Science.gov

Sample records for fission yeast pheromone-responsive

  1. Functional coupling of a mammalian somatostatin receptor to the yeast pheromone response pathway.

    PubMed Central

    Price, L A; Kajkowski, E M; Hadcock, J R; Ozenberger, B A; Pausch, M H

    1995-01-01

    A detailed analysis of structural and functional aspects of G-protein-coupled receptors, as well as discovery of novel pharmacophores that exert their effects on members of this class of receptors, will be facilitated by development of a yeast-based bioassay. To that end, yeast strains that functionally express the rat somatostatin receptor subtype 2 (SSTR2) were constructed. High-affinity binding sites for somatostatin ([125I-Tyr-11]S-14) comparable to those in native tissues were detected in yeast membrane extracts at levels equivalent to the alpha-mating pheromone receptor (Ste2p). Somatostatin-dependent growth of strains modified by deletion of genes encoding components of the pheromone response pathway was detected through induction of a pheromone-responsive HIS3 reporter gene, enabling cells to grow on medium lacking histidine. Dose-dependent growth responses to S-14 and related SSTR2 subtype-selective agonists that were proportional to the affinity of the ligands for SSTR2 were observed. The growth response required SSTR2, G alpha proteins, and an intact signal transduction pathway. The sensitivity of the bioassay was affected by intracellular levels of the G alpha protein. A mutation in the SST2 gene, which confers supersensitivity to pheromone, was found to significantly enhance the growth response to S-14. In sst2 delta cells, SSTR2 functionally interacted with both a chimeric yeast/mammalian G alpha protein and the yeast G alpha protein, Gpa1p; to promote growth. These yeast strains should serve as a useful in vivo reconstitution system for examination of molecular interactions of the G-protein-coupled receptors and G proteins. PMID:7565771

  2. The PRE and PQ box are functionally distinct yeast pheromone response elements.

    PubMed Central

    Sengupta, P; Cochran, B H

    1990-01-01

    Saccharomyces cerevisiae mating pheromones function by binding to cell surface receptors and activating signal transduction processes which regulate gene expression. In this report, we have analyzed the minimum sequence requirements for conferring both a and alpha mating pheromone inducibilities onto a heterologous promoter. Here we show that the repetitive pheromone response element (PRE) which binds to STE12 protein is sufficient to confer pheromone responsiveness only when present in multiple copies. Moreover, by itself, it is preferentially responsive to alpha factor in a cells. In contrast, a single copy of the PQ box of the STE3 upstream activation sequence (UAS) is sufficient to confer a-factor responsiveness in alpha cells. The PQ box binds both MCM1 and MAT alpha 1 in a cooperative manner, and neither the P nor Q site alone is sufficient to confer a-factor responsiveness. In a cells, however, even multiple copies of the PQ box fail to confer alpha-factor responsiveness. Therefore, the PRE and the PQ box are functionally distinct pheromone-responsive elements with opposite cell type specificities. Moreover, these results indicate that the MCM1 protein functions in a signal transduction pathway in a manner analogous to that of its mammalian homolog, the serum response factor, which regulates the expression of the c-fos proto-oncogene in mammals. PMID:2247085

  3. Centromeric chromatin in fission yeast.

    PubMed

    Partridge, Janet F

    2008-05-01

    A fundamental requirement for life is the ability of cells to divide properly and to pass on to their daughters a full complement of genetic material. The centromere of the chromosome is essential for this process, as it provides the DNA sequences on which the kinetochore (the proteinaceous structure that links centromeric DNA to the spindle microtubules) assembles to allow segregation of the chromosomes during mitosis. It has long been recognized that kinetochore assembly is subject to epigenetic control, and deciphering how centromeres promote faithful chromosome segregation provides a fascinating intellectual challenge. This challenge is made more difficult by the scale and complexity of DNA sequences in metazoan centromeres, thus much research has focused on dissecting centromere function in the single celled eukaryotic yeasts. Interestingly, in spite of similarities in the genome size of budding and fission yeasts, they seem to have adopted some striking differences in their strategy for passing on their chromosomes. Budding yeast have "point" centromeres, where a 125 base sequence is sufficient for mitotic propagation, whereas fission yeast centromeres are more reminiscent of the large repetitive centromeres of metazoans. In addition, the centromeric heterochromatin which coats centromeric domains of fission yeast and metazoan centromeres and is critical for their function, is largely absent from budding yeast centromeres. This review focuses on the assembly and maintenance of centromeric chromatin in the fission yeast.

  4. Heterotrimeric G Protein-coupled Receptor Signaling in Yeast Mating Pheromone Response.

    PubMed

    Alvaro, Christopher G; Thorner, Jeremy

    2016-04-08

    The DNAs encoding the receptors that respond to the peptide mating pheromones of the budding yeastSaccharomyces cerevisiaewere isolated in 1985, and were the very first genes for agonist-binding heterotrimeric G protein-coupled receptors (GPCRs) to be cloned in any organism. Now, over 30 years later, this yeast and its receptors continue to provide a pathfinding experimental paradigm for investigating GPCR-initiated signaling and its regulation, as described in this retrospective overview.

  5. Functional Coupling of a Nematode Chemoreceptor to the Yeast Pheromone Response Pathway

    PubMed Central

    Tehseen, Muhammad; Dumancic, Mira; Briggs, Lyndall; Wang, Jian; Berna, Amalia; Anderson, Alisha; Trowell, Stephen

    2014-01-01

    Sequencing of the Caenorhabditis elegans genome revealed sequences encoding more than 1,000 G-protein coupled receptors, hundreds of which may respond to volatile organic ligands. To understand how the worm's simple olfactory system can sense its chemical environment there is a need to characterise a representative selection of these receptors but only very few receptors have been linked to a specific volatile ligand. We therefore set out to design a yeast expression system for assigning ligands to nematode chemoreceptors. We showed that while a model receptor ODR-10 binds to C. elegans Gα subunits ODR-3 and GPA-3 it cannot bind to yeast Gα. However, chimaeras between the nematode and yeast Gα subunits bound to both ODR-10 and the yeast Gβγ subunits. FIG2 was shown to be a superior MAP-dependent promoter for reporter expression. We replaced the endogenous Gα subunit (GPA1) of the Saccharomyces cerevisiae (ste2Δ sst2Δ far1Δ) triple mutant (“Cyb”) with a Gpa1/ODR-3 chimaera and introduced ODR-10 as a model nematode GPCR. This strain showed concentration-dependent activation of the yeast MAP kinase pathway in the presence of diacetyl, the first time that the native form of a nematode chemoreceptor has been functionally expressed in yeast. This is an important step towards en masse de-orphaning of C. elegans chemoreceptors. PMID:25415379

  6. Functional coupling of a nematode chemoreceptor to the yeast pheromone response pathway.

    PubMed

    Tehseen, Muhammad; Dumancic, Mira; Briggs, Lyndall; Wang, Jian; Berna, Amalia; Anderson, Alisha; Trowell, Stephen

    2014-01-01

    Sequencing of the Caenorhabditis elegans genome revealed sequences encoding more than 1,000 G-protein coupled receptors, hundreds of which may respond to volatile organic ligands. To understand how the worm's simple olfactory system can sense its chemical environment there is a need to characterise a representative selection of these receptors but only very few receptors have been linked to a specific volatile ligand. We therefore set out to design a yeast expression system for assigning ligands to nematode chemoreceptors. We showed that while a model receptor ODR-10 binds to C. elegans Gα subunits ODR-3 and GPA-3 it cannot bind to yeast Gα. However, chimaeras between the nematode and yeast Gα subunits bound to both ODR-10 and the yeast Gβγ subunits. FIG2 was shown to be a superior MAP-dependent promoter for reporter expression. We replaced the endogenous Gα subunit (GPA1) of the Saccharomyces cerevisiae (ste2Δ sst2Δ far1Δ) triple mutant ("Cyb") with a Gpa1/ODR-3 chimaera and introduced ODR-10 as a model nematode GPCR. This strain showed concentration-dependent activation of the yeast MAP kinase pathway in the presence of diacetyl, the first time that the native form of a nematode chemoreceptor has been functionally expressed in yeast. This is an important step towards en masse de-orphaning of C. elegans chemoreceptors.

  7. Live Cell Imaging in Fission Yeast.

    PubMed

    Mulvihill, Daniel P

    2017-10-03

    Live cell imaging complements the array of biochemical and molecular genetic approaches to provide a comprehensive insight into functional dependencies and molecular interactions in fission yeast. Fluorescent proteins and vital dyes reveal dynamic changes in the spatial distribution of organelles and the proteome and how each alters in response to changes in environmental and genetic composition. This introduction discusses key issues and basic image analysis for live cell imaging of fission yeast. © 2017 Cold Spring Harbor Laboratory Press.

  8. Protein-Protein Interactions in the Yeast Pheromone Response Pathway: Ste5p Interacts with All Members of the Map Kinase Cascade

    PubMed Central

    Printen, J. A.; Sprague-Jr., G. F.

    1994-01-01

    We have used the two-hybrid system of Fields and Song to identify protein-protein interactions that occur in the pheromone response pathway of the yeast Saccharomyces cerevisiae. Pathway components Ste4p, Ste5p, Ste7p, Ste11p, Ste12p, Ste20p, Fus3p and Kss1p were tested in all pairwise combinations. All of the interactions we detected involved at least one member of the MAP kinase cascade that is a central element of the response pathway. Ste5p, a protein of unknown biochemical function, interacted with protein kinases that operate at each step of the MAP kinase cascade, specifically with Ste11p (an MEKK), Ste7p (an MEK), and Fus3p (a MAP kinase). This finding suggests that one role of Ste5p is to serve as a scaffold to facilitate interactions among members of the kinase cascade. In this role as facilitator, Ste5p may make both signal propagation and signal attenuation more efficient. Ste5p may also help minimize cross-talk with other MAP kinase cascades and thus ensure the integrity of the pheromone response pathway. We also found that both Ste11p and Ste7p interact with Fus3p and Kss1p. Finally, we detected an interaction between one of the MAP kinases, Kss1p, and a presumptive target, the transcription factor Ste12p. We failed to detect interactions of Ste4p or Ste20p with any other component of the response pathway. PMID:7851759

  9. Schizosaccharomyces japonicus: A Distinct Dimorphic Yeast Among the Fission Yeasts.

    PubMed

    Aoki, Keita; Furuya, Kanji; Niki, Hironori

    2017-07-21

    Genomic sequencing data and morphological properties demonstrate evolutionary relationships among groups of the fission yeast, Schizosaccharomyces Phylogenetically, S. japonicus is the furthest removed from other species of fission yeast. The basic characteristics of cell proliferation are shared among all fission yeast, including the process of binary fission during vegetative growth, conjugation and karyogamy with horsetail movement, mating-type switching, and sporulation. However, S. japonicus also exhibits characteristics that are unique to filamentous fungi. S. japonicus is a nonpathogenic yeast that exhibits dimorphism. Depending on the environmental conditions, S. japonicus transforms from yeast cells into filamentous cells (hyphae), and blue light triggers synchronous septation of hyphal cells. A rough version of the whole-genome sequence is now available, facilitating genetic manipulation of S. japonicus. Furthermore, the extensive genetic knowledge available for S. pombe is aiding the development of genetic tools for analyzing S. japonicus. S. japonicus will help shed light on the evolutionary relationships among the fission yeast. © 2017 Cold Spring Harbor Laboratory Press.

  10. Molecular control of fission yeast cytokinesis.

    PubMed

    Rincon, Sergio A; Paoletti, Anne

    2016-05-01

    Cytokinesis gives rise to two independent daughter cells at the end of the cell division cycle. The fission yeast Schizosaccharomyces pombe has emerged as one of the most powerful systems to understand how cytokinesis is controlled molecularly. Like in most eukaryotes, fission yeast cytokinesis depends on an acto-myosin based contractile ring that assembles at the division site under the control of spatial cues that integrate information on cell geometry and the position of the mitotic apparatus. Cytokinetic events are also tightly coordinated with nuclear division by the cell cycle machinery. These spatial and temporal regulations ensure an equal cleavage of the cytoplasm and an accurate segregation of the genetic material in daughter cells. Although this model system has specificities, the basic mechanisms of contractile ring assembly and function deciphered in fission yeast are highly valuable to understand how cytokinesis is controlled in other organisms that rely on a contractile ring for cell division.

  11. Predicting the fission yeast protein interaction network.

    PubMed

    Pancaldi, Vera; Saraç, Omer S; Rallis, Charalampos; McLean, Janel R; Převorovský, Martin; Gould, Kathleen; Beyer, Andreas; Bähler, Jürg

    2012-04-01

    A systems-level understanding of biological processes and information flow requires the mapping of cellular component interactions, among which protein-protein interactions are particularly important. Fission yeast (Schizosaccharomyces pombe) is a valuable model organism for which no systematic protein-interaction data are available. We exploited gene and protein properties, global genome regulation datasets, and conservation of interactions between budding and fission yeast to predict fission yeast protein interactions in silico. We have extensively tested our method in three ways: first, by predicting with 70-80% accuracy a selected high-confidence test set; second, by recapitulating interactions between members of the well-characterized SAGA co-activator complex; and third, by verifying predicted interactions of the Cbf11 transcription factor using mass spectrometry of TAP-purified protein complexes. Given the importance of the pathway in cell physiology and human disease, we explore the predicted sub-networks centered on the Tor1/2 kinases. Moreover, we predict the histidine kinases Mak1/2/3 to be vital hubs in the fission yeast stress response network, and we suggest interactors of argonaute 1, the principal component of the siRNA-mediated gene silencing pathway, lost in budding yeast but preserved in S. pombe. Of the new high-quality interactions that were discovered after we started this work, 73% were found in our predictions. Even though any predicted interactome is imperfect, the protein network presented here can provide a valuable basis to explore biological processes and to guide wet-lab experiments in fission yeast and beyond. Our predicted protein interactions are freely available through PInt, an online resource on our website (www.bahlerlab.info/PInt).

  12. Predicting the Fission Yeast Protein Interaction Network

    PubMed Central

    Pancaldi, Vera; Saraç, Ömer S.; Rallis, Charalampos; McLean, Janel R.; Převorovský, Martin; Gould, Kathleen; Beyer, Andreas; Bähler, Jürg

    2012-01-01

    A systems-level understanding of biological processes and information flow requires the mapping of cellular component interactions, among which protein–protein interactions are particularly important. Fission yeast (Schizosaccharomyces pombe) is a valuable model organism for which no systematic protein-interaction data are available. We exploited gene and protein properties, global genome regulation datasets, and conservation of interactions between budding and fission yeast to predict fission yeast protein interactions in silico. We have extensively tested our method in three ways: first, by predicting with 70–80% accuracy a selected high-confidence test set; second, by recapitulating interactions between members of the well-characterized SAGA co-activator complex; and third, by verifying predicted interactions of the Cbf11 transcription factor using mass spectrometry of TAP-purified protein complexes. Given the importance of the pathway in cell physiology and human disease, we explore the predicted sub-networks centered on the Tor1/2 kinases. Moreover, we predict the histidine kinases Mak1/2/3 to be vital hubs in the fission yeast stress response network, and we suggest interactors of argonaute 1, the principal component of the siRNA-mediated gene silencing pathway, lost in budding yeast but preserved in S. pombe. Of the new high-quality interactions that were discovered after we started this work, 73% were found in our predictions. Even though any predicted interactome is imperfect, the protein network presented here can provide a valuable basis to explore biological processes and to guide wet-lab experiments in fission yeast and beyond. Our predicted protein interactions are freely available through PInt, an online resource on our website (www.bahlerlab.info/PInt). PMID:22540037

  13. Fission yeast meets a legend in Kobe: report of the Eighth International Fission Yeast Meeting.

    PubMed

    Asakawa, Haruhiko; Yamamoto, Takaharu G; Hiraoka, Yasushi

    2015-12-01

    The Eighth International Fission Yeast Meeting, which was held at Ikuta Shrine Hall in Kobe, Japan, from 21 to 26 June 2015, was attended by 327 fission yeast researchers from 25 countries (190 overseas and 137 domestic participants). At this meeting, 124 talks were held and 145 posters were presented. In addition, newly developed database tools were introduced to the community during a workshop. Researchers shared cutting-edge knowledge across broad fields of study, ranging from molecules to evolution, derived from the superior model organism commonly used within the fission yeast community. Intensive discussions and constructive suggestions generated in this meeting will surely advance the understanding of complex biological systems in fission yeast, extending to general eukaryotes.

  14. Nuclear organisation and RNAi in fission yeast.

    PubMed

    Woolcock, Katrina J; Bühler, Marc

    2013-06-01

    Over the last decade, the fission yeast Schizosaccharomyces pombe has been used extensively for investigating RNA interference (RNAi)-mediated heterochromatin assembly. However, only recently have studies begun to shed light on the 3D organisation of chromatin and the RNAi machinery in the fission yeast nucleus. These studies indicate association of repressive and active chromatin with different regions of the nuclear periphery, similar to other model organisms, and clustering of functionally related genomic features. Unexpectedly, RNAi factors were shown to associate with nuclear pores and were implicated in the regulation of genomic features outside of the well-studied heterochromatic regions. Nuclear organisation is likely to contribute to substrate specificity of the RNAi pathway. However, further studies are required to elucidate the exact mechanisms and functional importance of this nuclear organisation.

  15. FYPO: the fission yeast phenotype ontology.

    PubMed

    Harris, Midori A; Lock, Antonia; Bähler, Jürg; Oliver, Stephen G; Wood, Valerie

    2013-07-01

    To provide consistent computable descriptions of phenotype data, PomBase is developing a formal ontology of phenotypes observed in fission yeast. The fission yeast phenotype ontology (FYPO) is a modular ontology that uses several existing ontologies from the open biological and biomedical ontologies (OBO) collection as building blocks, including the phenotypic quality ontology PATO, the Gene Ontology and Chemical Entities of Biological Interest. Modular ontology development facilitates partially automated effective organization of detailed phenotype descriptions with complex relationships to each other and to underlying biological phenomena. As a result, FYPO supports sophisticated querying, computational analysis and comparison between different experiments and even between species. FYPO releases are available from the Subversion repository at the PomBase SourceForge project page (https://sourceforge.net/p/pombase/code/HEAD/tree/phenotype_ontology/). The current version of FYPO is also available on the OBO Foundry Web site (http://obofoundry.org/).

  16. Cell polarization in budding and fission yeasts.

    PubMed

    Martin, Sophie G; Arkowitz, Robert A

    2014-03-01

    Polarization is a fundamental cellular property, which is essential for the function of numerous cell types. Over the past three to four decades, research using the best-established yeast systems in cell biological research, Saccharomyces cerevisiae (or budding yeast) and Schizosaccharomyces pombe (or fission yeast), has brought to light fundamental principles governing the establishment and maintenance of a polarized, asymmetric state. These two organisms, though both ascomycetes, are evolutionarily very distant and exhibit distinct shapes and modes of growth. In this review, we compare and contrast the two systems. We first highlight common cell polarization pathways, detailing the contribution of Rho GTPases, the cytoskeleton, membrane trafficking, lipids, and protein scaffolds. We then contrast the major differences between the two organisms, describing their distinct strategies in growth site selection and growth zone dimensions and compartmentalization, which may be the basis for their distinct shapes. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  17. Fission yeast: in shape to divide.

    PubMed

    Hachet, Olivier; Bendezú, Felipe O; Martin, Sophie G

    2012-12-01

    How are cell morphogenesis and cell cycle coordinated? The fission yeast is a rod-shaped unicellular organism widely used to study how a cell self-organizes in space and time. Here, we discuss recent advances in understanding how the cell acquires and maintains its regular rod shape and uses it to control cell division. The cellular body plan is established by microtubules, which mark antipodal growth zones and medial division. In turn, cellular dimensions are defined by the small GTPase Cdc42 and downstream regulators of vesicle trafficking. Yeast cells then repetitively use their simple rod shape to orchestrate the position and timing of cell division. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Cell Shape and Cell Division in Fission Yeast Minireview

    PubMed Central

    Piel, Matthieu; Tran, Phong T.

    2010-01-01

    The fission yeast Schizosaccharomyces pombe has served as an important model organism for investigating cellular morphogenesis. This unicellular rod-shaped fission yeast grows by tip extension and divides by medial fission. In particular, microtubules appear to define sites of polarized cell growth by delivering cell polarity factors to the cell tips. Microtubules also position the cell nucleus at the cell middle, marking sites of cell division. Here, we review the microtubule-dependent mechanisms that regulate cell shape and cell division in fission yeast. PMID:19906584

  19. Divergence of mitotic strategies in fission yeasts

    PubMed Central

    Gu, Ying; Yam, Candice; Oliferenko, Snezhana

    2012-01-01

    The aim of mitosis is to produce two daughter nuclei, each containing a chromosome complement identical to that of the mother nucleus. This can be accomplished through a variety of strategies, with “open” and “closed” modes of mitosis positioned at the opposite ends of the spectrum and a range of intermediate patterns in between. In the “closed” mitosis, the nuclear envelope remains intact throughout the nuclear division. In the “open” division type, the envelope of the original nucleus breaks down early in mitosis and reassembles around the segregated daughter genomes. In any case, the nuclear membrane has to remodel to accommodate the mitotic spindle assembly, chromosome segregation and formation of the daughter nuclei. We have recently shown that within the fission yeast clade, the mitotic control of the nuclear surface area may determine the choice between the nuclear envelope breakdown and a fully “closed” division. Here we discuss our data and argue that comparative cell biology studies using two fission yeast species, Schizosaccharomyces pombe and Schizosaccharomyces japonicus, could provide unprecedented insights into physiology and evolution of mitosis. PMID:22572960

  20. Fission yeast Schizosaccharomyces pombe in continuous culture

    SciTech Connect

    Vrana, D.

    1983-08-01

    The fission yeast Schizosaccharomyces pombe was cultivated in a chemostat at dilution rates of D = 0.03, 0.05, 0.10, and 0.20/h. After steady state has been reached, the amount of dry matter, number of cells, concentration of residual sugar, yield coefficient (Y), and some morphological properties of the cells were estimated. Curves reflecting the dry mass, number of cells, and cell mean volume show a changing coordination between the growth rate and the rate of cell division, with respect of D. In addition, it could be concluded that in dividing cells the cell septum is localized asymmetrically; two nonidentical cells differing both in length and volume result. The degree of asymmetry is a function of the dilution rate. (25 Refs.)

  1. Nuclear size control in fission yeast.

    PubMed

    Neumann, Frank R; Nurse, Paul

    2007-11-19

    A long-standing biological question is how a eukaryotic cell controls the size of its nucleus. We report here that in fission yeast, nuclear size is proportional to cell size over a 35-fold range, and use mutants to show that a 16-fold change in nuclear DNA content does not influence the relative size of the nucleus. Multi-nucleated cells with unevenly distributed nuclei reveal that nuclei surrounded by a greater volume of cytoplasm grow more rapidly. During interphase of the cell cycle nuclear growth is proportional to cell growth, and during mitosis there is a rapid expansion of the nuclear envelope. When the nuclear/cell (N/C) volume ratio is increased by centrifugation or genetic manipulation, nuclear growth is arrested while the cell continues to grow; in contrast, low N/C ratios are rapidly corrected by nuclear growth. We propose that there is a general cellular control linking nuclear growth to cell size.

  2. Preparation of Total RNA from Fission Yeast.

    PubMed

    Bähler, Jürg; Wise, Jo Ann

    2017-04-03

    Treatment with hot phenol breaks open fission yeast cells and begins to strip away bound proteins from RNA. Deproteinization is completed by multiple extractions with chloroform/isoamyl alcohol and separation of the aqueous and organic phases using MaXtract gel, an inert material that acts as a physical barrier between the phases. The final step is concentration of the RNA by ethanol precipitation. The protocol can be used to prepare RNA from several cultures grown in parallel, but it is important not to process too many samples at once because delays can be detrimental to RNA quality. A reasonable number of samples to process at once would be three to four for microarray or RNA sequencing analyses and six for preliminary investigations of mutants implicated in RNA metabolism.

  3. Preparing Fission Yeast for Electron Microscopy.

    PubMed

    Giddings, Thomas H; Morphew, Mary K; McIntosh, J Richard

    2017-01-03

    Freezing samples while simultaneously subjecting them to a rapid increase in pressure, which inhibits ice crystal formation, is a reliable method for cryofixing fission yeast. The procedure consists simply of harvesting cells and loading them into a high-pressure freezer (HPF), and then operating the device. If equipment for high-pressure freezing is not available, fission yeast can be frozen by plunging a monolayer of cells into a liquid cryogen, usually ethane or propane. Unlike the HPF, where relatively large volumes of cells can be frozen in a single run, plunge freezing requires cells to be dispersed in a layer <20 µm thick. Unless frozen cells are to be imaged in the vitreous state, they must be fixed, dehydrated, and embedded for subsequent study by transmission electron microscopy; warming frozen cells without fixation badly damages cell structure. Fixation is best accomplished by freeze-substitution, a process in which frozen water is removed from samples by a water-miscible solvent that is liquid at a temperature low enough to prevent the cellular water from recrystallizing. Low concentrations of chemical fixatives and stains are generally added to this solvent such that they permeate the cells as the water is replaced. The activity of these additives is quite limited at the low temperatures required for minimizing ice crystal formation, but they are in the right place to react effectively as the cells warm up. Step-by-step protocols for HPF, plunge freezing, and freeze-substitution are provided here. © 2017 Cold Spring Harbor Laboratory Press.

  4. Mechanics of cell division in fission yeast

    NASA Astrophysics Data System (ADS)

    Chang, Fred

    2012-02-01

    Cytokinesis is the stage of cell division in which a cell divides into two. A paradigm of cytokinesis in animal cells is that the actomyosin contractile ring provides the primary force to squeeze the cell into two. In the fission yeast Schizosaccharomyces pombe, cytokinesis also requires a actomyosin ring, which has been generally assumed to provide the force for cleavage. However, in contrast to animal cells, yeast cells assemble a cell wall septum concomitant with ring contraction and possess large (MPa) internal turgor pressure. Here, we show that the inward force generated by the division apparatus opposes turgor pressure; a decrease in effective turgor pressure leads to an increase in cleavage rate. We show that the ring cannot be the primary force generator. Scaling arguments indicate that the contractile ring can only provide a tiny fraction of the mechanical stress required to overcome turgor. Further, we show that cleavage can occur even in the absence of the contractile ring. Instead of the contractile ring, scaling arguments and modeling suggest that the large forces for cytokinesis are produced by the assembly of cell wall polymers in the growing septum.

  5. Forces that shape fission yeast cells.

    PubMed

    Chang, Fred

    2017-07-07

    One of the major challenges of modern cell biology is to understand how cells are assembled from nanoscale components into micrometer-scale entities with a specific size and shape. Here I describe how our quest to understand the morphogenesis of the fission yeast Schizosaccharomyces pombe drove us to investigate cellular mechanics. These studies build on the view that cell shape arises from the physical properties of an elastic cell wall inflated by internal turgor pressure. Consideration of cellular mechanics provides new insights into not only mechanisms responsible for cell-shape determination and growth, but also cellular processes such as cytokinesis and endocytosis. Studies in yeast can help to illuminate approaches and mechanisms to study the mechanobiology of the cell surface in other cell types, including animal cells. © 2017 Chang. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  6. Nuclear membrane: nuclear envelope PORosity in fission yeast meiosis.

    PubMed

    Sazer, Shelley

    2010-11-09

    The fission yeast Schizosaccharomyces pombe undergoes closed mitosis but 'virtual nuclear envelope breakdown' at anaphase of meiosis II, in which the nuclear envelope is structurally closed but functionally open.

  7. An Analysis of Interference in the Fission Yeast Schizosaccharomyces Pombe

    PubMed Central

    Munz, P.

    1994-01-01

    The evaluation of three-point crosses at the tetrad and random spore level leads to the conclusion that both chiasma and chromatid interference are absent in the fission yeast Schizosaccharomyces pombe. PMID:8088515

  8. Inhibition of peroxisome fission, but not mitochondrial fission, increases yeast chronological lifespan.

    PubMed

    Lefevre, Sophie D; Kumar, Sanjeev; van der Klei, Ida J

    2015-01-01

    Mitochondria are key players in aging and cell death. It has been suggested that mitochondrial fragmentation, mediated by the Dnm1/Fis1 organelle fission machinery, stimulates aging and cell death. This was based on the observation that Saccharomyces cerevisiae Δdnm1 and Δfis1 mutants show an enhanced lifespan and increased resistance to cell death inducers. However, the Dnm1/Fis1 fission machinery is also required for peroxisome division. Here we analyzed the significance of peroxisome fission in yeast chronological lifespan, using yeast strains in which fission of mitochondria was selectively blocked. Our data indicate that the lifespan extension caused by deletion of FIS1 is mainly due to a defect in peroxisome fission and not caused by a block in mitochondrial fragmentation. These observations are underlined by our observation that deletion of FIS1 does not lead to lifespan extension in yeast peroxisome deficient mutant cells.

  9. The Cell Biology of Fission Yeast Septation

    PubMed Central

    Ramos, Mariona; Osumi, Masako; Pérez, Pilar; Ribas, Juan Carlos

    2016-01-01

    SUMMARY In animal cells, cytokinesis requires the formation of a cleavage furrow that divides the cell into two daughter cells. Furrow formation is achieved by constriction of an actomyosin ring that invaginates the plasma membrane. However, fungal cells contain a rigid extracellular cell wall surrounding the plasma membrane; thus, fungal cytokinesis also requires the formation of a special septum wall structure between the dividing cells. The septum biosynthesis must be strictly coordinated with the deposition of new plasma membrane material and actomyosin ring closure and must occur in such a way that no breach in the cell wall occurs at any time. Because of the high turgor pressure in the fungal cell, even a minor local defect might lead to cell lysis and death. Here we review our knowledge of the septum structure in the fission yeast Schizosaccharomyces pombe and of the recent advances in our understanding of the relationship between septum biosynthesis and actomyosin ring constriction and how the two collaborate to build a cross-walled septum able to support the high turgor pressure of the cell. In addition, we discuss the importance of the septum biosynthesis for the steady ingression of the cleavage furrow. PMID:27466282

  10. A nonproteolytic proteasome activity controls organelle fission in yeast.

    PubMed

    Hofmann, Line; Saunier, Rémy; Cossard, Raynald; Esposito, Michela; Rinaldi, Teresa; Delahodde, Agnès

    2009-10-15

    To understand the processes underlying organelle function, dynamics and inheritance, it is necessary to identify and characterize the regulatory components involved. Recently in yeast and mammals, proteins of the membrane fission machinery (Dnm1-Mdv1-Caf4-Fis1 in yeast and DLP1-FIS1 in human) have been shown to have a dual localization on mitochondria and peroxisomes, where they control mitochondrial fission and peroxisome division. Here, we show that whereas vacuole fusion is regulated by the proteasome degradation function, mitochondrial fission and peroxisomal division are not controlled by the proteasome activity but rather depend on a new function of the proteasomal lid subunit Rpn11. Rpn11 was found to regulate the Fis1-dependent fission machinery of both organelles. These findings indicate a unique role of the Rpn11 protein in mitochondrial fission and peroxisomal proliferation that is independent of its role in proteasome-associated deubiquitylation.

  11. Dielectric modelling of cell division for budding and fission yeast

    NASA Astrophysics Data System (ADS)

    Asami, Koji; Sekine, Katsuhisa

    2007-02-01

    The frequency dependence of complex permittivity or the dielectric spectrum of a system including a cell in cell division has been simulated by a numerical technique based on the three-dimensional finite difference method. Two different types of cell division characteristic of budding and fission yeast were examined. The yeast cells are both regarded as a body of rotation, and thus have anisotropic polarization, i.e. the effective permittivity of the cell depends on the orientation of the cell to the direction of an applied electric field. In the perpendicular orientation, where the rotational axis of the cell is perpendicular to the electric field direction, the dielectric spectra for both yeast cells included one dielectric relaxation and its intensity depended on the cell volume. In the parallel orientation, on the other hand, two dielectric relaxations appeared with bud growth for budding yeast and with septum formation for fission yeast. The low-frequency relaxation was shifted to a lower frequency region by narrowing the neck between the bud and the mother cell for budding yeast and by increasing the degree of septum formation for fission yeast. After cell separation, the low-frequency relaxation disappeared. The simulations well interpreted the oscillation of the relative permittivity of culture broth found for synchronous cell growth of budding yeast.

  12. Chromatin architectures at fission yeast transcriptional promoters and replication origins

    PubMed Central

    Givens, Robert M.; Lai, William K. M.; Rizzo, Jason M.; Bard, Jonathan E.; Mieczkowski, Piotr A.; Leatherwood, Janet; Huberman, Joel A.; Buck, Michael J.

    2012-01-01

    We have used micrococcal nuclease (MNase) digestion followed by deep sequencing in order to obtain a higher resolution map than previously available of nucleosome positions in the fission yeast, Schizosaccharomyces pombe. Our data confirm an unusually short average nucleosome repeat length, ∼152 bp, in fission yeast and that transcriptional start sites (TSSs) are associated with nucleosome-depleted regions (NDRs), ordered nucleosome arrays downstream and less regularly spaced upstream nucleosomes. In addition, we found enrichments for associated function in four of eight groups of genes clustered according to chromatin configurations near TSSs. At replication origins, our data revealed asymmetric localization of pre-replication complex (pre-RC) proteins within large NDRs—a feature that is conserved in fission and budding yeast and is therefore likely to be conserved in other eukaryotic organisms. PMID:22573177

  13. HIV-1 Protease in the Fission Yeast Schizosaccharomyces pombe.

    PubMed

    Benko, Zsigmond; Elder, Robert T; Li, Ge; Liang, Dong; Zhao, Richard Y

    2016-01-01

    HIV-1 protease (PR) is an essential viral enzyme. Its primary function is to proteolyze the viral Gag-Pol polyprotein for production of viral enzymes and structural proteins and for maturation of infectious viral particles. Increasing evidence suggests that PR cleaves host cellular proteins. However, the nature of PR-host cellular protein interactions is elusive. This study aimed to develop a fission yeast (Schizosaccharomyces pombe) model system and to examine the possible interaction of HIV-1 PR with cellular proteins and its potential impact on cell proliferation and viability. A fission yeast strain RE294 was created that carried a single integrated copy of the PR gene in its chromosome. The PR gene was expressed using an inducible nmt1 promoter so that PR-specific effects could be measured. HIV-1 PR from this system cleaved the same indigenous viral p6/MA protein substrate as it does in natural HIV-1 infections. HIV-1 PR expression in fission yeast cells prevented cell proliferation and induced cellular oxidative stress and changes in mitochondrial morphology that led to cell death. Both these PR activities can be prevented by a PR-specific enzymatic inhibitor, indinavir, suggesting that PR-mediated proteolytic activities and cytotoxic effects resulted from enzymatic activities of HIV-1 PR. Through genome-wide screening, a serine/threonine kinase, Hhp2, was identified that suppresses HIV-1 PR-induced protease cleavage and cell death in fission yeast and in mammalian cells, where it prevented PR-induced apoptosis and cleavage of caspase-3 and caspase-8. This is the first report to show that HIV-1 protease is functional as an enzyme in fission yeast, and that it behaves in a similar manner as it does in HIV-1 infection. HIV-1 PR-induced cell death in fission yeast could potentially be used as an endpoint for mechanistic studies, and this system could be used for developing a high-throughput system for drug screenings.

  14. Fission Yeast Model Study for Dissection of TSC Pathway

    DTIC Science & Technology

    2010-04-01

    have also generated two mutants, rhb1-DA4 and rhb1-DA8. In fission yeast, two events, induction of a meiosis initiating gene mei2+ and cell division... meiosis are less induced. Under the same condition, retrotransposons, G1-cyclin (pas1+) and inv1+ are more induced. We have also demonstrated that...responsible for rhb1-DA4, and Q52R I76F within the switch II domain for rhb1-DA8. In fission yeast, two events, induction of a meiosis initiating

  15. Functional and regulatory profiling of energy metabolism in fission yeast.

    PubMed

    Malecki, Michal; Bitton, Danny A; Rodríguez-López, Maria; Rallis, Charalampos; Calavia, Noelia Garcia; Smith, Graeme C; Bähler, Jürg

    2016-11-25

    The control of energy metabolism is fundamental for cell growth and function and anomalies in it are implicated in complex diseases and ageing. Metabolism in yeast cells can be manipulated by supplying different carbon sources: yeast grown on glucose rapidly proliferates by fermentation, analogous to tumour cells growing by aerobic glycolysis, whereas on non-fermentable carbon sources metabolism shifts towards respiration. We screened deletion libraries of fission yeast to identify over 200 genes required for respiratory growth. Growth media and auxotrophic mutants strongly influenced respiratory metabolism. Most genes uncovered in the mutant screens have not been implicated in respiration in budding yeast. We applied gene-expression profiling approaches to compare steady-state fermentative and respiratory growth and to analyse the dynamic adaptation to respiratory growth. The transcript levels of most genes functioning in energy metabolism pathways are coherently tuned, reflecting anticipated differences in metabolic flows between fermenting and respiring cells. We show that acetyl-CoA synthase, rather than citrate lyase, is essential for acetyl-CoA synthesis in fission yeast. We also investigated the transcriptional response to mitochondrial damage by genetic or chemical perturbations, defining a retrograde response that involves the concerted regulation of distinct groups of nuclear genes that may avert harm from mitochondrial malfunction. This study provides a rich framework of the genetic and regulatory basis of energy metabolism in fission yeast and beyond, and it pinpoints weaknesses of commonly used auxotroph mutants for investigating metabolism. As a model for cellular energy regulation, fission yeast provides an attractive and complementary system to budding yeast.

  16. A mathematical model for cell size control in fission yeast.

    PubMed

    Li, Bo; Shao, Bin; Yu, Chenlu; Ouyang, Qi; Wang, Hongli

    2010-06-07

    Experimental investigations of cell size control in fission yeast Schizosaccharomyces pombe have illustrated that the cell cycle features 'sizer' and 'timer' phases which are distinguished by a growth rate changing point. Based on current biological knowledge of fission yeast size control, we propose here a model of ordinary differential equations (ODEs) for a possible explanation of the facts and control mechanism which is coupled with the cell cycle. Simulation results of the ODE model are demonstrated to agree with experimental data for the wild type and the cdc2-33 mutant. We show that the coupling of cell growth to cell division by translational control may account for observed properties of size control in fission yeast. As the translational control in the expression of cycle proteins Cdc13 and Cdc25 constructs positive feedback loops, the dynamical activities of the key components undergoes a rapid rising after a preliminary stage of slow increase. The coupling of this dynamical behavior to the elongation of the cell naturally gives rise to a rate change point and to 'sizer' and 'timer' phases, which characterize the cell cycle of fission yeast. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  17. Modeling the Control of DNA Replication in Fission Yeast

    NASA Astrophysics Data System (ADS)

    Novak, Bela; Tyson, John J.

    1997-08-01

    A central event in the eukaryotic cell cycle is the decision to commence DNA replication (S phase). Strict controls normally operate to prevent repeated rounds of DNA replication without intervening mitoses (``endoreplication'') or initiation of mitosis before DNA is fully replicated (``mitotic catastrophe''). Some of the genetic interactions involved in these controls have recently been identified in yeast. From this evidence we propose a molecular mechanism of ``Start'' control in Schizosaccharomyces pombe. Using established principles of biochemical kinetics, we compare the properties of this model in detail with the observed behavior of various mutant strains of fission yeast: wee1- (size control at Start), cdc13Δ and rum1OP (endoreplication), and wee1- rum1Δ (rapid division cycles of diminishing cell size). We discuss essential features of the mechanism that are responsible for characteristic properties of Start control in fission yeast, to expose our proposal to crucial experimental tests.

  18. HIV-1 Protease in the Fission Yeast Schizosaccharomyces pombe

    PubMed Central

    Benko, Zsigmond; Elder, Robert T.; Li, Ge; Liang, Dong; Zhao, Richard Y.

    2016-01-01

    Background HIV-1 protease (PR) is an essential viral enzyme. Its primary function is to proteolyze the viral Gag-Pol polyprotein for production of viral enzymes and structural proteins and for maturation of infectious viral particles. Increasing evidence suggests that PR cleaves host cellular proteins. However, the nature of PR-host cellular protein interactions is elusive. This study aimed to develop a fission yeast (Schizosaccharomyces pombe) model system and to examine the possible interaction of HIV-1 PR with cellular proteins and its potential impact on cell proliferation and viability. Results A fission yeast strain RE294 was created that carried a single integrated copy of the PR gene in its chromosome. The PR gene was expressed using an inducible nmt1 promoter so that PR-specific effects could be measured. HIV-1 PR from this system cleaved the same indigenous viral p6/MA protein substrate as it does in natural HIV-1 infections. HIV-1 PR expression in fission yeast cells prevented cell proliferation and induced cellular oxidative stress and changes in mitochondrial morphology that led to cell death. Both these PR activities can be prevented by a PR-specific enzymatic inhibitor, indinavir, suggesting that PR-mediated proteolytic activities and cytotoxic effects resulted from enzymatic activities of HIV-1 PR. Through genome-wide screening, a serine/threonine kinase, Hhp2, was identified that suppresses HIV-1 PR-induced protease cleavage and cell death in fission yeast and in mammalian cells, where it prevented PR-induced apoptosis and cleavage of caspase-3 and caspase-8. Conclusions This is the first report to show that HIV-1 protease is functional as an enzyme in fission yeast, and that it behaves in a similar manner as it does in HIV-1 infection. HIV-1 PR-induced cell death in fission yeast could potentially be used as an endpoint for mechanistic studies, and this system could be used for developing a high-throughput system for drug screenings. PMID:26982200

  19. Schizosaccharomyces japonicus: the fission yeast is a fusion of yeast and hyphae.

    PubMed

    Niki, Hironori

    2014-03-01

    The clade of Schizosaccharomyces includes 4 species: S. pombe, S. octosporus, S. cryophilus, and S. japonicus. Although all 4 species exhibit unicellular growth with a binary fission mode of cell division, S. japonicus alone is dimorphic yeast, which can transit from unicellular yeast to long filamentous hyphae. Recently it was found that the hyphal cells response to light and then synchronously activate cytokinesis of hyphae. In addition to hyphal growth, S. japonicas has many properties that aren't shared with other fission yeast. Mitosis of S. japonicas is referred to as semi-open mitosis because dynamics of nuclear membrane is an intermediate mode between open mitosis and closed mitosis. Novel genetic tools and the whole genomic sequencing of S. japonicas now provide us with an opportunity for revealing unique characters of the dimorphic yeast. © 2013 The Author. Yeast Published by John Wiley & Sons Ltd.

  20. Oxidative stress response pathways: Fission yeast as archetype.

    PubMed

    Papadakis, Manos A; Workman, Christopher T

    2015-01-01

    Schizosaccharomyces pombe is a popular model eukaryotic organism to study diverse aspects of mammalian biology, including responses to cellular stress triggered by redox imbalances within its compartments. The review considers the current knowledge on the signaling pathways that govern the transcriptional response of fission yeast cells to elevated levels of hydrogen peroxide. Particular attention is paid to the mechanisms that yeast cells employ to promote cell survival in conditions of intermediate and acute oxidative stress. The role of the Sty1/Spc1/Phh1 mitogen-activated protein kinase in regulating gene expression at multiple levels is discussed in detail.

  1. Identifying genes required for respiratory growth of fission yeast

    PubMed Central

    2016-01-01

    We have used both auxotroph and prototroph versions of the latest deletion-mutant library to identify genes required for respiratory growth on solid glycerol medium in fission yeast. This data set complements and enhances our recent study on functional and regulatory aspects of energy metabolism by providing additional proteins that are involved in respiration. Most proteins identified in this mutant screen have not been implicated in respiration in budding yeast. We also provide a protocol to generate a prototrophic mutant library, and data on technical and biological reproducibility of colony-based high-throughput screens. PMID:27918601

  2. PomBase: a comprehensive online resource for fission yeast.

    PubMed

    Wood, Valerie; Harris, Midori A; McDowall, Mark D; Rutherford, Kim; Vaughan, Brendan W; Staines, Daniel M; Aslett, Martin; Lock, Antonia; Bähler, Jürg; Kersey, Paul J; Oliver, Stephen G

    2012-01-01

    PomBase (www.pombase.org) is a new model organism database established to provide access to comprehensive, accurate, and up-to-date molecular data and biological information for the fission yeast Schizosaccharomyces pombe to effectively support both exploratory and hypothesis-driven research. PomBase encompasses annotation of genomic sequence and features, comprehensive manual literature curation and genome-wide data sets, and supports sophisticated user-defined queries. The implementation of PomBase integrates a Chado relational database that houses manually curated data with Ensembl software that supports sequence-based annotation and web access. PomBase will provide user-friendly tools to promote curation by experts within the fission yeast community. This will make a key contribution to shaping its content and ensuring its comprehensiveness and long-term relevance.

  3. Mechanism of Cytokinetic Contractile Ring Constriction in Fission Yeast

    PubMed Central

    Stachowiak, Matthew R.; Laplante, Caroline; Chin, Harvey F.; Guirao, Boris; Karatekin, Erdem; Pollard, Thomas D.; O’Shaughnessy, Ben

    2014-01-01

    SUMMARY Cytokinesis involves constriction of a contractile actomyosin ring. The mechanisms generating ring tension and setting the constriction rate remain unknown, since the organization of the ring is poorly characterized, its tension was rarely measured, and constriction is coupled to other processes. To isolate ring mechanisms we studied fission yeast protoplasts, where constriction occurs without the cell wall. Exploiting the absence of cell wall and actin cortex, we measured ring tension and imaged ring organization, which was dynamic and disordered. Computer simulations based on the amounts and biochemical properties of the key proteins showed that they spontaneously self-organize into a tension-generating bundle. Together with rapid component turnover, the self-organization mechanism continuously reassembles and remodels the constricting ring. Ring constriction depended on cell shape, revealing that the ring operates close to conditions of isometric tension. Thus, the fission yeast ring sets its own tension, but other processes set the constriction rate. PMID:24914559

  4. Measurement and manipulation of cell size parameters in fission yeast.

    PubMed

    Zegman, Yonatan; Bonazzi, Daria; Minc, Nicolas

    2015-01-01

    Cells usually grow to a certain size before they divide. The fission yeast Schizosaccharomyces pombe is an established model to dissect the molecular control of cell size homeostasis and cell cycle. In this chapter, we describe two simple methods to: (1) precisely compute geometrical parameters (cell length, diameter, surface, and volume) of single growing and dividing fission yeast cells with image analysis scripts and (2) manipulate cell diameter with microfabricated chambers and assess for cell size at division. We demonstrate the strength of these approaches in the context of growing spores, which constantly change size and shape and in deriving allometric relationships between cell geometrical parameters associated with G2/M transition. We emphasize these methods to be useful to investigate problems of growth, size, and division in fungal or bacterial cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Progress towards understanding the mechanism of cytokinesis in fission yeast

    PubMed Central

    Pollard, Thomas D.

    2013-01-01

    We use fission yeast to study the molecular mechanism of cytokinesis. We benefit from a long history in genetic analysis of the cell cycle in fission yeast, which provided the most complete inventory of cytokinesis proteins. We used fluorescence microscopy of proteins tagged with fluorescent proteins to establish the temporal and spatial pathway for the assembly and constriction of the contractile ring. We combined biochemical analysis of purified proteins (myosin-II, profilin, formin Cdc12p and cofilin), observations of fluorescent fusion proteins in live cells and mathematical modelling to formulate and test a simple hypothesis for the assembly of the contractile ring. This model involves the formation of 65 nodes containing myosin-II and formin Cdc12p around the equator of the cell. As a cell enters anaphase, actin filaments grow from formin Cdc12p in these nodes. Myosin captures actin filaments from adjacent nodes and pulls intermittently to condense the nodes into a contractile ring. PMID:18481973

  6. Progress towards understanding the mechanism of cytokinesis in fission yeast.

    PubMed

    Pollard, Thomas D

    2008-06-01

    We use fission yeast to study the molecular mechanism of cytokinesis. We benefit from a long history in genetic analysis of the cell cycle in fission yeast, which provided the most complete inventory of cytokinesis proteins. We used fluorescence microscopy of proteins tagged with fluorescent proteins to establish the temporal and spatial pathway for the assembly and constriction of the contractile ring. We combined biochemical analysis of purified proteins (myosin-II, profilin, formin Cdc12p and cofilin), observations of fluorescent fusion proteins in live cells and mathematical modelling to formulate and test a simple hypothesis for the assembly of the contractile ring. This model involves the formation of 65 nodes containing myosin-II and formin Cdc12p around the equator of the cell. As a cell enters anaphase, actin filaments grow from formin Cdc12p in these nodes. Myosin captures actin filaments from adjacent nodes and pulls intermittently to condense the nodes into a contractile ring.

  7. Auxin-inducible protein depletion system in fission yeast.

    PubMed

    Kanke, Mai; Nishimura, Kohei; Kanemaki, Masato; Kakimoto, Tatsuo; Takahashi, Tatsuro S; Nakagawa, Takuro; Masukata, Hisao

    2011-02-11

    Inducible inactivation of a protein is a powerful approach for analysis of its function within cells. Fission yeast is a useful model for studying the fundamental mechanisms such as chromosome maintenance and cell cycle. However, previously published strategies for protein-depletion are successful only for some proteins in some specific conditions and still do not achieve efficient depletion to cause acute phenotypes such as immediate cell cycle arrest. The aim of this work was to construct a useful and powerful protein-depletion system in Shizosaccaromyces pombe. We constructed an auxin-inducible degron (AID) system, which utilizes auxin-dependent poly-ubiquitination of Aux/IAA proteins by SCFTIR1 in plants, in fission yeast. Although expression of a plant F-box protein, TIR1, decreased Mcm4-aid, a component of the MCM complex essential for DNA replication tagged with Aux/IAA peptide, depletion did not result in an evident growth defect. We successfully improved degradation efficiency of Mcm4-aid by fusion of TIR1 with fission yeast Skp1, a conserved F-box-interacting component of SCF (improved-AID system; i-AID), and the cells showed severe defect in growth. The i-AID system induced degradation of Mcm4-aid in the chromatin-bound MCM complex as well as those in soluble fractions. The i-AID system in conjunction with transcription repression (off-AID system), we achieved more efficient depletion of other proteins including Pol1 and Cdc45, causing early S phase arrest. Improvement of the AID system allowed us to construct conditional null mutants of S. pombe. We propose that the off-AID system is the powerful method for in vivo protein-depletion in fission yeast.

  8. Fission Yeast CSL Proteins Function as Transcription Factors

    PubMed Central

    Oravcová, Martina; Teska, Mikoláš; Půta, František; Folk, Petr; Převorovský, Martin

    2013-01-01

    Background Transcription factors of the CSL (CBF1/RBP-Jk/Suppressor of Hairless/LAG-1) family are key regulators of metazoan development and function as the effector components of the Notch receptor signalling pathway implicated in various cell fate decisions. CSL proteins recognize specifically the GTG[G/A]AA sequence motif and several mutants compromised in their ability to bind DNA have been reported. In our previous studies we have identified a number of novel putative CSL family members in fungi, organisms lacking the Notch pathway. It is not clear whether these represent genuine CSL family members. Methodology/Principal Findings Using a combination of in vitro and in vivo approaches we characterized the DNA binding properties of Cbf11 and Cbf12, the antagonistic CSL paralogs from the fission yeast, important for the proper coordination of cell cycle events and the regulation of cell adhesion. We have shown that a mutation of a conserved arginine residue abolishes DNA binding in both CSL paralogs, similar to the situation in mouse. We have also demonstrated the ability of Cbf11 and Cbf12 to activate gene expression in an autologous fission yeast reporter system. Conclusions/Significance Our results indicate that the fission yeast CSL proteins are indeed genuine family members capable of functioning as transcription factors, and provide support for the ancient evolutionary origin of this important protein family. PMID:23555033

  9. Modeling the septation initiation network (SIN) in fission yeast cells.

    PubMed

    Csikász-Nagy, Attila; Kapuy, Orsolya; Gyorffy, Béla; Tyson, John J; Novák, Béla

    2007-04-01

    Cytokinesis in fission yeast is controlled by a signal transduction pathway called the Septation Initiation Network (SIN). From a dynamical point of view the most interesting questions about the regulation of fission yeast cytokinesis are: how do wild type cells ensure that septation is initiated only once per cycle? Why does the control system stay in a continuously septating state in some mutant strains? And how is it that the SIN remains active when cytokinesis fails? To answer these questions we construct a simplified mathematical model of the SIN and graft this regulatory module onto our previous model of cyclin-dependent kinase (Cdk) dynamics in fission yeast cells. The SIN is both activated and inhibited by mitotic Cdk/cyclin complexes. As a consequence of this dual regulation, the SIN gets activated only once at the end of mitosis, when Cdk activity drops. The mathematical model describes the timing of septation not only in wild type cells but also in mutants where components of the SIN are knocked out. The model predicts phenotypes of some uncharacterized mutant cells and shows how a cytokinesis checkpoint can stop the cell cycle if septation fails.

  10. Fission Yeast Scp3 Potentially Maintains Microtubule Orientation through Bundling

    PubMed Central

    Ozaki, Kanako; Chikashige, Yuji; Hiraoka, Yasushi; Matsumoto, Tomohiro

    2015-01-01

    Microtubules play important roles in organelle transport, the maintenance of cell polarity and chromosome segregation and generally form bundles during these processes. The fission yeast gene scp3+ was identified as a multicopy suppressor of the cps3-81 mutant, which is hypersensitive to isopropyl N-3-chlorophenylcarbamate (CIPC), a poison that induces abnormal multipolar spindle formation in higher eukaryotes. In this study, we investigated the function of Scp3 along with the effect of CIPC in the fission yeast Schizosaccharomyces pombe. Microscopic observation revealed that treatment with CIPC, cps3-81 mutation and scp3+ gene deletion disturbed the orientation of microtubules in interphase cells. Overexpression of scp3+ suppressed the abnormal orientation of microtubules by promoting bundling. Functional analysis suggested that Scp3 functions independently from Ase1, a protein largely required for the bundling of the mitotic spindle. A strain lacking the ase1+ gene was more sensitive to CIPC, with the drug affecting the integrity of the mitotic spindle, indicating that CIPC has a mitotic target that has a role redundant with Ase1. These results suggested that multiple systems are independently involved to ensure microtubule orientation by bundling in fission yeast. PMID:25767875

  11. The Spontaneous Mutation Rate in the Fission Yeast Schizosaccharomyces pombe.

    PubMed

    Farlow, Ashley; Long, Hongan; Arnoux, Stéphanie; Sung, Way; Doak, Thomas G; Nordborg, Magnus; Lynch, Michael

    2015-10-01

    The rate at which new mutations arise in the genome is a key factor in the evolution and adaptation of species. Here we describe the rate and spectrum of spontaneous mutations for the fission yeast Schizosaccharomyces pombe, a key model organism with many similarities to higher eukaryotes. We undertook an ∼1700-generation mutation accumulation (MA) experiment with a haploid S. pombe, generating 422 single-base substitutions and 119 insertion-deletion mutations (indels) across the 96 replicates. This equates to a base-substitution mutation rate of 2.00 × 10(-10) mutations per site per generation, similar to that reported for the distantly related budding yeast Saccharomyces cerevisiae. However, these two yeast species differ dramatically in their spectrum of base substitutions, the types of indels (S. pombe is more prone to insertions), and the pattern of selection required to counteract a strong AT-biased mutation rate. Overall, our results indicate that GC-biased gene conversion does not play a major role in shaping the nucleotide composition of the S. pombe genome and suggest that the mechanisms of DNA maintenance may have diverged significantly between fission and budding yeasts. Unexpectedly, CpG sites appear to be excessively liable to mutation in both species despite the likely absence of DNA methylation. Copyright © 2015 by the Genetics Society of America.

  12. Drug synergy drives conserved pathways to increase fission yeast lifespan.

    PubMed

    Huang, Xinhe; Leggas, Markos; Dickson, Robert C

    2015-01-01

    Aging occurs over time with gradual and progressive loss of physiological function. Strategies to reduce the rate of functional loss and mitigate the subsequent onset of deadly age-related diseases are being sought. We demonstrated previously that a combination of rapamycin and myriocin reduces age-related functional loss in the Baker's yeast Saccharomyces cerevisiae and produces a synergistic increase in lifespan. Here we show that the same drug combination also produces a synergistic increase in the lifespan of the fission yeast Schizosaccharomyces pombe and does so by controlling signal transduction pathways conserved across a wide evolutionary time span ranging from yeasts to mammals. Pathways include the target of rapamycin complex 1 (TORC1) protein kinase, the protein kinase A (PKA) and a stress response pathway, which in fission yeasts contains the Sty1 protein kinase, an ortholog of the mammalian p38 MAP kinase, a type of Stress Activated Protein Kinase (SAPK). These results along with previous studies in S. cerevisiae support the premise that the combination of rapamycin and myriocin enhances lifespan by regulating signaling pathways that couple nutrient and environmental conditions to cellular processes that fine-tune growth and stress protection in ways that foster long term survival. The molecular mechanisms for fine-tuning are probably species-specific, but since they are driven by conserved nutrient and stress sensing pathways, the drug combination may enhance survival in other organisms.

  13. The Spontaneous Mutation Rate in the Fission Yeast Schizosaccharomyces pombe

    PubMed Central

    Farlow, Ashley; Long, Hongan; Arnoux, Stéphanie; Sung, Way; Doak, Thomas G.; Nordborg, Magnus; Lynch, Michael

    2015-01-01

    The rate at which new mutations arise in the genome is a key factor in the evolution and adaptation of species. Here we describe the rate and spectrum of spontaneous mutations for the fission yeast Schizosaccharomyces pombe, a key model organism with many similarities to higher eukaryotes. We undertook an ∼1700-generation mutation accumulation (MA) experiment with a haploid S. pombe, generating 422 single-base substitutions and 119 insertion-deletion mutations (indels) across the 96 replicates. This equates to a base-substitution mutation rate of 2.00 × 10−10 mutations per site per generation, similar to that reported for the distantly related budding yeast Saccharomyces cerevisiae. However, these two yeast species differ dramatically in their spectrum of base substitutions, the types of indels (S. pombe is more prone to insertions), and the pattern of selection required to counteract a strong AT-biased mutation rate. Overall, our results indicate that GC-biased gene conversion does not play a major role in shaping the nucleotide composition of the S. pombe genome and suggest that the mechanisms of DNA maintenance may have diverged significantly between fission and budding yeasts. Unexpectedly, CpG sites appear to be excessively liable to mutation in both species despite the likely absence of DNA methylation. PMID:26265703

  14. Purification and characterisation of the fission yeast Ndc80 complex.

    PubMed

    Matsuo, Yuzy; Maurer, Sebastian P; Surrey, Thomas; Toda, Takashi

    2017-07-01

    The Ndc80 complex is a conserved outer kinetochore protein complex consisting of Ndc80 (Hec1), Nuf2, Spc24 and Spc25. This complex comprises a major, if not the sole, platform with which the plus ends of the spindle microtubules directly interact. In fission yeast, several studies indicate that multiple microtubule-associated proteins including the Dis1/chTOG microtubule polymerase and the Mal3/EB1 microtubule plus-end tracking protein directly or indirectly bind Ndc80, thereby ensuring stable kinetochore-microtubule attachment. However, the purification of the Ndc80 complex from this yeast has not been achieved, which hampers the in-depth investigation as to how the outer kinetochore attaches to the plus end of the spindle microtubule. Here we report the two-step purification of the fission yeast Ndc80 holo complex from bacteria. First, we purified separately two sub-complexes consisting of Ndc80-Nuf2 and Spc24-Spc25. Then, these two sub-complexes were mixed and applied to size-exclusion chromatography. The reconstituted Ndc80 holo complex is composed of four subunits with equal stoichiometry. The complex possesses microtubule-binding activity, and Total Internal Reflection Fluorescence (TIRF)-microscopy assays show that the complex binds the microtubule lattice. Interestingly, unlike the human complex, the fission yeast complex does not track depolymerising microtubule ends. Further analysis shows that under physiological ionic conditions, the Ndc80 holo complex does not detectably bind Dis1, but instead it interacts with Mal3/EB1, by which the Ndc80 complex tracks the growing microtubule plus end. This result substantiates the notion that the Ndc80 complex plays a crucial role in establishment of the dynamic kinetochore-microtubule interface by cooperating with chTOG and EB1. Copyright © 2017 The Francis Crick Institute. Published by Elsevier Inc. All rights reserved.

  15. Molecular Genetic Tools and Techniques in Fission Yeast.

    PubMed

    Murray, Johanne M; Watson, Adam T; Carr, Antony M

    2016-05-02

    The molecular genetic tools used in fission yeast have generally been adapted from methods and approaches developed for use in the budding yeast, Saccharomyces cerevisiae Initially, the molecular genetics of Schizosaccharomyces pombe was developed to aid gene identification, but it is now applied extensively to the analysis of gene function and the manipulation of noncoding sequences that affect chromosome dynamics. Much current research using fission yeast thus relies on the basic processes of introducing DNA into the organism and the extraction of DNA for subsequent analysis. Targeted integration into specific genomic loci is often used to create site-specific mutants or changes to noncoding regulatory elements for subsequent phenotypic analysis. It is also regularly used to introduce additional sequences that generate tagged proteins or to create strains in which the levels of wild-type protein can be manipulated through transcriptional regulation and/or protein degradation. Here, we draw together a collection of core molecular genetic techniques that underpin much of modern research using S. pombe We summarize the most useful methods that are routinely used and provide guidance, learned from experience, for the successful application of these methods.

  16. Nuclear envelope fission is linked to cytokinesis in budding yeast.

    PubMed

    Lippincott, J; Li, R

    2000-11-01

    We have investigated the relationship between nuclear envelope fission and cytokinesis during mitotic cell division in budding yeast. By carrying out time-lapse and optical sectioning video microscopy analysis of cells that express green fluorescent protein (GFP)-tagged nuclear envelope and actomyosin ring components, we found that nuclear division is temporally coupled to cytokinesis. Light and electron microscopy analysis also showed that nuclear envelope fission and the division of the nucleoplasm are severely delayed in cytokinesis mutants, resulting in discoupling between the nuclear division cycle and the budding cycle. These results suggest that homotypic membrane fusion may be activated by components or the mechanical action of cytokinetic structures and presents a mechanism for the equal partitioning of the nucleus and the temporal coordination of this event with chromosome segregation during mitosis.

  17. A Proteome-wide Fission Yeast Interactome Reveals Network Evolution Principles from Yeasts to Human.

    PubMed

    Vo, Tommy V; Das, Jishnu; Meyer, Michael J; Cordero, Nicolas A; Akturk, Nurten; Wei, Xiaomu; Fair, Benjamin J; Degatano, Andrew G; Fragoza, Robert; Liu, Lisa G; Matsuyama, Akihisa; Trickey, Michelle; Horibata, Sachi; Grimson, Andrew; Yamano, Hiroyuki; Yoshida, Minoru; Roth, Frederick P; Pleiss, Jeffrey A; Xia, Yu; Yu, Haiyuan

    2016-01-14

    Here, we present FissionNet, a proteome-wide binary protein interactome for S. pombe, comprising 2,278 high-quality interactions, of which ∼ 50% were previously not reported in any species. FissionNet unravels previously unreported interactions implicated in processes such as gene silencing and pre-mRNA splicing. We developed a rigorous network comparison framework that accounts for assay sensitivity and specificity, revealing extensive species-specific network rewiring between fission yeast, budding yeast, and human. Surprisingly, although genes are better conserved between the yeasts, S. pombe interactions are significantly better conserved in human than in S. cerevisiae. Our framework also reveals that different modes of gene duplication influence the extent to which paralogous proteins are functionally repurposed. Finally, cross-species interactome mapping demonstrates that coevolution of interacting proteins is remarkably prevalent, a result with important implications for studying human disease in model organisms. Overall, FissionNet is a valuable resource for understanding protein functions and their evolution. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. A proteome-wide fission yeast interactome reveals network evolution principles from yeasts to human

    PubMed Central

    Vo, Tommy V.; Das, Jishnu; Meyer, Michael J.; Cordero, Nicolas A.; Akturk, Nurten; Wei, Xiaomu; Fair, Benjamin J.; Degatano, Andrew G.; Fragoza, Robert; Liu, Lisa G.; Matsuyama, Akihisa; Trickey, Michelle; Horibata, Sachi; Grimson, Andrew; Yamano, Hiroyuki; Yoshida, Minoru; Roth, Frederick P.; Pleiss, Jeffrey A.; Xia, Yu; Yu, Haiyuan

    2015-01-01

    SUMMARY Here, we present FissionNet, a proteome-wide binary protein interactome for S. pombe, comprising 2,278 high-quality interactions, of which ~50% were previously not reported in any species. FissionNet unravels previously unreported interactions implicated in processes such as gene silencing and pre-mRNA splicing. We developed a rigorous network comparison framework that accounts for assay sensitivity and specificity, revealing extensive species-specific network rewiring between fission yeast, budding yeast, and human. Surprisingly, although genes are better conserved between the yeasts, S. pombe interactions are significantly better conserved in human than in S. cerevisiae. Our framework also reveals that different modes of gene duplication influence the extent to which paralogous proteins are functionally repurposed. Finally, cross-species interactome mapping demonstrates that coevolution of interacting proteins is remarkably prevalent, a result with important implications for studying human disease in model organisms. Overall, FissionNet is a valuable resource for understanding protein functions and their evolution. PMID:26771498

  19. Inner Kinetochore Protein Interactions with Regional Centromeres of Fission Yeast

    PubMed Central

    Thakur, Jitendra; Talbert, Paul B.; Henikoff, Steven

    2015-01-01

    Centromeres of the fission yeast Schizosaccharomyces pombe lack the highly repetitive sequences that make most other "regional" centromeres refractory to analysis. To map fission yeast centromeres, we applied H4S47C-anchored cleavage mapping and native and cross-linked chromatin immunoprecipitation with paired-end sequencing. H3 nucleosomes are nearly absent from the central domain, which is occupied by centromere-specific H3 (cenH3 or CENP-A) nucleosomes with two H4s per particle that are mostly unpositioned and are more widely spaced than nucleosomes elsewhere. Inner kinetochore proteins CENP-A, CENP-C, CENP-T, CENP-I, and Scm3 are highly enriched throughout the central domain except at tRNA genes, with no evidence for preferred kinetochore assembly sites. These proteins are weakly enriched and less stably incorporated in H3-rich heterochromatin. CENP-A nucleosomes protect less DNA from nuclease digestion than H3 nucleosomes, while CENP-T protects a range of fragment sizes. Our results suggest that CENP-T particles occupy linkers between CENP-A nucleosomes and that classical regional centromeres differ from other centromeres by the absence of CENP-A nucleosome positioning. PMID:26275423

  20. Plant geminivirus rep protein induces rereplication in fission yeast.

    PubMed

    Kittelmann, Katharina; Rau, Peter; Gronenborn, Bruno; Jeske, Holger

    2009-07-01

    The replication-associated protein (Rep) of geminiviruses, single-stranded DNA viruses of higher plants, is essential for virus replication. Since these viruses do not encode their own polymerases, Rep induces differentiated plant cells to reenter the cell cycle by interacting with the plant homologues of retinoblastoma proteins in order to activate the host DNA synthesis machinery. We have used fission yeast (Schizosaccharomyces pombe) as a model organism to analyze the impact of ectopically expressed African cassava mosaic virus Rep protein on the cell division cycle in closer detail. Upon expression, Rep showed its characteristic DNA cleavage activity, and about 10% of the cells exhibited morphological changes. They were elongated threefold, on average, and possessed a single but enlarged and less compact nucleus in comparison to noninduced or vector-only control cells. Flow cytometry of Rep-expressing cultures revealed a distinct subpopulation of Rep protein-containing cells with aberrant morphology. The other 90% of the cells were indistinguishable from control cells, and no Rep was detectable. Rep-expressing cells exhibited DNA contents beyond 2C, indicating ongoing replication without intervening mitosis. Because a second open reading frame (ORF), AC4, is present within the Rep gene, the role of AC4 was examined by destroying its start codon within the AC1 ORF. The results confirmed that Rep is necessary and sufficient to induce rereplication in fission yeast. The unique potential of this well-investigated model for dissecting the cell cycle control by geminiviral proteins is discussed.

  1. Pom1 and cell size homeostasis in fission yeast.

    PubMed

    Wood, Elizabeth; Nurse, Paul

    2013-10-01

    Cells sense their size and use this information to coordinate cell division with cell growth to maintain a constant cell size within a given population. A model has been proposed for cell size control in the rod-shaped cells of the fission yeast, Schizosaccharomyces pombe. This involves a protein localized to the cell ends, which inhibits mitotic activators in the middle of the cell in a cell size-dependent manner. This protein, Pom1, along with another tip-localized protein, Nif1, have been implicated as direct sensors of cell size controlling the onset of mitosis. Here we have investigated cell size variability and size homeostasis at the G 2/M transition, focusing on the role of pom1 and nif1. Cells deleted for either of these 2 genes show wild-type size homeostasis both in size variability analyses and size homeostasis experiments. This indicates that these genes do not have a critical role as direct cell size sensors in the control mechanism. Cell size homeostasis also seems to be independent of Cdc2-Tyr15 phosphorylation, suggesting that the size sensing mechanism in fission yeast may act through an unidentified pathway regulating CDK activity by an unknown mechanism.

  2. Mathematical model of the cell division cycle of fission yeast

    NASA Astrophysics Data System (ADS)

    Novak, Bela; Pataki, Zsuzsa; Ciliberto, Andrea; Tyson, John J.

    2001-03-01

    Much is known about the genes and proteins controlling the cell cycle of fission yeast. Can these molecular components be spun together into a consistent mechanism that accounts for the observed behavior of growth and division in fission yeast cells? To answer this question, we propose a mechanism for the control system, convert it into a set of 14 differential and algebraic equations, study these equations by numerical simulation and bifurcation theory, and compare our results to the physiology of wild-type and mutant cells. In wild-type cells, progress through the cell cycle (G1→S→G2→M) is related to cyclic progression around a hysteresis loop, driven by cell growth and chromosome alignment on the metaphase plate. However, the control system operates much differently in double-mutant cells, wee1- cdc25Δ, which are defective in progress through the latter half of the cell cycle (G2 and M phases). These cells exhibit "quantized" cycles (interdivision times clustering around 90, 160, and 230 min). We show that these quantized cycles are associated with a supercritical Hopf bifurcation in the mechanism, when the wee1 and cdc25 genes are disabled.

  3. Bidirectional motility of the fission yeast kinesin-5, Cut7

    SciTech Connect

    Edamatsu, Masaki

    2014-03-28

    Highlights: • Motile properties of Cut7 (fission yeast kinesin-5) were studied for the first time. • Half-length Cut7 moved toward plus-end direction of microtubule. • Full-length Cut7 moved toward minus-end direction of microtubule. • N- and C-terminal microtubule binding sites did not switch the motile direction. - Abstract: Kinesin-5 is a homotetrameric motor with its motor domain at the N-terminus. Kinesin-5 crosslinks microtubules and functions in separating spindle poles during mitosis. In this study, the motile properties of Cut7, fission yeast kinesin-5, were examined for the first time. In in vitro motility assays, full-length Cut7 moved toward minus-end of microtubules, but the N-terminal half of Cut7 moved toward the opposite direction. Furthermore, additional truncated constructs lacking the N-terminal or C-terminal regions, but still contained the motor domain, did not switch the motile direction. These indicated that Cut7 was a bidirectional motor, and microtubule binding regions at the N-terminus and C-terminus were not involved in its directionality.

  4. Model of Exploratory Search for Mating Partners by Fission Yeast

    NASA Astrophysics Data System (ADS)

    Hurwitz, Daniel; Bendezu, Felipe; Martin, Sophie; Vavylonis, Dimitrios

    2014-03-01

    During conditions of nitrogen starvation, the model eukaryote S. pombe (fission yeast) undergoes sexual sporulation. Because fission yeast are non-motile, contact between opposite mating types during spore formation is accomplished by polarizing growth, via the Rho GTP-ase Cdc42, in each mating type towards the selected mate, a process known as shmooing. Recent findings showed that cells pick one of their neighboring compatible mates by randomizing the position of the Cdc42 complex about the cell membrane, such that the complex is stabilized near areas of high concentration of the opposite mating type pheromone. We developed Monte Carlo simulations to model partner finding in populations of mating cells and in small cell clusters. We assume that pheromones are secreted at the site of Cdc42 accumulation and that the Cdc42 dwell time increases in response to increasing pheromone concentration. We measured the number of cells that succeed in successful reciprocal pairing, the number of cells that were unable to find a partner, and the number of cells that picked a partner already engaged with another cell. For optimal cell pairing, we find the pheromone concentration decay length is around 1 micron, of order the cell size. We show that non-linear response of Cdc42 dwell time to pheromone concentration improves the number of successful pairs for a given spatial cell distribution. We discuss how these results compare to non-exploratory pairing mechanisms.

  5. Fission yeast and other yeasts as emergent models to unravel cellular aging in eukaryotes.

    PubMed

    Roux, Antoine E; Chartrand, Pascal; Ferbeyre, Gerardo; Rokeach, Luis A

    2010-01-01

    In the past years, simple organisms such as yeasts and worms have contributed a great deal to aging research. Studies pioneered in Saccharomyces cerevisiae were useful to elucidate a significant number of molecular mechanisms underlying cellular aging and to discover novel longevity genes. Importantly, these genes proved many times to be conserved in multicellular eukaryotes. Consequently, such discovery approaches are being extended to other yeast models, such as Schizosaccharomyces pombe, Candida albicans, Kluyveromyces lactis, and Cryptococcus neoformans. In fission yeast, researchers have found links between asymmetrical cell division and nutrient signaling pathways with aging. In this review, we discuss the state of knowledge on the mechanisms controlling both replicative and chronological aging in S pombe and the other emergent yeast models.

  6. Analysis of a genome-wide set of gene deletions in the fission yeast Schizosaccharomyces pombe.

    PubMed

    Kim, Dong-Uk; Hayles, Jacqueline; Kim, Dongsup; Wood, Valerie; Park, Han-Oh; Won, Misun; Yoo, Hyang-Sook; Duhig, Trevor; Nam, Miyoung; Palmer, Georgia; Han, Sangjo; Jeffery, Linda; Baek, Seung-Tae; Lee, Hyemi; Shim, Young Sam; Lee, Minho; Kim, Lila; Heo, Kyung-Sun; Noh, Eun Joo; Lee, Ah-Reum; Jang, Young-Joo; Chung, Kyung-Sook; Choi, Shin-Jung; Park, Jo-Young; Park, Youngwoo; Kim, Hwan Mook; Park, Song-Kyu; Park, Hae-Joon; Kang, Eun-Jung; Kim, Hyong Bai; Kang, Hyun-Sam; Park, Hee-Moon; Kim, Kyunghoon; Song, Kiwon; Song, Kyung Bin; Nurse, Paul; Hoe, Kwang-Lae

    2010-06-01

    We report the construction and analysis of 4,836 heterozygous diploid deletion mutants covering 98.4% of the fission yeast genome providing a tool for studying eukaryotic biology. Comprehensive gene dispensability comparisons with budding yeast--the only other eukaryote for which a comprehensive knockout library exists--revealed that 83% of single-copy orthologs in the two yeasts had conserved dispensability. Gene dispensability differed for certain pathways between the two yeasts, including mitochondrial translation and cell cycle checkpoint control. We show that fission yeast has more essential genes than budding yeast and that essential genes are more likely than nonessential genes to be present in a single copy, to be broadly conserved and to contain introns. Growth fitness analyses determined sets of haploinsufficient and haploproficient genes for fission yeast, and comparisons with budding yeast identified specific ribosomal proteins and RNA polymerase subunits, which may act more generally to regulate eukaryotic cell growth.

  7. The essential function of Rrs1 in ribosome biogenesis is conserved in budding and fission yeasts.

    PubMed

    Wan, Kun; Kawara, Haruka; Yamamoto, Tomoyuki; Kume, Kazunori; Yabuki, Yukari; Goshima, Tetsuya; Kitamura, Kenji; Ueno, Masaru; Kanai, Muneyoshi; Hirata, Dai; Funato, Kouichi; Mizuta, Keiko

    2015-09-01

    The Rrs1 protein plays an essential role in the biogenesis of 60S ribosomal subunits in budding yeast (Saccharomyces cerevisiae). Here, we examined whether the fission yeast (Schizosaccharomyces pombe) homologue of Rrs1 also plays a role in ribosome biogenesis. To this end, we constructed two temperature-sensitive fission yeast strains, rrs1-D14/22G and rrs1-L51P, which had amino acid substitutions corresponding to those of the previously characterized budding yeast rrs1-84 (D22/30G) and rrs1-124 (L61P) strains, respectively. The fission yeast mutants exhibited severe defects in growth and 60S ribosomal subunit biogenesis at high temperatures. In addition, expression of the Rrs1 protein of fission yeast suppressed the growth defects of the budding yeast rrs1 mutants at high temperatures. Yeast two-hybrid analyses revealed that the interactions of Rrs1 with the Rfp2 and Ebp2 proteins were conserved in budding and fission yeasts. These results suggest that the essential function of Rrs1 in ribosome biogenesis may be conserved in budding and fission yeasts. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Identification of cell cycle-regulated genes in fission yeast.

    PubMed

    Peng, Xu; Karuturi, R Krishna Murthy; Miller, Lance D; Lin, Kui; Jia, Yonghui; Kondu, Pinar; Wang, Long; Wong, Lim-Soon; Liu, Edison T; Balasubramanian, Mohan K; Liu, Jianhua

    2005-03-01

    Cell cycle progression is both regulated and accompanied by periodic changes in the expression levels of a large number of genes. To investigate cell cycle-regulated transcriptional programs in the fission yeast Schizosaccharomyces pombe, we developed a whole-genome oligonucleotide-based DNA microarray. Microarray analysis of both wild-type and cdc25 mutant cell cultures was performed to identify transcripts whose levels oscillated during the cell cycle. Using an unsupervised algorithm, we identified 747 genes that met the criteria for cell cycle-regulated expression. Peaks of gene expression were found to be distributed throughout the entire cell cycle. Furthermore, we found that four promoter motifs exhibited strong association with cell cycle phase-specific expression. Examination of the regulation of MCB motif-containing genes through the perturbation of DNA synthesis control/MCB-binding factor (DSC/MBF)-mediated transcription in arrested synchronous cdc10 mutant cell cultures revealed a subset of functional targets of the DSC/MBF transcription factor complex, as well as certain gene promoter requirements. Finally, we compared our data with those for the budding yeast Saccharomyces cerevisiae and found approximately 140 genes that are cell cycle regulated in both yeasts, suggesting that these genes may play an evolutionarily conserved role in regulation of cell cycle-specific processes. Our complete data sets are available at http://giscompute.gis.a-star.edu.sg/~gisljh/CDC.

