Science.gov

Sample records for fission yeast requires

  1. Identifying genes required for respiratory growth of fission yeast

    PubMed Central

    2016-01-01

    We have used both auxotroph and prototroph versions of the latest deletion-mutant library to identify genes required for respiratory growth on solid glycerol medium in fission yeast. This data set complements and enhances our recent study on functional and regulatory aspects of energy metabolism by providing additional proteins that are involved in respiration. Most proteins identified in this mutant screen have not been implicated in respiration in budding yeast. We also provide a protocol to generate a prototrophic mutant library, and data on technical and biological reproducibility of colony-based high-throughput screens. PMID:27918601

  2. Centromeric chromatin in fission yeast.

    PubMed

    Partridge, Janet F

    2008-05-01

    A fundamental requirement for life is the ability of cells to divide properly and to pass on to their daughters a full complement of genetic material. The centromere of the chromosome is essential for this process, as it provides the DNA sequences on which the kinetochore (the proteinaceous structure that links centromeric DNA to the spindle microtubules) assembles to allow segregation of the chromosomes during mitosis. It has long been recognized that kinetochore assembly is subject to epigenetic control, and deciphering how centromeres promote faithful chromosome segregation provides a fascinating intellectual challenge. This challenge is made more difficult by the scale and complexity of DNA sequences in metazoan centromeres, thus much research has focused on dissecting centromere function in the single celled eukaryotic yeasts. Interestingly, in spite of similarities in the genome size of budding and fission yeasts, they seem to have adopted some striking differences in their strategy for passing on their chromosomes. Budding yeast have "point" centromeres, where a 125 base sequence is sufficient for mitotic propagation, whereas fission yeast centromeres are more reminiscent of the large repetitive centromeres of metazoans. In addition, the centromeric heterochromatin which coats centromeric domains of fission yeast and metazoan centromeres and is critical for their function, is largely absent from budding yeast centromeres. This review focuses on the assembly and maintenance of centromeric chromatin in the fission yeast.

  3. Fission Yeast Scm3: A CENP-A Receptor Required for Integrity of Subkinetochore Chromatin

    PubMed Central

    Pidoux, Alison L.; Choi, Eun Shik; Abbott, Johanna K.R.; Liu, Xingkun; Kagansky, Alexander; Castillo, Araceli G.; Hamilton, Georgina L.; Richardson, William; Rappsilber, Juri; He, Xiangwei; Allshire, Robin C.

    2009-01-01

    Summary The mechanisms ensuring specific incorporation of CENP-A at centromeres are poorly understood. Mis16 and Mis18 are required for CENP-A localization at centromeres and form a complex that is conserved from fission yeast to human. Fission yeast sim1 mutants that alleviate kinetochore domain silencing are defective in Scm3Sp, the ortholog of budding yeast Scm3Sc. Scm3Sp depends on Mis16/18 for its centromere localization and like them is recruited to centromeres in late anaphase. Importantly, Scm3Sp coaffinity purifies with CENP-ACnp1 and associates with CENP-ACnp1 in vitro, yet localizes independently of intact CENP-ACnp1 chromatin and is differentially released from chromatin. While Scm3Sc has been proposed to form a unique hexameric nucleosome with CENP-ACse4 and histone H4 at budding yeast point centromeres, we favor a model in which Scm3Sp acts as a CENP-ACnp1 receptor/assembly factor, cooperating with Mis16 and Mis18 to receive CENP-ACnp1 from the Sim3 escort and mediate assembly of CENP-ACnp1 into subkinetochore chromatin. PMID:19217404

  4. CSL protein regulates transcription of genes required to prevent catastrophic mitosis in fission yeast.

    PubMed

    Převorovský, Martin; Oravcová, Martina; Zach, Róbert; Jordáková, Anna; Bähler, Jürg; Půta, František; Folk, Petr

    2016-11-16

    For every eukaryotic cell to grow and divide, intricately coordinated action of numerous proteins is required to ensure proper cell-cycle progression. The fission yeast Schizosaccharomyces pombe has been instrumental in elucidating the fundamental principles of cell-cycle control. Mutations in S. pombe 'cut' (cell untimely torn) genes cause failed coordination between cell and nuclear division, resulting in catastrophic mitosis. Deletion of cbf11, a fission yeast CSL transcription factor gene, triggers a 'cut' phenotype, but the precise role of Cbf11 in promoting mitotic fidelity is not known. We report that Cbf11 directly activates the transcription of the acetyl-coenzyme A carboxylase gene cut6, and the biotin uptake/biosynthesis genes vht1 and bio2, with the former 2 implicated in mitotic fidelity. Cbf11 binds to a canonical, metazoan-like CSL response element (GTGGGAA) in the cut6 promoter. Expression of Cbf11 target genes shows apparent oscillations during the cell cycle using temperature-sensitive cdc25-22 and cdc10-M17 block-release experiments, but not with other synchronization methods. The penetrance of catastrophic mitosis in cbf11 and cut6 mutants is nutrient-dependent. We also show that drastic decrease in biotin availability arrests cell proliferation but does not cause mitotic defects. Taken together, our results raise the possibility that CSL proteins play conserved roles in regulating cell-cycle progression, and they could guide experiments into mitotic CSL functions in mammals.

  5. Autophagy is required for efficient meiosis progression and proper meiotic chromosome segregation in fission yeast.

    PubMed

    Matsuhara, Hirotada; Yamamoto, Ayumu

    2016-01-01

    Autophagy is a conserved intracellular degradation system, which contributes to development and differentiation of various organisms. Yeast cells undergo meiosis under nitrogen-starved conditions and require autophagy for meiosis initiation. However, the precise roles of autophagy in meiosis remain unclear. Here, we show that autophagy is required for efficient meiosis progression and proper meiotic chromosome segregation in fission yeast. Autophagy-defective strains bearing a mutation in the autophagy core factor gene atg1, atg7, or atg14 exhibit deformed nuclear structures during meiosis. These mutant cells require an extracellular nitrogen supply for meiosis progression following their entry into meiosis and show delayed meiosis progression even with a nitrogen supply. In addition, they show frequent chromosome dissociation from the spindle together with spindle overextension, forming extra nuclei. Furthermore, Aurora kinase, which regulates chromosome segregation and spindle elongation, is significantly increased at the centromere and spindle in the mutant cells. Aurora kinase down-regulation eliminated delayed initiation of meiosis I and II, chromosome dissociation, and spindle overextension, indicating that increased Aurora kinase activity may cause these aberrances in the mutant cells. Our findings show a hitherto unrecognized relationship of autophagy with the nuclear structure, regulation of cell cycle progression, and chromosome segregation in meiosis.

  6. The MAP kinase Pmk1 and protein kinase A are required for rotenone resistance in the fission yeast, Schizosaccharomyces pombe

    SciTech Connect

    Wang, Yiwei; Gulis, Galina; Buckner, Scott; Johnson, P. Connor; Sullivan, Daniel; Busenlehner, Laura; Marcus, Stevan

    2010-08-20

    Research highlights: {yields} Rotenone induces generation of ROS and mitochondrial fragmentation in fission yeast. {yields} The MAPK Pmk1 and PKA are required for rotenone resistance in fission yeast. {yields} Pmk1 and PKA are required for ROS clearance in rotenone treated fission yeast cells. {yields} PKA plays a role in ROS clearance under normal growth conditions in fission yeast. -- Abstract: Rotenone is a widely used pesticide that induces Parkinson's disease-like symptoms in rats and death of dopaminergic neurons in culture. Although rotenone is a potent inhibitor of complex I of the mitochondrial electron transport chain, it can induce death of dopaminergic neurons independently of complex I inhibition. Here we describe effects of rotenone in the fission yeast, Schizosaccharomyces pombe, which lacks complex I and carries out rotenone-insensitive cellular respiration. We show that rotenone induces generation of reactive oxygen species (ROS) as well as fragmentation of mitochondrial networks in treated S. pombe cells. While rotenone is only modestly inhibitory to growth of wild type S. pombe cells, it is strongly inhibitory to growth of mutants lacking the ERK-type MAP kinase, Pmk1, or protein kinase A (PKA). In contrast, cells lacking the p38 MAP kinase, Spc1, exhibit modest resistance to rotenone. Consistent with these findings, we provide evidence that Pmk1 and PKA, but not Spc1, are required for clearance of ROS in rotenone treated S. pombe cells. Our results demonstrate the usefulness of S. pombe for elucidating complex I-independent molecular targets of rotenone as well as mechanisms conferring resistance to the toxin.

  7. Fission yeast Pot1 and RecQ helicase are required for efficient chromosome segregation.

    PubMed

    Takahashi, Katsunori; Imano, Ryota; Kibe, Tatsuya; Seimiya, Hiroyuki; Muramatsu, Yukiko; Kawabata, Naoki; Tanaka, Genki; Matsumoto, Yoshitake; Hiromoto, Taisuke; Koizumi, Yuka; Nakazawa, Norihiko; Yanagida, Mitsuhiro; Yukawa, Masashi; Tsuchiya, Eiko; Ueno, Masaru

    2011-02-01

    Pot1 is a single-stranded telomere-binding protein that is conserved from fission yeast to mammals. Deletion of Schizosaccharomyces pombe pot1(+) causes immediate telomere loss. S. pombe Rqh1 is a homolog of the human RecQ helicase WRN, which plays essential roles in the maintenance of genomic stability. Here, we demonstrate that a pot1Δ rqh1-hd (helicase-dead) double mutant maintains telomeres that are dependent on Rad51-mediated homologous recombination. Interestingly, the pot1Δ rqh1-hd double mutant displays a "cut" (cell untimely torn) phenotype and is sensitive to the antimicrotubule drug thiabendazole (TBZ). Moreover, the chromosome ends of the double mutant do not enter the pulsed-field electrophoresis gel. These results suggest that the entangled chromosome ends in the pot1Δ rqh1-hd double mutant inhibit chromosome segregation, signifying that Pot1 and Rqh1 are required for efficient chromosome segregation. We also found that POT1 knockdown, WRN-deficient human cells are sensitive to the antimicrotubule drug vinblastine, implying that some of the functions of S. pombe Pot1 and Rqh1 may be conserved in their respective human counterparts POT1 and WRN.

  8. Fission yeast RecQ helicase Rqh1 is required for the maintenance of circular chromosomes.

    PubMed

    Nanbu, Tomoko; Takahashi, Katsunori; Murray, Johanne M; Hirata, Naoya; Ukimori, Shinobu; Kanke, Mai; Masukata, Hisao; Yukawa, Masashi; Tsuchiya, Eiko; Ueno, Masaru

    2013-03-01

    Protection of telomeres protein 1 (Pot1) binds to single-stranded telomere overhangs and protects chromosome ends. RecQ helicases regulate homologous recombination at multiple stages, including resection, strand displacement, and resolution. Fission yeast pot1 and RecQ helicase rqh1 double mutants are synthetically lethal, but the mechanism is not fully understood. Here, we show that the synthetic lethality of pot1Δ rqh1Δ double mutants is due to inappropriate homologous recombination, as it is suppressed by the deletion of rad51(+). The expression of Rad51 in the pot1Δ rqh1Δ rad51Δ triple mutant, which has circular chromosomes, is lethal. Reduction of the expression of Rqh1 in a pot1 disruptant with circular chromosomes caused chromosome missegregation, and this defect was partially suppressed by the deletion of rad51(+). Taken together, our results suggest that Rqh1 is required for the maintenance of circular chromosomes when homologous recombination is active. Crossovers between circular monomeric chromosomes generate dimers that cannot segregate properly in Escherichia coli. We propose that Rqh1 inhibits crossovers between circular monomeric chromosomes to suppress the generation of circular dimers.

  9. Mitochondrial localization of fission yeast manganese superoxide dismutase is required for its lysine acetylation and for cellular stress resistance and respiratory growth

    SciTech Connect

    Takahashi, Hidekazu; Shirai, Atsuko; Matsuyama, Akihisa; Yoshida, Minoru

    2011-03-04

    Research highlights: {yields} Fission yeast manganese superoxide dismutase (MnSOD) is acetylated. {yields} The mitochondrial targeting sequence (MTS) is required for the acetylation of MnSOD. {yields} The MTS is not crucial for MnSOD activity, but is important for respiratory growth. {yields} Posttranslational regulation of MnSOD differs between budding and fission yeast. -- Abstract: Manganese-dependent superoxide dismutase (MnSOD) is localized in the mitochondria and is important for oxidative stress resistance. Although transcriptional regulation of MnSOD has been relatively well studied, much less is known about the protein's posttranslational regulation. In budding yeast, MnSOD is activated after mitochondrial import by manganese ion incorporation. Here we characterize posttranslational modification of MnSOD in the fission yeast Schizosaccharomyces pombe. Fission yeast MnSOD is acetylated at the 25th lysine residue. This acetylation was diminished by deletion of N-terminal mitochondrial targeting sequence, suggesting that MnSOD is acetylated after import into mitochondria. Mitochondrial localization of MnSOD is not essential for the enzyme activity, but is crucial for oxidative stress resistance and growth under respiratory conditions of fission yeast. These results suggest that, unlike the situation in budding yeast, S. pombe MnSOD is already active even before mitochondrial localization; nonetheless, mitochondrial localization is critical to allow the cell to cope with reactive oxygen species generated inside or outside of mitochondria.

  10. Predicting the fission yeast protein interaction network.

    PubMed

    Pancaldi, Vera; Saraç, Omer S; Rallis, Charalampos; McLean, Janel R; Převorovský, Martin; Gould, Kathleen; Beyer, Andreas; Bähler, Jürg

    2012-04-01

    A systems-level understanding of biological processes and information flow requires the mapping of cellular component interactions, among which protein-protein interactions are particularly important. Fission yeast (Schizosaccharomyces pombe) is a valuable model organism for which no systematic protein-interaction data are available. We exploited gene and protein properties, global genome regulation datasets, and conservation of interactions between budding and fission yeast to predict fission yeast protein interactions in silico. We have extensively tested our method in three ways: first, by predicting with 70-80% accuracy a selected high-confidence test set; second, by recapitulating interactions between members of the well-characterized SAGA co-activator complex; and third, by verifying predicted interactions of the Cbf11 transcription factor using mass spectrometry of TAP-purified protein complexes. Given the importance of the pathway in cell physiology and human disease, we explore the predicted sub-networks centered on the Tor1/2 kinases. Moreover, we predict the histidine kinases Mak1/2/3 to be vital hubs in the fission yeast stress response network, and we suggest interactors of argonaute 1, the principal component of the siRNA-mediated gene silencing pathway, lost in budding yeast but preserved in S. pombe. Of the new high-quality interactions that were discovered after we started this work, 73% were found in our predictions. Even though any predicted interactome is imperfect, the protein network presented here can provide a valuable basis to explore biological processes and to guide wet-lab experiments in fission yeast and beyond. Our predicted protein interactions are freely available through PInt, an online resource on our website (www.bahlerlab.info/PInt).

  11. Predicting the Fission Yeast Protein Interaction Network

    PubMed Central

    Pancaldi, Vera; Saraç, Ömer S.; Rallis, Charalampos; McLean, Janel R.; Převorovský, Martin; Gould, Kathleen; Beyer, Andreas; Bähler, Jürg

    2012-01-01

    A systems-level understanding of biological processes and information flow requires the mapping of cellular component interactions, among which protein–protein interactions are particularly important. Fission yeast (Schizosaccharomyces pombe) is a valuable model organism for which no systematic protein-interaction data are available. We exploited gene and protein properties, global genome regulation datasets, and conservation of interactions between budding and fission yeast to predict fission yeast protein interactions in silico. We have extensively tested our method in three ways: first, by predicting with 70–80% accuracy a selected high-confidence test set; second, by recapitulating interactions between members of the well-characterized SAGA co-activator complex; and third, by verifying predicted interactions of the Cbf11 transcription factor using mass spectrometry of TAP-purified protein complexes. Given the importance of the pathway in cell physiology and human disease, we explore the predicted sub-networks centered on the Tor1/2 kinases. Moreover, we predict the histidine kinases Mak1/2/3 to be vital hubs in the fission yeast stress response network, and we suggest interactors of argonaute 1, the principal component of the siRNA-mediated gene silencing pathway, lost in budding yeast but preserved in S. pombe. Of the new high-quality interactions that were discovered after we started this work, 73% were found in our predictions. Even though any predicted interactome is imperfect, the protein network presented here can provide a valuable basis to explore biological processes and to guide wet-lab experiments in fission yeast and beyond. Our predicted protein interactions are freely available through PInt, an online resource on our website (www.bahlerlab.info/PInt). PMID:22540037

  12. Mdm12p, a component required for mitochondrial inheritance that is conserved between budding and fission yeast.

    PubMed

    Berger, K H; Sogo, L F; Yaffe, M P

    1997-02-10

    Saccharomyces cerevisiae cells lacking the MDM12 gene product display temperature-sensitive growth and possess abnormally large, round mitochondria that are defective for inheritance by daughter buds. Analysis of the wild-type MDM12 gene revealed its product to be a 31-kD polypeptide that is homologous to a protein of the fission yeast Schizosaccharomyces pombe. When expressed in S. cerevisiae, the S. pombe Mdm12p homolog conferred a dominant-negative phenotype of giant mitochondria and aberrant mitochondrial distribution, suggesting partial functional conservation of Mdm12p activity between budding and fission yeast. The S. cerevisiae Mdm12p was localized by indirect immunofluorescence microscopy and by subcellular fractionation and immunodetection to the mitochondrial outer membrane and displayed biochemical properties of an integral membrane protein. Mdm12p is the third mitochondrial outer membrane protein required for normal mitochondrial morphology and distribution to be identified in S. cerevisiae and the first such mitochondrial component that is conserved between two different species.

  13. Casein kinase II is required for the spindle assembly checkpoint by regulating Mad2p in fission yeast

    SciTech Connect

    Shimada, Midori; Yamamoto, Ayumu; Murakami-Tonami, Yuko; Nakanishi, Makoto; Yoshida, Takashi; Aiba, Hirofumi; Murakami, Hiroshi

    2009-10-23

    The spindle checkpoint is a surveillance mechanism that ensures the fidelity of chromosome segregation in mitosis. Here we show that fission yeast casein kinase II (CK2) is required for this checkpoint function. In the CK2 mutants mitosis occurs in the presence of a spindle defect, and the spindle checkpoint protein Mad2p fails to localize to unattached kinetochores. The CK2 mutants are sensitive to the microtubule depolymerising drug thiabendazole, which is counteracted by ectopic expression of mad2{sup +}. The level of Mad2p is low in the CK2 mutants. These results suggest that CK2 has a role in the spindle checkpoint by regulating Mad2p.

  14. Nuclear organisation and RNAi in fission yeast.

    PubMed

    Woolcock, Katrina J; Bühler, Marc

    2013-06-01

    Over the last decade, the fission yeast Schizosaccharomyces pombe has been used extensively for investigating RNA interference (RNAi)-mediated heterochromatin assembly. However, only recently have studies begun to shed light on the 3D organisation of chromatin and the RNAi machinery in the fission yeast nucleus. These studies indicate association of repressive and active chromatin with different regions of the nuclear periphery, similar to other model organisms, and clustering of functionally related genomic features. Unexpectedly, RNAi factors were shown to associate with nuclear pores and were implicated in the regulation of genomic features outside of the well-studied heterochromatic regions. Nuclear organisation is likely to contribute to substrate specificity of the RNAi pathway. However, further studies are required to elucidate the exact mechanisms and functional importance of this nuclear organisation.

  15. A mutual inhibition between APC/C and its substrate Mes1 required for meiotic progression in fission yeast.

    PubMed

    Kimata, Yuu; Trickey, Michelle; Izawa, Daisuke; Gannon, Julian; Yamamoto, Masayuki; Yamano, Hiroyuki

    2008-03-01

    The anaphase-promoting complex/cyclosome (APC/C) is a cell-cycle-regulated essential E3 ubiquitin ligase; however, very little is known about its meiotic regulation. Here we show that fission yeast Mes1 is a substrate of the APC/C as well as an inhibitor, allowing autoregulation of the APC/C in meiosis. Both traits require a functional destruction box (D box) and KEN box. We show that Mes1 directly binds the WD40 domain of the Fizzy family of APC/C activators. Intriguingly, expression of nonubiquitylatable Mes1 blocks cells in metaphase I with high levels of APC/C substrates, suggesting that ubiquitylation of Mes1 is required for partial degradation of cyclin B in meiosis I by alleviating Mes1 inhibitory function. Consistently, a ternary complex, APC/C-Fizzy/Cdc20-Mes1, is stabilized by inhibiting Mes1 ubiquitylation. These results demonstrate that the fine-tuning of the APC/C activity, by a substrate that is also an inhibitor, is required for the precise coordination and transition through meiosis.

  16. Ctp1 and the MRN-complex are required for endonucleolytic Rec12 removal with release of a single class of oligonucleotides in fission yeast.

    PubMed

    Rothenberg, Maja; Kohli, Jürg; Ludin, Katja

    2009-11-01

    DNA double-strand breaks (DSBs) are formed during meiosis by the action of the topoisomerase-like Spo11/Rec12 protein, which remains covalently bound to the 5' ends of the broken DNA. Spo11/Rec12 removal is required for resection and initiation of strand invasion for DSB repair. It was previously shown that budding yeast Spo11, the homolog of fission yeast Rec12, is removed from DNA by endonucleolytic cleavage. The release of two Spo11 bound oligonucleotide classes, heterogeneous in length, led to the conjecture of asymmetric cleavage. In fission yeast, we found only one class of oligonucleotides bound to Rec12 ranging in length from 17 to 27 nucleotides. Ctp1, Rad50, and the nuclease activity of Rad32, the fission yeast homolog of Mre11, are required for endonucleolytic Rec12 removal. Further, we detected no Rec12 removal in a rad50S mutant. However, strains with additional loss of components localizing to the linear elements, Hop1 or Mek1, showed some Rec12 removal, a restoration depending on Ctp1 and Rad32 nuclease activity. But, deletion of hop1 or mek1 did not suppress the phenotypes of ctp1Delta and the nuclease dead mutant (rad32-D65N). We discuss what consequences for subsequent repair a single class of Rec12-oligonucleotides may have during meiotic recombination in fission yeast in comparison to two classes of Spo11-oligonucleotides in budding yeast. Furthermore, we hypothesize on the participation of Hop1 and Mek1 in Rec12 removal.

  17. Heavy metal tolerance in the fission yeast requires an ATP-binding cassette-type vacuolar membrane transporter.

    PubMed Central

    Ortiz, D F; Kreppel, L; Speiser, D M; Scheel, G; McDonald, G; Ow, D W

    1992-01-01

    In response to heavy metal stress, plants and certain fungi, such as the fission yeast Schizosaccharomyces pombe, synthesize small metal-binding peptides known as phytochelatins. We have identified a cadmium sensitive S. pombe mutant deficient in the accumulation of a sulfide-containing phytochelatin-cadmium complex, and have isolated the gene, designated hmt1, that complements this mutant. The deduced protein sequence of the hmt1 gene product shares sequence identity with the family of ABC (ATP-binding cassette)-type transport proteins which includes the mammalian P-glycoproteins and CFTR, suggesting that the encoded product is an integral membrane protein. Analysis of fractionated fission yeast cell components indicates that the HMT1 polypeptide is associated with the vacuolar membrane. Additionally, fission yeast strains harboring an hmt1-expressing multicopy plasmid exhibit enhanced metal tolerance along with a higher intracellular level of cadmium, implying a relationship between HMT1 mediated transport and compartmentalization of heavy metals. This suggests that tissue-specific overproduction of a functional hmt1 product in transgenic plants might be a means to alter the tissue localization of these elements, such as for sequestering heavy metals away from consumable parts of crop plants. Images PMID:1396551

  18. Rhn1, a nuclear protein, is required for suppression of meiotic mRNAs in mitotically dividing fission yeast.

    PubMed

    Sugiyama, Tomoyasu; Sugioka-Sugiyama, Rie; Hada, Kazumasa; Niwa, Ryusuke

    2012-01-01

    In the fission yeast Schizosaccharomyces pombe, many meiotic mRNAs are transcribed during mitosis and meiosis and selectively eliminated in mitotic cells. However, this pathway for mRNA decay, called the determinant of selective removal (DSR)-Mmi1 system, targets only some of the numerous meiotic mRNAs that are transcribed in mitotic cells. Here we describe Rhn1, a nuclear protein involved in meiotic mRNA suppression in vegetative fission yeast. Rhn1 is homologous to budding yeast Rtt103 and localizes to one or a few discrete nuclear dots in growing vegetative cells. Rhn1 colocalizes with a pre-mRNA 3'-end processing factor, Pcf11, and with the 5'-3' exoribonuclease, Dhp1; moreover, Rhn1 coimmunoprecipitates with Pcf11. Loss of rhn1 results in elevated sensitivity to high temperature, to thiabendazole (TBZ), and to UV. Interestingly, meiotic mRNAs--including moa1(+), mcp5(+), and mug96(+)--accumulate in mitotic rhn1Δ cells. Accumulation of meiotic mRNAs also occurs in strains lacking Lsk1, a kinase that phosphorylates serine 2 (Ser-2) in the C-terminal domain (CTD) of RNA polymerase II (Pol II), and in strains lacking Sen1, an ATP-dependent 5'-3' RNA/DNA helicase: notably, both Lsk1 and Sen1 have been implicated in termination of Pol II-dependent transcription. Furthermore, RNAi knockdown of cids-2, a Caenorhabditis elegans ortholog of rhn1(+), leads to elevated expression of a germline-specific gene, pgl-1, in somatic cells. These results indicate that Rhn1 contributes to the suppression of meiotic mRNAs in vegetative fission yeast and that the mechanism by which Rhn1 downregulates germline-specific transcripts may be conserved in unicellular and multicellular organisms.

  19. Inhibition of peroxisome fission, but not mitochondrial fission, increases yeast chronological lifespan.

    PubMed

    Lefevre, Sophie D; Kumar, Sanjeev; van der Klei, Ida J

    2015-01-01

    Mitochondria are key players in aging and cell death. It has been suggested that mitochondrial fragmentation, mediated by the Dnm1/Fis1 organelle fission machinery, stimulates aging and cell death. This was based on the observation that Saccharomyces cerevisiae Δdnm1 and Δfis1 mutants show an enhanced lifespan and increased resistance to cell death inducers. However, the Dnm1/Fis1 fission machinery is also required for peroxisome division. Here we analyzed the significance of peroxisome fission in yeast chronological lifespan, using yeast strains in which fission of mitochondria was selectively blocked. Our data indicate that the lifespan extension caused by deletion of FIS1 is mainly due to a defect in peroxisome fission and not caused by a block in mitochondrial fragmentation. These observations are underlined by our observation that deletion of FIS1 does not lead to lifespan extension in yeast peroxisome deficient mutant cells.

