Science.gov

Sample records for fisheries habitat inventory

  1. White River Falls Fish Passage Project, Tygh Valley, Oregon : Final Technical Report, Volume II, Appendix A, Fisheries Habitat Inventory.

    SciTech Connect

    Oregon. Dept. of Fish and Wildlife; Mount Hood National Forest

    1985-06-01

    Stream habitat inventories on 155 stream miles in the White River drainage on the Mt. Hood National Forest are summarized in this report. Inventory, data evaluation, and reporting work were accomplished within the framework of the budgetary agreements established between the USDA Forest Service, Mt. Hood National Forest, and the Bonneville Power Administration, in the first 2 years of a multiyear program. One hundred forty-two stream miles of those inventoried on the Forest appear suitable for anadromous production. The surveyed area appears to contain most or all of the high quality fish habitat which would be potentially available for anadromous production if access is provided above the White River Falls below the Forest boundary. About 34 stream miles would be immediately accessible without further work on the Forest with passage at the Falls. Seventy-two additional miles could be made available with only minor (requiring low investment of money and planning) passage work further up the basin. Thirty-six miles of potential upstream habitat would likely require major investment to provide access.

  2. Detroit River habitat inventory

    USGS Publications Warehouse

    Manny, Bruce A.

    2003-01-01

    This inventory complements a previous survey of habitat in Ontario waters of the Detroit River (OMNR,1993). It is a starting point for balanced and sustained use of the river for natural resource conservation and economic development. The objectives of the inventory were to: (1) locate candidate sites for protection and restoration of fish and wildlife habitat in Michigan waters of the Detroit River; (2) describe the ownership and size of each site, as well as its potential for habitat protection and restoration; and (3) subjectively assess the extent to which existing habitat along the river is productive of fish and wildlife and protected from land uses that have degraded or destroyed such habitat.

  3. Contributions of Estuarine Habitats to Major Fisheries

    EPA Science Inventory

    Estuaries provide unique habitat conditions that are essential to the production of major fisheries throughout the world, but quantitatively demonstrating the value of these habitats to fisheries presents some difficult problems. The questions are important, because critical hab...

  4. Contributions of Estuarine Habitats to Major Fisheries

    EPA Science Inventory

    Estuaries provide unique habitat conditions that are essential to the production of major fisheries throughout the world, but quantitatively demonstrating the value of these habitats to fisheries presents some difficult problems. The questions are important, because critical hab...

  5. Connecting fishery sustainability to estuarine habitats and nutrient loading

    EPA Science Inventory

    The production of several important fishery species depends on critical estuarine habitats, including seagrasses and salt marshes. Relatively simple models can be constructed to relate fishery productivity to the extent and distribution of these habitats by linking fishery-depend...

  6. Connecting fishery sustainability to estuarine habitats and nutrient loading

    EPA Science Inventory

    The production of several important fishery species depends on critical estuarine habitats, including seagrasses and salt marshes. Relatively simple models can be constructed to relate fishery productivity to the extent and distribution of these habitats by linking fishery-depend...

  7. Cumulative Effects of Micro-Hydro Development on the Fisheries of the Swan River Drainage, Montana, Volume III, Fish and Habitat Inventory of Tributary Streams, 1983-1984 Final Report.

    SciTech Connect

    Leathe, Stephen A.

    1985-03-01

    This report summarizes a study of the fisheries of the Swan River drainage in relation to potential small hydro development. This information was collected in order to obtain a reliable basin-wide database which was used to evaluate the potential cumulative effects of a number of proposed small hydro developments on the fisheries of the drainage. For each named tributary stream there is a reach-by-reach narrative summary of general habitat characteristics, outstanding features of the stream, and fish populations and spawning use. An attempt was made to rank many of the measured parameters relative to other surveyed stream reaches in the drainage. 3 refs.

  8. Mud Mountain Wildlife Inventory and Habitat Analysis.

    DTIC Science & Technology

    1979-01-01

    SsCUNlY CLANSIVCATION OF T൚ PAWS (MM 5a burned) MUD MOUNTAIN WILDLIFE. INVENTORY AND HABITAT ANALYSIS by Chris Boyd Brewer DANIEL A. FRYBERGER DOUGLAS...this study a rewarding learning experience. Special thanks go to Dan Fryberger , Jack Evans, Deborah Duke-Shook, the rest of the Mud Mountain Dam

  9. Habitat complexity: coral structural loss leads to fisheries declines.

    PubMed

    Graham, Nicholas A J

    2014-05-05

    Direct human impacts and global climate change are altering the composition and structure of coral reef habitats. These changes are simplifying size-abundance relationships of reef fish communities, reducing productivity through the system and ultimately threatening fisheries yields.

  10. Dynamic habitat models: using telemetry data to project fisheries bycatch.

    PubMed

    Zydelis, Ramūnas; Lewison, Rebecca L; Shaffer, Scott A; Moore, Jeffrey E; Boustany, Andre M; Roberts, Jason J; Sims, Michelle; Dunn, Daniel C; Best, Benjamin D; Tremblay, Yann; Kappes, Michelle A; Halpin, Patrick N; Costa, Daniel P; Crowder, Larry B

    2011-11-07

    Fisheries bycatch is a recognized threat to marine megafauna. Addressing bycatch of pelagic species however is challenging owing to the dynamic nature of marine environments and vagility of these organisms. In order to assess the potential for species to overlap with fisheries, we propose applying dynamic habitat models to determine relative probabilities of species occurrence for specific oceanographic conditions. We demonstrate this approach by modelling habitats for Laysan (Phoebastria immutabilis) and black-footed albatrosses (Phoebastria nigripes) using telemetry data and relating their occurrence probabilities to observations of Hawaii-based longline fisheries in 1997-2000. We found that modelled habitat preference probabilities of black-footed albatrosses were high within some areas of the fishing range of the Hawaiian fleet and such preferences were important in explaining bycatch occurrence. Conversely, modelled habitats of Laysan albatrosses overlapped little with Hawaii-based longline fisheries and did little to explain the bycatch of this species. Estimated patterns of albatross habitat overlap with the Hawaiian fleet corresponded to bycatch observations: black-footed albatrosses were more frequently caught in this fishery despite being 10 times less abundant than Laysan albatrosses. This case study demonstrates that dynamic habitat models based on telemetry data may help to project interactions with pelagic animals relative to environmental features and that such an approach can serve as a tool to guide conservation and management decisions.

  11. Dynamic habitat models: using telemetry data to project fisheries bycatch

    PubMed Central

    Žydelis, Ramūnas; Lewison, Rebecca L.; Shaffer, Scott A.; Moore, Jeffrey E.; Boustany, Andre M.; Roberts, Jason J.; Sims, Michelle; Dunn, Daniel C.; Best, Benjamin D.; Tremblay, Yann; Kappes, Michelle A.; Halpin, Patrick N.; Costa, Daniel P.; Crowder, Larry B.

    2011-01-01

    Fisheries bycatch is a recognized threat to marine megafauna. Addressing bycatch of pelagic species however is challenging owing to the dynamic nature of marine environments and vagility of these organisms. In order to assess the potential for species to overlap with fisheries, we propose applying dynamic habitat models to determine relative probabilities of species occurrence for specific oceanographic conditions. We demonstrate this approach by modelling habitats for Laysan (Phoebastria immutabilis) and black-footed albatrosses (Phoebastria nigripes) using telemetry data and relating their occurrence probabilities to observations of Hawaii-based longline fisheries in 1997–2000. We found that modelled habitat preference probabilities of black-footed albatrosses were high within some areas of the fishing range of the Hawaiian fleet and such preferences were important in explaining bycatch occurrence. Conversely, modelled habitats of Laysan albatrosses overlapped little with Hawaii-based longline fisheries and did little to explain the bycatch of this species. Estimated patterns of albatross habitat overlap with the Hawaiian fleet corresponded to bycatch observations: black-footed albatrosses were more frequently caught in this fishery despite being 10 times less abundant than Laysan albatrosses. This case study demonstrates that dynamic habitat models based on telemetry data may help to project interactions with pelagic animals relative to environmental features and that such an approach can serve as a tool to guide conservation and management decisions. PMID:21429921

  12. CTUIR Umatilla Anadromous Fisheries Habitat Project : A Columbia River Basin Fish Habitat Project 2008 Annual Report.

    SciTech Connect

    Hoverson, Eric D.; Amonette, Alexandra

    2009-02-09

    The Umatilla Anadromous Fisheries Habitat Project (UAFHP) is an ongoing effort to protect, enhance, and restore riparian and instream habitat for the natural production of anadromous salmonids in the Umatilla River Basin, Northeast Oregon. Flow quantity, water temperature, passage, and lack of in-stream channel complexity have been identified as the key limiting factors in the basin. During the 2008 Fiscal Year (FY) reporting period (February 1, 2008-January 31, 2009) primary project activities focused on improving instream and riparian habitat complexity, migrational passage, and restoring natural channel morphology and floodplain function. Eight primary fisheries habitat enhancement projects were implemented on Meacham Creek, Birch Creek, West Birch Creek, McKay Creek, West Fork Spring Hollow, and the Umatilla River. Specific restoration actions included: (1) rectifying one fish passage barrier on West Birch Creek; (2) participating in six projects planting 10,000 trees and seeding 3225 pounds of native grasses; (3) donating 1000 ft of fencing and 1208 fence posts and associated hardware for 3.6 miles of livestock exclusion fencing projects in riparian areas of West Birch and Meacham Creek, and for tree screens to protect against beaver damage on West Fork Spring Hollow Creek; (4) using biological control (insects) to reduce noxious weeds on three treatment areas covering five acres on Meacham Creek; (5) planning activities for a levee setback project on Meacham Creek. We participated in additional secondary projects as opportunities arose. Baseline and ongoing monitoring and evaluation activities were also completed on major project areas such as conducting photo point monitoring strategies activities at the Meacham Creek Large Wood Implementation Project site (FY2006) and at additional easements and planned project sites. Fish surveys and aquatic habitat inventories were conducted at project sites prior to implementation. Proper selection and implementation of

  13. Riparian-fisheries habitat responses to late spring cattle grazing

    Treesearch

    Warren P. Clary; John W. Kinney

    2000-01-01

    A grazing study was conducted on a cold, mountain meadow riparian system in central Idaho in response to cattle grazing-salmonid fisheries conflicts. Six pastures were established along a 3rd order, 2 to 3 m wide stream to study the effects on fisheries habitat of no grazing, light grazing (20 to 25% use), and medium grazing (35 to 50%) during late June. Most...

  14. Perceptions of fish habitat conditions in Oklahoma tailwater fisheries: a survey of fisheries managers

    USGS Publications Warehouse

    Long, James M.

    2011-01-01

    While the downstream effects of dams on fish habitat have long been recognized, broad-scale assessments of tailwater fish habitat have rarely been conducted. In this paper, I report on the status of tailwater fisheries in Oklahoma as determined through a web-based survey of fisheries biologists with the Oklahoma Department of Wildlife Conservation conducted in July 2010. Respondents addressed 38 tailwaters, encompassing all major areas of the state. The majority of fish species comprising these fisheries included blue catfish (Ictalurus furcatus), followed by white bass (Morone chrysops), channel catfish (I. punctatus) and flathead catfish (Pylodictis olivaris). Most respondents indicated no or low concerns with fish habitat in tailwaters under their management supervision; only two tailwaters (Tenkiller Ferry and Fort Gibson) had the majority of concerns with fish habitat identified as high to moderately high. Principal components analysis and subsequent correlation analysis showed that tailwaters that scored high for issues related to shoreline erosion, change in water depth, flow fluctuations, and flow timing were associated with dams with large maximum discharge ability. No other factors related to fish habitat condition in tailwaters were found. In Oklahoma, dams with maximum discharge of at least 6,767.5 m3 sec–1 were more likely to have flow-related fish habitat concerns in the tailwater.

  15. 77 FR 47356 - North Pacific Fishery Management Council; Essential Fish Habitat Amendments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-08

    ... Management Council; Essential Fish Habitat Amendments AGENCY: National Marine Fisheries Service (NMFS... Council submitted the following essential fish habitat (EFH) amendments to NMFS for review: Amendment 98... conservation and enhancement recommendations; prey species list and locations; Habitat Areas of Particular...

  16. Multiresource Inventories: Techniques for Evaluating Nongame Bird Habitat

    Treesearch

    Raymond M. Sheffield

    1981-01-01

    Procedures for evaluating the suitability of forest lands for the breeding habitat of individual nongame bird species and entire avian communities are presented. A multiresource inventory of South Carolina's forest resources, conducted by Renewable Resources Evaluation (formerly Forest Survey), provides the necessary habitat data. Nine nongame bird species,...

  17. 77 FR 66564 - North Pacific Fishery Management Council; Essential Fish Habitat Amendments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-06

    ... Management Council; Essential Fish Habitat Amendments AGENCY: National Marine Fisheries Service (NMFS...). These amendments update the existing essential fish habitat (EFH) provisions in the FMPs based on a 5... recommendations for non-fishing activities in all five FMPs. The timeline for considering habitat areas of...

  18. Compliance with Canada's Fisheries Act: a field audit of habitat compensation projects.

    PubMed

    Quigley, Jason T; Harper, David J

    2006-03-01

    Loss of fish habitat in North America has occurred at an unprecedented rate through the last century. In response, the Canadian Parliament enacted the habitat provisions of the Fisheries Act. Under these provisions, a "harmful alteration, disruption, or destruction to fish habitat" (HADD) cannot occur unless authorised by Fisheries and Oceans Canada (DFO), with legally binding compensatory habitat to offset the HADD. The guiding principle to DFO's conservation goal is "no net loss of the productive capacity of fish habitats" (NNL). However, performance in achieving NNL has never been evaluated on a national scale. We investigated 52 habitat compensation projects across Canada to determine compliance with physical, biological, and chemical requirements of Section 35(2) Fisheries Act authorisations. Biological requirements had the lowest compliance (58%) and chemical requirements the highest (100%). Compliance with biological requirements differed among habitat categories and was poorest (19% compliance) in riparian habitats. Approximately 86% of authorisations had larger HADD and/or smaller compensation areas than authorised. The largest noncompliance in terms of habitat area occurred in riverine habitat in which HADDs were, on average, 343% larger than initially authorised. In total, 67% of compensation projects resulted in net losses of habitat area, 2% resulted in no net loss, and 31% achieved a net gain in habitat area. Interestingly, probable violations of the Fisheries Act were prevalent at half of the projects. Analyses indicated that the frequency of probable Fisheries Act violations differed among provinces. Habitat compensation to achieve NNL, as currently implemented in Canada, is at best only slowing the rate of habitat loss. In all likelihood, increasing the amount of authorised compensatory habitat in the absence of institutional changes will not reverse this trend. Improvements in monitoring and enforcement are necessary to move towards achieving

  19. Use of a seagrass residency index to apportion commercial fishery landing values and recreation fisheries expenditure to seagrass habitat service.

    PubMed

    Jackson, Emma L; Rees, Siân E; Wilding, Catherine; Attrill, Martin J

    2015-06-01

    Where they dominate coastlines, seagrass beds are thought to have a fundamental role in maintaining populations of exploited species. Thus, Mediterranean seagrass beds are afforded protection, yet no attempt to determine the contribution of these areas to both commercial fisheries landings and recreational fisheries expenditure has been made. There is evidence that seagrass extent continues to decline, but there is little understanding of the potential impacts of this decline. We used a seagrass residency index, that was trait and evidence based, to estimate the proportion of Mediterranean commercial fishery landings values and recreation fisheries total expenditure that can be attributed to seagrass during different life stages. The index was calculated as a weighted sum of the averages of the estimated residence time in seagrass (compared with other habitats) at each life stage of the fishery species found in seagrass. Seagrass-associated species were estimated to contribute 30%-40% to the value of commercial fisheries landings and approximately 29% to recreational fisheries expenditure. These species predominantly rely on seagrass to survive juvenile stages. Seagrass beds had an estimated direct annual contribution during residency of €58-91 million (4% of commercial landing values) and €112 million (6% of recreation expenditure) to commercial and recreational fisheries, respectively, despite covering <2% of the area. These results suggest there is a clear cost of seagrass degradation associated with ineffective management of seagrass beds and that policy to manage both fisheries and seagrass beds should take into account the socioeconomic implications of seagrass loss to recreational and commercial fisheries. © 2015 Society for Conservation Biology.

  20. Cape Lookout, North Carolina, 2012 National Wetlands Inventory Habitat Classification

    USGS Publications Warehouse

    Spear, Kathryn A.; Jones, William R.

    2016-01-01

    , activity, habitat, and band data. Habitat maps of federal lands in the study area will be created using National Wetlands Inventory mapping standards to assess storm impacts on available nesting habitat. Ground-based LIDAR and high-accuracy GPS data will be collected to develop methods to estimate shorebird nest elevation and microtopography to make predictions about nest site selection and success. Microtopography information collected from lidar data in the area immediately surrounding nest site locations will be used to analyze site specific nesting habitat selection criteria related to topography, substrate (coarseness of sand or cobble), and vegetation cover. The data will be used in future models to assess storm impacts on nest locations, predict long-term population impacts, and influence landscape-scale habitat management strategies that might lessen future impacts of hurricanes on coastal birds and lead to better restoration alternatives.

  1. Fishery Resources and Threatened Coastal Habitats in the Northern Gulf of Mexico (Abstract)

    EPA Science Inventory

    We have explored relationships between selected fishery species of the northern Gulf of Mexico and important features of their habitats. The principal goal of our research is to predict the cumulative effects of habitat alterations on coastal resources and ecosystems. Pink shrimp...

  2. Fishery Resources and Threatened Coastal Habitats in the Northern Gulf of Mexico (Abstract)

    EPA Science Inventory

    We have explored relationships between selected fishery species of the northern Gulf of Mexico and important features of their habitats. The principal goal of our research is to predict the cumulative effects of habitat alterations on coastal resources and ecosystems. Pink shrimp...

  3. Confederated Tribes Umatilla Indian Reservation (CTUIR) Umatilla Anadromous Fisheries Habitat Project : A Columbia River Basin Fish Habitat Project : Annual Report Fiscal Year 2007.

    SciTech Connect

    Hoverson, Eric D.; Amonette, Alexandra

    2008-12-02

    The Umatilla Anadromous Fisheries Habitat Project (UAFHP) is an ongoing effort to protect, enhance, and restore riparian and instream habitat for the natural production of anadromous salmonids in the Umatilla River Basin, Northeast Oregon. Flow quantity, water temperature, passage, and lack of in-stream channel complexity have been identified as the key limiting factors in the basin. During the 2007 Fiscal Year (FY) reporting period (February 1, 2007-January 31, 2008) primary project activities focused on improving instream and riparian habitat complexity, migrational passage, and restoring natural channel morphology and floodplain function. Eight fisheries habitat enhancement projects were implemented on Meacham Creek, Camp Creek, Greasewood Creek, Birch Creek, West Birch Creek, and the Umatilla River. Specific restoration actions included: (1) rectifying five fish passage barriers on four creeks, (2) planting 1,275 saplings and seeding 130 pounds of native grasses, (3) constructing two miles of riparian fencing for livestock exclusion, (4) coordinating activities related to the installation of two off-channel, solar-powered watering areas for livestock, and (5) developing eight water gap access sites to reduce impacts from livestock. Baseline and ongoing monitoring and evaluation activities were also completed on major project areas such as conducting photo point monitoring strategies activities at the Meacham Creek Large Wood Implementation Project site (FY2006) and at all existing easements and planned project sites. Fish surveys and aquatic habitat inventories were conducted at project sites prior to implementation. Monitoring plans will continue throughout the life of each project to oversee progression and inspire timely managerial actions. Twenty-seven conservation easements were maintained with 23 landowners. Permitting applications for planned project activities and biological opinions were written and approved. Project activities were based on a variety

  4. Estimating fish exploitation and aquatic habitat loss across diffuse inland recreational fisheries.

    PubMed

    de Kerckhove, Derrick Tupper; Minns, Charles Kenneth; Chu, Cindy

    2015-01-01

    The current state of many freshwater fish stocks worldwide is largely unknown but suspected to be vulnerable to exploitation from recreational fisheries and habitat degradation. Both these factors, combined with complex ecological dynamics and the diffuse nature of inland fisheries could lead to an invisible collapse: the drastic decline in fish stocks without great public or management awareness. In this study we provide a method to address the pervasive knowledge gaps in regional rates of exploitation and habitat degradation, and demonstrate its use in one of North America's largest and most diffuse recreational freshwater fisheries (Ontario, Canada). We estimated that (1) fish stocks were highly exploited and in apparent danger of collapse in management zones close to large population centres, and (2) fish habitat was under a low but constant threat of degradation at rates comparable to deforestation in Ontario and throughout Canada. These findings confirm some commonly held, but difficult to quantify, beliefs in inland fisheries management but also provide some further insights including (1) large anthropogenic projects greater than one hectare could contribute much more to fish habitat loss on an area basis than the cumulative effect of smaller projects within one year, (2) hooking mortality from catch-and-release fisheries is likely a greater source of mortality than the harvest itself, and (3) in most northern management zones over 50% of the fisheries resources are not yet accessible to anglers. While this model primarily provides a framework to prioritize management decisions and further targeted stock assessments, we note that our regional estimates of fisheries productivity and exploitation were similar to broadscale monitoring efforts by the Province of Ontario. We discuss the policy implications from our results and extending the model to other jurisdictions and countries.

  5. Estimating Fish Exploitation and Aquatic Habitat Loss across Diffuse Inland Recreational Fisheries

    PubMed Central

    de Kerckhove, Derrick Tupper; Minns, Charles Kenneth; Chu, Cindy

    2015-01-01

    The current state of many freshwater fish stocks worldwide is largely unknown but suspected to be vulnerable to exploitation from recreational fisheries and habitat degradation. Both these factors, combined with complex ecological dynamics and the diffuse nature of inland fisheries could lead to an invisible collapse: the drastic decline in fish stocks without great public or management awareness. In this study we provide a method to address the pervasive knowledge gaps in regional rates of exploitation and habitat degradation, and demonstrate its use in one of North America’s largest and most diffuse recreational freshwater fisheries (Ontario, Canada). We estimated that 1) fish stocks were highly exploited and in apparent danger of collapse in management zones close to large population centres, and 2) fish habitat was under a low but constant threat of degradation at rates comparable to deforestation in Ontario and throughout Canada. These findings confirm some commonly held, but difficult to quantify, beliefs in inland fisheries management but also provide some further insights including 1) large anthropogenic projects greater than one hectare could contribute much more to fish habitat loss on an area basis than the cumulative effect of smaller projects within one year, 2) hooking mortality from catch-and-release fisheries is likely a greater source of mortality than the harvest itself, and 3) in most northern management zones over 50% of the fisheries resources are not yet accessible to anglers. While this model primarily provides a framework to prioritize management decisions and further targeted stock assessments, we note that our regional estimates of fisheries productivity and exploitation were similar to broadscale monitoring efforts by the Province of Ontario. We discuss the policy implications from our results and extending the model to other jurisdictions and countries. PMID:25875790

  6. FISHERY RESOURCES AND THREATENED HABITATS IN THE NORTHERN GULF OF MEXICO

    EPA Science Inventory

    Jordan, Steve and Darrin Dantin. 2004. Fishery Resources and Threatened Habitats in the Northern Gulf of Mexico (Abstract). Presented at the Aquatic Stressors All-Investigators Meeting, 9-11 March 2004, Washington, DC. 1 p. (ERL,GB R996).

    We have explored relationships be...

  7. FISHERY RESOURCES AND THREATENED HABITATS IN THE NORTHERN GULF OF MEXICO

    EPA Science Inventory

    Jordan, Steve and Darrin Dantin. 2004. Fishery Resources and Threatened Habitats in the Northern Gulf of Mexico (Abstract). Presented at the Aquatic Stressors All-Investigators Meeting, 9-11 March 2004, Washington, DC. 1 p. (ERL,GB R996).

    We have explored relationships be...

  8. R1/R4 (Northern/Intermountain Regions) fish and fish habitat standard inventory procedures handbook

    Treesearch

    C. Kerry Overton; Sherry P. Wollrab; Bruce C. Roberts; Michael A. Radko

    1997-01-01

    This handbook describes the standard inventory procedures for collecting fish habitat and salmonid fish species data for streams managed by the Northern (R1) and Intermountain (R4) Regions of the Forest Service, U.S. Department of Agriculture. The inventory procedures are designed to define and quantify the structure, pattern, and dimensions of fish habitat; describe...

  9. Wildlife habitats of the north coast of California: new techniques for extensive forest inventory.

    Treesearch

    Janet L. Ohmann

    1992-01-01

    A study was undertaken to develop methods for extensive inventory and analysis of wildlife habitats. The objective was to provide information about amounts and conditions of wildlife habitats from extensive, sample based inventories so that wildlife can be better considered in forest planning and policy decisions at the regional scale. The new analytical approach...

  10. The habitats exploited and the species trapped in a Caribbean island trap fishery

    USGS Publications Warehouse

    Garrison, V.H.; Rogers, C.S.; Beets, J.; Friedlander, A.M.

    2004-01-01

    We visually observed fish traps in situ to identify the habitats exploited by the U.S. Virgin Islands fishery and to document species composition and abundance in traps by habitat. Fishers set more traps in algal plains than in any other habitat around St. John. Coral reefs, traditionally targeted by fishers, accounted for only 16% of traps. Traps in algal plain contained the highest number of fishes per trap and the greatest numbers of preferred food species. Traps on coral reefs contained the most species, 41 of the 59 taxa observed in the study. Acanthurus coeruleus was the most abundant species and Acanthuridae the most abundant family observed in traps. Piscivore numbers were low and few serranids were observed. Traps in algal plain contained the most fishes as a result of: ecological changes such as shifts in habitat use, mobility of species and degradation of nearshore habitat (fishery independent); and, catchability of fishes and long-term heavy fishing pressure (fishery dependent). The low number of serranids per trap, dominance of the piscivore guild by a small benthic predator, Epinephelus guttatus, and dominance of trap contents overall by a small, fast-growing species of a lower trophic guild, Acanthurus coeruleus, all point to years of intense fishing pressure.

  11. Summary Report for Bureau of Fisheries Stream Habitat Surveys : Willamette River Basin, 1934-1942, Final Report.

    SciTech Connect

    McIntosh, Bruce A.; Clark, Sharon E.; Sedell, James R.

    1995-01-01

    Administration. The Bureau of Fisheries survey is unique because it is the only long-term data set that quantifies fish habitat in a manner that is replicable over time; no other similar work is known to exist. Other surveys, such as Thompson and Haas (1960), inventoried extensive areas in a manner that was mostly qualitative, subjectively estimating physical characteristics like bank cover and stream shading. Spawning, rearing, and resting habitat were not systematically quantified to allow comparisons over time. Knowledge of past and present quantity and quality of anadromous fish habitat in the Columbia River Basin is essential to any effort to enhance fish populations. Habitat condition is a key element in monitoring and evaluating progress towards the doubling goal. Integration of this information into the Columbia River Fish and Wildlife Plan can provide the basis to greatly enhance understanding of past, present, and future habitat conditions in the basin to provide for improved management decisions.

  12. Summary Report for Bureau of Fisheries Stream Habitat Surveys : Yakima River Basin, 1934-1942, Final Report.

    SciTech Connect

    McIntosh, Bruce A.; Clark, Sharon E.; Sedell, James R.

    1996-01-01

    of Fisheries survey is unique because it is the only long-term data set that quantifies fish habitat in a manner that is replicable over time; no other similar work is known to exist. Other surveys, such as Thompson and Haas (1960), inventoried extensive areas in a manner that was mostly qualitative, subjectively estimating physical characteristics like bank cover and stream shading. Spawning, rearing, and resting habitat were not systematically quantified to allow comparisons over time. Knowledge of the past and present quantity and quality of anadromous fish habitat in the Columbia River Basin is essential to any effort to enhance fish populations. Habitat condition is a key element in monitoring and evaluating progress towards the doubling goal. Integration of this information into the Columbia River Fish and Wildlife Plan can provide the baseline information to greatly enhance understanding of past, present, and future habitat conditions in the basin to provide for improved management decisions.

  13. Natural Propagation and Habitat Improvement, Volume I, Oregon, Supplement C, White River Habitat Inventory, 1983 Annual Report.

    SciTech Connect

    Heller, David

    1984-04-01

    More than 130 miles of stream fish habitat was inventoried and evaluated on the Mt. Hood National Forest during the first year of this multi-year project. First year tasks included field inventory and evaluation of habitat conditions on the White River and tributary streams thought to have the highest potential for supporting anadromous fish populations. All streams inventoried were located on the Mt. Hood National Forest. The surveyed area appears to contain most of the high quality anadromous fish habitat in the drainage. Habitat conditions appear suitable for steelhead, coho, and chinook salmon, and possibly sockeye. One hundred and twenty-four miles of potential anadromous fish habitat were identifed in the survey. Currently, 32 miles of this habitat would be readily accessible to anadromous fish. An additional 72 miles of habitat could be accessed with only minor passage improvement work. About 20 miles of habitat, however, will require major investment to provide fish passage. Three large lakes (Boulder, 14 acres; Badger, 45 acres; Clear, 550 acres) appear to be well-suited for rearing anadromous fish, although passage enhancement would be needed before self-sustaining runs could be established in any of the lakes.

  14. Pelagic Habitat Analysis Module (PHAM) for GIS Based Fisheries Decision Support

    NASA Technical Reports Server (NTRS)

    Kiefer, D. A.; Armstrong, Edward M.; Harrison, D. P.; Hinton, M. G.; Kohin, S.; Snyder, S.; O'Brien, F. J.

    2011-01-01

    We have assembled a system that integrates satellite and model output with fisheries data We have developed tools that allow analysis of the interaction between species and key environmental variables Demonstrated the capacity to accurately map habitat of Thresher Sharks Alopias vulpinus & pelagicus. Their seasonal migration along the California Current is at least partly driven by the seasonal migration of sardine, key prey of the sharks.We have assembled a system that integrates satellite and model output with fisheries data We have developed tools that allow analysis of the interaction between species and key environmental variables Demonstrated the capacity to accurately map habitat of Thresher Sharks Alopias vulpinus nd pelagicus. Their seasonal migration along the California Current is at least partly driven by the seasonal migration of sardine, key prey of the sharks.

  15. Pelagic Habitat Analysis Module (PHAM) for GIS Based Fisheries Decision Support

    NASA Technical Reports Server (NTRS)

    Kiefer, D. A.; Armstrong, Edward M.; Harrison, D. P.; Hinton, M. G.; Kohin, S.; Snyder, S.; O'Brien, F. J.

    2011-01-01

    We have assembled a system that integrates satellite and model output with fisheries data We have developed tools that allow analysis of the interaction between species and key environmental variables Demonstrated the capacity to accurately map habitat of Thresher Sharks Alopias vulpinus & pelagicus. Their seasonal migration along the California Current is at least partly driven by the seasonal migration of sardine, key prey of the sharks.We have assembled a system that integrates satellite and model output with fisheries data We have developed tools that allow analysis of the interaction between species and key environmental variables Demonstrated the capacity to accurately map habitat of Thresher Sharks Alopias vulpinus nd pelagicus. Their seasonal migration along the California Current is at least partly driven by the seasonal migration of sardine, key prey of the sharks.

  16. Tropical coastal habitats as surrogates of fish community structure, grazing, and fisheries value.

    PubMed

    Harborne, Alastair R; Mumby, Peter J; Kappel, Carrie V; Dahlgren, Craig P; Micheli, Fiorenza; Holmes, Katherine E; Brumbaugh, Daniel R

    2008-10-01

    commercially important finfish. There were significant differences in a range of functional groups and grazing, but not fisheries value. Variability at the scale of tens of kilometers (among reefs around an island) was less than that among islands. Caribbean marine reserves should be replicated at scales of hundreds of kilometers, particularly for species-rich habitats, to capture important intra-habitat variability in community structure, function, and an ecosystem process.

  17. Modeling the oceanic habitats of pelagic fish using recreational fisheries data

    NASA Astrophysics Data System (ADS)

    Brodie, S.; Hobday, A. J.; Smith, J. A.; Hartog, J. R.; Spillman, C. M.; Everett, J. D.; Taylor, M. D.; Gray, C. A.; Suthers, I. M.

    2016-02-01

    Defining the oceanic habitats of migratory marine species is important for both single species and ecosystem-based fisheries management, particularly when the distribution of these habitats vary temporally. We developed species distribution models that describe the oceanic habitats of two pelagic fish (dolphinfish, Coryphaena hippurus and yellowtail kingfish, Seriola lalandi), using 19 years of presence-only data from a recreational angler-based catch-and-release fishing program. A Poisson point process model within a generalised additive modelling (GAMM) framework was used to determine the species distributions off the east coast of Australia as a function of several oceanographic covariates. This modelling framework uses presence-only data to determine the intensity of fish (fish km-2), rather than a probability of fish presence. Sea surface temperature, sea level anomaly, sea surface temperature frontal index, and eddy kinetic energy were significant environmental predictors for both dolphinfish and kingfish distributions. Models for both species indicate greater fish intensity off the east Australian coast during summer and autumn in response to the regional oceanography, namely shelf incursions by the East Australian Current. This study provides a framework for using presence-only recreational fisheries data to create species distribution models that can contribute to future dynamic spatial management of pelagic fisheries. Using this model framework, we have also created a seasonal forecast of dolphinfish habitats that predict the distribution of fish abundance along the east coast of Australia. Such forecasts allow ocean user groups and management to adapt to spatial and temporal variability in fish distributions. The application of such fish forecasts to the recreational sector will be discussed.

  18. Amazonian freshwater habitats experiencing environmental and socioeconomic threats affecting subsistence fisheries.

    PubMed

    Alho, Cleber J R; Reis, Roberto E; Aquino, Pedro P U

    2015-09-01

    Matching the trend seen among the major large rivers of the globe, the Amazon River and its tributaries are facing aquatic ecosystem disruption that is affecting freshwater habitats and their associated biodiversity, including trends for decline in fishery resources. The Amazon's aquatic ecosystems, linked natural resources, and human communities that depend on them are increasingly at risk from a number of identified threats, including expansion of agriculture; cattle pastures; infrastructure such as hydroelectric dams, logging, mining; and overfishing. The forest, which regulates the hydrological pulse, guaranteeing the distribution of rainfall and stabilizing seasonal flooding, has been affected by deforestation. Flooding dynamics of the Amazon Rivers are a major factor in regulating the intensity and timing of aquatic organisms. This study's objective was to identify threats to the integrity of freshwater ecosystems, and to seek instruments for conservation and sustainable use, taking principally fish diversity and fisheries as factors for analysis.

  19. Natural Propagation and Habitat improvement, Volume 2B, Washington, Similkameen River Habitat Inventory, 1983 Final Report.

    SciTech Connect

    Unknown Author

    1984-04-01

    During the summer low flow period, a habitat assessment of the Similkameen, Tulameen, Ashnola and Pasayten rivers in British Columbia and Washington State was conducted between August 10 and October 10, 1983. The biophysical survey assessed 400 km (250 mi) of stream at 77 stations. Fish sampling was conducted at each station to assess the resident fish populations and standing crop. Rainbow trout populations and standing crops were found to be very low. Large populations of mountain whitefish and bridgelip suckers were present in the manstem Similkameen River below Similkameen Falls. High densities of sculpins and longnose dace were found throughout the system except for sculpins above the falls, where none were captured. Approximately 961,000 m/sup 2/ (1,150,000 yd/sup 2/) of spawnable area for steelhead trout were estimated for the entire system which could accommodate 98,000 spawners. Nearly 367,000 m/sup 2/ (439,000 yd/sup 2/) of chinook salmon spawnable area was also estimated, capable of accommodating 55,000 chinook. Rearing area for steelhead trout smolts was estimated for the whole system at 1.8 million m/sup 2/ (2.2 million yd/sup 2/). Chinook salmon smolt rearing area was estimated at 700,000 m/sup 2/ (837,000 yd/sup 2/). Rearing area was found to be a limiting factor to anadromous production in a Similkameen River system. Smolt production from the system was estimated 610,000 steelhead trout and between 1.6 million and 4.8 million chinook salmon. No water quality, temperature or flow problems for anadromous salmonids were evident from the available data and the habitat inventory. In addition to an impassable falls on the Tulameen River at river mile 32.5, only two other areas of difficult passage exist in the system, Similkameen Falls (a series of chutes) and the steep, narrow lower section of the Ashnola River. 51 references, 18 figures, 25 tables.

  20. Fish habitat conditions: Using the Northern/Intermountain Regions' inventory procedures for detecting differences on two differently managed watersheds

    Treesearch

    C. Kerry Overton; Michael A. Radko; Rodger L. Nelson

    1993-01-01

    Differences in fish habitat variables between two studied watersheds may be related to differences in land management. In using the R1/R4 Watershed-Scale Fish Habitat Inventory Process, for most habitat variables, evaluations of sample sizes of at least 30 habitat units were adequate. Guidelines will help land managers in determining sample sizes required to detect...

  1. Fisheries Habitat Evaluation in Tributaries of the Coeur d`Alene Indian Reservation : Annual Report 1992.

    SciTech Connect

    Woodward-Lillengreen, Kelly L.; Skillingstad, Tami; Scholz, Allan T.

    1993-10-01

    In 1987 the Northwest Power Planning Council amended the Columbia River Basin Fish and Wildlife Program, directing the Bonneville Power Administration (BPA) to fund, ``a baseline stream survey of tributaries located on the Coeur d`Alene Indian Reservation to compile information on improving spawning habitat, rearing habitat, and access to spawning tributaries for bull trout, cutthroat trout, and to evaluate the existing fish stocks. ff justified by the results of the survey, fund the design, construction and operation of a cutthroat and bull trout hatchery on the Coeur d`Alene Indian Reservation; necessary habitat improvement projects; and a three year monitoring program to evaluate the effectiveness of the hatchery and habitat improvement projects. If the baseline survey indicates a better alternative than construction of a fish hatchery, the Coeur d`Alene Tribe will submit an alternative plan for consideration in program amendment proceeding.`` This report contains the results of the third year of the study and the Coeur d`Alene Indian Tribes` preliminary recommendations for enhancing the cutthroat and bull trout fishery on the Coeur d`Alene Indian Reservation. These recommendations are based on study results from year three data and information obtained in the first two years of the study.

  2. Intense habitat-specific fisheries-induced selection at the molecular Pan I locus predicts imminent collapse of a major cod fishery.

    PubMed

    Arnason, Einar; Hernandez, Ubaldo Benitez; Kristinsson, Kristján

    2009-05-27

    Predation is a powerful agent in the ecology and evolution of predator and prey. Prey may select multiple habitats whereby different genotypes prefer different habitats. If the predator is also habitat-specific the prey may evolve different habitat occupancy. Drastic changes can occur in the relation of the predator to the evolved prey. Fisheries exert powerful predation and can be a potent evolutionary force. Fisheries-induced selection can lead to phenotypic changes that influence the collapse and recovery of the fishery. However, heritability of the phenotypic traits involved and selection intensities are low suggesting that fisheries-induced evolution occurs at moderate rates at decadal time scales. The Pantophysin I (Pan I) locus in Atlantic cod (Gadus morhua), representing an ancient balanced polymorphism predating the split of cod and its sister species, is under an unusual mix of balancing and directional selection including current selective sweeps. Here we show that Pan I alleles are highly correlated with depth with a gradient of 0.44% allele frequency change per meter. AA fish are shallow-water and BB deep-water adapted in accordance with behavioral studies using data storage tags showing habitat selection by Pan I genotype. AB fish are somewhat intermediate although closer to AA. Furthermore, using a sampling design covering space and time we detect intense habitat-specific fisheries-induced selection against the shallow-water adapted fish with an average 8% allele frequency change per year within year class. Genotypic fitness estimates (0.08, 0.27, 1.00 of AA, AB, and BB respectively) predict rapid disappearance of shallow-water adapted fish. Ecological and evolutionary time scales, therefore, are congruent. We hypothesize a potential collapse of the fishery. We find that probabilistic maturation reaction norms for Atlantic cod at Iceland show declining length and age at maturing comparable to changes that preceded the collapse of northern cod at

  3. FIA forest inventory data for wildlife habitat assessment

    Treesearch

    David C. Chojnacky

    2000-01-01

    The Forest Inventory and Analysis (FIA) program of the USDA Forest Service maintains a network of permanent plots to monitor changing forest conditions. These plots were originally established to monitor the nation's timber supply; however, these data have great potential for evaluating other forest resources. To demonstrate a wildlife application, an assessment...