  9. Brownian dynamics simulation of fission yeast mitotic spindle formation

    NASA Astrophysics Data System (ADS)

    Edelmaier, Christopher

    2014-03-01

    The mitotic spindle segregates chromosomes during mitosis. The dynamics that establish bipolar spindle formation are not well understood. We have developed a computational model of fission-yeast mitotic spindle formation using Brownian dynamics and kinetic Monte Carlo methods. Our model includes rigid, dynamic microtubules, a spherical nuclear envelope, spindle pole bodies anchored in the nuclear envelope, and crosslinkers and crosslinking motor proteins. Crosslinkers and crosslinking motor proteins attach and detach in a grand canonical ensemble, and exert forces and torques on the attached microtubules. We have modeled increased affinity for crosslinking motor attachment to antiparallel microtubule pairs, and stabilization of microtubules in the interpolar bundle. We study parameters controlling the stability of the interpolar bundle and assembly of a bipolar spindle from initially adjacent spindle-pole bodies.

  10. Specific replication origins promote DNA amplification in fission yeast.

    PubMed

    Kiang, Lee; Heichinger, Christian; Watt, Stephen; Bähler, Jürg; Nurse, Paul

    2010-09-15

    To ensure equal replication of the genome in every eukaryotic cell cycle, replication origins fire only once each S phase and do not fire after passive replication. Failure in these controls can lead to local amplification, contributing to genome instability and the development of cancer. To identify features of replication origins important for such amplification, we have investigated origin firing and local genome amplification in the presence of excess helicase loaders Cdc18 and Cdt1 in fission yeast. We find that S phase controls are attenuated and coordination of origin firing is lost, resulting in local amplification. Specific origins are necessary for amplification but act only within a permissive chromosomal context. Origins associated with amplification are highly AT-rich, fire efficiently and early during mitotic S phase, and are located in large intergenic regions. We propose that these features predispose replication origins to re-fire within a single S phase, or to remain active after passive replication.

  11. Microtubule-dependent cell morphogenesis in the fission yeast.

    PubMed

    Martin, Sophie G

    2009-09-01

    In many systems, microtubules contribute spatial information to cell morphogenesis, for instance in cell migration and division. In rod-shaped fission yeast cells, microtubules control cell morphogenesis by transporting polarity factors, namely the Tea1-Tea4 complex, to cell tips. This complex then recruits the DYRK kinase Pom1 to cell ends. Interestingly, recent work has shown that these proteins also provide long-range spatial cues to position the division site in the middle of the cell and temporal signals to coordinate cell length with the cell cycle. Here I review how these microtubule-associated proteins form polar morphogenesis centers that control and integrate both spatial and temporal aspects of cell morphogenesis.

  12. Modelling the CDK-dependent transcription cycle in fission yeast.

    PubMed

    Sansó, Miriam; Fisher, Robert P

    2013-12-01

    CDKs (cyclin-dependent kinases) ensure directionality and fidelity of the eukaryotic cell division cycle. In a similar fashion, the transcription cycle is governed by a conserved subfamily of CDKs that phosphorylate Pol II (RNA polymerase II) and other substrates. A genetic model organism, the fission yeast Schizosaccharomyces pombe, has yielded robust models of cell-cycle control, applicable to higher eukaryotes. From a similar approach combining classical and chemical genetics, fundamental principles of transcriptional regulation by CDKs are now emerging. In the present paper, we review the current knowledge of each transcriptional CDK with respect to its substrate specificity, function in transcription and effects on chromatin modifications, highlighting the important roles of CDKs in ensuring quantity and quality control over gene expression in eukaryotes.

  13. Cell-cycle analyses using thymidine analogues in fission yeast.

    PubMed

    Anda, Silje; Boye, Erik; Grallert, Beata

    2014-01-01

    Thymidine analogues are powerful tools when studying DNA synthesis including DNA replication, repair and recombination. However, these analogues have been reported to have severe effects on cell-cycle progression and growth, the very processes being investigated in most of these studies. Here, we have analyzed the effects of 5-ethynyl-2'-deoxyuridine (EdU) and 5-Chloro-2'-deoxyuridine (CldU) using fission yeast cells and optimized the labelling procedure. We find that both analogues affect the cell cycle, but that the effects can be mitigated by using the appropriate analogue, short pulses of labelling and low concentrations. In addition, we report sequential labelling of two consecutive S phases using EdU and 5-bromo-2'-deoxyuridine (BrdU). Furthermore, we show that detection of replicative DNA synthesis is much more sensitive than DNA-measurements by flow cytometry.

  14. Induction of a G1-S checkpoint in fission yeast.

    PubMed

    Bøe, Cathrine A; Krohn, Marit; Rødland, Gro Elise; Capiaghi, Christoph; Maillard, Olivier; Thoma, Fritz; Boye, Erik; Grallert, Beáta

    2012-06-19

    Entry into S phase is carefully regulated and, in most organisms, under the control of a G(1)-S checkpoint. We have previously described a G(1)-S checkpoint in fission yeast that delays formation of the prereplicative complex at chromosomal replication origins after exposure to UV light (UVC). This checkpoint absolutely depends on the Gcn2 kinase. Here, we explore the signal for activation of the Gcn2-dependent G(1)-S checkpoint in fission yeast. If some form of DNA damage can activate the checkpoint, deficient DNA repair should affect the length of the checkpoint-induced delay. We find that the cell-cycle delay differs in repair-deficient mutants from that in wild-type cells. However, the duration of the delay depends not only on the repair capacity of the cells, but also on the nature of the repair deficiency. First, the delay is abolished in cells that are deficient in the early steps of repair. Second, the delay is prolonged in repair mutants that fail to complete repair after the incision stage. We conclude that the G(1)-S delay depends on damage to the DNA and that the activating signal derives not from the initial DNA damage, but from a repair intermediate(s). Surprisingly, we find that activation of Gcn2 does not depend on the processing of DNA damage and that activated Gcn2 alone is not sufficient to delay entry into S phase in UVC-irradiated cells. Thus, the G(1)-S delay depends on at least two different inputs.

  15. Nuclear compartmentalization is abolished during fission yeast meiosis.

    PubMed

    Arai, Kunio; Sato, Masamitsu; Tanaka, Kayoko; Yamamoto, Masayuki

    2010-11-09

    In eukaryotic cells, the nuclear envelope partitions the nucleus from the cytoplasm. The fission yeast Schizosaccharomyces pombe undergoes closed mitosis in which the nuclear envelope persists rather than being broken down, as in higher eukaryotic cells. It is therefore assumed that nucleocytoplasmic transport continues during the cell cycle. Here we show that nuclear transport is, in fact, abolished specifically during anaphase of the second meiotic nuclear division. During that time, both nucleoplasmic and cytoplasmic proteins disperse throughout the cell, reminiscent of the open mitosis of higher eukaryotes, but the architecture of the S. pombe nuclear envelope itself persists. This functional alteration of the nucleocytoplasmic barrier is likely induced by spore wall formation, because ectopic induction of sporulation signaling leads to premature dispersion of nucleoplasmic proteins. A photobleaching assay demonstrated that nuclear envelope permeability increases abruptly at the onset of anaphase of the second meiotic division. The permeability was not altered when sporulation was inhibited by blocking the trafficking of forespore-membrane vesicles from the endoplasmic reticulum to the Golgi. The evidence indicates that yeast gametogenesis produces vesicle transport-mediated forespore membranes by inducing nuclear envelope permeabilization.

  16. Compartmentalized nodes control mitotic entry signaling in fission yeast.

    PubMed

    Deng, Lin; Moseley, James B

    2013-06-01

    Cell cycle progression is coupled to cell growth, but the mechanisms that generate growth-dependent cell cycle progression remain unclear. Fission yeast cells enter into mitosis at a defined size due to the conserved cell cycle kinases Cdr1 and Cdr2, which localize to a set of cortical nodes in the cell middle. Cdr2 is regulated by the cell polarity kinase Pom1, suggesting that interactions between cell polarity proteins and the Cdr1-Cdr2 module might underlie the coordination of cell growth and division. To identify the molecular connections between Cdr1/2 and cell polarity, we performed a comprehensive pairwise yeast two-hybrid screen. From the resulting interaction network, we found that the protein Skb1 interacted with both Cdr1 and the Cdr1 inhibitory target Wee1. Skb1 inhibited mitotic entry through negative regulation of Cdr1 and localized to both the cytoplasm and a novel set of cortical nodes. Skb1 nodes were distinct structures from Cdr1/2 nodes, and artificial targeting of Skb1 to Cdr1/2 nodes delayed entry into mitosis. We propose that the formation of distinct node structures in the cell cortex controls signaling pathways to link cell growth and division.

  17. Periodic gene expression program of the fission yeast cell cycle.

    PubMed

    Rustici, Gabriella; Mata, Juan; Kivinen, Katja; Lió, Pietro; Penkett, Christopher J; Burns, Gavin; Hayles, Jacqueline; Brazma, Alvis; Nurse, Paul; Bähler, Jürg

    2004-08-01

    Cell-cycle control of transcription seems to be universal, but little is known about its global conservation and biological significance. We report on the genome-wide transcriptional program of the Schizosaccharomyces pombe cell cycle, identifying 407 periodically expressed genes of which 136 show high-amplitude changes. These genes cluster in four major waves of expression. The forkhead protein Sep1p regulates mitotic genes in the first cluster, including Ace2p, which activates transcription in the second cluster during the M-G1 transition and cytokinesis. Other genes in the second cluster, which are required for G1-S progression, are regulated by the MBF complex independently of Sep1p and Ace2p. The third cluster coincides with S phase and a fourth cluster contains genes weakly regulated during G2 phase. Despite conserved cell-cycle transcription factors, differences in regulatory circuits between fission and budding yeasts are evident, revealing evolutionary plasticity of transcriptional control. Periodic transcription of most genes is not conserved between the two yeasts, except for a core set of approximately 40 genes that seem to be universally regulated during the eukaryotic cell cycle and may have key roles in cell-cycle progression.

  18. Cyclin C influences the timing of mitosis in fission yeast.

    PubMed

    Banyai, Gabor; Szilagyi, Zsolt; Baraznenok, Vera; Khorosjutina, Olga; Gustafsson, Claes M

    2017-07-01

    The multiprotein Mediator complex is required for the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator contains the Cdk8 regulatory subcomplex, which directs periodic transcription and influences cell cycle progression in fission yeast. Here we investigate the role of CycC, the cognate cyclin partner of Cdk8, in cell cycle control. Previous reports suggested that CycC interacts with other cellular Cdks, but a fusion of CycC to Cdk8 reported here did not cause any obvious cell cycle phenotypes. We find that Cdk8 and CycC interactions are stabilized within the Mediator complex and the activity of Cdk8-CycC is regulated by other Mediator components. Analysis of a mutant yeast strain reveals that CycC, together with Cdk8, primarily affects M-phase progression but mutations that release Cdk8 from CycC control also affect timing of entry into S phase. © 2017 Banyai et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  19. SIN and the art of splitting the fission yeast cell.

    PubMed

    Krapp, Andrea; Gulli, Marie-Pierre; Simanis, Viesturs

    2004-09-07

    The septation initiation network (SIN) triggers the onset of cytokinesis in the fission yeast Schizosaccharomyces pombe by promoting contraction of the medially placed F-actin ring. SIN signaling is regulated by the polo-like kinase plo1p and by cdc2p, the initiator of mitosis, and its activation is co-ordinated with other events in mitosis to ensure that cytokinesis does not begin until chromosomes have been separated. Though the SIN controls the contractile ring, the signal originates from the poles of the mitotic spindle. Recent studies suggest that the spindle pole body may act as a dynamic assembly site for active SIN signaling complexes. In the budding yeast Saccharomyces cerevisiae the counterpart of the SIN, called the MEN, mediates both mitotic exit and cytokinesis, in part through regulating activation of the phosphoprotein phosphatase Cdc14p. Flp1p, the S. pombe ortholog of Cdc14p, is not essential for mitotic exit, but may contribute to an orderly mitosis-G1 transition by regulating the destruction of the mitotic inducer cdc25p.

  20. De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and baker's yeast (Saccharomyces cerevisiae).

    PubMed

    Hansen, Esben H; Møller, Birger Lindberg; Kock, Gertrud R; Bünner, Camilla M; Kristensen, Charlotte; Jensen, Ole R; Okkels, Finn T; Olsen, Carl E; Motawia, Mohammed S; Hansen, Jørgen

    2009-05-01

    Vanillin is one of the world's most important flavor compounds, with a global market of 180 million dollars. Natural vanillin is derived from the cured seed pods of the vanilla orchid (Vanilla planifolia), but most of the world's vanillin is synthesized from petrochemicals or wood pulp lignins. We have established a true de novo biosynthetic pathway for vanillin production from glucose in Schizosaccharomyces pombe, also known as fission yeast or African beer yeast, as well as in baker's yeast, Saccharomyces cerevisiae. Productivities were 65 and 45 mg/liter, after introduction of three and four heterologous genes, respectively. The engineered pathways involve incorporation of 3-dehydroshikimate dehydratase from the dung mold Podospora pauciseta, an aromatic carboxylic acid reductase (ACAR) from a bacterium of the Nocardia genus, and an O-methyltransferase from Homo sapiens. In S. cerevisiae, the ACAR enzyme required activation by phosphopantetheinylation, and this was achieved by coexpression of a Corynebacterium glutamicum phosphopantetheinyl transferase. Prevention of reduction of vanillin to vanillyl alcohol was achieved by knockout of the host alcohol dehydrogenase ADH6. In S. pombe, the biosynthesis was further improved by introduction of an Arabidopsis thaliana family 1 UDP-glycosyltransferase, converting vanillin into vanillin beta-D-glucoside, which is not toxic to the yeast cells and thus may be accumulated in larger amounts. These de novo pathways represent the first examples of one-cell microbial generation of these valuable compounds from glucose. S. pombe yeast has not previously been metabolically engineered to produce any valuable, industrially scalable, white biotech commodity.

  1. Expression of budding yeast IPT1 produces mannosyldiinositol phosphorylceramide in fission yeast and inhibits cell growth.

    PubMed

    Nakase, Mai; Tani, Motohiro; Takegawa, Kaoru

    2012-05-01

    In Saccharomyces (Sacc.) cerevisiae, the final step of the complex sphingolipid biosynthetic pathway requires Ipt1p for synthesis of mannosyldiinositol phosphorylceramide [M(IP)(2)C]. No fission yeast equivalent to Ipt1p has been found in the Schizosaccharomyces (Schiz.) pombe genome, and the most abundant complex sphingolipid is mannosylinositol phosphorylceramide. To examine the effect of expressing Sacc. cerevisiae IPT1 (ScIPT1) in Schiz. pombe, the ScIPT1 gene was cloned into an inducible fission yeast integrative vector and expressed in wild-type Schiz. pombe. In the Schiz. pombe ScIPT1-expressing cells, M(IP)(2)C was detected, indicating that ScIpt1p functions in M(IP)(2)C synthesis in Schiz. pombe. Expression of ScIPT1 caused pleiotropic phenotypes, including aberrant morphology and mislocalization of ergosterols in the plasma membrane. Furthermore, growth of Schiz. pombe was severely impaired. We analysed the sphingolipid composition of ScIPT1-expressing cells following a prolonged lag phase, and found that M(IP)(2)C was not synthesized, indicating that Ipt1p had been inactivated. GFP-tagged ScIpt1 localized primarily in the Golgi apparatus in wild-type Schiz. pombe. Over time, ScIpt1p was eventually transported to the vacuolar lumen through the multivesicular body pathway. These results indicate that M(IP)(2)C is toxic to Schiz. pombe and that fission yeast possesses an unknown mechanism to effectively extrude toxic sphingolipids from cells.

  2. Cytokinesis Depends on the Motor Domains of Myosin-II in Fission Yeast but Not in Budding Yeast

    PubMed Central

    Lord, Matthew; Laves, Ellen; Pollard, Thomas D.

    2005-01-01

    Budding yeast possesses one myosin-II, Myo1p, whereas fission yeast has two, Myo2p and Myp2p, all of which contribute to cytokinesis. We find that chimeras consisting of Myo2p or Myp2p motor domains fused to the tail of Myo1p are fully functional in supporting budding yeast cytokinesis. Remarkably, the tail alone of budding yeast Myo1p localizes to the contractile ring, supporting both its constriction and cytokinesis. In contrast, fission yeast Myo2p and Myp2p require both the catalytic head domain as well as tail domains for function, with the tails providing distinct functions (Bezanilla and Pollard, 2000). Myo1p is the first example of a myosin whose cellular function does not require a catalytic motor domain revealing a novel mechanism of action for budding yeast myosin-II independent of actin binding and ATPase activity. PMID:16148042

  3. Yeast mitochondrial fission proteins induce antagonistic Gaussian membrane curvatures to regulate apoptosis

    NASA Astrophysics Data System (ADS)

    Lee, Michelle; Hwee Lai, Ghee; Schmidt, Nathan; Xian, Wujing; Wong, Gerard C. L.

    2013-03-01

    Mitochondria form a dynamic and interconnected network, which disintegrates during apoptosis to generate numerous smaller mitochondrial fragments. This process is at present not well understood. Yeast mitochondrial fission machinery proteins, Dnm1 and Fis1, are believed to regulate programmed cell death in yeast. Yeast Dnm1 has been previously shown to promote mitochondrial fragmentation and degradation characteristic of apoptotic cells, while yeast Fis1 inhibits cell death by limiting the mitochondrial fission induced by Dnm1 [Fannjiang et al, Genes & Dev. 2004. 18: 2785-2797]. To better understand the mechanisms of these antagonistic fission proteins, we use synchrotron small angle x-ray scattering (SAXS) to investigate their interaction with model cell membranes. The relationship between each protein, Dnm1 and Fis1, and protein-induced changes in membrane curvature and topology is examined. Through the comparison of the membrane rearrangement and phase behavior induced by each protein, we will discuss their respective roles in the regulation of mitochondrial fission.

  4. Mapping of ure1, ure2 and ure3 markers in fission yeast.

    PubMed

    Lubbers, M W; Thornton, R J; Honey, N K

    1997-09-30

    The following urease genes of the fission yeast Schizosaccharomyces pombe have been mapped by induced haploidization and tetrad analysis--ure1: chromosome are III-L; ure2 and ure3: chromosome are I-R. The previously determined tps19-rad1 interval (11-12 cM) has been increased to 18 cM. A convenient medium for rapidly scoring the ure gene markers of fission yeast was developed.

  5. Evaluation of a novel method for measurement of intracellular calcium ion concentration in fission yeast.

    PubMed

    Ogata, Fumihiko; Satoh, Ryosuke; Kita, Ayako; Sugiura, Reiko; Kawasaki, Naohito

    2017-01-01

    The distribution of metal and metalloid species in each of the cell compartments is termed as "metallome". It is important to elucidate the molecular mechanism underlying the beneficial or toxic effects exerted by a given metal or metalloid on human health. Therefore, we developed a method to measure intracellular metal ion concentration (particularly, intracellular calcium ion) in fission yeast. We evaluated the effects of nitric acid (HNO3), zymolyase, and westase treatment on cytolysis in fission yeast. Moreover, we evaluated the changes in the intracellular calcium ion concentration in fission yeast in response to treatment with/without micafungin. The fission yeast undergoes lysis when treated with 60% HNO3, which is simpler and cheaper compared to the other treatments. Additionally, the intracellular calcium ion concentration in 60% HNO3-treated fission yeast was determined by inductively coupled plasma atomic emission spectrometry. This study yields significant information pertaining to measurement of the intracellular calcium ion concentration in fission yeast, which is useful for elucidating the physiological or pathological functions of calcium ion in the biological systems. This study is the first step to obtain perspective view on the effect of the metallome in biological systems.

  6. The 3' ends of mature transcripts are generated by a processosome complex in fission yeast mitochondria.

    PubMed

    Hoffmann, Bastian; Nickel, Jens; Speer, Falk; Schafer, Bernd

    2008-04-04

    In this article, we report on the genetic analysis of the Schizosaccharomyces pombe open reading frames SPCC1322.01 and SPAC637.11, respectively, which encode proteins that are similar to the exoribonuclease Dss1p and the RNA helicase Suv3p, respectively, forming the mitochondrial degradosome of Saccharomyces cerevisiae. While the helicase Suv3p is exchangeable between S. cerevisiae and S. pombe, the functions of Dss1p and the putative fission yeast RNase protein are specific for each species. Unlike S. cerevisiae mutants lacking a functional degradosome, the major defect of fission yeast knock-out strains is their inability to perform downstream processing of transcripts. In addition, the lack of pah1 results in instability of mitochondrial RNA ends. Overexpression of par1 and pah1 has no significant effect on the steady-state levels of mitochondrial RNAs. The Pet127p-stimulated RNA degradation activity is independent of Par1p/Pah1p in fission yeast mitochondria. The results presented herein indicate that both fission yeast proteins play only a minor role (if at all) in mitochondrial RNA degradation. We assume that the RNA-degrading function was taken over by other enzymes in fission yeast mitochondria, while the former degradosome proteins were recruited to new cellular pathways, for example, RNA processing in fission yeast (as discussed in this article) or mitochondrial DNA replication, apoptosis, or chromatin maintenance in eukaryotes, during evolution.

  7. Incompatibility with Formin Cdc12p Prevents Human Profilin from Substituting for Fission Yeast Profilin: Insights from Crystal Structures of Fission Yeast Proflin

    SciTech Connect

    Ezezika, O.; Younger, N; Lu, J; Kaiser, D; Corbin, Z; Nolen, B; Kovar, D; Pollard, T

    2009-01-01

    Expression of human profilin-I does not complement the temperature-sensitive cdc3-124 mutation of the single profilin gene in fission yeast Schizosaccharomyces pombe, resulting in death from cytokinesis defects. Human profilin-I and S. pombe profilin have similar affinities for actin monomers, the FH1 domain of fission yeast formin Cdc12p and poly-l-proline, but human profilin-I does not stimulate actin filament elongation by formin Cdc12p like S. pombe profilin. Two crystal structures of S. pombe profilin and homology models of S. pombe profilin bound to actin show how the two profilins bind to identical surfaces on animal and yeast actins even though 75% of the residues on the profilin side of the interaction differ in the two profilins. Overexpression of human profilin-I in fission yeast expressing native profilin also causes cytokinesis defects incompatible with viability. Human profilin-I with the R88E mutation has no detectable affinity for actin and does not have this dominant overexpression phenotype. The Y6D mutation reduces the affinity of human profilin-I for poly-l-proline by 1000-fold, but overexpression of Y6D profilin in fission yeast is lethal. The most likely hypotheses to explain the incompatibility of human profilin-I with Cdc12p are differences in interactions with the proline-rich sequences in the FH1 domain of Cdc12p and wider 'wings' that interact with actin.

  8. Regulation of wee1(+) expression during meiosis in fission yeast.

    PubMed

    Murakami-Tonami, Yuko; Ohtsuka, Hokuto; Aiba, Hirofumi; Murakami, Hiroshi

    2014-01-01

    In eukaryotes, the cyclin-dependent kinase Cdk1p (Cdc2p) plays a central role in entry into and progression through nuclear division during mitosis and meiosis. Cdk1p is activated during meiotic nuclear divisions by dephosphorylation of its tyrosine-15 residue. The phosphorylation status of this residue is largely determined by the Wee1p kinase and the Cdc25p phosphatase. In fission yeast, the forkhead-type transcription factor Mei4p is essential for entry into the first meiotic nuclear division. We recently identified cdc25(+) as an essential target of Mei4p in the control of entry into meiosis I. Here, we show that wee1(+) is another important target of Mei4p in the control of entry into meiosis I. Mei4p bound to the upstream region of wee1(+) in vivo and in vitro and inhibited expression of wee1(+), whereas Mei4p positively regulated expression of the adjacent pseudogene. Overexpression of Mei4p inhibited expression of wee1(+) and induced that of the pseudogene. Conversely, deletion of Mei4p did not decrease expression of wee1(+) but inhibited that of the pseudogene. In addition, deletion of Mei4p-binding regions delayed repression of wee1(+) expression as well as induction of expression of the pseudogene. These results suggest that repression of wee1(+) expression is primarily owing to Mei4p-mediated transcriptional interference.

  9. Theoretical Description of Microtubule Dynamics in Fission Yeast During Interphase

    NASA Astrophysics Data System (ADS)

    Oei, Yung-Chin; Jiménez-Dalmaroni, Andrea; Vilfan, Andrej; Duke, Thomas

    2009-03-01

    Fission yeast (S. pombe) is a unicellular organism with a characteristic cylindrical shape. Cell growth during interphase is strongly influenced by microtubule self-organization - a process that has been experimentally well characterised. The microtubules are organized in 3 to 4 bundles, called ``interphase microtubule assemblies'' (IMAs). Each IMA is composed of several microtubules, arranged with their dynamic ``plus'' ends facing the cell tips and their ``minus'' ends overlapping at the cell middle. Although the main protein factors involved in interphase microtubule organization have been identified, an understanding of how their collective interaction with microtubules leads to the organization and structures observed in vivo is lacking. We present a physical model of microtubule dynamics that aims to provide a quantitative description of the self-organization process. First, we solve equations for the microtubule length distribution in steady-state, taking into account the way that a limited tubulin pool affects the nucleation, growth and shrinkage of microtubules. Then we incorporate passive and active crosslinkers (the bundling factor Ase1 and molecular motor Klp2) and investigate the formation of IMA structures. Analytical results are complemented by a 3D stochastic simulation.

  10. Fission yeast RNA triphosphatase reads an Spt5 CTD code

    DOE PAGES

    Doamekpor, Selom K.; Schwer, Beate; Sanchez, Ana M.; ...

    2014-11-20

    mRNA capping enzymes are directed to nascent RNA polymerase II (Pol2) transcripts via interactions with the carboxy-terminal domains (CTDs) of Pol2 and transcription elongation factor Spt5. Fission yeast RNA triphosphatase binds to the Spt5 CTD, comprising a tandem repeat of nonapeptide motif TPAWNSGSK. Here we report the crystal structure of a Pct1·Spt5-CTD complex, which revealed two CTD docking sites on the Pct1 homodimer that engage TPAWN segments of the motif. Each Spt5 CTD interface, composed of elements from both subunits of the homodimer, is dominated by van der Waals contacts from Pct1 to the tryptophan of the CTD. The boundmore » CTD adopts a distinctive conformation in which the peptide backbone makes a tight U-turn so that the proline stacks over the tryptophan. We show that Pct1 binding to Spt5 CTD is antagonized by threonine phosphorylation. Our results fortify an emerging concept of an “Spt5 CTD code” in which (i) the Spt5 CTD is structurally plastic and can adopt different conformations that are templated by particular cellular Spt5 CTD receptor proteins; and (ii) threonine phosphorylation of the Spt5 CTD repeat inscribes a binary on–off switch that is read by diverse CTD receptors, each in its own distinctive manner.« less

  11. Fission yeast RNA triphosphatase reads an Spt5 CTD code

    SciTech Connect

    Doamekpor, Selom K.; Schwer, Beate; Sanchez, Ana M.; Shuman, Stewart; Lima, Christopher D.

    2014-11-20

    mRNA capping enzymes are directed to nascent RNA polymerase II (Pol2) transcripts via interactions with the carboxy-terminal domains (CTDs) of Pol2 and transcription elongation factor Spt5. Fission yeast RNA triphosphatase binds to the Spt5 CTD, comprising a tandem repeat of nonapeptide motif TPAWNSGSK. Here we report the crystal structure of a Pct1·Spt5-CTD complex, which revealed two CTD docking sites on the Pct1 homodimer that engage TPAWN segments of the motif. Each Spt5 CTD interface, composed of elements from both subunits of the homodimer, is dominated by van der Waals contacts from Pct1 to the tryptophan of the CTD. The bound CTD adopts a distinctive conformation in which the peptide backbone makes a tight U-turn so that the proline stacks over the tryptophan. We show that Pct1 binding to Spt5 CTD is antagonized by threonine phosphorylation. Our results fortify an emerging concept of an “Spt5 CTD code” in which (i) the Spt5 CTD is structurally plastic and can adopt different conformations that are templated by particular cellular Spt5 CTD receptor proteins; and (ii) threonine phosphorylation of the Spt5 CTD repeat inscribes a binary on–off switch that is read by diverse CTD receptors, each in its own distinctive manner.

  12. Dynamics of Actin Cable Polymerization in Fission Yeast

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Vavylonis, Dimitrios

    2008-03-01

    In fission yeast, formin for3p nucleates actin filament bundles (cables) at cell tips which contribute to polarized cell growth. Actin cables reach a steady state of dynamic turnover involving for3p-mediated actin polymerization at the barbed ends near the plasma membrane, retrograde flow of polymerized actin toward the cell center, and cable disassembly. Formin for3p associates with actin at the cable tip where it transiently polymerizes actin filaments and subsequently follows the retrograde actin cable flow (Martin and Chang, Curr. Biol. 16, 1161, 2006). Because of the small number of formin nucleators, the actin cable dynamics are subject to spatial and temporal fluctuations. We studied actin cable dynamics with simple analytical models and whole cell computational models which combine deterministic simulation of actin diffusion with stochastic simulation of formin reaction and diffusion. Our model successfully explains a large number of experimental observations, such as density of formin speckles and variance of actin cable density. The model predicts significant spatial gradient of actin and formin molecules in the cytoplasm, powered by the retrograde flow of actin cables.

  13. Modeling Intracellular Oscillations and Polarity Transition in Fission Yeast

    NASA Astrophysics Data System (ADS)

    Drake, Tyler; Das, Maitreyi; Verde, Fulvia; Vavylonis, Dimitrios

    2011-03-01

    Fission yeast, a pill-shaped model organism, restricts growth to its tips. These cells maintain an asymmetric growth state, growing at only one tip, until they meet length and cell-cycle requirements. With these met, they grow at both. The mechanism of this transition, new-end take-off (NETO), remains unclear. We find that NETO occurs due to long-range competition for fast-diffusing signaling protein Cdc42 between the old and new tips. From experimental results, we suppose that symmetric tips compete for Cdc42, which triggers growth. We describe a symmetric growth model based on competition between tips. This model restricts short cells to monopolar states while allowing longer cells to be bipolar. Autocatalytic Cdc42 recruiting at both cells tips leads to broken symmetry, and the recruiting cuts off as tip Cdc42 levels saturate. Non-linear differential equations describe the model, with stable attractors indicating valid distributions. Linear stability analysis and numerical methods identify stable fixed points over a twofold increase in cell length. The model reproduces qualitative behavior of the organism. We show that observed pole-to-pole Cdc42 oscillations may facilitate the polarity transition and discuss their relationship to the Min system in E. Coli.

  14. Regulation of wee1+ expression during meiosis in fission yeast

    PubMed Central

    Murakami-Tonami, Yuko; Ohtsuka, Hokuto; Aiba, Hirofumi; Murakami, Hiroshi

    2014-01-01

    In eukaryotes, the cyclin-dependent kinase Cdk1p (Cdc2p) plays a central role in entry into and progression through nuclear division during mitosis and meiosis. Cdk1p is activated during meiotic nuclear divisions by dephosphorylation of its tyrosine-15 residue. The phosphorylation status of this residue is largely determined by the Wee1p kinase and the Cdc25p phosphatase. In fission yeast, the forkhead-type transcription factor Mei4p is essential for entry into the first meiotic nuclear division. We recently identified cdc25+ as an essential target of Mei4p in the control of entry into meiosis I. Here, we show that wee1+ is another important target of Mei4p in the control of entry into meiosis I. Mei4p bound to the upstream region of wee1+ in vivo and in vitro and inhibited expression of wee1+, whereas Mei4p positively regulated expression of the adjacent pseudogene. Overexpression of Mei4p inhibited expression of wee1+ and induced that of the pseudogene. Conversely, deletion of Mei4p did not decrease expression of wee1+ but inhibited that of the pseudogene. In addition, deletion of Mei4p-binding regions delayed repression of wee1+ expression as well as induction of expression of the pseudogene. These results suggest that repression of wee1+ expression is primarily owing to Mei4p-mediated transcriptional interference. PMID:25486473

  15. Virtual breakdown of the nuclear envelope in fission yeast meiosis.

    PubMed

    Asakawa, Haruhiko; Kojidani, Tomoko; Mori, Chie; Osakada, Hiroko; Sato, Mamiko; Ding, Da-Qiao; Hiraoka, Yasushi; Haraguchi, Tokuko

    2010-11-09

    Asymmetric localization of Ran regulators (RanGAP1 and RanGEF/RCC1) produces a gradient of RanGTP across the nuclear envelope. In higher eukaryotes, the nuclear envelope breaks down as the cell enters mitosis (designated "open" mitosis). This nuclear envelope breakdown (NEBD) leads to collapse of the RanGTP gradient and the diffusion of nuclear and cytoplasmic macromolecules in the cell, resulting in irreversible progression of the cell cycle. On the other hand, in many fungi, chromosome segregation takes place without NEBD (designated "closed" mitosis). Here we report that in the fission yeast Schizosaccharomyces pombe, despite the nuclear envelope and the nuclear pore complex remaining intact throughout both the meiotic and mitotic cell cycles, nuclear proteins diffuse into the cytoplasm transiently for a few minutes at the onset of anaphase of meiosis II. We also found that nuclear protein diffusion into the cytoplasm occurred coincidently with nuclear localization of Rna1, an S. pombe RanGAP1 homolog that is usually localized in the cytoplasm. These results suggest that nuclear localization of RanGAP1 and depression of RanGTP activity in the nucleus may be mechanistically tied to meiosis-specific diffusion of nuclear proteins into the cytoplasm. This nucleocytoplasmic shuffling of RanGAP1 and nuclear proteins represents virtual breakdown of the nuclear envelope.

  16. Quantitative Analysis of Chromosome Condensation in Fission Yeast

    PubMed Central

    Petrova, Boryana; Dehler, Sascha; Kruitwagen, Tom; Hériché, Jean-Karim; Miura, Kota

    2013-01-01

    Chromosomes undergo extensive conformational rearrangements in preparation for their segregation during cell divisions. Insights into the molecular mechanisms behind this still poorly understood condensation process require the development of new approaches to quantitatively assess chromosome formation in vivo. In this study, we present a live-cell microscopy-based chromosome condensation assay in the fission yeast Schizosaccharomyces pombe. By automatically tracking the three-dimensional distance changes between fluorescently marked chromosome loci at high temporal and spatial resolution, we analyze chromosome condensation during mitosis and meiosis and deduct defined parameters to describe condensation dynamics. We demonstrate that this method can determine the contributions of condensin, topoisomerase II, and Aurora kinase to mitotic chromosome condensation. We furthermore show that the assay can identify proteins required for mitotic chromosome formation de novo by isolating mutants in condensin, DNA polymerase ε, and F-box DNA helicase I that are specifically defective in pro-/metaphase condensation. Thus, the chromosome condensation assay provides a direct and sensitive system for the discovery and characterization of components of the chromosome condensation machinery in a genetically tractable eukaryote. PMID:23263988

  17. Spatial control of mitotic commitment in fission yeast.

    PubMed

    Hagan, Iain M; Grallert, Agnes

    2013-12-01

    The activation of the Cdk1 (cyclin-dependent kinase 1)-cyclin B complex to promote commitment to mitosis is controlled by the phosphorylation status of the Cdk1 catalytic subunit. Cdk1 phosphorylation by Wee1 kinases blocks activation until Cdc25 (cell division cycle 25) phosphatases remove this phosphate to drive division. Feedback inhibition of Wee1 and promotion of Cdc25 activities by the newly activated Cdk1-cyclin B complexes ensure that the transition from interphase to mitosis is a rapid and complete bi-stable switch. Although this level of molecular understanding of the mitotic commitment switch has been clear for over two decades, it is still unclear how the switch is engaged to promote division at the right time for a particular context. We discuss recent work in fission yeast that shows how the spatial organization of signalling networks, in particular events on the centrosome equivalent, the spindle pole body, plays a key role in ensuring that the timing of cell division is coupled to environmental cues.

  18. Genome-wide characterization of fission yeast DNA replication origins

    PubMed Central

    Heichinger, Christian; Penkett, Christopher J; Bähler, Jürg; Nurse, Paul

    2006-01-01

    Eukaryotic DNA replication is initiated from multiple origins of replication, but little is known about the global regulation of origins throughout the genome or in different types of cell cycles. Here, we identify 401 strong origins and 503 putative weaker origins spaced in total every 14 kb throughout the genome of the fission yeast Schizosaccharomyces pombe. The same origins are used during premeiotic and mitotic S-phases. We found that few origins fire late in mitotic S-phase and that activating the Rad3 dependent S-phase checkpoint by inhibiting DNA replication had little effect on which origins were fired. A genome-wide analysis of eukaryotic origin efficiencies showed that efficiency was variable, with large chromosomal domains enriched for efficient or inefficient origins. Average efficiency is twice as high during mitosis compared with meiosis, which can account for their different S-phase lengths. We conclude that there is a continuum of origin efficiency and that there is differential origin activity in the mitotic and meiotic cell cycles. PMID:17053780

  19. Fission yeast kinesin-8 controls chromosome congression independently of oscillations

    PubMed Central

    Mary, Hadrien; Fouchard, Jonathan; Gay, Guillaume; Reyes, Céline; Gauthier, Tiphaine; Gruget, Clémence; Pécréaux, Jacques; Tournier, Sylvie; Gachet, Yannick

    2015-01-01

    ABSTRACT In higher eukaryotes, efficient chromosome congression relies, among other players, on the activity of chromokinesins. Here, we provide a quantitative analysis of kinetochore oscillations and positioning in Schizosaccharomyces pombe, a model organism lacking chromokinesins. In wild-type cells, chromosomes align during prophase and, while oscillating, maintain this alignment throughout metaphase. Chromosome oscillations are dispensable both for kinetochore congression and stable kinetochore alignment during metaphase. In higher eukaryotes, kinesin-8 family members control chromosome congression by regulating their oscillations. By contrast, here, we demonstrate that fission yeast kinesin-8 controls chromosome congression by an alternative mechanism. We propose that kinesin-8 aligns chromosomes by controlling pulling forces in a length-dependent manner. A coarse-grained model of chromosome segregation implemented with a length-dependent process that controls the force at kinetochores is necessary and sufficient to mimic kinetochore alignment, and prevents the appearance of lagging chromosomes. Taken together, these data illustrate how the local action of a motor protein at kinetochores provides spatial cues within the spindle to align chromosomes and to prevent aneuploidy. PMID:26359299

  20. Sterol-Rich Membrane Domains Define Fission Yeast Cell Polarity.

    PubMed

    Makushok, Tatyana; Alves, Paulo; Huisman, Stephen Michiel; Kijowski, Adam Rafal; Brunner, Damian

    2016-05-19

    Cell polarization is crucial for the functioning of all organisms. The cytoskeleton is central to the process but its role in symmetry breaking is poorly understood. We study cell polarization when fission yeast cells exit starvation. We show that the basis of polarity generation is de novo sterol biosynthesis, cell surface delivery of sterols, and their recruitment to the cell poles. This involves four phases occurring independent of the polarity factor cdc42p. Initially, multiple, randomly distributed sterol-rich membrane (SRM) domains form at the plasma membrane, independent of the cytoskeleton and cell growth. These domains provide platforms on which the growth and polarity machinery assembles. SRM domains are then polarized by the microtubule-dependent polarity factor tea1p, which prepares for monopolar growth initiation and later switching to bipolar growth. SRM polarization requires F-actin but not the F-actin organizing polarity factors for3p and bud6p. We conclude that SRMs are key to cell polarization.

  1. Quantitative analysis of chromosome condensation in fission yeast.

    PubMed

    Petrova, Boryana; Dehler, Sascha; Kruitwagen, Tom; Hériché, Jean-Karim; Miura, Kota; Haering, Christian H

    2013-03-01

    Chromosomes undergo extensive conformational rearrangements in preparation for their segregation during cell divisions. Insights into the molecular mechanisms behind this still poorly understood condensation process require the development of new approaches to quantitatively assess chromosome formation in vivo. In this study, we present a live-cell microscopy-based chromosome condensation assay in the fission yeast Schizosaccharomyces pombe. By automatically tracking the three-dimensional distance changes between fluorescently marked chromosome loci at high temporal and spatial resolution, we analyze chromosome condensation during mitosis and meiosis and deduct defined parameters to describe condensation dynamics. We demonstrate that this method can determine the contributions of condensin, topoisomerase II, and Aurora kinase to mitotic chromosome condensation. We furthermore show that the assay can identify proteins required for mitotic chromosome formation de novo by isolating mutants in condensin, DNA polymerase ε, and F-box DNA helicase I that are specifically defective in pro-/metaphase condensation. Thus, the chromosome condensation assay provides a direct and sensitive system for the discovery and characterization of components of the chromosome condensation machinery in a genetically tractable eukaryote.

  2. De Novo Biosynthesis of Vanillin in Fission Yeast (Schizosaccharomyces pombe) and Baker's Yeast (Saccharomyces cerevisiae) ▿

    PubMed Central

    Hansen, Esben H.; Møller, Birger Lindberg; Kock, Gertrud R.; Bünner, Camilla M.; Kristensen, Charlotte; Jensen, Ole R.; Okkels, Finn T.; Olsen, Carl E.; Motawia, Mohammed S.; Hansen, Jørgen

    2009-01-01

    Vanillin is one of the world's most important flavor compounds, with a global market of 180 million dollars. Natural vanillin is derived from the cured seed pods of the vanilla orchid (Vanilla planifolia), but most of the world's vanillin is synthesized from petrochemicals or wood pulp lignins. We have established a true de novo biosynthetic pathway for vanillin production from glucose in Schizosaccharomyces pombe, also known as fission yeast or African beer yeast, as well as in baker's yeast, Saccharomyces cerevisiae. Productivities were 65 and 45 mg/liter, after introduction of three and four heterologous genes, respectively. The engineered pathways involve incorporation of 3-dehydroshikimate dehydratase from the dung mold Podospora pauciseta, an aromatic carboxylic acid reductase (ACAR) from a bacterium of the Nocardia genus, and an O-methyltransferase from Homo sapiens. In S. cerevisiae, the ACAR enzyme required activation by phosphopantetheinylation, and this was achieved by coexpression of a Corynebacterium glutamicum phosphopantetheinyl transferase. Prevention of reduction of vanillin to vanillyl alcohol was achieved by knockout of the host alcohol dehydrogenase ADH6. In S. pombe, the biosynthesis was further improved by introduction of an Arabidopsis thaliana family 1 UDP-glycosyltransferase, converting vanillin into vanillin β-d-glucoside, which is not toxic to the yeast cells and thus may be accumulated in larger amounts. These de novo pathways represent the first examples of one-cell microbial generation of these valuable compounds from glucose. S. pombe yeast has not previously been metabolically engineered to produce any valuable, industrially scalable, white biotech commodity. PMID:19286778

  3. Fission yeast hotspot sequence motifs are also active in budding yeast.

    PubMed

    Steiner, Walter W; Steiner, Estelle M

    2012-01-01

    In most organisms, including humans, meiotic recombination occurs preferentially at a limited number of sites in the genome known as hotspots. There has been substantial progress recently in elucidating the factors determining the location of meiotic recombination hotspots, and it is becoming clear that simple sequence motifs play a significant role. In S. pombe, there are at least five unique sequence motifs that have been shown to produce hotspots of recombination, and it is likely that there are more. In S. cerevisiae, simple sequence motifs have also been shown to produce hotspots or show significant correlations with hotspots. Some of the hotspot motifs in both yeasts are known or suspected to bind transcription factors (TFs), which are required for the activity of those hotspots. Here we show that four of the five hotspot motifs identified in S. pombe also create hotspots in the distantly related budding yeast S. cerevisiae. For one of these hotspots, M26 (also called CRE), we identify TFs, Cst6 and Sko1, that activate and inhibit the hotspot, respectively. In addition, two of the hotspot motifs show significant correlations with naturally occurring hotspots. The conservation of these hotspots between the distantly related fission and budding yeasts suggests that these sequence motifs, and others yet to be discovered, may function widely as hotspots in many diverse organisms.

  4. Molecular characterization of HIV-1 genome in fission yeast Schizosaccharomyces pombe.

    PubMed

    Nkeze, Joseph; Li, Lin; Benko, Zsigmond; Li, Ge; Zhao, Richard Y

    2015-01-01

    The human immunodeficiency virus type 1 (HIV-1) genome (~9 kb RNA) is flanked by two long terminal repeats (LTR) promoter regions with nine open reading frames, which encode Gag, Pol and Env polyproteins, four accessory proteins (Vpu, Vif, Vpr, Nef) and two regulatory proteins (Rev, Tat). In this study, we carried out a genome-wide and functional analysis of the HIV-1 genome in fission yeast (Schizosaccharomyces pombe). Each one of the HIV-1 genes was cloned and expressed individually in fission yeast. Subcellular localization of each viral protein was first examined. The effect of protein expression on cellular proliferation and colony formations, an indication of cytotoxicity, were observed. Overall, there is a general correlation of subcellular localization of each viral protein between fission yeast and mammalian cells. Three viral proteins, viral protein R (Vpr), protease (PR) and regulator of expression of viral protein (Rev), were found to inhibit cellular proliferation. Rev was chosen for further analysis in fission yeast and mammalian cells. Consistent with the observation in fission yeast, expression of HIV-1 rev gene also caused growth retardation in mammalian cells. However, the observed growth delay was neither due to the cytotoxic effect nor due to alterations in cell cycling. Mechanistic testing of the Rev effect suggests it triggers transient induction of cellular oxidative stress. Some of the behavioral and functional similarities of Rev between fission yeast and mammalian cells suggest fission yeast might be a useful model system for further studies of molecular functions of Rev and other HIV-1 viral proteins.

  5. Analyzing fission yeast multidrug resistance mechanisms to develop a genetically tractable model system for chemical biology.

    PubMed

    Kawashima, Shigehiro A; Takemoto, Ai; Nurse, Paul; Kapoor, Tarun M

    2012-07-27

    Chemical inhibitors can help analyze dynamic cellular processes, particularly when probes are active in genetically tractable model systems. Although fission yeast has served as an important model system, which shares more cellular processes (e.g., RNAi) with humans than budding yeast, its use for chemical biology has been limited by its multidrug resistance (MDR) response. Using genomics and genetics approaches, we identified the key transcription factors and drug-efflux transporters responsible for fission yeast MDR and designed strains sensitive to a wide-range of chemical inhibitors, including commonly used probes. We used this strain, along with acute chemical inhibition and high-resolution imaging, to examine metaphase spindle organization in a "closed" mitosis. Together, our findings suggest that our fission yeast strains will allow the use of several inhibitors as probes, discovery of new inhibitors, and analysis of drug action. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Cell cycle molecules and mechanisms of the budding and fission yeasts.

    PubMed

    Humphrey, Tim; Pearce, Amanda

    2005-01-01

    The cell cycles of the budding yeast Saccharomyces cerevisiae and the fission yeast, Schizosaccharomyces pombe are currently the best understood of all eukaryotes. Studies in these two evolutionarily divergent organisms have identified common control mechanisms, which have provided paradigms for our understanding of the eukaryotic cell cycle. This chapter provides an overview of our current knowledge of the molecules and mechanisms that regulate the mitotic cell cycle in these two yeasts.

  7. A Lallzyme MMX-based rapid method for fission yeast protoplast preparation.

    PubMed

    Flor-Parra, Ignacio; Zhurinsky, Jacob; Bernal, Manuel; Gallardo, Paola; Daga, Rafael R

    2014-02-01

    Fungal cells including yeasts are surrounded by cell wall that counteracts turgor pressure and prevents cell lysis. Many yeast experiments, including genetic manipulation of sterile strains, morphogenesis studies, nucleic acid isolation and many others, require mechanical breakage or enzymatic removal of the cell wall. Some of these experiments require the generation of live cells lacking cell walls, called protoplasts, that can be maintained in osmostabilized medium. Enzymatic digestion of cell wall proteoglycans is a commonly used method of protoplast preparation. Currently existing protocols for fission yeast cell wall digestion are time consuming and not very efficient. We developed a new rapid method for fission yeast protoplast preparation that relies on digesting cell walls with Lallzyme MMX commercial enzyme mix, which produces protoplasts from all cells in less than 10 min. We demonstrate that these protoplasts can be utilized in three commonly used fission yeast protocols. Thus, we provide the fission yeast community with a robust and efficient plasmid extraction method, a new protocol for diploid generation and an assay for protoplast recovery that should be useful for studies of morphogenesis. Our method is potentially applicable to other yeasts and fungi. Copyright © 2013 John Wiley & Sons, Ltd.

  8. High Confidence Fission Yeast SUMO Conjugates Identified by Tandem Denaturing Affinity Purification.

    PubMed

    Nie, Minghua; Vashisht, Ajay A; Wohlschlegel, James A; Boddy, Michael N

    2015-09-25

    Covalent attachment of the small ubiquitin-like modifier (SUMO) to key targets in the proteome critically regulates the evolutionarily conserved processes of cell cycle control, transcription, DNA replication and maintenance of genome stability. The proteome-wide identification of SUMO conjugates in budding yeast has been invaluable in helping to define roles of SUMO in these processes. Like budding yeast, fission yeast is an important and popular model organism; however, the fission yeast Schizosaccharomyces pombe community currently lacks proteome-wide knowledge of SUMO pathway targets. To begin to address this deficiency, we adapted and used a highly stringent Tandem Denaturing Affinity Purification (TDAP) method, coupled with mass spectrometry, to identify fission yeast SUMO conjugates. Comparison of our data with that compiled in budding yeast reveals conservation of SUMO target enrichment in nuclear and chromatin-associated processes. Moreover, the SUMO "cloud" phenomenon, whereby multiple components of a single protein complex are SUMOylated, is also conserved. Overall, SUMO TDAP provides both a key resource of high confidence SUMO-modified target proteins in fission yeast, and a robust method for future analyses of SUMO function.

  9. Ectopic Centromere Nucleation by CENP-A in Fission Yeast

    PubMed Central

    Gonzalez, Marlyn; He, Haijin; Dong, Qianhua; Sun, Siyu; Li, Fei

    2014-01-01

    The centromere is a specific chromosomal locus that organizes the assembly of the kinetochore. It plays a fundamental role in accurate chromosome segregation. In most eukaryotic organisms, each chromosome contains a single centromere the position and function of which are epigenetically specified. Occasionally, centromeres form at ectopic loci, which can be detrimental to the cell. However, the mechanisms that protect the cell against ectopic centromeres (neocentromeres) remain poorly understood. Centromere protein-A (CENP-A), a centromere-specific histone 3 (H3) variant, is found in all centromeres and is indispensable for centromere function. Here we report that the overexpression of CENP-ACnp1 in fission yeast results in the assembly of CENP-ACnp1 at noncentromeric chromatin during mitosis and meiosis. The noncentromeric CENP-A preferentially assembles near heterochromatin and is capable of recruiting kinetochore components. Consistent with this, cells overexpressing CENP-ACnp1 exhibit severe chromosome missegregation and spindle microtubule disorganization. In addition, pulse induction of CENP-ACnp1 overexpression reveals that ectopic CENP-A chromatin can persist for multiple generations. Intriguingly, ectopic assembly of CENP-Acnp1 is suppressed by overexpression of histone H3 or H4. Finally, we demonstrate that deletion of the N-terminal domain of CENP-Acnp1 results in an increase in the number of ectopic CENP-A sites and provide evidence that the N-terminal domain of CENP-A prevents CENP-A assembly at ectopic loci via the ubiquitin-dependent proteolysis. These studies expand our current understanding of how noncentromeric chromatin is protected from mistakenly assembling CENP-A. PMID:25298518

  10. Morphogenesis of the Fission Yeast Cell through Cell Wall Expansion.

    PubMed

    Atilgan, Erdinc; Magidson, Valentin; Khodjakov, Alexey; Chang, Fred

    2015-08-17

    The shape of walled cells such as fungi, bacteria, and plants are determined by the cell wall. Models for cell morphogenesis postulate that the effects of turgor pressure and mechanical properties of the cell wall can explain the shapes of these diverse cell types. However, in general, these models await validation through quantitative experiments. Fission yeast Schizosaccharomyces pombe are rod-shaped cells that grow by tip extension and then divide medially through formation of a cell wall septum. Upon cell separation after cytokinesis, the new cell ends adopt a rounded morphology. Here, we show that this shape is generated by a very simple mechanical-based mechanism in which turgor pressure inflates the elastic cell wall in the absence of cell growth. This process is independent of actin and new cell wall synthesis. To model this morphological change, we first estimate the mechanical properties of the cell wall using several approaches. The lateral cell wall behaves as an isotropic elastic material with a Young's modulus of 50 ± 10 MPa inflated by a turgor pressure estimated to be 1.5 ± 0.2 MPa. Based upon these parameters, we develop a quantitative mechanical-based model for new end formation that reveals that the cell wall at the new end expands into its characteristic rounded shape in part because it is softer than the mature lateral wall. These studies provide a simple example of how turgor pressure expands the elastic cell wall to generate a particular cell shape. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Heteromer formation of a long-chain prenyl diphosphate synthase from fission yeast Dps1 and budding yeast Coq1.

    PubMed

    Zhang, Mei; Luo, Jun; Ogiyama, Yuki; Saiki, Ryoichi; Kawamukai, Makoto

    2008-07-01

    Ubiquinone is an essential factor for the electron transfer system and is also a known lipid antioxidant. The length of the ubiquinone isoprenoid side-chain differs amongst living organisms, with six isoprene units in the budding yeast Saccharomyces cerevisiae, eight units in Escherichia coli and 10 units in the fission yeast Schizosaccharomyces pombe and in humans. The length of the ubiquinone isoprenoid is determined by the product generated by polyprenyl diphosphate synthases (poly-PDSs), which are classified into homodimer (i.e. octa-PDS IspB in E. coli) and heterotetramer [i.e. deca-PDSs Dps1 and D-less polyprenyl diphosphate synthase (Dlp1) in Sc. pombe and in humans] types. In this study, we characterized the hexa-PDS (Coq1) of S. cerevisiae to identify whether this enzyme was a homodimer (as in bacteria) or a heteromer (as in fission yeast). When COQ1 was expressed in an E. coli ispB disruptant, only hexa-PDS activity and ubiquinone-6 were detected, indicating that the expression of Coq1 alone results in bacterial enzyme-like functionality. However, when expressed in fission yeast Deltadps1 and Deltadlp1 strains, COQ1 restored growth on minimal medium in the Deltadlp1 but not Deltadps1 strain. Intriguingly, ubiquinone-9 and ubiquinone-10, but not ubiquinone-6, were identified and deca-PDS activity was detected in the COQ1-expressing Deltadlp1 strain. No enzymatic activity or ubiquinone was detected in the COQ1-expressing Deltadps1 strain. These results indicate that Coq1 partners with Dps1, but not with Dlp1, to be functional in fission yeast. Binding of Coq1 and Dps1 was demonstrated by coimmunoprecipitation, and the formation of a tetramer consisting of Coq1 and Dps1 was detected in Sc. pombe. Thus, Coq1 is functional when expressed alone in E. coli and in budding yeast, but is only functional as a partner with Dps1 in fission yeast. This unusual observation indicates that different folding processes or protein modifications in budding yeast/E. coli

  12. The dynamin-related protein Vps1 regulates vacuole fission, fusion and tubulation in the fission yeast, Schizosaccharomyces pombe.

    PubMed

    Röthlisberger, Sarah; Jourdain, Isabelle; Johnson, Chad; Takegawa, Kaoru; Hyams, Jeremy S

    2009-12-01

    Fission yeast cells lacking the dynamin-related protein (DRP) Vps1 had smaller vacuoles with reduced capacity for both fusion and fission in response to hypotonic and hypertonic conditions respectively. vps1Delta cells showed normal vacuolar protein sorting, actin organisation and endocytosis. Over-expression of vps1 transformed vacuoles from spherical to tubular. Tubule formation was enhanced in fission conditions and required the Rab protein Ypt7. Vacuole tubulation by Vps1 was more extensive in the absence of a second DRP, Dnm1. Both dnm1Delta and the double mutant vps1Delta dnm1Delta showed vacuole fission defects similar to that of vps1Delta. Over-expression of vps1 in dnm1Delta, or of dnm1 in vps1Delta failed to rescue this phenotype. Over-expression of dnm1 in wild-type cells, on the other hand, induced vacuole fission. Our results are consistent with a model of vacuole fission in which Vps1 creates a tubule of an appropriate diameter for subsequent scission by Dnm1.

  13. Advancing our understanding of functional genome organisation through studies in the fission yeast.

    PubMed

    Olsson, Ida; Bjerling, Pernilla

    2011-02-01

    Significant progress has been made in understanding the functional organisation of the cell nucleus. Still many questions remain to be answered about the relationship between the spatial organisation of the nucleus and the regulation of the genome function. There are many conflicting data in the field making it very difficult to merge published results on mammalian cells into one model on subnuclear chromatin organisation. The fission yeast, Schizosaccharomyces pombe, over the last decades has emerged as a valuable model organism in understanding basic biological mechanisms, especially the cell cycle and chromosome biology. In this review we describe and compare the nuclear organisation in mammalian and fission yeast cells. We believe that fission yeast is a good tool to resolve at least some of the contradictions and unanswered questions concerning functional nuclear architecture, since S. pombe has chromosomes structurally similar to that of human. S. pombe also has the advantage over higher eukaryotes in that the genome can easily be manipulated via homologous recombination making it possible to integrate the tools needed for visualisation of chromosomes using live-cell microscopy. Classical genetic experiments can be used to elucidate what factors are involved in a certain mechanism. The knowledge we have gained during the last few years indicates similarities between the genome organisation in fission yeast and mammalian cells. We therefore propose the use of fission yeast for further advancement of our understanding of functional nuclear organisation.

  14. Cell-cycle analysis of fission yeast cells by flow cytometry.

    PubMed

    Knutsen, Jon Halvor Jonsrud; Rein, Idun Dale; Rothe, Christiane; Stokke, Trond; Grallert, Beáta; Boye, Erik

    2011-02-28

    The cell cycle of the fission yeast, Schizosaccharomyces pombe, does not easily lend itself to analysis by flow cytometry, mainly because cells in G(1) and G(2) phase contain the same amount of DNA. This occurs because fission yeast cells under standard growth conditions do not complete cytokinesis until after G(1) phase. We have devised a flow cytometric method exploiting the fact that cells in G(1) phase contain two nuclei, whereas cells in G(2) are mononuclear. Measurements of the width as well as the total area of the DNA-associated fluorescence signal allows the discrimination between cells in G(1) and in G(2) phase and the cell-cycle progression of fission yeast can be followed in detail by flow cytometry. Furthermore, we show how this method can be used to monitor the timing of cell entry into anaphase. Fission yeast cells tend to form multimers, which represents another problem of flow cytometry-based cell-cycle analysis. Here we present a method employing light-scatter measurements to enable the exclusion of cell doublets, thereby further improving the analysis of fission yeast cells by flow cytometry.

  15. A series of promoters for constitutive expression of heterologous genes in fission yeast.

    PubMed

    Matsuyama, Akihisa; Shirai, Atsuko; Yoshida, Minoru

    2008-05-01

    Inducible/repressible promoters are useful for the maintenance of toxic genes or timely expression. For ectopic expression of cloned genes in the fission yeast Schizosaccharomyces pombe, the thiamine-regulatable nmt1 promoter has been widely used, since the transcriptional activity of this promoter can be controlled by thiamine. However, this property sometimes limits a certain type of research, since the expression inevitably requires cells to be cultivated under the conditions that induce promoter activation. To allow constitutive expression of heterologous genes, we cloned three promoters of cam1+, tif51+ and ef1a-c+. Construction of a series of vectors comprising these promoters and their introduction into the fission yeast cells demonstrated that the activity was different among these promoters but was not affected by cultured media commonly used in fission yeast. Therefore, a promoter with appropriate strength would be selectable from these promoters, depending on the genes to be expressed.

  16. Purification of Actin from Fission Yeast Schizosaccharomyces pombe and Characterization of Functional Differences from Muscle Actin*

    PubMed Central

    Ti, Shih-Chieh; Pollard, Thomas D.

    2011-01-01

    Fission yeast Schizosaccharomyces pombe is an important genetic model organism for studying the mechanisms of endocytosis and cytokinesis. However, most work on the biochemical properties of fission yeast actin-binding proteins has been done with skeletal muscle actin for matters of convenience. When simulations of mathematical models of the mechanism of endocytosis were compared with events in live cells, some of the reactions appeared to be much faster than observed in biochemical experiments with muscle actin. Here, we used gelsolin affinity chromatography to purify actin from fission yeast. S. pombe actin shares many properties with skeletal muscle actin but has higher intrinsic nucleotide exchange rate, faster trimer nucleus formation, faster phosphate dissociation rate from polymerized actin, and faster nucleation of actin filaments with Arp2/3 complex. These properties close the gap between the biochemistry and predictions made by mathematical models of endocytosis in S. pombe cells. PMID:21148484

  17. Observation of magnetic field-induced contraction of fission yeast cells using optical projection microscopy

    NASA Astrophysics Data System (ADS)

    Yang, Xi; Beckwith, A. W.

    2005-03-01

    The charges in live cells interact with or produce electric fields, which results in enormous dielectric responses, flexoelectricity, and related phenomena. Here we report on a contraction of Schizosaccharomyces pombe (fission yeast) cells induced by magnetic fields, as observed using a phase-sensitive projection imaging technique. Unlike electric fields, magnetic fields only act on moving charges. The observed behavior is therefore quite remarkable, and may result from a contractile Lorentz force acting on diamagnetic screening currents. This would indicate extremely high intracellular charge mobilities. Besides, we observed a large electro-optic response from fission yeast cells.

  18. Big data mining powers fungal research: recent advances in fission yeast systems biology approaches.

    PubMed

    Wang, Zhe

    2017-06-01

    Biology research has entered into big data era. Systems biology approaches therefore become the powerful tools to obtain the whole landscape of how cell separate, grow, and resist the stresses. Fission yeast Schizosaccharomyces pombe is wonderful unicellular eukaryote model, especially studying its division and metabolism can facilitate to understanding the molecular mechanism of cancer and discovering anticancer agents. In this perspective, we discuss the recent advanced fission yeast systems biology tools, mainly focus on metabolomics profiling and metabolic modeling, protein-protein interactome and genetic interaction network, DNA sequencing and applications, and high-throughput phenotypic screening. We therefore hope this review can be useful for interested fungal researchers as well as bioformaticians.

  19. Comparative evolutionary analysis of cell cycle proteins networks in fission and budding yeast.

    PubMed

    Singh, Praveen K; Shakya, Madhvi

    2014-11-01

    Fission yeast and budding yeast are the two distantly related species with common ancestors. Various studies have shown significant differences in metabolic networks and regulatory networks. Cell cycle regulatory proteins in both species have differences in structural as well as in functional organization. Orthologous proteins in cell cycle regulatory protein networks seem to play contemporary role in both species during the evolution but little is known about non-orthologous proteins. Here, we used system biology approach to compare topological parameters of orthologous and non-orthologous proteins to find their contributions during the evolution to make an efficient cell cycle regulation. Observed results have shown a significant role of non-orthologous proteins in fission yeast in maintaining the efficiency of cell cycle regulation with less number of proteins as compared to budding yeast.

  20. A thiamine-regulatable epitope-tagged protein expression system in fission yeast.

    PubMed

    Tamm, Tiina

    2012-01-01

    Schizosaccharomyces pombe, the fission yeast, has been a popular and useful model system for investigating the mechanisms of biological processes for a long time. To facilitate purification, localization, and functional analysis of gene products, a wide range of expression vectors have been developed. Several of these vectors utilize the inducible/repressible promoter systems and enable the episomal expression of proteins as fusion proteins with epitope tags attached to their N terminus or C terminus.This chapter provides a detailed protocol for expression of the epitope-tagged proteins from thiamine-regulatable nmt promoter in fission yeast. The yeast culture conditions and procedures for yeast transformation, expression induction, preparation of whole-cell extracts, and analysis of epitope-tagged protein expression by Western blotting are described.

  1. Comparative 3D genome structure analysis of the fission and the budding yeast.

    PubMed

    Gong, Ke; Tjong, Harianto; Zhou, Xianghong Jasmine; Alber, Frank

    2015-01-01

    We studied the 3D structural organization of the fission yeast genome, which emerges from the tethering of heterochromatic regions in otherwise randomly configured chromosomes represented as flexible polymer chains in an nuclear environment. This model is sufficient to explain in a statistical manner many experimentally determined distinctive features of the fission yeast genome, including chromatin interaction patterns from Hi-C experiments and the co-locations of functionally related and co-expressed genes, such as genes expressed by Pol-III. Our findings demonstrate that some previously described structure-function correlations can be explained as a consequence of random chromatin collisions driven by a few geometric constraints (mainly due to centromere-SPB and telomere-NE tethering) combined with the specific gene locations in the chromosome sequence. We also performed a comparative analysis between the fission and budding yeast genome structures, for which we previously detected a similar organizing principle. However, due to the different chromosome sizes and numbers, substantial differences are observed in the 3D structural genome organization between the two species, most notably in the nuclear locations of orthologous genes, and the extent of nuclear territories for genes and chromosomes. However, despite those differences, remarkably, functional similarities are maintained, which is evident when comparing spatial clustering of functionally related genes in both yeasts. Functionally related genes show a similar spatial clustering behavior in both yeasts, even though their nuclear locations are largely different between the yeast species.

  2. Comparative 3D Genome Structure Analysis of the Fission and the Budding Yeast

    PubMed Central

    Gong, Ke; Tjong, Harianto; Zhou, Xianghong Jasmine; Alber, Frank

    2015-01-01

    We studied the 3D structural organization of the fission yeast genome, which emerges from the tethering of heterochromatic regions in otherwise randomly configured chromosomes represented as flexible polymer chains in an nuclear environment. This model is sufficient to explain in a statistical manner many experimentally determined distinctive features of the fission yeast genome, including chromatin interaction patterns from Hi-C experiments and the co-locations of functionally related and co-expressed genes, such as genes expressed by Pol-III. Our findings demonstrate that some previously described structure-function correlations can be explained as a consequence of random chromatin collisions driven by a few geometric constraints (mainly due to centromere-SPB and telomere-NE tethering) combined with the specific gene locations in the chromosome sequence. We also performed a comparative analysis between the fission and budding yeast genome structures, for which we previously detected a similar organizing principle. However, due to the different chromosome sizes and numbers, substantial differences are observed in the 3D structural genome organization between the two species, most notably in the nuclear locations of orthologous genes, and the extent of nuclear territories for genes and chromosomes. However, despite those differences, remarkably, functional similarities are maintained, which is evident when comparing spatial clustering of functionally related genes in both yeasts. Functionally related genes show a similar spatial clustering behavior in both yeasts, even though their nuclear locations are largely different between the yeast species. PMID:25799503

  3. Mechanical and molecular basis for the symmetrical division of the fission yeast nuclear envelope.

    PubMed

    Castagnetti, Stefania; Božič, Bojan; Svetina, Saša

    2015-06-28

    In fission yeast Schizosaccharomyces pombe, the nuclear envelope remains intact throughout mitosis and undergoes a series of symmetrical morphological changes when the spindle pole bodies (SPBs), embedded in the nuclear envelope, are pushed apart by elongating spindle microtubules. These symmetrical membrane shape transformations do not correspond to the shape behavior of an analogous system based on lipid vesicles. Here we report that the symmetry of the dividing fission yeast nucleus is ensured by SPB-chromosome attachments, as loss of kinetochore clustering in the vicinity of SPBs results in the formation of abnormal asymmetric shapes with long membrane tethers. We integrated these findings in a biophysical model, which explains the symmetry of the nuclear shapes on the basis of forces exerted by chromosomes clustered at SPBs on the extending nuclear envelope. Based on this analysis we conclude that the fission yeast nuclear envelope exhibits the same mechanical properties as simple lipid vesicles, but interactions with other cellular components, such as chromosomes, influence the nuclear shape during mitosis, allowing the formation of otherwise energetically unfavorable symmetrical dumbbell structures upon spindle elongation. The model allows us to explain the appearance of abnormal asymmetric shapes in fission yeast mutants with mis-segregated chromosomes as well as with altered nuclear membrane composition.

  4. Global analysis of fission yeast mating genes reveals new autophagy factors.

    PubMed

    Sun, Ling-Ling; Li, Ming; Suo, Fang; Liu, Xiao-Man; Shen, En-Zhi; Yang, Bing; Dong, Meng-Qiu; He, Wan-Zhong; Du, Li-Lin

    2013-01-01

    Macroautophagy (autophagy) is crucial for cell survival during starvation and plays important roles in animal development and human diseases. Molecular understanding of autophagy has mainly come from the budding yeast Saccharomyces cerevisiae, and it remains unclear to what extent the mechanisms are the same in other organisms. Here, through screening the mating phenotype of a genome-wide deletion collection of the fission yeast Schizosaccharomyces pombe, we obtained a comprehensive catalog of autophagy genes in this highly tractable organism, including genes encoding three heretofore unidentified core Atg proteins, Atg10, Atg14, and Atg16, and two novel factors, Ctl1 and Fsc1. We systematically examined the subcellular localization of fission yeast autophagy factors for the first time and characterized the phenotypes of their mutants, thereby uncovering both similarities and differences between the two yeasts. Unlike budding yeast, all three Atg18/WIPI proteins in fission yeast are essential for autophagy, and we found that they play different roles, with Atg18a uniquely required for the targeting of the Atg12-Atg5·Atg16 complex. Our investigation of the two novel factors revealed unforeseen autophagy mechanisms. The choline transporter-like protein Ctl1 interacts with Atg9 and is required for autophagosome formation. The fasciclin domain protein Fsc1 localizes to the vacuole membrane and is required for autophagosome-vacuole fusion but not other vacuolar fusion events. Our study sheds new light on the evolutionary diversity of the autophagy machinery and establishes the fission yeast as a useful model for dissecting the mechanisms of autophagy.

  5. Global Analysis of Fission Yeast Mating Genes Reveals New Autophagy Factors

    PubMed Central

    Sun, Ling-Ling; Shen, En-Zhi; Yang, Bing; Dong, Meng-Qiu; He, Wan-Zhong; Du, Li-Lin

    2013-01-01

    Macroautophagy (autophagy) is crucial for cell survival during starvation and plays important roles in animal development and human diseases. Molecular understanding of autophagy has mainly come from the budding yeast Saccharomyces cerevisiae, and it remains unclear to what extent the mechanisms are the same in other organisms. Here, through screening the mating phenotype of a genome-wide deletion collection of the fission yeast Schizosaccharomyces pombe, we obtained a comprehensive catalog of autophagy genes in this highly tractable organism, including genes encoding three heretofore unidentified core Atg proteins, Atg10, Atg14, and Atg16, and two novel factors, Ctl1 and Fsc1. We systematically examined the subcellular localization of fission yeast autophagy factors for the first time and characterized the phenotypes of their mutants, thereby uncovering both similarities and differences between the two yeasts. Unlike budding yeast, all three Atg18/WIPI proteins in fission yeast are essential for autophagy, and we found that they play different roles, with Atg18a uniquely required for the targeting of the Atg12–Atg5·Atg16 complex. Our investigation of the two novel factors revealed unforeseen autophagy mechanisms. The choline transporter-like protein Ctl1 interacts with Atg9 and is required for autophagosome formation. The fasciclin domain protein Fsc1 localizes to the vacuole membrane and is required for autophagosome-vacuole fusion but not other vacuolar fusion events. Our study sheds new light on the evolutionary diversity of the autophagy machinery and establishes the fission yeast as a useful model for dissecting the mechanisms of autophagy. PMID:23950735

  6. Dissecting the fission yeast regulatory network reveals phase-specific control elements of its cell cycle.

    PubMed

    Bushel, Pierre R; Heard, Nicholas A; Gutman, Roee; Liu, Liwen; Peddada, Shyamal D; Pyne, Saumyadipta

    2009-09-16

    Fission yeast Schizosaccharomyces pombe and budding yeast Saccharomyces cerevisiae are among the original model organisms in the study of the cell-division cycle. Unlike budding yeast, no large-scale regulatory network has been constructed for fission yeast. It has only been partially characterized. As a result, important regulatory cascades in budding yeast have no known or complete counterpart in fission yeast. By integrating genome-wide data from multiple time course cell cycle microarray experiments we reconstructed a gene regulatory network. Based on the network, we discovered in addition to previously known regulatory hubs in M phase, a new putative regulatory hub in the form of the HMG box transcription factor SPBC19G7.04. Further, we inferred periodic activities of several less known transcription factors over the course of the cell cycle, identified over 500 putative regulatory targets and detected many new phase-specific and conserved cis-regulatory motifs. In particular, we show that SPBC19G7.04 has highly significant periodic activity that peaks in early M phase, which is coordinated with the late G2 activity of the forkhead transcription factor fkh2. Finally, using an enhanced Bayesian algorithm to co-cluster the expression data, we obtained 31 clusters of co-regulated genes 1) which constitute regulatory modules from different phases of the cell cycle, 2) whose phase order is coherent across the 10 time course experiments, and 3) which lead to identification of phase-specific control elements at both the transcriptional and post-transcriptional levels in S. pombe. In particular, the ribosome biogenesis clusters expressed in G2 phase reveal new, highly conserved RNA motifs. Using a systems-level analysis of the phase-specific nature of the S. pombe cell cycle gene regulation, we have provided new testable evidence for post-transcriptional regulation in the G2 phase of the fission yeast cell cycle. Based on this comprehensive gene regulatory network, we

  7. A multiplex culture system for the long-term growth of fission yeast cells.

    PubMed

    Callens, Céline; Coelho, Nelson C; Miller, Aaron W; Sananes, Maria Rosa Domingo; Dunham, Maitreya J; Denoual, Matthieu; Coudreuse, Damien

    2017-08-01

    Maintenance of long-term cultures of yeast cells is central to a broad range of investigations, from metabolic studies to laboratory evolution assays. However, repeated dilutions of batch cultures lead to variations in medium composition, with implications for cell physiology. In Saccharomyces cerevisiae, powerful miniaturized chemostat setups, or ministat arrays, have been shown to allow for constant dilution of multiple independent cultures. Here we set out to adapt these arrays for continuous culture of a morphologically and physiologically distinct yeast, the fission yeast Schizosaccharomyces pombe, with the goal of maintaining constant population density over time. First, we demonstrated that the original ministats are incompatible with growing fission yeast for more than a few generations, prompting us to modify different aspects of the system design. Next, we identified critical parameters for sustaining unbiased vegetative growth in these conditions. This requires deletion of the gsf2 flocculin-encoding gene, along with addition of galactose to the medium and lowering of the culture temperature. Importantly, we improved the flexibility of the ministats by developing a piezo-pump module for the independent regulation of the dilution rate of each culture. This made it possible to easily grow strains that have different generation times in the same assay. Our system therefore allows for maintaining multiple fission yeast cultures in exponential growth, adapting the dilution of each culture over time to keep constant population density for hundreds of generations. These multiplex culture systems open the door to a new range of long-term experiments using this model organism. © 2017 The Authors. Yeast published by John Wiley & Sons, Ltd. © 2017 The Authors. Yeast published by John Wiley & Sons, Ltd.

  8. Fission yeast profilin is tailored to facilitate actin assembly by the cytokinesis formin Cdc12.

    PubMed

    Bestul, Andrew J; Christensen, Jenna R; Grzegorzewska, Agnieszka P; Burke, Thomas A; Sees, Jennifer A; Carroll, Robert T; Sirotkin, Vladimir; Keenan, Robert J; Kovar, David R

    2015-01-15

    The evolutionarily conserved small actin-monomer binding protein profilin is believed to be a housekeeping factor that maintains a general pool of unassembled actin. However, despite similar primary sequences, structural folds, and affinities for G-actin and poly-L-proline, budding yeast profilin ScPFY fails to complement fission yeast profilin SpPRF temperature-sensitive mutant cdc3-124 cells. To identify profilin's essential properties, we built a combinatorial library of ScPFY variants containing either WT or SpPRF residues at multiple positions and carried out a genetic selection to isolate variants that support life in fission yeast. We subsequently engineered ScPFY(9-Mut), a variant containing nine substitutions in the actin-binding region, which complements cdc3-124 cells. ScPFY(9-Mut), but not WT ScPFY, suppresses severe cytokinesis defects in cdc3-124 cells. Furthermore, the major activity rescued by ScPFY(9-Mut) is the ability to enhance cytokinesis formin Cdc12-mediated actin assembly in vitro, which allows cells to assemble functional contractile rings. Therefore an essential role of profilin is to specifically facilitate formin-mediated actin assembly for cytokinesis in fission yeast.

  9. Meiotic chromosome mobility in fission yeast is resistant to environmental stress

    PubMed Central

    Illner, Doris; Lorenz, Alexander; Scherthan, Harry

    2016-01-01

    The formation of healthy gametes requires pairing of homologous chromosomes (homologs) as a prerequisite for their correct segregation during meiosis. Initially, homolog alignment is promoted by meiotic chromosome movements feeding into intimate homolog pairing by homologous recombination and/or synaptonemal complex formation. Meiotic chromosome movements in the fission yeast, Schizosaccharomyces pombe, depend on astral microtubule dynamics that drag the nucleus through the zygote; known as horsetail movement. The response of microtubule-led meiotic chromosome movements to environmental stresses such as ionizing irradiation (IR) and associated reactive oxygen species (ROS) is not known. Here, we show that, in contrast to budding yeast, the horsetail movement is largely radiation-resistant, which is likely mediated by a potent antioxidant defense. IR exposure of sporulating S. pombe cells induced misrepair and irreparable DNA double strand breaks causing chromosome fragmentation, missegregation and gamete death. Comparing radiation outcome in fission and budding yeast, and studying meiosis with poisoned microtubules indicates that the increased gamete death after IR is innate to fission yeast. Inhibition of meiotic chromosome mobility in the face of IR failed to influence the course of DSB repair, indicating that paralysis of meiotic chromosome mobility in a genotoxic environment is not a universal response among species. PMID:27074839

  10. A fungicidal piperazine-1-carboxamidine induces mitochondrial fission-dependent apoptosis in yeast.

    PubMed

    Bink, Anna; Govaert, Gilmer; François, Isabelle E J A; Pellens, Klaartje; Meerpoel, Lieven; Borgers, Marcel; Van Minnebruggen, Geert; Vroome, Valérie; Cammue, Bruno P A; Thevissen, Karin

    2010-11-01

    To unravel the working mechanism of the fungicidal piperazine-1-carboxamidine derivative BAR0329, we found that its intracellular accumulation in Saccharomyces cerevisiae is dependent on functional lipid rafts. Moreover, BAR0329 induced caspase-dependent apoptosis in yeast, in which the mitochondrial fission machinery consisting of Fis1 (Whi2), Dnm1 and Mdv1 is involved. Our data are consistent with a prosurvival function of Fis1 (Whi2) and a proapoptotic function of Dnm1 and Mdv1 during BAR0329-induced yeast cell death.