  20. rqh1+, a fission yeast gene related to the Bloom's and Werner's syndrome genes, is required for reversible S phase arrest.

    PubMed Central

    Stewart, E; Chapman, C R; Al-Khodairy, F; Carr, A M; Enoch, T

    1997-01-01

    In eukaryotic cells, S phase can be reversibly arrested by drugs that inhibit DNA synthesis or DNA damage. Here we show that recovery from such treatments is under genetic control and is defective in fission yeast rqh1 mutants. rqh1+, previously known as hus2+, encodes a putative DNA helicase related to the Escherichia coli RecQ helicase, with particular homology to the gene products of the human BLM and WRN genes and the Saccharomyces cerevisiae SGS1 gene. BLM and WRN are mutated in patients with Bloom's syndrome and Werner's syndrome respectively. Both syndromes are associated with genomic instability and cancer susceptibility. We show that, like BLM and SGS1, rqh1+ is required to prevent recombination and that in fission yeast suppression of inappropriate recombination is essential for reversible S phase arrest. PMID:9184215

  1. Requirements of fission yeast septins for complex formation, localization, and function.

    PubMed

    An, Hanbing; Morrell, Jennifer L; Jennings, Jennifer L; Link, Andrew J; Gould, Kathleen L

    2004-12-01

    Septins are GTP binding proteins important for cytokinesis in many eukaryotes. The Schizosaccaromyces pombe genome sequence predicts orthologues of four of five Saccharomyces cerevisiae septins involved in cytokinesis and these are named Spns1-4p. That spns1-4 are not essential genes permitted the application of a combined genetic and proteomics approach to determine their functional relationships. Our findings indicate that Spns1-4p are present throughout interphase as a diffusely localized approximately 8.5S complex containing two copies of each septin linked together as a chain in the order Spn3p-Spn4p-Spn1p-Spn2p. Septin recruitment to the medial region of the cell is genetically separable from ring formation, and whereas it is normally restricted to mitosis, it can be promoted without activation of the mitotic cell cycle machinery. Coalescence into ring structures requires Spn1p and Spn4p associate with at least one other septin subunit and the expression of Mid2p that is normally restricted to mitosis. This study establishes the functional requirements for septin complex organization in vivo.

  2. Requirements of Fission Yeast Septins for Complex Formation, Localization, and FunctionD⃞

    PubMed Central

    An, Hanbing; Morrell, Jennifer L.; Jennings, Jennifer L.; Link, Andrew J.; Gould, Kathleen L.

    2004-01-01

    Septins are GTP binding proteins important for cytokinesis in many eukaryotes. The Schizosaccaromyces pombe genome sequence predicts orthologues of four of five Saccharomyces cerevisiae septins involved in cytokinesis and these are named Spns1-4p. That spns1-4 are not essential genes permitted the application of a combined genetic and proteomics approach to determine their functional relationships. Our findings indicate that Spns1-4p are present throughout interphase as a diffusely localized ∼8.5S complex containing two copies of each septin linked together as a chain in the order Spn3p-Spn4p-Spn1p-Spn2p. Septin recruitment to the medial region of the cell is genetically separable from ring formation, and whereas it is normally restricted to mitosis, it can be promoted without activation of the mitotic cell cycle machinery. Coalescence into ring structures requires Spn1p and Spn4p associate with at least one other septin subunit and the expression of Mid2p that is normally restricted to mitosis. This study establishes the functional requirements for septin complex organization in vivo. PMID:15385632

  3. Molecular control of fission yeast cytokinesis.

    PubMed

    Rincon, Sergio A; Paoletti, Anne

    2016-05-01

    Cytokinesis gives rise to two independent daughter cells at the end of the cell division cycle. The fission yeast Schizosaccharomyces pombe has emerged as one of the most powerful systems to understand how cytokinesis is controlled molecularly. Like in most eukaryotes, fission yeast cytokinesis depends on an acto-myosin based contractile ring that assembles at the division site under the control of spatial cues that integrate information on cell geometry and the position of the mitotic apparatus. Cytokinetic events are also tightly coordinated with nuclear division by the cell cycle machinery. These spatial and temporal regulations ensure an equal cleavage of the cytoplasm and an accurate segregation of the genetic material in daughter cells. Although this model system has specificities, the basic mechanisms of contractile ring assembly and function deciphered in fission yeast are highly valuable to understand how cytokinesis is controlled in other organisms that rely on a contractile ring for cell division.

  4. A proline-tyrosine nuclear localization signal (PY-NLS) is required for the nuclear import of fission yeast PAB2, but not of human PABPN1.

    PubMed

    Mallet, Pierre-Luc; Bachand, François

    2013-03-01

    Nuclear poly(A)-binding proteins (PABPs) are evolutionarily conserved proteins that play key roles in eukaryotic gene expression. In the fission yeast Schizosaccharomyces pombe, the major nuclear PABP, Pab2, functions in the maturation of small nucleolar RNAs as well as in nuclear RNA decay. Despite knowledge about its nuclear functions, nothing is known about how Pab2 is imported into the nucleus. Here, we show that Pab2 contains a proline-tyrosine nuclear localization signal (PY-NLS) that is necessary and sufficient for its nuclear localization and function. Consistent with the role of karyopherin β2 (Kapβ2)-type receptors in the import of PY-NLS cargoes, we show that the fission yeast ortholog of human Kapβ2, Kap104, binds to recombinant Pab2 and is required for Pab2 nuclear localization. The absence of arginine methylation in a basic region N-terminal to the PY-core motif of Pab2 did not affect its nuclear localization. However, in the context of a sub-optimal PY-NLS, we found that Pab2 was more efficiently targeted to the nucleus in the absence of arginine methylation, suggesting that this modification can affect the import kinetics of a PY-NLS cargo. Although a sequence resembling a PY-NLS motif can be found in the human Pab2 ortholog, PABPN1, our results indicate that neither a functional PY-NLS nor Kapβ2 activity are required to promote entry of PABPN1 into the nucleus of human cells. Our findings describe the mechanism by which Pab2 is imported into the nucleus, providing the first example of a PY-NLS import system in fission yeast. In addition, this study suggests the existence of alternative or redundant nuclear import pathways for human PABPN1.

  5. The meiosis-specific nuclear passenger protein is required for proper assembly of forespore membrane in fission yeast.

    PubMed

    Takaine, Masak; Imada, Kazuki; Numata, Osamu; Nakamura, Taro; Nakano, Kentaro

    2014-10-15

    Sporulation, gametogenesis in yeast, consists of meiotic nuclear division and spore morphogenesis. In the fission yeast Schizosaccharomyces pombe, the four haploid nuclei produced after meiosis II are encapsulated by the forespore membrane (FSM), which is newly synthesized from spindle pole bodies (SPBs) in the cytoplasm of the mother cell as spore precursors. Although the coordination between meiosis and FSM assembly is vital for proper sporulation, the underlying mechanism remains unclear. In the present study, we identified a new meiosis-specific protein Npg1, and found that it was involved in the efficient formation of spores and spore viability. The accumulation and organization of the FSM was compromised in npg1-null cells, leading to the error-prone envelopment of nuclei. Npg1 was first seen as internuclear dots and translocated to the SPBs before the FSM assembled. Genetic analysis revealed that Npg1 worked in conjunction with the FSM proteins Spo3 and Meu14. These results suggest a possible signaling link from the nucleus to the meiotic SPBs in order to associate the onset of FSM assembly with meiosis II, which ensures the successful partitioning of gametic nuclei.

  6. Fission yeast meets a legend in Kobe: report of the Eighth International Fission Yeast Meeting.

    PubMed

    Asakawa, Haruhiko; Yamamoto, Takaharu G; Hiraoka, Yasushi

    2015-12-01

    The Eighth International Fission Yeast Meeting, which was held at Ikuta Shrine Hall in Kobe, Japan, from 21 to 26 June 2015, was attended by 327 fission yeast researchers from 25 countries (190 overseas and 137 domestic participants). At this meeting, 124 talks were held and 145 posters were presented. In addition, newly developed database tools were introduced to the community during a workshop. Researchers shared cutting-edge knowledge across broad fields of study, ranging from molecules to evolution, derived from the superior model organism commonly used within the fission yeast community. Intensive discussions and constructive suggestions generated in this meeting will surely advance the understanding of complex biological systems in fission yeast, extending to general eukaryotes.

  7. Two Related Kinesins, klp5+ and klp6+, Foster Microtubule Disassembly and Are Required for Meiosis in Fission Yeast

    PubMed Central

    West, Robert R.; Malmstrom, Terra; Troxell, Cynthia L.; McIntosh, J. Richard

    2001-01-01

    The kinesin superfamily of microtubule motor proteins is important in many cellular processes, including mitosis and meiosis, vesicle transport, and the establishment and maintenance of cell polarity. We have characterized two related kinesins in fission yeast, klp5+ and klp6+, that are amino-terminal motors of the KIP3 subfamily. Analysis of null mutants demonstrates that neither klp5+ nor klp6+, individually or together, is essential for vegetative growth, although these mutants have altered microtubule behavior. klp5Δ and klp6Δ are resistant to high concentrations of the microtubule poison thiabendazole and have abnormally long cytoplasmic microtubules that can curl around the ends of the cell. This phenotype is greatly enhanced in the cell cycle mutant cdc25–22, leading to a bent, asymmetric cell morphology as cells elongate during cell cycle arrest. Klp5p-GFP and Klp6p-GFP both localize to cytoplasmic microtubules throughout the cell cycle and to spindles in mitosis, but their localizations are not interdependent. During the meiotic phase of the life cycle, both of these kinesins are essential. Spore viability is low in homozygous crosses of either null mutant. Heterozygous crosses of klp5Δ with klp6Δ have an intermediate viability, suggesting cooperation between these proteins in meiosis. PMID:11739790

  8. Condensin HEAT Subunits Required for DNA Repair, Kinetochore/Centromere Function and Ploidy Maintenance in Fission Yeast

    PubMed Central

    Xu, Xingya; Nakazawa, Norihiko; Yanagida, Mitsuhiro

    2015-01-01

    Condensin, a central player in eukaryotic chromosomal dynamics, contains five evolutionarily-conserved subunits. Two SMC (structural maintenance of chromosomes) subunits contain ATPase, hinge, and coiled-coil domains. One non-SMC subunit is similar to bacterial kleisin, and two other non-SMC subunits contain HEAT (similar to armadillo) repeats. Here we report isolation and characterization of 21 fission yeast (Schizosaccharomyces pombe) mutants for three non-SMC subunits, created using error-prone mutagenesis that resulted in single-amino acid substitutions. Beside condensation, segregation, and DNA repair defects, similar to those observed in previously isolated SMC and cnd2 mutants, novel phenotypes were observed for mutants of HEAT-repeats containing Cnd1 and Cnd3 subunits. cnd3-L269P is hypersensitive to the microtubule poison, thiabendazole, revealing defects in kinetochore/centromere and spindle assembly checkpoints. Three cnd1 and three cnd3 mutants increased cell size and doubled DNA content, thereby eliminating the haploid state. Five of these mutations reside in helix B of HEAT repeats. Two non-SMC condensin subunits, Cnd1 and Cnd3, are thus implicated in ploidy maintenance. PMID:25764183

  9. The fission yeast Chs2 protein interacts with the type-II myosin Myo3p and is required for the integrity of the actomyosin ring.

    PubMed

    Martín-García, Rebeca; Valdivieso, M-Henar

    2006-07-01

    In Schizosaccharomyces pombe cytokinesis requires the function of a contractile actomyosin ring. Fission yeast Chs2p is a transmembrane protein structurally similar to chitin synthases that lacks such enzymatic activity. Chs2p localisation and assembly into a ring that contracts during division requires the general system for polarised secretion, some components of the actomyosin ring, and an active septation initiation network. Chs2p interacts physically with the type-II myosin Myo3p revealing a physical link between the plasma membrane and the ring. In chs2Delta mutants, actomyosin ring integrity is compromised during the last stages of contraction and it remains longer in the midzone. In synchronous cultures, chs2Delta cells exhibit a delay in septation with respect to the control strain. All these results show that Chs2p participates in the correct functioning of the medial ring.

  10. Divergence of mitotic strategies in fission yeasts

    PubMed Central

    Gu, Ying; Yam, Candice; Oliferenko, Snezhana

    2012-01-01

    The aim of mitosis is to produce two daughter nuclei, each containing a chromosome complement identical to that of the mother nucleus. This can be accomplished through a variety of strategies, with “open” and “closed” modes of mitosis positioned at the opposite ends of the spectrum and a range of intermediate patterns in between. In the “closed” mitosis, the nuclear envelope remains intact throughout the nuclear division. In the “open” division type, the envelope of the original nucleus breaks down early in mitosis and reassembles around the segregated daughter genomes. In any case, the nuclear membrane has to remodel to accommodate the mitotic spindle assembly, chromosome segregation and formation of the daughter nuclei. We have recently shown that within the fission yeast clade, the mitotic control of the nuclear surface area may determine the choice between the nuclear envelope breakdown and a fully “closed” division. Here we discuss our data and argue that comparative cell biology studies using two fission yeast species, Schizosaccharomyces pombe and Schizosaccharomyces japonicus, could provide unprecedented insights into physiology and evolution of mitosis. PMID:22572960

  11. Fission Yeast Scp3 Potentially Maintains Microtubule Orientation through Bundling

    PubMed Central

    Ozaki, Kanako; Chikashige, Yuji; Hiraoka, Yasushi; Matsumoto, Tomohiro

    2015-01-01

    Microtubules play important roles in organelle transport, the maintenance of cell polarity and chromosome segregation and generally form bundles during these processes. The fission yeast gene scp3+ was identified as a multicopy suppressor of the cps3-81 mutant, which is hypersensitive to isopropyl N-3-chlorophenylcarbamate (CIPC), a poison that induces abnormal multipolar spindle formation in higher eukaryotes. In this study, we investigated the function of Scp3 along with the effect of CIPC in the fission yeast Schizosaccharomyces pombe. Microscopic observation revealed that treatment with CIPC, cps3-81 mutation and scp3+ gene deletion disturbed the orientation of microtubules in interphase cells. Overexpression of scp3+ suppressed the abnormal orientation of microtubules by promoting bundling. Functional analysis suggested that Scp3 functions independently from Ase1, a protein largely required for the bundling of the mitotic spindle. A strain lacking the ase1+ gene was more sensitive to CIPC, with the drug affecting the integrity of the mitotic spindle, indicating that CIPC has a mitotic target that has a role redundant with Ase1. These results suggested that multiple systems are independently involved to ensure microtubule orientation by bundling in fission yeast. PMID:25767875

  12. Subunit architecture of the Golgi Dsc E3 ligase required for sterol regulatory element-binding protein (SREBP) cleavage in fission yeast.

    PubMed

    Lloyd, S Julie-Ann; Raychaudhuri, Sumana; Espenshade, Peter J

    2013-07-19

    The membrane-bound sterol regulatory element-binding protein (SREBP) transcription factors regulate lipogenesis in mammalian cells and are activated through sequential cleavage by the Golgi-localized Site-1 and Site-2 proteases. The mechanism of fission yeast SREBP cleavage is less well defined and, in contrast, requires the Golgi-localized Dsc E3 ligase complex. The Dsc E3 ligase consists of five integral membrane subunits, Dsc1 through Dsc5, and resembles membrane E3 ligases that function in endoplasmic reticulum-associated degradation. Using immunoprecipitation assays and blue native electrophoresis, we determined the subunit architecture for the complex of Dsc1 through Dsc5, showing that the Dsc proteins form subcomplexes and display defined connectivity. Dsc2 is a rhomboid pseudoprotease family member homologous to mammalian UBAC2 and a central component of the Dsc E3 ligase. We identified conservation in the architecture of the Dsc E3 ligase and the multisubunit E3 ligase gp78 in mammals. Specifically, Dsc1-Dsc2-Dsc5 forms a complex resembling gp78-UBAC2-UBXD8. Further characterization of Dsc2 revealed that its C-terminal UBA domain can bind to ubiquitin chains but that the Dsc2 UBA domain is not essential for yeast SREBP cleavage. Based on the ability of rhomboid superfamily members to bind transmembrane proteins, we speculate that Dsc2 functions in SREBP recognition and binding. Homologs of Dsc1 through Dsc4 are required for SREBP cleavage and virulence in the human opportunistic pathogen Aspergillus fumigatus. Thus, these studies advance our organizational understanding of multisubunit E3 ligases involved in endoplasmic reticulum-associated degradation and fungal pathogenesis.

  13. The Spontaneous Mutation Rate in the Fission Yeast Schizosaccharomyces pombe

    PubMed Central

    Farlow, Ashley; Long, Hongan; Arnoux, Stéphanie; Sung, Way; Doak, Thomas G.; Nordborg, Magnus; Lynch, Michael

    2015-01-01

    The rate at which new mutations arise in the genome is a key factor in the evolution and adaptation of species. Here we describe the rate and spectrum of spontaneous mutations for the fission yeast Schizosaccharomyces pombe, a key model organism with many similarities to higher eukaryotes. We undertook an ∼1700-generation mutation accumulation (MA) experiment with a haploid S. pombe, generating 422 single-base substitutions and 119 insertion-deletion mutations (indels) across the 96 replicates. This equates to a base-substitution mutation rate of 2.00 × 10−10 mutations per site per generation, similar to that reported for the distantly related budding yeast Saccharomyces cerevisiae. However, these two yeast species differ dramatically in their spectrum of base substitutions, the types of indels (S. pombe is more prone to insertions), and the pattern of selection required to counteract a strong AT-biased mutation rate. Overall, our results indicate that GC-biased gene conversion does not play a major role in shaping the nucleotide composition of the S. pombe genome and suggest that the mechanisms of DNA maintenance may have diverged significantly between fission and budding yeasts. Unexpectedly, CpG sites appear to be excessively liable to mutation in both species despite the likely absence of DNA methylation. PMID:26265703

  14. Fission yeast kinesin-8 Klp5 and Klp6 are interdependent for mitotic nuclear retention and required for proper microtubule dynamics.

    PubMed

    Unsworth, Amy; Masuda, Hirohisa; Dhut, Susheela; Toda, Takashi

    2008-12-01

    Fission yeast has two kinesin-8s, Klp5 and Klp6, which associate to form a heterocomplex. Here, we show that Klp5 and Klp6 are mutually dependent on each other for nuclear mitotic localization. During interphase, they are exported to the cytoplasm. In sharp contrast, during mitosis, Klp5 and Klp6 remain in the nucleus, which requires the existence of each counterpart. Canonical nuclear localization signal (NLS) is identified in the nonkinesin C-terminal regions. Intriguingly individual NLS mutants (NLSmut) exhibit loss-of-function phenotypes, suggesting that Klp5 and Klp6 enter the nucleus separately. Indeed, although neither Klp5-NLSmut nor Klp6-NLSmut enters the nucleus, wild-type Klp6 or Klp5, respectively, does so with different kinetics. In the absence of Klp5/6, microtubule catastrophe/rescue frequency and dynamicity are suppressed, whereas growth and shrinkage rates are least affected. Remarkably, chimera strains containing only the N-terminal Klp5 kinesin domains cannot disassemble interphase microtubules during mitosis, leading to the coexistence of cytoplasmic microtubules and nuclear spindles with massive chromosome missegregation. In this strain, a marked reduction of microtubule dynamism, even higher than in klp5/6 deletions, is evident. We propose that Klp5 and Klp6 play a vital role in promoting microtubule dynamics, which is essential for the spatiotemporal control of microtubule morphogenesis.

  15. Nuclear size control in fission yeast.

    PubMed

    Neumann, Frank R; Nurse, Paul

    2007-11-19

    A long-standing biological question is how a eukaryotic cell controls the size of its nucleus. We report here that in fission yeast, nuclear size is proportional to cell size over a 35-fold range, and use mutants to show that a 16-fold change in nuclear DNA content does not influence the relative size of the nucleus. Multi-nucleated cells with unevenly distributed nuclei reveal that nuclei surrounded by a greater volume of cytoplasm grow more rapidly. During interphase of the cell cycle nuclear growth is proportional to cell growth, and during mitosis there is a rapid expansion of the nuclear envelope. When the nuclear/cell (N/C) volume ratio is increased by centrifugation or genetic manipulation, nuclear growth is arrested while the cell continues to grow; in contrast, low N/C ratios are rapidly corrected by nuclear growth. We propose that there is a general cellular control linking nuclear growth to cell size.

  16. Preparation of Total RNA from Fission Yeast.

    PubMed

    Bähler, Jürg; Wise, Jo Ann

    2017-04-03

    Treatment with hot phenol breaks open fission yeast cells and begins to strip away bound proteins from RNA. Deproteinization is completed by multiple extractions with chloroform/isoamyl alcohol and separation of the aqueous and organic phases using MaXtract gel, an inert material that acts as a physical barrier between the phases. The final step is concentration of the RNA by ethanol precipitation. The protocol can be used to prepare RNA from several cultures grown in parallel, but it is important not to process too many samples at once because delays can be detrimental to RNA quality. A reasonable number of samples to process at once would be three to four for microarray or RNA sequencing analyses and six for preliminary investigations of mutants implicated in RNA metabolism.

  17. Nuclear membrane: nuclear envelope PORosity in fission yeast meiosis.

    PubMed

    Sazer, Shelley

    2010-11-09

    The fission yeast Schizosaccharomyces pombe undergoes closed mitosis but 'virtual nuclear envelope breakdown' at anaphase of meiosis II, in which the nuclear envelope is structurally closed but functionally open.

  18. An Analysis of Interference in the Fission Yeast Schizosaccharomyces Pombe

    PubMed Central

    Munz, P.

    1994-01-01

    The evaluation of three-point crosses at the tetrad and random spore level leads to the conclusion that both chiasma and chromatid interference are absent in the fission yeast Schizosaccharomyces pombe. PMID:8088515

  19. The stress granule protein Vgl1 and poly(A)-binding protein Pab1 are required for doxorubicin resistance in the fission yeast Schizosaccharomyces pombe

    SciTech Connect

    Morita, Takahiro; Satoh, Ryosuke; Umeda, Nanae; Kita, Ayako; Sugiura, Reiko

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Stress granules (SGs) as a mechanism of doxorubicin tolerance. Black-Right-Pointing-Pointer We characterize the role of stress granules in doxorubicin tolerance. Black-Right-Pointing-Pointer Deletion of components of SGs enhances doxorubicin sensitivity in fission yeast. Black-Right-Pointing-Pointer Doxorubicin promotes SG formation when combined with heat shock. Black-Right-Pointing-Pointer Doxorubicin regulates stress granule assembly independent of eIF2{alpha} phosphorylation. -- Abstract: Doxorubicin is an anthracycline antibiotic widely used for chemotherapy. Although doxorubicin is effective in the treatment of several cancers, including solid tumors and leukemias, the basis of its mechanism of action is not completely understood. Here, we describe the effects of doxorubicin and its relationship with stress granules formation in the fission yeast, Schizosaccharomyces pombe. We show that disruption of genes encoding the components of stress granules, including vgl1{sup +}, which encodes a multi-KH type RNA-binding protein, and pab1{sup +}, which encodes a poly(A)-binding protein, resulted in greater sensitivity to doxorubicin than seen in wild-type cells. Disruption of the vgl1{sup +} and pab1{sup +} genes did not confer sensitivity to other anti-cancer drugs such as cisplatin, 5-fluorouracil, and paclitaxel. We also showed that doxorubicin treatment promoted stress granule formation when combined with heat shock. Notably, doxorubicin treatment did not induce hyperphosphorylation of eIF2{alpha}, suggesting that doxorubicin is involved in stress granule assembly independent of eIF2{alpha} phosphorylation. Our results demonstrate the usefulness of fission yeast for elucidating the molecular targets of doxorubicin toxicity and suggest a novel drug-resistance mechanism involving stress granule assembly.

  20. Dielectric modelling of cell division for budding and fission yeast

    NASA Astrophysics Data System (ADS)

    Asami, Koji; Sekine, Katsuhisa

    2007-02-01

    The frequency dependence of complex permittivity or the dielectric spectrum of a system including a cell in cell division has been simulated by a numerical technique based on the three-dimensional finite difference method. Two different types of cell division characteristic of budding and fission yeast were examined. The yeast cells are both regarded as a body of rotation, and thus have anisotropic polarization, i.e. the effective permittivity of the cell depends on the orientation of the cell to the direction of an applied electric field. In the perpendicular orientation, where the rotational axis of the cell is perpendicular to the electric field direction, the dielectric spectra for both yeast cells included one dielectric relaxation and its intensity depended on the cell volume. In the parallel orientation, on the other hand, two dielectric relaxations appeared with bud growth for budding yeast and with septum formation for fission yeast. The low-frequency relaxation was shifted to a lower frequency region by narrowing the neck between the bud and the mother cell for budding yeast and by increasing the degree of septum formation for fission yeast. After cell separation, the low-frequency relaxation disappeared. The simulations well interpreted the oscillation of the relative permittivity of culture broth found for synchronous cell growth of budding yeast.

  1. Fission Yeast Model Study for Dissection of TSC Pathway

    DTIC Science & Technology

    2010-04-01

    have also generated two mutants, rhb1-DA4 and rhb1-DA8. In fission yeast, two events, induction of a meiosis initiating gene mei2+ and cell division... meiosis are less induced. Under the same condition, retrotransposons, G1-cyclin (pas1+) and inv1+ are more induced. We have also demonstrated that...responsible for rhb1-DA4, and Q52R I76F within the switch II domain for rhb1-DA8. In fission yeast, two events, induction of a meiosis initiating

  2. A stochastic model of kinetochore-microtubule attachment accurately describes fission yeast chromosome segregation.

    PubMed

    Gay, Guillaume; Courtheoux, Thibault; Reyes, Céline; Tournier, Sylvie; Gachet, Yannick

    2012-03-19

    In fission yeast, erroneous attachments of spindle microtubules to kinetochores are frequent in early mitosis. Most are corrected before anaphase onset by a mechanism involving the protein kinase Aurora B, which destabilizes kinetochore microtubules (ktMTs) in the absence of tension between sister chromatids. In this paper, we describe a minimal mathematical model of fission yeast chromosome segregation based on the stochastic attachment and detachment of ktMTs. The model accurately reproduces the timing of correct chromosome biorientation and segregation seen in fission yeast. Prevention of attachment defects requires both appropriate kinetochore orientation and an Aurora B-like activity. The model also reproduces abnormal chromosome segregation behavior (caused by, for example, inhibition of Aurora B). It predicts that, in metaphase, merotelic attachment is prevented by a kinetochore orientation effect and corrected by an Aurora B-like activity, whereas in anaphase, it is corrected through unbalanced forces applied to the kinetochore. These unbalanced forces are sufficient to prevent aneuploidy.