  4. Secure & Restore Critical Fisheries Habitat, Flathead Subbasin, FY2008 Annual Report.

    SciTech Connect

    DuCharme, Lynn; Tohtz, Joel

    2008-11-12

    The construction of Hungry Horse Dam inundated 125 km of adfluvial trout habitat in the South Fork of the Flathead River and its tributaries, impacting natural fish reproduction and rearing. Rapid residential and commercial growth in the Flathead Watershed now threaten the best remaining habitats and restrict our opportunities to offset natural resource losses. Hydropower development and other land disturbances caused severe declines in the range and abundance of our focal resident fish species, bull trout and westslope cutthroat trout. Bull trout were listed as threatened in 1998 under the Endangered Species Act and westslope cutthroat were petitioned for listing under ESA. Westslope cutthroat are a species of special concern in Montana and a species of special consideration by the Confederated Salish and Kootenai Tribes. The Secure & Protect Fisheries Habitat project follows the logical progression towards habitat restoration outlined in the Hungry Horse Dam Fisheries Mitigation Implementation Plan approved by the NWPPC in 1993. This project is also consistent with the 2000 Fish and Wildlife Program and the Flathead River Subbasin Plan that identifies the protection of habitats for these populations as one of the most critical needs in the subbasin and directs actions to offset habitat losses. The Flathead basin is one of the fastest growing human population centers in Montana. Riparian habitats are being rapidly developed and subdivided, causing habitat degradation and altering ecosystem functions. Remaining critical habitats in the Flathead Watershed need to be purchased or protected with conservation easements if westslope cutthroat and bull trout are to persist and expand within the subbasin. In addition, habitats degraded by past land uses need to be restored to maximize the value of remaining habitats and offset losses caused by the construction of Hungry Horse Dam. Securing and restoring remaining riparian habitat will benefit fish by shading and

  5. Using forest inventory data to assess fisher resting habitat suitability in California.

    PubMed

    Zielinski, William J; Truex, Richard L; Dunk, Jeffrey R; Gaman, Tom

    2006-06-01

    The fisher (Martes pennanti) is a forest-dwelling carnivore whose current distribution and association with late-seral forest conditions make it vulnerable to stand-altering human activities or natural disturbances. Fishers select a variety of structures for daily resting bouts. These habitat elements, together with foraging and reproductive (denning) habitat, constitute the habitat requirements of fishers. We develop a model capable of predicting the suitability of fisher resting habitat using standard forest vegetation inventory data. The inventory data were derived from Forest Inventory and Analysis (FIA), a nationwide probability-based sample used to estimate forest characteristics. We developed the model by comparing vegetation and topographic data at 75 randomly selected fisher resting structures in the southern Sierra Nevada with 232 forest inventory plots. We collected vegetation data at fisher resting locations using the FIA vegetation sampling protocol and centering the 1-ha FIA plot on the resting structure. To distinguish used and available inventory plots, we used nonparametric logistic regression to evaluate a set of a priori biological models. The top model represented a dominant portion of the Akaike weights (0.87), explained 31.5% of the deviance, and included the following variables: average canopy closure, basal area of trees <51 cm diameter breast height (dbh), average hardwood dbh, maximum tree dbh, percentage slope, and the dbh of the largest conifer snag. Our use of routinely collected forest inventory data allows the assessment and monitoring of change in fisher resting habitat suitability over large regions with no additional sampling effort. Although models were constrained to include only variables available from the list of those measured using the FIA protocol, we did not find this to be a shortcoming. The model makes it possible to compare average resting habitat suitability values before and after forest management treatments, among

  6. Predictive Habitat Use of California Sea Lions and Its Implications for Fisheries Management

    NASA Astrophysics Data System (ADS)

    Briscoe, D.

    2016-12-01

    Advancements in satellite telemetry and remotely-sensed oceanography have shown that species and the environment they utilize are highly dynamic in space and time. However, biophysical features often overlap with human use. For this reason, spatially-explicit management approaches may only provide a snapshot of protection for a highly mobile species throughout its range. As a migratory species, California sea lions (Zalophus californianus) utilize dynamic oceanographic features that overlap with the California swordfish fishery, and are subject to incidental catch. The development of near-real time tools can assist in management efforts to mitigate against human impacts, such as fisheries interactions and dynamic marine species. Here, we combine near-real time remotely-sensed satellite oceanography, animal tracking data, and Generalized Additive Mixed Models (GAMMs) to: a) determine suitable habitat for 75 female California sea lions throughout their range, b) forecast when and where these non-target interactions are likely to occur, and c) validate these models with observed data of such interactions. Model results can be used to provide resource management that are highly responsive to the movement of managed species, ocean users, and underlying ocean features.

  7. Predictive Habitat Use of California Sea Lions and Its Implications for Fisheries Management

    NASA Astrophysics Data System (ADS)

    Briscoe, D.

    2016-02-01

    Advancements in satellite telemetry and remotely-sensed oceanography have shown that species and the environment they utilize are highly dynamic in space and time. However, biophysical features often overlap with human use. For this reason, spatially-explicit management approaches may only provide a snapshot of protection for a highly mobile species throughout its range. As a migratory species, California sea lions (Zalophus californianus) utilize dynamic oceanographic features that overlap with the California swordfish fishery, and are subject to incidental catch. The development of near-real time tools can assist in management efforts to mitigate against human impacts, such as fisheries interactions and dynamic marine species. Here, we combine near-real time remotely-sensed satellite oceanography, animal tracking data, and Generalized Additive Mixed Models (GAMMs) to: a) determine suitable habitat for 75 female California sea lions throughout their range, b) forecast when and where these non-target interactions are likely to occur, and c) validate these models with observed data of such interactions. Model results can be used to provide resource management that are highly responsive to the movement of managed species, ocean users, and underlying ocean features.

  8. Tiger sharks can connect equatorial habitats and fisheries across the Atlantic Ocean basin.

    PubMed

    Afonso, André S; Garla, Ricardo; Hazin, Fábio H V

    2017-01-01

    Increasing our knowledge about the spatial ecology of apex predators and their interactions with diverse habitats and fisheries is necessary for understanding the trophic mechanisms that underlie several aspects of marine ecosystem dynamics and for guiding informed management policies. A preliminary assessment of tiger shark (Galeocerdo cuvier) population structure off the oceanic insular system of Fernando de Noronha (FEN) and the large-scale movements performed by this species in the equatorial Atlantic Ocean was conducted using longline and handline fishing gear and satellite telemetry. A total of 25 sharks measuring 175-372 cm in total length (TL) were sampled. Most sharks were likely immature females ranging between 200 and 260 cm TL, with few individuals < 200 cm TL being caught. This contrasts greatly with the tiger shark size-distribution previously reported for coastal waters off the Brazilian mainland, where most individuals measured < 200 cm TL. Also, the movements of 8 individuals measuring 202-310 cm TL were assessed with satellite transmitters for a combined total of 757 days (mean = 94.6 days∙shark-1; SD = 65.6). These sharks exhibited a considerable variability in their horizontal movements, with three sharks showing a mostly resident behavior around FEN during the extent of the respective tracks, two sharks traveling west to the South American continent, and two sharks moving mostly along the middle of the oceanic basin, one of which ending up in the northern hemisphere. Moreover, one shark traveled east to the African continent, where it was eventually caught by fishers from Ivory Coast in less than 474 days at liberty. The present results suggest that young tiger sharks measuring < 200 cm TL make little use of insular oceanic habitats from the western South Atlantic Ocean, which agrees with a previously-hypothesized ontogenetic habitat shift from coastal to oceanic habitats experienced by juveniles of this species in this region. In addition

  9. Tiger sharks can connect equatorial habitats and fisheries across the Atlantic Ocean basin

    PubMed Central

    Garla, Ricardo; Hazin, Fábio H. V.

    2017-01-01

    Increasing our knowledge about the spatial ecology of apex predators and their interactions with diverse habitats and fisheries is necessary for understanding the trophic mechanisms that underlie several aspects of marine ecosystem dynamics and for guiding informed management policies. A preliminary assessment of tiger shark (Galeocerdo cuvier) population structure off the oceanic insular system of Fernando de Noronha (FEN) and the large-scale movements performed by this species in the equatorial Atlantic Ocean was conducted using longline and handline fishing gear and satellite telemetry. A total of 25 sharks measuring 175–372 cm in total length (TL) were sampled. Most sharks were likely immature females ranging between 200 and 260 cm TL, with few individuals < 200 cm TL being caught. This contrasts greatly with the tiger shark size-distribution previously reported for coastal waters off the Brazilian mainland, where most individuals measured < 200 cm TL. Also, the movements of 8 individuals measuring 202–310 cm TL were assessed with satellite transmitters for a combined total of 757 days (mean = 94.6 days∙shark-1; SD = 65.6). These sharks exhibited a considerable variability in their horizontal movements, with three sharks showing a mostly resident behavior around FEN during the extent of the respective tracks, two sharks traveling west to the South American continent, and two sharks moving mostly along the middle of the oceanic basin, one of which ending up in the northern hemisphere. Moreover, one shark traveled east to the African continent, where it was eventually caught by fishers from Ivory Coast in less than 474 days at liberty. The present results suggest that young tiger sharks measuring < 200 cm TL make little use of insular oceanic habitats from the western South Atlantic Ocean, which agrees with a previously-hypothesized ontogenetic habitat shift from coastal to oceanic habitats experienced by juveniles of this species in this region. In

  10. Summary Report for Bureau of Fisheries Stream Habitat Surveys : Clearwater, Salmon, Weiser, and Payette River Basins, 1934-1942, Final Report.

    SciTech Connect

    McIntosh, Bruce A.; Clark, Sharon E.; Sedell, James R.

    1995-01-01

    used to assess pool and substrate conditions. This data is available from the Bonneville Power Administration. The Bureau of Fisheries survey is unique because it is the only long-term data set that quantifies fish habitat in a manner that is replicable over time; no other similar work is known to exist. Other surveys, such as Thompson and Haas (1960), inventoried extensive areas in a manner that was mostly qualitative, subjectively estimating physical characteristics like bank cover and stream shading. Spawning, rearing, and resting habitat were not systematically quantified to allow comparisons over time. Knowledge of the past and present quantity and quality of anadromous fish habitat in the Columbia River Basin is essential to any effort to enhance fish populations. Habitat condition is a key element in monitoring and evaluating progress towards the doubling goal. Integration of this information into the Columbia River Fish and Wildlife Plan can provide the baseline information to greatly enhance understanding of past, present, and future habitat conditions in the basin to provide for improved management decisions.

  11. Summary Report for Bureau of Fisheries Stream Habitat Surveys : Umatilla, Tucannon, Asotin, and Grande Ronde River Basins, 1934-1942, Final Report.

    SciTech Connect

    McIntosh, Bruce A.; Clark, Sharon E.; Sedell, James R.

    1995-01-01

    Administration. The Bureau of Fisheries survey is unique because it is the only long-term data set that quantifies fish habitat in a manner that is replicable over time; no other similar work is known to exist. Other surveys, such as Thompson and Haas (1960) inventoried extensive areas in a manner that was mostly qualitative, subjectively estimating physical characteristics like bank cover and stream shading. Spawning, rearing, and resting habitat were not systematically quantified to allow comparisons over time. Knowledge of the past and present quantity and quality of anadromous fish habitat in the Columbia River Basin is essential to any effort to enhance fish populations. Habitat condition is a key element in monitoring and evaluating progress towards the doubling goal. Integration of this information into the Columbia River Fish and Wildlife Plan can provide the baseline information to greatly enhance understanding of past, present, and future habitat conditions in the basin to provide for improved management decisions.

  12. Commercially important species associated with horse mussel (Modiolus modiolus) biogenic reefs: A priority habitat for nature conservation and fisheries benefits.

    PubMed

    Kent, Flora E A; Mair, James M; Newton, Jason; Lindenbaum, Charles; Porter, Joanne S; Sanderson, William G

    2017-05-15

    Horse mussel reefs (Modiolus modiolus) are biodiversity hotspots afforded protection by Marine Protected Areas (MPAs) in the NE Atlantic. In this study, horse mussel reefs, cobble habitats and sandy habitats were assessed using underwater visual census and drop-down video techniques in three UK regions. Megafauna were enumerated, differences in community composition and individual species abundances were analysed. Samples of conspicuous megafauna were also collected from horse mussel reefs in Orkney for stable isotope analysis. Communities of conspicuous megafauna were different between horse mussel habitats and other habitats throughout their range. Three commercially important species: whelks (Buccinum undatum), queen scallops (Aequipecten opercularis) and spider crabs (Maja brachydactyla) were significantly more abundant (by as much as 20 times) on horse mussel reefs than elsewhere. Isotopic analysis provided insights into their trophic relationship with the horse mussel reef. Protection of M. modiolus habitat can achieve biodiversity conservation objectives whilst benefiting fisheries also. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Coral habitat in the Aleutian Islands of Alaska: depth distribution, fine-scale species associations, and fisheries interactions

    NASA Astrophysics Data System (ADS)

    Stone, R. P.

    2006-05-01

    The first in situ exploration of Aleutian Island coral habitat was completed in 2002 to determine the distribution of corals, to examine fine-scale associations between targeted fish species and corals, and to investigate the interaction between the areas’ diverse fisheries and coral habitat. Corals, mostly gorgonians and hydrocorals, were present on all 25 seafloor transects and at depths between 27 and 363 m, but were most abundant between 100 and 200 m depth. Mean coral abundance (1.23 colonies m-2) far exceeded that reported for other high-latitude ecosystems and high-density coral gardens (3.85 colonies m-2) were observed at seven locations. Slope and offshore pinnacle habitats characterized by exposed bedrock, boulders, and cobbles generally supported the highest abundances of coral and fish. Overall, 85% of the economically important fish species observed on transects were associated with corals and other emergent epifauna. Disturbance to the seafloor from bottom-contact fishing gear was evident on 88% of the transects, and approximately 39% of the total area of the seafloor observed had been disturbed. Since cold-water corals appear to be a ubiquitous feature of seafloor habitats in the Aleutian Islands, fisheries managers face clear challenges integrating coral conservation into an ecosystem approach to fisheries management.

  14. Toward Dynamic Ocean Management: Fisheries assessment and climate projections informed by community developed habitat models based on dynamic coastal oceanography

    NASA Astrophysics Data System (ADS)

    Kohut, J. T.; Manderson, J.; Palamara, L. J.; Saba, V. S.; Saba, G.; Hare, J. A.; Curchitser, E. N.; Moore, P.; Seibel, B.; DiDomenico, G.

    2016-02-01

    Through a multidisciplinary study group of experts in marine ecology, physical oceanography and stock assessment from the fishing industry, government and academia we developed a method to explicitly account for shifting habitat distributions in fish population assessments. We used data from field surveys throughout the Northwest Atlantic Ocean to develop a parametric thermal niche model for an important short-lived pelagic forage fish, Atlantic Butterfish. This niche model was coupled to a hindcast of daily bottom water temperature derived from a regional numerical ocean model in order to project daily thermal habitat suitability over the last 40 years. This ecological hindcast was used to estimate the proportion of thermal habitat suitability available on the U.S. Northeast Shelf that was sampled on fishery-independent surveys, accounting for the relative motions of thermal habitat and the trajectory of sampling on the survey. The method and habitat based estimates of availability was integrated into the catchability estimate used to scale population size in the butterfish stock assessment model accepted by the reviewers of the 59th NEFSC stock assessment review, as well as the mid-Atlantic Council's Scientific and Statistical Committee. The contribution of the availability estimate (along with an estimate of detectability) allowed for the development of fishery reference points, a change in stock status from unknown to known, and the establishment of a directed fishery with an allocation of 20,000 metric tons of quota. This presentation will describe how a community based workgroup utilized ocean observing technologies combined with ocean models to better understand the physical ocean that structures marine ecosystems. Using these approaches we will discuss opportunities to inform ecological hindcasts and climate projections with mechanistic models that link species-specific physiology to climate-based thermal scenarios.

  15. Toward Dynamic Ocean Management: Fisheries assessment and climate projections informed by community developed habitat models based on dynamic coastal oceanography

    NASA Astrophysics Data System (ADS)

    Kohut, J. T.; Manderson, J.; Palamara, L. J.; Saba, V. S.; Saba, G.; Hare, J. A.; Curchitser, E. N.; Moore, P.; Seibel, B.; DiDomenico, G.

    2016-12-01

    Through a multidisciplinary study group of experts in marine ecology, physical oceanography and stock assessment from the fishing industry, government and academia we developed a method to explicitly account for shifting habitat distributions in fish population assessments. We used data from field surveys throughout the Northwest Atlantic Ocean to develop a parametric thermal niche model for an important short-lived pelagic forage fish, Atlantic Butterfish. This niche model was coupled to a hindcast of daily bottom water temperature derived from a regional numerical ocean model in order to project daily thermal habitat suitability over the last 40 years. This ecological hindcast was used to estimate the proportion of thermal habitat suitability available on the U.S. Northeast Shelf that was sampled on fishery-independent surveys, accounting for the relative motions of thermal habitat and the trajectory of sampling on the survey. The method and habitat based estimates of availability was integrated into the catchability estimate used to scale population size in the butterfish stock assessment model accepted by the reviewers of the 59th NEFSC stock assessment review, as well as the mid-Atlantic Council's Scientific and Statistical Committee. The contribution of the availability estimate (along with an estimate of detectability) allowed for the development of fishery reference points, a change in stock status from unknown to known, and the establishment of a directed fishery with an allocation of 20,000 metric tons of quota. This presentation will describe how a community based workgroup utilized ocean observing technologies combined with ocean models to better understand the physical ocean that structures marine ecosystems. Using these approaches we will discuss opportunities to inform ecological hindcasts and climate projections with mechanistic models that link species-specific physiology to climate-based thermal scenarios.

  16. Summary Report for Bureau of Fisheries Stream Habitat Surveys: Cowlitz River Basin, 1934-1942 Final Report.

    SciTech Connect

    McIntosh, Bruce A.; Clark, Sharon E.; Sedell, James R.

    1995-01-01

    This document contains summary reports of stream habitat surveys, conducted in the Cowlitz River basin, by the Bureau of Fisheries (BOF, now National Marine Fisheries Service) from 1938-1942. These surveys were part of a larger project to survey streams in the Columbia River basin that provided, or had provided, spawning and rearing habitat for salmon and steelhead. The purpose of the survey was, as described by Rich, [open quotes]to determine the present condition of the various tributaries with respect to their availability and usefulness for the migration, breeding, and rearing of migratory fishes[close quotes]. Current estimates of the loss of anadromous fish habitat in the Columbia River Basin are based on a series of reports published from 1949-1952 by the U.S. Fish and Wildlife Service. The reports were brief, qualitative accounts of over 5000 miles of stream surveys conducted by the BOF from 1934-1946. Despite their brevity, these BOF reports have formed the basis for estimating fish habitat losses and conditions in the Columbia River Basin.

  17. Fisheries Habitat Evaluation on Tributaries of the Coeur d`Alene Indian Reservation : Annual Report [1991].

    SciTech Connect

    Woodward-Lillengreen, Kelly L.; Johnson, D. Chad; Scholz, Allan T.

    1993-02-01

    The purpose of this study was to conduct physical and biological surveys of streams located on the Coeur d'Alene Indian Reservation. Surveys were designed to collect information on improving spawning habitat, rearing habitat, and access to spawning tributaries for bull trout and cutthroat trout and to evaluate the existing fish stocks. The objectives of the second year of the study were to: (1) Develop a stream ranking system to select the five streams of primary fisheries potential; (2) Conduct physical field surveys; (3) Determine population dynamics; (4) Determine growth rates of existing trout species; (5) Determine macroinvertebrate densities and diversities; and (6) Determine baseline angler utilization. The Missouri method of evaluating stream reaches was modified and utilized to rank the ten tributaries (as determined by Graves et al. 1990) associated with reservation lands. The method incorporated such data as stream bank and bed stability, condition of riparian vegetation, land use, degree of urbanization, passage barriers, water quality, flow and temperature regimes, as well as the overall habitat suitability for all life history stages of cutthroat and bull trout. This data was then combined with relative abundance data, growth rates and invertebrate densities to choose five streams, which offer the best potential habitat, for further study. Relative abundance estimates resulted in the capture of 6,138 fish from June, August, and October, 1991. A total of 427 cutthroat trout were collected from all sampled tributaries. Relative abundance of cutthroat trout for all tributaries was 6.7%. Fighting Creek had the highest abundance of cutthroat trout at 93.1%, followed by Evans Creeks at 30.8%, Lake Creek at 12.1%, Hell's Gulch at 11.1%, Alder Creek at 3.3%, Benewah Creek at 2.1% and Plummer/Little Plummer creeks at 5%. Population estimates were conducted in Benewah, Alder, Evans and Lake creeks. Estimates were: 23.5 {+-} 2.3 fish/l,922.6 m2 in Benewah Creek

  18. Towards an integrated forecasting system for fisheries on habitat-bound stocks

    NASA Astrophysics Data System (ADS)

    Christensen, A.; Butenschön, M.; Gürkan, Z.; Allen, I. J.

    2013-03-01

    First results of a coupled modelling and forecasting system for fisheries on habitat-bound stocks are being presented. The system consists currently of three mathematically, fundamentally different model subsystems coupled offline: POLCOMS providing the physical environment implemented in the domain of the north-west European shelf, the SPAM model which describes sandeel stocks in the North Sea, and the third component, the SLAM model, which connects POLCOMS and SPAM by computing the physical-biological interaction. Our major experience by the coupling model subsystems is that well-defined and generic model interfaces are very important for a successful and extendable coupled model framework. The integrated approach, simulating ecosystem dynamics from physics to fish, allows for analysis of the pathways in the ecosystem to investigate the propagation of changes in the ocean climate and to quantify the impacts on the higher trophic level, in this case the sandeel population, demonstrated here on the basis of hindcast data. The coupled forecasting system is tested for some typical scientific questions appearing in spatial fish stock management and marine spatial planning, including determination of local and basin-scale maximum sustainable yield, stock connectivity and source/sink structure. Our presented simulations indicate that sandeel stocks are currently exploited close to the maximum sustainable yield, even though periodic overfishing seems to have occurred, but large uncertainty is associated with determining stock maximum sustainable yield due to stock inherent dynamics and climatic variability. Our statistical ensemble simulations indicates that the predictive horizon set by climate interannual variability is 2-6 yr, after which only an asymptotic probability distribution of stock properties, like biomass, are predictable.

  19. 76 FR 35408 - Essential Fish Habitat (EFH) Components of Fishery Management Plans (Northeast Multispecies...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-17

    ... Fishery Management Plans (Northeast Multispecies, Atlantic Sea Scallop, Monkfish, Atlantic Herring, Skates, Atlantic Salmon, and Atlantic Deep-Sea Red Crab) 5- Year Review AGENCY: National Marine Fisheries Service..., monkfish, Atlantic herring, NE skate complex, Atlantic salmon, and Atlantic deep-sea red crab. The Council...

  20. Fisheries Habitat Evaluation on Tributaries of the Coeur d`Alene Indian Reservation : 1993, 1994 Annual Report.

    SciTech Connect

    Woodward-Lillengreen, Kelly L.; Vitale, Angelo; Peters, Ronald L.

    1996-09-01

    Bull trout and cutthroat trout are two salmonid species native to the Lake Coeur d`Alene drainage. Historically these species were a critical component of the Coeur d`Alene Tribe`s annual subsistence requirements. Since 1932, the cutthroat trout population has declined significantly in the Coeur d`Alene system. The present ecosystem bears little resemblance to habitat composition, diversity and structure of the historic ecosystem. The purpose of this study was to conduct baseline stream and biological surveys of four drainages located within the Coeur d`alene Reservation and make recommendations on ways to increase the westslope cutthroat and bull trout populations on the Reservation. Data indicated that habitat degradation, specifically, water quantity and lack of habitat complexity, was limiting westslope cutthroat and bull trout populations on the Reservation. Population data indicated that cutthroat trout populations were low when compared to other similar drainages. Surveys revealed a conspicuous absence of bull trout. Recommendations included: conducting extensive habitat restoration in the study drainages; developing alternate harvest opportunities to reduce pressure on wild stocks; purchasing critical watershed areas for fisheries habitat protection; constructing and operating a trout production facility; and, implementing a five-year monitoring program to evaluate the program effectiveness.

  1. Modulation of habitat-based conservation plans by fishery opportunity costs: a New Caledonia case study using fine-scale catch data.

    PubMed

    Deas, Marilyn; Andréfouët, Serge; Léopold, Marc; Guillemot, Nicolas

    2014-01-01

    Numerous threats impact coral reefs and conservation actions are urgently needed. Fast production of marine habitat maps promotes the use of habitat-only conservation plans, where a given percentage of the area of each habitat is set as conservation objectives. However, marine reserves can impact access to fishing grounds and generate opportunity costs for fishers that need to be minimized. In New Caledonia (Southwest Pacific), we used fine-scale fishery catch maps to define nineteen opportunity costs layers (expressed as biomass catch loss) considering i) total catches, ii) target fish families, iii) local marine tenure, and iv) gear type. The expected lower impacts on fishery catch when using the different cost constraints were ranked according to effectiveness in decreasing the costs generated by the habitat-only scenarios. The exercise was done for two habitat maps with different thematic richness. In most cases, habitat conservation objectives remained achievable, but effectiveness varied widely between scenarios and between habitat maps. The results provide practical guidelines for coral reef conservation and management. Habitat-only scenarios can be used to initiate conservation projects with stakeholders but the costs induced by such scenarios can be lowered by up to 50-60% when detailed exhaustive fishery data are used. When using partial data, the gain would be only in the 15-25% range. The best compromises are achieved when using local data.

  2. Artificial Reefs as Surrogate Habitats for Red Snapper in the Northwestern Gulf of Mexico: A Fishery-Independent Comparison of Artificial and Natural Habitats

    NASA Astrophysics Data System (ADS)

    Streich, M.; Wetz, J. J.; Ajemian, M. J.; Stunz, G. W.

    2016-02-01

    The goal of our study was to evaluate the relative abundance, size and age structure of Red Snapper among three different habitat types (standing oil and gas platforms, artificial reefs [rigs-to-reefs], and natural banks) in the northwestern Gulf of Mexico. From May 2013 - January 2015, we conducted 140 vertical line sets and captured 1538 Red Snapper ranging in size from 251 to 855 mm TL. Ages determined for 801 of these fish ranged from 2-30 years. No differences were detected in Red Snapper CPUE among the three habitats. However, a comparison of TL and TW distributions suggested that natural banks supported a greater proportion of larger fish than artificial reefs or standing platforms (K-S test, p<0.001). Mean TW-at-age regressions for the most common age groups (ages 3-7) suggested that Red Snapper grew faster at artificial reefs and standing platforms than natural bank habitats (ANCOVA, p<0.05). Mean age was positively correlated with capture depth (r=0.79) suggesting spatial variation in age composition. These results have important implications for artificial reef development and Red Snapper management in the GOM. Further use of standardized, fishery-independent surveys and additional biological data will help elucidate the role artificial structures play in maintaining the Red Snapper population.

  3. Wildlife habitat, range, recreation, hydrology, and related research using Forest Inventory and Analysis surveys: a 12-year compendium

    Treesearch

    Victor A. Rudis

    1991-01-01

    More than 400 publications are listed for the period 1979 to 1990; these focus on water, range, wildlife habitat, recreation, and related studies derived from U.S. Department of Agriculture, forest Service, Forest Inventory and Analysis unit surveys conducted on private and public land in the continental United States. Included is an overview of problems and progress...

  4. Forecasting effects of climate change on Great Lakes fisheries: models that link habitat supply to population dynamics can help

    USGS Publications Warehouse

    Jones, Michael L.; Shuter, Brian J.; Zhao, Yingming; Stockwell, Jason D.

    2006-01-01

    Future changes to climate in the Great Lakes may have important consequences for fisheries. Evidence suggests that Great Lakes air and water temperatures have risen and the duration of ice cover has lessened during the past century. Global circulation models (GCMs) suggest future warming and increases in precipitation in the region. We present new evidence that water temperatures have risen in Lake Erie, particularly during summer and winter in the period 1965–2000. GCM forecasts coupled with physical models suggest lower annual runoff, less ice cover, and lower lake levels in the future, but the certainty of these forecasts is low. Assessment of the likely effects of climate change on fish stocks will require an integrative approach that considers several components of habitat rather than water temperature alone. We recommend using mechanistic models that couple habitat conditions to population demographics to explore integrated effects of climate-caused habitat change and illustrate this approach with a model for Lake Erie walleye (Sander vitreum). We show that the combined effect on walleye populations of plausible changes in temperature, river hydrology, lake levels, and light penetration can be quite different from that which would be expected based on consideration of only a single factor.

  5. Fisheries indicators, freshwater

    USGS Publications Warehouse

    Kwak, Thomas J.

    2010-01-01

    Freshwater fisheries exist among diverse ecosystems and fauna, provide societal benefits, and are influenced by human activities. Fisheries scientists assess the status and sustainability of fisheries by multiple approaches, including abundance and condition indices, population parameters, community indices, modeling, and surveys of habitat and human dimensions. The future sustainability of freshwater fisheries is limited not by available methods but by society’s will.

  6. Ecosystem Services of Coastal Habitats and Fisheries: Multi-Scale Ecological and Economic Modeling

    EPA Science Inventory

    Critical habitats for fish and wildlife often are small patches in landscapes, e.g., aquatic vegetation beds, reefs, isolated ponds and wetlands, remnant old growth forests, etc, yet the same animal populations that depend on these patches for reproduction or survival can be exte...

  7. Progress in understanding the importance of coastal wetland nursery habitat to Great Lakes fisheries support

    EPA Science Inventory

    Great Lakes coastal wetlands provide important habitat for Great Lakes fishes of all life stages. A literature review of ichthyoplankton surveys conducted in Great Lakes coastal wetlands found at least 82 species reported to be captured during the larval stage. Twenty of those sp...

  8. Modelling future improvements in the St. Louis River fishery from sediment remediation and aquatic habitat restoration

    EPA Science Inventory

    The presence of fish consumption advisories has a negative impact on fishing. In the St. Louis River, an important natural resource management goal is to reduce or eliminate fish consumption advisories by remediating contaminant sediments and improving aquatic habitat. However, w...

  9. CUMULATIVE EFFECTS OF COASTAL HABITAT ALTERATIONS ON FISHERY RESOURCES: TOWARD PREDICTION AT REGIONAL SCALES

    EPA Science Inventory

    The integrity of aquatic ecosystems and habitats at the land-sea interface is challeneged by several forces, ranging from plot scale destruction and disturbance, to watershed scale perturbations, to global changes in climate and human demographis. The scientific challenge is to ...

  10. Ecosystem Services of Coastal Habitats and Fisheries: Multi-Scale Ecological and Economic Modeling

    EPA Science Inventory

    Critical habitats for fish and wildlife often are small patches in landscapes, e.g., aquatic vegetation beds, reefs, isolated ponds and wetlands, remnant old growth forests, etc, yet the same animal populations that depend on these patches for reproduction or survival can be exte...

  11. CUMULATIVE EFFECTS OF COASTAL HABITAT ALTERATIONS ON FISHERY RESOURCES: TOWARD PREDICTION AT REGIONAL SCALES

    EPA Science Inventory

    The integrity of aquatic ecosystems and habitats at the land-sea interface is challeneged by several forces, ranging from plot scale destruction and disturbance, to watershed scale perturbations, to global changes in climate and human demographis. The scientific challenge is to ...

  12. Modelling future improvements in the St. Louis River fishery from sediment remediation and aquatic habitat restoration

    EPA Science Inventory

    The presence of fish consumption advisories has a negative impact on fishing. In the St. Louis River, an important natural resource management goal is to reduce or eliminate fish consumption advisories by remediating contaminant sediments and improving aquatic habitat. However, w...

  13. Progress in understanding the importance of coastal wetland nursery habitat to Great Lakes fisheries support

    EPA Science Inventory

    Great Lakes coastal wetlands provide important habitat for Great Lakes fishes of all life stages. A literature review of ichthyoplankton surveys conducted in Great Lakes coastal wetlands found at least 82 species reported to be captured during the larval stage. Twenty of those sp...

  14. Fisheries Habitat Evaluation on Tributaries of the Coeur d`Alene Indian Reservation : 1990 Annual Report.

    SciTech Connect

    Graves, Suzy

    1992-02-01

    Ranking criteria were developed to rate 19 tributaries on the Coeur d`Alene Indiana Reservation for potential of habitat enhancement for westslope cutthroat trout, Oncorhynchus clarki lewisi, and bull trout, Salvelinus malma. Cutthroat and bull trout habitat requirements, derived from an extensive literature review of each species, were compared to the physical and biological parameters of each stream observed during an aerial -- helicopter survey. Ten tributaries were selected for further study, using the ranking criteria that were derived. The most favorable ratings were awarded to streams that were located completely on the reservation, displayed highest potential for improvement and enhancement, had no barriers to fish migration, good road access, and a gradient acceptable to cutthroat and bull trout habitation. The ten streams selected for study were Bellgrove, Fighting, Lake, Squaw, Plummer, Little Plummer, Benewah, Alder, Hell`s Gulch and Evans creeks.

  15. Habitat overlap between southern bluefin tuna and yellowfin tuna in the east coast longline fishery - implications for present and future spatial management

    NASA Astrophysics Data System (ADS)

    Hartog, Jason R.; Hobday, Alistair J.; Matear, Richard; Feng, Ming

    2011-03-01

    Southern bluefin tuna (SBT) are presently a quota-managed species in the multi-species eastern Australian tuna and billfish longline fishery (ETBF). Capture of SBT is regulated by quota, as is access to regions likely to contain SBT. A habitat prediction model combining data from an ocean model and pop-up satellite archival tags is used to define habitat zones based on the probability of SBT occurrence. These habitat zones are used by fishery managers to restrict access by ETBF fishers to SBT habitat during a May-November management season. The zones display a distinct seasonal cycle driven by the seasonal southward expansion and northward contraction of the East Australia Current (EAC) and as a result access by fishers to particular ocean regions changes seasonally. This species also overlaps with the commercially valuable yellowfin tuna (YFT), thus, we modified the SBT model to generate YFT habitat predictions in order to investigate habitat overlap between SBT and YFT. There is seasonal variation in the overlap of the core habitat between these two species, with overlap early (May-Jul) in the management season and habitat separation occurring towards the end (Aug-Nov). The EAC is one of the fastest warming ocean regions in the southern hemisphere. To consider the future change in distribution of these two species compared to the present and to explore the potential impact on fishers and managers of the future, we use future ocean predictions from the CSIRO Bluelink ocean model for the year 2064 to generate habitat predictions. As the ocean warms on the east coast of Australia and the EAC extends southward, our model predicts the suitable habitat for SBT and YFT will move further south. There was an increase in the overlap of SBT and YFT habitat throughout the management season, due to regional variation of each species' habitat. These results illustrate that a management tradeoff exists between restricting fisher access to SBT habitat and allowing access to YFT

  16. Fishery population and habitat assessment in Puerto Rico streams: phase 2 final report

    USGS Publications Warehouse

    Kwak, Thomas J.; Smith, William E.; Buttermore, Elissa N.; Cooney, Patrick B.; Cope, W. Gregory

    2013-01-01

    This document serves as the Final Report for research on Puerto Rico stream fishes and their habitat funded by the Puerto Rico Department of Natural and Environmental Resources, in the form of a grant to the North Carolina Cooperative Fish and Wildlife Research Unit. This research was also conducted to meet the thesis requirement for a Master of Science degree granted to Elissa Buttermore (Chapters 3–4) and the dissertation requirement for a Doctor of Philospophy degree granted to William Smith (Chapters 5–8). Formatting differs among chapters, as each was developed to target a specific scientific journal and to conform to journal style.

  17. Hungry Horse Dam Fisheries Mitigation : Fish Passage and Habitat Improvement in the Upper Flathead River Basin, 1991-1996 Progress Report.

    SciTech Connect

    Knotek, W.Ladd; Deleray, Mark; Marotz, Brian L.

    1997-08-01

    In the past 50 years, dramatic changes have occurred in the Flathead Lake and River system. Degradation of fishery resources has been evident, in part due to deterioration of aquatic habitat and introduction of non-endemic fish and invertebrate species. Habitat loss has been attributed to many factors including the construction and operation of Hungry Horse Dam, unsound land use practices, urban development, and other anthropogenic and natural disturbances. Fish migration has also been limited by barriers such as dams and impassible culverts. Cumulatively, these factors have contributed to declines in the distribution and abundance of native fish populations. Recovery of fish populations requires that a watershed approach be developed that incorporates long-term aquatic habitat needs and promotes sound land use practices and cooperation among natural resource management agencies. In this document, the authors (1) describe completed and ongoing habitat improvement and fish passage activities under the Hungry Horse Fisheries Mitigation Program, (2) describe recently identified projects that are in the planning stage, and (3) develop a framework for identifying prioritizing, implementing, and evaluating future fish habitat improvement and passage projects.

  18. Yakima/Klickitat Fisheries Project : Management, Data and Habitat, Annual Report 2002-2003.

    SciTech Connect

    Sampson, Melvin R.

    2002-03-01

    The Yakima/Klickitat Fisheries Project (YKFP or Project) is an all stock initiative that is responding to the need for scientific knowledge for rebuilding and maintaining naturally spawning anadromous fish stocks in both basins. The Yakama Nation, as the Lead Agency, in coordination with the co-managers, Washington Department of Fish and Wildlife and in cooperation with the Bonneville Power Administration, the funding agency, is pursuing this. We are testing the principles of supplementation as a means to rebuild fish populations through the use of locally adapted broodstock in an artificial production program. This concept is being utilized on the Spring Chinook within the Yakima River Basin. The coho and fall chinook programs were approved and implemented in the Yakima Basin. The coho programs principle objective is to determine if naturally spawning coho populations can be reintroduced throughout their biological range in the basin. The objective of the fall chinook program is to determine if supplementation is a viable strategy to increase fall chinook populations in the Yakima subbasin. The coho and fall chinook programs are under the three step process that was established by the Northwest Power Planning Council. The Klickitat subbasin management program is combined with the Yakima subbasin program. This contract includes the Klickitat Basin Coordinator and operational costs for the basin. The Klickitat Subbasin has separate contracts for Monitoring and Evaluation, Construction, and ultimately, Operation and Maintenance. In the Klickitat subbasin, we propose to use supplementation to increase populations of spring chinook and steelhead. This program is still in the developmental stages consistent with the three step process.

  19. Yakima/Klickitat Fisheries Project: Management, Data and Habitat, Annual Report 2001-2002.

    SciTech Connect

    Sampson, Melvin R.

    2002-03-01

    The Yakima/Klickitat Fisheries Project (YKFP or Project) is an all stock initiative that is responding to the need for scientific knowledge for rebuilding and maintaining naturally spawning anadromous fish stocks in both basins. The Yakama Nation, as the Lead Agency, in coordination with the co-managers, Washington Department of Fish and Wildlife and in cooperation with the Bonneville Power Administration, the funding agency, is pursuing this. We are testing the principles of supplementation as a means to rebuild fish populations through the use of locally adapted broodstock in an artificial production program. This concept is being utilized on the Spring Chinook within the Yakima River Basin. The coho and fall chinook programs were approved and implemented in the Yakima Basin. The coho programs principle objective is to determine if naturally spawning coho populations can be reintroduced throughout their biological range in the basin. The objective of the fall chinook program is to determine if supplementation is a viable strategy to increase fall chinook populations in the Yakima subbasin. The coho and fall chinook programs are under the three step process that was established by the Northwest Power Planning Council. The Klickitat subbasin management program is combined with the Yakima subbasin program. This contract includes the Klickitat Basin Coordinator and operational costs for the basin. The Klickitat Subbasin has separate contracts for Monitoring & Evaluation, Construction, and ultimately, Operation and Maintenance. In the Klickitat subbasin, we propose to use supplementation to increase populations of spring chinook and steelhead. This program is still in the developmental stages consistent with the three step process.

