glutathione transferase theta in apical ciliary tuft regulates mechanical reception and swimming behavior of Sea Urchin Embryos

    PubMed Central

    Jin, Yinhua; Yaguchi, Shunsuke; Shiba, Kogiku; Yamada, Lixy; Yaguchi, Junko; Shibata, Daisuke; Sawada, Hitoshi; Inaba, Kazuo

    2013-01-01

    An apical tuft, which is observed in a wide range of embryos/larvae of marine invertebrates, is composed of a group of cilia that are longer and less motile than the abundant lateral cilia covering the rest of the embryonic surface. Although the apical tuft has been thought to function as a sensory organ, its molecular composition and roles are poorly understood. Here, we identified a glutathione transferase theta (GSTT) as an abundant and specific component of the apical tuft in sea urchin embryos. The expression of GSTT mRNA increases and becomes limited to the animal plate of the mesenchyme blastula, gastrula, and prism larva. Electron microscopy and tandem mass spectrometry demonstrated that the apical tuft contains almost every axonemal component for ciliary motility. Low concentrations of an inhibitor of glutathione transferase bromosulphophthalein (BSP) induce bending of apical tuft, suggesting that GSTT regulates motility of apical tuft cilia. Embryos treated with BSP swim with normal velocity and trajectories but show less efficiency of changing direction when they collide with an object. These results suggest that GSTT in the apical tuft plays an important role in the mechanical reception for the motility regulation of lateral motile cilia in sea urchin embryos. PMID:23907936

  17. Quercetin Inhibits Peripheral and Spinal Cord Nociceptive Mechanisms to Reduce Intense Acute Swimming-Induced Muscle Pain in Mice

    PubMed Central

    Borghi, Sergio M.; Pinho-Ribeiro, Felipe A.; Fattori, Victor; Bussmann, Allan J. C.; Vignoli, Josiane A.; Camilios-Neto, Doumit; Casagrande, Rubia; Verri, Waldiceu A.

    2016-01-01

    The present study aimed to evaluate the effects of the flavonoid quercetin (3,3´,4´,5,7-pentahydroxyflavone) in a mice model of intense acute swimming-induced muscle pain, which resembles delayed onset muscle soreness. Quercetin intraperitoneal (i.p.) treatment dose-dependently reduced muscle mechanical hyperalgesia. Quercetin inhibited myeloperoxidase (MPO) and N-acetyl-β-D- glucosaminidase (NAG) activities, cytokine production, oxidative stress, cyclooxygenase-2 (COX-2) and gp91phox mRNA expression and muscle injury (creatinine kinase [CK] blood levels and myoblast determination protein [MyoD] mRNA expression) as well as inhibited NFκB activation and induced Nrf2 and HO-1 mRNA expression in the soleus muscle. Beyond inhibiting those peripheral effects, quercetin also inhibited spinal cord cytokine production, oxidative stress and glial cells activation (glial fibrillary acidic protein [GFAP] and ionized calcium-binding adapter molecule 1 [Iba-1] mRNA expression). Concluding, the present data demonstrate that quercetin is a potential molecule for the treatment of muscle pain conditions related to unaccustomed exercise. PMID:27583449

  18. The effects of acute temperature change on swimming performance in bluegill sunfish Lepomis macrochirus.

    PubMed

    Jones, Emily A; Jong, Arianne S; Ellerby, David J

    2008-05-01

    Many fish change gait within their aerobically supported range of swimming speeds. The effects of acute temperature change on this type of locomotor behavior are poorly understood. Bluegill sunfish swim in the labriform mode at low speeds and switch to undulatory swimming as their swimming speed increases. Maximum aerobic swimming speed (U(max)), labriform-undulatory gait transition speed (U(trans)) and the relationships between fin beat frequency and speed were measured at 14, 18, 22, 26 and 30 degrees C in bluegill acclimated to 22 degrees C. At temperatures below the acclimation temperature (T(a)), U(max), U(trans) and the caudal and pectoral fin beat frequencies at these speeds were reduced relative to the acclimation level. At temperatures above T(a) there was no change in these variables relative to the acclimation level. Supplementation of oxygen levels at 30 degrees C had no effect on swimming performance. The mechanical power output of the abductor superficialis, a pectoral fin abductor muscle, was measured in vitro at the same temperatures used for the swimming experiments. At and below T(a), maximal power output was produced at a cycle frequency approximately matching the in vivo pectoral fin beat frequency. At temperatures above T(a) muscle power output and cycle frequency could be increased above the in vivo levels at U(trans). Our data suggest that the factors triggering the labriform-undulatory gait transition change with temperature. Muscle mechanical performance limited labriform swimming speed at T(a) and below, but other mechanical or energetic factors limited labriform swimming speed at temperatures above T(a).

  19. An integrated muscle mechanic-fluid dynamic model of lamprey swimming

    NASA Astrophysics Data System (ADS)

    Hsu, Chia-Yu; Tytell, Eric; Fauci, Lisa

    2009-11-01

    In an effort towards a detailed understanding of the generation and control of vertebrate locomotion, including the role of the CPG and its interactions with reflexive feedback, muscle mechanics, and external fluid dynamics, we study a simple vertebrate, the lamprey. Lamprey body undulations are a result of a wave of neural activation that passes from head to tail, causing a wave of muscle activation. These active forces are mediated by passive structural forces. We present recent results from a model that fully couples a viscous, incompressible fluid with nonlinear muscle mechanics. We measure the dependence of the phase lag between activation wave and mechanical wave as a function of model parameters, such as body stiffness and muscle strength. Simulation results are compared to experiments utilizing both real and synthetic lamprey.

  20. Swimming Performance of Adult Asian Carp: Field Assessment Using a Mobile Swim Tunnel

    DTIC Science & Technology

    2016-08-01

    chute with the river (Varble et al. 2007). The Silver Carp contained in the chute were abundant, large, and sexually mature. Methods. The swim...robustness were < 12% (Table 4). Swimming performance is influenced by a complex suite of factors. These may be intrinsic, such as fish size, reproductive ...impacts on swimming performance were obvious. Gender and reproductive condition were not assessed, but size was relatively uniform. Future studies should

  1. Vortex re-capturing and kinematics in human underwater undulatory swimming.

    PubMed

    Hochstein, Stefan; Blickhan, Reinhard

    2011-10-01

    To maximize swimming speed athletes copy fish undulatory swimming during the underwater period after start and turn. The anatomical limitations may lead to deviations and may enforce compensating strategies. This has been investigated by analyzing the kinematics of two national female swimmers while swimming in a still water pool. Additionally, the flow around and behind the swimmers was measured with the aid of time-resolved particle image velocimetry (TR-2D-PIV). As compared to fish, the swimmers used undulatory waves characterized by much higher Strouhal numbers but very similar amplitude distributions along the body and Froude efficiencies. Vortices generated in the region of strongly flexing joints are suitable to be used pedally to enhance propulsion (vortex re-capturing). Complementing studies using numerical and technical modeling will help us to probe the efficiency of observed mechanisms and further improvements of the human strategy. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Swimming Pools.

    ERIC Educational Resources Information Center

    Ministry of Housing and Local Government, London (England).

    Technical and engineering data are set forth on the design and construction of swimming pools. Consideration is given to site selection, pool construction, the comparative merits of combining open air and enclosed pools, and alternative uses of the pool. Guidelines are presented regarding--(1) pool size and use, (2) locker and changing rooms, (3)…

  3. Swimming Pools.

    ERIC Educational Resources Information Center

    Ministry of Housing and Local Government, London (England).

    Technical and engineering data are set forth on the design and construction of swimming pools. Consideration is given to site selection, pool construction, the comparative merits of combining open air and enclosed pools, and alternative uses of the pool. Guidelines are presented regarding--(1) pool size and use, (2) locker and changing rooms, (3)…

  4. Discordance between morphological and mechanical diversity in the feeding mechanism of centrarchid fishes.

    PubMed

    Collar, David C; Wainwright, Peter C

    2006-12-01

    Morphological diversity is routinely used to infer ecological variation among species because differences in form underlie variation in functional performance of ecological tasks like capturing prey, avoiding predators, or defending territories. However, many functions have complex morphological bases that can weaken associations between morphological and functional diversification. We investigate the link between these levels of diversity in a mechanically explicit model of fish suction-feeding performance, where the map of head morphology to feeding mechanics is many-to-one: multiple, alternative forms can produce the same mechanical property. We show that many-to-one mapping leads to discordance between morphological and mechanical diversity in the freshwater fish family, the Centrarchidae, despite close associations between morphological changes and their mechanical effects. We find that each of the model's five morphological variables underlies evolution of suction capacity. Yet, the major centrarchid clades exhibit an order of magnitude range in diversity of suction mechanics in the absence of any clear difference in diversity of the morphological variables. This cryptic pattern of mechanical diversity suggests an evolutionary history for suction performance that is unlike the one inferred from comparisons of morphological diversity. Because many-to-one mapping is likely to be common in functional systems, this property of design may lead to widespread discordance between functional and morphological diversity. Although we focus on the interaction between morphology and mechanics, many-to-one mapping can decouple diversity between levels of organization in any hierarchical system.

  5. Fluid dynamics: Swimming across scales

    NASA Astrophysics Data System (ADS)

    Baumgart, Johannes; Friedrich, Benjamin M.

    2014-10-01

    The myriad creatures that inhabit the waters of our planet all swim using different mechanisms. Now, a simple relation links key physical observables of underwater locomotion, on scales ranging from millimetres to tens of metres.

  6. Swimming capability and swimming behavior of juvenile acipenser schrenckii.

    PubMed

    Cai, Lu; Taupier, Rachel; Johnson, David; Tu, Zhiying; Liu, Guoyong; Huang, Yingping

    2013-03-01

    Acipenser schrenckii, the Amur Sturgeon, was a commercially valuable fish species inhabiting the Amur (Heilongjiang) River but populations have rapidly declined in recent years. Dams impede A. schrenckii spawning migration and wild populations were critically endangered. Building fishways helped maintain fish populations but data on swimming performance and behavior was crucial for fishway design. To obtain such data on A. schrenckii, a laboratory study of juvenile A. schrenckii (n = 18, body mass = 32.7 ± 1.2 g, body length = 18.8 ± 0.3 cm) was conducted using a stepped velocity test carried out in a fish respirometer equipped with a high-speed video camera at 20°C. Results indicate: (1) The counter-current swimming capability of A. schrenckii was low with critical swimming speed of 1.96 ± 0.10 BL/sec. (2) When a linear function was fitted to the data, oxygen consumption, as a function of swimming speed, was determined to be MO2  = 337.29 + 128.10U (R(2)  = 0.971, P < 0.001) and the power value (1.0) of U indicated high swimming efficiency. (3) Excess post-exercise oxygen cost was 48.44 mgO2 /kg and indicated excellent fatigue recovery. (4) Cost of transport decreased slowly with increased swimming speed. (5) Increased swimming speed led to increases in the tail beat frequency and stride length. This investigation contributed to the basic science of fish swimming behavior and provided data required for the design of fishways. Innovative methods have allowed cultivation of the species in the Yangtze River and, if effective fishways could be incorporated into the design of future hydropower projects on the Amur River, it would contribute to conservation of wild populations of A. schrenckii. The information provided here contributes to the international effort to save this critically endangered species. J. Exp. Zool. 319A:149-155, 2013. © 2013 Wiley Periodicals, Inc. Copyright © 2013 Wiley Periodicals, Inc.

  7. Selecting the swimming mechanisms of colloidal particles: bubble propulsion versus self-diffusiophoresis.

    PubMed

    Wang, Sijia; Wu, Ning

    2014-04-01

    Bubble propulsion and self-diffusiophoresis are two common mechanisms that can drive autonomous motion of microparticles in hydrogen peroxide. Although microtubular particles, when coated with platinum in their interior concave surfaces, can propel due to the formation and release of bubbles from one end, the convex Janus particles usually do not generate any visible bubble. They move primarily due to the self-diffusiophoresis. Coincidentally, the platinum films on those particles were typically coated by physical evaporation. In this paper, we use a simple chemical deposition method to make platinum-polystyrene Janus dimers. Surprisingly, those particles are propelled by periodic growth and collapse of bubbles on the platinum-coated lobes. We find that both high catalytic activity and rough surface are necessary to change the propulsion mode from self-diffusiophoresis to bubble propulsion. Our Janus dimers, with combined geometric and interfacial anisotropy, also exhibit distinctive motions at the respective stages of bubble growth and collapse, which differ by 5-6 orders of magnitude in time. Our study not only provides insight into the link between self-diffusiophoresis and bubble propulsion but also reveals the intriguing impacts of the combined geometric and interfacial anisotropy on self-propulsion of particles.

  8. Swim-training changes the spatio-temporal dynamics of skeletogenesis in zebrafish larvae (Danio rerio).

    PubMed

    Fiaz, Ansa W; Léon-Kloosterziel, Karen M; Gort, Gerrit; Schulte-Merker, Stefan; van Leeuwen, Johan L; Kranenbarg, Sander

    2012-01-01

    Fish larvae experience many environmental challenges during development such as variation in water velocity, food availability and predation. The rapid development of structures involved in feeding, respiration and swimming increases the chance of survival. It has been hypothesized that mechanical loading induced by muscle forces plays a role in prioritizing the development of these structures. Mechanical loading by muscle forces has been shown to affect larval and embryonic bone development in vertebrates, but these investigations were limited to the appendicular skeleton. To explore the role of mechanical load during chondrogenesis and osteogenesis of the cranial, axial and appendicular skeleton, we subjected zebrafish larvae to swim-training, which increases physical exercise levels and presumably also mechanical loads, from 5 until 14 days post fertilization. Here we show that an increased swimming activity accelerated growth, chondrogenesis and osteogenesis during larval development in zebrafish. Interestingly, swim-training accelerated both perichondral and intramembranous ossification. Furthermore, swim-training prioritized the formation of cartilage and bone structures in the head and tail region as well as the formation of elements in the anal and dorsal fins. This suggests that an increased swimming activity prioritized the development of structures which play an important role in swimming and thereby increasing the chance of survival in an environment where water velocity increases. Our study is the first to show that already during early zebrafish larval development, skeletal tissue in the cranial, axial and appendicular skeleton is competent to respond to swim-training due to increased water velocities. It demonstrates that changes in water flow conditions can result into significant spatio-temporal changes in skeletogenesis.

  9. Swimming Lessons

    ERIC Educational Resources Information Center

    Goldman, Arthur

    2006-01-01

    In this article, the author talks about his experience as an 11-year-old swimmer and shares the lessons he learned as a member of the swim team. In his experience as one of the slowest team members, he discovered that slow and steady does not win the race, and when the focus is only on achievement, one loses the value of failure. As an adult, he…

  10. Swimming Lessons

    ERIC Educational Resources Information Center

    Goldman, Arthur

    2006-01-01

    In this article, the author talks about his experience as an 11-year-old swimmer and shares the lessons he learned as a member of the swim team. In his experience as one of the slowest team members, he discovered that slow and steady does not win the race, and when the focus is only on achievement, one loses the value of failure. As an adult, he…

  11. Adaptation and acclimation of traits associated with swimming capacity in Lake Whitefish (coregonus clupeaformis) ecotypes.

    PubMed

    Laporte, Martin; Dalziel, Anne C; Martin, Nicolas; Bernatchez, Louis

    2016-08-11

    Improved performance in a given ecological niche can occur through local adaptation, phenotypic plasticity, or a combination of these mechanisms. Evaluating the relative importance of these two mechanisms is needed to better understand the cause of intra specific polymorphism. In this study, we reared populations of Lake Whitefish (Coregonus clupeaformis) representing the'normal' (benthic form) and the 'dwarf' (derived limnetic form) ecotypes in two different conditions (control and swim-training) to test the relative importance of adaptation and acclimation in the differentiation of traits related to swimming capacity. The dwarf whitefish is a more active swimmer than the normal ecotype, and also has a higher capacity for aerobic energy production in the swimming musculature. We hypothesized that dwarf fish would show changes in morphological and physiological traits consistent with reductions in the energetic costs of swimming and maintenance metabolism. We found differences in traits predicted to decrease the costs of prolonged swimming and standard metabolic rate and allow for a more active lifestyle in dwarf whitefish. Dwarf whitefish evolved a more streamlined body shape, predicted to lead to a decreased drag, and a smaller brain, which may decrease their standard metabolic rate. Contrary to predictions, we also found evidence of acclimation in liver size and metabolic enzyme activities. Results support the view that local adaptation has contributed to the genetically-based divergence of traits associated with swimming activity. Presence of post-zygotic barriers limiting gene flow between these ecotype pairs may have favoured repeated local adaptation to the limnetic niches.

  12. Social plasticity in fish: integrating mechanisms and function.

    PubMed

    Oliveira, R F

    2012-12-01

    proximate factors and evolutionary explanations) can be a more useful approach than the traditional proximate-ultimate dichotomy, according to which evolutionary processes can be understood without knowledge on proximate causes, thereby black-boxing developmental and physiological mechanisms. © 2012 The Author. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  13. Critical swimming speeds of wild bull trout

    USGS Publications Warehouse

    Mesa, M.G.; Weiland, L.K.; Zydlewski, G.B.

    2004-01-01

    We estimated the critical swimming speeds (Ucrit) of wild bull trout at 6??, 11??, and 15??C in laboratory experiments. At 11??C, 5 fish ranging from 11 to 19 cm in length had a mean Ucrit of 48.24 cm/s or 3.22 body lengths per second (BL/s). Also at 11??C , 6 fish from 32 to 42 cm had a mean Ucrit of 73.99 cm/s or 2.05 BL/s. At 15??C, 5 fish from 14 to 23 cm had a mean Ucrit of 54.66 cm/s or 2.88 BL/s. No fish successfully swam at 6??C. Swim speed was significantly influenced by fish length. Many bull trout performed poorly in our enclosed respirometers: of 71 Ucrit tests we attempted, only the 16 described above were successful. Bull trout that refused to swim held station within tunnels by using their pectoral fins as depressors, or they rested and later became impinged against a downstream screen. Several common techniques did not stimulate consistent swimming activity in these fish. Our estimates of U crit for bull trout provide an understanding of their performance capacity and will be useful in modeling efforts aimed at improving fish passage structures. We recommend that fishway or culvert designers concerned with bull trout passage maintain velocities within their structures at or below our estimates of Ucrit, thus taking a conservative approach to ensuring that these fish can ascend migratory obstacles safely.

  14. Dynamics of the vortex wakes of flying and swimming vertebrates.

    PubMed

    Rayner, J M

    1995-01-01

    The vortex wakes of flying and swimming animals provide evidence of the history of aero- and hydrodynamic force generation during the locomotor cycle. Vortex-induced momentum flux in the wake is the reaction of forces the animal imposes on its environment, which must be in equilibrium with inertial and external forces. In flying birds and bats, the flapping wings generate lift both to provide thrust and to support the weight. Distinct wingbeat and wake movement patterns can be identified as gaits. In flow visualization experiments, only two wake patterns have been identified: a vortex ring gait with inactive upstroke, and a continuous vortex gait with active upstroke. These gaits may be modelled theoretically by free vortex and lifting line theory to predict mechanical energy consumption, aerodynamic forces and muscle activity. Longer-winged birds undergo a distinct gait change with speed, but shorter-winged species use the vortex ring gait at all speeds. In swimming fish, the situation is more complex: the wake vortices form a reversed von Kármán vortex street, but little is known about the mechanism of generation of the wake, or about how it varies with speed and acceleration or with body form and swimming mode. An unresolved complicating factor is the interaction between the drag wake of the flapping fish body and the thrusting wake from the tail.

  15. Swimming by sea otters: adaptations for low energetic cost locomotion.

    PubMed

    Williams, T M

    1989-02-01

    The energetics and hydrodynamics of surface and submerged swimming were compared in the sea otter (Enhydra lutris). 1. Sea otters used two distinct speed ranges that varied with swimming mode. Sustained surface swimming was limited to speeds less than 0.80 m/s, while sustained submerged swimming occurred over the range of 0.60 to 1.39 m/s. 2. Rates of oxygen consumption (VO2) at the transition speed (0.80 m/s) were 41% lower for submerged swimming by sea otters in comparison to surface swimming. 3. Total cost of transport for surface swimming sea otters, 12.56 joules/kg.m, was more than 12 times the predicted value for a similarly-sized salmonid fish. Transport costs for submerged swimming at the same speed was only 7.33 times the predicted value. 4. The allometric relationship for minimum cost of transport in surface swimming birds and mammals was y = 23.87 chi -0.15 where y = cost of transport in joules/kg.m and x = body mass in kg. This regression loosely parallels the relationship for salmonid fish. 5. Correlations between aquatic behavior, morphological specialization, and swimming energetics indicate that the development of swimming in mustelids involved transitions from fore-paw to hind-paw propulsion, and from surface to submerged swimming.

  16. Behavioural relevance of polarization sensitivity as a target detection mechanism in cephalopods and fishes

    PubMed Central

    Pignatelli, Vincenzo; Temple, Shelby E.; Chiou, Tsyr-Huei; Roberts, Nicholas W.; Collin, Shaun P.; Marshall, N. Justin

    2011-01-01

    Aquatic habitats are rich in polarized patterns that could provide valuable information about the environment to an animal with a visual system sensitive to polarization of light. Both cephalopods and fishes have been shown to behaviourally respond to polarized light cues, suggesting that polarization sensitivity (PS) may play a role in improving target detection and/or navigation/orientation. However, while there is general agreement concerning the presence of PS in cephalopods and some fish species, its functional significance remains uncertain. Testing the role of PS in predator or prey detection seems an excellent paradigm with which to study the contribution of PS to the sensory assets of both groups, because such behaviours are critical to survival. We developed a novel experimental set-up to deliver computer-generated, controllable, polarized stimuli to free-swimming cephalopods and fishes with which we tested the behavioural relevance of PS using stimuli that evoke innate responses (such as an escape response from a looming stimulus and a pursuing behaviour of a small prey-like stimulus). We report consistent responses of cephalopods to looming stimuli presented in polarization and luminance contrast; however, none of the fishes tested responded to either the looming or the prey-like stimuli when presented in polarization contrast. PMID:21282177

  17. Behavioural relevance of polarization sensitivity as a target detection mechanism in cephalopods and fishes.

    PubMed

    Pignatelli, Vincenzo; Temple, Shelby E; Chiou, Tsyr-Huei; Roberts, Nicholas W; Collin, Shaun P; Marshall, N Justin

    2011-03-12

    Aquatic habitats are rich in polarized patterns that could provide valuable information about the environment to an animal with a visual system sensitive to polarization of light. Both cephalopods and fishes have been shown to behaviourally respond to polarized light cues, suggesting that polarization sensitivity (PS) may play a role in improving target detection and/or navigation/orientation. However, while there is general agreement concerning the presence of PS in cephalopods and some fish species, its functional significance remains uncertain. Testing the role of PS in predator or prey detection seems an excellent paradigm with which to study the contribution of PS to the sensory assets of both groups, because such behaviours are critical to survival. We developed a novel experimental set-up to deliver computer-generated, controllable, polarized stimuli to free-swimming cephalopods and fishes with which we tested the behavioural relevance of PS using stimuli that evoke innate responses (such as an escape response from a looming stimulus and a pursuing behaviour of a small prey-like stimulus). We report consistent responses of cephalopods to looming stimuli presented in polarization and luminance contrast; however, none of the fishes tested responded to either the looming or the prey-like stimuli when presented in polarization contrast.

  18. Gelation, oxygen permeability, and mechanical properties of mammalian and fish gelatin films.

    PubMed

    Avena-Bustillos, R J; Chiou, B; Olsen, C W; Bechtel, P J; Olson, D A; McHugh, T H

    2011-09-01

    The objective of this study was to evaluate the gelation, thermal, mechanical, and oxygen permeability properties of different mammalian, warm- and cold-water fish gelatin solutions and films. Mammalian gelatin solutions had the highest gel set temperatures, followed by warm-water fish and then cold-water fish gelatin solutions. These differences were related to concentrations of imino acids present in each gelatin, with mammalian gelatin having the highest and cold-water fish gelatin having the lowest concentrations. Mammalian and warm-water fish gelatin films contained helical structures, whereas cold-water fish gelatin films were amorphous. This was due to the films being dried at room temperature (23 °C), which was below or near the gelation temperatures of mammalian and warm-water fish gelatin solutions and well above the gelation temperature of cold-water fish gelatin solutions. Tensile strength, percent elongation, and puncture deformation were highest in mammalian gelatin films, followed by warm-water fish gelatin film and then by cold-water fish gelatin films. Oxygen permeability values of cold-water fish gelatin films were significantly lower than those for mammalian gelatin films. These differences were most likely due to higher moisture sorption in mammalian gelatin films, leading to higher oxygen diffusivity. Journal of Food Science © 2011 Institute of Food Technologists® No claim to original US government works.

  19. Submerged swimming of the great cormorant Phalacrocorax carbo sinensis is a variant of the burst-and-glide gait.

    PubMed

    Ribak, Gal; Weihs, Daniel; Arad, Zeev

    2005-10-01

    Cormorants are water birds that forage by submerged swimming in search and pursuit of fish. Underwater they swim by paddling with both feet simultaneously in a gait that includes long glides between consecutive strokes. At shallow swimming depths the birds are highly buoyant as a consequence of their aerial lifestyle. To counter this buoyancy cormorants swim underwater with their body at an angle to the swimming direction. This mechanical solution for foraging at shallow depth is expected to increase the cost of swimming by increasing the drag of the birds. We used kinematic analysis of video sequences of cormorants swimming underwater at shallow depth in a controlled research setup to analyze the swimming gait and estimate the resultant drag of the birds during the entire paddling cycle. The gliding drag of the birds was estimated from swimming speed deceleration during the glide stage while the drag during active paddling was estimated using a mathematical ;burst-and-glide' model. The model was originally developed to estimate the energetic saving from combining glides with burst swimming and we used this fact to test whether the paddling gait of cormorants has similar advantages. We found that swimming speed was correlated with paddling frequency (r=0.56, P<0.001, N=95) where the increase in paddling frequency was achieved mainly by shortening the glide stage (r=-0.86, P<0.001, N=95). The drag coefficient of the birds during paddling was higher on average by two- to threefold than during gliding. However, the magnitude of the drag coefficient during the glide was positively correlated with the tilt of the body (r=0.5, P<0.003, N=35) and negatively correlated with swimming speed (r=-0.65, P<0.001, N=35), while the drag coefficient during the stroke was not correlated with tilt of the body (r=-0.11, P>0.5, N=35) and was positively correlated with swimming speed (r=0.41, P<0.015, N=35). Therefore, the difference between the drag coefficient during the glide and

  20. Swimming Eigenworms

    NASA Astrophysics Data System (ADS)

    van Bussel, Frank; Khan, Zeina; Rahman, Mizanur; Vanapalli, Siva; Blawzdziewicz, Jerzy

    2014-03-01

    The nematode C. Elegans is a much studied organism, with a fully mapped genome, cell structure, and nervous system; however, aspects of its behavior have yet to be elucidated, particularly with respect to motility under various conditions. Recently the ``Eigenworm'' technique has emerged as a promising avenue of exploration: via principle component analysis it has been shown that the state space of a healthy crawling worm is low dimensional, in that its shape can be well described by a linear combination of just four eigenmodes. So far, use of this methodology with swimming worms has been somewhat tentative, though medical research such as drug screening is commonly done with nematodes in fluid environments e.g. well plates. Here we give initial results for healthy worms swimming in liquids of varying viscosity. The main result is that at the low viscosities (M9 buffer solution) the state space is even lower dimensional than that for the crawling worm, with only two significant eigenmodes; and that as viscosity increases so does the number of modes needed for an adequate shape description. As well, the shapes of the eigenmodes undergo significant transitions across the range of viscosities looked at.

  1. Gelation, oxygen permeability and mechanical properties of mammalian and fish gelatin films

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to evaluate the gelation, thermal, mechanical and oxygen permeability properties of different mammalian, warm- and cold-water fish gelatin solutions and films. Mammalian gelatin solutions had the highest gel set temperatures, followed by warm-water fish and then cold-...