  3. A series of promoters for constitutive expression of heterologous genes in fission yeast.

    PubMed

    Matsuyama, Akihisa; Shirai, Atsuko; Yoshida, Minoru

    2008-05-01

    Inducible/repressible promoters are useful for the maintenance of toxic genes or timely expression. For ectopic expression of cloned genes in the fission yeast Schizosaccharomyces pombe, the thiamine-regulatable nmt1 promoter has been widely used, since the transcriptional activity of this promoter can be controlled by thiamine. However, this property sometimes limits a certain type of research, since the expression inevitably requires cells to be cultivated under the conditions that induce promoter activation. To allow constitutive expression of heterologous genes, we cloned three promoters of cam1+, tif51+ and ef1a-c+. Construction of a series of vectors comprising these promoters and their introduction into the fission yeast cells demonstrated that the activity was different among these promoters but was not affected by cultured media commonly used in fission yeast. Therefore, a promoter with appropriate strength would be selectable from these promoters, depending on the genes to be expressed.

  4. Rho2 Palmitoylation Is Required for Plasma Membrane Localization and Proper Signaling to the Fission Yeast Cell Integrity Mitogen-Activated Protein Kinase Pathway

    PubMed Central

    Sánchez-Mir, Laura; Franco, Alejandro; Martín-García, Rebeca; Madrid, Marisa; Vicente-Soler, Jero; Soto, Teresa; Gacto, Mariano; Pérez, Pilar

    2014-01-01

    The fission yeast small GTPase Rho2 regulates morphogenesis and is an upstream activator of the cell integrity pathway, whose key element, mitogen-activated protein kinase (MAPK) Pmk1, becomes activated by multiple environmental stimuli and controls several cellular functions. Here we demonstrate that farnesylated Rho2 becomes palmitoylated in vivo at cysteine-196 within its carboxyl end and that this modification allows its specific targeting to the plasma membrane. Unlike that of other palmitoylated and prenylated GTPases, the Rho2 control of morphogenesis and Pmk1 activity is strictly dependent upon plasma membrane localization and is not found in other cellular membranes. Indeed, artificial plasma membrane targeting bypassed the Rho2 need for palmitoylation in order to signal. Detailed functional analysis of Rho2 chimeras fused to the carboxyl end from the essential GTPase Rho1 showed that GTPase palmitoylation is partially dependent on the prenylation context and confirmed that Rho2 signaling is independent of Rho GTP dissociation inhibitor (GDI) function. We further demonstrate that Rho2 is an in vivo substrate for DHHC family acyltransferase Erf2 palmitoyltransferase. Remarkably, Rho3, another Erf2 target, negatively regulates Pmk1 activity in a Rho2-independent fashion, thus revealing the existence of cross talk whereby both GTPases antagonistically modulate the activity of this MAPK cascade. PMID:24820419

  5. The dynamin-related protein Vps1 regulates vacuole fission, fusion and tubulation in the fission yeast, Schizosaccharomyces pombe.

    PubMed

    Röthlisberger, Sarah; Jourdain, Isabelle; Johnson, Chad; Takegawa, Kaoru; Hyams, Jeremy S

    2009-12-01

    Fission yeast cells lacking the dynamin-related protein (DRP) Vps1 had smaller vacuoles with reduced capacity for both fusion and fission in response to hypotonic and hypertonic conditions respectively. vps1Delta cells showed normal vacuolar protein sorting, actin organisation and endocytosis. Over-expression of vps1 transformed vacuoles from spherical to tubular. Tubule formation was enhanced in fission conditions and required the Rab protein Ypt7. Vacuole tubulation by Vps1 was more extensive in the absence of a second DRP, Dnm1. Both dnm1Delta and the double mutant vps1Delta dnm1Delta showed vacuole fission defects similar to that of vps1Delta. Over-expression of vps1 in dnm1Delta, or of dnm1 in vps1Delta failed to rescue this phenotype. Over-expression of dnm1 in wild-type cells, on the other hand, induced vacuole fission. Our results are consistent with a model of vacuole fission in which Vps1 creates a tubule of an appropriate diameter for subsequent scission by Dnm1.

  6. De Novo Biosynthesis of Vanillin in Fission Yeast (Schizosaccharomyces pombe) and Baker's Yeast (Saccharomyces cerevisiae) ▿

    PubMed Central

    Hansen, Esben H.; Møller, Birger Lindberg; Kock, Gertrud R.; Bünner, Camilla M.; Kristensen, Charlotte; Jensen, Ole R.; Okkels, Finn T.; Olsen, Carl E.; Motawia, Mohammed S.; Hansen, Jørgen

    2009-01-01

    Vanillin is one of the world's most important flavor compounds, with a global market of 180 million dollars. Natural vanillin is derived from the cured seed pods of the vanilla orchid (Vanilla planifolia), but most of the world's vanillin is synthesized from petrochemicals or wood pulp lignins. We have established a true de novo biosynthetic pathway for vanillin production from glucose in Schizosaccharomyces pombe, also known as fission yeast or African beer yeast, as well as in baker's yeast, Saccharomyces cerevisiae. Productivities were 65 and 45 mg/liter, after introduction of three and four heterologous genes, respectively. The engineered pathways involve incorporation of 3-dehydroshikimate dehydratase from the dung mold Podospora pauciseta, an aromatic carboxylic acid reductase (ACAR) from a bacterium of the Nocardia genus, and an O-methyltransferase from Homo sapiens. In S. cerevisiae, the ACAR enzyme required activation by phosphopantetheinylation, and this was achieved by coexpression of a Corynebacterium glutamicum phosphopantetheinyl transferase. Prevention of reduction of vanillin to vanillyl alcohol was achieved by knockout of the host alcohol dehydrogenase ADH6. In S. pombe, the biosynthesis was further improved by introduction of an Arabidopsis thaliana family 1 UDP-glycosyltransferase, converting vanillin into vanillin β-d-glucoside, which is not toxic to the yeast cells and thus may be accumulated in larger amounts. These de novo pathways represent the first examples of one-cell microbial generation of these valuable compounds from glucose. S. pombe yeast has not previously been metabolically engineered to produce any valuable, industrially scalable, white biotech commodity. PMID:19286778

  7. Multiple Orientation-Dependent, Synergistically Interacting, Similar Domains in the Ribosomal DNA Replication Origin of the Fission Yeast, Schizosaccharomyces pombe

    PubMed Central

    Kim, Soo-Mi; Huberman, Joel A.

    1998-01-01

    Previous investigations have shown that the fission yeast, Schizosaccharomyces pombe, has DNA replication origins (500 to 1500 bp) that are larger than those in the budding yeast, Saccharomyces cerevisiae (100 to 150 bp). Deletion and linker substitution analyses of two fission yeast origins revealed that they contain multiple important regions with AT-rich asymmetric (abundant A residues in one strand and T residues in the complementary strand) sequence motifs. In this work we present the characterization of a third fission yeast replication origin, ars3001, which is relatively small (∼570 bp) and responsible for replication of ribosomal DNA. Like previously studied fission yeast origins, ars3001 contains multiple important regions. The three most important of these regions resemble each other in several ways: each region is essential for origin function and is at least partially orientation dependent, each region contains similar clusters of A+T-rich asymmetric sequences, and the regions can partially substitute for each other. These observations suggest that ars3001 function requires synergistic interactions between domains binding similar proteins. It is likely that this requirement extends to other fission yeast origins, explaining why such origins are larger than those of budding yeast. PMID:9819416

  8. Oxidative stress response pathways: Fission yeast as archetype.

    PubMed

    Papadakis, Manos A; Workman, Christopher T

    2015-01-01

    Schizosaccharomyces pombe is a popular model eukaryotic organism to study diverse aspects of mammalian biology, including responses to cellular stress triggered by redox imbalances within its compartments. The review considers the current knowledge on the signaling pathways that govern the transcriptional response of fission yeast cells to elevated levels of hydrogen peroxide. Particular attention is paid to the mechanisms that yeast cells employ to promote cell survival in conditions of intermediate and acute oxidative stress. The role of the Sty1/Spc1/Phh1 mitogen-activated protein kinase in regulating gene expression at multiple levels is discussed in detail.

  9. Quantitative analysis of chromosome condensation in fission yeast.

    PubMed

    Petrova, Boryana; Dehler, Sascha; Kruitwagen, Tom; Hériché, Jean-Karim; Miura, Kota; Haering, Christian H

    2013-03-01

    Chromosomes undergo extensive conformational rearrangements in preparation for their segregation during cell divisions. Insights into the molecular mechanisms behind this still poorly understood condensation process require the development of new approaches to quantitatively assess chromosome formation in vivo. In this study, we present a live-cell microscopy-based chromosome condensation assay in the fission yeast Schizosaccharomyces pombe. By automatically tracking the three-dimensional distance changes between fluorescently marked chromosome loci at high temporal and spatial resolution, we analyze chromosome condensation during mitosis and meiosis and deduct defined parameters to describe condensation dynamics. We demonstrate that this method can determine the contributions of condensin, topoisomerase II, and Aurora kinase to mitotic chromosome condensation. We furthermore show that the assay can identify proteins required for mitotic chromosome formation de novo by isolating mutants in condensin, DNA polymerase ε, and F-box DNA helicase I that are specifically defective in pro-/metaphase condensation. Thus, the chromosome condensation assay provides a direct and sensitive system for the discovery and characterization of components of the chromosome condensation machinery in a genetically tractable eukaryote.

  10. Fission Yeast CSL Proteins Function as Transcription Factors

    PubMed Central

    Oravcová, Martina; Teska, Mikoláš; Půta, František; Folk, Petr; Převorovský, Martin

    2013-01-01

    Background Transcription factors of the CSL (CBF1/RBP-Jk/Suppressor of Hairless/LAG-1) family are key regulators of metazoan development and function as the effector components of the Notch receptor signalling pathway implicated in various cell fate decisions. CSL proteins recognize specifically the GTG[G/A]AA sequence motif and several mutants compromised in their ability to bind DNA have been reported. In our previous studies we have identified a number of novel putative CSL family members in fungi, organisms lacking the Notch pathway. It is not clear whether these represent genuine CSL family members. Methodology/Principal Findings Using a combination of in vitro and in vivo approaches we characterized the DNA binding properties of Cbf11 and Cbf12, the antagonistic CSL paralogs from the fission yeast, important for the proper coordination of cell cycle events and the regulation of cell adhesion. We have shown that a mutation of a conserved arginine residue abolishes DNA binding in both CSL paralogs, similar to the situation in mouse. We have also demonstrated the ability of Cbf11 and Cbf12 to activate gene expression in an autologous fission yeast reporter system. Conclusions/Significance Our results indicate that the fission yeast CSL proteins are indeed genuine family members capable of functioning as transcription factors, and provide support for the ancient evolutionary origin of this important protein family. PMID:23555033

  11. The price of independence: cell separation in fission yeast.

    PubMed

    Martín-García, Rebeca; Santos, Beatriz

    2016-04-01

    The ultimate goal of cell division is to give rise to two viable independent daughter cells. A tight spatial and temporal regulation between chromosome segregation and cytokinesis ensures the viability of the daughter cells. Schizosaccharomyces pombe, commonly known as fission yeast, has become a leading model organism for studying essential and conserved mechanisms of the eukaryotic cell division process. Like many other eukaryotic cells it divides by binary fission and the cleavage furrow undergoes ingression due to the contraction of an actomyosin ring. In contrast to mammalian cells, yeasts as cell-walled organisms, also need to form a division septum made of cell wall material to complete the process of cytokinesis. The division septum is deposited behind the constricting ring and it will constitute the new ends of the daughter cells. Cell separation also involves cell wall degradation and this process should be precisely regulated to avoid cell lysis. In this review, we will give a brief overview of the whole cytokinesis process in fission yeast, from the positioning and assembly of the contractile ring to the final step of cell separation, and the problems generated when these processes are not precise.

  12. Schizosaccharomyces japonicus: the fission yeast is a fusion of yeast and hyphae.

    PubMed

    Niki, Hironori

    2014-03-01

    The clade of Schizosaccharomyces includes 4 species: S. pombe, S. octosporus, S. cryophilus, and S. japonicus. Although all 4 species exhibit unicellular growth with a binary fission mode of cell division, S. japonicus alone is dimorphic yeast, which can transit from unicellular yeast to long filamentous hyphae. Recently it was found that the hyphal cells response to light and then synchronously activate cytokinesis of hyphae. In addition to hyphal growth, S. japonicas has many properties that aren't shared with other fission yeast. Mitosis of S. japonicas is referred to as semi-open mitosis because dynamics of nuclear membrane is an intermediate mode between open mitosis and closed mitosis. Novel genetic tools and the whole genomic sequencing of S. japonicas now provide us with an opportunity for revealing unique characters of the dimorphic yeast.

  13. Sterol-Rich Membrane Domains Define Fission Yeast Cell Polarity.

    PubMed

    Makushok, Tatyana; Alves, Paulo; Huisman, Stephen Michiel; Kijowski, Adam Rafal; Brunner, Damian

    2016-05-19

    Cell polarization is crucial for the functioning of all organisms. The cytoskeleton is central to the process but its role in symmetry breaking is poorly understood. We study cell polarization when fission yeast cells exit starvation. We show that the basis of polarity generation is de novo sterol biosynthesis, cell surface delivery of sterols, and their recruitment to the cell poles. This involves four phases occurring independent of the polarity factor cdc42p. Initially, multiple, randomly distributed sterol-rich membrane (SRM) domains form at the plasma membrane, independent of the cytoskeleton and cell growth. These domains provide platforms on which the growth and polarity machinery assembles. SRM domains are then polarized by the microtubule-dependent polarity factor tea1p, which prepares for monopolar growth initiation and later switching to bipolar growth. SRM polarization requires F-actin but not the F-actin organizing polarity factors for3p and bud6p. We conclude that SRMs are key to cell polarization.

  14. Modeling Intracellular Oscillations and Polarity Transition in Fission Yeast

    NASA Astrophysics Data System (ADS)

    Drake, Tyler; Das, Maitreyi; Verde, Fulvia; Vavylonis, Dimitrios

    2011-03-01

    Fission yeast, a pill-shaped model organism, restricts growth to its tips. These cells maintain an asymmetric growth state, growing at only one tip, until they meet length and cell-cycle requirements. With these met, they grow at both. The mechanism of this transition, new-end take-off (NETO), remains unclear. We find that NETO occurs due to long-range competition for fast-diffusing signaling protein Cdc42 between the old and new tips. From experimental results, we suppose that symmetric tips compete for Cdc42, which triggers growth. We describe a symmetric growth model based on competition between tips. This model restricts short cells to monopolar states while allowing longer cells to be bipolar. Autocatalytic Cdc42 recruiting at both cells tips leads to broken symmetry, and the recruiting cuts off as tip Cdc42 levels saturate. Non-linear differential equations describe the model, with stable attractors indicating valid distributions. Linear stability analysis and numerical methods identify stable fixed points over a twofold increase in cell length. The model reproduces qualitative behavior of the organism. We show that observed pole-to-pole Cdc42 oscillations may facilitate the polarity transition and discuss their relationship to the Min system in E. Coli.

  15. The homologous putative GTPases Grn1p from fission yeast and the human GNL3L are required for growth and play a role in processing of nucleolar pre-rRNA.

    PubMed

    Du, Xianming; Rao, Malireddi R K Subba; Chen, Xue Qin; Wu, Wei; Mahalingam, Sundarasamy; Balasundaram, David

    2006-01-01

    Grn1p from fission yeast and GNL3L from human cells, two putative GTPases from the novel HSR1_MMR1 GTP-binding protein subfamily with circularly permuted G-motifs play a critical role in maintaining normal cell growth. Deletion of Grn1 resulted in a severe growth defect, a marked reduction in mature rRNA species with a concomitant accumulation of the 35S pre-rRNA transcript, and failure to export the ribosomal protein Rpl25a from the nucleolus. Deleting any of the Grn1p G-domain motifs resulted in a null phenotype and nuclear/nucleolar localization consistent with the lack of nucleolar export of preribosomes accompanied by a distortion of nucleolar structure. Heterologous expression of GNL3L in a Deltagrn1 mutant restored processing of 35S pre-rRNA, nuclear export of Rpl25a and cell growth to wild-type levels. Genetic complementation in yeast and siRNA knockdown in HeLa cells confirmed the homologous proteins Grn1p and GNL3L are required for growth. Failure of two similar HSR1_MMR1 putative nucleolar GTPases, Nucleostemin (NS), or the dose-dependent response of breast tumor autoantigen NGP-1, to rescue deltagrn1 implied the highly specific roles of Grn1p or GNL3L in nucleolar events. Our analysis uncovers an important role for Grn1p/GNL3L within this unique group of nucleolar GTPases.

  16. Meiotic chromosome mobility in fission yeast is resistant to environmental stress

    PubMed Central

    Illner, Doris; Lorenz, Alexander; Scherthan, Harry

    2016-01-01

    The formation of healthy gametes requires pairing of homologous chromosomes (homologs) as a prerequisite for their correct segregation during meiosis. Initially, homolog alignment is promoted by meiotic chromosome movements feeding into intimate homolog pairing by homologous recombination and/or synaptonemal complex formation. Meiotic chromosome movements in the fission yeast, Schizosaccharomyces pombe, depend on astral microtubule dynamics that drag the nucleus through the zygote; known as horsetail movement. The response of microtubule-led meiotic chromosome movements to environmental stresses such as ionizing irradiation (IR) and associated reactive oxygen species (ROS) is not known. Here, we show that, in contrast to budding yeast, the horsetail movement is largely radiation-resistant, which is likely mediated by a potent antioxidant defense. IR exposure of sporulating S. pombe cells induced misrepair and irreparable DNA double strand breaks causing chromosome fragmentation, missegregation and gamete death. Comparing radiation outcome in fission and budding yeast, and studying meiosis with poisoned microtubules indicates that the increased gamete death after IR is innate to fission yeast. Inhibition of meiotic chromosome mobility in the face of IR failed to influence the course of DSB repair, indicating that paralysis of meiotic chromosome mobility in a genotoxic environment is not a universal response among species. PMID:27074839

  17. Molecular Genetic Tools and Techniques in Fission Yeast.

    PubMed

    Murray, Johanne M; Watson, Adam T; Carr, Antony M

    2016-05-02

    The molecular genetic tools used in fission yeast have generally been adapted from methods and approaches developed for use in the budding yeast, Saccharomyces cerevisiae Initially, the molecular genetics of Schizosaccharomyces pombe was developed to aid gene identification, but it is now applied extensively to the analysis of gene function and the manipulation of noncoding sequences that affect chromosome dynamics. Much current research using fission yeast thus relies on the basic processes of introducing DNA into the organism and the extraction of DNA for subsequent analysis. Targeted integration into specific genomic loci is often used to create site-specific mutants or changes to noncoding regulatory elements for subsequent phenotypic analysis. It is also regularly used to introduce additional sequences that generate tagged proteins or to create strains in which the levels of wild-type protein can be manipulated through transcriptional regulation and/or protein degradation. Here, we draw together a collection of core molecular genetic techniques that underpin much of modern research using S. pombe We summarize the most useful methods that are routinely used and provide guidance, learned from experience, for the successful application of these methods.

  18. Nuclear envelope fission is linked to cytokinesis in budding yeast.

    PubMed

    Lippincott, J; Li, R

    2000-11-01

    We have investigated the relationship between nuclear envelope fission and cytokinesis during mitotic cell division in budding yeast. By carrying out time-lapse and optical sectioning video microscopy analysis of cells that express green fluorescent protein (GFP)-tagged nuclear envelope and actomyosin ring components, we found that nuclear division is temporally coupled to cytokinesis. Light and electron microscopy analysis also showed that nuclear envelope fission and the division of the nucleoplasm are severely delayed in cytokinesis mutants, resulting in discoupling between the nuclear division cycle and the budding cycle. These results suggest that homotypic membrane fusion may be activated by components or the mechanical action of cytokinetic structures and presents a mechanism for the equal partitioning of the nucleus and the temporal coordination of this event with chromosome segregation during mitosis.

  19. A Proteome-wide Fission Yeast Interactome Reveals Network Evolution Principles from Yeasts to Human.

    PubMed

    Vo, Tommy V; Das, Jishnu; Meyer, Michael J; Cordero, Nicolas A; Akturk, Nurten; Wei, Xiaomu; Fair, Benjamin J; Degatano, Andrew G; Fragoza, Robert; Liu, Lisa G; Matsuyama, Akihisa; Trickey, Michelle; Horibata, Sachi; Grimson, Andrew; Yamano, Hiroyuki; Yoshida, Minoru; Roth, Frederick P; Pleiss, Jeffrey A; Xia, Yu; Yu, Haiyuan

    2016-01-14

    Here, we present FissionNet, a proteome-wide binary protein interactome for S. pombe, comprising 2,278 high-quality interactions, of which ∼ 50% were previously not reported in any species. FissionNet unravels previously unreported interactions implicated in processes such as gene silencing and pre-mRNA splicing. We developed a rigorous network comparison framework that accounts for assay sensitivity and specificity, revealing extensive species-specific network rewiring between fission yeast, budding yeast, and human. Surprisingly, although genes are better conserved between the yeasts, S. pombe interactions are significantly better conserved in human than in S. cerevisiae. Our framework also reveals that different modes of gene duplication influence the extent to which paralogous proteins are functionally repurposed. Finally, cross-species interactome mapping demonstrates that coevolution of interacting proteins is remarkably prevalent, a result with important implications for studying human disease in model organisms. Overall, FissionNet is a valuable resource for understanding protein functions and their evolution.

  20. A proteome-wide fission yeast interactome reveals network evolution principles from yeasts to human

    PubMed Central

    Vo, Tommy V.; Das, Jishnu; Meyer, Michael J.; Cordero, Nicolas A.; Akturk, Nurten; Wei, Xiaomu; Fair, Benjamin J.; Degatano, Andrew G.; Fragoza, Robert; Liu, Lisa G.; Matsuyama, Akihisa; Trickey, Michelle; Horibata, Sachi; Grimson, Andrew; Yamano, Hiroyuki; Yoshida, Minoru; Roth, Frederick P.; Pleiss, Jeffrey A.; Xia, Yu; Yu, Haiyuan

    2015-01-01

    SUMMARY Here, we present FissionNet, a proteome-wide binary protein interactome for S. pombe, comprising 2,278 high-quality interactions, of which ~50% were previously not reported in any species. FissionNet unravels previously unreported interactions implicated in processes such as gene silencing and pre-mRNA splicing. We developed a rigorous network comparison framework that accounts for assay sensitivity and specificity, revealing extensive species-specific network rewiring between fission yeast, budding yeast, and human. Surprisingly, although genes are better conserved between the yeasts, S. pombe interactions are significantly better conserved in human than in S. cerevisiae. Our framework also reveals that different modes of gene duplication influence the extent to which paralogous proteins are functionally repurposed. Finally, cross-species interactome mapping demonstrates that coevolution of interacting proteins is remarkably prevalent, a result with important implications for studying human disease in model organisms. Overall, FissionNet is a valuable resource for understanding protein functions and their evolution. PMID:26771498

  1. Model of Exploratory Search for Mating Partners by Fission Yeast

    NASA Astrophysics Data System (ADS)

    Hurwitz, Daniel; Bendezu, Felipe; Martin, Sophie; Vavylonis, Dimitrios

    2014-03-01

    During conditions of nitrogen starvation, the model eukaryote S. pombe (fission yeast) undergoes sexual sporulation. Because fission yeast are non-motile, contact between opposite mating types during spore formation is accomplished by polarizing growth, via the Rho GTP-ase Cdc42, in each mating type towards the selected mate, a process known as shmooing. Recent findings showed that cells pick one of their neighboring compatible mates by randomizing the position of the Cdc42 complex about the cell membrane, such that the complex is stabilized near areas of high concentration of the opposite mating type pheromone. We developed Monte Carlo simulations to model partner finding in populations of mating cells and in small cell clusters. We assume that pheromones are secreted at the site of Cdc42 accumulation and that the Cdc42 dwell time increases in response to increasing pheromone concentration. We measured the number of cells that succeed in successful reciprocal pairing, the number of cells that were unable to find a partner, and the number of cells that picked a partner already engaged with another cell. For optimal cell pairing, we find the pheromone concentration decay length is around 1 micron, of order the cell size. We show that non-linear response of Cdc42 dwell time to pheromone concentration improves the number of successful pairs for a given spatial cell distribution. We discuss how these results compare to non-exploratory pairing mechanisms.

  2. Inner Kinetochore Protein Interactions with Regional Centromeres of Fission Yeast

    PubMed Central

    Thakur, Jitendra; Talbert, Paul B.; Henikoff, Steven

    2015-01-01

    Centromeres of the fission yeast Schizosaccharomyces pombe lack the highly repetitive sequences that make most other "regional" centromeres refractory to analysis. To map fission yeast centromeres, we applied H4S47C-anchored cleavage mapping and native and cross-linked chromatin immunoprecipitation with paired-end sequencing. H3 nucleosomes are nearly absent from the central domain, which is occupied by centromere-specific H3 (cenH3 or CENP-A) nucleosomes with two H4s per particle that are mostly unpositioned and are more widely spaced than nucleosomes elsewhere. Inner kinetochore proteins CENP-A, CENP-C, CENP-T, CENP-I, and Scm3 are highly enriched throughout the central domain except at tRNA genes, with no evidence for preferred kinetochore assembly sites. These proteins are weakly enriched and less stably incorporated in H3-rich heterochromatin. CENP-A nucleosomes protect less DNA from nuclease digestion than H3 nucleosomes, while CENP-T protects a range of fragment sizes. Our results suggest that CENP-T particles occupy linkers between CENP-A nucleosomes and that classical regional centromeres differ from other centromeres by the absence of CENP-A nucleosome positioning. PMID:26275423

  3. Bidirectional motility of the fission yeast kinesin-5, Cut7

    SciTech Connect

    Edamatsu, Masaki

    2014-03-28

    Highlights: • Motile properties of Cut7 (fission yeast kinesin-5) were studied for the first time. • Half-length Cut7 moved toward plus-end direction of microtubule. • Full-length Cut7 moved toward minus-end direction of microtubule. • N- and C-terminal microtubule binding sites did not switch the motile direction. - Abstract: Kinesin-5 is a homotetrameric motor with its motor domain at the N-terminus. Kinesin-5 crosslinks microtubules and functions in separating spindle poles during mitosis. In this study, the motile properties of Cut7, fission yeast kinesin-5, were examined for the first time. In in vitro motility assays, full-length Cut7 moved toward minus-end of microtubules, but the N-terminal half of Cut7 moved toward the opposite direction. Furthermore, additional truncated constructs lacking the N-terminal or C-terminal regions, but still contained the motor domain, did not switch the motile direction. These indicated that Cut7 was a bidirectional motor, and microtubule binding regions at the N-terminus and C-terminus were not involved in its directionality.