  20. Radio Frequency Identification for Space Habitat Inventory and Stowage Allocation Management

    NASA Technical Reports Server (NTRS)

    Wagner, Carole Y.

    2015-01-01

    To date, the most extensive space-based inventory management operation has been the International Space Station (ISS). Approximately 20,000 items are tracked with the Inventory Management System (IMS) software application that requires both flight and ground crews to update the database daily. This audit process is manually intensive and laborious, requiring the crew to open cargo transfer bags (CTBs), then Ziplock bags therein, to retrieve individual items. This inventory process contributes greatly to the time allocated for general crew tasks.

  1. MASSACHUSETTS DIVISION OF FISHERIES AND WILDLIFE ADAPTATION PLANNING USING AN EXPERT PANEL BASED HABITAT VULNERABLITY ASSESSMENT John O'Leary, MA Div. of Fisheries and Wildlife and Hector Galbraith, Ph d. Climate Change Initiative, Manomet Center for Conservation Sciences

    NASA Astrophysics Data System (ADS)

    O'Leary, J. A.; Galbraith, H.

    2010-12-01

    We are using the results from a recently completed Habitat Vulnerability Assessment (HVA) for adaptation planning within the Massachusetts Division of Fisheries and Wildlife. We used Regional Downscale Climate Projections to provide exposure information for the assessment and an Expert Panel of biologists to provide information on the sensitivity and adaptive capacity of the habitat types we assessed. We estimated the vulnerability of 22 key habitat types which were identified in the State Wildlife Action Plan (SWAP). Results of the expert panel based HVA include a relative ranking of vulnerability to climate change for these habitats within Massachusetts, a confidence score for the estimated vulnerability for each habitat type evaluated and a narrative identifying the factors which influence the vulnerability of the habitat. We also evaluated the vulnerability of the Species in Greatest Conservation Need (SGCN) from the SWAP to climate change conditions. The SGCN are linked to their primary habitat types. The HVA results along with recommendations from the National Academies Report: Adapting to the Impacts of Climate Change America’s Climate Choices: Panel on Adapting to the Impacts of Climate Change will inform “climate smart” adaptation strategies for agency management, acquisition, and research and monitoring programs that build on and do not replace existing implementation strategies. We believe that the adaptation planning process that we outline in this presentation could serve as a model for resource agencies and others who are in the process of developing their response to anticipated impacts from climate change conditions. We are also engaged in a collaborative effort to conduct a Regional Habitat Vulnerability Assessment (RHVA). Results form the RHVA will provide the MDFW with the ability to assess adaptation strategies based on regional need.

  2. Using forest inventory data to assess fisher resting habitat suitability in California.

    Treesearch

    William J. Zielinski; Richard L. Truex; Jeffrey R. Dunk; Tom Gaman

    2006-01-01

    The fisher (Martes pennanti) is a forest-dwelling carnivore whose current distribution and association with late-seral forest conditions make it vulnerable to stand-altering human activities or natural disturbances. Fishers select a variety of structures for daily resting bouts. These habitat elements, together with foraging and reproductive (denning) habitat,...

  3. Estimating habitat value using forest inventory data: the fisher (Martes pennanti) in northwestern California

    Treesearch

    William J. Zielinski; Jeffrey R. Dunk; Andrew N. Gray

    2012-01-01

    Managing forests for multiple objectives requires balancing timber and vegetation management objectives with needs of sensitive species. Especially challenging is how to retain the habitat elements for species that are typically associated with late-seral forests. We develop a regionally specific, multivariate model describing habitat selection that can be used – when...

  4. Protection of fish spawning habitat for the conservation of warm-temperature reef-fish fisheries of shelf-edge reefs of Florida

    USGS Publications Warehouse

    Koenig, Christopher C.; Coleman, Felicia C.; Grimes, Churchill B.; Fitzhugh, Gary R.; Scanlon, Kathyryn M.; Gledhill, Christopher T.; Grace, Mark

    2000-01-01

    We mapped and briefly describe the surficial geology of selected examples of shelf-edge reefs (50–120 m deep) of the southeastern United States, which are apparently derived from ancient Pleistocene shorelines and are intermittently distributed throughout the region. These reefs are ecologically significant because they support a diverse array of fish and invertebrate species, and they are the only aggregation spawning sites of gag (Mycteroperca microlepis), scamp (M. phenax), and other economically important reef fish. Our studies on the east Florida shelf in the Experimental Oculina Research Reserve show that extensive damage to the habitat-structuring coral Oculina varicosa has occurred in the past, apparently from trawling and dredging activities of the 1970s and later. On damaged or destroyed Oculina habitat, reef-fish abundance and diversity are low, whereas on intact habitat, reef-fish diversity is relatively high compared to historical diversity on the same site. The abundance and biomass of the economically important reef fish was much higher in the past than it is now, and spawning aggregations of gag and scamp have been lost or greatly reduced in size. On the west Florida shelf, fishers have concentrated on shelf-edge habitats for over 100 yrs, but fishing intensity increased dramatically in the 1980s. Those reefs are characterized by low abundance of economically important species. The degree and extent of habitat damage there is unknown. We recommend marine fishery reserves to protect habitat and for use in experimentally examining the potential production of unfished communities.

  5. Developing and applying habitat models using forest inventory data: an example using a terrestrial salamander

    Treesearch

    Hartwell H. Welsh Jr; Jeffrey R. Dunk; William J. Zielinski

    2004-01-01

    We provide a framework for developing predictive species habitat models using preexisting vegetation, physical, and spatial data in association with animal sampling data. The resulting models are used to evaluate questions relevant to species conservation, in particular, comparing occurrence estimates in reserved and unreserved lands. We used an information–theoretic...

  6. User's guide to FBASE: Relational database software for managing R1/R4 (Northern/Intermountain Regions) fish habitat inventory data

    Treesearch

    Sherry P. Wollrab

    1999-01-01

    FBASE is a microcomputer relational database package that handles data collected using the R1/R4 Fish and Fish Habitat Standard Inventory Procedures (Overton and others 1997). FBASE contains standard data entry screens, data validations for quality control, data maintenance features, and summary report options. This program also prepares data for importation into an...

  7. Field Validation of Habitat Suitability Models for Vulnerable Marine Ecosystems in the South Pacific Ocean: Implications for the use of Broad-scale Models in Fisheries Management

    NASA Astrophysics Data System (ADS)

    Anderson, O. F.; Guinotte, J. M.; Clark, M. R.; Rowden, A. A.; Mormede, S.; Davies, A. J.; Bowden, D.

    2016-02-01

    Spatial management of vulnerable marine ecosystems requires accurate knowledge of their distribution. Predictive habitat suitability modelling, using species presence data and a suite of environmental predictor variables, has emerged as a useful tool for inferring distributions outside of known areas. However, validation of model predictions is typically performed with non-independent data. In this study, we describe the results of habitat suitability models constructed for four deep-sea reef-forming coral species across a large region of the South Pacific Ocean using MaxEnt and Boosted Regression Tree modelling approaches. In order to validate model predictions we conducted a photographic survey on a set of seamounts in an un-sampled area east of New Zealand. The likelihood of habitat suitable for reef forming corals on these seamounts was predicted to be variable, but very high in some regions, particularly where levels of aragonite saturation, dissolved oxygen, and particulate organic carbon were optimal. However, the observed frequency of coral occurrence in analyses of survey photographic data was much lower than expected, and patterns of observed versus predicted coral distribution were not highly correlated. The poor performance of these broad-scale models is attributed to lack of recorded species absences to inform the models, low precision of global bathymetry models, and lack of data on the geomorphology and substrate of the seamounts at scales appropriate to the modelled taxa. This demonstrates the need to use caution when interpreting and applying broad-scale, presence-only model results for fisheries management and conservation planning in data poor areas of the deep sea. Future improvements in the predictive performance of broad-scale models will rely on the continued advancement in modelling of environmental predictor variables, refinements in modelling approaches to deal with missing or biased inputs, and incorporation of true absence data.

  8. 77 FR 19230 - Western Pacific Fishery Management Council; Public Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-30

    ... Insular Fisheries. A. American Samoa i. Coral reef and crustacean fisheries. ii. Bottomfish fisheries. iii. Precious corals fishery and coral reef habitat status. iv. Update on Bio-Sampling Program data summary. v. Non-stock related factors affecting Catch Per Unit Effort (CPUE) in the coral reef fisheries....

  9. 50 CFR 660.75 - Essential Fish Habitat (EFH).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Essential Fish Habitat (EFH). 660.75 Section 660.75 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Groundfish Fisheries § 660.75 Essential Fish Habitat (EFH). Essential fish habitat (EFH) is defined as those...

  10. 50 CFR 660.75 - Essential Fish Habitat (EFH).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Essential Fish Habitat (EFH). 660.75 Section 660.75 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Groundfish Fisheries § 660.75 Essential Fish Habitat (EFH). Essential fish habitat (EFH) is defined as those...

  11. 50 CFR 660.75 - Essential Fish Habitat (EFH).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Essential Fish Habitat (EFH). 660.75 Section 660.75 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Groundfish Fisheries § 660.75 Essential Fish Habitat (EFH). Essential fish habitat (EFH) is defined as those...

  12. 50 CFR 660.75 - Essential Fish Habitat (EFH).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Essential Fish Habitat (EFH). 660.75 Section 660.75 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Groundfish Fisheries § 660.75 Essential Fish Habitat (EFH). Essential fish habitat (EFH) is defined as those...

  13. 50 CFR 660.395 - Essential Fish Habitat (EFH)

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Essential Fish Habitat (EFH) 660.395 Section 660.395 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Groundfish Fisheries § 660.395 Essential Fish Habitat (EFH) Essential fish habitat (EFH) is defined as those...

  14. Nearshore benthic habitat GIS for the Channel Islands National Sanctuary and southern California State Fisheries Reserves. Volume 1

    USGS Publications Warehouse

    Cochrane, Guy R.; Nasby, Nicole M.; Reid, Jane A.; Waltenberger, Ben; Lee, Kristen M.

    2003-01-01

    The nearshore benthic habitat of the Santa Barbara coast and Channel Islands supports diverse marine life that is commercially, recreationally, and intrinsically valuable. Some of these resources are known to be endangered including a variety of rockfish and the white abalone. Agencies of the state of California and the United States have been mandated to preserve and enhance these resources. Data from sidescan sonar, bathymetry, video and dive observations, and physical samples are consolidated in a geographic information system (GIS). The GIS provides researchers and policymakers a view of the relationship among data sets to assist scienctific research and to help with economic and social policy-making decisions regarding this protected environment.

  15. Habitat conservation and creation: Invoking the flood-pulse concept to enhance fisheries in the lower Mississippi River

    USGS Publications Warehouse

    Schramm, H.L.; Eggleton, M.A.; Mayo, R.M.

    2000-01-01

    Analysis of four years of growth data failed to identify a single temperature or hydrologic variable that consistently accounted for variation in annual growth of catfishes (Ictaluridae). Instead, a composite variable that measured duration of floodplain inundation when water temperature exceeded minima for active feeding was directly related to growth. Results indicated that floodplain inundation have provided little direct energetic benefit to fishes when water temperatures were sub-optimal for active feeding, but floodplain resources were exploited when thermal conditions were sufficient for active feeding and growth. Thus, the flood-pulse concept applies to the lower Mississippi River (LMR) when modified to consider temperature. Managing the existing leveed floodplain to prolong inundation, increase water temperatures during spring flooding, and maintain connectivity of floodplain habitats with the main river channel should benefit fish production in the LMR.

  16. Kootenai River Fisheries Investigations; Chapter 3 : Mainstem Habitat Use and Recruitment Estimates of Rainbow Trout, 1996 Annual Report.

    SciTech Connect

    Fredericks, James P.; Hendricks, Steve

    1997-09-01

    The objective of this study was to determine if recruitment is limiting the population of rainbow trout Oncorhynchus mykiss in the mainstem Kootenai River. The authors used snorkeling and electrofishing techniques to estimate juvenile rainbow trout density and total numbers in Idaho tributaries, and they trapped juvenile outmigrants to identify the age at which juvenile trout migrate from tributaries to the Kootenai River. The authors radio and reward-tagged post-spawn adult rainbow trout captured in Deep Creek to identify river reach and habitat used by those fish spawning and rearing in the Deep Creek drainage. They also conducted redd surveys in the Kootenai River to determine the extent of mainstem spawning. Based on the amount of available habitat and juvenile rainbow trout densities, the Deep Creek drainage was the most important area for juvenile production. Population estimates of age 0, age 1+, and age 2+ rainbow trout indicated moderate to high densities in several streams in the Deep Creek drainage whereas other streams, such as Deep Creek, had very low densities of juvenile trout. The total number of age 0, age 1+, and age 2+ rainbow trout in Deep Creek drainage in 1996 was estimated to be 63,743, 12,095, and 3,095, respectively. Radio telemetry efforts were hindered by the limited range of the transmitters, but movements of a radio-tagged trout and a returned reward tag indicated that at least a portion of the trout utilizing the Deep Creek drainage migrated downriver from the mouth of Deep Creek to the meandering section of river. They found no evidence of mainstem spawning by rainbow trout, but redd counting efforts were hindered by high flows from mid-April through June.

  17. California Cooperative Oceanic Fisheries Investigations Reports

    SciTech Connect

    Olfe, J.; Lang, C.; Vernet, M.

    1989-10-01

    This document contains 15 papers. Topics include a review of some California fisheries, spawning biomass of the northern anchovy, marine fisheries, habitat alterations, fishery management, reproduction, population dynamics, acoustic Doppler currents and sea lion interaction and depredation. Each paper will be indexed and entered separately on the energy data base. 54 figs., 29 tabs. (KD)

  18. 75 FR 65298 - Fisheries of the South Atlantic; South Atlantic Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-22

    ... Cooperative (SALCC), and developing Regional GIS services for habitat, regulation and fishery research... change. Dated: October 19, 2010. Tracey L. Thompson, Acting Director, Office of Sustainable...

  19. Habitat associations of small mammals in southern Brazil and use of regurgitated pellets of birds of prey for inventorying a local fauna.

    PubMed

    Scheibler, D R; Christoff, A U

    2007-11-01

    We inventoried terrestrial small mammals in an agricultural area in southern Brazil by using trapping and prey consumed by Barn Owls (Tyto alba) and White-tailed Kites (Elanus leucurus). Small mammals were trapped in three habitat types: corn fields, uncultivated fields ("capoeiras"), and native forest fragments. A total of 1,975 small mammal specimens were trapped, another 2,062 identified from the diet of Barn Owls, and 2,066 from the diet of White-tailed Kites. Both trapping and prey in the predators' diet yielded 18 small mammal species: three marsupials (Didelphis albiventris, Gracilinanus agilis, and Monodelphis dimidiata) and 15 rodents (Akodon paranaensis, Bruceppatersonius iheringi, Calomys sp., Cavia aperea, Euryzygomatomys spinosus, Holochilus brasiliensis, Mus musculus, Necromys lasiurus, Nectomys squamipes, Oligoryzomys nigripes, Oryzomys angouya, Oxymycterus sp.1, Oxymycterus sp.2, Rattus norvegicus, and Rattus rattus (Linnaeus, 1758)). The greatest richness was found in the uncultivated habitat. We concluded that the three methods studied for inventorying small mammals (prey in the diet of Barn Owls, White-tailed Kites, and trapping) were complementary, since together, rather than separately, they produced a better picture of local richness.

  20. Hurricane Sandy 2013 National Wetlands Inventory Habitat Classification (habitat analysis of coastal federal lands located within high impact zones of Hurricane Sandy, October 2012)

    USGS Publications Warehouse

    Jones, William R.

    2016-01-01

    Hurricane Sandy directly hit the Atlantic shoreline of New Jersey during several astronomical high tide cycles in late October, 2012. The eastern seaboard areas are subject to sea level rise and increased severity and frequency of storm events, prompting habitat and land use planning changes. Wetland Aquatic Research Center (WARC) has conducted detailed mapping of marine and estuarine wetlands and deepwater habitats, including beaches and tide flats, and upland land use/land cover, using specially-acquired aerial imagery flown at 1-meter resolution.These efforts will assist the U.S. Fish and Wildlife Service (USFWS) continuing endeavors to map the barrier islands adhering to Coastal Barrier Resources Act (CBRA) guidelines. Mapped areas consist of selected federal lands including, National Park Service areas, USFWS National Wildlife Refuges, and selected CBRA Units, including barrier islands and marshes in New York and New Jersey. These vital wetland areas are important for migratory waterfowl and neotropical bird habitats, wildlife food chain support and nurseries for shellfish and finfish populations. Coastal wetlands also play an important function as storm surge buffers. This project includes mapping of dominant estuarine wetland plant species useful for wetland functional analysis and wildlife evaluation and management concerns. It also aims to integrate with and offer updated databases pertinent to: USFWS NWR and NWI programs, NOAA tide flats and beaches data, FEMA flood zone data, Natural Heritage Endangered and Threated Species, watershed management, and state and local land use planning.

  1. Quantification of Libby Reservoir Levels Needed to Maintain or Enhance Reservoir Fisheries, Appendices, 1984 Annual Report.

    SciTech Connect

    Shepard, Bradley B.

    1985-06-01

    The appendices include: (1) stream habitat inventory procedures; (2) lengths and volumes across hydroacoustic transects in Libby Reservoir; (3) temperature, pH, dissolved oxygen, and conductivity profiles in Libby Reservoir; (4) habitat survey information by reach; (5) gill net catches by species; (6) annual catches of fish in floating gill nets; (7) vertical distributions of fish and zooplankton; (8) timing of juvenile and adult movement through traps; (9) food habits information for collected fish; (10) estimated densities and composition of zooplankton by genera; (11) seasonal catch of macroinvertebrates; and (12) initial modeling effort on the Libby Reservoir fishery. (ACR)

  2. 78 FR 23224 - Fisheries of the South Atlantic; South Atlantic Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-18

    .... Receive an update on regional ecosystem coordination and South Atlantic Habitat and Ecosystem Atlas/Digital Dashboard. 4. Receive a project/permit update from NOAA Fisheries Habitat Conservation Division...

  3. Inventory of wetland habitat using remote sensing for the proposed Oahe irrigation unit in eastern South Dakota

    NASA Technical Reports Server (NTRS)

    Best, R. G.; Moore, D. G.; Myers, V. I.

    1977-01-01

    An inventory of wetlands for the area included in the proposed Oahe irrigation project was conducted to provide supplemental data for the wildlife mitigation plan. Interpretation techniques for inventoring small wetlands in the low relief terrain of the Lake Dakota Plain were documented and data summaries included. The data were stored and tabulated in a computerized spatial data analysis system.

  4. Use of Forest Inventory and Analysis information in wildlife habitat modeling: a process for linking multiple scales

    Treesearch

    Thomas C. Edwards; Gretchen G. Moisen; Tracey S. Frescino; Joshua L. Lawler

    2002-01-01

    We describe our collective efforts to develop and apply methods for using FIA data to model forest resources and wildlife habitat. Our work demonstrates how flexible regression techniques, such as generalized additive models, can be linked with spatially explicit environmental information for the mapping of forest type and structure. We illustrate how these maps of...

  5. Northern/Intermountain Regions' fish habitat inventory: Grazed, rested, and ungrazed reference stream reaches, Silver King Creek, California

    Treesearch

    C. Kerry Overton; Gwynne L. Chandler; Janice A. Pisano

    1994-01-01

    Stream reaches that have been rested from livestock grazing appear to have stable banks and more bank undercuts than grazed stream sections. Ungrazed reference streams that are similar in parent geology, precipitation, channel type, habitat types, drainage area, and stream width had greater bank stability values and lower width-todepth ratios than those of grazed and...

  6. 50 CFR 226.208 - Critical habitat for green turtle.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Critical habitat for green turtle. 226.208 Section 226.208 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.208 Critical habitat for...

  7. 50 CFR 226.208 - Critical habitat for green turtle.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Critical habitat for green turtle. 226.208 Section 226.208 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.208 Critical habitat for...

  8. 78 FR 62587 - Fisheries of the South Atlantic; South Atlantic Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-22

    ... Atlantic Fishery Management Council; Public Meeting AGENCY: National Marine Fisheries Service (NMFS... receive training on the use of the Regional Habitat and Ecosystem Mapping Atlas and other online information systems. The AP will receive an update on regional habitat and ecosystem modelling efforts and...

  9. Salmon River Habitat Enhancement, 1989 Annual Report.

    SciTech Connect

    Rowe, Mike

    1989-04-01

    This project was funded by the Bonneville Power Administration (BPA). The annual report contains three individual subproject papers detailing tribal fisheries work completed during the summer and fall of 1989. Subproject 1 contains summaries of evaluation/monitoring efforts associated with the Bear Valley Creek, Idaho enhancement project. Subproject 2 contains an evaluation of the Yankee Fork of the Salmon River habitat enhancement project. This report has been sub-divided into two parts: Part 1; stream evaluation and Part 2; pond series evaluation. Subproject 3 concerns the East Fork of the Salmon River, Idaho. This report summarizes the evaluation of the project to date including the 1989 pre-construction evaluation conducted within the East Fork drainage. Dredge mining has degraded spawning and rearing habitat for chinook salmon and steelhead trout in the Yankee Fork drainage of the Salmon River and in Bear Valley Creek. Mining, agricultural, and grazing practices degraded habitat in the East Fork of the Salmon River. Biological monitoring of the success of habitat enhancement for Bear Valley Creek and Yankee Fork are presented in this report. Physical and biological inventories prior to habitat enhancement in East Fork were also conducted. Four series of off-channel ponds of the Yankee Fork are shown to provide effective rearing habitat for chinook salmon. 45 refs., 49 figs., 24 tabs.

  10. 76 FR 68710 - Endangered and Threatened Wildlife and Plants; Proposed Rulemaking To Revise Critical Habitat for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-07

    ... Revise Critical Habitat for Hawaiian Monk Seals AGENCY: National Marine Fisheries Service (NMFS... public comment period. SUMMARY: We, National Marine Fisheries Service (NMFS), published a proposed rule... Branch Chief, Protected Resources Division, National Marine Fisheries Service, Pacific Islands...

  11. Investigation of the Impact of Sonar Transmission on Fisheries and Habitat in the U.S. Navy’s USWTR: Summary of Stakeholder Concerns and Appropriate Research Areas

    DTIC Science & Technology

    2007-09-01

    spawning choruses. Seaflow NGO-17.02 Fish 20-Dec-05 The DEIS is incomplete as it does not address affects on finfish. Audubon - North Carolina...catch of snapper and snowy grouper and that fisheries managers have established protected areas with this area and more are proposed. Dawson, James ...Spruill, John R. PH-02.63 Fish 17-Nov-05 The disastrous impact of the project to fish such as stripped mullet and menhaden is not addressed in

  12. Coeur d'Alene Tribe Fish and Wildlife Program Habitat Protection Plan; Implementation of Fisheries Enhancement Opportunities on the Coeur d'Alene Reservation, 1997-2002 Technical Report.

    SciTech Connect

    Vitale, Angelo; Roberts, Frank; Peters, Ronald

    2002-06-01

    Throughout the last century, the cumulative effects of anthropogenic disturbances have caused drastic watershed level landscape changes throughout the Reservation and surrounding areas (Coeur d'Alene Tribe 1998). Changes include stream channelization, wetland draining, forest and palouse prairie conversion for agricultural use, high road density, elimination of old growth timber stands, and denuding riparian communities. The significance of these changes is manifested in the degradation of habitats supporting native flora and fauna. Consequently, populations of native fish, wildlife, and plants, which the Tribe relies on as subsistence resources, have declined or in some instances been extirpated (Apperson et al. 1988; Coeur d'Alene Tribe 1998; Lillengreen et al. 1996; Lillengreen et al. 1993; Gerry Green Coeur d'Alene Tribe wildlife Biologist, personal communication 2002). For example, bull trout (Salvelinus confluentus) are not present at detectable levels in Reservation tributaries, westslope cutthroat trout (Oncorhynchus clarki lewisi) are not present in numbers commensurate with maintaining harvestable fisheries (Lillengreen et al. 1993, 1996), and the Sharp-tailed grouse (Tympanuchus phasianellus) are not present at detectable levels on the Reservation (Gerry Green, Coeur d'Alene Tribe wildlife biologist, personal communication). The Coeur d'Alene Tribe added Fisheries and Wildlife Programs to their Natural Resources Department to address these losses and protect important cultural, and subsistence resources for future generations. The Tribal Council adopted by Resolution 89(94), the following mission statement for the Fisheries Program: 'restore, protect, expand and re-establish fish populations to sustainable levels to provide harvest opportunities'. This mission statement, focused on fisheries restoration and rehabilitation, is a response to native fish population declines throughout the Tribe's aboriginal territory, including the Coeur d'Alene Indian

  13. 50 CFR 226.204 - Critical habitat for Sacramento winter-run chinook salmon.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Critical habitat for Sacramento winter-run chinook salmon. 226.204 Section 226.204 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE... HABITAT § 226.204 Critical habitat for Sacramento winter-run chinook salmon. The following...

  14. 50 CFR 226.204 - Critical habitat for Sacramento winter-run chinook salmon.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 10 2012-10-01 2012-10-01 false Critical habitat for Sacramento winter-run chinook salmon. 226.204 Section 226.204 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE... HABITAT § 226.204 Critical habitat for Sacramento winter-run chinook salmon. The following...

  15. 50 CFR 226.204 - Critical habitat for Sacramento winter-run chinook salmon.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 10 2013-10-01 2013-10-01 false Critical habitat for Sacramento winter-run chinook salmon. 226.204 Section 226.204 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE... HABITAT § 226.204 Critical habitat for Sacramento winter-run chinook salmon. The following...

  16. Nine proposed action areas to enhance diversity and inclusion in the American Fisheries Society

    Treesearch

    Brooke E. Penaluna; Ivan Arismendi; Christine M. Moffitt; Zachary L. Penney

    2017-01-01

    Increasing diversity in the fisheries profession, including diversity of members of the American Fisheries Society (AFS), is vital to ensuring the future relevance of fish and their habitats, fisheries, and fisheries professionals in the broader context of society. Any well-informed natural resource professional understands the value of a diverse ecosystem, and savvy...

  17. Marine biodiversity and fishery sustainability.

    PubMed

    Shao, Kwang-Tsao

    2009-01-01

    Marine fish is one of the most important sources of animal protein for human use, especially in developing countries with coastlines. Marine fishery is also an important industry in many countries. Fifty years ago, many people believed that the ocean was so vast and so resilient that there was no way the marine environment could be changed, nor could marine fishery resources be depleted. Half a century later, we all agree that the depletion of fishery resources is happening mainly due to anthropogenic factors such as overfishing, habitat destruction, pollution, invasive species introduction, and climate change. Since overfishing can cause chain reactions that decrease marine biodiversity drastically, there will be no seafood left after 40 years if we take no action. The most effective ways to reverse this downward trend and restore fishery resources are to promote fishery conservation, establish marine-protected areas, adopt ecosystem-based management, and implement a "precautionary principle." Additionally, enhancing public awareness of marine conservation, which includes eco-labeling, fishery ban or enclosure, slow fishing, and MPA (marine protected areas) enforcement is important and effective. In this paper, we use Taiwan as an example to discuss the problems facing marine biodiversity and sustainable fisheries.

  18. 76 FR 59387 - Fisheries of the South Atlantic; South Atlantic Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-26

    ... habitat and fishery research needs required for a proposed alternative energy facility in the South...; the Bureau of Ocean Energy Management, Regulation and Enforcement; and others. Topics to be addressed...

  19. 77 FR 25143 - Fisheries of the South Atlantic; South Atlantic Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-27

    ... existing deepwater Coral Habitat Areas of Particular Concern, and measures to reduce bycatch mortality on speckled hind and Warsaw grouper through the creation or expansion of marine protected areas. The AP will... Atlantic Fishery Management Council; Public Meeting AGENCY: National Marine Fisheries Service (NMFS...

  20. A rehabilitation plan for walleye populations and habitats in Lake Superior

    USGS Publications Warehouse

    Hoff, MIchael H.

    2003-01-01

    The walleye (Stizostedion vitreum vitreum) has been historically important in regional fisheries and fish communities in large bays, estuaries, and rivers of Lake Superior. Significant negative impacts on the species caused by overharvesting, habitat degradation, and pollution during the late 1800s and early 1900s have led to the preparation of a strategic rehabilitation plan. The lakewide goal is to maintain, enhance, and rehabilitate habitat for walleye and to establish self-sustaining populations in areas where walleyes historically lived. Population objectives that support the goal are to increase the abundance of juvenile and adult walleyes in selected areas. Habitat objectives that support the goal include increasing spawning and nursery habitat in four areas: enhancing fish passage, reducing sedimentation, increasing water quality, and reducing contaminants in walleyes. Progress toward achieving the habitat objectives should be measured by documenting increases in spawning and nursery habitats, resolving fish-passage issues, reducing sediments in rivers, and reducing contaminant levels in walleyes. Stocking various life stages of walleye should be considered to rehabilitate certain degraded populations. Total annual mortality of walleye populations should be less than 45% to allow populations to either increase or be maintained at target levels of abundance. Routine assessments should focus on gathering the data necessary to evaluate abundance and mortality and on taking inventories of spawning and nursery habitats. Research should be conducted to understand the specific habitat requirements for Lake Superior walleye populations and the habitat-abundance relationships for populations and for the lake as a whole.

  1. Application of remote sensing in South Dakota to provide accurate inventories of agricultural crops, enhance contrast in photographic products, monitor rangeland habitat loss, map Aspen, and prepare hydrogeologic surveys

    NASA Technical Reports Server (NTRS)

    Myers, V. I. (Principal Investigator); Dalsted, K. J.; Best, R. G.; Smith, J. R.; Eidenshink, J. C.; Schmer, F. A.; Andrawis, A. S.; Rahn, P. H.

    1977-01-01

    The author has identified the following significant results. Digital analysis of LANDSAT CCT's indicated that two discrete spectral background zones occurred among the five soil zone. K-CLASS classification of corn revealed that accuracy increased when two background zones were used, compared to the classification of corn stratified by five soil zones. Selectively varying film type developer and development time produces higher contract in reprocessed imagery. Interpretation of rangeland and cropped land data from 1968 aerial photography and 1976 LANDSAT imagery indicated losses in rangeland habitat. Thermal imagery was useful in locating potential sources of sub-surface water and geothermal energy, estimating evapotranspiration, and inventorying the land.

  2. Continuing education needs for fishery professionals: a survey of North American fisheries administrators

    USGS Publications Warehouse

    Rassam, G.N.; Eisler, R.

    2001-01-01

    North American fishery professionals? continuing education needs were investigated in an American Fisheries Society questionnaire sent to 111 senior fishery officials in winter 2000. Based on a response rate of 52.2% (N = 58), a minimum of 2,967 individuals would benefit from additional training, especially in the areas of statistics and analysis (83% endorsement rate), restoration and enhancement (81%), population dynamics (81%), multi-species interactions (79%), and technical writing (79%). Other skills and techniques recommended by respondents included computer skills (72%), fishery modeling (69%), habitat modification (67%), watershed processes (66%), fishery management (64%), riparian and stream ecology (62%), habitat management (62%), public administration (62%), nonindigenous species (57%), and age and growth (55%). Additional comments by respondents recommended new technical courses, training in various communications skills, and courses to more effectively manage workloads.

  3. Using forest inventory and analysis data and the forest vegetation simulator to predict and monitor fisher (Martes pennanti) resting habitat suitability

    Treesearch

    William J. Zielinski; Andrew N. Gray; Jeffrey R. Dunk; Joseph W. Sherlock; Gary E. Dixon

    2010-01-01

    New knowledge from wildlife-habitat relationship models is often difficult to implement in a management context. This can occur because researchers do not always consider whether managers have access to information about environmental covariates that permit the models to be applied. Moreover, ecosystem management requires knowledge about the condition of habitats over...

  4. The occurrence of the colonial ascidian Didemnum sp. on Georges Bank gravel habitat: ecological observations and potential effects on groundfish and scallop fisheries

    USGS Publications Warehouse

    Valentine, P.C.; Collie, J.S.; Reid, R.N.; Asch, R.G.; Guida, V.G.; Blackwood, D.S.

    2007-01-01

    The colonial ascidian Didemnum sp. is present on the Georges Bank fishing grounds in a gravel habitat where the benthic invertebrate fauna has been monitored annually since 1994. The species was not noted before 2002 when large colonies were first observed; and by 2003 and 2004 it covered large areas of the seabed at some locations. The latest survey in 2005 documented the tunicate's presence in two gravel areas that total more than 67 nm2 (230 km2). The affected area is located on the Northern Edge of the bank in United States waters near the U.S./Canada boundary ( Fig. 1). This is the first documented offshore occurrence of a species that has colonized eastern U.S. coastal waters from New York to Maine during the past 15–20 years ( U.S. Geological Survey, 2006). Video imagery shows colonies coalescing to form large mats that cover more than 50% of the seabed along some video/photo transects. The affected area is an immobile pebble and cobble pavement that lies at water depths of 40 to 65 m where strong semidiurnal tidal currents reach speeds of 1 to 2 kt (50–100 cm/s). The water column is mixed year round, ensuring a constant supply of nutrients to the seabed. Annual temperatures range from 4 to 15 °C ( Mountain and Holzwarth, 1989). The gravel areas are bounded by sand ridges whose mobile surfaces are moved daily by the strong tidal currents. Studies commenced here in 1994 to characterize the gravel habitat and to document the effects of fishing disturbance on it ( Collie et al., 2005).

  5. Quantifying multi-habitat support of Great Lakes fishes

    EPA Science Inventory

    Recent advances in trophic ecology have revealed the interconnectedness of diverse habitats in support of aquatic food webs. Understanding the degree to which different habitats support fish can be valuable for fisheries management and ecosystem protection. For example, stable is...

  6. Quantifying multi-habitat support of Great Lakes fishes

    EPA Science Inventory

    Recent advances in trophic ecology have revealed the interconnectedness of diverse habitats in support of aquatic food webs. Understanding the degree to which different habitats support fish can be valuable for fisheries management and ecosystem protection. For example, stable is...

  7. 50 CFR 226.204 - Critical habitat for Sacramento winter-run chinook salmon.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Critical habitat for Sacramento winter-run chinook salmon. 226.204 Section 226.204 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL... § 226.204 Critical habitat for Sacramento winter-run chinook salmon. The following waterways, bottom...

  8. 50 CFR 226.204 - Critical habitat for Sacramento winter-run chinook salmon.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Critical habitat for Sacramento winter-run chinook salmon. 226.204 Section 226.204 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL... § 226.204 Critical habitat for Sacramento winter-run chinook salmon. The following waterways, bottom...

  9. 50 CFR Table 23 to Part 679 - Aleutian Islands Coral Habitat Protection Areas

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Aleutian Islands Coral Habitat Protection Areas 23 Table 23 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 23 Table 23 to Part 679—Aleutian Islands Coral Habitat Protection...

  10. 50 CFR Table 25 to Part 679 - Bowers Ridge Habitat Conservation Zone

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Bowers Ridge Habitat Conservation Zone 25 Table 25 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... ALASKA Pt. 679, Table 25 Table 25 to Part 679—Bowers Ridge Habitat Conservation Zone Area number Name...

  11. 50 CFR Table 42 to Part 679 - Bering Sea Habitat Conservation Area

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Bering Sea Habitat Conservation Area 42 Table 42 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... ALASKA Pt. 679, Table 42 Table 42 to Part 679—Bering Sea Habitat Conservation Area Longitude Latitude...

  12. 50 CFR Table 22 to Part 679 - Alaska Seamount Habitat Protection Areas

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Alaska Seamount Habitat Protection Areas 22 Table 22 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... ZONE OFF ALASKA Pt. 679, Table 22 Table 22 to Part 679— Alaska Seamount Habitat Protection Areas Area...

  13. 50 CFR Figure 16 to Part 679 - Bering Sea Habitat Conservation Area

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Bering Sea Habitat Conservation Area 16 Figure 16 to part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... ALASKA Pt. 679, Fig. 16 Figure 16 to part 679—Bering Sea Habitat Conservation Area ER25JY08.010 ...

  14. 50 CFR Table 46 to Part 679 - St. Matthew Island Habitat Conservation Area

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false St. Matthew Island Habitat Conservation Area 46 Table 46 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 46 Table 46 to Part 679—St. Matthew Island Habitat Conservation...

  15. 50 CFR Table 42 to Part 679 - Bering Sea Habitat Conservation Area

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Bering Sea Habitat Conservation Area 42 Table 42 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... ALASKA Pt. 679, Table 42 Table 42 to Part 679—Bering Sea Habitat Conservation Area Longitude Latitude...

  16. 50 CFR Table 46 to Part 679 - St. Matthew Island Habitat Conservation Area

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false St. Matthew Island Habitat Conservation Area 46 Table 46 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 46 Table 46 to Part 679—St. Matthew Island Habitat Conservation...

  17. 50 CFR Table 23 to Part 679 - Aleutian Islands Coral Habitat Protection Areas

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Aleutian Islands Coral Habitat Protection Areas 23 Table 23 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 23 Table 23 to Part 679—Aleutian Islands Coral Habitat Protection...

  18. 50 CFR Table 22 to Part 679 - Alaska Seamount Habitat Protection Areas

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Alaska Seamount Habitat Protection Areas 22 Table 22 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... ZONE OFF ALASKA Pt. 679, Table 22 Table 22 to Part 679— Alaska Seamount Habitat Protection Areas Area...

  19. 50 CFR Table 26 to Part 679 - Gulf of Alaska Coral Habitat Protection Areas

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Gulf of Alaska Coral Habitat Protection Areas 26 Table 26 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 26 Table 26 to Part 679—Gulf of Alaska Coral Habitat Protection...

  20. 50 CFR Table 42 to Part 679 - Bering Sea Habitat Conservation Area

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Bering Sea Habitat Conservation Area 42 Table 42 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... ALASKA Pt. 679, Table 42 Table 42 to Part 679—Bering Sea Habitat Conservation Area Longitude Latitude...

  1. 50 CFR Table 22 to Part 679 - Alaska Seamount Habitat Protection Areas

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Alaska Seamount Habitat Protection Areas 22 Table 22 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... ZONE OFF ALASKA Pt. 679, Table 22 Table 22 to Part 679— Alaska Seamount Habitat Protection Areas Area...

  2. 50 CFR Table 23 to Part 679 - Aleutian Islands Coral Habitat Protection Areas

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Aleutian Islands Coral Habitat Protection Areas 23 Table 23 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 23 Table 23 to Part 679—Aleutian Islands Coral Habitat Protection...

  3. 50 CFR Table 45 to Part 679 - St. Lawrence Island Habitat Conservation Area

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false St. Lawrence Island Habitat Conservation Area 45 Table 45 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 45 Table 45 to Part 679—St. Lawrence Island Habitat Conservation...

  4. 50 CFR Table 23 to Part 679 - Aleutian Islands Coral Habitat Protection Areas

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Aleutian Islands Coral Habitat Protection Areas 23 Table 23 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 23 Table 23 to Part 679—Aleutian Islands Coral Habitat Protection...

  5. 50 CFR Table 26 to Part 679 - Gulf of Alaska Coral Habitat Protection Areas

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Gulf of Alaska Coral Habitat Protection Areas 26 Table 26 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 26 Table 26 to Part 679—Gulf of Alaska Coral Habitat Protection...

  6. 50 CFR Table 27 to Part 679 - Gulf of Alaska Slope Habitat Conservation Areas

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Gulf of Alaska Slope Habitat Conservation Areas 27 Table 27 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 27 Table 27 to Part 679—Gulf of Alaska Slope Habitat Conservation...

  7. 50 CFR Table 27 to Part 679 - Gulf of Alaska Slope Habitat Conservation Areas

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Gulf of Alaska Slope Habitat Conservation Areas 27 Table 27 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 27 Table 27 to Part 679—Gulf of Alaska Slope Habitat Conservation...

  8. 50 CFR Table 27 to Part 679 - Gulf of Alaska Slope Habitat Conservation Areas

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Gulf of Alaska Slope Habitat Conservation Areas 27 Table 27 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 27 Table 27 to Part 679—Gulf of Alaska Slope Habitat Conservation...

  9. 50 CFR Table 45 to Part 679 - St. Lawrence Island Habitat Conservation Area

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false St. Lawrence Island Habitat Conservation Area 45 Table 45 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 45 Table 45 to Part 679—St. Lawrence Island Habitat Conservation...