  2. Analyzing the fast-start performance of northern pike using a mechanical fish

    NASA Astrophysics Data System (ADS)

    Modarres-Sadeghi, Yahya; Feng, Chengcheng; Bonafilia, Brian; Costain, Andrew

    2011-11-01

    The northern pike is able to achieve an instantaneous acceleration of 245 m/s2 through a two-stage motion. In the first stage the fish curls its body into either a C-shaped or an S-shaped curve (preparatory stage), and in the second stage uncurls it very quickly (propulsive stage) generating high accelerations due to the vortices shed from its tail. We have built a mechanical fish, based on the body profile of a pike, which is capable of performing this two-stage fast-start motion. Movement is governed by servo motors, which pull on cables attached to certain ribs, bending the fish into a C- or an S-shape. The degree of bending and timing of strokes can be controlled, and the fish can perform either a propulsive stroke only or a full stroke consisting of both the preparatory stage and the propulsive stage. The mechanical fish is capable of achieving peak accelerations of around 4 m/s2. We use this fish in order to study the influence of various variables on the observed acceleration. Although the maximum accelerations observed in our mechanical fish are smaller than those of a live fish, the form of the measured acceleration signal as function of time is quite similar to that of a live fish. The hydrodynamic efficiencies are observed to be around 12%, and it is shown that the majority of the thrust is produced at the rear part of the mechanical fish--similarly to the live fish.

  3. 40 CFR 408.220 - Applicability; description of the non-Alaskan mechanized bottom fish processing subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-Alaskan mechanized bottom fish processing subcategory. 408.220 Section 408.220 Protection of Environment... PROCESSING POINT SOURCE CATEGORY Non-Alaskan Mechanized Bottom Fish Processing Subcategory § 408.220 Applicability; description of the non-Alaskan mechanized bottom fish processing subcategory. The provisions...

  4. 40 CFR 408.220 - Applicability; description of the non-Alaskan mechanized bottom fish processing subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-Alaskan mechanized bottom fish processing subcategory. 408.220 Section 408.220 Protection of Environment... PROCESSING POINT SOURCE CATEGORY Non-Alaskan Mechanized Bottom Fish Processing Subcategory § 408.220 Applicability; description of the non-Alaskan mechanized bottom fish processing subcategory. The provisions...

  5. 40 CFR 408.220 - Applicability; description of the non-Alaskan mechanized bottom fish processing subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-Alaskan mechanized bottom fish processing subcategory. 408.220 Section 408.220 Protection of Environment... PROCESSING POINT SOURCE CATEGORY Non-Alaskan Mechanized Bottom Fish Processing Subcategory § 408.220 Applicability; description of the non-Alaskan mechanized bottom fish processing subcategory. The provisions of...

  6. 40 CFR 408.220 - Applicability; description of the non-Alaskan mechanized bottom fish processing subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-Alaskan mechanized bottom fish processing subcategory. 408.220 Section 408.220 Protection of Environment... PROCESSING POINT SOURCE CATEGORY Non-Alaskan Mechanized Bottom Fish Processing Subcategory § 408.220 Applicability; description of the non-Alaskan mechanized bottom fish processing subcategory. The provisions of...

  7. 40 CFR 408.220 - Applicability; description of the non-Alaskan mechanized bottom fish processing subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-Alaskan mechanized bottom fish processing subcategory. 408.220 Section 408.220 Protection of Environment... PROCESSING POINT SOURCE CATEGORY Non-Alaskan Mechanized Bottom Fish Processing Subcategory § 408.220 Applicability; description of the non-Alaskan mechanized bottom fish processing subcategory. The provisions of...

  8. Quantitative flow analysis of swimming dynamics with coherent Lagrangian vortices.

    PubMed

    Huhn, F; van Rees, W M; Gazzola, M; Rossinelli, D; Haller, G; Koumoutsakos, P

    2015-08-01

    Undulatory swimmers flex their bodies to displace water, and in turn, the flow feeds back into the dynamics of the swimmer. At moderate Reynolds number, the resulting flow structures are characterized by unsteady separation and alternating vortices in the wake. We use the flow field from simulations of a two-dimensional, incompressible viscous flow of an undulatory, self-propelled swimmer and detect the coherent Lagrangian vortices in the wake to dissect the driving momentum transfer mechanisms. The detected material vortex boundary encloses a Lagrangian control volume that serves to track back the vortex fluid and record its circulation and momentum history. We consider two swimming modes: the C-start escape and steady anguilliform swimming. The backward advection of the coherent Lagrangian vortices elucidates the geometry of the vorticity field and allows for monitoring the gain and decay of circulation and momentum transfer in the flow field. For steady swimming, momentum oscillations of the fish can largely be attributed to the momentum exchange with the vortex fluid. For the C-start, an additionally defined jet fluid region turns out to balance the high momentum change of the fish during the rapid start.

  9. Quantitative flow analysis of swimming dynamics with coherent Lagrangian vortices

    NASA Astrophysics Data System (ADS)

    Huhn, F.; van Rees, W. M.; Gazzola, M.; Rossinelli, D.; Haller, G.; Koumoutsakos, P.

    2015-08-01

    Undulatory swimmers flex their bodies to displace water, and in turn, the flow feeds back into the dynamics of the swimmer. At moderate Reynolds number, the resulting flow structures are characterized by unsteady separation and alternating vortices in the wake. We use the flow field from simulations of a two-dimensional, incompressible viscous flow of an undulatory, self-propelled swimmer and detect the coherent Lagrangian vortices in the wake to dissect the driving momentum transfer mechanisms. The detected material vortex boundary encloses a Lagrangian control volume that serves to track back the vortex fluid and record its circulation and momentum history. We consider two swimming modes: the C-start escape and steady anguilliform swimming. The backward advection of the coherent Lagrangian vortices elucidates the geometry of the vorticity field and allows for monitoring the gain and decay of circulation and momentum transfer in the flow field. For steady swimming, momentum oscillations of the fish can largely be attributed to the momentum exchange with the vortex fluid. For the C-start, an additionally defined jet fluid region turns out to balance the high momentum change of the fish during the rapid start.

  10. Compensatory mechanisms in fish populations: Literature reviews: Volume 2, Compensation in fish populations subject to catastrophic impact: Final report

    SciTech Connect

    Jude, D.J.; Mansfield, P.J.; Schneeberger, P.J.; Wojcik, J.A.

    1987-05-01

    This study comprises an extensive literature review, critical evaluations of case histories, and considered recommendations for future research on the mechanisms and extent of compensation by various fish species subject to catastrophic impacts. ''Catastrophic impact'' was defined as an event which removes some limitation (such as food or space) on a fish population. Those events studied included new species introduction, toxic spills, exploitation of specific fish populations, and drawdown. The fish studied each had more than one compensatory mechanism available, and thus were able to respond to a catastrophic event even if an option was removed. Predation, overfishing, competition, disease, and parasitism are all potential catastrophies, but were found not to cause a catastrophic impact (except in special cases). In general, compensatory responses were determined to vary widely, even for species which perform fairly similar functions in an ecosystem. The extensive nature of this study, however, pointed up the many data gaps in the existing literature; recommendations are therefore made for followup research and expansion of ongoing monitoring programs, based on an evaluation of their relative importance.

  11. [Ontogenetic causes and mechanisms for formation of differences in number of fish scales].

    PubMed

    Levin, B A

    2011-01-01

    Fish scale cover forms in late ontogenesis. Therefore, the conditions of development significantly affect its characteristics (number of scales). This study is aimed at considering the influence of external and internal factors on variation of the number of scales in fish. Acceleration of development results in decrease of the number of scales, while it increases with deceleration. Experiments on regulation of thyroid status of fish showed that the certain mechanism of alteration of the number of scales is related with heterochrony, such as a shift of the laying period of scale cover. Accelerated development is caused by early scale development at smaller body length, while decelerated development is characterized with later scale development and greater body length. Data considering heterochrony as the possible reason for deviations in the number of scales in related fish species are represented. Moreover, alterations of the distance between scales (morphogenetic calculation) can serve as another alteration mechanism of the number of scales in fish (especially phyletically far species).

  12. Mechanism of connective drying of solutions of fish hydrolyzates in a foamed state

    NASA Astrophysics Data System (ADS)

    Buinov, A. A.; Ginzburg, A. S.; Syroedov, V. I.

    1982-07-01

    The results of experimental investigations of the kinetics of foam drying of fish hydrolyzates are presented. The dehydration mechanism is analyzed and the enhancement of the process with dehydration of solutions in a foamed state is explained.

  13. Mechanisms of zinc toxicity in the galaxiid fish, Galaxias maculatus.

    PubMed

    McRae, Nicole K; Gaw, Sally; Glover, Chris N

    2016-01-01

    Zinc (Zn) is an essential metal, which is ubiquitous in aquatic environments occurring both naturally, and through anthropogenic inputs. This study investigated impacts of sub-lethal Zn exposure in the galaxiid fish Galaxias maculatus. Known as inanga, this amphidromous fish is widespread throughout the Southern hemisphere, but to date almost nothing is known regarding its sensitivity to elevated environmental metals. Fish were exposed to environmentally-relevant concentrations of Zn (control, 8, 270 and 1000μgL(-1)) over 96h. End-points measured included those relating to ionoregulatory disturbance (whole body calcium and sodium influx), oxygen consumption (respirometry), oxidative stress (catalase activity and lipid peroxidation) and whole body accumulation of Zn. Zn exposure caused increases in catalase activity and lipid peroxidation, but only at the highest exposure level tested. Zn also significantly inhibited calcium influx, but stimulated sodium influx, at 1000μgL(-1). The sub-lethal changes induced by Zn exposure in inanga appear to be conserved relative to other, better-studied species. These data are the first to explore the sensitivity of juvenile galaxiid fish to Zn, information that will be critical to ensuring adequate environmental protection of this important species. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Swimming Pools for Schools.

    ERIC Educational Resources Information Center

    Neilson, Donald W.; Nixon, John E.

    The increasing interest in swimming instruction and recreation for elementary and secondary school children has resulted in the development of this guide for swimming pool use, design, and construction. Introductory material discussed the need for swimming in the educational program and the organization of swimming programs in the school. Design…

  15. Swimming performance in juvenile shortnose sturgeon (Acipenser brevirostrum): the influence of time interval and velocity increments on critical swimming tests.

    PubMed

    Downie, Adam T; Kieffer, James D

    2017-01-01

    The most utilized method to measure swimming performance of fishes has been the critical swimming speed (UCrit) test. In this test, the fish is forced to swim against an incrementally increasing flow of water until fatigue. Before the water velocity is increased, the fish swims at the water velocity for a specific, pre-arranged time interval. The magnitude of the velocity increments and the time interval for each swimming period can vary across studies making the comparison between and within species difficult. This issue has been acknowledged in the literature, however, little empirical evidence exists that tests the importance of velocity and time increments on swimming performance in fish. A practical application for fish performance is through the design of fishways that enable fish to bypass anthropogenic structures (e.g. dams) that block migration routes, which is one of the causes of world-wide decline in sturgeon populations. While fishways will improve sturgeon conservation, they need to be specifically designed to accommodate the swimming capabilities specific for sturgeons, and it is possible that current swimming methodologies have under-estimated the swimming performance of sturgeons. The present study assessed the UCrit of shortnose sturgeon using modified UCrit to determine the importance of velocity increment (5 and 10 cm s(-1)) and time (5, 15 and 30 min) intervals on swimming performance. UCrit was found to be influenced by both time interval and water velocity. UCrit was generally lower in sturgeon when they were swum using 5cm s(-1) compared with 10 cm s(-1) increments. Velocity increment influences the UCrit more than time interval. Overall, researchers must consider the impacts of using particular swimming criteria when designing their experiments.

  16. Swimming performance in juvenile shortnose sturgeon (Acipenser brevirostrum): the influence of time interval and velocity increments on critical swimming tests

    PubMed Central

    Kieffer, James D.

    2017-01-01

    Abstract The most utilized method to measure swimming performance of fishes has been the critical swimming speed (UCrit) test. In this test, the fish is forced to swim against an incrementally increasing flow of water until fatigue. Before the water velocity is increased, the fish swims at the water velocity for a specific, pre-arranged time interval. The magnitude of the velocity increments and the time interval for each swimming period can vary across studies making the comparison between and within species difficult. This issue has been acknowledged in the literature, however, little empirical evidence exists that tests the importance of velocity and time increments on swimming performance in fish. A practical application for fish performance is through the design of fishways that enable fish to bypass anthropogenic structures (e.g. dams) that block migration routes, which is one of the causes of world-wide decline in sturgeon populations. While fishways will improve sturgeon conservation, they need to be specifically designed to accommodate the swimming capabilities specific for sturgeons, and it is possible that current swimming methodologies have under-estimated the swimming performance of sturgeons. The present study assessed the UCrit of shortnose sturgeon using modified UCrit to determine the importance of velocity increment (5 and 10 cm s−1) and time (5, 15 and 30 min) intervals on swimming performance. UCrit was found to be influenced by both time interval and water velocity. UCrit was generally lower in sturgeon when they were swum using 5cm s−1 compared with 10 cm s−1 increments. Velocity increment influences the UCrit more than time interval. Overall, researchers must consider the impacts of using particular swimming criteria when designing their experiments. PMID:28835841

  17. The development of swimming power

    PubMed Central

    Gatta, Giorgio; Leban, Bruno; Paderi, Maurizio; Padulo, Johnny; Migliaccio, Gian Mario; Pau, Massimiliano

    2014-01-01

    Summary Purpose: the aim of this study was to investigate the effects of the transfer strength training method on swimming power. Methods: twenty male swimmers “master“ were randomly allocated to strength (n= 10, ST) and swimming training (n=10, SW) groups. Both groups performed six-weeks training based on swimming training for SW and strength training which consisted in a weight training session immediately followed by the maximum swimming velocity. The performance in both groups was assessed by Maximal-Mechanical-External-Power (MMEP) before and after the six-weeks period, using a custom ergometer that provided force, velocity, and power measurement in water. Results: a significant increased MMEP in ST group (5.73% with p< 0.05) was obtained by an increased strength (11.70% with p< 0.05) and a decreased velocity (4.99% with p> 0.05). Conversely, in the SW group there was a decreased in MMEP (7.31%; p< 0.05), force and velocity (4.16%, and 3.45; respectively p> 0.05). Conclusion: this study showed that the transfer training method, based on combination of weight training (in dry condition) immediately followed by fast swim (in water) significantly improves swimming-power in master. PMID:25767781

  18. Mechanism of synergistic action following co-treatment with pramipexole and fluoxetine or sertraline in the forced swimming test in rats.

    PubMed

    Rogóz, Zofia; Skuza, Grazyna

    2006-01-01

    The aim of the present study was to examine the effect of combined treatment of male Wistar rats with pramipexole and fluoxetine or sertraline in the forced swimming test. The obtained results showed that co-treatment with pramipexole (0.1 mg/kg) and fluoxetine (10 mg/kg) or sertraline (5 mg/kg) (in doses inactive per se) exhibited antidepressant-like activity in the forced swimming test. Sulpiride (a dopamine D(2/3) receptor antagonist) and WAY 100635 (a 5-HT(1A) receptor antagonist), either being ineffective in the forced swimming test, inhibited the antidepressant-like effect induced by co-administration of pramipexole and fluoxetine or sertraline. However, SCH 23390 (a dopamine D(1) receptor antagonist) only partly did not alter the effect of pramipexole given jointly with antidepressant drugs; on the other hand, S 33084 (a dopamine D(3) receptor antagonist) only partly decreased (in a statistically insignificant manner) that effect. Moreover, progesterone and BD 1047 (a sigma(1) receptor antagonist) counteracted the antidepressant-like effect induced by co-administration of pramipexole and sertraline (but not pramipexole and fluoxetine). In that test, active behavior did not reflect the increases in general activity, since combined administration of pramipexole and fluoxetine or sertraline failed to enhance the locomotor activity of rats. None of the tested drugs (SCH 23390, sulpiride, S 33084, WAY 100635, BD 1047 and progesterone) - alone or in combination with pramipexole and fluoxetine or sertraline - changed locomotor activity. The results described in the present paper indicate that co-administration of pramipexole and fluoxetine or sertraline may induce a more pronounced antidepressive activity than does treatment with pramipexole alone, and that in addition to other mechanisms, dopamine D(2/3) and 5-HT(1A) receptors may contribute to the antidepressant-like activity of pramipexole and fluoxetine or sertraline in the forced swimming test in rats

  19. Effects of intraspecific variation in reproductive traits, pectoral fin use and burst swimming on metabolic rates and swimming performance in the Trinidadian guppy (Poecilia reticulata).

    PubMed

    Svendsen, Jon C; Banet, Amanda I; Christensen, Rune H B; Steffensen, John F; Aarestrup, Kim

    2013-09-15

    There is considerable intraspecific variation in metabolic rates and locomotor performance in aquatic ectothermic vertebrates; however, the mechanistic basis remains poorly understood. Using pregnant Trinidadian guppies (Poecilia reticulata), a live-bearing teleost, we examined the effects of reproductive traits, pectoral fin use and burst-assisted swimming on swimming metabolic rate, standard metabolic rate (O2std) and prolonged swimming performance (Ucrit). Reproductive traits included reproductive allocation and pregnancy stage, the former defined as the mass of the reproductive tissues divided by the total body mass. Results showed that the metabolic rate increased curvilinearly with swimming speed. The slope of the relationship was used as an index of swimming cost. There was no evidence that reproductive traits correlated with swimming cost, O2std or Ucrit. In contrast, data revealed strong effects of pectoral fin use on swimming cost and Ucrit. Poecilia reticulata employed body-caudal fin (BCF) swimming at all tested swimming speeds; however, fish with a high simultaneous use of the pectoral fins exhibited increased swimming cost and decreased Ucrit. These data indicated that combining BCF swimming and pectoral fin movement over a wide speed range, presumably to support swimming stability and control, is an inefficient swimming behaviour. Finally, transition to burst-assisted swimming was associated with an increase in aerobic metabolic rate. Our study highlights factors other than swimming speed that affect swimming cost and suggests that intraspecific diversity in biomechanical performance, such as pectoral fin use, is an important source of variation in both locomotor cost and maximal performance.

  20. Spatial organization and Synchronization in collective swimming of Hemigrammus bleheri

    NASA Astrophysics Data System (ADS)

    Ashraf, Intesaaf; Ha, Thanh-Tung; Godoy-Diana, Ramiro; Thiria, Benjamin; Halloy, Jose; Collignon, Bertrand; Laboratoire de Physique et Mécanique des Milieux Hétérogènes (PMMH) Team; Laboratoire Interdisciplinaire des Energies de Demain (LIED) Team

    2016-11-01

    In this work, we study the collective swimming of Hemigrammus bleheri fish using experiments in a shallow swimming channel. We use high-speed video recordings to track the midline kinematics and the spatial organization of fish pairs and triads. Synchronizations are characterized by observance of "out of phase" and "in phase" configurations. We show that the synchronization state is highly correlated to swimming speed. The increase in synchronization led to efficient swimming based on Strouhal number. In case of fish pairs, the collective swimming is 2D and the spatial organization is characterized by two characteristic lengths: the lateral and longitudinal separation distances between fish pairs.For fish triads, different swimming patterns or configurations are observed having three dimensional structures. We performed 3D kinematic analysis by employing 3D reconstruction using the Direct Linear Transformation (DLT). We show that fish still keep their nearest neighbor distance (NND) constant irrespective of swimming speeds and configuration. We also point out characteristic angles between neighbors, hence imposing preferred patterns. At last we will give some perspectives on spatial organization for larger population. Sorbonne Paris City College of Doctoral Schools. European Union Information and Communication Technologies project ASSISIbf, FP7-ICT-FET-601074.

  1. Mathematical Modeling of Space-Time Variations in Acoustic Transmission and Scattering from Schools of Swim Bladder Fish (FY13 Annual Report)

    DTIC Science & Technology

    2013-09-30

    Santiago, Chile phone: +56 2 354 4800 fax: +56 2 354 4491 email: chris.feuillade@gmail.com Award Number: N00014-111-0161 LONG-TERM GOALS The goal is...the Love swim bladder model is used as the kernel (Ref. 2 ). 1 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for...display a currently valid OMB control number. 1. REPORT DATE 30 SEP 2013 2 . REPORT TYPE 3. DATES COVERED 00-00-2013 to 00-00-2013 4. TITLE AND

  2. A fast-starting mechanical fish that accelerates at 40 m s(-2).

    PubMed

    Conte, J; Modarres-Sadeghi, Y; Watts, M N; Hover, F S; Triantafyllou, M S

    2010-09-01

    We have built a simple mechanical system to emulate the fast-start performance of fish. The system consists of a thin metal beam covered by a urethane rubber, the fish body and an appropriately shaped tail. The body form of the mechanical fish was modeled after a pike species and selected because it is a widely-studied fast-start specialist. The mechanical fish was held in curvature and hung in water by two restraining lines, which were simultaneously released by a pneumatic cutting mechanism. The potential energy in the beam was transferred into the fluid, thereby accelerating the fish. We measured the resulting acceleration, and calculated the efficiency of propulsion for the mechanical fish model, defined as the ratio of the final kinetic energy of the fish and the initially stored potential energy in the body beam. We also ran a series of flow visualization tests to observe the resulting flow patterns. The maximum start-up acceleration was measured to be around 40 m s(-2), with the maximum final velocity around 1.2 m s(-1). The form of the measured acceleration signal as function of time is quite similar to that of type I fast-start motions studied by Harper and Blake (1991 J. Exp. Biol. 155 175-92). The hydrodynamic efficiency of the fish was found to be around 10%. Flow visualization of the mechanical fast-start wake was also analyzed, showing that the acceleration peaks are associated with the shedding of two vortex rings in near-lateral directions.

  3. UNDULATORY SWIMMING: HOW TRAVELING WAVES ARE PRODUCED AND MODULATED IN SUNFISH (LEPOMIS GIBBOSUS)

    PubMed

    Long; Mchenry; Boetticher

    1994-07-01

    We have developed an experimental procedure in which the in situ locomotor muscles of dead fishes can be electrically stimulated to generate swimming motions. This procedure gives the experimenter control of muscle activation and the mechanical properties of the body. Using pumpkinseed sunfish, Lepomis gibbosus, we investigated the mechanics of undulatory swimming by comparing the swimming kinematics of live sunfish with the kinematics of dead sunfish made to swim using electrical stimulation. In electrically stimulated sunfish, undulatory waves can be produced by alternating left­right contractions of either all the axial muscle or just the precaudal axial muscle. As judged by changes in swimming speed, most of the locomotor power is generated precaudally and transmitted to the caudal fin by way of the skin and axial skeleton. The form of the traveling undulatory wave ­ as measured by tail-beat amplitude, propulsive wavelength and maximal caudal curvature ­ can be modulated by experimental control of the body's passive stiffness, which is a property of the skin, connective tissue and axial skeleton.

  4. Swimming impairment and acetylcholinesterase inhibition in zebrafish exposed to copper or chlorpyrifos separately, or as mixtures

    PubMed Central

    Tilton, Fred A.; Bammler, Theo K.; Gallagher, Evan P.

    2010-01-01

    Pesticides such as chlorpyrifos (CPF) and metals such as copper can impair swimming behavior in fish. However, the impact to swimming behavior from exposure to mixtures of neurotoxicants has received little attention. In the current study, we analyzed spontaneous swimming rates of adult zebrafish (Danio rerio) to investigate in vivo mixture interactions involving two chemical classes. Zebrafish were exposed to the neurotoxicants copper chloride (CuCl, 0.1 μM, 0.25 μM, 0.6 μM, or 6.3, 16, 40 ppb), chlorpyrifos (CPF, 0.1 μM, 0.25 μM, 0.6 μM, or 35, 88, 220 ppb) and binary mixtures for 24 hr to better understand the effects of Cu on CPF neurotoxicity. Exposure to CPF increased the number of animals undergoing freeze responses (an anti-predator behavior) and, at the highest CPF dose (0.6 μM), elicited a decrease in zebrafish swimming rates. Interestingly, the addition of Cu caused a reduction in the number of zebrafish in the CPF-exposure groups undergoing freeze responses. There was no evidence of additive or synergistic toxicity between Cu and CPF. Although muscle AChE activity was significantly reduced by CPF, there was a relatively poor relationship among muscle AChE concentrations and swimming behavior, suggesting non-muscle AChE mechanisms in the loss of swimming behavior. In summary, we have observed a modulating effect of Cu on CPF swimming impairment that appears to involve both AChE and non-AChE mechanisms. Our study supports the utility of zebrafish in understanding chemical mixture interactions and neurobehavioral injury. PMID:20692364

  5. Magnetically Propelled Fish-Like Nanoswimmers.

    PubMed

    Li, Tianlong; Li, Jinxing; Zhang, Hongtao; Chang, Xiaocong; Song, Wenping; Hu, Yanan; Shao, Guangbin; Sandraz, Elodie; Zhang, Guangyu; Li, Longqiu; Wang, Joseph

    2016-11-01

    The swimming locomotion of fish involves a complex interplay between a deformable body and induced flow in the surrounding fluid. While innovative robotic devices, inspired by physicomechanical designs evolved in fish, have been created for underwater propulsion of large swimmers, scaling such powerful locomotion into micro-/nanoscale propulsion remains challenging. Here, a magnetically propelled fish-like artificial nanoswimmer is demonstrated that emulates the body and caudal fin propulsion swimming mechanism displayed by fish. To mimic the deformable fish body for periodic shape changes, template-electrosynthesized multisegment nanowire swimmers are used to construct the artificial nanofishes (diameter 200 nm; length 4.8 μm). The resulting nanofish consists a gold segment as the head, two nickel segments as the body, and one gold segment as the caudal fin, with three flexible porous silver hinges linking each segment. Under an oscillating magnetic field, the propulsive nickel elements bend the body and caudal fin periodically to generate travelling-wave motions with speeds exceeding 30 μm s(-1) . The propulsion dynamics is studied theoretically using the immersed boundary method. Such body-deformable nanofishes exhibit a high swimming efficiency and can serve as promising biomimetic nanorobotic devices for nanoscale biomedical applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Floppy swimming: viscous locomotion of actuated elastica.

    PubMed

    Lauga, Eric

    2007-04-01

    Actuating periodically an elastic filament in a viscous liquid generally breaks the constraints of Purcell's scallop theorem, resulting in the generation of a net propulsive force. This observation suggests a method to design simple swimming devices-which we call "elastic swimmers"-where the actuation mechanism is embedded in a solid body and the resulting swimmer is free to move. In this paper, we study theoretically the kinematics of elastic swimming. After discussing the basic physical picture of the phenomenon and the expected scaling relationships, we derive analytically the elastic swimming velocities in the limit of small actuation amplitude. The emphasis is on the coupling between the two unknowns of the problems-namely the shape of the elastic filament and the swimming kinematics-which have to be solved simultaneously. We then compute the performance of the resulting swimming device and its dependence on geometry. The optimal actuation frequency and body shapes are derived and a discussion of filament shapes and internal torques is presented. Swimming using multiple elastic filaments is discussed, and simple strategies are presented which result in straight swimming trajectories. Finally, we compare the performance of elastic swimming with that of swimming micro-organisms.

  7. Muscle function and swimming in sharks.

    PubMed

    Shadwick, R E; Goldbogen, J A

    2012-04-01

    The locomotor system in sharks has been investigated for many decades, starting with the earliest kinematic studies by Sir James Gray in the 1930s. Early work on axial muscle anatomy also included sharks, and the first demonstration of the functional significance of red and white muscle fibre types was made on spinal preparations in sharks. Nevertheless, studies on teleosts dominate the literature on fish swimming. The purpose of this article is to review the current knowledge of muscle function and swimming in sharks, by considering their morphological features related to swimming, the anatomy and physiology of the axial musculature, kinematics and muscle dynamics, and special features of warm-bodied lamnids. In addition, new data are presented on muscle activation in fast-starts. Finally, recent developments in tracking technology that provide insights into shark swimming performance in their natural environment are highlighted.

  8. Stroke Drills for Swimming Instructors.

    ERIC Educational Resources Information Center

    Cahill, Peter J.