  4. The fission yeast meiotic checkpoint kinase Mek1 regulates nuclear localization of Cdc25 by phosphorylation.

    PubMed

    Pérez-Hidalgo, Livia; Moreno, Sergio; San-Segundo, Pedro A

    2008-12-01

    In eukaryotic cells, fidelity in transmission of genetic information during cell division is ensured by the action of cell cycle checkpoints. Checkpoints are surveillance mechanisms that arrest or delay cell cycle progression when critical cellular processes are defective or when the genome is damaged. During meiosis, the so-called meiotic recombination checkpoint blocks entry into meiosis I until recombination has been completed, thus avoiding aberrant chromosome segregation and the formation of aneuploid gametes. One of the key components of the meiotic recombination checkpoint is the meiosis-specific Mek1 kinase, which belongs to the family of Rad53/Cds1/Chk2 checkpoint kinases containing forkhead-associated domains. In fission yeast, several lines of evidence suggest that Mek1 targets the critical cell cycle regulator Cdc25 to delay meiotic cell cycle progression. Here, we investigate in more detail the molecular mechanism of action of the fission yeast Mek1 protein. We demonstrate that Mek1 acts independently of Cds1 to phosphorylate Cdc25, and this phosphorylation is required to trigger cell cycle arrest. Using ectopic overexpression of mek1(+) as a tool to induce in vivo activation of Mek1, we find that Mek1 promotes cytoplasmic accumulation of Cdc25 and results in prolonged phosphorylation of Cdc2 at tyrosine 15. We propose that at least one of the mechanisms contributing to the cell cycle delay when the meiotic recombination checkpoint is activated in fission yeast is the nuclear exclusion of the Cdc25 phosphatase by Mek1-dependent phosphorylation.

  5. Fission yeast mitochondria are distributed by dynamic microtubules in a motor-independent manner.

    PubMed

    Li, Tianpeng; Zheng, Fan; Cheung, Martin; Wang, Fengsong; Fu, Chuanhai

    2015-06-05

    The cytoskeleton plays a critical role in regulating mitochondria distribution. Similar to axonal mitochondria, the fission yeast mitochondria are distributed by the microtubule cytoskeleton, but this is regulated by a motor-independent mechanism depending on the microtubule associated protein mmb1p as the absence of mmb1p causes mitochondria aggregation. In this study, using a series of chimeric proteins to control the subcellular localization and motility of mitochondria, we show that a chimeric molecule containing a microtubule binding domain and the mitochondria outer membrane protein tom22p can restore the normal interconnected mitochondria network in mmb1-deletion (mmb1∆) cells. In contrast, increasing the motility of mitochondria by using a chimeric molecule containing a kinesin motor domain and tom22p cannot rescue mitochondria aggregation defects in mmb1∆ cells. Intriguingly a chimeric molecule carrying an actin binding domain and tom22p results in mitochondria associated with actin filaments at the actomyosin ring during mitosis, leading to cytokinesis defects. These findings suggest that the passive motor-independent microtubule-based mechanism is the major contributor to mitochondria distribution in wild type fission yeast cells. Hence, we establish that attachment to microtubules, but not kinesin-dependent movement and the actin cytoskeleton, is required and crucial for proper mitochondria distribution in fission yeast.

  6. The essential function of Rrs1 in ribosome biogenesis is conserved in budding and fission yeasts.

    PubMed

    Wan, Kun; Kawara, Haruka; Yamamoto, Tomoyuki; Kume, Kazunori; Yabuki, Yukari; Goshima, Tetsuya; Kitamura, Kenji; Ueno, Masaru; Kanai, Muneyoshi; Hirata, Dai; Funato, Kouichi; Mizuta, Keiko

    2015-09-01

    The Rrs1 protein plays an essential role in the biogenesis of 60S ribosomal subunits in budding yeast (Saccharomyces cerevisiae). Here, we examined whether the fission yeast (Schizosaccharomyces pombe) homologue of Rrs1 also plays a role in ribosome biogenesis. To this end, we constructed two temperature-sensitive fission yeast strains, rrs1-D14/22G and rrs1-L51P, which had amino acid substitutions corresponding to those of the previously characterized budding yeast rrs1-84 (D22/30G) and rrs1-124 (L61P) strains, respectively. The fission yeast mutants exhibited severe defects in growth and 60S ribosomal subunit biogenesis at high temperatures. In addition, expression of the Rrs1 protein of fission yeast suppressed the growth defects of the budding yeast rrs1 mutants at high temperatures. Yeast two-hybrid analyses revealed that the interactions of Rrs1 with the Rfp2 and Ebp2 proteins were conserved in budding and fission yeasts. These results suggest that the essential function of Rrs1 in ribosome biogenesis may be conserved in budding and fission yeasts.

  7. Cell-cycle analyses using thymidine analogues in fission yeast.

    PubMed

    Anda, Silje; Boye, Erik; Grallert, Beata

    2014-01-01

    Thymidine analogues are powerful tools when studying DNA synthesis including DNA replication, repair and recombination. However, these analogues have been reported to have severe effects on cell-cycle progression and growth, the very processes being investigated in most of these studies. Here, we have analyzed the effects of 5-ethynyl-2'-deoxyuridine (EdU) and 5-Chloro-2'-deoxyuridine (CldU) using fission yeast cells and optimized the labelling procedure. We find that both analogues affect the cell cycle, but that the effects can be mitigated by using the appropriate analogue, short pulses of labelling and low concentrations. In addition, we report sequential labelling of two consecutive S phases using EdU and 5-bromo-2'-deoxyuridine (BrdU). Furthermore, we show that detection of replicative DNA synthesis is much more sensitive than DNA-measurements by flow cytometry.

  8. Specific replication origins promote DNA amplification in fission yeast.

    PubMed

    Kiang, Lee; Heichinger, Christian; Watt, Stephen; Bähler, Jürg; Nurse, Paul

    2010-09-15

    To ensure equal replication of the genome in every eukaryotic cell cycle, replication origins fire only once each S phase and do not fire after passive replication. Failure in these controls can lead to local amplification, contributing to genome instability and the development of cancer. To identify features of replication origins important for such amplification, we have investigated origin firing and local genome amplification in the presence of excess helicase loaders Cdc18 and Cdt1 in fission yeast. We find that S phase controls are attenuated and coordination of origin firing is lost, resulting in local amplification. Specific origins are necessary for amplification but act only within a permissive chromosomal context. Origins associated with amplification are highly AT-rich, fire efficiently and early during mitotic S phase, and are located in large intergenic regions. We propose that these features predispose replication origins to re-fire within a single S phase, or to remain active after passive replication.

  9. Brownian dynamics simulation of fission yeast mitotic spindle formation

    NASA Astrophysics Data System (ADS)

    Edelmaier, Christopher

    2014-03-01

    The mitotic spindle segregates chromosomes during mitosis. The dynamics that establish bipolar spindle formation are not well understood. We have developed a computational model of fission-yeast mitotic spindle formation using Brownian dynamics and kinetic Monte Carlo methods. Our model includes rigid, dynamic microtubules, a spherical nuclear envelope, spindle pole bodies anchored in the nuclear envelope, and crosslinkers and crosslinking motor proteins. Crosslinkers and crosslinking motor proteins attach and detach in a grand canonical ensemble, and exert forces and torques on the attached microtubules. We have modeled increased affinity for crosslinking motor attachment to antiparallel microtubule pairs, and stabilization of microtubules in the interpolar bundle. We study parameters controlling the stability of the interpolar bundle and assembly of a bipolar spindle from initially adjacent spindle-pole bodies.

  10. Nuclear compartmentalization is abolished during fission yeast meiosis.

    PubMed

    Arai, Kunio; Sato, Masamitsu; Tanaka, Kayoko; Yamamoto, Masayuki

    2010-11-09

    In eukaryotic cells, the nuclear envelope partitions the nucleus from the cytoplasm. The fission yeast Schizosaccharomyces pombe undergoes closed mitosis in which the nuclear envelope persists rather than being broken down, as in higher eukaryotic cells. It is therefore assumed that nucleocytoplasmic transport continues during the cell cycle. Here we show that nuclear transport is, in fact, abolished specifically during anaphase of the second meiotic nuclear division. During that time, both nucleoplasmic and cytoplasmic proteins disperse throughout the cell, reminiscent of the open mitosis of higher eukaryotes, but the architecture of the S. pombe nuclear envelope itself persists. This functional alteration of the nucleocytoplasmic barrier is likely induced by spore wall formation, because ectopic induction of sporulation signaling leads to premature dispersion of nucleoplasmic proteins. A photobleaching assay demonstrated that nuclear envelope permeability increases abruptly at the onset of anaphase of the second meiotic division. The permeability was not altered when sporulation was inhibited by blocking the trafficking of forespore-membrane vesicles from the endoplasmic reticulum to the Golgi. The evidence indicates that yeast gametogenesis produces vesicle transport-mediated forespore membranes by inducing nuclear envelope permeabilization.

  11. Systematic genetic analysis of transcription factors to map the fission yeast transcription-regulatory network.

    PubMed

    Chua, Gordon

    2013-12-01

    Mapping transcriptional-regulatory networks requires the identification of target genes, binding specificities and signalling pathways of transcription factors. However, the characterization of each transcription factor sufficiently for deciphering such networks remains laborious. The recent availability of overexpression and deletion strains for almost all of the transcription factor genes in the fission yeast Schizosaccharomyces pombe provides a valuable resource to better investigate transcription factors using systematic genetics. In the present paper, I review and discuss the utility of these strain collections combined with transcriptome profiling and genome-wide chromatin immunoprecipitation to identify the target genes of transcription factors.

  12. DNA replication and damage checkpoints and meiotic cell cycle controls in the fission and budding yeasts.

    PubMed Central

    Murakami, H; Nurse, P

    2000-01-01

    The cell cycle checkpoint mechanisms ensure the order of cell cycle events to preserve genomic integrity. Among these, the DNA-replication and DNA-damage checkpoints prevent chromosome segregation when DNA replication is inhibited or DNA is damaged. Recent studies have identified an outline of the regulatory networks for both of these controls, which apparently operate in all eukaryotes. In addition, it appears that these checkpoints have two arrest points, one is just before entry into mitosis and the other is prior to chromosome separation. The former point requires the central cell-cycle regulator Cdc2 kinase, whereas the latter involves several key regulators and substrates of the ubiquitin ligase called the anaphase promoting complex. Linkages between these cell-cycle regulators and several key checkpoint proteins are beginning to emerge. Recent findings on post-translational modifications and protein-protein interactions of the checkpoint proteins provide new insights into the checkpoint responses, although the functional significance of these biochemical properties often remains unclear. We have reviewed the molecular mechanisms acting at the DNA-replication and DNA-damage checkpoints in the fission yeast Schizosaccharomyces pombe, and the modifications of these controls during the meiotic cell cycle. We have made comparisons with the controls in fission yeast and other organisms, mainly the distantly related budding yeast. PMID:10861204

  13. Yeast mitochondrial fission proteins induce antagonistic Gaussian membrane curvatures to regulate apoptosis

    NASA Astrophysics Data System (ADS)

    Lee, Michelle; Hwee Lai, Ghee; Schmidt, Nathan; Xian, Wujing; Wong, Gerard C. L.

    2013-03-01

    Mitochondria form a dynamic and interconnected network, which disintegrates during apoptosis to generate numerous smaller mitochondrial fragments. This process is at present not well understood. Yeast mitochondrial fission machinery proteins, Dnm1 and Fis1, are believed to regulate programmed cell death in yeast. Yeast Dnm1 has been previously shown to promote mitochondrial fragmentation and degradation characteristic of apoptotic cells, while yeast Fis1 inhibits cell death by limiting the mitochondrial fission induced by Dnm1 [Fannjiang et al, Genes & Dev. 2004. 18: 2785-2797]. To better understand the mechanisms of these antagonistic fission proteins, we use synchrotron small angle x-ray scattering (SAXS) to investigate their interaction with model cell membranes. The relationship between each protein, Dnm1 and Fis1, and protein-induced changes in membrane curvature and topology is examined. Through the comparison of the membrane rearrangement and phase behavior induced by each protein, we will discuss their respective roles in the regulation of mitochondrial fission.

  14. Mapping of ure1, ure2 and ure3 markers in fission yeast.

    PubMed

    Lubbers, M W; Thornton, R J; Honey, N K

    1997-09-30

    The following urease genes of the fission yeast Schizosaccharomyces pombe have been mapped by induced haploidization and tetrad analysis--ure1: chromosome are III-L; ure2 and ure3: chromosome are I-R. The previously determined tps19-rad1 interval (11-12 cM) has been increased to 18 cM. A convenient medium for rapidly scoring the ure gene markers of fission yeast was developed.

  15. The 3' ends of mature transcripts are generated by a processosome complex in fission yeast mitochondria.

    PubMed

    Hoffmann, Bastian; Nickel, Jens; Speer, Falk; Schafer, Bernd

    2008-04-04

    In this article, we report on the genetic analysis of the Schizosaccharomyces pombe open reading frames SPCC1322.01 and SPAC637.11, respectively, which encode proteins that are similar to the exoribonuclease Dss1p and the RNA helicase Suv3p, respectively, forming the mitochondrial degradosome of Saccharomyces cerevisiae. While the helicase Suv3p is exchangeable between S. cerevisiae and S. pombe, the functions of Dss1p and the putative fission yeast RNase protein are specific for each species. Unlike S. cerevisiae mutants lacking a functional degradosome, the major defect of fission yeast knock-out strains is their inability to perform downstream processing of transcripts. In addition, the lack of pah1 results in instability of mitochondrial RNA ends. Overexpression of par1 and pah1 has no significant effect on the steady-state levels of mitochondrial RNAs. The Pet127p-stimulated RNA degradation activity is independent of Par1p/Pah1p in fission yeast mitochondria. The results presented herein indicate that both fission yeast proteins play only a minor role (if at all) in mitochondrial RNA degradation. We assume that the RNA-degrading function was taken over by other enzymes in fission yeast mitochondria, while the former degradosome proteins were recruited to new cellular pathways, for example, RNA processing in fission yeast (as discussed in this article) or mitochondrial DNA replication, apoptosis, or chromatin maintenance in eukaryotes, during evolution.

  16. Evaluation of a novel method for measurement of intracellular calcium ion concentration in fission yeast.

    PubMed

    Ogata, Fumihiko; Satoh, Ryosuke; Kita, Ayako; Sugiura, Reiko; Kawasaki, Naohito

    2017-01-01

    The distribution of metal and metalloid species in each of the cell compartments is termed as "metallome". It is important to elucidate the molecular mechanism underlying the beneficial or toxic effects exerted by a given metal or metalloid on human health. Therefore, we developed a method to measure intracellular metal ion concentration (particularly, intracellular calcium ion) in fission yeast. We evaluated the effects of nitric acid (HNO3), zymolyase, and westase treatment on cytolysis in fission yeast. Moreover, we evaluated the changes in the intracellular calcium ion concentration in fission yeast in response to treatment with/without micafungin. The fission yeast undergoes lysis when treated with 60% HNO3, which is simpler and cheaper compared to the other treatments. Additionally, the intracellular calcium ion concentration in 60% HNO3-treated fission yeast was determined by inductively coupled plasma atomic emission spectrometry. This study yields significant information pertaining to measurement of the intracellular calcium ion concentration in fission yeast, which is useful for elucidating the physiological or pathological functions of calcium ion in the biological systems. This study is the first step to obtain perspective view on the effect of the metallome in biological systems.

  17. Coupling of double-stranded RNA synthesis and siRNA generation in fission yeast RNAi.

    PubMed

    Colmenares, Serafin U; Buker, Shane M; Buhler, Marc; Dlakić, Mensur; Moazed, Danesh

    2007-08-03

    The fission yeast centromeric repeats are transcribed and ultimately processed into small interfering RNAs (siRNAs) that are required for heterochromatin formation. siRNA generation requires dsRNA synthesis by the RNA-directed RNA polymerase complex (RDRC) and processing by the Dicer ribonuclease. Here we show that Dcr1, the fission yeast Dicer, is physically associated with RDRC. Dcr1 generates siRNAs in an ATP-dependent manner that requires its conserved N-terminal helicase domain. Furthermore, C-terminal truncations of Dcr1 that abolish its interaction with RDRC, but can generate siRNA in vitro, abolish siRNA generation and heterochromatic gene silencing in vivo. Finally, reconstitution experiments show that the association of Dcr1 with RDRC strongly stimulates the dsRNA synthesis activity of RDRC. Our results suggest that heterochromatic dsRNA synthesis and siRNA generation are physically coupled processes. This coupling has implications for cis-restriction of siRNA-mediated heterochromatin assembly and for mechanisms that give rise to siRNA strand polarity.

  18. The fission yeast MRN complex tethers dysfunctional telomeres for NHEJ repair

    PubMed Central

    Reis, Clara Correia; Batista, Sílvia; Ferreira, Miguel Godinho

    2012-01-01

    Telomeres protect the natural ends of chromosomes from being repaired as deleterious DNA breaks. In fission yeast, absence of Taz1 (homologue of human TRF1 and TRF2) renders telomeres vulnerable to DNA repair. During the G1 phase, when non-homologous end joining (NHEJ) is upregulated, taz1Δ cells undergo telomere fusions with consequent loss of viability. Here, we show that disruption of the fission yeast MRN (Rad23MRE11-Rad50-Nbs1) complex prevents NHEJ at telomeres and, as a result, rescues taz1Δ lethality in G1. Neither Tel1ATM activation nor 5′-end resection was required for telomere fusion. Nuclease activity of Rad32MRE11 was also dispensable for NHEJ. Mutants unable to coordinate metal ions required for nuclease activity were proficient in NHEJ repair. In contrast, Rad32MRE11 mutations that affect binding and/or positioning of DNA ends leaving the nuclease function largely unaffected also impaired NHEJ at telomeres and restored the viability of taz1Δ in G1. Consistently, MRN structural integrity but not nuclease function is also required for NHEJ of independent DNA ends in a novel split-molecule plasmid assay. Thus, MRN acts to tether unlinked DNA ends, allowing for efficient NHEJ. PMID:23188080

  19. Virtual breakdown of the nuclear envelope in fission yeast meiosis.

    PubMed

    Asakawa, Haruhiko; Kojidani, Tomoko; Mori, Chie; Osakada, Hiroko; Sato, Mamiko; Ding, Da-Qiao; Hiraoka, Yasushi; Haraguchi, Tokuko

    2010-11-09

    Asymmetric localization of Ran regulators (RanGAP1 and RanGEF/RCC1) produces a gradient of RanGTP across the nuclear envelope. In higher eukaryotes, the nuclear envelope breaks down as the cell enters mitosis (designated "open" mitosis). This nuclear envelope breakdown (NEBD) leads to collapse of the RanGTP gradient and the diffusion of nuclear and cytoplasmic macromolecules in the cell, resulting in irreversible progression of the cell cycle. On the other hand, in many fungi, chromosome segregation takes place without NEBD (designated "closed" mitosis). Here we report that in the fission yeast Schizosaccharomyces pombe, despite the nuclear envelope and the nuclear pore complex remaining intact throughout both the meiotic and mitotic cell cycles, nuclear proteins diffuse into the cytoplasm transiently for a few minutes at the onset of anaphase of meiosis II. We also found that nuclear protein diffusion into the cytoplasm occurred coincidently with nuclear localization of Rna1, an S. pombe RanGAP1 homolog that is usually localized in the cytoplasm. These results suggest that nuclear localization of RanGAP1 and depression of RanGTP activity in the nucleus may be mechanistically tied to meiosis-specific diffusion of nuclear proteins into the cytoplasm. This nucleocytoplasmic shuffling of RanGAP1 and nuclear proteins represents virtual breakdown of the nuclear envelope.

  20. Fission yeast kinesin-8 controls chromosome congression independently of oscillations

    PubMed Central

    Mary, Hadrien; Fouchard, Jonathan; Gay, Guillaume; Reyes, Céline; Gauthier, Tiphaine; Gruget, Clémence; Pécréaux, Jacques; Tournier, Sylvie; Gachet, Yannick

    2015-01-01

    ABSTRACT In higher eukaryotes, efficient chromosome congression relies, among other players, on the activity of chromokinesins. Here, we provide a quantitative analysis of kinetochore oscillations and positioning in Schizosaccharomyces pombe, a model organism lacking chromokinesins. In wild-type cells, chromosomes align during prophase and, while oscillating, maintain this alignment throughout metaphase. Chromosome oscillations are dispensable both for kinetochore congression and stable kinetochore alignment during metaphase. In higher eukaryotes, kinesin-8 family members control chromosome congression by regulating their oscillations. By contrast, here, we demonstrate that fission yeast kinesin-8 controls chromosome congression by an alternative mechanism. We propose that kinesin-8 aligns chromosomes by controlling pulling forces in a length-dependent manner. A coarse-grained model of chromosome segregation implemented with a length-dependent process that controls the force at kinetochores is necessary and sufficient to mimic kinetochore alignment, and prevents the appearance of lagging chromosomes. Taken together, these data illustrate how the local action of a motor protein at kinetochores provides spatial cues within the spindle to align chromosomes and to prevent aneuploidy. PMID:26359299

  1. Regulation of wee1(+) expression during meiosis in fission yeast.

    PubMed

    Murakami-Tonami, Yuko; Ohtsuka, Hokuto; Aiba, Hirofumi; Murakami, Hiroshi

    2014-01-01

    In eukaryotes, the cyclin-dependent kinase Cdk1p (Cdc2p) plays a central role in entry into and progression through nuclear division during mitosis and meiosis. Cdk1p is activated during meiotic nuclear divisions by dephosphorylation of its tyrosine-15 residue. The phosphorylation status of this residue is largely determined by the Wee1p kinase and the Cdc25p phosphatase. In fission yeast, the forkhead-type transcription factor Mei4p is essential for entry into the first meiotic nuclear division. We recently identified cdc25(+) as an essential target of Mei4p in the control of entry into meiosis I. Here, we show that wee1(+) is another important target of Mei4p in the control of entry into meiosis I. Mei4p bound to the upstream region of wee1(+) in vivo and in vitro and inhibited expression of wee1(+), whereas Mei4p positively regulated expression of the adjacent pseudogene. Overexpression of Mei4p inhibited expression of wee1(+) and induced that of the pseudogene. Conversely, deletion of Mei4p did not decrease expression of wee1(+) but inhibited that of the pseudogene. In addition, deletion of Mei4p-binding regions delayed repression of wee1(+) expression as well as induction of expression of the pseudogene. These results suggest that repression of wee1(+) expression is primarily owing to Mei4p-mediated transcriptional interference.

  2. Spatial segregation of Ras signaling: new evidence from fission yeast.

    PubMed

    Chang, Eric C; Philips, Mark R

    2006-09-01

    The Ras GTPases act as binary switches for signal transduction pathways that are important for growth regulation and tumorigenesis. Despite the biochemical simplicity of this switch, Ras proteins control multiple pathways, and the functions of the four mammalian Ras proteins are not overlapping. This raises an important question--how does a Ras protein selectively regulate a particular activity? One recently emerging model suggests that a single Ras protein can control different functions by acting in distinct cellular compartments. A critical test of this model is to identify pathways that are selectively controlled by Ras when it is localized to a particular compartment. A recent study has examined Ras signaling in the fission yeast Schizosaccharomyces pombe, which expresses only one Ras protein that controls two separate evolutionarily conserved pathways. This study demonstrates that whereas Ras localized to the plasma membrane selectively regulates a MAP kinase pathway to mediate mating pheromone signaling, Ras localized to the endomembrane activates a Cdc42 pathway to mediate cell polarity and protein trafficking. This study has provided unambiguous evidence for compartmentalized signaling of Ras.

  3. Fission yeast RNA triphosphatase reads an Spt5 CTD code.

    PubMed

    Doamekpor, Selom K; Schwer, Beate; Sanchez, Ana M; Shuman, Stewart; Lima, Christopher D

    2015-01-01

    mRNA capping enzymes are directed to nascent RNA polymerase II (Pol2) transcripts via interactions with the carboxy-terminal domains (CTDs) of Pol2 and transcription elongation factor Spt5. Fission yeast RNA triphosphatase binds to the Spt5 CTD, comprising a tandem repeat of nonapeptide motif TPAWNSGSK. Here we report the crystal structure of a Pct1·Spt5-CTD complex, which revealed two CTD docking sites on the Pct1 homodimer that engage TPAWN segments of the motif. Each Spt5 CTD interface, composed of elements from both subunits of the homodimer, is dominated by van der Waals contacts from Pct1 to the tryptophan of the CTD. The bound CTD adopts a distinctive conformation in which the peptide backbone makes a tight U-turn so that the proline stacks over the tryptophan. We show that Pct1 binding to Spt5 CTD is antagonized by threonine phosphorylation. Our results fortify an emerging concept of an "Spt5 CTD code" in which (i) the Spt5 CTD is structurally plastic and can adopt different conformations that are templated by particular cellular Spt5 CTD receptor proteins; and (ii) threonine phosphorylation of the Spt5 CTD repeat inscribes a binary on-off switch that is read by diverse CTD receptors, each in its own distinctive manner.

  4. Theoretical Description of Microtubule Dynamics in Fission Yeast During Interphase

    NASA Astrophysics Data System (ADS)

    Oei, Yung-Chin; Jiménez-Dalmaroni, Andrea; Vilfan, Andrej; Duke, Thomas

    2009-03-01

    Fission yeast (S. pombe) is a unicellular organism with a characteristic cylindrical shape. Cell growth during interphase is strongly influenced by microtubule self-organization - a process that has been experimentally well characterised. The microtubules are organized in 3 to 4 bundles, called ``interphase microtubule assemblies'' (IMAs). Each IMA is composed of several microtubules, arranged with their dynamic ``plus'' ends facing the cell tips and their ``minus'' ends overlapping at the cell middle. Although the main protein factors involved in interphase microtubule organization have been identified, an understanding of how their collective interaction with microtubules leads to the organization and structures observed in vivo is lacking. We present a physical model of microtubule dynamics that aims to provide a quantitative description of the self-organization process. First, we solve equations for the microtubule length distribution in steady-state, taking into account the way that a limited tubulin pool affects the nucleation, growth and shrinkage of microtubules. Then we incorporate passive and active crosslinkers (the bundling factor Ase1 and molecular motor Klp2) and investigate the formation of IMA structures. Analytical results are complemented by a 3D stochastic simulation.