  10. 50 CFR Table 46 to Part 679 - St. Matthew Island Habitat Conservation Area

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false St. Matthew Island Habitat Conservation Area 46 Table 46 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 46 Table 46 to Part 679—St. Matthew Island Habitat Conservation...

  11. 50 CFR Table 25 to Part 679 - Bowers Ridge Habitat Conservation Zone

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Bowers Ridge Habitat Conservation Zone 25 Table 25 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... ALASKA Pt. 679, Table 25 Table 25 to Part 679—Bowers Ridge Habitat Conservation Zone Area number Name...

  12. 50 CFR Table 25 to Part 679 - Bowers Ridge Habitat Conservation Zone

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Bowers Ridge Habitat Conservation Zone 25 Table 25 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... ALASKA Pt. 679, Table 25 Table 25 to Part 679—Bowers Ridge Habitat Conservation Zone Area number Name...

  13. 50 CFR Table 42 to Part 679 - Bering Sea Habitat Conservation Area

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Bering Sea Habitat Conservation Area 42 Table 42 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... ALASKA Pt. 679, Table 42 Table 42 to Part 679—Bering Sea Habitat Conservation Area Longitude Latitude...

  14. 50 CFR Table 45 to Part 679 - St. Lawrence Island Habitat Conservation Area

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false St. Lawrence Island Habitat Conservation Area 45 Table 45 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 45 Table 45 to Part 679—St. Lawrence Island Habitat Conservation...

  15. 50 CFR Table 46 to Part 679 - St. Matthew Island Habitat Conservation Area

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false St. Matthew Island Habitat Conservation Area 46 Table 46 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 46 Table 46 to Part 679—St. Matthew Island Habitat Conservation...

  16. 50 CFR Table 26 to Part 679 - Gulf of Alaska Coral Habitat Protection Areas

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Gulf of Alaska Coral Habitat Protection Areas 26 Table 26 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 26 Table 26 to Part 679—Gulf of Alaska Coral Habitat Protection...

  17. 50 CFR Table 26 to Part 679 - Gulf of Alaska Coral Habitat Protection Areas

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Gulf of Alaska Coral Habitat Protection Areas 26 Table 26 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 26 Table 26 to Part 679—Gulf of Alaska Coral Habitat Protection...

  18. 50 CFR Table 22 to Part 679 - Alaska Seamount Habitat Protection Areas

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Alaska Seamount Habitat Protection Areas 22 Table 22 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... ZONE OFF ALASKA Pt. 679, Table 22 Table 22 to Part 679— Alaska Seamount Habitat Protection Areas Area...

  19. 50 CFR Table 42 to Part 679 - Bering Sea Habitat Conservation Area

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Bering Sea Habitat Conservation Area 42 Table 42 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... ALASKA Pt. 679, Table 42 Table 42 to Part 679—Bering Sea Habitat Conservation Area Longitude Latitude...

  20. 50 CFR Table 23 to Part 679 - Aleutian Islands Coral Habitat Protection Areas

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Aleutian Islands Coral Habitat Protection Areas 23 Table 23 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 23 Table 23 to Part 679—Aleutian Islands Coral Habitat Protection...

  1. 50 CFR Table 25 to Part 679 - Bowers Ridge Habitat Conservation Zone

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Bowers Ridge Habitat Conservation Zone 25 Table 25 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... ALASKA Pt. 679, Table 25 Table 25 to Part 679—Bowers Ridge Habitat Conservation Zone Area number Name...

  2. 50 CFR Table 45 to Part 679 - St. Lawrence Island Habitat Conservation Area

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false St. Lawrence Island Habitat Conservation Area 45 Table 45 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 45 Table 45 to Part 679—St. Lawrence Island Habitat Conservation...

  3. 50 CFR Table 25 to Part 679 - Bowers Ridge Habitat Conservation Zone

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Bowers Ridge Habitat Conservation Zone 25 Table 25 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... ALASKA Pt. 679, Table 25 Table 25 to Part 679—Bowers Ridge Habitat Conservation Zone Area number Name...

  4. 50 CFR Table 45 to Part 679 - St. Lawrence Island Habitat Conservation Area

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false St. Lawrence Island Habitat Conservation Area 45 Table 45 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 45 Table 45 to Part 679—St. Lawrence Island Habitat Conservation...

  5. 50 CFR Figure 16 to Part 679 - Bering Sea Habitat Conservation Area

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Bering Sea Habitat Conservation Area 16 Figure 16 to part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... ALASKA Pt. 679, Fig. 16 Figure 16 to part 679—Bering Sea Habitat Conservation Area ER25JY08.010 ...

  6. 50 CFR Table 27 to Part 679 - Gulf of Alaska Slope Habitat Conservation Areas

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Gulf of Alaska Slope Habitat Conservation Areas 27 Table 27 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 27 Table 27 to Part 679—Gulf of Alaska Slope Habitat Conservation...

  7. 50 CFR Figure 16 to Part 679 - Bering Sea Habitat Conservation Area

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Bering Sea Habitat Conservation Area 16 Figure 16 to part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... ALASKA Pt. 679, Fig. 16 Figure 16 to part 679—Bering Sea Habitat Conservation Area ER25JY08.010 ...

  8. 50 CFR Figure 16 to Part 679 - Bering Sea Habitat Conservation Area

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Bering Sea Habitat Conservation Area 16 Figure 16 to part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... ALASKA Pt. 679, Fig. 16 Figure 16 to part 679—Bering Sea Habitat Conservation Area ER25JY08.010 ...

  9. 50 CFR Table 27 to Part 679 - Gulf of Alaska Slope Habitat Conservation Areas

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Gulf of Alaska Slope Habitat Conservation Areas 27 Table 27 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 27 Table 27 to Part 679—Gulf of Alaska Slope Habitat Conservation...

  10. 50 CFR Table 22 to Part 679 - Alaska Seamount Habitat Protection Areas

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Alaska Seamount Habitat Protection Areas 22 Table 22 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC... ZONE OFF ALASKA Pt. 679, Table 22 Table 22 to Part 679— Alaska Seamount Habitat Protection Areas Area...

  11. 50 CFR Table 26 to Part 679 - Gulf of Alaska Coral Habitat Protection Areas

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Gulf of Alaska Coral Habitat Protection Areas 26 Table 26 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 26 Table 26 to Part 679—Gulf of Alaska Coral Habitat Protection...

  12. 50 CFR Table 46 to Part 679 - St. Matthew Island Habitat Conservation Area

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false St. Matthew Island Habitat Conservation Area 46 Table 46 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 46 Table 46 to Part 679—St. Matthew Island Habitat Conservation...

  13. 50 CFR Figure 16 to Part 679 - Bering Sea Habitat Conservation Area

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Bering Sea Habitat Conservation Area 16 Figure 16 to part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... ALASKA Pt. 679, Fig. 16 Figure 16 to part 679—Bering Sea Habitat Conservation Area ER25JY08.010 ...

  14. 76 FR 29718 - Western Pacific Pelagic Fisheries; American Samoa Longline Gear Modifications To Reduce Turtle...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-23

    ..., marine mammals, essential fish habitat, habitat areas of particular concern, marine protected areas... Fisheries; American Samoa Longline Gear Modifications To Reduce Turtle Interactions AGENCY: National Marine... accessible. Do not submit confidential business information, or otherwise sensitive or protected information...

  15. Seafloor habitat mapping and classification in Glacier Bay, Alaska: Phase 1 & 2 1996-2004

    USGS Publications Warehouse

    Hooge, Philip N.; Carlson, Paul R.; Mondragon, Jennifer; Etherington, Lisa L.; Cochran, G.R.

    2004-01-01

    Glacier Bay is a diverse fjord ecosystem with multiple sills, numerous tidewater glaciers and a highly complex oceanographic system. The Bay was completely glaciated prior to the 1700’s and subsequently experienced the fastest glacial retreat recorded in historical times. Currently, some of the highest sedimentation rates ever observed occur in the Bay, along with rapid uplift (up to 2.5 cm/year) due to a combination of plate tectonics and isostatic rebound. Glacier Bay is the second deepest fjord in Alaska, with depths over 500 meters. This variety of physical processes and bathymetry creates many diverse habitats within a relatively small area (1,255 km2 ). Habitat can be defined as the locality, including resources and environmental conditions, occupied by a species or population of organisms (Morrison et al 1992). Mapping and characterization of benthic habitat is crucial to an understanding of marine species and can serve a variety of purposes including: understanding species distributions and improving stock assessments, designing special management areas and marine protected areas, monitoring and protecting important habitats, and assessing habitat change due to natural or human impacts. In 1996, Congress recognized the importance of understanding benthic habitat for fisheries management by reauthorizing the Magnuson-Stevens Fishery Conservation and Management Act and amending it with the Sustainable Fisheries Act (SFA). This amendment emphasizes the importance of habitat protection to healthy fisheries and requires identification of essential fish habitat in management decisions. Recently, the National Park Service’s Ocean Stewardship Strategy identified the creation of benthic habitat maps and sediment maps as crucial components to complete basic ocean park resource inventories (Davis 2003). Glacier Bay National Park managers currently have very limited knowledge about the bathymetry, sediment types, and various marine habitats of ecological

  16. 78 FR 33068 - New England Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-03

    ... Annual Catch Entitlement (ACE) trades and net revenue estimates in the groundfish fishery. NEFSC staff... Habitat Committee will ask for final comments concerning a Memorandum of Understanding concerning deep...

  17. Big sagebrush in pinyon-juniper woodlands: Using forest inventory and analysis data as a management tool for quantifying and monitoring mule deer habitat

    Treesearch

    Chris Witt; Paul L. Patterson

    2011-01-01

    We used Interior West Forest Inventory and Analysis (IW-FIA) data to identify conditions where pinyon-juniper woodlands provide security cover, thermal cover, and suitable amounts of big sagebrush (Artemisia tridentata spp.) forage to mule deer in Utah. Roughly one quarter of Utah's pinyon-juniper woodlands had a big sagebrush component in their understory....

  18. 50 CFR 424.12 - Criteria for designating critical habitat.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 11 2012-10-01 2012-10-01 false Criteria for designating critical habitat... LISTING ENDANGERED AND THREATENED SPECIES AND DESIGNATING CRITICAL HABITAT Revision of the Lists § 424.12 Criteria for designating critical habitat. (a) Critical habitat shall be specified to the maximum extent...

  19. 50 CFR 424.12 - Criteria for designating critical habitat.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Criteria for designating critical habitat... LISTING ENDANGERED AND THREATENED SPECIES AND DESIGNATING CRITICAL HABITAT Revision of the Lists § 424.12 Criteria for designating critical habitat. (a) Critical habitat shall be specified to the maximum extent...

  20. 30 CFR 285.803 - How must I conduct my approved activities to protect essential fish habitats identified and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... protect essential fish habitats identified and described under the Magnuson-Stevens Fishery Conservation... activities to protect essential fish habitats identified and described under the Magnuson-Stevens Fishery... essential fish habitat or habitat areas of particular concern may be adversely affected by your activities...

  1. Biocomplexity and fisheries sustainability

    PubMed Central

    Hilborn, Ray; Quinn, Thomas P.; Schindler, Daniel E.; Rogers, Donald E.

    2003-01-01

    A classic example of a sustainable fishery is that targeting sockeye salmon in Bristol Bay, Alaska, where record catches have occurred during the last 20 years. The stock complex is an amalgamation of several hundred discrete spawning populations. Structured within lake systems, individual populations display diverse life history characteristics and local adaptations to the variation in spawning and rearing habitats. This biocomplexity has enabled the aggregate of populations to sustain its productivity despite major changes in climatic conditions affecting the freshwater and marine environments during the last century. Different geographic and life history components that were minor producers during one climatic regime have dominated during others, emphasizing that the biocomplexity of fish stocks is critical for maintaining their resilience to environmental change. PMID:12743372

  2. Watershed Health Assessment Tools Investigating Fisheries WHAT IF Version 2: A Manager’s Guide to New Features

    EPA Pesticide Factsheets

    The CVI Watershed Health Assessment Tool Investigating Fisheries, WHAT IF version 2, currently contains five components: Regional Prioritization Tool, Hydrologic Tool, Clustering Tool, Habitat Suitability Tool, BASS model

  3. Emissions Inventory

    EPA Pesticide Factsheets

    This page describes the role of emission inventories in the air quality management process, a description of how emission inventories are developed, and where U.S. emission inventory information can be found.

  4. 50 CFR Figure 21 to Part 679 - Nunivak Island, Etolin Strait, and Kuskokwim Bay Habitat Conservation Area

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Nunivak Island, Etolin Strait, and Kuskokwim Bay Habitat Conservation Area 21 Figure 21 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION..., Etolin Strait, and Kuskokwim Bay Habitat Conservation Area ER25JY08.012 ...

  5. 50 CFR Figure 21 to Part 679 - Nunivak Island, Etolin Strait, and Kuskokwim Bay Habitat Conservation Area

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Nunivak Island, Etolin Strait, and Kuskokwim Bay Habitat Conservation Area 21 Figure 21 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION..., Etolin Strait, and Kuskokwim Bay Habitat Conservation Area ER25JY08.012 ...

  6. 50 CFR Table 44 to Part 679 - Nunivak Island, Etolin Strait, and Kuskokwim Bay Habitat Conservation Area

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Nunivak Island, Etolin Strait, and Kuskokwim Bay Habitat Conservation Area 44 Table 44 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION..., Etolin Strait, and Kuskokwim Bay Habitat Conservation Area Longitude Latitude 1651.54W 6045.54N* 1627.01W...

  7. 50 CFR Figure 17 to Part 679 - Northern Bering Sea Research Area and St. Lawrence Island Habitat Conservation Area

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Northern Bering Sea Research Area and St. Lawrence Island Habitat Conservation Area 17 Figure 17 to part 679 Wildlife and Fisheries FISHERY... Sea Research Area and St. Lawrence Island Habitat Conservation Area ER25JY08.011 ...

  8. 50 CFR Table 44 to Part 679 - Nunivak Island, Etolin Strait, and Kuskokwim Bay Habitat Conservation Area

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Nunivak Island, Etolin Strait, and Kuskokwim Bay Habitat Conservation Area 44 Table 44 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION..., Etolin Strait, and Kuskokwim Bay Habitat Conservation Area Longitude Latitude 1651.54W 6045.54N* 1627.01W...

  9. 50 CFR Figure 10 to Part 679 - Pribilof Islands Area Habitat Conservation Zone in the Bering Sea

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Pribilof Islands Area Habitat Conservation Zone in the Bering Sea 10 Figure 10 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND... Habitat Conservation Zone in the Bering Sea ER15NO99.008 ...

  10. 50 CFR Figure 21 to Part 679 - Nunivak Island, Etolin Strait, and Kuskokwim Bay Habitat Conservation Area

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Nunivak Island, Etolin Strait, and Kuskokwim Bay Habitat Conservation Area 21 Figure 21 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION..., Etolin Strait, and Kuskokwim Bay Habitat Conservation Area ER25JY08.012 ...

  11. 50 CFR Figure 10 to Part 679 - Pribilof Islands Area Habitat Conservation Zone in the Bering Sea

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Pribilof Islands Area Habitat Conservation Zone in the Bering Sea 10 Figure 10 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND... Habitat Conservation Zone in the Bering Sea ER15NO99.008 ...

  12. 50 CFR Figure 21 to Part 679 - Nunivak Island, Etolin Strait, and Kuskokwim Bay Habitat Conservation Area

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Nunivak Island, Etolin Strait, and Kuskokwim Bay Habitat Conservation Area 21 Figure 21 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION..., Etolin Strait, and Kuskokwim Bay Habitat Conservation Area ER25JY08.012 ...

  13. 50 CFR Table 44 to Part 679 - Nunivak Island, Etolin Strait, and Kuskokwim Bay Habitat Conservation Area

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Nunivak Island, Etolin Strait, and Kuskokwim Bay Habitat Conservation Area 44 Table 44 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION..., Etolin Strait, and Kuskokwim Bay Habitat Conservation Area Longitude Latitude 1651.54W 6045.54N* 1627.01W...

  14. 50 CFR Figure 21 to Part 679 - Nunivak Island, Etolin Strait, and Kuskokwim Bay Habitat Conservation Area

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Nunivak Island, Etolin Strait, and Kuskokwim Bay Habitat Conservation Area 21 Figure 21 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION..., Etolin Strait, and Kuskokwim Bay Habitat Conservation Area ER25JY08.012 ...

  15. 50 CFR Figure 10 to Part 679 - Pribilof Islands Area Habitat Conservation Zone in the Bering Sea

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Pribilof Islands Area Habitat Conservation Zone in the Bering Sea 10 Figure 10 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND... Habitat Conservation Zone in the Bering Sea ER15NO99.008 ...

  16. 50 CFR Figure 10 to Part 679 - Pribilof Islands Area Habitat Conservation Zone in the Bering Sea

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Pribilof Islands Area Habitat Conservation Zone in the Bering Sea 10 Figure 10 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND... Habitat Conservation Zone in the Bering Sea ER15NO99.008 ...

  17. 50 CFR Figure 10 to Part 679 - Pribilof Islands Area Habitat Conservation Zone in the Bering Sea

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Pribilof Islands Area Habitat Conservation Zone in the Bering Sea 10 Figure 10 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND... Habitat Conservation Zone in the Bering Sea ER15NO99.008 ...

  18. 50 CFR Table 44 to Part 679 - Nunivak Island, Etolin Strait, and Kuskokwim Bay Habitat Conservation Area

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Nunivak Island, Etolin Strait, and Kuskokwim Bay Habitat Conservation Area 44 Table 44 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION..., Etolin Strait, and Kuskokwim Bay Habitat Conservation Area Longitude Latitude 1651.54W 6045.54N* 1627.01W...

  19. 50 CFR Table 44 to Part 679 - Nunivak Island, Etolin Strait, and Kuskokwim Bay Habitat Conservation Area

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Nunivak Island, Etolin Strait, and Kuskokwim Bay Habitat Conservation Area 44 Table 44 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION..., Etolin Strait, and Kuskokwim Bay Habitat Conservation Area Longitude Latitude 1651.54W 6045.54N* 1627.01W...

  20. 50 CFR 226.221 - Critical habitat for black abalone (Haliotis cracherodii).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 10 2012-10-01 2012-10-01 false Critical habitat for black abalone... HABITAT § 226.221 Critical habitat for black abalone (Haliotis cracherodii). Critical habitat is designated for black abalone as described in this section. The textual descriptions of critical habitat in...

  1. 50 CFR 226.221 - Critical habitat for black abalone (Haliotis cracherodii).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Critical habitat for black abalone... HABITAT § 226.221 Critical habitat for black abalone (Haliotis cracherodii). Critical habitat is designated for black abalone as described in this section. The textual descriptions of critical habitat in...

  2. 50 CFR 226.207 - Critical habitat for leatherback turtles (Dermochelys coriacea).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 10 2013-10-01 2013-10-01 false Critical habitat for leatherback turtles... HABITAT § 226.207 Critical habitat for leatherback turtles (Dermochelys coriacea). Critical habitat is designated for leatherback turtles as described in this section. The textual descriptions of critical habitat...

  3. 50 CFR 226.207 - Critical habitat for leatherback turtles (Dermochelys coriacea).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Critical habitat for leatherback turtles... HABITAT § 226.207 Critical habitat for leatherback turtles (Dermochelys coriacea). Critical habitat is designated for leatherback turtles as described in this section. The textual descriptions of critical habitat...

  4. 50 CFR 226.221 - Critical habitat for black abalone (Haliotis cracherodii).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 10 2013-10-01 2013-10-01 false Critical habitat for black abalone... HABITAT § 226.221 Critical habitat for black abalone (Haliotis cracherodii). Critical habitat is designated for black abalone as described in this section. The textual descriptions of critical habitat in...

  5. 50 CFR 226.207 - Critical habitat for leatherback turtles (Dermochelys coriacea).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 10 2012-10-01 2012-10-01 false Critical habitat for leatherback turtles... HABITAT § 226.207 Critical habitat for leatherback turtles (Dermochelys coriacea). Critical habitat is designated for leatherback turtles as described in this section. The textual descriptions of critical habitat...

  6. 76 FR 23996 - North Pacific Fishery Management Council Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-29

    ...): Review CSP size limit algorithm. 3. BSAI Crab Draft Stock Assessment Fishery Evaluation report: Review and approve catch specifications for Norton Sound Red King Crab and Aleutian Island Golden King Crab.; review data for Pribilof Blue King Crab. 4. Essential Fish Habitat (EFH): Review habitat...

  7. 50 CFR 17.94 - Critical habitats.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 2 2010-10-01 2010-10-01 false Critical habitats. 17.94 Section 17.94... habitats. (a) The areas listed in § 17.95 (fish and wildlife) and § 17.96 (plants) and referred to in the lists at §§ 17.11 and 17.12 have been determined by the Director to be Critical Habitat. All Federal...

  8. 50 CFR 17.94 - Critical habitats.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 2 2013-10-01 2013-10-01 false Critical habitats. 17.94 Section 17.94... habitats. (a) The areas listed in § 17.95 (fish and wildlife) and § 17.96 (plants) and referred to in the lists at §§ 17.11 and 17.12 have been determined by the Director to be Critical Habitat. All Federal...

  9. 50 CFR 17.94 - Critical habitats.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 2 2011-10-01 2011-10-01 false Critical habitats. 17.94 Section 17.94... habitats. (a) The areas listed in § 17.95 (fish and wildlife) and § 17.96 (plants) and referred to in the lists at §§ 17.11 and 17.12 have been determined by the Director to be Critical Habitat. All Federal...

  10. 50 CFR 17.94 - Critical habitats.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 2 2012-10-01 2012-10-01 false Critical habitats. 17.94 Section 17.94... habitats. (a) The areas listed in § 17.95 (fish and wildlife) and § 17.96 (plants) and referred to in the lists at §§ 17.11 and 17.12 have been determined by the Director to be Critical Habitat. All Federal...

  11. 50 CFR 17.94 - Critical habitats.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 2 2014-10-01 2014-10-01 false Critical habitats. 17.94 Section 17.94... habitats. (a) The areas listed in § 17.95 (fish and wildlife) and § 17.96 (plants) and referred to in the lists at §§ 17.11 and 17.12 have been determined by the Director to be Critical Habitat. All Federal...

  12. 50 CFR 226.209 - Critical habitat for hawksbill turtle.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 10 2013-10-01 2013-10-01 false Critical habitat for hawksbill turtle... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.209 Critical habitat for hawksbill turtle. (a) Mona and Monito Islands, Puerto Rico—Waters surrounding the...

  13. 50 CFR 226.209 - Critical habitat for hawksbill turtle.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Critical habitat for hawksbill turtle. 226... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.209 Critical habitat for hawksbill turtle. (a) Mona and Monito Islands, Puerto Rico—Waters surrounding the...

  14. 50 CFR 226.208 - Critical habitat for green turtle.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 10 2013-10-01 2013-10-01 false Critical habitat for green turtle. 226... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.208 Critical habitat for green turtle. (a) Culebra Island, Puerto Rico—Waters surrounding the island of Culebra...

  15. 50 CFR 226.208 - Critical habitat for green turtle.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Critical habitat for green turtle. 226... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.208 Critical habitat for green turtle. (a) Culebra Island, Puerto Rico—Waters surrounding the island of Culebra...

  16. 50 CFR 226.207 - Critical habitat for leatherback turtle.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Critical habitat for leatherback turtle... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.207 Critical habitat for leatherback turtle. Leatherback Sea Turtle (dermochelys coriacea) The waters adjacent...

  17. 50 CFR 226.209 - Critical habitat for hawksbill turtle.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Critical habitat for hawksbill turtle. 226... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.209 Critical habitat for hawksbill turtle. (a) Mona and Monito Islands, Puerto Rico—Waters surrounding the...

  18. 50 CFR 226.207 - Critical habitat for leatherback turtle.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Critical habitat for leatherback turtle... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.207 Critical habitat for leatherback turtle. Leatherback Sea Turtle (dermochelys coriacea) The waters adjacent...

  19. 50 CFR 226.208 - Critical habitat for green turtle.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 10 2012-10-01 2012-10-01 false Critical habitat for green turtle. 226... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.208 Critical habitat for green turtle. (a) Culebra Island, Puerto Rico—Waters surrounding the island of Culebra...

  20. 77 FR 37656 - Multi-Species Habitat Conservation Plan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-22

    ... 0648-XC011 Multi-Species Habitat Conservation Plan AGENCY: National Marine Fisheries Service (NMFS.... ACTION: Notice of availability of final environmental impact statement, multi-species habitat... Incidental Take Permits (ITPs) and a multi-species Habitat Conservation Plan (HCP) for take of endangered and...

  1. 50 CFR 226.209 - Critical habitat for hawksbill turtle.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Critical habitat for hawksbill turtle... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.209 Critical habitat for hawksbill turtle. (a) Mona and Monito Islands, Puerto Rico—Waters surrounding the...

  2. 50 CFR 226.209 - Critical habitat for hawksbill turtle.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 10 2012-10-01 2012-10-01 false Critical habitat for hawksbill turtle... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.209 Critical habitat for hawksbill turtle. (a) Mona and Monito Islands, Puerto Rico—Waters surrounding the...

  3. 30 CFR 285.803 - How must I conduct my approved activities to protect essential fish habitats identified and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... protect essential fish habitats identified and described under the Magnuson-Stevens Fishery Conservation... fish habitats identified and described under the Magnuson-Stevens Fishery Conservation and Management Act? (a) If, during the conduct of your approved activities, MMS finds that essential fish habitat or...

  4. 30 CFR 585.803 - How must I conduct my approved activities to protect essential fish habitats identified and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... protect essential fish habitats identified and described under the Magnuson-Stevens Fishery Conservation... fish habitats identified and described under the Magnuson-Stevens Fishery Conservation and Management Act? (a) If, during the conduct of your approved activities, BOEM finds that essential fish habitat or...

  5. 30 CFR 585.803 - How must I conduct my approved activities to protect essential fish habitats identified and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... protect essential fish habitats identified and described under the Magnuson-Stevens Fishery Conservation... fish habitats identified and described under the Magnuson-Stevens Fishery Conservation and Management Act? (a) If, during the conduct of your approved activities, BOEM finds that essential fish habitat or...

  6. 30 CFR 585.803 - How must I conduct my approved activities to protect essential fish habitats identified and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... protect essential fish habitats identified and described under the Magnuson-Stevens Fishery Conservation... fish habitats identified and described under the Magnuson-Stevens Fishery Conservation and Management Act? (a) If, during the conduct of your approved activities, BOEM finds that essential fish habitat or...

  7. 76 FR 56171 - Fisheries of the South Atlantic; South Atlantic Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-12

    ... Panel (AP) in Charleston, SC. DATES: The meeting will take place October 5-6, 2011. See SUPPLEMENTARY...) 769-4520; e-mail: kim.iverson@safmc.net . SUPPLEMENTARY INFORMATION: Members of the Snapper Grouper AP... fishery and recreational deep-dropping on bottom habitat. The AP will give input on red porgy...

  8. Effects of Climate Change on Fishery Species in Florida

    NASA Astrophysics Data System (ADS)

    Shenker, Jonathan M.

    2009-07-01

    Recreational and commercial fishery species in Florida and elsewhere are under serious stress from overfishing and many types of habitat and water quality degradation. Climate change may add to that stress by affecting an array of biological processes, although the range of some subtropical and tropical species may expand northward in the state. It is expected to trigger sea level rise and changes in hurricanes and precipitation levels in Florida and elsewhere. Perhaps the most significant impacts of climate change on fishery species will also associated with changes in seagrasses and mangroves that function as Essential Nursery Habitats. Seagrasses in estuarine and coastal areas are limited by water depth and light penetration. Increases in sea level and in precipitation-induced turbidity may restrict the extent of seagrass habitats and their role in fishery production. Expanded efforts to reduce nutrient and sediment loading into seagrass habitats may help minimize the potential loss of a valuable fish nursery habitat. Mangroves have also been affected by human activities, and are the subject of restoration efforts in many areas. Potential sea level rise may cause an expansion of mangrove habitats in the Everglades, at the expense of freshwater habitats. This potential tradeoff of habitats should be considered by the water flow and habitat restoration programs in the Everglades.

  9. The future for fisheries.

    PubMed

    Pauly, Daniel; Alder, Jackie; Bennett, Elena; Christensen, Villy; Tyedmers, Peter; Watson, Reg

    2003-11-21

    Formal analyses of long-term global marine fisheries prospects have yet to be performed, because fisheries research focuses on local, species-specific management issues. Extrapolation of present trends implies expansion of bottom fisheries into deeper waters, serious impact on biodiversity, and declining global catches, the last possibly aggravated by fuel cost increases. Examination of four scenarios, covering various societal development choices, suggests that the negative trends now besetting fisheries can be turned around, and their supporting ecosystems rebuilt, at least partly.

  10. Inventory Management

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Known as MRO for Maintenance, Repair and Operating supplies, Tropicana Products, Inc.'s automated inventory management system is an adaptation of the Shuttle Inventory Management System (SIMS) developed by NASA to assure adequate supply of every item used in support of the Space Shuttle. The Tropicana version monitors inventory control, purchasing receiving and departmental costs for eight major areas of the company's operation.

  11. Resource Inventories.

    ERIC Educational Resources Information Center

    Council for Exceptional Children, Reston, VA. Center for Special Education Technology.

    The series of "Resource Inventories" is designed to encourage wider use of available information and services in the field of special education technology. A resource inventory is provided for each of 46 states of the United States. Each inventory includes directory information on public and private agencies and organizations that offer…

  12. Rights and conflicts in the management of fisheries in the Lower Songkhram River Basin, Northeast Thailand.

    PubMed

    Khumsri, Malasri; Ruddle, Kenneth; Shivakoti, Ganesh P

    2009-04-01

    A complex, pre-existing local property rights system, characterized by overlap and conflict, comprises the local basis for managing inland fisheries in communities of the Lower Songkhram River Basin (LSRB) of Northeastern Thailand. The components, conflicts and changes of the system are analyzed for fourteen communities, focusing on the auction system for barrages, an illegal and destructive, yet tolerated, fishery. These rights, adapted to gear type, seasonality, and habitat of the LSRB fisheries, are a critical social resource and proven management system that should be legitimized. Recommendations are made for both improving general inland fisheries policy and reforming the barrage fishery.

  13. Rights and Conflicts in the Management of Fisheries in the Lower Songkhram River Basin, Northeast Thailand

    NASA Astrophysics Data System (ADS)

    Khumsri, Malasri; Ruddle, Kenneth; Shivakoti, Ganesh P.

    2009-04-01

    A complex, pre-existing local property rights system, characterized by overlap and conflict, comprises the local basis for managing inland fisheries in communities of the Lower Songkhram River Basin (LSRB) of Northeastern Thailand. The components, conflicts and changes of the system are analyzed for fourteen communities, focusing on the auction system for barrages, an illegal and destructive, yet tolerated, fishery. These rights, adapted to gear type, seasonality, and habitat of the LSRB fisheries, are a critical social resource and proven management system that should be legitimized. Recommendations are made for both improving general inland fisheries policy and reforming the barrage fishery.

  14. Inland capture fisheries.

    PubMed

    Welcomme, Robin L; Cowx, Ian G; Coates, David; Béné, Christophe; Funge-Smith, Simon; Halls, Ashley; Lorenzen, Kai

    2010-09-27

    The reported annual yield from inland capture fisheries in 2008 was over 10 million tonnes, although real catches are probably considerably higher than this. Inland fisheries are extremely complex, and in many cases poorly understood. The numerous water bodies and small rivers are inhabited by a wide range of species and several types of fisher community with diversified livelihood strategies for whom inland fisheries are extremely important. Many drivers affect the fisheries, including internal fisheries management practices. There are also many drivers from outside the fishery that influence the state and functioning of the environment as well as the social and economic framework within which the fishery is pursued. The drivers affecting the various types of inland water, rivers, lakes, reservoirs and wetlands may differ, particularly with regard to ecosystem function. Many of these depend on land-use practices and demand for water which conflict with the sustainability of the fishery. Climate change is also exacerbating many of these factors. The future of inland fisheries varies between continents. In Asia and Africa the resources are very intensely exploited and there is probably little room for expansion; it is here that resources are most at risk. Inland fisheries are less heavily exploited in South and Central America, and in the North and South temperate zones inland fisheries are mostly oriented to recreation rather than food production.

  15. Inland capture fisheries

    PubMed Central

    Welcomme, Robin L.; Cowx, Ian G.; Coates, David; Béné, Christophe; Funge-Smith, Simon; Halls, Ashley; Lorenzen, Kai

    2010-01-01

    The reported annual yield from inland capture fisheries in 2008 was over 10 million tonnes, although real catches are probably considerably higher than this. Inland fisheries are extremely complex, and in many cases poorly understood. The numerous water bodies and small rivers are inhabited by a wide range of species and several types of fisher community with diversified livelihood strategies for whom inland fisheries are extremely important. Many drivers affect the fisheries, including internal fisheries management practices. There are also many drivers from outside the fishery that influence the state and functioning of the environment as well as the social and economic framework within which the fishery is pursued. The drivers affecting the various types of inland water, rivers, lakes, reservoirs and wetlands may differ, particularly with regard to ecosystem function. Many of these depend on land-use practices and demand for water which conflict with the sustainability of the fishery. Climate change is also exacerbating many of these factors. The future of inland fisheries varies between continents. In Asia and Africa the resources are very intensely exploited and there is probably little room for expansion; it is here that resources are most at risk. Inland fisheries are less heavily exploited in South and Central America, and in the North and South temperate zones inland fisheries are mostly oriented to recreation rather than food production. PMID:20713391

  16. 50 CFR 17.96 - Critical habitat-plants.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 6 2012-10-01 2012-10-01 false Critical habitat-plants. 17.96 Section 17.96 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS (CONTINUED) ENDANGERED...

  17. 50 CFR 17.96 - Critical habitat-plants.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 6 2013-10-01 2013-10-01 false Critical habitat-plants. 17.96 Section 17.96 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS (CONTINUED) ENDANGERED...

  18. 50 CFR 17.96 - Critical habitat-plants.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 6 2014-10-01 2014-10-01 false Critical habitat-plants. 17.96 Section 17.96 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS (CONTINUED) ENDANGERED...

  19. 50 CFR 17.96 - Critical habitat-plants.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 5 2011-10-01 2011-10-01 false Critical habitat-plants. 17.96 Section 17.96 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS (CONTINUED) ENDANGERED...

  20. 50 CFR 17.96 - Critical habitat-plants.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 4 2010-10-01 2010-10-01 false Critical habitat-plants. 17.96 Section 17.96 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS (CONTINUED) ENDANGERED...

  1. 50 CFR 226.216 - Critical habitat for elkhorn (Acropora palmata) and staghorn (A. cervicornis) corals.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 10 2013-10-01 2013-10-01 false Critical habitat for elkhorn (Acropora... MAMMALS DESIGNATED CRITICAL HABITAT § 226.216 Critical habitat for elkhorn (Acropora palmata) and staghorn (A. cervicornis) corals. Critical habitat is designated for both elkhorn and staghorn corals as...

  2. 50 CFR 226.216 - Critical habitat for elkhorn (Acropora palmata) and staghorn (A. cervicornis) corals.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 10 2012-10-01 2012-10-01 false Critical habitat for elkhorn (Acropora... MAMMALS DESIGNATED CRITICAL HABITAT § 226.216 Critical habitat for elkhorn (Acropora palmata) and staghorn (A. cervicornis) corals. Critical habitat is designated for both elkhorn and staghorn corals as...

  3. 50 CFR 226.216 - Critical habitat for elkhorn (Acropora palmata) and staghorn (A. cervicornis) corals.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Critical habitat for elkhorn (Acropora... MAMMALS DESIGNATED CRITICAL HABITAT § 226.216 Critical habitat for elkhorn (Acropora palmata) and staghorn (A. cervicornis) corals. Critical habitat is designated for both elkhorn and staghorn corals as...

  4. 50 CFR 226.215 - Critical habitat for the North Pacific Right Whale (Eubalaena japonica).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Critical habitat for the North Pacific... DESIGNATED CRITICAL HABITAT § 226.215 Critical habitat for the North Pacific Right Whale (Eubalaena japonica... 57°03′ N/153°00′ W. (d) Maps of critical habitat for the North Pacific right whale follow: ER08AP08...

  5. 50 CFR 226.220 - Critical habitat for the Cook Inlet beluga whale (Delphinapterus leucas).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 10 2012-10-01 2012-10-01 false Critical habitat for the Cook Inlet... DESIGNATED CRITICAL HABITAT § 226.220 Critical habitat for the Cook Inlet beluga whale (Delphinapterus leucas). Critical habitat is designated in Cook Inlet, Alaska, for the Cook Inlet beluga whale as described in...

  6. 50 CFR 226.220 - Critical habitat for the Cook Inlet beluga whale (Delphinapterus leucas).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Critical habitat for the Cook Inlet... DESIGNATED CRITICAL HABITAT § 226.220 Critical habitat for the Cook Inlet beluga whale (Delphinapterus leucas). Critical habitat is designated in Cook Inlet, Alaska, for the Cook Inlet beluga whale as described in...

  7. 50 CFR 226.220 - Critical habitat for the Cook Inlet beluga whale (Delphinapterus leucas).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Critical habitat for the Cook Inlet beluga... CRITICAL HABITAT § 226.220 Critical habitat for the Cook Inlet beluga whale (Delphinapterus leucas). Critical habitat is designated in Cook Inlet, Alaska, for the Cook Inlet beluga whale as described in...

  8. 50 CFR 226.216 - Critical habitat for elkhorn (Acropora palmata) and staghorn (A. cervicornis) corals.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Critical habitat for elkhorn (Acropora... MAMMALS DESIGNATED CRITICAL HABITAT § 226.216 Critical habitat for elkhorn (Acropora palmata) and staghorn (A. cervicornis) corals. Critical habitat is designated for both elkhorn and staghorn corals as...

  9. 50 CFR 226.216 - Critical habitat for elkhorn (Acropora palmata) and staghorn (A. cervicornis) corals.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Critical habitat for elkhorn (Acropora... MAMMALS DESIGNATED CRITICAL HABITAT § 226.216 Critical habitat for elkhorn (Acropora palmata) and staghorn (A. cervicornis) corals. Critical habitat is designated for both elkhorn and staghorn corals as...

  10. 50 CFR 226.215 - Critical habitat for the North Pacific Right Whale (Eubalaena japonica).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 10 2013-10-01 2013-10-01 false Critical habitat for the North Pacific... DESIGNATED CRITICAL HABITAT § 226.215 Critical habitat for the North Pacific Right Whale (Eubalaena japonica... 57°03′ N/153°00′ W. (d) Maps of critical habitat for the North Pacific right whale follow: ER08AP08...

  11. 50 CFR 226.220 - Critical habitat for the Cook Inlet beluga whale (Delphinapterus leucas).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 10 2013-10-01 2013-10-01 false Critical habitat for the Cook Inlet... DESIGNATED CRITICAL HABITAT § 226.220 Critical habitat for the Cook Inlet beluga whale (Delphinapterus leucas). Critical habitat is designated in Cook Inlet, Alaska, for the Cook Inlet beluga whale as described in...

  12. Habitat planning, maintenance and management working group

    SciTech Connect

    1997-03-01

    The Gulf of Mexico (GOM), called {open_quotes}America`s Sea,{close_quotes} is actually a small ocean basin covering over 1.5 million square kilometers. Because of the multiple uses, diversity, and size of the Gulf`s resources, management is shared by a number of governmental agencies including the Minerals Management Service, the Gulf of Mexico Fishery Management Council, the Gulf States Marine Fisheries Commission, National Marine Fisheries Service, the US Coast Guard, the US Army Corps of Engineers, and the five Gulf states fisheries agencies. All of these entities share a common goal of achieving optimum sustainable yield to maximize geological, biological, social, and economic benefits from these resources. These entities also share a common theme that the successful management of the northern GOM requires maintenance and enhancement of both the quantity and quality of habitats. A closer look at the GOM shows the sediment to be clearly dominated by vast sand and mud plains. These soft bottom habitats are preferred by many groundfish and shrimp species and, thus, have given rise to large commercial fisheries on these stocks. Hard bottom and reef habitats, on the other hand, are limited to approximately 1.6% of the total area of the Gulf, so that, while there are high demands by commercial and recreational fishermen for reef associated species, the availability of habitat for these stocks is limited. The thousands of oil and gas structures placed in the Gulf have added significant amounts of new hard substrate. The rigs-to-reefs concept was a common sense idea with support from environmental user groups and the petroleum industry for preserving a limited but valuable habitat type. As long as maximizing long-term benefits from the Gulf s resources for the greatest number of users remains the goal, then programs such as Rigs-to-Reefs will remain an important tool for fisheries and habitat managers in the Gulf.