  11. Mechanisms of Contractile-Ring Assembly in Fission Yeast and Beyond

    PubMed Central

    Laporte, Damien; Zhao, Ran; Wu, Jian-Qiu

    2010-01-01

    Most eukaryotes including fungi, amoebas, and animal cells assemble an actin/myosin-based contractile ring during cytokinesis. The majority of proteins implied in ring formation, maturation, and constriction are evolutionarily conserved, suggesting that common mechanisms exist among these divergent eukaryotes. Here, we review the recent advances in positioning and assembly of the actomyosin ring in the fission yeast Schizosaccharomyces pombe, the budding yeast Saccharomyces cerevisiae, and animal cells. In particular, major findings have been made recently in understanding ring formation in genetically tractable S. pombe, revealing a dynamic and robust search, capture, pull, and release mechanism. PMID:20708088

  12. A novel series of vectors for chromosomal integration in fission yeast

    SciTech Connect

    Matsuyama, Akihisa Shirai, Atsuko; Yoshida, Minoru

    2008-09-19

    A series of fission yeast targeting vectors that can be used for wild-type strains having no selectable markers have been designed. The functions of one of three marker genes, lys1{sup +}, arg1{sup +}, and his3{sup +}, involved in amino acid synthesis, are impaired by integration of the fragments generated by restriction enzyme digestion of the plasmids. Successful integration of the fragments into the targeted loci can be readily verified by their requirement for amino acids, or by the PCR diagnostic analysis. Since these selection markers are not used commonly in fission yeast, these plasmids are likely to facilitate studies that require the co-expression of genes such as co-localization and co-immunoprecipitation experiments, by employing them in combination with most of the previously reported markers.

  13. Chromosome and mitotic spindle dynamics in fission yeast kinesin-8 mutants

    NASA Astrophysics Data System (ADS)

    Crapo, Ammon M.; Gergley, Zachary R.; McIntosh, J. Richard; Betterton, M. D.

    2014-03-01

    Fission yeast proteins Klp5p and Klp6p are plus-end directed motors of the kinesin-8 family which promote microtubule (MT) depolymerization and also affect chromosome segregation, but the mechanism of these activities is not well understood. Using live-cell time-lapse fluorescence microscopy of fission yeast wild-type (WT) and klp5/6 mutant strains, we quantify and compare the dynamics of kinetochore motion and mitotic spindle length in 3D. In WT cells, the spindle, once formed, remains a consistent size and chromosomes are correctly organized and segregated. In kinesin-8 mutants, spindles undergo large length fluctuations of several microns. Kinetochore motions are also highly fluctuating, with kinetochores frequently moving away from the spindle rather than toward it. We observe transient pushing of chromosomes away from the spindle by as much as 10 microns in distance.

  14. An IF-FISH Approach for Covisualization of Gene Loci and Nuclear Architecture in Fission Yeast.

    PubMed

    Kim, K-D; Iwasaki, O; Noma, K

    2016-01-01

    Recent genomic studies have revealed that chromosomal structures are formed by a hierarchy of organizing processes ranging from gene associations, including interactions among enhancers and promoters, to topologically associating domain formations. Gene associations identified by these studies can be characterized by microscopic analyses. Fission yeast is a model organism, in which gene associations have been broadly mapped across the genome, although many of those associations have not been further examined by cell biological approaches. To address the technically challenging process of the visualization of associating gene loci in the fission yeast nuclei, we provide, in detail, an IF-FISH procedure that allows for covisualizing both gene loci and nuclear structural markers such as the nuclear membrane and nucleolus.

  15. Distinct functional roles of peroxiredoxin isozymes and glutathione peroxidase from fission yeast, Schizosaccharomyces pombe.

    PubMed

    Kim, Ji Sun; Bang, Mi-Ae; Lee, Songmi; Chae, Ho Zoon; Kim, Kanghwa

    2010-03-01

    To investigate the differences in the functional roles of peroxiredoxins (Prxs) and glutathione peroxidase (GPx) of Schizosaccharomyces pombe, we examined the peroxidase and molecular chaperone properties of the recombinant proteins. TPx (thioredoxin peroxidase) exhibited a capacity for peroxide reduction with the thioredoxin system. GPx also showed thioreoxin-dependent peroxidase activity rather than GPx activity. The peroxidase activity of BCP (bacterioferritin comigratory protein) was similar to that of TPx. However, peroxidase activity was not observed for PMP20 (peroxisomal membrane protein 20). TPx, PMP20, and GPx inhibited thermal aggregation of citrate synthase at 43(o)C, but BCP failed to inhibit the aggregation. The chaperone activities of PMP20 and GPx were weaker than that of TPx. The peroxidase and chaperone properties of TPx, BCP, and GPx of the fission yeast are similar to those of Saccharomyces cerevisiae. The fission yeast PMP20 without thioredoxin-dependent peroxidase activity may act as a molecular chaperone.

  16. Measurements of Myosin-II Motor Activity During Cytokinesis in Fission Yeast.

    PubMed

    Tang, Qing; Pollard, Luther W; Lord, Matthew

    2016-01-01

    Fission yeast myosin-II (Myo2p) represents the critical actin-based motor protein that drives actomyosin ring assembly and constriction during cytokinesis. We detail three different methods to measure Myo2p motor function. Actin-activated ATPases provide a readout of actomyosin ATPase motor activity in a bulk assay; actin filament motility assays reveal the speed and efficiency of myosin-driven actin filament gliding (when motors are anchored); myosin-bead motility assays reveal the speed and efficiency of myosin ensembles traveling along actin filaments (when actin is anchored). Collectively, these methods allow us to combine the standard in vivo approaches common to fission yeast with in vitro biochemical methods to learn more about the mechanistic action of myosin-II during cytokinesis.

  17. Cell polarity in fission yeast: a matter of confining, positioning, and switching growth zones.

    PubMed

    Huisman, Stephen M; Brunner, Damian

    2011-10-01

    The two key processes in growth polarisation are the generation of a confined region and the correct positioning of that region. Fission yeast has greatly contributed to the study of cell polarisation, particularly in the aspect of growth site positioning, which involves the interphase microtubule cytoskeleton. Here we review the mechanisms of growth polarity in vegetatively growing fission yeast cells. These seemingly simple cells show astonishingly complex growth polarity behaviour, including polarity switching and integrating multiple levels of control by the cell cycle machinery. We aim to extract and highlight the underlying concepts and discuss these in context of current understanding; showing how relevant proteins are networked to integrate the various machineries. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Centromeric heterochromatin assembly in fission yeast--balancing transcription, RNA interference and chromatin modification.

    PubMed

    Alper, Benjamin J; Lowe, Brandon R; Partridge, Janet F

    2012-07-01

    Distinct regions of the eukaryotic genome are packaged into different types of chromatin, with euchromatin representing gene rich, transcriptionally active regions and heterochromatin more condensed and gene poor. The assembly and maintenance of heterochromatin is important for many aspects of genome control, including silencing of gene transcription, suppression of recombination, and to ensure proper chromosome segregation. The precise mechanisms underlying heterochromatin establishment and maintenance are still unclear, but much progress has been made towards understanding this process during the last few years, particularly from studies performed in fission yeast. In this review, we hope to provide a conceptual model of centromeric heterochromatin in fission yeast that integrates our current understanding of the competing forces of transcription, replication, and RNA decay that influence its assembly and propagation.

  19. Boolean network model predicts knockout mutant phenotypes of fission yeast.

    PubMed

    Davidich, Maria I; Bornholdt, Stefan

    2013-01-01

    networks of switches) are extremely simple mathematical models of biochemical signaling networks. Under certain circumstances, Boolean networks, despite their simplicity, are capable of predicting dynamical activation patterns of gene regulatory networks in living cells. For example, the temporal sequence of cell cycle activation patterns in yeasts S. pombe and S. cerevisiae are faithfully reproduced by Boolean network models. An interesting question is whether this simple model class could also predict a more complex cellular phenomenology as, for example, the cell cycle dynamics under various knockout mutants instead of the wild type dynamics, only. Here we show that a Boolean network model for the cell cycle control network of yeast S. pombe correctly predicts viability of a large number of known mutants. So far this had been left to the more detailed differential equation models of the biochemical kinetics of the yeast cell cycle network and was commonly thought to be out of reach for models as simplistic as Boolean networks. The new results support our vision that Boolean networks may complement other mathematical models in systems biology to a larger extent than expected so far, and may fill a gap where simplicity of the model and a preference for an overall dynamical blueprint of cellular regulation, instead of biochemical details, are in the focus.

  20. Boolean Network Model Predicts Knockout Mutant Phenotypes of Fission Yeast

    PubMed Central

    Davidich, Maria I.; Bornholdt, Stefan

    2013-01-01

    Boolean networks (or: networks of switches) are extremely simple mathematical models of biochemical signaling networks. Under certain circumstances, Boolean networks, despite their simplicity, are capable of predicting dynamical activation patterns of gene regulatory networks in living cells. For example, the temporal sequence of cell cycle activation patterns in yeasts S. pombe and S. cerevisiae are faithfully reproduced by Boolean network models. An interesting question is whether this simple model class could also predict a more complex cellular phenomenology as, for example, the cell cycle dynamics under various knockout mutants instead of the wild type dynamics, only. Here we show that a Boolean network model for the cell cycle control network of yeast S. pombe correctly predicts viability of a large number of known mutants. So far this had been left to the more detailed differential equation models of the biochemical kinetics of the yeast cell cycle network and was commonly thought to be out of reach for models as simplistic as Boolean networks. The new results support our vision that Boolean networks may complement other mathematical models in systems biology to a larger extent than expected so far, and may fill a gap where simplicity of the model and a preference for an overall dynamical blueprint of cellular regulation, instead of biochemical details, are in the focus. PMID:24069138

  1. Vesicle-like biomechanics governs important aspects of nuclear geometry in fission yeast.

    PubMed

    Lim H W, Gerald; Huber, Greg; Torii, Yoshihiro; Hirata, Aiko; Miller, Jonathan; Sazer, Shelley

    2007-09-26

    It has long been known that during the closed mitosis of many unicellular eukaryotes, including the fission yeast (Schizosaccharomyces pombe), the nuclear envelope remains intact while the nucleus undergoes a remarkable sequence of shape transformations driven by elongation of an intranuclear mitotic spindle whose ends are capped by spindle pole bodies embedded in the nuclear envelope. However, the mechanical basis of these normal cell cycle transformations, and abnormal nuclear shapes caused by intranuclear elongation of microtubules lacking spindle pole bodies, remain unknown. Although there are models describing the shapes of lipid vesicles deformed by elongation of microtubule bundles, there are no models describing normal or abnormal shape changes in the nucleus. We describe here a novel biophysical model of interphase nuclear geometry in fission yeast that accounts for critical aspects of the mechanics of the fission yeast nucleus, including the biophysical properties of lipid bilayers, forces exerted on the nuclear envelope by elongating microtubules, and access to a lipid reservoir, essential for the large increase in nuclear surface area during the cell cycle. We present experimental confirmation of the novel and non-trivial geometries predicted by our model, which has no free parameters. We also use the model to provide insight into the mechanical basis of previously described defects in nuclear division, including abnormal nuclear shapes and loss of nuclear envelope integrity. The model predicts that (i) despite differences in structure and composition, fission yeast nuclei and vesicles with fluid lipid bilayers have common mechanical properties; (ii) the S. pombe nucleus is not lined with any structure with shear resistance, comparable to the nuclear lamina of higher eukaryotes. We validate the model and its predictions by analyzing wild type cells in which ned1 gene overexpression causes elongation of an intranuclear microtubule bundle that deforms the

  2. A fission yeast cell-based system for multidrug resistant HIV-1 proteases.

    PubMed

    Benko, Zsigmond; Liang, Dong; Li, Ge; Elder, Robert T; Sarkar, Anindya; Takayama, Jun; Ghosh, Arun K; Zhao, Richard Y

    2017-01-01

    HIV-1 protease (PR) is an essential enzyme for viral production. Thus, PR inhibitors (PIs) are the most effective class of anti-HIV drugs. However, the main challenge to the successful use of PI drugs in patient treatment is the emergence of multidrug resistant PRs (mdrPRs). This study aimed to develop a fission yeast cell-based system for rapid testing of new PIs that combat mdrPRs. Three mdrPRs were isolated from HIV-infected patients that carried seven (M7PR), ten (M10PR) and eleven (M11PR) PR gene mutations, respectively. They were cloned and expressed in fission yeast under an inducible promoter to allow the measurement of PR-specific proteolysis and drug resistance. The results showed that all three mdrPRs maintained their abilities to proteolyze HIV viral substrates (MA↓CA and p6) and to confer drug resistance. Production of these proteins in the fission yeast caused cell growth inhibition, oxidative stress and altered mitochondrial morphologies that led to cell death. Five investigational PIs were used to test the utility of the established yeast system with an FDA-approved PI drug Darunavir (DRV) as control. All six compounds suppressed the wildtype PR (wtPR) and the M7PR-mediated activities. However, none of them were able to suppress the M10PR or the M11PR. The three clinically isolated mdrPRs maintained their viral proteolytic activities and drug resistance in the fission yeast. Furthermore, those viral mdrPR activities were coupled with the induction of growth inhibition and cell death, which could be used to test the PI activities. Indeed, the five investigational PIs and DRV suppressed the wtPR in fission yeast as they did in mammalian cells. Significantly, two of the high level mdrPRs (M10PR and M11PR) were resistant to all of the existing PI drugs including DRV. This observation underscores the importance of continued searching for new PIs against mdrPRs.

  3. Mitophagy in yeast is independent of mitochondrial fission and requires the stress response gene WHI2.

    PubMed

    Mendl, Nadine; Occhipinti, Angelo; Müller, Matthias; Wild, Philipp; Dikic, Ivan; Reichert, Andreas S

    2011-04-15

    Dysfunctional mitochondria show a reduced capacity for fusion and, as mitochondrial fission is maintained, become spatially separated from the intact network. By that mechanism, dysfunctional mitochondria have been proposed to be targeted for selective degradation by mitophagy, thereby providing a quality control system for mitochondria. In yeast, conflicting results concerning the role of mitochondrial dynamics in mitophagy have been reported. Here, we investigate the effects on mitophagy of altering mitochondrial fission and fusion, using biochemical, as well as fluorescence-based, assays. Rapamycin-induced mitophagy was shown to depend upon the autophagy-related proteins Atg11, Atg20 and Atg24, confirming that a selective type of autophagy occurred. Both fragmentation of mitochondria and inhibition of oxidative phosphorylation were not sufficient to trigger mitophagy, and neither deletion of the fission factors Dnm1, Fis1, Mdv1 or Caf4 nor expression of dominant-negative variants of Dnm1 impaired mitophagy. The diminished mitophagy initially observed in a Δfis1 mutant was not due to the absence of Fis1 but rather due to a secondary mutation in WHI2, which encodes a factor reported to function in the general stress response and the Ras-protein kinase A (PKA) signaling pathway. We propose that, in yeast, mitochondrial fission is not a prerequisite for the selective degradation of mitochondria, and that mitophagy is linked to the general stress response and the Ras-PKA signaling pathway.

  4. Fission yeast cells undergo nuclear division in the absence of spindle microtubules.

    PubMed

    Castagnetti, Stefania; Oliferenko, Snezhana; Nurse, Paul

    2010-10-12

    Mitosis in eukaryotic cells employs spindle microtubules to drive accurate chromosome segregation at cell division. Cells lacking spindle microtubules arrest in mitosis due to a spindle checkpoint that delays mitotic progression until all chromosomes have achieved stable bipolar attachment to spindle microtubules. In fission yeast, mitosis occurs within an intact nuclear membrane with the mitotic spindle elongating between the spindle pole bodies. We show here that in fission yeast interference with mitotic spindle formation delays mitosis only briefly and cells proceed to an unusual nuclear division process we term nuclear fission, during which cells perform some chromosome segregation and efficiently enter S-phase of the next cell cycle. Nuclear fission is blocked if spindle pole body maturation or sister chromatid separation cannot take place or if actin polymerization is inhibited. We suggest that this process exhibits vestiges of a primitive nuclear division process independent of spindle microtubules, possibly reflecting an evolutionary intermediate state between bacterial and Archeal chromosome segregation where the nucleoid divides without a spindle and a microtubule spindle-based eukaryotic mitosis.

  5. Fission Yeast Cells Undergo Nuclear Division in the Absence of Spindle Microtubules

    PubMed Central

    Castagnetti, Stefania; Oliferenko, Snezhana; Nurse, Paul

    2010-01-01

    Mitosis in eukaryotic cells employs spindle microtubules to drive accurate chromosome segregation at cell division. Cells lacking spindle microtubules arrest in mitosis due to a spindle checkpoint that delays mitotic progression until all chromosomes have achieved stable bipolar attachment to spindle microtubules. In fission yeast, mitosis occurs within an intact nuclear membrane with the mitotic spindle elongating between the spindle pole bodies. We show here that in fission yeast interference with mitotic spindle formation delays mitosis only briefly and cells proceed to an unusual nuclear division process we term nuclear fission, during which cells perform some chromosome segregation and efficiently enter S-phase of the next cell cycle. Nuclear fission is blocked if spindle pole body maturation or sister chromatid separation cannot take place or if actin polymerization is inhibited. We suggest that this process exhibits vestiges of a primitive nuclear division process independent of spindle microtubules, possibly reflecting an evolutionary intermediate state between bacterial and Archeal chromosome segregation where the nucleoid divides without a spindle and a microtubule spindle-based eukaryotic mitosis. PMID:20967237

  6. The fission yeast cytokinetic contractile ring regulates septum shape and closure

    PubMed Central

    Thiyagarajan, Sathish; Munteanu, Emilia Laura; Arasada, Rajesh; Pollard, Thomas D.; O'Shaughnessy, Ben

    2015-01-01

    ABSTRACT During cytokinesis, fission yeast and other fungi and bacteria grow a septum that divides the cell in two. In fission yeast closure of the circular septum hole by the β-glucan synthases (Bgs) and other glucan synthases in the plasma membrane is tightly coupled to constriction of an actomyosin contractile ring attached to the membrane. It is unknown how septum growth is coordinated over scales of several microns to maintain septum circularity. Here, we documented the shapes of ingrowing septum edges by measuring the roughness of the edges, a measure of the deviation from circularity. The roughness was small, with spatial correlations indicative of spatially coordinated growth. We hypothesized that Bgs-mediated septum growth is mechanosensitive and coupled to contractile ring tension. A mathematical model showed that ring tension then generates almost circular septum edges by adjusting growth rates in a curvature-dependent fashion. The model reproduced experimental roughness statistics and showed that septum synthesis sets the mean closure rate. Our results suggest that the fission yeast cytokinetic ring tension does not set the constriction rate but regulates septum closure by suppressing roughness produced by inherently stochastic molecular growth processes. PMID:26240178

  7. Mechanisms of Intron Loss and Gain in the Fission Yeast Schizosaccharomyces

    PubMed Central

    Zhu, Tao; Niu, Deng-Ke

    2013-01-01

    The fission yeast, Schizosaccharomyces pombe, is an important model species with a low intron density. Previous studies showed extensive intron losses during its evolution. To test the models of intron loss and gain in fission yeasts, we conducted a comparative genomic analysis in four Schizosaccharomyces species. Both intronization and de-intronization were observed, although both were at a low frequency. A de-intronization event was caused by a degenerative mutation in the branch site. Four cases of imprecise intron losses were identified, indicating that genomic deletion is not a negligible mechanism of intron loss. Most intron losses were precise deletions of introns, and were significantly biased to the 3′ sides of genes. Adjacent introns tended to be lost simultaneously. These observations indicated that the main force shaping the exon-intron structures of fission yeasts was precise intron losses mediated by reverse transcriptase. We found two cases of intron gains caused by tandem genomic duplication, but failed to identify the mechanisms for the majority of the intron gain events observed. In addition, we found that intron-lost and intron-gained genes had certain similar features, such as similar Gene Ontology categories and expression levels. PMID:23613904

  8. Fission Yeast CSL Transcription Factors: Mapping Their Target Genes and Biological Roles

    PubMed Central

    Převorovský, Martin; Oravcová, Martina; Tvarůžková, Jarmila; Zach, Róbert; Folk, Petr; Půta, František; Bähler, Jürg

    2015-01-01

    Background Cbf11 and Cbf12, the fission yeast CSL transcription factors, have been implicated in the regulation of cell-cycle progression, but no specific roles have been described and their target genes have been only partially mapped. Methodology/Principal Findings Using a combination of transcriptome profiling under various conditions and genome-wide analysis of CSL-DNA interactions, we identify genes regulated directly and indirectly by CSL proteins in fission yeast. We show that the expression of stress-response genes and genes that are expressed periodically during the cell cycle is deregulated upon genetic manipulation of cbf11 and/or cbf12. Accordingly, the coordination of mitosis and cytokinesis is perturbed in cells with genetically manipulated CSL protein levels, together with other specific defects in cell-cycle progression. Cbf11 activity is nutrient-dependent and Δcbf11-associated defects are mitigated by inactivation of the protein kinase A (Pka1) and stress-activated MAP kinase (Sty1p38) pathways. Furthermore, Cbf11 directly regulates a set of lipid metabolism genes and Δcbf11 cells feature a stark decrease in the number of storage lipid droplets. Conclusions/Significance Our results provide a framework for a more detailed understanding of the role of CSL proteins in the regulation of cell-cycle progression in fission yeast. PMID:26366556

  9. The fission yeast meiotic checkpoint kinase Mek1 regulates nuclear localization of Cdc25 by phosphorylation.

    PubMed

    Pérez-Hidalgo, Livia; Moreno, Sergio; San-Segundo, Pedro A

    2008-12-01

    In eukaryotic cells, fidelity in transmission of genetic information during cell division is ensured by the action of cell cycle checkpoints. Checkpoints are surveillance mechanisms that arrest or delay cell cycle progression when critical cellular processes are defective or when the genome is damaged. During meiosis, the so-called meiotic recombination checkpoint blocks entry into meiosis I until recombination has been completed, thus avoiding aberrant chromosome segregation and the formation of aneuploid gametes. One of the key components of the meiotic recombination checkpoint is the meiosis-specific Mek1 kinase, which belongs to the family of Rad53/Cds1/Chk2 checkpoint kinases containing forkhead-associated domains. In fission yeast, several lines of evidence suggest that Mek1 targets the critical cell cycle regulator Cdc25 to delay meiotic cell cycle progression. Here, we investigate in more detail the molecular mechanism of action of the fission yeast Mek1 protein. We demonstrate that Mek1 acts independently of Cds1 to phosphorylate Cdc25, and this phosphorylation is required to trigger cell cycle arrest. Using ectopic overexpression of mek1(+) as a tool to induce in vivo activation of Mek1, we find that Mek1 promotes cytoplasmic accumulation of Cdc25 and results in prolonged phosphorylation of Cdc2 at tyrosine 15. We propose that at least one of the mechanisms contributing to the cell cycle delay when the meiotic recombination checkpoint is activated in fission yeast is the nuclear exclusion of the Cdc25 phosphatase by Mek1-dependent phosphorylation.

  10. Fission yeast mitochondria are distributed by dynamic microtubules in a motor-independent manner.

    PubMed

    Li, Tianpeng; Zheng, Fan; Cheung, Martin; Wang, Fengsong; Fu, Chuanhai

    2015-06-05

    The cytoskeleton plays a critical role in regulating mitochondria distribution. Similar to axonal mitochondria, the fission yeast mitochondria are distributed by the microtubule cytoskeleton, but this is regulated by a motor-independent mechanism depending on the microtubule associated protein mmb1p as the absence of mmb1p causes mitochondria aggregation. In this study, using a series of chimeric proteins to control the subcellular localization and motility of mitochondria, we show that a chimeric molecule containing a microtubule binding domain and the mitochondria outer membrane protein tom22p can restore the normal interconnected mitochondria network in mmb1-deletion (mmb1∆) cells. In contrast, increasing the motility of mitochondria by using a chimeric molecule containing a kinesin motor domain and tom22p cannot rescue mitochondria aggregation defects in mmb1∆ cells. Intriguingly a chimeric molecule carrying an actin binding domain and tom22p results in mitochondria associated with actin filaments at the actomyosin ring during mitosis, leading to cytokinesis defects. These findings suggest that the passive motor-independent microtubule-based mechanism is the major contributor to mitochondria distribution in wild type fission yeast cells. Hence, we establish that attachment to microtubules, but not kinesin-dependent movement and the actin cytoskeleton, is required and crucial for proper mitochondria distribution in fission yeast.

  11. How do fission yeast cells grow and connect growth to the mitotic cycle?

    PubMed

    Sveiczer, Ákos; Horváth, Anna

    2017-05-01

    To maintain size homeostasis in a unicellular culture, cells should coordinate growth to the division cycle. This is achieved via size control mechanisms (also known as size checkpoints), i.e. some events during the mitotic cycle supervene only if the cell has reached a critical size. Rod-shaped cells like those of fission yeast are ideal model organisms to study these checkpoints via time-lapse microphotography. By applying this method, once we can analyse the growth process between two consecutive divisions at a single (or even at an 'average') cellular level, moreover, we can also position the size checkpoint(s) at the population level. Finally, any of these controls can be abolished in appropriate cell cycle mutants, either in steady-state or in induction synchronised cultures. In the latter case, we produce abnormally oversized cells, and microscopic experiments with them clearly show the existence of a critical size above which the size checkpoint ceases (becomes cryptic). In this review, we delineate the development of our knowledge both on the growth mode of fission yeast and on the operating size control(s) during its mitotic cycle. We finish these historical stories with our recent findings, arguing that three different size checkpoints exist in the fission yeast cell cycle, namely in late G1, in mid G2 and in late G2, which has been concluded by analysing these controls in several cell cycle mutants.

  12. Fission yeast mitochondria are distributed by dynamic microtubules in a motor-independent manner

    PubMed Central

    Li, Tianpeng; Zheng, Fan; Cheung, Martin; Wang, Fengsong; Fu, Chuanhai

    2015-01-01

    The cytoskeleton plays a critical role in regulating mitochondria distribution. Similar to axonal mitochondria, the fission yeast mitochondria are distributed by the microtubule cytoskeleton, but this is regulated by a motor-independent mechanism depending on the microtubule associated protein mmb1p as the absence of mmb1p causes mitochondria aggregation. In this study, using a series of chimeric proteins to control the subcellular localization and motility of mitochondria, we show that a chimeric molecule containing a microtubule binding domain and the mitochondria outer membrane protein tom22p can restore the normal interconnected mitochondria network in mmb1-deletion (mmb1∆) cells. In contrast, increasing the motility of mitochondria by using a chimeric molecule containing a kinesin motor domain and tom22p cannot rescue mitochondria aggregation defects in mmb1∆ cells. Intriguingly a chimeric molecule carrying an actin binding domain and tom22p results in mitochondria associated with actin filaments at the actomyosin ring during mitosis, leading to cytokinesis defects. These findings suggest that the passive motor-independent microtubule-based mechanism is the major contributor to mitochondria distribution in wild type fission yeast cells. Hence, we establish that attachment to microtubules, but not kinesin-dependent movement and the actin cytoskeleton, is required and crucial for proper mitochondria distribution in fission yeast. PMID:26046468

  13. Multiple Orientation-Dependent, Synergistically Interacting, Similar Domains in the Ribosomal DNA Replication Origin of the Fission Yeast, Schizosaccharomyces pombe

    PubMed Central

    Kim, Soo-Mi; Huberman, Joel A.

    1998-01-01

    Previous investigations have shown that the fission yeast, Schizosaccharomyces pombe, has DNA replication origins (500 to 1500 bp) that are larger than those in the budding yeast, Saccharomyces cerevisiae (100 to 150 bp). Deletion and linker substitution analyses of two fission yeast origins revealed that they contain multiple important regions with AT-rich asymmetric (abundant A residues in one strand and T residues in the complementary strand) sequence motifs. In this work we present the characterization of a third fission yeast replication origin, ars3001, which is relatively small (∼570 bp) and responsible for replication of ribosomal DNA. Like previously studied fission yeast origins, ars3001 contains multiple important regions. The three most important of these regions resemble each other in several ways: each region is essential for origin function and is at least partially orientation dependent, each region contains similar clusters of A+T-rich asymmetric sequences, and the regions can partially substitute for each other. These observations suggest that ars3001 function requires synergistic interactions between domains binding similar proteins. It is likely that this requirement extends to other fission yeast origins, explaining why such origins are larger than those of budding yeast. PMID:9819416

  14. Trk1 and Trk2 Define the Major K+ Transport System in Fission Yeast

    PubMed Central

    Calero, Fernando; Gómez, Néstor; Ariño, Joaquín; Ramos, José

    2000-01-01

    The trk1+ gene has been proposed as a component of the K+ influx system in the fission yeast Schizosaccharomyces pombe. Previous work from our laboratories revealed that trk1 mutants do not show significantly altered content or influx of K+, although they are more sensitive to Na+. Genome database searches revealed that S. pombe encodes a putative gene (designated here trk2+) that shows significant identity to trk1+. We have analyzed the characteristics of potassium influx in S. pombe by using trk1 trk2 mutants. Unlike budding yeast, fission yeast displays a biphasic transport kinetics. trk2 mutants do not show altered K+ transport and exhibit only a slightly reduced Na+ tolerance. However, trk1 trk2 double mutants fail to grow at low K+ concentrations and show a dramatic decrease in Rb+ influx, as a result of loss of the high-affinity transport component. Furthermore, trk1 trk2 cells are very sensitive to Na+, as would be expected for a strain showing defective potassium transport. When trk1 trk2 cells are maintained in K+-free medium, the potassium content remains higher than that of the wild type or trk single mutants. In addition, the trk1 trk2 strain displays increased sensitivity to hygromycin B. These results are consistent with a hyperpolarized state of the plasma membrane. An additional phenotype of cells lacking both Trk components is a failure to grow at acidic pH. In conclusion, the Trk1 and Trk2 proteins define the major K+ transport system in fission yeast, and in contrast to what is known for budding yeast, the presence of any of these two proteins is sufficient to allow growth at normal potassium levels. PMID:10629185

  15. Fission yeast Lem2 and Man1 perform fundamental functions of the animal cell nuclear lamina.

    PubMed

    Gonzalez, Yanira; Saito, Akira; Sazer, Shelley

    2012-01-01

    In animal cells the nuclear lamina, which consists of lamins and lamin-associated proteins, serves several functions: it provides a structural scaffold for the nuclear envelope and tethers proteins and heterochromatin to the nuclear periphery. In yeast, proteins and large heterochromatic domains including telomeres are also peripherally localized, but there is no evidence that yeast have lamins or a fibrous nuclear envelope scaffold. Nonetheless, we found that the Lem2 and Man1 proteins of the fission yeast Schizosaccharomyces pombe, evolutionarily distant relatives of the Lap2/Emerin/Man1 (LEM) sub-family of animal cell lamin-associated proteins, perform fundamental functions of the animal cell lamina. These integral inner nuclear membrane localized proteins, with nuclear localized DNA binding Helix-Extension-Helix (HEH) domains, impact nuclear envelope structure and integrity, are essential for the enrichment of telomeres at the nuclear periphery and by means of their HEH domains anchor chromatin, most likely transcriptionally repressed heterochromatin, to the nuclear periphery. These data indicate that the core functions of the nuclear lamina are conserved between fungi and animal cells and can be performed in fission yeast, without lamins or other intermediate filament proteins.

  16. Fission yeast Lem2 and Man1 perform fundamental functions of the animal cell nuclear lamina

    PubMed Central

    Gonzalez, Yanira; Saito, Akira; Sazer, Shelley

    2012-01-01

    In animal cells the nuclear lamina, which consists of lamins and lamin-associated proteins, serves several functions: it provides a structural scaffold for the nuclear envelope and tethers proteins and heterochromatin to the nuclear periphery. In yeast, proteins and large heterochromatic domains including telomeres are also peripherally localized, but there is no evidence that yeast have lamins or a fibrous nuclear envelope scaffold. Nonetheless, we found that the Lem2 and Man1 proteins of the fission yeast Schizosaccharomyces pombe, evolutionarily distant relatives of the Lap2/Emerin/Man1 (LEM) sub-family of animal cell lamin-associated proteins, perform fundamental functions of the animal cell lamina. These integral inner nuclear membrane localized proteins, with nuclear localized DNA binding Helix-Extension-Helix (HEH) domains, impact nuclear envelope structure and integrity, are essential for the enrichment of telomeres at the nuclear periphery and by means of their HEH domains anchor chromatin, most likely transcriptionally repressed heterochromatin, to the nuclear periphery. These data indicate that the core functions of the nuclear lamina are conserved between fungi and animal cells and can be performed in fission yeast, without lamins or other intermediate filament proteins. PMID:22540024

  17. Fission Yeast Scm3: A CENP-A Receptor Required for Integrity of Subkinetochore Chromatin

    PubMed Central

    Pidoux, Alison L.; Choi, Eun Shik; Abbott, Johanna K.R.; Liu, Xingkun; Kagansky, Alexander; Castillo, Araceli G.; Hamilton, Georgina L.; Richardson, William; Rappsilber, Juri; He, Xiangwei; Allshire, Robin C.

    2009-01-01

    Summary The mechanisms ensuring specific incorporation of CENP-A at centromeres are poorly understood. Mis16 and Mis18 are required for CENP-A localization at centromeres and form a complex that is conserved from fission yeast to human. Fission yeast sim1 mutants that alleviate kinetochore domain silencing are defective in Scm3Sp, the ortholog of budding yeast Scm3Sc. Scm3Sp depends on Mis16/18 for its centromere localization and like them is recruited to centromeres in late anaphase. Importantly, Scm3Sp coaffinity purifies with CENP-ACnp1 and associates with CENP-ACnp1 in vitro, yet localizes independently of intact CENP-ACnp1 chromatin and is differentially released from chromatin. While Scm3Sc has been proposed to form a unique hexameric nucleosome with CENP-ACse4 and histone H4 at budding yeast point centromeres, we favor a model in which Scm3Sp acts as a CENP-ACnp1 receptor/assembly factor, cooperating with Mis16 and Mis18 to receive CENP-ACnp1 from the Sim3 escort and mediate assembly of CENP-ACnp1 into subkinetochore chromatin. PMID:19217404

  18. Definition of transcriptional pause elements in fission yeast.

    PubMed

    Aranda, A; Proudfoot, N J

    1999-02-01

    Downstream elements (DSEs) with transcriptional pausing activity play an important role in transcription termination of RNA polymerase II. We have defined two such DSEs in Schizosaccharomyces pombe, one for the ura4 gene and a new one in the 3'-end region of the nmt2 gene. Although these DSEs do not have sequence homology, both are orientation specific and are composed of multiple and redundant sequence elements that work together to achieve full pausing activity. Previous studies on the nmt1 and nmt2 genes revealed that transcription extends several kilobases past the genes' poly(A) sites. We show that the insertion of either DSE immediately downstream of the nmt1 poly(A) site induces more immediate termination. nmt2 termination efficiency can be increased by moving the DSE closer to the poly(A) site. These results suggest that DSEs may be a common feature in yeast genes.

  19. Acetyl-L-carnitine protects yeast cells from apoptosis and aging and inhibits mitochondrial fission.

    PubMed

    Palermo, Vanessa; Falcone, Claudio; Calvani, Menotti; Mazzoni, Cristina

    2010-08-01

    In this work we report that carnitines, in particular acetyl-l-carnitine (ALC), are able to prolong the chronological aging of yeast cells during the stationary phase. Lifespan extension is significantly reduced in yca1 mutants as well in rho(0) strains, suggesting that the protective effects pass through the Yca1 caspase and mitochondrial functions. ALC can also prevent apoptosis in pro-apoptotic mutants, pointing to the importance of mitochondrial functions in regulating yeast apoptosis and aging. We also demonstrate that ALC attenuates mitochondrial fission in aged yeast cells, indicating a correlation between its protective effect and this process. Our findings suggest that ALC, used as therapeutic for stroke, myocardial infarction and neurodegenerative diseases, besides the well-known anti-oxidant effects, might exert protective effects also acting on mitochondrial morphology.

  20. AMPK phosphorylation by Ssp1 is required for proper sexual differentiation in fission yeast.

    PubMed

    Valbuena, Noelia; Moreno, Sergio

    2012-06-01

    The AMP-activated protein kinase (AMPK) is a central regulator of cellular energy homeostasis, which, in response to a fall in intracellular ATP levels, activates energy-producing pathways and inhibits energy-consuming processes. Here, we report that fission yeast cells lacking AMPK activity are unable to advance entry into mitosis in response to nitrogen starvation and cannot undergo proper G1 arrest and cell differentiation. We also show that AMPK is important in the promotion of the nuclear localization and accumulation of the Ste11 transcription factor. As in animal cells, the fission yeast CaMKK ortholog (Ssp1) phosphorylates and activates the catalytic subunit of AMPK (Ssp2) in its activation loop (Thr189) when cells are starved for nitrogen or glucose. Interestingly, we found that the phosphorylation of Ssp2 on Thr189 is required for nuclear accumulation of AMPK. Our data demonstrate the existence of a signal transduction pathway activated by nutrient starvation that triggers Ssp2 phosphorylation and AMPK redistribution from the cytoplasm to the nucleus. This pathway is important to advance fission cells into mitosis and to establish a timely pre-Start G1 cell cycle arrest for mating.

  1. Imp2, the PSTPIP homolog in fission yeast, affects sensitivity to the immunosuppressant FK506 and membrane trafficking in fission yeast

    SciTech Connect

    Kita, Ayako; Higa, Mari; Doi, Akira; Satoh, Ryosuke; Sugiura, Reiko

    2015-02-13

    Cytokinesis is a highly ordered process that divides one cell into two cells, which is functionally linked to the dynamic remodeling of the plasma membrane coordinately with various events such as membrane trafficking. Calcineurin is a highly conserved serine/threonine protein phosphatase, which regulates multiple biological functions, such as membrane trafficking and cytokinesis. Here, we isolated imp2-c3, a mutant allele of the imp2{sup +} gene, encoding a homolog of the mouse PSTPIP1 (proline-serine-threonine phosphatase interacting protein 1), using a genetic screen for mutations that are synthetically lethal with calcineurin deletion in fission yeast. The imp2-c3 mutants showed a defect in cytokinesis with multi-septated phenotypes, which was further enhanced upon treatment with the calcineurin inhibitor FK506. Notably, electron micrographs revealed that the imp2-c3 mutant cells accumulated aberrant multi-lamella Golgi structures and putative post-Golgi secretory vesicles, and exhibited fragmented vacuoles in addition to thickened septa. Consistently, imp2-c3 mutants showed a reduced secretion of acid phosphatase and defects in vacuole fusion. The imp2-c3 mutant cells exhibited a weakened cell wall, similar to the membrane trafficking mutants identified in the same genetic screen such as ypt3-i5. These findings implicate the PSTPIP1 homolog Imp2 in Golgi/vacuole function, thereby affecting various cellular processes, including cytokinesis and cell integrity. - Highlights: • We isolated imp2-c3, in a synthetic lethal screen with calcineurin in fission yeast. • The imp2{sup +} gene encodes a component of the actin contractile ring similar to Cdc15. • The imp2-c3 mutants showed defects in cytokinesis, which were exacerbated by FK506. • The imp2-c3 mutants were defective in membrane trafficking and cell wall integrity. • Our study revealed a novel role for Imp2 in the Golgi/vacuolar membrane trafficking.

  2. Phosphorylation of Pex11p does not regulate peroxisomal fission in the yeast Hansenula polymorpha.

    PubMed

    Thomas, Ann S; Krikken, Arjen M; van der Klei, Ida J; Williams, Chris P

    2015-06-23

    Pex11p plays a crucial role in peroxisomal fission. Studies in Saccharomyces cerevisiae and Pichia pastoris indicated that Pex11p is activated by phosphorylation, which results in enhanced peroxisome proliferation. In S. cerevisiae but not in P. pastoris, Pex11p phosphorylation was shown to regulate the protein's trafficking to peroxisomes. However, phosphorylation of PpPex11p was proposed to influence its interaction with Fis1p, another component of the organellar fission machinery. Here, we have examined the role of Pex11p phosphorylation in the yeast Hansenula polymorpha. Employing mass spectrometry, we demonstrate that HpPex11p is also phosphorylated on a Serine residue present at a similar position to that of ScPex11p and PpPex11p. Furthermore, through the use of mutants designed to mimic both phosphorylated and unphosphorylated forms of HpPex11p, we have investigated the role of this post-translational modification. Our data demonstrate that mutations to the phosphorylation site do not disturb the function of Pex11p in peroxisomal fission, nor do they alter the localization of Pex11p. Also, no effect on peroxisome inheritance was observed. Taken together, these data lead us to conclude that peroxisomal fission in H. polymorpha is not modulated by phosphorylation of Pex11p.

  3. Stress-Induced Nuclear to Cytoplasmic Translocation of Cyclin C Promotes Mitochondrial Fission in Yeast

    PubMed Central

    Cooper, Katrina F.; Khakhina, Svetlana; Kim, Stephen K.; Strich, Randy

    2014-01-01

    SUMMARY Mitochondrial morphology is maintained by the opposing activities of dynamin-based fission and fusion machines. In response to stress, this balance is dramatically shifted toward fission. This study reveals that the yeast transcriptional repressor cyclin C is both necessary and sufficient for stress-induced hyper-fission. In response to oxidative stress, cyclin C translocates from the nucleus to the cytoplasm where it is destroyed. Prior to its destruction, cyclin C both genetically and physically interacts with Mdv1p, an adaptor that links the GTPase Dnm1p to the mitochondrial receptor Fis1p. Cyclin C is required for stress-induced Mdv1p mitochondrial recruitment and the efficient formation of functional Dnm1p filaments. Finally, co-immunoprecipitation studies and fluorescence microscopy revealed an elevated association between Mdv1p and Dnm1p in stressed cells that is dependent on cyclin C. This study provides a mechanism by which stress-induced gene induction and mitochondrial fission are coordinated through translocation of cyclin C. PMID:24439911

  4. DNA replication and damage checkpoints and meiotic cell cycle controls in the fission and budding yeasts.

    PubMed Central

    Murakami, H; Nurse, P

    2000-01-01

    The cell cycle checkpoint mechanisms ensure the order of cell cycle events to preserve genomic integrity. Among these, the DNA-replication and DNA-damage checkpoints prevent chromosome segregation when DNA replication is inhibited or DNA is damaged. Recent studies have identified an outline of the regulatory networks for both of these controls, which apparently operate in all eukaryotes. In addition, it appears that these checkpoints have two arrest points, one is just before entry into mitosis and the other is prior to chromosome separation. The former point requires the central cell-cycle regulator Cdc2 kinase, whereas the latter involves several key regulators and substrates of the ubiquitin ligase called the anaphase promoting complex. Linkages between these cell-cycle regulators and several key checkpoint proteins are beginning to emerge. Recent findings on post-translational modifications and protein-protein interactions of the checkpoint proteins provide new insights into the checkpoint responses, although the functional significance of these biochemical properties often remains unclear. We have reviewed the molecular mechanisms acting at the DNA-replication and DNA-damage checkpoints in the fission yeast Schizosaccharomyces pombe, and the modifications of these controls during the meiotic cell cycle. We have made comparisons with the controls in fission yeast and other organisms, mainly the distantly related budding yeast. PMID:10861204

  5. The selective elimination of messenger RNA underlies the mitosis-meiosis switch in fission yeast.

    PubMed

    Yamamoto, Masayuki

    2010-01-01

    The cellular programs for meiosis and mitosis must be strictly distinguished but the mechanisms controlling the entry to meiosis remain largely elusive in higher organisms. In contrast, recent analyses in yeast have shed new light on the mechanisms underlying the mitosis-meiosis switch. In this review, the current understanding of these mechanisms in the fission yeast Schizosaccharomyces pombe is discussed. Meiosis-inducing signals in this microbe emanating from environmental conditions including the nutrient status converge on the activity of an RRM-type RNA-binding protein, Mei2. This protein plays pivotal roles in both the induction and progression of meiosis and has now been found to govern the meiotic program in a quite unexpected manner. Fission yeast contains an RNA degradation system that selectively eliminates meiosis-specific mRNAs during the mitotic cell cycle. Mmi1, a novel RNA-binding protein of the YTH-family, is essential for this process. Mei2 tethers Mmi1 and thereby stabilizes the transcripts necessary for the progression of meiosis.

  6. Genetic approaches to aging in budding and fission yeasts: new connections and new opportunities.

    PubMed

    Chen, Bo-Ruei; Runge, Kurt W

    2012-01-01

    Yeasts are powerful model systems to examine the evolutionarily conserved aspects of eukaryotic aging because they maintain many of the same core cellular signaling pathways and essential organelles as human cells. We constructed a strain of the budding yeast Saccharomyces cerevisiae that could monitor the distribution of proteins involved in heterochromatic silencing and aging, and isolated mutants that alter this distribution. The largest class of such mutants cause defects in mitochondrial function, and appear to cause changes in nuclear silencing separate from the well-known Rtg2p-dependent pathway that alters nuclear transcription in response to the loss of the mitochondrial genome. Mutants that inactivate the ATP2 gene, which encodes the ATPase subunit of the mitochondrial F(1)F(0)-ATPase, were isolated twice in our screen and identify a lifespan extending pathway in a gene that is conserved in both prokaryotes and eukaryotes. The budding yeast S. cerevisiae S. cerevisiae has been used with great success to identify other lifespan-extending pathways in screens using surrogate phenotypes such as stress resistance or silencing to identify random mutants, or in high throughput screens that utilize the deletion strain set resource. However, the direct selection of long-lived mutants from a pool of random mutants is more challenging. We have established a new chronological aging assay for the evolutionarily distant fission yeast Schizosaccharomyces pombe that recapitulates aspects of aging conserved in all eukaryotes. We have constructed a novel S. pombe S. pombe DNA insertion mutant bank, and used it to show that we can directly select for a long-lived mutant. The use of both the budding and fission yeast systems should continue to facilitate the identification and validation of lifespan extending pathways that are conserved in humans.

  7. Bulk Segregant Analysis Reveals the Genetic Basis of a Natural Trait Variation in Fission Yeast

    PubMed Central

    Hu, Wen; Suo, Fang; Du, Li-Lin

    2015-01-01

    Although the fission yeast Schizosaccharomyces pombe is a well-established model organism, studies of natural trait variations in this species remain limited. To assess the feasibility of segregant-pool-based mapping of phenotype-causing genes in natural strains of fission yeast, we investigated the cause of a maltose utilization defect (Mal-) of the S. pombe strain CBS5557 (originally known as Schizosaccharomyces malidevorans). Analyzing the genome sequence of CBS5557 revealed 955 nonconservative missense substitutions, and 61 potential loss-of-function variants including 47 frameshift indels, 13 early stop codons, and 1 splice site mutation. As a side benefit, our analysis confirmed 146 sequence errors in the reference genome and improved annotations of 27 genes. We applied bulk segregant analysis to map the causal locus of the Mal- phenotype. Through sequencing the segregant pools derived from a cross between CBS5557 and the laboratory strain, we located the locus to within a 2.23-Mb chromosome I inversion found in most S. pombe isolates including CBS5557. To map genes within the inversion region that occupies 18% of the genome, we created a laboratory strain containing the same inversion. Analyzing segregants from a cross between CBS5557 and the inversion-containing laboratory strain narrowed down the locus to a 200-kb interval and led us to identify agl1, which suffers a 5-bp deletion in CBS5557, as the causal gene. Interestingly, loss of agl1 through a 34-kb deletion underlies the Mal- phenotype of another S. pombe strain CGMCC2.1628. This work adapts and validates the bulk segregant analysis method for uncovering trait-gene relationship in natural fission yeast strains. PMID:26615217

  8. The fission yeast MTREC and EJC orthologs ensure the maturation of meiotic transcripts during meiosis

    PubMed Central

    Marayati, Bahjat Fadi; Hoskins, Victoria; Boger, Robert W.; Tucker, James F.; Fishman, Emily S.; Bray, Andrew S.; Zhang, Ke

    2016-01-01

    Meiosis is a highly regulated process by which genetic information is transmitted through sexual reproduction. It encompasses unique mechanisms that do not occur in vegetative cells, producing a distinct, well-regulated meiotic transcriptome. During vegetative growth, many meiotic genes are constitutively transcribed, but most of the resulting mRNAs are rapidly eliminated by the Mmi1-MTREC (Mtl1-Red1 core) complex. While Mmi1-MTREC targets premature meiotic RNAs for degradation by the nuclear 3′–5′ exoribonuclease exosome during mitotic growth, its role in meiotic gene expression during meiosis is not known. Here, we report that Red5, an essential MTREC component, interacts with pFal1, an ortholog of eukaryotic translation initiation factor eIF4aIII in the fission yeast Schizosaccharomyces pombe. In mammals, together with MAGO (Mnh1), Rnps1, and Y14, elF4AIII (pFal1) forms the core of the exon junction complex (EJC), which is essential for transcriptional surveillance and localization of mature mRNAs. In fission yeast, two EJC orthologs, pFal1 and Mnh1, are functionally connected with MTREC, specifically in the process of meiotic gene expression during meiosis. Although pFal1 interacts with Mnh1, Y14, and Rnps1, its association with Mnh1 is not disrupted upon loss of Y14 or Rnps1. Mutations of Red1, Red5, pFal1, or Mnh1 produce severe meiotic defects; the abundance of meiotic transcripts during meiosis decreases; and mRNA maturation processes such as splicing are impaired. Since studying meiosis in mammalian germline cells is difficult, our findings in fission yeast may help to define the general mechanisms involved in accurate meiotic gene expression in higher eukaryotes. PMID:27365210

  9. The fission yeast MTREC and EJC orthologs ensure the maturation of meiotic transcripts during meiosis.

    PubMed

    Marayati, Bahjat Fadi; Hoskins, Victoria; Boger, Robert W; Tucker, James F; Fishman, Emily S; Bray, Andrew S; Zhang, Ke

    2016-09-01

    Meiosis is a highly regulated process by which genetic information is transmitted through sexual reproduction. It encompasses unique mechanisms that do not occur in vegetative cells, producing a distinct, well-regulated meiotic transcriptome. During vegetative growth, many meiotic genes are constitutively transcribed, but most of the resulting mRNAs are rapidly eliminated by the Mmi1-MTREC (Mtl1-Red1 core) complex. While Mmi1-MTREC targets premature meiotic RNAs for degradation by the nuclear 3'-5' exoribonuclease exosome during mitotic growth, its role in meiotic gene expression during meiosis is not known. Here, we report that Red5, an essential MTREC component, interacts with pFal1, an ortholog of eukaryotic translation initiation factor eIF4aIII in the fission yeast Schizosaccharomyces pombe In mammals, together with MAGO (Mnh1), Rnps1, and Y14, elF4AIII (pFal1) forms the core of the exon junction complex (EJC), which is essential for transcriptional surveillance and localization of mature mRNAs. In fission yeast, two EJC orthologs, pFal1 and Mnh1, are functionally connected with MTREC, specifically in the process of meiotic gene expression during meiosis. Although pFal1 interacts with Mnh1, Y14, and Rnps1, its association with Mnh1 is not disrupted upon loss of Y14 or Rnps1. Mutations of Red1, Red5, pFal1, or Mnh1 produce severe meiotic defects; the abundance of meiotic transcripts during meiosis decreases; and mRNA maturation processes such as splicing are impaired. Since studying meiosis in mammalian germline cells is difficult, our findings in fission yeast may help to define the general mechanisms involved in accurate meiotic gene expression in higher eukaryotes.

  10. Nile red fluorescence screening facilitating neutral lipid phenotype determination in budding yeast, Saccharomyces cerevisiae, and the fission yeast Schizosaccharomyces pombe.

    PubMed

    Rostron, Kerry A; Rolph, Carole E; Lawrence, Clare L

    2015-07-01

    Investigation of yeast neutral lipid accumulation is important for biotechnology and also for modelling aberrant lipid metabolism in human disease. The Nile red (NR) method has been extensively utilised to determine lipid phenotypes of yeast cells via microscopic means. NR assays have been used to differentiate lipid accumulation and relative amounts of lipid in oleaginous species but have not been thoroughly validated for phenotype determination arising from genetic modification. A modified NR assay, first described by Sitepu et al. (J Microbiol Methods 91:321-328, 2012), was able to detect neutral lipid changes in Saccharomyces cerevisiae deletion mutants with sensitivity similar to more advanced methodology. We have also be able to, for the first time, successfully apply the NR assay to the well characterised fission yeast Schizosaccharomyces pombe, an increasingly important organism in biotechnology. The described NR fluorescence assay is suitable for increased throughput and rapid screening of genetically modified strains in both the biotechnology industry and for modelling ectopic lipid production for a variety of human diseases. This ultimately negates the need for labour intensive and time consuming lipid analyses of samples that may not yield a desirable lipid phenotype, whilst genetic modifications impacting significantly on the cellular lipid phenotype can be further promoted for more in depth analyses.

  11. Novel structure of the N terminus in yeast Fis1 correlates with a specialized function in mitochondrial fission.

    PubMed

    Suzuki, Motoshi; Neutzner, Albert; Tjandra, Nico; Youle, Richard J

    2005-06-03

    Mitochondrial fission is facilitated by a multiprotein complex assembled at the division site. The required components of the fission machinery in Saccharomyces cerevisiae include Dnm1, Fis1, and Mdv1. In the present study, we determined the protein structure of yeast Fis1 using NMR spectroscopy. Although the six alpha-helices, as well as their folding, in the yeast Fis1 structure are similar to those of the tetratricopeptide repeat (TPR) domains of the human Fis1 structure, the two structures differ in their N termini. The N-terminal tail of human Fis1 is flexible and unstructured, whereas a major segment of the longer N terminus of yeast Fis1 is fixed to the concave face formed by the six alpha-helices in the TPR domains. To investigate the role of the fixed N terminus, exogenous Fis1 was expressed in yeast lacking the endogenous protein. Expression of yeast Fis1 protein rescued mitochondrial fission in delta fis1 yeast only when the N-terminal TPR binding segment was left intact. The presence of this segment is also correlated to the recruitment of Mdv1 to mitochondria. The conformation of the N-terminal segment embedded in the TPR pocket indicates an intra-molecular regulation of Fis1 bioactivity. Although the TPR-like helix bundle of Fis1 mediates the interaction with Dnm1 and Mdv1, the N terminus of Fis1 is a prerequisite to recruit Mdv1 to facilitate mitochondrial fission.

  12. Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Rappaz, Benjamin; Cano, Elena; Colomb, Tristan; Kühn, Jonas; Depeursinge, Christian; Simanis, Viesturs; Magistretti, Pierre J.; Marquet, Pierre

    2009-05-01

    Digital holography microscopy (DHM) is an optical technique which provides phase images yielding quantitative information about cell structure and cellular dynamics. Furthermore, the quantitative phase images allow the derivation of other parameters, including dry mass production, density, and spatial distribution. We have applied DHM to study the dry mass production rate and the dry mass surface density in wild-type and mutant fission yeast cells. Our study demonstrates the applicability of DHM as a tool for label-free quantitative analysis of the cell cycle and opens the possibility for its use in high-throughput screening.

  13. Crystal Structures of the Adenylate Sensor from Fission Yeast AMP-Activated Protein Kinase

    SciTech Connect

    Townley,R.; Shapiro, L.

    2007-01-01

    The 5'-AMP (adenosine monophosphate)-activated protein kinase (AMPK) coordinates metabolic function with energy availability by responding to changes in intracellular adenosine triphosphate (ATP) and AMP levels. Here we report crystal structures at 2.6 and 2.9 Angstrom resolution for ATP- and AMP-bound forms of a core {alpha}{beta}{gamma} adenylate-binding domain from the fission yeast AMPK homologue. ATP and AMP bind competitively to a single site in the {gamma} subunit, with their respective phosphate groups positioned near function-impairing mutants. Surprisingly, ATP binds without counter ions, amplifying its electrostatic effects on a critical regulatory region where all three subunits converge.

  14. Uncleavable Nup98-Nup96 is functional in the fission yeast Schizosaccharomyces pombe.

    PubMed

    Asakawa, Haruhiko; Mori, Chie; Ohtsuki, Chizuru; Iwamoto, Masaaki; Hiraoka, Yasushi; Haraguchi, Tokuko

    2015-01-01

    Essential nucleoporins Nup98 and Nup96 are coded by a single open reading frame, and produced by autopeptidase cleavage. The autocleavage site of Nup98-Nup96 is highly conserved in a wide range of organisms. To understand the importance of autocleavage, we examined a mutant that produces the Nup98-Nup96 joint molecule as a sole protein product of the nup189 (+) gene in the fission yeast Schizosaccharomyces pombe. Cells expressing only the joint molecule were found to be viable. This result indicates that autocleavage of Nup98-Nup96 is dispensable for cell growth, at least under normal culture conditions in S. pombe.

  15. Global control of cell growth in fission yeast and its coordination with the cell cycle.

    PubMed

    Navarro, Francisco J; Weston, Louise; Nurse, Paul

    2012-12-01

    Cell growth is a fundamental process for every cell but its pleiotropic complexity makes it difficult to comprehend. Global aspects of cellular growth, like the overall determinants of growth rate are not well understood. Here we examine the cell growth pattern of the fission yeast Schizosaccharomyces pombe during the mitotic and meiotic cell cycles. We also explore recent findings illuminating aspects of cell size homeostasis and cell growth regulation, and propose that there are global controls over growth acting at the level of the cell. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Rearrangements of the transposable mating-type cassettes of fission yeast.

    PubMed

    Beach, D H; Klar, A J

    1984-03-01

    The fission yeast, Schizosaccharomyces pombe, switches mating type every few cell divisions. Switching is controlled by the genes of the mating-type locus, which consists of three components, mat1, mat2-P and mat3-M, each separated by approximately 15 kb. Copy transposition of P (Plus) or M (Minus) information from mat2-P or mat3-M into the expression locus mat1 mediates cell type switching. The mating-type locus undergoes events at high frequency (10(-2)-10(-6)) which stabilize one or other mating type. These events are shown to be rearrangements which result in either deletion or insertion of DNA between cassettes.

  17. Systematic genetic analysis of transcription factors to map the fission yeast transcription-regulatory network.

    PubMed

    Chua, Gordon

    2013-12-01

    Mapping transcriptional-regulatory networks requires the identification of target genes, binding specificities and signalling pathways of transcription factors. However, the characterization of each transcription factor sufficiently for deciphering such networks remains laborious. The recent availability of overexpression and deletion strains for almost all of the transcription factor genes in the fission yeast Schizosaccharomyces pombe provides a valuable resource to better investigate transcription factors using systematic genetics. In the present paper, I review and discuss the utility of these strain collections combined with transcriptome profiling and genome-wide chromatin immunoprecipitation to identify the target genes of transcription factors.

  18. Conservation and Rewiring of Functional Modules Revealed by an Epistasis Map in Fission Yeast

    PubMed Central

    Roguev, Assen; Bandyopadhyay, Sourav; Zofall, Martin; Zhang, Ke; Fischer, Tamas; Collins, Sean R.; Qu, Hongjing; Shales, Michael; Park, Han-Oh; Hayles, Jacqueline; Hoe, Kwang-Lae; Kim, Dong-Uk; Ideker, Trey; Grewal, Shiv I.; Weissman, Jonathan S.; Krogan, Nevan J.

    2009-01-01

    An epistasis map (E-MAP) was constructed in the fission yeast, Schizosaccharomyces pombe, by systematically measuring the phenotypes associated with pairs of mutations. This high-density, quantitative genetic interaction map focused on various aspects of chromosome function, including transcription regulation and DNA repair/replication. The E-MAP uncovered a previously unidentified component of the RNA interference (RNAi) machinery (rsh1) and linked the RNAi pathway to several other biological processes. Comparison of the S. pombe E-MAP to an analogous genetic map from the budding yeast revealed that, whereas negative interactions were conserved between genes involved in similar biological processes, positive interactions and overall genetic profiles between pairs of genes coding for physically associated proteins were even more conserved. Hence, conservation occurs at the level of the functional module (protein complex), but the genetic cross talk between modules can differ substantially. PMID:18818364

  19. Organellar mechanosensitive channels involved in hypo-osmoregulation in fission yeast.

    PubMed

    Nakayama, Yoshitaka; Iida, Hidetoshi

    2014-12-01

    MscS and MscL, bacterial mechanosensitive channels, play crucial roles in the hypo-osmotic shock response. However, only MscS has homologs in eukaryotes. These homologs are called MscS-like proteins or MSL proteins. MSL proteins have changed both structurally and functionally during evolution and are now localized not only to the membrane of the chloroplast, which is thought to be a descendant of an ancient, free-living bacterium, but also the cell membrane and the endoplasmic reticulum (ER) membrane, suggesting that the role of MSL proteins has diverged. In this brief review, we mainly focus on two MSL proteins in the fission yeast Schizosaccharomyces pombe that are localized in the ER membrane and protect cells from hypo-osmotic shock-induced death by regulating intracellular Ca(2+) concentrations. We also discuss Arabidopsis thaliana MSL proteins and other yeast ion channels in terms of osmoregulation in eukaryotes.

  20. Conservation and rewiring of functional modules revealed by an epistasis map in fission yeast.

    PubMed

    Roguev, Assen; Bandyopadhyay, Sourav; Zofall, Martin; Zhang, Ke; Fischer, Tamas; Collins, Sean R; Qu, Hongjing; Shales, Michael; Park, Han-Oh; Hayles, Jacqueline; Hoe, Kwang-Lae; Kim, Dong-Uk; Ideker, Trey; Grewal, Shiv I; Weissman, Jonathan S; Krogan, Nevan J

    2008-10-17

    An epistasis map (E-MAP) was constructed in the fission yeast, Schizosaccharomyces pombe, by systematically measuring the phenotypes associated with pairs of mutations. This high-density, quantitative genetic interaction map focused on various aspects of chromosome function, including transcription regulation and DNA repair/replication. The E-MAP uncovered a previously unidentified component of the RNA interference (RNAi) machinery (rsh1) and linked the RNAi pathway to several other biological processes. Comparison of the S. pombe E-MAP to an analogous genetic map from the budding yeast revealed that, whereas negative interactions were conserved between genes involved in similar biological processes, positive interactions and overall genetic profiles between pairs of genes coding for physically associated proteins were even more conserved. Hence, conservation occurs at the level of the functional module (protein complex), but the genetic cross talk between modules can differ substantially.

  1. CENP-A exceeds microtubule attachment sites in centromere clusters of both budding and fission yeast.

    PubMed

    Coffman, Valerie C; Wu, Pengcheng; Parthun, Mark R; Wu, Jian-Qiu

    2011-11-14

    The stoichiometries of kinetochores and their constituent proteins in yeast and vertebrate cells were determined using the histone H3 variant CENP-A, known as Cse4 in budding yeast, as a counting standard. One Cse4-containing nucleosome exists in the centromere (CEN) of each chromosome, so it has been assumed that each anaphase CEN/kinetochore cluster contains 32 Cse4 molecules. We report that anaphase CEN clusters instead contained approximately fourfold more Cse4 in Saccharomyces cerevisiae and ~40-fold more CENP-A (Cnp1) in Schizosaccharomyces pombe than predicted. These results suggest that the number of CENP-A molecules exceeds the number of kinetochore-microtubule (MT) attachment sites on each chromosome and that CENP-A is not the sole determinant of kinetochore assembly sites in either yeast. In addition, we show that fission yeast has enough Dam1-DASH complex for ring formation around attached MTs. The results of this study suggest the need for significant revision of existing CEN/kinetochore architectural models. © 2011 Coffman et al.

  2. Visualizing single rod-shaped fission yeast vertically in micro-sized holes on agarose pad made by soft lithography.

    PubMed

    Wang, Li; Tran, Phong T

    2014-01-01

    Fission yeast cells are rod-shaped unicellular organism that is normally imaged horizontally with its long axis parallel to image plane. This orientation, while practical, limits the imaging resolution of biological structures which are oriented perpendicular to the long axis of the cell. We present here a method to prepare agarose pads with micro-sized holes to load single fission yeast cell vertically and image cell with its long axis perpendicular to the image plane. As a demonstration, actomyosin ring contraction is shown with this new imaging device.

  3. Stress-induced nuclear-to-cytoplasmic translocation of cyclin C promotes mitochondrial fission in yeast.

    PubMed

    Cooper, Katrina F; Khakhina, Svetlana; Kim, Stephen K; Strich, Randy

    2014-01-27

    Mitochondrial morphology is maintained by the opposing activities of dynamin-based fission and fusion machines. In response to stress, this balance is dramatically shifted toward fission. This study reveals that the yeast transcriptional repressor cyclin C is both necessary and sufficient for stress-induced hyperfission. In response to oxidative stress, cyclin C translocates from the nucleus to the cytoplasm, where it is destroyed. Prior to its destruction, cyclin C both genetically and physically interacts with Mdv1p, an adaptor that links the GTPase Dnm1p to the mitochondrial receptor Fis1p. Cyclin C is required for stress-induced Mdv1p mitochondrial recruitment and the efficient formation of functional Dnm1p filaments. Finally, coimmunoprecipitation studies and fluorescence microscopy revealed an elevated association between Mdv1p and Dnm1p in stressed cells that is dependent on cyclin C. This study provides a mechanism by which stress-induced gene induction and mitochondrial fission are coordinated through translocation of cyclin C. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Fission yeast Ryh1 GTPase activates TOR Complex 2 in response to glucose.

    PubMed

    Hatano, Tomoyuki; Morigasaki, Susumu; Tatebe, Hisashi; Ikeda, Kyoko; Shiozaki, Kazuhiro

    2015-01-01

    The Target Of Rapamycin (TOR) is an evolutionarily conserved protein kinase that forms 2 distinct protein complexes referred to as TOR complex 1 (TORC1) and 2 (TORC2). Recent extensive studies have demonstrated that TORC1 is under the control of the small GTPases Rheb and Rag that funnel multiple input signals including those derived from nutritional sources; however, information is scarce as to the regulation of TORC2. A previous study using the model system provided by the fission yeast Schizosaccharomyces pombe identified Ryh1, a Rab-family GTPase, as an activator of TORC2. Here, we show that the nucleotide-binding state of Ryh1 is regulated in response to glucose, mediating this major nutrient signal to TORC2. In glucose-rich growth media, the GTP-bound form of Ryh1 induces TORC2-dependent phosphorylation of Gad8, a downstream target of TORC2 in fission yeast. Upon glucose deprivation, Ryh1 becomes inactive, which turns off the TORC2-Gad8 pathway. During glucose starvation, however, Gad8 phosphorylation by TORC2 gradually recovers independently of Ryh1, implying an additional TORC2 activator that is regulated negatively by glucose. The paired positive and negative regulatory mechanisms may allow fine-tuning of the TORC2-Gad8 pathway, which is essential for growth under glucose-limited environment.

  5. Module-based construction of plasmids for chromosomal integration of the fission yeast Schizosaccharomyces pombe.

    PubMed

    Kakui, Yasutaka; Sunaga, Tomonari; Arai, Kunio; Dodgson, James; Ji, Liang; Csikász-Nagy, Attila; Carazo-Salas, Rafael; Sato, Masamitsu

    2015-06-01

    Integration of an external gene into a fission yeast chromosome is useful to investigate the effect of the gene product. An easy way to knock-in a gene construct is use of an integration plasmid, which can be targeted and inserted to a chromosome through homologous recombination. Despite the advantage of integration, construction of integration plasmids is energy- and time-consuming, because there is no systematic library of integration plasmids with various promoters, fluorescent protein tags, terminators and selection markers; therefore, researchers are often forced to make appropriate ones through multiple rounds of cloning procedures. Here, we establish materials and methods to easily construct integration plasmids. We introduce a convenient cloning system based on Golden Gate DNA shuffling, which enables the connection of multiple DNA fragments at once: any kind of promoters and terminators, the gene of interest, in combination with any fluorescent protein tag genes and any selection markers. Each of those DNA fragments, called a 'module', can be tandemly ligated in the order we desire in a single reaction, which yields a circular plasmid in a one-step manner. The resulting plasmids can be integrated through standard methods for transformation. Thus, these materials and methods help easy construction of knock-in strains, and this will further increase the value of fission yeast as a model organism.

  6. RNAi mediates post-transcriptional repression of gene expression in fission yeast Schizosaccharomyces pombe

    SciTech Connect

    Smialowska, Agata; Djupedal, Ingela; Wang, Jingwen; Kylsten, Per; Swoboda, Peter; Ekwall, Karl

    2014-02-07

    Highlights: • Protein coding genes accumulate anti-sense sRNAs in fission yeast S. pombe. • RNAi represses protein-coding genes in S. pombe. • RNAi-mediated gene repression is post-transcriptional. - Abstract: RNA interference (RNAi) is a gene silencing mechanism conserved from fungi to mammals. Small interfering RNAs are products and mediators of the RNAi pathway and act as specificity factors in recruiting effector complexes. The Schizosaccharomyces pombe genome encodes one of each of the core RNAi proteins, Dicer, Argonaute and RNA-dependent RNA polymerase (dcr1, ago1, rdp1). Even though the function of RNAi in heterochromatin assembly in S. pombe is established, its role in controlling gene expression is elusive. Here, we report the identification of small RNAs mapped anti-sense to protein coding genes in fission yeast. We demonstrate that these genes are up-regulated at the protein level in RNAi mutants, while their mRNA levels are not significantly changed. We show that the repression by RNAi is not a result of heterochromatin formation. Thus, we conclude that RNAi is involved in post-transcriptional gene silencing in S. pombe.

  7. 4-Methyl Sterols Regulate Fission Yeast SREBP-Scap under Low Oxygen and Cell Stress*

    PubMed Central

    Hughes, Adam L.; Lee, Chih-Yung S.; Bien, Clara M.; Espenshade, Peter J.

    2008-01-01

    In fission yeast, orthologs of mammalian SREBP and Scap, called Sre1 and Scp1, monitor oxygen-dependent sterol synthesis as a measure of cellular oxygen supply. Under low oxygen conditions, sterol synthesis is inhibited and Sre1 cleavage is activated. However, the sterol signal for Sre1 activation is unknown. In this study, we characterize the sterol signal for Sre1 activation using a combination of Sre1 cleavage assays and gas chromatography sterol analysis. We find that Sre1 activation is regulated by levels of the 4-methyl sterols 24-methylene lanosterol and 4,4-dimethylfecosterol under conditions of low oxygen and cell stress. Both increases and decreases in the level of these ergosterol pathway intermediates induce Sre1 proteolysis in a Scp1-dependent manner. The SREBP ortholog in the pathogenic fungus Cryptococcus neoformans is also activated by high levels of 4-methyl sterols, suggesting that this signal for SREBP activation is conserved among unicellular eukaryotes. Finally, we provide evidence that the sterol sensing domain of Scp1 is important for regulating Sre1 proteolysis. The conserved mutations Y247C, L264F, and D392N in Scp1 that render Scap insensitive to sterols cause constitutive Sre1 activation. These findings indicate that unlike Scap, fission yeast Scp1 responds to 4-methyl sterols and thus shares properties with mammalian HMG-CoA reductase, a sterol sensing domain protein whose degradation is regulated by the 4-methyl sterol lanosterol. PMID:17595166

  8. The fission yeast MRN complex tethers dysfunctional telomeres for NHEJ repair

    PubMed Central

    Reis, Clara Correia; Batista, Sílvia; Ferreira, Miguel Godinho

    2012-01-01

    Telomeres protect the natural ends of chromosomes from being repaired as deleterious DNA breaks. In fission yeast, absence of Taz1 (homologue of human TRF1 and TRF2) renders telomeres vulnerable to DNA repair. During the G1 phase, when non-homologous end joining (NHEJ) is upregulated, taz1Δ cells undergo telomere fusions with consequent loss of viability. Here, we show that disruption of the fission yeast MRN (Rad23MRE11-Rad50-Nbs1) complex prevents NHEJ at telomeres and, as a result, rescues taz1Δ lethality in G1. Neither Tel1ATM activation nor 5′-end resection was required for telomere fusion. Nuclease activity of Rad32MRE11 was also dispensable for NHEJ. Mutants unable to coordinate metal ions required for nuclease activity were proficient in NHEJ repair. In contrast, Rad32MRE11 mutations that affect binding and/or positioning of DNA ends leaving the nuclease function largely unaffected also impaired NHEJ at telomeres and restored the viability of taz1Δ in G1. Consistently, MRN structural integrity but not nuclease function is also required for NHEJ of independent DNA ends in a novel split-molecule plasmid assay. Thus, MRN acts to tether unlinked DNA ends, allowing for efficient NHEJ. PMID:23188080

  9. Divergence of a conserved elongation factor and transcription regulation in budding and fission yeast

    PubMed Central

    Booth, Gregory T.; Wang, Isabel X.; Cheung, Vivian G.; Lis, John T.

    2016-01-01

    Complex regulation of gene expression in mammals has evolved from simpler eukaryotic systems, yet the mechanistic features of this evolution remain elusive. Here, we compared the transcriptional landscapes of the distantly related budding and fission yeast. We adapted the Precision Run-On sequencing (PRO-seq) approach to map the positions of RNA polymerase active sites genome-wide in Schizosaccharomyces pombe and Saccharomyces cerevisiae. Additionally, we mapped preferred sites of transcription initiation in each organism using PRO-cap. Unexpectedly, we identify a pause in early elongation, specific to S. pombe, that requires the conserved elongation factor subunit Spt4 and resembles promoter-proximal pausing in metazoans. PRO-seq profiles in strains lacking Spt4 reveal globally elevated levels of transcribing RNA Polymerase II (Pol II) within genes in both species. Messenger RNA abundance, however, does not reflect the increases in Pol II density, indicating a global reduction in elongation rate. Together, our results provide the first base-pair resolution map of transcription elongation in S. pombe and identify divergent roles for Spt4 in controlling elongation in budding and fission yeast. PMID:27197211

  10. An estradiol-inducible promoter enables fast, graduated control of gene expression in fission yeast.

    PubMed

    Ohira, Makoto J; Hendrickson, David G; Scott McIsaac, R; Rhind, Nicholas

    2017-08-01

    The fission yeast Schizosaccharomyces pombe lacks a diverse toolkit of inducible promoters for experimental manipulation. Available inducible promoters suffer from slow induction kinetics, limited control of expression levels and/or a requirement for defined growth medium. In particular, no S. pombe inducible promoter systems exhibit a linear dose-response, which would allow expression to be tuned to specific levels. We have adapted a fast, orthogonal promoter system with a large dynamic range and a linear dose response, based on β-estradiol-regulated function of the human oestrogen receptor, for use in S. pombe. We show that this promoter system, termed Z3 EV, turns on quickly, can reach a maximal induction of 20-fold, and exhibits a linear dose response over its entire induction range, with few off-target effects. We demonstrate the utility of this system by regulating the mitotic inhibitor Wee1 to create a strain in which cell size is regulated by β-estradiol concentration. This promoter system will be of great utility for experimentally regulating gene expression in fission yeast. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Comparison of different signal peptides for secretion of heterologous proteins in fission yeast

    SciTech Connect

    Kjaerulff, Soren

    2005-10-28

    In the fission yeast Schizosaccharomyces pombe, there are relatively few signal peptides available and most reports of their activity have not been comparative. Using sequence information from the S. pombe genome database we have identified three putative signal peptides, designated Cpy, Amy and Dpp, and compared their ability to support secretion of green fluorescent protein (GFP). In the comparison we also included the two well-described secretion signals derived from the precursors of, respectively, the Saccharomyces cerevisiae {alpha}-factor and the S. pombe P-factor. The capability of the tested signal peptides to direct secretion of GFP varied greatly. The {alpha}-factor signal did not confer secretion to GFP and all the produced GFP was trapped intracellular. In contrast, the Cpy signal peptide supported efficient secretion of GFP with yields approximating 10 mg/L. We also found that the use of an attenuated version of the S. cerevisiae URA3 marker substantially increases vector copy number and expression yield in fission yeast.

  12. pREPORT: a multi-readout transcription reporter vector for fission yeast.

    PubMed

    Převorovský, Martin

    2015-02-01

    Transcription factors are prominent regulators of gene expression that execute responses to various intracellular and extracellular stimuli. Recombinant transcription reporter systems can be conveniently used to study the DNA binding preferences and regulatory activity of a transcription factor under a range of conditions. Several reporter genes have been used to study transcription regulation in the fission yeast Schizosaccharomyces pombe. Each of these reporters has distinct advantages, such as high sensitivity or ease of use, and limitations, such as prohibitive costs or use of hazardous substances. To combine the strengths and mitigate the weaknesses of individual reporter genes, we have created pREPORT, a flexible multi-readout transcription reporter vector for fission yeast that employs an enhanced GFP-lacZ fusion and a customizable minimal promoter. With pREPORT, gene expression driven by the transcription factor of interest can be quantified in a number of ways, both in live cells and in vitro, using a single reporter construct. Copyright © 2014 John Wiley & Sons, Ltd.

  13. Divergence of a conserved elongation factor and transcription regulation in budding and fission yeast.

    PubMed

    Booth, Gregory T; Wang, Isabel X; Cheung, Vivian G; Lis, John T

    2016-06-01

    Complex regulation of gene expression in mammals has evolved from simpler eukaryotic systems, yet the mechanistic features of this evolution remain elusive. Here, we compared the transcriptional landscapes of the distantly related budding and fission yeast. We adapted the Precision Run-On sequencing (PRO-seq) approach to map the positions of RNA polymerase active sites genome-wide in Schizosaccharomyces pombe and Saccharomyces cerevisiae. Additionally, we mapped preferred sites of transcription initiation in each organism using PRO-cap. Unexpectedly, we identify a pause in early elongation, specific to S. pombe, that requires the conserved elongation factor subunit Spt4 and resembles promoter-proximal pausing in metazoans. PRO-seq profiles in strains lacking Spt4 reveal globally elevated levels of transcribing RNA Polymerase II (Pol II) within genes in both species. Messenger RNA abundance, however, does not reflect the increases in Pol II density, indicating a global reduction in elongation rate. Together, our results provide the first base-pair resolution map of transcription elongation in S. pombe and identify divergent roles for Spt4 in controlling elongation in budding and fission yeast. © 2016 Booth et al.; Published by Cold Spring Harbor Laboratory Press.