  5. Fission yeast RNA triphosphatase reads an Spt5 CTD code

    SciTech Connect

    Doamekpor, Selom K.; Schwer, Beate; Sanchez, Ana M.; Shuman, Stewart; Lima, Christopher D.

    2014-11-20

    mRNA capping enzymes are directed to nascent RNA polymerase II (Pol2) transcripts via interactions with the carboxy-terminal domains (CTDs) of Pol2 and transcription elongation factor Spt5. Fission yeast RNA triphosphatase binds to the Spt5 CTD, comprising a tandem repeat of nonapeptide motif TPAWNSGSK. Here we report the crystal structure of a Pct1·Spt5-CTD complex, which revealed two CTD docking sites on the Pct1 homodimer that engage TPAWN segments of the motif. Each Spt5 CTD interface, composed of elements from both subunits of the homodimer, is dominated by van der Waals contacts from Pct1 to the tryptophan of the CTD. The bound CTD adopts a distinctive conformation in which the peptide backbone makes a tight U-turn so that the proline stacks over the tryptophan. We show that Pct1 binding to Spt5 CTD is antagonized by threonine phosphorylation. Our results fortify an emerging concept of an “Spt5 CTD code” in which (i) the Spt5 CTD is structurally plastic and can adopt different conformations that are templated by particular cellular Spt5 CTD receptor proteins; and (ii) threonine phosphorylation of the Spt5 CTD repeat inscribes a binary on–off switch that is read by diverse CTD receptors, each in its own distinctive manner.

  6. Fission yeast RNA triphosphatase reads an Spt5 CTD code

    DOE PAGES

    Doamekpor, Selom K.; Schwer, Beate; Sanchez, Ana M.; ...

    2014-11-20

    mRNA capping enzymes are directed to nascent RNA polymerase II (Pol2) transcripts via interactions with the carboxy-terminal domains (CTDs) of Pol2 and transcription elongation factor Spt5. Fission yeast RNA triphosphatase binds to the Spt5 CTD, comprising a tandem repeat of nonapeptide motif TPAWNSGSK. Here we report the crystal structure of a Pct1·Spt5-CTD complex, which revealed two CTD docking sites on the Pct1 homodimer that engage TPAWN segments of the motif. Each Spt5 CTD interface, composed of elements from both subunits of the homodimer, is dominated by van der Waals contacts from Pct1 to the tryptophan of the CTD. The boundmore » CTD adopts a distinctive conformation in which the peptide backbone makes a tight U-turn so that the proline stacks over the tryptophan. We show that Pct1 binding to Spt5 CTD is antagonized by threonine phosphorylation. Our results fortify an emerging concept of an “Spt5 CTD code” in which (i) the Spt5 CTD is structurally plastic and can adopt different conformations that are templated by particular cellular Spt5 CTD receptor proteins; and (ii) threonine phosphorylation of the Spt5 CTD repeat inscribes a binary on–off switch that is read by diverse CTD receptors, each in its own distinctive manner.« less

  7. The Actomyosin Ring Recruits Early Secretory Compartments to the Division Site in Fission Yeast

    PubMed Central

    Vjestica, Aleksandar; Tang, Xin-Zi

    2008-01-01

    The ultimate goal of cytokinesis is to establish a membrane barrier between daughter cells. The fission yeast Schizosaccharomyces pombe utilizes an actomyosin-based division ring that is thought to provide physical force for the plasma membrane invagination. Ring constriction occurs concomitantly with the assembly of a division septum that is eventually cleaved. Membrane trafficking events such as targeting of secretory vesicles to the division site require a functional actomyosin ring suggesting that it serves as a spatial landmark. However, the extent of polarization of the secretion apparatus to the division site is presently unknown. We performed a survey of dynamics of several fluorophore-tagged proteins that served as markers for various compartments of the secretory pathway. These included markers for the endoplasmic reticulum, the COPII sites, and the early and late Golgi. The secretion machinery exhibited a marked polarization to the division site. Specifically, we observed an enrichment of the transitional endoplasmic reticulum (tER) accompanied by Golgi cisternae biogenesis. These processes required actomyosin ring assembly and the function of the EFC-domain protein Cdc15p. Cdc15p overexpression was sufficient to induce tER polarization in interphase. Thus, fission yeast polarizes its entire secretory machinery to the cell division site by utilizing molecular cues provided by the actomyosin ring. PMID:18184749

  8. Stress-induced nuclear-to-cytoplasmic translocation of cyclin C promotes mitochondrial fission in yeast.

    PubMed

    Cooper, Katrina F; Khakhina, Svetlana; Kim, Stephen K; Strich, Randy

    2014-01-27

    Mitochondrial morphology is maintained by the opposing activities of dynamin-based fission and fusion machines. In response to stress, this balance is dramatically shifted toward fission. This study reveals that the yeast transcriptional repressor cyclin C is both necessary and sufficient for stress-induced hyperfission. In response to oxidative stress, cyclin C translocates from the nucleus to the cytoplasm, where it is destroyed. Prior to its destruction, cyclin C both genetically and physically interacts with Mdv1p, an adaptor that links the GTPase Dnm1p to the mitochondrial receptor Fis1p. Cyclin C is required for stress-induced Mdv1p mitochondrial recruitment and the efficient formation of functional Dnm1p filaments. Finally, coimmunoprecipitation studies and fluorescence microscopy revealed an elevated association between Mdv1p and Dnm1p in stressed cells that is dependent on cyclin C. This study provides a mechanism by which stress-induced gene induction and mitochondrial fission are coordinated through translocation of cyclin C.

  9. High Confidence Fission Yeast SUMO Conjugates Identified by Tandem Denaturing Affinity Purification.

    PubMed

    Nie, Minghua; Vashisht, Ajay A; Wohlschlegel, James A; Boddy, Michael N

    2015-09-25

    Covalent attachment of the small ubiquitin-like modifier (SUMO) to key targets in the proteome critically regulates the evolutionarily conserved processes of cell cycle control, transcription, DNA replication and maintenance of genome stability. The proteome-wide identification of SUMO conjugates in budding yeast has been invaluable in helping to define roles of SUMO in these processes. Like budding yeast, fission yeast is an important and popular model organism; however, the fission yeast Schizosaccharomyces pombe community currently lacks proteome-wide knowledge of SUMO pathway targets. To begin to address this deficiency, we adapted and used a highly stringent Tandem Denaturing Affinity Purification (TDAP) method, coupled with mass spectrometry, to identify fission yeast SUMO conjugates. Comparison of our data with that compiled in budding yeast reveals conservation of SUMO target enrichment in nuclear and chromatin-associated processes. Moreover, the SUMO "cloud" phenomenon, whereby multiple components of a single protein complex are SUMOylated, is also conserved. Overall, SUMO TDAP provides both a key resource of high confidence SUMO-modified target proteins in fission yeast, and a robust method for future analyses of SUMO function.

  10. Advancing our understanding of functional genome organisation through studies in the fission yeast.

    PubMed

    Olsson, Ida; Bjerling, Pernilla

    2011-02-01

    Significant progress has been made in understanding the functional organisation of the cell nucleus. Still many questions remain to be answered about the relationship between the spatial organisation of the nucleus and the regulation of the genome function. There are many conflicting data in the field making it very difficult to merge published results on mammalian cells into one model on subnuclear chromatin organisation. The fission yeast, Schizosaccharomyces pombe, over the last decades has emerged as a valuable model organism in understanding basic biological mechanisms, especially the cell cycle and chromosome biology. In this review we describe and compare the nuclear organisation in mammalian and fission yeast cells. We believe that fission yeast is a good tool to resolve at least some of the contradictions and unanswered questions concerning functional nuclear architecture, since S. pombe has chromosomes structurally similar to that of human. S. pombe also has the advantage over higher eukaryotes in that the genome can easily be manipulated via homologous recombination making it possible to integrate the tools needed for visualisation of chromosomes using live-cell microscopy. Classical genetic experiments can be used to elucidate what factors are involved in a certain mechanism. The knowledge we have gained during the last few years indicates similarities between the genome organisation in fission yeast and mammalian cells. We therefore propose the use of fission yeast for further advancement of our understanding of functional nuclear organisation.

  11. Big data mining powers fungal research: recent advances in fission yeast systems biology approaches.

    PubMed

    Wang, Zhe

    2016-10-11

    Biology research has entered into big data era. Systems biology approaches therefore become the powerful tools to obtain the whole landscape of how cell separate, grow, and resist the stresses. Fission yeast Schizosaccharomyces pombe is wonderful unicellular eukaryote model, especially studying its division and metabolism can facilitate to understanding the molecular mechanism of cancer and discovering anticancer agents. In this perspective, we discuss the recent advanced fission yeast systems biology tools, mainly focus on metabolomics profiling and metabolic modeling, protein-protein interactome and genetic interaction network, DNA sequencing and applications, and high-throughput phenotypic screening. We therefore hope this review can be useful for interested fungal researchers as well as bioformaticians.

  12. Fission yeast IQGAP arranges actin filaments into the cytokinetic contractile ring

    PubMed Central

    Takaine, Masak; Numata, Osamu; Nakano, Kentaro

    2009-01-01

    The contractile ring (CR) consists of bundled actin filaments and myosin II; however, the actin-bundling factor remains elusive. We show that the fission yeast Schizosaccharomyces pombe IQGAP Rng2 is involved in the generation of CR F-actin and required for its arrangement into a ring. An N-terminal fragment of Rng2 is necessary for the function of Rng2 and is localized to CR F-actin. In vitro the fragment promotes actin polymerization and forms linear arrays of F-actin, which are resistant to the depolymerization induced by the actin-depolymerizing factor Adf1. Our findings indicate that Rng2 is involved in the generation of CR F-actin and simultaneously bundles the filaments and regulates its dynamics by counteracting the effects of Adf1, thus enabling the reconstruction of CR F-actin bundles, which provides an insight into the physical properties of the building blocks that comprise the CR. PMID:19713940

  13. Monitoring DNA replication in fission yeast by incorporation of 5-ethynyl-2'-deoxyuridine.

    PubMed

    Hua, Hui; Kearsey, Stephen E

    2011-05-01

    We report procedures to allow incorporation and detection of 5-ethynyl-2'-deoxyuridine (EdU) in fission yeast, a thymidine analogue which has some technical advantages over use of bromodeoxyuridine. Low concentrations of EdU (1 µM) are sufficient to allow detection of incorporation in cells expressing thymidine kinase and human equilibrative nucleoside transporter 1 (hENT1). However EdU is toxic and activates the rad3-dependent checkpoint, resulting in cell cycle arrest, potentially limiting its applications for procedures which require labelling over more than one cell cycle. Limited DNA synthesis, when elongation is largely blocked by hydroxyurea, can be readily detected by EdU incorporation using fluorescence microscopy. Thus EdU should be useful for detecting early stages of S phase, or DNA synthesis associated with DNA repair and recombination.

  14. Synchronized fission yeast meiosis using an ATP analog-sensitive Pat1 protein kinase

    PubMed Central

    Cipak, Lubos; Polakova, Silvia; Hyppa, Randy W.; Smith, Gerald R.; Gregan, Juraj

    2014-01-01

    Synchronous cultures are often indispensable for studying meiosis. Here, we present an optimized protocol for induction of synchronous meiosis in the fission yeast Schizosaccharomyces pombe. Chemical inactivation of an ATP analog-sensitive form of the Pat1 kinase (pat1-as2) by adding the ATP-analog 1-NM-PP1 in G1-arrested cells allows induction of synchronous meiosis at optimal temperature (25 °C). Importantly, this protocol eliminates detrimental effects of elevated temperature (34 °C) which is required to inactivate the commonly used temperature-sensitive Pat1 kinase mutant (pat1-114). Addition of the mat-Pc gene to a mat1-M strain further improves chromosome segregation and spore viability. Thus, our protocol offers highly synchronous meiosis at optimal temperature with most characteristics similar to those of wild-type meiosis. The synchronization protocol can be completed in 5 days. PMID:24385151

  15. Nuclear retention of fission yeast dicer is a prerequisite for RNAi-mediated heterochromatin assembly.

    PubMed

    Emmerth, Stephan; Schober, Heiko; Gaidatzis, Dimos; Roloff, Tim; Jacobeit, Kirsten; Bühler, Marc

    2010-01-19

    RNaseIII ribonucleases act at the heart of RNA silencing pathways by processing precursor RNAs into mature microRNAs and siRNAs. In the fission yeast Schizosaccharomyces pombe, siRNAs are generated by the RNaseIII enzyme Dcr1 and are required for heterochromatin formation at centromeres. In this study, we have analyzed the subcellular localization of Dcr1 and found that it accumulates in the nucleus and is enriched at the nuclear periphery. Nuclear accumulation of Dcr1 depends on a short motif that impedes nuclear export promoted by the double-stranded RNA binding domain of Dcr1. Absence of this motif renders Dcr1 mainly cytoplasmic and is accompanied by remarkable changes in gene expression and failure to assemble heterochromatin. Our findings suggest that Dicer proteins are shuttling proteins and that the steady-state subcellular levels can be shifted toward either compartment.

  16. A formin-nucleated actin aster concentrates cell wall hydrolases for cell fusion in fission yeast

    PubMed Central

    Dudin, Omaya; Bendezú, Felipe O.; Groux, Raphael; Laroche, Thierry; Seitz, Arne

    2015-01-01

    Cell–cell fusion is essential for fertilization. For fusion of walled cells, the cell wall must be degraded at a precise location but maintained in surrounding regions to protect against lysis. In fission yeast cells, the formin Fus1, which nucleates linear actin filaments, is essential for this process. In this paper, we show that this formin organizes a specific actin structure—the actin fusion focus. Structured illumination microscopy and live-cell imaging of Fus1, actin, and type V myosins revealed an aster of actin filaments whose barbed ends are focalized near the plasma membrane. Focalization requires Fus1 and type V myosins and happens asynchronously always in the M cell first. Type V myosins are essential for fusion and concentrate cell wall hydrolases, but not cell wall synthases, at the fusion focus. Thus, the fusion focus focalizes cell wall dissolution within a broader cell wall synthesis zone to shift from cell growth to cell fusion. PMID:25825517

  17. A Discrete Class of Intergenic DNA Dictates Meiotic DNA Break Hotspots in Fission Yeast

    PubMed Central

    Cam, Hugh P; Farah, Joseph A; Grewal, Shiv I. S; Smith, Gerald R

    2007-01-01

    Meiotic recombination is initiated by DNA double-strand breaks (DSBs) made by Spo11 (Rec12 in fission yeast), which becomes covalently linked to the DSB ends. Like recombination events, DSBs occur at hotspots in the genome, but the genetic factors responsible for most hotspots have remained elusive. Here we describe in fission yeast the genome-wide distribution of meiosis-specific Rec12-DNA linkages, which closely parallel DSBs measured by conventional Southern blot hybridization. Prominent DSB hotspots are located ∼65 kb apart, separated by intervals with little or no detectable breakage. Most hotspots lie within exceptionally large intergenic regions. Thus, the chromosomal architecture responsible for hotspots in fission yeast is markedly different from that of budding yeast, in which DSB hotspots are much more closely spaced and, in many regions of the genome, occur at each promoter. Our analysis in fission yeast reveals a clearly identifiable chromosomal feature that can predict the majority of recombination hotspots across a whole genome and provides a basis for searching for the chromosomal features that dictate hotspots of meiotic recombination in other organisms, including humans. PMID:17722984

  18. RITS- connecting transcription, RNAi and heterochromatin assembly in Fission Yeast

    PubMed Central

    Creamer, Kevin M.; Partridge, Janet F.

    2011-01-01

    In recent years a bevy of evidence has been unearthed indicating that ‘silent’ heterochromatin is not as transcriptionally inert as once thought. In the unicellular yeast Schizosaccharomyces pombe, processing of transcripts derived from centromeric repeats into homologous small interfering RNA (siRNA) is essential for the formation of centromeric heterochromatin. Deletion of genes required for siRNA biogenesis revealed that core components of the canonical RNAi pathway are essential for centromeric heterochromatin assembly as well as for centromere function. Subsequent purification of the RITS (RNA-induced initiation of transcriptional gene silencing) complex provided the critical link between siRNAs and heterochromatin assembly, with RITS acting as a physical bridge between non-coding RNA scaffolds and chromatin. Here, we review current understanding of how RITS promotes heterochromatin formation and how it participates in transcription coupled silencing. PMID:21823226

  19. Chimera proteins with affinity for membranes and microtubule tips polarize in the membrane of fission yeast cells.

    PubMed

    Recouvreux, Pierre; Sokolowski, Thomas R; Grammoustianou, Aristea; ten Wolde, Pieter Rein; Dogterom, Marileen

    2016-02-16

    Cell polarity refers to a functional spatial organization of proteins that is crucial for the control of essential cellular processes such as growth and division. To establish polarity, cells rely on elaborate regulation networks that control the distribution of proteins at the cell membrane. In fission yeast cells, a microtubule-dependent network has been identified that polarizes the distribution of signaling proteins that restricts growth to cell ends and targets the cytokinetic machinery to the middle of the cell. Although many molecular components have been shown to play a role in this network, it remains unknown which molecular functionalities are minimally required to establish a polarized protein distribution in this system. Here we show that a membrane-binding protein fragment, which distributes homogeneously in wild-type fission yeast cells, can be made to concentrate at cell ends by attaching it to a cytoplasmic microtubule end-binding protein. This concentration results in a polarized pattern of chimera proteins with a spatial extension that is very reminiscent of natural polarity patterns in fission yeast. However, chimera levels fluctuate in response to microtubule dynamics, and disruption of microtubules leads to disappearance of the pattern. Numerical simulations confirm that the combined functionality of membrane anchoring and microtubule tip affinity is in principle sufficient to create polarized patterns. Our chimera protein may thus represent a simple molecular functionality that is able to polarize the membrane, onto which additional layers of molecular complexity may be built to provide the temporal robustness that is typical of natural polarity patterns.

  20. Multiple modes of chromatin configuration at natural meiotic recombination hot spots in fission yeast.

    PubMed

    Hirota, Kouji; Steiner, Walter W; Shibata, Takehiko; Ohta, Kunihiro

    2007-11-01

    The ade6-M26 meiotic recombination hot spot of fission yeast is defined by a cyclic AMP-responsive element (CRE)-like heptanucleotide sequence, 5'-ATGACGT-3', which acts as a binding site for the Atf1/Pcr1 heterodimeric transcription factor required for hot spot activation. We previously demonstrated that the local chromatin around the M26 sequence motif alters to exhibit higher sensitivity to micrococcal nuclease before the initiation of meiotic recombination. In this study, we have examined whether or not such alterations in chromatin occur at natural meiotic DNA double-strand break (DSB) sites in Schizosaccharomyces pombe. At one of the most prominent DSB sites, mbs1 (meiotic break site 1), the chromatin structure has a constitutively accessible configuration at or near the DSB sites. The establishment of the open chromatin state and DSB formation are independent of the CRE-binding transcription factor, Atf1. Analysis of the chromatin configuration at CRE-dependent DSB sites revealed both differences from and similarities to mbs1. For example, the tdh1+ locus, which harbors a CRE consensus sequence near the DSB site, shows a meiotically induced open chromatin configuration, similar to ade6-M26. In contrast, the cds1+ locus is similar to mbs1 in that it exhibits a constitutive open configuration. Importantly, Atf1 is required for the open chromatin formation in both tdh1+ and cds1+. These results suggest that CRE-dependent meiotic chromatin changes are intrinsic processes related to DSB formation in fission yeast meiosis. In addition, the results suggest that the chromatin configuration in natural meiotic recombination hot spots can be classified into at least three distinct categories: (i) an Atf1-CRE-independent constitutively open chromatin configuration, (ii) an Atf1-CRE-dependent meiotically induced open chromatin configuration, and (iii) an Atf1-CRE-dependent constitutively open chromatin configuration.

  1. Dnm1p-dependent peroxisome fission requires Caf4p, Mdv1p and Fis1p.

    PubMed

    Motley, Alison M; Ward, Gemma P; Hettema, Ewald H

    2008-05-15

    Yeast peroxisomes multiply by fission. Fission requires two dynamin-related proteins, Dnm1p and Vps1p. Using an in vivo fission assay, we show that Dnm1p-dependent peroxisome fission requires Fis1p, Caf4p and Mdv1p. Fluorescence microscopy of cells expressing GFP-tagged Caf4p and Mdv1p revealed that their association with peroxisomes relies on Fis1p. Vps1p-dependent peroxisome fission occurs independently of these factors. Vps1p contributes most to fission of peroxisomes when cells are grown on glucose. Overexpression of Dnm1p suppresses the fission defect as long as Fis1p and either Mdv1p or Caf4p are present. Conversely, overexpression of Dnm1p does not restore the vacuolar fusion defect of vps1 cells and Vps1p overexpression does not restore the mitochondrial fission defect of dnm1 cells. These data show that Vps1p and Dnm1p are part of independent fission machineries. Because the contribution of Dnm1p to peroxisome fission appears to be more pronounced in cells that proliferate peroxisomes in response to mitochondrial dysfunction, Dnm1p might be part of the mechanism that coordinates mitochondrial and peroxisomal biogenesis.

  2. Comparative 3D genome structure analysis of the fission and the budding yeast.

    PubMed

    Gong, Ke; Tjong, Harianto; Zhou, Xianghong Jasmine; Alber, Frank

    2015-01-01

    We studied the 3D structural organization of the fission yeast genome, which emerges from the tethering of heterochromatic regions in otherwise randomly configured chromosomes represented as flexible polymer chains in an nuclear environment. This model is sufficient to explain in a statistical manner many experimentally determined distinctive features of the fission yeast genome, including chromatin interaction patterns from Hi-C experiments and the co-locations of functionally related and co-expressed genes, such as genes expressed by Pol-III. Our findings demonstrate that some previously described structure-function correlations can be explained as a consequence of random chromatin collisions driven by a few geometric constraints (mainly due to centromere-SPB and telomere-NE tethering) combined with the specific gene locations in the chromosome sequence. We also performed a comparative analysis between the fission and budding yeast genome structures, for which we previously detected a similar organizing principle. However, due to the different chromosome sizes and numbers, substantial differences are observed in the 3D structural genome organization between the two species, most notably in the nuclear locations of orthologous genes, and the extent of nuclear territories for genes and chromosomes. However, despite those differences, remarkably, functional similarities are maintained, which is evident when comparing spatial clustering of functionally related genes in both yeasts. Functionally related genes show a similar spatial clustering behavior in both yeasts, even though their nuclear locations are largely different between the yeast species.

  3. Involvement of fission yeast Pdc2 in RNA degradation and P-body function.

    PubMed

    Wang, Chun-Yu; Wang, Yi-Ting; Hsiao, Wan-Yi; Wang, Shao-Win

    2017-04-01

    In this study we identified Pdc2, the fission yeast ortholog of human Pat1b protein, which forms a complex with Lsm1-7 and plays a role in coupling deadenylation and decapping. The involvement of Pdc2 in RNA degradation and P-body function was also determined. We found that Pdc2 interacts with Dcp2 and is required for decapping in vivo. Although not absolutely essential for P-body assembly, overexpression of Pdc2 enhanced P-body formation even in the absence of Pdc1, the fission yeast functional homolog of human Edc4 protein, indicating that Pdc2 also plays a role in P-body formation. Intriguingly, in the absence of Pdc2, Lsm1 was found to accumulate in the nucleus, suggesting that Pdc2 shuttling between nucleus and cytoplasm plays a role in decreasing the nuclear concentration of Lsm1 to increase Lsm1 in the cytoplasm. Furthermore, unlike other components of P-bodies, the deadenylase Ccr4 did not accumulate in P-bodies in cells growing under favorable conditions and was only recruited to P-bodies after deprivation of glucose in a Pdc2-Lsm1-dependent manner, indicating a function of Pdc2 in cellular response to environmental stress. In supporting this idea, pdc2 mutants are defective in recovery from glucose starvation with a much longer time to re-enter the cell cycle. In keeping with the notion that Pat1 is a nucleocytoplasmic protein, functioning also in the nucleus, we found that Pdc2 physically and genetically interacts with the nuclear 5'-3' exonuclease Dhp1. A function of Pdc2-Lsm1, in concert with Dhp1, regulating RNA by promoting its decapping/destruction in the nucleus was suggested.

  4. The spindle pole bodies facilitate nuclear envelope division during closed mitosis in fission yeast.

    PubMed

    Zheng, Liling; Schwartz, Cindi; Magidson, Valentin; Khodjakov, Alexey; Oliferenko, Snezhana

    2007-07-01

    Many organisms divide chromosomes within the confines of the nuclear envelope (NE) in a process known as closed mitosis. Thus, they must ensure coordination between segregation of the genetic material and division of the NE itself. Although many years of work have led to a reasonably clear understanding of mitotic spindle function in chromosome segregation, the NE division mechanism remains obscure. Here, we show that fission yeast cells overexpressing the transforming acid coiled coil (TACC)-related protein, Mia1p/Alp7p, failed to separate the spindle pole bodies (SPBs) at the onset of mitosis, but could assemble acentrosomal bipolar and antiparallel spindle structures. Most of these cells arrested in anaphase with fully extended spindles and nonsegregated chromosomes. Spindle poles that lacked the SPBs did not lead the division of the NE during spindle elongation, but deformed it, trapping the chromosomes within. When the SPBs were severed by laser microsurgery in wild-type cells, we observed analogous deformations of the NE by elongating spindle remnants, resulting in NE division failure. Analysis of dis1Delta cells that elongate spindles despite unattached kinetochores indicated that the SPBs were required for maintaining nuclear shape at anaphase onset. Strikingly, when the NE was disassembled by utilizing a temperature-sensitive allele of the Ran GEF, Pim1p, the abnormal spindles induced by Mia1p overexpression were capable of segregating sister chromatids to daughter cells, suggesting that the failure to divide the NE prevents chromosome partitioning. Our results imply that the SPBs preclude deformation of the NE during spindle elongation and thus serve as specialized structures enabling nuclear division during closed mitosis in fission yeast.