    1982-01-01

    Stroke drills to be used by swimming instructors to teach four competitive swim strokes are described. The drills include: one arm swims; (2) alternative kicks; (3) fist swims; and (4) catch-up strokes. (JN)

  9. Stroke Drills for Swimming Instructors.

    ERIC Educational Resources Information Center

    Cahill, Peter J.

    1982-01-01

    Stroke drills to be used by swimming instructors to teach four competitive swim strokes are described. The drills include: one arm swims; (2) alternative kicks; (3) fist swims; and (4) catch-up strokes. (JN)

  10. An interspecific comparison between morphology and swimming performance in cyprinids.

    PubMed

    Yan, G-J; He, X-K; Cao, Z-D; Fu, S-J

    2013-08-01

    Flow regimes are believed to be of major evolutionary significance in fish. The flow regimes inhabited by cyprinids vary extensively from still flow regimes to riptide flow regimes. To test (i) whether flow-driven swimming performance and relevant morphological differentiation are present among fish species and (ii) whether evolutionary shifts between high-flow and low-flow habitats in cyprinids are associated with evolutionary trade-offs in locomotor performance, we obtained data on both steady and unsteady swimming performance and external body shape for 19 species of cyprinids that typically occur in different flow regimes (still, intermediate and riptide). We also measured the routine energy expenditure (RMR) and maximum metabolic rate (MMR) and calculated the optimal swimming speed. Our results showed that fish species from riptide groups tend to have a higher critical swimming speed (Ucrit ), maximum linear velocity (Vmax ) and fineness ratio (FR) than fish from the other two groups. However, there was no correlation between the reconstructed changes in the steady and unsteady swimming performance of the 19 species. According to the phylogenetically independent contrast (PIC) method, the Ucrit was actively correlated with the MMR. These results indicated that selection will favour both higher steady and unsteady swimming performance and a more streamlined body shape in environments with high water velocities. The results suggested that steady swimming performance was more sensitive to the flow regime and that for this reason, changes in body shape resulted more from selective pressure on steady swimming performance than on unsteady swimming performance. No evolutionary trade-off was observed between steady and unsteady swimming performance, although Ucrit and MMR were found to have coevolved. However, a further analysis within each typically occurring habitat group suggested that the trade-off that may exist between steady and unsteady swimming performance

  11. Teaching Infants to Swim.

    ERIC Educational Resources Information Center

    Barnett, Harvey

    1980-01-01

    The author discusses some of his experiences during the 13 years he has taught handicapped infants to swim. Lessons are usually given for a 10-minute period daily and progress is recorded on a swimming behavior chart. (PHR)

  12. Swimming pool granuloma

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/001357.htm Swimming pool granuloma To use the sharing features on this page, please enable JavaScript. A swimming pool granuloma is a long-term (chronic) skin ...

  13. Swimming pool cleaner poisoning

    MedlinePlus

    Swimming pool cleaner poisoning occurs when someone swallows this type of cleaner, touches it, or breathes in ... The harmful substances in swimming pool cleaner are: Bromine ... copper Chlorine Soda ash Sodium bicarbonate Various mild acids

  14. 2012 Swimming Season Factsheets

    EPA Pesticide Factsheets

    To help beachgoers make informed decisions about swimming at U.S. beaches, EPA annually publishes state-by-state data about beach closings and advisories for the previous year's swimming season. These fact sheets summarize that information by state.

  15. Swimming Pool Safety

    MedlinePlus

    ... closing/self-latching Window guards Pool alarms Swimming Lessons - Where We Stand Children need to learn to ... Some factors you may consider before starting swimming lessons for younger children include: Frequency of exposure to ...

  16. The antiviral defense mechanisms in mandarin fish induced by DNA vaccination against a rhabdovirus.

    PubMed

    Chen, Zhong-Yuan; Lei, Xiao-Ying; Zhang, Qi-Ya

    2012-06-15

    Plasmid DNAs containing Siniperca chuatsi rhabdovirus (SCRV) glycoprotein gene (pcDNA-G) and nucleoprotein gene (pcDNA-N) were constructed, and used to determine the antiviral immune response elicited by DNA vaccination in mandarin fish. In vitro and in vivo expression of the plasmid constructs was confirmed in transfected cells and muscle tissues of vaccinated fish by Western blot, indirect immunofluorescence or RT-PCR analysis. Fish injected with pcDNA-G exhibited protective effect against SCRV challenge with a relative percent survival (RPS) of 77.5%, but no significant protection (RPS of 2.5%) was observed in fish vaccinated with pcDNA-N. Immunohistochemical analysis showed that vaccination with pcDNA-G decreased histological lesions and suppressed the virus replication in fish target organs, e.g. kidney, liver, spleen, gill and heart. Transcriptional analysis further revealed that the expression levels of type I IFN system genes including interferon regulation factor-7 (IRF-7) gene, myxovirus resistance (Mx) gene and virus inhibitory protein (Viperin) gene were strongly up-regulated after injection with pcDNA-G, whereas the level of transcription of immunoglobulin M (IgM) gene did not show a statistically significant change. These results reveal that type I IFN antiviral immune response is rapidly triggered by the plasmid DNA containing rhabdovirus glycoprotein gene in fish, which offers an explanation of molecular mechanisms for DNA vaccination inducing mandarin fish resist to SCRV disease. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Evaluation of fish-injury mechanisms during exposure to a high-velocity jet

    SciTech Connect

    Guensch, Gregory R.; Mueller, Robert P.; McKinstry, Craig A.; Dauble, Dennis D.

    2002-11-01

    As part of the research supported by U.S. Department of Energy (DOE) Advanced Hydropower Turbine System (AHTS) Program, the Pacific Northwest National Laboratory (PNNL) conducted a study where age-0 and age-1 Chinook salmon, as well as several other types of fish, were released into a submerged water jet to quantify injuries caused by shear stresses and turbulence (Neitzel et al. 2000). The fish releases were videotaped. These videotape records were digitized and analyzed using new methods to identify the injury mechanisms and the stresses involved. Visible external injuries sustained by fish in this study generally occurred during the initial contact with the jet and not during the tumbling that occurred after the fish fully entered the turbulent flow. The inertial stresses of tumbling, however, may cause temporary or even permanent vestibular and neurological injuries. Such injuries can result in disorientation and loss of equilibrium, which are life threatening in the “natural” environment. Operculum injuries predominated at moderate water jet speeds (12 and 15 m/s). At the highest speed, eye, operculum, isthmus, and gill injuries were equally common, and disorientation was most common. Bruising and descaling were relatively rare, especially for age-0 fish. Age-0 fish were less susceptible than the larger age-1 fish to all visible injury types, especially at lower speeds.

  18. Comparison of structural, architectural and mechanical aspects of cellular and acellular bone in two teleost fish.

    PubMed

    Cohen, Liat; Dean, Mason; Shipov, Anna; Atkins, Ayelet; Monsonego-Ornan, Efrat; Shahar, Ron

    2012-06-01

    The histological diversity of the skeletal tissues of fishes is impressive compared with that of other vertebrate groups, yet our understanding of the functional consequences of this diversity is limited. In particular, although it has been known since the mid-1800s that a large number of fish species possess acellular bones, the mechanical advantages and consequences of this structural characteristic - and therefore the nature of the evolution of this feature - remain unclear. Although several studies have examined the material properties of fish bone, these have used a variety of techniques and there have been no direct contrasts of acellular and cellular bone. We report on a comparison of the structural and mechanical properties of the ribs and opercula between two freshwater fish - the common carp Cyprinus carpio (a fish with cellular bone) and the tilapia Oreochromis aureus (a fish with acellular bone). We used light microscopy to show that the bones in both fish species exhibit poor blood supply and possess discrete tissue zones, with visible layering suggesting differences in the underlying collagen architecture. We performed identical micromechanical testing protocols on samples of the two bone types to determine the mechanical properties of the bone material of opercula and ribs. Our data support the consensus of literature values, indicating that Young's moduli of cellular and acellular bones are in the same range, and lower than Young's moduli of the bones of mammals and birds. Despite these similarities in mechanical properties between the bone tissues of the fish species tested here, cellular bone had significantly lower mineral content than acellular bone; furthermore, the percentage ash content and bone mineral density values (derived from micro-CT scans) show that the bone of these fishes is less mineralized than amniote bone. Although we cannot generalize from our data to the numerous remaining teleost species, the results presented here suggest

  19. Feeding and swimming of flagellates

    NASA Astrophysics Data System (ADS)

    Doelger, Julia; Nielsen, Lasse Tor; Kiorboe, Thomas; Bohr, Tomas; Andersen, Anders

    2015-11-01

    Hydrodynamics plays a dominant role for small planktonic flagellates and shapes their survival strategies. The high diversity of beat patterns and arrangements of appendages indicates different strategies balancing the trade-offs between the general goals, i.e., energy-efficient swimming, feeding, and predator avoidance. One type of flagellated algae that we observe, are haptophytes, which possess two flagella for flow creation and one so-called haptonema, a long, rigid structure fixed on the cell body, which is used for prey capture. We present videos and flow fields obtained using velocimetry methods around freely swimming haptophytes and other flagellates, which we compare to analytical results obtained from point force models. The observed and modelled flows are used to analyse how different morphologies and beat patterns relate to different feeding or swimming strategies, such as the capture mechanism in haptophytes. The Centre for Ocean Life is a VKR center of excellence supported by the Villum foundation.

  20. Evolution of kin recognition mechanisms in a fish.

    PubMed

    Hain, Timothy J A; Garner, Shawn R; Ramnarine, Indar W; Neff, Bryan D

    2017-03-01

    Both selection and phylogenetic history can influence the evolution of phenotypic traits. Here we used recently characterized variation in kin recognition mechanisms among six guppy populations to explore the phylogenetic history of this trait. Guppies can use two different kin recognition mechanisms: either phenotype matching, in which individuals are identified based on comparison with a recognition template, or familiarity, in which individuals are remembered based on previous interactions. Across the six populations, we identified four transitions in recognition mechanism: phenotype matching evolved once and was subsequently lost in a single population, whereas familiarity evolved twice. Based on a molecular clock, these transitions occurred among populations that had diverged on a timescale of hundreds of thousands of years, which is two orders of magnitude faster than previously documented transitions in recognition mechanisms. A randomization test provided no evidence that recognition mechanisms were constrained by phylogeny, suggesting that recognition mechanisms have the capacity to evolve rapidly, although the specific selection pressures that may be contributing to variation in recognition mechanisms across populations remain unknown.

  1. Mechanisms driving recruitment variability in fish: comparisons between the Laurentian Great Lakes and marine systems

    USGS Publications Warehouse

    Pritt, Jeremy J.; Roseman, Edward F.; O'Brien, Timothy P.

    2014-01-01

    In his seminal work, Hjort (in Fluctuations in the great fisheries of Northern Europe. Conseil Parmanent International Pour L'Exploration De La Mar. Rapports et Proces-Verbaux, 20: 1–228, 1914) observed that fish population levels fluctuated widely, year-class strength was set early in life, and egg production by adults could not alone explain variability in year-class strength. These observations laid the foundation for hypotheses on mechanisms driving recruitment variability in marine systems. More recently, researchers have sought to explain year-class strength of important fish in the Laurentian Great Lakes and some of the hypotheses developed for marine fisheries have been transferred to Great Lakes fish. We conducted a literature review to determine the applicability of marine recruitment hypotheses to Great Lakes fish. We found that temperature, interspecific interactions, and spawner effects (abundance, age, and condition of adults) were the most important factors in explaining recruitment variability in Great Lakes fish, whereas relatively fewer studies identified bottom-up trophodynamic factors or hydrodynamic factors as important. Next, we compared recruitment between Great Lakes and Baltic Sea fish populations and found no statistical difference in factors driving recruitment between the two systems, indicating that recruitment hypotheses may often be transferable between Great Lakes and marine systems. Many recruitment hypotheses developed for marine fish have yet to be applied to Great Lakes fish. We suggest that future research on recruitment in the Great Lakes should focus on forecasting the effects of climate change and invasive species. Further, because the Great Lakes are smaller and more enclosed than marine systems, and have abundant fishery-independent data, they are excellent candidates for future hypothesis testing on recruitment in fish.

  2. Role of calcium ions on the removal of haloacetic acids from swimming pool water by nanofiltration: mechanisms and implications.

    PubMed

    Yang, Linyan; Zhou, Jin; She, Qianhong; Wan, Man Pun; Wang, Rong; Chang, Victor W-C; Tang, Chuyang Y

    2017-03-01

    We investigated the removal of haloacetic acids (HAAs) from swimming pool waters (SPWs) by two nanofiltration membranes NF270 and NF90. The strong matrix effect (particularly by Ca(2+)) on membrane rejection prompts us to systematically investigate the mechanistic role of Ca(2+) in HAA rejection. At typical SPW pH of 7.5, NF90 maintained consistently high rejection of HAAs (>95%) with little influence by Ca(2+), thanks to the dominance of size exclusion effect for this tight membrane (pore radius ∼ 0.31 nm). In contrast, the rejections of both inorganic ions (e.g., Na(+) and Cl(-)) and HAA anions were decreased at higher Ca(2+) concentration for NF270 (pore radius ∼ 0.40 nm). Further tests show that the rejection of neutral hydrophilic molecular probes and the membrane pore size were not affected by Ca(2+). Although Ca(2+) is unable to form strong complex with HAAs, we observed the binding of Ca(2+) to NF270 together with a reduction in its surface charge. Therefore, the formation of membrane-Ca(2+) complex, which weakens charge interaction effect, was responsible for the reduced HAA rejection. The current study reveals important mechanistic insights of the matrix effect on trace contaminant rejection, which is critical for a better understanding of their fate and removal in membrane-based treatment. Copyright © 2016. Published by Elsevier Ltd.

  3. The swim force as a body force

    NASA Astrophysics Data System (ADS)

    Yan, Wen; Brady, John

    2015-11-01

    Net (as opposed to random) motion of active matter results from an average swim (or propulsive) force. It is shown that the average swim force acts like a body force - an internal body force [Yan and Brady, Soft Matter, DOI:10.1039/C5SM01318F]. As a result, the particle-pressure exerted on a container wall is the sum of the swim pressure [Takatori et al., Phys. Rev. Lett., 2014, 113, 028103] and the `weight' of the active particles. A continuum mechanical description is possible when variations occur on scales larger than the run length of the active particles and gives a Boltzmann-like distribution from a balance of the swim force and the swim pressure. Active particles may also display `action at a distance' and accumulate adjacent to (or be depleted from) a boundary without any external forces. In the momentum balance for the suspension - the mixture of active particles plus fluid - only external body forces appear.

  4. Effects of feeding on the sustained swimming abilities of late-stage larval Amphiprion melanopus

    NASA Astrophysics Data System (ADS)

    Fisher, R.; Bellwood, D.

    2001-09-01

    To date, all sustained swimming experiments on tropical reef fish larvae have been conducted using unfed larvae. Such studies may produce unrealistic estimates of sustained swimming abilities. We examined the effect of food on the sustained swimming ability of late-stage Amphiprion melanopus. Larvae were swum in a six-channel swimming flume at 7 cm s-1, with "unfed" and "fed" channels. Fed channels had Artemia nauplii added four times per day for 10 min. Feeding larvae during swimming experiments significantly increased their average swimming distance from around 6.9 to 12.2 km, and the maximum swimming distance from around 11.8 to 28.7 km. Existing flume-based estimates of sustained swimming may be underestimating field abilities. With access to food, many larvae may have the potential to swim considerably greater distances than previously suggested.

  5. Optimization of Anguilliform Swimming

    NASA Astrophysics Data System (ADS)

    Kern, Stefan; Koumoutsakos, Petros

    2006-03-01

    Anguilliform swimming is investigated by 3D computer simulations coupling the dynamics of an undulating eel-like body with the surrounding viscous fluid flow. The body is self-propelled and, in contrast to previous computational studies of swimming, the motion pattern is not prescribed a priori but obtained by an evolutionary optimization procedure. Two different objective functions are used to characterize swimming efficiency and maximum swimming velocity with limited input power. The found optimal motion patterns represent two distinct swimming modes corresponding to migration, and burst swimming, respectively. The results support the hypothesis from observations of real animals that eels can modify their motion pattern generating wakes that reflect their propulsive mode. Unsteady drag and thrust production of the swimming body are thoroughly analyzed by recording the instantaneous fluid forces acting on partitions of the body surface.

  6. Limit cycle dynamics in swimming systems

    NASA Astrophysics Data System (ADS)

    Finkel, Cyndee; von Ellenrieder, Karl

    2013-11-01

    An experimental apparatus was constructed to model basic features expected in the flow about a freely swimming fish. A D-shaped cylinder is used to represent the body and an oscillating foil, the tail. The swimming system is suspended in a constant freestream flow. A closed loop PI controller is used to maintain a set point, stream-wise location. The system is released from multiple downstream and upstream locations and permitted to swim to the set point. The Strouhal number measured when the swimming system achieves a constant forward swimming speed is compared to values observed in nature. The results suggest that self-regulation passively selects the Strouhal number and that no other external sensory input is necessary for this to happen. This self-regulation is a result of a limit cycle process that stems from nonlinear periodic oscillations. Phase plane analyses are used to examine the synchronous conditions due to the coupling of the foil and wake vortices. It is shown that the phase locking indices depend on the Strouhal number and approach a frequency locking ratio of about 0 . 5 . The results suggest that Strouhal number selection in steady forward natural swimming is the result of a limit cycle process and not actively controlled by an organism.

  7. Use of Chemical Mixtures to Differentiate Mechanisms of Endocrine Action in a Small Fish Model

    EPA Science Inventory

    Various assays with adult fish have been developed to identify potential endocrine-disrupting chemicals (EDCs) which may cause toxicity via alterations in the hypothalamic-pituitary-gonadal (HPG) axis via different mechanisms/modes of action (MOA). These assays can be sensitive ...

  8. Use of Chemical Mixtures to Differentiate Mechanisms of Endocrine Action in a Small Fish Model

    EPA Science Inventory

    Antagonism of the androgen receptor (AR) is an environmentally-relevant mechanism through which the hypothalamic-pituitary-gonadal (HPG) axis of fish can be affected. However, there are few in vivo tests specific for the detection of chemicals that act as AR antagonists. In this ...

  9. Use of Chemical Mixtures to Differentiate Mechanisms of Endocrine Action in a Small Fish Model

    EPA Science Inventory

    Various assays with adult fish have been developed to identify potential endocrine-disrupting chemicals (EDCs) which may cause toxicity via alterations in the hypothalamic-pituitary-gonadal (HPG) axis via different mechanisms/modes of action (MOA). These assays can be sensitive ...

  10. Shape Optimization of Swimming Sheets

    SciTech Connect

    Wilkening, J.; Hosoi, A.E.

    2005-03-01

    The swimming behavior of a flexible sheet which moves by propagating deformation waves along its body was first studied by G. I. Taylor in 1951. In addition to being of theoretical interest, this problem serves as a useful model of the locomotion of gastropods and various micro-organisms. Although the mechanics of swimming via wave propagation has been studied extensively, relatively little work has been done to define or describe optimal swimming by this mechanism.We carry out this objective for a sheet that is separated from a rigid substrate by a thin film of viscous Newtonian fluid. Using a lubrication approximation to model the dynamics, we derive the relevant Euler-Lagrange equations to optimize swimming speed and efficiency. The optimization equations are solved numerically using two different schemes: a limited memory BFGS method that uses cubic splines to represent the wave profile, and a multi-shooting Runge-Kutta approach that uses the Levenberg-Marquardt method to vary the parameters of the equations until the constraints are satisfied. The former approach is less efficient but generalizes nicely to the non-lubrication setting. For each optimization problem we obtain a one parameter family of solutions that becomes singular in a self-similar fashion as the parameter approaches a critical value. We explore the validity of the lubrication approximation near this singular limit by monitoring higher order corrections to the zeroth order theory and by comparing the results with finite element solutions of the full Stokes equations.

  11. The hydrodynamics of swimming microorganisms

    NASA Astrophysics Data System (ADS)

    Lauga, Eric; Powers, Thomas R.

    2009-09-01

    Cell motility in viscous fluids is ubiquitous and affects many biological processes, including reproduction, infection and the marine life ecosystem. Here we review the biophysical and mechanical principles of locomotion at the small scales relevant to cell swimming, tens of micrometers and below. At this scale, inertia is unimportant and the Reynolds number is small. Our emphasis is on the simple physical picture and fundamental flow physics phenomena in this regime. We first give a brief overview of the mechanisms for swimming motility, and of the basic properties of flows at low Reynolds number, paying special attention to aspects most relevant for swimming such as resistance matrices for solid bodies, flow singularities and kinematic requirements for net translation. Then we review classical theoretical work on cell motility, in particular early calculations of swimming kinematics with prescribed stroke and the application of resistive force theory and slender-body theory to flagellar locomotion. After examining the physical means by which flagella are actuated, we outline areas of active research, including hydrodynamic interactions, biological locomotion in complex fluids, the design of small-scale artificial swimmers and the optimization of locomotion strategies.

  12. Escaping Flatland: three-dimensional kinematics and hydrodynamics of median fins in fishes.

    PubMed

    Tytell, Eric D; Standen, Emily M; Lauder, George V

    2008-01-01

    Fish swimming has often been simplified into the motions of a two-dimensional slice through the horizontal midline, as though fishes live in a flat world devoid of a third dimension. While fish bodies do undulate primarily horizontally, this motion has important three-dimensional components, and fish fins can move in a complex three-dimensional manner. Recent results suggest that an understanding of the three-dimensional body shape and fin motions is vital for explaining the mechanics of swimming, and that two-dimensional representations of fish locomotion are misleading. In this study, we first examine axial swimming from the two-dimensional viewpoint, detailing the limitations of this view. Then we present data on the kinematics and hydrodynamics of the dorsal fin, the anal fin and the caudal fin during steady swimming and maneuvering in brook trout, Salvelinus fontinalis, bluegill sunfish, Lepomis macrochirus, and yellow perch, Perca flavescens. These fishes actively move the dorsal and anal fins during swimming, resulting in curvature along both anterio-posterior and dorso-ventral axes. The momentum imparted to the fluid by these fins comprises a substantial portion of total swimming force, adding to thrust and contributing to roll stability. While swimming, the caudal fin also actively curves dorso-ventrally, producing vortices separately from both its upper and lower lobes. This functional separation of the lobes may allow additional control of three-dimensional orientation, but probably reduces swimming efficiency. In contrast, fish may boost the caudal fin's efficiency by taking advantage of the flow from the dorsal and anal fins as it interacts with the flow around the caudal fin itself. During maneuvering, fish readily use their fins outside of the normal planes of motion. For example, the dorsal fin can flick laterally, orienting its surface perpendicular to the body, to help in turning and braking. These data demonstrate that, while fish do move

  13. Energetics of median and paired fin swimming, body and caudal fin swimming, and gait transition in parrotfish (Scarus schlegeli) and triggerfish (Rhinecanthus aculeatus).

    PubMed

    Korsmeyer, Keith E; Steffensen, John Fleng; Herskin, Jannik

    2002-05-01

    To determine the energetic costs of rigid-body, median or paired-fin (MPF) swimming versus undulatory, body-caudal fin (BCF) swimming, we measured oxygen consumption as a function of swimming speed in two MPF swimming specialists, Schlegel's parrotfish and Picasso triggerfish. The parrotfish swam exclusively with the pectoral fins at prolonged swimming speeds up to 3.2 total lengths per second (L s(-1); 30 min critical swimming speed, U(crit)). At higher speeds, gait transferred to a burst-and-coast BCF swimming mode that resulted in rapid fatigue. The triggerfish swam using undulations of the soft dorsal and anal fins up to 1.5 L s(-1), beyond which BCF undulations were recruited intermittently. BCF swimming was used continuously above 3.5 L s(-1), and was accompanied by synchronous undulations of the dorsal and anal fins. The triggerfish were capable of high, prolonged swimming speeds of up to 4.1 L s(-1) (30 min U(crit)). In both species, the rates of increase in oxygen consumption with swimming speed were higher during BCF swimming than during rigid-body MPF swimming. Our results indicate that, for these species, undulatory swimming is energetically more costly than rigid-body swimming, and therefore support the hypothesis that MPF swimming is more efficient. In addition, use of the BCF gait at higher swimming speed increased the cost of transport in both species beyond that predicted for MPF swimming at the same speeds. This suggests that, unlike for terrestrial locomotion, gait transition in fishes does not occur to reduce energetic costs, but to increase recruitable muscle mass and propulsive surfaces. The appropriate use of the power and exponential functions to model swimming energetics is also discussed.

  14. Cetacean Swimming with Prosthetic Limbs

    NASA Astrophysics Data System (ADS)

    Bode-Oke, Ayodeji; Ren, Yan; Dong, Haibo; Fish, Frank

    2016-11-01

    During entanglement in fishing gear, dolphins can suffer abrasions and amputations of flukes and fins. As a result, if the dolphin survives the ordeal, swimming performance is altered. Current rehabilitation technques is the use of prosthesis to regain swimming ability. In this work, analyses are focused on two dolphins with locomotive impairment; Winter (currently living in Clearwater Marine Aquarium in Florida) and Fuji (lived in Okinawa Churaumi Aquarium in Japan). Fuji lost about 75% of its fluke surface to necrosis (death of cells) and Winter lost its tail due to amputation. Both dolphins are aided by prosthetic tails that mimic the shape of a real dolphin tail. Using 3D surface reconstruction techniques and a high fidelity Computational Fluid Dynamics (CFD) flow solver, we were able to elucidate the kinematics and hydrodynamics and fluke deformation of these swimmers to clarify the effectiveness of prostheses in helping the dolphins regain their swimming ability. Associated with the performance, we identified distinct features in the wake structures that can explain this gap in the performance compared to a healthy dolphin. This work was supported by ONR MURI Grant Number N00014-14-1-0533.

  15. Effects of sustained swimming on the red and white muscle transcriptome of rainbow trout (Oncorhynchus mykiss) fed a carbohydrate-rich diet.

    PubMed

    Magnoni, Leonardo J; Crespo, Diego; Ibarz, Antoni; Blasco, Josefina; Fernández-Borràs, Jaume; Planas, Josep V

    2013-11-01

    Training at sustainable swimming speeds can produce changes in fish skeletal muscle that are important for aquaculture due to their growth-potentiating effects. Such changes may be even more relevant when fish are fed diets containing an increasing proportion of carbohydrates as an energy source. We evaluated the effects of moderate-intensity sustained swimming on the transcriptomic response of red and white muscle in rainbow trout fed a carbohydrate-rich diet using microarray and qPCR. Analysis of the red and white muscle transcriptome in resting or swimming (1.3 body lengths/s) fish for 30days revealed significant changes in the expression of a large number of genes (395 and 597, respectively), with a total of 218 differentially expressed genes (DEGs) common for both muscles. A large number of the genes involved in glucose use and energy generation, contraction, development, synthesis and catabolism of proteins were up-regulated in red and white muscle. Additionally, DEGs in both muscles were involved in processes of defense response and apoptosis. Skeletal muscle contraction activates a transcriptional program required for the successful adaptation of both muscles to the changing demands imposed by swimming conditions. Future studies should further clarify the mechanisms involved in the adaptation of both tissues to exercise and assess possible benefits of such conditions for cultured fish.

  16. Dead fish swimming: a review of research on the early migration and high premature mortality in adult Fraser River sockeye salmon Oncorhynchus nerka.