  14. Regulation of Rho-GEF Rgf3 by the arrestin Art1 in fission yeast cytokinesis

    PubMed Central

    Davidson, Reshma; Laporte, Damien; Wu, Jian-Qiu

    2015-01-01

    Rho GTPases, activated by guanine nucleotide exchange factors (GEFs), are essential regulators of polarized cell growth, cytokinesis, and many other cellular processes. However, the regulation of Rho-GEFs themselves is not well understood. Rgf3 is an essential GEF for Rho1 GTPase in fission yeast. We show that Rgf3 protein levels and localization are regulated by arrestin-related protein Art1. art1∆ cells lyse during cell separation with a thinner and defective septum. As does Rgf3, Art1 concentrates to the contractile ring starting at early anaphase and spreads to the septum during and after ring constriction. Art1 localization depends on its C-terminus, and Art1 is important for maintaining Rgf3 protein levels. Biochemical experiments reveal that the Rgf3 C-terminus binds to Art1. Using an Rgf3 conditional mutant and mislocalization experiments, we found that Art1 and Rgf3 are interdependent for localization to the division site. As expected, active Rho1 levels at the division site are reduced in art1∆ and rgf3 mutant cells. Taken together, these data reveal that the arrestin family protein Art1 regulates the protein levels and localization of the Rho-GEF Rgf3, which in turn modulates active Rho1 levels during fission yeast cytokinesis. PMID:25473118

  15. Construction of an expression vector for the fission yeast Schizosaccharomyces pombe.

    PubMed Central

    Kudla, B; Persuy, M A; Gaillardin, C; Heslot, H

    1988-01-01

    We have isolated and characterized a S. pombe promoter using a functional heterologous gene product assay. Random S. pombe genomic fragments were cloned upstream from the promoterless 'lacZ gene and tested in vivo for their efficiency to promote expression of the beta-galactosidase protein in the fission yeast. An efficient S. pombe promoter called 54/1 was isolated and shown to drive up to 5% of total protein synthesis as beta-galactosidase. The structure and nucleotide sequence of this promoter were determined, precise localization of its mRNA transcriptional start points established. Translational fusion of the Pseudomonas putida XylE gene with the 54/1 gene was shown to allow expression of catechol oxidase activity in S. pombe. An expression vector suitable for transcriptional fusions was then constructed from engineered 54/1 promoter sequences and used to drive expression of the E. coli Tn5 ble gene, thus confering resistance to the fission yeast against bleomycin and phleomycin antibiotics. PMID:2843820

  16. Specification of DNA replication origins and genomic base composition in fission yeasts.

    PubMed

    Mojardín, Laura; Vázquez, Enrique; Antequera, Francisco

    2013-11-29

    In the "Replicon Theory", Jacob, Brenner and Cuzin proposed the existence of replicators and initiators as the two major actors in DNA replication. Over the years, many protein components of initiators have been shown to be conserved in different organisms during evolution. By contrast, replicator DNA sequences (often referred to as replication origins) have diverged beyond possible comparison between eukaryotic genomes. Replication origins in the fission yeast Schizosaccharomyces pombe are made up of A+T-rich sequences that do not share any consensus elements. The information encoded in these replicators is interpreted by the Orc4 subunit of the ORC (origin recognition complex), which is unique among eukaryotes in that it contains a large domain harboring nine AT-hook subdomains that target ORC to a great variety of A+T-rich sequences along the chromosomes. Recently, the genomes of other Schizosaccharomyces species have been sequenced and the regions encompassing their replication origins have been identified. DNA sequence analysis and comparison of the organization of their Orc4 proteins have revealed species-specific differences that contribute to our understanding of how the specification of replication origins has evolved during the phylogenetic divergence of fission yeasts.

  17. Dynamin-dependent biogenesis, cell cycle regulation and mitochondrial association of peroxisomes in fission yeast.

    PubMed

    Jourdain, Isabelle; Sontam, Dharani; Johnson, Chad; Dillies, Clément; Hyams, Jeremy S

    2008-03-01

    Peroxisomes were visualized for the first time in living fission yeast cells. In small, newly divided cells, the number of peroxisomes was low but increased in parallel with the increase in cell length/volume that accompanies cell cycle progression. In cells grown in oleic acid, both the size and the number of peroxisomes increased. The peroxisomal inventory of cells lacking the dynamin-related proteins Dnm1 or Vps1 was similar to that in wild type. By contrast, cells of the double mutant dnm1Delta vps1Delta contained either no peroxisomes at all or a small number of morphologically aberrant organelles. Peroxisomes exhibited either local Brownian movement or longer-range linear displacements, which continued in the absence of either microtubules or actin filaments. On the contrary, directed peroxisome motility appeared to occur in association with mitochondria and may be an indirect function of intrinsic mitochondrial dynamics. We conclude that peroxisomes are present in fission yeast and that Dnm1 and Vps1 act redundantly in peroxisome biogenesis, which is under cell cycle control. Peroxisome movement is independent of the cytoskeleton but is coupled to mitochondrial dynamics.

  18. Physical determinants of bipolar mitotic spindle assembly and stability in fission yeast

    PubMed Central

    Blackwell, Robert; Edelmaier, Christopher; Sweezy-Schindler, Oliver; Lamson, Adam; Gergely, Zachary R.; O’Toole, Eileen; Crapo, Ammon; Hough, Loren E.; McIntosh, J. Richard; Glaser, Matthew A.; Betterton, Meredith D.

    2017-01-01

    Mitotic spindles use an elegant bipolar architecture to segregate duplicated chromosomes with high fidelity. Bipolar spindles form from a monopolar initial condition; this is the most fundamental construction problem that the spindle must solve. Microtubules, motors, and cross-linkers are important for bipolarity, but the mechanisms necessary and sufficient for spindle assembly remain unknown. We describe a physical model that exhibits de novo bipolar spindle formation. We began with physical properties of fission-yeast spindle pole body size and microtubule number, kinesin-5 motors, kinesin-14 motors, and passive cross-linkers. Our model results agree quantitatively with our experiments in fission yeast, thereby establishing a minimal system with which to interrogate collective self-assembly. By varying the features of our model, we identify a set of functions essential for the generation and stability of spindle bipolarity. When kinesin-5 motors are present, their bidirectionality is essential, but spindles can form in the presence of passive cross-linkers alone. We also identify characteristic failed states of spindle assembly—the persistent monopole, X spindle, separated asters, and short spindle, which are avoided by the creation and maintenance of antiparallel microtubule overlaps. Our model can guide the identification of new, multifaceted strategies to induce mitotic catastrophes; these would constitute novel strategies for cancer chemotherapy. PMID:28116355

  19. Cell cycle regulated transcription of heterochromatin in mammals vs. fission yeast: functional conservation or coincidence?

    PubMed

    Lu, Junjie; Gilbert, David M

    2008-07-01

    Although it is tempting to speculate that the transcription-dependent heterochromatin assembly pathway found in fission yeast may operate in higher mammals, transcription of heterochromatin has been difficult to substantiate in mammalian cells. We recently demonstrated that transcription from the mouse pericentric heterochromatin major (gamma) satellite repeats is under cell cycle control, being sharply downregulated at the metaphase to anaphase transition and resuming in late G(1)-phase dependent upon passage through the restriction point. The highest rates of transcription were in early S-phase and again in mitosis with different RNA products detected at each of these times.(1) Importantly, differences in the percentage of cells in G(1)-phase can account for past discrepancies in the detection of major satellite transcripts and suggest that pericentric heterochromatin transcription takes place in all proliferating mammalian cells. A similar cell cycle regulation of heterochromatin transcription has now been shown in fission yeast,(2,3) providing further support for a conserved mechanism. However, there are still fundamental differences between these two systems that preclude the identification of a functional or mechanistic link.

  20. Centrosomal MPF triggers the mitotic and morphogenetic switches of fission yeast.

    PubMed

    Grallert, Agnes; Patel, Avinash; Tallada, Victor A; Chan, Kuan Yoow; Bagley, Steven; Krapp, Andrea; Simanis, Viesturs; Hagan, Iain M

    2013-01-01

    Activation of mitosis-promoting factor (MPF) drives mitotic commitment. In human cells active MPF appears first on centrosomes. We show that local activation of MPF on the equivalent organelle of fission yeast, the spindle pole body (SPB), promotes Polo kinase activity at the SPBs long before global MPF activation drives mitotic commitment. Artificially promoting MPF or Polo activity at various locations revealed that this local control of Plo1 activity on G2 phase SPBs dictates the timing of mitotic commitment. Cytokinesis of the rod-shaped fission yeast cell generates a naive, new, cell end. Growth is restricted to the experienced old end until a point in G2 phase called new end take off (NETO) when bipolar growth is triggered. NETO coincided with MPF activation of Plo1 on G2 phase SPBs (ref. 4). Both MPF and Polo activities were required for NETO and both induced NETO when ectopically activated at interphase SPBs. NETO promotion by MPF required polo. Thus, local MPF activation on G2 SPBs directs polo kinase to control at least two distinct and temporally separated, cell-cycle transitions at remote locations.

  1. Robust cell size checkpoint from spatiotemporal positive feedback loop in fission yeast.

    PubMed

    Yan, Jie; Ni, Xin; Yang, Ling

    2013-01-01

    Cells must maintain appropriate cell size during proliferation. Size control may be regulated by a size checkpoint that couples cell size to cell division. Biological experimental data suggests that the cell size is coupled to the cell cycle in two ways: the rates of protein synthesis and the cell polarity protein kinase Pom1 provide spatial information that is used to regulate mitosis inhibitor Wee1. Here a mathematical model involving these spatiotemporal regulations was developed and used to explore the mechanisms underlying the size checkpoint in fission yeast. Bifurcation analysis shows that when the spatiotemporal regulation is coupled to the positive feedback loops (active Cdc2 promotes its activator, Cdc25, and suppress its inhibitor, Wee1), the mitosis-promoting factor (MPF) exhibits a bistable steady-state relationship with the cell size. The switch-like response from the positive feedback loops naturally generates the cell size checkpoint. Further analysis indicated that the spatial regulation provided by Pom1 enhances the robustness of the size checkpoint in fission yeast. This was consistent with experimental data.

  2. Distinct biological activity of threonine monophosphorylated MAPK isoforms during the stress response in fission yeast.

    PubMed

    Vázquez, Beatriz; Soto, Teresa; del Dedo, Javier Encinar; Franco, Alejandro; Vicente, Jero; Hidalgo, Elena; Gacto, Mariano; Cansado, José; Madrid, Marisa

    2015-12-01

    Mitogen-activated protein kinases (MAPKs) define a specific group of eukaryotic protein kinases which regulate a number of cellular functions by transducing extracellular signals to intracellular responses. Unlike other protein kinases, catalytic activation of MAPKs by MAPKKs depends on dual phosphorylation at two tyrosine and threonine residues within the conserved TXY motif, and this has been proposed to occur in an ordered fashion, where the initial phosphorylation on tyrosine is followed by phosphorylation at the threonine residue. However, monophosphorylated MAPKs also exist in vivo, and although threonine phosphorylated isoforms retain some catalytic activity, their functional significance remains to be further elucidated. In the fission yeast Schizosaccharomyces pombe MAPKs Sty1 and Pmk1 control multiple aspects of fission yeast life cycle, including morphogenesis, cell cycle, and cellular response to a variety of stressful situations. In this work we show that a trapping mechanism increases MAPKK binding and tyrosine phosphorylation of both Sty1 and Pmk1 when subsequent phosphorylation at threonine is hampered, indicating that a sequential and likely processive mechanism might be responsible for MAPK activation in this simple organism. Whereas threonine-monophosphorylated Sty1 showed a limited biological activity particularly at the transcriptional level, threonine-monophosphorylated Pmk1 was able to execute most of the biological functions of the dually phosphorylated kinase. Thus, threonine monophosphorylated MAPKs might display distinct functional relevance among eukaryotes. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Cyclin-dependent kinase 8 regulates mitotic commitment in fission yeast.

    PubMed

    Szilagyi, Zsolt; Banyai, Gabor; Lopez, Marcela Davila; McInerny, Christopher J; Gustafsson, Claes M

    2012-06-01

    Temporal changes in transcription programs are coupled to control of cell growth and division. We here report that Mediator, a conserved coregulator of eukaryotic transcription, is part of a regulatory pathway that controls mitotic entry in fission yeast. The Mediator subunit cyclin-dependent kinase 8 (Cdk8) phosphorylates the forkhead 2 (Fkh2) protein in a periodic manner that coincides with gene activation during mitosis. Phosphorylation prevents degradation of the Fkh2 transcription factor by the proteasome, thus ensuring cell cycle-dependent variations in Fkh2 levels. Interestingly, Cdk8-dependent phosphorylation of Fkh2 controls mitotic entry, and mitotic entry is delayed by inactivation of the Cdk8 kinase activity or mutations replacing the phosphorylated serine residues of Fkh2. In addition, mutations in Fkh2, which mimic protein phosphorylation, lead to premature mitotic entry. Therefore, Fkh2 regulates not only the onset of mitotic transcription but also the correct timing of mitotic entry via effects on the Wee1 kinase. Our findings thus establish a new pathway linking the Mediator complex to control of mitotic transcription and regulation of mitotic entry in fission yeast.

  4. Epigenetic inheritance of transcriptional silencing and switching competence in fission yeast.

    PubMed

    Thon, G; Friis, T

    1997-03-01

    Epigenetic events allow the inheritance of phenotypic changes that are not caused by an alteration in DNA sequence. Here we characterize an epigenetic phenomenon occurring in the mating-type region of fission yeast. Cells of fission yeast switch between the P and M mating-type by interconverting their expressed mating-type cassette between two allelic forms, mat1-P and mat1-M. The switch results from gene conversions of mat1 by two silent cassettes, mat2-P and mat3-M, which are linked to each other and to mat1. GREWAL and KLAR observed that the ability to both switch mat1 and repress transcription near mat2-P and mat3-M was maintained epigenetically in a strain with an 8-kb deletion between mat2 and mat3. Using a strain very similar to theirs, we determined that interconversions between the switching- and silencing-proficient state and the switching and silencing-deficient state occurred less frequently than once per 1000 cell divisions. Although transcriptional silencing was alleviated by the 8-kb deletion, it was not abolished. We performed a mutant search and obtained a class of trans-acting mutations that displayed a strong cumulative effect with the 8-kb deletion. These mutations allow to assess the extent to which silencing is affected by the deletion and provide new insights on the redundancy of the silencing mechanism.

  5. Fission yeast mutants that alleviate transcriptional silencing in centromeric flanking repeats and disrupt chromosome segregation.

    PubMed

    Ekwall, K; Cranston, G; Allshire, R C

    1999-11-01

    In the fission yeast Schizosaccharomyces pombe genes are transcriptionally silenced when placed within centromeres, within or close to the silent mating-type loci or adjacent to telomeres. Factors required to maintain mating-type silencing also affect centromeric silencing and chromosome segregation. We isolated mutations that alleviate repression of marker genes in the inverted repeats flanking the central core of centromere I. Mutations csp1 to 13 (centromere: suppressor of position effect) defined 12 loci. Ten of the csp mutants have no effect on mat2/3 or telomere silencing. All csp mutants allow some expression of genes in the centromeric flanking repeat, but expression in the central core is undetectable. Consistent with defective centromere structure and function, chromosome loss rates are elevated in all csp mutants. Mutants csp1 to 6 are temperature-sensitive lethal and csp3 and csp6 cells are defective in mitosis at 36 degrees. csp7 to 13 display a high incidence of lagging chromosomes on late anaphase spindles. Thus, by screening for mutations that disrupt silencing in the flanking region of a fission yeast centromere a novel collection of mutants affecting centromere architecture and chromosome segregation has been isolated.

  6. Genomewide analysis of nucleosome density histone acetylation and HDAC function in fission yeast.

    PubMed

    Wirén, Marianna; Silverstein, Rebecca A; Sinha, Indranil; Walfridsson, Julian; Lee, Hang-Mao; Laurenson, Patricia; Pillus, Lorraine; Robyr, Daniel; Grunstein, Michael; Ekwall, Karl

    2005-08-17

    We have conducted a genomewide investigation into the enzymatic specificity, expression profiles, and binding locations of four histone deacetylases (HDACs), representing the three different phylogenetic classes in fission yeast (Schizosaccharomyces pombe). By directly comparing nucleosome density, histone acetylation patterns and HDAC binding in both intergenic and coding regions with gene expression profiles, we found that Sir2 (class III) and Hos2 (class I) have a role in preventing histone loss; Clr6 (class I) is the principal enzyme in promoter-localized repression. Hos2 has an unexpected role in promoting high expression of growth-related genes by deacetylating H4K16Ac in their open reading frames. Clr3 (class II) acts cooperatively with Sir2 throughout the genome, including the silent regions: rDNA, centromeres, mat2/3 and telomeres. The most significant acetylation sites are H3K14Ac for Clr3 and H3K9Ac for Sir2 at their genomic targets. Clr3 also affects subtelomeric regions which contain clustered stress- and meiosis-induced genes. Thus, this combined genomic approach has uncovered different roles for fission yeast HDACs at the silent regions in repression and activation of gene expression.

  7. Module-based construction of plasmids for chromosomal integration of the fission yeast Schizosaccharomyces pombe

    PubMed Central

    Kakui, Yasutaka; Sunaga, Tomonari; Arai, Kunio; Dodgson, James; Ji, Liang; Csikász-Nagy, Attila; Carazo-Salas, Rafael; Sato, Masamitsu

    2015-01-01

    Integration of an external gene into a fission yeast chromosome is useful to investigate the effect of the gene product. An easy way to knock-in a gene construct is use of an integration plasmid, which can be targeted and inserted to a chromosome through homologous recombination. Despite the advantage of integration, construction of integration plasmids is energy- and time-consuming, because there is no systematic library of integration plasmids with various promoters, fluorescent protein tags, terminators and selection markers; therefore, researchers are often forced to make appropriate ones through multiple rounds of cloning procedures. Here, we establish materials and methods to easily construct integration plasmids. We introduce a convenient cloning system based on Golden Gate DNA shuffling, which enables the connection of multiple DNA fragments at once: any kind of promoters and terminators, the gene of interest, in combination with any fluorescent protein tag genes and any selection markers. Each of those DNA fragments, called a ‘module’, can be tandemly ligated in the order we desire in a single reaction, which yields a circular plasmid in a one-step manner. The resulting plasmids can be integrated through standard methods for transformation. Thus, these materials and methods help easy construction of knock-in strains, and this will further increase the value of fission yeast as a model organism. PMID:26108218

  8. CSL protein regulates transcription of genes required to prevent catastrophic mitosis in fission yeast.

    PubMed

    Převorovský, Martin; Oravcová, Martina; Zach, Róbert; Jordáková, Anna; Bähler, Jürg; Půta, František; Folk, Petr

    2016-11-16

    For every eukaryotic cell to grow and divide, intricately coordinated action of numerous proteins is required to ensure proper cell-cycle progression. The fission yeast Schizosaccharomyces pombe has been instrumental in elucidating the fundamental principles of cell-cycle control. Mutations in S. pombe 'cut' (cell untimely torn) genes cause failed coordination between cell and nuclear division, resulting in catastrophic mitosis. Deletion of cbf11, a fission yeast CSL transcription factor gene, triggers a 'cut' phenotype, but the precise role of Cbf11 in promoting mitotic fidelity is not known. We report that Cbf11 directly activates the transcription of the acetyl-coenzyme A carboxylase gene cut6, and the biotin uptake/biosynthesis genes vht1 and bio2, with the former 2 implicated in mitotic fidelity. Cbf11 binds to a canonical, metazoan-like CSL response element (GTGGGAA) in the cut6 promoter. Expression of Cbf11 target genes shows apparent oscillations during the cell cycle using temperature-sensitive cdc25-22 and cdc10-M17 block-release experiments, but not with other synchronization methods. The penetrance of catastrophic mitosis in cbf11 and cut6 mutants is nutrient-dependent. We also show that drastic decrease in biotin availability arrests cell proliferation but does not cause mitotic defects. Taken together, our results raise the possibility that CSL proteins play conserved roles in regulating cell-cycle progression, and they could guide experiments into mitotic CSL functions in mammals.

  9. The Actomyosin Ring Recruits Early Secretory Compartments to the Division Site in Fission Yeast

    PubMed Central

    Vjestica, Aleksandar; Tang, Xin-Zi

    2008-01-01

    The ultimate goal of cytokinesis is to establish a membrane barrier between daughter cells. The fission yeast Schizosaccharomyces pombe utilizes an actomyosin-based division ring that is thought to provide physical force for the plasma membrane invagination. Ring constriction occurs concomitantly with the assembly of a division septum that is eventually cleaved. Membrane trafficking events such as targeting of secretory vesicles to the division site require a functional actomyosin ring suggesting that it serves as a spatial landmark. However, the extent of polarization of the secretion apparatus to the division site is presently unknown. We performed a survey of dynamics of several fluorophore-tagged proteins that served as markers for various compartments of the secretory pathway. These included markers for the endoplasmic reticulum, the COPII sites, and the early and late Golgi. The secretion machinery exhibited a marked polarization to the division site. Specifically, we observed an enrichment of the transitional endoplasmic reticulum (tER) accompanied by Golgi cisternae biogenesis. These processes required actomyosin ring assembly and the function of the EFC-domain protein Cdc15p. Cdc15p overexpression was sufficient to induce tER polarization in interphase. Thus, fission yeast polarizes its entire secretory machinery to the cell division site by utilizing molecular cues provided by the actomyosin ring. PMID:18184749

  10. Fission yeast SWI/SNF and RSC complexes show compositional and functional differences from budding yeast.

    PubMed

    Monahan, Brendon J; Villén, Judit; Marguerat, Samuel; Bähler, Jürg; Gygi, Steven P; Winston, Fred

    2008-08-01

    SWI/SNF chromatin-remodeling complexes have crucial roles in transcription and other chromatin-related processes. The analysis of the two members of this class in Saccharomyces cerevisiae, SWI/SNF and RSC, has heavily contributed to our understanding of these complexes. To understand the in vivo functions of SWI/SNF and RSC in an evolutionarily distant organism, we have characterized these complexes in Schizosaccharomyces pombe. Although core components are conserved between the two yeasts, the compositions of S. pombe SWI/SNF and RSC differ from their S. cerevisiae counterparts and in some ways are more similar to metazoan complexes. Furthermore, several of the conserved proteins, including actin-like proteins, are markedly different between the two yeasts with respect to their requirement for viability. Finally, phenotypic and microarray analyses identified widespread requirements for SWI/SNF and RSC on transcription including strong evidence that SWI/SNF directly represses iron-transport genes.

  11. Ste50 adaptor protein governs sexual differentiation of Cryptococcus neoformans via the pheromone response MAPK signaling pathway

    PubMed Central

    Jung, Kwang-Woo; Kim, Seo-Young; Okagaki, Laura H.; Nielsen, Kirsten; Bahn, Yong-Sun

    2010-01-01

    The mitogen-activated protein kinase (MAPK) pathways control diverse cellular functions in pathogenic fungi, including sexual differentiation, stress-response, and maintenance of cell wall integrity. Here we characterized a C. neoformans gene, which is homologous to the yeast Ste50 that is known to play an important role in mating pheromone response and stress response as an adaptor protein to the Ste11 MAPK kinase kinase in Saccharomyces cerevisiae. The C. neoformans Ste50 was not involved in any of the stress responses or virulence factor production (capsule and melanin) that are controlled by the HOG and Ras/cAMP signaling pathways. However, Ste50 was required for mating in both serotype A and serotype D C. neoformans strains. The ste50Δ mutant was completely defective in cell-cell fusion and mating pheromone production. Double mutation of the STE50 gene blocked increased production of pheromone and the hyper-filamentation phenotype of cells deleted of the CRG1 gene, which encodes the RGS protein that negatively regulates pheromone responsive G-protein signaling via the MAPK pathway. Regardless of the presence of the basidiomycota-specific SH3 domains of Ste50 that are known to be required for full virulence of Ustilago maydis, Ste50 was dispensable for virulence of C. neoformans in a murine model of cryptococcosis. In conclusion, the Ste50 adaptor protein controls sexual differentiation of C. neoformans via the pheromone-responsive MAPK pathway but is not required for virulence. PMID:20971202

  12. Convergent domestication of pogo-like transposases into centromere-binding proteins in fission yeast and mammals

    PubMed Central

    Casola, Claudio; Hucks, Donald; Feschotte, Cédric

    2007-01-01

    The mammalian centromeric protein CENP-B shares significant sequence similarity with three proteins in fission yeast (Abp1, Cbh1 and Cbh2) that also bind centromeres and have essential function for chromosome segregation and centromeric heterochromatin formation. Each of these proteins displays extensive sequence similarity with pogo-like transposases, which have been previously identified in the genomes of various insects and vertebrates, in the protozoan Entamoeba and in plants. Based on this distribution, it has been proposed that the mammalian and fission yeast centromeric proteins are derived from ‘domesticated’ pogo-like transposons. Here we took advantage of the vast amount of sequence information that has become recently available for a wide range of fungal and animal species to investigate the origin of the mammalian CENP-B and yeast CENP-B-like genes. A highly conserved ortholog of CENP-B was detected in 31 species of mammals, including opossum and platypus, but was absent from all non-mammalian species represented in the databases. Similarly, no ortholog of the fission yeast centromeric proteins was identified in any of the various fungal genomes currently available. In contrast, we discovered a plethora of novel pogo-like transposons in diverse invertebrates and vertebrates and in several filamentous fungi. Phylogenetic analysis revealed that the mammalian and fission yeast CENP-B proteins fall into two distinct monophyletic clades, each of which includes a different set of pogo-like transposons. These results are most parsimoniously explained by independent domestication events of pogo-like transposases into centromeric proteins in the mammalian and fission yeast lineages, a case of ‘convergent domestication’. These findings highlight the propensity of transposases to give rise to new host proteins and the potential of transposons as sources of genetic innovation. PMID:17940212

  13. Sir2 regulates histone H3 lysine 9 methylation and heterochromatin assembly in fission yeast.

    PubMed

    Shankaranarayana, Gurumurthy D; Motamedi, Mohammad R; Moazed, Danesh; Grewal, Shiv I S

    2003-07-15

    Hypoacetylated histones are a hallmark of heterochromatin in organisms ranging from yeast to humans. Histone deacetylation is carried out by both NAD(+)-dependent and NAD(+)-independent enzymes. In the budding yeast Saccharomyces cerevisiae, deacetylation of histones in heterochromatic chromosomal domains requires Sir2, a phylogenetically conserved NAD(+)-dependent deacetylase. In the fission yeast Schizosaccharomyces pombe, NAD(+)-independent histone deacetylases are required for the formation of heterochromatin, but the role of Sir2-like deacetylases in this process has not been evaluated. Here, we show that spSir2, the S. pombe Sir2-like protein that is the most closely related to the S. cerevisiae Sir2, is an NAD(+)-dependent deacetylase that efficiently deacetylates histone H3 lysine 9 (K9) and histone H4 lysine 16 (K16) in vitro. In sir2 Delta cells, silencing at the donor mating-type loci, telomeres, and the inner centromeric repeats (imr) is abolished, while silencing at the outer centromeric repeats (otr) and rDNA is weakly reduced. Furthermore, Sir2 is required for hypoacetylation and methylation of H3-K9 and for the association of Swi6 with the above loci in vivo. Our findings suggest that the NAD(+)-dependent deacetylase Sir2 plays an important and conserved role in heterochromatin assembly in eukaryotes.

  14. The Arabidopsis CDC25 induces a short cell length when overexpressed in fission yeast: evidence for cell cycle function.

    PubMed

    Sorrell, D A; Chrimes, D; Dickinson, J R; Rogers, H J; Francis, D

    2005-02-01

    The putative mitotic inducer gene, Arath;CDC25 cloned in Arabidopsis thaliana, was screened for cell cycle function by overexpressing it in Schizosaccharomyces pombe (fission yeast). The expression pattern of Arath;CDC25 was also examined in different tissues of A. thaliana. Fission yeast was transformed with plasmids pREP1 and pREP81 with the Arath;CDC25 gene under the control of the thiamine-repressible nmt promoter. Using reverse transcription-polymerase chain reaction (RT-PCR), the expression of Arath;CDC25 was examined in seedlings, flower buds, mature leaves and stems of A. thaliana; actin (ACT2) was used as a control. In three independent transformants of fission yeast, cultured in the absence of thiamine (T), pREP1::Arath;CDC25 induced a highly significant reduction in mitotic cell length compared with wild type, pREP::Arath;CDC25 +T, and empty vector (pREP1 +/- T). The extent of cell shortening was greater using the stronger pREP1 compared with the weaker pREP81. However, Arath;CDC25 was expressed at low levels in all tissues examined. The data indicate that Arath;CDC25 can function as a mitotic accelerator in fission yeast. However, unlike other plant cell cycle genes, expression of Arath;CDC25 was not enhanced in rapidly dividing compared with non-proliferative Arabidopsis tissues.

  15. MCM-GINS and MCM-MCM interactions in vivo visualised by bimolecular fluorescence complementation in fission yeast

    PubMed Central

    Akman, Gökhan; MacNeill, Stuart A

    2009-01-01

    Background Each of the three individual components of the CMG complex (Cdc45, MCM and GINS) is essential for chromosomal DNA replication in eukaryotic cells, both for the initiation of replication at origins and also for normal replication fork progression. The MCM complex is a DNA helicase that most likely functions as the catalytic core of the replicative helicase, unwinding the parental duplex DNA ahead of the moving replication fork, whereas Cdc45 and the GINS complex are believed to act as accessory factors for MCM. Results To investigate interactions between components of the CMG complex, we have used bimolecular fluorescence complementation (BiFC) in the fission yeast Schizosaccharomyces pombe for the first time, to analyse protein-protein interactions between GINS and MCM subunits expressed from their native chromosomal loci. We demonstrate interactions between GINS and MCM in the nuclei of exponentially-growing fission yeast cells and on chromatin in binucleate S-phase cells. In addition we present evidence of MCM-MCM interactions in diploid fission yeast cells. As with GINS-MCM interactions, MCM-MCM interactions also occur on chromatin in S-phase cells. Conclusion Bimolecular fluorescence complementation can be used in fission yeast to visualise interactions between two of the three components of the CMG complex, offering the prospect that this technique could in the future be used to allow studies on replication protein dynamics in living S. pombe cells. PMID:19228417

  16. Construction of the first compendium of chemical-genetic profiles in the fission yeast Schizosaccharomyces pombe and comparative compendium approach

    SciTech Connect

    Han, Sangjo; Lee, Minho; Chang, Hyeshik; Nam, Miyoung; Park, Han-Oh; Kwak, Youn-Sig; Ha, Hye-jeong; Kim, Dongsup; Hwang, Sung-Ook; Hoe, Kwang-Lae; Kim, Dong-Uk

    2013-07-12

    Highlights: •The first compendium of chemical-genetic profiles form fission yeast was generated. •The first HTS of drug mode-of-action in fission yeast was performed. •The first comparative chemical genetic analysis between two yeasts was conducted. -- Abstract: Genome-wide chemical genetic profiles in Saccharomyces cerevisiae since the budding yeast deletion library construction have been successfully used to reveal unknown mode-of-actions of drugs. Here, we introduce comparative approach to infer drug target proteins more accurately using two compendiums of chemical-genetic profiles from the budding yeast S. cerevisiae and the fission yeast Schizosaccharomyces pombe. For the first time, we established DNA-chip based growth defect measurement of genome-wide deletion strains of S. pombe, and then applied 47 drugs to the pooled heterozygous deletion strains to generate chemical-genetic profiles in S. pombe. In our approach, putative drug targets were inferred from strains hypersensitive to given drugs by analyzing S. pombe and S. cerevisiae compendiums. Notably, many evidences in the literature revealed that the inferred target genes of fungicide and bactericide identified by such comparative approach are in fact the direct targets. Furthermore, by filtering out the genes with no essentiality, the multi-drug sensitivity genes, and the genes with less eukaryotic conservation, we created a set of drug target gene candidates that are expected to be directly affected by a given drug in human cells. Our study demonstrated that it is highly beneficial to construct the multiple compendiums of chemical genetic profiles using many different species. The fission yeast chemical-genetic compendium is available at (http://pombe.kaist.ac.kr/compendium)

  17. The MAP kinase Pmk1 and protein kinase A are required for rotenone resistance in the fission yeast, Schizosaccharomyces pombe

    SciTech Connect

    Wang, Yiwei; Gulis, Galina; Buckner, Scott; Johnson, P. Connor; Sullivan, Daniel; Busenlehner, Laura; Marcus, Stevan

    2010-08-20

    Research highlights: {yields} Rotenone induces generation of ROS and mitochondrial fragmentation in fission yeast. {yields} The MAPK Pmk1 and PKA are required for rotenone resistance in fission yeast. {yields} Pmk1 and PKA are required for ROS clearance in rotenone treated fission yeast cells. {yields} PKA plays a role in ROS clearance under normal growth conditions in fission yeast. -- Abstract: Rotenone is a widely used pesticide that induces Parkinson's disease-like symptoms in rats and death of dopaminergic neurons in culture. Although rotenone is a potent inhibitor of complex I of the mitochondrial electron transport chain, it can induce death of dopaminergic neurons independently of complex I inhibition. Here we describe effects of rotenone in the fission yeast, Schizosaccharomyces pombe, which lacks complex I and carries out rotenone-insensitive cellular respiration. We show that rotenone induces generation of reactive oxygen species (ROS) as well as fragmentation of mitochondrial networks in treated S. pombe cells. While rotenone is only modestly inhibitory to growth of wild type S. pombe cells, it is strongly inhibitory to growth of mutants lacking the ERK-type MAP kinase, Pmk1, or protein kinase A (PKA). In contrast, cells lacking the p38 MAP kinase, Spc1, exhibit modest resistance to rotenone. Consistent with these findings, we provide evidence that Pmk1 and PKA, but not Spc1, are required for clearance of ROS in rotenone treated S. pombe cells. Our results demonstrate the usefulness of S. pombe for elucidating complex I-independent molecular targets of rotenone as well as mechanisms conferring resistance to the toxin.

  18. Effects of FSGS-associated mutations on the stability and function of myosin-1 in fission yeast.

    PubMed

    Bi, Jing; Carroll, Robert T; James, Michael L; Ouderkirk, Jessica L; Krendel, Mira; Sirotkin, Vladimir

    2015-08-01

    Point mutations in the human MYO1E gene, encoding class I myosin Myo1e, are associated with focal segmental glomerulosclerosis (FSGS), a primary kidney disorder that leads to end-stage kidney disease. In this study, we used a simple model organism, fission yeast Schizosaccharomyces pombe, to test the effects of FSGS-associated mutations on myosin activity. Fission yeast has only one class I myosin, Myo1, which is involved in actin patch assembly at the sites of endocytosis. The amino acid residues mutated in individuals with FSGS are conserved between human Myo1e and yeast Myo1, which allowed us to introduce equivalent mutations into yeast myosin and use the resulting mutant strains for functional analysis. Yeast strains expressing mutant Myo1 exhibited defects in growth and endocytosis similar to those observed in the myo1 deletion strain. These mutations also disrupted Myo1 localization to endocytic actin patches and resulted in mis-localization of Myo1 to eisosomes, linear membrane microdomains found in yeast cells. Although both mutants examined in this study exhibited loss of function, one of these mutants was also characterized by the decreased protein stability. Thus, using the yeast model system, we were able to determine that the kidney-disease-associated mutations impair myosin functional activity and have differential effects on protein stability. © 2015. Published by The Company of Biologists Ltd.

  19. Transcription factors mediate condensin recruitment and global chromosomal organization in fission yeast

    PubMed Central

    Kim, Kyoung-Dong; Tanizawa, Hideki; Iwasaki, Osamu; Noma, Ken-ichi

    2016-01-01

    It is becoming clear that Structural Maintenance of Chromosomes (SMC) complexes, such as condensin and cohesin, are involved in the three-dimensional genome organization, yet the exact roles of these complexes in the functional organization remain unclear. This study employs the ChIA-PET approach to comprehensively identify genome-wide associations mediated by condensin and cohesin in fission yeast. We find that although cohesin and condensin often bind to the same loci, they direct different association networks and generate small and larger chromatin domains, respectively. Cohesin mediates local associations between loci positioned within 100 kb; condensin can drive longer-range associations. Moreover, condensin, but not cohesin, connects cell cycle-regulated genes bound by mitotic transcription factors. This study describes the different functions of condensin and cohesin in genome organization and how specific transcription factors function in condensin loading, cell cycle-dependent genome organization, and mitotic chromosome organization to support faithful chromosome segregation. PMID:27548313

  20. DNA replication components as regulators of epigenetic inheritance--lesson from fission yeast centromere.

    PubMed

    He, Haijin; Gonzalez, Marlyn; Zhang, Fan; Li, Fei

    2014-06-01

    Genetic information stored in DNA is accurately copied and transferred to subsequent generations through DNA replication. This process is accomplished through the concerted actions of highly conserved DNA replication components. Epigenetic information stored in the form of histone modifications and DNA methylation, constitutes a second layer of regulatory information important for many cellular processes, such as gene expression regulation, chromatin organization, and genome stability. During DNA replication, epigenetic information must also be faithfully transmitted to subsequent generations. How this monumental task is achieved remains poorly understood. In this review, we will discuss recent advances on the role of DNA replication components in the inheritance of epigenetic marks, with a particular focus on epigenetic regulation in fission yeast. Based on these findings, we propose that specific DNA replication components function as key regulators in the replication of epigenetic information across the genome.

  1. Search for kinases related to transition of growth polarity in fission yeast.

    PubMed

    Koyano, Takayuki; Kume, Kazunori; Konishi, Manabu; Toda, Takashi; Hirata, Dai

    2010-01-01

    In eukaryotes, cell polarity is essential for cell proliferation, differentiation, and development. It is regulated in 3 steps: establishment, maintenance, and transition. Compared to current knowledge of establishment and maintenance, the mechanism regulating the transition of cell polarity is poorly understood. In fission yeast during the G2 phase, growth polarity undergoes a dramatic transition, from monopolar to bipolar growth (termed NETO: new end take off). In this study, we screened systematically for protein kinases related to NETO using a genome-wide kinase deletion library. Analysis of these deletions suggested that 35 and 2 kinases had a putative positive and a negative role, respectively, in NETO. Moreover, 5 kinases were required for NETO-delay in the G1-arrested cdc10 mutant. These results suggest that many signaling pathways are involved in the regulation of NETO.

  2. Measurements and models of synchronous growth of fission yeast induced by temperature oscillations. [Schizosaccharomyces pombe

    SciTech Connect

    Agar, D.W.; Bailey, J.E.

    1982-01-01

    Pulsing of temperature in a fermentor at intervals coincident with cell generation time was used to induce synchrony in a population of the fission yeast Schizosaccharomyces pombe. Measurements of culture protein, RNA, and DNA during synchronous growth confirm continuous synthesis of protein and RNA and discontinuous synthesis of DNA as previously reported. Flow microfluorometry of populations at different times during the synchrony cycle was used to monitor the changes in single-cell protein, RNA, and DNA frequency functions. These measurements illustrate very clearly the degree of synchrony and patterns of macromolecular synthesis and also confirm previous estimates of the cellular protein contents characteristic of dividing cells. Additional insights into single-cell kinetics and division controls are provided by two-parameter flow microfluorometry measurements and by mathematical modeling of population dynamics. Such data are necessary foundations for robust population balance models of microbial processes. (Refs. 31).

  3. Fission yeast IQGAP arranges actin filaments into the cytokinetic contractile ring

    PubMed Central

    Takaine, Masak; Numata, Osamu; Nakano, Kentaro

    2009-01-01

    The contractile ring (CR) consists of bundled actin filaments and myosin II; however, the actin-bundling factor remains elusive. We show that the fission yeast Schizosaccharomyces pombe IQGAP Rng2 is involved in the generation of CR F-actin and required for its arrangement into a ring. An N-terminal fragment of Rng2 is necessary for the function of Rng2 and is localized to CR F-actin. In vitro the fragment promotes actin polymerization and forms linear arrays of F-actin, which are resistant to the depolymerization induced by the actin-depolymerizing factor Adf1. Our findings indicate that Rng2 is involved in the generation of CR F-actin and simultaneously bundles the filaments and regulates its dynamics by counteracting the effects of Adf1, thus enabling the reconstruction of CR F-actin bundles, which provides an insight into the physical properties of the building blocks that comprise the CR. PMID:19713940

  4. The fission yeast spore is coated by a proteinaceous surface layer comprising mainly Isp3

    PubMed Central

    Fukunishi, Kana; Miyakubi, Kana; Hatanaka, Mitsuko; Otsuru, Natsumi; Hirata, Aiko; Shimoda, Chikashi; Nakamura, Taro

    2014-01-01

    The spore is a dormant cell that is resistant to various environmental stresses. As compared with the vegetative cell wall, the spore wall has a more extensive structure that confers resistance on spores. In the fission yeast Schizosaccharomyces pombe, the polysaccharides glucan and chitosan are major components of the spore wall; however, the structure of the spore surface remains unknown. We identify the spore coat protein Isp3/Meu4. The isp3 disruptant is viable and executes meiotic nuclear divisions as efficiently as the wild type, but isp3∆ spores show decreased tolerance to heat, digestive enzymes, and ethanol. Electron microscopy shows that an electron-dense layer is formed at the outermost region of the wild-type spore wall. This layer is not observed in isp3∆ spores. Furthermore, Isp3 is abundantly detected in this layer by immunoelectron microscopy. Thus Isp3 constitutes the spore coat, thereby conferring resistance to various environmental stresses. PMID:24623719

  5. Nuclear retention of fission yeast dicer is a prerequisite for RNAi-mediated heterochromatin assembly.

    PubMed

    Emmerth, Stephan; Schober, Heiko; Gaidatzis, Dimos; Roloff, Tim; Jacobeit, Kirsten; Bühler, Marc

    2010-01-19

    RNaseIII ribonucleases act at the heart of RNA silencing pathways by processing precursor RNAs into mature microRNAs and siRNAs. In the fission yeast Schizosaccharomyces pombe, siRNAs are generated by the RNaseIII enzyme Dcr1 and are required for heterochromatin formation at centromeres. In this study, we have analyzed the subcellular localization of Dcr1 and found that it accumulates in the nucleus and is enriched at the nuclear periphery. Nuclear accumulation of Dcr1 depends on a short motif that impedes nuclear export promoted by the double-stranded RNA binding domain of Dcr1. Absence of this motif renders Dcr1 mainly cytoplasmic and is accompanied by remarkable changes in gene expression and failure to assemble heterochromatin. Our findings suggest that Dicer proteins are shuttling proteins and that the steady-state subcellular levels can be shifted toward either compartment.

  6. A formin-nucleated actin aster concentrates cell wall hydrolases for cell fusion in fission yeast

    PubMed Central

    Dudin, Omaya; Bendezú, Felipe O.; Groux, Raphael; Laroche, Thierry; Seitz, Arne

    2015-01-01

    Cell–cell fusion is essential for fertilization. For fusion of walled cells, the cell wall must be degraded at a precise location but maintained in surrounding regions to protect against lysis. In fission yeast cells, the formin Fus1, which nucleates linear actin filaments, is essential for this process. In this paper, we show that this formin organizes a specific actin structure—the actin fusion focus. Structured illumination microscopy and live-cell imaging of Fus1, actin, and type V myosins revealed an aster of actin filaments whose barbed ends are focalized near the plasma membrane. Focalization requires Fus1 and type V myosins and happens asynchronously always in the M cell first. Type V myosins are essential for fusion and concentrate cell wall hydrolases, but not cell wall synthases, at the fusion focus. Thus, the fusion focus focalizes cell wall dissolution within a broader cell wall synthesis zone to shift from cell growth to cell fusion. PMID:25825517

  7. Gradients of phosphatidylserine contribute to plasma membrane charge localization and cell polarity in fission yeast

    PubMed Central

    Haupt, Armin; Minc, Nicolas

    2017-01-01

    Surface charges at the inner leaflet of the plasma membrane may contribute to regulate the surface recruitment of key signaling factors. Phosphatidylserine (PS) is an abundant charged lipid that may regulate charge distribution in different cell types. Here we characterize the subcellular distribution and function of PS in the rod-shaped, polarized fission yeast. We find that PS preferably accumulates at cell tips and defines a gradient of negative charges along the cell surface. This polarization depends on actin-mediated endocytosis and contributes to the subcellular partitioning of charged polarity-regulating Rho GTPases like Rho1 or Cdc42 in a protein charge–dependent manner. Cells depleted of PS have altered cell dimensions and fail to properly regulate growth from the second end, suggesting a role for PS and membrane charge in polarized cell growth. PMID:27852900

  8. A large gene family in fission yeast encodes spore killers that subvert Mendel's law.

    PubMed

    Hu, Wen; Jiang, Zhao-Di; Suo, Fang; Zheng, Jin-Xin; He, Wan-Zhong; Du, Li-Lin

    2017-06-20

    Spore killers in fungi are selfish genetic elements that distort Mendelian segregation in their favor. It remains unclear how many species harbor them and how diverse their mechanisms are. Here, we discover two spore killers from a natural isolate of the fission yeast Schizosaccharomyces pombe. Both killers belong to the previously uncharacterized wtf gene family with 25 members in the reference genome. These two killers act in strain-background-independent and genome-location-independent manners to perturb the maturation of spores not inheriting them. Spores carrying one killer are protected from its killing effect but not that of the other killer. The killing and protecting activities can be uncoupled by mutation. The numbers and sequences of wtf genes vary considerably between S. pombe isolates, indicating rapid divergence. We propose that wtf genes contribute to the extensive intraspecific reproductive isolation in S. pombe, and represent ideal models for understanding how segregation-distorting elements act and evolve.

  9. Does a shift to limited glucose activate checkpoint control in fission yeast?

    PubMed

    Saitoh, Shigeaki; Yanagida, Mitsuhiro

    2014-08-01

    Here we review cell cycle control in the fission yeast, Schizosaccharomyces pombe, in response to an abrupt reduction of glucose concentration in culture media. S. pombe arrests cell cycle progression when transferred from media containing 2.0% glucose to media containing 0.1%. After a delay, S. pombe resumes cell division at a surprisingly fast rate, comparable to that observed in 2% glucose. We found that a number of genes, including zinc-finger transcription factor Scr1, CaMKK-like protein kinase Ssp1, and glucose transporter Ght5, enable rapid cell division in low glucose. In this article, we examine whether cell cycle checkpoint-like control operates during the delay and after resumption of cell division in limited-glucose. Using microarray analysis and genetic screening, we identified several candidate genes that may be involved in controlling this low-glucose adaptation. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Force- and length-dependent catastrophe activities explain interphase microtubule organization in fission yeast.

    PubMed

    Foethke, Dietrich; Makushok, Tatyana; Brunner, Damian; Nédélec, François

    2009-01-01

    The cytoskeleton is essential for the maintenance of cell morphology in eukaryotes. In fission yeast, for example, polarized growth sites are organized by actin, whereas microtubules (MTs) acting upstream control where growth occurs. Growth is limited to the cell poles when MTs undergo catastrophes there and not elsewhere on the cortex. Here, we report that the modulation of MT dynamics by forces as observed in vitro can quantitatively explain the localization of MT catastrophes in Schizosaccharomyces pombe. However, we found that it is necessary to add length-dependent catastrophe rates to make the model fully consistent with other previously measured traits of MTs. We explain the measured statistical distribution of MT-cortex contact times and re-examine the curling behavior of MTs in unbranched straight tea1Delta cells. Importantly, the model demonstrates that MTs together with associated proteins such as depolymerizing kinesins are, in principle, sufficient to mark the cell poles.

  11. Synchronized fission yeast meiosis using an ATP analog-sensitive Pat1 protein kinase

    PubMed Central

    Cipak, Lubos; Polakova, Silvia; Hyppa, Randy W.; Smith, Gerald R.; Gregan, Juraj

    2014-01-01

    Synchronous cultures are often indispensable for studying meiosis. Here, we present an optimized protocol for induction of synchronous meiosis in the fission yeast Schizosaccharomyces pombe. Chemical inactivation of an ATP analog-sensitive form of the Pat1 kinase (pat1-as2) by adding the ATP-analog 1-NM-PP1 in G1-arrested cells allows induction of synchronous meiosis at optimal temperature (25 °C). Importantly, this protocol eliminates detrimental effects of elevated temperature (34 °C) which is required to inactivate the commonly used temperature-sensitive Pat1 kinase mutant (pat1-114). Addition of the mat-Pc gene to a mat1-M strain further improves chromosome segregation and spore viability. Thus, our protocol offers highly synchronous meiosis at optimal temperature with most characteristics similar to those of wild-type meiosis. The synchronization protocol can be completed in 5 days. PMID:24385151

  12. Monitoring DNA replication in fission yeast by incorporation of 5-ethynyl-2'-deoxyuridine.

    PubMed

    Hua, Hui; Kearsey, Stephen E

    2011-05-01

    We report procedures to allow incorporation and detection of 5-ethynyl-2'-deoxyuridine (EdU) in fission yeast, a thymidine analogue which has some technical advantages over use of bromodeoxyuridine. Low concentrations of EdU (1 µM) are sufficient to allow detection of incorporation in cells expressing thymidine kinase and human equilibrative nucleoside transporter 1 (hENT1). However EdU is toxic and activates the rad3-dependent checkpoint, resulting in cell cycle arrest, potentially limiting its applications for procedures which require labelling over more than one cell cycle. Limited DNA synthesis, when elongation is largely blocked by hydroxyurea, can be readily detected by EdU incorporation using fluorescence microscopy. Thus EdU should be useful for detecting early stages of S phase, or DNA synthesis associated with DNA repair and recombination.

  13. Chromosomal inheritance of epigenetic states in fission yeast during mitosis and meiosis.

    PubMed

    Grewal, S I; Klar, A J

    1996-07-12

    Inheritance of the active and inactive states of gene expression by individual cells is crucial for development. In fission yeast, mating-type region consists of three loci called mat1, mat2, and mat3. Transcriptionally silent mat2 and mat3 loci are separated by a 15 kb interval, designated the K-region, and serve as donors of information for transcriptionally active mat1 interconversion. In a strain carrying replacement of 7.5 kb of the K-region with the ura4 gene, we discovered that ura4 silencing and efficiency of mating-type switching were covariegated and were regulated by an epigenetic mechanism. Genetic analyses demonstrated that epigenetic states were remarkably stable not only in mitosis but also in meiosis and were linked to the mating-type region. This study indicates that different epigenetic states are heritable forms of chromatin organization at the mat region.

  14. Rearrangements of the transposable mating-type cassettes of fission yeast.

    PubMed Central

    Beach, D H; Klar, A J

    1984-01-01

    The fission yeast, Schizosaccharomyces pombe, switches mating type every few cell divisions. Switching is controlled by the genes of the mating-type locus, which consists of three components, mat1, mat2-P and mat3-M, each separated by approximately 15 kb. Copy transposition of P (Plus) or M (Minus) information from mat2-P or mat3-M into the expression locus mat1 mediates cell type switching. The mating-type locus undergoes events at high frequency (10(-2)-10(-6)) which stabilize one or other mating type. These events are shown to be rearrangements which result in either deletion or insertion of DNA between cassettes. Images Fig. 3. Fig. 5. Fig. 7. Fig. 8. PMID:6325178

  15. Force and length regulation in the microtubule cytoskeleton: lessons from fission yeast.

    PubMed

    Tolić-Nørrelykke, Iva M

    2010-02-01

    How does a living cell deal with basic concepts of physics such as length and force? The cell has to measure distances and regulate forces to dynamically organize its interior. This is to a large extent based on microtubules (MTs) and motor proteins. Two concepts are emerging from recent studies as key to the positioning of cell components: preferred disassembly of longer MTs and preferred detachment of motors under high load force. The role of these concepts in nuclear centering and nuclear oscillations is coming to light from experimental and theoretical studies in fission yeast. These universal concepts are likely crucial for a variety of cell processes, including nuclear and mitotic spindle positioning, control of spindle length, and chromosome congression on the metaphase plate. Copyright 2009 Elsevier Ltd. All rights reserved.

  16. Purification, crystallization and preliminary X-ray diffraction analysis of the histone chaperone cia1 from fission yeast

    SciTech Connect

    Umehara, Takashi; Otta, Yumi; Tsuganezawa, Keiko; Matsumoto, Takehisa; Tanaka, Akiko; Horikoshi, Masami; Padmanabhan, Balasundaram; Yokoyama, Shigeyuki

    2005-11-01

    The histone chaperone cia1 from fission yeast has been overexpressed in E. coli, purified and crystallized using the vapour-diffusion method. In fission yeast, cia1{sup +} is an essential gene that encodes a histone chaperone, a homologue of human CIA (CCG1-interacting factor A) and budding yeast Asf1p (anti-silencing function-1), which both facilitate nucleosome assembly by interacting with the core histones H3/H4. The conserved domain (residues 1–161) of the cia1{sup +}-encoded protein was expressed in Escherichia coli, purified to near-homogeneity and crystallized by the sitting-drop vapour-diffusion method. The protein was crystallized in the monoclinic space group C2, with unit-cell parameters a = 79.16, b = 40.53, c = 69.79 Å, β = 115.93° and one molecule per asymmetric unit. The crystal diffracted to beyond 2.10 Å resolution using synchrotron radiation.

  17. Wee1 and Cdc25 are controlled by conserved PP2A-dependent mechanisms in fission yeast.

    PubMed

    Lucena, Rafael; Alcaide-Gavilán, Maria; Anastasia, Steph D; Kellogg, Douglas R

    2017-03-04

    Wee1 and Cdc25 are conserved regulators of mitosis. Wee1 is a kinase that delays mitosis via inhibitory phosphorylation of Cdk1, while Cdc25 is a phosphatase that promotes mitosis by removing the inhibitory phosphorylation. Although Wee1 and Cdc25 are conserved proteins, it has remained unclear whether their functions and regulation are conserved across diverse species. Here, we analyzed regulation of Wee1 and Cdc25 in fission yeast. Both proteins undergo dramatic cell cycle-dependent changes in phosphorylation that are dependent upon PP2A associated with the regulatory subunit Pab1. The mechanisms that control Wee1 and Cdc25 in fission yeast appear to share similarities to those in budding yeast and vertebrates, which suggests that there may be common mechanisms that control mitotic entry in all eukaryotic cells.

  18. A Genetic and Pharmacological Analysis of Isoprenoid Pathway by LC-MS/MS in Fission Yeast

    PubMed Central

    Takami, Tomonori; Fang, Yue; Zhou, Xin; Jaiseng, Wurentuya; Ma, Yan; Kuno, Takayoshi

    2012-01-01

    Currently, statins are the only drugs acting on the mammalian isoprenoid pathway. The mammalian genes in this pathway are not easily amenable to genetic manipulation. Thus, it is difficult to study the effects of the inhibition of various enzymes on the intermediate and final products in the isoprenoid pathway. In fission yeast, antifungal compounds such as azoles and terbinafine are available as inhibitors of the pathway in addition to statins, and various isoprenoid pathway mutants are also available. Here in these mutants, treated with statins or antifungals, we quantified the final and intermediate products of the fission yeast isoprenoid pathway using liquid chromatography-mass spectrometry/mass spectrometry. In hmg1-1, a mutant of the gene encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR), ergosterol (a final sterol product), and squalene (an intermediate pathway product), were decreased to approximately 80% and 10%, respectively, compared with that of wild-type cells. Consistently in wild-type cells, pravastatin, an HMGR inhibitor decreased ergosterol and squalene, and the effect was more pronounced on squalene. In hmg1-1 mutant and in wild-type cells treated with pravastatin, the decrease in the levels of farnesyl pyrophosphate and geranylgeranyl pyrophosphate respectively was larger than that of ergosterol but was smaller than that of squalene. In Δerg6 or Δsts1 cells, mutants of the genes involved in the last step of the pathway, ergosterol was not detected, and the changes of intermediate product levels were distinct from that of hmg1-1 mutant. Notably, in wild-type cells miconazole and terbinafine only slightly decreased ergosterol level. Altogether, these studies suggest that the pleiotropic phenotypes caused by the hmg1-1 mutation and pravastatin might be due to decreased levels of isoprenoid pyrophosphates or other isoprenoid pathway intermediate products rather than due to a decreased ergosterol level. PMID:23145048

  19. A Genetic Screen for Fission Yeast Gene Deletion Mutants Exhibiting Hypersensitivity to Latrunculin A

    PubMed Central

    Asadi, Farzad; Michalski, Dorothy; Karagiannis, Jim

    2016-01-01

    Fission yeast cells treated with low doses of the actin depolymerizing drug, latrunculin A (LatA), delay entry into mitosis via a mechanism that is dependent on both the Clp1p and Rad24p proteins. During this delay, cells remain in a cytokinesis-competent state that is characterized by continuous repair and/or reestablishment of the actomyosin ring. In this manner, cells ensure the faithful completion of the preceding cytokinesis in response to perturbation of the cell division machinery. To uncover other genes with a role in this response, or simply genes with roles in adapting to LatA-induced stress, we carried out a genome-wide screen and identified a group of 38 gene deletion mutants that are hyper-sensitive to the drug. As expected, we found genes affecting cytokinesis and/or the actin cytoskeleton within this set (ain1, acp2, imp2). We also identified genes with roles in histone modification (tra1, ngg1), intracellular transport (apl5, aps3), and glucose-mediated signaling (git3, git5, git11, pka1, cgs2). Importantly, while the identified gene deletion mutants are prone to cytokinesis failure in the presence of LatA, they are nevertheless fully capable of cell division in the absence of the drug. These results indicate that fission yeast cells make use of a diverse set of regulatory modules to counter abnormal cytoskeletal perturbations, and furthermore, that these modules act redundantly to ensure cell survival and proliferation. PMID:27466272

  20. A mutation of the fission yeast EB1 overcomes negative regulation by phosphorylation and stabilizes microtubules

    SciTech Connect

    Iimori, Makoto; Ozaki, Kanako; Chikashige, Yuji; Habu, Toshiyuki; Hiraoka, Yasushi; Maki, Takahisa; Hayashi, Ikuko; Obuse, Chikashi; Matsumoto, Tomohiro

    2012-02-01

    Mal3 is a fission yeast homolog of EB1, a plus-end tracking protein (+ TIP). We have generated a mutation (89R) replacing glutamine with arginine in the calponin homology (CH) domain of Mal3. Analysis of the 89R mutant in vitro has revealed that the mutation confers a higher affinity to microtubules and enhances the intrinsic activity to promote the microtubule-assembly. The mutant Mal3 is no longer a + TIP, but binds strongly the microtubule lattice. Live cell imaging has revealed that while the wild type Mal3 proteins dissociate from the tip of the growing microtubules before the onset of shrinkage, the mutant Mal3 proteins persist on microtubules and reduces a rate of shrinkage after a longer pausing period. Consequently, the mutant Mal3 proteins cause abnormal elongation of microtubules composing the spindle and aster. Mal3 is phosphorylated at a cluster of serine/threonine residues in the linker connecting the CH and EB1-like C-terminal motif domains. The phosphorylation occurs in a microtubule-dependent manner and reduces the affinity of Mal3 to microtubules. We propose that because the 89R mutation is resistant to the effect of phosphorylation, it can associate persistently with microtubules and confers a stronger stability of microtubules likely by reinforcing the cylindrical structure. -- Highlights: Black-Right-Pointing-Pointer We characterize a mutation (mal3-89R) in fission yeast homolog of EB1. Black-Right-Pointing-Pointer The mutation enhances the activity to assemble microtubules. Black-Right-Pointing-Pointer Mal3 is phosphorylated in a microtubule-dependent manner. Black-Right-Pointing-Pointer The phosphorylation negatively regulates the Mal3 activity.

  1. Multiple modes of chromatin configuration at natural meiotic recombination hot spots in fission yeast.

    PubMed

    Hirota, Kouji; Steiner, Walter W; Shibata, Takehiko; Ohta, Kunihiro

    2007-11-01

    The ade6-M26 meiotic recombination hot spot of fission yeast is defined by a cyclic AMP-responsive element (CRE)-like heptanucleotide sequence, 5'-ATGACGT-3', which acts as a binding site for the Atf1/Pcr1 heterodimeric transcription factor required for hot spot activation. We previously demonstrated that the local chromatin around the M26 sequence motif alters to exhibit higher sensitivity to micrococcal nuclease before the initiation of meiotic recombination. In this study, we have examined whether or not such alterations in chromatin occur at natural meiotic DNA double-strand break (DSB) sites in Schizosaccharomyces pombe. At one of the most prominent DSB sites, mbs1 (meiotic break site 1), the chromatin structure has a constitutively accessible configuration at or near the DSB sites. The establishment of the open chromatin state and DSB formation are independent of the CRE-binding transcription factor, Atf1. Analysis of the chromatin configuration at CRE-dependent DSB sites revealed both differences from and similarities to mbs1. For example, the tdh1+ locus, which harbors a CRE consensus sequence near the DSB site, shows a meiotically induced open chromatin configuration, similar to ade6-M26. In contrast, the cds1+ locus is similar to mbs1 in that it exhibits a constitutive open configuration. Importantly, Atf1 is required for the open chromatin formation in both tdh1+ and cds1+. These results suggest that CRE-dependent meiotic chromatin changes are intrinsic processes related to DSB formation in fission yeast meiosis. In addition, the results suggest that the chromatin configuration in natural meiotic recombination hot spots can be classified into at least three distinct categories: (i) an Atf1-CRE-independent constitutively open chromatin configuration, (ii) an Atf1-CRE-dependent meiotically induced open chromatin configuration, and (iii) an Atf1-CRE-dependent constitutively open chromatin configuration.

  2. The spindle pole bodies facilitate nuclear envelope division during closed mitosis in fission yeast.

    PubMed

    Zheng, Liling; Schwartz, Cindi; Magidson, Valentin; Khodjakov, Alexey; Oliferenko, Snezhana

    2007-07-01

    Many organisms divide chromosomes within the confines of the nuclear envelope (NE) in a process known as closed mitosis. Thus, they must ensure coordination between segregation of the genetic material and division of the NE itself. Although many years of work have led to a reasonably clear understanding of mitotic spindle function in chromosome segregation, the NE division mechanism remains obscure. Here, we show that fission yeast cells overexpressing the transforming acid coiled coil (TACC)-related protein, Mia1p/Alp7p, failed to separate the spindle pole bodies (SPBs) at the onset of mitosis, but could assemble acentrosomal bipolar and antiparallel spindle structures. Most of these cells arrested in anaphase with fully extended spindles and nonsegregated chromosomes. Spindle poles that lacked the SPBs did not lead the division of the NE during spindle elongation, but deformed it, trapping the chromosomes within. When the SPBs were severed by laser microsurgery in wild-type cells, we observed analogous deformations of the NE by elongating spindle remnants, resulting in NE division failure. Analysis of dis1Delta cells that elongate spindles despite unattached kinetochores indicated that the SPBs were required for maintaining nuclear shape at anaphase onset. Strikingly, when the NE was disassembled by utilizing a temperature-sensitive allele of the Ran GEF, Pim1p, the abnormal spindles induced by Mia1p overexpression were capable of segregating sister chromatids to daughter cells, suggesting that the failure to divide the NE prevents chromosome partitioning. Our results imply that the SPBs preclude deformation of the NE during spindle elongation and thus serve as specialized structures enabling nuclear division during closed mitosis in fission yeast.

  3. Actin filament bundling by fimbrin is important for endocytosis, cytokinesis, and polarization in fission yeast.

    PubMed

    Skau, Colleen T; Courson, David S; Bestul, Andrew J; Winkelman, Jonathan D; Rock, Ronald S; Sirotkin, Vladimir; Kovar, David R

    2011-07-29

    Through the coordinated action of diverse actin-binding proteins, cells simultaneously assemble actin filaments with distinct architectures and dynamics to drive different processes. Actin filament cross-linking proteins organize filaments into higher order networks, although the requirement of cross-linking activity in cells has largely been assumed rather than directly tested. Fission yeast Schizosaccharomyces pombe assembles actin into three discrete structures: endocytic actin patches, polarizing actin cables, and the cytokinetic contractile ring. The fission yeast filament cross-linker fimbrin Fim1 primarily localizes to Arp2/3 complex-nucleated branched filaments of the actin patch and by a lesser amount to bundles of linear antiparallel filaments in the contractile ring. It is unclear whether Fim1 associates with bundles of parallel filaments in actin cables. We previously discovered that a principal role of Fim1 is to control localization of tropomyosin Cdc8, thereby facilitating cofilin-mediated filament turnover. Therefore, we hypothesized that the bundling ability of Fim1 is dispensable for actin patches but is important for the contractile ring and possibly actin cables. By directly visualizing actin filament assembly using total internal reflection fluorescence microscopy, we determined that Fim1 bundles filaments in both parallel and antiparallel orientations and efficiently bundles Arp2/3 complex-branched filaments in the absence but not the presence of actin capping protein. Examination of cells exclusively expressing a truncated version of Fim1 that can bind but not bundle actin filaments revealed that bundling activity of Fim1 is in fact important for all three actin structures. Therefore, fimbrin Fim1 has diverse roles as both a filament "gatekeeper" and as a filament cross-linker.

  4. Involvement of fission yeast Pdc2 in RNA degradation and P-body function.

    PubMed

    Wang, Chun-Yu; Wang, Yi-Ting; Hsiao, Wan-Yi; Wang, Shao-Win

    2017-04-01

    In this study we identified Pdc2, the fission yeast ortholog of human Pat1b protein, which forms a complex with Lsm1-7 and plays a role in coupling deadenylation and decapping. The involvement of Pdc2 in RNA degradation and P-body function was also determined. We found that Pdc2 interacts with Dcp2 and is required for decapping in vivo. Although not absolutely essential for P-body assembly, overexpression of Pdc2 enhanced P-body formation even in the absence of Pdc1, the fission yeast functional homolog of human Edc4 protein, indicating that Pdc2 also plays a role in P-body formation. Intriguingly, in the absence of Pdc2, Lsm1 was found to accumulate in the nucleus, suggesting that Pdc2 shuttling between nucleus and cytoplasm plays a role in decreasing the nuclear concentration of Lsm1 to increase Lsm1 in the cytoplasm. Furthermore, unlike other components of P-bodies, the deadenylase Ccr4 did not accumulate in P-bodies in cells growing under favorable conditions and was only recruited to P-bodies after deprivation of glucose in a Pdc2-Lsm1-dependent manner, indicating a function of Pdc2 in cellular response to environmental stress. In supporting this idea, pdc2 mutants are defective in recovery from glucose starvation with a much longer time to re-enter the cell cycle. In keeping with the notion that Pat1 is a nucleocytoplasmic protein, functioning also in the nucleus, we found that Pdc2 physically and genetically interacts with the nuclear 5'-3' exonuclease Dhp1. A function of Pdc2-Lsm1, in concert with Dhp1, regulating RNA by promoting its decapping/destruction in the nucleus was suggested.

  5. Mga2 Transcription Factor Regulates an Oxygen-responsive Lipid Homeostasis Pathway in Fission Yeast*

    PubMed Central

    Burr, Risa; Stewart, Emerson V.; Shao, Wei; Zhao, Shan; Hannibal-Bach, Hans Kristian; Ejsing, Christer S.; Espenshade, Peter J.

    2016-01-01

    Eukaryotic lipid synthesis is oxygen-dependent with cholesterol synthesis requiring 11 oxygen molecules and fatty acid desaturation requiring 1 oxygen molecule per double bond. Accordingly, organisms evaluate oxygen availability to control lipid homeostasis. The sterol regulatory element-binding protein (SREBP) transcription factors regulate lipid homeostasis. In mammals, SREBP-2 controls cholesterol biosynthesis, whereas SREBP-1 controls triacylglycerol and glycerophospholipid biosynthesis. In the fission yeast Schizosaccharomyces pombe, the SREBP-2 homolog Sre1 regulates sterol homeostasis in response to changing sterol and oxygen levels. However, notably missing is an SREBP-1 analog that regulates triacylglycerol and glycerophospholipid homeostasis in response to low oxygen. Consistent with this, studies have shown that the Sre1 transcription factor regulates only a fraction of all genes up-regulated under low oxygen. To identify new regulators of low oxygen adaptation, we screened the S. pombe nonessential haploid deletion collection and identified 27 gene deletions sensitive to both low oxygen and cobalt chloride, a hypoxia mimetic. One of these genes, mga2, is a putative transcriptional activator. In the absence of mga2, fission yeast exhibited growth defects under both normoxia and low oxygen conditions. Mga2 transcriptional targets were enriched for lipid metabolism genes, and mga2Δ cells showed disrupted triacylglycerol and glycerophospholipid homeostasis, most notably with an increase in fatty acid saturation. Indeed, addition of exogenous oleic acid to mga2Δ cells rescued the observed growth defects. Together, these results establish Mga2 as a transcriptional regulator of triacylglycerol and glycerophospholipid homeostasis in S. pombe, analogous to mammalian SREBP-1. PMID:27053105

  6. Cell cycle-dependent specific positioning and clustering of centromeres and telomeres in fission yeast

    PubMed Central

    1993-01-01

    Fluorescence in situ hybridization (FISH) shows that fission yeast centromeres and telomeres make up specific spatial arrangements in the nucleus. Their positioning and clustering are cell cycle regulated. In G2, centromeres cluster adjacent to the spindle pole body (SPB), while in mitosis, their association with each other and with the SPB is disrupted. Similarly, telomeres cluster at the nuclear periphery in G2 and their associations are disrupted in mitosis. Mitotic centromeres interact with the spindle. They remain undivided until the spindle reaches a critical length, then separate and move towards the poles. This demonstrated, for the first time, that anaphase A occurs in fission yeast. The mode of anaphase A and B is similar to that of higher eukaryotes. In nda3 and cut7 mutants defective in tubulin of a kinesin-related motor, cells are blocked in early stages of mitosis due to the absence of the spindle, and centromeres dissociate but remain close to the SPB, whereas in a metaphase-arrested nuc2 mutant, they reside at the middle of the spindle. FISH is therefore a powerful tool for analyzing mitotic chromosome movement and disjunction using various mutants. Surprisingly, in top2 defective in DNA topoisomerase II, while most chromatid DNAs remain undivided, sister centromeres are separated. Significance of this finding is discussed. In contrast, most chromatid DNAs are separated but telomeric DNAs are not in cut1 mutant. In cut1, the dependence of SPB duplication on the completion of mitosis is abolished. In crm1 mutant cells defective in higher-order chromosome organization, the interphase arrangements of centromeres and telomeres are disrupted. PMID:8388878

  7. Establishment of expression-state boundaries by Rif1 and Taz1 in fission yeast

    PubMed Central

    Toteva, Tea; Mason, Bethany; Kanoh, Yutaka; Brøgger, Peter; Green, Daniel; Verhein-Hansen, Janne; Masai, Hisao

    2017-01-01

    The Shelterin component Rif1 has emerged as a global regulator of the replication-timing program in all eukaryotes examined to date, possibly by modulating the 3D-organization of the genome. In fission yeast a second Shelterin component, Taz1, might share similar functions. Here, we identified unexpected properties for Rif1 and Taz1 by conducting high-throughput genetic screens designed to identify cis- and trans-acting factors capable of creating heterochromatin–euchromatin boundaries in fission yeast. The preponderance of cis-acting elements identified in the screens originated from genomic loci bound by Taz1 and associated with origins of replication whose firing is repressed by Taz1 and Rif1. Boundary formation and gene silencing by these elements required Taz1 and Rif1 and coincided with altered replication timing in the region. Thus, small chromosomal elements sensitive to Taz1 and Rif1 (STAR) could simultaneously regulate gene expression and DNA replication over a large domain, at the edge of which they established a heterochromatin–euchromatin boundary. Taz1, Rif1, and Rif1-associated protein phosphatases Sds21 and Dis2 were each sufficient to establish a boundary when tethered to DNA. Moreover, efficient boundary formation required the amino-terminal domain of the Mcm4 replicative helicase onto which the antagonistic activities of the replication-promoting Dbf4-dependent kinase and Rif1-recruited phosphatases are believed to converge to control replication origin firing. Altogether these observations provide an insight into a coordinated control of DNA replication and organization of the genome into expression domains. PMID:28096402

  8. Cell length growth patterns in fission yeast reveal a novel size control mechanism operating in late G2 phase.

    PubMed

    Horváth, Anna; Rácz-Mónus, Anna; Buchwald, Peter; Sveiczer, Ákos

    2016-09-01

    Because cylindrically shaped fission yeast cells grow exclusively at their tips, cell volume is proportional to length and can be easily monitored by time-lapse microscopy. Here, we analysed the growth pattern of individual cells from several fission yeast strains to determine the growth function that describes them most adequately and to perform size control studies. The growth pattern of most cells during their growth period is best described by a bilinear function (i.e., two linear segments of different growth rates separated by a rate-change point). Linear growth patterns were also observed in several cases, but exponential ones only rarely. Since the bilinear patterns are separated into two segments by a breakpoint, we examined the existence of size control by regression analyses of the appropriate growth parameters in both segments. This confirmed the existence of known size controls in late G1, mid-G2 and late G2 during the fission yeast cycle. The present analyses also revealed that, contrary to the commonly accepted current view, late G2 size control is a general characteristic third event in the cycle. The level of the critical late G2 size that needs to be reached in an individual fission yeast cell is influenced by the growth rate of the cell in a manner similar to budding yeast, suggesting an evolutionary conserved mechanism. The present study of individual cell growth patterns in wild-type and several cell cycle mutant fission yeast strains confirmed that, for most cells, growth is best described by a bilinear function. Three different size control mechanisms were found to operate in the different strains, and, as a novel observation, cell size was always found to be monitored before mitotic onset, irrespective of the existence of any earlier size checkpoints. Studying the pattern of growth and the mechanism of size control helps to clarify the connections between cell growth and division, since their coordination must work properly to maintain size

  9. High-throughput genetic interaction mapping in the fission yeast Schizosaccharomyces pombe.

    PubMed

    Roguev, Assen; Wiren, Marianna; Weissman, Jonathan S; Krogan, Nevan J

    2007-10-01

    Epistasis analysis, which reports on the extent to which the function of one gene depends on the presence of a second, is a powerful tool for studying the functional organization of the cell. Systematic genome-wide studies of epistasis, however, have been limited, with the majority of data being collected in the budding yeast, Saccharomyces cerevisiae. Here we present two 'pombe epistasis mapper' strategies, PEM-1 and PEM-2, which allow for high-throughput double mutant generation in the fission yeast, S. pombe. These approaches take advantage of a previously undescribed, recessive, cycloheximide-resistance mutation. Both systems can be used for genome-wide screens or for the generation of high-density, quantitative epistatic miniarray profiles (E-MAPs). Since S. cerevisiae and S. pombe are evolutionary distant, this methodology will provide insight into conserved biological pathways that are present in S. pombe, but not S. cerevisiae, and will enable a comprehensive analysis of the conservation of genetic interaction networks.

  10. Quantitative Analysis of Statics and Dynamics of Actin Cables in Fission Yeast

    NASA Astrophysics Data System (ADS)

    Yusuf, Eddy; Wu, Jian-Qiu; Vavylonis, Dimitrios

    2010-03-01

    The assembly of actin and tubulin proteins into long filaments and bundles, i.e. closely-packed filaments, underlies important cellular processes such as cell motility, intracellular transport, and cell division. Recent theoretical and experimental work has addressed the nonequilibrium dynamics of single microtubules within live cells [1]. Actin filaments usually form dense networks that prevents microscopic imaging of individual filaments or bundles. Here, we studied actin dynamics using fission yeast that has low-density actin cytoskeleton consisting of actin cables (actin bundles aligned along the long axis of the cell) and ``actin patches.'' Yeast cells expressing GFP-CHD were imaged by 3D confocal microscopy. Stretching open active contours [2] were used to segment and track individual actin cables. We analyzed their curvature distribution, the tangent correlation, and the temporal bending amplitude fluctuations. We contrast our findings to equilibrium fluctuating semiflexible polymers and to microtubules in cells. We calculate the important time and length scales for the actin cables. We also discuss our findings within the broad context of understanding actin assembly in cells. [1] C. P. Brangwynne et. al., Phys. Rev. Lett. 100, 118104 (2008) [2] H. Li et. al., Proc. of the IEEE Int'l Symposium on Biomedical Imaging: From Nano to Macro, ISBI'09

  11. Autophagy is required for efficient meiosis progression and proper meiotic chromosome segregation in fission yeast.

    PubMed

    Matsuhara, Hirotada; Yamamoto, Ayumu

    2016-01-01

    Autophagy is a conserved intracellular degradation system, which contributes to development and differentiation of various organisms. Yeast cells undergo meiosis under nitrogen-starved conditions and require autophagy for meiosis initiation. However, the precise roles of autophagy in meiosis remain unclear. Here, we show that autophagy is required for efficient meiosis progression and proper meiotic chromosome segregation in fission yeast. Autophagy-defective strains bearing a mutation in the autophagy core factor gene atg1, atg7, or atg14 exhibit deformed nuclear structures during meiosis. These mutant cells require an extracellular nitrogen supply for meiosis progression following their entry into meiosis and show delayed meiosis progression even with a nitrogen supply. In addition, they show frequent chromosome dissociation from the spindle together with spindle overextension, forming extra nuclei. Furthermore, Aurora kinase, which regulates chromosome segregation and spindle elongation, is significantly increased at the centromere and spindle in the mutant cells. Aurora kinase down-regulation eliminated delayed initiation of meiosis I and II, chromosome dissociation, and spindle overextension, indicating that increased Aurora kinase activity may cause these aberrances in the mutant cells. Our findings show a hitherto unrecognized relationship of autophagy with the nuclear structure, regulation of cell cycle progression, and chromosome segregation in meiosis.

  12. Virtual Nuclear Envelope Breakdown and Its Regulators in Fission Yeast Meiosis.

    PubMed

    Asakawa, Haruhiko; Yang, Hui-Ju; Hiraoka, Yasushi; Haraguchi, Tokuko

    2016-01-01

    Ran, a small GTPase, is required for the spindle formation and nuclear envelope (NE) formation. After NE breakdown (NEBD) during mitosis in metazoan cells, the Ran-GTP gradient across the NE is lost and Ran-GTP becomes concentrated around chromatin, thus affecting the stability of microtubules and promoting the assembly of spindle microtubules and segregation of chromosomes. Mitosis in which chromosomes are segregated subsequent to NEBD is called "open mitosis." In contrast, many fungi undergo a process termed "closed mitosis" in which chromosome segregation and spindle formation occur without NEBD. Although the fission yeast Schizosaccharomyces pombe undergoes a closed mitosis, it exhibits a short period during meiosis (anaphase of the second meiosis; called "anaphase II") when nuclear and cytoplasmic proteins are mixed in the presence of intact NE and nuclear pore complexes (NPC). This "virtual" nuclear envelope breakdown (vNEBD) involves changes in the localization of RanGAP1, an activator of Ran-GTP hydrolysis. Recently, Nup132, a component of the structural core Nup107-160 subcomplex of the NPC, has been shown to be involved in the maintenance of the nuclear cytoplasmic barrier in yeast meiosis. In this review, we highlight the possible roles of RanGAP1 and Nup132 in vNEBD and discuss the biological significance of vNEBD in S. pombe meiosis.