  5. Mechanical and molecular basis for the symmetrical division of the fission yeast nuclear envelope.

    PubMed

    Castagnetti, Stefania; Božič, Bojan; Svetina, Saša

    2015-06-28

    In fission yeast Schizosaccharomyces pombe, the nuclear envelope remains intact throughout mitosis and undergoes a series of symmetrical morphological changes when the spindle pole bodies (SPBs), embedded in the nuclear envelope, are pushed apart by elongating spindle microtubules. These symmetrical membrane shape transformations do not correspond to the shape behavior of an analogous system based on lipid vesicles. Here we report that the symmetry of the dividing fission yeast nucleus is ensured by SPB-chromosome attachments, as loss of kinetochore clustering in the vicinity of SPBs results in the formation of abnormal asymmetric shapes with long membrane tethers. We integrated these findings in a biophysical model, which explains the symmetry of the nuclear shapes on the basis of forces exerted by chromosomes clustered at SPBs on the extending nuclear envelope. Based on this analysis we conclude that the fission yeast nuclear envelope exhibits the same mechanical properties as simple lipid vesicles, but interactions with other cellular components, such as chromosomes, influence the nuclear shape during mitosis, allowing the formation of otherwise energetically unfavorable symmetrical dumbbell structures upon spindle elongation. The model allows us to explain the appearance of abnormal asymmetric shapes in fission yeast mutants with mis-segregated chromosomes as well as with altered nuclear membrane composition.

  6. Virtual Nuclear Envelope Breakdown and Its Regulators in Fission Yeast Meiosis.

    PubMed

    Asakawa, Haruhiko; Yang, Hui-Ju; Hiraoka, Yasushi; Haraguchi, Tokuko

    2016-01-01

    Ran, a small GTPase, is required for the spindle formation and nuclear envelope (NE) formation. After NE breakdown (NEBD) during mitosis in metazoan cells, the Ran-GTP gradient across the NE is lost and Ran-GTP becomes concentrated around chromatin, thus affecting the stability of microtubules and promoting the assembly of spindle microtubules and segregation of chromosomes. Mitosis in which chromosomes are segregated subsequent to NEBD is called "open mitosis." In contrast, many fungi undergo a process termed "closed mitosis" in which chromosome segregation and spindle formation occur without NEBD. Although the fission yeast Schizosaccharomyces pombe undergoes a closed mitosis, it exhibits a short period during meiosis (anaphase of the second meiosis; called "anaphase II") when nuclear and cytoplasmic proteins are mixed in the presence of intact NE and nuclear pore complexes (NPC). This "virtual" nuclear envelope breakdown (vNEBD) involves changes in the localization of RanGAP1, an activator of Ran-GTP hydrolysis. Recently, Nup132, a component of the structural core Nup107-160 subcomplex of the NPC, has been shown to be involved in the maintenance of the nuclear cytoplasmic barrier in yeast meiosis. In this review, we highlight the possible roles of RanGAP1 and Nup132 in vNEBD and discuss the biological significance of vNEBD in S. pombe meiosis.

  7. Fission yeast profilin is tailored to facilitate actin assembly by the cytokinesis formin Cdc12.

    PubMed

    Bestul, Andrew J; Christensen, Jenna R; Grzegorzewska, Agnieszka P; Burke, Thomas A; Sees, Jennifer A; Carroll, Robert T; Sirotkin, Vladimir; Keenan, Robert J; Kovar, David R

    2015-01-15

    The evolutionarily conserved small actin-monomer binding protein profilin is believed to be a housekeeping factor that maintains a general pool of unassembled actin. However, despite similar primary sequences, structural folds, and affinities for G-actin and poly-L-proline, budding yeast profilin ScPFY fails to complement fission yeast profilin SpPRF temperature-sensitive mutant cdc3-124 cells. To identify profilin's essential properties, we built a combinatorial library of ScPFY variants containing either WT or SpPRF residues at multiple positions and carried out a genetic selection to isolate variants that support life in fission yeast. We subsequently engineered ScPFY(9-Mut), a variant containing nine substitutions in the actin-binding region, which complements cdc3-124 cells. ScPFY(9-Mut), but not WT ScPFY, suppresses severe cytokinesis defects in cdc3-124 cells. Furthermore, the major activity rescued by ScPFY(9-Mut) is the ability to enhance cytokinesis formin Cdc12-mediated actin assembly in vitro, which allows cells to assemble functional contractile rings. Therefore an essential role of profilin is to specifically facilitate formin-mediated actin assembly for cytokinesis in fission yeast.

  8. Controlling septation in fission yeast: finding the middle, and timing it right.

    PubMed

    Le Goff, X; Utzig, S; Simanis, V

    1999-07-01

    The fission yeast Schizosaccharomyces pombe provides a simple eukaryotic model for the study of cytokinesis. S. pombe cells are rod-shaped, grow mainly by elongation at their tips, and divide by binary fission after forming a centrally placed division septum. Analysis of mutants has begun to shed light upon how septum formation and cytokinesis are regulated both spatially and temporally. Some of the proteins involved in these events have been functionally conserved throughout eukaryotic evolution, suggesting that aspects of this control will be common to all eukaryotic cells.

  9. Mechanisms of Contractile-Ring Assembly in Fission Yeast and Beyond

    PubMed Central

    Laporte, Damien; Zhao, Ran; Wu, Jian-Qiu

    2010-01-01

    Most eukaryotes including fungi, amoebas, and animal cells assemble an actin/myosin-based contractile ring during cytokinesis. The majority of proteins implied in ring formation, maturation, and constriction are evolutionarily conserved, suggesting that common mechanisms exist among these divergent eukaryotes. Here, we review the recent advances in positioning and assembly of the actomyosin ring in the fission yeast Schizosaccharomyces pombe, the budding yeast Saccharomyces cerevisiae, and animal cells. In particular, major findings have been made recently in understanding ring formation in genetically tractable S. pombe, revealing a dynamic and robust search, capture, pull, and release mechanism. PMID:20708088

  10. Boolean Network Model Predicts Knockout Mutant Phenotypes of Fission Yeast

    PubMed Central

    Davidich, Maria I.; Bornholdt, Stefan

    2013-01-01

    Boolean networks (or: networks of switches) are extremely simple mathematical models of biochemical signaling networks. Under certain circumstances, Boolean networks, despite their simplicity, are capable of predicting dynamical activation patterns of gene regulatory networks in living cells. For example, the temporal sequence of cell cycle activation patterns in yeasts S. pombe and S. cerevisiae are faithfully reproduced by Boolean network models. An interesting question is whether this simple model class could also predict a more complex cellular phenomenology as, for example, the cell cycle dynamics under various knockout mutants instead of the wild type dynamics, only. Here we show that a Boolean network model for the cell cycle control network of yeast S. pombe correctly predicts viability of a large number of known mutants. So far this had been left to the more detailed differential equation models of the biochemical kinetics of the yeast cell cycle network and was commonly thought to be out of reach for models as simplistic as Boolean networks. The new results support our vision that Boolean networks may complement other mathematical models in systems biology to a larger extent than expected so far, and may fill a gap where simplicity of the model and a preference for an overall dynamical blueprint of cellular regulation, instead of biochemical details, are in the focus. PMID:24069138

  11. An IF-FISH Approach for Covisualization of Gene Loci and Nuclear Architecture in Fission Yeast.

    PubMed

    Kim, K-D; Iwasaki, O; Noma, K

    2016-01-01

    Recent genomic studies have revealed that chromosomal structures are formed by a hierarchy of organizing processes ranging from gene associations, including interactions among enhancers and promoters, to topologically associating domain formations. Gene associations identified by these studies can be characterized by microscopic analyses. Fission yeast is a model organism, in which gene associations have been broadly mapped across the genome, although many of those associations have not been further examined by cell biological approaches. To address the technically challenging process of the visualization of associating gene loci in the fission yeast nuclei, we provide, in detail, an IF-FISH procedure that allows for covisualizing both gene loci and nuclear structural markers such as the nuclear membrane and nucleolus.

  12. Measurements of Myosin-II Motor Activity During Cytokinesis in Fission Yeast.

    PubMed

    Tang, Qing; Pollard, Luther W; Lord, Matthew

    2016-01-01

    Fission yeast myosin-II (Myo2p) represents the critical actin-based motor protein that drives actomyosin ring assembly and constriction during cytokinesis. We detail three different methods to measure Myo2p motor function. Actin-activated ATPases provide a readout of actomyosin ATPase motor activity in a bulk assay; actin filament motility assays reveal the speed and efficiency of myosin-driven actin filament gliding (when motors are anchored); myosin-bead motility assays reveal the speed and efficiency of myosin ensembles traveling along actin filaments (when actin is anchored). Collectively, these methods allow us to combine the standard in vivo approaches common to fission yeast with in vitro biochemical methods to learn more about the mechanistic action of myosin-II during cytokinesis.

  13. Chromosome and mitotic spindle dynamics in fission yeast kinesin-8 mutants

    NASA Astrophysics Data System (ADS)

    Crapo, Ammon M.; Gergley, Zachary R.; McIntosh, J. Richard; Betterton, M. D.

    2014-03-01

    Fission yeast proteins Klp5p and Klp6p are plus-end directed motors of the kinesin-8 family which promote microtubule (MT) depolymerization and also affect chromosome segregation, but the mechanism of these activities is not well understood. Using live-cell time-lapse fluorescence microscopy of fission yeast wild-type (WT) and klp5/6 mutant strains, we quantify and compare the dynamics of kinetochore motion and mitotic spindle length in 3D. In WT cells, the spindle, once formed, remains a consistent size and chromosomes are correctly organized and segregated. In kinesin-8 mutants, spindles undergo large length fluctuations of several microns. Kinetochore motions are also highly fluctuating, with kinetochores frequently moving away from the spindle rather than toward it. We observe transient pushing of chromosomes away from the spindle by as much as 10 microns in distance.

  14. pREPORT: a multi-readout transcription reporter vector for fission yeast.

    PubMed

    Převorovský, Martin

    2015-02-01

    Transcription factors are prominent regulators of gene expression that execute responses to various intracellular and extracellular stimuli. Recombinant transcription reporter systems can be conveniently used to study the DNA binding preferences and regulatory activity of a transcription factor under a range of conditions. Several reporter genes have been used to study transcription regulation in the fission yeast Schizosaccharomyces pombe. Each of these reporters has distinct advantages, such as high sensitivity or ease of use, and limitations, such as prohibitive costs or use of hazardous substances. To combine the strengths and mitigate the weaknesses of individual reporter genes, we have created pREPORT, a flexible multi-readout transcription reporter vector for fission yeast that employs an enhanced GFP-lacZ fusion and a customizable minimal promoter. With pREPORT, gene expression driven by the transcription factor of interest can be quantified in a number of ways, both in live cells and in vitro, using a single reporter construct.

  15. Rapid, efficient and precise allele replacement in the fission yeast Schizosaccharomyces pombe

    PubMed Central

    Gao, Jun; Kan, Fengling; Wagnon, Jacy L.; Storey, Aaron J.; Protacio, Reine M.; Davidson, Mari K.; Wahls, Wayne P.

    2013-01-01

    Gene targeting provides a powerful tool to modify endogenous loci to contain specific mutations, insertions and deletions. Precise allele replacement, with no other chromosomal changes (e.g., insertion of selectable markers or heterologous promoters), maintains physiologically relevant context. Established methods for precise allele replacement in fission yeast employ two successive rounds of transformation and homologous recombination and require genotyping at each step. The relative efficiency of homologous recombination is low and a high rate of false positives during the second round of gene targeting further complicates matters. We report that pop-in, pop-out allele replacement circumvents these problems. We present data for 39 different allele replacements, involving simple and complex modifications at seven different target loci, that illustrate the power and utility of the approach. We also developed and validated a rapid, efficient process for precise allele replacement that requires only one round each of transformation and genotyping. We show that this process can be applied in population scale to an individual target locus, without genotyping, to identify clones with an altered phenotype (targeted forward genetics). It is therefore suitable for saturating, in situ, locus-specific mutation screens (e.g., of essential or non-essential genes and regulatory DNA elements) within normal chromosomal context. PMID:24026504

  16. Complex structure of the fission yeast SREBP-SCAP binding domains reveals an oligomeric organization

    PubMed Central

    Gong, Xin; Qian, Hongwu; Shao, Wei; Li, Jingxian; Wu, Jianping; Liu, Jun-Jie; Li, Wenqi; Wang, Hong-Wei; Espenshade, Peter; Yan, Nieng

    2016-01-01

    Sterol regulatory element-binding protein (SREBP) transcription factors are master regulators of cellular lipid homeostasis in mammals and oxygen-responsive regulators of hypoxic adaptation in fungi. SREBP C-terminus binds to the WD40 domain of SREBP cleavage-activating protein (SCAP), which confers sterol regulation by controlling the ER-to-Golgi transport of the SREBP-SCAP complex and access to the activating proteases in the Golgi. Here, we biochemically and structurally show that the carboxyl terminal domains (CTD) of Sre1 and Scp1, the fission yeast SREBP and SCAP, form a functional 4:4 oligomer and Sre1-CTD forms a dimer of dimers. The crystal structure of Sre1-CTD at 3.5 Å and cryo-EM structure of the complex at 5.4 Å together with in vitro biochemical evidence elucidate three distinct regions in Sre1-CTD required for Scp1 binding, Sre1-CTD dimerization and tetrameric formation. Finally, these structurally identified domains are validated in a cellular context, demonstrating that the proper 4:4 oligomeric complex formation is required for Sre1 activation. PMID:27811944

  17. Purification, folding, and characterization of Rec12 (Spo11) meiotic recombinase of fission yeast.

    PubMed

    Wu, Heng; Gao, Jun; Sharif, Wallace D; Davidson, Mari K; Wahls, Wayne P

    2004-11-01

    Meiotic recombination is initiated by controlled dsDNA breaks (DSBs). Rec12 (Spo11) protein of fission yeast is essential for the formation of meiotic DSBs in vivo, for meiotic recombination, and for segregation of chromosomes during meiosis I. Rec12 is orthologous to Top6A topoisomerase of Archaea and is likely the catalytic subunit of a meiotic recombinase that introduces recombinogenic DSBs. However, despite intensive effort, it has not been possible to produce Rec12 protein in a soluble form required to permit biochemical analyses of function. To obtain purified Rec12 protein for in vitro studies, a rec12(+) cDNA was generated, cloned into vector pET15b(+), and expressed in Escherichia coli. Rec12 protein was produced at moderate levels and it partitioned into insoluble fractions of whole-cell extracts. The protein was enriched based upon its differential solubility in two different denaturants and was further purified by column chromatography. A combinatorial, fractional, factorial approach was used to identify conditions under which Rec12 protein could be refolded. Four parameters were most important and, following optimization, soluble Rec12 protein was obtained. Gel filtration demonstrated that refolded Rec12 protein exists as a monomer in solution, suggesting that additional proteins may be required to assemble biologically-active Rec12 dimers, as inferred previously from genetic data [Cell Chromosome 1 (2002) 1]. The production of refolded Rec12 in a soluble form will allow for characterization in vitro of this key meiotic recombination enzyme.

  18. Vesicle-like biomechanics governs important aspects of nuclear geometry in fission yeast.

    PubMed

    Lim H W, Gerald; Huber, Greg; Torii, Yoshihiro; Hirata, Aiko; Miller, Jonathan; Sazer, Shelley

    2007-09-26

    It has long been known that during the closed mitosis of many unicellular eukaryotes, including the fission yeast (Schizosaccharomyces pombe), the nuclear envelope remains intact while the nucleus undergoes a remarkable sequence of shape transformations driven by elongation of an intranuclear mitotic spindle whose ends are capped by spindle pole bodies embedded in the nuclear envelope. However, the mechanical basis of these normal cell cycle transformations, and abnormal nuclear shapes caused by intranuclear elongation of microtubules lacking spindle pole bodies, remain unknown. Although there are models describing the shapes of lipid vesicles deformed by elongation of microtubule bundles, there are no models describing normal or abnormal shape changes in the nucleus. We describe here a novel biophysical model of interphase nuclear geometry in fission yeast that accounts for critical aspects of the mechanics of the fission yeast nucleus, including the biophysical properties of lipid bilayers, forces exerted on the nuclear envelope by elongating microtubules, and access to a lipid reservoir, essential for the large increase in nuclear surface area during the cell cycle. We present experimental confirmation of the novel and non-trivial geometries predicted by our model, which has no free parameters. We also use the model to provide insight into the mechanical basis of previously described defects in nuclear division, including abnormal nuclear shapes and loss of nuclear envelope integrity. The model predicts that (i) despite differences in structure and composition, fission yeast nuclei and vesicles with fluid lipid bilayers have common mechanical properties; (ii) the S. pombe nucleus is not lined with any structure with shear resistance, comparable to the nuclear lamina of higher eukaryotes. We validate the model and its predictions by analyzing wild type cells in which ned1 gene overexpression causes elongation of an intranuclear microtubule bundle that deforms the

  19. Fission yeast cells undergo nuclear division in the absence of spindle microtubules.

    PubMed

    Castagnetti, Stefania; Oliferenko, Snezhana; Nurse, Paul

    2010-10-12

    Mitosis in eukaryotic cells employs spindle microtubules to drive accurate chromosome segregation at cell division. Cells lacking spindle microtubules arrest in mitosis due to a spindle checkpoint that delays mitotic progression until all chromosomes have achieved stable bipolar attachment to spindle microtubules. In fission yeast, mitosis occurs within an intact nuclear membrane with the mitotic spindle elongating between the spindle pole bodies. We show here that in fission yeast interference with mitotic spindle formation delays mitosis only briefly and cells proceed to an unusual nuclear division process we term nuclear fission, during which cells perform some chromosome segregation and efficiently enter S-phase of the next cell cycle. Nuclear fission is blocked if spindle pole body maturation or sister chromatid separation cannot take place or if actin polymerization is inhibited. We suggest that this process exhibits vestiges of a primitive nuclear division process independent of spindle microtubules, possibly reflecting an evolutionary intermediate state between bacterial and Archeal chromosome segregation where the nucleoid divides without a spindle and a microtubule spindle-based eukaryotic mitosis.

  20. Mechanisms of Intron Loss and Gain in the Fission Yeast Schizosaccharomyces

    PubMed Central

    Zhu, Tao; Niu, Deng-Ke

    2013-01-01

    The fission yeast, Schizosaccharomyces pombe, is an important model species with a low intron density. Previous studies showed extensive intron losses during its evolution. To test the models of intron loss and gain in fission yeasts, we conducted a comparative genomic analysis in four Schizosaccharomyces species. Both intronization and de-intronization were observed, although both were at a low frequency. A de-intronization event was caused by a degenerative mutation in the branch site. Four cases of imprecise intron losses were identified, indicating that genomic deletion is not a negligible mechanism of intron loss. Most intron losses were precise deletions of introns, and were significantly biased to the 3′ sides of genes. Adjacent introns tended to be lost simultaneously. These observations indicated that the main force shaping the exon-intron structures of fission yeasts was precise intron losses mediated by reverse transcriptase. We found two cases of intron gains caused by tandem genomic duplication, but failed to identify the mechanisms for the majority of the intron gain events observed. In addition, we found that intron-lost and intron-gained genes had certain similar features, such as similar Gene Ontology categories and expression levels. PMID:23613904

  1. Fission Yeast CSL Transcription Factors: Mapping Their Target Genes and Biological Roles

    PubMed Central

    Převorovský, Martin; Oravcová, Martina; Tvarůžková, Jarmila; Zach, Róbert; Folk, Petr; Půta, František; Bähler, Jürg

    2015-01-01

    Background Cbf11 and Cbf12, the fission yeast CSL transcription factors, have been implicated in the regulation of cell-cycle progression, but no specific roles have been described and their target genes have been only partially mapped. Methodology/Principal Findings Using a combination of transcriptome profiling under various conditions and genome-wide analysis of CSL-DNA interactions, we identify genes regulated directly and indirectly by CSL proteins in fission yeast. We show that the expression of stress-response genes and genes that are expressed periodically during the cell cycle is deregulated upon genetic manipulation of cbf11 and/or cbf12. Accordingly, the coordination of mitosis and cytokinesis is perturbed in cells with genetically manipulated CSL protein levels, together with other specific defects in cell-cycle progression. Cbf11 activity is nutrient-dependent and Δcbf11-associated defects are mitigated by inactivation of the protein kinase A (Pka1) and stress-activated MAP kinase (Sty1p38) pathways. Furthermore, Cbf11 directly regulates a set of lipid metabolism genes and Δcbf11 cells feature a stark decrease in the number of storage lipid droplets. Conclusions/Significance Our results provide a framework for a more detailed understanding of the role of CSL proteins in the regulation of cell-cycle progression in fission yeast. PMID:26366556

  2. A logical circuit for the regulation of fission yeast growth modes.

    PubMed

    Bähler, Jürg; Svetina, Sasa

    2005-11-21

    Growth of fission yeast at the ends of its cylindrical cells switches from a monopolar to a bipolar mode, before it ceases during mitosis and cell division. Here we assume that these growth modes correspond to three stable states of an underlying regulatory circuit, which is a relatively simple and to a large degree autonomous subsystem of an otherwise complex cellular control system. We develop a switch-like logical circuit based on three elements defined as binary variables. Effects of circuit variables on each other are expressed in terms of logical operations. We analyse this circuit for its behavior ("phenotypes") after removing single or multiple operations ("mutants"). Known fission yeast polarity mutants such as those defective in the switch to bipolar growth can be classified based on these predicted 'phenotypes'. Differences in growth patterns between daughter cells in different bipolar growth mutants are also predicted by the circuit model. The model presented here should provide a useful framework to guide future experiments into mechanisms of cellular polarity. This paper illustrates the usefulness of simple logical circuits to describe and dissect features of complex regulatory processes such as the fission yeast growth patterns in both wild type and mutant cells.

  3. Contractile-Ring Assembly in Fission Yeast Cytokinesis: Recent Advances and New Perspectives

    PubMed Central

    Lee, I-Ju; Coffman, Valerie C.; Wu, Jian-Qiu

    2017-01-01

    The fission yeast Schizosaccharomyces pombe is an excellent model organism to study cytokinesis. Here, we review recent advances on contractile-ring assembly in fission yeast. First, we summarize the assembly of cytokinesis nodes, the precursors of a normal contractile ring. IQGAP Rng2 and myosin essential light chain Cdc4 are recruited by the anillin-like protein Mid1, followed by the addition of other cytokinesis node proteins. Mid1 localization on the plasma membrane is stabilized by interphase node proteins. Second, we discuss proteins and processes that contribute to the search, capture, pull, and release mechanism of contractile-ring assembly. Actin filaments nucleated by formin Cdc12, the motor activity of myosin-II, the stiffness of the actin network, and severing of actin filaments by cofilin all play essential roles in contractile-ring assembly. Finally, we discuss the Mid1-independent pathway for ring assembly, and the possible mechanisms underlying the ring maturation and constriction. Collectively, we provide an overview of the current understanding of contractile-ring assembly and uncover future directions in studying cytokinesis in fission yeast. PMID:22887981

  4. Trk1 and Trk2 Define the Major K+ Transport System in Fission Yeast

    PubMed Central

    Calero, Fernando; Gómez, Néstor; Ariño, Joaquín; Ramos, José

    2000-01-01

    The trk1+ gene has been proposed as a component of the K+ influx system in the fission yeast Schizosaccharomyces pombe. Previous work from our laboratories revealed that trk1 mutants do not show significantly altered content or influx of K+, although they are more sensitive to Na+. Genome database searches revealed that S. pombe encodes a putative gene (designated here trk2+) that shows significant identity to trk1+. We have analyzed the characteristics of potassium influx in S. pombe by using trk1 trk2 mutants. Unlike budding yeast, fission yeast displays a biphasic transport kinetics. trk2 mutants do not show altered K+ transport and exhibit only a slightly reduced Na+ tolerance. However, trk1 trk2 double mutants fail to grow at low K+ concentrations and show a dramatic decrease in Rb+ influx, as a result of loss of the high-affinity transport component. Furthermore, trk1 trk2 cells are very sensitive to Na+, as would be expected for a strain showing defective potassium transport. When trk1 trk2 cells are maintained in K+-free medium, the potassium content remains higher than that of the wild type or trk single mutants. In addition, the trk1 trk2 strain displays increased sensitivity to hygromycin B. These results are consistent with a hyperpolarized state of the plasma membrane. An additional phenotype of cells lacking both Trk components is a failure to grow at acidic pH. In conclusion, the Trk1 and Trk2 proteins define the major K+ transport system in fission yeast, and in contrast to what is known for budding yeast, the presence of any of these two proteins is sufficient to allow growth at normal potassium levels. PMID:10629185

  5. A Two-step Protein Quality Control Pathway for a Misfolded DJ-1 Variant in Fission Yeast.

    PubMed

    Mathiassen, Søs G; Larsen, Ida B; Poulsen, Esben G; Madsen, Christian T; Papaleo, Elena; Lindorff-Larsen, Kresten; Kragelund, Birthe B; Nielsen, Michael L; Kriegenburg, Franziska; Hartmann-Petersen, Rasmus

    2015-08-21

    A mutation, L166P, in the cytosolic protein, PARK7/DJ-1, causes protein misfolding and is linked to Parkinson disease. Here, we identify the fission yeast protein Sdj1 as the orthologue of DJ-1 and calculate by in silico saturation mutagenesis the effects of point mutants on its structural stability. We also map the degradation pathways for Sdj1-L169P, the fission yeast orthologue of the disease-causing DJ-1 L166P protein. Sdj1-L169P forms inclusions, which are enriched for the Hsp104 disaggregase. Hsp104 and Hsp70-type chaperones are required for efficient degradation of Sdj1-L169P. This also depends on the ribosome-associated E3 ligase Ltn1 and its co-factor Rqc1. Although Hsp104 is absolutely required for proteasomal degradation of Sdj1-L169P aggregates, the degradation of already aggregated Sdj1-L169P occurs independently of Ltn1 and Rqc1. Thus, our data point to soluble Sdj1-L169P being targeted early by Ltn1 and Rqc1. The fraction of Sdj1-L169P that escapes this first inspection then forms aggregates that are subsequently cleared via an Hsp104- and proteasome-dependent pathway.