    PubMed

    Hinch, S G; Cooke, S J; Farrell, A P; Miller, K M; Lapointe, M; Patterson, D A

    2012-07-01

    Adult sockeye salmon Oncorhynchus nerka destined for the Fraser River, British Columbia are some of the most economically important populations but changes in the timing of their homeward migration have led to management challenges and conservation concerns. After a directed migration from the open ocean to the coast, this group historically would mill just off shore for 3-6 weeks prior to migrating up the Fraser River. This milling behaviour changed abruptly in 1995 and thereafter, decreasing to only a few days in some years (termed early migration), with dramatic consequences that have necessitated risk-averse management strategies. Early migrating fish consistently suffer extremely high mortality (exceeding 90% in some years) during freshwater migration and on spawning grounds prior to spawning. This synthesis examines multidisciplinary, collaborative research aimed at understanding what triggers early migration, why it results in high mortality, and how fisheries managers can utilize these scientific results. Tissue analyses from thousands of O. nerka captured along their migration trajectory from ocean to spawning grounds, including hundreds that were tracked with biotelemetry, have revealed that early migrants are more reproductively advanced and ill-prepared for osmoregulatory transition upon their entry into fresh water. Gene array profiles indicate that many early migrants are also immunocompromised and stressed, carrying a genomic profile consistent with a viral infection. The causes of these physiological changes are still under investigation. Early migration brings O. nerka into the river when it is 3-6° C warmer than historical norms, which for some late-run populations approaches or exceeds their critical maxima leading to the collapse of metabolic and cardiac scope, and mortality. As peak spawning dates have not changed, the surviving early migrants tend to mill in warm lakes near to spawning areas. These results in the accumulation of many more

  17. Upward swimming of a sperm cell in shear flow

    NASA Astrophysics Data System (ADS)

    Omori, Toshihiro; Ishikawa, Takuji

    2016-03-01

    Mammalian sperm cells are required to swim over long distances, typically around 1000-fold their own length. They must orient themselves and maintain a swimming motion to reach the ovum, or egg cell. Although the mechanism of long-distance navigation is still unclear, one possible mechanism, rheotaxis, was reported recently. This work investigates the mechanism of the rheotaxis in detail by simulating the motions of a sperm cell in shear flow adjacent to a flat surface. A phase diagram was developed to show the sperm's swimming motion under different shear rates, and for varying flagellum waveform conditions. The results showed that, under shear flow, the sperm is able to hydrodynamically change its swimming direction, allowing it to swim upwards against the flow, which suggests that the upward swimming of sperm cells can be explained using fluid mechanics, and this can then be used to further understand physiology of sperm cell navigation.

  18. Swimming bacteria in liquid crystal

    NASA Astrophysics Data System (ADS)

    Sokolov, Andrey; Zhou, Shuang; Aranson, Igor; Lavrentovich, Oleg

    2014-03-01

    Dynamics of swimming bacteria can be very complex due to the interaction between the bacteria and the fluid, especially when the suspending fluid is non-Newtonian. Placement of swimming bacteria in lyotropic liquid crystal produces a new class of active materials by combining features of two seemingly incompatible constituents: self-propelled live bacteria and ordered liquid crystals. Here we present fundamentally new phenomena caused by the coupling between direction of bacterial swimming, bacteria-triggered flows and director orientations. Locomotion of bacteria may locally reduce the degree of order in liquid crystal or even trigger nematic-isotropic phase transition. Microscopic flows generated by bacterial flagella disturb director orientation. Emerged birefringence patterns allow direct optical observation and quantitative characterization of flagella dynamics. At high concentration of bacteria we observed the emergence of self-organized periodic texture caused by bacteria swimming. Our work sheds new light on self-organization in hybrid bio-mechanical systems and can lead to valuable biomedical applications. Was supported by the US DOE, Office of Basic Energy Sciences, Division of Materials Science and Engineering, under the Contract No. DE AC02-06CH11357.

  19. Swimming and the heart.

    PubMed

    Lazar, Jason M; Khanna, Neel; Chesler, Roseann; Salciccioli, Louis

    2013-09-20

    Exercise training is accepted to be beneficial in lowering morbidity and mortality in patients with cardiac disease. Swimming is a popular recreational activity, gaining recognition as an effective option in maintaining and improving cardiovascular fitness. Swimming is a unique form of exercise, differing from land-based exercises such as running in many aspects including medium, position, breathing pattern, and the muscle groups used. Water immersion places compressive forces on the body with resulting physiologic effects. We reviewed the physiologic effects and cardiovascular responses to swimming, the cardiac adaptations to swim training, swimming as a cardiac disease risk factor modifier, and the effects of swimming in those with cardiac disease conditions such as coronary artery disease, congestive heart failure and the long-QT syndrome.

  20. The mechanism by which fish antifreeze proteins cause thermal hysteresis.

    PubMed

    Kristiansen, Erlend; Zachariassen, Karl Erik

    2005-12-01

    Antifreeze proteins are characterised by their ability to prevent ice from growing upon cooling below the bulk melting point. This displacement of the freezing temperature of ice is limited and at a sufficiently low temperature a rapid ice growth takes place. The separation of the melting and freezing temperature is usually referred to as thermal hysteresis, and the temperature of ice growth is referred to as the hysteresis freezing point. The hysteresis is supposed to be the result of an adsorption of antifreeze proteins to the crystal surface. This causes the ice to grow as convex surface regions between adjacent adsorbed antifreeze proteins, thus lowering the temperature at which the crystal can visibly expand. The model requires that the antifreeze proteins are irreversibly adsorbed onto the ice surface within the hysteresis gap. This presupposition is apparently in conflict with several characteristic features of the phenomenon; the absence of superheating of ice in the presence of antifreeze proteins, the dependence of the hysteresis activity on the concentration of antifreeze proteins and the different capacities of different types of antifreeze proteins to cause thermal hysteresis at equimolar concentrations. In addition, there are structural obstacles that apparently would preclude irreversible adsorption of the antifreeze proteins to the ice surface; the bond strength necessary for irreversible adsorption and the absence of a clearly defined surface to which the antifreeze proteins may adsorb. This article deals with these apparent conflicts between the prevailing theory and the empirical observations. We first review the mechanism of thermal hysteresis with some modifications: we explain the hysteresis as a result of vapour pressure equilibrium between the ice surface and the ambient fluid fraction within the hysteresis gap due to a pressure build-up within the convex growth zones, and the ice growth as the result of an ice surface nucleation event at

  1. Applied physiology of swimming.

    PubMed

    Lavoie, J M; Montpetit, R R

    1986-01-01

    Scientific research in swimming over the past 10 to 15 years has been oriented toward multiple aspects that relate to applied and basic physiology, metabolism, biochemistry, and endocrinology. This review considers recent findings on: 1) specific physical characteristics of swimmers; 2) the energetics of swimming; 3) the evaluation of aerobic fitness in swimming; and 4) some metabolic and hormonal aspects related to swimmers. Firstly, the age of finalists in Olympic swimming is not much different from that of the participants from other sports. They are taller and heavier than a reference population of the same age. The height bias in swimming may be the reason for lack of success from some Asian and African countries. Experimental data point toward greater leanness, particularly in female swimmers, than was seen 10 years ago. Overall, female swimmers present a range of 14 to 19% body fat whereas males are much lower (5 to 10%). Secondly, the relationship between O2 uptake and crawl swimming velocity (at training and competitive speeds) is thought to be linear. The energy cost varies between strokes with a dichotomy between the 2 symmetrical and the 2 asymmetrical strokes. Energy expenditure in swimming is represented by the sum of the cost of translational motion (drag) and maintenance of horizontal motion (gravity). The cost of the latter decreases as speed increases. Examination of the question of size-associated effects on the cost of swimming using Huxley's allometric equation (Y = axb) shows an almost direct relationship with passive drag. Expressing energy cost in litres of O2/m/kg is proposed as a better index of technical swimming ability than the traditional expression of VO2/distance in L/km. Thirdly, maximal direct conventional techniques used to evaluate maximal oxygen consumption (VO2 max) in swimming include free swimming, tethered swimming, and flume swimming. Despite the individual peculiarities of each method, with similar experimental conditions

  2. Pigment patterns in adult fish result from superimposition of two largely independent pigmentation mechanisms.

    PubMed

    Ceinos, Rosa M; Guillot, Raúl; Kelsh, Robert N; Cerdá-Reverter, José M; Rotllant, Josep

    2015-03-01

    Dorso-ventral pigment pattern differences are the most widespread pigmentary adaptations in vertebrates. In mammals, this pattern is controlled by regulating melanin chemistry in melanocytes using a protein, agouti-signalling peptide (ASIP). In fish, studies of pigment patterning have focused on stripe formation, identifying a core striping mechanism dependent upon interactions between different pigment cell types. In contrast, mechanisms driving the dorso-ventral countershading pattern have been overlooked. Here, we demonstrate that, in fact, zebrafish utilize two distinct adult pigment patterning mechanisms - an ancient dorso-ventral patterning mechanism, and a more recent striping mechanism based on cell-cell interactions; remarkably, the dorso-ventral patterning mechanism also utilizes ASIP. These two mechanisms function largely independently, with resultant patterns superimposed to give the full pattern.

  3. Fish under exercise.

    PubMed

    Palstra, Arjan P; Planas, Josep V

    2011-06-01

    Improved knowledge on the swimming physiology of fish and its application to fisheries science and aquaculture (i.e., farming a fitter fish) is currently needed in the face of global environmental changes, high fishing pressures, increased aquaculture production as well as increased concern on fish well-being. Here, we review existing data on teleost fish that indicate that sustained exercise at optimal speeds enhances muscle growth and has consequences for flesh quality. Potential added benefits of sustained exercise may be delay of ovarian development and stimulation of immune status. Exercise could represent a natural, noninvasive, and economical approach to improve growth, flesh quality as well as welfare of aquacultured fish: a FitFish for a healthy consumer. All these issues are important for setting directions for policy decisions and future studies in this area. For this purpose, the FitFish workshop on the Swimming Physiology of Fish ( http://www.ub.edu/fitfish2010 ) was organized to bring together a multidisciplinary group of scientists using exercise models, industrial partners, and policy makers. Sixteen international experts from Europe, North America, and Japan were invited to present their work and view on migration of fishes in their natural environment, beneficial effects of exercise, and applications for sustainable aquaculture. Eighty-eight participants from 19 different countries contributed through a poster session and round table discussion. Eight papers from invited speakers at the workshop have been contributed to this special issue on The Swimming Physiology of Fish.

  4. Effect of temperature on swimming performance of juvenile Schizothorax prenanti.

    PubMed

    Cai, Lu; Liu, Guoyong; Taupier, Rachel; Fang, Min; Johnson, David; Tu, Zhiying; Huang, Yingping

    2014-04-01

    The migration of Schizothorax prenanti, an ecologically important and commercially valuable species, is impeded by dams. Effective fishways would contribute to conservation of wild populations, and swimming performance data are necessary for fishway design. The swimming performance of S. prenanti was investigated at four temperatures (15, 19, 23, 27 °C), and numerical models were used to characterize the effect of temperature on swimming performance. As temperature increases, critical swimming speed (U crit) increases from 15 to 23 °C and then decreases significantly. The highest U crit (7.71 BL/s) occurs at 24 °C, as estimated by interpolation. Swimming efficiency was similar from 19 to 23 °C, but decreases significantly at 27 °C. The temperature range 15-23 °C is suitable for S. prenanti. However, the excess post-exercise oxygen consumption values of Q 10 for the four temperature increments indicate that 19-23 °C is the optimal range for swimming performance. Maximum tail beat amplitude increased >25 % (0.35-0.45 BL) over the temperature range considered, but variation of tail beat frequency was erratic. White muscle fiber begins to contribute to swimming at swimming speeds ~40 % U crit at the lower three temperatures, but increases to almost 60 % at 27 °C, and the contribution is relatively small. The results of this investigation advance the knowledge of fish metabolism while swimming provides data critical for fishway design.

  5. Thermal activation of escape swimming in post-hatching Xenopus laevis frog larvae

    PubMed Central

    Sillar, Keith T.; Robertson, R. Meldrum

    2009-01-01

    Summary Survival requires the selection of appropriate behavioural responses in the face of danger. With respect to the threat of predation, both the decision to escape and the underlying neuronal mechanisms have been extensively studied, but processes that trigger evasion of abiotic stressors, which are potentially hazardous to survival, are less well understood. Here, we document the interplay between rhythmic locomotory and `C-start' escape swimming in Xenopus frog larvae when exposed to hyperthermic conditions. As temperature rises, swim cycle frequency increases while swim bout duration decreases, until swimming can no longer be initiated by sensory stimuli. Above a critical higher temperature, more intense sequences of spontaneous high amplitude C-start escape activity occur. Each C-start is followed by a few cycles of fast rhythmic swimming in which activity alternates between the two sides. The initial, high amplitude ventral root burst of an escape sequence propagates rostrocaudally approximately threefold faster than subsequent cycles. The high conduction velocity of this initial burst is consistent with the activation of a Mauthner neuron, one of a pair of giant reticulospinal neurons in fish and amphibians. In support of the involvement of a Mauthner neuron, unilateral lesions of the caudal hindbrain eliminated escape activity on the operated side, but activity remained on the un-operated side. Behaviourally, tadpoles responded to temperature ramps with a sequence of C-start responses in which the body arced through ∼130° in 22 ms, followed by high frequency swimming. These results suggest that high temperature activates the Mauthner neurons to trigger C-start escape behaviour. PMID:19617428

  6. Ion regulation in fish gills: recent progress in the cellular and molecular mechanisms.

    PubMed

    Hwang, Pung-Pung; Lee, Tsung-Han; Lin, Li-Yih

    2011-07-01

    Fish encounter harsh ionic/osmotic gradients on their aquatic environments, and the mechanisms through which they maintain internal homeostasis are more challenging compared with those of terrestrial vertebrates. Gills are one of the major organs conducting the internal ionic and acid-base regulation, with specialized ionocytes as the major cells carrying out active transport of ions. Exploring the iono/osmoregulatory mechanisms in fish gills, extensive literature proposed several models, with many conflicting or unsolved issues. Recent studies emerged, shedding light on these issues with new opened windows on other aspects, on account of available advanced molecular/cellular physiological approaches and animal models. Respective types of ionocytes and ion transporters, and the relevant regulators for the mechanisms of NaCl secretion, Na(+) uptake/acid secretion/NH(4)(+) excretion, Ca(2+) uptake, and Cl(-) uptake/base secretion, were identified and functionally characterized. These new ideas broadened our understanding of the molecular/cellular mechanisms behind the functional modification/regulation of fish gill ion transport during acute and long-term acclimation to environmental challenges. Moreover, a model for the systematic and local carbohydrate energy supply to gill ionocytes during these acclimation processes was also proposed. These provide powerful platforms to precisely study transport pathways and functional regulation of specific ions, transporters, and ionocytes; however, very few model species were established so far, whereas more efforts are needed in other species.

  7. Biomimetic and bio-inspired robotics in electric fish research.

    PubMed

    Neveln, Izaak D; Bai, Yang; Snyder, James B; Solberg, James R; Curet, Oscar M; Lynch, Kevin M; MacIver, Malcolm A

    2013-07-01

    Weakly electric knifefish have intrigued both biologists and engineers for decades with their unique electrosensory system and agile swimming mechanics. Study of these fish has resulted in models that illuminate the principles behind their electrosensory system and unique swimming abilities. These models have uncovered the mechanisms by which knifefish generate thrust for swimming forward and backward, hovering, and heaving dorsally using a ventral elongated median fin. Engineered active electrosensory models inspired by electric fish allow for close-range sensing in turbid waters where other sensing modalities fail. Artificial electrosense is capable of aiding navigation, detection and discrimination of objects, and mapping the environment, all tasks for which the fish use electrosense extensively. While robotic ribbon fin and artificial electrosense research has been pursued separately to reduce complications that arise when they are combined, electric fish have succeeded in their ecological niche through close coupling of their sensing and mechanical systems. Future integration of electrosense and ribbon fin technology into a knifefish robot should likewise result in a vehicle capable of navigating complex 3D geometries unreachable with current underwater vehicles, as well as provide insights into how to design mobile robots that integrate high bandwidth sensing with highly responsive multidirectional movement.

  8. Volumetric flow around a swimming lamprey

    NASA Astrophysics Data System (ADS)

    Lehn, Andrea M.; Colin, Sean P.; Costello, John H.; Leftwich, Megan C.; Tytell, Eric D.

    2015-11-01

    A primary experimental technique for studying fluid-structure interactions around swimming fish has been planar dimensional particle image velocimetry (PIV). Typically, two components of the velocity vector are measured in a plane, in the case of swimming studies, directly behind the animal. While useful, this approach provides little to no insight about fluid structure interactions above and below the fish. For fish with a small height relative to body length, such as the long and approximately cylindrical lamprey, 3D information is essential to characterize how these fish interact with their fluid environment. This study presents 3D flow structures along the body and in the wake of larval lamprey, P etromyzon m arinus , which are 10-15 cm long. Lamprey swim through a 1000 cm3 field of view in a standard 10 gallon tank illuminated by a green laser. Data are collected using the three component velocimeter V3V system by TSI, Inc. and processed using Insight 4G software. This study expands on previous works that show two pairs of vortices each tail beat in the mid-plane of the lamprey wake. NSF DMS 1062052.

  9. Swimming performance of biomimetic trapezoidal elastic fins

    NASA Astrophysics Data System (ADS)

    Spadaro, Michael; Yeh, Peter; Alexeev, Alexander

    2016-11-01

    Using three-dimensional computer simulations, we probe the biomimetic free-swimming of trapezoidal elastic plates plunging sinusoidally in a viscous fluid, varying the frequency of oscillations and plate geometry. We choose the elastic trapezoidal plate geometry because it more closely approximates the shape of real caudal fish fins. Indeed, caudal fins are found in nature in a variety of trapezoidal shapes with different aspect ratios. Because of this, we perform our simulations using plates with aspect ratios varying from the cases where the plate has a longer leading edge and to plates with a longer trailing edge. We find that the trapezoidal fins with the longer trailing edge are less efficient than the rectangular fins at the equivalent oscillation frequencies. This is surprising because many fish found in nature have a widening tail. We relate this to the fact that our model considers fins with uniform thickness whereas fish uses tapered fins. Our results will be useful for the design of biomimetic swimming devices as well as understanding more closely the physics of fish swimming.

  10. Undulatory locomotion of flexible foils as biomimetic models for understanding fish propulsion.

    PubMed

    Shelton, Ryan M; Thornycroft, Patrick J M; Lauder, George V

    2014-06-15

    An undulatory pattern of body bending in which waves pass along the body from head to tail is a major mechanism of creating thrust in many fish species during steady locomotion. Analyses of live fish swimming have provided the foundation of our current understanding of undulatory locomotion, but our inability to experimentally manipulate key variables such as body length, flexural stiffness and tailbeat frequency in freely swimming fish has limited our ability to investigate a number of important features of undulatory propulsion. In this paper we use a mechanical flapping apparatus to create an undulatory wave in swimming flexible foils driven with a heave motion at their leading edge, and compare this motion with body bending patterns of bluegill sunfish (Lepomis macrochirus) and clown knifefish (Notopterus chitala). We found similar swimming speeds, Reynolds and Strouhal numbers, and patterns of curvature and shape between these fish and foils, suggesting that flexible foils provide a useful model for understanding fish undulatory locomotion. We swam foils with different lengths, stiffnesses and heave frequencies while measuring forces, torques and hydrodynamics. From measured forces and torques we calculated thrust and power coefficients, work and cost of transport for each foil. We found that increasing frequency and stiffness produced faster swimming speeds and more thrust. Increasing length had minimal impact on swimming speed, but had a large impact on Strouhal number, thrust coefficient and cost of transport. Foils that were both stiff and long had the lowest cost of transport (in mJ m(-1) g(-1)) at low cycle frequencies, and the ability to reach the highest speed at high cycle frequencies. © 2014. Published by The Company of Biologists Ltd.

  11. Sound production mechanism in carapid fish: first example with a slow sonic muscle.

    PubMed

    Parmentier, Eric; Lagardère, Jean-Paul; Braquegnier, Jean-Baptiste; Vandewalle, Pierre; Fine, Michael L

    2006-08-01

    Fish sonic swimbladder muscles are the fastest muscles in vertebrates and have fibers with numerous biochemical and structural adaptations for speed. Carapid fishes produce sounds with a complex swimbladder mechanism, including skeletal components and extrinsic sonic muscle fibers with an exceptional helical myofibrillar structure. To study this system we stimulated the sonic muscles, described their insertion and action and generated sounds by slowly pulling the sonic muscles. We find the sonic muscles contract slowly, pulling the anterior bladder and thereby stretching a thin fenestra. Sound is generated when the tension trips a release system that causes the fenestra to snap back to its resting position. The sound frequency does not correspond to the calculated resonant frequency of the bladder, and we hypothesize that it is determined by the snapping fenestra interacting with an overlying bony swimbladder plate. To our knowledge this tension release mechanism is unique in animal sound generation.

  12. Use of Gallic Acid to Enhance the Antioxidant and Mechanical Properties of Active Fish Gelatin Film.

    PubMed

    Limpisophon, Kanokrat; Schleining, Gerhard

    2017-01-01

    This study explores the potential roles of gallic acid in fish gelatin film for improving mechanical properties, UV barrier, and providing antioxidant activities. Glycerol, a common used plasticizer, also impacts on mechanical properties of the film. A factorial design was used to investigate the effects of gallic acid and glycerol concentrations on antioxidant activities and mechanical properties of fish gelatin film. Increasing the amount of gallic acid increased the antioxidant capacities of the film measured by radical scavenging assay and the ferric reducing ability of plasma assay. The released antioxidant power of gallic acid from the film was not reduced by glycerol. The presence of gallic acid not only increased the antioxidant capacity of the film, but also increased the tensile strength, elongation at break, and reduced UV absorption due to interaction between gallic acid and protein by hydrogen bonding. Glycerol did not affect the antioxidant capacities of the film, but increased the elasticity of the films. Overall, this study revealed that gallic acid entrapped in the fish gelatin film provided antioxidant activities and improved film characteristics, namely UV barrier, strength, and elasticity of the film. © 2016 Institute of Food Technologists®.

  13. Effect of chemical composition and microstructure on the mechanical behavior of fish scales from Megalops Atlanticus.

    PubMed

    Gil-Duran, S; Arola, D; Ossa, E A

    2016-03-01

    This paper presents an experimental study of the composition, microstructure and mechanical behavior of scales from the Megalops Atlanticus (Atlantic tarpon). The microstructure and composition were evaluated by Scanning Electron Microscopy (SEM) and RAMAN spectroscopy, respectively. The mechanical properties were evaluated in uniaxial tension as a function of position along the length of the fish (head, mid-length and tail). Results showed that the scales are composed of collagen and hydroxyapatite, and these constituents are distributed within three well-defined layers from the bottom to the top of the scale. The proportion of these layers with respect to the total scale thickness varies radially. The collagen fibers are arranged in plies with different orientations and with preferred orientation in the longitudinal direction of the fish. Results from the tensile tests showed that scales from Megalops Atlanticus exhibit variations in the elastic modulus as a function of body position. Additional testing performed with and without the highly mineralized top layers of the scale revealed that the mechanical behavior is anisotropic and that the highest strength was exhibited along the fish length. Furthermore, removing the top mineralized layers resulted in an increase in the tensile strength of the scale. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Teach Your Child Swimming.

    ERIC Educational Resources Information Center

    Gorton, B.E.

    This illustrated guide provides basic knowledge that will enable parents to teach their children to swim, starting from the first visit to the pool up to the development of higher water skills. All the main swimming strokes are dealt with, and the appropriate teaching stages are described. The teaching of starts and turns for each stroke and other…

  15. Teaching Swimming Effectively.

    ERIC Educational Resources Information Center

    Larrabee, Jean G.

    A step-by-step sequential plan is offered for developing a successful competitive swimming season, including how to teach swimming strokes and organize practices. Various strokes are analyzed, and coaching check points are offered along with practice drills, helpful hints on proper body positioning, arm strokes, kicking patterns, breathing…

  16. Teaching Swimming Effectively.

    ERIC Educational Resources Information Center

    Larrabee, Jean G.

    A step-by-step sequential plan is offered for developing a successful competitive swimming season, including how to teach swimming strokes and organize practices. Various strokes are analyzed, and coaching check points are offered along with practice drills, helpful hints on proper body positioning, arm strokes, kicking patterns, breathing…

  17. Elastic swimming I: Optimization

    NASA Astrophysics Data System (ADS)

    Lauga, Eric; Yu, Tony; Hosoi, Anette

    2006-03-01

    We consider the problem of swimming at low Reynolds number by oscillating an elastic filament in a viscous liquid, as investigated by Wiggins and Goldstein (1998, Phys Rev Lett). In this first part of the study, we characterize the optimal forcing conditions of the swimming strategy and its optimal geometrical characteristics.

  18. Propulsive efficiency of frog swimming with different feet and swimming patterns

    PubMed Central

    Jizhuang, Fan; Wei, Zhang; Bowen, Yuan; Gangfeng, Liu

    2017-01-01

    ABSTRACT Aquatic and terrestrial animals have different swimming performances and mechanical efficiencies based on their different swimming methods. To explore propulsion in swimming frogs, this study calculated mechanical efficiencies based on data describing aquatic and terrestrial webbed-foot shapes and swimming patterns. First, a simplified frog model and dynamic equation were established, and hydrodynamic forces on the foot were computed according to computational fluid dynamic calculations. Then, a two-link mechanism was used to stand in for the diverse and complicated hind legs found in different frog species, in order to simplify the input work calculation. Joint torques were derived based on the virtual work principle to compute the efficiency of foot propulsion. Finally, two feet and swimming patterns were combined to compute propulsive efficiency. The aquatic frog demonstrated a propulsive efficiency (43.11%) between those of drag-based and lift-based propulsions, while the terrestrial frog efficiency (29.58%) fell within the range of drag-based propulsion. The results illustrate the main factor of swimming patterns for swimming performance and efficiency. PMID:28302669

  19. Field swimming behavior in largemouth bass deviates from predictions based on economy and propulsive efficiency.

    PubMed

    Han, Angela X; Berlin, Caroline; Ellerby, David J

    2017-09-15

    Locomotion is energetically expensive. This may create selection pressures that favor economical locomotor strategies, such as the adoption of low-cost speeds and efficient propulsive movements. For swimming fish, the energy expended to travel a unit distance, or cost of transport (COT), has a U-shaped relationship to speed. The relationship between propulsive kinematics and speed, summarized by the Strouhal number (St=fA/U, where f is tail beat frequency, A is tail tip amplitude in m and U is swimming speed in m s(-1)), allows for maximal propulsive efficiency where 0.2swimming speeds. Mechanical and physiological constraints may prevent adoption of efficient St during low-speed swimming. © 2017. Published by The Company of Biologists Ltd.

  20. Burst swimming in areas of high flow: delayed consequences of anaerobiosis in wild adult sockeye salmon.

    PubMed

    Burnett, Nicholas J; Hinch, Scott G; Braun, Douglas C; Casselman, Matthew T; Middleton, Collin T; Wilson, Samantha M; Cooke, Steven J

    2014-01-01

    Wild riverine fishes are known to rely on burst swimming to traverse hydraulically challenging reaches, and yet there has been little investigation as to whether swimming anaerobically in areas of high flow can lead to delayed mortality. Using acoustic accelerometer transmitters, we estimated the anaerobic activity of anadromous adult sockeye salmon (Oncorhynchus nerka) in the tailrace of a diversion dam in British Columbia, Canada, and its effects on the remaining 50 km of their freshwater spawning migration. Consistent with our hypothesis, migrants that elicited burst swimming behaviors in high flows were more likely to succumb to mortality following dam passage. Females swam with more anaerobic effort compared to males, providing a mechanism for the female-biased migration mortality observed in this watershed. Alterations to dam operations prevented the release of hypolimnetic water from an upstream lake, exposing some migrants to supraoptimal, near-lethal water temperatures (i.e., 24°C) that inhibited their ability to locate, enter, and ascend a vertical-slot fishway. Findings from this study have shown delayed post-dam passage survival consequences of high-flow-induced burst swimming in sockeye salmon. We highlight the need for studies to investigate whether dams can impose other carryover effects on wild aquatic animals.