  13. Comparison of nine different methods to assess fish communities in lentic flood-plain habitats.

    PubMed

    Mueller, M; Pander, J; Knott, J; Geist, J

    2017-07-01

    This study compares the effectiveness and representativeness of electrofishing, snorkelling, seining, baited lift netting, multi-mesh gillnetting, baited fish traps, fyke netting, angling and longline fishing, considering three typical lentic flood-plain habitats at different times of day. Electrofishing was by far the most effective method yielding highest species richness, species trait representation and catch per unit of effort (CPUE), followed by seining. For single species like dace Leuciscus leuciscus, European ruffe Gymnocephalus cernua, common bream Abramis brama and silver bream Blicca bjoerkna, seining was more effective than electrofishing. With both methods, some species were more consistently caught during night, dusk or dawn than during daylight. All other methods tested cannot be generally recommended for fish community assessments in shallow backwaters due to their low representativeness of species inventory and generally low CPUE. Based on these results, electrofishing of 30 m transect replicates at different times of day for monitoring the fish community in shallow backwaters, can be recommended, enabling the maximum possible comparability to adjacent river habitats. Seining should be considered as an alternative if accessibility of habitats is restricted or electrofishing is prohibited. The 25 species detected in the backwaters also suggest that these habitats contribute a large proportion of fish diversity and should be included in standard assessments of river ecological status. © 2017 The Fisheries Society of the British Isles.

  14. Fringe benefit: Value of restoring coastal wetlands for Great Lakes fisheries

    EPA Science Inventory

    Fishery support is recognized as a valuable ecosystem service provided by Great Lakes coastal wetlands, but it is challenging to quantify because multiple species and habitats are involved. Recent studies indicate that coastal wetland area is proportional to fishery harvest among...

  15. Fringe benefit: Value of restoring coastal wetlands for Great Lakes fisheries

    EPA Science Inventory

    Fishery support is recognized as a valuable ecosystem service provided by Great Lakes coastal wetlands, but it is challenging to quantify because multiple species and habitats are involved. Recent studies indicate that coastal wetland area is proportional to fishery harvest among...

  16. 75 FR 74008 - Gulf of Mexico Fishery Management Council; Public Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-30

    ... CONTACT: Jeff Rester, Habitat Support Specialist, Gulf States Marine Fisheries Commission; telephone: (228... National Oceanic and Atmospheric Administration RIN 0648-XA068 Gulf of Mexico Fishery Management Council... Administration (NOAA), Commerce. ACTION: Notice of public meetings. SUMMARY: The Gulf of Mexico...

  17. 77 FR 64305 - Fisheries of the Northeastern United States; Northeast Multispecies Fishery; Exempted Fishery for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-19

    ... National Oceanic and Atmospheric Administration 50 CFR Part 648 RIN 0648-BC50 Fisheries of the Northeastern United States; Northeast Multispecies Fishery; Exempted Fishery for the Cape Cod Spiny Dogfish Fishery AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration...

  18. Stock assessment in inland fisheries: a foundation for sustainable use and conservation

    USGS Publications Warehouse

    Lorenzen, Kai; Cowx, Ian G.; Entsua-Mensah, R. E. M.; Lester, Nigel P.; Koehn, J.D.; Randall, R.G.; So, N.; Bonar, Scott A.; Bunnell, David; Venturelli, Paul A.; Bower, Shannon D.; Cooke, Steven J.

    2016-01-01

    Fisheries stock assessments are essential for science-based fisheries management. Inland fisheries pose challenges, but also provide opportunities for biological assessments that differ from those encountered in large marine fisheries for which many of our assessment methods have been developed. These include the number and diversity of fisheries, high levels of ecological and environmental variation, and relative lack of institutional capacity for assessment. In addition, anthropogenic impacts on habitats, widespread presence of non-native species and the frequent use of enhancement and restoration measures such as stocking affect stock dynamics. This paper outlines various stock assessment and data collection approaches that can be adapted to a wide range of different inland fisheries and management challenges. Although this paper identifies challenges in assessment, it focuses on solutions that are practical, scalable and transferrable. A path forward is suggested in which biological assessment generates some of the critical information needed by fisheries managers to make effective decisions that benefit the resource and stakeholders.

  19. Commercial Fisheries Surveys

    USGS Publications Warehouse

    Fabrizio, Mary C.; Richards, R. Anne; Murphy, Brian R.; Willis, David W.

    1996-01-01

    In this chapter, we describe methods for sampling commercial fisheries and identify factors affecting the design of sampling plans. When sampled properly, commercial fisheries can provide important information on the response of aquatic organisms to exploitation; such information can be used by management agencies to develop regulations for ensuring long-term production of the resource and long-term economic benefit. Fishery statistics are typically used to estimate abundance, mortality, recruitment, growth, and other vital characterisitcs of populations. Fishery statistics can also be used to study changes in fish community composition resulting from differential exploitation of species.

  20. Unintended cultivation, shifting baselines, and conflict between objectives for fisheries and conservation.

    PubMed

    Brown, Christopher J; Trebilco, Rowan

    2014-06-01

    The effects of fisheries on marine ecosystems, and their capacity to drive shifts in ecosystem states, have been widely documented. Less well appreciated is that some commercially valuable species respond positively to fishing-induced ecosystem change and can become important fisheries resources in modified ecosystems. Thus, the ecological effects of one fishery can unintentionally increase the abundance and productivity of other fished species (i.e., cultivate). We reviewed examples of this effect in the peer-reviewed literature. We found 2 underlying ecosystem drivers of the effect: trophic release of prey species when predators are overfished and habitat change. Key ecological, social, and economic conditions required for one fishery to unintentionally cultivate another include strong top-down control of prey by predators, the value of the new fishery, and the capacity of fishers to adapt to a new fishery. These unintended cultivation effects imply strong trade-offs between short-term fishery success and conservation efforts to restore ecosystems toward baseline conditions because goals for fisheries and conservation may be incompatible. Conflicts are likely to be exacerbated if fisheries baselines shift relative to conservation baselines and there is investment in the new fishery. However, in the long-term, restoration toward ecosystem baselines may often benefit both fishery and conservation goals. Unintended cultivation can be identified and predicted using a combination of time-series data, dietary studies, models of food webs, and socioeconomic data. Identifying unintended cultivation is necessary for management to set compatible goals for fisheries and conservation.

  1. Toward fisheries sustainability in North America: Issues, challenges, and strategies for action

    USGS Publications Warehouse

    MacDonald, D.D.; Knudsen, E.E.

    2004-01-01

    Many fisheries in North America are severely depleted and trending downwards. In an effort to find ways of reversing this disturbing situation, the American Fisheries Society and the Sustainable Fisheries Foundation invited leading experts in fisheries science and aquatic resource management to share their thoughts and insights in this book. These experts were asked to identify the factors that are currently impairing our ability to effectively manage fisheries resources and propose creative solutions for addressing the most challenging issues affecting fisheries sustainability. Based on the information that was provided by the experts (i.e., as presented in the earlier chapters of this book), it is apparent that a wide range of human activities are adversely affecting our shared fisheries resources and the aquatic habitats upon which they depend. The most challenging problems stem from causes that are largely beyond the scope of traditional fisheries management (e.g., human population growth, resource consumption patterns, global climate change, broad land-use patterns). It is also apparent that resolution of these challenges will require a new approach to fisheries management - one that effectively integrates economic, social, and environmental interests into a decision-making framework that supports fisheries sustainability. The key strategies for supporting such a transition toward a more holistic and comprehensive approach to managing the human activities that influence fisheries and aquatic resources are summarized in this chapter. ?? 2004 by the American Fisheries Society.

  2. Biology, fishery, conservation and management of Indian Ocean tuna fisheries

    NASA Astrophysics Data System (ADS)

    Gopalakrishna Pillai, N.; Satheeshkumar, Palanisamy

    2012-12-01

    The focus of the study is to explore the recent trend of the world tuna fishery with special reference to the Indian Ocean tuna fisheries and its conservation and sustainable management. In the Indian Ocean, tuna catches have increased rapidly from about 179959 t in 1980 to about 832246 t in 1995. They have continued to increase up to 2005; the catch that year was 1201465 t, forming about 26% of the world catch. Since 2006 onwards there has been a decline in the volume of catches and in 2008 the catch was only 913625 t. The Principal species caught in the Indian Ocean are skipjack and yellowfin. Western Indian Ocean contributed 78.2% and eastern Indian Ocean 21.8% of the total tuna production from the Indian Ocean. The Indian Ocean stock is currently overfished and IOTC has made some recommendations for management regulations aimed at sustaining the tuna stock. Fishing operations can cause ecological impacts of different types: by catches, damage of the habitat, mortalities caused by lost or discarded gear, pollution, generation of marine debris, etc. Periodic reassessment of the tuna potential is also required with adequate inputs from exploratory surveys as well as commercial landings and this may prevent any unsustainable trends in the development of the tuna fishing industry in the Indian Ocean.

  3. Modeling sensitive elasmobranch habitats

    NASA Astrophysics Data System (ADS)

    Pennino, M. Grazia; Muñoz, Facundo; Conesa, David; López-Quílez, Antonio; Bellido, José Marí; a

    2013-10-01

    Basic information on the distribution and habitat preferences of ecologically important species is essential for their management and protection. In the Mediterranean Sea there is increasing concern over elasmobranch species because their biological (ecological) characteristics make them highly vulnerable to fishing pressure. Their removal could affect the structure and function of marine ecosystems, inducing changes in trophic interactions at the community level due to the selective elimination of predators or prey species, competitors and species replacement. In this study Bayesian hierarchical spatial models are used to map the sensitive habitats of the three most caught elasmobranch species (Galeus melastomus, Scyliorhinus canicula, Etmopterus spinax) in the western Mediterranean Sea, based on fishery-dependent bottom trawl data. Results show that habitats associated with hard substrata and sandy beds, mainly in deep waters and with a high seabed gradient, have a greater probability registering the presence of the studied species than those associated with muddy shallow waters. Temperature and chlorophyll-α concentration show a negative relationship with S. canicula occurrence. Our results identify some of the sensitive habitats for elasmobranchs in the western Mediterranean Sea (GSA06 South), providing essential and easy-to-use interpretation tools, such as predictive distribution maps, with the final aim of improving management and conservation of these vulnerable species.

  4. 75 FR 1023 - International Fisheries Regulations; Fisheries in the Western Pacific; Pelagic Fisheries; Hawaii...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-08

    ...; Fisheries in the Western Pacific; Pelagic Fisheries; Hawaii-based Shallow-set Longline Fishery; Correction..., 2010. This change ensures that the process is preserved for closing the Hawaii-based shallow-set...

  5. Inventory control.

    PubMed

    Levin, Roger

    2004-09-01

    By establishing clear inventory ordering targets and following the guidelines outlined in this column, the staff member handling the process will understand the high and low levels of inventory control and be able to maintain an accurate system. Inventory control represents approximately 6 to 8 percent of practice purchasing. The main goal of the advice in this column is not to reduce the cost, unless there is waste involved, but rather to establish a process that allows the practice to purchase supplies on a regular basis, avoid mistakes and maintain a steady expense level.

  6. Contaminant effects on fisheries

    SciTech Connect

    Cairns, V.W.; Hodson, P.V.; Nriagu, J.O.

    1984-01-01

    These proceedings collect papers on the effects of water pollution on fish and fisheries. Topics include: monitoring lead pollution in fish, metallothionein and acclimation to heavy metals in fish, modeling approaches, appraising the status of fisheries, and assessing the health of aquatic ecosystems.

  7. Schoolyard Habitats[R] Site Planning Guide.

    ERIC Educational Resources Information Center

    National Wildlife Federation, Reston, VA.

    This document provides guidance for the creation of habitats on school grounds. Science activities, resources, and information on how to apply knowledge to the design, creation, and development of a habitat are presented. Contents include: (1) "Starting the Process"; (2) "Gathering Information: Site Inventory and Analysis"; (3)…

  8. HABITAT: LAKE SUPERIOR - STATE OF THE LAKE 2005

    EPA Science Inventory

    This presentation briefly describes the state of research and management in Lake Superior concerning fisheries and their association to habitat. It discusses a general habitat classification for the lake and an increasing interest in the nearshore, summarizing the status of cont...

  9. 40 CFR 230.51 - Recreational and commercial fisheries.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Recreational and commercial fisheries. 230.51 Section 230.51 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN... the suitability of recreational and commercial fishing grounds as habitat for populations...

  10. 50 CFR Figure 17 to Part 679 - Northern Bering Sea Research Area and Saint Lawrence Island Habitat Conservation Area (HCA)

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Northern Bering Sea Research Area and Saint Lawrence Island Habitat Conservation Area (HCA) 17 Figure 17 to part 679 Wildlife and Fisheries... 679—Northern Bering Sea Research Area and Saint Lawrence Island Habitat Conservation Area (HCA...

  11. 50 CFR Figure 17 to Part 679 - Northern Bering Sea Research Area and Saint Lawrence Island Habitat Conservation Area (HCA)

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Northern Bering Sea Research Area and Saint Lawrence Island Habitat Conservation Area (HCA) 17 Figure 17 to part 679 Wildlife and Fisheries... 679—Northern Bering Sea Research Area and Saint Lawrence Island Habitat Conservation Area (HCA...

  12. 50 CFR Figure 17 to Part 679 - Northern Bering Sea Research Area and Saint Lawrence Island Habitat Conservation Area (HCA)

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Northern Bering Sea Research Area and Saint Lawrence Island Habitat Conservation Area (HCA) 17 Figure 17 to part 679 Wildlife and Fisheries... 679—Northern Bering Sea Research Area and Saint Lawrence Island Habitat Conservation Area (HCA...

  13. 50 CFR Figure 17 to Part 679 - Northern Bering Sea Research Area and Saint Lawrence Island Habitat Conservation Area (HCA)

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Northern Bering Sea Research Area and Saint Lawrence Island Habitat Conservation Area (HCA) 17 Figure 17 to part 679 Wildlife and Fisheries... 679—Northern Bering Sea Research Area and Saint Lawrence Island Habitat Conservation Area (HCA...

  14. Climate change impacts on the biophysics and economics of world fisheries

    NASA Astrophysics Data System (ADS)

    Sumaila, U. Rashid; Cheung, William W. L.; Lam, Vicky W. Y.; Pauly, Daniel; Herrick, Samuel

    2011-12-01

    Global marine fisheries are underperforming economically because of overfishing, pollution and habitat degradation. Added to these threats is the looming challenge of climate change. Observations, experiments and simulation models show that climate change would result in changes in primary productivity, shifts in distribution and changes in the potential yield of exploited marine species, resulting in impacts on the economics of fisheries worldwide. Despite the gaps in understanding climate change effects on fisheries, there is sufficient scientific information that highlights the need to implement climate change mitigation and adaptation policies to minimize impacts on fisheries.

  15. Ocean fronts drive marine fishery production and biogeochemical cycling.

    PubMed

    Woodson, C Brock; Litvin, Steven Y

    2015-02-10

    Long-term changes in nutrient supply and primary production reportedly foreshadow substantial declines in global marine fishery production. These declines combined with current overfishing, habitat degradation, and pollution paint a grim picture for the future of marine fisheries and ecosystems. However, current models forecasting such declines do not account for the effects of ocean fronts as biogeochemical hotspots. Here we apply a fundamental technique from fluid dynamics to an ecosystem model to show how fronts increase total ecosystem biomass, explain fishery production, cause regime shifts, and contribute significantly to global biogeochemical budgets by channeling nutrients through alternate trophic pathways. We then illustrate how ocean fronts affect fishery abundance and yield, using long-term records of anchovy-sardine regimes and salmon abundances in the California Current. These results elucidate the fundamental importance of biophysical coupling as a driver of bottom-up vs. top-down regulation and high productivity in marine ecosystems.

  16. Ocean fronts drive marine fishery production and biogeochemical cycling

    PubMed Central

    Woodson, C. Brock; Litvin, Steven Y.

    2015-01-01

    Long-term changes in nutrient supply and primary production reportedly foreshadow substantial declines in global marine fishery production. These declines combined with current overfishing, habitat degradation, and pollution paint a grim picture for the future of marine fisheries and ecosystems. However, current models forecasting such declines do not account for the effects of ocean fronts as biogeochemical hotspots. Here we apply a fundamental technique from fluid dynamics to an ecosystem model to show how fronts increase total ecosystem biomass, explain fishery production, cause regime shifts, and contribute significantly to global biogeochemical budgets by channeling nutrients through alternate trophic pathways. We then illustrate how ocean fronts affect fishery abundance and yield, using long-term records of anchovy–sardine regimes and salmon abundances in the California Current. These results elucidate the fundamental importance of biophysical coupling as a driver of bottom–up vs. top–down regulation and high productivity in marine ecosystems. PMID:25624488

  17. 50 CFR 226.222 - Critical habitat for the southern Distinct Population Segment of eulachon (Thaleichthys pacificus).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 10 2012-10-01 2012-10-01 false Critical habitat for the southern... COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.222 Critical habitat for the southern Distinct Population Segment of eulachon (Thaleichthys pacificus). Critical habitat is designated for the southern...

  18. 50 CFR 226.219 - Critical habitat for the Southern Distinct Population Segment of North American Green Sturgeon...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Critical habitat for the Southern... ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.219 Critical habitat for...). Critical habitat is designated for the Southern Distinct Population Segment of North American green...

  19. 50 CFR 226.222 - Critical habitat for the southern Distinct Population Segment of eulachon (Thaleichthys pacificus).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Critical habitat for the southern... COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.222 Critical habitat for the southern Distinct Population Segment of eulachon (Thaleichthys pacificus). Critical habitat is designated for the southern...

  20. 50 CFR 226.222 - Critical habitat for the southern Distinct Population Segment of eulachon (Thaleichthys pacificus).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 10 2013-10-01 2013-10-01 false Critical habitat for the southern... COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.222 Critical habitat for the southern Distinct Population Segment of eulachon (Thaleichthys pacificus). Critical habitat is designated for the southern...

  1. The Areal Extent of Brown Shrimp Habitat Suitability in Mobile Bay, Alabama USA: Targeting Vegetated Habitat Restoration

    EPA Science Inventory

    The availability of wetlands and shallow water habitats significantly influences Gulf of Mexico (GOM) penaeid shrimp fishery productivity. However, the GOM region has the highest rate of wetland loss in the U.S. Protection and management of these vital GOM habitats are critical t...

  2. The Areal Extent of Brown Shrimp Habitat Suitability in Mobile Bay, Alabama USA: Targeting Vegetated Habitat Restoration

    EPA Science Inventory

    The availability of wetlands and shallow water habitats significantly influences Gulf of Mexico (GOM) penaeid shrimp fishery productivity. However, the GOM region has the highest rate of wetland loss in the U.S. Protection and management of these vital GOM habitats are critical t...

  3. Fisheries: hope or despair?

    PubMed

    Pitcher, Tony J; Cheung, William W L

    2013-09-30

    Recent work suggesting that fisheries depletions have turned the corner is misplaced because analysis was based largely on fisheries from better-managed developed-world fisheries. Some indicators of status show improvements in the minority of fisheries subjected to formal assessment. Other indicators, such as trophic level and catch time series, have been controversial. Nevertheless, several deeper analyses of the status of the majority of world fisheries confirm the previous dismal picture: serious depletions are the norm world-wide, management quality is poor, catch per effort is still declining. The performance of stock assessment itself may stand challenged by random environmental shifts and by the need to accommodate ecosystem-level effects. The global picture for further fisheries species extinctions, the degradation of ecosystem food webs and seafood security is indeed alarming. Moreover, marine ecosystems and their embedded fisheries are challenged in parallel by climate change, acidification, metabolic disruptors and other pollutants. Attempts to remedy the situation need to be urgent, focused, innovative and global.

  4. Coeur d'Alene Tribe Fisheries Program : Implementation of Fisheries Enhancement Opportunities on the Coeur d’Alene Reservation : 2007 Annual Report.

    SciTech Connect

    Firehammer, Jon A.; Vitale, Angelo J.; Hallock, Stephanie A.

    2009-09-08

    in the face of anthropogenic influences and prospective climate change. This included recovering the lacustrine-adfluvial life history form that was historically prevalent and had served to provide both resilience and resistance to the structure of cutthroat trout populations in the Coeur d'Alene basin. To this end, the Coeur d'Alene Tribe closed Lake Creek and Benewah Creek to fishing in 1993 to initiate recovery of westslope cutthroat trout to historical levels. However, achieving sustainable cutthroat trout populations also required addressing biotic factors and habitat features in the basin that were limiting recovery. Early in the 1990s, BPA-funded surveys and inventories identified limiting factors in Tribal watersheds that would need to be remedied to restore westslope cutthroat trout populations. The limiting factors included: low-quality, low-complexity mainstem stream habitat and riparian zones; high stream temperatures in mainstem habitats; negative interactions with nonnative brook trout in tributaries; and potential survival bottlenecks in Coeur d'Alene Lake. In 1994, the Northwest Power Planning Council adopted the recommendations set forth by the Coeur d'Alene Tribe to improve the Reservation fishery (NWPPC Program Measures 10.8B.20). These recommended actions included: (1) Implement habitat restoration and enhancement measures in Alder, Benewah, Evans, and Lake Creeks; (2) Purchase critical watershed areas for protection of fisheries habitat; (3) Conduct an educational/outreach program for the general public within the Coeur d'Alene Reservation to facilitate a 'holistic' watershed protection process; (4) Develop an interim fishery for tribal and non-tribal members of the reservation through construction, operation and maintenance of five trout ponds; (5) Design, construct, operate and maintain a trout production facility; and (6) Implement a monitoring program to evaluate the effectiveness of the hatchery and habitat improvement projects. These

  5. 78 FR 65887 - International Fisheries; Pacific Tuna Fisheries; 2013 Bigeye Tuna Longline Fishery Closure in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-04

    ... National Oceanic and Atmospheric Administration 50 CFR Part 300 RIN 0648-XC922 International Fisheries; Pacific Tuna Fisheries; 2013 Bigeye Tuna Longline Fishery Closure in the Eastern Pacific Ocean AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce...

  6. 78 FR 70002 - International Fisheries; Pacific Tuna Fisheries; 2013 Bigeye Tuna Longline Fishery Closure in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-22

    ...; Pacific Tuna Fisheries; 2013 Bigeye Tuna Longline Fishery Closure in the Eastern Pacific Ocean; Correction... rule published in the Federal Register on November 4, 2013, to close the bigeye tuna longline fishery.... SUPPLEMENTARY INFORMATION: NMFS announced that the bigeye tuna longline fishery in the Eastern Pacific Ocean...

  7. 78 FR 48653 - Gulf of Mexico Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-09

    ... Fish, Data Collection, and Joint Coral/Habitat Protection Management Committees; and a meeting of the... Data Collection and Management Programs for the Magnuson-Stevens Managed Stocks. Joint Coral/Habitat... from the May 2013 Coral Workshop on Interrelationships between Corals and Fisheries. Council...

  8. Salmon River Habitat Enhancement, Part 1, 1984 Annual Report.

    SciTech Connect

    Konopacky, Richard C.

    1985-06-01

    This volume contains reports on subprojects involving the determining of alternatives to enhance salmonid habitat on patented land in Bear Valley Creek, Idaho, coordination activities for habitat projects occurring on streams within fishing areas of the Shoshone-Bannock Indian Tribes, and habitat and fish inventories in the Salmon River. Separate abstracts have been prepared for individual reports. (ACR)

  9. Analysis of the 1996 Wisconsin forest statistics by habitat type.

    Treesearch

    John Kotar; Joseph A. Kovach; Gary Brand

    1999-01-01

    The fifth inventory of Wisconsin's forests is presented from the perspective of habitat type as a classification tool. Habitat type classifies forests based on the species composition of the understory plant community. Various forest attributes are summarized by habitat type and management implications are discussed.

  10. Coexistence of fisheries with river dolphin conservation.

    PubMed

    Kelkar, Nachiket; Krishnaswamy, Jagdish; Choudhary, Sunil; Sutaria, Dipani

    2010-08-01

    Freshwater biodiversity conservation is generally perceived to conflict with human use and extraction (e.g., fisheries). Overexploited fisheries upset the balance between local economic needs and endangered species' conservation. We investigated resource competition between fisheries and Ganges river dolphins (Platanista gangetica gangetica) in a human-dominated river system in India to assess the potential for their coexistence. We surveyed a 65-km stretch of the lower Ganga River to assess habitat use by dolphins (encounter rates) and fishing activity (habitat preferences of fishers, intensity of net and boat use). Dolphin abundance in the main channel increased from 179 (SE 7) (mid dry season) to 270 (SE 8) (peak dry season), probably as a result of immigration from upstream tributaries. Dolphins preferred river channels with muddy, rocky substrates, and deep midchannel waters. These areas overlapped considerably with fishing areas. Sites with 2-6 boats/km (moderately fished) were more preferred by dolphins than sites with 8-55 boats/km (heavily fished). Estimated spatial (85%) and prey-resource overlap (75%) between fisheries and dolphins (chiefly predators of small fish) suggests a high level of competition between the two groups. A decrease in abundance of larger fish, indicated by the fact that small fish comprised 74% of the total caught, may have intensified the present competition. Dolphins seem resilient to changes in fish community structure and may persist in overfished rivers. Regulated fishing in dolphin hotspots and maintenance of adequate dry season flows can sustain dolphins in tributaries and reduce competition in the main river. Fish-stock restoration and management, effective monitoring, curbing destructive fishing practices, secure tenure rights, and provision of alternative livelihoods for fishers may help reconcile conservation and local needs in overexploited river systems.

  11. 50 CFR 226.202 - Critical habitat for Stellar sea lions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 10 2012-10-01 2012-10-01 false Critical habitat for Stellar sea lions... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.202 Critical habitat for Stellar sea lions. Steller Sea Lion (Eumetopias jubatus) (a) Alaska rookeries...

  12. 50 CFR 226.203 - Critical habitat for northern right whales.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Critical habitat for northern right... OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.203 Critical habitat for northern right whales. (a) Great South Channel. The area bounded by 41°40...

  13. 75 FR 5765 - NOAA Coastal and Marine Habitat Restoration Project Supplemental Funding

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-04

    ... National Oceanic and Atmospheric Administration RIN 0648-ZC05 NOAA Coastal and Marine Habitat Restoration... Marine Habitat Restoration Projects. SUMMARY: The National Marine Fisheries Service (NMFS) publishes this... were set aside specifically to manage and mitigate risks to the original habitat restoration...

  14. 50 CFR 226.203 - Critical habitat for northern right whales.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 10 2013-10-01 2013-10-01 false Critical habitat for northern right... OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.203 Critical habitat for northern right whales. (a) Great South Channel. The area bounded by 41°40...

  15. 50 CFR 226.201 - Critical habitat for Hawaiian monk seals.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 10 2013-10-01 2013-10-01 false Critical habitat for Hawaiian monk seals... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.201 Critical habitat for Hawaiian monk seals. Hawaiian Monk Seal (Monachus schauinslandi) All beach areas, sand...

  16. 50 CFR 226.202 - Critical habitat for Steller sea lions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Critical habitat for Steller sea lions... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.202 Critical habitat for Steller sea lions. Steller Sea Lion (Eumetopias jubatus) (a) Alaska rookeries...

  17. 50 CFR 226.203 - Critical habitat for northern right whales.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Critical habitat for northern right whales... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.203 Critical habitat for northern right whales. (a) Great South Channel. The area bounded by 41°40′ N/69°45′ W...

  18. 50 CFR 424.19 - Final rules-impact analysis of critical habitat.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... habitat. 424.19 Section 424.19 Wildlife and Fisheries JOINT REGULATIONS (UNITED STATES FISH AND WILDLIFE... LISTING ENDANGERED AND THREATENED SPECIES AND DESIGNATING CRITICAL HABITAT Revision of the Lists § 424.19 Final rules—impact analysis of critical habitat. The Secretary shall identify any significant activities...

  19. 50 CFR 226.203 - Critical habitat for northern right whales.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Critical habitat for northern right whales... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.203 Critical habitat for northern right whales. (a) Great South Channel. The area bounded by 41°40′ N/69°45′ W...

  20. 50 CFR 226.202 - Critical habitat for Stellar sea lions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Critical habitat for Stellar sea lions... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.202 Critical habitat for Stellar sea lions. Steller Sea Lion (Eumetopias jubatus) (a) Alaska rookeries...

  1. 50 CFR 226.202 - Critical habitat for Stellar sea lions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 10 2013-10-01 2013-10-01 false Critical habitat for Stellar sea lions... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.202 Critical habitat for Stellar sea lions. Steller Sea Lion (Eumetopias jubatus) (a) Alaska rookeries...

  2. 50 CFR 424.19 - Final rules-impact analysis of critical habitat.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... habitat. 424.19 Section 424.19 Wildlife and Fisheries JOINT REGULATIONS (UNITED STATES FISH AND WILDLIFE... LISTING ENDANGERED AND THREATENED SPECIES AND DESIGNATING CRITICAL HABITAT Revision of the Lists § 424.19 Final rules—impact analysis of critical habitat. The Secretary shall identify any significant activities...

  3. 50 CFR 226.203 - Critical habitat for northern right whales.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 10 2012-10-01 2012-10-01 false Critical habitat for northern right... OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.203 Critical habitat for northern right whales. (a) Great South Channel. The area bounded by 41°40...

  4. 50 CFR 226.201 - Critical habitat for Hawaiian monk seals.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 10 2012-10-01 2012-10-01 false Critical habitat for Hawaiian monk seals... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.201 Critical habitat for Hawaiian monk seals. Hawaiian Monk Seal (Monachus schauinslandi) All beach areas, sand...

  5. 50 CFR 226.201 - Critical habitat for Hawaiian monk seals.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Critical habitat for Hawaiian monk seals... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.201 Critical habitat for Hawaiian monk seals. Hawaiian Monk Seal (Monachus schauinslandi) All beach areas, sand...

  6. 50 CFR 226.201 - Critical habitat for Hawaiian monk seals.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Critical habitat for Hawaiian monk seals... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.201 Critical habitat for Hawaiian monk seals. Hawaiian Monk Seal (Monachus schauinslandi) All beach areas, sand...

  7. 50 CFR 226.202 - Critical habitat for Stellar sea lions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Critical habitat for Stellar sea lions... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.202 Critical habitat for Stellar sea lions. Steller Sea Lion (Eumetopias jubatus) (a) Alaska rookeries...

  8. 50 CFR 226.201 - Critical habitat for Hawaiian monk seals.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Critical habitat for Hawaiian monk seals... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.201 Critical habitat for Hawaiian monk seals. Hawaiian Monk Seal (Monachus schauinslandi) All beach areas, sand...

  9. Benthic habitat map of the U.S. Coral Reef Task Force Watershed Partnership Initiative Kā'anapali priority study area and the State of Hawai'i Kahekili Herbivore Fisheries Management Area, west-central Maui, Hawai'i

    USGS Publications Warehouse

    Cochran, Susan A.; Gibbs, Ann E.; White, Darla J.

    2014-01-01

    Nearshore areas off of west-central Maui, Hawai‘i, once dominated by abundant coral coverage, now are characterized by an increased abundance of turf algae and macroalgae. In an effort to improve the health and resilience of the coral reef system, the Kahekili Herbivore Fisheries Management Area was established by the State of Hawai‘i, and the U.S. Coral Reef Task Force selected the Kā‘anapali region as a priority study area. To support these efforts, the U.S. Geological survey mapped nearly 5 km2 of sea floor from the shoreline to water depths of about 30 m. Unconsolidated sediment (predominantly sand) constitutes 65 percent of the sea floor in the mapped area. Reef and other hardbottom potentially available for coral recruitments constitutes 35 percent of the mapped area. Of this potentially available hardbottom, only 51 percent is covered with a minimum of 10 percent coral, and most is found between 5 and 10 m water depth.

  10. Rebuilding global fisheries.

    PubMed

    Worm, Boris; Hilborn, Ray; Baum, Julia K; Branch, Trevor A; Collie, Jeremy S; Costello, Christopher; Fogarty, Michael J; Fulton, Elizabeth A; Hutchings, Jeffrey A; Jennings, Simon; Jensen, Olaf P; Lotze, Heike K; Mace, Pamela M; McClanahan, Tim R; Minto, Cóilín; Palumbi, Stephen R; Parma, Ana M; Ricard, Daniel; Rosenberg, Andrew A; Watson, Reg; Zeller, Dirk

    2009-07-31

    After a long history of overexploitation, increasing efforts to restore marine ecosystems and rebuild fisheries are under way. Here, we analyze current trends from a fisheries and conservation perspective. In 5 of 10 well-studied ecosystems, the average exploitation rate has recently declined and is now at or below the rate predicted to achieve maximum sustainable yield for seven systems. Yet 63% of assessed fish stocks worldwide still require rebuilding, and even lower exploitation rates are needed to reverse the collapse of vulnerable species. Combined fisheries and conservation objectives can be achieved by merging diverse management actions, including catch restrictions, gear modification, and closed areas, depending on local context. Impacts of international fleets and the lack of alternatives to fishing complicate prospects for rebuilding fisheries in many poorer regions, highlighting the need for a global perspective on rebuilding marine resources.

  11. 75 FR 34092 - Atlantic Coastal Fisheries Cooperative Management Act Provisions; Weakfish Fishery

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-16

    ... National Oceanic and Atmospheric Administration 50 CFR Part 697 RIN 0648-AY41 Atlantic Coastal Fisheries Cooperative Management Act Provisions; Weakfish Fishery AGENCY: National Marine Fisheries Service (NMFS... States Marine Fisheries Commission's (Commission) Interstate Fishery Management Plan (ISFMP) for...

  12. Tradeoffs between fisheries harvest and the resilience of coral reefs

    PubMed Central

    Bruggemann, J. Henrich; Luckhurst, Brian E.; Mumby, Peter J.

    2016-01-01

    Many countries are legally obliged to embrace ecosystem-based approaches to fisheries management. Reductions in bycatch and physical habitat damage are now commonplace, but mitigating more sophisticated impacts associated with the ecological functions of target fisheries species are in their infancy. Here we model the impacts of a parrotfish fishery on the future state and resilience of Caribbean coral reefs, enabling us to view the tradeoff between harvest and ecosystem health. We find that the implementation of a simple and enforceable size restriction of >30 cm provides a win:win outcome in the short term, delivering both ecological and fisheries benefits and leading to increased yield and greater coral recovery rate for a given harvest rate. However, maintaining resilient coral reefs even until 2030 requires the addition of harvest limitations (<10% of virgin fishable biomass) to cope with a changing climate and induced coral disturbances, even in reefs that are relatively healthy today. Managing parrotfish is not a panacea for protecting coral reefs but can play a role in sustaining the health of reefs and high-quality habitat for reef fisheries. PMID:27044106

  13. Tradeoffs between fisheries harvest and the resilience of coral reefs.

    PubMed

    Bozec, Yves-Marie; O'Farrell, Shay; Bruggemann, J Henrich; Luckhurst, Brian E; Mumby, Peter J

    2016-04-19

    Many countries are legally obliged to embrace ecosystem-based approaches to fisheries management. Reductions in bycatch and physical habitat damage are now commonplace, but mitigating more sophisticated impacts associated with the ecological functions of target fisheries species are in their infancy. Here we model the impacts of a parrotfish fishery on the future state and resilience of Caribbean coral reefs, enabling us to view the tradeoff between harvest and ecosystem health. We find that the implementation of a simple and enforceable size restriction of >30 cm provides a win:win outcome in the short term, delivering both ecological and fisheries benefits and leading to increased yield and greater coral recovery rate for a given harvest rate. However, maintaining resilient coral reefs even until 2030 requires the addition of harvest limitations (<10% of virgin fishable biomass) to cope with a changing climate and induced coral disturbances, even in reefs that are relatively healthy today. Managing parrotfish is not a panacea for protecting coral reefs but can play a role in sustaining the health of reefs and high-quality habitat for reef fisheries.

  14. Marine managed areas and associated fisheries in the US Caribbean.

    PubMed

    Schärer-Umpierre, Michelle T; Mateos-Molina, Daniel; Appeldoorn, Richard; Bejarano, Ivonne; Hernández-Delgado, Edwin A; Nemeth, Richard S; Nemeth, Michael I; Valdés-Pizzini, Manuel; Smith, Tyler B

    2014-01-01

    The marine managed areas (MMAs) of the U.S. Caribbean are summarized and specific data-rich cases are examined to determine their impact upon fisheries management in the region. In this region, the productivity and connectivity of benthic habitats such as mangroves, seagrass and coral reefs is essential for many species targeted by fisheries. A minority of the 39 MMAs covering over 4000km(2) serve any detectable management or conservation function due to deficiencies in the design, objectives, compliance or enforcement. Fifty percent of the area within MMA boundaries had no-take regulations in the U.S. Virgin Islands, while Puerto Rico only had 3%. Six case studies are compared and contrasted to better understand the potential of these MMAs for fisheries management. Signs of success were associated with including sufficient areas of essential fish habitat (nursery, spawning and migration corridors), year-round no-take regulations, enforcement and isolation. These criteria have been identified as important in the conservation of marine resources, but little has been done to modify the way MMAs are designated and implemented in the region. Site-specific monitoring to measure the effects of these MMAs is needed to demonstrate the benefits to fisheries and gain local support for a greater use as a fisheries management tool.

  15. Habitat automation

    NASA Technical Reports Server (NTRS)

    Swab, Rodney E.

    1992-01-01

    A habitat, on either the surface of the Moon or Mars, will be designed and built with the proven technologies of that day. These technologies will be mature and readily available to the habitat designer. We believe an acceleration of the normal pace of automation would allow a habitat to be safer and more easily maintained than would be the case otherwise. This document examines the operation of a habitat and describes elements of that operation which may benefit from an increased use of automation. Research topics within the automation realm are then defined and discussed with respect to the role they can have in the design of the habitat. Problems associated with the integration of advanced technologies into real-world projects at NASA are also addressed.

  16. Rapid Global Expansion of Invertebrate Fisheries: Trends, Drivers, and Ecosystem Effects

    PubMed Central

    Anderson, Sean C.; Mills Flemming, Joanna; Watson, Reg; Lotze, Heike K.

    2011-01-01

    Background Worldwide, finfish fisheries are receiving increasing assessment and regulation, slowly leading to more sustainable exploitation and rebuilding. In their wake, invertebrate fisheries are rapidly expanding with little scientific scrutiny despite increasing socio-economic importance. Methods and Findings We provide the first global evaluation of the trends, drivers, and population and ecosystem consequences of invertebrate fisheries based on a global catch database in combination with taxa-specific reviews. We also develop new methodologies to quantify temporal and spatial trends in resource status and fishery development. Since 1950, global invertebrate catches have increased 6-fold with 1.5 times more countries fishing and double the taxa reported. By 2004, 34% of invertebrate fisheries were over-exploited, collapsed, or closed. New fisheries have developed increasingly rapidly, with a decrease of 6 years (3 years) in time to peak from the 1950s to 1990s. Moreover, some fisheries have expanded further and further away from their driving market, encompassing a global fishery by the 1990s. 71% of taxa (53% of catches) are harvested with habitat-destructive gear, and many provide important ecosystem functions including habitat, filtration, and grazing. Conclusions Our findings suggest that invertebrate species, which form an important component of the basis of marine food webs, are increasingly exploited with limited stock and ecosystem-impact assessments, and enhanced management attention is needed to avoid negative consequences for ocean ecosystems and human well-being. PMID:21408090

  17. Rapid global expansion of invertebrate fisheries: trends, drivers, and ecosystem effects.

    PubMed

    Anderson, Sean C; Flemming, Joanna Mills; Watson, Reg; Lotze, Heike K

    2011-03-08

    Worldwide, finfish fisheries are receiving increasing assessment and regulation, slowly leading to more sustainable exploitation and rebuilding. In their wake, invertebrate fisheries are rapidly expanding with little scientific scrutiny despite increasing socio-economic importance. We provide the first global evaluation of the trends, drivers, and population and ecosystem consequences of invertebrate fisheries based on a global catch database in combination with taxa-specific reviews. We also develop new methodologies to quantify temporal and spatial trends in resource status and fishery development. Since 1950, global invertebrate catches have increased 6-fold with 1.5 times more countries fishing and double the taxa reported. By 2004, 34% of invertebrate fisheries were over-exploited, collapsed, or closed. New fisheries have developed increasingly rapidly, with a decrease of 6 years (3 years) in time to peak from the 1950s to 1990s. Moreover, some fisheries have expanded further and further away from their driving market, encompassing a global fishery by the 1990s. 71% of taxa (53% of catches) are harvested with habitat-destructive gear, and many provide important ecosystem functions including habitat, filtration, and grazing. Our findings suggest that invertebrate species, which form an important component of the basis of marine food webs, are increasingly exploited with limited stock and ecosystem-impact assessments, and enhanced management attention is needed to avoid negative consequences for ocean ecosystems and human well-being.