  6. UCS protein Rng3p is essential for myosin-II motor activity during cytokinesis in fission yeast.

    PubMed

    Stark, Benjamin C; James, Michael L; Pollard, Luther W; Sirotkin, Vladimir; Lord, Matthew

    2013-01-01

    UCS proteins have been proposed to operate as co-chaperones that work with Hsp90 in the de novo folding of myosin motors. The fission yeast UCS protein Rng3p is essential for actomyosin ring assembly and cytokinesis. Here we investigated the role of Rng3p in fission yeast myosin-II (Myo2p) motor activity. Myo2p isolated from an arrested rng3-65 mutant was capable of binding actin, yet lacked stability and activity based on its expression levels and inactivity in ATPase and actin filament gliding assays. Myo2p isolated from a myo2-E1 mutant (a mutant hyper-sensitive to perturbation of Rng3p function) showed similar behavior in the same assays and exhibited an altered motor conformation based on limited proteolysis experiments. We propose that Rng3p is not required for the folding of motors per se, but instead works to ensure the activity of intrinsically unstable myosin-II motors. Rng3p is specific to conventional myosin-II and the actomyosin ring, and is not required for unconventional myosin motor function at other actin structures. However, artificial destabilization of myosin-I motors at endocytic actin patches (using a myo1-E1 mutant) led to recruitment of Rng3p to patches. Thus, while Rng3p is specific to myosin-II, UCS proteins are adaptable and can respond to changes in the stability of other myosin motors.

  7. Nup132 modulates meiotic spindle attachment in fission yeast by regulating kinetochore assembly

    PubMed Central

    Yang, Hui-Ju; Asakawa, Haruhiko; Haraguchi, Tokuko

    2015-01-01

    During meiosis, the kinetochore undergoes substantial reorganization to establish monopolar spindle attachment. In the fission yeast Schizosaccharomyces pombe, the KNL1–Spc7-Mis12-Nuf2 (KMN) complex, which constitutes the outer kinetochore, is disassembled during meiotic prophase and is reassembled before meiosis I. Here, we show that the nucleoporin Nup132 is required for timely assembly of the KMN proteins: In the absence of Nup132, Mis12 and Spc7 are precociously assembled at the centromeres during meiotic prophase. In contrast, Nuf2 shows timely dissociation and reappearance at the meiotic centromeres. We further demonstrate that depletion of Nup132 activates the spindle assembly checkpoint in meiosis I, possibly because of the increased incidence of erroneous spindle attachment at sister chromatids. These results suggest that precocious assembly of the kinetochores leads to the meiosis I defects observed in the nup132-disrupted mutant. Thus, we propose that Nup132 plays an important role in establishing monopolar spindle attachment at meiosis I through outer kinetochore reorganization at meiotic prophase. PMID:26483559

  8. Synchronized fission yeast meiosis using an ATP analog-sensitive Pat1 protein kinase.

    PubMed

    Cipak, Lubos; Polakova, Silvia; Hyppa, Randy W; Smith, Gerald R; Gregan, Juraj

    2014-01-01

    Synchronous cultures are often indispensable for studying meiosis. Here we present an optimized protocol for induction of synchronous meiosis in the fission yeast Schizosaccharomyces pombe. Chemical inactivation of an ATP analog-sensitive form of the Pat1 kinase (pat1-as2) by adding the ATP analog 1-NM-PP1 in G1-arrested cells allows the induction of synchronous meiosis at optimal temperature (25°C). Importantly, this protocol eliminates detrimental effects of elevated temperature (34°C), which is required to inactivate the commonly used temperature-sensitive Pat1 kinase mutant (pat1-114). The addition of the mat-Pc gene to a mat1-M strain further improves chromosome segregation and spore viability. Thus, our protocol offers highly synchronous meiosis at optimal temperature, with most characteristics similar to those of wild-type meiosis. The synchronization protocol can be completed in 5 d (not including strain production, which may take as long as 2 or 3 months).

  9. The cdc7 protein kinase is a dosage dependent regulator of septum formation in fission yeast.

    PubMed Central

    Fankhauser, C; Simanis, V

    1994-01-01

    Mutation of the Schizosaccharomyces pombe cdc7 gene prevents formation of the division septum and cytokinesis. We have cloned the cdc7 gene and show that it encodes a protein kinase which is essential for cell division. In the absence of cdc7 function, spore germination, DNA synthesis and mitosis are unaffected, but cells are unable to initiate formation of the division septum. Overexpression of p120cdc7 causes cell cycle arrest; cells complete mitosis and then undergo multiple rounds of septum formation without cell cleavage. This phenotype, which is similar to that resulting from inactivation of cdc16 protein, requires the kinase activity of p120cdc7. Mutations inactivating the early septation gene, cdc11, suppress the formation of multiple septa and allow cells to proliferate normally. If formation of the division septum is prevented by inactivation of either cdc14 or cdc15, p120cdc7 overproduction does not interfere with other events in the mitotic cell cycle. Septation is not induced by overexpression of p120cdc7 in G2 arrested cells, indicating that it does not bypass the normal dependency of septation upon initiation of mitosis. These findings indicate that the p120cdc7 protein kinase plays a key role in initiation of septum formation and cytokinesis in fission yeast and suggest that p120cdc7 interacts with the cdc11 protein in the control of septation. Images PMID:8039497

  10. Fission yeast Lem2 and Man1 perform fundamental functions of the animal cell nuclear lamina.

    PubMed

    Gonzalez, Yanira; Saito, Akira; Sazer, Shelley

    2012-01-01

    In animal cells the nuclear lamina, which consists of lamins and lamin-associated proteins, serves several functions: it provides a structural scaffold for the nuclear envelope and tethers proteins and heterochromatin to the nuclear periphery. In yeast, proteins and large heterochromatic domains including telomeres are also peripherally localized, but there is no evidence that yeast have lamins or a fibrous nuclear envelope scaffold. Nonetheless, we found that the Lem2 and Man1 proteins of the fission yeast Schizosaccharomyces pombe, evolutionarily distant relatives of the Lap2/Emerin/Man1 (LEM) sub-family of animal cell lamin-associated proteins, perform fundamental functions of the animal cell lamina. These integral inner nuclear membrane localized proteins, with nuclear localized DNA binding Helix-Extension-Helix (HEH) domains, impact nuclear envelope structure and integrity, are essential for the enrichment of telomeres at the nuclear periphery and by means of their HEH domains anchor chromatin, most likely transcriptionally repressed heterochromatin, to the nuclear periphery. These data indicate that the core functions of the nuclear lamina are conserved between fungi and animal cells and can be performed in fission yeast, without lamins or other intermediate filament proteins.

  11. Definition of transcriptional pause elements in fission yeast.

    PubMed

    Aranda, A; Proudfoot, N J

    1999-02-01

    Downstream elements (DSEs) with transcriptional pausing activity play an important role in transcription termination of RNA polymerase II. We have defined two such DSEs in Schizosaccharomyces pombe, one for the ura4 gene and a new one in the 3'-end region of the nmt2 gene. Although these DSEs do not have sequence homology, both are orientation specific and are composed of multiple and redundant sequence elements that work together to achieve full pausing activity. Previous studies on the nmt1 and nmt2 genes revealed that transcription extends several kilobases past the genes' poly(A) sites. We show that the insertion of either DSE immediately downstream of the nmt1 poly(A) site induces more immediate termination. nmt2 termination efficiency can be increased by moving the DSE closer to the poly(A) site. These results suggest that DSEs may be a common feature in yeast genes.

  12. Analysis of Mcm2-7 chromatin binding during anaphase and in the transition to quiescence in fission yeast

    SciTech Connect

    Namdar, Mandana; Kearsey, Stephen E. . E-mail: stephen.kearsey@zoo.ox.ac.uk

    2006-10-15

    Mcm2-7 proteins are generally considered to function as a heterohexameric complex, providing helicase activity for the elongation step of DNA replication. These proteins are loaded onto replication origins in M-G1 phase in a process termed licensing or pre-replicative complex formation. It is likely that Mcm2-7 proteins are loaded onto chromatin simultaneously as a pre-formed hexamer although some studies suggest that subcomplexes are recruited sequentially. To analyze this process in fission yeast, we have compared the levels and chromatin binding of Mcm2-7 proteins during the fission yeast cell cycle. Mcm subunits are present at approximately 1 x 10{sup 4} molecules/cell and are bound with approximately equal stoichiometry on chromatin in G1/S phase cells. Using a single cell assay, we have correlated the timing of chromatin association of individual Mcm subunits with progression through mitosis. This showed that Mcm2, 4 and 7 associate with chromatin at about the same stage of anaphase, suggesting that licensing involves the simultaneous binding of these subunits. We also examined Mcm2-7 chromatin association when cells enter a G0-like quiescent state. Chromatin binding is lost in this transition in a process that does not require DNA replication or the selective degradation of specific subunits.

  13. Tts1, the fission yeast homologue of the TMEM33 family, functions in NE remodeling during mitosis.

    PubMed

    Zhang, Dan; Oliferenko, Snezhana

    2014-10-01

    The fission yeast Schizosaccharomyces pombe undergoes "closed" mitosis in which the nuclear envelope (NE) stays intact throughout chromosome segregation. Here we show that Tts1, the fission yeast TMEM33 protein that was previously implicated in organizing the peripheral endoplasmic reticulum (ER), also functions in remodeling the NE during mitosis. Tts1 promotes insertion of spindle pole bodies (SPBs) in the NE at the onset of mitosis and modulates distribution of the nuclear pore complexes (NPCs) during mitotic NE expansion. Structural features that drive partitioning of Tts1 to the high-curvature ER domains are crucial for both aspects of its function. An amphipathic helix located at the C-terminus of Tts1 is important for ER shaping and modulating the mitotic NPC distribution. Of interest, the evolutionarily conserved residues at the luminal interface of the third transmembrane region function specifically in promoting SPB-NE insertion. Our data illuminate cellular requirements for remodeling the NE during "closed" nuclear division and provide insight into the structure and functions of the eukaryotic TMEM33 family.

  14. Identification of S-phase DNA damage-response targets in fission yeast reveals conservation of damage-response networks

    PubMed Central

    Willis, Nicholas A.; Zhou, Chunshui; Elia, Andrew E. H.; Murray, Johanne M.; Carr, Antony M.; Elledge, Stephen J.; Rhind, Nicholas

    2016-01-01

    The cellular response to DNA damage during S-phase regulates a complicated network of processes, including cell-cycle progression, gene expression, DNA replication kinetics, and DNA repair. In fission yeast, this S-phase DNA damage response (DDR) is coordinated by two protein kinases: Rad3, the ortholog of mammalian ATR, and Cds1, the ortholog of mammalian Chk2. Although several critical downstream targets of Rad3 and Cds1 have been identified, most of their presumed targets are unknown, including the targets responsible for regulating replication kinetics and coordinating replication and repair. To characterize targets of the S-phase DDR, we identified proteins phosphorylated in response to methyl methanesulfonate (MMS)-induced S-phase DNA damage in wild-type, rad3∆, and cds1∆ cells by proteome-wide mass spectrometry. We found a broad range of S-phase–specific DDR targets involved in gene expression, stress response, regulation of mitosis and cytokinesis, and DNA replication and repair. These targets are highly enriched for proteins required for viability in response to MMS, indicating their biological significance. Furthermore, the regulation of these proteins is similar in fission and budding yeast, across 300 My of evolution, demonstrating a deep conservation of S-phase DDR targets and suggesting that these targets may be critical for maintaining genome stability in response to S-phase DNA damage across eukaryotes. PMID:27298342

  15. Cooperation between Rho-GEF Gef2 and its binding partner Nod1 in the regulation of fission yeast cytokinesis

    PubMed Central

    Zhu, Yi-Hua; Ye, Yanfang; Wu, Zhengrong; Wu, Jian-Qiu

    2013-01-01

    Cytokinesis is the last step of the cell-division cycle, which requires precise spatial and temporal regulation to ensure genetic stability. Rho guanine nucleotide exchange factors (Rho GEFs) and Rho GTPases are among the key regulators of cytokinesis. We previously found that putative Rho-GEF Gef2 coordinates with Polo kinase Plo1 to control the medial cortical localization of anillin-like protein Mid1 in fission yeast. Here we show that an adaptor protein, Nod1, colocalizes with Gef2 in the contractile ring and its precursor cortical nodes. Like gef2∆, nod1∆ has strong genetic interactions with various cytokinesis mutants involved in division-site positioning, suggesting a role of Nod1 in early cytokinesis. We find that Nod1 and Gef2 interact through the C-termini, which is important for their localization. The contractile-ring localization of Nod1 and Gef2 also depends on the interaction between Nod1 and the F-BAR protein Cdc15, where the Nod1/Gef2 complex plays a role in contractile-ring maintenance and affects the septation initiation network. Moreover, Gef2 binds to purified GTPases Rho1, Rho4, and Rho5 in vitro. Taken together, our data indicate that Nod1 and Gef2 function cooperatively in a protein complex to regulate fission yeast cytokinesis. PMID:23966468

  16. Imp2, the PSTPIP homolog in fission yeast, affects sensitivity to the immunosuppressant FK506 and membrane trafficking in fission yeast

    SciTech Connect

    Kita, Ayako; Higa, Mari; Doi, Akira; Satoh, Ryosuke; Sugiura, Reiko

    2015-02-13

    Cytokinesis is a highly ordered process that divides one cell into two cells, which is functionally linked to the dynamic remodeling of the plasma membrane coordinately with various events such as membrane trafficking. Calcineurin is a highly conserved serine/threonine protein phosphatase, which regulates multiple biological functions, such as membrane trafficking and cytokinesis. Here, we isolated imp2-c3, a mutant allele of the imp2{sup +} gene, encoding a homolog of the mouse PSTPIP1 (proline-serine-threonine phosphatase interacting protein 1), using a genetic screen for mutations that are synthetically lethal with calcineurin deletion in fission yeast. The imp2-c3 mutants showed a defect in cytokinesis with multi-septated phenotypes, which was further enhanced upon treatment with the calcineurin inhibitor FK506. Notably, electron micrographs revealed that the imp2-c3 mutant cells accumulated aberrant multi-lamella Golgi structures and putative post-Golgi secretory vesicles, and exhibited fragmented vacuoles in addition to thickened septa. Consistently, imp2-c3 mutants showed a reduced secretion of acid phosphatase and defects in vacuole fusion. The imp2-c3 mutant cells exhibited a weakened cell wall, similar to the membrane trafficking mutants identified in the same genetic screen such as ypt3-i5. These findings implicate the PSTPIP1 homolog Imp2 in Golgi/vacuole function, thereby affecting various cellular processes, including cytokinesis and cell integrity. - Highlights: • We isolated imp2-c3, in a synthetic lethal screen with calcineurin in fission yeast. • The imp2{sup +} gene encodes a component of the actin contractile ring similar to Cdc15. • The imp2-c3 mutants showed defects in cytokinesis, which were exacerbated by FK506. • The imp2-c3 mutants were defective in membrane trafficking and cell wall integrity. • Our study revealed a novel role for Imp2 in the Golgi/vacuolar membrane trafficking.

  17. The selective elimination of messenger RNA underlies the mitosis-meiosis switch in fission yeast.

    PubMed

    Yamamoto, Masayuki

    2010-01-01

    The cellular programs for meiosis and mitosis must be strictly distinguished but the mechanisms controlling the entry to meiosis remain largely elusive in higher organisms. In contrast, recent analyses in yeast have shed new light on the mechanisms underlying the mitosis-meiosis switch. In this review, the current understanding of these mechanisms in the fission yeast Schizosaccharomyces pombe is discussed. Meiosis-inducing signals in this microbe emanating from environmental conditions including the nutrient status converge on the activity of an RRM-type RNA-binding protein, Mei2. This protein plays pivotal roles in both the induction and progression of meiosis and has now been found to govern the meiotic program in a quite unexpected manner. Fission yeast contains an RNA degradation system that selectively eliminates meiosis-specific mRNAs during the mitotic cell cycle. Mmi1, a novel RNA-binding protein of the YTH-family, is essential for this process. Mei2 tethers Mmi1 and thereby stabilizes the transcripts necessary for the progression of meiosis.

  18. Peroxide Sensors for the Fission Yeast Stress-activated Mitogen-activated Protein Kinase Pathway

    PubMed Central

    Buck, Vicky; Quinn, Janet; Pino, Teresa Soto; Martin, Humberto; Saldanha, Jose; Makino, Kozo; Morgan, Brian A.; Millar, Jonathan B.A.

    2001-01-01

    The Schizosaccharomyces pombe stress-activated Sty1p/Spc1p mitogen-activated protein (MAP) kinase regulates gene expression through the Atf1p and Pap1p transcription factors, homologs of human ATF2 and c-Jun, respectively. Mcs4p, a response regulator protein, acts upstream of Sty1p by binding the Wak1p/Wis4p MAP kinase kinase kinase. We show that phosphorylation of Mcs4p on a conserved aspartic acid residue is required for activation of Sty1p only in response to peroxide stress. Mcs4p acts in a conserved phospho-relay system initiated by two PAS/PAC domain-containing histidine kinases, Mak2p and Mak3p. In the absence of Mak2p or Mak3p, Sty1p fails to phosphorylate the Atf1p transcription factor or induce Atf1p-dependent gene expression. As a consequence, cells lacking Mak2p and Mak3p are sensitive to peroxide attack in the absence of Prr1p, a distinct response regulator protein that functions in association with Pap1p. The Mak1p histidine kinase, which also contains PAS/PAC repeats, does not regulate Sty1p or Atf1p but is partially required for Pap1p- and Prr1p-dependent transcription. We conclude that the transcriptional response to free radical attack is initiated by at least two distinct phospho-relay pathways in fission yeast. PMID:11179424

  19. The fission yeast MTREC and EJC orthologs ensure the maturation of meiotic transcripts during meiosis.

    PubMed

    Marayati, Bahjat Fadi; Hoskins, Victoria; Boger, Robert W; Tucker, James F; Fishman, Emily S; Bray, Andrew S; Zhang, Ke

    2016-09-01

    Meiosis is a highly regulated process by which genetic information is transmitted through sexual reproduction. It encompasses unique mechanisms that do not occur in vegetative cells, producing a distinct, well-regulated meiotic transcriptome. During vegetative growth, many meiotic genes are constitutively transcribed, but most of the resulting mRNAs are rapidly eliminated by the Mmi1-MTREC (Mtl1-Red1 core) complex. While Mmi1-MTREC targets premature meiotic RNAs for degradation by the nuclear 3'-5' exoribonuclease exosome during mitotic growth, its role in meiotic gene expression during meiosis is not known. Here, we report that Red5, an essential MTREC component, interacts with pFal1, an ortholog of eukaryotic translation initiation factor eIF4aIII in the fission yeast Schizosaccharomyces pombe In mammals, together with MAGO (Mnh1), Rnps1, and Y14, elF4AIII (pFal1) forms the core of the exon junction complex (EJC), which is essential for transcriptional surveillance and localization of mature mRNAs. In fission yeast, two EJC orthologs, pFal1 and Mnh1, are functionally connected with MTREC, specifically in the process of meiotic gene expression during meiosis. Although pFal1 interacts with Mnh1, Y14, and Rnps1, its association with Mnh1 is not disrupted upon loss of Y14 or Rnps1. Mutations of Red1, Red5, pFal1, or Mnh1 produce severe meiotic defects; the abundance of meiotic transcripts during meiosis decreases; and mRNA maturation processes such as splicing are impaired. Since studying meiosis in mammalian germline cells is difficult, our findings in fission yeast may help to define the general mechanisms involved in accurate meiotic gene expression in higher eukaryotes.

  20. The fission yeast MTREC and EJC orthologs ensure the maturation of meiotic transcripts during meiosis

    PubMed Central

    Marayati, Bahjat Fadi; Hoskins, Victoria; Boger, Robert W.; Tucker, James F.; Fishman, Emily S.; Bray, Andrew S.; Zhang, Ke

    2016-01-01

    Meiosis is a highly regulated process by which genetic information is transmitted through sexual reproduction. It encompasses unique mechanisms that do not occur in vegetative cells, producing a distinct, well-regulated meiotic transcriptome. During vegetative growth, many meiotic genes are constitutively transcribed, but most of the resulting mRNAs are rapidly eliminated by the Mmi1-MTREC (Mtl1-Red1 core) complex. While Mmi1-MTREC targets premature meiotic RNAs for degradation by the nuclear 3′–5′ exoribonuclease exosome during mitotic growth, its role in meiotic gene expression during meiosis is not known. Here, we report that Red5, an essential MTREC component, interacts with pFal1, an ortholog of eukaryotic translation initiation factor eIF4aIII in the fission yeast Schizosaccharomyces pombe. In mammals, together with MAGO (Mnh1), Rnps1, and Y14, elF4AIII (pFal1) forms the core of the exon junction complex (EJC), which is essential for transcriptional surveillance and localization of mature mRNAs. In fission yeast, two EJC orthologs, pFal1 and Mnh1, are functionally connected with MTREC, specifically in the process of meiotic gene expression during meiosis. Although pFal1 interacts with Mnh1, Y14, and Rnps1, its association with Mnh1 is not disrupted upon loss of Y14 or Rnps1. Mutations of Red1, Red5, pFal1, or Mnh1 produce severe meiotic defects; the abundance of meiotic transcripts during meiosis decreases; and mRNA maturation processes such as splicing are impaired. Since studying meiosis in mammalian germline cells is difficult, our findings in fission yeast may help to define the general mechanisms involved in accurate meiotic gene expression in higher eukaryotes. PMID:27365210

  1. Bulk Segregant Analysis Reveals the Genetic Basis of a Natural Trait Variation in Fission Yeast

    PubMed Central

    Hu, Wen; Suo, Fang; Du, Li-Lin

    2015-01-01

    Although the fission yeast Schizosaccharomyces pombe is a well-established model organism, studies of natural trait variations in this species remain limited. To assess the feasibility of segregant-pool-based mapping of phenotype-causing genes in natural strains of fission yeast, we investigated the cause of a maltose utilization defect (Mal-) of the S. pombe strain CBS5557 (originally known as Schizosaccharomyces malidevorans). Analyzing the genome sequence of CBS5557 revealed 955 nonconservative missense substitutions, and 61 potential loss-of-function variants including 47 frameshift indels, 13 early stop codons, and 1 splice site mutation. As a side benefit, our analysis confirmed 146 sequence errors in the reference genome and improved annotations of 27 genes. We applied bulk segregant analysis to map the causal locus of the Mal- phenotype. Through sequencing the segregant pools derived from a cross between CBS5557 and the laboratory strain, we located the locus to within a 2.23-Mb chromosome I inversion found in most S. pombe isolates including CBS5557. To map genes within the inversion region that occupies 18% of the genome, we created a laboratory strain containing the same inversion. Analyzing segregants from a cross between CBS5557 and the inversion-containing laboratory strain narrowed down the locus to a 200-kb interval and led us to identify agl1, which suffers a 5-bp deletion in CBS5557, as the causal gene. Interestingly, loss of agl1 through a 34-kb deletion underlies the Mal- phenotype of another S. pombe strain CGMCC2.1628. This work adapts and validates the bulk segregant analysis method for uncovering trait-gene relationship in natural fission yeast strains. PMID:26615217

  2. Nile red fluorescence screening facilitating neutral lipid phenotype determination in budding yeast, Saccharomyces cerevisiae, and the fission yeast Schizosaccharomyces pombe.

    PubMed

    Rostron, Kerry A; Rolph, Carole E; Lawrence, Clare L

    2015-07-01

    Investigation of yeast neutral lipid accumulation is important for biotechnology and also for modelling aberrant lipid metabolism in human disease. The Nile red (NR) method has been extensively utilised to determine lipid phenotypes of yeast cells via microscopic means. NR assays have been used to differentiate lipid accumulation and relative amounts of lipid in oleaginous species but have not been thoroughly validated for phenotype determination arising from genetic modification. A modified NR assay, first described by Sitepu et al. (J Microbiol Methods 91:321-328, 2012), was able to detect neutral lipid changes in Saccharomyces cerevisiae deletion mutants with sensitivity similar to more advanced methodology. We have also be able to, for the first time, successfully apply the NR assay to the well characterised fission yeast Schizosaccharomyces pombe, an increasingly important organism in biotechnology. The described NR fluorescence assay is suitable for increased throughput and rapid screening of genetically modified strains in both the biotechnology industry and for modelling ectopic lipid production for a variety of human diseases. This ultimately negates the need for labour intensive and time consuming lipid analyses of samples that may not yield a desirable lipid phenotype, whilst genetic modifications impacting significantly on the cellular lipid phenotype can be further promoted for more in depth analyses.

  3. Uncleavable Nup98-Nup96 is functional in the fission yeast Schizosaccharomyces pombe.

    PubMed

    Asakawa, Haruhiko; Mori, Chie; Ohtsuki, Chizuru; Iwamoto, Masaaki; Hiraoka, Yasushi; Haraguchi, Tokuko

    2015-01-01

    Essential nucleoporins Nup98 and Nup96 are coded by a single open reading frame, and produced by autopeptidase cleavage. The autocleavage site of Nup98-Nup96 is highly conserved in a wide range of organisms. To understand the importance of autocleavage, we examined a mutant that produces the Nup98-Nup96 joint molecule as a sole protein product of the nup189 (+) gene in the fission yeast Schizosaccharomyces pombe. Cells expressing only the joint molecule were found to be viable. This result indicates that autocleavage of Nup98-Nup96 is dispensable for cell growth, at least under normal culture conditions in S. pombe.

  4. Crystal Structures of the Adenylate Sensor from Fission Yeast AMP-Activated Protein Kinase

    SciTech Connect

    Townley,R.; Shapiro, L.

    2007-01-01

    The 5'-AMP (adenosine monophosphate)-activated protein kinase (AMPK) coordinates metabolic function with energy availability by responding to changes in intracellular adenosine triphosphate (ATP) and AMP levels. Here we report crystal structures at 2.6 and 2.9 Angstrom resolution for ATP- and AMP-bound forms of a core {alpha}{beta}{gamma} adenylate-binding domain from the fission yeast AMPK homologue. ATP and AMP bind competitively to a single site in the {gamma} subunit, with their respective phosphate groups positioned near function-impairing mutants. Surprisingly, ATP binds without counter ions, amplifying its electrostatic effects on a critical regulatory region where all three subunits converge.

  5. Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Rappaz, Benjamin; Cano, Elena; Colomb, Tristan; Kühn, Jonas; Depeursinge, Christian; Simanis, Viesturs; Magistretti, Pierre J.; Marquet, Pierre

    2009-05-01

    Digital holography microscopy (DHM) is an optical technique which provides phase images yielding quantitative information about cell structure and cellular dynamics. Furthermore, the quantitative phase images allow the derivation of other parameters, including dry mass production, density, and spatial distribution. We have applied DHM to study the dry mass production rate and the dry mass surface density in wild-type and mutant fission yeast cells. Our study demonstrates the applicability of DHM as a tool for label-free quantitative analysis of the cell cycle and opens the possibility for its use in high-throughput screening.