  1. Characteristics of velocity distribution functions and entry mechanisms of protons in the near-lunar wake from SWIM/SARA on Chandrayaan-1

    NASA Astrophysics Data System (ADS)

    Dhanya, M. B.; Barabash, Stas; Wieser, Martin; Holmström, Mats; Bhardwaj, Anil; Wurz, Peter; Alok, Abhinaw; Futaana, Yoshifumi

    2016-07-01

    Moon is an airless body with no global magnetic field, although regions of crustal magnetic fields known as magnetic anomalies exist on Moon. Solar wind, the magnetized plasma flow from the Sun, continuously impinges on Moon. Due to the high absorption of solar wind plasma on the lunar dayside, a large scale wake structure is formed downstream of the Moon. However, recent in-situ observations have revealed the presence of protons in the near-lunar wake (100 km to 200 km from the surface). The source of these protons have been found to be the solar wind that enter the wake either directly or after interaction with the lunar surface or with the magnetic anomalies. Using the entire data from the SWIM sensor, which was an ion-mass analyzer, of the SARA experiment onboard Chandrayaan-1, the characteristics of velocity distribution of these protons were investigated to understand the entry mechanisms to near lunar wake. The velocity distribution functions were computed in the two dimensional velocity space, namely in the directions parallel and perpendicular to the IMF (v_allel and v_perp) in the solar wind rest frame. Several proton populations were identified from the velocity distribution and their possible entry mechanism were inferred based on the characteristics of the velocity distribution. These entry mechanisms include (i) diffusion of solar wind protons into the wake along IMF, (ii) the solar wind protons with finite gyro-radii that are aided by the wake boundary electric field, (iii) solar wind protons with gyro-radii larger than lunar radii from the tail of the solar wind velocity distribution, and (iv) scattering of solar wind protons from the dayside lunar surface or from magnetic anomalies. In order to gain more insight into the entry mechanisms associated with different populations, the trajectories of the protons were computed backward in time (backtracing) for each of these populations. For most of the populations, the source mechanism obtained from

  2. Flapping flexible fish

    NASA Astrophysics Data System (ADS)

    Root, Robert G.; Courtland, Hayden-William; Shepherd, William; Long, John H.

    In order to analyze and model the body kinematics used by fish in a wide range of swimming behaviors, we developed a technique to separate the periodic whole-body motions that characterize steady swimming from the secular motions that characterize changes in whole-body shape. We applied this harmonic analysis technique to the study of the forward and backward swimming of lamprey. We found that in order to vary the unsteadiness of swimming, lamprey superimpose periodic and secular components of their body motion, modulate the patterns and magnitudes of those components, and change shape. These kinematic results suggest the following hydromechanical hypothesis: steady swimming is a maneuver that requires active suppression of secular body reconfigurations.

  3. Negative gravitactic behavior of Euglena gracilis can not be described by the mechanism of buoyancy-oriented upward swimming

    NASA Astrophysics Data System (ADS)

    Lebert, Michael; Häder, Donat-Peter

    1999-01-01

    Gravitactic behavior of microorganisms has been known for more than a hundred years. Euglena gracilis serves as a model system for gravity-triggered behavioral responses. Two basic mechanisms are discussed for gravitaxis: one is based on a physical mechanism where an asymmetric mass distribution pulls the cell passively in the correct orientation and, in contrast, the involvement of an active sensory system. A recently developed high-resolution motion-tracking system allows the analysis of single tracks during reorientation. The results are compared to a model developed by Fukui and Asai (1985) which describes gravitaxis of Paramecium caudatum on the basis of a physical mechanism. Taking into account the different size, different density, different mass distribution as well as the different velocity, results of the adapted model description of Paramecium were applied to measured data of Euglena. General shapes as well as the time scale of the predicted reorientational movement compared to measurements were different. The analysis clearly rules out the possibility that gravitaxis of Euglena gracilis is based on a pure physical phenomenon, and gives further support to the involvement of an active reorientational system. In addition, it could be shown that cell form changes during reorientation, even in an initial period where no angular change was observed.

  4. Speed of back-swimming of Lymnaea.

    PubMed

    Aono, Kanako; Fusada, A; Fusada, Y; Ishii, W; Kanaya, Y; Komuro, Mami; Matsui, Kanae; Meguro, S; Miyamae, Ayumi; Miyamae, Yurie; Murata, Aya; Narita, Shizuka; Nozaka, Hiroe; Saito, Wakana; Watanabe, Ayumi; Nishikata, Kaori; Kanazawa, A; Fujito, Y; Okada, R; Lukowiak, K; Ito, E

    2008-01-01

    The pond snail, Lymnaea stagnalis, can locomote on its back utilizing the surface tension of the water. We have called this form of movement 'back-swimming'. In order to perform this behavior, the snail must flip itself over on its back so that its foot is visible from above. Little is known about the mechanism of this back-swimming. As a first step for the elucidation of this mechanism, we measured the speed of back-swimming of Lymnaea at the different times of the day. They back-swam significantly faster in the morning than just before dark. These data are consistent with our earlier findings on circadian-timed activity pattern in Lymnaea. Lymnaea appear to secrete a thin membrane-like substance from their foot that may allow them to back-swim. To confirm the existence of this substance and to examine whether this substance is hydrophobic or hydrophilic, we applied a detergent onto the foot during back-swimming. A single drop of 1% Tween 20 drifted Lymnaea away that were still kept at the water surface. These results suggest that Lymnaea secrete a hydrophobic substance from their foot that floats to the water surface allowing Lymnaea to back-swim.

  5. The Kármán gait: novel body kinematics of rainbow trout swimming in a vortex street.

    PubMed

    Liao, James C; Beal, David N; Lauder, George V; Triantafyllou, Michael S

    2003-03-01

    Most fishes commonly experience unsteady flows and hydrodynamic perturbations during their lifetime. In this study, we provide evidence that rainbow trout Oncorhynchus mykiss voluntarily alter their body kinematics when interacting with vortices present in the environment that are not self-generated. To demonstrate this, we measured axial swimming kinematics in response to changes in known hydrodynamic wake characteristics. We compared trout swimming in the Kármán street behind different diameter cylinders (2.5 and 5 cm) at two flow speeds (2.5 and 4.5 L s(-1), where L is total body length) to trout swimming in the free stream and in the cylinder bow wake. Trout swimming behind cylinders adopt a distinctive, previously undescribed pattern of movement in order to hold station, which we term the Kármán gait. During this gait, body amplitudes and curvatures are much larger than those of trout swimming at an equivalent flow velocity in the absence of a cylinder. Tail-beat frequency is not only lower than might be expected for a trout swimming in the reduced flow behind a cylinder, but also matches the vortex shedding frequency of the cylinder. Therefore, in addition to choosing to be in the slower flow velocity offered behind a cylinder (drafting), trout are also altering their body kinematics to synchronize with the shed vortices (tuning), using a mechanism that may not involve propulsive locomotion. This behavior is most distinctive when cylinder diameter is large relative to fish length. While tuning, trout have a longer body wavelength than the prescribed wake wavelength, indicating that only certain regions of the body may need to be oriented in a consistent manner to the oncoming vortices. Our results suggest that fish can capture energy from vortices generated by the environment to maintain station in downstream flow. Interestingly, trout swimming in front of a cylinder display lower tail-beat amplitudes and body wave speeds than trout subjected to any of

  6. The effects of low-speed swimming following exhaustive exercise on metabolic recovery and swimming performance in brook trout (Salvelinus fontinalis).

    PubMed

    Kieffer, James D; Kassie, Roshini S; Taylor, Susan G

    2011-01-01

    Experiments were conducted to determine whether low-speed swimming during recovery from exhaustive exercise improved both metabolic recovery and performance during a swimming challenge. For these experiments, brook trout were allowed to recover from exhaustive exercise for 2 h while swimming at 0, 0.5, 1.0, or 1.5 body length (BL) s(-1) or allowed to recover from exhaustive exercise for 1, 2, or 3 h while swimming at 1.0 BL s(-1). At the appropriate interval, either (i) muscle and blood samples were removed from the fish or (ii) fish were assessed for performance (i.e., fatigue time) during a fixed-interval swimming test. Low-speed swimming during recovery from exhaustive exercise resulted in significantly longer fatigue times compared with fish recovering in still water (i.e., 0 BL s(-1)). However, swimming during recovery did not expedite recovery of muscle lactate or blood variables (e.g., lactate, osmolarity, glucose). These observations suggest that metabolic recovery and subsequent swimming performance may not be directly linked and that other factors play a role in swimming recovery in brook trout.

  7. Autonomous measurement of ingestion and digestion processes in free-swimming sharks.

    PubMed

    Meyer, Carl G; Holland, Kim N

    2012-11-01

    Direct measurement of predator feeding events would represent a major advance in marine trophic ecology. To date, devices available for empirically quantifying feeding in free-swimming fishes have relied on measuring stomach temperature, pH or physical motility, each of which has major practical limitations. We hypothesized that the considerable physical changes that occur in the stomachs of carnivorous predators during the processes of ingestion and digestion should be quantifiable using bulk electrical impedance measured across paired electrodes. We used a prototype archival data logging tag to record changes in impedance inside the stomachs of captive free-swimming tiger and sandbar sharks over multiple, successive feeding events. Feeding and digestion events produced characteristic changes in electrical impedance of the stomach contents, identifiable as five successive phases: (1) pre-ingestion (empty stomach), (2) ingestion, (3) chemical 'lag', (4) mechanical 'chyme' and (5) stomach emptying. The duration of the chyme phase was positively related to meal size.

  8. Transposition mechanisms and biothechnology applications of the medaka fish tol2 transposable element.

    PubMed

    Koga, Akihiko

    2004-01-01

    The Tol2 element of the medaka fish is a member of the hAT (hobo/Activator/Tam3) transposable element family. About 20 copies are present in the medaka fish genome and, unlike many other hAT family elements, virtually all the copies are autonomous or potentially autonomous, containing an intact transposase gene. Excision of Tol2 is not precise at the nucleotide sequence level, excision footprints being heterogeneous. In more than half of excision events, however, breakage and rejoining of DNA molecules occur within the 8-bp target site duplication region, removing the entire Tol2 sequence and retaining parts of the target site duplications. In the reminder of the excision events, either the left or the right terminal region is left and the other end is lost together with its flanking region. Thus, there might be two different mechanisms of excision. Insertion of Tol2 occurs without detectable preference for target sequences and creates a target site duplication of exactly 8 bp. In addition to the medaka fish and related fish species, Tol2 transposes in mammalian cells in culture, including human and mouse examples. Autonomy is also retained in these cases. A gene transfer vector using Tol2 has already been established in fish. Foreign DNA fragements inserted in Tol2 can be efficiently delivered to the chromosomes by transposition. The latest version of the vector contains, between the Tol2 terminal regions, a bacterial drug-resistance gene and a plasmid replication origin. This allows simple recovery of insertion regions, as plasmid DNA, from genomic DNA of transformants. Modification of this system for other vertebrates, especially for mammals, are now in progress.

  9. Lead toxicity on non-specific immune mechanisms of freshwater fish Channa punctatus.

    PubMed

    Paul, Nilantika; Chakraborty, Samujjwal; Sengupta, Mahuya

    2014-07-01

    Lead has no known role in the body that is physiologically relevant, and its harmful effects are myriad. Lead from the atmosphere and soil ends up in water bodies thus affecting the aquatic organisms. This situation has thus prompted numerous investigations on the effects of this metal on the biological functions of aquatic organisms, particularly on immune mechanisms in fish. This paper addresses the immunotoxicologic effects of lead acetate in intestinal macrophages of freshwater fish Channa punctatus. Fish were exposed to lead acetate (9.43mg/l) for 4 days. When checked for its effects on macrophages, it was noted that lead interfered with bacterial phagocytosis, intracellular killing capacity and cell adhesion as well as inhibited release of antimicrobial substances like nitric oxide (NO) and myeloperoxidase (MPO). On giving bacterial challenge with Staphylococcus aureus to intestinal macrophages of both control and lead treated groups, the macrophages showed significantly higher concentration of viable bacteria in the intracellular milieu in lead treated group as compared to control. We also report that in vivo exposure to lead acetate inhibits phagocytosis, which is evident from a reduced phagocytic index of treated group from that of the control. The amount of MPO and NO released by the control cells was also reduced significantly upon in vivo lead treatment. The property of antigenic adherence to the macrophage cell membrane, a vital process in phagocytosis, was significantly decreased in the treated group as compared to control. Severe damage in intestinal epithelium, disarrangement and fragmentation of mucosal foldings was observed in lead treated group when compared with the untreated group. The present results also showed decreased tumor necrosis factor-alpha (TNF-α) level upon metal exposure in sera as well as cell lysate of lead exposed fish thus, implicating both MAPK signaling pathways as well as NFκβ signaling. We thus conclude that lead affects

  10. Neural and hormonal mechanisms of reproductive-related arousal in fishes

    PubMed Central

    Forlano, Paul M.; Bass, Andrew H.

    2010-01-01

    The major classes of chemicals and brain pathways involved in sexual arousal in mammals are well studied and are thought to be of an ancient, evolutionarily conserved origin. Here we discuss what is known of these neurochemicals and brain circuits in fishes, the oldest and most species-rich group of vertebrates from which tetrapods arose over 200 million years ago. Highlighted are case studies in vocal species where well-delineated sensory and motor pathways underlying reproductive-related behaviors illustrate the diversity and evolution of brain mechanisms driving sexual motivation between (and within) sexes. Also discussed are evolutionary insights from the neurobiology and reproductive behavior of elasmobranch fishes, the most ancient lineage of jawed vertebrates, which are remarkably similar in their reproductive biology to terrestrial mammals. PMID:20950618

  11. Neural and hormonal mechanisms of reproductive-related arousal in fishes.

    PubMed

    Forlano, Paul M; Bass, Andrew H

    2011-05-01

    The major classes of chemicals and brain pathways involved in sexual arousal in mammals are well studied and are thought to be of an ancient, evolutionarily conserved origin. Here we discuss what is known of these neurochemicals and brain circuits in fishes, the oldest and most species-rich group of vertebrates from which tetrapods arose over 350 million years ago. Highlighted are case studies in vocal species where well-delineated sensory and motor pathways underlying reproductive-related behaviors illustrate the diversity and evolution of brain mechanisms driving sexual motivation between (and within) sexes. Also discussed are evolutionary insights from the neurobiology and reproductive behavior of elasmobranch fishes, the most ancient lineage of jawed vertebrates, which are remarkably similar in their reproductive biology to terrestrial mammals.

  12. Swimming near the substrate: a simple robotic model of stingray locomotion.

    PubMed

    Blevins, Erin; Lauder, George V

    2013-03-01

    Studies of aquatic locomotion typically assume that organisms move through unbounded fluid. However, benthic fishes swim close to the substrate and will experience significant ground effects, which will be greatest for fishes with wide spans such as benthic batoids and flatfishes. Ground effects on fixed-wing flight are well understood, but these models are insufficient to describe the dynamic interactions between substrates and undulating, oscillating fish. Live fish alter their swimming behavior in ground effect, complicating comparisons of near-ground and freestream swimming performance. In this study, a simple, stingray-inspired physical model offers insights into ground effects on undulatory swimmers, contrasting the self-propelled swimming speed, power requirements, and hydrodynamics of fins swimming with fixed kinematics near and far from a solid boundary. Contrary to findings for gliding birds and other fixed-wing fliers, ground effect does not necessarily enhance the performance of undulating fins. Under most kinematic conditions, fins do not swim faster in ground effect, power requirements increase, and the cost of transport can increase by up to 10%. The influence of ground effect varies with kinematics, suggesting that benthic fish might modulate their swimming behavior to minimize locomotor penalties and incur benefits from swimming near a substrate.

  13. The involvement of NMDA and AMPA receptors in the mechanism of antidepressant-like action of zinc in the forced swim test.

    PubMed

    Szewczyk, B; Poleszak, E; Sowa-Kućma, M; Wróbel, A; Słotwiński, S; Listos, J; Wlaź, P; Cichy, A; Siwek, A; Dybała, M; Gołembiowska, K; Pilc, A; Nowak, Gabriel

    2010-06-01

    Antidepressant-like activity of zinc in the forced swim test (FST) was demonstrated previously. Enhancement of such activity by joint administration of zinc and antidepressants was also shown. However, mechanisms involved in this activity have not yet been established. The present study examined the involvement of the NMDA and AMPA receptors in zinc activity in the FST in mice and rats. Additionally, the influence of zinc on both glutamate and aspartate release in the rat brain was also determined. Zinc-induced antidepressant-like activity in the FST in both mice and rats was antagonized by N-methyl-D-aspartic acid (NMDA, 75 mg/kg, i.p.) administration. Moreover, low and ineffective doses of NMDA antagonists (CGP 37849, L-701,324, D-cycloserine, and MK-801) administered together with ineffective doses of zinc exhibit a significant reduction of immobility time in the FST. Additionally, we have demonstrated the reduction of immobility time by AMPA receptor potentiator, CX 614. The antidepressant-like activity of both CX 614 and zinc in the FST was abolished by NBQX (an antagonist of AMPA receptor, 10 mg/kg, i.p.), while the combined treatment of sub-effective doses of zinc and CX 614 significantly reduces the immobility time in the FST. The present study also demonstrated that zinc administration potentiated a veratridine-evoked glutamate and aspartate release in the rat's prefrontal cortex and hippocampus. The present study further suggests the antidepressant properties of zinc and indicates the involvement of the NMDA and AMPA glutamatergic receptors in this activity.

  14. Analysis of swimming motions.

    NASA Technical Reports Server (NTRS)

    Gallenstein, J.; Huston, R. L.

    1973-01-01

    This paper presents an analysis of swimming motion with specific attention given to the flutter kick, the breast-stroke kick, and the breast stroke. The analysis is completely theoretical. It employs a mathematical model of the human body consisting of frustrums of elliptical cones. Dynamical equations are written for this model including both viscous and inertia forces. These equations are then applied with approximated swimming strokes and solved numerically using a digital computer. The procedure is to specify the input of the swimming motion. The computer solution then provides the output displacement, velocity, and rotation or body roll of the swimmer.

  15. Analysis of swimming motions.

    NASA Technical Reports Server (NTRS)

    Gallenstein, J.; Huston, R. L.

    1973-01-01

    This paper presents an analysis of swimming motion with specific attention given to the flutter kick, the breast-stroke kick, and the breast stroke. The analysis is completely theoretical. It employs a mathematical model of the human body consisting of frustrums of elliptical cones. Dynamical equations are written for this model including both viscous and inertia forces. These equations are then applied with approximated swimming strokes and solved numerically using a digital computer. The procedure is to specify the input of the swimming motion. The computer solution then provides the output displacement, velocity, and rotation or body roll of the swimmer.

  16. Antarctic Fishes.

    ERIC Educational Resources Information Center

    Eastman, Joseph T.; DeVries, Arthur L.

    1986-01-01

    Explains the adaptations to Antarctic waters that Notothenioidei, a group of advanced bony fishes, have exhibited. Discusses the fishes' mechanisms of production of antifreeze properties and their capacities for neutral buoyancy in water. (ML)

  17. Antarctic Fishes.

    ERIC Educational Resources Information Center

    Eastman, Joseph T.; DeVries, Arthur L.

    1986-01-01

    Explains the adaptations to Antarctic waters that Notothenioidei, a group of advanced bony fishes, have exhibited. Discusses the fishes' mechanisms of production of antifreeze properties and their capacities for neutral buoyancy in water. (ML)

  18. Strouhal number for free swimming

    NASA Astrophysics Data System (ADS)

    Saadat, Mehdi; van Buren, Tyler; Floryan, Daniel; Smits, Alexander; Haj-Hariri, Hossein

    2015-11-01

    In this work, we present experimental results to explore the implications of free swimming for Strouhal number (as an outcome) in the context of a simple model for a fish that consists of a 2D virtual body (source of drag) and a 2D pitching foil (source of thrust) representing cruising with thunniform locomotion. The results validate the findings of Saadat and Haj-Hariri (2012): for pitching foils thrust coefficient is a function of Strouhal number for all gaits having amplitude less than a certain critical value. Equivalently, given the balance of thrust and drag forces at cruise, Strouhal number is only a function of the shape, i.e. drag coefficient and area, and essentially a constant for high enough swimming speeds for which the mild dependence of drag coefficient on the speed vanishes. Furthermore, a dimensional analysis generalizes the findings. A scaling analysis shows that the variation of Strouhal number with cruising speed is functionally related to the variation of body drag coefficient with speed. Supported by ONR MURI Grant N00014-14-1-0533.

  19. Salinity-dependent mechanisms of copper toxicity in the galaxiid fish, Galaxias maculatus.

    PubMed

    Glover, Chris N; Urbina, Mauricio A; Harley, Rachel A; Lee, Jacqueline A

    2016-05-01

    The euryhaline galaxiid fish, inanga (Galaxias maculatus) is widely spread throughout the Southern hemisphere occupying near-coastal streams that may be elevated in trace elements such as copper (Cu). Despite this, nothing is known regarding their sensitivity to Cu contamination. The mechanisms of Cu toxicity in inanga, and the ameliorating role of salinity, were investigated by acclimating fish to freshwater (FW), 50% seawater (SW), or 100% SW and exposing them to a graded series of Cu concentrations (0-200μgL(-1)) for 48h. Mortality, whole body Cu accumulation, measures of ionoregulatory disturbance (whole body ions, sodium (Na) influx, sodium/potassium ATPase activity) and ammonia excretion were monitored. Toxicity of Cu was greatest in FW, with mortality likely resulting from impaired Na influx. In both FW and 100% SW, ammonia excretion was significantly elevated, an effect opposite to that observed in previous studies, suggesting fundamental differences in the effect of Cu in this species relative to other studied fish. Salinity was protective against Cu toxicity, and physiology seemed to play a more important role than water chemistry in this protection. Inanga are sensitive to waterborne Cu through a conserved impairment of Na ion homeostasis, but some effects of Cu exposure in this species are distinct. Based on effect concentrations, current regulatory tools and limits are likely protective of this species in New Zealand waters. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Saturday Afternoon Swim

    NASA Image and Video Library

    2014-06-29

    Hours after the June 28, 2014, test of NASA Low-Density Supersonic Decelerator over the U.S. Navy Pacific Missile Range, two members of the Navy Explosive Ordinance Disposal swim toward the test vehicle.

  1. Surveillance and Conformity in Competitive Youth Swimming

    ERIC Educational Resources Information Center

    Lang, Melanie

    2010-01-01

    Underpinned by a Foucauldian analysis of sporting practices, this paper identifies the disciplinary mechanism of surveillance at work in competitive youth swimming. It highlights the ways in which swimmers and their coaches are subject to and apply this mechanism to produce embodied conformity to normative behaviour and obedient, docile bodies.…

  2. Surveillance and Conformity in Competitive Youth Swimming

    ERIC Educational Resources Information Center

    Lang, Melanie

    2010-01-01

    Underpinned by a Foucauldian analysis of sporting practices, this paper identifies the disciplinary mechanism of surveillance at work in competitive youth swimming. It highlights the ways in which swimmers and their coaches are subject to and apply this mechanism to produce embodied conformity to normative behaviour and obedient, docile bodies.…

  3. Study of Fish Response Using Particle Image Velocimetry and High-Speed, High-Resolution Imaging

    SciTech Connect

    Deng, Zhiqun; Richmond, Marshall C.; Guensch, Gregory R.; Mueller, Robert P.

    2004-10-23

    Existing literature of previous particle image velocimetry (PIV) studies of fish swimming has been reviewed. Historically, most of the studies focused on the performance evaluation of freely swimming fish. Technological advances over the last decade, especially the development of digital particle image velocimetry (DPIV) technique, make possible more accurate, quantitative descriptions of the flow patterns adjacent to the fish and in the wake behind the fins and tail, which are imperative to decode the mechanisms of drag reduction and propulsive efficiency. For flows generated by different organisms, the related scales and flow regimes vary significantly. For small Reynolds numbers, viscosity dominates; for very high Reynolds numbers, inertia dominates, and three-dimensional complexity occurs. The majority of previous investigations dealt with the lower end of Reynolds number range. The fish of our interest, such as rainbow trout and spring and fall chinook salmon, fall into the middle range, in which neither viscosity nor inertia is negligible, and three-dimensionality has yet to dominate. Feasibility tests have proven the applicability of PIV to flows around fish. These tests have shown unsteady vortex shedding in the wake, high vorticity region and high stress region, with the highest in the pectoral area. This evident supports the observations by Nietzel et al. (2000) and Deng et al. (2004) that the operculum are most vulnerable to damage from the turbulent shear flow, because they are easily pried open, and the large vorticity and shear stress can lift and tear off scales, rupture or dislodge eyes, and damage gills. In addition, the unsteady behavior of the vortex shedding in the wake implies that injury to fish by the instantaneous flow structures would likely be much higher than the injury level estimated using the average values of the dynamics parameters. Based on existing literature, our technological capability, and relevance and practicability to

  4. Swim performance and energy homeostasis in spottail shiner (Notropis hudsonius) collected downstream of a uranium mill.

    PubMed

    Goertzen, Meghan M; Hauck, Dominic W; Phibbs, James; Weber, Lynn P; Janz, David M

    2012-01-01

    The Key Lake uranium milling operation (Saskatchewan, Canada) releases complex effluent into the local watershed. The objective of the current study was to investigate whether fish from an effluent-receiving waterbody exhibited differences in swimming performance and energy homeostasis compared to fish from a local reference site. Juvenile spottail shiner (Notropis hudsonius) were collected from a lake downstream of the uranium mill, and compared to fish collected from a nearby reference lake. Critical swimming speed (U(crit); fatigue velocity), tail beat frequency, and tail amplitude did not differ significantly when comparing fish collected from the exposure lake and reference lake. Captured shiner used in swim tests were considered fatigued, and metabolic endpoints were compared between this group and non-fatigued fish, which were treated similarly but not subjected to swim tests. In both non-fatigued and fatigued shiner, liver glycogen was significantly greater in fish collected from the exposure lake compared to the reference lake. However, it is unclear if this effect, and others related to condition, were the result of contaminant exposure or other environmental factors. While there were no differences in plasma lactate, hematocrit or liver triglycerides in non-fatigued fish between sites, only fatigued reference fish had increased lactate and hematocrit and decreased triglycerides. In non-fatigued fish, plasma glucose did not significantly differ between sites, but significantly decreased after swimming only in fish from the exposure lake. In summary, shiner from the exposure site demonstrated similar swim endurance and possessed greater energy stores despite metabolic alterations compared to shiner from the reference site. Therefore, because fish collected downstream of the uranium mill operation had similar swimming ability as fish from the reference lake, U(crit) test results presented here may not reflect or be indicative of metabolic effects of complex

  5. Swimming performance of young lake trout after chronic exposure to PCBs and DDE

    USGS Publications Warehouse

    Rottiers, Donald V.; Bergstedt, Roger A.

    1981-01-01

    Swimming performance was measured in fry of lake trout (Salvelinus namaycush) exposed to PCB's, DDE, and a combination of these two contaminants in both food and water at concentrations equal to, and 5 and 25 times higher than, levels found in Lake Michigan water and plankton. Fry were tested after about 50, 110, and 165 days of exposure. We measured swimming performance by forcing the fry to swim through a continuous series of incrementally increased velocities until the fish were exhausted. Although we observed significant differences in swimming performance between a few test groups, we detected no relation between swimming performance of the fry and exposure to PCB's or DDE, or both, at the concentrations tested. Inasmuch as swimming performance apparently was not affected by the levels of contamination by PCB's and DDE in Lake Michigan, impairment of swimming by these contaminants cannot account for the failure of lake trout reproduction in Lake Michigan.