  13. The Reporter System for GPCR Assay with the Fission Yeast Schizosaccharomyces pombe

    PubMed Central

    Sasuga, Shintaro; Osada, Toshiya

    2012-01-01

    G protein-coupled receptors (GPCRs) are associated with a great variety of biological activities. Yeasts are often utilized as a host for heterologous GPCR assay. We engineered the intense reporter plasmids for fission yeast to produce green fluorescent protein (GFP) through its endogenous GPCR pathway. As a control region of GFP expression on the reporter plasmid, we focused on seven endogenous genes specifically activated through the pathway. When upstream regions of these genes were used as an inducible promoter in combination with LPI terminator, the mam2 upstream region produced GFP most rapidly and intensely despite the high background. Subsequently, LPI terminator was replaced with the corresponding downstream regions. The SPBC4.01 downstream region enhanced the response with the low background. Furthermore, combining SPBC4.01 downstream region with the sxa2 upstream region, the signal to noise ratio was obviously better than those of other regions. We also evaluated the time- and dose-dependent GFP productions of the strains transformed with the reporter plasmids. Finally, we exhibited a model of simplified GPCR assay with the reporter plasmid by expressing endogenous GPCR under the control of the foreign promoter. PMID:24278726

  14. Enzyme activities of D-glucose metabolism in the fission yeast Schizosaccharomyces pombe.

    PubMed

    Tsai, C S; Shi, J L; Beehler, B W; Beck, B

    1992-12-01

    The activities of key enzymes that are members of D-glucose metabolic pathways in Schizosaccharomyces pombe undergoing respirative, respirofermentative, and fermentative metabolisms are monitored. The steady-state activities of glycolytic enzymes, except phosphofructokinase, decrease with a reduced efficiency in D-glucose utilization by yeast continuous culture. On the other hand, the enzymic activities of pentose monophosphate pathway reach the maximum when the cell mass production of the cultures is optimum. Enzymes of tricarboxylate cycle exhibit the maximum activities at approximately the washout rate. The steady-state activity of pyruvate dehydrogenase complex increases rapidly when D-glucose is efficiently utilized. By comparison, the activity of pyruvate decarboxylase begins to increase only when ethanol production occurs. Depletion of dissolved oxygen suppresses the activity of pyruvate dehydrogenase complex but facilitates that of pyruvate decarboxylase. Acetate greatly enhances the acetyl CoA synthetase activity. Similarly, ethanol stimulates alcohol dehydrogenase and aldehyde dehydrogenase activities. Evidence for the existence of alcohol dehydrogenase isozymes in the fission yeast is presented.

  15. Identification of a novel protein kinase that affects the chronological lifespan in fission yeast.

    PubMed

    Kurauchi, Tatsuhiro; Hashizume, Aya; Imai, Yuki; Hayashi, Kanako; Tsubouchi, Satoshi; Ihara, Kunio; Ohtsuka, Hokuto; Aiba, Hirofumi

    2017-01-01

    Chronological lifespan is defined by how long a cell can survive in a non-dividing state. In yeast, it is measured by viability after entry into the stationary phase. To understand the regulatory mechanisms of chronological lifespan in Schizosaccharomyces pombe, it is necessary to identify and characterize novel factors involved in the regulation of chronological lifespan. To this end, we have screened for a long-lived mutant and identified that novel gene nnk1(+) that encodes an essential protein kinase is the determinant of chronological lifespan. We showed that the expression of major glucose transporter gene, ght5(+), is decreased in the isolated nnk1-35 mutant, suggesting that Nnk1 protein is involved in the regulation of ght5(+) The consumption of glucose in the growth medium after saturated growth was lower in the nnk1-35 mutant than that in wild-type cell. The isolated ght5 deletion mutant showed long-lived phenotype. Based on these results, we propose that Nnk1 regulates chronological lifespan through the regulation of ght5(+) Nnk1 might coordinate glucose availability and lifespan in fission yeast. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Multifaceted effects of antimetabolite and anticancer drug, 2-deoxyglucose on eukaryotic cancer models budding and fission yeast.

    PubMed

    Vishwanatha, Akshay; D'Souza, Cletus Joseph Michael

    2017-03-01

    Glycolytic inhibitors are of interest therapeutically as they are effective against cancers that display increased glycolytic rate and mitochondrial defects. 2-Deoxyglucose (2-DG) is one such glycolytic inhibitor and was identified to be a competitive inhibitor of glucose. Studies from past few decades have shown that the mechanism of action of 2-DG is complex involving several metabolic and signaling pathways. Budding yeast Saccharomyces cerevisiae and fission yeast Schizosaccharomyces pombe are two important models for studying metabolism, cell cycle and cell signaling. These two unicellular eukaryotes are Crabtree positive yeasts exhibiting a metabolism similar to that of cancer cells. Effects of 2-DG in yeast is of interest owing to these similarities and hence yeasts have emerged as ideal model organisms to study the mode of action and resistance to 2-DG. In this review, we summarize the studies on biological effect and resistance to 2-DG in budding and fission yeasts and give an insight into its possible mechanism of action as models for understanding cancer metabolism and drugs affecting cancer progression. © 2017 IUBMB Life, 69(3):137-147, 2017.

  17. TORC1 signaling inhibition by rapamycin and caffeine affect lifespan, global gene expression, and cell proliferation of fission yeast.

    PubMed

    Rallis, Charalampos; Codlin, Sandra; Bähler, Jürg

    2013-08-01

    Target of rapamycin complex 1 (TORC1) is implicated in growth control and aging from yeast to humans. Fission yeast is emerging as a popular model organism to study TOR signaling, although rapamycin has been thought to not affect cell growth in this organism. Here, we analyzed the effects of rapamycin and caffeine, singly and combined, on multiple cellular processes in fission yeast. The two drugs led to diverse and specific phenotypes that depended on TORC1 inhibition, including prolonged chronological lifespan, inhibition of global translation, inhibition of cell growth and division, and reprograming of global gene expression mimicking nitrogen starvation. Rapamycin and caffeine differentially affected these various TORC1-dependent processes. Combined drug treatment augmented most phenotypes and effectively blocked cell growth. Rapamycin showed a much more subtle effect on global translation than did caffeine, while both drugs were effective in prolonging chronological lifespan. Rapamycin and caffeine did not affect the lifespan via the pH of the growth media. Rapamycin prolonged the lifespan of nongrowing cells only when applied during the growth phase but not when applied after cells had stopped proliferation. The doses of rapamycin and caffeine strongly correlated with growth inhibition and with lifespan extension. This comprehensive analysis will inform future studies into TORC1 function and cellular aging in fission yeast and beyond. © 2013 The Authors. Aging Cell published by John Wiley & Sons Ltd and the Anatomical Society.

  18. TORC1 signaling inhibition by rapamycin and caffeine affect lifespan, global gene expression, and cell proliferation of fission yeast

    PubMed Central

    Rallis, Charalampos; Codlin, Sandra; Bähler, Jürg

    2013-01-01

    Target of rapamycin complex 1 (TORC1) is implicated in growth control and aging from yeast to humans. Fission yeast is emerging as a popular model organism to study TOR signaling, although rapamycin has been thought to not affect cell growth in this organism. Here, we analyzed the effects of rapamycin and caffeine, singly and combined, on multiple cellular processes in fission yeast. The two drugs led to diverse and specific phenotypes that depended on TORC1 inhibition, including prolonged chronological lifespan, inhibition of global translation, inhibition of cell growth and division, and reprograming of global gene expression mimicking nitrogen starvation. Rapamycin and caffeine differentially affected these various TORC1-dependent processes. Combined drug treatment augmented most phenotypes and effectively blocked cell growth. Rapamycin showed a much more subtle effect on global translation than did caffeine, while both drugs were effective in prolonging chronological lifespan. Rapamycin and caffeine did not affect the lifespan via the pH of the growth media. Rapamycin prolonged the lifespan of nongrowing cells only when applied during the growth phase but not when applied after cells had stopped proliferation. The doses of rapamycin and caffeine strongly correlated with growth inhibition and with lifespan extension. This comprehensive analysis will inform future studies into TORC1 function and cellular aging in fission yeast and beyond. PMID:23551936

  19. An Imaging Flow Cytometry-based approach to analyse the fission yeast cell cycle in fixed cells.

    PubMed

    Patterson, James O; Swaffer, Matthew; Filby, Andrew

    2015-07-01

    Fission yeast (Schizosaccharomyces pombe) is an excellent model organism for studying eukaryotic cell division because many of the underlying principles and key regulators of cell cycle biology are conserved from yeast to humans. As such it can be employed as tool for understanding complex human diseases that arise from dis-regulation in cell cycle controls, including cancers. Conventional Flow Cytometry (CFC) is a high-throughput, multi-parameter, fluorescence-based single cell analysis technology. It is widely used for studying the mammalian cell cycle both in the context of the normal and disease states by measuring changes in DNA content during the transition through G1, S and G2/M using fluorescent DNA-binding dyes. Unfortunately analysis of the fission yeast cell cycle by CFC is not straightforward because, unlike mammalian cells, cytokinesis occurs after S-phase meaning that bi-nucleated G1 cells have the same DNA content as mono-nucleated G2 cells and cannot be distinguished using total integrated fluorescence (pulse area). It has been elegantly shown that the width of the DNA pulse can be used to distinguish G2 cells with a single 2C foci versus G1 cells with two 1C foci, however the accuracy of this measurement is dependent on the orientation of the cell as it traverses the laser beam. To this end we sought to improve the accuracy of the fission yeast cell cycle analysis and have developed an Imaging Flow Cytometry (IFC)-based method that is able to preserve the high throughput, objective analysis afforded by CFC in combination with the spatial and morphometric information provide by microscopy. We have been able to derive an analysis framework for subdividing the yeast cell cycle that is based on intensiometric and morphometric measurements and is thus robust against orientation-based miss-classification. In addition we can employ image-based metrics to define populations of septated/bi-nucleated cells and measure cellular dimensions. To our knowledge

  20. The small GTPase Rab5 homologue Ypt5 regulates cell morphology, sexual development, ion-stress response and vacuolar formation in fission yeast

    SciTech Connect

    Tsukamoto, Yuta; Katayama, Chisako; Shinohara, Miki; Shinohara, Akira; Maekawa, Shohei; Miyamoto, Masaaki

    2013-11-29

    Highlights: •Multiple functions of Rab5 GTPase in fission yeast were found. •Roles of Rab5 in fission yeast were discussed. •Relation between Rab5 and actin cytoskeleton were discussed. -- Abstract: Inner-membrane transport is critical to cell function. Rab family GTPases play an important role in vesicle transport. In mammalian cells, Rab5 is reported to be involved in the regulation of endosome formation, phagocytosis and chromosome alignment. Here, we examined the role of the fission yeast Rab5 homologue Ypt5 using a point mutant allele. Mutant cells displayed abnormal cell morphology, mating, sporulation, endocytosis, vacuole fusion and responses to ion stress. Our data strongly suggest that fission yeast Rab5 is involved in the regulation of various types of cellular functions.

  1. Complex nature of enterococcal pheromone-responsive plasmids.

    PubMed

    Wardal, Ewa; Sadowy, Ewa; Hryniewicz, Waleria

    2010-01-01

    Pheromone-responsive plasmids constitute a unique group of approximately 20 plasmids identified, as yet, only among enterococcal species. Several of their representatives, e.g. pAD1, pCF10, pPD1 and pAM373 have been extensively studied. These plasmids possess a sophisticated conjugation mechanism based on response to sex pheromones--small peptides produced by plasmid-free recipient cells. Detailed analysis of regulation and function of the pheromone response process revealed its great complexity and dual role--in plasmid conjugation and modulation of enterococcal virulence. Among other functional modules identified in pheromone plasmids, the stabilization/partition systems play a crucial role in stable maintenance of the plasmid molecule in host bacteria. Among them, the par locus of pAD1 is one of the exceptional RNA addiction systems. Pheromone-responsive plasmids contribute also to enterococcal phenotype being an important vehicle of antibiotic resistance in this genus. Both types of acquired vancomycin resistance determinants, vanA and vanB, as well many other resistant phenotypes, were found to be located on these plasmids. They also encode two basic agents of enterococcal virulence, i.e. aggregation substance (AS) and cytolysin. AS participates in mating-pair formation during conjugation but can also facilitate the adherence ofenterococci to human tissues during infection. The second protein, cytolysin, displays hemolytic activity and helps to invade eukaryotic cells. There are still many aspects of the nature of pheromone plasmids that remain unclear and more detailed studies are needed to understand their uniqueness and complexity.

  2. A single cyclin-CDK complex is sufficient for both mitotic and meiotic progression in fission yeast.

    PubMed

    Gutiérrez-Escribano, Pilar; Nurse, Paul

    2015-04-20

    The dominant model for eukaryotic cell cycle control proposes that cell cycle progression is driven by a succession of CDK complexes with different substrate specificities. However, in fission yeast it has been shown that a single CDK complex generated by the fusion of the Cdc13 cyclin with the CDK protein Cdc2 can drive the mitotic cell cycle. Meiosis is a modified cell cycle programme in which a single S-phase is followed by two consecutive rounds of chromosome segregation. Here we systematically analyse the requirements of the different fission yeast cyclins for meiotic cell cycle progression. We also show that a single Cdc13-Cdc2 complex, in the absence of the other cyclins, can drive the meiotic cell cycle. We propose that qualitatively different CDK complexes are not absolutely required for cell cycle progression either during mitosis or meiosis, and that a single CDK complex can drive both cell cycle programmes.

  3. Multiple ORC-binding sites are required for efficient MCM loading and origin firing in fission yeast.

    PubMed

    Takahashi, Tatsuro; Ohara, Eri; Nishitani, Hideo; Masukata, Hisao

    2003-02-17

    In most eukaryotes, replication origins are composed of long chromosome regions, and the exact sequences required for origin recognition complex (ORC) and minichromosome maintenance (MCM) complex association remain elusive. Here, we show that two stretches of adenine/thymine residues are collectively essential for a fission yeast chromosomal origin. Chromatin immunoprecipitation assays revealed that the ORC subunits are located within a 1 kb region of ori2004. Analyses of deletion derivatives of ori2004 showed that adenine stretches are required for ORC binding in vivo. Synergistic interaction between ORC and adenine stretches was observed. On the other hand, MCM subunits were localized preferentially to a region near the initiation site, which is distant from adenine stretches. This association was dependent on adenine stretches and stimulated by a non-adenine element. Our results suggest that association of multiple ORC molecules with a replication origin is required for efficient MCM loading and origin firing in fission yeast.

  4. A single cyclin–CDK complex is sufficient for both mitotic and meiotic progression in fission yeast

    PubMed Central

    Gutiérrez-Escribano, Pilar; Nurse, Paul

    2015-01-01

    The dominant model for eukaryotic cell cycle control proposes that cell cycle progression is driven by a succession of CDK complexes with different substrate specificities. However, in fission yeast it has been shown that a single CDK complex generated by the fusion of the Cdc13 cyclin with the CDK protein Cdc2 can drive the mitotic cell cycle. Meiosis is a modified cell cycle programme in which a single S-phase is followed by two consecutive rounds of chromosome segregation. Here we systematically analyse the requirements of the different fission yeast cyclins for meiotic cell cycle progression. We also show that a single Cdc13–Cdc2 complex, in the absence of the other cyclins, can drive the meiotic cell cycle. We propose that qualitatively different CDK complexes are not absolutely required for cell cycle progression either during mitosis or meiosis, and that a single CDK complex can drive both cell cycle programmes. PMID:25891897

  5. Identification of Residues in Fission Yeast and Human P34(cdc2) Required for S-M Checkpoint Control

    PubMed Central

    Basi, G.; Enoch, T.

    1996-01-01

    In fission yeast, regulation of p34(cdc2) plays an important role in the checkpoint coupling mitosis to completion of DNA replication. The cdc2 mutations cdc2-3w (C67Y) and cdc2-4w (C67F) abolish checkpoint control without seriously affecting normal cell proliferation. However the molecular basis of this phenotype is not known. To better understand the role of p34(cdc2) in checkpoint control, we have screened for more mutations in Schizosaccharomyces pombe cdc2 with this phenotype. We have isolated cdc2-3w and cdc2-4w, as well as three new cdc2 alleles: cdc2-6w (N66I), cdc2-7w (E8V) and cdc2-8w (K9E). The altered residues map to two different regions on opposite faces of the protein, suggesting that the interaction between p34(cdc2) and components of the checkpoint pathway may be complex. In contrast to cdc2-3w and cdc2-4w, the new mutations alter residues that are conserved between the fission yeast cdc2(+) and other cdks, including the human CDC2 protein. Expression of the equivalent human CDC2 mutants in fission yeast abolishes checkpoint control, suggesting that these residues could be involved in checkpoint-dependent regulation of other eukaryotic cdks. PMID:8978030

  6. Chimera proteins with affinity for membranes and microtubule tips polarize in the membrane of fission yeast cells.

    PubMed

    Recouvreux, Pierre; Sokolowski, Thomas R; Grammoustianou, Aristea; ten Wolde, Pieter Rein; Dogterom, Marileen

    2016-02-16

    Cell polarity refers to a functional spatial organization of proteins that is crucial for the control of essential cellular processes such as growth and division. To establish polarity, cells rely on elaborate regulation networks that control the distribution of proteins at the cell membrane. In fission yeast cells, a microtubule-dependent network has been identified that polarizes the distribution of signaling proteins that restricts growth to cell ends and targets the cytokinetic machinery to the middle of the cell. Although many molecular components have been shown to play a role in this network, it remains unknown which molecular functionalities are minimally required to establish a polarized protein distribution in this system. Here we show that a membrane-binding protein fragment, which distributes homogeneously in wild-type fission yeast cells, can be made to concentrate at cell ends by attaching it to a cytoplasmic microtubule end-binding protein. This concentration results in a polarized pattern of chimera proteins with a spatial extension that is very reminiscent of natural polarity patterns in fission yeast. However, chimera levels fluctuate in response to microtubule dynamics, and disruption of microtubules leads to disappearance of the pattern. Numerical simulations confirm that the combined functionality of membrane anchoring and microtubule tip affinity is in principle sufficient to create polarized patterns. Our chimera protein may thus represent a simple molecular functionality that is able to polarize the membrane, onto which additional layers of molecular complexity may be built to provide the temporal robustness that is typical of natural polarity patterns.

  7. Heavy metal tolerance in the fission yeast requires an ATP-binding cassette-type vacuolar membrane transporter.

    PubMed Central

    Ortiz, D F; Kreppel, L; Speiser, D M; Scheel, G; McDonald, G; Ow, D W

    1992-01-01

    In response to heavy metal stress, plants and certain fungi, such as the fission yeast Schizosaccharomyces pombe, synthesize small metal-binding peptides known as phytochelatins. We have identified a cadmium sensitive S. pombe mutant deficient in the accumulation of a sulfide-containing phytochelatin-cadmium complex, and have isolated the gene, designated hmt1, that complements this mutant. The deduced protein sequence of the hmt1 gene product shares sequence identity with the family of ABC (ATP-binding cassette)-type transport proteins which includes the mammalian P-glycoproteins and CFTR, suggesting that the encoded product is an integral membrane protein. Analysis of fractionated fission yeast cell components indicates that the HMT1 polypeptide is associated with the vacuolar membrane. Additionally, fission yeast strains harboring an hmt1-expressing multicopy plasmid exhibit enhanced metal tolerance along with a higher intracellular level of cadmium, implying a relationship between HMT1 mediated transport and compartmentalization of heavy metals. This suggests that tissue-specific overproduction of a functional hmt1 product in transgenic plants might be a means to alter the tissue localization of these elements, such as for sequestering heavy metals away from consumable parts of crop plants. Images PMID:1396551

  8. Fission yeast ATF/CREB family protein Atf21 plays important roles in production of normal spores.

    PubMed

    Morita, Tomohiko; Yamada, Takatomi; Yamada, Shintaro; Matsumoto, Kouji; Ohta, Kunihiro

    2011-02-01

    Activating transcription factor/cAMP response element binding protein (ATF/CREB) family transcription factors play central roles in maintaining cellular homeostasis. They are activated in response to environmental stimuli, bind to CRE sequences in the promoters of stress-response genes and regulate transcription. Although ATF/CREB proteins are widely conserved among most eukaryotes, their characteristics are highly diverse. Here, we investigated the functions of a fission yeast ATF/CREB protein Atf21 to find out its unique properties. We show that Atf21 is dispensable for the adaptive response to several stresses such as nitrogen starvation and for meiotic events including nuclear divisions. However, spores derived from atf21Δ mutants are not as mature as wild-type ones and are unable to form colonies under nutrition-rich conditions. Furthermore, we demonstrate that the Atf21 protein, which is scarce in early meiosis, gradually accumulates as meiosis proceeds; it reaches maximum levels approximately 8 h after nitrogen starvation and is present during germination. These results suggest that Atf21 is expressed and functions long after nitrogen starvation. Given that other well-characterized fission yeast ATF/CREB proteins Atf1 and Pcr1 accumulate and function promptly upon exposure to environmental stresses, we propose that Atf21 is a distinct member of the ATF/CREB family in fission yeast. © 2010 The Authors. Journal compilation © 2010 by the Molecular Biology Society of Japan/Blackwell Publishing Ltd.

  9. Fission yeast receptor of activated C kinase (RACK1) ortholog Cpc2 regulates mitotic commitment through Wee1 kinase.

    PubMed

    Núñez, Andrés; Franco, Alejandro; Soto, Teresa; Vicente, Jero; Gacto, Mariano; Cansado, José

    2010-12-31

    In the fission yeast Schizosaccharomyces pombe, Wee1-dependent inhibitory phosphorylation of the highly conserved Cdc2/Cdk1 kinase determines the mitotic onset when cells have reached a defined size. The receptor of activated C kinase (RACK1) is a scaffolding protein strongly conserved among eukaryotes which binds to other proteins to regulate multiple processes in mammalian cells, including the modulation of cell cycle progression during G(1)/S transition. We have recently described that Cpc2, the fission yeast ortholog to RACK1, controls from the ribosome the activation of MAPK cascades and the cellular defense against oxidative stress by positively regulating the translation of specific genes whose products participate in the above processes. Intriguingly, mutants lacking Cpc2 display an increased cell size at division, suggesting the existence of a specific cell cycle defect at the G(2)/M transition. In this work we show that protein levels of Wee1 mitotic inhibitor are increased in cells devoid of Cpc2, whereas the levels of Cdr2, a Wee1 inhibitor, are down-regulated in the above mutant. On the contrary, the kinetics of G(1)/S transition was virtually identical both in control and Cpc2-less strains. Thus, our results suggest that in fission yeast Cpc2/RACK1 positively regulates from the ribosome the mitotic onset by modulating both the protein levels and the activity of Wee1. This novel mechanism of translational control of cell cycle progression might be conserved in higher eukaryotes.

  10. The Tsc/Rheb signaling pathway controls basic amino acid uptake via the Cat1 permease in fission yeast.

    PubMed

    Aspuria, Paul-Joseph; Tamanoi, Fuyuhiko

    2008-05-01

    The Tsc/Rheb signaling pathway plays critical roles in the control of growth and cell cycle. Studies in fission yeast have also implicated its importance in the regulation of amino acid uptake. Disruption of tsc2+, one of the tsc+ genes, has been shown to result in decreased arginine uptake and resistance to canavanine. A similar effect is also seen with other basic amino acids. We have identified a permease responsible for the uptake of basic amino acids by genetic complementation and disruption. SPAC869.11 (termed Cat1 for cationic amino acid transporter) contains 12 predicted transmembrane domains and its overexpression in wild type fission yeast leads to the increased uptake of basic amino acids and sensitivity to canavanine. Disruption of cat1+ in the deltatsc2 background interfered with the suppression of the canavanine-resistant phenotype of Atsc2 mutants by a dominant negative Rheb. In deltatsc2 mutant strains, the amount of Cat1 was not altered, but instead was mislocalized. This mislocalization was suppressed by the expression of dominant negative Rheb. In addition, we found that the loss of the E3 ubiquitin ligase, Pub1, also restores proper localization. These results provide a crucial link between Tsc/Rheb signaling and the regulation of the basic amino acid permease in fission yeast.

  11. Fission Yeast Receptor of Activated C Kinase (RACK1) Ortholog Cpc2 Regulates Mitotic Commitment through Wee1 Kinase*

    PubMed Central

    Núñez, Andrés; Franco, Alejandro; Soto, Teresa; Vicente, Jero; Gacto, Mariano; Cansado, José

    2010-01-01

    In the fission yeast Schizosaccharomyces pombe, Wee1-dependent inhibitory phosphorylation of the highly conserved Cdc2/Cdk1 kinase determines the mitotic onset when cells have reached a defined size. The receptor of activated C kinase (RACK1) is a scaffolding protein strongly conserved among eukaryotes which binds to other proteins to regulate multiple processes in mammalian cells, including the modulation of cell cycle progression during G1/S transition. We have recently described that Cpc2, the fission yeast ortholog to RACK1, controls from the ribosome the activation of MAPK cascades and the cellular defense against oxidative stress by positively regulating the translation of specific genes whose products participate in the above processes. Intriguingly, mutants lacking Cpc2 display an increased cell size at division, suggesting the existence of a specific cell cycle defect at the G2/M transition. In this work we show that protein levels of Wee1 mitotic inhibitor are increased in cells devoid of Cpc2, whereas the levels of Cdr2, a Wee1 inhibitor, are down-regulated in the above mutant. On the contrary, the kinetics of G1/S transition was virtually identical both in control and Cpc2-less strains. Thus, our results suggest that in fission yeast Cpc2/RACK1 positively regulates from the ribosome the mitotic onset by modulating both the protein levels and the activity of Wee1. This novel mechanism of translational control of cell cycle progression might be conserved in higher eukaryotes. PMID:20974849

  12. Functional redundancies, distinct localizations and interactions among three fission yeast homologs of centromere protein-B.

    PubMed Central

    Irelan, J T; Gutkin, G I; Clarke, L

    2001-01-01

    Several members of protein families that are conserved in higher eukaryotes are known to play a role in centromere function in the fission yeast Schizosaccharomyces pombe, including two homologs of the mammalian centromere protein CENP-B, Abp1p and Cbh1p. Here we characterize a third S. pombe CENP-B homolog, Cbh2p (CENP-B homolog 2). cbh2Delta strains exhibited a modest elevation in minichromosome loss, similar to cbh1Delta or abp1Delta strains. cbh2Delta cbh1Delta strains showed little difference in growth or minichromosome loss rate when compared to single deletion strains. In contrast, cbh2Delta abp1Delta strains displayed dramatic morphological and chromosome segregation defects, as well as enhancement of the slow-growth phenotype of abp1Delta strains, indicating partial functional redundancy between these proteins. Both cbh2Delta abp1Delta and cbh1Delta abp1Delta strains also showed strongly enhanced sensitivity to a microtubule-destabilizing drug, consistent with a mitotic function for these proteins. Cbh2p was localized to the central core and core-associated repeat regions of centromeric heterochromatin, but not at several other centromeric and arm locations tested. Thus, like its mammalian counterpart, Cbh2p appeared to be localized exclusively to a portion of centromeric heterochromatin. In contrast, Abp1p was detected in both centromeric heterochromatin and in chromatin at two of three replication origins tested. Cbh2p and Abp1p homodimerized in the budding yeast two-hybrid assay, but did not interact with each other. These results suggest that indirect cooperation between different CENP-B-like DNA binding proteins with partially overlapping chromatin distributions helps to establish a functional centromere. PMID:11238404

  13. Degradation of HMG-CoA reductase-induced membranes in the fission yeast, Schizosaccharomyces pombe

    PubMed Central

    1995-01-01

    Elevated levels of certain membrane proteins, including the sterol biosynthetic enzyme HMG-CoA reductase, induce proliferation of the endoplasmic reticulum. When the amounts of these proteins return to basal levels, the proliferated membranes are degraded, but the molecular details of this degradation remain unknown. We have examined the degradation of HMG-CoA reductase-induced membranes in the fission yeast, Schizosaccharomyces pombe. In this yeast, increased levels of the Saccharomyces cerevisiae HMG-CoA reductase isozyme encoded by HMG1 induced several types of membranes, including karmellae, which formed a cap of stacked membranes that partially surrounded the nucleus. When expression of HMG1 was repressed, the karmellae detached from the nucleus and formed concentric, multilayered membrane whorls that were then degraded. During the degradation process, CDCFDA-stained compartments distinct from preexisting vacuoles formed within the interior of the whorls. In addition to these compartments, particles that contained neutral lipids also formed within the whorl. As the thickness of the whorl decreased, the lipid particle became larger. When degradation was complete, only the lipid particle remained. Cycloheximide treatment did not prevent the formation of whorls. Thus, new protein synthesis was not needed for the initial stages of karmellae degradation. On the contrary, cycloheximide promoted the detachment of karmellae to form whorls, suggesting that a short lived protein may be involved in maintaining karmellae integrity. Taken together, these results demonstrate that karmellae membranes differentiated into self-degradative organelles. This process may be a common pathway by which ER membranes are turned over in cells. PMID:7559789

  14. Cytokinesis-Based Constraints on Polarized Cell Growth in Fission Yeast

    PubMed Central

    Bohnert, K. Adam; Gould, Kathleen L.

    2012-01-01

    The rod-shaped fission yeast Schizosaccharomyces pombe, which undergoes cycles of monopolar-to-bipolar tip growth, is an attractive organism for studying cell-cycle regulation of polarity establishment. While previous research has described factors mediating this process from interphase cell tips, we found that division site signaling also impacts the re-establishment of bipolar cell growth in the ensuing cell cycle. Complete loss or targeted disruption of the non-essential cytokinesis protein Fic1 at the division site, but not at interphase cell tips, resulted in many cells failing to grow at new ends created by cell division. This appeared due to faulty disassembly and abnormal persistence of the cell division machinery at new ends of fic1Δ cells. Moreover, additional mutants defective in the final stages of cytokinesis exhibited analogous growth polarity defects, supporting that robust completion of cell division contributes to new end-growth competency. To test this model, we genetically manipulated S. pombe cells to undergo new end take-off immediately after cell division. Intriguingly, such cells elongated constitutively at new ends unless cytokinesis was perturbed. Thus, cell division imposes constraints that partially override positive controls on growth. We posit that such constraints facilitate invasive fungal growth, as cytokinesis mutants displaying bipolar growth defects formed numerous pseudohyphae. Collectively, these data highlight a role for previous cell cycles in defining a cell's capacity to polarize at specific sites, and they additionally provide insight into how a unicellular yeast can transition into a quasi-multicellular state. PMID:23093943

  15. Mitochondrial localization of fission yeast manganese superoxide dismutase is required for its lysine acetylation and for cellular stress resistance and respiratory growth

    SciTech Connect

    Takahashi, Hidekazu; Shirai, Atsuko; Matsuyama, Akihisa; Yoshida, Minoru

    2011-03-04

    Research highlights: {yields} Fission yeast manganese superoxide dismutase (MnSOD) is acetylated. {yields} The mitochondrial targeting sequence (MTS) is required for the acetylation of MnSOD. {yields} The MTS is not crucial for MnSOD activity, but is important for respiratory growth. {yields} Posttranslational regulation of MnSOD differs between budding and fission yeast. -- Abstract: Manganese-dependent superoxide dismutase (MnSOD) is localized in the mitochondria and is important for oxidative stress resistance. Although transcriptional regulation of MnSOD has been relatively well studied, much less is known about the protein's posttranslational regulation. In budding yeast, MnSOD is activated after mitochondrial import by manganese ion incorporation. Here we characterize posttranslational modification of MnSOD in the fission yeast Schizosaccharomyces pombe. Fission yeast MnSOD is acetylated at the 25th lysine residue. This acetylation was diminished by deletion of N-terminal mitochondrial targeting sequence, suggesting that MnSOD is acetylated after import into mitochondria. Mitochondrial localization of MnSOD is not essential for the enzyme activity, but is crucial for oxidative stress resistance and growth under respiratory conditions of fission yeast. These results suggest that, unlike the situation in budding yeast, S. pombe MnSOD is already active even before mitochondrial localization; nonetheless, mitochondrial localization is critical to allow the cell to cope with reactive oxygen species generated inside or outside of mitochondria.

  16. High level constitutive expression of luciferase reporter by lsd90 promoter in fission yeast.

    PubMed

    Verma, Hemant Kumar; Shukla, Poonam; Alfatah, Md; Khare, Asheesh Kumar; Upadhyay, Udita; Ganesan, Kaliannan; Singh, Jagmohan

    2014-01-01

    Because of a large number of molecular similarities with higher eukaryotes, the fission yeast Schizosaccharomyces pombe has been considered a potentially ideal host for expressing human proteins having therapeutic and pharmaceutical applications. However, efforts in this direction are hampered by lack of a strong promoter. Here, we report the isolation and characterization of a strong, constitutive promoter from S. pombe. A new expression vector was constructed by cloning the putative promoter region of the lsd90 gene (earlier reported to be strongly induced by heat stress) into a previously reported high copy number vector pJH5, which contained an ARS element corresponding to the mat2P flanking region and a truncated URA3m selectable marker. The resulting vector was used to study and compare the level of expression of the luciferase reporter with that achieved with the known vectors containing regulatable promoter nmt1 and the strong constitutive promoter adh1 in S. pombe and the methanol-inducible AOX1 promoter in Pichia pastoris. Following growth in standard media the new vector containing the putative lsd90 promoter provided constitutive expression of luciferase, at a level, which was 19-, 39- and 10-fold higher than that achieved with nmt1, adh1 and AOX1 promoters, respectively. These results indicate a great potential of the new lsd90 promoter-based vector for commercial scale expression of therapeutic proteins in S. pombe.

  17. The fission yeast SPB component Cut12 links bipolar spindle formation to mitotic control

    PubMed Central

    Bridge, Alan J.; Morphew, Mary; Bartlett, Rachel; Hagan, Iain M.

    1998-01-01

    During fission yeast mitosis, the duplicated spindle pole bodies (SPBs) nucleate microtubule arrays that interdigitate to form the mitotic spindle. cut12.1 mutants form a monopolar mitotic spindle, chromosome segregation fails, and the mutant undergoes a lethal cytokinesis. The cut12+ gene encodes a novel 62-kD protein with two predicted coiled coil regions, and one consensus phosphorylation site for p34cdc2 and two for MAP kinase. Cut12 is localized to the SPB throughout the cell cycle, predominantly around the inner face of the interphase SPB, adjacent to the nucleus. cut12+ is allelic to stf1+; stf1.1 is a gain-of-function mutation bypassing the requirement for the Cdc25 tyrosine phosphatase, which normally dephosphorylates and activates the p34cdc2/cyclin B kinase to promote the onset of mitosis. Expressing a cut12+ cDNA carrying the stf1.1 mutation also suppressed cdc25.22. The spindle defect in cut12.1 is exacerbated by the cdc25.22 mutation, and stf1.1 cells formed defective spindles in a cdc25.22 background at high temperatures. We propose that Cut12 may be a regulator or substrate of the p34cdc2 mitotic kinase. PMID:9531532

  18. Failed gene conversion leads to extensive end processing and chromosomal rearrangements in fission yeast

    PubMed Central

    Tinline-Purvis, Helen; Savory, Andrew P; Cullen, Jason K; Davé, Anoushka; Moss, Jennifer; Bridge, Wendy L; Marguerat, Samuel; Bähler, Jürg; Ragoussis, Jiannis; Mott, Richard; A Walker, Carol; Humphrey, Timothy C

    2009-01-01

    Loss of heterozygosity (LOH), a causal event in cancer and human genetic diseases, frequently encompasses multiple genetic loci and whole chromosome arms. However, the mechanisms by which such extensive LOH arises, and how it is suppressed in normal cells is poorly understood. We have developed a genetic system to investigate the mechanisms of DNA double-strand break (DSB)-induced extensive LOH, and its suppression, using a non-essential minichromosome, Ch16, in fission yeast. We find extensive LOH to arise from a new break-induced mechanism of isochromosome formation. Our data support a model in which Rqh1 and Exo1-dependent end processing from an unrepaired DSB leads to removal of the broken chromosome arm and to break-induced replication of the intact arm from the centromere, a considerable distance from the initial lesion. This process also promotes genome-wide copy number variation. A genetic screen revealed Rhp51, Rhp55, Rhp57 and the MRN complex to suppress both isochromosome formation and chromosome loss, in accordance with these events resulting from extensive end processing associated with failed homologous recombination repair. PMID:19798055

  19. Two-component mediated peroxide sensing and signal transduction in fission yeast.

    PubMed

    Quinn, Janet; Malakasi, Panagiota; Smith, Deborah A; Cheetham, Jill; Buck, Vicky; Millar, Jonathan B A; Morgan, Brian A

    2011-07-01

    Two-component related proteins play a major role in regulating the oxidative stress response in the fission yeast, Schizosaccharomyces pombe. For example, the peroxide-sensing Mak2 and Mak3 histidine kinases regulate H(2)O(2)-induced activation of the Sty1 stress-activated protein kinase pathway, and the Skn7-related response regulator transcription factor, Prr1, is essential for activation of the core oxidative stress response genes. Here, we investigate the mechanism by which the S. pombe two-component system senses H(2)O(2), and the potential role of two-component signaling in the regulation of Prr1. Significantly, we demonstrate that PAS and GAF domains present in the Mak2 histidine kinase are essential for redox-sensing and activation of Sty1. In addition, we find that Prr1 is required for the transcriptional response to a wide range of H(2)O(2) concentrations and, furthermore, that two-component regulation of Prr1 is specifically required for the response of cells to high levels of H(2)O(2). Significantly, this provides the first demonstration that the conserved two-component phosphorylation site on Skn7-related proteins influences resistance to oxidative stress and oxidative stress-induced gene expression. Collectively, these data provide new insights into the two-component mediated sensing and signaling mechanisms underlying the response of S. pombe to oxidative stress.

  20. Biological Significance of Nuclear Localization of Mitogen-activated Protein Kinase Pmk1 in Fission Yeast*

    PubMed Central

    Sánchez-Mir, Laura; Franco, Alejandro; Madrid, Marisa; Vicente-Soler, Jero; Villar-Tajadura, M. Antonia; Soto, Teresa; Pérez, Pilar; Gacto, Mariano; Cansado, José

    2012-01-01

    Mitogen-activated protein kinase (MAPK) signaling pathways play a fundamental role in the response of eukaryotic cells to environmental changes. Also, much evidence shows that the stimulus-dependent nuclear targeting of this class of regulatory kinases is crucial for adequate regulation of distinct cellular events. In the fission yeast Schizosaccharomyces pombe, the cell integrity MAPK pathway, whose central element is the MAPK Pmk1, regulates multiple processes such as cell wall integrity, vacuole fusion, cytokinesis, and ionic homeostasis. In non-stressed cells Pmk1 is constitutively localized in both cytoplasm and nucleus, and its localization pattern appears unaffected by its activation status or in response to stress, thus questioning the biological significance of the presence of this MAPK into the nucleus. We have addressed this issue by characterizing mutants expressing Pmk1 versions excluded from the cell nucleus and anchored to the plasma membrane in different genetic backgrounds. Although nuclear Pmk1 partially regulates cell wall integrity at a transcriptional level, membrane-tethered Pmk1 performs many of the biological functions assigned to wild type MAPK like regulation of chloride homeostasis, vacuole fusion, and cellular separation. However, we found that down-regulation of nuclear Pmk1 by MAPK phosphatases induced by the stress activated protein kinase pathway is important for the fine modulation of extranuclear Pmk1 activity. These results highlight the importance of the control of MAPK activity at subcellular level. PMID:22685296

  1. Complex structure of the fission yeast SREBP-SCAP binding domains reveals an oligomeric organization

    PubMed Central

    Gong, Xin; Qian, Hongwu; Shao, Wei; Li, Jingxian; Wu, Jianping; Liu, Jun-Jie; Li, Wenqi; Wang, Hong-Wei; Espenshade, Peter; Yan, Nieng

    2016-01-01

    Sterol regulatory element-binding protein (SREBP) transcription factors are master regulators of cellular lipid homeostasis in mammals and oxygen-responsive regulators of hypoxic adaptation in fungi. SREBP C-terminus binds to the WD40 domain of SREBP cleavage-activating protein (SCAP), which confers sterol regulation by controlling the ER-to-Golgi transport of the SREBP-SCAP complex and access to the activating proteases in the Golgi. Here, we biochemically and structurally show that the carboxyl terminal domains (CTD) of Sre1 and Scp1, the fission yeast SREBP and SCAP, form a functional 4:4 oligomer and Sre1-CTD forms a dimer of dimers. The crystal structure of Sre1-CTD at 3.5 Å and cryo-EM structure of the complex at 5.4 Å together with in vitro biochemical evidence elucidate three distinct regions in Sre1-CTD required for Scp1 binding, Sre1-CTD dimerization and tetrameric formation. Finally, these structurally identified domains are validated in a cellular context, demonstrating that the proper 4:4 oligomeric complex formation is required for Sre1 activation. PMID:27811944

  2. Kinesin-5-independent mitotic spindle assembly requires the antiparallel microtubule crosslinker Ase1 in fission yeast

    NASA Astrophysics Data System (ADS)

    Rincon, Sergio A.; Lamson, Adam; Blackwell, Robert; Syrovatkina, Viktoriya; Fraisier, Vincent; Paoletti, Anne; Betterton, Meredith D.; Tran, Phong T.

    2017-05-01

    Bipolar spindle assembly requires a balance of forces where kinesin-5 produces outward pushing forces to antagonize the inward pulling forces from kinesin-14 or dynein. Accordingly, Kinesin-5 inactivation results in force imbalance leading to monopolar spindle and chromosome segregation failure. In fission yeast, force balance is restored when both kinesin-5 Cut7 and kinesin-14 Pkl1 are deleted, restoring spindle bipolarity. Here we show that the cut7Δpkl1Δ spindle is fully competent for chromosome segregation independently of motor activity, except for kinesin-6 Klp9, which is required for anaphase spindle elongation. We demonstrate that cut7Δpkl1Δ spindle bipolarity requires the microtubule antiparallel bundler PRC1/Ase1 to recruit CLASP/Cls1 to stabilize microtubules. Brownian dynamics-kinetic Monte Carlo simulations show that Ase1 and Cls1 activity are sufficient for initial bipolar spindle formation. We conclude that pushing forces generated by microtubule polymerization are sufficient to promote spindle pole separation and the assembly of bipolar spindle in the absence of molecular motors.

  3. The contractile ring coordinates curvature-dependent septum assembly during fission yeast cytokinesis

    PubMed Central

    Zhou, Zhou; Munteanu, Emilia Laura; He, Jun; Ursell, Tristan; Bathe, Mark; Huang, Kerwyn Casey; Chang, Fred

    2015-01-01

    The functions of the actin-myosin–based contractile ring in cytokinesis remain to be elucidated. Recent findings show that in the fission yeast Schizosaccharomyces pombe, cleavage furrow ingression is driven by polymerization of cell wall fibers outside the plasma membrane, not by the contractile ring. Here we show that one function of the ring is to spatially coordinate septum cell wall assembly. We develop an improved method for live-cell imaging of the division apparatus by orienting the rod-shaped cells vertically using microfabricated wells. We observe that the septum hole and ring are circular and centered in wild-type cells and that in the absence of a functional ring, the septum continues to ingress but in a disorganized and asymmetric manner. By manipulating the cleavage furrow into different shapes, we show that the ring promotes local septum growth in a curvature-dependent manner, allowing even a misshapen septum to grow into a more regular shape. This curvature-dependent growth suggests a model in which contractile forces of the ring shape the septum cell wall by stimulating the cell wall machinery in a mechanosensitive manner. Mechanical regulation of the cell wall assembly may have general relevance to the morphogenesis of walled cells. PMID:25355954

  4. The cdc7 protein kinase is a dosage dependent regulator of septum formation in fission yeast.

    PubMed Central

    Fankhauser, C; Simanis, V

    1994-01-01

    Mutation of the Schizosaccharomyces pombe cdc7 gene prevents formation of the division septum and cytokinesis. We have cloned the cdc7 gene and show that it encodes a protein kinase which is essential for cell division. In the absence of cdc7 function, spore germination, DNA synthesis and mitosis are unaffected, but cells are unable to initiate formation of the division septum. Overexpression of p120cdc7 causes cell cycle arrest; cells complete mitosis and then undergo multiple rounds of septum formation without cell cleavage. This phenotype, which is similar to that resulting from inactivation of cdc16 protein, requires the kinase activity of p120cdc7. Mutations inactivating the early septation gene, cdc11, suppress the formation of multiple septa and allow cells to proliferate normally. If formation of the division septum is prevented by inactivation of either cdc14 or cdc15, p120cdc7 overproduction does not interfere with other events in the mitotic cell cycle. Septation is not induced by overexpression of p120cdc7 in G2 arrested cells, indicating that it does not bypass the normal dependency of septation upon initiation of mitosis. These findings indicate that the p120cdc7 protein kinase plays a key role in initiation of septum formation and cytokinesis in fission yeast and suggest that p120cdc7 interacts with the cdc11 protein in the control of septation. Images PMID:8039497

  5. Ultrastructure and behavior of actin cytoskeleton during cell wall formation in the fission yeast Schizosaccharomyces pombe.

    PubMed

    Takagi, Tomoko; Ishijima, Sanae A; Ochi, Hisako; Osumi, Masako

    2003-01-01

    Fluorescence microscopy has shown that F-actin of the fission yeast Schizosaccharomyces pombe forms patch, cable and ring structures. To study the relationship between cell wall formation and the actin cytoskeleton, the process of cell wall regeneration from the protoplast was investigated by transmission electron microscopy (TEM), immunoelectron microscopy (IEM) and three-dimensional reconstruction analysis. During cell wall regeneration from the protoplast, localization of F-actin patches was similar to that of the newly synthesized cell wall materials, as shown by confocal laser scanning microscopy (CLSM). In serial sectioned TEM images, filasomes were spherical, 100-300 nm in diameter and consisted of a single microvesicle (35-70 nm diameter) surrounded by fine filaments. Filasomes were adjacent to the newly formed glucan fibrils in single, cluster or rosary forms. By IEM analysis, we found that colloidal gold particles indicating actin molecules were present in the filamentous area of filasomes. Three-dimensional reconstruction images of serial sections clarified that the distribution of filasomes corresponded to the distribution of F-actin patches revealed by CLSM. Thus, a filasome is one of the F-actin patch structures appearing in the cytoplasm at the site of the initial formation of the cell wall and it may play an important role in this action.

  6. Nup132 modulates meiotic spindle attachment in fission yeast by regulating kinetochore assembly

    PubMed Central

    Yang, Hui-Ju; Asakawa, Haruhiko; Haraguchi, Tokuko

    2015-01-01

    During meiosis, the kinetochore undergoes substantial reorganization to establish monopolar spindle attachment. In the fission yeast Schizosaccharomyces pombe, the KNL1–Spc7-Mis12-Nuf2 (KMN) complex, which constitutes the outer kinetochore, is disassembled during meiotic prophase and is reassembled before meiosis I. Here, we show that the nucleoporin Nup132 is required for timely assembly of the KMN proteins: In the absence of Nup132, Mis12 and Spc7 are precociously assembled at the centromeres during meiotic prophase. In contrast, Nuf2 shows timely dissociation and reappearance at the meiotic centromeres. We further demonstrate that depletion of Nup132 activates the spindle assembly checkpoint in meiosis I, possibly because of the increased incidence of erroneous spindle attachment at sister chromatids. These results suggest that precocious assembly of the kinetochores leads to the meiosis I defects observed in the nup132-disrupted mutant. Thus, we propose that Nup132 plays an important role in establishing monopolar spindle attachment at meiosis I through outer kinetochore reorganization at meiotic prophase. PMID:26483559

  7. The spatial and temporal organization of origin firing during the S-phase of fission yeast

    PubMed Central

    Nurse, Paul

    2015-01-01

    Eukaryotes duplicate their genomes using multiple replication origins, but the organization of origin firing along chromosomes and during S-phase is not well understood. Using fission yeast, we report the first genome-wide analysis of the spatial and temporal organization of replication origin firing, analyzed using single DNA molecules that can approach the full length of chromosomes. At S-phase onset, origins fire randomly and sparsely throughout the chromosomes. Later in S-phase, clusters of fired origins appear embedded in the sparser regions, which form the basis of nuclear replication foci. The formation of clusters requires proper histone methylation and acetylation, and their locations are not inherited between cell cycles. The rate of origin firing increases gradually, peaking just before mid S-phase. Toward the end of S-phase, nearly all the available origins within the unreplicated regions are fired, contributing to the timely completion of genome replication. We propose that the majority of origins do not fire as a part of a deterministic program. Instead, origin firing, both individually and as clusters, should be viewed as being mostly stochastic. PMID:25650245

  8. A single-headed fission yeast myosin V transports actin in a tropomyosin-dependent manner.

    PubMed

    Tang, Qing; Billington, Neil; Krementsova, Elena B; Bookwalter, Carol S; Lord, Matthew; Trybus, Kathleen M

    2016-07-18

    Myo51, a class V myosin in fission yeast, localizes to and assists in the assembly of the contractile ring, a conserved eukaryotic actomyosin structure that facilitates cytokinesis. Rng8 and Rng9 are binding partners that dictate the cellular localization and function of Myo51. Myo51 was expressed in insect cells in the presence or absence of Rng8/9. Surprisingly, electron microscopy of negatively stained images and hydrodynamic measurements showed that Myo51 is single headed, unlike most class V myosins. When Myo51-Rng8/9 was bound to actin-tropomyosin, two attachment sites were observed: the typical ATP-dependent motor domain attachment and a novel ATP-independent binding of the tail mediated by Rng8/9. A modified motility assay showed that this additional binding site anchors Myo51-Rng8/9 so that it can cross-link and slide actin-tropomyosin filaments relative to one another, functions that may explain the role of this motor in contractile ring assembly. © 2016 Tang et al.

  9. Unique properties of cd-binding peptides induced in fission yeast, Schizosaccharomyces pombe

    SciTech Connect

    Hayashi, Y.; Nakagawa, C.W.; Murasugi, A.

    1986-03-01

    Metallothioneins, a class of low molecular weight cysteine-rich proteins that bind heavy metal ions, have been found in various eucaryotic organisms. When fission yeasts are grown in the presence of high concentration of CdCl/sub 2/, large amounts of Cd-binding peptides (Cd-BP1 and Cd-BP2) are synthesized. While Cd-BP2 shows similarities to mammalian Cd-thioneins in UV and CD spectra, Cd-BP1has a characteristic shoulder at 265 nm in the UV absorption spectrum and shows two marked Cotton bands at 257 nm (negative) and 275 nm (positive). These characteristics of Cd-BP1 are not found in the other Cd-thioneins. The UV and CD spectra differences between reconstituted and native Cd-BP1 suggest the requirement for some additional molecular architecture including another peptide-Cd/sup 2 +/ interaction. Induction of cadystin synthesis is almost exclusive for Cd, but an exception is a small amount of cadystin also induced by the higher concentration of CuCl/sub 2/ (2.5 mM). The UV spectrum of the natural Cu-cadystin complex was similar to that of Cd-BP1. On the basis of these findings the models for Cd-BP1 and Cd-BP2 are proposed.

  10. Synchronized fission yeast meiosis using an ATP analog-sensitive Pat1 protein kinase.

    PubMed

    Cipak, Lubos; Polakova, Silvia; Hyppa, Randy W; Smith, Gerald R; Gregan, Juraj

    2014-01-01

    Synchronous cultures are often indispensable for studying meiosis. Here we present an optimized protocol for induction of synchronous meiosis in the fission yeast Schizosaccharomyces pombe. Chemical inactivation of an ATP analog-sensitive form of the Pat1 kinase (pat1-as2) by adding the ATP analog 1-NM-PP1 in G1-arrested cells allows the induction of synchronous meiosis at optimal temperature (25°C). Importantly, this protocol eliminates detrimental effects of elevated temperature (34°C), which is required to inactivate the commonly used temperature-sensitive Pat1 kinase mutant (pat1-114). The addition of the mat-Pc gene to a mat1-M strain further improves chromosome segregation and spore viability. Thus, our protocol offers highly synchronous meiosis at optimal temperature, with most characteristics similar to those of wild-type meiosis. The synchronization protocol can be completed in 5 d (not including strain production, which may take as long as 2 or 3 months).

  11. Dynamic transition of transcription and chromatin landscape during fission yeast adaptation to glucose starvation.

    PubMed

    Oda, Arisa; Takemata, Naomichi; Hirata, Yoshito; Miyoshi, Tomoichiro; Suzuki, Yutaka; Sugano, Sumio; Ohta, Kunihiro

    2015-05-01

    Shortage of glucose, the primary energy source for all organisms, is one of the most critical stresses influencing cell viability. Glucose starvation promptly induces changes in mRNA and noncoding RNA (ncRNA) transcription. We previously reported that glucose starvation induces long ncRNA (lncRNA) transcription in the 5' segment of a fission yeast gluconeogenesis gene (fbp1+), which leads to stepwise chromatin alteration around the fbp1+ promoter and to subsequent robust gene activation. Here, we analyzed genomewide transcription by strand-specific RNA sequencing, together with chromatin landscape by immunoprecipitation sequencing (ChIP-seq). Clustering analysis showed that distinct mRNAs and ncRNAs are induced at the early, middle and later stages of cellular response to glucose starvation. The starvation-induced transcription depends substantially on the stress-responsive transcription factor Atf1. Using a new computer program that examines dynamic changes in expression patterns, we identified ncRNAs with similar behavior to the fbp1+ lncRNA. We confirmed that there are continuous lncRNAs associated with local reduction of histone density. Overlapping with the regions for transcription of these lncRNAs, antisense RNAs are antagonistically transcribed under glucose-rich conditions. These results suggest that Atf1-dependent integrated networks of mRNA and lncRNA govern drastic changes in cell physiology in response to glucose starvation.

  12. Genome rearrangements and pervasive meiotic drive cause hybrid infertility in fission yeast

    PubMed Central

    Zanders, Sarah E; Eickbush, Michael T; Yu, Jonathan S; Kang, Ji-Won; Fowler, Kyle R; Smith, Gerald R; Malik, Harmit Singh

    2014-01-01

    Hybrid sterility is one of the earliest postzygotic isolating mechanisms to evolve between two recently diverged species. Here we identify causes underlying hybrid infertility of two recently diverged fission yeast species Schizosaccharomyces pombe and S. kambucha, which mate to form viable hybrid diploids that efficiently complete meiosis, but generate few viable gametes. We find that chromosomal rearrangements and related recombination defects are major but not sole causes of hybrid infertility. At least three distinct meiotic drive alleles, one on each S. kambucha chromosome, independently contribute to hybrid infertility by causing nonrandom spore death. Two of these driving loci are linked by a chromosomal translocation and thus constitute a novel type of paired meiotic drive complex. Our study reveals how quickly multiple barriers to fertility can arise. In addition, it provides further support for models in which genetic conflicts, such as those caused by meiotic drive alleles, can drive speciation. DOI: http://dx.doi.org/10.7554/eLife.02630.001 PMID:24963140

  13. Lipid droplets form from distinct regions of the cell in the fission yeast Schizosaccharomyces pombe

    DOE PAGES

    Meyers, Alex; del Rio, Zuania P.; Beaver, Rachael A.; ...

    2016-04-29

    Eukaryotic cells store cholesterol/sterol esters (SEs) and triacylglycerols (TAGs) in lipid droplets, which form from the contiguous endoplasmic reticulum (ER) network. However, it is not known if droplets preferentially form from certain regions of the ER over others. Here, we used fission yeast Schizosaccharomyces pombe cells where the nuclear and cortical/peripheral ER domains are distinguishable by light microscopy to show that SE-enriched lipid droplets form away from the nucleus at the cell tips, whereas TAG-enriched lipid droplets form around the nucleus. Sterols localize to the regions of the cells where droplets enriched in SEs are observed. TAG droplet formation aroundmore » the nucleus appears to be a strong function of diacylglycerol (DAG) homeostasis with Cpt1p, which coverts DAG into phosphatidylcholine and phosphatidylethanolamine localized exclusively to the nuclear ER. Also, Dgk1p, which converts DAG into phosphatidic acid localized strongly to the nuclear ER over the cortical/peripheral ER. We also show that TAG more readily translocates from the ER to lipid droplets than do SEs. Lastly, the results augment the standard lipid droplet formation model, which has SEs and TAGs flowing into the same nascent lipid droplet regardless of its biogenesis point in the cell.« less

  14. In vivo direct patulin-induced fluidization of the plasma membrane of fission yeast Schizosaccharomyces pombe.

    PubMed

    Horváth, Eszter; Papp, Gábor; Belágyi, József; Gazdag, Zoltán; Vágvölgyi, Csaba; Pesti, Miklós

    2010-07-01

    Patulin is a toxic metabolite produced by various species of Penicillium, Aspergillus and Byssochlamys. In the present study, its effects on the plasma membrane of fission yeast Schizosaccharomyces pombe were investigated. The phase-transition temperature (G) of untreated cells, measured by electron paramagnetic resonance spectrometry proved to be 14.1 degrees C. Treatment of cells for 20 min with 50, 500, or 1000 microM patulin resulted in a decrease of the G value of the plasma membrane to 13.9, 10.1 or 8.7 degrees C, respectively. This change in the transition temperature was accompanied by the loss of compounds absorbing light at 260 nm. Treatment of cells with 50, 500 or 1000 microM patulin for 20 min induced the efflux of 25%, 30.5% or 34%, respectively, of these compounds. Besides its cytotoxic effects an adaptation process was observed. This is the first study to describe the direct interaction of patulin with the plasma membrane, a process which could definitely contribute to the adverse toxic effects induced by patulin.

  15. Minishelterins separate telomere length regulation and end protection in fission yeast.

    PubMed

    Pan, Lili; Hildebrand, Katie; Stutz, Cian; Thomä, Nicolas; Baumann, Peter

    2015-06-01

    The conserved shelterin complex is critical for chromosome capping and maintaining telomere length homeostasis. In fission yeast, shelterin is comprised of five proteins. Taz1, Rap1, and Poz1 function as negative regulators of telomere elongation, whereas Pot1 and Tpz1 are critical for end capping and telomerase recruitment. How the five proteins work together to safeguard chromosome ends and promote telomere length homeostasis is a matter of great interest. Using a combination of deletions, fusions, and tethers, we define key elements of shelterin important for telomere length regulation. Surprisingly, deletion of the entire Rap1 and Poz1 proteins does not impair telomere length regulation as long as a static bridge is provided between Taz1 and Tpz1. Cells harboring minishelterin display wild-type telomere length and intact subtelomeric silencing. However, protection against end fusions in G1 is compromised in the absence of Rap1. Our data reveal a remarkable plasticity in shelterin architecture and separate functions in length regulation and end protection.

  16. Requirement of Fission Yeast Cid14 in Polyadenylation of rRNAs

    PubMed Central

    Win, Thein Z.; Draper, Simon; Read, Rebecca L.; Pearce, James; Norbury, Chris J.; Wang, Shao-Win

    2006-01-01

    Polyadenylation in eukaryotes is conventionally associated with increased nuclear export, translation, and stability of mRNAs. In contrast, recent studies suggest that the Trf4 and Trf5 proteins, members of a widespread family of noncanonical poly(A) polymerases, share an essential function in Saccharomyces cerevisiae that involves polyadenylation of nuclear RNAs as part of a pathway of exosome-mediated RNA turnover. Substrates for this pathway include aberrantly modified tRNAs and precursors of snoRNAs and rRNAs. Here we show that Cid14 is a Trf4/5 functional homolog in the distantly related fission yeast Schizosaccharomyces pombe. Unlike trf4 trf5 double mutants, cells lacking Cid14 are viable, though they suffer an increased frequency of chromosome missegregation. The Cid14 protein is constitutively nucleolar and is required for normal nucleolar structure. A minor population of polyadenylated rRNAs was identified. These RNAs accumulated in an exosome mutant, and their presence was largely dependent on Cid14, in line with a role for Cid14 in rRNA degradation. Surprisingly, both fully processed 25S rRNA and rRNA processing intermediates appear to be channeled into this pathway. Our data suggest that additional substrates may include the mRNAs of genes involved in meiotic regulation. Polyadenylation-assisted nuclear RNA turnover is therefore likely to be a common eukaryotic mechanism affecting diverse biological processes. PMID:16478992

  17. Fission yeast Vps1 and Atg8 contribute to oxidative stress resistance.

    PubMed

    Mikawa, Takumi; Kanoh, Junko; Ishikawa, Fuyuki

    2010-03-01

    Organisms have evolved diverse means to protect themselves from oxidative stress. To better understand the molecular mechanisms involved in oxidative stress resistance, we screened fission yeast mutants sensitive to paraquat, a reagent acting on the mitochondria to generate reactive oxygen species. Among the mutants we isolated, we focused on a mutant defective in the vps1(+) (vacuolar protein sorting 1) gene that encodes a dynamin-related protein family member. vps1Δ exhibited aberrant mitochondrial and vacuolar morphology on treatment with paraquat. vps1Δ was sensitive to osmotic stress, high concentrations of Ca(2+) and Fe(2+). Interestingly, the deletion of atg8(+), a gene essential for the autophagy pathway, exhibited strong genetic interactions with vps1Δ. The vps1Δatg8Δ double mutant was additively sensitive to oxidative stress, osmotic stress and Ca(2+). The deletion of vps1(+) rescued the bizarre vacuolar morphology shown by atg8Δ. Such genetic interactions were not observed with other atg mutants. Furthermore, the atg8-G116A mutant did not show abnormal vacuolar morphology while being sensitive to nitrogen starvation, an autophagy-related phenotype. Taken together, we conclude that atg8(+) regulates vacuolar functions independently of its role in autophagy. We propose that Vps1 and Atg8 cooperatively participate in vacuolar function, thereby contributing to oxidative stress resistance.

  18. Assembly Mechanism of the Contractile Ring for Cytokinesis by Fission Yeast

    NASA Astrophysics Data System (ADS)

    Vavylonis, Dimitrios; Wu, Jian-Qiu; Huang, Xiaolei; O'Shaughnessy, Ben; Pollard, Thomas

    2008-03-01

    Animals and fungi assemble a contractile ring of actin filaments and the motor protein myosin to separate into individual daughter cells during cytokinesis. We studied the mechanism of contractile ring assembly in fission yeast with high time resolution confocal microscopy, computational image analysis methods, and numerical simulations. Approximately 63 nodes containing myosin, broadly distributed around the cell equator, assembled into a ring through stochastic motions, making many starts, stops, and changes of direction as they condense into a ring. Estimates of node friction coefficients from the mean square displacement of stationary nodes imply forces for node movement are greater than ˜ 4 pN, similarly to forces by a few molecular motors. Skeletonization and topology analysis of images of cells expressing fluorescent actin filament markers showed transient linear elements extending in all directions from myosin nodes and establishing connections among them. We propose a model with traction between nodes depending on transient connections established by stochastic search and capture (``search, capture, pull and release''). Numerical simulations of the model using parameter values obtained from experiment succesfully condense nodes into a continuous ring.

  19. Lipid Droplets Form from Distinct Regions of the Cell in the Fission Yeast Schizosaccharomyces pombe.

    PubMed

    Meyers, Alex; Del Rio, Zuania P; Beaver, Rachael A; Morris, Ryan M; Weiskittel, Taylor M; Alshibli, Amany K; Mannik, Jaana; Morrell-Falvey, Jennifer; Dalhaimer, Paul

    2016-06-01

    Eukaryotic cells store cholesterol/sterol esters (SEs) and triacylglycerols (TAGs) in lipid droplets, which form from the contiguous endoplasmic reticulum (ER) network. However, it is not known if droplets preferentially form from certain regions of the ER over others. Here, we used fission yeast Schizosaccharomyces pombe cells where the nuclear and cortical/peripheral ER domains are distinguishable by light microscopy to show that SE-enriched lipid droplets form away from the nucleus at the cell tips, whereas TAG-enriched lipid droplets form around the nucleus. Sterols localize to the regions of the cells where droplets enriched in SEs are observed. TAG droplet formation around the nucleus appears to be a strong function of diacylglycerol (DAG) homeostasis with Cpt1p, which coverts DAG into phosphatidylcholine and phosphatidylethanolamine localized exclusively to the nuclear ER. Also, Dgk1p, which converts DAG into phosphatidic acid localized strongly to the nuclear ER over the cortical/peripheral ER. We also show that TAG more readily translocates from the ER to lipid droplets than do SEs. The results augment the standard lipid droplet formation model, which has SEs and TAGs flowing into the same nascent lipid droplet regardless of its biogenesis point in the cell.

  20. Nuclear envelope attachment is not necessary for telomere function in fission yeast.

    PubMed

    Chikashige, Yuji; Haraguchi, Tokuko; Hiraoka, Yasushi

    2010-01-01

    Inner nuclear membrane (INM) proteins can be important for positioning chromosomes within the nucleus. Little is known about INM proteins in the fission yeast Schizossacharomayces pombe. Telomeres are the most obvious chromosomal sites that are anchored to the nuclear envelope in this organism. A group of proteins that tether telomeres to the spindle-pole body (SPB) during meiotic prophase, such as Bqt1, Bqt2 and Sad1, has been identified previously, but proteins for anchoring telomeres to the nuclear envelope in vegetative cells have not been identified until recently. A recent report demonstrates that Bqt3 and Bqt4 are INM proteins that affect nuclear positioning of telomeres in vegetative cells, and consequently affect the telomere clustering in meiotic prophase. Interestingly, in the absence of Bqt4, telomeres are separated from the nuclear envelope but telomere silencing and telomere length are properly regulated. An important implication of these results is that the functional integrity of telomeres is maintained independently of their connection to the nuclear envelope.

  1. Biological significance of nuclear localization of mitogen-activated protein kinase Pmk1 in fission yeast.

    PubMed

    Sánchez-Mir, Laura; Franco, Alejandro; Madrid, Marisa; Vicente-Soler, Jero; Villar-Tajadura, M Antonia; Soto, Teresa; Pérez, Pilar; Gacto, Mariano; Cansado, José

    2012-07-27

    Mitogen-activated protein kinase (MAPK) signaling pathways play a fundamental role in the response of eukaryotic cells to environmental changes. Also, much evidence shows that the stimulus-dependent nuclear targeting of this class of regulatory kinases is crucial for adequate regulation of distinct cellular events. In the fission yeast Schizosaccharomyces pombe, the cell integrity MAPK pathway, whose central element is the MAPK Pmk1, regulates multiple processes such as cell wall integrity, vacuole fusion, cytokinesis, and ionic homeostasis. In non-stressed cells Pmk1 is constitutively localized in both cytoplasm and nucleus, and its localization pattern appears unaffected by its activation status or in response to stress, thus questioning the biological significance of the presence of this MAPK into the nucleus. We have addressed this issue by characterizing mutants expressing Pmk1 versions excluded from the cell nucleus and anchored to the plasma membrane in different genetic backgrounds. Although nuclear Pmk1 partially regulates cell wall integrity at a transcriptional level, membrane-tethered Pmk1 performs many of the biological functions assigned to wild type MAPK like regulation of chloride homeostasis, vacuole fusion, and cellular separation. However, we found that down-regulation of nuclear Pmk1 by MAPK phosphatases induced by the stress activated protein kinase pathway is important for the fine modulation of extranuclear Pmk1 activity. These results highlight the importance of the control of MAPK activity at subcellular level.

  2. Genome-wide screen for cell growth regulators in fission yeast.

    PubMed

    Weston, Louise; Greenwood, Jessica; Nurse, Paul

    2017-06-15

    Cellular growth control is important for all living organisms, but experimental investigation into this problem is difficult because of the complex range of growth regulatory mechanisms. Here, we have used the fission yeast Schizosaccharomyces pombe to identify potential master regulators of growth. At the restrictive temperature, the S. pombe pat1(ts) mei4Δ strain enters the meiotic developmental program, but arrests in meiotic G2 phase as mei4(+) is essential for meiotic progression. These cells do not grow, even in an abundance of nutrients. To identify regulators of growth that can reverse this growth arrest, we introduced an ORFeome plasmid library into the pat1(ts)mei4Δ strain. Overexpression of eight genes promoted cell growth; two of these were core RNA polymerase subunits, and one was sck2(+) , an S6 kinase thought to contribute to TORC1 signalling. Sck2 had the greatest effect on cell growth, and we also show that it significantly increases the cellular transcription rate. These findings indicate, for the first time, that global transcriptional control mediated through S6 kinase signalling is central to cellular growth control. © 2017. Published by The Company of Biologists Ltd.

  3. Spatial control of Cdc42 activation determines cell width in fission yeast.

    PubMed

    Kelly, Felice D; Nurse, Paul

    2011-10-01

    The fission yeast Schizosaccharomyces pombe is a rod-shaped cell that grows by linear extension at the cell tips, with a nearly constant width throughout the cell cycle. This simple geometry makes it an ideal system for studying the control of cellular dimensions. In this study, we carried out a near-genome-wide screen for mutants wider than wild-type cells. We found 11 deletion mutants that were wider; seven of the deleted genes are implicated in the control of the small GTPase Cdc42, including the Cdc42 guanine nucleotide exchange factor (GEF) Scd1 and the Cdc42 GTPase-activating protein (GAP) Rga4. Deletions of rga4 and scd1 had additive effects on cell width, and the proteins localized independently of one another, with Rga4 located at the cell sides and Scd1 at the cell tips. Activated Cdc42 localization is altered in rga4Δ, scd1Δ, and scd2Δ mutants. Delocalization and ectopic retargeting experiments showed that the localizations of Rga4 and Scd1 are crucial for their roles in determining cell width. We propose that the GAP Rga4 and the GEF Scd1 establish a gradient of activated Cdc42 within the cellular tip plasma membrane, and it is this gradient that determines cell growth-zone size and normal cell width.

  4. Lsd1 and lsd2 control programmed replication fork pauses and imprinting in fission yeast.

    PubMed

    Holmes, Allyson; Roseaulin, Laura; Schurra, Catherine; Waxin, Herve; Lambert, Sarah; Zaratiegui, Mikel; Martienssen, Robert A; Arcangioli, Benoit

    2012-12-27

    In the fission yeast Schizosaccharomyces pombe, a chromosomal imprinting event controls the asymmetric pattern of mating-type switching. The orientation of DNA replication at the mating-type locus is instrumental in this process. However, the factors leading to imprinting are not fully identified and the mechanism is poorly understood. Here, we show that the replication fork pause at the mat1 locus (MPS1), essential for imprint formation, depends on the lysine-specific demethylase Lsd1. We demonstrate that either Lsd1 or Lsd2 amine oxidase activity is required for these processes, working upstream of the imprinting factors Swi1 and Swi3 (homologs of mammalian Timeless and Tipin, respectively). We also show that the Lsd1/2 complex controls the replication fork terminators, within the rDNA repeats. These findings reveal a role for the Lsd1/2 demethylases in controlling polar replication fork progression, imprint formation, and subsequent asymmetric cell divisions. Copyright © 2012 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Sizing up to divide: mitotic cell-size control in fission yeast.

    PubMed

    Wood, Elizabeth; Nurse, Paul

    2015-01-01

    Schizosaccharomyces pombe is a good model to study cell-size control. These cells integrate size information into cell cycle controls at both the G1/S and G2/M transitions, although the primary control operates at the entry into mitosis. At G2/M there is both a size threshold, demonstrated by the fact that cells divide when they reach 14 μm in length, and also correction around this threshold, evident from the narrow distribution of sizes within a population. This latter property is referred to as size homeostasis. It has been argued that a population of cells accumulating mass in a linear fashion will have size homeostasis in the absence of size control, if cycle time is controlled by a fixed timer. Because fission yeast cells do not grow in a simple linear fashion, they require a size-sensing mechanism. However, current models do not fully describe all aspects of this control, especially the coordination of cell size with ploidy.

  6. A spatial gradient coordinates cell size and mitotic entry in fission yeast.

    PubMed

    Moseley, James B; Mayeux, Adeline; Paoletti, Anne; Nurse, Paul

    2009-06-11

    Many eukaryotic cell types undergo size-dependent cell cycle transitions controlled by the ubiquitous cyclin-dependent kinase Cdk1 (refs 1-4). The proteins that control Cdk1 activity are well described but their links with mechanisms monitoring cell size remain elusive. In the fission yeast Schizosaccharomyces pombe, cells enter mitosis and divide at a defined and reproducible size owing to the regulated activity of Cdk1 (refs 2, 3). Here we show that the cell polarity protein kinase Pom1, which localizes to cell ends, regulates a signalling network that contributes to the control of mitotic entry. This network is located at cortical nodes in the middle of interphase cells, and these nodes contain the Cdk1 inhibitor Wee1, the Wee1-inhibitory kinases Cdr1 (also known as Nim1) and Cdr2, and the anillin-like protein Mid1. Cdr2 establishes the hierarchical localization of other proteins in the nodes, and receives negative regulatory signals from Pom1. Pom1 forms a polar gradient extending from the cell ends towards the cell middle and acts as a dose-dependent inhibitor of mitotic entry, working through the Cdr2 pathway. As cells elongate, Pom1 levels decrease at the cell middle, leading to mitotic entry. We propose that the Pom1 polar gradient and the medial cortical nodes generate information about cell size and coordinate this with mitotic entry by regulating Cdk1 through Pom1, Cdr2, Cdr1 and Wee1.

  7. Regulation of fission yeast morphogenesis by PP2A activator pta2.

    PubMed

    Bernal, Manuel; Sanchez-Romero, Maria Antonia; Salas-Pino, Silvia; Daga, Rafael R

    2012-01-01

    Cell polarization is key for the function of most eukaryotic cells, and regulates cell shape, migration and tissue architecture. Fission yeast, Schizosaccharomyces pombe cells are cylindrical and polarize cell growth to one or both cell tips dependent on the cell cycle stage. Whereas microtubule cytoskeleton contributes to the positioning of the growth sites by delivering polarity factors to the cell ends, the Cdc42 GTPase polarizes secretion via actin-dependent delivery and tethering of secretory vesicles to plasma membrane. How growth is restricted to cell tips and how re-initiation of tip growth is regulated in the cell cycle remains poorly understood. In this work we investigated the function of protein phosphatase type 2A (PP2A) in S. pombe morphogenesis by deleting the evolutionary conserved PTPA-type regulatory subunit that we named pta2. pta2-deleted cells showed morphological defects and altered growth pattern. Consistent with this, actin patches and active Cdc42 were mislocalized in the pta2 deletion. These defects were additive to the lack of Cdc42-GAP Rga4. pta2Δ cells show upregulated Cdc42 activity and pta2 interacts genetically with polarisome components Tea1, Tea4 and For3 leading to complete loss of cell polarity and rounded morphology. Thus, regulation of polarity by PP2A requires the polarisome and involves Pta2-dependent control of Cdc42 activity.

  8. Electrical control of cell polarization in the fission yeast Schizosaccharomyces pombe.

    PubMed

    Minc, Nicolas; Chang, Fred

    2010-04-27

    Electric signals surround tissues and cells and have been proposed to participate in directing cell polarity in processes such as development, wound healing, and host invasion [1, 2]. The application of exogenous electric fields (EFs) can direct cell polarization in cell types ranging from bacteria and fungi to neurons and neutrophils [3-7]. The mechanisms by which EFs modulate cell polarity, however, remain poorly understood. Here we introduce the fission yeast Schizosaccharomyces pombe as a model organism to elucidate the mechanisms underlying this process. In these rod-shaped cells, an exogenous EF reorients cell growth in a direction orthogonal to the field, producing cells with a bent morphology. A candidate genetic screen identifies conserved factors involved in this process: an integral membrane proton ATPase pma1p that regulates intracellular pH, the small GTPase cdc42p, and the formin for3p that assembles actin cables. Interestingly, mutants in these genes still respond to the EF but orient in a different direction, toward the anode. In addition, EFs also cause electrophoretic movement of cell wall synthase complex proteins toward the anode. These data suggest molecular models for how the EF reorients cell polarization by modulating intracellular pH and steering cell polarity factors in multiple directions. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Wall mechanics and exocytosis define the shape of growth domains in fission yeast

    NASA Astrophysics Data System (ADS)

    Abenza, Juan F.; Couturier, Etienne; Dodgson, James; Dickmann, Johanna; Chessel, Anatole; Dumais, Jacques; Salas, Rafael E. Carazo

    2015-10-01

    The amazing structural variety of cells is matched only by their functional diversity, and reflects the complex interplay between biochemical and mechanical regulation. How both regulatory layers generate specifically shaped cellular domains is not fully understood. Here, we report how cell growth domains are shaped in fission yeast. Based on quantitative analysis of cell wall expansion and elasticity, we develop a model for how mechanics and cell wall assembly interact and use it to look for factors underpinning growth domain morphogenesis. Surprisingly, we find that neither the global cell shape regulators Cdc42-Scd1-Scd2 nor the major cell wall synthesis regulators Bgs1-Bgs4-Rgf1 are reliable predictors of growth domain geometry. Instead, their geometry can be defined by cell wall mechanics and the cortical localization pattern of the exocytic factors Sec6-Syb1-Exo70. Forceful re-directioning of exocytic vesicle fusion to broader cortical areas induces proportional shape changes to growth domains, demonstrating that both features are causally linked.

  10. Centromeric motion facilitates the mobility of interphase genomic regions in fission yeast

    PubMed Central

    Kim, Kyoung-Dong; Tanizawa, Hideki; Iwasaki, Osamu; Corcoran, Christopher J.; Capizzi, Joseph R.; Hayden, James E.; Noma, Ken-ichi

    2013-01-01

    Summary Dispersed genetic elements, such as retrotransposons and Pol-III-transcribed genes, including tRNA and 5S rRNA, cluster and associate with centromeres in fission yeast through the function of condensin. However, the dynamics of these condensin-mediated genomic associations remains unknown. We have examined the 3D motions of genomic loci including the centromere, telomere, rDNA repeat locus, and the loci carrying Pol-III-transcribed genes or long-terminal repeat (LTR) retrotransposons in live cells at as short as 1.5-second intervals. Treatment with carbendazim (CBZ), a microtubule-destabilizing agent, not only prevents centromeric motion, but also reduces the mobility of the other genomic loci during interphase. Further analyses demonstrate that condensin-mediated associations between centromeres and the genomic loci are clonal, infrequent and transient. However, when associated, centromeres and the genomic loci migrate together in a coordinated fashion. In addition, a condensin mutation that disrupts associations between centromeres and the genomic loci results in a concomitant decrease in the mobility of the loci. Our study suggests that highly mobile centromeres pulled by microtubules in cytoplasm serve as ‘genome mobility elements’ by facilitating physical relocations of associating genomic regions. PMID:23986481

  11. Kinesin-8 effects on mitotic microtubule dynamics contribute to spindle function in fission yeast

    PubMed Central

    Gergely, Zachary R.; Crapo, Ammon; Hough, Loren E.; McIntosh, J. Richard; Betterton, Meredith D.