  18. 50 CFR 300.106 - Exploratory fisheries.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 11 2012-10-01 2012-10-01 false Exploratory fisheries. 300.106 Section 300.106 Wildlife and Fisheries INTERNATIONAL FISHING AND RELATED ACTIVITIES INTERNATIONAL FISHERIES REGULATIONS Antarctic Marine Living Resources § 300.106 Exploratory fisheries. (a) An exploratory fishery,...

  19. 50 CFR 300.106 - Exploratory fisheries.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Exploratory fisheries. 300.106 Section 300.106 Wildlife and Fisheries INTERNATIONAL FISHING AND RELATED ACTIVITIES INTERNATIONAL FISHERIES REGULATIONS Antarctic Marine Living Resources § 300.106 Exploratory fisheries. (a) An exploratory fishery,...

  20. 50 CFR 300.106 - Exploratory fisheries.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 11 2014-10-01 2014-10-01 false Exploratory fisheries. 300.106 Section 300.106 Wildlife and Fisheries INTERNATIONAL FISHING AND RELATED ACTIVITIES INTERNATIONAL FISHERIES REGULATIONS Antarctic Marine Living Resources § 300.106 Exploratory fisheries. (a) An exploratory fishery,...

  1. 50 CFR 300.106 - Exploratory fisheries.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Exploratory fisheries. 300.106 Section 300.106 Wildlife and Fisheries INTERNATIONAL FISHING AND RELATED ACTIVITIES INTERNATIONAL FISHERIES REGULATIONS Antarctic Marine Living Resources § 300.106 Exploratory fisheries. (a) An exploratory fishery,...

  2. 50 CFR 300.106 - Exploratory fisheries.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 11 2013-10-01 2013-10-01 false Exploratory fisheries. 300.106 Section 300.106 Wildlife and Fisheries INTERNATIONAL FISHING AND RELATED ACTIVITIES INTERNATIONAL FISHERIES REGULATIONS Antarctic Marine Living Resources § 300.106 Exploratory fisheries. (a) An exploratory fishery,...

  3. Inventory management.

    PubMed

    Devine, D V; Sher, G D; Reesink, H W; Panzer, S; Hetzel, P A S; Wong, J K; Horvath, M; Leitner, G C; Schennach, H; Nussbaumer, W; Genoe, K; Cioffi, J M; Givisiez, F N; Rogerson, M; Howe, D; Delage, G; Sarappa, C; Charbonneau; Fu, Y; Sarlija, D; Vuk, T; Strauss Patko, M; Balija, M; Jukić, I; Ali, A; Auvinen, M-K; Jaakonsalo, E; Cazenave, J-P; Waller, C; Kientz, D; David, B; Walther-Wenke, G; Heiden, M; Lin, C K; Tsoi, W C; Lee, C K; Barotine-Toth, K; Sawant, R B; Murphy, W; Quirke, B; Bowler, P; Shinar, E; Yahalom, V; Aprili, G; Piccoli, P; Gandini, G; Tadokaro, K; Nadarajan, V S; de Kort, W; Jansen, N; Flanagan, P; Forsberg, P-O; Hervig, T; Letowska, M; Lachert, E; Dudziak, K; Antoniewicz-Papis, J; de Olim, G; Nascimento, F; Hindawi, S; Teo, D; Reddy, R; Scholtz, J; Swanevelder, R; Rovira, L P; Sauleda, S; Carasa, M A V; Vaquero, M P; Ania, M A; Gulliksson, H; Holdsworth, S; Cotton, S; Howell, C; Baldwin, C; Cusick, R M; Geele, G A; Paden, C; McEvoy, P; Gottschall, J L; McLaughlin, L S; Benjamin, R J; Eder, A; Draper, N L; AuBuchon, J P; León de González, G

    2010-04-01

    A critical aspect of blood transfusion is the timely provision of high quality blood products. This task remains a significant challenge for many blood services and blood systems reflecting the difficulty of balancing the recruitment of sufficient donors, the optimal utilization of the donor's gift, the increasing safety related restrictions on blood donation, a growing menu of specialized blood products and an ever-growing imperative to increase the efficiency of blood product provision from a cost perspective. As our industry now faces questions about our standard practices including whether or not the age of blood has a negative impact on recipients, it is timely to take a look at our collective inventory management practices. This International Forum represents an effort to get a snap shot of inventory management practices around the world, and to understand the range of different products provided for patients. In addition to sharing current inventory management practices, this Forum is intended to foster an exchange of ideas around where we see our field moving with respect to various issues including specialty products, new technologies, and reducing recipient risk from blood transfusion products.

  4. Natural Propagation and Habitat Improvement, Volume 1, Oregon, 1986 Final and Annual Reports.

    SciTech Connect

    Stuart, Amy

    1987-01-01

    This report describes activities implemented for fisheries habitat improvement work on priority drainages in the Clackamas and Hood River sub-basins. Separate abstracts have been prepared for the reports on individual projects. (ACR)

  5. Natural Propagation and Habitat Improvement, Volume I, Oregon, 1984 Final and Annual Reports.

    SciTech Connect

    Miller, Rod

    1986-02-01

    This volume contains reports on habitat improvement and fisheries enhancement projects conducted in the following subbasins: (1) Clackamas River; (2) Hood River; :(3) Deschutes River; (4) John Day River; (5) Umatilla River; and (6) Grande Ronde River. (ACR)

  6. 50 CFR 17.95 - Critical habitat-fish and wildlife. (Continued)

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 5 2014-10-01 2014-10-01 false Critical habitat-fish and wildlife. (Continued) 17.95 Section 17.95 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS...

  7. 50 CFR 17.95 - Critical habitat-fish and wildlife. (Continued)

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 3 2010-10-01 2010-10-01 false Critical habitat-fish and wildlife. (Continued) 17.95 Section 17.95 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS...

  8. 50 CFR 17.95 - Critical habitat-fish and wildlife. (Continued)

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 5 2013-10-01 2013-10-01 false Critical habitat-fish and wildlife. (Continued) 17.95 Section 17.95 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS...

  9. 50 CFR 17.95 - Critical habitat-fish and wildlife. (Continued)

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 4 2011-10-01 2011-10-01 false Critical habitat-fish and wildlife. (Continued) 17.95 Section 17.95 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS...

  10. 50 CFR 17.95 - Critical habitat-fish and wildlife. (Continued)

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 5 2012-10-01 2012-10-01 false Critical habitat-fish and wildlife. (Continued) 17.95 Section 17.95 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS...

  11. 50 CFR 17.95 - Critical habitat-fish and wildlife. (Continued)

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 3 2014-10-01 2014-10-01 false Critical habitat-fish and wildlife. (Continued) 17.95 Section 17.95 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS...

  12. 50 CFR 17.95 - Critical habitat-fish and wildlife. (Continued)

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 3 2013-10-01 2013-10-01 false Critical habitat-fish and wildlife. (Continued) 17.95 Section 17.95 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS ...

  13. 50 CFR 17.95 - Critical habitat-fish and wildlife. (Continued)

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 3 2012-10-01 2012-10-01 false Critical habitat-fish and wildlife. (Continued) 17.95 Section 17.95 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS ...

  14. 50 CFR 17.95 - Critical habitat-fish and wildlife. (Continued)

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 3 2011-10-01 2011-10-01 false Critical habitat-fish and wildlife. (Continued) 17.95 Section 17.95 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS ...

  15. 50 CFR 17.95 - Critical habitat-fish and wildlife.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 2 2010-10-01 2010-10-01 false Critical habitat-fish and wildlife. 17.95 Section 17.95 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS (CONTINUED)...

  16. 50 CFR 17.95 - Critical habitat-fish and wildlife.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 2 2012-10-01 2012-10-01 false Critical habitat-fish and wildlife. 17.95 Section 17.95 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS (CONTINUED)...

  17. 50 CFR 17.95 - Critical habitat-fish and wildlife.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 2 2011-10-01 2011-10-01 false Critical habitat-fish and wildlife. 17.95 Section 17.95 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS (CONTINUED)...

  18. 50 CFR 17.95 - Critical habitat-fish and wildlife.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 2 2013-10-01 2013-10-01 false Critical habitat-fish and wildlife. 17.95 Section 17.95 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS (CONTINUED)...

  19. 50 CFR 17.95 - Critical habitat-fish and wildlife.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 2 2014-10-01 2014-10-01 false Critical habitat-fish and wildlife. 17.95 Section 17.95 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS (CONTINUED)...

  20. 50 CFR 17.95 - Critical habitat-fish and wildlife. (Continued)

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 4 2014-10-01 2014-10-01 false Critical habitat-fish and wildlife. (Continued) 17.95 Section 17.95 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS ...

  1. 50 CFR 17.95 - Critical habitat-fish and wildlife. (Continued)

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 4 2012-10-01 2012-10-01 false Critical habitat-fish and wildlife. (Continued) 17.95 Section 17.95 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS ...

  2. 50 CFR 17.95 - Critical habitat-fish and wildlife. (Continued)

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 4 2013-10-01 2013-10-01 false Critical habitat-fish and wildlife. (Continued) 17.95 Section 17.95 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS ...

  3. Toward Darwinian fisheries management

    PubMed Central

    Dunlop, Erin S; Enberg, Katja; Jørgensen, Christian; Heino, Mikko

    2009-01-01

    There is increasing evidence that fishing may cause rapid contemporary evolution in freshwater and marine fish populations. This has led to growing concern about the possible consequences such evolutionary change might have for aquatic ecosystems and the utility of those ecosystems to society. This special issue contains contributions from a symposium on fisheries-induced evolution held at the American Fisheries Society Annual Meeting in August 2008. Contributions include primary studies and reviews of field-based and experimental evidence, and several theoretical modeling studies advancing life-history theory and investigating potential management options. In this introduction we review the state of research in the field, discuss current controversies, and identify contributions made by the papers in this issue to the knowledge of fisheries-induced evolution. We end by suggesting directions for future research. PMID:25567878

  4. The Patagonian toothfish: biology, ecology and fishery.

    PubMed

    Collins, Martin A; Brickle, Paul; Brown, Judith; Belchier, Mark

    2010-01-01

    Patagonian toothfish (Dissostichus eleginoides) is a large notothenioid fish that supports valuable fisheries throughout the Southern Ocean. D. eleginoides are found on the southern shelves and slopes of South America and around the sub-Antarctic islands of the Southern Ocean. Patagonian toothfish are a long-lived species (>50 years), which initially grow rapidly on the shallow shelf areas, before undertaking an ontogenetic migration into deeper water. Although they are active predators and scavengers, there is no evidence of large-scale geographic migrations, and studies using genetics, biochemistry, parasite fauna and tagging indicate a high degree of isolation between populations in the Indian Ocean, South Georgia and the Patagonian Shelf. Patagonian toothfish spawn in deep water (ca. 1000 m) during the austral winter, producing pelagic eggs and larvae. Larvae switch to a demersal habitat at around 100 mm (1-year-old) and inhabit relatively shallow water (<300 m) until 6-7 years of age, when they begin a gradual migration into deeper water. As juveniles in shallow water, toothfish are primarily piscivorous, consuming the most abundant suitably sized local prey. With increasing size and habitat depth, the diet diversifies and includes more scavenging. Toothfish have weakly mineralised skeletons and a high fat content in muscle, which helps neutral buoyancy, but limits swimming capacity. Toothfish generally swim with labriform motion, but are capable of more rapid sub-carangiform swimming when startled. Toothfish were first caught as a by-catch (as juveniles) in shallow trawl fisheries, but following the development of deep water longlining, fisheries rapidly developed throughout the Southern Ocean. The initial rapid expansion of the fishery, which led to a peak of over 40,000 tonnes in reported landings in 1995, was accompanied by problems of bird by-catch and overexploitation as a consequence of illegal, unreported and unregulated fishing (IUU). These problems

  5. Salmon River Habitat Enhancement, 1984 Annual Report.

    SciTech Connect

    Konopacky, Richard C.

    1986-04-01

    This report has four volumes: a Tribal project annual report (Part 1) and three reports (Parts 2, 3, and 4) prepared for the Tribes by their engineering subcontractor. The Tribal project annual report contains reports for four subprojects within Project 83-359. Subproject I involved habitat and fish inventories in Bear Valley Creek, Valley County, Idaho that will be used to evaluate responses to ongoing habitat enhancement. Subproject II is the coordination/planning activities of the Project Leader in relation to other BPA-funded habitat enhancement projects that have or will occur within the traditional Treaty (Fort Bridger Treaty of 1868) fishing areas of the Shoshone-Bannock Tribes, Fort Hall Reservation, Idaho. Subproject III involved habitat and fish inventories (pretreatment) and habitat problem identification on the Yankee Fork of the Salmon River (including Jordan Creek). Subproject IV during 1985 involved habitat problem identification in the East Fork of the Salmon River and habitat and fish inventories (pretreatment) in Herd Creek, a tributary to the East Fork.

  6. 50 CFR 226.215 - Critical habitat for the North Pacific Right Whale (Eubalaena japonica).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Critical habitat for the North Pacific... DESIGNATED CRITICAL HABITAT § 226.215 Critical habitat for the North Pacific Right Whale (Eubalaena japonica... 56° 45′ N/153° 00′ W 57° 03′ N/153° 00′ W. (d) Maps of critical habitat for the North Pacific right...

  7. 50 CFR 226.215 - Critical habitat for the North Pacific Right Whale (Eubalaena japonica).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Critical habitat for the North Pacific... DESIGNATED CRITICAL HABITAT § 226.215 Critical habitat for the North Pacific Right Whale (Eubalaena japonica... 56° 45′ N/153° 00′ W 57° 03′ N/153° 00′ W. (d) Maps of critical habitat for the North Pacific right...

  8. 50 CFR 226.215 - Critical habitat for the North Pacific Right Whale (Eubalaena japonica).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 10 2012-10-01 2012-10-01 false Critical habitat for the North Pacific... DESIGNATED CRITICAL HABITAT § 226.215 Critical habitat for the North Pacific Right Whale (Eubalaena japonica... 56° 45′ N/153° 00′ W 57° 03′ N/153° 00′ W. (d) Maps of critical habitat for the North Pacific right...

  9. No net loss of fish habitat: a review and analysis of habitat compensation in Canada.

    PubMed

    Harper, D J; Quigley, J T

    2005-09-01

    The achievement of No Net Loss (NNL) through habitat compensation has rarely been assessed in Canada. Files relating to 124 Fisheries Act Section 35(2) authorizations issued by Fisheries and Oceans Canada for the harmful alteration, disruption, and destruction of fish habitat (HADD) were collected and reviewed. Data extracted from these files were pooled and analyzed to provide an indication of the types of HADDs that have been authorized in Canada, what habitats have been affected, and what habitat management approaches have been used when compensating for HADDs and monitoring and ensuring the success of the compensation. Determinations regarding the effectiveness of habitat compensation in achieving NNL were made. Impacts to 419,562 m2 of fish habitat from the 124 authorized HADDs were offset by 1,020,388 m2 of compensatory habitat. Eighty percent of the authorizations had compensation ratios (compensation area:HADD area) of 2:1 or less, and 25% of the authorizations had a compensation ratio that was less than 1:1. In-channel and riparian habitat were the most frequently impacted habitats. Urban development and roads and highways resulted in the greatest areal loss of habitat. The compensation option that was most often selected was the creation of in-kind habitat. The mean duration of post-construction monitoring programs was 3.7 years. Determinations of NNL could only be made for 17 authorizations as a result of poor proponent compliance with monitoring requirements and the qualitative assessment procedures used by the monitoring programs. Adequate resources, proper training, and standardized approaches to data management and monitoring programs are required to ensure that the conservation goal of NNL can be achieved in Canada.

  10. Citrus Inventory

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Florida's Charlotte County Property Appraiser is using an aerial color infrared mapping system for inventorying citrus trees for valuation purposes. The ACIR system has significantly reduced the time and manpower required for appraisal. Aerial photographs are taken and interpreted by a video system which makes it possible to detect changes from previous years. Potential problems can be identified. KSC's TU Office has awarded a contract to the Citrus Research and Education Center to adapt a prototype system which would automatically count trees and report totals.

  11. 78 FR 26518 - Fisheries of the Northeastern United States; Northeast Multispecies Fishery; Exempted Fishery for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-07

    ... United States; Northeast Multispecies Fishery; Exempted Fishery for the Spiny Dogfish Fishery in the... (FMP) to allow vessels fishing with a NE Federal spiny dogfish permit to fish in an area east of Cape... and handgear from June through August. This action allows vessels to harvest spiny dogfish in a manner...

  12. 75 FR 17070 - Fisheries in the Western Pacific; Hawaii Bottomfish and Seamount Groundfish Fisheries; Fishery...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-05

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration 50 CFR Part 665 RIN 0648-XU60 Fisheries in the Western Pacific; Hawaii Bottomfish and Seamount Groundfish Fisheries; Fishery Closure AGENCY: National...

  13. Using stable isotopes in mangrove fisheries research--a review and outlook.

    PubMed

    Fry, B; Ewel, K C

    2003-09-01

    Mangrove forests are important coastal wetlands in most of the tropics, but their importance to fisheries is poorly understood. Rationales for conserving these ecosystems are partly based on ideas that mangroves are important to food webs that support fisheries. Here we review use of stable isotopes to test the strength of the mangrove forest-fish connection, suggesting that a dual focus on both food web ecology and habitat use may be most profitable in future studies of this type.

  14. Marine Reserve Targets to Sustain and Rebuild Unregulated Fisheries.

    PubMed

    Krueck, Nils C; Ahmadia, Gabby N; Possingham, Hugh P; Riginos, Cynthia; Treml, Eric A; Mumby, Peter J

    2017-01-01

    Overfishing threatens the sustainability of coastal marine biodiversity, especially in tropical developing countries. To counter this problem, about 200 governments worldwide have committed to protecting 10%-20% of national coastal marine areas. However, associated impacts on fisheries productivity are unclear and could weaken the food security of hundreds of millions of people who depend on diverse and largely unregulated fishing activities. Here, we present a systematic theoretic analysis of the ability of reserves to rebuild fisheries under such complex conditions, and we identify maximum reserve coverages for biodiversity conservation that do not impair long-term fisheries productivity. Our analysis assumes that fishers have no viable alternative to fishing, such that total fishing effort remains constant (at best). We find that realistic reserve networks, which protect 10%-30% of fished habitats in 1-20 km wide reserves, should benefit the long-term productivity of almost any complex fishery. We discover a "rule of thumb" to safeguard against the long-term catch depletion of particular species: individual reserves should export 30% or more of locally produced larvae to adjacent fishing grounds. Specifically on coral reefs, where fishers tend to overexploit species whose dispersal distances as larvae exceed the home ranges of adults, decisions on the size of reserves needed to meet the 30% larval export rule are unlikely to compromise the protection of resident adults. Even achieving the modest Aichi Target 11 of 10% "effective protection" can then help rebuild depleted catch. However, strictly protecting 20%-30% of fished habitats is unlikely to diminish catch even if overfishing is not yet a problem while providing greater potential for biodiversity conservation and fishery rebuilding if overfishing is substantial. These findings are important because they suggest that doubling or tripling the only globally enforced marine reserve target will benefit

  15. Marine Reserve Targets to Sustain and Rebuild Unregulated Fisheries

    PubMed Central

    Krueck, Nils C.; Ahmadia, Gabby N.; Possingham, Hugh P.; Riginos, Cynthia; Treml, Eric A.; Mumby, Peter J.

    2017-01-01

    Overfishing threatens the sustainability of coastal marine biodiversity, especially in tropical developing countries. To counter this problem, about 200 governments worldwide have committed to protecting 10%–20% of national coastal marine areas. However, associated impacts on fisheries productivity are unclear and could weaken the food security of hundreds of millions of people who depend on diverse and largely unregulated fishing activities. Here, we present a systematic theoretic analysis of the ability of reserves to rebuild fisheries under such complex conditions, and we identify maximum reserve coverages for biodiversity conservation that do not impair long-term fisheries productivity. Our analysis assumes that fishers have no viable alternative to fishing, such that total fishing effort remains constant (at best). We find that realistic reserve networks, which protect 10%–30% of fished habitats in 1–20 km wide reserves, should benefit the long-term productivity of almost any complex fishery. We discover a “rule of thumb” to safeguard against the long-term catch depletion of particular species: individual reserves should export 30% or more of locally produced larvae to adjacent fishing grounds. Specifically on coral reefs, where fishers tend to overexploit species whose dispersal distances as larvae exceed the home ranges of adults, decisions on the size of reserves needed to meet the 30% larval export rule are unlikely to compromise the protection of resident adults. Even achieving the modest Aichi Target 11 of 10% “effective protection” can then help rebuild depleted catch. However, strictly protecting 20%–30% of fished habitats is unlikely to diminish catch even if overfishing is not yet a problem while providing greater potential for biodiversity conservation and fishery rebuilding if overfishing is substantial. These findings are important because they suggest that doubling or tripling the only globally enforced marine reserve target will

  16. Mixed responses of tropical Pacific fisheries and aquaculture to climate change

    NASA Astrophysics Data System (ADS)

    Bell, Johann D.; Ganachaud, Alexandre; Gehrke, Peter C.; Griffiths, Shane P.; Hobday, Alistair J.; Hoegh-Guldberg, Ove; Johnson, Johanna E.; Le Borgne, Robert; Lehodey, Patrick; Lough, Janice M.; Matear, Richard J.; Pickering, Timothy D.; Pratchett, Morgan S.; Gupta, Alex Sen; Senina, Inna; Waycott, Michelle

    2013-06-01

    Pacific Island countries have an extraordinary dependence on fisheries and aquaculture. Maintaining the benefits from the sector is a difficult task, now made more complex by climate change. Here we report how changes to the atmosphere-ocean are likely to affect the food webs, habitats and stocks underpinning fisheries and aquaculture across the region. We found winners and losers--tuna are expected to be more abundant in the east and freshwater aquaculture and fisheries are likely to be more productive. Conversely, coral reef fisheries could decrease by 20% by 2050 and coastal aquaculture may be less efficient. We demonstrate how the economic and social implications can be addressed within the sector--tuna and freshwater aquaculture can help support growing populations as coral reefs, coastal fisheries and mariculture decline.

  17. 75 FR 69622 - Request for Comments on the Draft Revision of the Estuary Habitat Restoration Strategy Prepared...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-15

    ... 0648-XA024 Request for Comments on the Draft Revision of the Estuary Habitat Restoration Strategy Prepared by the Estuary Habitat Restoration Council AGENCY: National Marine Fisheries Service (NMFS.... SUMMARY: The National Oceanic and Atmospheric Administration, on behalf of the interagency Estuary Habitat...

  18. 76 FR 39072 - Notice of Availability of a Final Environmental Impact Statement and Final Habitat Conservation Plan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-05

    ... 0648-XA439 Notice of Availability of a Final Environmental Impact Statement and Final Habitat... Statement and Habitat Conservation Plan. SUMMARY: The National Marine Fisheries Service (NMFS) and the U.S... also announce the availability of Kent's Clark Springs Water Supply System Habitat Conservation Plan...

  19. Urban park tree inventories

    Treesearch

    Joe R. McBride; David J. Nowak

    1989-01-01

    A survey of published reports on urban park tree inventories in the United States and the United Kingdom reveal two types of inventories: (1) Tree Location Inventories and (2) Generalized Information Inventories. Tree location inventories permit managers to relocate specific park trees, along with providing individual tree characteristics and condition data. In...

  20. Salmon River Habitat Enhancement. 1990 Annual Report

    SciTech Connect

    Rowe, Mike

    1991-12-01

    The annual report contains three individual subproject sections detailing tribal fisheries work completed during the summer and fall of 1990. Subproject I contains summaries of evaluation/monitoring efforts associated with the Bear Valley Creek, Idaho enhancement project. Subproject II contains an evaluation of the Yankee Fork of the Salmon River habitat enhancement project. Subproject III concerns the East Fork of the Salmon River, Idaho.

  1. An index of reservoir habitat impairment

    USGS Publications Warehouse

    Miranda, L.E.; Hunt, K.M.

    2011-01-01

    Fish habitat impairment resulting from natural and anthropogenic watershed and in-lake processes has in many cases reduced the ability of reservoirs to sustain native fish assemblages and fisheries quality. Rehabilitation of impaired reservoirs is hindered by the lack of a method suitable for scoring impairment status. To address this limitation, an index of reservoir habitat impairment (IRHI) was developed by merging 14 metrics descriptive of common impairment sources, with each metric scored from 0 (no impairment) to 5 (high impairment) by fisheries scientists with local knowledge. With a plausible range of 5 to 25, distribution of the IRHI scores ranged from 5 to 23 over 482 randomly selected reservoirs dispersed throughout the USA. The IRHI reflected five impairment factors including siltation, structural habitat, eutrophication, water regime, and aquatic plants. The factors were weakly related to key reservoir characteristics including reservoir area, depth, age, and usetype, suggesting that common reservoir descriptors are poor predictors of fish habitat impairment. The IRHI is rapid and inexpensive to calculate, provides an easily understood measure of the overall habitat impairment, allows comparison of reservoirs and therefore prioritization of restoration activities, and may be used to track restoration progress. The major limitation of the IRHI is its reliance on unstandardized professional judgment rather than standardized empirical measurements. ?? 2010 US Government.

  2. Fish and Fisheries Ecology.

    PubMed

    Magnuson, John J

    1991-02-01

    My paper on fish and fisheries ecology is offered to demonstrate a rich blending of applied and fundamental ecology, achieved by the intersections among fishery science, ichthyology, and ecology. The example, while specific, parallels practices and opportunities available in other areas of applied ecology. The emergence of fish and fisheries ecology as a discipline is evidence by such recent textbooks as Fisheries ecology by Pitcher and Hart (1982) and Ecology of teleost fishes by Wootton (1990). The ecology relevant to fish and fisheries includes not only marine and freshwater ecology, oceanography, and limnology, but also terrestrial study. Early work in fish and fisheries ecology came from Stephen A. Forbes > 100 yr ago in his books On some interactions of organisms (Forbes 1880) and The lake as a microcosm (Forbes 1887). These constitute one of the earliest conceptualizations of an ecosystem. By 1932 E. S. Russell concluded that fishery research was a study in marine ecology. I give examples of applications from six different categories of ecology. (1) Physiological ecology: The F. E. J. Fry school of fish physiology developed the concepts of temperature as a lethal, controlling and directive factor. More than 40 yr later, this knowledge is being combined with G. E. Hutchinson's concept of an n-dimensional niche to analyze potential influences of global climate warming on fishes. (2) Behavioral ecology: A. D. Hasler and students formulated and tested the hypothesis of olfactory imprinting as the mechanism by which Pacific salmon "home" to their natal spawning streams. Applications to reestablish salmon runs are as important to Hasler as the original scientific discovery; this is evident in his proposed "Salmon for Peace" for the river bounding USSR and China. (3) Population ecology: The realization that reproductive success of fishes depends more on larval mortality than on egg production emerged from the ideas of J. Hjort (1914). To this day inconsistencies

  3. 78 FR 65615 - Fisheries of the South Atlantic; South Atlantic Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-01

    ... marine protected areas to protect speckled hind and warsaw grouper; and Regulatory Amendment 16 to... Atlantic Fishery Management Council; Public Meeting AGENCY: National Marine Fisheries Service (NMFS..., Acting Deputy Director, Office of Sustainable Fisheries, National Marine Fisheries Service. BILLING CODE...

  4. 78 FR 64199 - Fisheries of the South Atlantic; South Atlantic Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-28

    .... SUMMARY: The South Atlantic Fishery Management Council's (Council) Scientific and Statistical Committee... Atlantic Fishery Management Council; Public Meeting AGENCY: National Marine Fisheries Service (NMFS...: (800) 445-8667 or (843) 308- 9330. Council address: South Atlantic Fishery Management Council, 4055...

  5. 77 FR 58969 - Fisheries of the Northeastern United States; Bluefish Fishery; Quota Transfer

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-25

    ... National Oceanic and Atmospheric Administration 50 CFR Part 648 RIN 0648-XC235 Fisheries of the Northeastern United States; Bluefish Fishery; Quota Transfer AGENCY: National Marine Fisheries Service (NMFS..., 2012. FOR FURTHER INFORMATION CONTACT: Carly Bari, Fishery Management Specialist,...

  6. 78 FR 45896 - Fisheries of the Northeastern United States; Northeast Multispecies Fishery; Trimester Closure...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-30

    ... National Oceanic and Atmospheric Administration 50 CFR Part 648 RIN 0648-XC782 Fisheries of the Northeastern United States; Northeast Multispecies Fishery; Trimester Closure for the Common Pool Fishery AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration...

  7. 75 FR 33242 - Atlantic Coastal Fisheries Cooperative Management Act Provisions; Weakfish Fishery

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-11

    ... National Oceanic and Atmospheric Administration RIN 0648-XW45 Atlantic Coastal Fisheries Cooperative Management Act Provisions; Weakfish Fishery AGENCY: National Marine Fisheries Service (NMFS), National.... SUMMARY: On May 6, 2010, the Atlantic States Marine Fisheries Commission (Commission) found the State...

  8. 78 FR 51131 - Fisheries of the Northeastern United States; Atlantic Coastal Fisheries Cooperative Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-20

    ... National Oceanic and Atmospheric Administration 50 CFR Part 697 RIN 0648-BD45 Fisheries of the Northeastern United States; Atlantic Coastal Fisheries Cooperative Management Act Provisions; American Lobster Fishery AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration...

  9. 76 FR 74009 - Fisheries of the Northeastern United States; Bluefish Fishery; Quota Transfer

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-30

    ... National Oceanic and Atmospheric Administration 50 CFR Part 648 RIN 0648-XA825 Fisheries of the Northeastern United States; Bluefish Fishery; Quota Transfer AGENCY: National Marine Fisheries Service (NMFS...: Carly Bari, Fishery Management Specialist, (978) 281-9224. SUPPLEMENTARY INFORMATION:...

  10. Transitional states in marine fisheries: adapting to predicted global change.

    PubMed

    MacNeil, M Aaron; Graham, Nicholas A J; Cinner, Joshua E; Dulvy, Nicholas K; Loring, Philip A; Jennings, Simon; Polunin, Nicholas V C; Fisk, Aaron T; McClanahan, Tim R

    2010-11-27

    Global climate change has the potential to substantially alter the production and community structure of marine fisheries and modify the ongoing impacts of fishing. Fish community composition is already changing in some tropical, temperate and polar ecosystems, where local combinations of warming trends and higher environmental variation anticipate the changes likely to occur more widely over coming decades. Using case studies from the Western Indian Ocean, the North Sea and the Bering Sea, we contextualize the direct and indirect effects of climate change on production and biodiversity and, in turn, on the social and economic aspects of marine fisheries. Climate warming is expected to lead to (i) yield and species losses in tropical reef fisheries, driven primarily by habitat loss; (ii) community turnover in temperate fisheries, owing to the arrival and increasing dominance of warm-water species as well as the reduced dominance and departure of cold-water species; and (iii) increased diversity and yield in Arctic fisheries, arising from invasions of southern species and increased primary production resulting from ice-free summer conditions. How societies deal with such changes will depend largely on their capacity to adapt--to plan and implement effective responses to change--a process heavily influenced by social, economic, political and cultural conditions.

  11. Transitional states in marine fisheries: adapting to predicted global change

    PubMed Central

    MacNeil, M. Aaron; Graham, Nicholas A. J.; Cinner, Joshua E.; Dulvy, Nicholas K.; Loring, Philip A.; Jennings, Simon; Polunin, Nicholas V. C.; Fisk, Aaron T.; McClanahan, Tim R.

    2010-01-01

    Global climate change has the potential to substantially alter the production and community structure of marine fisheries and modify the ongoing impacts of fishing. Fish community composition is already changing in some tropical, temperate and polar ecosystems, where local combinations of warming trends and higher environmental variation anticipate the changes likely to occur more widely over coming decades. Using case studies from the Western Indian Ocean, the North Sea and the Bering Sea, we contextualize the direct and indirect effects of climate change on production and biodiversity and, in turn, on the social and economic aspects of marine fisheries. Climate warming is expected to lead to (i) yield and species losses in tropical reef fisheries, driven primarily by habitat loss; (ii) community turnover in temperate fisheries, owing to the arrival and increasing dominance of warm-water species as well as the reduced dominance and departure of cold-water species; and (iii) increased diversity and yield in Arctic fisheries, arising from invasions of southern species and increased primary production resulting from ice-free summer conditions. How societies deal with such changes will depend largely on their capacity to adapt—to plan and implement effective responses to change—a process heavily influenced by social, economic, political and cultural conditions. PMID:20980322

  12. 50 CFR 259.32 - Conditional fisheries.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Conditional fisheries. 259.32 Section 259.32 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE AID TO FISHERIES CAPITAL CONSTRUCTION FUND Capital Construction...

  13. 50 CFR 600.110 - Intercouncil fisheries.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 12 2014-10-01 2014-10-01 false Intercouncil fisheries. 600.110 Section 600.110 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MAGNUSON-STEVENS ACT PROVISIONS Regional Fishery Management Councils § 600...

  14. 50 CFR 600.110 - Intercouncil fisheries.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 12 2012-10-01 2012-10-01 false Intercouncil fisheries. 600.110 Section 600.110 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MAGNUSON-STEVENS ACT PROVISIONS Regional Fishery Management Councils § 600...

  15. 77 FR 3233 - Marine Fisheries Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-23

    ... RIN 0648-XA949 Marine Fisheries Advisory Committee AGENCY: National Marine Fisheries Service (NMFS... Fisheries Advisory Committee (MAFAC). The members will discuss and provide advice on issues outlined in the... Fisheries, National Marine Fisheries Service. [FR Doc. 2012-1263 Filed 1-20-12; 8:45 am] BILLING CODE...

  16. 50 CFR 259.32 - Conditional fisheries.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 11 2013-10-01 2013-10-01 false Conditional fisheries. 259.32 Section 259.32 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE AID TO FISHERIES CAPITAL CONSTRUCTION FUND Capital Construction...

  17. 50 CFR 600.110 - Intercouncil fisheries.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 12 2013-10-01 2013-10-01 false Intercouncil fisheries. 600.110 Section 600.110 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MAGNUSON-STEVENS ACT PROVISIONS Regional Fishery Management Councils §...

  18. The Geomorphic Road Analysis and Inventory Package (GRAIP) Volume 1: Data Collection Method

    Treesearch

    Thomas A. Black; Richard M. Cissel; Charles H. Luce

    2012-01-01

    An important first step in managing forest roads for improved water quality and aquatic habitat is the performance of an inventory. The Geomorphic Roads Analysis and Inventory Package (GRAIP) was developed as a tool for making a comprehensive inventory and analysis of the effects of forest roads on watersheds. This manual describes the data collection and process of a...

  19. The Geomorphic Road Analysis and Inventory Package (GRAIP) Volume 2: Office Procedures

    Treesearch

    Richard M. Cissel; Thomas A. Black; Kimberly A. T. Schreuders; Ajay Prasad; Charles H. Luce; David G. Tarboton; Nathan A. Nelson

    2012-01-01

    An important first step in managing forest roads for improved water quality and aquatic habitat is the performance of an inventory. The Geomorphic Roads Analysis and Inventory Package (GRAIP) was developed as a tool for making a comprehensive inventory and analysis of the effects of forest roads on watersheds. This manual describes the data analysis and process of a...

  20. Small-Scale Fisheries Bycatch Jeopardizes Endangered Pacific Loggerhead Turtles

    PubMed Central

    Peckham, S. Hoyt; Diaz, David Maldonado; Walli, Andreas; Ruiz, Georgita; Crowder, Larry B.; Nichols, Wallace J.

    2007-01-01

    Background Although bycatch of industrial-scale fisheries can cause declines in migratory megafauna including seabirds, marine mammals, and sea turtles, the impacts of small-scale fisheries have been largely overlooked. Small-scale fisheries occur in coastal waters worldwide, employing over 99% of the world's 51 million fishers. New telemetry data reveal that migratory megafauna frequent coastal habitats well within the range of small-scale fisheries, potentially producing high bycatch. These fisheries occur primarily in developing nations, and their documentation and management are limited or non-existent, precluding evaluation of their impacts on non-target megafauna. Principal Findings/Methodology 30 North Pacific loggerhead turtles that we satellite-tracked from 1996–2005 ranged oceanwide, but juveniles spent 70% of their time at a high use area coincident with small-scale fisheries in Baja California Sur, Mexico (BCS). We assessed loggerhead bycatch mortality in this area by partnering with local fishers to 1) observe two small-scale fleets that operated closest to the high use area and 2) through shoreline surveys for discarded carcasses. Minimum annual bycatch mortality in just these two fleets at the high use area exceeded 1000 loggerheads year−1, rivaling that of oceanwide industrial-scale fisheries, and threatening the persistence of this critically endangered population. As a result of fisher participation in this study and a bycatch awareness campaign, a consortium of local fishers and other citizens are working to eliminate their bycatch and to establish a national loggerhead refuge. Conclusions/Significance Because of the overlap of ubiquitous small-scale fisheries with newly documented high-use areas in coastal waters worldwide, our case study suggests that small-scale fisheries may be among the greatest current threats to non-target megafauna. Future research is urgently needed to quantify small-scale fisheries bycatch worldwide. Localizing

  1. WILDLIFE HABITAT

    EPA Science Inventory

    Habitat change statistics were used to estimate the effects of alternative future scenarios for agriculture on non-fish vertebrate diversity in Iowa farmlands. Study areas were two watersheds in central Iowa of about 50 and 90 square kilometers, respectively. Future scenarios w...

  2. WILDLIFE HABITAT

    EPA Science Inventory

    Habitat change statistics were used to estimate the effects of alternative future scenarios for agriculture on non-fish vertebrate diversity in Iowa farmlands. Study areas were two watersheds in central Iowa of about 50 and 90 square kilometers, respectively. Future scenarios w...

  3. Shipboard fisheries management terminals

    NASA Technical Reports Server (NTRS)

    Nagler, R. G.; Sager, E. V.

    1980-01-01

    The needs of the National Marine Fisheries Service (NMGS), National Weather Service, and the U.S. Coast Guard for locational, biological, and environmental data were assessed. The fisheries conservation zones and the yellowfin tuna jurisdiction of the NMFS operates observer programs on foreign and domestic fishing vessels. Data input terminal and data transfer and processing technology are reviewed to establish available capability. A matrix of implementation options is generated to identify the benefits of each option, and preliminary cost estimates are made. Recommendations are made for incremental application of available off the shelf hardware to obtain improved performance and benefits within a well bounded cost. Terminal recommendations are made for three interdependent shipboard units emphasizing: (1) the determination of location and fishing activity; (2) hand held data inputting and formatting in the fishing work areas; and (3) data manipulation, merging, and editing.