  6. Effects of polar solvents on the mechanical behavior of fish scales.

    PubMed

    Murcia, Sandra; Li, Guihua; Yahyazadehfar, Mobin; Sasser, Mikaela; Ossa, Alex; Arola, D

    2016-04-01

    Fish scales are unique structural materials that serve as a form of natural armor. In this investigation the mechanical behavior of scales from the Cyprinus carpio was evaluated after exposure to a polar solvent. Uniaxial tensile and tear tests were conducted on specimens prepared from the scales of multiple fish extracted from near the head, middle and tail regions, and after exposure to ethanol for periods from 0 to 24h. Submersion in ethanol caused instantaneous changes in the tensile properties regardless of anatomical site, with increases in the elastic modulus, strength and modulus of toughness exceeding 100%. The largest increase in properties overall occurred in the elastic modulus of scales from the tail region and exceeded 200%. Although ethanol treatment had significant effect on the tensile properties, it had limited influence on the tear resistance. The contribution of ethanol to the mechanical behavior appears to be derived from an increase in the degree of interpeptide hydrogen-bonding of the collagen molecules. Spatial variations in the effects of ethanol exposure on the mechanical behavior arise from the differences in degree of mineralization and lower mineral content in scales of the tail region. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. The Role of Stress Fibers in the Shape Determination Mechanism of Fish Keratocytes

    PubMed Central

    Nakata, Takako; Okimura, Chika; Mizuno, Takafumi; Iwadate, Yoshiaki

    2016-01-01

    Crawling cells have characteristic shapes that are a function of their cell types. How their different shapes are determined is an interesting question. Fish epithelial keratocytes are an ideal material for investigating cell shape determination, because they maintain a nearly constant fan shape during their crawling locomotion. We compared the shape and related molecular mechanisms in keratocytes from different fish species to elucidate the key mechanisms that determine cell shape. Wide keratocytes from cichlids applied large traction forces at the rear due to large focal adhesions, and showed a spatially loose gradient associated with actin retrograde flow rate, whereas round keratocytes from black tetra applied low traction forces at the rear small focal adhesions and showed a spatially steep gradient of actin retrograde flow rate. Laser ablation of stress fibers (contractile fibers connected to rear focal adhesions) in wide keratocytes from cichlids increased the actin retrograde flow rate and led to slowed leading-edge extension near the ablated region. Thus, stress fibers might play an important role in the mechanism of maintaining cell shape by regulating the actin retrograde flow rate. PMID:26789770

  8. [Swimming-induced asthma].

    PubMed

    Fjellbirkeland, L; Gulsvik, A; Walløe, A

    1995-06-30

    Swimming is said to have low asthmogeneity especially when compared with other physical activities. Four young athletes who participated in heavy swimming exercise are reported as having symptoms of exercise-induced asthma (EIA). Three of them started to develop the symptoms after several years of training and had no former history of asthma. In the fourth, the asthma was diagnosed in childhood but the EIA-symptoms here exacerbated by swimming. All four experienced more symptoms when the air in the swimming pool was warm, or when there was a strong smell of chlorine. Two of the athletes reported having no symptoms when they swam in outdoor pools and had only minor symptoms, or none at all, when they did other formes of physical exercise, including running. In all four their swimming performance was hampered by their respiratory symptoms. Two of the swimmers improved when they inhaled steroids and adrenerg-beta 2 agonists, and continued their swimming carrier. The cases suggest that an irritant may provoke asthma symptoms in susceptible swimmers. Volatile compounds from chlorination of the pools are suspected as possible irritant agents.

  9. Is paramecium swimming autonomic?

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Promode R.; Toplosky, Norman; Hansen, Joshua

    2010-11-01

    We seek to explore if the swimming of paramecium has an underlying autonomic mechanism. Such robotic elements may be useful in capturing the disturbance field in an environment in real time. Experimental evidence is emerging that motion control neurons of other animals may be present in paramecium as well. The limit cycle determined using analog simulation of the coupled nonlinear oscillators of olivo-cerebellar dynamics (ieee joe 33, 563-578, 2008) agrees with the tracks of the cilium of a biological paramecium. A 4-motor apparatus has been built that reproduces the kinematics of the cilium motion. The motion of the biological cilium has been analyzed and compared with the results of the finite element modeling of forces on a cilium. The modeling equates applied torque at the base of the cilium with drag, the cilium stiffness being phase dependent. A low friction pendulum apparatus with a multiplicity of electromagnetic actuators is being built for verifying the maps of the attractor basin computed using the olivo-cerebellar dynamics for different initial conditions. Sponsored by ONR 33.

  10. An Annotated Bibliography of Experimental Research concerning Competitive Swimming.

    ERIC Educational Resources Information Center

    Bachman, John C.

    This annotated bibliography has been compiled as a guide for the researcher of swimming in referring to experimental studies in the physiological, mechanical, psychological, and medical aspects of swimming. The studies have been briefly annotated to enable the reader to quickly determine the salient points the authors made in their studies. The…

  11. An Annotated Bibliography of Experimental Research concerning Competitive Swimming.

    ERIC Educational Resources Information Center

    Bachman, John C.

    This annotated bibliography has been compiled as a guide for the researcher of swimming in referring to experimental studies in the physiological, mechanical, psychological, and medical aspects of swimming. The studies have been briefly annotated to enable the reader to quickly determine the salient points the authors made in their studies. The…

  12. Intermittent Swimming with a Flexible Propulsor

    NASA Astrophysics Data System (ADS)

    Akoz, Emre; Zeyghami, Samane; Moored, Keith

    2016-11-01

    Some animals propel themselves by using an intermittent swimming gait known as a burst-and-glide or a burst-and-coast motion. These swimmers tend to have a more pronounced pitching of their caudal fins than heaving leading to low non-dimensional heave-to-pitch ratios. Recent work has shown that when this ratio is sufficiently low the efficiency of an intermittently heaving/pitching airfoil can be significantly improved over a continuously oscillating airfoil. However, fish that swim with an intermittent gait, such as cod and saithe, do not have rigid fins, but instead have highly flexible fins. To examine the performance and flow structures of an intermittent swimmer with a flexible propulsor, a fast boundary element method solver strongly coupled with a torsional-spring structural model was developed. A self-propelled virtual body combined with a flexible-hinged pitching airfoil is used to model a free-swimming animal and its flexible caudal fin. The duty cycle of the active to the coasting phase of motion, the torsional spring flexibility and the forcing frequency are all varied. The cost-of-transport and the swimming speed are measured and connected to the observed wake patterns. Supported by the Office of Naval Research under Program Director Dr. Bob Brizzolara, MURI Grant Number N00014-14-1-0533.

  13. Microstructure, mechanical, and biomimetic properties of fish scales from Pagrus major.

    PubMed

    Ikoma, Toshiyuki; Kobayashi, Hisatoshi; Tanaka, Junzo; Walsh, Dominic; Mann, Stephen

    2003-06-01

    The fish scale of Pagrus major has an orthogonal plywood structure of stratified lamellae, 1-2 microm in thickness, consisting of closely packed 70- to 80-nm-diameter collagen fibers. X-ray diffraction, energy-dispersive X-ray analysis, and infrared spectroscopy indicate that the mineral phase in the scale is calcium-deficient hydroxyapatite containing a small amount of sodium and magnesium ions, as well as carbonate anions in phosphate sites of the apatite lattice. The tensile strength of the scale is high (approximately 90 MPa) because of the hierarchically ordered structure of mineralized collagen fibers. Mechanical failure occurs by sliding of the lamellae and associated pulling out and fracture of the collagen fibers. In contrast, demineralized scales have significantly lower tensile strength (36 MPa), indicating that interactions between the apatite crystals and collagen fibers are of fundamental importance in determining the mechanical properties. Thermal treatment of fish scales to remove the organic components produces remarkable inorganic replicas of the native orthogonal plywood structure of the fibrillary plate. The biomimetic replica produced by heating to 873 K consists of stratified porous lamellae of c-axis-aligned apatite crystals that are long, narrow plates, 0.5-0.6 microm in length and 0.1-0.2 microm in width. The textured inorganic material remains intact when heated to 1473 K, although the size of the constituent crystals increases as a result of thermal sintering.

  14. Projecting mechanics into morphospace: disparity in the feeding system of labrid fishes.

    PubMed Central

    Hulsey, C Darrin; Wainwright, Peter C

    2002-01-01

    In no group of organisms has the link between species richness, morphological disparity, disparity in mechanics and functional or ecological diversification been made explicit. As a step towards integrating these measures of diversity, we examine how the mechanics of the anterior-jaw four-bar linkages of 104 species of Great Barrier Reef (GBR) labrid fishes maps into a scale-independent morphospace. As predicted from theory, no relationship exists between overall size and the mechanics of velocity and force transmission in labrid anterior-jaw linkages. Nonetheless, mechanics associated with the anterior jaw appear to have constrained diversification of labrid anterior-jaw morphology. Furthermore, simulations depict a generally nonlinear relationship between the length of individual links and transmission of motion. In addition, no relationship was found between morphological disparity and mechanical disparity among the most species-rich labrid groups from the GBR. It is also established that regions of morphospace equivalent in morphological disparity differ over nearly an order of magnitude in mechanical disparity. These results illustrate that without an explicit interpretation of the consequences of per unit change in morphology, conclusions about diversification drawn only from morphological disparity may be misleading. PMID:11839201

  15. The Teleost Intramandibular Joint: A mechanism That Allows Fish to Obtain Prey Unavailable to Suction Feeders.

    PubMed

    Gibb, Alice C; Staab, Katie; Moran, Clinton; Ferry, Lara A

    2015-07-01

    Although the majority of teleost fishes possess a fused lower jaw (or mandible), some lineages have acquired a secondary joint in the lower jaw, termed the intramandibular joint (IMJ). The IMJ is a new module that formed within the already exceptionally complex teleost head, and disarticulation of two bony elements of the mandible potentially creates a "double-jointed" jaw. The apparent independent acquisition of this new functional module in divergent lineages raises a suite of questions. (1) How many teleostean lineages contain IMJ-bearing species? (2) Does the IMJ serve the same purpose in all teleosts? (3) Is the IMJ associated with altered feeding kinematics? (4) Do IMJ-bearing fishes experience trade-offs in other aspects of feeding performance? (5) Is the IMJ used to procure prey that are otherwise unavailable? The IMJ is probably under-reported, but has been documented in at least 10 lineages within the Teleostei. Across diverse IMJ-bearing lineages, this secondary joint in the lower jaw serves a variety of functions, including: generating dynamic out-levers that allow fish to apply additional force to a food item during jaw closing; allowing fish to "pick" individual prey items with pincer-like jaws; and facilitating contact with the substrate by altering the size and orientation of the gape. There are no consistent changes in feeding kinematics in IMJ-bearing species relative to their sister taxa; however, some IMJ-bearing taxa produce very slow movements during the capture of food, which may compromise their ability to move prey into the mouth via suction. Despite diversity in behavior, all IMJ-bearing lineages have the ability to remove foods that are physically attached to the substrate or to bite off pieces from sessile organisms. Because such prey cannot be drawn into the mouth by suction, the IMJ provides a new mechanism that enables fish to obtain food that otherwise would be unavailable. © The Author 2015. Published by Oxford University Press on

  16. Burst Firing in the Electrosensory System of Gymnotiform Weakly Electric Fish: Mechanisms and Functional Roles

    PubMed Central

    Metzen, Michael G.; Krahe, Rüdiger; Chacron, Maurice J.

    2016-01-01

    Neurons across sensory systems and organisms often display complex patterns of action potentials in response to sensory input. One example of such a pattern is the tendency of neurons to fire packets of action potentials (i.e., a burst) followed by quiescence. While it is well known that multiple mechanisms can generate bursts of action potentials at both the single-neuron and the network level, the functional role of burst firing in sensory processing is not so well understood to date. Here we provide a comprehensive review of the known mechanisms and functions of burst firing in processing of electrosensory stimuli in gymnotiform weakly electric fish. We also present new evidence from existing data showing that bursts and isolated spikes provide distinct information about stimulus variance. It is likely that these functional roles will be generally applicable to other systems and species. PMID:27531978

  17. A taste of the deep-sea: The roles of gustatory and tactile searching behaviour in the grenadier fish Coryphaenoides armatus

    NASA Astrophysics Data System (ADS)

    Bailey, David M.; Wagner, Hans-Joachim; Jamieson, Alan J.; Ross, Murray F.; Priede, Imants G.

    2007-01-01

    The deep-sea grenadier fishes ( Coryphaenoides spp.) are among the dominant predators and scavengers in the ocean basins that cover much of Earth's surface. Baited camera experiments were used to study the behaviour of these fishes. Despite the apparent advantages of rapidly consuming food, grenadiers attracted to bait spend a large proportion of their time in prolonged periods of non-feeding activity. Video analysis revealed that fish often adopted a head-down swimming attitude (mean of 21.3° between the fish and seafloor), with swimming velocity negatively related to attitude. The fish also swam around and along vertical and horizontal structures of the lander with their head immediately adjacent to the structure. We initially hypothesised that this behaviour was associated with the use of the short chin barbel in foraging. Barbel histology showed numerous taste buds in the skin, and a barbel nerve with about 20,000 axons in adult fish. A tracing experiment in one undamaged animal revealed the termination fields of the barbel neurons in the trigeminal and rhombencephalic regions, indicating both a mechanoreceptory and a gustatory role for the barbel. Our conclusion was that olfactory foraging becomes ineffective at close ranges and is followed by a search phase using tactile and gustatory sensing by the barbel. The development of this sensory method probably co-evolved alongside behavioural changes in swimming mechanics to allow postural stability at low swimming speeds.

  18. The archaellum: how Archaea swim.

    PubMed

    Albers, Sonja-Verena; Jarrell, Ken F

    2015-01-01

    Recent studies on archaeal motility have shown that the archaeal motility structure is unique in several aspects. Although it fulfills the same swimming function as the bacterial flagellum, it is evolutionarily and structurally related to the type IV pilus. This was the basis for the recent proposal to term the archaeal motility structure the "archaellum." This review illustrates the key findings that led to the realization that the archaellum was a novel motility structure and presents the current knowledge about the structural composition, mechanism of assembly and regulation, and the posttranslational modifications of archaella.

  19. Upstream Swimming in Microbiological Flows.

    PubMed

    Mathijssen, Arnold J T M; Shendruk, Tyler N; Yeomans, Julia M; Doostmohammadi, Amin

    2016-01-15

    Interactions between microorganisms and their complex flowing environments are essential in many biological systems. We develop a model for microswimmer dynamics in non-Newtonian Poiseuille flows. We predict that swimmers in shear-thickening (-thinning) fluids migrate upstream more (less) quickly than in Newtonian fluids and demonstrate that viscoelastic normal stress differences reorient swimmers causing them to migrate upstream at the centerline, in contrast to well-known boundary accumulation in quiescent Newtonian fluids. Based on these observations, we suggest a sorting mechanism to select microbes by swimming speed.

  20. Upstream Swimming in Microbiological Flows

    NASA Astrophysics Data System (ADS)

    Mathijssen, Arnold J. T. M.; Shendruk, Tyler N.; Yeomans, Julia M.; Doostmohammadi, Amin

    2016-01-01

    Interactions between microorganisms and their complex flowing environments are essential in many biological systems. We develop a model for microswimmer dynamics in non-Newtonian Poiseuille flows. We predict that swimmers in shear-thickening (-thinning) fluids migrate upstream more (less) quickly than in Newtonian fluids and demonstrate that viscoelastic normal stress differences reorient swimmers causing them to migrate upstream at the centerline, in contrast to well-known boundary accumulation in quiescent Newtonian fluids. Based on these observations, we suggest a sorting mechanism to select microbes by swimming speed.

  1. The archaellum: how Archaea swim

    PubMed Central

    Albers, Sonja-Verena; Jarrell, Ken F.

    2015-01-01

    Recent studies on archaeal motility have shown that the archaeal motility structure is unique in several aspects. Although it fulfills the same swimming function as the bacterial flagellum, it is evolutionarily and structurally related to the type IV pilus. This was the basis for the recent proposal to term the archaeal motility structure the “archaellum.” This review illustrates the key findings that led to the realization that the archaellum was a novel motility structure and presents the current knowledge about the structural composition, mechanism of assembly and regulation, and the posttranslational modifications of archaella. PMID:25699024

  2. Swimming behaviour of juvenile Pacific lamprey, Lampetra tridentata

    SciTech Connect

    Dauble, Dennis D.; Moursund, Russell A.; Bleich, Matthew D.

    2006-02-01

    Actively migrating juvenile Pacific lamprey (Lampetra tridentata Richardson, 1836) were collected from hydroelectric bypass facilities in the Columbia River and transferred to the laboratory to study their diel movement patterns and swimming ability. Volitional movement of lamprey was restricted mainly to night, with 94% of all swimming activity occurring during the 12-hr dark period. Burst speed of juvenile lamprey ranged from 56 to 94 cm/s with a mean of 71 ±5 cm/s or an average speed of 5.2 body lengths (BL)/s. Sustained swim speed for 5-min test intervals ranged from 0 to 46 cm/s with a median of 23 cm/s. Critical swimming speed was 36.0±10.0 cm/s and 2.4±0.6 BL/s. There was no significant relationship between fish length and critical swimming speed. Overall swimming performance of juvenile Pacific lamprey is low compared to that of most anadromous teleosts. Their poor swimming ability provides a challenge during the freshwater migration interval to the Pacific Ocean.

  3. Optimal shape and motion of undulatory swimming organisms.

    PubMed

    Tokić, Grgur; Yue, Dick K P

    2012-08-07

    Undulatory swimming animals exhibit diverse ranges of body shapes and motion patterns and are often considered as having superior locomotory performance. The extent to which morphological traits of swimming animals have evolved owing to primarily locomotion considerations is, however, not clear. To shed some light on that question, we present here the optimal shape and motion of undulatory swimming organisms obtained by optimizing locomotive performance measures within the framework of a combined hydrodynamical, structural and novel muscular model. We develop a muscular model for periodic muscle contraction which provides relevant kinematic and energetic quantities required to describe swimming. Using an evolutionary algorithm, we performed a multi-objective optimization for achieving maximum sustained swimming speed U and minimum cost of transport (COT)--two conflicting locomotive performance measures that have been conjectured as likely to increase fitness for survival. Starting from an initial population of random characteristics, our results show that, for a range of size scales, fish-like body shapes and motion indeed emerge when U and COT are optimized. Inherent boundary-layer-dependent allometric scaling between body mass and kinematic and energetic quantities of the optimal populations is observed. The trade-off between U and COT affects the geometry, kinematics and energetics of swimming organisms. Our results are corroborated by empirical data from swimming animals over nine orders of magnitude in size, supporting the notion that optimizing U and COT could be the driving force of evolution in many species.

  4. Optimal shape and motion of undulatory swimming organisms

    PubMed Central

    Tokić, Grgur; Yue, Dick K. P.

    2012-01-01

    Undulatory swimming animals exhibit diverse ranges of body shapes and motion patterns and are often considered as having superior locomotory performance. The extent to which morphological traits of swimming animals have evolved owing to primarily locomotion considerations is, however, not clear. To shed some light on that question, we present here the optimal shape and motion of undulatory swimming organisms obtained by optimizing locomotive performance measures within the framework of a combined hydrodynamical, structural and novel muscular model. We develop a muscular model for periodic muscle contraction which provides relevant kinematic and energetic quantities required to describe swimming. Using an evolutionary algorithm, we performed a multi-objective optimization for achieving maximum sustained swimming speed U and minimum cost of transport (COT)—two conflicting locomotive performance measures that have been conjectured as likely to increase fitness for survival. Starting from an initial population of random characteristics, our results show that, for a range of size scales, fish-like body shapes and motion indeed emerge when U and COT are optimized. Inherent boundary-layer-dependent allometric scaling between body mass and kinematic and energetic quantities of the optimal populations is observed. The trade-off between U and COT affects the geometry, kinematics and energetics of swimming organisms. Our results are corroborated by empirical data from swimming animals over nine orders of magnitude in size, supporting the notion that optimizing U and COT could be the driving force of evolution in many species. PMID:22456876

  5. Swimming pool. View of aisle between swimming pool and seating ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Swimming pool. View of aisle between swimming pool and seating area. Non-original spa pool is partially visible on right. - Jewish Community Center of San Francisco, 3200 California Street, San Francisco, San Francisco County, CA

  6. Mechanics of composite elasmoid fish scale assemblies and their bioinspired analogues.

    PubMed

    Browning, Ashley; Ortiz, Christine; Boyce, Mary C

    2013-03-01

    Inspired by the overlapping scales found on teleost fish, a new composite architecture explores the mechanics of materials to accommodate both flexibility and protection. These biological structures consist of overlapping mineralized plates embedded in a compliant tissue to form a natural flexible armor which protects underlying soft tissue and vital organs. Here, the functional performance of such armors is investigated, in which the composition, spatial arrangement, and morphometry of the scales provide locally tailored functionality. Fabricated macroscale prototypes and finite element based micromechanical models are employed to measure mechanical response to blunt and penetrating indentation loading. Deformation mechanisms of scale bending, scale rotation, tissue shear, and tissue constraint were found to govern the ability of the composite to protect the underlying substrate. These deformation mechanisms, the resistance to deformation, and the resulting work of deformation can all be tailored by structural parameters including architectural arrangement (angle of the scales, degree of scale overlap), composition (volume fraction of the scales), morphometry (aspect ratio of the scales), and material properties (tissue modulus and scale modulus). In addition, this network of armor serves to distribute the load of a predatory attack over a large area to mitigate stress concentrations. Mechanical characterization of such layered, segmented structures is fundamental to developing design principles for engineered protective systems and composites. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Electric signals and schooling behavior in a weakly electric fish, Marcusenius cyprinoides L. (Mormyriformes).

    PubMed

    Moller, P

    1976-08-20

    Field recordings of electric organ discharges and catches of Marcusenius cyprinoides showed that these electric fish form groups and move about in schools. The role electric organ discharges in group cohesion was investigated by comparing interactions in groups of intact and operated, electrically silent fish. The absence of electric organ dischares reduced locomotor activity and resulted in the disappearance of two behaviors: parallel lineup and single file swimming. Electric signals are considered part of a schooling mechanism that aids the fish in maintaining group cohesion in their turbid enviornment and during migration at night.

  8. Prolonged swimming performance of northern squawfish

    USGS Publications Warehouse

    Mesa, Matthew G.; Olson, Todd M.

    1993-01-01

    We determined the prolonged swimming performance of two size-classes of northern squawfish Ptychocheilus oregonensis at 12 and 18°C. The percentage of fish fatigued was positively related to water velocity and best described by an exponential model. At 12°C, the velocity at which 50% of the fish fatigued (FV50) was estimated to be 2.91 fork lengths per second (FL/s; 100 cm/s) for medium-sized fish (30–39 cm) and 2.45 FL/s (104 cm/s) for large fish (40–49 cm). At 18°C, estimated FV50 was 3.12 FL/s (107 cm/s) for medium fish and 2.65 FL/s (112 cm/s) for large fish. Rate of change in percent fatigue was affected by fish size and water temperature. Large fish fatigued at a higher rate than medium-sized fish; all fish fatigued faster at 12 than at 18°C. The mean times to fatigue at velocities of 102–115 cm/s ranged from 14 to 28 min and were not affected by fish size or water temperature. Our results indicate that water velocities from 100 to 130 cm/s may exclude or reduce predation by northern squawfish around juvenile salmonid bypass outfalls at Columbia River dams, at least during certain times of the year. We recommend that construction or modification of juvenile salmonid bypass facilities place the outfall in an area of high water velocity and distant from eddies, submerged cover, and littoral areas.

  9. Prolonged swimming performance of northern squawfish

    SciTech Connect

    Mesa, M.G.; Olson, T.M. )

    1993-11-01

    The authors determined the prolonged swimming performance of two size-classes of northern squawfish Ptychocheilus oregonensis at 12 and 18[degrees]C. The percentage of fish fatigued was positively related to water velocity and best described by an exponential model. At 12[degrees]C, the velocity at which 50% of the fish fatigued (FV50) was estimated to be 2.91 fork lengths per second (FL/s; 100 cm/s) for medium-sized fish (30-39 cm) and 2.45 FL/s (104 cm/s) for large fish (40-49 cm). At 18[degrees]C, estimated FV50 was 3.12 FL/s (107 cm/s) for medium fish and 2.65 FL/s (112 cm/s) for large fish. Rate of change in percent fatigue was affected by fish size and water temperature. Large fish fatigued at a higher rate than medium-sized fish; all fish fatigued faster at 12 than at 18[degrees]C. The mean times to fatigue at velocities of 102-115 cm/s ranged from 14 to 28 min and were not affected by fish size or water temperature. The results indicate that water velocities from 100 to 130 cm/s may exclude or reduce predation by northern squawfish around juvenile salmonid bypass outfalls at Columbia River dams, at least during certain times of the year. The authors recommend that construction or modification of juvenile salmonid bypass facilities place the outfall in an area of high water velocity and distant from eddies, submerged cover, and littoral areas. 35 refs., 1 fig., 2 tabs.

  10. Exploring Uncoupling Proteins and Antioxidant Mechanisms under Acute Cold Exposure in Brains of Fish

    PubMed Central

    Lucassen, Magnus; Schmidt, Maike M.; Dringen, Ralf; Abele, Doris; Hwang, Pung-Pung

    2011-01-01

    Exposure to fluctuating temperatures accelerates the mitochondrial respiration and increases the formation of mitochondrial reactive oxygen species (ROS) in ectothermic vertebrates including fish. To date, little is known on potential oxidative damage and on protective antioxidative defense mechanisms in the brain of fish under cold shock. In this study, the concentration of cellular protein carbonyls in brain was significantly increased by 38% within 1 h after cold exposure (from 28°C to 18°C) of zebrafish (Danio rerio). In addition, the specific activity of superoxide dismutase (SOD) and the mRNA level of catalase (CAT) were increased after cold exposure by about 60% (6 h) and by 60%–90% (1 and 24 h), respectively, while the specific glutathione content as well as the ratio of glutathione disulfide to glutathione remained constant and at a very low level. In addition, cold exposure increased the protein level of hypoxia-inducible factor (HIF) by about 50% and the mRNA level of the glucose transporter zglut3 in brain by 50%–100%. To test for an involvement of uncoupling proteins (UCPs) in the cold adaptation of zebrafish, five UCP members were annotated and identified (zucp1-5). With the exception of zucp1, the mRNA levels of the other four zucps were significantly increased after cold exposure. In addition, the mRNA levels of four of the fish homologs (zppar) of the peroxisome proliferator-activated receptor (PPAR) were increased after cold exposure. These data suggest that PPARs and UCPs are involved in the alterations observed in zebrafish brain after exposure to 18°C. The observed stimulation of the PPAR-UCP axis may help to prevent oxidative damage and to maintain metabolic balance and cellular homeostasis in the brains of ectothermic zebrafish upon cold exposure. PMID:21464954

  11. Exploring uncoupling proteins and antioxidant mechanisms under acute cold exposure in brains of fish.

    PubMed

    Tseng, Yung-Che; Chen, Ruo-Dong; Lucassen, Magnus; Schmidt, Maike M; Dringen, Ralf; Abele, Doris; Hwang, Pung-Pung

    2011-03-25

    Exposure to fluctuating temperatures accelerates the mitochondrial respiration and increases the formation of mitochondrial reactive oxygen species (ROS) in ectothermic vertebrates including fish. To date, little is known on potential oxidative damage and on protective antioxidative defense mechanisms in the brain of fish under cold shock. In this study, the concentration of cellular protein carbonyls in brain was significantly increased by 38% within 1 h after cold exposure (from 28 °C to 18 °C) of zebrafish (Danio rerio). In addition, the specific activity of superoxide dismutase (SOD) and the mRNA level of catalase (CAT) were increased after cold exposure by about 60% (6 h) and by 60%-90% (1 and 24 h), respectively, while the specific glutathione content as well as the ratio of glutathione disulfide to glutathione remained constant and at a very low level. In addition, cold exposure increased the protein level of hypoxia-inducible factor (HIF) by about 50% and the mRNA level of the glucose transporter zglut3 in brain by 50%-100%. To test for an involvement of uncoupling proteins (UCPs) in the cold adaptation of zebrafish, five UCP members were annotated and identified (zucp1-5). With the exception of zucp1, the mRNA levels of the other four zucps were significantly increased after cold exposure. In addition, the mRNA levels of four of the fish homologs (zppar) of the peroxisome proliferator-activated receptor (PPAR) were increased after cold exposure. These data suggest that PPARs and UCPs are involved in the alterations observed in zebrafish brain after exposure to 18°C. The observed stimulation of the PPAR-UCP axis may help to prevent oxidative damage and to maintain metabolic balance and cellular homeostasis in the brains of ectothermic zebrafish upon cold exposure.

  12. Evaluation of Fish-Injury Mechanisms During Exposure to Turbulent Shear Flow

    SciTech Connect

    Deng, Zhiqun; Guensch, Greg R.; McKinstry, Craig A.; Mueller, Robert P.; Dauble, Dennis D.; Richmond, Marshall C.