    2016-01-01

    Kinesin-8 motor proteins destabilize microtubules. Their absence during cell division is associated with disorganized mitotic chromosome movements and chromosome loss. Despite recent work studying effects of kinesin-8s on microtubule dynamics, it remains unclear whether the kinesin-8 mitotic phenotypes are consequences of their effect on microtubule dynamics, their well-established motor activity, or additional, unknown functions. To better understand the role of kinesin-8 proteins in mitosis, we studied the effects of deletion of the fission yeast kinesin-8 proteins Klp5 and Klp6 on chromosome movements and spindle length dynamics. Aberrant microtubule-driven kinetochore pushing movements and tripolar mitotic spindles occurred in cells lacking Klp5 but not Klp6. Kinesin-8–deletion strains showed large fluctuations in metaphase spindle length, suggesting a disruption of spindle length stabilization. Comparison of our results from light microscopy with a mathematical model suggests that kinesin-8–induced effects on microtubule dynamics, kinetochore attachment stability, and sliding force in the spindle can explain the aberrant chromosome movements and spindle length fluctuations seen. PMID:27146110

  12. Cellular economy in fission yeast cells continuously cultured with limited nitrogen resources

    PubMed Central

    Chikashige, Yuji; Arakawa, Shin'ichi; Leibnitz, Kenji; Tsutsumi, Chihiro; Mori, Chie; Osakada, Hiroko; Murata, Masayuki; Haraguchi, Tokuko; Hiraoka, Yasushi

    2015-01-01

    In ribosome biogenesis, a large fraction of ribosomes is used for producing ribosomal proteins themselves. Here, we applied simulation and experimentation to determine what fraction of ribosomes should be allocated for the synthesis of ribosomal proteins to optimize cellular economy for growth. We define the “r-fraction” as the fraction of mRNA of the ribosomal protein genes out of the total mRNA, and we simulated the effect of the r-fraction on the number of ribosomes. We then empirically measured the amount of protein and RNA in fission yeast cells cultured with high and low nitrogen sources. In the cells cultured with a low nitrogen source, the r-fraction decreased from 0.46 to 0.42 with a 40% reduction of rRNA, but the reduction of the total protein was smaller at 30%. These results indicate that the r-fraction is internally controlled to optimize the efficiency of protein synthesis at a limited cellular cost. PMID:26486373

  13. Properties of African Cassava Mosaic Virus Capsid Protein Expressed in Fission Yeast

    PubMed Central

    Hipp, Katharina; Schäfer, Benjamin; Kepp, Gabi; Jeske, Holger

    2016-01-01

    The capsid proteins (CPs) of geminiviruses combine multiple functions for packaging the single-stranded viral genome, insect transmission and shuttling between the nucleus and the cytoplasm. African cassava mosaic virus (ACMV) CP was expressed in fission yeast, and purified by SDS gel electrophoresis. After tryptic digestion of this protein, mass spectrometry covered 85% of the amino acid sequence and detected three N-terminal phosphorylation sites (threonine 12, serines 25 and 62). Differential centrifugation of cell extracts separated the CP into two fractions, the supernatant and pellet. Upon isopycnic centrifugation of the supernatant, most of the CP accumulated at densities typical for free proteins, whereas the CP in the pellet fraction showed a partial binding to nucleic acids. Size-exclusion chromatography of the supernatant CP indicated high order complexes. In DNA binding assays, supernatant CP accelerated the migration of ssDNA in agarose gels, which is a first hint for particle formation. Correspondingly, CP shifted ssDNA to the expected densities of virus particles upon isopycnic centrifugation. Nevertheless, electron microscopy did not reveal any twin particles, which are characteristic for geminiviruses. PMID:27399762

  14. A single-headed fission yeast myosin V transports actin in a tropomyosin-dependent manner

    PubMed Central

    Tang, Qing; Krementsova, Elena B.; Bookwalter, Carol S.; Lord, Matthew

    2016-01-01

    Myo51, a class V myosin in fission yeast, localizes to and assists in the assembly of the contractile ring, a conserved eukaryotic actomyosin structure that facilitates cytokinesis. Rng8 and Rng9 are binding partners that dictate the cellular localization and function of Myo51. Myo51 was expressed in insect cells in the presence or absence of Rng8/9. Surprisingly, electron microscopy of negatively stained images and hydrodynamic measurements showed that Myo51 is single headed, unlike most class V myosins. When Myo51–Rng8/9 was bound to actin-tropomyosin, two attachment sites were observed: the typical ATP-dependent motor domain attachment and a novel ATP-independent binding of the tail mediated by Rng8/9. A modified motility assay showed that this additional binding site anchors Myo51–Rng8/9 so that it can cross-link and slide actin-tropomyosin filaments relative to one another, functions that may explain the role of this motor in contractile ring assembly. PMID:27432898

  15. Fission yeast switches mating type by a replication–recombination coupled process

    PubMed Central

    Arcangioli, Benoit; de Lahondès, Raynald

    2000-01-01

    Fission yeast exhibits a homothallic life cycle, in which the mating type of the cell mitotically alternates in a highly regulated fashion. Pedigree analysis of dividing cells has shown that only one of the two sister cells switches mating type. It was shown recently that a site- and strand-specific DNA modification at the mat1 locus precedes mating-type switching. By tracking the fate of mat1 DNA throughout the cell cycle with a PCR assay, we identified a novel DNA intermediate of mating-type switching in S-phase. The time and rate of appearance and disappearance of this DNA intermediate are consistent with a model in which mating-type switching occurs through a replication–recombination coupled pathway. Such a process provides experimental evidence in support of a copy choice recombination model in Schizosaccharomyces pombe mating-type switching and is reminiscent of the sister chromatid recombination used to complete replication in the presence of certain types of DNA damage. PMID:10716938

  16. Shape and Size of the Fission Yeast Nucleus are governed by Equilibrium Mechanics

    NASA Astrophysics Data System (ADS)

    Lim, Gerald; Huber, Greg; Miller, Jonathan; Sazer, Shelley

    2006-03-01

    Nuclear morphogenesis in the asexual reproduction of Schizosaccharomyces pombe (fission yeast) consists of two stages: (i) volume-doubling growth, in which a round nucleus inflates uniformly, and (ii) division, in which the nucleus undergoes shape changes from round to oblong to peanut to dumbbell before it resolves into two smaller, round daughter nuclei, driven by the formation and elongation of a microtubule-based spindle within the nucleus. The combined volume of the daughter nuclei immediately after division is the same as the volume of the single nucleus at the onset of division. Consequently, the nuclear envelope (NE) area must increase by 26% during division. We are developing a model in order to determine the mechanics governing these shape and size changes. It is based on current knowledge of the nuclear structure, insight from normal and abnormal nuclei, and concepts from the mechanics governing lipid-bilayer membranes. We predict that (a) the NE prefers to be flat, (b) the NE is under tension, (c) the nucleus has an internal pressure, (d) nuclear growth is governed by the Law of Laplace, and (e) some abnormal nuclei behave like vesicles with encapsulated microtubules.

  17. Kinesin-5-independent mitotic spindle assembly requires the antiparallel microtubule crosslinker Ase1 in fission yeast

    PubMed Central

    Rincon, Sergio A.; Lamson, Adam; Blackwell, Robert; Syrovatkina, Viktoriya; Fraisier, Vincent; Paoletti, Anne; Betterton, Meredith D.; Tran, Phong T.

    2017-01-01

    Bipolar spindle assembly requires a balance of forces where kinesin-5 produces outward pushing forces to antagonize the inward pulling forces from kinesin-14 or dynein. Accordingly, Kinesin-5 inactivation results in force imbalance leading to monopolar spindle and chromosome segregation failure. In fission yeast, force balance is restored when both kinesin-5 Cut7 and kinesin-14 Pkl1 are deleted, restoring spindle bipolarity. Here we show that the cut7Δpkl1Δ spindle is fully competent for chromosome segregation independently of motor activity, except for kinesin-6 Klp9, which is required for anaphase spindle elongation. We demonstrate that cut7Δpkl1Δ spindle bipolarity requires the microtubule antiparallel bundler PRC1/Ase1 to recruit CLASP/Cls1 to stabilize microtubules. Brownian dynamics-kinetic Monte Carlo simulations show that Ase1 and Cls1 activity are sufficient for initial bipolar spindle formation. We conclude that pushing forces generated by microtubule polymerization are sufficient to promote spindle pole separation and the assembly of bipolar spindle in the absence of molecular motors. PMID:28513584

  18. Negative Functional Interaction Between Cell Integrity MAPK Pathway and Rho1 GTPase in Fission Yeast

    PubMed Central

    Viana, Raul A.; Pinar, Mario; Soto, Teresa; Coll, Pedro M.; Cansado, Jose; Pérez, Pilar

    2013-01-01

    Rho1 GTPase is the main activator of cell wall glucan biosynthesis and regulates actin cytoskeleton in fungi, including Schizosaccharomyces pombe. We have obtained a fission yeast thermosensitive mutant strain carrying the rho1-596 allele, which displays reduced Rho1 GTPase activity. This strain has severe cell wall defects and a thermosensitive growth, which is partially suppressed by osmotic stabilization. In a global screening for rho1-596 multicopy suppresors the pmp1+ gene was identified. Pmp1 is a dual specificity phosphatase that negatively regulates the Pmk1 mitogen-activated protein kinase (MAPK) cell integrity pathway. Accordingly, elimination of Pmk1 MAPK partially rescued rho1-596 thermosensitivity, corroborating the unexpected antagonistic functional relationship of these genes. We found that rho1-596 cells displayed increased basal activation of the cell integrity MAPK pathway and therefore were hypersensitive to MgCl2 and FK506. Moreover, the absence of calcineurin was lethal for rho1-596. We found a higher level of calcineurin activity in rho1-596 than in wild-type cells, and overexpression of constitutively active calcineurin partially rescued rho1-596 thermosensitivity. All together our results suggest that loss of Rho1 function causes an increase in the cell integrity MAPK activity, which is detrimental to the cells and turns calcineurin activity essential. PMID:23934882

  19. RNA interference is required for normal centromere function in fission yeast.

    PubMed

    Volpe, Tom; Schramke, Vera; Hamilton, Georgina L; White, Sharon A; Teng, Grace; Martienssen, Robert A; Allshire, Robin C

    2003-01-01

    In plants, animals and fungi, active centromeres are associated with arrays of repetitive DNA sequences. The outer repeats at fission yeast (Schizosaccharomyces pombe) centromeres are heterochromatic and are required for the assembly of an active centromere. Components of the RNA interference (RNAi) machinery process transcripts derived from these repeats and mediate the formation of silent chromatin. A subfragment of the repeat (dg) is known to induce silencing of marker genes at euchromatic sites and is required for centromere formation. We show that the RNAi components, Argonaute (Ago1), Dicer (Dcr1) and RNA-dependent RNA polymerase (Rdp1), are required to maintain silencing, lysine 9 methylation of histone H3 and association of Swi6 via this dg ectopic silencer. Deletion of Ago1, Dcr1 or Rdp1 disrupts chromosome segregation leading to a high incidence of lagging chromosomes on late anaphase spindles and sensitivity to a microtubule poison. Analysis of dg transcription indicates that csp mutants, previously shown to abrogate centromere silencing and chromosome segregation, are also defective in the regulation of non-coding centromeric RNAs. In addition, histone H3 lysine 9 methylation at, and recruitment of Swi6 and cohesin to, centromeric repeats is disrupted in these mutants. Thus the formation of silent chromatin on dg repeats and the development of a fully functional centromere is dependent on RNAi.

  20. Sir2 is required for Clr4 to initiate centromeric heterochromatin assembly in fission yeast

    PubMed Central

    Alper, Benjamin J; Job, Godwin; Yadav, Rajesh K; Shanker, Sreenath; Lowe, Brandon R; Partridge, Janet F

    2013-01-01

    Heterochromatin assembly in fission yeast depends on the Clr4 histone methyltransferase, which targets H3K9. We show that the histone deacetylase Sir2 is required for Clr4 activity at telomeres, but acts redundantly with Clr3 histone deacetylase to maintain centromeric heterochromatin. However, Sir2 is critical for Clr4 function during de novo centromeric heterochromatin assembly. We identified new targets of Sir2 and tested if their deacetylation is necessary for Clr4-mediated heterochromatin establishment. Sir2 preferentially deacetylates H4K16Ac and H3K4Ac, but mutation of these residues to mimic acetylation did not prevent Clr4-mediated heterochromatin establishment. Sir2 also deacetylates H3K9Ac and H3K14Ac. Strains bearing H3K9 or H3K14 mutations exhibit heterochromatin defects. H3K9 mutation blocks Clr4 function, but why H3K14 mutation impacts heterochromatin was not known. Here, we demonstrate that recruitment of Clr4 to centromeres is blocked by mutation of H3K14. We suggest that Sir2 deacetylates H3K14 to target Clr4 to centromeres. Further, we demonstrate that Sir2 is critical for de novo accumulation of H3K9me2 in RNAi-deficient cells. These analyses place Sir2 and H3K14 deacetylation upstream of Clr4 recruitment during heterochromatin assembly. PMID:23771057

  1. ATP analog-sensitive Pat1 protein kinase for synchronous fission yeast meiosis at physiological temperature

    PubMed Central

    Cipak, Lubos; Hyppa, Randy; Smith, Gerald; Gregan, Juraj

    2012-01-01

    To study meiosis, synchronous cultures are often indispensable, especially for physical analyses of DNA and proteins. A temperature-sensitive allele of the Pat1 protein kinase (pat1-114) has been widely used to induce synchronous meiosis in the fission yeast Schizosaccharomyces pombe, but pat1-114-induced meiosis differs from wild-type meiosis, and some of these abnormalities might be due to higher temperature needed to inactivate the Pat1 kinase. Here, we report an ATP analog-sensitive allele of Pat1 [Pat1(L95A), designated pat1-as2] that can be used to generate synchronous meiotic cultures at physiological temperature. In pat1-as2 meiosis, chromosomes segregate with higher fidelity, and spore viability is higher than in pat1-114 meiosis, although recombination is lower by a factor of 2–3 in these mutants than in starvation-induced pat1+ meiosis. Addition of the mat-Pc gene improved chromosome segregation and spore viability to nearly the level of starvation-induced meiosis. We conclude that pat1-as2 mat-Pc cells offer synchronous meiosis with most tested properties similar to those of wild-type meiosis. PMID:22487684

  2. Analysis of interphase node proteins in fission yeast by quantitative and super resolution fluorescence microscopy.

    PubMed

    Akamatsu, Matthew; Lin, Yu; Bewersdorf, Joerg; Pollard, Thomas D

    2017-05-24

    We used quantitative confocal microscopy and FPALM super resolution microscopy of live fission yeast to investigate the structures and assembly of two types of interphase nodes, multiprotein complexes associated with the plasma membrane that merge together and mature into the precursors of the cytokinetic contractile ring. During the long G2 phase of the cell cycle seven different interphase node proteins maintain constant concentrations as they accumulate in proportion to cell volume. During mitosis the total numbers of type 1 node proteins (cell cycle kinases Cdr1p, Cdr2p, Wee1p, and anillin Mid1p) are constant even when the nodes disassemble. Quantitative measurements provide strong evidence that both types of nodes have defined sizes and numbers of constituent proteins, as observed for cytokinesis nodes. Type 1 nodes assemble in two phases, a burst at the end of mitosis, followed by steady increase during interphase to double the initial number. Type 2 nodes containing Blt1p, Rho-GEF Gef2p, and kinesin Klp8p remain intact throughout the cell cycle and are constituents of the contractile ring. They are released from the contractile ring as it disassembles and then associate with type 1 nodes around the equator of the cell during interphase. © 2017 by The American Society for Cell Biology.

  3. Multiple crosstalk between TOR and the cell integrity MAPK signaling pathway in fission yeast

    PubMed Central

    Madrid, Marisa; Vázquez-Marín, Beatriz; Franco, Alejandro; Soto, Teresa; Vicente-Soler, Jero; Gacto, Mariano; Cansado, José

    2016-01-01

    In eukaryotic cells, the highly conserved Target of Rapamycin (TOR) and the Mitogen Activated Protein Kinase (MAPK) signaling pathways elicit adaptive responses to extra- and intracellular conditions by regulating essential cellular functions. However, the nature of the functional relationships between both pathways is not fully understood. In the fission yeast Schizosaccharomyces pombe the cell integrity MAPK pathway (CIP) regulates morphogenesis, cell wall structure and ionic homeostasis. We show that the Rab GTPase Ryh1, a TORC2 complex activator, cross-activates the CIP and its core member, the MAPK Pmk1, by two distinct mechanisms. The first one involves TORC2 and its downstream effector, Akt ortholog Gad8, which together with TORC1 target Psk1 increase protein levels of the PKC ortholog Pck2 during cell wall stress or glucose starvation. Also, Ryh1 activates Pmk1 in a TORC2-independent fashion by prompting plasma membrane trafficking and stabilization of upstream activators of the MAPK cascade, including PDK ortholog Ksg1 or Rho1 GEF Rgf1. Besides, stress-activated Pmk1 cross-inhibits Ryh1 signaling by decreasing the GTPase activation cycle, and this ensures cell growth during alterations in phosphoinositide metabolism. Our results reveal a highly intricate cross-regulatory relationship between both pathways that warrants adequate cell adaptation and survival in response to environmental changes. PMID:27876895

  4. Cellular economy in fission yeast cells continuously cultured with limited nitrogen resources.

    PubMed

    Chikashige, Yuji; Arakawa, Shin'ichi; Leibnitz, Kenji; Tsutsumi, Chihiro; Mori, Chie; Osakada, Hiroko; Murata, Masayuki; Haraguchi, Tokuko; Hiraoka, Yasushi

    2015-10-21

    In ribosome biogenesis, a large fraction of ribosomes is used for producing ribosomal proteins themselves. Here, we applied simulation and experimentation to determine what fraction of ribosomes should be allocated for the synthesis of ribosomal proteins to optimize cellular economy for growth. We define the "r-fraction" as the fraction of mRNA of the ribosomal protein genes out of the total mRNA, and we simulated the effect of the r-fraction on the number of ribosomes. We then empirically measured the amount of protein and RNA in fission yeast cells cultured with high and low nitrogen sources. In the cells cultured with a low nitrogen source, the r-fraction decreased from 0.46 to 0.42 with a 40% reduction of rRNA, but the reduction of the total protein was smaller at 30%. These results indicate that the r-fraction is internally controlled to optimize the efficiency of protein synthesis at a limited cellular cost.

  5. Histone deacetylase homologs regulate epigenetic inheritance of transcriptional silencing and chromosome segregation in fission yeast.

    PubMed

    Grewal, S I; Bonaduce, M J; Klar, A J

    1998-10-01

    Position-effect control at the silent mat2-mat3 interval and at centromeres and telomeres in fission yeast is suggested to be mediated through the assembly of heterochromatin-like structures. Therefore, trans-acting genes that affect silencing may encode either chromatin proteins, factors that modify them, or factors that affect chromatin assembly. Here, we report the identification of an essential gene, clr6 (cryptic loci regulator), which encodes a putative histone deacetylase that when mutated affects epigenetically maintained repression at the mat2-mat3 region and at centromeres and reduces the fidelity of chromosome segregation. Furthermore, we show that the Clr3 protein, when mutated, alleviates recombination block at mat region as well as silencing at donor loci and at centromeres and telomeres, also shares strong homology to known histone deacetylases. Genetic analyses indicate that silencing might be regulated by at least two overlapping histone deacetylase activities. We also found that transient inhibition of histone deacetylase activity by trichostatin A results in the increased missegregation of chromosomes in subsequent generations and, remarkably, alters the imprint at the mat locus, causing the heritable conversion of the repressed epigenetic state to the expressed state. This work supports the model that the level of histone deacetylation has a role in the assembly of repressive heterochromatin and provides insight into the mechanism of epigenetic inheritance.

  6. Genes required for initiation and resolution steps of mating-type switching in fission yeast.

    PubMed

    Egel, R; Beach, D H; Klar, A J

    1984-06-01

    The fission yeast Schizosaccharomyces pombe switches mating type by transposition of a copy of DNA derived from either of the two storage cassettes, mat2 -P and mat3 -M, into the expression locus, mat1 . The recombinational event of switching is initiated by a double-stranded DNA break present in approximately 20% of the molecules at mat1 . Fifty-three mutants defective in switching of mating type have been isolated previously, and each has been assigned to 1 of 10 linkage groups. One group consists of cis-acting mutations at mat1 , which reduce the amount of the DNA double-strand cut. The remaining nine groups are mutations in genes that are unlinked to the mating-type locus and are studied here. Three ( swi1 , -3, -7) are required for formation of the double-strand cut, whereas the others are not. Mutants of three genes ( swi4 , -8, -9) undergo high-frequency rearrangement of the mating-type locus indicative of errors of resolution of recombinational intermediates. The remaining three ( swi2 , -5, -6) have normal levels of cut, do not make errors of resolution, and possibly are required either for efficient utilization of the cut or determining the directionality of switching. The data suggest that the switching process can be dissected into genetically distinguishable steps.

  7. Gene activation by copy transposition in mating-type switching of a homothallic fission yeast.

    PubMed

    Egel, R; Gutz, H

    1981-04-01

    Mating-type switching in homothallic clones of the fission yeast, Schizosaccharomyces pombe, appears to follow the same route as previously found for "mutations" from homothallism to heterothallic ⊕ strains. A copy of mat2-P is transposed to and inserted at mat1, where it functionally replaces the mat1-M allele, and only the mat1 segment is expressed (!) to determine the actual mating type: mat1-M(!) mat2-P = ⊖ ⇌ ⊕ = mat1-P(!) mat2-P. This phenomenon has hitherto been concealed by the high switch-back rate from ⊕ to ⊖ observed in homothallic wild-type strains. It only becomes apparent in the presence of mutant "switching genes", which retard the rates of mating-type interconversion and temporarily freeze one or the other state of gene activation at the mat1 segment. Mutations to lowered rates of switching are found to map both inside and outside the mating-type locus. While the internal mutations of this kind exert their effect autonomously in the cis-configuration, the unlinked mutations are recessive to their wild-type alleles.

  8. Characterization of fission yeast meiotic mutants based on live observation of meiotic prophase nuclear movement.

    PubMed

    Hiraoka, Y; Ding, D Q; Yamamoto, A; Tsutsumi, C; Chikashige, Y

    2000-01-01

    We characterized four meiotic mutants of the fission yeast Schizosaccharomyces pombe by live observation of nuclear movement. Nuclei were stained with either the DNA-specific fluorescent dye Hoechst 33342 or jellyfish green fluorescent protein (GFP) fused with the N-terminal portion of DNA polymerase alpha. We first followed nuclear dynamics in wild-type cells to determine the temporal sequence of meiotic events: nuclear fusion in the conjugated zygote is immediately followed by oscillatory nuclear movements that continue for 146 min; then, after coming to rest, the nucleus remains in the center of the cell for 26 min before the first meiotic division. Next we examined nuclear dynamics in four meiotic mutants: mei1 (also called mat2), mei4, dhc1, and taz1. Mei1 and mei4 both arrest during meiotic prophase; our observations, however, show that the timing of mei1 arrest is quite different from that of mei4: the mei1 mutant arrests after nuclear fusion but before starting the oscillatory nuclear movements, while the mei4 mutant arrests after the nucleus has completed the oscillatory movements but before the first meiotic division. We also show examples of the dynamic phenotypes of dhc1 and taz1, both of which complete meiosis but exhibit impaired nuclear movement and reduced frequencies of homologous recombination: the dhc1 mutant exhibits no nuclear movement after nuclear fusion, while the taz1 mutant exhibits severely impaired nuclear movement after nuclear fusion.

  9. Genes required for initiation and resolution steps of mating-type switching in fission yeast.

    PubMed Central

    Egel, R; Beach, D H; Klar, A J

    1984-01-01

    The fission yeast Schizosaccharomyces pombe switches mating type by transposition of a copy of DNA derived from either of the two storage cassettes, mat2 -P and mat3 -M, into the expression locus, mat1 . The recombinational event of switching is initiated by a double-stranded DNA break present in approximately 20% of the molecules at mat1 . Fifty-three mutants defective in switching of mating type have been isolated previously, and each has been assigned to 1 of 10 linkage groups. One group consists of cis-acting mutations at mat1 , which reduce the amount of the DNA double-strand cut. The remaining nine groups are mutations in genes that are unlinked to the mating-type locus and are studied here. Three ( swi1 , -3, -7) are required for formation of the double-strand cut, whereas the others are not. Mutants of three genes ( swi4 , -8, -9) undergo high-frequency rearrangement of the mating-type locus indicative of errors of resolution of recombinational intermediates. The remaining three ( swi2 , -5, -6) have normal levels of cut, do not make errors of resolution, and possibly are required either for efficient utilization of the cut or determining the directionality of switching. The data suggest that the switching process can be dissected into genetically distinguishable steps. Images PMID:6587363

  10. A chromodomain protein, Swi6, performs imprinting functions in fission yeast during mitosis and meiosis.

    PubMed

    Nakayama, J; Klar, A J; Grewal, S I

    2000-04-28

    Inheritance of stable states of gene expression is essential for cellular differentiation. In fission yeast, an epigenetic imprint marking the mating-type (mat2/3) region contributes to inheritance of the silenced state, but the nature of the imprint is not known. We show that a chromodomain-containing Swi6 protein is a dosage-critical component involved in imprinting the mat locus. Transient overexpression of Swi6 alters the epigenetic imprint at the mat2/3 region and heritably converts the expressed state to the silenced state. The establishment and maintenance of the imprint are tightly coupled to the recruitment and the persistence of Swi6 at the mat2/3 region during mitosis as well as meiosis. Remarkably, Swi6 remains bound to the mat2/3 interval throughout the cell cycle and itself seems to be a component of the imprint. Our analyses suggest that the unit of inheritance at the mat2/3 locus comprises the DNA plus the associated Swi6 protein complex.

  11. Two portable recombination enhancers direct donor choice in fission yeast heterochromatin.

    PubMed

    Jakočiūnas, Tadas; Holm, Lærke Rebekka; Verhein-Hansen, Janne; Trusina, Ala; Thon, Geneviève

    2013-10-01

    Mating-type switching in fission yeast results from gene conversions of the active mat1 locus by heterochromatic donors. mat1 is preferentially converted by mat2-P in M cells and by mat3-M in P cells. Here, we report that donor choice is governed by two portable recombination enhancers capable of promoting use of their adjacent cassette even when they are transposed to an ectopic location within the mat2-mat3 heterochromatic domain. Cells whose silent cassettes are swapped to mat2-M mat3-P switch mating-type poorly due to a defect in directionality but cells whose recombination enhancers were transposed together with the cassette contents switched like wild type. Trans-acting mutations that impair directionality affected the wild-type and swapped cassettes in identical ways when the recombination enhancers were transposed together with their cognate cassette, showing essential regulatory steps occur through the recombination enhancers. Our observations lead to a model where heterochromatin biases competitions between the two recombination enhancers to achieve directionality.

  12. A large gene family in fission yeast encodes spore killers that subvert Mendel’s law

    PubMed Central

    Hu, Wen; Jiang, Zhao-Di; Suo, Fang; Zheng, Jin-Xin; He, Wan-Zhong; Du, Li-Lin

    2017-01-01

    Spore killers in fungi are selfish genetic elements that distort Mendelian segregation in their favor. It remains unclear how many species harbor them and how diverse their mechanisms are. Here, we discover two spore killers from a natural isolate of the fission yeast Schizosaccharomyces pombe. Both killers belong to the previously uncharacterized wtf gene family with 25 members in the reference genome. These two killers act in strain-background-independent and genome-location-independent manners to perturb the maturation of spores not inheriting them. Spores carrying one killer are protected from its killing effect but not that of the other killer. The killing and protecting activities can be uncoupled by mutation. The numbers and sequences of wtf genes vary considerably between S. pombe isolates, indicating rapid divergence. We propose that wtf genes contribute to the extensive intraspecific reproductive isolation in S. pombe, and represent ideal models for understanding how segregation-distorting elements act and evolve. DOI: http://dx.doi.org/10.7554/eLife.26057.001 PMID:28631610

  13. Dynamic Behavior of Microtubules during Dynein-dependent Nuclear Migrations of Meiotic Prophase in Fission Yeast

    PubMed Central

    Yamamoto, Ayumu; Tsutsumi, Chihiro; Kojima, Hiroaki; Oiwa, Kazuhiro; Hiraoka, Yasushi

    2001-01-01

    During meiotic prophase in fission yeast, the nucleus migrates back and forth between the two ends of the cell, led by the spindle pole body (SPB). This nuclear oscillation is dependent on astral microtubules radiating from the SPB and a microtubule motor, cytoplasmic dynein. Here we have examined the dynamic behavior of astral microtubules labeled with the green fluorescent protein during meiotic prophase with the use of optical sectioning microscopy. During nuclear migrations, the SPB mostly follows the microtubules that extend toward the cell cortex. SPB migrations start when these microtubules interact with the cortex and stop when they disappear, suggesting that these microtubules drive nuclear migrations. The microtubules that are followed by the SPB often slide along the cortex and are shortened by disassembly at their ends proximal to the cortex. In dynein-mutant cells, where nuclear oscillations are absent, the SPB never migrates by following microtubules, and microtubule assembly/disassembly dynamics is significantly altered. Based on these observations, together with the frequent accumulation of dynein at a cortical site where the directing microtubules interact, we propose a model in which dynein drives nuclear oscillation by mediating cortical microtubule interactions and regulating the dynamics of microtubule disassembly at the cortex. PMID:11739791

  14. Rapid, efficient and precise allele replacement in the fission yeast Schizosaccharomyces pombe

    PubMed Central

    Gao, Jun; Kan, Fengling; Wagnon, Jacy L.; Storey, Aaron J.; Protacio, Reine M.; Davidson, Mari K.; Wahls, Wayne P.

    2013-01-01

    Gene targeting provides a powerful tool to modify endogenous loci to contain specific mutations, insertions and deletions. Precise allele replacement, with no other chromosomal changes (e.g., insertion of selectable markers or heterologous promoters), maintains physiologically relevant context. Established methods for precise allele replacement in fission yeast employ two successive rounds of transformation and homologous recombination and require genotyping at each step. The relative efficiency of homologous recombination is low and a high rate of false positives during the second round of gene targeting further complicates matters. We report that pop-in, pop-out allele replacement circumvents these problems. We present data for 39 different allele replacements, involving simple and complex modifications at seven different target loci, that illustrate the power and utility of the approach. We also developed and validated a rapid, efficient process for precise allele replacement that requires only one round each of transformation and genotyping. We show that this process can be applied in population scale to an individual target locus, without genotyping, to identify clones with an altered phenotype (targeted forward genetics). It is therefore suitable for saturating, in situ, locus-specific mutation screens (e.g., of essential or non-essential genes and regulatory DNA elements) within normal chromosomal context. PMID:24026504

  15. Role for RACK1 Orthologue Cpc2 in the Modulation of Stress Response in Fission Yeast

    PubMed Central

    Núñez, Andrés; Franco, Alejandro; Madrid, Marisa; Soto, Teresa; Vicente, Jero; Cansado, José

    2009-01-01

    The receptor of activated C kinase (RACK1) is a protein highly conserved among eukaryotes. In mammalian cells, RACK1 functions as an adaptor to favor protein kinase C (PKC)-mediated phosphorylation and subsequent activation of c-Jun NH2-terminal kinase mitogen-activated protein kinase. Cpc2, the RACK1 orthologue in the fission yeast Schizosaccharomyces pombe, is involved in the control of G2/M transition and interacts with Pck2, a PKC-type protein member of the cell integrity Pmk1 mitogen-activated protein kinase (MAPK) pathway. Both RACK1 and Cpc2 are structural components of the 40S ribosomal subunit, and recent data suggest that they might be involved in the control of translation. In this work, we present data supporting that Cpc2 negatively regulates the cell integrity transduction pathway by favoring translation of the tyrosine-phosphatases Pyp1 and Pyp2 that deactivate Pmk1. In addition, Cpc2 positively regulates the synthesis of the stress-responsive transcription factor Atf1 and the cytoplasmic catalase, a detoxificant enzyme induced by treatment with hydrogen peroxide. These results provide for the first time strong evidence that the RACK1-type Cpc2 protein controls from the ribosome the extent of the activation of MAPK cascades, the cellular defense against oxidative stress, and the progression of the cell cycle by regulating positively the translation of specific gene products involved in key biological processes. PMID:19625445

  16. Wall mechanics and exocytosis define the shape of growth domains in fission yeast.

    PubMed

    Abenza, Juan F; Couturier, Etienne; Dodgson, James; Dickmann, Johanna; Chessel, Anatole; Dumais, Jacques; Carazo Salas, Rafael E

    2015-10-12

    The amazing structural variety of cells is matched only by their functional diversity, and reflects the complex interplay between biochemical and mechanical regulation. How both regulatory layers generate specifically shaped cellular domains is not fully understood. Here, we report how cell growth domains are shaped in fission yeast. Based on quantitative analysis of cell wall expansion and elasticity, we develop a model for how mechanics and cell wall assembly interact and use it to look for factors underpinning growth domain morphogenesis. Surprisingly, we find that neither the global cell shape regulators Cdc42-Scd1-Scd2 nor the major cell wall synthesis regulators Bgs1-Bgs4-Rgf1 are reliable predictors of growth domain geometry. Instead, their geometry can be defined by cell wall mechanics and the cortical localization pattern of the exocytic factors Sec6-Syb1-Exo70. Forceful re-directioning of exocytic vesicle fusion to broader cortical areas induces proportional shape changes to growth domains, demonstrating that both features are causally linked.

  17. Fission yeast Pot1 and RecQ helicase are required for efficient chromosome segregation.

    PubMed

    Takahashi, Katsunori; Imano, Ryota; Kibe, Tatsuya; Seimiya, Hiroyuki; Muramatsu, Yukiko; Kawabata, Naoki; Tanaka, Genki; Matsumoto, Yoshitake; Hiromoto, Taisuke; Koizumi, Yuka; Nakazawa, Norihiko; Yanagida, Mitsuhiro; Yukawa, Masashi; Tsuchiya, Eiko; Ueno, Masaru

    2011-02-01

    Pot1 is a single-stranded telomere-binding protein that is conserved from fission yeast to mammals. Deletion of Schizosaccharomyces pombe pot1(+) causes immediate telomere loss. S. pombe Rqh1 is a homolog of the human RecQ helicase WRN, which plays essential roles in the maintenance of genomic stability. Here, we demonstrate that a pot1Δ rqh1-hd (helicase-dead) double mutant maintains telomeres that are dependent on Rad51-mediated homologous recombination. Interestingly, the pot1Δ rqh1-hd double mutant displays a "cut" (cell untimely torn) phenotype and is sensitive to the antimicrotubule drug thiabendazole (TBZ). Moreover, the chromosome ends of the double mutant do not enter the pulsed-field electrophoresis gel. These results suggest that the entangled chromosome ends in the pot1Δ rqh1-hd double mutant inhibit chromosome segregation, signifying that Pot1 and Rqh1 are required for efficient chromosome segregation. We also found that POT1 knockdown, WRN-deficient human cells are sensitive to the antimicrotubule drug vinblastine, implying that some of the functions of S. pombe Pot1 and Rqh1 may be conserved in their respective human counterparts POT1 and WRN.

  18. Fission yeast RecQ helicase Rqh1 is required for the maintenance of circular chromosomes.

    PubMed

    Nanbu, Tomoko; Takahashi, Katsunori; Murray, Johanne M; Hirata, Naoya; Ukimori, Shinobu; Kanke, Mai; Masukata, Hisao; Yukawa, Masashi; Tsuchiya, Eiko; Ueno, Masaru

    2013-03-01

    Protection of telomeres protein 1 (Pot1) binds to single-stranded telomere overhangs and protects chromosome ends. RecQ helicases regulate homologous recombination at multiple stages, including resection, strand displacement, and resolution. Fission yeast pot1 and RecQ helicase rqh1 double mutants are synthetically lethal, but the mechanism is not fully understood. Here, we show that the synthetic lethality of pot1Δ rqh1Δ double mutants is due to inappropriate homologous recombination, as it is suppressed by the deletion of rad51(+). The expression of Rad51 in the pot1Δ rqh1Δ rad51Δ triple mutant, which has circular chromosomes, is lethal. Reduction of the expression of Rqh1 in a pot1 disruptant with circular chromosomes caused chromosome missegregation, and this defect was partially suppressed by the deletion of rad51(+). Taken together, our results suggest that Rqh1 is required for the maintenance of circular chromosomes when homologous recombination is active. Crossovers between circular monomeric chromosomes generate dimers that cannot segregate properly in Escherichia coli. We propose that Rqh1 inhibits crossovers between circular monomeric chromosomes to suppress the generation of circular dimers.

  19. Purification, folding, and characterization of Rec12 (Spo11) meiotic recombinase of fission yeast.

    PubMed

    Wu, Heng; Gao, Jun; Sharif, Wallace D; Davidson, Mari K; Wahls, Wayne P

    2004-11-01

    Meiotic recombination is initiated by controlled dsDNA breaks (DSBs). Rec12 (Spo11) protein of fission yeast is essential for the formation of meiotic DSBs in vivo, for meiotic recombination, and for segregation of chromosomes during meiosis I. Rec12 is orthologous to Top6A topoisomerase of Archaea and is likely the catalytic subunit of a meiotic recombinase that introduces recombinogenic DSBs. However, despite intensive effort, it has not been possible to produce Rec12 protein in a soluble form required to permit biochemical analyses of function. To obtain purified Rec12 protein for in vitro studies, a rec12(+) cDNA was generated, cloned into vector pET15b(+), and expressed in Escherichia coli. Rec12 protein was produced at moderate levels and it partitioned into insoluble fractions of whole-cell extracts. The protein was enriched based upon its differential solubility in two different denaturants and was further purified by column chromatography. A combinatorial, fractional, factorial approach was used to identify conditions under which Rec12 protein could be refolded. Four parameters were most important and, following optimization, soluble Rec12 protein was obtained. Gel filtration demonstrated that refolded Rec12 protein exists as a monomer in solution, suggesting that additional proteins may be required to assemble biologically-active Rec12 dimers, as inferred previously from genetic data [Cell Chromosome 1 (2002) 1]. The production of refolded Rec12 in a soluble form will allow for characterization in vitro of this key meiotic recombination enzyme.

  20. Two Portable Recombination Enhancers Direct Donor Choice in Fission Yeast Heterochromatin

    PubMed Central

    Jakočiūnas, Tadas; Holm, Lærke Rebekka; Verhein-Hansen, Janne; Trusina, Ala; Thon, Geneviève

    2013-01-01

    Mating-type switching in fission yeast results from gene conversions of the active mat1 locus by heterochromatic donors. mat1 is preferentially converted by mat2-P in M cells and by mat3-M in P cells. Here, we report that donor choice is governed by two portable recombination enhancers capable of promoting use of their adjacent cassette even when they are transposed to an ectopic location within the mat2-mat3 heterochromatic domain. Cells whose silent cassettes are swapped to mat2-M mat3-P switch mating-type poorly due to a defect in directionality but cells whose recombination enhancers were transposed together with the cassette contents switched like wild type. Trans-acting mutations that impair directionality affected the wild-type and swapped cassettes in identical ways when the recombination enhancers were transposed together with their cognate cassette, showing essential regulatory steps occur through the recombination enhancers. Our observations lead to a model where heterochromatin biases competitions between the two recombination enhancers to achieve directionality. PMID:24204285

  1. The fission yeast CENP-B protein Abp1 prevents pervasive transcription of repetitive DNA elements.

    PubMed

    Daulny, Anne; Mejía-Ramírez, Eva; Reina, Oscar; Rosado-Lugo, Jesus; Aguilar-Arnal, Lorena; Auer, Herbert; Zaratiegui, Mikel; Azorin, Fernando

    2016-10-01

    It is well established that eukaryotic genomes are pervasively transcribed producing cryptic unstable transcripts (CUTs). However, the mechanisms regulating pervasive transcription are not well understood. Here, we report that the fission yeast CENP-B homolog Abp1 plays an important role in preventing pervasive transcription. We show that loss of abp1 results in the accumulation of CUTs, which are targeted for degradation by the exosome pathway. These CUTs originate from different types of genomic features, but the highest increase corresponds to Tf2 retrotransposons and rDNA repeats, where they map along the entire elements. In the absence of abp1, increased RNAPII-Ser5P occupancy is observed throughout the Tf2 coding region and, unexpectedly, RNAPII-Ser5P is enriched at rDNA repeats. Loss of abp1 also results in Tf2 derepression and increased nucleolus size. Altogether these results suggest that Abp1 prevents pervasive RNAPII transcription of repetitive DNA elements (i.e., Tf2 and rDNA repeats) from internal cryptic sites.

  2. Construction of the first compendium of chemical-genetic profiles in the fission yeast Schizosaccharomyces pombe and comparative compendium approach.

    PubMed

    Han, Sangjo; Lee, Minho; Chang, Hyeshik; Nam, Miyoung; Park, Han-Oh; Kwak, Youn-Sig; Ha, Hye-Jeong; Kim, Dongsup; Hwang, Sung-Ook; Hoe, Kwang-Lae; Kim, Dong-Uk

    2013-07-12

    Genome-wide chemical genetic profiles in Saccharomyces cerevisiae since the budding yeast deletion library construction have been successfully used to reveal unknown mode-of-actions of drugs. Here, we introduce comparative approach to infer drug target proteins more accurately using two compendiums of chemical-genetic profiles from the budding yeast S. cerevisiae and the fission yeast Schizosaccharomyces pombe. For the first time, we established DNA-chip based growth defect measurement of genome-wide deletion strains of S. pombe, and then applied 47 drugs to the pooled heterozygous deletion strains to generate chemical-genetic profiles in S. pombe. In our approach, putative drug targets were inferred from strains hypersensitive to given drugs by analyzing S. pombe and S. cerevisiae compendiums. Notably, many evidences in the literature revealed that the inferred target genes of fungicide and bactericide identified by such comparative approach are in fact the direct targets. Furthermore, by filtering out the genes with no essentiality, the multi-drug sensitivity genes, and the genes with less eukaryotic conservation, we created a set of drug target gene candidates that are expected to be directly affected by a given drug in human cells. Our study demonstrated that it is highly beneficial to construct the multiple compendiums of chemical genetic profiles using many different species. The fission yeast chemical-genetic compendium is available at http://pombe.kaist.ac.kr/compendium. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Genome-wide screens for sensitivity to ionizing radiation identify the fission yeast nonhomologous end joining factor Xrc4.

    PubMed

    Li, Jun; Yu, Yang; Suo, Fang; Sun, Ling-Ling; Zhao, Dan; Du, Li-Lin

    2014-05-21

    Nonhomologous end joining (NHEJ) is the main means for repairing DNA double-strand breaks (DSBs) in human cells. Molecular understanding of NHEJ has benefited from analyses in the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe. In human cells, the DNA ligation reaction of the classical NHEJ pathway is carried out by a protein complex composed of DNA ligase IV (LigIV) and XRCC4. In S. cerevisiae, this reaction is catalyzed by a homologous complex composed of Dnl4 and Lif1. Intriguingly, no homolog of XRCC4 has been found in S. pombe, raising the possibility that such a factor may not always be required for classical NHEJ. Here, through screening the ionizing radiation (IR) sensitivity phenotype of a genome-wide fission yeast deletion collection in both the vegetative growth state and the spore state, we identify Xrc4, a highly divergent homolog of human XRCC4. Like other fission yeast NHEJ factors, Xrc4 is critically important for IR resistance of spores, in which no homologous recombination templates are available. Using both extrachromosomal and chromosomal DSB repair assays, we show that Xrc4 is essential for classical NHEJ. Exogenously expressed Xrc4 colocalizes with the LigIV homolog Lig4 at the chromatin region of the nucleus in a mutually dependent manner. Furthermore, like their human counterparts, Xrc4 and Lig4 interact with each other and this interaction requires the inter-BRCT linker and the second BRCT domain of Lig4. Our discovery of Xrc4 suggests that an XRCC4 family protein is universally required for classical NHEJ in eukaryotes. Copyright © 2014 Li et al.

  4. Rhn1, a nuclear protein, is required for suppression of meiotic mRNAs in mitotically dividing fission yeast.

    PubMed

    Sugiyama, Tomoyasu; Sugioka-Sugiyama, Rie; Hada, Kazumasa; Niwa, Ryusuke

    2012-01-01

    In the fission yeast Schizosaccharomyces pombe, many meiotic mRNAs are transcribed during mitosis and meiosis and selectively eliminated in mitotic cells. However, this pathway for mRNA decay, called the determinant of selective removal (DSR)-Mmi1 system, targets only some of the numerous meiotic mRNAs that are transcribed in mitotic cells. Here we describe Rhn1, a nuclear protein involved in meiotic mRNA suppression in vegetative fission yeast. Rhn1 is homologous to budding yeast Rtt103 and localizes to one or a few discrete nuclear dots in growing vegetative cells. Rhn1 colocalizes with a pre-mRNA 3'-end processing factor, Pcf11, and with the 5'-3' exoribonuclease, Dhp1; moreover, Rhn1 coimmunoprecipitates with Pcf11. Loss of rhn1 results in elevated sensitivity to high temperature, to thiabendazole (TBZ), and to UV. Interestingly, meiotic mRNAs--including moa1(+), mcp5(+), and mug96(+)--accumulate in mitotic rhn1Δ cells. Accumulation of meiotic mRNAs also occurs in strains lacking Lsk1, a kinase that phosphorylates serine 2 (Ser-2) in the C-terminal domain (CTD) of RNA polymerase II (Pol II), and in strains lacking Sen1, an ATP-dependent 5'-3' RNA/DNA helicase: notably, both Lsk1 and Sen1 have been implicated in termination of Pol II-dependent transcription. Furthermore, RNAi knockdown of cids-2, a Caenorhabditis elegans ortholog of rhn1(+), leads to elevated expression of a germline-specific gene, pgl-1, in somatic cells. These results indicate that Rhn1 contributes to the suppression of meiotic mRNAs in vegetative fission yeast and that the mechanism by which Rhn1 downregulates germline-specific transcripts may be conserved in unicellular and multicellular organisms.

  5. Three myosins contribute uniquely to the assembly and constriction of the fission yeast cytokinetic contractile ring

    PubMed Central

    Laplante, Caroline; Berro, Julien; Karatekin, Erdem; Hernandez-Leyva, Ariel; Lee, Rachel; Pollard, Thomas D.

    2015-01-01

    Summary Cytokinesis in fission yeast cells depends on conventional myosin-II (Myo2) to assemble and constrict a contractile ring of actin filaments. Less is known about the functions of an unconventional myosin-II (Myp2) and a myosin-V (Myo51) that are also present in the contractile ring. Myo2 appears in cytokinetic nodes around the equator 10 min before spindle pole body separation (cell cycle time −10 min) independent of actin filaments, followed by Myo51 at time zero and Myp2 at time +20 min, both located between nodes and dependent on actin filaments. We investigated the contributions of these three myosins to cytokinesis using a severely disabled mutation of the essential myosin-II heavy chain gene (myo2-E1) and deletion mutations of the other myosin heavy chain genes. Cells with only Myo2 assemble contractile rings normally. Cells with either Myp2 or Myo51 alone can assemble nodes and actin filaments into contractile rings, but complete assembly later than normal. Both Myp2 and Myo2 contribute to constriction of fully assembled rings at rates 55% of normal in cells relying on Myp2 alone and 25% of normal in cells with Myo2 alone. Myo51 alone cannot constrict rings but increases the constriction rate by Myo2 in Δmyp2 cells or Myp2 in myo2-E1 cells. Three myosins function in a hierarchal, complementary manner to accomplish cytokinesis with Myo2 and Myo51 taking the lead during contractile ring assembly and Myp2 making the greatest contribution to constriction. PMID:26144970

  6. Activation of the cell integrity pathway is channelled through diverse signalling elements in fission yeast.

    PubMed

    Barba, Gregorio; Soto, Teresa; Madrid, Marisa; Núñez, Andrés; Vicente, Jeronima; Gacto, Mariano; Cansado, José

    2008-04-01

    MAPK Pmk1p is the central element of a cascade involved in the maintenance of cell integrity and other functions in Schizosaccharomyces pombe. Pmk1p becomes activated by multiple stressing situations and also during cell separation. GTPase Rho2p acts upstream of the protein kinase C homolog Pck2p to activate the Pmk1 signalling pathway through direct interaction with MAPKKK Mkh1p. In this work we analyzed the functional significance of both Rho2p and Pck2p in the transduction of various stress signals by the cell integrity pathway. The results indicate that basal Pmk1p activity can be positively regulated by alternative mechanisms which are independent on the control by Rho2p and/or Pck2p. Unexpectedly, Pck1p, another protein kinase C homolog, negatively modulates Pmk1p basal activity by an unknown mechanism. Moreover, different elements appear to regulate the stress-induced activation of Pmk1p depending on the nature of the triggering stimuli. Whereas Pmk1p activation induced by hyper- or hypotonic stresses is channeled through Rho2p-Pck2p, other stressors, like glucose deprivation or cell wall disturbance, are transduced via other pathways in addition to that of Rho2p-Pck2p. On the contrary, Pmk1p activation observed during cell separation or after treatment with hydrogen peroxide does not involve Rho2p-Pck2p. Finally, Pck2p function is critical to maintain a Pmk1p basal activity that allows Pmk1p activation induced by heat stress. These data demonstrate the existence of a complex signalling network modulating Pmk1p activation in response to a variety of stresses in fission yeast.

  7. Widespread exon skipping triggers degradation by nuclear RNA surveillance in fission yeast.

    PubMed

    Bitton, Danny A; Atkinson, Sophie R; Rallis, Charalampos; Smith, Graeme C; Ellis, David A; Chen, Yuan Y C; Malecki, Michal; Codlin, Sandra; Lemay, Jean-François; Cotobal, Cristina; Bachand, François; Marguerat, Samuel; Mata, Juan; Bähler, Jürg

    2015-06-01

    Exon skipping is considered a principal mechanism by which eukaryotic cells expand their transcriptome and proteome repertoires, creating different splice variants with distinct cellular functions. Here we analyze RNA-seq data from 116 transcriptomes in fission yeast (Schizosaccharomyces pombe), covering multiple physiological conditions as well as transcriptional and RNA processing mutants. We applied brute-force algorithms to detect all possible exon-skipping events, which were widespread but rare compared to normal splicing events. Exon-skipping events increased in cells deficient for the nuclear exosome or the 5'-3' exonuclease Dhp1, and also at late stages of meiotic differentiation when nuclear-exosome transcripts decreased. The pervasive exon-skipping transcripts were stochastic, did not increase in specific physiological conditions, and were mostly present at less than one copy per cell, even in the absence of nuclear RNA surveillance and during late meiosis. These exon-skipping transcripts are therefore unlikely to be functional and may reflect splicing errors that are actively removed by nuclear RNA surveillance. The average splicing rate by exon skipping was ∼ 0.24% in wild type and ∼ 1.75% in nuclear exonuclease mutants. We also detected approximately 250 circular RNAs derived from single or multiple exons. These circular RNAs were rare and stochastic, although a few became stabilized during quiescence and in splicing mutants. Using an exhaustive search algorithm, we also uncovered thousands of previously unknown splice sites, indicating pervasive splicing; yet most of these splicing variants were cryptic and increased in nuclear degradation mutants. This study highlights widespread but low frequency alternative or aberrant splicing events that are targeted by nuclear RNA surveillance.

  8. Unique properties of Cd-binding peptides induced in fission yeast, Schizosaccharomyces pombe.

    PubMed Central

    Hayashi, Y; Nakagawa, C W; Murasugi, A

    1986-01-01

    Metallothioneins, a class of low molecular weight cysteine-rich proteins that bind heavy metal ions, have been found in various eucaryotic organisms. When fission yeasts are grown in the presence of high concentration of CdCl2, large amounts of Cd-binding peptides (Cd-BP1 and Cd-BP2) are synthesized. Cd-BP1 (MW 4000) contains 4 mole of small unit peptide (cadystin, MW 771), 6 mole of Cd2+, and 1 mole of the labile sulfide; on the other hand, Cd-BP2 (MW 1800) contains 2 mole of cadystin and 2 mole of Cd2+. While Cd-BP2 shows similarities to mammalian Cd-thioneins in UV and CD spectra, Cd-BP1 has a characteristic shoulder at 265 nm in the UV absorption spectrum and shows two marked Cotton bands at 257 nm (negative) and 275 nm (positive). These characteristics of Cd-BP1 are not found in the other Cd-thioneins. When Cd-BP1 is acidified (pH 2.0) and successively neutralized, a shoulder of 265 nm in the UV spectrum and a Cotton band at 275 nm disappear, and the molecular weight changes from 4000 to 1800, with simultaneous loss of the labile sulfide. While the reconstituted complex without labile sulfide showed the characteristics of Cd-BP2, the reconstituted complex in the presence of labile sulfide indicated partial reconstitution of Cd-BP1. The UV and CD spectra differences between reconstituted and native Cd-BP1 suggest the requirement for some additional molecular architecture including another peptide-Cd2+ interaction. Induction of cadystin synthesis is almost exclusive for Cd, but an exception is a small amount of cadystin also induced by the higher concentration of CuCl2 (2.5 mM).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3709432

  9. Characterization of the roles of Blt1p in fission yeast cytokinesis.

    PubMed

    Goss, John W; Kim, Sunhee; Bledsoe, Hannah; Pollard, Thomas D

    2014-07-01

    Spatial and temporal regulation of cytokinesis is essential for cell division, yet the mechanisms that control the formation and constriction of the contractile ring are incompletely understood. In the fission yeast Schizosaccharomyces pombe proteins that contribute to the cytokinetic contractile ring accumulate during interphase in nodes-precursor structures around the equatorial cortex. During mitosis, additional proteins join these nodes, which condense to form the contractile ring. The cytokinesis protein Blt1p is unique in being present continuously in nodes from early interphase through to the contractile ring until cell separation. Blt1p was shown to stabilize interphase nodes, but its functions later in mitosis were unclear. We use analytical ultracentrifugation to show that purified Blt1p is a tetramer. We find that Blt1p interacts physically with Sid2p and Mob1p, a protein kinase complex of the septation initiation network, and confirm known interactions with F-BAR protein Cdc15p. Contractile rings assemble normally in blt1∆ cells, but the initiation of ring constriction and completion of cell division are delayed. We find three defects that likely contribute to this delay. Without Blt1p, contractile rings recruited and retained less Sid2p/Mob1p and Clp1p phosphatase, and β-glucan synthase Bgs1p accumulated slowly at the cleavage site. © 2014 Goss et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  10. Fission yeast HMT1 lowers seed cadmium through phytochelatin-dependent vacuolar sequestration in Arabidopsis.

    PubMed

    Huang, Jing; Zhang, Yu; Peng, Jia-Shi; Zhong, Chen; Yi, Hong-Ying; Ow, David W; Gong, Ji-Ming

    2012-04-01

    Much of our dietary uptake of heavy metals is through the consumption of plants. A long-sought strategy to reduce chronic exposure to heavy metals is to develop plant varieties with reduced accumulation in edible tissues. Here, we describe that the fission yeast (Schizosaccharomyces pombe) phytochelatin (PC)-cadmium (Cd) transporter SpHMT1 produced in Arabidopsis (Arabidopsis thaliana) was localized to tonoplast, and enhanced tolerance to and accumulation of Cd2+, copper, arsenic, and zinc. The action of SpHMT1 requires PC substrates, and failed to confer Cd2+ tolerance and accumulation when glutathione and PC synthesis was blocked by L-buthionine sulfoximine, or only PC synthesis is blocked in the cad1-3 mutant, which is deficient in PC synthase. SpHMT1 expression enhanced vacuolar Cd2+ accumulation in wild-type Columbia-0, but not in cad1-3, where only approximately 35% of the Cd2+ in protoplasts was localized in vacuoles, in contrast to the near 100% found in wild-type vacuoles and approximately 25% in those of cad2-1 that synthesizes very low amounts of glutathione and PCs. Interestingly, constitutive SpHMT1 expression delayed root-to-shoot metal transport, and root-targeted expression confirmed that roots can serve as a sink to reduce metal contents in shoots and seeds. These findings suggest that SpHMT1 function requires PCs in Arabidopsis, and it is feasible to promote food safety by engineering plants using SpHMT1 to decrease metal accumulation in edible tissues.

  11. Peroxide Sensors for the Fission Yeast Stress-activated Mitogen-activated Protein Kinase Pathway

    PubMed Central

    Buck, Vicky; Quinn, Janet; Pino, Teresa Soto; Martin, Humberto; Saldanha, Jose; Makino, Kozo; Morgan, Brian A.; Millar, Jonathan B.A.

    2001-01-01

    The Schizosaccharomyces pombe stress-activated Sty1p/Spc1p mitogen-activated protein (MAP) kinase regulates gene expression through the Atf1p and Pap1p transcription factors, homologs of human ATF2 and c-Jun, respectively. Mcs4p, a response regulator protein, acts upstream of Sty1p by binding the Wak1p/Wis4p MAP kinase kinase kinase. We show that phosphorylation of Mcs4p on a conserved aspartic acid residue is required for activation of Sty1p only in response to peroxide stress. Mcs4p acts in a conserved phospho-relay system initiated by two PAS/PAC domain-containing histidine kinases, Mak2p and Mak3p. In the absence of Mak2p or Mak3p, Sty1p fails to phosphorylate the Atf1p transcription factor or induce Atf1p-dependent gene expression. As a consequence, cells lacking Mak2p and Mak3p are sensitive to peroxide attack in the absence of Prr1p, a distinct response regulator protein that functions in association with Pap1p. The Mak1p histidine kinase, which also contains PAS/PAC repeats, does not regulate Sty1p or Atf1p but is partially required for Pap1p- and Prr1p-dependent transcription. We conclude that the transcriptional response to free radical attack is initiated by at least two distinct phospho-relay pathways in fission yeast. PMID:11179424

  12. Four mating-type genes control sexual differentiation in the fission yeast.

    PubMed

    Kelly, M; Burke, J; Smith, M; Klar, A; Beach, D

    1988-05-01

    The mating-type region of fission yeast consists of three components, mat1, mat2-P and mat3-M, each separated by 15 kb. Cell-type is determined by the alternate allele present at mat1, either P in an h+ or M in an h- cell. mat2-P and mat3-M serve as donors of information that is transposed to mat1 during a switch of mating type. We have determined the nucleotide sequence of each component of mat. The P and M specific regions are 1104 and 1128 bp, respectively, and bounded by sequences common to each mating-type cassette (H1; 59 bp and H2; 135 bp). A third sequence is present at mat2-P and mat3-M but absent at mat1 (H3; 57 bp), and may be involved in transcriptional repression of these cassettes. mat1-P and mat1-M each encode two genes (Pc; 118 amino acids, Pi; 159 amino acids, Mc; 181 amino acids and Mi; 42 amino acids). Introduction of opal or frame-shift mutations into the open-reading-frame of each gene revealed that Pc and Mc are necessary and sufficient for mating and confer an h+ or h- mating type respectively. All four genes are required for meiotic competence in an h+/h- diploid. The transcription of each mat gene is strongly influenced by nutritional conditions and full induction was observed only in nitrogen-free medium. The predicted product of the Pi gene contains a region of homology with the homeobox sequence, suggesting that this gene encodes a DNA binding protein that directly regulates the expression of other genes.

  13. Conserved and Diverged Functions of the Calcineurin-Activated Prz1 Transcription Factor in Fission Yeast.

    PubMed

    Chatfield-Reed, Kate; Vachon, Lianne; Kwon, Eun-Joo Gina; Chua, Gordon

    2016-04-01

    Gene regulation in response to intracellular calcium is mediated by the calcineurin-activated transcription factor Prz1 in the fission yeast Schizosaccharomyces pombe Genome-wide studies of the Crz1 and CrzA fungal orthologs have uncovered numerous target genes involved in conserved and species-specific cellular processes. In contrast, very few target genes of Prz1 have been published. This article identifies an extensive list of genes using transcriptome and ChIP-chip analyses under inducing conditions of Prz1, including CaCl2 and tunicamycin treatment, as well as a ∆pmr1 genetic background. We identified 165 upregulated putative target genes of Prz1 in which the majority contained a calcium-dependent response element in their promoters, similar to that of the Saccharomyces cerevisiae ortholog Crz1 These genes were functionally enriched for Crz1-conserved processes such as cell-wall biosynthesis. Overexpression of prz1(+)increased resistance to the cell-wall degradation enzyme zymolyase, likely from upregulation of theO-mannosyltransferase encoding gene omh1(+) Loss of omh1(+)abrogates this phenotype. We uncovered a novel inhibitory role in flocculation for Prz1. Loss of prz1(+)resulted in constitutive flocculation and upregulation of genes encoding the flocculins Gsf2 and Pfl3, as well as the transcription factor Cbf12. The constitutive flocculation of the ∆prz1 strain was abrogated by the loss of gsf2(+) or cbf12(+) This study reveals that Prz1 functions as a positive and negative transcriptional regulator of genes involved in cell-wall biosynthesis and flocculation, respectively. Moreover, comparison of target genes between Crz1/CrzA and Prz1 indicate some conservation in DNA-binding specificity, but also substantial rewiring of the calcineurin-mediated transcriptional regulatory network.

  14. Meiotic Recombination Hotspots of Fission Yeast Are Directed to Loci that Express Non-Coding RNA

    PubMed Central

    Wahls, Wayne P.; Siegel, Eric R.; Davidson, Mari K.

    2008-01-01

    Background Polyadenylated, mRNA-like transcripts with no coding potential are abundant in eukaryotes, but the functions of these long non-coding RNAs (ncRNAs) are enigmatic. In meiosis, Rec12 (Spo11) catalyzes the formation of dsDNA breaks (DSBs) that initiate homologous recombination. Most meiotic recombination is positioned at hotspots, but knowledge of the mechanisms is nebulous. In the fission yeast genome DSBs are located within 194 prominent peaks separated on average by 65-kbp intervals of DNA that are largely free of DSBs. Methodology/Principal Findings We compared the genome-wide distribution of DSB peaks to that of polyadenylated ncRNA molecules of the prl class. DSB peaks map to ncRNA loci that may be situated within ORFs, near the boundaries of ORFs and intergenic regions, or most often within intergenic regions. Unconditional statistical tests revealed that this colocalization is non-random and robust (P≤5.5×10−8). Furthermore, we tested and rejected the hypothesis that the ncRNA loci and DSB peaks localize preferentially, but independently, to a third entity on the chromosomes. Conclusions/Significance Meiotic DSB hotspots are directed to loci that express polyadenylated ncRNAs. This reveals an unexpected, possibly unitary mechanism for what directs meiotic recombination to hotspots. It also reveals a likely biological function for enigmatic ncRNAs. We propose specific mechanisms by which ncRNA molecules, or some aspect of RNA metabolism associated with ncRNA loci, help to position recombination protein complexes at DSB hotspots within chromosomes. PMID:18682829

  15. A Targeted Mutation Identified through pKa Measurements Indicates a Postrecruitment Role for Fis1 in Yeast Mitochondrial Fission.

    PubMed

    Koppenol-Raab, Marijke; Harwig, Megan Cleland; Posey, Ammon E; Egner, John M; MacKenzie, Kevin R; Hill, R Blake

    2016-09-23

    The tail-anchored protein Fis1 is implicated as a passive tether in yeast mitochondrial fission. We probed the functional role of Fis1 Glu-78, whose elevated side chain pKa suggests participation in protein interactions. Fis1 binds partners Mdv1 or Dnm1 tightly, but mutation E78A weakens Fis1 interaction with Mdv1, alters mitochondrial morphology, and abolishes fission in a growth assay. In fis1Δ rescue experiments, Fis1-E78A causes a novel localization pattern in which Dnm1 uniformly coats the mitochondria. By contrast, Fis1-E78A at lower expression levels recruits Dnm1 into mitochondrial punctate structures but fails to support normal fission. Thus, Fis1 makes multiple interactions that support Dnm1 puncta formation and may be essential after this step, supporting a revised model for assembly of the mitochondrial fission machinery. The insights gained by mutating a residue with a perturbed pKa suggest that side chain pKa values inferred from routine NMR sample pH optimization could provide useful leads for functional investigations. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. A Targeted Mutation Identified through pKa Measurements Indicates a Postrecruitment Role for Fis1 in Yeast Mitochondrial Fission*

    PubMed Central

    Koppenol-Raab, Marijke; Harwig, Megan Cleland; Posey, Ammon E.; Egner, John M.; MacKenzie, Kevin R.; Hill, R. Blake

    2016-01-01

    The tail-anchored protein Fis1 is implicated as a passive tether in yeast mitochondrial fission. We probed the functional role of Fis1 Glu-78, whose elevated side chain pKa suggests participation in protein interactions. Fis1 binds partners Mdv1 or Dnm1 tightly, but mutation E78A weakens Fis1 interaction with Mdv1, alters mitochondrial morphology, and abolishes fission in a growth assay. In fis1Δ rescue experiments, Fis1-E78A causes a novel localization pattern in which Dnm1 uniformly coats the mitochondria. By contrast, Fis1-E78A at lower expression levels recruits Dnm1 into mitochondrial punctate structures but fails to support normal fission. Thus, Fis1 makes multiple interactions that support Dnm1 puncta formation and may be essential after this step, supporting a revised model for assembly of the mitochondrial fission machinery. The insights gained by mutating a residue with a perturbed pKa suggest that side chain pKa values inferred from routine NMR sample pH optimization could provide useful leads for functional investigations. PMID:27496949

  17. Complexes between STE5 and components of the pheromone-responsive mitogen-activated protein kinase module.

    PubMed Central

    Marcus, S; Polverino, A; Barr, M; Wigler, M

    1994-01-01

    We present genetic evidence for complex formation of STE5 and the STE11, STE7, and FUS3 protein kinases, the pheromone-responsive mitogen-activated protein kinase module of Saccharomyces cerevisiae. Interaction between STE5 and STE11 is not dependent on STE7, and interaction between STE5 and STE7 does not require STE11. The N-terminal regulatory domain of STE11 is both necessary and sufficient for interaction with STE5. Interaction between STE7 and STE11 is bridged by STE5, suggesting the formation of a multiprotein complex. We also demonstrate biochemical interaction between STE5 and STE11 by using a combination of bacterially expressed fusion proteins and extracts prepared from yeast. Our results suggest that STE5 is a scaffolding protein that facilitates interactions between components of the pheromone-responsive mitogen-activated protein kinase module. We further propose that such scaffolding proteins serve to inhibit cross-talk between functionally unrelated mitogen-activated protein kinase modules within the same cell. Images PMID:8052657

  18. Fission yeast dam1-A8 mutant is resistant to and rescued by an anti-microtubule agent

    SciTech Connect

    Griffiths, Karen; Masuda, Hirohisa; Dhut, Susheela; Toda, Takashi

    2008-04-11

    The Dam1/DASH outer kinetochore complex is required for high-fidelity chromosome segregation in budding and fission yeast. Unlike budding yeast, the fission yeast complex is non-essential, however it promotes bipolar microtubule attachment in conjunction with microtubule-depolymerising kinesin-8 Klp5 and Klp6. Here, we screened for dam1 temperature sensitive mutants in a klp5 null background and identified dam1-A8 that contains two amino acid substitutions in the C-terminus (H126R and E149G). dam1-A8klp5 mutant cells display massive chromosome missegregation with lagging chromosomes and monopolar attachment of sister chromatids to one SPB (spindle pole body). Unexpectedly contrary to a deletion mutant that is hypersensitive to microtubule-destabilising drugs, dam1-A8 is resistant and furthermore the temperature sensitivity of dam1-A8klp5 is rescued by addition of these drugs. This indicates that the hyper-stabilised rigidity of kinetochore-spindle mal-attachments is the primary cause of lethality. Our result shows that fine-tuning of Dam1 activity is essential for chromosome bi-orientation.

  19. Fission yeast Tor2 links nitrogen signals to cell proliferation and acts downstream of the Rheb GTPase.

    PubMed

    Uritani, Masahiro; Hidaka, Hidetoshi; Hotta, Yukari; Ueno, Masaru; Ushimaru, Takashi; Toda, Takashi

    2006-12-01

    The target of rapamycin (Tor) plays a pivotal role in cell growth and metabolism. Yeast contains two related proteins, Tor1 and Tor2. In fission yeast, Tor1 is dispensable for normal growth but is involved in amino acid uptake and cell survival under various stress conditions. In contrast, Tor2 is essential for cell proliferation; however, its physiological function remains unknown. Here we characterize the roles of fission yeast Tor2 by creating temperature sensitive (tor2(ts)) mutants. Remarkably, we have found that tor2(ts) mimics nitrogen starvation responses, because the mutant displays a number of phenotypes that are normally induced only on nitrogen deprivation. These include G1 cell-cycle arrest with a small cell size, induction of autophagy and commitment to sexual differentiation. By contrast, tor1Deltator2(ts) double mutant cells show distinct phenotypes, as the cells cease division with normal cell size in the absence of G1 arrest. Tor2 physically interacts with the conserved Rhb1/GTPase. Intriguingly, over-expression of rhb1(+) or deletion of Rhb1-GAP-encoding tsc2(+) is capable of rescuing stress-sensitive phenotypes of the tor1 mutant, implying that Tor1 and Tor2 also share functions in cell survival under adverse environment. We propose that Tor1 and Tor2 are involved in both corroborative and independent roles in nutrient sensing and stress response pathways.

  20. The puc1 Cyclin Regulates the G1 Phase of the Fission Yeast Cell Cycle in Response to Cell Size

    PubMed Central

    Martín-Castellanos, Cristina; Blanco, Miguel A.; de Prada, José M.; Moreno, Sergio

    2000-01-01

    Eukaryotic cells coordinate cell size with cell division by regulating the length of the G1 and G2 phases of the cell cycle. In fission yeast, the length of the G1 phase depends on a precise balance between levels of positive (cig1, cig2, puc1, and cdc13 cyclins) and negative (rum1 and ste9-APC) regulators of cdc2. Early in G1, cyclin proteolysis and rum1 inhibition keep the cdc2/cyclin complexes inactive. At the end of G1, the balance is reversed and cdc2/cyclin activity down-regulates both rum1 and the cyclin-degrading activity of the APC. Here we present data showing that the puc1 cyclin, a close relative of the Cln cyclins in budding yeast, plays an important role in regulating the length of G1. Fission yeast cells lacking cig1 and cig2 have a cell cycle distribution similar to that of wild-type cells, with a short G1 and a long G2. However, when the puc1+ gene is deleted in this genetic background, the length of G1 is extended and these cells undergo S phase with a greater cell size than wild-type cells. This G1 delay is completely abolished in cells lacking rum1. Cdc2/puc1 function may be important to down-regulate the rum1 Cdk inhibitor at the end of G1. PMID:10679013

  1. Integrity of chromatin and replicating DNA in nuclei released from fission yeast by semi-automated grinding in liquid nitrogen

    PubMed Central

    2011-01-01

    Background Studies of nuclear function in many organisms, especially those with tough cell walls, are limited by lack of availability of simple, economical methods for large-scale preparation of clean, undamaged nuclei. Findings Here we present a useful method for nuclear isolation from the important model organism, the fission yeast, Schizosaccharomyces pombe. To preserve in vivo molecular configurations, we flash-froze the yeast cells in liquid nitrogen. Then we broke their tough cell walls, without damaging their nuclei, by grinding in a precision-controlled motorized mortar-and-pestle apparatus. The cryo-ground cells were resuspended and thawed in a buffer designed to preserve nuclear morphology, and the nuclei were enriched by differential centrifugation. The washed nuclei were free from contaminating nucleases and have proven well-suited as starting material for genome-wide chromatin analysis and for preparation of fragile DNA replication intermediates. Conclusions We have developed a simple, reproducible, economical procedure for large-scale preparation of endogenous-nuclease-free, morphologically intact nuclei from fission yeast. With appropriate modifications, this procedure may well prove useful for isolation of nuclei from other organisms with, or without, tough cell walls. PMID:22088094

  2. Integrity of chromatin and replicating DNA in nuclei released from fission yeast by semi-automated grinding in liquid nitrogen.

    PubMed

    Givens, Robert M; Mesner, Larry D; Hamlin, Joyce L; Buck, Michael J; Huberman, Joel A

    2011-11-16

    Studies of nuclear function in many organisms, especially those with tough cell walls, are limited by lack of availability of simple, economical methods for large-scale preparation of clean, undamaged nuclei. Here we present a useful method for nuclear isolation from the important model organism, the fission yeast, Schizosaccharomyces pombe. To preserve in vivo molecular configurations, we flash-froze the yeast cells in liquid nitrogen. Then we broke their tough cell walls, without damaging their nuclei, by grinding in a precision-controlled motorized mortar-and-pestle apparatus. The cryo-ground cells were resuspended and thawed in a buffer designed to preserve nuclear morphology, and the nuclei were enriched by differential centrifugation. The washed nuclei were free from contaminating nucleases and have proven well-suited as starting material for genome-wide chromatin analysis and for preparation of fragile DNA replication intermediates. We have developed a simple, reproducible, economical procedure for large-scale preparation of endogenous-nuclease-free, morphologically intact nuclei from fission yeast. With appropriate modifications, this procedure may well prove useful for isolation of nuclei from other organisms with, or without, tough cell walls.

  3. Chemical genetic screen in fission yeast reveals roles for vacuolar acidification, mitochondrial fission, and cellular GMP levels in lifespan extension.

    PubMed

    Stephan, Jessica; Franke, Jacqueline; Ehrenhofer-Murray, Ann E

    2013-08-01

    The discovery that genetic mutations in several cellular pathways can increase lifespan has lent support to the notion that pharmacological inhibition of aging pathways can be used to extend lifespan and to slow the onset of age-related diseases. However, so far, only few compounds with such activities have been described. Here, we have conducted a chemical genetic screen for compounds that cause the extension of chronological lifespan of Schizosaccharomyces pombe. We have characterized eight natural products with such activities, which has allowed us to uncover so far unknown anti-aging pathways in S. pombe. The ionophores monensin and nigericin extended lifespan by affecting vacuolar acidification, and this effect depended on the presence of the vacuolar ATPase (V-ATPase) subunits Vma1 and Vma3. Furthermore, prostaglandin J₂ displayed anti-aging properties due to the inhibition of mitochondrial fission, and its effect on longevity required the mitochondrial fission protein Dnm1 as well as the G-protein-coupled glucose receptor Git3. Also, two compounds that inhibit guanosine monophosphate (GMP) synthesis, mycophenolic acid (MPA) and acivicin, caused lifespan extension, indicating that an imbalance in guanine nucleotide levels impinges upon longevity. We furthermore have identified diindolylmethane (DIM), tschimganine, and the compound mixture mangosteen as inhibiting aging. Taken together, these results reveal unanticipated anti-aging activities for several phytochemicals and open up opportunities for the development of novel anti-aging therapies. © 2013 John Wiley & Sons Ltd and the Anatomical Society.

  4. Fission yeast myosin I facilitates PI(4,5)P2-mediated anchoring of cytoplasmic dynein to the cortex

    PubMed Central

    Thankachan, Jerrin Mathew; Nuthalapati, Stephen Sukumar; Addanki Tirumala, Nireekshit

    2017-01-01

    Several key processes in the cell, such as vesicle transport and spindle positioning, are mediated by the motor protein cytoplasmic dynein, which produces force on the microtubule. For the functions that require movement of the centrosome and the associated nuclear material, dynein needs to have a stable attachment at the cell cortex. In fission yeast, Mcp5 is the anchor protein of dynein and is required for the oscillations of the horsetail nucleus during meiotic prophase. Although the role of Mcp5 in anchoring dynein to the cortex has been identified, it is unknown how Mcp5 associates with the membrane as well as the importance of the underlying attachment to the nuclear oscillations. Here, we set out to quantify Mcp5 organization and identify the binding partner of Mcp5 at the membrane. We used confocal and total internal reflection fluorescence microscopy to count the number of Mcp5 foci and the number of Mcp5 molecules in an individual focus. Further, we quantified the localization pattern of Mcp5 in fission yeast zygotes and show by perturbation of phosphatidylinositol 4-phosphate 5-kinase that Mcp5 binds to phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. Remarkably, we discovered that the myosin I protein in fission yeast, Myo1, which is required for organization of sterol-rich domains in the cell membrane, facilitates the localization of Mcp5 and that of cytoplasmic dynein on the membrane. Finally, we demonstrate that Myo1-facilitated association of Mcp5 and dynein to the membrane determines the dynamics of nuclear oscillations and, in essence, dynein activity. PMID:28292899

  5. Single site suppressors of a fission yeast temperature-sensitive mutant in cdc48 identified by whole genome sequencing.

    PubMed

    Marinova, Irina N; Engelbrecht, Jacob; Ewald, Adrian; Langholm, Lasse L; Holmberg, Christian; Kragelund, Birthe B; Gordon, Colin; Nielsen, Olaf; Hartmann-Petersen, Rasmus

    2015-01-01

    The protein called p97 in mammals and Cdc48 in budding and fission yeast is a homo-hexameric, ring-shaped, ubiquitin-dependent ATPase complex involved in a range of cellular functions, including protein degradation, vesicle fusion, DNA repair, and cell division. The cdc48+ gene is essential for viability in fission yeast, and point mutations in the human orthologue have been linked to disease. To analyze the function of p97/Cdc48 further, we performed a screen for cold-sensitive suppressors of the temperature-sensitive cdc48-353 fission yeast strain. In total, 29 independent pseudo revertants that had lost the temperature-sensitive growth defect of the cdc48-353 strain were isolated. Of these, 28 had instead acquired a cold-sensitive phenotype. Since the suppressors were all spontaneous mutants, and not the result of mutagenesis induced by chemicals or UV irradiation, we reasoned that the genome sequences of the 29 independent cdc48-353 suppressors were most likely identical with the exception of the acquired suppressor mutations. This prompted us to test if a whole genome sequencing approach would allow us to map the mutations. Indeed genome sequencing unambiguously revealed that the cold-sensitive suppressors were all second site intragenic cdc48 mutants. Projecting these onto the Cdc48 structure revealed that while the original temperature-sensitive G338D mutation is positioned near the central pore in the hexameric ring, the suppressor mutations locate to subunit-subunit and inter-domain boundaries. This suggests that Cdc48-353 is structurally compromized at the restrictive temperature, but re-established in the suppressor mutants. The last suppressor was an extragenic frame shift mutation in the ufd1 gene, which encodes a known Cdc48 co-factor. In conclusion, we show, using a novel whole genome sequencing approach, that Cdc48-353 is structurally compromized at the restrictive temperature, but stabilized in the suppressors.