  4. A spatially distinct history of the development of california groundfish fisheries.

    PubMed

    Miller, Rebecca R; Field, John C; Santora, Jarrod A; Schroeder, Isaac D; Huff, David D; Key, Meisha; Pearson, Don E; MacCall, Alec D

    2014-01-01

    During the past century, commercial fisheries have expanded from small vessels fishing in shallow, coastal habitats to a broad suite of vessels and gears that fish virtually every marine habitat on the globe. Understanding how fisheries have developed in space and time is critical for interpreting and managing the response of ecosystems to the effects of fishing, however time series of spatially explicit data are typically rare. Recently, the 1933-1968 portion of the commercial catch dataset from the California Department of Fish and Wildlife was recovered and digitized, completing the full historical series for both commercial and recreational datasets from 1933-2010. These unique datasets include landing estimates at a coarse 10 by 10 minute "grid-block" spatial resolution and extends the entire length of coastal California up to 180 kilometers from shore. In this study, we focus on the catch history of groundfish which were mapped for each grid-block using the year at 50% cumulative catch and total historical catch per habitat area. We then constructed generalized linear models to quantify the relationship between spatiotemporal trends in groundfish catches, distance from ports, depth, percentage of days with wind speed over 15 knots, SST and ocean productivity. Our results indicate that over the history of these fisheries, catches have taken place in increasingly deeper habitat, at a greater distance from ports, and in increasingly inclement weather conditions. Understanding spatial development of groundfish fisheries and catches in California are critical for improving population models and for evaluating whether implicit stock assessment model assumptions of relative homogeneity of fisheries removals over time and space are reasonable. This newly reconstructed catch dataset and analysis provides a comprehensive appreciation for the development of groundfish fisheries with respect to commonly assumed trends of global fisheries patterns that are typically

  5. A Spatially Distinct History of the Development of California Groundfish Fisheries

    PubMed Central

    Miller, Rebecca R.; Field, John C.; Santora, Jarrod A.; Schroeder, Isaac D.; Huff, David D.; Key, Meisha; Pearson, Don E.; MacCall, Alec D.

    2014-01-01

    During the past century, commercial fisheries have expanded from small vessels fishing in shallow, coastal habitats to a broad suite of vessels and gears that fish virtually every marine habitat on the globe. Understanding how fisheries have developed in space and time is critical for interpreting and managing the response of ecosystems to the effects of fishing, however time series of spatially explicit data are typically rare. Recently, the 1933–1968 portion of the commercial catch dataset from the California Department of Fish and Wildlife was recovered and digitized, completing the full historical series for both commercial and recreational datasets from 1933–2010. These unique datasets include landing estimates at a coarse 10 by 10 minute “grid-block” spatial resolution and extends the entire length of coastal California up to 180 kilometers from shore. In this study, we focus on the catch history of groundfish which were mapped for each grid-block using the year at 50% cumulative catch and total historical catch per habitat area. We then constructed generalized linear models to quantify the relationship between spatiotemporal trends in groundfish catches, distance from ports, depth, percentage of days with wind speed over 15 knots, SST and ocean productivity. Our results indicate that over the history of these fisheries, catches have taken place in increasingly deeper habitat, at a greater distance from ports, and in increasingly inclement weather conditions. Understanding spatial development of groundfish fisheries and catches in California are critical for improving population models and for evaluating whether implicit stock assessment model assumptions of relative homogeneity of fisheries removals over time and space are reasonable. This newly reconstructed catch dataset and analysis provides a comprehensive appreciation for the development of groundfish fisheries with respect to commonly assumed trends of global fisheries patterns that are

  6. Ecological indicators display reduced variation in North American catch share fisheries.

    PubMed

    Essington, Timothy E

    2010-01-12

    A growing push to implement catch share fishery programs is based partly on the recognition that they may provide stronger incentives for ecological stewardship than conventional fisheries management. Using data on population status, quota compliance, discard rates, use of habitat-damaging gear, and landings for 15 catch share programs in North America, I tested the hypothesis that catch share systems lead to improved ecological stewardship and status of exploited populations. Impacts of catch share programs were measured through comparisons of fisheries with catch shares to fisheries without catch shares or by comparing fisheries before and after catch shares were implemented. The average levels of most indicators were unaffected by catch share implementation: only discard rate, which declined significantly in catch share fisheries, showed a significant response. However, catch share fisheries were distinguished by markedly reduced interannual variability in all indicators, being statistically significant for exploitation rate, landings, discard rate, and the ratio of catch to catch quotas. These impacts of catch shares were common between nations and ocean basins and were independent of the number of years that catch share programs had been in place. These findings suggest that for the indicators examined, the primary effect of catch shares was greater consistency over time. This enhanced consistency could be beneficial to fishery systems and might also be an indication of more effective management.

  7. What is at stake? Status and threats to South China Sea marine fisheries.

    PubMed

    Teh, Louise S L; Witter, Allison; Cheung, William W L; Sumaila, U Rashid; Yin, Xueying

    2017-02-01

    Governance of South China Sea (SCS) fisheries remains weak despite acknowledgement of their widespread overexploitation for the past few decades. This review incorporates unreported fish catches to provide an improved baseline of the current status and societal contribution of SCS marine fisheries, so that the socio-economic and ecological consequences of continued fisheries unsustainability may be understood. Potential fisheries contribution to food and livelihoods include 11-17 million t in fisheries catch and USD 12-22 × 10(9) in fisheries landed value annually in the 2000s, and close to 3 million jobs. However, overfishing has resulted in biodiversity and habitat loss, and altered ecosystem trophic structures to a 'fished down' state. The present situation reiterates the urgency for fisheries policies that simultaneously address multiple political, social, economic, and biological dimensions at regional, national, and local scales. Importantly, improved cooperation between SCS nations, particularly in overcoming territorial disputes, is essential for effective regional fisheries governance.

  8. Chemistry to conservation: using otoliths to advance recreational and commercial fisheries management.

    PubMed

    Carlson, A K; Phelps, Q E; Graeb, B D S

    2017-02-01

    Otolith chemistry is an effective technique for evaluating fish environmental history, but its utility in fisheries management has not been comprehensively examined. Thus, a review of otolith chemistry with emphasis on management applicability is presented. More than 1500 otolith chemistry manuscripts published from 1967 to 2015 are reviewed and descriptive case studies are used to illustrate the utility of otolith chemistry as a fisheries management tool. Otolith chemistry publications span a wide variety of topics (e.g. natal origins, habitat use, movement, stock discrimination and statistical theory) and species in freshwater and marine systems. Despite the broad distribution of manuscripts in a variety of fisheries, environmental and ecological journals, the majority of publications (83%, n = 1264) do not describe implications or applications of otolith chemistry for fisheries management. This information gap is addressed through case studies that illustrate management applications of otolith chemistry. Case studies cover numerous topics (e.g. natal origins, population connectivity, stock enhancement, transgenerational marking, pollution exposure history and invasive species management) in freshwater and marine systems using sport fishes, invasive fishes, endangered fishes and species of commercial and aquaculture importance. Otolith chemistry has diverse implications and applications for fisheries management worldwide. Collaboration among fisheries professionals from academia, government agencies and non-governmental organizations will help bridge the research-management divide and establish otolith chemistry as a fisheries management tool. © 2016 The Fisheries Society of the British Isles.

  9. Ecological indicators display reduced variation in North American catch share fisheries

    PubMed Central

    Essington, Timothy E.

    2009-01-01

    A growing push to implement catch share fishery programs is based partly on the recognition that they may provide stronger incentives for ecological stewardship than conventional fisheries management. Using data on population status, quota compliance, discard rates, use of habitat-damaging gear, and landings for 15 catch share programs in North America, I tested the hypothesis that catch share systems lead to improved ecological stewardship and status of exploited populations. Impacts of catch share programs were measured through comparisons of fisheries with catch shares to fisheries without catch shares or by comparing fisheries before and after catch shares were implemented. The average levels of most indicators were unaffected by catch share implementation: only discard rate, which declined significantly in catch share fisheries, showed a significant response. However, catch share fisheries were distinguished by markedly reduced interannual variability in all indicators, being statistically significant for exploitation rate, landings, discard rate, and the ratio of catch to catch quotas. These impacts of catch shares were common between nations and ocean basins and were independent of the number of years that catch share programs had been in place. These findings suggest that for the indicators examined, the primary effect of catch shares was greater consistency over time. This enhanced consistency could be beneficial to fishery systems and might also be an indication of more effective management. PMID:20080747

  10. Riparian habitat on the Humboldt River, Deeth to Elko, Nevada

    NASA Technical Reports Server (NTRS)

    Price, K. P.; Ridd, M. K.

    1983-01-01

    A map inventory of the major habitat types existing along the Humbolt River riparian zone in Nevada is described. Through aerialphotography, 16 riparian habitats are mapped that describe the ecological relationships between soil and vegetation types, flooding and soil erosion, and the various management practices employed to date. The specific land and water management techniques and their impact on the environment are considered.

  11. 77 FR 46733 - Marine Fisheries Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-06

    ... National Oceanic and Atmospheric Administration RIN 0648-XC145 Marine Fisheries Advisory Committee AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce... of a forthcoming meeting of the Marine Fisheries Advisory Committee (MAFAC). The members will...

  12. 78 FR 3402 - Marine Fisheries Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-16

    ... National Oceanic and Atmospheric Administration RIN 0648-XC443 Marine Fisheries Advisory Committee AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce... of a forthcoming meeting of the Marine Fisheries Advisory Committee (MAFAC). The members will...

  13. 76 FR 14379 - Marine Fisheries Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-16

    ... National Oceanic and Atmospheric Administration RIN 0648-XA265 Marine Fisheries Advisory Committee AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce... of a forthcoming meeting of the Marine Fisheries Advisory Committee (MAFAC). The members will...

  14. Management history of eastside ecosystems: changes in fish habitat over 50 years, 1935-1992.

    Treesearch

    Bruce A. McIntosh; James R. Sedell; Jeanette E. Smith; Robert C. Wissmar; Sharon E. Clarke; Gordon H. Reeves; Lisa A. Brown

    1994-01-01

    From 1934 to 1942, the Bureau of Fisheries surveyed over 8000 km of streams in the Columbia River basin to determine the condition of fish habitat. To evaluate changes in stream habitat over time, a portion of the historically surveyed streams in the Grande Ronde, Methow, Wenatchee, and Yakima River basins were resurveyed from 1990 to 1992. Streams were chosen where...

  15. Identification of physical habitats limiting the production of coho salmon in western Oregon and Washington.

    Treesearch

    G.H. Reeves; F.H. Everest; T.E. Nickelson

    1989-01-01

    Fishery managers are currently spending millions of dollars per year on habitat enhancement for anadromous salmonids but often do not have the tools needed to ensure success. An analysis of factors limiting production of salmonids in streams must be completed before any habitat-enhancement program is begun. This paper outlines the first formal procedure for identifying...

  16. 75 FR 3191 - Endangered and Threatened Species; Notice of Public Hearings on Proposed Critical Habitat...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-20

    ... Whales AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration... proposal to designate critical habitat for the endangered Cook Inlet beluga whale as required by the... habitat for the endangered Cook Inlet beluga whale (74 FR 63080). On January 12, 2010, NMFS extended...

  17. The areal extent of brown shrimp habitat suitability in Mobile Bay, Alabama, USA: targeting vegetated habitat restoration.

    PubMed

    Smith, Lisa M; Nestlerode, Janet A; Harwell, Linda C; Bourgeois, Pete

    2010-12-01

    The availability of wetlands and shallow water habitats significantly influences Gulf of Mexico (GOM) penaeid shrimp fishery productivity. However, the GOM region has the highest rate of wetland loss in the USA. Protection and management of these vital GOM habitats are critical to sustainable shrimp fisheries. Brown shrimp (Farfantepenaeus aztecus) are a major component of GOM fisheries. We present an approach for estimating the areal extent of suitable habitat for post-larval and juvenile brown shrimp in Mobile Bay, Alabama, using an existing habitat suitability index model for the northern GOM calculated from probabilistic survey of water quality and sediment data, land cover data, and submerged aquatic vegetation coverages. This estuarine scale approach is intended to support targeted protection and restoration of these habitats. These analyses indicate that approximately 60% of the area of Mobile Bay is categorized as suitable to near optimal for post-larval and juvenile shrimp and 38% of the area is marginally to minimally suitable. We identify potential units within Mobile Bay for targeted restoration to improve habitat suitability.

  18. The areal extent of brown shrimp habitat suitability in Mobile Bay, Alabama, USA: Targeting vegetated habitat restoration

    USGS Publications Warehouse

    Smith, L.M.; Nestlerode, J.A.; Harwell, L.C.; Bourgeois, P.

    2010-01-01

    The availability of wetlands and shallow water habitats significantly influences Gulf of Mexico (GOM) penaeid shrimp fishery productivity. However, the GOM region has the highest rate of wetland loss in the USA. Protection and management of these vital GOM habitats are critical to sustainable shrimp fisheries. Brown shrimp (Farfantepenaeus aztecus) are a major component of GOM fisheries. We present an approach for estimating the areal extent of suitable habitat for post-larval and juvenile brown shrimp in Mobile Bay, Alabama, using an existing habitat suitability index model for the northern GOM calculated from probabilistic survey of water quality and sediment data, land cover data, and submerged aquatic vegetation coverages. This estuarine scale approach is intended to support targeted protection and restoration of these habitats. These analyses indicate that approximately 60% of the area of Mobile Bay is categorized as suitable to near optimal for post-larval and juvenile shrimp and 38% of the area is marginally to minimally suitable. We identify potential units within Mobile Bay for targeted restoration to improve habitat suitability. ?? 2010 Springer Science+Business Media B.V.

  19. Lessons learned while integrating habitat, dispersal, disturbance, and life-history traits into species habitat models under climate change

    Treesearch

    Louis R. Iverson; Anantha M. Prasad; Stephen N. Matthews; Matthew P. Peters

    2011-01-01

    We present an approach to modeling potential climate-driven changes in habitat for tree and bird species in the eastern United States. First, we took an empirical-statistical modeling approach, using randomForest, with species abundance data from national inventories combined with soil, climate, and landscape variables, to build abundance-based habitat models for 134...

  20. 50 CFR 17.99 - Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 5 2010-10-01 2010-10-01 true Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and Hawaii, HI, and on the Northwestern Hawaiian Islands. (Continued) 17.99 Section 17.99 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING,...

  1. 50 CFR 17.99 - Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 8 2012-10-01 2012-10-01 false Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and Hawaii, HI, and on the Northwestern Hawaiian Islands. (Continued) 17.99 Section 17.99 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING,...

  2. 50 CFR 17.99 - Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 8 2014-10-01 2013-10-01 true Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and Hawaii, HI, and on the Northwestern Hawaiian Islands. (Continued) 17.99 Section 17.99 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING,...

  3. 50 CFR 17.99 - Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 7 2011-10-01 2005-10-01 true Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and Hawaii, HI, and on the Northwestern Hawaiian Islands. (Continued) 17.99 Section 17.99 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING,...

  4. 50 CFR 17.99 - Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 8 2013-10-01 2013-10-01 false Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and Hawaii, HI, and on the Northwestern Hawaiian Islands. (Continued) 17.99 Section 17.99 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING,...

  5. 50 CFR 17.99 - Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 4 2010-10-01 2010-10-01 false Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and Hawaii, HI, and on the Northwestern Hawaiian Islands. 17.99 Section 17.99 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING,...

  6. 50 CFR 17.99 - Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 6 2011-10-01 2011-10-01 false Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and Hawaii, HI, and on the Northwestern Hawaiian Islands. 17.99 Section 17.99 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING,...

  7. 50 CFR 17.99 - Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 7 2014-10-01 2013-10-01 true Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and Hawaii, HI, and on the Northwestern Hawaiian Islands. 17.99 Section 17.99 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING,...

  8. 50 CFR 17.99 - Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 7 2013-10-01 2013-10-01 false Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and Hawaii, HI, and on the Northwestern Hawaiian Islands. 17.99 Section 17.99 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING,...

  9. 50 CFR 17.99 - Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 7 2012-10-01 2012-10-01 false Critical habitat; plants on the islands of Kauai, Niihau, Molokai, Maui, Kahoolawe, Oahu, and Hawaii, HI, and on the Northwestern Hawaiian Islands. 17.99 Section 17.99 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING,...

  10. Western Fisheries Research Center--Forage fish studies in Puget Sound

    USGS Publications Warehouse

    Liedtke, Theresa L.

    2012-01-01

    Researchers at the Western Fisheries Research Center are working with other U.S. Geological Survey (USGS) Centers to better understand the interconnected roles of forage fishes throughout the ecosystem of Puget Sound, Washington. Support for these studies primarily is from the USGS Coastal Habitats in Puget Sound (CHIPS) program, which supports studies of the nearshore areas of Puget Sound. Human perturbations in the nearshore area such as shoreline armoring or urban development can affect the nearshore habitats critical to forage fish.

  11. Ecosystem oceanography for global change in fisheries.

    PubMed

    Cury, Philippe Maurice; Shin, Yunne-Jai; Planque, Benjamin; Durant, Joël Marcel; Fromentin, Jean-Marc; Kramer-Schadt, Stephanie; Stenseth, Nils Christian; Travers, Morgane; Grimm, Volker

    2008-06-01

    Overexploitation and climate change are increasingly causing unanticipated changes in marine ecosystems, such as higher variability in fish recruitment and shifts in species dominance. An ecosystem-based approach to fisheries attempts to address these effects by integrating populations, food webs and fish habitats at different scales. Ecosystem models represent indispensable tools to achieve this objective. However, a balanced research strategy is needed to avoid overly complex models. Ecosystem oceanography represents such a balanced strategy that relates ecosystem components and their interactions to climate change and exploitation. It aims at developing realistic and robust models at different levels of organisation and addressing specific questions in a global change context while systematically exploring the ever-increasing amount of biological and environmental data.

  12. Habitat scale mapping of fisheries ecosystem services values in estuaries

    EPA Science Inventory

    Little is known about the variability of ecosystem service values at spatial scales most relevant to local decision makers. Competing definitions of ecosystem services, the paucity of ecological and economic information and the lack of standardization in methodology are major ob...

  13. Habitat scale mapping of fisheries ecosystem services values in estuaries

    EPA Science Inventory

    Little is known about the variability of ecosystem service values at spatial scales most relevant to local decision makers. Competing definitions of ecosystem services, the paucity of ecological and economic information and the lack of standardization in methodology are major ob...

  14. Habitat classification modeling with incomplete data: Pushing the habitat envelope

    USGS Publications Warehouse

    Zarnetske, P.L.; Edwards, T.C.; Moisen, G.G.

    2007-01-01

    Habitat classification models (HCMs) are invaluable tools for species conservation, land-use planning, reserve design, and metapopulation assessments, particularly at broad spatial scales. However, species occurrence data are often lacking and typically limited to presence points at broad scales. This lack of absence data precludes the use of many statistical techniques for HCMs. One option is to generate pseudo-absence points so that the many available statistical modeling tools can be used. Traditional techniques generate pseudoabsence points at random across broadly defined species ranges, often failing to include biological knowledge concerning the species-habitat relationship. We incorporated biological knowledge of the species-habitat relationship into pseudo-absence points by creating habitat envelopes that constrain the region from which points were randomly selected. We define a habitat envelope as an ecological representation of a species, or species feature's (e.g., nest) observed distribution (i.e., realized niche) based on a single attribute, or the spatial intersection of multiple attributes. We created HCMs for Northern Goshawk (Accipiter gentilis atricapillus) nest habitat during the breeding season across Utah forests with extant nest presence points and ecologically based pseudo-absence points using logistic regression. Predictor variables were derived from 30-m USDA Landfire and 250-m Forest Inventory and Analysis (FIA) map products. These habitat-envelope-based models were then compared to null envelope models which use traditional practices for generating pseudo-absences. Models were assessed for fit and predictive capability using metrics such as kappa, thresholdindependent receiver operating characteristic (ROC) plots, adjusted deviance (Dadj2), and cross-validation, and were also assessed for ecological relevance. For all cases, habitat envelope-based models outperformed null envelope models and were more ecologically relevant, suggesting

  15. Fisheries Information Network in Indonesia.

    ERIC Educational Resources Information Center

    Balachandran, Sarojini

    During the early 1980s the Indonesian government made a policy decision to develop fisheries as an important sector of the national economy. In doing so, it recognized the need for the collection and dissemination of fisheries research information not only for the scientists themselves, but also for the ultimate transfer of technology through…

  16. Fisheries Information Network in Indonesia.

    ERIC Educational Resources Information Center

    Balachandran, Sarojini

    During the early 1980s the Indonesian government made a policy decision to develop fisheries as an important sector of the national economy. In doing so, it recognized the need for the collection and dissemination of fisheries research information not only for the scientists themselves, but also for the ultimate transfer of technology through…

  17. Scale-dependent seasonal pool habitat use by sympatric Wild Brook Trout and Brown Trout populations

    USGS Publications Warehouse

    Davis, Lori A.; Wagner, Tyler

    2016-01-01

    Sympatric populations of native Brook Trout Salvelinus fontinalis and naturalized Brown Trout Salmo truttaexist throughout the eastern USA. An understanding of habitat use by sympatric populations is of importance for fisheries management agencies because of the close association between habitat and population dynamics. Moreover, habitat use by stream-dwelling salmonids may be further complicated by several factors, including the potential for fish to display scale-dependent habitat use. Discrete-choice models were used to (1) evaluate fall and early winter daytime habitat use by sympatric Brook Trout and Brown Trout populations based on available residual pool habitat within a stream network and (2) assess the sensitivity of inferred habitat use to changes in the spatial scale of the assumed available habitat. Trout exhibited an overall preference for pool habitats over nonpool habitats; however, the use of pools was nonlinear over time. Brook Trout displayed a greater preference for deep residual pool habitats than for shallow pool and nonpool habitats, whereas Brown Trout selected for all pool habitat categories similarly. Habitat use by both species was found to be scale dependent. At the smallest spatial scale (50 m), habitat use was primarily related to the time of year and fish weight. However, at larger spatial scales (250 and 450 m), habitat use varied over time according to the study stream in which a fish was located. Scale-dependent relationships in seasonal habitat use by Brook Trout and Brown Trout highlight the importance of considering scale when attempting to make inferences about habitat use; fisheries managers may want to consider identifying the appropriate spatial scale when devising actions to restore and protect Brook Trout populations and their habitats.

  18. Lower Flathead System Fisheries Study, 1985 Annual Report.

    SciTech Connect

    Pajak, Paul; Bradshaw, William H.; DeSantos, Joseph M.; Darling, James E.

    1986-01-01

    Existing aquatic habitat in the lower Flathead River and its tributaries was assessed for its relationship to the present size, distribution, and maintenance of all salmonid species, northern pike, and largemouth bass populations. The objectives were to assess how and to what extent hydroelectric development and operation affects the quality and quantity of aquatic habitat in the lower Flathead River and its tributaries and life stages of existing trout, pike, and largemouth bass populations, evaluate the potential for increasing quality habitat, and thus game fish production, through mitigation, and develop an array of fisheries management options to mitigate the impacts of present hydroelectric operations, demonstrating under each management option how fish populations would benefit and hydroelectric generation capabilities would be modified.

  19. Assessment of the Fishery Improvement Opportunities on the Pend Oreille River: Recommendations for Fisheries Enhancement: Final Report.

    SciTech Connect

    Ashe, Becky L.; Scholz, Allan T.

    1992-03-01

    This report recommends resident fish substitution projects to partially replace anadromous fish losses caused by construction of Grand Coulee and Chief Joseph Dams. These recommendations involve enhancing the resident fishery in the Pend Oreille River as a substitute for anadromous fish losses. In developing these recommendations we have intentionally attempted to minimize the impact upon the hydroelectric system and anadromous fish recovery plans. In this report we are recommending that the Northwest Power Planning Council direct Bonneville Power Administration to fund the proposed enhancement measures as resident fish substitution projects under the NPPC's Columbia Basin Fish and Wildlife Program. The Pend Oreille River, located in northeast Washington, was historically a free flowing river which supported anadromous steelhead trout and chinook salmon, and large resident cutthroat trout and bull trout. In 1939, Grand Coulee Dam eliminated the anadromous species from the river. In 1955, Box Canyon Dam was constructed, inundating resident trout habitat in the river and creating many back water and slough areas. By the late 1950's the fishery in the reservoir had changed from a quality trout fishery to a warm water fishery, supporting largemouth bass, yellow perch and rough fish (tenth, suckers, squawfish). The object of this study was to examine the existing fishery, identify fishery improvement opportunities and recommend fishery enhancement projects. Three years of baseline data were collected from the Box Canyon portion of the Pend Oreille River to assess population dynamics, growth rates, feeding habits, behavior patterns and factors limiting the fishery. Fishery improvement opportunities were identified based on the results of these data. Relative abundance surveys in the reservoir resulted in the capture of 47,415 fish during the study. The most abundant species in the reservoir were yellow perch, composing 44% of the fish captured. The perch population in

  20. Northern red oak volume growth on four northern Wisconsin habitat types

    Treesearch

    Michael Demchik; Kevin M. Schwartz; Rory Braun; Eric. Scharenbrock

    2014-01-01

    Northern red oak (Quercus rubra) grows across much of Wisconsin. Using site factors to aid in prediction of volume and basal area increment facilitates management of red oak and other species of interest. Currently, habitat type (Wisconsin Habitat Type Classification System) is often determined when stands are inventoried. If habitat type were...

  1. Relating FIA data to habitat classifications via tree-based models of canopy cover

    Treesearch

    Mark D. Nelson; Brian G. Tavernia; Chris Toney; Brian F. Walters

    2012-01-01

    Wildlife species-habitat matrices are used to relate lists of species with abundance of their habitats. The Forest Inventory and Analysis Program provides data on forest composition and structure, but these attributes may not correspond directly with definitions of wildlife habitats. We used FIA tree data and tree crown diameter models to estimate canopy cover, from...

  2. A trans-ecosystem fishery: Environmental effects on the small-scale gillnet fishery along the Río de la Plata boundary

    NASA Astrophysics Data System (ADS)

    Jaureguizar, Andrés Javier; Cortés, Federico; Milessi, Andrés Conrado; Cozzolino, Ezequiel; Allega, Lucrecia

    2015-12-01

    To improve the understanding of the environmental processes affecting small-scale gillnet fisheries along neighboring waters of estuaries, we analyzed the main climatic forcing and the environmental conditions, the fishery landing spatial and temporal variation, including the relative importance of site, distance to coast, temperature and salinity in the structuring of landed species profile. Data were collected monthly in two sites along the adjacent south coast of the Río de la Plata between October 2009 and September 2010. The gillnet fishery was dominated by four species (Cynoscion guatucupa, Micropogonias furnieri, Mustelus schmitti and Parona signata) from a total of 38 species landed, which accounted for 98.6% of total landings. The fishing effort and landings by the fishery were largely conditioned by the availability of fish species in the fishing grounds resulting from the combination of the species reproductive behavior and the predominant environmental conditions. The highest abundances for some species occurred before (M. furnieri, C. guatucupa, P. signata) or during the reproductive period (M. schmitti, Squatina guggenheim), while in other species it was associated with favorable environmental conditions during cold months (Squalus acanthias, Callorhinchus callorhynchus, Galeorhinus galeus) or warm months (Trichiurus lepturus). The predominant seasonal environmental conditions along the coast were mainly determined by the location of Río de la Plata boundary, whose spatial extent was forced by the wind patterns and freshwater discharge. The strong environmental dependence means that the small-scale fishery is in fact a seasonal trans-ecosystem fishery. This attribute, together that shared the resources with the industrial fishery and the overlap of the fishery ground with essential habitat of sharks, make this kind of small-scale gillnet fishery particularly relevant to be included in the development of a coastal ecosystem-based management approach.

  3. Methods for evaluating riparian habitats with applications to management

    USGS Publications Warehouse

    Platts, William S.; Armour, C.L.; Booth, G.D.; Bryant, M.; Bufford, J.L.; Cuplin, P.; Jensen, S.; Lienkaemper, G.W.; Minshall, G.W.; Monsen, S.T.; Nelson, R.L.; Sedell, J.R.; Tuhy, J.S.

    1987-01-01

    Riparian area planning and management is a major national issues today--something that should have been the case a century ago. A century of additive effects of land use has resulted in major impacts on many riparian stream habitats and their fisheries, wildlife, and domestic livestock use. Before scientists can evaluate the influences of various land and water uses on riparian environments, they must first understand these environments. This means being able to detect and measure with confidence the natural and artificial variation and instantaneous conditions of the riparian habitat. These conditions must then be related to the production capability of riparian habitat and any extraneous factors affecting this production potential.

  4. Habitat Suitability Index Models and Instream Flow Suitability Curves: Inland stocks of striped bass

    USGS Publications Warehouse

    Crance, Johnie H.

    1984-01-01

    The Habitat Suitability Index (HSI) models and instream flow Suitability Index (SI) presented in this publication aid in identifying important variables that determine the quality of striped bass habitat. Facts, ideas, and opinions obtained from published and unpublished reports, a Delphi panel of 18 striped bass experts/authorities, and the Striped Bass Committee, Southern Division, American Fisheries Society, are synthesized and presented in a format that can be used for habitat impact assessment and development of management alternatives.

  5. Mars habitat

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The College of Engineering & Architecture at Prairie View A&M University has been participating in the NASA/USRA Advanced Design Program since 1986. The interdisciplinary nature of the program allowed the involvement of students and faculty throughout the College of Engineering & Architecture for the last five years. The research goal for the 1990-1991 year is to design a human habitat on Mars that can be used as a permanent base for 20 crew members. The research is being conducted by undergraduate students from the Department of Architecture.

  6. 78 FR 16220 - Magnuson-Stevens Act Provisions; Fisheries of the Northeastern United States; Northeast...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-14

    ... proposed by the New England Fishery Management Council (Council), would eliminate dockside monitoring (DSM... to minimize habitat impacts, and reporting requirements (excluding DAS reporting requirements or DSM... from observed trips. Amendment 16 required sectors to develop independent third-party DSM programs...

  7. Habit-specific estimates of fisheries ecosystem services in Weeks Bay, Alabama

    EPA Science Inventory

    One of the challenges EPA is addressing as part of its Ecological Services Research Program (ESRP) is linking ecological services (ES) of coastal and estuarine habitat types (e.g. fishery support, nutrient processing, carbon sequestration, etc.) with economic values to inform sta...

  8. 75 FR 72790 - Gulf of Mexico Fishery Management Council; Public Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-26

    ... Advisory Panel (AP). DATES: The meeting will convene at 9 a.m. on Tuesday, December 14, 2010 and conclude.... SUPPLEMENTARY INFORMATION: At this meeting, the AP will tentatively discuss fishery modeling analyses for water... Louisiana/Mississippi group is part of a three unit Habitat Protection Advisory Panel (AP) of the Gulf...

  9. 76 FR 39858 - Western Pacific Fisheries; Approval of a Marine Conservation Plan for Guam

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-07

    ..., including support for long-term habitat assessment and monitoring of Guam coral reef flat communities... Marine Conservation Plan for Guam AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and... approval of a marine conservation plan for Guam. DATES: This agency decision is effective from June...

  10. Habit-specific estimates of fisheries ecosystem services in Weeks Bay, Alabama

    EPA Science Inventory

    One of the challenges EPA is addressing as part of its Ecological Services Research Program (ESRP) is linking ecological services (ES) of coastal and estuarine habitat types (e.g. fishery support, nutrient processing, carbon sequestration, etc.) with economic values to inform sta...

  11. 76 FR 65673 - Fisheries Off West Coast States; West Coast Salmon Fisheries; Amendment 16 to the Salmon Fishery...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-24

    ... States; West Coast Salmon Fisheries; Amendment 16 to the Salmon Fishery Management Plan AGENCY: National...: NMFS proposes regulations to implement Amendment 16 to the Pacific Coast Salmon Fishery Management Plan for Commercial and Recreational Salmon Fisheries off the Coasts of Washington, Oregon, and...

  12. 76 FR 81851 - Fisheries Off West Coast States; West Coast Salmon Fisheries; Amendment 16 to the Salmon Fishery...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-29

    ... States; West Coast Salmon Fisheries; Amendment 16 to the Salmon Fishery Management Plan AGENCY: National... Conservation and Management Act (MSA) to implement Amendment 16 to the Pacific Coast Salmon Fishery Management Plan for Commercial and Recreational Salmon Fisheries off the Coasts of Washington, Oregon,...

  13. Anticipating ocean acidification's economic consequences for commercial fisheries

    NASA Astrophysics Data System (ADS)

    Cooley, Sarah R.; Doney, Scott C.

    2009-06-01

    Ocean acidification, a consequence of rising anthropogenic CO2 emissions, is poised to change marine ecosystems profoundly by increasing dissolved CO2 and decreasing ocean pH, carbonate ion concentration, and calcium carbonate mineral saturation state worldwide. These conditions hinder growth of calcium carbonate shells and skeletons by many marine plants and animals. The first direct impact on humans may be through declining harvests and fishery revenues from shellfish, their predators, and coral reef habitats. In a case study of US commercial fishery revenues, we begin to constrain the economic effects of ocean acidification over the next 50 years using atmospheric CO2 trajectories and laboratory studies of its effects, focusing especially on mollusks. In 2007, the 3.8 billion US annual domestic ex-vessel commercial harvest ultimately contributed 34 billion to the US gross national product. Mollusks contributed 19%, or 748 million, of the ex-vessel revenues that year. Substantial revenue declines, job losses, and indirect economic costs may occur if ocean acidification broadly damages marine habitats, alters marine resource availability, and disrupts other ecosystem services. We review the implications for marine resource management and propose possible adaptation strategies designed to support fisheries and marine-resource-dependent communities, many of which already possess little economic resilience.

  14. Climate Change in U.S. South Atlantic, Gulf of Mexico and Caribbean Fisheries Regions

    NASA Astrophysics Data System (ADS)

    Roffer, M. A.; Hernandez, D. L.; Lamkin, J. T.; Pugliese, R.; Reichert, M.; Hall, C.

    2016-02-01

    A review of the recent evidence that climate change is affecting marine ecosystems in the U.S. fishery management zones of the South Atlantic, Gulf of Mexico and Caribbean regions will be presented. This will include affects on the living marine resources (including fish, invertebrates, marine mammals and turtles), fisheries, habitat and people. Emphasis will be given on the effects that impact managed species and the likely new challenges that they present to fishery managers. The evidence is being derived from the results of the "Climate Variability and Fisheries Workshop: Setting Research Priorities for the Gulf of Mexico, South Atlantic, and Caribbean Regions," October 26-28, 2015 in St. Petersburg Beach, Florida. Commonalities and regional differences will be presented in terms of how climate variability is likely to impact distribution, catch, catchability, socioeconomics, and management.

  15. Spatial management of fisheries in the mediterranean sea: problematic issues and a few success stories.

    PubMed

    Pipitone, Carlo; Badalamenti, Fabio; Vega Fernández, Tomás; D'Anna, Giovanni

    2014-01-01

    Fishing has been important in the Mediterranean region for many centuries and still has a central role in its economic importance and cultural heritage. A multitude of fishery-oriented marine managed areas have been implemented under a highly complex political and legislative framework to protect fishery resources and sensitive habitats from high impact uses. However, a review of the literature revealed that few data are available to support their effectiveness, except for a few studies on fishery reserves and marine reserves. In these cases, fish biomass has increased and some evidence of ecological and socioeconomic benefits has been documented. The environmental and geopolitical complexity of the Mediterranean region as well as the dominant top-down management approaches, constitute the weakest points in the spatial management of fisheries at regional level. A coordinating role of all national and supranational bodies present in the area is desirable in the near future.

  16. Federal Great Lakes fishery research objectives, priorities, and projects

    USGS Publications Warehouse

    Tait, Howard D.

    1973-01-01

    Fishery productivity of the Great Lakes has declined drastically since settlement of the area. Premium quality fishes of the Great Lakes such as whitefish, lake trout, and walleyes have been replaced by less desired species. This change is attributed to selective overfishing, pollution, and the extreme instability of fish populations. Sea lamprey predation is still a vexing problem but progress is being made in controlling this parasite. The federal fishery research program with headquarters in Ann Arbor, Michigan, has the objective of providing baseline information, needed in resource use decisions, about the fishes of the Great Lakes. Studies of the habitat requirements of fish are high priority. The program includes fish population assessments, studies of the effects of mercury and other contaminants on fish, thermal effects studies, and general investigation of the impact of engineering projects on Great Lakes fisheries. The work is closely coordinated with state and Canadian agencies through the Great Lakes Fishery Commission. Four small research vessels and four field stations are utilized with a staff of 90 and an annual budget of about $1.5 million.

  17. The role of marine reserves in achieving sustainable fisheries

    PubMed Central

    Roberts, Callum M.; Hawkins, Julie P.; Gell, Fiona R.

    2005-01-01

    Many fishery management tools currently in use have conservation value. They are designed to maintain stocks of commercially important species above target levels. However, their limitations are evident from continuing declines in fish stocks throughout the world. We make the case that to reverse fishery declines, safeguard marine life and sustain ecosystem processes, extensive marine reserves that are off limits to fishing must become part of the management strategy. Marine reserves should be incorporated into modern fishery management because they can achieve many things that conventional tools cannot. Only complete and permanent protection from fishing can protect the most sensitive habitats and vulnerable species. Only reserves will allow the development of natural, extended age structures of target species, maintain their genetic variability and prevent deleterious evolutionary change from the effects of fishing. Species with natural age structures will sustain higher rates of reproduction and will be more resilient to environmental variability. Higher stock levels maintained by reserves will provide insurance against management failure, including risk-prone quota setting, provided the broader conservation role of reserves is firmly established and legislatively protected. Fishery management measures outside protected areas are necessary to complement the protection offered by marine reserves, but cannot substitute for it. PMID:15713592

  18. The role of marine reserves in achieving sustainable fisheries.

    PubMed

    Roberts, Callum M; Hawkins, Julie P; Gell, Fiona R

    2005-01-29

    Many fishery management tools currently in use have conservation value. They are designed to maintain stocks of commercially important species above target levels. However, their limitations are evident from continuing declines in fish stocks throughout the world. We make the case that to reverse fishery declines, safeguard marine life and sustain ecosystem processes, extensive marine reserves that are off limits to fishing must become part of the management strategy. Marine reserves should be incorporated into modern fishery management because they can achieve many things that conventional tools cannot. Only complete and permanent protection from fishing can protect the most sensitive habitats and vulnerable species. Only reserves will allow the development of natural, extended age structures of target species, maintain their genetic variability and prevent deleterious evolutionary change from the effects of fishing. Species with natural age structures will sustain higher rates of reproduction and will be more resilient to environmental variability. Higher stock levels maintained by reserves will provide insurance against management failure, including risk-prone quota setting, provided the broader conservation role of reserves is firmly established and legislatively protected. Fishery management measures outside protected areas are necessary to complement the protection offered by marine reserves, but cannot substitute for it.

  19. Using standardized fishery data to inform rehabilitation efforts

    USGS Publications Warehouse

    Spurgeon, Jonathan J.; Stewart, Nathaniel T.; Pegg, Mark A.; Pope, Kevin L.; Porath, Mark T.

    2016-01-01

    Lakes and reservoirs progress through an aging process often accelerated by human activities, resulting in degradation or loss of ecosystem services. Resource managers thus attempt to slow or reverse the negative effects of aging using a myriad of rehabilitation strategies. Sustained monitoring programs to assess the efficacy of rehabilitation strategies are often limited; however, long-term standardized fishery surveys may be a valuable data source from which to begin evaluation. We present 3 case studies using standardized fishery survey data to assess rehabilitation efforts stemming from the Nebraska Aquatic Habitat Plan, a large-scale program with the mission to rehabilitate waterbodies within the state. The case studies highlight that biotic responses to rehabilitation efforts can be assessed, to an extent, using standardized fishery data; however, there were specific areas where minor increases in effort would clarify the effectiveness of rehabilitation techniques. Management of lakes and reservoirs can be streamlined by maximizing the utility of such datasets to work smarter, not harder. To facilitate such efforts, we stress collecting both biotic (e.g., fish lengths and weight) and abiotic (e.g., dissolved oxygen, pH, and turbidity) data during standardized fishery surveys and designing rehabilitation actions with an appropriate experimental design.

  20. Spatial Overlap of Grey Seals and Fisheries in Irish Waters, Some New Insights Using Telemetry Technology and VMS

    PubMed Central

    Cronin, M.; Gerritsen, H.; Reid, D.; Jessopp, M.