    2005-07-22

    Motion tracking analysis was performed on high-speed, high-resolution digital videos of juvenile salmonids exposed to a laboratory-generated shear environment to isolate injury mechanisms. Hatchery-reared fall chinook salmon (93-128 mm in length) were introduced into the top portion of a submerged, 6.35-cm diameter water jet at velocities ranging from 12.2 to 19.8 m•s-1, with a control group released at 3 m•s-1. Injuries typical of turbine passed fish, including eye damage, opercle damage, bruising, loss of equilibrium, lethargy, and mortality were observed and recorded. Three-dimensional trajectories were generated for four locations (nose, head, centroid, tail) on each fish released. Time series of velocity, acceleration, force, jerk, and bending angle were computed from the 3-dimensional trajectories of the centroid using finite-difference methods. The onset of minor, major and fatal injuries occurred at nozzle velocities of 12.2 13.7 and 16.8 m•s-1, respectively, corresponding to exposure strain rates of 683, 761, and 933 s-1. Opercle injuries occurred at 12.2 m•s-1 nozzle velocity, while eye injuries, bruising, and loss of equilibrium were common at speeds of 16.8 m•s-1 and above. Of the computed dynamic parameters, acceleration showed the strongest predictive power for eye and opercle injuries and overall injury level, and it may provide the best potential link between laboratory studies of fish injury, field studies designed to collect similar data in situ, and computational fluid dynamics (CFD) model output.

  13. The fish tail motion forms an attached leading edge vortex.

    PubMed

    Borazjani, Iman; Daghooghi, Mohsen

    2013-04-07

    The tail (caudal fin) is one of the most prominent characteristics of fishes, and the analysis of the flow pattern it creates is fundamental to understanding how its motion generates locomotor forces. A mechanism that is known to greatly enhance locomotor forces in insect and bird flight is the leading edge vortex (LEV) reattachment, i.e. a vortex (separation bubble) that stays attached at the leading edge of a wing. However, this mechanism has not been reported in fish-like swimming probably owing to the overemphasis on the trailing wake, and the fact that the flow does not separate along the body of undulating swimmers. We provide, to our knowledge, the first evidence of the vortex reattachment at the leading edge of the fish tail using three-dimensional high-resolution numerical simulations of self-propelled virtual swimmers with different tail shapes. We show that at Strouhal numbers (a measure of lateral velocity to the axial velocity) at which most fish swim in nature (approx. 0.25) an attached LEV is formed, whereas at a higher Strouhal number of approximately 0.6 the LEV does not reattach. We show that the evolution of the LEV drastically alters the pressure distribution on the tail and the force it generates. We also show that the tail's delta shape is not necessary for the LEV reattachment and fish-like kinematics is capable of stabilising the LEV. Our results suggest the need for a paradigm shift in fish-like swimming research to turn the focus from the trailing edge to the leading edge of the tail.

  14. Algal swimming velocities signal fatty acid accumulation.

    PubMed

    Hansen, Travis J; Hondzo, Miki; Mashek, Mara T; Mashek, Douglas G; Lefebvre, Paul A

    2013-01-01

    The use of microalgae for biofuel production will be beneficial to society if we can produce biofuels at large scales with minimal mechanical energy input in the production process. Understanding micro-algal physiological responses under variable environmental conditions in bioreactors is essential for the optimization of biofuel production. We demonstrate that measuring micro-algal swimming speed provides information on culture health and total fatty acid accumulation. Three strains of Chlamydomonas reinhardtii were grown heterotrophically on acetate and subjected to various levels of nitrogen starvation. Other nutrient levels were explored to determine their effect on micro-algal kinetics. Swimming velocities were measured with two-dimensional micro-particle tracking velocimetry. The results show an inverse linear relationship between normalized total fatty acid mass versus swimming speed of micro-algal cells. Analysis of RNA sequencing data confirms these results by demonstrating that the biological processes of cell motion and the generation of energy precursors are significantly down-regulated. Experiments demonstrate that changes in nutrient concentration in the surrounding media also affect swimming speed. The findings have the potential for the in situ and indirect assessment of lipid content by measuring micro-algal swimming kinetics.

  15. 2008 Swimming Season Fact Sheets

    EPA Pesticide Factsheets

    To help beachgoers make informed decisions about swimming at U.S. beaches, EPA annually publishes state-by-state data about beach closings and advisories for the previous year's swimming season. These fact sheets summarize that information by state.

  16. 2007 Swimming Season Fact Sheets

    EPA Pesticide Factsheets

    To help beachgoers make informed decisions about swimming at U.S. beaches, EPA annually publishes state-by-state data about beach closings and advisories for the previous year's swimming season. These fact sheets summarize that information by state.

  17. 2009 Swimming Season Fact Sheets

    EPA Pesticide Factsheets

    To help beachgoers make informed decisions about swimming at U.S. beaches, EPA annually publishes state-by-state data about beach closings and advisories for the previous year's swimming season. These fact sheets summarize that information by state.

  18. 2006 Swimming Season Fact Sheets

    EPA Pesticide Factsheets

    To help beachgoers make informed decisions about swimming at U.S. beaches, EPA annually publishes state-by-state data about beach closings and advisories for the previous year's swimming season. These fact sheets summarize that information by state.

  19. 2010 Swimming Season Fact Sheets

    EPA Pesticide Factsheets

    To help beachgoers make informed decisions about swimming at U.S. beaches, EPA annually publishes state-by-state data about beach closings and advisories for the previous year's swimming season. These fact sheets summarize that information by state.

  20. Cavities in the compact bone in tetrapods and fish and their effect on mechanical properties.

    PubMed

    Currey, John D; Shahar, Ron

    2013-08-01

    Bone includes cavities in various length scales, from nanoporosities occurring between the collagen fibrils and the mineral crystals all the way to macrocavities like the medullary cavity. In particular, bone is permeated by a vast number of channels (the lacunar-canalicular system), that reduce the stiffness and, more importantly, the strength of the bone that they permeate. These consequences are presumably a price worth paying for the ability of the lacunar-canalicular system to detect changes in the strain environment within the bone material and, when deleterious, to trigger processes like modeling or remodeling which 'rectify' it. Here we review the size and density of the various types of cavities in bone, and discuss their effect on the mechanical properties of cortical bone. In this respect the bones of advanced teleost fish species (probably the majority of all vertebrate species) are an unsolved conundrum because they lack bone cells (and therefore lacunae and canaliculi) in their skeleton. Yet, despite being acellular, some of these fish can undergo considerable remodeling in at least some parts of their skeleton. We address, but do not solve this mystery. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Novel mechanism of stream formation in coastal wetlands by crab fish groundwater interaction

    NASA Astrophysics Data System (ADS)

    Perillo, Gerardo M. E.; Minkoff, Dario R.; Piccolo, M. Cintia

    2005-09-01

    A novel mechanism of stream development in coastal wetlands was observed in the form of interaction between the burrowing crab (Chasmagnathus granulata) and groundwater seepage. This process may eventually be further promoted by the predatory action of the white croaker fish (Micropogon opercularis). These so-called crab streams occur on the banks of major tidal channels in a salt marsh of the Bahía Blanca Estuary (Argentina). As the tide recedes, water is retained in the crab burrows on the marsh surface. The presence of lateral burrows produced by crab recruits promotes subterranean piping flow driven by the hydraulic head in the vertical burrow. Groundwater generally seeps along the tidal channel banks but is particularly prominent and concentrated where crab burrows perforate the banks. Where predatory attacks by the croaker fish enlarge the burrow mouths, the drainage rills become wider and deeper because more seeping water is collected in the shallow crater from where it is funnelled into the developing streams. The crab stream is then produced by water draining from the crab burrow mouth, acting initially by cut-back erosion and followed by forward erosion of the relatively unconsolidated muddy sediments.

  2. How animals drink and swim in fluids

    NASA Astrophysics Data System (ADS)

    Jung, Sunghwan

    2011-10-01

    Fluids are essential for most living organisms to maintain a healthy body and also serve as a medium in which they locomote. The fluid bulk or interfaces actively interact with biological structures, which produces highly nonlinear, interesting, and complicated dynamical problems. We studied the lapping of cats and the swimming of Paramecia in various fluidic environments. The problem of the cat drinking can be simplified as the competition between inertia and gravity whereas the problem of Paramecium swimming in viscous fluids results from the competition between viscous drag and thrust. The underlying mechanisms are discussed and understood through laboratory experiments utilizing high-speed photography.

  3. Instabilities in the Swimming of Bacteria

    NASA Astrophysics Data System (ADS)

    Riley, Emily; Lauga, Eric

    2016-11-01

    Peritrichously flagellated bacteria, such as E. coli and B. subtillis, have flagella randomly distributed over their body. These flagella rotate to generate a pushing force that causes the cell to swim body first. For changes in direction these flagella return to their randomly distributed state where the flagella point in many different directions. The main observed state of swimming peritrichously flagellated bacteria however is one where all their flagella gathered or bundled at one end of the body. In this work we address this problem from the point of view of fluid-structure interactions and show theoretically and numerically how the conformation of flagella depends on the mechanics of the cell.

  4. Ontogeny, morphology and mechanics of the tessellated skeleton of cartilaginous fishes

    NASA Astrophysics Data System (ADS)

    Dean, Mason N.

    2009-12-01

    The members of the successful and diverse lineage of elasmobranch fishes (sharks, rays and relatives) possess endoskeletons fashioned entirely of cartilage. This is counterintuitive because cartilage, unlike bone, lacks a major blood supply and has limited capacity for repair; yet these fishes exhibit particularly dynamic lifestyles and high levels of performance. The functionality of this skeletal tissue is likely due to its mineralization: in most skeletal elements, the soft cartilage core is tiled (tessellated) with an outer rind of abutting hydroxyapatite blocks called tesserae, joined together by intertesseral fibers and overlain by the fibrous perichondrium. This basic composite arrangement of tissues has been appreciated for over a century, but available techniques have limited the ability to examine elasmobranch cartilage adequately---without artifacts, in 3-dimensions and at high resolution---so that its development, mechanics and phylogeny might be contextualized among vertebrate skeletal tissues. I summarize the history, nomenclature and challenges relating to study of tessellated cartilage (Chapter 1) and present a low temperature microscopy technique to facilitate visualization of all tissue components in situ (Chapter 2). I use that technique in tandem with synchrotron microtomography to examine the ultrastructure of tesserae (Chapter 3) and the development of tessellated cartilage across ontogeny (Chapter 4). Finally, I examine the ways in which selection acts on skeletal morphology by examining cranial anatomy across 40 species of batoid fishes (rays and relatives) in the contexts of ecology and phylogeny (Chapter 5). There are some similarities between mineralizing bone and elasmobranch cartilage (e.g. the flattening of peripheral cells in the unmineralized phase, decreases in cellular density with mineralization, the presence of canaliculi connecting entombed cells). However, the ability for tessellated cartilage to grow (through enlargement of

  5. Neuromolecular responses to social challenge: Common mechanisms across mouse, stickleback fish, and honey bee

    PubMed Central

    Rittschof, Clare C.; Bukhari, Syed Abbas; Sloofman, Laura G.; Troy, Joseph M.; Caetano-Anollés, Derek; Cash-Ahmed, Amy; Kent, Molly; Lu, Xiaochen; Sanogo, Yibayiri O.; Weisner, Patricia A.; Zhang, Huimin; Bell, Alison M.; Ma, Jian; Sinha, Saurabh; Robinson, Gene E.; Stubbs, Lisa

    2014-01-01

    Certain complex phenotypes appear repeatedly across diverse species due to processes of evolutionary conservation and convergence. In some contexts like developmental body patterning, there is increased appreciation that common molecular mechanisms underlie common phenotypes; these molecular mechanisms include highly conserved genes and networks that may be modified by lineage-specific mutations. However, the existence of deeply conserved mechanisms for social behaviors has not yet been demonstrated. We used a comparative genomics approach to determine whether shared neuromolecular mechanisms could underlie behavioral response to territory intrusion across species spanning a broad phylogenetic range: house mouse (Mus musculus), stickleback fish (Gasterosteus aculeatus), and honey bee (Apis mellifera). Territory intrusion modulated similar brain functional processes in each species, including those associated with hormone-mediated signal transduction and neurodevelopment. Changes in chromosome organization and energy metabolism appear to be core, conserved processes involved in the response to territory intrusion. We also found that several homologous transcription factors that are typically associated with neural development were modulated across all three species, suggesting that shared neuronal effects may involve transcriptional cascades of evolutionarily conserved genes. Furthermore, immunohistochemical analyses of a subset of these transcription factors in mouse again implicated modulation of energy metabolism in the behavioral response. These results provide support for conserved genetic “toolkits” that are used in independent evolutions of the response to social challenge in diverse taxa. PMID:25453090

  6. Simulations of optimized anguilliform swimming.

    PubMed

    Kern, Stefan; Koumoutsakos, Petros

    2006-12-01

    The hydrodynamics of anguilliform swimming motions was investigated using three-dimensional simulations of the fluid flow past a self-propelled body. The motion of the body is not specified a priori, but is instead obtained through an evolutionary algorithm used to optimize the swimming efficiency and the burst swimming speed. The results of the present simulations support the hypothesis that anguilliform swimmers modify their kinematics according to different objectives and provide a quantitative analysis of the swimming motion and the forces experienced by the body. The kinematics of burst swimming is characterized by the large amplitude of the tail undulations while the anterior part of the body remains straight. In contrast, during efficient swimming behavior significant lateral undulation occurs along the entire length of the body. In turn, during burst swimming, the majority of the thrust is generated at the tail, whereas in the efficient swimming mode, in addition to the tail, the middle of the body contributes significantly to the thrust. The burst swimming velocity is 42% higher and the propulsive efficiency is 15% lower than the respective values during efficient swimming. The wake, for both swimming modes, consists largely of a double row of vortex rings with an axis aligned with the swimming direction. The vortex rings are responsible for producing lateral jets of fluid, which has been documented in prior experimental studies. We note that the primary wake vortices are qualitatively similar in both swimming modes except that the wake vortex rings are stronger and relatively more elongated in the fast swimming mode. The present results provide quantitative information of three-dimensional fluid-body interactions that may complement related experimental studies. In addition they enable a detailed quantitative analysis, which may be difficult to obtain experimentally, of the different swimming modes linking the kinematics of the motion with the forces

  7. Swimming Pools for Primary Schools.

    ERIC Educational Resources Information Center

    Klein, Jo

    This seven-chapter report on swimming in primary schools deals with the policies of local British education authorities and institutes for the physically handicapped toward promoting swimming. Interspersed throughout are comments from teachers and children. "Swimming and Education" comments on the benefits of primary school swimming…

  8. Colour variation in cichlid fish: Developmental mechanisms, selective pressures and evolutionary consequences☆

    PubMed Central

    Maan, Martine E.; Sefc, Kristina M.

    2013-01-01

    Cichlid fishes constitute one of the most species-rich families of vertebrates. In addition to complex social behaviour and morphological versatility, they are characterised by extensive diversity in colouration, both within and between species. Here, we review the cellular and molecular mechanisms underlying colour variation in this group and the selective pressures responsible for the observed variation. We specifically address the evidence for the hypothesis that divergence in colouration is associated with the evolution of reproductive isolation between lineages. While we conclude that cichlid colours are excellent models for understanding the role of animal communication in species divergence, we also identify taxonomic and methodological biases in the current research effort. We suggest that the integration of genomic approaches with ecological and behavioural studies, across the entire cichlid family and beyond it, will contribute to the utility of the cichlid model system for understanding the evolution of biological diversity. PMID:23665150

  9. Observations on side-swimming rainbow trout in water recirculation aquaculture systems.

    PubMed

    Good, Christopher; Davidson, John; Kinman, Christin; Kenney, P Brett; Bæverfjord, Grete; Summerfelt, Steven

    2014-12-01

    During a controlled 6-month study using six replicated water recirculation aquaculture systems (WRASs), it was observed that Rainbow Trout Oncorhynchus mykiss in all WRASs exhibited a higher-than-normal prevalence of side swimming (i.e., controlled, forward swimming but with misaligned orientation such that the fish's sagittal axis is approximately parallel to the horizontal plane). To further our understanding of this abnormality, a substudy was conducted wherein side swimmers and normally swimming fish were selectively sampled from each WRAS and growth performance (length, weight), processing attributes (fillet yield, visceral index, ventrum [i.e., thickness of the ventral "belly flap"] index), blood gas and chemistry parameters, and swim bladder morphology and positioning were compared. Side swimmers were found to be significantly smaller in length and weight and had less fillet yield but higher ventrum indices. Whole-blood analyses demonstrated that, among other things, side swimmers had significantly lower whole-blood pH and higher Pco2. Side swimmers typically exhibited swim bladder malformations, although the positive predictive value of this subjective assessment was only 73%. Overall, this study found several anatomical and physiological differences between side-swimming and normally swimming Rainbow Trout. Given the reduced weight and fillet yield of market-age side swimmers, producers would benefit from additional research to reduce side-swimming prevalence in their fish stocks.

  10. Just Keep Swimming: Neuroendocrine, Metabolic, and Behavioral Changes After a Forced Swimming Test in Zebrafish.

    PubMed

    da Rosa, João Gabriel Santos; Barcellos, Heloísa Helena de Alcântara; Idalencio, Renan; Marqueze, Alessandra; Fagundes, Michele; Rossini, Mainara; Variani, Cristiane; Balbinoti, Francine; Tietböhl, Tássia Michele Huff; Rosemberg, Denis Broock; Barcellos, Leonardo José Gil

    2017-02-01

    In this study, we show that an adaptation of the spinning test can be used as a model to study the exercise-exhaustion-recovery paradigm in fish. This forced swimming test promotes a wide range of changes in the hypothalamus-pituitary-interrenal axis functioning, intermediary metabolism, as well in fish behavior at both exercise and recovery periods. Our results pointed that this adapted spinning test can be considered a valuable tool for evaluating drugs and contaminant effects on exercised fish. This can be a suitable protocol both to environmental-to evaluate contaminants that act in fish energy mobilization and recovery after stressors-and translational perspectives-effects of drugs on exercised or stressed humans.

  11. Larval sensory abilities and mechanisms of habitat selection of a coral reef fish during settlement.

    PubMed

    Lecchini, David; Shima, Jeffrey; Banaigs, Bernard; Galzin, René

    2005-03-01

    Sensory abilities and preferences exhibited by mobile larvae during their transition to juvenile habitats can establish spatial heterogeneity that drives subsequent species interactions and dynamics of populations. We conducted a series of laboratory and field experiments using coral reef fish larvae (Chromis viridis) to determine: ecological determinants of settlement choice (conspecifics vs. heterospecifics vs. coral substrates); sensory mechanisms (visual, acoustic/vibratory, olfactory) underlying settlement choice; and sensory abilities (effective detection distances of habitat) under field conditions. C. viridis larvae responded positively to visual, acoustic/vibratory, and olfactory cues expressed by conspecifics. Overall, larvae chose compartments of experimental arenas containing conspecifics in 75% of trials, and failed to show any significant directional responses to heterospecifics or coral substrates. In field trials, C. viridis larvae detected reefs containing conspecifics using visual and/or acoustic/vibratory cues at distances <75 cm; detection distances increased to <375 cm when olfactory capacity was present (particularly for reefs located up-current). We conducted high performance liquid chromatography (HPLC) analyses of seawater containing C. viridis juveniles and isolated high concentrations of several organic compounds. Subsequent laboratory trials demonstrated that C. viridis larvae responded positively to only one of these organic compounds. This compound was characterized by a weak polarity and was detected at 230 nm with a 31-min retention time in HPLC. Overall, our results suggest that fishes may use a range of sensory mechanisms effective over different spatial scales to detect and choose settlement sites, and species-specific cues may play a vital role in establishment of spatial patterns at settlement.

  12. Relationships between metabolic rate, muscle electromyograms, and swim performance of adult chinook salmon

    SciTech Connect

    Geist, David R. ); Brown, Richard S. ); Cullinan, Valerie I. ); Mesa, Matthew G.; VanderKooi, S P.; McKinstry, Craig A. )

    2003-10-01

    We measured oxygen consumption rates of adult spring Chinook salmon and compared these values to other species of Pacific salmon. Our results indicated that adult salmon achieve their maximum level of oxygen consumption at about their upper critical swim speed. It is also at this speed that the majority of the energy supplied to the swimming fish switches from red muscle (powered by aerobic metabolism) to white muscle (powered by anaerobic metabolism). Determining the swimming performance of adult salmon will assist managers in developing fishways and other means to safely pass fish over hydroelectric dams and other man-made structures.

  13. Effect of inertia on laminar swimming and flying of an assembly of rigid spheres in an incompressible viscous fluid

    NASA Astrophysics Data System (ADS)

    Felderhof, B. U.

    2015-11-01

    A mechanical model of swimming and flying in an incompressible viscous fluid in the absence of gravity is studied on the basis of assumed equations of motion. The system is modeled as an assembly of rigid spheres subject to elastic direct interactions and to periodic actuating forces which sum to zero. Hydrodynamic interactions are taken into account in the virtual mass matrix and in the friction matrix of the assembly. An equation of motion is derived for the velocity of the geometric center of the assembly. The mean power is calculated as the mean rate of dissipation. The full range of viscosity is covered, so that the theory can be applied to the flying of birds, as well as to the swimming of fish or bacteria. As an example a system of three equal spheres moving along a common axis is studied.

  14. Effect of inertia on laminar swimming and flying of an assembly of rigid spheres in an incompressible viscous fluid.

    PubMed

    Felderhof, B U

    2015-01-01

    A mechanical model of swimming and flying in an incompressible viscous fluid in the absence of gravity is studied on the basis of assumed equations of motion. The system is modeled as an assembly of rigid spheres subject to elastic direct interactions and to periodic actuating forces which sum to zero. Hydrodynamic interactions are taken into account in the virtual mass matrix and in the friction matrix of the assembly. An equation of motion is derived for the velocity of the geometric center of the assembly. The mean power is calculated as the mean rate of dissipation. The full range of viscosity is covered, so that the theory can be applied to the flying of birds, as well as to the swimming of fish or bacteria. As an example a system of three equal spheres moving along a common axis is studied.

  15. Multi-directional thrusting using oppositely traveling waves in knifefish swimming

    NASA Astrophysics Data System (ADS)

    Curet, Oscar; Maciver, Malcolm; Patankar, Neelesh

    2009-11-01

    Apteronotus albifrons, also known as the black ghost knifefish, generate a weak electric field for omnidirectional sensing. This is matched by an extraordinary multi-directional swimming ability that is achieved by undulating a ribbon-like anal fin. Forward or backward motion is generated by a traveling wave on the ribbon fin. We have discovered that, for hovering and vertical swimming, the knifefish use two oppositely traveling waves on the ribbon fin. To understand the hydrodynamic mechanism of hovering and heave we performed fully resolved simulations of self-propulsion of the knifefish. We used kinematic inputs based on experimental observations. We found that the counter propagating waves generate two opposite streamwise jets along the bottom edge of the ribbon fin. These two jets meet approximately at the mid-section along the fin length and are deflected downward. The resultant downward momentum imparted to the fluid creates an upward force on the fish body which can be used for hovering or vertical swimming. There is a vortex ring pair of opposite directions at the middle of the fin that is associated with this fluid flow. Further insight into how the knifefish control heave and hovering was obtained from the measurements of force generated by a robotic ribbon fin for different wave parameters.

  16. Mechanisms of nickel toxicity to fish and invertebrates in marine and estuarine waters.

    PubMed

    Blewett, Tamzin A; Leonard, Erin M

    2017-04-01

    In freshwater settings the toxicity of the trace metal nickel (Ni) is relatively well understood. However, until recently, there was little knowledge regarding Ni toxicity in waters of higher salinity, where factors such as water chemistry and the physiology of estuarine and marine biota would be expected to alter toxicological impact. This review summarizes recent literature investigating Ni toxicity in marine and estuarine invertebrates and fish. As in freshwater, three main mechanisms of Ni toxicity exist: ionoregulatory impairment, inhibition of respiration, and promotion of oxidative stress. However, unlike in freshwater biota, where mechanisms of toxicity are largely Class-specific, the delineation of toxic mechanisms between different species is less defined. In general, despite changes in Ni speciation in marine waters, organism physiology appears to be the main driver of toxic impact, a fact that will need to be accounted for when adapting regulatory tools (such as bioavailability normalization) from freshwater to estuarine and marine environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Effects of skeletal deformities on swimming performance and recovery from exhaustive exercise in triploid Atlantic salmon.

    PubMed

    Powell, Mark D; Jones, Matthew A; Lijalad, Maite

    2009-05-27

    The occurrence of spinal deformity in aquaculture can be considerable, and a high rate of deformity has been suggested in triploid smolts in Tasmania. However, the physiological performance of fish with skeletal deformities has not been addressed. The swimming performance and oxygen consumption of triploid Atlantic salmon smolts with either a vertebral fusion (platyspondyly) or multifocal scoliosis were compared to normal (non-deformed) triploid smolts. Fish with vertebral fusion attained swim speeds similar to normal fish, whereas scoliotic fish were unable to attain comparable swim speeds. Routine and maximum oxygen consumption was higher for deformed fish compared with normal fish, translating into apparent increased routine metabolic scope in vertebral fusion fish, and equivocal scope in scoliotic fish compared with normal controls. Deformed fish developed a lower excess post-exercise oxygen consumption compared to non-deformed fish, suggesting they are either incapable of sustained anaerobic activity or possess an increased recovery capacity. These data suggest that skeletal deformity has differential effects on swimming performance depending upon the type of deformity but imposes a significant metabolic cost on salmon smolts.

  18. Red Cross Swimming Update.

    ERIC Educational Resources Information Center

    Vlasich, Cynthia

    1989-01-01

    Six new aquatic courses, developed by the Red Cross, are described. They are: Infant and Preschool Aquatics, Longfellow's Whale Tales (classroom water safety lessons for K-Six), Basic Water Safety, Emergency Water Safety, Lifeguard Training, and Safety Training for Swim Coaches. (IAH)

  19. Red Cross Swimming Update.

    ERIC Educational Resources Information Center

    Vlasich, Cynthia

    1989-01-01

    Six new aquatic courses, developed by the Red Cross, are described. They are: Infant and Preschool Aquatics, Longfellow's Whale Tales (classroom water safety lessons for K-Six), Basic Water Safety, Emergency Water Safety, Lifeguard Training, and Safety Training for Swim Coaches. (IAH)

  20. Bending continuous structures with SMAs: a novel robotic fish design.

    PubMed

    Rossi, C; Colorado, J; Coral, W; Barrientos, A

    2011-12-01

    In this paper, we describe our research on bio-inspired locomotion systems using deformable structures and smart materials, concretely shape memory alloys (SMAs). These types of materials allow us to explore the possibility of building motor-less and gear-less robots. A swimming underwater fish-like robot has been developed whose movements are generated using SMAs. These actuators are suitable for bending the continuous backbone of the fish, which in turn causes a change in the curvature of the body. This type of structural arrangement is inspired by fish red muscles, which are mainly recruited during steady swimming for the bending of a flexible but nearly incompressible structure such as the fishbone. This paper reviews the design process of these bio-inspired structures, from the motivations and physiological inspiration to the mechatronics design, control and simulations, leading to actual experimental trials and results. The focus of this work is to present the mechanisms by which standard swimming patterns can be reproduced with the proposed design. Moreover, the performance of the SMA-based actuators' control in terms of actuation speed and position accuracy is also addressed.

  1. Evolutionary multiobjective design of a flexible caudal fin for robotic fish.

    PubMed

    Clark, Anthony J; Tan, Xiaobo; McKinley, Philip K

    2015-11-25

    Robotic fish accomplish swimming by deforming their bodies or other fin-like appendages. As an emerging class of embedded computing system, robotic fish are anticipated to play an important role in environmental monitoring, inspection of underwater structures, tracking of hazardous wastes and oil spills, and the study of live fish behaviors. While integration of flexible materials (into the fins and/or body) holds the promise of improved swimming performance (in terms of both speed and maneuverability) for these robots, such components also introduce significant design challenges due to the complex material mechanics and hydrodynamic interactions. The problem is further exacerbated by the need for the robots to meet multiple objectives (e.g., both speed and energy efficiency). In this paper, we propose an evolutionary multiobjective optimization approach to the design and control of a robotic fish with a flexible caudal fin. Specifically, we use the NSGA-II algorithm to investigate morphological and control parameter values that optimize swimming speed and power usage. Several evolved fin designs are validated experimentally with a small robotic fish, where fins of different stiffness values and sizes are printed with a multi-material 3D printer. Experimental results confirm the effectiveness of the proposed design approach in balancing the two competing objectives.