  6. H3K9me-Independent Gene Silencing in Fission Yeast Heterochromatin by Clr5 and Histone Deacetylases

    PubMed Central

    Hansen, Klavs R.; Hazan, Idit; Shanker, Sreenath; Watt, Stephen; Verhein-Hansen, Janne; Bähler, Jürg; Martienssen, Robert A.; Partridge, Janet F.; Cohen, Amikam; Thon, Geneviève

    2011-01-01

    Nucleosomes in heterochromatic regions bear histone modifications that distinguish them from euchromatic nucleosomes. Among those, histone H3 lysine 9 methylation (H3K9me) and hypoacetylation have been evolutionarily conserved and are found in both multicellular eukaryotes and single-cell model organisms such as fission yeast. In spite of numerous studies, the relative contributions of the various heterochromatic histone marks to the properties of heterochromatin remain largely undefined. Here, we report that silencing of the fission yeast mating-type cassettes, which are located in a well-characterized heterochromatic region, is hardly affected in cells lacking the H3K9 methyltransferase Clr4. We document the existence of a pathway parallel to H3K9me ensuring gene repression in the absence of Clr4 and identify a silencing factor central to this pathway, Clr5. We find that Clr5 controls gene expression at multiple chromosomal locations in addition to affecting the mating-type region. The histone deacetylase Clr6 acts in the same pathway as Clr5, at least for its effects in the mating-type region, and on a subset of other targets, notably a region recently found to be prone to neo-centromere formation. The genomic targets of Clr5 also include Ste11, a master regulator of sexual differentiation. Hence Clr5, like the multi-functional Atf1 transcription factor which also modulates chromatin structure in the mating-type region, controls sexual differentiation and genome integrity at several levels. Globally, our results point to histone deacetylases as prominent repressors of gene expression in fission yeast heterochromatin. These deacetylases can act in concert with, or independently of, the widely studied H3K9me mark to influence gene silencing at heterochromatic loci. PMID:21253571

  7. Fission yeast Mcl1 interacts with SCF{sup Pof3} and is required for centromere formation

    SciTech Connect

    Mamnun, Yasmine M.; Katayama, Satoshi; Toda, Takashi . E-mail: toda@cancer.org.uk

    2006-11-10

    The fission yeast S-phase regulator Mcl1, an orthologue of budding yeast Ctf4, is an interacting protein of DNA polymerase {alpha} and an important factor to ensure DNA replication and sister chromatid cohesion. Deletion of this protein results in severe cohesion defects, however, the function and cellular role of this protein remains elusive. In this study we isolate Mcl1 as an interaction partner of the F-box protein Pof3, which is a component of the ubiquitin ligase complex SCF{sup Pof3}. Comparing the phenotypes of cells lacking pof3 {sup +} or mcl1 {sup +} we find a broad overlap including the accumulation of DNA damage and activation of the DNA damage pathway. Importantly, we identity a novel, specific role for Mcl1 in the transcriptional silencing and the localisation of CENP-A at the centromeres.

  8. Fission yeast nucleolar protein Dnt1 regulates G2/M transition and cytokinesis by downregulating Wee1 kinase.

    PubMed

    Yu, Zhi-Yong; Zhang, Meng-Ting; Wang, Gao-Yuan; Xu, Dan; Keifenheim, Daniel; Franco, Alejandro; Cansado, Jose; Masuda, Hirohisa; Rhind, Nick; Wang, Yamei; Jin, Quan-Wen

    2013-11-01

    Cytokinesis involves temporally and spatially coordinated action of the cell cycle, cytoskeletal and membrane systems to achieve separation of daughter cells. The septation initiation network (SIN) and mitotic exit network (MEN) signaling pathways regulate cytokinesis and mitotic exit in the yeasts Schizosaccharomyces pombe and Saccharomyces cerevisiae, respectively. Previously, we have shown that in fission yeast, the nucleolar protein Dnt1 negatively regulates the SIN pathway in a manner that is independent of the Cdc14-family phosphatase Clp1/Flp1, but how Dnt1 modulates this pathway has remained elusive. By contrast, it is clear that its budding yeast relative, Net1/Cfi1, regulates the homologous MEN signaling pathway by sequestering Cdc14 phosphatase in the nucleolus before mitotic exit. In this study, we show that dnt1(+) positively regulates G2/M transition during the cell cycle. By conducting epistasis analyses to measure cell length at septation in double mutant (for dnt1 and genes involved in G2/M control) cells, we found a link between dnt1(+) and wee1(+). Furthermore, we showed that elevated protein levels of the mitotic inhibitor Wee1 kinase and the corresponding attenuation in Cdk1 activity is responsible for the rescuing effect of dnt1Δ on SIN mutants. Finally, our data also suggest that Dnt1 modulates Wee1 activity in parallel with SCF-mediated Wee1 degradation. Therefore, this study reveals an unexpected missing link between the nucleolar protein Dnt1 and the SIN signaling pathway, which is mediated by the Cdk1 regulator Wee1 kinase. Our findings also define a novel mode of regulation of Wee1 and Cdk1, which is important for integration of the signals controlling the SIN pathway in fission yeast.

  9. A new method to efficiently induce a site-specific double-strand break in the fission yeast Schizosaccharomyces pombe.

    PubMed

    Sunder, Sham; Greeson-Lott, Nikole T; Runge, Kurt W; Sanders, Steven L

    2012-07-01

    Double-strand DNA breaks are a serious threat to cellular viability and yeast systems have proved invaluable in helping to understand how these potentially toxic lesions are sensed and repaired. An important method to study the processing of DNA breaks in the budding yeast Saccharomyces cerevisiae is to introduce a unique double-strand break into the genome by regulating the expression of the site-specific HO endonuclease with a galactose inducible promoter. Variations of the HO site-specific DSB assay have been adapted to many organisms, but the methodology has seen only limited use in the fission yeast Schizosaccharomyces pombe because of the lack of a promoter capable of inducing endonuclease expression on a relatively short time scale (~1 h). We have overcome this limitation by developing a new assay in which expression of the homing endonuclease I-PpoI is tightly regulated with a tetracycline-inducible promoter. We show that induction of the I-PpoI endonuclease produces rapid cutting of a defined cleavage site (> 80% after 1 h), efficient cell cycle arrest and significant accumulation of the checkpoint protein Crb2 at break-adjacent regions in a manner that is analogous to published findings with DSBs produced by an acute exposure to ionizing irradiation. This assay provides an important new tool for the fission yeast community and, because many aspects of mammalian chromatin organization have been well-conserved in Sz. pombe but not in S. cerevisiae, also offers an attractive system to decipher the role of chromatin structure in modulating the repair of double-stranded DNA breaks. Copyright © 2012 John Wiley & Sons, Ltd.

  10. Global transcriptional responses of fission and budding yeast to changes in copper and iron levels: a comparative study

    PubMed Central

    Rustici, Gabriella; van Bakel, Harm; Lackner, Daniel H; Holstege, Frank C; Wijmenga, Cisca; Bähler, Jürg; Brazma, Alvis

    2007-01-01

    Background Recent studies in comparative genomics demonstrate that interspecies comparison represents a powerful tool for identifying both conserved and specialized biologic processes across large evolutionary distances. All cells must adjust to environmental fluctuations in metal levels, because levels that are too low or too high can be detrimental. Here we explore the conservation of metal homoeostasis in two distantly related yeasts. Results We examined genome-wide gene expression responses to changing copper and iron levels in budding and fission yeast using DNA microarrays. The comparison reveals conservation of only a small core set of genes, defining the copper and iron regulons, with a larger number of additional genes being specific for each species. Novel regulatory targets were identified in Schizosaccharomyces pombe for Cuf1p (pex7 and SPAC3G6.05) and Fep1p (srx1, sib1, sib2, rds1, isu1, SPBC27B12.03c, SPAC1F8.02c, and SPBC947.05c). We also present evidence refuting a direct role of Cuf1p in the repression of genes involved in iron uptake. Remarkable differences were detected in responses of the two yeasts to excess copper, probably reflecting evolutionary adaptation to different environments. Conclusion The considerable evolutionary distance between budding and fission yeast resulted in substantial diversion in the regulation of copper and iron homeostasis. Despite these differences, the conserved regulation of a core set of genes involved in the uptake of these metals provides valuable clues to key features of metal metabolism. PMID:17477863

  11. Fission yeast nucleolar protein Dnt1 regulates G2/M transition and cytokinesis by downregulating Wee1 kinase

    PubMed Central

    Yu, Zhi-yong; Zhang, Meng-ting; Wang, Gao-yuan; Xu, Dan; Keifenheim, Daniel; Franco, Alejandro; Cansado, Jose; Masuda, Hirohisa; Rhind, Nick; Wang, Yamei; Jin, Quan-wen

    2013-01-01

    Summary Cytokinesis involves temporally and spatially coordinated action of the cell cycle, cytoskeletal and membrane systems to achieve separation of daughter cells. The septation initiation network (SIN) and mitotic exit network (MEN) signaling pathways regulate cytokinesis and mitotic exit in the yeasts Schizosaccharomyces pombe and Saccharomyces cerevisiae, respectively. Previously, we have shown that in fission yeast, the nucleolar protein Dnt1 negatively regulates the SIN pathway in a manner that is independent of the Cdc14-family phosphatase Clp1/Flp1, but how Dnt1 modulates this pathway has remained elusive. By contrast, it is clear that its budding yeast relative, Net1/Cfi1, regulates the homologous MEN signaling pathway by sequestering Cdc14 phosphatase in the nucleolus before mitotic exit. In this study, we show that dnt1+ positively regulates G2/M transition during the cell cycle. By conducting epistasis analyses to measure cell length at septation in double mutant (for dnt1 and genes involved in G2/M control) cells, we found a link between dnt1+ and wee1+. Furthermore, we showed that elevated protein levels of the mitotic inhibitor Wee1 kinase and the corresponding attenuation in Cdk1 activity is responsible for the rescuing effect of dnt1Δ on SIN mutants. Finally, our data also suggest that Dnt1 modulates Wee1 activity in parallel with SCF-mediated Wee1 degradation. Therefore, this study reveals an unexpected missing link between the nucleolar protein Dnt1 and the SIN signaling pathway, which is mediated by the Cdk1 regulator Wee1 kinase. Our findings also define a novel mode of regulation of Wee1 and Cdk1, which is important for integration of the signals controlling the SIN pathway in fission yeast. PMID:24006256

  12. A genome–wide screen to identify genes controlling the rate of entry into mitosis in fission yeast

    PubMed Central

    Moris, Naomi; Nurse, Paul

    2016-01-01

    ABSTRACT We have carried out a haploinsufficiency (HI) screen in fission yeast using heterozygous deletion diploid mutants of a genome-wide set of cell cycle genes to identify genes encoding products whose level determines the rate of progression through the cell cycle. Cell size at division was used as a measure of advancement or delay of the G2-M transition of rod-shaped fission yeast cells. We found that 13 mutants were significantly longer or shorter (greater than 10%) than control cells at cell division. These included mutants of the cdc2, cdc25, wee1 and pom1 genes, which have previously been shown to play a role in the timing of entry into mitosis, and which validate this approach. Seven of these genes are involved in regulation of the G2-M transition, 5 for nuclear transport and one for nucleotide metabolism. In addition we identified 4 more genes that were 8–10% longer or shorter than the control that also had roles in regulation of the G2-M transition or in nuclear transport. The genes identified here are all conserved in human cells, suggesting that this dataset will be useful as a basis for further studies to identify rate-limiting steps for progression through the cell cycle in other eukaryotes. PMID:27736299

  13. Mdm12p, a component required for mitochondrial inheritance that is conserved between budding and fission yeast.

    PubMed

    Berger, K H; Sogo, L F; Yaffe, M P

    1997-02-10

    Saccharomyces cerevisiae cells lacking the MDM12 gene product display temperature-sensitive growth and possess abnormally large, round mitochondria that are defective for inheritance by daughter buds. Analysis of the wild-type MDM12 gene revealed its product to be a 31-kD polypeptide that is homologous to a protein of the fission yeast Schizosaccharomyces pombe. When expressed in S. cerevisiae, the S. pombe Mdm12p homolog conferred a dominant-negative phenotype of giant mitochondria and aberrant mitochondrial distribution, suggesting partial functional conservation of Mdm12p activity between budding and fission yeast. The S. cerevisiae Mdm12p was localized by indirect immunofluorescence microscopy and by subcellular fractionation and immunodetection to the mitochondrial outer membrane and displayed biochemical properties of an integral membrane protein. Mdm12p is the third mitochondrial outer membrane protein required for normal mitochondrial morphology and distribution to be identified in S. cerevisiae and the first such mitochondrial component that is conserved between two different species.

  14. Identification of S-phase DNA damage-response targets in fission yeast reveals conservation of damage-response networks

    PubMed Central

    Willis, Nicholas A.; Zhou, Chunshui; Elia, Andrew E. H.; Murray, Johanne M.; Carr, Antony M.; Elledge, Stephen J.; Rhind, Nicholas

    2016-01-01

    The cellular response to DNA damage during S-phase regulates a complicated network of processes, including cell-cycle progression, gene expression, DNA replication kinetics, and DNA repair. In fission yeast, this S-phase DNA damage response (DDR) is coordinated by two protein kinases: Rad3, the ortholog of mammalian ATR, and Cds1, the ortholog of mammalian Chk2. Although several critical downstream targets of Rad3 and Cds1 have been identified, most of their presumed targets are unknown, including the targets responsible for regulating replication kinetics and coordinating replication and repair. To characterize targets of the S-phase DDR, we identified proteins phosphorylated in response to methyl methanesulfonate (MMS)-induced S-phase DNA damage in wild-type, rad3∆, and cds1∆ cells by proteome-wide mass spectrometry. We found a broad range of S-phase–specific DDR targets involved in gene expression, stress response, regulation of mitosis and cytokinesis, and DNA replication and repair. These targets are highly enriched for proteins required for viability in response to MMS, indicating their biological significance. Furthermore, the regulation of these proteins is similar in fission and budding yeast, across 300 My of evolution, demonstrating a deep conservation of S-phase DDR targets and suggesting that these targets may be critical for maintaining genome stability in response to S-phase DNA damage across eukaryotes. PMID:27298342

  15. Analysis of Mcm2-7 chromatin binding during anaphase and in the transition to quiescence in fission yeast

    SciTech Connect

    Namdar, Mandana; Kearsey, Stephen E. . E-mail: stephen.kearsey@zoo.ox.ac.uk

    2006-10-15

    Mcm2-7 proteins are generally considered to function as a heterohexameric complex, providing helicase activity for the elongation step of DNA replication. These proteins are loaded onto replication origins in M-G1 phase in a process termed licensing or pre-replicative complex formation. It is likely that Mcm2-7 proteins are loaded onto chromatin simultaneously as a pre-formed hexamer although some studies suggest that subcomplexes are recruited sequentially. To analyze this process in fission yeast, we have compared the levels and chromatin binding of Mcm2-7 proteins during the fission yeast cell cycle. Mcm subunits are present at approximately 1 x 10{sup 4} molecules/cell and are bound with approximately equal stoichiometry on chromatin in G1/S phase cells. Using a single cell assay, we have correlated the timing of chromatin association of individual Mcm subunits with progression through mitosis. This showed that Mcm2, 4 and 7 associate with chromatin at about the same stage of anaphase, suggesting that licensing involves the simultaneous binding of these subunits. We also examined Mcm2-7 chromatin association when cells enter a G0-like quiescent state. Chromatin binding is lost in this transition in a process that does not require DNA replication or the selective degradation of specific subunits.

  16. Identification of Rbd2 as a candidate protease for sterol regulatory element binding protein (SREBP) cleavage in fission yeast.

    PubMed

    Kim, Jinsil; Ha, Hye-Jeong; Kim, Sujin; Choi, Ah-Reum; Lee, Sook-Jeong; Hoe, Kwang-Lae; Kim, Dong-Uk

    2015-12-25

    Lipid homeostasis in mammalian cells is regulated by sterol regulatory element-binding protein (SREBP) transcription factors that are activated through sequential cleavage by Golgi Site-1 and Site-2 proteases. Fission yeast SREBP, Sre1, engages a different mechanism involving the Golgi Dsc E3 ligase complex, but it is not clearly understood exactly how Sre1 is proteolytically cleaved and activated. In this study, we screened the Schizosaccharomyces pombe non-essential haploid deletion collection to identify missing components of the Sre1 cleavage machinery. Our screen identified an additional component of the SREBP pathway required for Sre1 proteolysis named rhomboid protein 2 (Rbd2). We show that an rbd2 deletion mutant fails to grow under hypoxic and hypoxia-mimetic conditions due to lack of Sre1 activity and that this growth phenotype is rescued by Sre1N, a cleaved active form of Sre1. We found that the growth inhibition phenotype under low oxygen conditions is specific to the strain with deletion of rbd2, not any other fission yeast rhomboid-encoding genes. Our study also identified conserved residues of Rbd2 that are required for Sre1 proteolytic cleavage. All together, our results suggest that Rbd2 is a functional SREBP protease with conserved residues required for Sre1 cleavage and provide an important piece of the puzzle to understand the mechanisms for Sre1 activation and the regulation of various biological and pathological processes involving SREBPs. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Cooperation between Rho-GEF Gef2 and its binding partner Nod1 in the regulation of fission yeast cytokinesis

    PubMed Central

    Zhu, Yi-Hua; Ye, Yanfang; Wu, Zhengrong; Wu, Jian-Qiu

    2013-01-01

    Cytokinesis is the last step of the cell-division cycle, which requires precise spatial and temporal regulation to ensure genetic stability. Rho guanine nucleotide exchange factors (Rho GEFs) and Rho GTPases are among the key regulators of cytokinesis. We previously found that putative Rho-GEF Gef2 coordinates with Polo kinase Plo1 to control the medial cortical localization of anillin-like protein Mid1 in fission yeast. Here we show that an adaptor protein, Nod1, colocalizes with Gef2 in the contractile ring and its precursor cortical nodes. Like gef2∆, nod1∆ has strong genetic interactions with various cytokinesis mutants involved in division-site positioning, suggesting a role of Nod1 in early cytokinesis. We find that Nod1 and Gef2 interact through the C-termini, which is important for their localization. The contractile-ring localization of Nod1 and Gef2 also depends on the interaction between Nod1 and the F-BAR protein Cdc15, where the Nod1/Gef2 complex plays a role in contractile-ring maintenance and affects the septation initiation network. Moreover, Gef2 binds to purified GTPases Rho1, Rho4, and Rho5 in vitro. Taken together, our data indicate that Nod1 and Gef2 function cooperatively in a protein complex to regulate fission yeast cytokinesis. PMID:23966468

  18. Local and global analysis of endocytic patch dynamics in fission yeast using a new “temporal superresolution” realignment method

    PubMed Central

    Berro, Julien; Pollard, Thomas D.

    2014-01-01

    Quantitative microscopy is a valuable tool for inferring molecular mechanisms of cellular processes such as clathrin-mediated endocytosis, but, for quantitative microscopy to reach its potential, both data collection and analysis needed improvement. We introduce new tools to track and count endocytic patches in fission yeast to increase the quality of the data extracted from quantitative microscopy movies. We present a universal method to achieve “temporal superresolution” by aligning temporal data sets with higher temporal resolution than the measurement intervals. These methods allowed us to extract new information about endocytic actin patches in wild-type cells from measurements of the fluorescence of fimbrin-mEGFP. We show that the time course of actin assembly and disassembly varies <600 ms between patches. Actin polymerizes during vesicle formation, but we show that polymerization does not participate in vesicle movement other than to limit the complex diffusive motions of newly formed endocytic vesicles, which move faster as the surrounding actin meshwork decreases in size over time. Our methods also show that the number of patches in fission yeast is proportional to cell length and that the variability in the repartition of patches between the tips of interphase cells has been underestimated. PMID:25143395

  19. The RNA-binding protein Spo5 promotes meiosis II by regulating cyclin Cdc13 in fission yeast.

    PubMed

    Arata, Mayumi; Sato, Masamitsu; Yamashita, Akira; Yamamoto, Masayuki

    2014-03-01

    Meiosis comprises two consecutive nuclear divisions, meiosis I and II. Despite this unique progression through the cell cycle, little is known about the mechanisms controlling the sequential divisions. In this study, we carried out a genetic screen to identify factors that regulate the initiation of meiosis II in the fission yeast Schizosaccharomyces pombe. We identified mutants deficient in meiosis II progression and repeatedly isolated mutants defective in spo5, which encodes an RNA-binding protein. Using fluorescence microscopy to visualize YFP-tagged protein, we found that spo5 mutant cells precociously lost Cdc13, the major B-type cyclin in fission yeast, before meiosis II. Importantly, the defect in meiosis II was rescued by increasing CDK activity. In wild-type cells, cdc13 transcripts increased during meiosis II, but this increase in cdc13 expression was weaker in spo5 mutants. Thus, Spo5 is a novel regulator of meiosis II that controls the level of cdc13 expression and promotes de novo synthesis of Cdc13. We previously reported that inhibition of Cdc13 degradation is necessary to initiate meiosis II; together with the previous information, the current findings indicate that the dual control of Cdc13 by de novo synthesis and suppression of proteolysis ensures the progression of meiosis II.

  20. Long non-coding RNA-mediated transcriptional interference of a permease gene confers drug tolerance in fission yeast.

    PubMed

    Ard, Ryan; Tong, Pin; Allshire, Robin C

    2014-11-27

    Most long non-coding RNAs (lncRNAs) encoded by eukaryotic genomes remain uncharacterized. Here we focus on a set of intergenic lncRNAs in fission yeast. Deleting one of these lncRNAs exhibited a clear phenotype: drug sensitivity. Detailed analyses of the affected locus revealed that transcription of the nc-tgp1 lncRNA regulates drug tolerance by repressing the adjacent phosphate-responsive permease gene transporter for glycerophosphodiester 1 (tgp1(+)). We demonstrate that the act of transcribing nc-tgp1 over the tgp1(+) promoter increases nucleosome density, prevents transcription factor access and thus represses tgp1(+) without the need for RNA interference or heterochromatin components. We therefore conclude that tgp1(+) is regulated by transcriptional interference. Accordingly, decreased nc-tgp1 transcription permits tgp1(+) expression upon phosphate starvation. Furthermore, nc-tgp1 loss induces tgp1(+) even in repressive conditions. Notably, drug sensitivity results directly from tgp1(+) expression in the absence of the nc-tgp1 RNA. Thus, transcription of an lncRNA governs drug tolerance in fission yeast.

  1. Phosphatidylinositol 4-phosphate 5-kinase Its3 and calcineurin Ppb1 coordinately regulate cytokinesis in fission yeast.

    PubMed

    Zhang, Y; Sugiura, R; Lu, Y; Asami, M; Maeda, T; Itoh, T; Takenawa, T; Shuntoh, H; Kuno, T

    2000-11-10

    The ppb1(+) gene encodes a fission yeast homologue of the mammalian calcineurin. We have recently shown that Ppb1 is essential for chloride ion homeostasis, and acts antagonistically with Pmk1 mitogen-activated protein kinase pathway. In an attempt to identify genes that share an essential function with calcineurin, we screened for mutations that confer sensitivity to the calcineurin inhibitor FK506 and high temperature, and isolated a mutant, its3-1. its3(+) was shown to be an essential gene encoding a functional homologue of phosphatidylinositol-4-phosphate 5-kinase (PI(4)P5K). The temperature upshift or addition of FK506 induced marked disorganization of actin patches and dramatic increase in the frequency of septation in the its3-1 mutants but not in the wild-type cells. Expression of a green fluorescent protein-tagged Its3 and the phospholipase Cdelta pleckstrin homology domain indicated plasma membrane localization of PI(4)P5K and phosphatidylinositol 4,5-bisphosphate. These green fluorescent protein-tagged proteins were concentrated at the septum of dividing cells, and the mutant Its3 was no longer localized to the plasma membrane. These data suggest that fission yeast PI(4)P5K Its3 functions coordinately with calcineurin and plays a key role in cytokinesis, and that the plasma membrane localization of Its3 is the crucial event in cytokinesis.

  2. A genome-wide screen to identify genes controlling the rate of entry into mitosis in fission yeast.

    PubMed

    Moris, Naomi; Shrivastava, Jaya; Jeffery, Linda; Li, Juan-Juan; Hayles, Jacqueline; Nurse, Paul

    2016-11-16

    We have carried out a haploinsufficiency (HI) screen in fission yeast using heterozygous deletion diploid mutants of a genome-wide set of cell cycle genes to identify genes encoding products whose level determines the rate of progression through the cell cycle. Cell size at division was used as a measure of advancement or delay of the G2-M transition of rod-shaped fission yeast cells. We found that 13 mutants were significantly longer or shorter (greater than 10%) than control cells at cell division. These included mutants of the cdc2, cdc25, wee1 and pom1 genes, which have previously been shown to play a role in the timing of entry into mitosis, and which validate this approach. Seven of these genes are involved in regulation of the G2-M transition, 5 for nuclear transport and one for nucleotide metabolism. In addition we identified 4 more genes that were 8-10% longer or shorter than the control that also had roles in regulation of the G2-M transition or in nuclear transport. The genes identified here are all conserved in human cells, suggesting that this dataset will be useful as a basis for further studies to identify rate-limiting steps for progression through the cell cycle in other eukaryotes.

  3. Tts1, the fission yeast homologue of the TMEM33 family, functions in NE remodeling during mitosis.

    PubMed

    Zhang, Dan; Oliferenko, Snezhana

    2014-10-01

    The fission yeast Schizosaccharomyces pombe undergoes "closed" mitosis in which the nuclear envelope (NE) stays intact throughout chromosome segregation. Here we show that Tts1, the fission yeast TMEM33 protein that was previously implicated in organizing the peripheral endoplasmic reticulum (ER), also functions in remodeling the NE during mitosis. Tts1 promotes insertion of spindle pole bodies (SPBs) in the NE at the onset of mitosis and modulates distribution of the nuclear pore complexes (NPCs) during mitotic NE expansion. Structural features that drive partitioning of Tts1 to the high-curvature ER domains are crucial for both aspects of its function. An amphipathic helix located at the C-terminus of Tts1 is important for ER shaping and modulating the mitotic NPC distribution. Of interest, the evolutionarily conserved residues at the luminal interface of the third transmembrane region function specifically in promoting SPB-NE insertion. Our data illuminate cellular requirements for remodeling the NE during "closed" nuclear division and provide insight into the structure and functions of the eukaryotic TMEM33 family.

  4. UCS protein Rng3p is essential for myosin-II motor activity during cytokinesis in fission yeast.

    PubMed

    Stark, Benjamin C; James, Michael L; Pollard, Luther W; Sirotkin, Vladimir; Lord, Matthew

    2013-01-01

    UCS proteins have been proposed to operate as co-chaperones that work with Hsp90 in the de novo folding of myosin motors. The fission yeast UCS protein Rng3p is essential for actomyosin ring assembly and cytokinesis. Here we investigated the role of Rng3p in fission yeast myosin-II (Myo2p) motor activity. Myo2p isolated from an arrested rng3-65 mutant was capable of binding actin, yet lacked stability and activity based on its expression levels and inactivity in ATPase and actin filament gliding assays. Myo2p isolated from a myo2-E1 mutant (a mutant hyper-sensitive to perturbation of Rng3p function) showed similar behavior in the same assays and exhibited an altered motor conformation based on limited proteolysis experiments. We propose that Rng3p is not required for the folding of motors per se, but instead works to ensure the activity of intrinsically unstable myosin-II motors. Rng3p is specific to conventional myosin-II and the actomyosin ring, and is not required for unconventional myosin motor function at other actin structures. However, artificial destabilization of myosin-I motors at endocytic actin patches (using a myo1-E1 mutant) led to recruitment of Rng3p to patches. Thus, while Rng3p is specific to myosin-II, UCS proteins are adaptable and can respond to changes in the stability of other myosin motors.

  5. Bot1p is required for mitochondrial translation, respiratory function, and normal cell morphology in the fission yeast Schizosaccharomyces pombe.

    PubMed

    Wiley, David J; Catanuto, Paola; Fontanesi, Flavia; Rios, Carmen; Sanchez, Natalie; Barrientos, Antoni; Verde, Fulvia

    2008-04-01

    Maintenance of cell morphology is essential for normal cell function. For eukaryotic cells, a growing body of recent evidence highlights a close interdependence between mitochondrial function, the cytoskeleton, and cell cycle control mechanisms; however, the molecular details of this interconnection are still not completely understood. We have identified a novel protein, Bot1p, in the fission yeast Schizosaccharomyces pombe. The bot1 gene is essential for cell viability. bot1Delta mutant cells expressing lower levels of Bot1p display altered cell size and cell morphology and a disrupted actin cytoskeleton. Bot1p localizes to the mitochondria in live cells and cofractionates with purified mitochondrial ribosomes. Reduced levels of Bot1p lead to mitochondrial fragmentation, decreased mitochondrial protein translation, and a corresponding decrease in cell respiration. Overexpression of Bot1p results in cell cycle delay, with increased cell size and cell length and enhanced cell respiration rate. Our results show that Bot1p has a novel function in the control of cell respiration by acting on the mitochondrial protein synthesis machinery. Our observations also indicate that in fission yeast, alterations of mitochondrial function are linked to changes in cell cycle and cell morphology control mechanisms.

  6. Cooperation between Rho-GEF Gef2 and its binding partner Nod1 in the regulation of fission yeast cytokinesis.

    PubMed

    Zhu, Yi-Hua; Ye, Yanfang; Wu, Zhengrong; Wu, Jian-Qiu

    2013-10-01

    Cytokinesis is the last step of the cell-division cycle, which requires precise spatial and temporal regulation to ensure genetic stability. Rho guanine nucleotide exchange factors (Rho GEFs) and Rho GTPases are among the key regulators of cytokinesis. We previously found that putative Rho-GEF Gef2 coordinates with Polo kinase Plo1 to control the medial cortical localization of anillin-like protein Mid1 in fission yeast. Here we show that an adaptor protein, Nod1, colocalizes with Gef2 in the contractile ring and its precursor cortical nodes. Like gef2, nod1 has strong genetic interactions with various cytokinesis mutants involved in division-site positioning, suggesting a role of Nod1 in early cytokinesis. We find that Nod1 and Gef2 interact through the C-termini, which is important for their localization. The contractile-ring localization of Nod1 and Gef2 also depends on the interaction between Nod1 and the F-BAR protein Cdc15, where the Nod1/Gef2 complex plays a role in contractile-ring maintenance and affects the septation initiation network. Moreover, Gef2 binds to purified GTPases Rho1, Rho4, and Rho5 in vitro. Taken together, our data indicate that Nod1 and Gef2 function cooperatively in a protein complex to regulate fission yeast cytokinesis.

  7. Roles of the novel coiled-coil protein Rng10 in septum formation during fission yeast cytokinesis

    PubMed Central

    Liu, Yajun; Lee, I-Ju; Sun, Mingzhai; Lower, Casey A.; Runge, Kurt W.; Ma, Jianjie; Wu, Jian-Qiu

    2016-01-01

    Rho GAPs are important regulators of Rho GTPases, which are involved in various steps of cytokinesis and other processes. However, regulation of Rho-GAP cellular localization and function is not fully understood. Here we report the characterization of a novel coiled-coil protein Rng10 and its relationship with the Rho-GAP Rga7 in fission yeast. Both rng10Δ and rga7Δ result in defective septum and cell lysis during cytokinesis. Rng10 and Rga7 colocalize on the plasma membrane at the cell tips during interphase and at the division site during cell division. Rng10 physically interacts with Rga7 in affinity purification and coimmunoprecipitation. Of interest, Rga7 localization is nearly abolished without Rng10. Moreover, Rng10 and Rga7 work together to regulate the accumulation and dynamics of glucan synthases for successful septum formation in cytokinesis. Our results show that cellular localization and function of the Rho-GAP Rga7 are regulated by a novel protein, Rng10, during cytokinesis in fission yeast. PMID:27385337

  8. UCS Protein Rng3p Is Essential for Myosin-II Motor Activity during Cytokinesis in Fission Yeast

    PubMed Central

    Stark, Benjamin C.; James, Michael L.; Pollard, Luther W.; Sirotkin, Vladimir; Lord, Matthew

    2013-01-01

    UCS proteins have been proposed to operate as co-chaperones that work with Hsp90 in the de novo folding of myosin motors. The fission yeast UCS protein Rng3p is essential for actomyosin ring assembly and cytokinesis. Here we investigated the role of Rng3p in fission yeast myosin-II (Myo2p) motor activity. Myo2p isolated from an arrested rng3-65 mutant was capable of binding actin, yet lacked stability and activity based on its expression levels and inactivity in ATPase and actin filament gliding assays. Myo2p isolated from a myo2-E1 mutant (a mutant hyper-sensitive to perturbation of Rng3p function) showed similar behavior in the same assays and exhibited an altered motor conformation based on limited proteolysis experiments. We propose that Rng3p is not required for the folding of motors per se, but instead works to ensure the activity of intrinsically unstable myosin-II motors. Rng3p is specific to conventional myosin-II and the actomyosin ring, and is not required for unconventional myosin motor function at other actin structures. However, artificial destabilization of myosin-I motors at endocytic actin patches (using a myo1-E1 mutant) led to recruitment of Rng3p to patches. Thus, while Rng3p is specific to myosin-II, UCS proteins are adaptable and can respond to changes in the stability of other myosin motors. PMID:24244528

  9. Genetic Interaction Mapping Reveals a Role for the SWI/SNF Nucleosome Remodeler in Spliceosome Activation in Fission Yeast

    PubMed Central

    Patrick, Kristin L.; Ryan, Colm J.; Xu, Jiewei; Lipp, Jesse J.; Nissen, Kelly E.; Roguev, Assen; Shales, Michael; Krogan, Nevan J.; Guthrie, Christine

    2015-01-01

    Although numerous regulatory connections between pre-mRNA splicing and chromatin have been demonstrated, the precise mechanisms by which chromatin factors influence spliceosome assembly and/or catalysis remain unclear. To probe the genetic network of pre-mRNA splicing in the fission yeast Schizosaccharomyces pombe, we constructed an epistatic mini-array profile (E-MAP) and discovered many new connections between chromatin and splicing. Notably, the nucleosome remodeler SWI/SNF had strong genetic interactions with components of the U2 snRNP SF3 complex. Overexpression of SF3 components in ΔSWI/SNF cells led to inefficient splicing of many fission yeast introns, predominantly those with non-consensus splice sites. Deletion of SWI/SNF decreased recruitment of the splicing ATPase Prp2, suggesting that SWI/SNF promotes co-transcriptional spliceosome assembly prior to first step catalysis. Importantly, defects in SWI/SNF as well as SF3 overexpression each altered nucleosome occupancy along intron-containing genes, illustrating that the chromatin landscape both affects—and is affected by—co-transcriptional splicing. PMID:25825871

  10. Mutation of histone H3 serine 86 disrupts GATA factor Ams2 expression and precise chromosome segregation in fission yeast.

    PubMed

    Lim, Kim Kiat; Ong, Terenze Yao Rui; Tan, Yue Rong; Yang, Eugene Guorong; Ren, Bingbing; Seah, Kwi Shan; Yang, Zhe; Tan, Tsu Soo; Dymock, Brian W; Chen, Ee Sin

    2015-09-15

    Eukaryotic genomes are packed into discrete units, referred to as nucleosomes, by organizing around scaffolding histone proteins. The interplay between these histones and the DNA can dynamically regulate the function of the chromosomal domain. Here, we interrogated the function of a pair of juxtaposing serine residues (S86 and S87) that reside within the histone fold of histone H3. We show that fission yeast cells expressing a mutant histone H3 disrupted at S86 and S87 (hht2-S86AS87A) exhibited unequal chromosome segregation, disrupted transcriptional silencing of centromeric chromatin, and reduced expression of Ams2, a GATA-factor that regulates localization of the centromere-specific histone H3 variant CENP-A. We found that overexpression of ams2(+) could suppress the chromosome missegregation phenotype that arose in the hht2-S86AS87A mutant. We further demonstrate that centromeric localization of SpCENP-A(cnp1-1) was significantly compromised in hht2-S86AS87A, suggesting synergism between histone H3 and the centromere-targeting domain of SpCENP-A. Taken together, our work presents evidence for an uncharacterized serine residue in fission yeast histone H3 that affects centromeric integrity via regulating the expression of the SpCENP-A-localizing Ams2 protein. [173/200 words].

  11. Characterisation of functional domains in fission yeast Ams2 that are required for core histone gene transcription

    PubMed Central

    Takayama, Yuko; Shirai, Masaki; Masuda, Fumie

    2016-01-01

    Histone gene expression is regulated in a cell cycle-dependent manner, with a peak at S phase, which is crucial for cell division and genome integrity. However, the detailed mechanisms by which expression of histone genes are tightly regulated remain largely unknown. Fission yeast Ams2, a GATA-type zinc finger motif-containing factor, is required for activation of S phase-specific core histone gene transcription. Here we report the molecular characterisation of Ams2. We show that the zinc finger motif in Ams2 is necessary to bind the histone gene promoter region and to activate histone gene transcription. An N-terminal region of Ams2 acts as a self-interaction domain. Intriguingly, N-terminally truncated Ams2 binds to the histone gene promoters, but does not fully activate histone gene transcription. These observations imply that Ams2 self-interactions are required for efficient core histone gene transcription. Moreover, we show that Ams2 interacts with Teb1, which itself binds to the core histone gene promoters. We discuss the relationships between Ams2 domains and efficient transcription of the core histone genes in fission yeast. PMID:27901072

  12. A Two-step Protein Quality Control Pathway for a Misfolded DJ-1 Variant in Fission Yeast.

    PubMed

    Mathiassen, Søs G; Larsen, Ida B; Poulsen, Esben G; Madsen, Christian T; Papaleo, Elena; Lindorff-Larsen, Kresten; Kragelund, Birthe B; Nielsen, Michael L; Kriegenburg, Franziska; Hartmann-Petersen, Rasmus

    2015-08-21

    A mutation, L166P, in the cytosolic protein, PARK7/DJ-1, causes protein misfolding and is linked to Parkinson disease. Here, we identify the fission yeast protein Sdj1 as the orthologue of DJ-1 and calculate by in silico saturation mutagenesis the effects of point mutants on its structural stability. We also map the degradation pathways for Sdj1-L169P, the fission yeast orthologue of the disease-causing DJ-1 L166P protein. Sdj1-L169P forms inclusions, which are enriched for the Hsp104 disaggregase. Hsp104 and Hsp70-type chaperones are required for efficient degradation of Sdj1-L169P. This also depends on the ribosome-associated E3 ligase Ltn1 and its co-factor Rqc1. Although Hsp104 is absolutely required for proteasomal degradation of Sdj1-L169P aggregates, the degradation of already aggregated Sdj1-L169P occurs independently of Ltn1 and Rqc1. Thus, our data point to soluble Sdj1-L169P being targeted early by Ltn1 and Rqc1. The fraction of Sdj1-L169P that escapes this first inspection then forms aggregates that are subsequently cleared via an Hsp104- and proteasome-dependent pathway.

  13. Genetic interaction mapping reveals a role for the SWI/SNF nucleosome remodeler in spliceosome activation in fission yeast.

    PubMed

    Patrick, Kristin L; Ryan, Colm J; Xu, Jiewei; Lipp, Jesse J; Nissen, Kelly E; Roguev, Assen; Shales, Michael; Krogan, Nevan J; Guthrie, Christine

    2015-03-01

    Although numerous regulatory connections between pre-mRNA splicing and chromatin have been demonstrated, the precise mechanisms by which chromatin factors influence spliceosome assembly and/or catalysis remain unclear. To probe the genetic network of pre-mRNA splicing in the fission yeast Schizosaccharomyces pombe, we constructed an epistatic mini-array profile (E-MAP) and discovered many new connections between chromatin and splicing. Notably, the nucleosome remodeler SWI/SNF had strong genetic interactions with components of the U2 snRNP SF3 complex. Overexpression of SF3 components in ΔSWI/SNF cells led to inefficient splicing of many fission yeast introns, predominantly those with non-consensus splice sites. Deletion of SWI/SNF decreased recruitment of the splicing ATPase Prp2, suggesting that SWI/SNF promotes co-transcriptional spliceosome assembly prior to first step catalysis. Importantly, defects in SWI/SNF as well as SF3 overexpression each altered nucleosome occupancy along intron-containing genes, illustrating that the chromatin landscape both affects--and is affected by--co-transcriptional splicing.

  14. Two Regulators of Ste12p Inhibit Pheromone-Responsive Transcription by Separate Mechanisms

    PubMed Central

    Olson, K. Amy; Nelson, Chris; Tai, Georgia; Hung, Wesley; Yong, Carl; Astell, Caroline; Sadowski, Ivan

    2000-01-01

    The yeast Saccharomyces cerevisiae transcription factor Ste12p is responsible for activating genes in response to MAP kinase cascades controlling mating and filamentous growth. Ste12p is negatively regulated by two inhibitor proteins, Dig1p (also called Rst1p) and Dig2p (also called Rst2p). The expression of a C-terminal Ste12p fragment (residues 216 to 688) [Ste12p(216–688)] from a GAL promoter causes FUS1 induction in a strain expressing wild-type STE12, suggesting that this region can cause the activation of endogenous Ste12p. Residues 262 to 594 are sufficient to cause STE12-dependent FUS1 induction when overexpressed, and this region of Ste12p was found to bind Dig1p but not Dig2p in yeast extracts. In contrast, recombinant glutathione S-transferase–Dig2p binds to the Ste12p DNA-binding domain (DBD). Expression of DIG2, but not DIG1, from a GAL promoter inhibits transcriptional activation by an Ste12p DBD-VP16 fusion. Furthermore, disruption of dig1, but not dig2, causes elevated transcriptional activation by a LexA–Ste12p(216–688) fusion. Ste12p has multiple regions within the C terminus (flanking residue 474) that can promote multimerization in vitro, and we demonstrate that these interactions can contribute to the activation of endogenous Ste12p by overproduced C-terminal fragments. These results demonstrate that Dig1p and Dig2p do not function by redundant mechanisms but rather inhibit pheromone-responsive transcription through interactions with separate regions of Ste12p. PMID:10825185

  15. A DMSO-sensitive conditional mutant of the fission yeast orthologue of the Saccharomyces cerevisiae SEC13 gene is defective in septation.

    PubMed

    Poloni, Deborah; Simanis, Viesturs

    2002-01-30

    Dissection of complex processes using model organisms such as yeasts relies heavily upon the use of conditional mutants. We have generated a collection of fission yeast mutants sensitive to dimethylsulphoxide (DMSO). Among these we have found a mutant in the Schizosaccharomyces pombe orthologue of the Saccharomyces cerevisiae SEC13 gene, which fails to cleave the division septum. Generation of a null allele demonstrates that the S. pombe sec13 gene is essential.

  16. Identification of Rbd2 as a candidate protease for sterol regulatory element binding protein (SREBP) cleavage in fission yeast

    SciTech Connect

    Kim, Jinsil; Ha, Hye-Jeong; Kim, Sujin; Choi, Ah-Reum; Lee, Sook-Jeong; Hoe, Kwang-Lae; Kim, Dong-Uk

    2015-12-25

    Lipid homeostasis in mammalian cells is regulated by sterol regulatory element-binding protein (SREBP) transcription factors that are activated through sequential cleavage by Golgi Site-1 and Site-2 proteases. Fission yeast SREBP, Sre1, engages a different mechanism involving the Golgi Dsc E3 ligase complex, but it is not clearly understood exactly how Sre1 is proteolytically cleaved and activated. In this study, we screened the Schizosaccharomyces pombe non-essential haploid deletion collection to identify missing components of the Sre1 cleavage machinery. Our screen identified an additional component of the SREBP pathway required for Sre1 proteolysis named rhomboid protein 2 (Rbd2). We show that an rbd2 deletion mutant fails to grow under hypoxic and hypoxia-mimetic conditions due to lack of Sre1 activity and that this growth phenotype is rescued by Sre1N, a cleaved active form of Sre1. We found that the growth inhibition phenotype under low oxygen conditions is specific to the strain with deletion of rbd2, not any other fission yeast rhomboid-encoding genes. Our study also identified conserved residues of Rbd2 that are required for Sre1 proteolytic cleavage. All together, our results suggest that Rbd2 is a functional SREBP protease with conserved residues required for Sre1 cleavage and provide an important piece of the puzzle to understand the mechanisms for Sre1 activation and the regulation of various biological and pathological processes involving SREBPs. - Highlights: • An rbd2-deleted yeast strain shows defects in growth in response to low oxygen levels. • rbd2-deficient cells fail to generate cleaved Sre1 (Sre1N) under hypoxic conditions. • Expression of Sre1N rescues the rbd2 deletion mutant growth phenotype. • Rbd2 contains conserved residues potentially critical for catalytic activity. • Mutation of the conserved Rbd2 catalytic residues leads to defects in Sre1 cleavage.

  17. Fission yeast Cdk7 controls gene expression through both its CAK and C-terminal domain kinase activities.

    PubMed

    Devos, Maxime; Mommaerts, Elise; Migeot, Valerie; van Bakel, Harm; Hermand, Damien

    2015-05-01

    Cyclin-dependent kinase (Cdk) activation and RNA polymerase II transcription are linked by the Cdk7 kinase, which phosphorylates Cdks as a trimeric Cdk-activating kinase (CAK) complex, and serine 5 within the polymerase II (Pol II) C-terminal domain (CTD) as transcription factor TFIIH-bound CAK. However, the physiological importance of integrating these processes is not understood. Besides the Cdk7 ortholog Mcs6, fission yeast possesses a second CAK, Csk1. The two enzymes have been proposed to act redundantly to activate Cdc2. Using an improved analogue-sensitive Mcs6-as kinase, we show that Csk1 is not a relevant CAK for Cdc2. Further analyses revealed that Csk1 lacks a 20-amino-acid sequence required for its budding yeast counterpart, Cak1, to bind Cdc2. Transcriptome profiling of the Mcs6-as mutant in the presence or absence of the budding yeast Cak1 kinase, in order to uncouple the CTD kinase and CAK activities of Mcs6, revealed an unanticipated role of the CAK branch in the transcriptional control of the cluster of genes implicated in ribosome biogenesis and cell growth. The analysis of a Cdc2 CAK site mutant confirmed these data. Our data show that the Cdk7 kinase modulates transcription through its well-described RNA Pol II CTD kinase activity and also through the Cdc2-activating kinase activity.

  18. Fission Yeast Cdk7 Controls Gene Expression through both Its CAK and C-Terminal Domain Kinase Activities

    PubMed Central

    Devos, Maxime; Mommaerts, Elise; Migeot, Valerie; van Bakel, Harm

    2015-01-01

    Cyclin-dependent kinase (Cdk) activation and RNA polymerase II transcription are linked by the Cdk7 kinase, which phosphorylates Cdks as a trimeric Cdk-activating kinase (CAK) complex, and serine 5 within the polymerase II (Pol II) C-terminal domain (CTD) as transcription factor TFIIH-bound CAK. However, the physiological importance of integrating these processes is not understood. Besides the Cdk7 ortholog Mcs6, fission yeast possesses a second CAK, Csk1. The two enzymes have been proposed to act redundantly to activate Cdc2. Using an improved analogue-sensitive Mcs6-as kinase, we show that Csk1 is not a relevant CAK for Cdc2. Further analyses revealed that Csk1 lacks a 20-amino-acid sequence required for its budding yeast counterpart, Cak1, to bind Cdc2. Transcriptome profiling of the Mcs6-as mutant in the presence or absence of the budding yeast Cak1 kinase, in order to uncouple the CTD kinase and CAK activities of Mcs6, revealed an unanticipated role of the CAK branch in the transcriptional control of the cluster of genes implicated in ribosome biogenesis and cell growth. The analysis of a Cdc2 CAK site mutant confirmed these data. Our data show that the Cdk7 kinase modulates transcription through its well-described RNA Pol II CTD kinase activity and also through the Cdc2-activating kinase activity. PMID:25691663

  19. ATP-binding motifs play key roles in Krp1p, kinesin-related protein 1, function for bi-polar growth control in fission yeast

    SciTech Connect

    Rhee, Dong Keun; Cho, Bon A; Kim, Hyong Bai . E-mail: hbkim5212@hotmail.com

    2005-06-03

    Kinesin is a microtubule-based motor protein with various functions related to the cell growth and division. It has been reported that Krp1p, kinesin-related protein 1, which belongs to the kinesin heavy chain superfamily, localizes on microtubules and may play an important role in cytokinesis. However, the function of Krp1p has not been fully elucidated. In this study, we overexpressed an intact form and three different mutant forms of Krp1p in fission yeast constructed by site-directed mutagenesis in two ATP-binding motifs or by truncation of the leucine zipper-like motif (LZiP). We observed hyper-extended microtubules and the aberrant nuclear shape in Krp1p-overexpressed fission yeast. As a functional consequence, a point mutation of ATP-binding domain 1 (G89E) in Krp1p reversed the effect of Krp1p overexpression in fission yeast, whereas the specific mutation in ATP-binding domain 2 (G238E) resulted in the altered cell polarity. Additionally, truncation of the leucine zipper-like domain (LZiP) at the C-terminal of Krp1p showed a normal nuclear division. Taken together, we suggest that krp1p is involved in regulation of cell-polarized growth through ATP-binding motifs in fission yeast.

  20. Casein kinase II is required for the spindle assembly checkpoint by regulating Mad2p in fission yeast

    SciTech Connect

    Shimada, Midori; Yamamoto, Ayumu; Murakami-Tonami, Yuko; Nakanishi, Makoto; Yoshida, Takashi; Aiba, Hirofumi; Murakami, Hiroshi

    2009-10-23

    The spindle checkpoint is a surveillance mechanism that ensures the fidelity of chromosome segregation in mitosis. Here we show that fission yeast casein kinase II (CK2) is required for this checkpoint function. In the CK2 mutants mitosis occurs in the presence of a spindle defect, and the spindle checkpoint protein Mad2p fails to localize to unattached kinetochores. The CK2 mutants are sensitive to the microtubule depolymerising drug thiabendazole, which is counteracted by ectopic expression of mad2{sup +}. The level of Mad2p is low in the CK2 mutants. These results suggest that CK2 has a role in the spindle checkpoint by regulating Mad2p.

  1. Inhibition of splicing and nuclear retention of pre-mRNA by spliceostatin A in fission yeast

    SciTech Connect

    Lo, Chor-Wai; Kaida, Daisuke; Nishimura, Shinichi; Matsuyama, Akihisa; Yashiroda, Yoko; Taoka, Hiroshi; Ishigami, Ken; Watanabe, Hidenori; Nakajima, Hidenori; Tani, Tokio; Horinouchi, Sueharu; Yoshida, Minoru

    2007-12-21

    Nuclear retention of pre-mRNAs is tightly regulated by several security mechanisms that prevent pre-mRNA export into the cytoplasm. Recently, spliceostatin A, a methylated derivative of a potent antitumor microbial metabolite FR901464, was found to cause pre-mRNA accumulation and translation in mammalian cells. Here we report that spliceostatin A also inhibits splicing and nuclear retention of pre-mRNA in a fission yeast strain that lacks the multidrug resistance protein Pmd1. As observed in mammalian cells, spliceostatin A is bound to components of the SF3b complex in the spliceosome. Furthermore, overexpression of nup211, a homolog of Saccharomyces cerevisiae MLP1, suppresses translation of pre-mRNAs accumulated by spliceostatin A. These results suggest that the SF3b complex has a conserved role in pre-mRNA retention, which is independent of the Mlp1 function.

  2. Alternative protein secretion: The Mam1 ABC transporter supports secretion of M-factor linked GFP in fission yeast

    SciTech Connect

    Kjaerulff, Soren

    2005-12-30

    To examine whether the fission yeast Mam1 ABC transporter can be used for secretion of heterologous proteins, thereby bypassing the classical secretion pathway, we have analyzed chimeric forms of the M-factor precursor. It was demonstrated that GFP can be exported when fused to both the amino-terminal prosequence from mfm1 and a CaaX motif. This secretion was dependent on the Mam1 transporter and not the classical secretion pathway. The secretion efficiency of GFP, however, was relatively low and most of the reporter protein was trapped in the vacuolar membranes. Our findings suggest that the Mam1 ABC protein is a promiscuous peptide transporter that can accommodate globular proteins of a relatively large size. Furthermore, our results help in defining the sequences required for processing and secretion of natural M-factor.

  3. Interaction between Pheromone and Its Receptor of the Fission Yeast Schizosaccharomyces pombe Examined by a Force Spectroscopy Study

    PubMed Central

    Sasuga, Shintaro; Abe, Ryohei; Nikaido, Osamu; Kiyosaki, Shoichi; Sekiguchi, Hiroshi; Ikai, Atsushi; Osada, Toshiya

    2012-01-01

    Interaction between P-factor, a peptide pheromone composed of 23 amino acid residues, and its pheromone receptor, Mam2, on the cell surface of the fission yeast Schizosaccharomyces pombe was examined by an atomic force microscope (AFM). An AFM tip was modified with P-factor derivatives to perform force curve measurements. The specific interaction force between P-factor and Mam2 was calculated to be around 120 pN at a probe speed of 1.74 μm/s. When the AFM tip was modified with truncated P-factor derivative lacking C-terminal Leu, the specific interaction between the tip and the cell surface was not observed. These results were also confirmed with an assay system using a green fluorescent protein (GFP) reporter gene to monitor the activation level of signal transduction following the interaction of Mam2 with P-factor. PMID:22500108

  4. Interaction between pheromone and its receptor of the fission yeast Schizosaccharomyces pombe examined by a force spectroscopy study.

    PubMed

    Sasuga, Shintaro; Abe, Ryohei; Nikaido, Osamu; Kiyosaki, Shoichi; Sekiguchi, Hiroshi; Ikai, Atsushi; Osada, Toshiya

    2012-01-01

    Interaction between P-factor, a peptide pheromone composed of 23 amino acid residues, and its pheromone receptor, Mam2, on the cell surface of the fission yeast Schizosaccharomyces pombe was examined by an atomic force microscope (AFM). An AFM tip was modified with P-factor derivatives to perform force curve measurements. The specific interaction force between P-factor and Mam2 was calculated to be around 120 pN at a probe speed of 1.74 μm/s. When the AFM tip was modified with truncated P-factor derivative lacking C-terminal Leu, the specific interaction between the tip and the cell surface was not observed. These results were also confirmed with an assay system using a green fluorescent protein (GFP) reporter gene to monitor the activation level of signal transduction following the interaction of Mam2 with P-factor.

  5. The Fun30 chromatin remodeler Fft3 controls nuclear organization and chromatin structure of insulators and subtelomeres in fission yeast.

    PubMed

    Steglich, Babett; Strålfors, Annelie; Khorosjutina, Olga; Persson, Jenna; Smialowska, Agata; Javerzat, Jean-Paul; Ekwall, Karl

    2015-03-01

    In eukaryotic cells, local chromatin structure and chromatin organization in the nucleus both influence transcriptional regulation. At the local level, the Fun30 chromatin remodeler Fft3 is essential for maintaining proper chromatin structure at centromeres and subtelomeres in fission yeast. Using genome-wide mapping and live cell imaging, we show that this role is linked to controlling nuclear organization of its targets. In fft3∆ cells, subtelomeres lose their association with the LEM domain protein Man1 at the nuclear periphery and move to the interior of the nucleus. Furthermore, genes in these domains are upregulated and active chromatin marks increase. Fft3 is also enriched at retrotransposon-derived long terminal repeat (LTR) elements and at tRNA genes. In cells lacking Fft3, these sites lose their peripheral positioning and show reduced nucleosome occupancy. We propose that Fft3 has a global role in mediating association between specific chromatin domains and the nuclear envelope.

  6. Fission yeast APC/C activators Slp1 and Fzr1 sequentially trigger two consecutive nuclear divisions during meiosis.

    PubMed

    Chikashige, Yuji; Yamane, Miho; Okamasa, Kasumi; Osakada, Hiroko; Tsutsumi, Chihiro; Nagahama, Yuki; Fukuta, Noriko; Haraguchi, Tokuko; Hiraoka, Yasushi

    2017-02-28

    In meiosis, two rounds of nuclear division occur consecutively without DNA replication between the divisions. We isolated a fission yeast mutant in which the nucleus divides only once to generate two spores, as opposed to four, in meiosis. In this mutant, we found that the initiation codon of the slp1(+) gene is converted to ATA, producing a reduced amount of Slp1. As a member of the Fizzy family of APC/C activators, Slp1 is essential for vegetative growth; however, the mutant allele shows a phenotype only in meiosis. Slp1 insufficiency delays degradation of maturation-promoting factor (MPF) at the first meiotic division, and another APC/C activator, Fzr1, which acts late in meiosis, terminates meiosis immediately after the delayed first division to produce two viable spores. This article is protected by copyright. All rights reserved.

  7. Nuclear displacement and fluorescence recovery after photobleaching (FRAP) assays to study division site placement and cytokinesis in fission yeast.

    PubMed

    Ullal, P; Bhatia, P; Martin, S G

    2017-01-01

    Cytokinesis is an essential cellular event that completes the cell division cycle. It begins with the assembly of an actomyosin contractile ring that undergoes constriction concomitant with the septum formation to divide the cell in two. Placement of the septum at the right position is important to ensure fidelity of the division process. In fission yeast, the medially placed nucleus is a major spatial cue to position the site of division. In this chapter, we describe a simple synthetic biology-based approach to displace the nucleus and study the consequence on division site positioning. We also describe how to perform fluorescence recovery after photobleaching to follow the dynamics of cytokinetic proteins at defined time points by live-cell microscopy.

  8. The Melaminophenyl Arsenicals Melarsoprol and Melarsen Oxide Interfere with Thiamine Metabolism in the Fission Yeast Schizosaccharomyces pombe

    PubMed Central

    Schweingruber, M. Ernst

    2004-01-01

    The melaminophenyl arsenical melarsoprol is the main drug used against late-stage sleeping sickness caused by Trypanosoma brucei subspecies. Its active metabolite in the human body is melarsen oxide. Here, it is shown that this metabolite inhibits growth of the fission yeast Schizosaccharomyces pombe and that its toxicity can be abolished efficiently by thiamine (vitamin B1), thiamine analogues, and the pyrimidine moiety of the thiamine molecule. Uptake of melarsen oxide is mediated by a membrane protein (car1p), which is involved in the uptake of thiamine and its pyrimidine moiety. Melarsoprol is taken up by cells in a thiamine- and car1p-dependent manner but is not toxic to cells. PMID:15328083

  9. Transient inhibition of histone deacetylase activity overcomes silencing in the mating-type region in fission yeast.

    PubMed

    Olsson, T G; Silverstein, R A; Ekwall, K; Sunnerhagen, P

    1999-03-01

    We have investigated the effects of inhibition of histone de-acetylase activity on silencing at the silent mating-type loci in fission yeast. Treatment of exponentially growing cells with the histone deacetylase inhibitor, trichostatin A (TSA), resulted in derepression of a marker gene inserted 150 bp distal from the silent mat3-M locus. The natural targets for the silencing mechanism in this region were only partially derepressed and the activation appeared to be asymmetric, i.e. the mat2-P cassette remained silent at concentrations that clearly partially derepressed the mat3-M cassette. We further noted that treatment of wild-type h90 cells resulted in the generation of altered sporulation phenotypes, indicating that the treatment affected the expression of mating-type genes and/or mating-type switching. The results are discussed in the light of recent accumulated data regarding the role of deacetylation for silencing in other species.

  10. RNA interference regulates the cell cycle checkpoint through the RNA export factor, Ptr1, in fission yeast

    SciTech Connect

    Iida, Tetsushi; Iida, Naoko; Tsutsui, Yasuhiro; Yamao, Fumiaki; Kobayashi, Takehiko

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer RNAi is linked to the cell cycle checkpoint in fission yeast. Black-Right-Pointing-Pointer Ptr1 co-purifies with Ago1. Black-Right-Pointing-Pointer The ptr1-1 mutation impairs the checkpoint but does not affect gene silencing. Black-Right-Pointing-Pointer ago1{sup +} and ptr1{sup +} regulate the cell cycle checkpoint via the same pathway. Black-Right-Pointing-Pointer Mutations in ago1{sup +} and ptr1{sup +} lead to the nuclear accumulation of poly(A){sup +} RNAs. -- Abstract: Ago1, an effector protein of RNA interference (RNAi), regulates heterochromatin silencing and cell cycle arrest in fission yeast. However, the mechanism by which Ago1 controls cell cycle checkpoint following hydroxyurea (HU) treatment has not been elucidated. In this study, we show that Ago1 and other RNAi factors control cell cycle checkpoint following HU treatment via a mechanism independent of silencing. While silencing requires dcr1{sup +}, the overexpression of ago1{sup +} alleviated the cell cycle defect in dcr1{Delta}. Ago1 interacted with the mRNA export factor, Ptr1. The ptr1-1 mutation impaired cell cycle checkpoint but gene silencing was unaffected. Genetic analysis revealed that the regulation of cell cycle checkpoint by ago1{sup +} is dependent on ptr1{sup +}. Nuclear accumulation of poly(A){sup +} RNAs was detected in mutants of ago1{sup +} and ptr1{sup +}, suggesting there is a functional link between the cell cycle checkpoint and RNAi-mediated RNA quality control.

  11. Funneled potential and flux landscapes dictate the stabilities of both the states and the flow: Fission yeast cell cycle.

    PubMed

    Luo, Xiaosheng; Xu, Liufang; Han, Bo; Wang, Jin

    2017-09-01

    Using fission yeast cell cycle as an example, we uncovered that the non-equilibrium network dynamics and global properties are determined by two essential features: the potential landscape and the flux landscape. These two landscapes can be quantified through the decomposition of the dynamics into the detailed balance preserving part and detailed balance breaking non-equilibrium part. While the funneled potential landscape is often crucial for the stability of the single attractor networks, we have uncovered that the funneled flux landscape is crucial for the emergence and maintenance of the stable limit cycle oscillation flow. This provides a new interpretation of the origin for the limit cycle oscillations: There are many cycles and loops existed flowing through the state space and forming the flux landscapes, each cycle with a probability flux going through the loop. The limit cycle emerges when a loop stands out and carries significantly more probability flux than other loops. We explore how robustness ratio (RR) as the gap or steepness versus averaged variations or roughness of the landscape, quantifying the degrees of the funneling of the underlying potential and flux landscapes. We state that these two landscapes complement each other with one crucial for stabilities of states on the cycle and the other crucial for the stability of the flow along the cycle. The flux is directly related to the speed of the cell cycle. This allows us to identify the key factors and structure elements of the networks in determining the stability, speed and robustness of the fission yeast cell cycle oscillations. We see that the non-equilibriumness characterized by the degree of detailed balance breaking from the energy pump quantified by the flux is the cause of the energy dissipation for initiating and sustaining the replications essential for the origin and evolution of life. Regulating the cell cycle speed is crucial for designing the prevention and curing strategy of cancer.

  12. An anillin homologue, Mid2p, acts during fission yeast cytokinesis to organize the septin ring and promote cell separation.

    PubMed

    Tasto, Joseph J; Morrell, Jennifer L; Gould, Kathleen L

    2003-03-31

    Anillin is a conserved protein required for cell division (Field, C.M., and B.M. Alberts. 1995. J. Cell Biol. 131:165-178; Oegema, K., M.S. Savoian, T.J. Mitchison, and C.M. Field. 2000. J. Cell Biol. 150:539-552). One fission yeast homologue of anillin, Mid1p, is necessary for the proper placement of the division site within the cell (Chang, F., A. Woollard, and P. Nurse. 1996. J. Cell Sci. 109(Pt 1):131-142; Sohrmann, M., C. Fankhauser, C. Brodbeck, and V. Simanis. 1996. Genes Dev. 10:2707-2719). Here, we identify and characterize a second fission yeast anillin homologue, Mid2p, which is not orthologous with Mid1p. Mid2p localizes as a single ring in the middle of the cell after anaphase in a septin- and actin-dependent manner and splits into two rings during septation. Mid2p colocalizes with septins, and mid2 Delta cells display disorganized, diffuse septin rings and a cell separation defect similar to septin deletion strains. mid2 gene expression and protein levels fluctuate during the cell cycle in a sep1- and Skp1/Cdc53/F-box (SCF)-dependent manner, respectively, implying that Mid2p activity must be carefully regulated. Overproduction of Mid2p depolarizes cell growth and affects the organization of both the septin and actin cytoskeletons. In the presence of a nondegradable Mid2p fragment, the septin ring is stabilized and cell cycle progression is delayed. These results suggest that Mid2p influences septin ring organization at the site of cell division and its turnover might normally be required to permit septin ring disassembly.

  13. Mid1p-dependent regulation of the M-G1 transcription wave in fission yeast.

    PubMed

    Agarwal, Monica; Papadopoulou, Kyriaki; Mayeux, Adeline; Vajrala, Vasanthi; Quintana, Daniela M; Paoletti, Anne; McInerny, Christopher J

    2010-12-15

    The control of gene expression at certain times during the mitotic cell division cycle is a common feature in eukaryotes. In fission yeast, at least five waves of gene expression have been described, with one transcribed at the M-G1 interval under the control of the PBF transcription factor complex. PBF consists of at least three transcription factors, two forkhead-like proteins Sep1p and Fkh2p, and a MADS box-like protein Mbx1p, and binds to PCB motifs found in the gene promoters. Mbx1p is under the direct control of the polo-like kinase Plo1p and the Cdc14p-like phosphatase Clp1p (Flp1p). Here, we show that M-G1 gene expression in fission yeast is also regulated by the anillin-like protein, Mid1p (Dmf1p). Mid1p binds in vivo to both Fkh2p and Sep1p, and to the promoter regions of M-G1 transcribed genes. Mid1p promoter binding is dependent on Fkh2p, Plo1p and Clp1p. The absence of mid1(+) in cells results in partial loss of M-G1 specific gene expression, suggesting that it has a negative role in controlling gene expression. This phenotype is exacerbated by also removing clp1(+), suggesting that Mid1p and Clp1p have overlapping functions in controlling transcription. As mid1(+) is itself expressed at M-G1, these observations offer a new mechanism whereby Mid1p contributes to controlling cell cycle-specific gene expression as part of a feedback loop.

  14. The fission yeast homologue of CENP-B, Abp1, regulates directionality of mating-type switching

    PubMed Central

    Aguilar-Arnal, Lorena; Marsellach, Francesc-Xavier; Azorín, Fernando

    2008-01-01

    In fission yeast, mating-type switching involves replacing genetic information contained at the expressed mat1 locus by that of either the mat2P or mat3M donor loci. Donor selection is nonrandom, as mat1P cells preferentially use mat3M for switching, whereas mat1M cells use mat2P. Switching directionality is determined by the cell-type-specific distribution of the Swi2–Swi5 complex that, in mat1P cells, localises to mat3M and, only in mat1M cells, spreads to mat2P in a heterochromatin-dependent manner. Mechanisms regulating spreading of Swi2–Swi5 across heterochromatin are not fully understood. Here, we show that the fission yeast homologue of CENP-B, Abp1, binds to the silent domain of the mating-type locus and regulates directionality of switching. Deletion of abp1 prevents utilisation of mat2P, as when heterochromatin is disrupted and spreading of Swi2–Swi5 is impaired. Our results show that, indeed, deletion of abp1 abolishes spreading of Swi2–Swi5 to mat2P. However, in abp1Δ cells, heterochromatin organisation at the mating-type locus is preserved, indicating that Abp1 is actually required for efficient spreading of Swi2–Swi5 through heterochromatin. Cbh1 and Cbh2, which are also homologous to CENP-B, have only a minor contribution to the regulation of directionality of switching, which is in contrast with the strong effects observed for Abp1. PMID:18354497

  15. Roles of a Fimbrin and an α-Actinin-like Protein in Fission Yeast Cell Polarization and Cytokinesis

    PubMed Central

    Wu, Jian-Qiu; Bähler, Jürg; Pringle, John R.

    2001-01-01

    Eukaryotic cells contain many actin-interacting proteins, including the α-actinins and the fimbrins, both of which have actin cross-linking activity in vitro. We report here the identification and characterization of both an α-actinin-like protein (Ain1p) and a fimbrin (Fim1p) in the fission yeast Schizosaccharomyces pombe. Ain1p localizes to the actomyosin-containing medial ring in an F-actin–dependent manner, and the Ain1p ring contracts during cytokinesis. ain1 deletion cells have no obvious defects under normal growth conditions but display severe cytokinesis defects, associated with defects in medial-ring and septum formation, under certain stress conditions. Overexpression of Ain1p also causes cytokinesis defects, and the ain1 deletion shows synthetic effects with other mutations known to affect medial-ring positioning and/or organization. Fim1p localizes both to the cortical actin patches and to the medial ring in an F-actin–dependent manner, and several lines of evidence suggest that Fim1p is involved in polarization of the actin cytoskeleton. Although a fim1 deletion strain has no detectable defect in cytokinesis, overexpression of Fim1p causes a lethal cytokinesis defect associated with a failure to form the medial ring and concentrate actin patches at the cell middle. Moreover, an ain1 fim1 double mutant has a synthetical-lethal defect in medial-ring assembly and cell division. Thus, Ain1p and Fim1p appear to have an overlapping and essential function in fission yeast cytokinesis. In addition, protein-localization and mutant-phenotype data suggest that Fim1p, but not Ain1p, plays important roles in mating and in spore formation. PMID:11294907

  16. The fission yeast homologue of CENP-B, Abp1, regulates directionality of mating-type switching.

    PubMed

    Aguilar-Arnal, Lorena; Marsellach, Francesc-Xavier; Azorín, Fernando

    2008-04-09

    In fission yeast, mating-type switching involves replacing genetic information contained at the expressed mat1 locus by that of either the mat2P or mat3M donor loci. Donor selection is nonrandom, as mat1P cells preferentially use mat3M for switching, whereas mat1M cells use mat2P. Switching directionality is determined by the cell-type-specific distribution of the Swi2-Swi5 complex that, in mat1P cells, localises to mat3M and, only in mat1M cells, spreads to mat2P in a heterochromatin-dependent manner. Mechanisms regulating spreading of Swi2-Swi5 across heterochromatin are not fully understood. Here, we show that the fission yeast homologue of CENP-B, Abp1, binds to the silent domain of the mating-type locus and regulates directionality of switching. Deletion of abp1 prevents utilisation of mat2P, as when heterochromatin is disrupted and spreading of Swi2-Swi5 is impaired. Our results show that, indeed, deletion of abp1 abolishes spreading of Swi2-Swi5 to mat2P. However, in abp1Delta cells, heterochromatin organisation at the mating-type locus is preserved, indicating that Abp1 is actually required for efficient spreading of Swi2-Swi5 through heterochromatin. Cbh1 and Cbh2, which are also homologous to CENP-B, have only a minor contribution to the regulation of directionality of switching, which is in contrast with the strong effects observed for Abp1.

  17. Ctp1 and the MRN-complex are required for endonucleolytic Rec12 removal with release of a single class of oligonucleotides in fission yeast.

    PubMed

    Rothenberg, Maja; Kohli, Jürg; Ludin, Katja

    2009-11-01

    DNA double-strand breaks (DSBs) are formed during meiosis by the action of the topoisomerase-like Spo11/Rec12 protein, which remains covalently bound to the 5' ends of the broken DNA. Spo11/Rec12 removal is required for resection and initiation of strand invasion for DSB repair. It was previously shown that budding yeast Spo11, the homolog of fission yeast Rec12, is removed from DNA by endonucleolytic cleavage. The release of two Spo11 bound oligonucleotide classes, heterogeneous in length, led to the conjecture of asymmetric cleavage. In fission yeast, we found only one class of oligonucleotides bound to Rec12 ranging in length from 17 to 27 nucleotides. Ctp1, Rad50, and the nuclease activity of Rad32, the fission yeast homolog of Mre11, are required for endonucleolytic Rec12 removal. Further, we detected no Rec12 removal in a rad50S mutant. However, strains with additional loss of components localizing to the linear elements, Hop1 or Mek1, showed some Rec12 removal, a restoration depending on Ctp1 and Rad32 nuclease activity. But, deletion of hop1 or mek1 did not suppress the phenotypes of ctp1Delta and the nuclease dead mutant (rad32-D65N). We discuss what consequences for subsequent repair a single class of Rec12-oligonucleotides may have during meiotic recombination in fission yeast in comparison to two classes of Spo11-oligonucleotides in budding yeast. Furthermore, we hypothesize on the participation of Hop1 and Mek1 in Rec12 removal.

  18. The AP-2 complex is required for proper temporal and spatial dynamics of endocytic patches in fission yeast.

    PubMed

    de León, Nagore; Hoya, Marta; Curto, M-Angeles; Moro, Sandra; Yanguas, Francisco; Doncel, Cristina; Valdivieso, M-Henar

    2016-05-01

    In metazoans the AP-2 complex has a well-defined role in clathrin-mediated endocytosis. By contrast, its direct role in endocytosis in unicellular eukaryotes has been questioned. Here, we report co- immunoprecipitation between the fission yeast AP-2 component Apl3p and clathrin, as well as the genetic interactions between apl3Δ and clc1 and sla2Δ/end4Δ mutants. Furthermore, a double clc1 apl3Δ mutant was found to be defective in FM4-64 uptake. In an otherwise wild-type strain, apl3Δ cells exhibit altered dynamics of the endocytic sites, with a heterogeneous and extended lifetime of early and late markers at the patches. Additionally, around 50% of the endocytic patches exhibit abnormal spatial dynamics, with immobile patches and patches that bounce backwards to the cell surface, showing a pervasive effect of the absence of AP-2. These alterations in the endocytic machinery result in abnormal cell wall synthesis and morphogenesis. Our results complement those found in budding yeast and confirm that a direct role of AP-2 in endocytosis has been conserved throughout evolution. © 2016 John Wiley & Sons Ltd.

  19. The meiosis-specific nuclear passenger protein is required for proper assembly of forespore membrane in fission yeast.

    PubMed

    Takaine, Masak; Imada, Kazuki; Numata, Osamu; Nakamura, Taro; Nakano, Kentaro

    2014-10-15

    Sporulation, gametogenesis in yeast, consists of meiotic nuclear division and spore morphogenesis. In the fission yeast Schizosaccharomyces pombe, the four haploid nuclei produced after meiosis II are encapsulated by the forespore membrane (FSM), which is newly synthesized from spindle pole bodies (SPBs) in the cytoplasm of the mother cell as spore precursors. Although the coordination between meiosis and FSM assembly is vital for proper sporulation, the underlying mechanism remains unclear. In the present study, we identified a new meiosis-specific protein Npg1, and found that it was involved in the efficient formation of spores and spore viability. The accumulation and organization of the FSM was compromised in npg1-null cells, leading to the error-prone envelopment of nuclei. Npg1 was first seen as internuclear dots and translocated to the SPBs before the FSM assembled. Genetic analysis revealed that Npg1 worked in conjunction with the FSM proteins Spo3 and Meu14. These results suggest a possible signaling link from the nucleus to the meiotic SPBs in order to associate the onset of FSM assembly with meiosis II, which ensures the successful partitioning of gametic nuclei.

  20. The fission yeast Schizosaccharomyces pombe as a model to understand how peroxiredoxins influence cell responses to hydrogen peroxide.

    PubMed

    Veal, Elizabeth A; Tomalin, Lewis E; Morgan, Brian A; Day, Alison M

    2014-08-01

    As a more selectively reactive oxygen species, H2O2 (hydrogen peroxide) has been co-opted as a signalling molecule, but high levels can still lead to lethal amounts of cell damage. 2-Cys Prxs (peroxiredoxins) are ubiquitous thioredoxin peroxidases which utilize reversibly oxidized catalytic cysteine residues to reduce peroxides. As such, Prxs potentially make an important contribution to the repertoire of cell defences against oxidative damage. Although the abundance of eukaryotic 2-Cys Prxs suggests an important role in maintaining cell redox, the surprising sensitivity of their thioredoxin peroxidase activity to inactivation by H2O2 has raised questions as to their role as an oxidative stress defence. Indeed, work in model yeast has led the way in revealing that Prxs do much more than simply remove peroxides and have even uncovered circumstances where their thioredoxin peroxidase activity is detrimental. In the present paper, we focus on what we have learned from studies in the fission yeast Schizosaccharomyces pombe about the different roles of 2-Cys Prxs in responses to H2O2 and discuss the general implications of these findings for other systems.

  1. Cell cycle control of spindle pole body duplication and splitting by Sfi1 and Cdc31 in fission yeast.

    PubMed

    Bouhlel, Imène B; Ohta, Midori; Mayeux, Adeline; Bordes, Nicole; Dingli, Florent; Boulanger, Jérôme; Velve Casquillas, Guilhem; Loew, Damarys; Tran, Phong T; Sato, Masamitsu; Paoletti, Anne

    2015-04-15

    Spindle pole biogenesis and segregation are tightly coordinated to produce a bipolar mitotic spindle. In yeasts, the spindle pole body (SPB) half-bridge composed of Sfi1 and Cdc31 duplicates to promote the biogenesis of a second SPB. Sfi1 accumulates at the half-bridge in two phases in Schizosaccharomyces pombe, from anaphase to early septation and throughout G2 phase. We found that the function of Sfi1-Cdc31 in SPB duplication is accomplished before septation ends and G2 accumulation starts. Thus, Sfi1 early accumulation at mitotic exit might correspond to half-bridge duplication. We further show that Cdc31 phosphorylation on serine 15 in a Cdk1 (encoded by cdc2) consensus site is required for the dissociation of a significant pool of Sfi1 from the bridge and timely segregation of SPBs at mitotic onset. This suggests that the Cdc31 N-terminus modulates the stability of Sfi1-Cdc31 arrays in fission yeast, and impacts on the timing of establishment of spindle bipolarity. © 2015. Published by The Company of Biologists Ltd.