    2016-01-01

    Seals and humans often target the same food resource, leading to competition. This is of mounting concern with fish stocks in global decline. Grey seals were tracked from southeast Ireland, an area of mixed demersal and pelagic fisheries, and overlap with fisheries on the Celtic Shelf and Irish Sea was assessed. Overall, there was low overlap between the tagged seals and fisheries. However, when we separate active (e.g. trawls) and passive gear (e.g. nets, lines) fisheries, a different picture emerged. Overlap with active fisheries was no different from that expected under a random distribution, but overlap with passive fisheries was significantly higher. This suggests that grey seals may be targeting the same areas as passive fisheries and/or specifically targeting passive gear. There was variation in foraging areas between individual seals suggesting habitat partitioning to reduce intra-specific competition or potential individual specialisation in foraging behaviour. Our findings support other recent assertions that seal/fisheries interactions in Irish waters are an issue in inshore passive fisheries, most likely at the operational and individual level. This suggests that seal population management measures would be unjustifiable, and mitigation is best focused on minimizing interactions at nets. PMID:27682443

  1. 78 FR 50347 - Fisheries Off West Coast States; Modifications of the West Coast Commercial Salmon Fisheries...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-19

    ... States; Modifications of the West Coast Commercial Salmon Fisheries; Inseason Actions 6 Through 11 AGENCY... inseason actions in the ocean salmon fisheries. These inseason actions modified the commercial fisheries in... salmon fisheries (78 FR 25865, May 3, 2013), NMFS announced the commercial and recreational fisheries...

  2. 78 FR 25865 - Fisheries Off West Coast States; West Coast Salmon Fisheries; 2013 Management Measures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-03

    ... States; West Coast Salmon Fisheries; 2013 Management Measures AGENCY: National Marine Fisheries Service... management measures for the 2013 ocean salmon fisheries off Washington, Oregon, and California and the 2014 salmon seasons opening earlier than May 1, 2014. Specific fishery management measures vary by fishery...

  3. 76 FR 25246 - Fisheries Off West Coast States; West Coast Salmon Fisheries; 2011 Management Measures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-04

    ... States; West Coast Salmon Fisheries; 2011 Management Measures AGENCY: National Marine Fisheries Service... management measures for the 2011 ocean salmon fisheries off Washington, Oregon, and California and the 2012 salmon seasons opening earlier than May 1, 2012. Specific fishery management measures vary by fishery...

  4. 77 FR 25915 - Fisheries Off West Coast States; West Coast Salmon Fisheries; 2012 Management Measures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-02

    ...; West Coast Salmon Fisheries; 2012 Management Measures AGENCY: National Marine Fisheries Service (NMFS... fishery management measures for the 2012 ocean salmon fisheries off Washington, Oregon, and California and the 2013 salmon seasons opening earlier than May 1, 2013. Specific fishery management measures vary...

  5. 76 FR 58720 - Fisheries Off West Coast States; Coastal Pelagic Species Fisheries; Closure

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-22

    ... National Oceanic and Atmospheric Administration 50 CFR Part 660 RIN 0648-XA709 Fisheries Off West Coast States; Coastal Pelagic Species Fisheries; Closure AGENCY: National Marine Fisheries Service (NMFS... bait fishery or incidental to other fisheries; the incidental harvest of Pacific sardine is limited...

  6. 75 FR 42610 - Fisheries Off West Coast States; Coastal Pelagic Species Fisheries; Closure

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-22

    ... National Oceanic and Atmospheric Administration 50 CFR Part 660 RIN 0648-XX54 Fisheries Off West Coast States; Coastal Pelagic Species Fisheries; Closure AGENCY: National Marine Fisheries Service (NMFS... live bait fishery or incidental to other fisheries; the incidental harvest of Pacific sardine...

  7. 78 FR 51097 - Fisheries Off West Coast States; Coastal Pelagic Species Fisheries; Closure

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-20

    ... National Oceanic and Atmospheric Administration 50 CFR Part 660 RIN 0648-XC783 Fisheries Off West Coast States; Coastal Pelagic Species Fisheries; Closure AGENCY: National Marine Fisheries Service (NMFS... live bait fishery or incidental to other fisheries; the incidental harvest of Pacific sardine...

  8. 46 CFR 67.21 - Fishery endorsement.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Fishery endorsement. 67.21 Section 67.21 Shipping COAST... DOCUMENTATION OF VESSELS Forms of Documentation; Endorsements; Eligibility of Vessel § 67.21 Fishery endorsement. (a) A fishery endorsement entitles a vessel to employment in the fisheries as defined in §...

  9. 50 CFR 600.110 - Intercouncil fisheries.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 600.110 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC....110 Intercouncil fisheries. If any fishery extends beyond the geographical area of authority of any... participating Council. Different conservation and management measures may be developed for specific geographic...

  10. An Expanded Perspective of Fisheries Education.

    ERIC Educational Resources Information Center

    Lin, Leslie Y.

    1980-01-01

    Described are two curriculum units from the Michigan Sea Grant Program for middle school students: The Sea Lamprey in the Great Lakes, and Great Lakes Fisheries Transition. Topics discussed include fishery rights and responsibilities, where fisheries are, the modern fishery, buying and selling fish, and preserving fish. (DS)

  11. An Expanded Perspective of Fisheries Education.

    ERIC Educational Resources Information Center

    Lin, Leslie Y.

    1980-01-01

    Described are two curriculum units from the Michigan Sea Grant Program for middle school students: The Sea Lamprey in the Great Lakes, and Great Lakes Fisheries Transition. Topics discussed include fishery rights and responsibilities, where fisheries are, the modern fishery, buying and selling fish, and preserving fish. (DS)

  12. Habits and Habitats of Fishes in the Upper Mississippi River

    USGS Publications Warehouse

    Norwick, R.; Janvrin, J.; Zigler, S.; Kratt, R.

    2011-01-01

    The Upper Mississippi River consists of 26 navigation pools that provide abundant habitat for a host of natural resources, such as fish, migratory waterfowl, non-game birds, deer, beaver, muskrats, snakes, reptiles, frogs, toads, salamanders, and many others. Of all the many different types of animals that depend on the river, fish are the most diverse with over 140 different species. The sport fishery is very diverse with at least 25 species commonly harvested. Fish species, such as walleyes, largemouth bass, bluegills, and crappies are favorites of sport anglers. Others such as common carp, buffalos, and channel catfish, are harvested by commercial anglers and end up on the tables of families all over the country. Still other fishes are important because they provide food for sport or commercial species. The fishery resources in these waters contribute millions of dollars to the economy annually. Overall, the estimate impact of anglers and other recreational users exceeds $1.2 billion on the Upper Mississippi River. The fisheries in the various reaches of the river of often are adversely affected by pollution, urbanization, non-native fishes, navigation, recreational boating, fishing, dredging, and siltation. However, state and federal agencies expend considerable effort and resources to manage fisheries and restore river habitats. This pamphlet was prepared to help you better understand what fishery resources exist, what the requirements of each pecies are, and how man-induced changes that are roposed or might occur could affect them.

  13. Lake Roosevelt Rainbow Trout Habitat/Passage Improvement Project, Annual Report 2001-2002.

    SciTech Connect

    Sears, Sheryl

    2003-01-01

    The construction of Chief Joseph and Grand Coulee Dams completely and irrevocably blocked anadromous fish migrations to the Upper Columbia River. Historically this area hosted vast numbers of salmon returning to their natal waters to reproduce and die. For the native peoples of the region, salmon and steelhead were a principle food source, providing physical nourishment and spiritual sustenance, and contributing to the religious practices and the cultural basis of tribal communities. The decaying remains of spawned-out salmon carcasses contributed untold amounts of nutrients into the aquatic, aerial, and terrestrial ecosystems of tributary habitats in the upper basin. Near the present site of Kettle Falls, Washington, the second largest Indian fishery in the state existed for thousands of years. Returning salmon were caught in nets and baskets or speared on their migration to the headwater of the Columbia River in British Columbia. Catch estimates at Kettle Falls range from 600,000 in 1940 to two (2) million around the turn of the century (UCUT, Report No.2). The loss of anadromous fish limited the opportunities for fisheries management and enhancement exclusively to those actions addressed to resident fish. The Lake Roosevelt Rainbow Trout Habitat/Passage Improvement Project is a mitigation project intended to enhance resident fish populations and to partially mitigate for anadromous fish losses caused by hydropower system impacts. This substitution of resident fish for anadromous fish losses is considered in-place and out-of-kind mitigation. Upstream migration and passage barriers limit the amount of spawning and rearing habitat that might otherwise be utilized by rainbow trout. The results of even limited stream surveys and habitat inventories indicated that a potential for increased natural production exists. However, the lack of any comprehensive enhancement measures prompted the Upper Columbia United Tribes Fisheries Center (UCUT), Colville Confederated

  14. Lake Roosevelt Rainbow Trout Habitat/Passage Improvement Project, Annual Report 2002-2003.

    SciTech Connect

    Sears, Sheryl

    2004-01-01

    The construction of Chief Joseph and Grand Coulee Dams completely and irrevocably blocked anadromous fish migrations to the Upper Columbia River. Historically this area hosted vast numbers of salmon returning to their natal waters to reproduce and die. For the native peoples of the region, salmon and steelhead were a principle food source, providing physical nourishment and spiritual sustenance, and contributing to the religious practices and the cultural basis of tribal communities. The decaying remains of spawned-out salmon carcasses contributed untold amounts of nutrients into the aquatic, aerial, and terrestrial ecosystems of tributary habitats in the upper basin. Near the present site of Kettle Falls, Washington, the second largest Indian fishery in the state existed for thousands of years. Returning salmon were caught in nets and baskets or speared on their migration to the headwater of the Columbia River in British Columbia. Catch estimates at Kettle Falls range from 600,000 in 1940 to two (2) million around the turn of the century (UCUT, Report No.2). The loss of anadromous fish limited the opportunities for fisheries management and enhancement exclusively to those actions addressed to resident fish. The Lake Roosevelt Rainbow Trout Habitat/Passage Improvement Project is a mitigation project intended to enhance resident fish populations and to partially mitigate for anadromous fish losses caused by hydropower system impacts. This substitution of resident fish for anadromous fish losses is considered in-place and out-of-kind mitigation. Upstream migration and passage barriers limit the amount of spawning and rearing habitat that might otherwise be utilized by rainbow trout. The results of even limited stream surveys and habitat inventories indicated that a potential for increased natural production exists. However, the lack of any comprehensive enhancement measures prompted the Upper Columbia United Tribes Fisheries Center (UCUT), Colville Confederated

  15. Oyster Fisheries App

    NASA Technical Reports Server (NTRS)

    Perez Guerrero, Geraldo A.; Armstrong, Duane; Underwood, Lauren

    2015-01-01

    This project is creating a cloud-enabled, HTML 5 web application to help oyster fishermen and state agencies apply Earth science to improve the management of this important natural and economic resource. The Oyster Fisheries app gathers and analyzes environmental and water quality information, and alerts fishermen and resources managers about problems in oyster fishing waters. An intuitive interface based on Google Maps displays the geospatial information and provides familiar interactive controls to the users. Alerts can be tailored to notify users when conditions in specific leases or public fishing areas require attention. The app is hosted on the Amazon Web Services cloud. It is being developed and tested using some of the latest web development tools such as web components and Polymer.

  16. Science Inventory | US EPA

    EPA Pesticide Factsheets

    The Science Inventory is a searchable database of research products primarily from EPA's Office of Research and Development. Science Inventory records provide descriptions of the product, contact information, and links to available printed material or websites.

  17. NARSTO EMISSION INVENTORY ASSESSMENT

    EPA Science Inventory

    The NARSTO Ozone and Particulate Matter Assessments emphasized that emission inventories are critical to the success of air quality management programs and that emissions inventories in Canada, Mexico, and the United States need improvement to meet expectations for quality, timel...

  18. NARSTO EMISSION INVENTORY ASSESSMENT

    EPA Science Inventory

    The NARSTO Ozone and Particulate Matter Assessments emphasized that emission inventories are critical to the success of air quality management programs and that emissions inventories in Canada, Mexico, and the United States need improvement to meet expectations for quality, timel...

  19. Science Inventory | US EPA

    EPA Pesticide Factsheets

    The Science Inventory is a searchable database of research products primarily from EPA's Office of Research and Development. Science Inventory records provide descriptions of the product, contact information, and links to available printed material or websites.

  20. 76 FR 32876 - Fisheries Off West Coast States; West Coast Salmon Fisheries; 2011 Management Measures; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-07

    ... States; West Coast Salmon Fisheries; 2011 Management Measures; Correction AGENCY: National Marine... salmon fisheries off Washington, Oregon, and California and the 2012 salmon seasons opening earlier than... minimum size requirements for the commercial salmon fishery. This action corrects the incorrect...

  1. 76 FR 15222 - Hawaii Bottomfish and Seamount Groundfish Fisheries; Modification of Fishery Closures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-21

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration 50 CFR Part 665 RIN 0648-BA58 Hawaii Bottomfish and Seamount Groundfish Fisheries; Modification of Fishery Closures AGENCY: National Marine Fisheries...

  2. 76 FR 10524 - Hawaii Bottomfish and Seamount Groundfish Fisheries; Fishery Closure

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-25

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration 50 CFR Part 665 RIN 0648-XA174 Hawaii Bottomfish and Seamount Groundfish Fisheries; Fishery Closure AGENCY: National Marine Fisheries Service (NMFS),...

  3. 77 FR 20337 - Fisheries Off West Coast States; Pacific Coast Groundfish Fishery; Advance Notice of Proposed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-04

    ... West Coast States; Pacific Coast Groundfish Fishery; Advance Notice of Proposed Rulemaking Regarding... quota (IFQ) fishery and the at-sea mothership fishery of the Pacific Coast Groundfish Trawl...

  4. 76 FR 40674 - Fisheries in the Western Pacific; Pelagic Fisheries; Purse Seine Prohibited Areas Around American...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-11

    ...: Disapproval of fishery ecosystem plan amendment and withdrawal of proposed rule. SUMMARY: NMFS announces that it has disapproved proposed Amendment 3 to the Fishery Ecosystem Plan for Pelagic Fisheries of the...

  5. 50 CFR 660.372 - Fixed gear sablefish fishery management.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OFF WEST COAST STATES West Coast Groundfish Fisheries § 660.372 Fixed gear sablefish fishery management. This section applies...

  6. The Habitat Connection.

    ERIC Educational Resources Information Center

    Naturescope, 1987

    1987-01-01

    Consists of activities which address the causes of habitat destruction and the effects of habitat loss on animals and plants. Identifies habitat loss as the major reason for the endangerment and extinction of plant and animal species. (ML)

  7. The Habitat Connection.

    ERIC Educational Resources Information Center

    Naturescope, 1987

    1987-01-01

    Consists of activities which address the causes of habitat destruction and the effects of habitat loss on animals and plants. Identifies habitat loss as the major reason for the endangerment and extinction of plant and animal species. (ML)

  8. Habitat Demonstration Unit - Deep Space Habitat Configuration

    NASA Image and Video Library

    This animated video shows the process of transporting, assembling and testing the Habitat Demonstration Unit - Deep Space Habitat (HDU DSH) configuration, which will be deployed during the 2011 Des...

  9. Defining dynamic pelagic habitats in oceanic waters off eastern Australia

    NASA Astrophysics Data System (ADS)

    Hobday, A. J.; Young, J. W.; Moeseneder, C.; Dambacher, J. M.

    2011-03-01

    Although many species in the pelagic ocean are widespread, they are not randomly distributed. These species may have associations with particular water masses or habitats, but to best understand patterns in the ocean, these habitats must be identified. Previous efforts have produced static or seasonal climatologies, which still represent smearing over habitats. The Eastern Tuna and Billfish Longline Fishery (ETBF) targets a range of high trophic level species in oceanic waters off eastern Australia. In this study, dynamic ocean habitats in the region were identified for each month based on cluster analysis of five oceanographic variables averaged at a monthly time scale and a spatial scale of 0.5° for the period 1995-2006. A total of seven persistent habitats were identified off eastern Australia with intra and interannual variation in size and location, indicating the importance of spatial and temporal variation in the dynamics of the region. The degree to which these dynamic habitats were distinguished was tested using (i) stable isotope analysis of top fish predators caught in the region and (ii) estimates of variation in estimated abundance generated from catch data from the fishery. More precise estimates (measured as lower total CV) of isotopic values from swordfish ( Xiphias gladius), yellowfin tuna ( Thunnus albacares) and albacore ( Thunnus alalunga) were obtained for 4 of 6 isotope comparisons using the dynamic habitat groupings, which indicate that stratifying by pelagic habitat improved precision. Dynamic habitats produced more precise abundance estimates for 7 of 8 large pelagic species examined, with an average reduction in total CV of 19% compared to when abundance was estimated based on static habitat stratification. These findings could be used to guide development of effective monitoring strategies that can distinguish patterns due to environmental variation, and in the longer term, climate change.

  10. Salmon River Habitat Enhancement, Part 1 of 2, 1986 Annual Report.

    SciTech Connect

    Richards, Carl

    1987-03-01

    The tribal project annual report contains reports for four subprojects within Project 83-359. Subproject I involved fish inventories in Bear Valley Creek, Idaho, that will be used in conjunction with 1984 and 1985 fish and habitat pre-treatment (baseline) data to evaluate effects of habitat enhancement on the habitat and fish community in Bear Valley Creek overtime. Subproject II is the coordination/planning activities of the Project Leader in relation to other BPA-funded habitat enhancement projects that have or will occur in the upper-Salmon River basin. Subproject III involved fish inventories (pre-treatment) in the Yankee Fork drainage of the Salmon River, and habitat problem identification on Fivemile and Ramey Creek. Subproject IV involved baseline habitat and fish inventories on the East Fork of the Salmon River, Herd Creek and Big-Boulder Creek. Individual abstracts have been prepared for the four subproject reports. 20 refs., 37 figs., 22 tabs.

  11. Management implications of fish trap effectiveness in adjacent coral reef and gorgonian habitats

    USGS Publications Warehouse

    Wolff, Nicholas; Grober-Dunsmore, Rikki; Rogers, Caroline S.; Beets, James P.

    1999-01-01

    A combination of visual census and trap sampling in St. John, USVI indicated that traps performed better in gorgonian habitat than in adjacent coral reef habitat. Although most families were seen more commonly in coral habitat, they were caught more often in gorgonian areas. Traps probably fished more effectively in gorgonian habitats, especially for migrating species, because traps provided shelter in the relatively topographically uniform environment of gorgonian dominated habitats. Recently, trap fishermen on St. John have been moving effort away from traditionally fished nearshore coral reefs and into a variety of more homogeneous habitats such as gorgonian habitat. Consequently, exploitation rates of the already over-harvested reef fish resources may be increasing. Reef fish managers and marine reserve designers should consider limiting trap fishing in gorgonian habitats to slow the decline of reef fisheries.

  12. 75 FR 11133 - Fisheries of the South Atlantic; South Atlantic Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-10

    ... Fishery Management Council, 4055 Faber Place Drive, Suite 201, North Charleston, SC 29405; telephone: (843... Officer, South Atlantic Fishery Management Council, 4055 Faber Place Drive, Suite 201, North...

  13. 76 FR 51272 - Fisheries of the Northeastern United States; Atlantic Mackerel, Squid, and Butterfish Fisheries...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-18

    ... Northeastern United States; Atlantic Mackerel, Squid, and Butterfish Fisheries; Closure of the 2011 Trimester 2... under the Atlantic Mackerel, Squid, and Butterfish Fishery Management Plan (FMP). The procedures...

  14. 75 FR 51683 - Fisheries of the Northeastern United States; Atlantic Mackerel, Squid, and Butterfish Fisheries...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-23

    ... States; Atlantic Mackerel, Squid, and Butterfish Fisheries; Closure of the Directed Butterfish Fishery... processing, and total allowable levels of foreign fishing for the species managed under the Atlantic...

  15. 77 FR 22678 - Fisheries of the Northeastern United States; Atlantic Mackerel, Squid, and Butterfish Fisheries...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-17

    ... Northeastern United States; Atlantic Mackerel, Squid, and Butterfish Fisheries; Closure of the Trimester 1... species managed under the Atlantic Mackerel, Squid, and ] Butterfish Fishery Management Plan (FMP)....

  16. 76 FR 39313 - Fisheries of the Northeastern United States; Atlantic Mackerel, Squid, and Butterfish Fisheries...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-06

    ... Northeastern United States; Atlantic Mackerel, Squid, and Butterfish Fisheries; Closure of the Directed... under the Atlantic Mackerel, Squid, and Butterfish Fishery Management Plan (FMP). The procedures...

  17. 77 FR 40527 - Fisheries of the Northeastern United States; Atlantic Mackerel, Squid, and Butterfish Fisheries...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-10

    ... Northeastern United States; Atlantic Mackerel, Squid, and Butterfish Fisheries; Closure of the 2012 Trimester 2... species managed under the Atlantic Mackerel, Squid, and Butterfish Fishery Management Plan (FMP)....

  18. Influences of recreation influence of forest and rangeland management on anadromous fish habitat in Western North America: influences of recreation.

    Treesearch

    Roger N. Clark; Dave R. Gibbons; Gilbert B. Pauley

    1985-01-01

    Public and private lands in the United States are used by millions of people for recreational activities. Many of these activities occur in or near streams and coastal areas that produce various species of anadromous fish. A major concern of fishery managers is the possible adverse effect of recreational uses on fish habitat. Conversely, the management of fish habitats...

  19. 78 FR 9887 - Proposed Information Collection; Comment Request; National Estuaries Restoration Inventory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-12

    ... Estuaries Restoration Inventory AGENCY: National Oceanic and Atmospheric Administration (NOAA), Commerce... extension of a currently approved information collection. Collection of estuary habitat restoration project... to populate a restoration project database mandated by the Estuary Restoration Act of 2000. The...

  20. Valuing freshwater salmon habitat on the west coast of Canada.

    PubMed

    Knowler, Duncan J; MacGregor, Brice W; Bradford, Michael J; Peterman, Randall M

    2003-11-01

    Changes in land use can potentially reduce the quality of fish habitat and affect the economic value of commercial and sport fisheries that rely on the affected stocks. Parks and protected areas that restrict land-use activities provide benefits, such as ecosystem services, in addition to recreation and preservation of wildlife. Placing values on these other benefits of protected areas poses a major challenge for land-use planning. In this paper, we present a framework for valuing benefits for fisheries from protecting areas from degradation, using the example of the Strait of Georgia coho salmon fishery in southern British Columbia, Canada. Our study improves upon previous methods used to value fish habitat in two major respects. First, we use a bioeconomic model of the coho fishery to derive estimates of value that are consistent with economic theory. Second, we estimate the value of changing the quality of fish habitat by using empirical analyses to link fish population dynamics with indices of land use in surrounding watersheds. In our example, we estimated that the value of protecting habitat ecosystem services is C$0.93 to C$2.63 per ha of drainage basin or about C$1322 to C$7010 per km of salmon stream length (C$1.00=US$0.71). Sensitivity analyses suggest that these values are relatively robust to different assumptions, and if anything, are likely to be minimum estimates. Thus, when comparing alternative uses of land, managers should consider ecosystem services from maintaining habitat for productive fish populations along with other benefits of protected areas.

  1. The influence of changing climate on the ecology and management of selected Laurentian Great Lakes fisheries.

    PubMed

    Lynch, A J; Taylor, W W; Smith, K D

    2010-11-01

    The Laurentian Great Lakes Basin provides an ecological system to evaluate the potential effect of climate change on dynamics of fish populations and the management of their fisheries. This review describes the physical and biological mechanisms by which fish populations will be affected by changes in timing and duration of ice cover, precipitation events and temperature regimes associated with projected climate change in the Great Lakes Basin with a principal focus on the fish communities in shallower regions of the basin. Lake whitefish Coregonus clupeaformis, walleye Sander vitreus and smallmouth bass Micropterus dolomieu were examined to assess the potential effects of climate change on guilds of Great Lakes cold, cool and warm-water fishes, respectively. Overall, the projections for these fishes are for the increased thermally suitable habitat within the lakes, though in different regions than they currently inhabit. Colder-water fishes will seek refuge further north and deeper in the water column and warmer-water fishes will fill the vacated habitat space in the warmer regions of the lakes. While these projections can be modified by a number of other habitat elements (e.g. anoxia, ice cover, dispersal ability and trophic productivity), it is clear that climate-change drivers will challenge the nature, flexibility and public perception of current fisheries management programmes. Fisheries agencies should develop decision support tools to provide a systematic method for incorporating ecological responses to climate change and moderating public interests to ensure a sustainable future for Great Lakes fishes and fisheries.

  2. A Decade in Climate Changes and Marine Fisheries: Assessing the Catchment Volume in Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Kamal, A. H. M.

    2016-12-01

    Global climate change variations over the past 30 years have produced numerous impacts in the abundance and production performance of marine fish and fisheries worldwide. The consequences in terms of flooding of low-lying estuarine habitats due to over rainfall, fluctuation of temperature, dilution of water parameters, devastation of feeding and breeding habitats, salinity fluctuations and acidification of waters, high siltation in coastal area, changes in the sea water table and breeding triggers have raised serious concerns for the well-being of marine fisheries and their production. This study shows that the overall total catchment of marine fisheries was decreased 38% in 2009 compared to 1998 while considers the fishing gears and vessels number used in Peninsular Malaysia. Registered vessels number was increased up to 92% in 2009 compared to 1998 which eventually increased the total catchment volume of marine fisheries. In 2009, the catching efforts and performance was far low as per vessels compared to 1998. Analysis of climate change variables shows that temperature was decreased as rainfall was increased within the year from 1998 to 2009. However, it is still early to conclude that whether climate change variables could have unpleasant impacts on fish production in the tropical seas like Malaysia. In spite of that it is predicted that the prolong exists of monsoon and increases of rainfall in this area resulting the stresses and sometimes interfering on the habitat, reproductive cycle and their related ecosystems in this coastal marine environment in tropics.

  3. Interspecific resource competition effects on fisheries revenue.

    PubMed

    van de Wolfshaar, Karen E; Schellekens, Tim; Poos, Jan-Jaap; van Kooten, Tobias

    2012-01-01

    In many fisheries multiple species are simultaneously caught while stock assessments and fishing quota are defined at species level. Yet species caught together often share habitat and resources, resulting in interspecific resource competition. The consequences of resource competition on population dynamics and revenue of simultaneously harvested species has received little attention due to the historical single stock approach in fisheries management. Here we present the results of a modelling study on the interaction between resource competition of sole (Solea solea) and slaice (Pleuronectus platessa) and simultaneous harvesting of these species, using a stage-structured population model. Three resources were included of which one is shared with a varied competition intensity. We find that plaice is the better competitor of the two species and adult plaice are more abundant than adult sole. When competition is high sole population biomass increases with increasing fishing effort prior to plaice extinction. As a result of this increase in the sole population, the revenue of the stocks combined as function of effort becomes bimodal with increasing resource competition. When considering a single stock quota for sole, its recovery with increasing effort may result in even more fishing effort that would drive the plaice population to extinction. When sole and plaice compete for resources the highest revenue is obtained at effort levels at which plaice is extinct. Ignoring resource competition promotes overfishing due to increasing stock of one species prior to extinction of the other species. Consequently, efforts to mitigate the decline in one species will not be effective if increased stock in the other species leads to increased quota. If a species is to be protected against extinction, management should not only be directed at this one species, but all species that compete with it for resource as well.

  4. Can catch shares prevent fisheries collapse?

    PubMed

    Costello, Christopher; Gaines, Steven D; Lynham, John

    2008-09-19

    Recent reports suggest that most of the world's commercial fisheries could collapse within decades. Although poor fisheries governance is often implicated, evaluation of solutions remains rare. Bioeconomic theory and case studies suggest that rights-based catch shares can provide individual incentives for sustainable harvest that is less prone to collapse. To test whether catch-share fishery reforms achieve these hypothetical benefits, we have compiled a global database of fisheries institutions and catch statistics in 11,135 fisheries from 1950 to 2003. Implementation of catch shares halts, and even reverses, the global trend toward widespread collapse. Institutional change has the potential for greatly altering the future of global fisheries.

  5. 78 FR 49259 - Pacific Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-13

    ... National Oceanic and Atmospheric Administration RIN 0648-XC804 Pacific Fishery Management Council; Public Meeting AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration.... Thompson, Acting Deputy Director, Office of Sustainable Fisheries, National Marine Fisheries...

  6. Plants used in artisanal fisheries on the Western Mediterranean coasts of Italy

    PubMed Central

    2013-01-01

    Background Artisanal fisheries in the Mediterranean, especially in Italy, have been poorly investigated. There is a long history of fishing in this region, and it remains an important economic activity in many localities. Our research entails both a comprehensive review of the relevant literature and 58 field interviews with practitioners on plants used in fishing activities along the Western Mediterranean Italian coastal regions. The aims were to record traditional knowledge on plants used in fishery in these regions and to define selection criteria for plant species used in artisanal fisheries, considering ecology and intrinsic properties of plants, and to discuss the pattern of diffusion of shared uses in these areas. Methods Information was gathered both from a general review of ethnobotanical literature and from original data. A total of 58 semi-structured interviews were carried out in Liguria, Latium, Campania and Sicily (Italy). Information on plant uses related to fisheries were collected and analyzed through a chi-square residual analysis and the correspondence analysis in relation to habitat, life form and chorology. Results A total of 60 plants were discussed as being utilized in the fisheries of the Western Italian Mediterranean coastal regions, with 141 different uses mentioned. Of these 141 different uses, 32 are shared among different localities. A multivariate statistical analysis was performed on the entire dataset, resulting in details about specific selection criteria for the different usage categories (plants have different uses that can be classified into 11 main categories). In some uses, species are selected for their features (e.g., woody), or habitat (e.g., riverine), etc. The majority of uses were found to be obsolete (42%) and interviews show that traditional fishery knowledge is in decline. There are several reasons for this, such as climatic change, costs, reduction of fish stocks, etc. Conclusions Our research correlates functional

  7. Plants used in artisanal fisheries on the Western Mediterranean coasts of Italy.

    PubMed

    Savo, Valentina; La Rocca, Arianna; Caneva, Giulia; Rapallo, Fabio; Cornara, Laura

    2013-01-28

    Artisanal fisheries in the Mediterranean, especially in Italy, have been poorly investigated. There is a long history of fishing in this region, and it remains an important economic activity in many localities. Our research entails both a comprehensive review of the relevant literature and 58 field interviews with practitioners on plants used in fishing activities along the Western Mediterranean Italian coastal regions. The aims were to record traditional knowledge on plants used in fishery in these regions and to define selection criteria for plant species used in artisanal fisheries, considering ecology and intrinsic properties of plants, and to discuss the pattern of diffusion of shared uses in these areas. Information was gathered both from a general review of ethnobotanical literature and from original data. A total of 58 semi-structured interviews were carried out in Liguria, Latium, Campania and Sicily (Italy). Information on plant uses related to fisheries were collected and analyzed through a chi-square residual analysis and the correspondence analysis in relation to habitat, life form and chorology. A total of 60 plants were discussed as being utilized in the fisheries of the Western Italian Mediterranean coastal regions, with 141 different uses mentioned. Of these 141 different uses, 32 are shared among different localities. A multivariate statistical analysis was performed on the entire dataset, resulting in details about specific selection criteria for the different usage categories (plants have different uses that can be classified into 11 main categories). In some uses, species are selected for their features (e.g., woody), or habitat (e.g., riverine), etc. The majority of uses were found to be obsolete (42%) and interviews show that traditional fishery knowledge is in decline. There are several reasons for this, such as climatic change, costs, reduction of fish stocks, etc. Our research correlates functional characteristics of the plants used in

  8. Lake Roosevelt Fisheries Evaluation Program, Part A; Fisheries Creel Survey and Population Status Analysis, 1998 Annual Report.

    SciTech Connect

    Spotts, Jim; Shields, John; Underwood, Keith

    2002-05-01

    The Lake Roosevelt Fisheries Evaluation Program is the result of a merger between two projects, the Lake Roosevelt Monitoring Program (BPA No. 8806300) and the Lake Roosevelt Data Collection Project (BPA No. 9404300). These projects were merged in 1996 to continue work historically completed under the separate projects, and is now referred to as the Lake Roosevelt Fisheries Evaluation Program. Creel and angler surveys estimated that anglers made 196,775 trips to Lake Roosevelt during 1998, with an economic value of $8.0 million dollars, based on the Consumer Price Index (CPI). In 1998 it was estimated that 9,980 kokanee salmon, 226,809 rainbow trout, 119,346 walleye, and over 14,000 smallmouth bass and other species were harvested. Creel data indicates that hatchery reared rainbow trout contribute substantially to the Lake Roosevelt fishery. The contribution of kokanee salmon to the creel has not met the expectations of fishery managers to date, and is limited by entrainment from the reservoir, predation, and possible fish culture obstacles. The 1998 Lake Roosevelt Fisheries Creel and Population Analysis Annual Report includes analyses of the relative abundance of fish species, and reservoir habitat relationships (1990-1998). Fisheries surveys (1990-1998) indicate that walleye and burbot populations appear to be increasing, while yellow perch, a preferred walleye prey species, and other prey species are decreasing in abundance. The long term decreasing abundance of yellow perch and other prey species are suspected to be the result of the lack of suitable multiple reservoir elevation spawning and rearing refugia for spring spawning reservoir prey species, resulting from seasonal spring-early summer reservoir elevation manipulations, and walleye predation. Reservoir water management is both directly, and indirectly influencing the success of mitigation hatchery production of kokanee salmon and rainbow trout. Tag return data suggested excessive entrainment occurred in

  9. 78 FR 76285 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Snapper-Grouper Fishery Off the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-17

    ... modify existing marine protected areas (MPAs) implemented through Amendment 14 to the Fishery Management... AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA... Fisheries, National Marine Fisheries Service. BILLING CODE 3510-22-P ...

  10. 78 FR 76107 - Fisheries of the South Atlantic and the Gulf of Mexico; South Atlantic Fishery Management Council...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-16

    ... National Oceanic and Atmospheric Administration Fisheries of the South Atlantic and the Gulf of Mexico; South Atlantic Fishery Management Council (SAFMC) and Gulf of Mexico Fishery Management Council (GMFMC); Public Meeting AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and...

  11. Acoustic telemetry and fisheries management.

    PubMed

    Crossin, Glenn T; Heupel, Michelle R; Holbrook, Christopher M; Hussey, Nigel E; Lowerre-Barbieri, Susan K; Nguyen, Vivian M; Raby, Graham D; Cooke, Steven J

    2017-06-01

    This paper reviews the use of acoustic telemetry as a tool for addressing issues in fisheries management, and serves as the lead to the special Feature Issue of Ecological Applications titled Acoustic Telemetry and Fisheries Management. Specifically, we provide an overview of the ways in which acoustic telemetry can be used to inform issues central to the ecology, conservation, and management of exploited and/or imperiled fish species. Despite great strides in this area in recent years, there are comparatively few examples where data have been applied directly to influence fisheries management and policy. We review the literature on this issue, identify the strengths and weaknesses of work done to date, and highlight knowledge gaps and difficulties in applying empirical fish telemetry studies to fisheries policy and practice. We then highlight the key areas of management and policy addressed, as well as the challenges that needed to be overcome to do this. We conclude with a set of recommendations about how researchers can, in consultation with stock assessment scientists and managers, formulate testable scientific questions to address and design future studies to generate data that can be used in a meaningful way by fisheries management and conservation practitioners. We also urge the involvement of relevant stakeholders (managers, fishers, conservation societies, etc.) early on in the process (i.e., in the co-creation of research projects), so that all priority questions and issues can be addressed effectively. © 2017 by the Ecological Society of America.

  12. Acoustic telemetry and fisheries management

    USGS Publications Warehouse

    Crossin, Glenn T.; Heupel, Michelle R.; Holbrook, Christopher; Hussey, Nigel E.; Lowerre-Barbieri, Susan K; Nguyen, Vivian M.; Raby, Graham D.; Cooke, Steven J.

    2017-01-01

    This paper reviews the use of acoustic telemetry as a tool for addressing issues in fisheries management, and serves as the lead to the special Feature Issue of Ecological Applications titled “Acoustic Telemetry and Fisheries Management”. Specifically, we provide an overview of the ways in which acoustic telemetry can be used to inform issues central to the ecology, conservation, and management of exploited and/or imperiled fish species. Despite great strides in this area in recent years, there are comparatively few examples where data have been applied directly to influence fisheries management and policy. We review the literature on this issue, identify the strengths and weaknesses of work done to date, and highlight knowledge gaps and difficulties in applying empirical fish telemetry studies to fisheries policy and practice. We then highlight the key areas of management and policy addressed, as well as the challenges that needed to be overcome to do this. We conclude with a set of recommendations about how researchers can, in consultation with stock assessment scientists and managers, formulate testable scientific questions to address and design future studies to generate data that can be used in a meaningful way by fisheries management and conservation practitioners. We also urge the involvement of relevant stakeholders (managers, fishers, conservation societies, etc.) early on in the process (i.e. in the co-creation of research projects), so that all priority questions and issues can be addressed effectively.

  13. Luring anglers to enhance fisheries

    USGS Publications Warehouse

    Martin, Dustin R.; Pope, Kevin L.

    2011-01-01

    Current fisheries management is, unfortunately, reactive rather than proactive to changes in fishery characteristics. Furthermore, anglers do not act independently on waterbodies, and thus, fisheries are complex socio-ecological systems. Proactive management of these complex systems necessitates an approach-adaptive fisheries management-that allows learning to occur simultaneously with management. A promising area for implementation of adaptive fisheries management is the study of luring anglers to or from specific waterbodies to meet management goals. Purposeful manipulation of anglers, and its associated field of study, is nonexistent in past management. Evaluation of different management practices (i.e., hypotheses) through an iterative adaptive management process should include both a biological and sociological survey to address changes in fish populations and changes in angler satisfaction related to changes in management. We believe adaptive management is ideal for development and assessment of management strategies targeted at angler participation. Moreover these concepts and understandings should be applicable to other natural resource users such as hunters and hikers.

  14. Luring anglers to enhance fisheries.

    PubMed

    Martin, Dustin R; Pope, Kevin L

    2011-05-01

    Current fisheries management is, unfortunately, reactive rather than proactive to changes in fishery characteristics. Furthermore, anglers do not act independently on waterbodies, and thus, fisheries are complex socio-ecological systems. Proactive management of these complex systems necessitates an approach--adaptive fisheries management--that allows learning to occur simultaneously with management. A promising area for implementation of adaptive fisheries management is the study of luring anglers to or from specific waterbodies to meet management goals. Purposeful manipulation of anglers, and its associated field of study, is nonexistent in past management. Evaluation of different management practices (i.e., hypotheses) through an iterative adaptive management process should include both a biological and sociological survey to address changes in fish populations and changes in angler satisfaction related to changes in management. We believe adaptive management is ideal for development and assessment of management strategies targeted at angler participation. Moreover these concepts and understandings should be applicable to other natural resource users such as hunters and hikers.

  15. 50 CFR 665.440 - Mariana crustacean fisheries. [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Mariana crustacean fisheries. 665.440 Section 665.440 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Archipelago Fisheries § 665.440 Mariana crustacean fisheries....

  16. 50 CFR 665.640 - PRIA crustacean fisheries. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false PRIA crustacean fisheries. 665.640 Section 665.640 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Island Area Fisheries § 665.640 PRIA crustacean fisheries....

  17. 50 CFR 665.640 - PRIA crustacean fisheries. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false PRIA crustacean fisheries. 665.640 Section 665.640 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Island Area Fisheries § 665.640 PRIA crustacean fisheries....

  18. 50 CFR 665.140 - American Samoa Crustacean Fisheries. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false American Samoa Crustacean Fisheries. 665.140 Section 665.140 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Fisheries § 665.140 American Samoa Crustacean Fisheries....

  19. 50 CFR 665.140 - American Samoa Crustacean Fisheries. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false American Samoa Crustacean Fisheries. 665.140 Section 665.140 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Fisheries § 665.140 American Samoa Crustacean Fisheries....

  20. 50 CFR 665.140 - American Samoa Crustacean Fisheries. [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false American Samoa Crustacean Fisheries. 665.140 Section 665.140 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Fisheries § 665.140 American Samoa Crustacean Fisheries....