  2. [Safety evaluation of food from transgenic fish and the molecular biological mechanism].

    PubMed

    Zhang, Xichun; Yang, Xiaoguang

    2004-03-01

    More progresses have been made in the studying of transgenic fish in China, but the studying work of safety evaluation of food from transgenic fish are started up just now. Compared to plants and animals on the land, it is more difficult to control the mobility of fish and fish can give birth to a large number of offsprings, so the ecological risk or hazard about transgenic fish is more critical than others. Another safety problem is the chimerism which is initiated by the gene transfer methods used in the transgenic fish. Getting sterile triploid transgenic fish and fixed point integration are efficient to solve the two problems above respectively. The solution of the two problems are also the basis of safety evaluation and detection of food from transgenic fish. Up to now, there are little reports on the safety evaluation of transgenic fish including nutritional evaluation and allergic reaction, and there are no basic research on the detection of transgenic fish for the aim of food safety. In brief, it is very urgent to start up the research on the safety evaluation and detection of transgenic fish for the control of food safety.

  3. [Anticonvulsant and forced swim anti-immobility effects of tetrahydro-N, N-dimethyl-2,2-diphenyl-3-furanemethanamine (AE37): common action mechanism?].

    PubMed

    Vamvakidès, A

    2002-03-01

    Tetrahydro-N, N-dimethyl-2, 2-diphenyl-3-furanemethanamine (AE 37) is a newly synthesized anticonvulsant drug efficient against electrogenic (maximal electroshock: MES) or pentetrazole (PTZ) induced tonic convulsions of mice. It also antagonizes the immobility of adult or aged mice in the forced swim test (FST), which is used to detect antidepressive properties. Neurochemical changes induced by AE37 (antagonistic action on the sodium channel currents and on the receptors sensitive to N-methyl-D-aspartic acid) could generate the aforementioned pharmacological properties, whereas the partial agonistic action of AE 37 on the brain muscarinic receptors seems to confer to this drug characteristics of third generation antiepileptic.

  4. Mechanisms of animal diapause: recent developments from nematodes, crustaceans, insects, and fish

    PubMed Central

    Denlinger, David L.; Podrabsky, Jason E.; Roy, Richard

    2016-01-01

    Life cycle delays are beneficial for opportunistic species encountering suboptimal environments. Many animals display a programmed arrest of development (diapause) at some stage(s) of their development, and the diapause state may or may not be associated with some degree of metabolic depression. In this review, we will evaluate current advancements in our understanding of the mechanisms responsible for the remarkable phenotype, as well as environmental cues that signal entry and termination of the state. The developmental stage at which diapause occurs dictates and constrains the mechanisms governing diapause. Considerable progress has been made in clarifying proximal mechanisms of metabolic arrest and the signaling pathways like insulin/Foxo that control gene expression patterns. Overlapping themes are also seen in mechanisms that control cell cycle arrest. Evidence is emerging for epigenetic contributions to diapause regulation via small RNAs in nematodes, crustaceans, insects, and fish. Knockdown of circadian clock genes in selected insect species supports the importance of clock genes in the photoperiodic response that cues diapause. A large suite of chaperone-like proteins, expressed during diapause, protects biological structures during long periods of energy-limited stasis. More information is needed to paint a complete picture of how environmental cues are coupled to the signal transduction that initiates the complex diapause phenotype, as well as molecular explanations for how the state is terminated. Excellent examples of molecular memory in post-dauer animals have been documented in Caenorhabditis elegans. It is clear that a single suite of mechanisms does not regulate diapause across all species and developmental stages. PMID:27053646

  5. Mechanisms of animal diapause: recent developments from nematodes, crustaceans, insects, and fish.

    PubMed

    Hand, Steven C; Denlinger, David L; Podrabsky, Jason E; Roy, Richard

    2016-06-01

    Life cycle delays are beneficial for opportunistic species encountering suboptimal environments. Many animals display a programmed arrest of development (diapause) at some stage(s) of their development, and the diapause state may or may not be associated with some degree of metabolic depression. In this review, we will evaluate current advancements in our understanding of the mechanisms responsible for the remarkable phenotype, as well as environmental cues that signal entry and termination of the state. The developmental stage at which diapause occurs dictates and constrains the mechanisms governing diapause. Considerable progress has been made in clarifying proximal mechanisms of metabolic arrest and the signaling pathways like insulin/Foxo that control gene expression patterns. Overlapping themes are also seen in mechanisms that control cell cycle arrest. Evidence is emerging for epigenetic contributions to diapause regulation via small RNAs in nematodes, crustaceans, insects, and fish. Knockdown of circadian clock genes in selected insect species supports the importance of clock genes in the photoperiodic response that cues diapause. A large suite of chaperone-like proteins, expressed during diapause, protects biological structures during long periods of energy-limited stasis. More information is needed to paint a complete picture of how environmental cues are coupled to the signal transduction that initiates the complex diapause phenotype, as well as molecular explanations for how the state is terminated. Excellent examples of molecular memory in post-dauer animals have been documented in Caenorhabditis elegans It is clear that a single suite of mechanisms does not regulate diapause across all species and developmental stages. Copyright © 2016 the American Physiological Society.

  6. The Swimming Efficiency of Magnetotactic Bacteria

    NASA Astrophysics Data System (ADS)

    Newell, A. J.

    2005-12-01

    Magnetotactic bacteria are widespread in the oxic-anoxic transition zone (OATZ) of freshwater and marine sediments. They have chains of magnetic particles and exert a high degree of control over their synthesis. Evidently they find it worth the energy cost of synthesizing these particles. The existing model for magnetotaxis compare a one-dimensional search along a magnetic field line with the three-dimensional "run and tumble" behavior of bacteria like E. coli. However, this model is inadequate in more than one respect. First, a search along a field line is only advantageous for relatively steep field lines. Second, most bacterial moments are too small for the one-dimensional approximation to be accurate. Third, it will be shown that tumbling behavior is incompatible with at least one kind of magnetotaxis. Instead, all known magnetotactic bacteria can reverse their direction of swimming. Models are developed for the swimming efficiency of the two kinds of magnetotaxis identified by Frankel et al. (1997). These are polar and axial magneto-aerotaxis (MA), where aerotaxis is an energy-sensing behavior that helps the bacterium find the optimal oxygen concentration. In both kinds of taxis torque on the magnetic chains tends to align the bacteria with the Earth's field. This torque is countered by viscous drag and Brownian rotation. Polar MA has a switch-like response of swimming direction to the oxygen concentration. This type of aerotaxis also uses the direction of the magnetic field to determine which way to swim. In zero field or in a field with the wrong sign this mechanism fails. Axial MA uses a more conventional aerotaxis that responds to gradients in the energy or redox state. This mechanism works reasonably well even in zero field, and also for any field direction as long as the field is not too large. The swimming efficiency of magnetotactic bacteria is determined by two factors: a geometrical factor based on the distribution of bacterial orientations, and the

  7. Changes in the swimming activity and the glutathione S-transferase activity of Jenynsia multidentata fed with microcystin-RR.

    PubMed

    Cazenave, Jimena; Nores, María L; Miceli, Martín; Díaz, María P; Wunderlin, Daniel A; Bistoni, María A

    2008-02-01

    We report the effects of sublethal doses of microcystin-RR (MC-RR) on the swimming activity of Jenynsia multidentata as well as the simultaneous response of its detoxication system by measuring glutathion S-transferase (GST) activities in the liver and brain of fish. MC-RR was applied on the food pellets at doses of 0.01, 0.1 and 1 microg g(-1). Swimming activity was recorded 10 min each hour over 24h by using a computer-based image processing system, which facilitates quantification of two measures of fish swimming behaviour (average velocity, movement percentage). Results show that low levels of cyanotoxin increased the swimming activity, while the highest dose used produced significant changes with respect to control group only since approximately 20 h of exposure, when the swimming activity was decreased. On the other hand, GST activity was significantly increased only in the liver and brain of fish fed with the highest MC-RR dose. Both results suggest that fish are reacting to the stress caused by low doses of MC-RR by increasing their swimming activity, raising further questions on the probable neurotoxicity of MCs, and presenting the behavioural change as a good biomarker of early toxic stress. On the other hand, fish reduced their swimming speed at the highest MC-RR dose, when the detoxication activity began, which can be hypothesized to be a reallocation of their energy, favouring detoxication over swimming activity.

  8. Eating without hands or tongue: specialization, elaboration and the evolution of prey processing mechanisms in cartilaginous fishes

    PubMed Central

    Dean, Mason N; Wilga, Cheryl D; Summers, Adam P

    2005-01-01

    The ability to separate edible from inedible portions of prey is integral to feeding. However, this is typically overlooked in favour of prey capture as a driving force in the evolution of vertebrate feeding mechanisms. In processing prey, cartilaginous fishes appear handicapped because they lack the pharyngeal jaws of most bony fishes and the muscular tongue and forelimbs of most tetrapods. We argue that the elaborate cranial muscles of some cartilaginous fishes allow complex prey processing in addition to their usual roles in prey capture. The ability to manipulate prey has evolved twice along different mechanical pathways. Batoid chondrichthyans (rays and relatives) use elaborate lower jaw muscles to process armored benthic prey, separating out energetically useless material. In contrast, megacarnivorous carcharhiniform and lamniform sharks use a diversity of upper jaw muscles to control the jaws while gouging, allowing for reduction of prey much larger than the gape. We suggest experimental methods to test these hypotheses empirically. PMID:17148206

  9. Impaired swim bladder inflation in early-life stage fathead ...

    EPA Pesticide Factsheets

    The present study investigated whether inhibition of deiodinase, the enzyme which converts thyroxine (T4) to the more biologically-active form, 3,5,3'-triiodothyronine (T3), would impact inflation of the posterior and/or anterior chamber of the swim bladder, processes previously demonstrated to be thyroid-hormone regulated. Two experiments were conducted using a model deiodinase inhibitor, iopanoic acid (IOP). In the first study, fathead minnow (Pimephales promelas) embryos were exposed to 0.6, 1.9, or 6.0 mg IOP/L or control water in a flow-through system until reaching 6 days post-fertilization (dpf) at which time posterior swim bladder inflation was assessed. To examine effects on anterior swim bladder inflation, a second study was conducted with 6 dpf larvae exposed to the same IOP concentrations until reaching 21 dpf. Fish from both studies were sampled for T4/T3 measurements, gene transcription analyses, and thyroid histopathology. In the embryo study, incidence and length of inflated posterior swim bladders were significantly reduced in the 6.0 mg/L treatment at 6 dpf. Incidence of inflation and length of anterior swim bladder in larval fish were significantly reduced in all IOP treatments at 14 dpf, but inflation recovered by 18 dpf. Throughout the larval study, whole body T4 concentrations were significantly increased and T3 concentrations were significantly decreased in all IOP treatments. Consistent with hypothesized compensatory responses, sig

  10. Impaired swim bladder inflation in early-life stage fathead ...

    EPA Pesticide Factsheets

    The present study investigated whether inhibition of deiodinase, the enzyme which converts thyroxine (T4) to the more biologically-active form, 3,5,3'-triiodothyronine (T3), would impact inflation of the posterior and/or anterior chamber of the swim bladder, processes previously demonstrated to be thyroid-hormone regulated. Two experiments were conducted using a model deiodinase inhibitor, iopanoic acid (IOP). In the first study, fathead minnow (Pimephales promelas) embryos were exposed to 0.6, 1.9, or 6.0 mg IOP/L or control water in a flow-through system until reaching 6 days post-fertilization (dpf) at which time posterior swim bladder inflation was assessed. To examine effects on anterior swim bladder inflation, a second study was conducted with 6 dpf larvae exposed to the same IOP concentrations until reaching 21 dpf. Fish from both studies were sampled for T4/T3 measurements, gene transcription analyses, and thyroid histopathology. In the embryo study, incidence and length of inflated posterior swim bladders were significantly reduced in the 6.0 mg/L treatment at 6 dpf. Incidence of inflation and length of anterior swim bladder in larval fish were significantly reduced in all IOP treatments at 14 dpf, but inflation recovered by 18 dpf. Throughout the larval study, whole body T4 concentrations were significantly increased and T3 concentrations were significantly decreased in all IOP treatments. Consistent with hypothesized compensatory responses, sig

  11. The nonlinear flexural response of a whole teleost fish: Contribution of scales and skin.

    PubMed

    Szewciw, Lawrence; Zhu, Deju; Barthelat, Francois

    2017-06-13

    The scaled skin of fish is an intricate system that provides mechanical protection against hard and sharp puncture, while maintaining the high flexural compliance required for unhindered locomotion. This unusual combination of local hardness and global compliance makes fish skin an interesting model for bioinspired protective systems. In this work we investigate the flexural response of whole teleost fish, and how scales may affect global flexural stiffness. A bending moment is imposed on the entire body of a striped bass (Morone saxatilis). Imaging is used to measure local curvature, to generate moment-curvature curves as function of position along the entire axis of the fish. We find that the flexural stiffness is the highest in the thick middle portion of the fish, and lowest in the caudal and rostral ends. The flexural response is nonlinear, with an initial soft response followed by significant stiffening at larger flexural deformations. Low flexural stiffness at low curvatures promotes efficient swimming, while higher stiffness at high curvatures enables a possible tendon effect, where the mechanical energy at the end of a stroke is stored in the form of strain energy in the fish skin. To assess the contribution of the scales to stiffening we performed flexural tests with and without scales, following a careful protocol to take in account tissue degradation and the effects of temperature. Our findings suggest that scales do not substantially increase the whole body flexural stiffness of teleost fish over ranges of deformations which are typical of swimming and maneuvering. Teleost scales are thin and relatively flexible, so they can accommodate large flexural deformations. This finding is in contrast to the bulkier ganoid scales which were shown in previous reports to have a profound impact of global flexural deformations and swimming in fish like gar or Polypterus. Copyright © 2017. Published by Elsevier Ltd.

  12. Fish connectivity mapping: linking chemical stressors by their mechanisms of action-driven transcriptomic profiles.

    PubMed

    Wang, Rong-Lin; Biales, Adam D; Garcia-Reyero, Natalia; Perkins, Edward J; Villeneuve, Daniel L; Ankley, Gerald T; Bencic, David C

    2016-01-28

    A very large and rapidly growing collection of transcriptomic profiles in public repositories is potentially of great value to developing data-driven bioinformatics applications for toxicology/ecotoxicology. Modeled on human connectivity mapping (Cmap) in biomedical research, this study was undertaken to investigate the utility of an analogous Cmap approach in ecotoxicology. Over 3500 zebrafish (Danio rerio) and fathead minnow (Pimephales promelas) transcriptomic profiles, each associated with one of several dozen chemical treatment conditions, were compiled into three distinct collections of rank-ordered gene lists (ROGLs) by species and microarray platforms. Individual query signatures, each consisting of multiple gene probes differentially expressed in a chemical condition, were used to interrogate the reference ROGLs. Informative connections were established at high success rates within species when, as defined by their mechanisms of action (MOAs), both query signatures and ROGLs were associated with the same or similar chemicals. Thus, a simple query signature functioned effectively as an exposure biomarker without need for a time-consuming process of development and validation. More importantly, a large reference database of ROGLs also enabled a query signature to cross-interrogate other chemical conditions with overlapping MOAs, leading to novel groupings and subgroupings of seemingly unrelated chemicals at a finer resolution. This approach confirmed the identities of several estrogenic chemicals, as well as a polycyclic aromatic hydrocarbon and a neuro-toxin, in the largely uncharacterized water samples near several waste water treatment plants, and thus demonstrates its future potential utility in real world applications. The power of Cmap should grow as chemical coverages of ROGLs increase, making it a framework easily scalable in the future. The feasibility of toxicity extrapolation across fish species using Cmap needs more study, however, as more gene

  13. Mechanism of action of endosulfan as disruptor of gonadal steroidogenesis in the cichlid fish Cichlasoma dimerus.

    PubMed

    Da Cuña, Rodrigo H; Rey Vázquez, Graciela; Dorelle, Luciana; Rodríguez, Enrique M; Guimarães Moreira, Renata; Lo Nostro, Fabiana L

    2016-09-01

    The organochlorine pesticide endosulfan (ES) is used in several countries as a wide spectrum insecticide on crops with high commercial value. Due to its high toxicity to non-target animals, its persistence in the environment and its ability to act as an endocrine disrupting compound in fish, ES use is currently banned or restricted in many other countries. Previous studies on the cichlid fish Cichlasoma dimerus have shown that waterborne exposure to ES can lead to both decreased pituitary FSH content and histological alterations of testes. As gonadotropin-stimulated sex steroids release from gonads was inhibited by ES in vitro, the aim of the present study was to elucidate possible mechanisms of disruption of ES on gonadal steroidogenesis in C. dimerus, as well as compare the action of the active ingredient (AI) with that of currently used commercial formulations (CF). Testis and ovary fragments were incubated with ES (AI or CF) and/or steroidogenesis activators or precursors. Testosterone and estradiol levels were measured in the incubation media. By itself, ES did not affect hormone levels. Co-incubation with LH and the adenylate cyclase activator forskolin caused a decrease of the stimulated sex steroids release. When co-incubated with precursors dehydroandrostenedione and 17αhydroxyprogesterone, ES did not affect the increase caused by their addition alone. No differences were observed between the AI and CFs, suggesting that the effect on steroidogenesis disruption is mainly caused by the AI. Results indicate that action of ES takes place downstream of LH-receptor activation and upstream of the studied steroidogenic enzymes. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Choreographed swimming of copepod nauplii

    PubMed Central

    Takagi, Daisuke; Hartline, Daniel K.

    2015-01-01

    Small metazoan paddlers, such as crustacean larvae (nauplii), are abundant, ecologically important and active swimmers, which depend on exploiting viscous forces for locomotion. The physics of micropaddling at low Reynolds number was investigated using a model of swimming based on slender-body theory for Stokes flow. Locomotion of nauplii of the copepod Bestiolina similis was quantified from high-speed video images to obtain precise measurements of appendage movements and the resulting displacement of the body. The kinematic and morphological data served as inputs to the model, which predicted the displacement in good agreement with observations. The results of interest did not depend sensitively on the parameters within the error of measurement. Model tests revealed that the commonly attributed mechanism of ‘feathering’ appendages during return strokes accounts for only part of the displacement. As important for effective paddling at low Reynolds number is the ability to generate a metachronal sequence of power strokes in combination with synchronous return strokes of appendages. The effect of feathering together with a synchronous return stroke is greater than the sum of each factor individually. The model serves as a foundation for future exploration of micropaddlers swimming at intermediate Reynolds number where both viscous and inertial forces are important. PMID:26490629

  15. Use of pneumocystoplasty for overinflation of the swim bladder in a goldfish.

    PubMed

    Britt, Tara; Weisse, Chick; Weber, E Scott; Matzkin, Zach; Klide, Alan

    2002-09-01

    A Ryukin goldfish was evaluated because of a 6-month history of progressive abdominal distention and positive buoyancy. Overinflation of the swim bladder was diagnosed, and the fish was anesthetized with tricaine methanesulfonate. Archimedes' principle was used to determine the volume of swim bladder that was removed surgically. The caudal swim bladder was exteriorized through an abdominal incision and 2 surgical clips were placed across it to limit its size. After surgery, the fish remained in a state of negative buoyancy in sternal and lateral recumbency on the bottom of the tank. Sutures were removed 15 days after surgery, but the fish died 24 days after surgery. A full necropsy could not be performed because of autolysis of the tissues, but the surgical clips and the swim bladder appeared unremarkable. Pneumocystoplasty may be a viable treatment for this condition.

  16. Influence of externally attached transmitters on the swimming performance of juvenile white sturgeon

    USGS Publications Warehouse

    Counihan, T.D.; Frost, C.N.

    1999-01-01

    We measured the critical swimming speed of juvenile white sturgeons Acipenser transmontanus equipped with externally attached dummy ultrasonic transmitters and of untagged control fish in the laboratory. White sturgeons ranging from 31.9 to 37.0 cm fork length were subjected to one of three treatments: control (handled but not tagged), tag attached below the dorsal fin, and tag attached with the anterior insertion point between the fourth and fifth dorsal scutes. Although transmitters were of recommended weight, we found that the swimming performance of tagged white sturgeons was significantly less than that of untagged control fish. Swimming performance of tagged fish was not differentially affected by tag location. Our results suggest that data from ultrasonic telemetry studies of externally tagged juvenile white sturgeons should be interpreted with caution due to the reduced swimming performance caused by external transmitters.

  17. Influence of externally attached trasmitters on the swimming performance of juvenile white sturgeon

    USGS Publications Warehouse

    Counihan, T.D.; Frost, C.N.

    1999-01-01

    We measured the critical swimming speed of juvenile white sturgeons Acipenser transmontanus equipped with externally attached dummy ultrasonic transmitters and of untagged control fish in the laboratory. White sturgeons ranging from 31.9 to 37.0 cm fork length were subjected to one of three treatments: Control (handled but not tagged), tag attached below the dorsal fin, and tag attached with the anterior insertion point between the fourth and fifth dorsal scutes. Although transmitters were of recommended weight, we found that the swimming performance of tagged white sturgeons was significantly less than that of untagged control fish. Swimming performance of tagged fish was not differentially affected by tag location. Our results suggest that data from ultrasonic telemetry studies of externally tagged juvenile white sturgeons should be interpreted with caution due to the reduced swimming performance caused by external transmitters.

  18. Study of mechanisms of glucocorticoid hypertension in rats: endothelial related changes and their amelioration by dietary fish oils.

    PubMed Central

    Yin, K.; Chu, Z. M.; Beilin, L. J.

    1992-01-01

    1. To investigate possible mechanisms of increased systolic blood pressure after 1 weeks treatment with dexamethasone and its amelioration by fish oil feeding, we have examined the reactivity of aortic rings and perfused mesenteric resistance vessels. 2. Thirty six Sprague-Dawley rats were initially divided into two groups and fed a semisynthetic diet containing either (10% by weight) hydrogenated coconut oil and safflower oil mixture (HCO/S) (24 rats) or fish oil (12 rats) for 5 weeks. From the end of the fourth week, dexamethasone (1.25 mg ml-1) in drinking water, was given to half the rats on hydrogenated coconut oil (HCO/S+Dex) and to the fish oil-fed group (fish oil+Dex). 3. One week of dexamethasone treatment raised systolic blood pressure in the HCO/S+Dex rats but not in the fish oil+Dex group. 4. Endothelium-dependent relaxation to acetylcholine (ACh) was decreased in aortic rings taken from HCO/S+Dex rats compared to rats on HCO/S alone. Relaxant responses to ACh of aortic rings from rats given fish oil+Dex were intermediate between the three groups. Aortic endothelium-independent responses to sodium nitroprusside (SNP) were unchanged between the groups, while aortic contractile responses to noradrenaline were similar in all the groups. 5. In the perfused mesenteric resistance artery, sensitivity to noradrenaline was decreased in rats given fish oil and dexamethasone compared to the other two groups. There were no differences in resistance vessel relaxation to ACh or SNP between groups. 6. Serum corticosterone levels, used as a marker of dexamethasone absorption, were substantially suppressed in dexamethasone-treated rats but levels were higher in rats on fish oil than on HCO/S diets.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1393269

  19. Warm Water and Cool Nests Are Best. How Global Warming Might Influence Hatchling Green Turtle Swimming Performance

    PubMed Central

    Booth, David T.; Evans, Andrew

    2011-01-01

    For sea turtles nesting on beaches surrounded by coral reefs, the most important element of hatchling recruitment is escaping predation by fish as they swim across the fringing reef, and as a consequence hatchlings that minimize their exposure to fish predation by minimizing the time spent crossing the fringing reef have a greater chance of surviving the reef crossing. One way to decrease the time required to cross the fringing reef is to maximize swimming speed. We found that both water temperature and nest temperature influence swimming performance of hatchling green turtles, but in opposite directions. Warm water increases swimming ability, with hatchling turtles swimming in warm water having a faster stroke rate, while an increase in nest temperature decreases swimming ability with hatchlings from warm nests producing less thrust per stroke. PMID:21826236

  20. Warm water and cool nests are best. How global warming might influence hatchling green turtle swimming performance.

    PubMed

    Booth, David T; Evans, Andrew

    2011-01-01

    For sea turtles nesting on beaches surrounded by coral reefs, the most important element of hatchling recruitment is escaping predation by fish as they swim across the fringing reef, and as a consequence hatchlings that minimize their exposure to fish predation by minimizing the time spent crossing the fringing reef have a greater chance of surviving the reef crossing. One way to decrease the time required to cross the fringing reef is to maximize swimming speed. We found that both water temperature and nest temperature influence swimming performance of hatchling green turtles, but in opposite directions. Warm water increases swimming ability, with hatchling turtles swimming in warm water having a faster stroke rate, while an increase in nest temperature decreases swimming ability with hatchlings from warm nests producing less thrust per stroke.

  1. Protective role of Arapaima gigas fish scales: structure and mechanical behavior.

    PubMed

    Yang, Wen; Sherman, Vincent R; Gludovatz, Bernd; Mackey, Mason; Zimmermann, Elizabeth A; Chang, Edwin H; Schaible, Eric; Qin, Zhao; Buehler, Markus J; Ritchie, Robert O; Meyers, Marc A

    2014-08-01

    The scales of the arapaima (Arapaima gigas), one of the largest freshwater fish in the world, can serve as inspiration for the design of flexible dermal armor. Each scale is composed of two layers: a laminate composite of parallel collagen fibrils and a hard, highly mineralized surface layer. We review the structure of the arapaima scales and examine the functions of the different layers, focusing on the mechanical behavior, including tension and penetration of the scales, with and without the highly mineralized outer layer. We show that the fracture of the mineral and the stretching, rotation and delamination of collagen fibrils dissipate a significant amount of energy prior to catastrophic failure, providing high toughness and resistance to penetration by predator teeth. We show that the arapaima's scale has evolved to minimize damage from penetration by predator teeth through a Bouligand-like arrangement of successive layers, each consisting of parallel collagen fibrils with different orientations. This inhibits crack propagation and restricts damage to an area adjoining the penetration. The flexibility of the lamellae is instrumental to the redistribution of the compressive stresses in the underlying tissue, decreasing the severity of the concentrated load produced by the action of a tooth. The experimental results, combined with small-angle X-ray scattering characterization and molecular dynamics simulations, provide a complete picture of the mechanisms of deformation, delamination and rotation of the lamellae during tensile extension of the scale. Copyright © 2014 Acta Materialia Inc. All rights reserved.

  2. Relationships between metabolic rate, muscle electromyograms and swim performance of adult chinook salmon

    USGS Publications Warehouse

    Geist, D.R.; Brown, R.S.; Cullinan, V.I.; Mesa, M.G.; VanderKooi, S.P.; McKinstry, C.A.

    2003-01-01

    Oxygen consumption rates of adult spring chinook salmon Oncorhynchus tshawytscha increased with swim speed and, depending on temperature and fish mass, ranged from 609 mg O2 h-1 at 30 cm s-1 (c. 0.5 BLs-1) to 3347 mg O2 h-1 at 170 cm s -1 (c. 2.3 BLs-1). Corrected for fish mass, these values ranged from 122 to 670 mg O2 kg-1 h-1, and were similar to other Oncorhynchus species. At all temperatures (8, 12.5 and 17??C), maximum oxygen consumption values levelled off and slightly declined with increasing swim speed >170 cm s-1, and a third-order polynomial regression model fitted the data best. The upper critical swim speed (Ucrit) of fish tested at two laboratories averaged 155 cm s -1 (2.1 BLs-1), but Ucrit of fish tested at the Pacific Northwest National Laboratory were significantly higher (mean 165 cm s-1) than those from fish tested at the Columbia River Research Laboratory (mean 140 cm s-1). Swim trials using fish that had electromyogram (EMG) transmitters im