  2. The unfolded protein response in fission yeast modulates stability of select mRNAs to maintain protein homeostasis

    PubMed Central

    Kimmig, Philipp; Diaz, Marcy; Zheng, Jiashun; Williams, Christopher C; Lang, Alexander; Aragón, Tomas; Li, Hao; Walter, Peter

    2012-01-01

    The unfolded protein response (UPR) monitors the protein folding capacity of the endoplasmic reticulum (ER). In all organisms analyzed to date, the UPR drives transcriptional programs that allow cells to cope with ER stress. The non-conventional splicing of Hac1 (yeasts) and XBP1 (metazoans) mRNA, encoding orthologous UPR transcription activators, is conserved and dependent on Ire1, an ER membrane-resident kinase/endoribonuclease. We found that the fission yeast Schizosaccharomyces pombe lacks both a Hac1/XBP1 ortholog and a UPR-dependent-transcriptional-program. Instead, Ire1 initiates the selective decay of a subset of ER-localized-mRNAs that is required to survive ER stress. We identified Bip1 mRNA, encoding a major ER-chaperone, as the sole mRNA cleaved upon Ire1 activation that escapes decay. Instead, truncation of its 3′ UTR, including loss of its polyA tail, stabilized Bip1 mRNA, resulting in increased Bip1 translation. Thus, S. pombe uses a universally conserved stress-sensing machinery in novel ways to maintain homeostasis in the ER. DOI: http://dx.doi.org/10.7554/eLife.00048.001 PMID:23066505

  3. Functional interactions of Rec24, the fission yeast ortholog of mouse Mei4, with the meiotic recombination–initiation complex

    PubMed Central

    Bonfils, Sandrine; Rozalén, Ana E.; Smith, Gerald R.; Moreno, Sergio; Martín-Castellanos, Cristina

    2011-01-01

    A physical connection between each pair of homologous chromosomes is crucial for reductional chromosome segregation during the first meiotic division and therefore for successful meiosis. Connection is provided by recombination (crossing over) initiated by programmed DNA double-strand breaks (DSBs). Although the topoisomerase-like protein Spo11 makes DSBs and is evolutionarily conserved, how Spo11 (Rec12 in fission yeast) is regulated to form DSBs at the proper time and place is poorly understood. Several additional (accessory) proteins for DSB formation have been inferred in different species from yeast to mice. Here, we show that Rec24 is a bona fide accessory protein in Schizosaccharomyces pombe. Rec24 is required genome-wide for crossing-over and is recruited to meiotic chromosomes during prophase in a Rec12-independent manner forming foci on linear elements (LinEs), structurally related to the synaptonemal complex of other eukaryotes. Stabilization of Rec24 on LinEs depends on another accessory protein, Rec7, with which Rec24 forms complexes in vivo. We propose that Rec24 marks LinE-associated recombination sites, that stabilization of its binding by Rec7 facilitates the loading or activation of Rec12, and that only stabilized complexes containing Rec24 and Rec7 promote DSB formation. Based on the recent report of Rec24 and Rec7 conservation, interaction between Rec24 and Rec7 might be widely conserved in DSB formation. PMID:21429938

  4. Filamentous invasive growth of mutants of the genes encoding ammonia-metabolizing enzymes in the fission yeast Schizosaccharomyces pombe.

    PubMed

    Sasaki, Yoshie; Kojima, Ayumi; Shibata, Yuriko; Mitsuzawa, Hiroshi

    2017-01-01

    The fission yeast Schizosaccharomyces pombe undergoes a switch from yeast to filamentous invasive growth in response to certain environmental stimuli. Among them is ammonium limitation. Amt1, one of the three ammonium transporters in this yeast, is required for the ammonium limitation-induced morphological transition; however, the underlying molecular mechanism remains to be understood. Cells lacking Amt1 became capable of invasive growth upon increasing concentrations of ammonium in the medium, suggesting that the ammonium taken up into the cell or a metabolic intermediate in ammonium assimilation might serve as a signal for the ammonium limitation-induced morphological transition. To investigate the possible role of ammonium-metabolizing enzymes in the signaling process, deletion mutants were constructed for the gdh1, gdh2, gln1, and glt1 genes, which were demonstrated by enzyme assays to encode NADP-specific glutamate dehydrogenase, NAD-specific glutamate dehydrogenase, glutamine synthetase, and glutamate synthase, respectively. Growth tests on various nitrogen sources revealed that a gln1Δ mutant was a glutamine auxotroph and that a gdh1Δ mutant had a defect in growth on ammonium, particularly at high concentrations. The latter observation indicates that the NADP-specific glutamate dehydrogenase of S. pombe plays a major role in ammonium assimilation under high ammonium concentrations. Invasive growth assays showed that gdh1Δ and glt1Δ mutants underwent invasive growth to a lesser extent than did wild-type strains. Increasing the ammonium concentration in the medium suppressed the invasive growth defect of the glt1Δ mutant, but not the gdh1Δ mutant. These results suggest that the nitrogen status of the cell is important in the induction of filamentous invasive growth in S. pombe.

  5. Cell-cycle control of gene expression in budding and fission yeast.

    PubMed

    Bähler, Jürg

    2005-01-01

    Cell-cycle control of transcription seems to be a universal feature of proliferating cells, although relatively little is known about its biological significance and conservation between organisms. The two distantly related yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe have provided valuable complementary insight into the regulation of periodic transcription as a function of the cell cycle. More recently, genome-wide studies of proliferating cells have identified hundreds of periodically expressed genes and underlying mechanisms of transcriptional control. This review discusses the regulation of three major transcriptional waves, which roughly coincide with three main cell-cycle transitions (initiation of DNA replication, entry into mitosis, and exit from mitosis). I also compare and contrast the transcriptional regulatory networks between the two yeasts and discuss the evolutionary conservation and possible roles for cell cycle-regulated transcription.

  6. Mitochondrial fission proteins Fis1 and Mdv1, but not Dnm1, play a role in maintenance of heteroplasmy in budding yeast.

    PubMed

    Bradshaw, Elliot; Yoshida, Minoru; Ling, Feng

    2012-04-24

    In budding yeast, the mitochondrial DNA (mtDNA) replication pathway involving the homologous DNA pairing protein Mhr1 promotes mitochondrial allele segregation. Mitochondrial fusion facilitates the recombination-mediated replication pathway; however, the role of fission remains largely unknown. By monitoring mitochondrial allele segregation during zygotic division, we found that the absence of fission proteins Fis1 or Mdv1, but not Dnm1, resulted in increased initial homoplasmy levels and decreased mtDNA copy number. However, decreases in mtDNA copy number alone were not sufficient for rapid establishment of homoplasmy, suggesting that inhibiting the activities of certain fission proteins promotes homoplasmy by reducing the number of mtDNA segregation units. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  7. rqh1+, a fission yeast gene related to the Bloom's and Werner's syndrome genes, is required for reversible S phase arrest.

    PubMed Central

    Stewart, E; Chapman, C R; Al-Khodairy, F; Carr, A M; Enoch, T

    1997-01-01

    In eukaryotic cells, S phase can be reversibly arrested by drugs that inhibit DNA synthesis or DNA damage. Here we show that recovery from such treatments is under genetic control and is defective in fission yeast rqh1 mutants. rqh1+, previously known as hus2+, encodes a putative DNA helicase related to the Escherichia coli RecQ helicase, with particular homology to the gene products of the human BLM and WRN genes and the Saccharomyces cerevisiae SGS1 gene. BLM and WRN are mutated in patients with Bloom's syndrome and Werner's syndrome respectively. Both syndromes are associated with genomic instability and cancer susceptibility. We show that, like BLM and SGS1, rqh1+ is required to prevent recombination and that in fission yeast suppression of inappropriate recombination is essential for reversible S phase arrest. PMID:9184215

  8. [Molecular cloning of some components of the translation apparatus of fission yeast Schizosaccharomyces pombe and a list of its cytoplasm ic proteins genes].

    PubMed

    Shpakovskiĭ, G V; Baranova, G M; Wood, V; Gwilliam, R G; Shematorova, E K; Korol'chuk, O L; Lebedenko, E N

    1999-06-01

    Full-length cDNAs of four new genes encoding cytoplasmic ribosomal proteins L14 and L20 (large ribosomal subunit) and S1 and S27 (small ribosomal subunit) were isolated and sequenced during the analysis of the fission yeast Schizosaccharomyces pombe genome. One of the Sz. pombe genes encoding translation elongation factor EF-2 was also cloned and its precise position on chromosome I established. A unified nomenclature was proposed, and the list of all known genetic determinants encoding cytoplasmic ribosomal proteins of Sz. pombe was compiled. By now, 76 genes/cDNAs encoding different ribosomal proteins have been identified in the fission yeast genome. Among them, 35 genes are duplicated and three homologous genes are identified for each of the ribosomal proteins L2, L16, P1, and P2.

  9. Genome-wide studies of histone demethylation catalysed by the fission yeast homologues of mammalian LSD1.

    PubMed

    Opel, Michael; Lando, David; Bonilla, Carolina; Trewick, Sarah C; Boukaba, Abdelhalim; Walfridsson, Julian; Cauwood, James; Werler, Petra J H; Carr, Antony M; Kouzarides, Tony; Murzina, Natalia V; Allshire, Robin C; Ekwall, Karl; Laue, Ernest D

    2007-04-18

    In order to gain a more global view of the activity of histone demethylases, we report here genome-wide studies of the fission yeast SWIRM and polyamine oxidase (PAO) domain homologues of mammalian LSD1. Consistent with previous work we find that the two S. pombe proteins, which we name Swm1 and Swm2 (after SWIRM1 and SWIRM2), associate together in a complex. However, we find that this complex specifically demethylates lysine 9 in histone H3 (H3K9) and both up- and down-regulates expression of different groups of genes. Using chromatin-immunoprecipitation, to isolate fragments of chromatin containing either H3K4me2 or H3K9me2, and DNA microarray analysis (ChIP-chip), we have studied genome-wide changes in patterns of histone methylation, and their correlation with gene expression, upon deletion of the swm1(+) gene. Using hyper-geometric probability comparisons we uncover genetic links between lysine-specific demethylases, the histone deacetylase Clr6, and the chromatin remodeller Hrp1. The data presented here demonstrate that in fission yeast the SWIRM/PAO domain proteins Swm1 and Swm2 are associated in complexes that can remove methyl groups from lysine 9 methylated histone H3. In vitro, we show that bacterially expressed Swm1 also possesses lysine 9 demethylase activity. In vivo, loss of Swm1 increases the global levels of both H3K9me2 and H3K4me2. A significant accumulation of H3K4me2 is observed at genes that are up-regulated in a swm1 deletion strain. In addition, H3K9me2 accumulates at some genes known to be direct Swm1/2 targets that are down-regulated in the swm1Delta strain. The in vivo data indicate that Swm1 acts in concert with the HDAC Clr6 and the chromatin remodeller Hrp1 to repress gene expression. In addition, our in vitro analyses suggest that the H3K9 demethylase activity requires an unidentified post-translational modification to allow it to act. Thus, our results highlight complex interactions between histone demethylase, deacetylase and

  10. Deletion of Genes Encoding Arginase Improves Use of “Heavy” Isotope-Labeled Arginine for Mass Spectrometry in Fission Yeast

    PubMed Central

    Borek, Weronika E.; Zou, Juan; Rappsilber, Juri; Sawin, Kenneth E.

    2015-01-01

    The use of “heavy” isotope-labeled arginine for stable isotope labeling by amino acids in cell culture (SILAC) mass spectrometry in the fission yeast Schizosaccharomyces pombe is hindered by the fact that under normal conditions, arginine is extensively catabolized in vivo, resulting in the appearance of “heavy”-isotope label in several other amino acids, most notably proline, but also glutamate, glutamine and lysine. This “arginine conversion problem” significantly impairs quantification of mass spectra. Previously, we developed a method to prevent arginine conversion in fission yeast SILAC, based on deletion of genes involved in arginine catabolism. Here we show that although this method is indeed successful when 13C6-arginine (Arg-6) is used for labeling, it is less successful when 13C615N4-arginine (Arg-10), a theoretically preferable label, is used. In particular, we find that with this method, “heavy”-isotope label derived from Arg-10 is observed in amino acids other than arginine, indicating metabolic conversion of Arg-10. Arg-10 conversion, which severely complicates both MS and MS/MS analysis, is further confirmed by the presence of 13C515N2-arginine (Arg-7) in arginine-containing peptides from Arg-10-labeled cells. We describe how all of the problems associated with the use of Arg-10 can be overcome by a simple modification of our original method. We show that simultaneous deletion of the fission yeast arginase genes car1+ and aru1+ prevents virtually all of the arginine conversion that would otherwise result from the use of Arg-10. This solution should enable a wider use of heavy isotope-labeled amino acids in fission yeast SILAC. PMID:26075619

  11. Plasmids with E2 epitope tags: tagging modules for N- and C-terminal PCR-based gene targeting in both budding and fission yeast, and inducible expression vectors for fission yeast.

    PubMed

    Tamm, Tiina

    2009-01-01

    A single-step PCR-based epitope tagging enables fast and efficient gene targeting with various epitope tags. This report presents a series of plasmids for the E2 epitope tagging of proteins in Saccharomyces cerevisiae and Schizosaccharomyces pombe. E2Tags are 10-amino acids (epitope E2a: SSTSSDFRDR)- and 12 amino acids (epitope E2b: GVSSTSSDFRDR)-long peptides derived from the E2 protein of bovine papillomavirus type 1. The modules for C-terminal tagging with E2a and E2b epitopes were constructed by the modification of the pYM-series plasmid. The N-terminal E2a and E2b tagging modules were based on pOM-series plasmid. The pOM-series plasmids were selected for this study because of their use of the Cre-loxP recombination system. The latter enables a marker cassette to be removed after integration into the loci of interest and, thereafter, the tagged protein is expressed under its endogenous promoter. Specifically for fission yeast, high copy pREP plasmids containing the E2a epitope tag as an N-terminal or C-terminal tag were constructed. The properties of E2a and E2b epitopes and the sensitivity of two anti-E2 monoclonal antibodies (5E11 and 3F12) were tested using several S. cerevisiae and Sz. pombe E2-tagged strains.

  12. Seasonal pheromone response by Ips pini in northern Arizona and western Montana, U.S.A.

    Treesearch

    Brytten E. Steed; Michael R. Wagner

    2008-01-01

    Populations of Ips pini (Say) in northern Arizona and western Montana, U.S.A., were studied to determine regional pheromone response and to evaluate seasonal shifts in that response. A range of enantiomeric blends of the attractant ipsdienol, alone and in the presence of the synergist lanierone, were tested during spring and summer seasons over...

  13. Genetic analysis of cell morphogenesis in fission yeast--a role for casein kinase II in the establishment of polarized growth.

    PubMed Central

    Snell, V; Nurse, P

    1994-01-01

    We have initiated a study to identify genes regulating cell morphogenesis in the fission yeast Schizosaccharomyces pombe. Five genes have been identified, orb1-orb5, whose mutation gives rise to spherical cells, indicative of an inability to polarize growth. Two further genes have been identified, tea1 and ban1, whose mutant alleles have disturbed patterns of tip growth, leading to T-shaped and curved cells. In fission yeast, sites of cell wall deposition are defined by actin localization, with actin distributions and therefore growth patterns undergoing cell cycle stage-specific reorganization. Studies of double mutants constructed between orb5-19 and various cdc mutants blocked before and after cell division show that orb5 is required for the re-establishment of polar growth following cytokinesis. This indicates that the mutant allele orb5-19 is defective in the reinitiation of polarized growth, even though actin reorganization to the cell tips occurs normally. orb5 encodes a fission yeast homologue of casein kinase II alpha. We propose that this kinase plays a role in the translation of cell polarity into polarized growth, but not in the establishment of polarity itself. Images PMID:8187760

  14. LEM2 recruits CHMP7 for ESCRT-mediated nuclear envelope closure in fission yeast and human cells.

    PubMed

    Gu, Mingyu; LaJoie, Dollie; Chen, Opal S; von Appen, Alexander; Ladinsky, Mark S; Redd, Michael J; Nikolova, Linda; Bjorkman, Pamela J; Sundquist, Wesley I; Ullman, Katharine S; Frost, Adam

    2017-03-14

    Endosomal sorting complexes required for transport III (ESCRT-III) proteins have been implicated in sealing the nuclear envelope in mammals, spindle pole body dynamics in fission yeast, and surveillance of defective nuclear pore complexes in budding yeast. Here, we report that Lem2p (LEM2), a member of the LEM (Lap2-Emerin-Man1) family of inner nuclear membrane proteins, and the ESCRT-II/ESCRT-III hybrid protein Cmp7p (CHMP7), work together to recruit additional ESCRT-III proteins to holes in the nuclear membrane. In Schizosaccharomyces pombe, deletion of the ATPase vps4 leads to severe defects in nuclear morphology and integrity. These phenotypes are suppressed by loss-of-function mutations that arise spontaneously in lem2 or cmp7, implying that these proteins may function upstream in the same pathway. Building on these genetic interactions, we explored the role of LEM2 during nuclear envelope reformation in human cells. We found that CHMP7 and LEM2 enrich at the same region of the chromatin disk periphery during this window of cell division and that CHMP7 can bind directly to the C-terminal domain of LEM2 in vitro. We further found that, during nuclear envelope formation, recruitment of the ESCRT factors CHMP7, CHMP2A, and IST1/CHMP8 all depend on LEM2 in human cells. We conclude that Lem2p/LEM2 is a conserved nuclear site-specific adaptor that recruits Cmp7p/CHMP7 and downstream ESCRT factors to the nuclear envelope.

  15. LEM2 recruits CHMP7 for ESCRT-mediated nuclear envelope closure in fission yeast and human cells

    PubMed Central

    Gu, Mingyu; LaJoie, Dollie; Chen, Opal S.; von Appen, Alexander; Ladinsky, Mark S.; Redd, Michael J.; Nikolova, Linda; Bjorkman, Pamela J.; Sundquist, Wesley I.; Ullman, Katharine S.; Frost, Adam

    2017-01-01

    Endosomal sorting complexes required for transport III (ESCRT-III) proteins have been implicated in sealing the nuclear envelope in mammals, spindle pole body dynamics in fission yeast, and surveillance of defective nuclear pore complexes in budding yeast. Here, we report that Lem2p (LEM2), a member of the LEM (Lap2-Emerin-Man1) family of inner nuclear membrane proteins, and the ESCRT-II/ESCRT-III hybrid protein Cmp7p (CHMP7), work together to recruit additional ESCRT-III proteins to holes in the nuclear membrane. In Schizosaccharomyces pombe, deletion of the ATPase vps4 leads to severe defects in nuclear morphology and integrity. These phenotypes are suppressed by loss-of-function mutations that arise spontaneously in lem2 or cmp7, implying that these proteins may function upstream in the same pathway. Building on these genetic interactions, we explored the role of LEM2 during nuclear envelope reformation in human cells. We found that CHMP7 and LEM2 enrich at the same region of the chromatin disk periphery during this window of cell division and that CHMP7 can bind directly to the C-terminal domain of LEM2 in vitro. We further found that, during nuclear envelope formation, recruitment of the ESCRT factors CHMP7, CHMP2A, and IST1/CHMP8 all depend on LEM2 in human cells. We conclude that Lem2p/LEM2 is a conserved nuclear site-specific adaptor that recruits Cmp7p/CHMP7 and downstream ESCRT factors to the nuclear envelope. PMID:28242692

  16. A New Membrane Protein Sbg1 Links the Contractile Ring Apparatus and Septum Synthesis Machinery in Fission Yeast

    PubMed Central

    Sethi, Kriti; Palani, Saravanan; Cortés, Juan C. G.; Sato, Mamiko; Sevugan, Mayalagu; Ramos, Mariona; Vijaykumar, Shruthi; Osumi, Masako; Naqvi, Naweed I.; Ribas, Juan Carlos; Balasubramanian, Mohan

    2016-01-01

    Cytokinesis in many organisms requires a plasma membrane anchored actomyosin ring, whose contraction facilitates cell division. In yeast and fungi, actomyosin ring constriction is also coordinated with division septum assembly. How the actomyosin ring interacts with the plasma membrane and the plasma membrane-localized septum synthesizing machinery remains poorly understood. In Schizosaccharomyces pombe, an attractive model organism to study cytokinesis, the β-1,3-glucan synthase Cps1p / Bgs1p, an integral membrane protein, localizes to the plasma membrane overlying the actomyosin ring and is required for primary septum synthesis. Through a high-dosage suppressor screen we identified an essential gene, sbg1+ (suppressor of beta glucan synthase 1), which suppressed the colony formation defect of Bgs1-defective cps1-191 mutant at higher temperatures. Sbg1p, an integral membrane protein, localizes to the cell ends and to the division site. Sbg1p and Bgs1p physically interact and are dependent on each other to localize to the division site. Loss of Sbg1p results in an unstable actomyosin ring that unravels and slides, leading to an inability to deposit a single contiguous division septum and an important reduction of the β-1,3-glucan proportion in the cell wall, coincident with that observed in the cps1-191 mutant. Sbg1p shows genetic and / or physical interaction with Rga7p, Imp2p, Cdc15p, and Pxl1p, proteins known to be required for actomyosin ring integrity and efficient septum synthesis. This study establishes Sbg1p as a key member of a group of proteins that link the plasma membrane, the actomyosin ring, and the division septum assembly machinery in fission yeast. PMID:27749909

  17. Size-Dependent Expression of the Mitotic Activator Cdc25 Suggests a Mechanism of Size Control in Fission Yeast.

    PubMed

    Keifenheim, Daniel; Sun, Xi-Ming; D'Souza, Edridge; Ohira, Makoto J; Magner, Mira; Mayhew, Michael B; Marguerat, Samuel; Rhind, Nicholas

    2017-05-22

    Proper cell size is essential for cellular function. Nonetheless, despite more than 100 years of work on the subject, the mechanisms that maintain cell-size homeostasis are largely mysterious [1]. Cells in growing populations maintain cell size within a narrow range by coordinating growth and division. Bacterial and eukaryotic cells both demonstrate homeostatic size control, which maintains population-level variation in cell size within a certain range and returns the population average to that range if it is perturbed [1, 2]. Recent work has proposed two different strategies for size control: budding yeast has been proposed to use an inhibitor-dilution strategy to regulate size at the G1/S transition [3], whereas bacteria appear to use an adder strategy, in which a fixed amount of growth each generation causes cell size to converge on a stable average [4-6]. Here we present evidence that cell size in the fission yeast Schizosaccharomyces pombe is regulated by a third strategy: the size-dependent expression of the mitotic activator Cdc25. cdc25 transcript levels are regulated such that smaller cells express less Cdc25 and larger cells express more Cdc25, creating an increasing concentration of Cdc25 as cells grow and providing a mechanism for cells to trigger cell division when they reach a threshold concentration of Cdc25. Because regulation of mitotic entry by Cdc25 is well conserved, this mechanism may provide a widespread solution to the problem of size control in eukaryotes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Nitrogen depletion in the fission yeast Schizosaccharomyces pombe causes nucleosome loss in both promoters and coding regions of activated genes

    PubMed Central

    Kristell, Carolina; Orzechowski Westholm, Jakub; Olsson, Ida; Ronne, Hans; Komorowski, Jan; Bjerling, Pernilla

    2010-01-01

    Gene transcription is associated with local changes in chromatin, both in nucleosome positions and in chemical modifications of the histones. Chromatin dynamics has mostly been studied on a single-gene basis. Those genome-wide studies that have been made primarily investigated steady-state transcription. However, three studies of genome-wide changes in chromatin during the transcriptional response to heat shock in the budding yeast Saccharomyces cerevisiae revealed nucleosome eviction in promoter regions but only minor effects in coding regions. Here, we describe the short-term response to nitrogen starvation in the fission yeast Schizosaccharomyces pombe. Nitrogen depletion leads to a fast induction of a large number of genes in S. pombe and is thus suitable for genome-wide studies of chromatin dynamics during gene regulation. After 20 min of nitrogen removal, 118 transcripts were up-regulated. The distribution of regulated genes throughout the genome was not random; many up-regulated genes were found in clusters, while large parts of the genome were devoid of up-regulated genes. Surprisingly, this up-regulation was associated with nucleosome eviction of equal magnitudes in the promoters and in the coding regions. The nucleosome loss was not limited to induction by nitrogen depletion but also occurred during cadmium treatment. Furthermore, the lower nucleosome density persisted for at least 60 min after induction. Two highly induced genes, urg1+ and urg2+, displayed a substantial nucleosome loss, with only 20% of the nucleosomes being left in the coding region. We conclude that nucleosome loss during transcriptional activation is not necessarily limited to promoter regions. PMID:20086243

  19. A role for calcium in the regulation of neutral trehalase activity in the fission yeast Schizosaccharomyces pombe.

    PubMed Central

    Franco, Alejandro; Soto, Teresa; Vicente-Soler, Jero; Paredes, Vanessa; Madrid, Marisa; Gacto, Mariano; Cansado, José

    2003-01-01

    Neutral trehalases mobilize trehalose accumulated by fungal cells as a protective and storage carbohydrate. A structural feature of these enzymes is the presence of an EF-like motif similar to that shown by many Ca2+-binding proteins. In this study we provide direct evidence for physical binding of Ca2+ to neutral trehalase (Ntp1p) of the fission yeast Schizosaccharomyces pombe, and show that aspartic residues at positions 97 and 108 in the conserved putative Ca2+-binding motif of Ntp1p appear to be responsible for this interaction. Mutations in these residues do not interfere with the ability of Ntp1p to associate in vivo with trehalose-6-phosphate synthase, but prevent activation of neutral trehalase triggered by the addition of glucose or by subjecting cells to stressing conditions. Strains expressing Ntp1p variants that are unable to bind Ca2+ partially resemble those devoid of the ntp1+ gene in terms of trehalose hyperaccumulation. Gel filtration of cell extracts from wild-type cells after EDTA treatment or from cells containing Ntp1p with mutations in aspartic acid residues within the Ca2+-binding site revealed that Ntp1p eluted mainly in an inactive conformation instead of the dimeric or trimeric active form of the enzyme. These results suggest that activation of S. pombe Ntp1p under different conditions depends upon Ca2+ binding through the Ca2+-binding motif as a prerequisite for correct enzyme oligomerization to its active form. Given the high degree of conservation of the Ca2+ accommodation site, this might be a general mechanism regulating neutral trehalase activity in other yeasts and filamentous fungi. PMID:12943532

  20. Coexpression of redox partners increases the hydrocortisone (cortisol) production efficiency in CYP11B1 expressing fission yeast Schizosaccharomyces pombe.

    PubMed

    Hakki, Tarek; Zearo, Silvia; Drăgan, Călin-Aurel; Bureik, Matthias; Bernhardt, Rita

    2008-02-01

    Cytochromes P450 play a vital role in the steroid biosynthesis pathway of the adrenal gland. An example of an essential P450 cytochrome is the steroid 11beta-hydroxylase CYP11B1, which catalyses the conversion of 11-deoxycorticol to hydrocortisone. However, despite its high biotechnological potential, this enzyme has so far been unsuccessfully employed in present-day biotechnology due to a poor expression yield and inherent protein instability. In this study, CYP11B1 was biotransformed into various strains of the yeast Schizosaccharomyces pombe, all of which also expressed the electron transfer proteins adrenodoxin and/or adrenodoxin reductase - central components of the mitochondrial P450 system - in order to maximise hydrocortisone production efficiency in our proposed model system. Site-directed mutagenesis of CYP11B1 at positions 52 and 78 was performed in order to evaluate the impact of altering the amino acids at these sites. It was found that the presence of an isoleucine at position 78 conferred the highest 11beta-hydroxylation activity of CYP11B1. Coexpression of adrenodoxin and adrenodoxin reductase appeared to further increase the 11beta-hydroxylase activity of the enzyme (3.4 fold). Adrenodoxin mutants which were found to significantly enhance enzyme efficiency in other cytochromes in previous studies were also tested in our system. It was found that, in this case, the wild type adrenodoxin was more efficient. The new fission yeast strain TH75 coexpressing the wild type Adx and AdR displays high hydrocortisone production efficiency at an average of 1mM hydrocortisone over a period of 72h, the highest value published to date for this biotransformation. Finally, our research shows that pTH2 is an ideal plasmid for the coexpression of the mitochondrial electron transfer counterparts, adrenodoxin and adrenodoxin reductase, in Schizosaccharomyces pombe, and so could serve as a convenient tool for future biotechnological applications.

  1. The Ubiquitin ligase Ubr11 is essential for oligopeptide utilization in the fission yeast Schizosaccharomyces pombe.

    PubMed

    Kitamura, Kenji; Nakase, Mai; Tohda, Hideki; Takegawa, Kaoru

    2012-03-01

    Uptake of extracellular oligopeptides in yeast is mediated mainly by specific transporters of the peptide transporter (PTR) and oligopeptide transporter (OPT) families. Here, we investigated the role of potential peptide transporters in the yeast Schizosaccharomyces pombe. Utilization of naturally occurring dipeptides required only Ptr2/SPBC13A2.04c and none of the other 3 OPT proteins (Isp4, Pgt1, and Opt3), whereas only Isp4 was indispensable for tetrapeptide utilization. Both Ptr2 and Isp4 localized to the cell surface, but under rich nutrient conditions Isp4 localized in the Golgi apparatus through the function of the ubiquitin ligase Pub1. Furthermore, the ubiquitin ligase Ubr11 played a significant role in oligopeptide utilization. The mRNA levels of both the ptr2 and isp4 genes were significantly reduced in ubr11Δ cells, and the dipeptide utilization defect in the ubr11Δ mutant was rescued by the forced expression of Ptr2. Consistent with its role in transcriptional regulation of peptide transporter genes, the Ubr11 protein was accumulated in the nucleus. Unlike the situation in Saccharomyces cerevisiae, the oligopeptide utilization defect in the S. pombe ubr11Δ mutant was not rescued by inactivation of the Tup11/12 transcriptional corepressors, suggesting that the requirement for the Ubr ubiquitin ligase in the upregulation of peptide transporter mRNA levels is conserved in both yeasts; however, the actual mechanism underlying the control appears to be different. We also found that the peptidomimetic proteasome inhibitor MG132 was still operative in a strain lacking all known PTR and OPT peptide transporters. Therefore, irrespective of its peptide-like structure, MG132 is carried into cells independently of the representative peptide transporters.

  2. Rapid regulation of nuclear proteins by rapamycin-induced translocation in fission yeast.

    PubMed

    Ding, Lin; Laor, Dana; Weisman, Ronit; Forsburg, Susan L

    2014-07-01

    Genetic analysis of protein function requires a rapid means of inactivating the gene under study. Typically, this exploits temperature-sensitive mutations or promoter shut-off techniques. We report the adaptation to Schizosaccharomyces pombe of the anchor-away technique, originally designed in budding yeast by Laemmli lab. This method relies on a rapamycin-mediated interaction between the FRB- and FKBP12-binding domains to relocalize nuclear proteins of interest to the cytoplasm. We demonstrate a rapid nuclear depletion of abundant proteins as proof of principle.

  3. Neuronal Calcium Sensor-1 (Ncs1p) Is Up-regulated by Calcineurin to Promote Ca2+ Tolerance in Fission Yeast*

    PubMed Central

    Hamasaki-Katagiri, Nobuko; Ames, James B.

    2010-01-01

    Neuronal calcium sensor (NCS) proteins regulate signal transduction and are highly conserved from yeast to humans. NCS homolog in fission yeast (Ncs1p) is essential for cell growth under extreme Ca2+ conditions. Ncs1p expression increases ∼100-fold when fission yeast grows in high extracellular Ca2+ (>0.1 m). Here, we show that Ca2+-induced expression of Ncs1p is controlled at the level of transcription. Transcriptional reporter assays show that ncs1 promoter activity increased 30-fold when extracellular Ca2+ was raised to 0.1 m and was highly Ca2+-specific. Ca2+-dependent transcription of ncs1 is abolished by the calcineurin inhibitor (FK506) and by knocking out the calcineurin target, prz1. Thus, Ca2+-induced expression of Ncs1p is linked to the calcineurin/prz1 stress response. The Ca2+-responsive ncs1 promoter region consists of 130 nucleotides directly upstream from the start codon and contains tandem repeats of the sequence, 5′-caact-3′, that binds to Prz1p. The Ca2+-sensitive ncs1Δ phenotype is rescued by a yam8 null mutation, suggesting a possible interaction between Ncs1p and the Ca2+ channel, Yam8p. Ca2+ uptake and Ncs1p binding to yeast membranes are both decreased in yam8Δ, suggesting Ca2+-induced binding of Ncs1p to Yam8p results in channel closure. We propose that Ncs1p promotes Ca2+ tolerance in fission yeast, in part by cytosolic Ca2+ buffering and perhaps by negatively regulating the Yam8p Ca2+ channel. PMID:20018864

  4. Characterization of cytopathic factors through genome-wide analysis of the Zika viral proteins in fission yeast

    PubMed Central

    Li, Ge; Poulsen, Melissa; Fenyvuesvolgyi, Csaba; Yashiroda, Yoko; Yoshida, Minoru; Simard, J. Marc; Gallo, Robert C.; Zhao, Richard Y.

    2017-01-01

    The Zika virus (ZIKV) causes microcephaly and the Guillain-Barré syndrome. Little is known about how ZIKV causes these conditions or which ZIKV viral protein(s) is responsible for the associated ZIKV-induced cytopathic effects, including cell hypertrophy, growth restriction, cell-cycle dysregulation, and cell death. We used fission yeast for the rapid, global functional analysis of the ZIKV genome. All 14 proteins or small peptides were produced under an inducible promoter, and we measured the intracellular localization and the specific effects on ZIKV-associated cytopathic activities of each protein. The subcellular localization of each ZIKV protein was in overall agreement with its predicted protein structure. Five structural and two nonstructural ZIKV proteins showed various levels of cytopathic effects. The expression of these ZIKV proteins restricted cell proliferation, induced hypertrophy, or triggered cellular oxidative stress leading to cell death. The expression of premembrane protein (prM) resulted in cell-cycle G1 accumulation, whereas membrane-anchored capsid (anaC), membrane protein (M), envelope protein (E), and nonstructural protein 4A (NS4A) caused cell-cycle G2/M accumulation. A mechanistic study revealed that NS4A-induced cellular hypertrophy and growth restriction were mediated specifically through the target of rapamycin (TOR) cellular stress pathway involving Tor1 and type 2A phosphatase activator Tip41. These findings should provide a reference for future research on the prevention and treatment of ZIKV diseases. PMID:28049830

  5. Lipid droplets form from distinct regions of the cell in the fission yeast Schizosaccharomyces pombe

    SciTech Connect

    Meyers, Alex; del Rio, Zuania P.; Beaver, Rachael A.; Morris, Ryan M.; Weiskittel, Taylor M.; Alshibli, Amany K.; Mannik, Jaana; Morrell-Falvey, Jennifer; Dalhaimer, Paul

    2016-04-29

    Eukaryotic cells store cholesterol/sterol esters (SEs) and triacylglycerols (TAGs) in lipid droplets, which form from the contiguous endoplasmic reticulum (ER) network. However, it is not known if droplets preferentially form from certain regions of the ER over others. Here, we used fission yeast Schizosaccharomyces pombe cells where the nuclear and cortical/peripheral ER domains are distinguishable by light microscopy to show that SE-enriched lipid droplets form away from the nucleus at the cell tips, whereas TAG-enriched lipid droplets form around the nucleus. Sterols localize to the regions of the cells where droplets enriched in SEs are observed. TAG droplet formation around the nucleus appears to be a strong function of diacylglycerol (DAG) homeostasis with Cpt1p, which coverts DAG into phosphatidylcholine and phosphatidylethanolamine localized exclusively to the nuclear ER. Also, Dgk1p, which converts DAG into phosphatidic acid localized strongly to the nuclear ER over the cortical/peripheral ER. We also show that TAG more readily translocates from the ER to lipid droplets than do SEs. Lastly, the results augment the standard lipid droplet formation model, which has SEs and TAGs flowing into the same nascent lipid droplet regardless of its biogenesis point in the cell.

  6. The MAP Kinase Pmk1 and Protein Kinase A Are Required for Rotenone Resistance in the Fission Yeast, Schizosaccharomyces pombe

    PubMed Central

    Wang, Yiwei; Gulis, Galina; Buckner, Scott; Johnson, P. Connor; Sullivan, Daniel; Busenlehner, Laura; Marcus, Stevan

    2010-01-01

    Rotenone is a widely used pesticide that induces Parkinson's disease-like symptoms in rats and death of dopaminergic neurons in culture. Although rotenone is a potent inhibitor of complex I of the mitochondrial electron transport chain, it can induce death of dopaminergic neurons independently of complex I inhibition. Here we describe effects of rotenone in the fission yeast, Schizosaccharomyces pombe, which lacks complex I and carries out rotenone-insensitive cellular respiration. We show that rotenone induces generation of reactive oxygen species (ROS) as well as fragmentation of mitochondrial networks in treated S. pombe cells. While rotenone is only modestly inhibitory to growth of wild type S. pombe cells, it is strongly inhibitory to growth of mutants lacking the ERK-type MAP kinase, Pmk1, or protein kinase A (PKA). In contrast, cells lacking the p38 MAP kinase, Spc1, exhibit modest resistance to rotenone. Consistent with these findings, we provide evidence that Pmk1 and PKA, but not Spc1, are required for clearance of ROS in rotenone treated S. pombe cells. Our results demonstrate the usefulness of S. pombe for elucidating complex I-independent molecular targets of rotenone as well as mechanisms conferring resistance to the toxin. PMID:20655879

  7. Identification of a Sgo2-Dependent but Mad2-Independent Pathway Controlling Anaphase Onset in Fission Yeast.

    PubMed

    Meadows, John C; Lancaster, Theresa C; Buttrick, Graham J; Sochaj, Alicja M; Messin, Liam J; Del Mar Mora-Santos, Maria; Hardwick, Kevin G; Millar, Jonathan B A

    2017-02-07

    The onset of anaphase is triggered by activation of the anaphase-promoting complex/cyclosome (APC/C) following silencing of the spindle assembly checkpoint (SAC). APC/C triggers ubiquitination of Securin and Cyclin B, which leads to loss of sister chromatid cohesion and inactivation of Cyclin B/Cdk1, respectively. This promotes relocalization of Aurora B kinase and other components of the chromosome passenger complex (CPC) from centromeres to the spindle midzone. In fission yeast, this is mediated by Clp1 phosphatase-dependent interaction of CPC with Klp9/MKLP2 (kinesin-6). When this interaction is disrupted, kinetochores bi-orient normally, but APC/C activation is delayed via a mechanism that requires Sgo2 and some (Bub1, Mph1/Mps1, and Mad3), but not all (Mad1 and Mad2), components of the SAC and the first, but not second, lysine, glutamic acid, glutamine (KEN) box in Mad3. These data indicate that interaction of CPC with Klp9 terminates a Sgo2-dependent, but Mad2-independent, APC/C-inhibitory pathway that is distinct from the canonical SAC.

  8. The fission yeast pleckstrin homology domain protein Spo7 is essential for initiation of forespore membrane assembly and spore morphogenesis

    PubMed Central

    Nakamura-Kubo, Michiko; Hirata, Aiko; Shimoda, Chikashi; Nakamura, Taro

    2011-01-01

    Sporulation in fission yeast represents a unique mode of cell division in which a new cell is formed within the cytoplasm of a mother cell. This event is accompanied by formation of the forespore membrane (FSM), which becomes the plasma membrane of spores. At prophase II, the spindle pole body (SPB) forms an outer plaque, from which formation of the FSM is initiated. Several components of the SPB play an indispensable role in SPB modification, and therefore in sporulation. In this paper, we report the identification of a novel SPB component, Spo7, which has a pleckstrin homology (PH) domain. We found that Spo7 was essential for initiation of FSM assembly, but not for SPB modification. Spo7 directly bound to Meu14, a component of the leading edge of the FSM, and was essential for proper localization of Meu14. The PH domain of Spo7 had affinity for phosphatidylinositol 3-phosphate (PI3P). spo7 mutants lacking the PH domain showed aberrant spore morphology, similar to that of meu14 and phosphatidylinositol 3-kinase (pik3) mutants. Our study suggests that Spo7 coordinates formation of the leading edge and initiation of FSM assembly, thereby accomplishing accurate formation of the FSM. PMID:21775631

  9. Roles of the TRAPP-II Complex and the Exocyst in Membrane Deposition during Fission Yeast Cytokinesis

    PubMed Central

    Wang, Ning; Lee, I-Ju; Rask, Galen; Wu, Jian-Qiu

    2016-01-01

    The cleavage-furrow tip adjacent to the actomyosin contractile ring is believed to be the predominant site for plasma-membrane insertion through exocyst-tethered vesicles during cytokinesis. Here we found that most secretory vesicles are delivered by myosin-V on linear actin cables in fission yeast cytokinesis. Surprisingly, by tracking individual exocytic and endocytic events, we found that vesicles with new membrane are deposited to the cleavage furrow relatively evenly during contractile-ring constriction, but the rim of the cleavage furrow is the main site for endocytosis. Fusion of vesicles with the plasma membrane requires vesicle tethers. Our data suggest that the transport particle protein II (TRAPP-II) complex and Rab11 GTPase Ypt3 help to tether secretory vesicles or tubulovesicular structures along the cleavage furrow while the exocyst tethers vesicles at the rim of the division plane. We conclude that the exocyst and TRAPP-II complex have distinct localizations at the division site, but both are important for membrane expansion and exocytosis during cytokinesis. PMID:27082518

  10. Constriction model of actomyosin ring for cytokinesis by fission yeast using a two-state sliding filament mechanism

    NASA Astrophysics Data System (ADS)

    Jung, Yong-Woon; Mascagni, Michael

    2014-09-01

    We developed a model describing the structure and contractile mechanism of the actomyosin ring in fission yeast, Schizosaccharomyces pombe. The proposed ring includes actin, myosin, and α-actinin, and is organized into a structure similar to that of muscle sarcomeres. This structure justifies the use of the sliding-filament mechanism developed by Huxley and Hill, but it is probably less organized relative to that of muscle sarcomeres. Ring contraction tension was generated via the same fundamental mechanism used to generate muscle tension, but some physicochemical parameters were adjusted to be consistent with the proposed ring structure. Simulations allowed an estimate of ring constriction tension that reproduced the observed ring constriction velocity using a physiologically possible, self-consistent set of parameters. Proposed molecular-level properties responsible for the thousand-fold slower constriction velocity of the ring relative to that of muscle sarcomeres include fewer myosin molecules involved, a less organized contractile configuration, a low α-actinin concentration, and a high resistance membrane tension. Ring constriction velocity is demonstrated as an exponential function of time despite a near linear appearance. We proposed a hypothesis to explain why excess myosin heads inhibit constriction velocity rather than enhance it. The model revealed how myosin concentration and elastic resistance tension are balanced during cytokinesis in S. pombe.

  11. Isolation and characterization of krp, a dibasic endopeptidase required for cell viability in the fission yeast Schizosaccharomyces pombe.

    PubMed Central

    Davey, J; Davis, K; Imai, Y; Yamamoto, M; Matthews, G

    1994-01-01

    The activation of pro-hormones and many precursor proteins involves cleavage by endopeptidases belonging to the subtilisin-like family of enzymes. Here we describe the isolation and characterization of the first member of this family from the fission yeast Schizosaccharomyces pombe. The enzyme, which has been named krp for KEX2-related protease, is a type I membrane-bound endopeptidase that cleaves substrates after pairs of dibasic residues. It appears to be synthesized as a pre-pro-protein that is likely to undergo processing following translocation into the endoplasmic reticulum. Processing has been characterized in a cell-free translation/translocation system prepared from Xenopus eggs. Krp is N-glycosylated on all five of its potential sites and both the pre-sequence and the pro-sequence are quickly removed following translocation, the latter probably by autocatalytic cleavage. The inhibitor profile of krp broadly reflects the known properties of the eukaryotic subtilisin proteases, while its pH and Ca2+ dependence are consistent with it being active within the secretory pathway. One of its physiological substrates is likely to be the pheromone precursor pro-P-factor, which it is shown to process in an in vitro system, but identification of other substrates is complicated because, unlike other members of this family, krp is essential for cell viability. Images PMID:7813430

  12. The novel proteins Rng8 and Rng9 regulate the myosin-V Myo51 during fission yeast cytokinesis

    PubMed Central

    Wang, Ning; Lo Presti, Libera; Zhu, Yi-Hua; Kang, Minhee; Martin, Sophie G.

    2014-01-01

    The myosin-V family of molecular motors is known to be under sophisticated regulation, but our knowledge of the roles and regulation of myosin-Vs in cytokinesis is limited. Here, we report that the myosin-V Myo51 affects contractile ring assembly and stability during fission yeast cytokinesis, and is regulated by two novel coiled-coil proteins, Rng8 and Rng9. Both rng8Δ and rng9Δ cells display similar defects as myo51Δ in cytokinesis. Rng8 and Rng9 are required for Myo51’s localizations to cytoplasmic puncta, actin cables, and the contractile ring. Myo51 puncta contain multiple Myo51 molecules and walk continuously on actin filaments in rng8+ cells, whereas Myo51 forms speckles containing only one dimer and does not move efficiently on actin tracks in rng8Δ. Consistently, Myo51 transports artificial cargos efficiently in vivo, and this activity is regulated by Rng8. Purified Rng8 and Rng9 form stable higher-order complexes. Collectively, we propose that Rng8 and Rng9 form oligomers and cluster multiple Myo51 dimers to regulate Myo51 localization and functions. PMID:24798735

  13. Production of 3-hydroxypropionic acid via the malonyl-CoA pathway using recombinant fission yeast strains.

    PubMed

    Suyama, Akiko; Higuchi, Yujiro; Urushihara, Masahiro; Maeda, Yuka; Takegawa, Kaoru

    2017-10-01

    3-Hydroxypropionic acid (3-HP) can be converted into derivatives such as acrylic acid, a source for producing super absorbent polymers. Although Escherichia coli has often been used for 3-HP production, it exhibits low tolerance to 3-HP. To circumvent this problem, we selected the fission yeast Schizosaccharomyces pombe as this microorganism has higher tolerance to 3-HP than E. coli. Therefore, we constructed S. pombe transformants overexpressing two genes, one encoding the S. pombe acetyl-CoA carboxylase (Cut6p) and the other encoding the malonyl-CoA reductase derived from Chloroflexus aurantiacus (CaMCR). To prevent the degradation of these expressed proteins, we employed an S. pombe protease-deficient strain. Moreover, to increase the cytosolic concentration of acetyl-CoA, we supplemented acetate to the medium, which improved 3-HP production. To further produce 3-HP by overexpressing Cut6p and CaMCR, we exploited the highly expressing S. pombe hsp9 promoter. Finally, culturing in high-density reached 3-HP production to 7.6 g/L at 31 h. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Lipid droplets form from distinct regions of the cell in the fission yeast Schizosaccharomyces pombe

    SciTech Connect

    Meyers, Alex; del Rio, Zuania P.; Beaver, Rachael A.; Morris, Ryan M.; Weiskittel, Taylor M.; Alshibli, Amany K.; Mannik, Jaana; Morrell-Falvey, Jennifer; Dalhaimer, Paul

    2016-04-29

    Eukaryotic cells store cholesterol/sterol esters (SEs) and triacylglycerols (TAGs) in lipid droplets, which form from the contiguous endoplasmic reticulum (ER) network. However, it is not known if droplets preferentially form from certain regions of the ER over others. Here, we used fission yeast Schizosaccharomyces pombe cells where the nuclear and cortical/peripheral ER domains are distinguishable by light microscopy to show that SE-enriched lipid droplets form away from the nucleus at the cell tips, whereas TAG-enriched lipid droplets form around the nucleus. Sterols localize to the regions of the cells where droplets enriched in SEs are observed. TAG droplet formation around the nucleus appears to be a strong function of diacylglycerol (DAG) homeostasis with Cpt1p, which coverts DAG into phosphatidylcholine and phosphatidylethanolamine localized exclusively to the nuclear ER. Also, Dgk1p, which converts DAG into phosphatidic acid localized strongly to the nuclear ER over the cortical/peripheral ER. We also show that TAG more readily translocates from the ER to lipid droplets than do SEs. Lastly, the results augment the standard lipid droplet formation model, which has SEs and TAGs flowing into the same nascent lipid droplet regardless of its biogenesis point in the cell.

  15. Interaction of a small heat shock protein of the fission yeast, Schizosaccharomyces pombe, with a denatured protein at elevated temperature.

    PubMed

    Hirose, Maya; Tohda, Hideki; Giga-Hama, Yuko; Tsushima, Reiko; Zako, Tamotsu; Iizuka, Ryo; Pack, Changi; Kinjo, Masataka; Ishii, Noriyuki; Yohda, Masafumi

    2005-09-23

    We have expressed, purified, and characterized one small heat shock protein of the fission yeast Schizosaccharomyces pombe, SpHsp16.0. SpHsp16.0 was able to protect citrate synthase from thermal aggregation at 45 degrees C with high efficiency. It existed as a hexadecameric globular oligomer near the physiological growth temperature. At elevated temperatures, the oligomer dissociated into small species, probably dimers. The dissociation was completely reversible, and the original oligomer reformed immediately after the temperature dropped. Large complexes of SpHsp16.0 and denatured citrate synthase were observed by size exclusion chromatography and electron microscopy following incubation at 45 degrees C and then cooling. However, such large complexes did not elute from the size exclusion column incubated at 45 degrees C. The denatured citrate synthase protected from aggregation was trapped by a GroEL trap mutant at 45 degrees C. These results suggest that the complex of SpHsp16.0 and denatured citrate synthase at elevated temperatures is in the transient state and has a hydrophobic nature. Analyses of the interaction between SpHsp16.0 and denatured citrate synthase by fluorescence cross-correlation spectrometry have also shown that the characteristics of SpHsp16.0-denatured citrate synthase complex at the elevated temperature are different from those of the large complex obtained after the shift to lowered temperatures.

  16. Drosophila Wee1 kinase rescues fission yeast from mitotic catastrophe and phosphorylates Drosophila Cdc2 in vitro.

    PubMed Central

    Campbell, S D; Sprenger, F; Edgar, B A; O'Farrell, P H

    1995-01-01

    Cdc2 kinase activity is required for triggering entry into mitosis in all known eukaryotes. Elaborate mechanisms have evolved for regulating Cdc2 activity so that mitosis occurs in a timely manner, when preparations for its execution are complete. In Schizosaccharomyces pombe, Wee1 and a related Mik1 kinase are Cdc2-inhibitory kinases that are required for preventing premature activation of the mitotic program. To identify Cdc2-inhibitory kinases in Drosophila, we screened for cDNA clones that rescue S. pombe wee1- mik1- mutants from lethal mitotic catastrophe. One of the genes identified in this screen, Drosophila wee1 (Dwee1), encodes a new Wee1 homologue. Dwee1 kinase is closely related to human and Xenopus Wee1 homologues, and can inhibit Cdc2 activity by phosphorylating a critical tyrosine residue. Dwee1 mRNA is maternally provided to embryos, and is zygotically expressed during the postblastoderm divisions of embryogenesis. Expression remains high in the proliferating cells of the central nervous system well after cells in the rest of the embryo have ceased dividing. The loss of zygotically expressed Dwee1 does not lead to mitotic catastrophe during postblastoderm cycles 14 to 16. This result may indicate that maternally provided Dwee1 is sufficient for regulating Cdc2 during embryogenesis, or it may reflect the presence of a redundant Cdc2 inhibitory kinase, as in fission yeast. Images PMID:8573790

  17. Quantitative Phosphoproteomics Reveals Pathways for Coordination of Cell Growth and Division by the Conserved Fission Yeast Kinase Pom1*

    PubMed Central

    Kettenbach, Arminja N.; Deng, Lin; Wu, Youjun; Baldissard, Suzanne; Adamo, Mark E.; Gerber, Scott A.; Moseley, James B.

    2015-01-01

    Complex phosphorylation-dependent signaling networks underlie the coordination of cellular growth and division. In the fission yeast Schizosaccharomyces pombe, the Dual specificity tyrosine-(Y)-phosphorylation regulated kinase (DYRK) family protein kinase Pom1 regulates cell cycle progression through the mitotic inducer Cdr2 and controls cell polarity through unknown targets. Here, we sought to determine the phosphorylation targets of Pom1 kinase activity by SILAC-based phosphoproteomics. We defined a set of high-confidence Pom1 targets that were enriched for cytoskeletal and cell growth functions. Cdr2 was the only cell cycle target of Pom1 kinase activity that we identified in cells. Mutation of Pom1-dependent phosphorylation sites in the C terminus of Cdr2 inhibited mitotic entry but did not impair Cdr2 localization. In addition, we found that Pom1 phosphorylated multiple substrates that function in polarized cell growth, including Tea4, Mod5, Pal1, the Rho GAP Rga7, and the Arf GEF Syt22. Purified Pom1 phosphorylated these cell polarity targets in vitro, confirming that they are direct substrates of Pom1 kinase activity and likely contribute to regulation of polarized growth by Pom1. Our study demonstrates that Pom1 acts in a linear pathway to control cell cycle progression while regulating a complex network of cell growth targets. PMID:25720772

  18. Two Related Kinesins, klp5+ and klp6+, Foster Microtubule Disassembly and Are Required for Meiosis in Fission Yeast

    PubMed Central

    West, Robert R.; Malmstrom, Terra; Troxell, Cynthia L.; McIntosh, J. Richard

    2001-01-01

    The kinesin superfamily of microtubule motor proteins is important in many cellular processes, including mitosis and meiosis, vesicle transport, and the establishment and maintenance of cell polarity. We have characterized two related kinesins in fission yeast, klp5+ and klp6+, that are amino-terminal motors of the KIP3 subfamily. Analysis of null mutants demonstrates that neither klp5+ nor klp6+, individually or together, is essential for vegetative growth, although these mutants have altered microtubule behavior. klp5Δ and klp6Δ are resistant to high concentrations of the microtubule poison thiabendazole and have abnormally long cytoplasmic microtubules that can curl around the ends of the cell. This phenotype is greatly enhanced in the cell cycle mutant cdc25–22, leading to a bent, asymmetric cell morphology as cells elongate during cell cycle arrest. Klp5p-GFP and Klp6p-GFP both localize to cytoplasmic microtubules throughout the cell cycle and to spindles in mitosis, but their localizations are not interdependent. During the meiotic phase of the life cycle, both of these kinesins are essential. Spore viability is low in homozygous crosses of either null mutant. Heterozygous crosses of klp5Δ with klp6Δ have an intermediate viability, suggesting cooperation between these proteins in meiosis. PMID:11739790

  19. Two fission yeast B-type cyclins, cig2 and Cdc13, have different functions in mitosis.

    PubMed Central

    Bueno, A; Russell, P

    1993-01-01

    Cyclin B interacts with Cdc2 kinase to induce cell cycle events, particularly those of mitosis. The existence of cyclin B subtypes in several species has been known for some time, leading to speculation that key events of mitosis may be carried out by distinct functional classes of Cdc2/cyclin B. We report the discovery of cig2, a third B-type cyclin gene in Schizosaccharomyces pombe. Disruption of cig2 delays the onset of mitosis, to the degree that a cig2 null allele rescues mitotic catastrophe mutants, including those that are unable to carry out the inhibitory tyrosyl phosphorylation of Cdc2 kinase. Consistent with this, a cig2 null allele exhibits synthetic lethal interactions with cdc25ts and cdc2ts mutations. Mitotic phenotypes caused by disruption of cig2 are not reversed by increased production of Cdc13, the other fission yeast B-type cyclin that functions in mitosis. Likewise, a cdc13ts mutation is not rescued by increased gene dosage of cig2+. These data indicate that Cdc13 and Cig2 interact with Cdc2 to carry out different functions in mitosis. We suggest that some cyclin B subtypes found in other species, including humans, are also likely to have distinct, nonoverlapping functions in mitosis. Images PMID:8455610

  20. Genotoxicity study with special reference to DNA damage by comet assay in fission yeast, Schizosaccharomyces pombe exposed to drinking water.

    PubMed

    Banerjee, Pamela; Talapatra, Soumendra N; Mandal, Nivedita; Sundaram, Geetanjali; Mukhopadhyay, Aniruddha; Chattopadhyay, Dhrubajyoti; Banerjee, Sudip K

    2008-01-01

    The objective of this study was to investigate genotoxicity, especially DNA damage, in drinking water samples collected from tap by using fission yeast Schizosaccharomyces pombe as a model organism. Generally raw water potabolization is done by treatment with polymeric coagulant, alum, chlorine, etc. In the comet test, highly significant (P<0.001) effects of DNA damage were detected in treated water (tap water) when compared to negative control (raw water) as well as laboratory control (distilled water) samples for both 1 h and 2 h exposure. In the water treatment plant, raw water treatment is done by the process of prechlorination, alum and polymeric coagulant (CatflocT) dosing, postchlorination, filtration and final discharge for consumption. In conclusion it can be stated from the results that chlorinated disinfectant, alum and polymeric coagulant (CatflocT) mixture used in drinking water has a potent cumulative genotoxic effect in the eukaryotic cells and may pose potential genotoxic risk for human health following long-term consumption.

  1. Negative regulation of meiotic gene expression by the nuclear poly(a)-binding protein in fission yeast.

    PubMed

    St-André, Olivier; Lemieux, Caroline; Perreault, Audrey; Lackner, Daniel H; Bähler, Jürg; Bachand, François

    2010-09-03

    Meiosis is a cellular differentiation process in which hundreds of genes are temporally induced. Because the expression of meiotic genes during mitosis is detrimental to proliferation, meiotic genes must be negatively regulated in the mitotic cell cycle. Yet, little is known about mechanisms used by mitotic cells to repress meiosis-specific genes. Here we show that the poly(A)-binding protein Pab2, the fission yeast homolog of mammalian PABPN1, controls the expression of several meiotic transcripts during mitotic division. Our results from chromatin immunoprecipitation and promoter-swapping experiments indicate that Pab2 controls meiotic genes post-transcriptionally. Consistently, we show that the nuclear exosome complex cooperates with Pab2 in the negative regulation of meiotic genes. We also found that Pab2 plays a role in the RNA decay pathway orchestrated by Mmi1, a previously described factor that functions in the post-transcriptional elimination of meiotic transcripts. Our results support a model in which Mmi1 selectively targets meiotic transcripts for degradation via Pab2 and the exosome. Our findings have therefore uncovered a mode of gene regulation whereby a poly(A)-binding protein promotes RNA degradation in the nucleus to prevent untimely expression.

  2. Natural genetic variation impacts expression levels of coding, non-coding, and antisense transcripts in fission yeast

    PubMed Central

    Clément-Ziza, Mathieu; Marsellach, Francesc X; Codlin, Sandra; Papadakis, Manos A; Reinhardt, Susanne; Rodríguez-López, María; Martin, Stuart; Marguerat, Samuel; Schmidt, Alexander; Lee, Eunhye; Workman, Christopher T; Bähler, Jürg; Beyer, Andreas

    2014-01-01

    Our current understanding of how natural genetic variation affects gene expression beyond well-annotated coding genes is still limited. The use of deep sequencing technologies for the study of expression quantitative trait loci (eQTLs) has the potential to close this gap. Here, we generated the first recombinant strain library for fission yeast and conducted an RNA-seq-based QTL study of the coding, non-coding, and antisense transcriptomes. We show that the frequency of distal effects (trans-eQTLs) greatly exceeds the number of local effects (cis-eQTLs) and that non-coding RNAs are as likely to be affected by eQTLs as protein-coding RNAs. We identified a genetic variation of swc5 that modifies the levels of 871 RNAs, with effects on both sense and antisense transcription, and show that this effect most likely goes through a compromised deposition of the histone variant H2A.Z. The strains, methods, and datasets generated here provide a rich resource for future studies. PMID:25432776

  3. The more the merrier: comparative analysis of microarray studies on cell cycle-regulated genes in fission yeast.

    PubMed

    Marguerat, Samuel; Jensen, Thomas S; de Lichtenberg, Ulrik; Wilhelm, Brian T; Jensen, Lars J; Bähler, Jürg

    2006-03-01

    The last two years have seen the publication of three genome-wide gene expression studies of the fission yeast cell cycle. While these microarray papers largely agree on the main patterns of cell cycle-regulated transcription and its control, there are discrepancies with regard to the identity and numbers of periodically expressed genes. We present benchmark and reproducibility analyses showing that the main discrepancies do not reflect differences in the data themselves (microarray or synchronization methods seem to lead only to minor biases) but rather in the interpretation of the data. Our reanalysis of the three datasets reveals that combining all independent information leads to an improved identification of periodically expressed genes. These evaluations suggest that the available microarray data do not allow reliable identification of more than about 500 cell cycle-regulated genes. The temporal expression pattern of the top 500 periodically expressed genes is generally consistent across experiments and the three studies, together with our integrated analysis, provide a coherent and rich source of information on cell cycle-regulated gene expression in Schizosaccharomyces pombe. The reanalysed datasets and other supplementary information are available from an accompanying website: http://www.cbs.dtu.dk/cellcycle/. We hope that this paper will resolve the apparent discrepancies between the previous studies and be useful both for wet-lab biologists and for theoretical scientists who wish to take advantage of the data for follow-up work. Copyright 2006 John Wiley & Sons, Ltd.

  4. Multiple layers of regulation influence cell integrity control by the PKC ortholog Pck2 in fission yeast.

    PubMed

    Madrid, Marisa; Jiménez, Rafael; Sánchez-Mir, Laura; Soto, Teresa; Franco, Alejandro; Vicente-Soler, Jero; Gacto, Mariano; Pérez, Pilar; Cansado, José

    2015-01-15

    The fission yeast protein kinase C (PKC) ortholog Pck2 controls cell wall synthesis and is a major upstream activator of the cell integrity pathway (CIP) and its core component, the MAP kinase Pmk1 (also known as Spm1), in response to environmental stimuli. We show that in vivo phosphorylation of Pck2 at the conserved T842 activation loop during growth and in response to different stresses is mediated by the phosphoinositide-dependent kinase (PDK) ortholog Ksg1 and an autophosphorylation mechanism. However, T842 phosphorylation is not essential for Pmk1 activation, and putative phosphorylation at T846 might play an additional role in Pck2 catalytic activation and downstream signaling. These events, together with turn motif autophosphorylation at T984 and binding to small GTPases Rho1 and/or Rho2, stabilize Pck2 and render it competent to exert its biological functions. Remarkably, the target of rapamycin complex 2 (TORC2) does not participate in the catalytic activation of Pck2, but instead contributes to de novo Pck2 synthesis, which is essential to activate the CIP in response to cell wall damage or glucose exhaustion. These results unveil a novel mechanism whereby TOR regulates PKC function at a translational level, and they add a new regulatory layer to MAPK signaling cascades. © 2015. Published by The Company of Biologists Ltd.

  5. Quantitative phosphoproteomics reveals pathways for coordination of cell growth and division by the conserved fission yeast kinase pom1.

    PubMed

    Kettenbach, Arminja N; Deng, Lin; Wu, Youjun; Baldissard, Suzanne; Adamo, Mark E; Gerber, Scott A; Moseley, James B

    2015-05-01

    Complex phosphorylation-dependent signaling networks underlie the coordination of cellular growth and division. In the fission yeast Schizosaccharomyces pombe, the Dual specificity tyrosine-(Y)-phosphorylation regulated kinase (DYRK) family protein kinase Pom1 regulates cell cycle progression through the mitotic inducer Cdr2 and controls cell polarity through unknown targets. Here, we sought to determine the phosphorylation targets of Pom1 kinase activity by SILAC-based phosphoproteomics. We defined a set of high-confidence Pom1 targets that were enriched for cytoskeletal and cell growth functions. Cdr2 was the only cell cycle target of Pom1 kinase activity that we identified in cells. Mutation of Pom1-dependent phosphorylation sites in the C terminus of Cdr2 inhibited mitotic entry but did not impair Cdr2 localization. In addition, we found that Pom1 phosphorylated multiple substrates that function in polarized cell growth, including Tea4, Mod5, Pal1, the Rho GAP Rga7, and the Arf GEF Syt22. Purified Pom1 phosphorylated these cell polarity targets in vitro, confirming that they are direct substrates of Pom1 kinase activity and likely contribute to regulation of polarized growth by Pom1. Our study demonstrates that Pom1 acts in a linear pathway to control cell cycle progression while regulating a complex network of cell growth targets. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. RNA interference regulates the cell cycle checkpoint through the RNA export factor, Ptr1, in fission yeast.

    PubMed

    Iida, Tetsushi; Iida, Naoko; Tsutsui, Yasuhiro; Yamao, Fumiaki; Kobayashi, Takehiko

    2012-10-12

    Ago1, an effector protein of RNA interference (RNAi), regulates heterochromatin silencing and cell cycle arrest in fission yeast. However, the mechanism by which Ago1 controls cell cycle checkpoint following hydroxyurea (HU) treatment has not been elucidated. In this study, we show that Ago1 and other RNAi factors control cell cycle checkpoint following HU treatment via a mechanism independent of silencing. While silencing requires dcr1(+), the overexpression of ago1(+) alleviated the cell cycle defect in dcr1Δ. Ago1 interacted with the mRNA export factor, Ptr1. The ptr1-1 mutation impaired cell cycle checkpoint but gene silencing was unaffected. Genetic analysis revealed that the regulation of cell cycle checkpoint by ago1(+) is dependent on ptr1(+). Nuclear accumulation of poly(A)(+) RNAs was detected in mutants of ago1(+) and ptr1(+), suggesting there is a functional link between the cell cycle checkpoint and RNAi-mediated RNA quality control. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. A genetic approach to study H2O2 scavenging in fission yeast--distinct roles of peroxiredoxin and catalase.

    PubMed

    Paulo, Esther; García-Santamarina, Sarela; Calvo, Isabel A; Carmona, Mercè; Boronat, Susanna; Domènech, Alba; Ayté, José; Hidalgo, Elena

    2014-04-01

    The main peroxiredoxin in Schizosaccharomyces pombe, Tpx1, is important to sustain aerobic growth, and cells lacking this protein are only able to grow on solid plates under anaerobic conditions. We have found that deletion of the gene coding for thioredoxin reductase, trr1, is a suppressor of the sensitivity to aerobic growth of Δtpx1 cells, so that cells lacking both proteins are able to grow on solid plates in the presence of oxygen. We have investigated this suppression effect, and determined that it depends on the presence of catalase, which is constitutively expressed in Δtrr1 cells in a transcription factor Pap1-dependent manner. A complete characterization of the repertoire of hydrogen peroxide scavenging activities in fission yeast suggests that Tpx1 is the only enzyme with sufficient sensitivity for peroxides and cellular abundance as to control the low levels produced during aerobic growth, catalase being the next barrier of detoxification when the steady-state levels of peroxides are increased in Δtpx1 cells. Gpx1, the only glutathione peroxidase encoded by the S. pombe genome, only has a minor secondary role when extracellular peroxides are added. Our study proposes non-overlapping roles for the different hydrogen peroxide scavenging activities of this eukaryotic organism.

  8. Sbg1 Is a Novel Regulator for the Localization of the β-Glucan Synthase Bgs1 in Fission Yeast

    PubMed Central

    Davidson, Reshma; Pontasch, Josef A.; Wu, Jian-Qiu

    2016-01-01

    Glucan synthases synthesize glucans, complex polysaccharides that are the major components in fungal cell walls and division septa. Studying regulation of glucan synthases is important as they are essential for fungal cell survival and thus popular targets for anti-fungal drugs. Linear 1,3-β-glucan is the main component of primary septum and is synthesized by the conserved β-glucan synthase Bgs1 in fission yeast cytokinesis. It is known that Rho1 GTPase regulates Bgs1 catalytic activity and the F-BAR protein Cdc15 plays a role in Bgs1 delivery to the plasma membrane. Here we characterize a novel protein Sbg1 that is present in a complex with Bgs1 and regulates its protein levels and localization. Sbg1 is essential for contractile-ring constriction and septum formation during cytokinesis. Sbg1 and Bgs1 physically interact and are interdependent for localization to the plasma membrane. Bgs1 is less stable and/or mis-targeted to vacuoles in sbg1 mutants. Moreover, Sbg1 plays an earlier and more important role in Bgs1 trafficking and localization than Cdc15. Together, our data reveal a new mode of regulation for the essential β-glucan synthase Bgs1 by the novel protein Sbg1. PMID:27898700

  9. Stimulation of fission yeast and mouse Hop2-Mnd1 of the Dmc1 and Rad51 recombinases

    PubMed Central

    Ploquin, Mickaël; Petukhova, Galina V.; Morneau, Dany; Déry, Ugo; Bransi, Ali; Stasiak, Andrzej; Camerini-Otero, R. Daniel; Masson, Jean-Yves

    2007-01-01

    Genetic analysis of fission yeast suggests a role for the spHop2–Mnd1 proteins in the Rad51 and Dmc1-dependent meiotic recombination pathways. In order to gain biochemical insights into this process, we purified Schizosaccharomyces pombe Hop2-Mnd1 to homogeneity. spHop2 and spMnd1 interact by co-immunoprecipitation and two-hybrid analysis. Electron microscopy reveals that S. pombe Hop2–Mnd1 binds single-strand DNA ends of 3′-tailed DNA. Interestingly, spHop2-Mnd1 promotes the renaturation of complementary single-strand DNA and catalyses strand exchange reactions with short oligonucleotides. Importantly, we show that spHop2-Mnd1 stimulates spDmc1-dependent strand exchange and strand invasion. Ca2+ alleviate the requirement for the order of addition of the proteins on DNA. We also demonstrate that while spHop2-Mnd1 affects spDmc1 specifically, mHop2 or mHop2-Mnd1 stimulates both the hRad51 and hDmc1 recombinases in strand exchange assays. Thus, our results suggest a crucial role for S. pombe and mouse Hop2-Mnd1 in homologous pairing and strand exchange and reveal evolutionary divergence in their specificity for the Dmc1 and Rad51 recombinases. PMID:17426123

  10. A mutual inhibition between APC/C and its substrate Mes1 required for meiotic progression in fission yeast.

    PubMed

    Kimata, Yuu; Trickey, Michelle; Izawa, Daisuke; Gannon, Julian; Yamamoto, Masayuki; Yamano, Hiroyuki

    2008-03-01

    The anaphase-promoting complex/cyclosome (APC/C) is a cell-cycle-regulated essential E3 ubiquitin ligase; however, very little is known about its meiotic regulation. Here we show that fission yeast Mes1 is a substrate of the APC/C as well as an inhibitor, allowing autoregulation of the APC/C in meiosis. Both traits require a functional destruction box (D box) and KEN box. We show that Mes1 directly binds the WD40 domain of the Fizzy family of APC/C activators. Intriguingly, expression of nonubiquitylatable Mes1 blocks cells in metaphase I with high levels of APC/C substrates, suggesting that ubiquitylation of Mes1 is required for partial degradation of cyclin B in meiosis I by alleviating Mes1 inhibitory function. Consistently, a ternary complex, APC/C-Fizzy/Cdc20-Mes1, is stabilized by inhibiting Mes1 ubiquitylation. These results demonstrate that the fine-tuning of the APC/C activity, by a substrate that is also an inhibitor, is required for the precise coordination and transition through meiosis.

  11. The anaphase-promoting complex/cyclosome controls repair and recombination by ubiquitylating Rhp54 in fission yeast.

    PubMed

    Trickey, Michelle; Grimaldi, Margaret; Yamano, Hiroyuki

    2008-06-01

    Homologous recombination (HR) is important for maintaining genome integrity and for the process of meiotic chromosome segregation and the generation of variation. HR is regulated throughout the cell cycle, being prevalent in the S and G2 phases and suppressed in the G1 phase. Here we show that the anaphase-promoting complex/cyclosome (APC/C) regulates homologous recombination in the fission yeast Schizosaccharomyces pombe by ubiquitylating Rhp54 (an ortholog of Rad54). We show that Rhp54 is a novel APC/C substrate that is destroyed in G1 phase in a KEN-box- and Ste9/Fizzy-related manner. The biological consequences of failing to temporally regulate HR via Rhp54 degradation are seen in haploid cells only in the absence of antirecombinase Srs2 function and are more extensive in diploid cells, which become sensitive to a range of DNA-damaging agents, including hydroxyurea, methyl methanesulfonate, bleomycin, and UV. During meiosis, expression of nondegradable Rhp54 inhibits interhomolog recombination and stimulates sister chromatid recombination. We thus propose that it is critical to control levels of Rhp54 in G1 to suppress HR repair of double-strand breaks and during meiosis to coordinate interhomolog recombination.

  12. Gene amplification at a locus encoding a putative Na+/H+ antiporter confers sodium and lithium tolerance in fission yeast.

    PubMed Central

    Jia, Z P; McCullough, N; Martel, R; Hemmingsen, S; Young, P G

    1992-01-01

    We have identified a new locus, sodium 2 (sod2) based on selection for increased LiCl tolerance in fission yeast, Schizosaccharomyces pombe. Tolerant strains have enhanced pH-dependent Na+ export capacity and sodium transport experiments suggest that the gene encodes an Na+/H+ antiport. The predicted sod2 gene product can be placed in the broad class of transporters which possess 12 hydrophobic transmembrane domains. The protein shows some sequence similarity to the human and bacterial Na+/H+ antiporters. Overexpression of sod2 increased Na+ export capacity and conferred sodium tolerance. Osmotolerance was not affected and sod2 cells were unaffected for growth in K+. In a sod2 disruption strain cells were incapable of exporting sodium. They were hypersensitive to Na+ or Li+ and could not grow under conditions that approximate pH7. The sod2 gene amplification could be selected stepwise and the degree of such amplification correlated with the level of Na+ or Li+ tolerance. Images PMID:1314171

  13. Fission yeast Drp1 is an essential protein required for recovery from DNA damage and chromosome segregation.

    PubMed

    Ranjan, Rajeev; Ahamad, Nafees; Ahmed, Shakil

    2014-12-01

    DNA double strand breaks (DSBs) are the most critical types of DNA damage that can leads to chromosomal aberrations, genomic instability and cancer. Several genetic disorders such as Xeroderma pigmentosum are linked with defects in DNA repair. Human Rint1, a TIP1 domain containing protein is involved in membrane trafficking but its role in DNA damage response is elusive. In this study we characterized the role of Drp1 (damage responsive protein 1), a Rint1 family protein during DNA damage response in fission yeast. We identified that Drp1 is an essential protein and indispensable for survival and growth. Using in vitro random mutagenesis approach we isolated a temperature sensitive mutant allele of drp1 gene (drp1-654) that exhibits sensitivity to DNA damaging agents, in particular to alkylation damage and UV associated DNA damage. The drp1-654 mutant cells are also sensitive to double strand break inducing agent bleomycin. Genetic interaction studies identified that Rad50 and Drp1 act in the same pathway during DNA damage response and the physical interaction of Drp1 with Rad50 was unaffected in drp1-654 mutant at permissive as well as non permissive temperature. Furthermore Drp1 was found to be required for the recovery from MMS induced DNA damage. We also demonstrated that the Drp1 protein localized to nucleus and was required to maintain the chromosome stability. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Cell length growth in fission yeast: an analysis of its bilinear character and the nature of its rate change transition.

    PubMed

    Horváth, Anna; Rácz-Mónus, Anna; Buchwald, Peter; Sveiczer, Ákos

    2013-11-01

    During their mitotic cycle, cylindrical fission yeast cells grow exclusively at their tips. Length growth starts at birth and halts at mitotic onset when the cells begin to prepare for division. While the growth pattern was initially considered to be exponential, during the last three decades an increasing amount of evidence indicated that it is rather a bilinear function [two linear segments separated by a rate change point (RCP)]. The main focus of this work was to clarify this and to elucidate the further question of whether the rate change occurs abruptly at the RCP or more smoothly during a transition period around it. We have analyzed the individual growth patterns obtained by time-lapse microscopy of 60 wild-type cells separately as well as that of the 'average' cell generated from their superposition. Linear, exponential, and bilinear functions were fitted to the data, and their suitability was compared using objective model selection criteria. This analysis found the overwhelming majority of the cells (70%) to have a bilinear growth pattern with close to half of them showing a smooth and not an abrupt transition. The growth pattern of the average cell was also found to be bilinear with a smooth transition.

  15. Tea2p Is a Kinesin-like Protein Required to Generate Polarized Growth in Fission Yeast

    PubMed Central

    Browning, Heidi; Hayles, Jacqueline; Mata, Juan; Aveline, Lauren; Nurse, Paul; McIntosh, J. Richard

    2000-01-01

    Cytoplasmic microtubules are critical for establishing and maintaining cell shape and polarity. Our investigations of kinesin-like proteins (klps) and morphological mutants in the fission yeast Schizosaccharomyces pombe have identified a kinesin-like gene, tea2+, that is required for cells to generate proper polarized growth. Cells deleted for this gene are often bent during exponential growth and initiate growth from improper sites as they exit stationary phase. They have a reduced cytoplasmic microtubule network and display severe morphological defects in genetic backgrounds that produce long cells. The tip-specific marker, Tea1p, is mislocalized in both tea2-1 and tea2Δ cells, indicating that Tea2p function is necessary for proper localization of Tea1p. Tea2p is localized to the tips of the cell and in a punctate pattern within the cell, often coincident with the ends of cytoplasmic microtubules. These results suggest that this kinesin promotes microtubule growth, possibly through interactions with the microtubule end, and that it is important for establishing and maintaining polarized growth along the long axis of the cell. PMID:11018050

  16. Molecular organization of cytokinesis nodes and contractile rings by super-resolution fluorescence microscopy of live fission yeast.

    PubMed

    Laplante, Caroline; Huang, Fang; Tebbs, Irene R; Bewersdorf, Joerg; Pollard, Thomas D

    2016-10-04

    Cytokinesis in animals, fungi, and amoebas depends on the constriction of a contractile ring built from a common set of conserved proteins. Many fundamental questions remain about how these proteins organize to generate the necessary tension for cytokinesis. Using quantitative high-speed fluorescence photoactivation localization microscopy (FPALM), we probed this question in live fission yeast cells at unprecedented resolution. We show that nodes, protein assembly precursors to the contractile ring, are discrete structural units with stoichiometric ratios and distinct distributions of constituent proteins. Anillin Mid1p, Fes/CIP4 homology-Bin/amphiphysin/Rvs (F-BAR) Cdc15p, IQ motif containing GTPase-activating protein (IQGAP) Rng2p, and formin Cdc12p form the base of the node that anchors the ends of myosin II tails to the plasma membrane, with myosin II heads extending into the cytoplasm. This general node organization persists in the contractile ring where nodes move bidirectionally during constriction. We observed the dynamics of the actin network during cytokinesis, starting with the extension of short actin strands from nodes, which sometimes connected neighboring nodes. Later in cytokinesis, a broad network of thick bundles coalesced into a tight ring around the equator of the cell. The actin ring was ∼12