  6. Organellar mechanosensitive channels involved in hypo-osmoregulation in fission yeast.

    PubMed

    Nakayama, Yoshitaka; Iida, Hidetoshi

    2014-12-01

    MscS and MscL, bacterial mechanosensitive channels, play crucial roles in the hypo-osmotic shock response. However, only MscS has homologs in eukaryotes. These homologs are called MscS-like proteins or MSL proteins. MSL proteins have changed both structurally and functionally during evolution and are now localized not only to the membrane of the chloroplast, which is thought to be a descendant of an ancient, free-living bacterium, but also the cell membrane and the endoplasmic reticulum (ER) membrane, suggesting that the role of MSL proteins has diverged. In this brief review, we mainly focus on two MSL proteins in the fission yeast Schizosaccharomyces pombe that are localized in the ER membrane and protect cells from hypo-osmotic shock-induced death by regulating intracellular Ca(2+) concentrations. We also discuss Arabidopsis thaliana MSL proteins and other yeast ion channels in terms of osmoregulation in eukaryotes.

  7. Conservation and rewiring of functional modules revealed by an epistasis map in fission yeast.

    PubMed

    Roguev, Assen; Bandyopadhyay, Sourav; Zofall, Martin; Zhang, Ke; Fischer, Tamas; Collins, Sean R; Qu, Hongjing; Shales, Michael; Park, Han-Oh; Hayles, Jacqueline; Hoe, Kwang-Lae; Kim, Dong-Uk; Ideker, Trey; Grewal, Shiv I; Weissman, Jonathan S; Krogan, Nevan J

    2008-10-17

    An epistasis map (E-MAP) was constructed in the fission yeast, Schizosaccharomyces pombe, by systematically measuring the phenotypes associated with pairs of mutations. This high-density, quantitative genetic interaction map focused on various aspects of chromosome function, including transcription regulation and DNA repair/replication. The E-MAP uncovered a previously unidentified component of the RNA interference (RNAi) machinery (rsh1) and linked the RNAi pathway to several other biological processes. Comparison of the S. pombe E-MAP to an analogous genetic map from the budding yeast revealed that, whereas negative interactions were conserved between genes involved in similar biological processes, positive interactions and overall genetic profiles between pairs of genes coding for physically associated proteins were even more conserved. Hence, conservation occurs at the level of the functional module (protein complex), but the genetic cross talk between modules can differ substantially.

  8. Fission yeast Cdk7 controls gene expression through both its CAK and C-terminal domain kinase activities.

    PubMed

    Devos, Maxime; Mommaerts, Elise; Migeot, Valerie; van Bakel, Harm; Hermand, Damien

    2015-05-01

    Cyclin-dependent kinase (Cdk) activation and RNA polymerase II transcription are linked by the Cdk7 kinase, which phosphorylates Cdks as a trimeric Cdk-activating kinase (CAK) complex, and serine 5 within the polymerase II (Pol II) C-terminal domain (CTD) as transcription factor TFIIH-bound CAK. However, the physiological importance of integrating these processes is not understood. Besides the Cdk7 ortholog Mcs6, fission yeast possesses a second CAK, Csk1. The two enzymes have been proposed to act redundantly to activate Cdc2. Using an improved analogue-sensitive Mcs6-as kinase, we show that Csk1 is not a relevant CAK for Cdc2. Further analyses revealed that Csk1 lacks a 20-amino-acid sequence required for its budding yeast counterpart, Cak1, to bind Cdc2. Transcriptome profiling of the Mcs6-as mutant in the presence or absence of the budding yeast Cak1 kinase, in order to uncouple the CTD kinase and CAK activities of Mcs6, revealed an unanticipated role of the CAK branch in the transcriptional control of the cluster of genes implicated in ribosome biogenesis and cell growth. The analysis of a Cdc2 CAK site mutant confirmed these data. Our data show that the Cdk7 kinase modulates transcription through its well-described RNA Pol II CTD kinase activity and also through the Cdc2-activating kinase activity.

  9. Fission Yeast Cdk7 Controls Gene Expression through both Its CAK and C-Terminal Domain Kinase Activities

    PubMed Central

    Devos, Maxime; Mommaerts, Elise; Migeot, Valerie; van Bakel, Harm

    2015-01-01

    Cyclin-dependent kinase (Cdk) activation and RNA polymerase II transcription are linked by the Cdk7 kinase, which phosphorylates Cdks as a trimeric Cdk-activating kinase (CAK) complex, and serine 5 within the polymerase II (Pol II) C-terminal domain (CTD) as transcription factor TFIIH-bound CAK. However, the physiological importance of integrating these processes is not understood. Besides the Cdk7 ortholog Mcs6, fission yeast possesses a second CAK, Csk1. The two enzymes have been proposed to act redundantly to activate Cdc2. Using an improved analogue-sensitive Mcs6-as kinase, we show that Csk1 is not a relevant CAK for Cdc2. Further analyses revealed that Csk1 lacks a 20-amino-acid sequence required for its budding yeast counterpart, Cak1, to bind Cdc2. Transcriptome profiling of the Mcs6-as mutant in the presence or absence of the budding yeast Cak1 kinase, in order to uncouple the CTD kinase and CAK activities of Mcs6, revealed an unanticipated role of the CAK branch in the transcriptional control of the cluster of genes implicated in ribosome biogenesis and cell growth. The analysis of a Cdc2 CAK site mutant confirmed these data. Our data show that the Cdk7 kinase modulates transcription through its well-described RNA Pol II CTD kinase activity and also through the Cdc2-activating kinase activity. PMID:25691663

  10. Characterization of genome-reduced fission yeast strains

    PubMed Central

    Sasaki, Mayumi; Kumagai, Hiromichi; Takegawa, Kaoru; Tohda, Hideki

    2013-01-01

    The Schizosaccharomyces pombe genome is one of the smallest among the free-living eukaryotes. We further reduced the S. pombe gene number by large-scale gene deletion to identify a minimal gene set required for growth under laboratory conditions. The genome-reduced strain has four deletion regions: 168.4 kb in the left arm of chromosome I, 155.4 kb in the right arm of chromosome I, 211.7 kb in the left arm of chromosome II and 121.6 kb in the right arm of chromosome II. The deletions corresponded to a loss of 223 genes of the original ∼5100. The quadruple-deletion strain, with a total deletion size of 657.3 kb, showed a decreased ability to uptake glucose and some amino acids in comparison with the parental strain. The strain also showed increased gene expression of the mating pheromone M-factor precursor and the nicotinamide adenine dinucleotide phosphate -specific glutamate dehydrogenase. There was also a 2.7-fold increase in the concentration of cellular adenosine triphosphate, and levels of the heterologous proteins, enhanced green fluorescent protein and secreted human growth hormone were increased by 1.7- and 1.8-fold, respectively. The transcriptome data from this study have been submitted to the Gene Expression Omnibus (GEO: http://www.ncbi.nlm.nih.gov/geo/) under the accession number GSE38620 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=vjkxjewuywgcovc&acc=GSE38620). PMID:23563150

  11. Visualizing single rod-shaped fission yeast vertically in micro-sized holes on agarose pad made by soft lithography.

    PubMed

    Wang, Li; Tran, Phong T

    2014-01-01

    Fission yeast cells are rod-shaped unicellular organism that is normally imaged horizontally with its long axis parallel to image plane. This orientation, while practical, limits the imaging resolution of biological structures which are oriented perpendicular to the long axis of the cell. We present here a method to prepare agarose pads with micro-sized holes to load single fission yeast cell vertically and image cell with its long axis perpendicular to the image plane. As a demonstration, actomyosin ring contraction is shown with this new imaging device.

  12. Physical determinants of bipolar mitotic spindle assembly and stability in fission yeast

    PubMed Central

    Blackwell, Robert; Edelmaier, Christopher; Sweezy-Schindler, Oliver; Lamson, Adam; Gergely, Zachary R.; O’Toole, Eileen; Crapo, Ammon; Hough, Loren E.; McIntosh, J. Richard; Glaser, Matthew A.; Betterton, Meredith D.

    2017-01-01

    Mitotic spindles use an elegant bipolar architecture to segregate duplicated chromosomes with high fidelity. Bipolar spindles form from a monopolar initial condition; this is the most fundamental construction problem that the spindle must solve. Microtubules, motors, and cross-linkers are important for bipolarity, but the mechanisms necessary and sufficient for spindle assembly remain unknown. We describe a physical model that exhibits de novo bipolar spindle formation. We began with physical properties of fission-yeast spindle pole body size and microtubule number, kinesin-5 motors, kinesin-14 motors, and passive cross-linkers. Our model results agree quantitatively with our experiments in fission yeast, thereby establishing a minimal system with which to interrogate collective self-assembly. By varying the features of our model, we identify a set of functions essential for the generation and stability of spindle bipolarity. When kinesin-5 motors are present, their bidirectionality is essential, but spindles can form in the presence of passive cross-linkers alone. We also identify characteristic failed states of spindle assembly—the persistent monopole, X spindle, separated asters, and short spindle, which are avoided by the creation and maintenance of antiparallel microtubule overlaps. Our model can guide the identification of new, multifaceted strategies to induce mitotic catastrophes; these would constitute novel strategies for cancer chemotherapy. PMID:28116355

  13. Dynamin-dependent biogenesis, cell cycle regulation and mitochondrial association of peroxisomes in fission yeast.

    PubMed

    Jourdain, Isabelle; Sontam, Dharani; Johnson, Chad; Dillies, Clément; Hyams, Jeremy S

    2008-03-01

    Peroxisomes were visualized for the first time in living fission yeast cells. In small, newly divided cells, the number of peroxisomes was low but increased in parallel with the increase in cell length/volume that accompanies cell cycle progression. In cells grown in oleic acid, both the size and the number of peroxisomes increased. The peroxisomal inventory of cells lacking the dynamin-related proteins Dnm1 or Vps1 was similar to that in wild type. By contrast, cells of the double mutant dnm1Delta vps1Delta contained either no peroxisomes at all or a small number of morphologically aberrant organelles. Peroxisomes exhibited either local Brownian movement or longer-range linear displacements, which continued in the absence of either microtubules or actin filaments. On the contrary, directed peroxisome motility appeared to occur in association with mitochondria and may be an indirect function of intrinsic mitochondrial dynamics. We conclude that peroxisomes are present in fission yeast and that Dnm1 and Vps1 act redundantly in peroxisome biogenesis, which is under cell cycle control. Peroxisome movement is independent of the cytoskeleton but is coupled to mitochondrial dynamics.

  14. Specification of DNA replication origins and genomic base composition in fission yeasts.

    PubMed

    Mojardín, Laura; Vázquez, Enrique; Antequera, Francisco

    2013-11-29

    In the "Replicon Theory", Jacob, Brenner and Cuzin proposed the existence of replicators and initiators as the two major actors in DNA replication. Over the years, many protein components of initiators have been shown to be conserved in different organisms during evolution. By contrast, replicator DNA sequences (often referred to as replication origins) have diverged beyond possible comparison between eukaryotic genomes. Replication origins in the fission yeast Schizosaccharomyces pombe are made up of A+T-rich sequences that do not share any consensus elements. The information encoded in these replicators is interpreted by the Orc4 subunit of the ORC (origin recognition complex), which is unique among eukaryotes in that it contains a large domain harboring nine AT-hook subdomains that target ORC to a great variety of A+T-rich sequences along the chromosomes. Recently, the genomes of other Schizosaccharomyces species have been sequenced and the regions encompassing their replication origins have been identified. DNA sequence analysis and comparison of the organization of their Orc4 proteins have revealed species-specific differences that contribute to our understanding of how the specification of replication origins has evolved during the phylogenetic divergence of fission yeasts.

  15. Fission yeast Ryh1 GTPase activates TOR Complex 2 in response to glucose.

    PubMed

    Hatano, Tomoyuki; Morigasaki, Susumu; Tatebe, Hisashi; Ikeda, Kyoko; Shiozaki, Kazuhiro

    2015-01-01

    The Target Of Rapamycin (TOR) is an evolutionarily conserved protein kinase that forms 2 distinct protein complexes referred to as TOR complex 1 (TORC1) and 2 (TORC2). Recent extensive studies have demonstrated that TORC1 is under the control of the small GTPases Rheb and Rag that funnel multiple input signals including those derived from nutritional sources; however, information is scarce as to the regulation of TORC2. A previous study using the model system provided by the fission yeast Schizosaccharomyces pombe identified Ryh1, a Rab-family GTPase, as an activator of TORC2. Here, we show that the nucleotide-binding state of Ryh1 is regulated in response to glucose, mediating this major nutrient signal to TORC2. In glucose-rich growth media, the GTP-bound form of Ryh1 induces TORC2-dependent phosphorylation of Gad8, a downstream target of TORC2 in fission yeast. Upon glucose deprivation, Ryh1 becomes inactive, which turns off the TORC2-Gad8 pathway. During glucose starvation, however, Gad8 phosphorylation by TORC2 gradually recovers independently of Ryh1, implying an additional TORC2 activator that is regulated negatively by glucose. The paired positive and negative regulatory mechanisms may allow fine-tuning of the TORC2-Gad8 pathway, which is essential for growth under glucose-limited environment.

  16. Regulation of Rho-GEF Rgf3 by the arrestin Art1 in fission yeast cytokinesis

    PubMed Central

    Davidson, Reshma; Laporte, Damien; Wu, Jian-Qiu

    2015-01-01

    Rho GTPases, activated by guanine nucleotide exchange factors (GEFs), are essential regulators of polarized cell growth, cytokinesis, and many other cellular processes. However, the regulation of Rho-GEFs themselves is not well understood. Rgf3 is an essential GEF for Rho1 GTPase in fission yeast. We show that Rgf3 protein levels and localization are regulated by arrestin-related protein Art1. art1∆ cells lyse during cell separation with a thinner and defective septum. As does Rgf3, Art1 concentrates to the contractile ring starting at early anaphase and spreads to the septum during and after ring constriction. Art1 localization depends on its C-terminus, and Art1 is important for maintaining Rgf3 protein levels. Biochemical experiments reveal that the Rgf3 C-terminus binds to Art1. Using an Rgf3 conditional mutant and mislocalization experiments, we found that Art1 and Rgf3 are interdependent for localization to the division site. As expected, active Rho1 levels at the division site are reduced in art1∆ and rgf3 mutant cells. Taken together, these data reveal that the arrestin family protein Art1 regulates the protein levels and localization of the Rho-GEF Rgf3, which in turn modulates active Rho1 levels during fission yeast cytokinesis. PMID:25473118

  17. Module-based construction of plasmids for chromosomal integration of the fission yeast Schizosaccharomyces pombe.

    PubMed

    Kakui, Yasutaka; Sunaga, Tomonari; Arai, Kunio; Dodgson, James; Ji, Liang; Csikász-Nagy, Attila; Carazo-Salas, Rafael; Sato, Masamitsu

    2015-06-01

    Integration of an external gene into a fission yeast chromosome is useful to investigate the effect of the gene product. An easy way to knock-in a gene construct is use of an integration plasmid, which can be targeted and inserted to a chromosome through homologous recombination. Despite the advantage of integration, construction of integration plasmids is energy- and time-consuming, because there is no systematic library of integration plasmids with various promoters, fluorescent protein tags, terminators and selection markers; therefore, researchers are often forced to make appropriate ones through multiple rounds of cloning procedures. Here, we establish materials and methods to easily construct integration plasmids. We introduce a convenient cloning system based on Golden Gate DNA shuffling, which enables the connection of multiple DNA fragments at once: any kind of promoters and terminators, the gene of interest, in combination with any fluorescent protein tag genes and any selection markers. Each of those DNA fragments, called a 'module', can be tandemly ligated in the order we desire in a single reaction, which yields a circular plasmid in a one-step manner. The resulting plasmids can be integrated through standard methods for transformation. Thus, these materials and methods help easy construction of knock-in strains, and this will further increase the value of fission yeast as a model organism.

  18. RNAi mediates post-transcriptional repression of gene expression in fission yeast Schizosaccharomyces pombe

    SciTech Connect

    Smialowska, Agata; Djupedal, Ingela; Wang, Jingwen; Kylsten, Per; Swoboda, Peter; Ekwall, Karl

    2014-02-07

    Highlights: • Protein coding genes accumulate anti-sense sRNAs in fission yeast S. pombe. • RNAi represses protein-coding genes in S. pombe. • RNAi-mediated gene repression is post-transcriptional. - Abstract: RNA interference (RNAi) is a gene silencing mechanism conserved from fungi to mammals. Small interfering RNAs are products and mediators of the RNAi pathway and act as specificity factors in recruiting effector complexes. The Schizosaccharomyces pombe genome encodes one of each of the core RNAi proteins, Dicer, Argonaute and RNA-dependent RNA polymerase (dcr1, ago1, rdp1). Even though the function of RNAi in heterochromatin assembly in S. pombe is established, its role in controlling gene expression is elusive. Here, we report the identification of small RNAs mapped anti-sense to protein coding genes in fission yeast. We demonstrate that these genes are up-regulated at the protein level in RNAi mutants, while their mRNA levels are not significantly changed. We show that the repression by RNAi is not a result of heterochromatin formation. Thus, we conclude that RNAi is involved in post-transcriptional gene silencing in S. pombe.

  19. Genetic analysis of cell morphogenesis in fission yeast--a role for casein kinase II in the establishment of polarized growth.

    PubMed Central

    Snell, V; Nurse, P

    1994-01-01

    We have initiated a study to identify genes regulating cell morphogenesis in the fission yeast Schizosaccharomyces pombe. Five genes have been identified, orb1-orb5, whose mutation gives rise to spherical cells, indicative of an inability to polarize growth. Two further genes have been identified, tea1 and ban1, whose mutant alleles have disturbed patterns of tip growth, leading to T-shaped and curved cells. In fission yeast, sites of cell wall deposition are defined by actin localization, with actin distributions and therefore growth patterns undergoing cell cycle stage-specific reorganization. Studies of double mutants constructed between orb5-19 and various cdc mutants blocked before and after cell division show that orb5 is required for the re-establishment of polar growth following cytokinesis. This indicates that the mutant allele orb5-19 is defective in the reinitiation of polarized growth, even though actin reorganization to the cell tips occurs normally. orb5 encodes a fission yeast homologue of casein kinase II alpha. We propose that this kinase plays a role in the translation of cell polarity into polarized growth, but not in the establishment of polarity itself. Images PMID:8187760

  20. Chemical genetic screen in fission yeast reveals roles for vacuolar acidification, mitochondrial fission, and cellular GMP levels in lifespan extension.

    PubMed

    Stephan, Jessica; Franke, Jacqueline; Ehrenhofer-Murray, Ann E

    2013-08-01

    The discovery that genetic mutations in several cellular pathways can increase lifespan has lent support to the notion that pharmacological inhibition of aging pathways can be used to extend lifespan and to slow the onset of age-related diseases. However, so far, only few compounds with such activities have been described. Here, we have conducted a chemical genetic screen for compounds that cause the extension of chronological lifespan of Schizosaccharomyces pombe. We have characterized eight natural products with such activities, which has allowed us to uncover so far unknown anti-aging pathways in S. pombe. The ionophores monensin and nigericin extended lifespan by affecting vacuolar acidification, and this effect depended on the presence of the vacuolar ATPase (V-ATPase) subunits Vma1 and Vma3. Furthermore, prostaglandin J₂ displayed anti-aging properties due to the inhibition of mitochondrial fission, and its effect on longevity required the mitochondrial fission protein Dnm1 as well as the G-protein-coupled glucose receptor Git3. Also, two compounds that inhibit guanosine monophosphate (GMP) synthesis, mycophenolic acid (MPA) and acivicin, caused lifespan extension, indicating that an imbalance in guanine nucleotide levels impinges upon longevity. We furthermore have identified diindolylmethane (DIM), tschimganine, and the compound mixture mangosteen as inhibiting aging. Taken together, these results reveal unanticipated anti-aging activities for several phytochemicals and open up opportunities for the development of novel anti-aging therapies.

  1. Convergent domestication of pogo-like transposases into centromere-binding proteins in fission yeast and mammals

    PubMed Central

    Casola, Claudio; Hucks, Donald; Feschotte, Cédric

    2007-01-01

    The mammalian centromeric protein CENP-B shares significant sequence similarity with three proteins in fission yeast (Abp1, Cbh1 and Cbh2) that also bind centromeres and have essential function for chromosome segregation and centromeric heterochromatin formation. Each of these proteins displays extensive sequence similarity with pogo-like transposases, which have been previously identified in the genomes of various insects and vertebrates, in the protozoan Entamoeba and in plants. Based on this distribution, it has been proposed that the mammalian and fission yeast centromeric proteins are derived from ‘domesticated’ pogo-like transposons. Here we took advantage of the vast amount of sequence information that has become recently available for a wide range of fungal and animal species to investigate the origin of the mammalian CENP-B and yeast CENP-B-like genes. A highly conserved ortholog of CENP-B was detected in 31 species of mammals, including opossum and platypus, but was absent from all non-mammalian species represented in the databases. Similarly, no ortholog of the fission yeast centromeric proteins was identified in any of the various fungal genomes currently available. In contrast, we discovered a plethora of novel pogo-like transposons in diverse invertebrates and vertebrates and in several filamentous fungi. Phylogenetic analysis revealed that the mammalian and fission yeast CENP-B proteins fall into two distinct monophyletic clades, each of which includes a different set of pogo-like transposons. These results are most parsimoniously explained by independent domestication events of pogo-like transposases into centromeric proteins in the mammalian and fission yeast lineages, a case of ‘convergent domestication’. These findings highlight the propensity of transposases to give rise to new host proteins and the potential of transposons as sources of genetic innovation. PMID:17940212

  2. Indistinguishable Landscapes of Meiotic DNA Breaks in rad50+ and rad50S Strains of Fission Yeast Revealed by a Novel rad50+ Recombination Intermediate

    PubMed Central

    Hyppa, Randy W.; Cromie, Gareth A.; Smith, Gerald R.

    2008-01-01

    The fission yeast Schizosaccharomyces pombe Rec12 protein, the homolog of Spo11 in other organisms, initiates meiotic recombination by creating DNA double-strand breaks (DSBs) and becoming covalently linked to the DNA ends of the break. This protein–DNA linkage has previously been detected only in mutants such as rad50S in which break repair is impeded and DSBs accumulate. In the budding yeast Saccharomyces cerevisiae, the DSB distribution in a rad50S mutant is markedly different from that in wild-type (RAD50) meiosis, and it was suggested that this might also be true for other organisms. Here, we show that we can detect Rec12-DNA linkages in Sc. pombe rad50+ cells, which are proficient for DSB repair. In contrast to the results from Sa. cerevisiae, genome-wide microarray analysis of Rec12-DNA reveals indistinguishable meiotic DSB distributions in rad50+ and rad50S strains of Sc. pombe. These results confirm our earlier findings describing the occurrence of widely spaced DSBs primarily in large intergenic regions of DNA and demonstrate the relevance and usefulness of fission yeast studies employing rad50S. We propose that the differential behavior of rad50S strains reflects a major difference in DSB regulation between the two species—specifically, the requirement for the Rad50-containing complex for DSB formation in budding yeast but not in fission yeast. Use of rad50S and related mutations may be a useful method for DSB analysis in other species. PMID:19023408

  3. The fission yeast homologue of CENP-B, Abp1, regulates directionality of mating-type switching.

    PubMed

    Aguilar-Arnal, Lorena; Marsellach, Francesc-Xavier; Azorín, Fernando

    2008-04-09

    In fission yeast, mating-type switching involves replacing genetic information contained at the expressed mat1 locus by that of either the mat2P or mat3M donor loci. Donor selection is nonrandom, as mat1P cells preferentially use mat3M for switching, whereas mat1M cells use mat2P. Switching directionality is determined by the cell-type-specific distribution of the Swi2-Swi5 complex that, in mat1P cells, localises to mat3M and, only in mat1M cells, spreads to mat2P in a heterochromatin-dependent manner. Mechanisms regulating spreading of Swi2-Swi5 across heterochromatin are not fully understood. Here, we show that the fission yeast homologue of CENP-B, Abp1, binds to the silent domain of the mating-type locus and regulates directionality of switching. Deletion of abp1 prevents utilisation of mat2P, as when heterochromatin is disrupted and spreading of Swi2-Swi5 is impaired. Our results show that, indeed, deletion of abp1 abolishes spreading of Swi2-Swi5 to mat2P. However, in abp1Delta cells, heterochromatin organisation at the mating-type locus is preserved, indicating that Abp1 is actually required for efficient spreading of Swi2-Swi5 through heterochromatin. Cbh1 and Cbh2, which are also homologous to CENP-B, have only a minor contribution to the regulation of directionality of switching, which is in contrast with the strong effects observed for Abp1.

  4. RNA interference regulates the cell cycle checkpoint through the RNA export factor, Ptr1, in fission yeast

    SciTech Connect

    Iida, Tetsushi; Iida, Naoko; Tsutsui, Yasuhiro; Yamao, Fumiaki; Kobayashi, Takehiko

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer RNAi is linked to the cell cycle checkpoint in fission yeast. Black-Right-Pointing-Pointer Ptr1 co-purifies with Ago1. Black-Right-Pointing-Pointer The ptr1-1 mutation impairs the checkpoint but does not affect gene silencing. Black-Right-Pointing-Pointer ago1{sup +} and ptr1{sup +} regulate the cell cycle checkpoint via the same pathway. Black-Right-Pointing-Pointer Mutations in ago1{sup +} and ptr1{sup +} lead to the nuclear accumulation of poly(A){sup +} RNAs. -- Abstract: Ago1, an effector protein of RNA interference (RNAi), regulates heterochromatin silencing and cell cycle arrest in fission yeast. However, the mechanism by which Ago1 controls cell cycle checkpoint following hydroxyurea (HU) treatment has not been elucidated. In this study, we show that Ago1 and other RNAi factors control cell cycle checkpoint following HU treatment via a mechanism independent of silencing. While silencing requires dcr1{sup +}, the overexpression of ago1{sup +} alleviated the cell cycle defect in dcr1{Delta}. Ago1 interacted with the mRNA export factor, Ptr1. The ptr1-1 mutation impaired cell cycle checkpoint but gene silencing was unaffected. Genetic analysis revealed that the regulation of cell cycle checkpoint by ago1{sup +} is dependent on ptr1{sup +}. Nuclear accumulation of poly(A){sup +} RNAs was detected in mutants of ago1{sup +} and ptr1{sup +}, suggesting there is a functional link between the cell cycle checkpoint and RNAi-mediated RNA quality control.

  5. MCM-GINS and MCM-MCM interactions in vivo visualised by bimolecular fluorescence complementation in fission yeast

    PubMed Central

    Akman, Gökhan; MacNeill, Stuart A

    2009-01-01

    Background Each of the three individual components of the CMG complex (Cdc45, MCM and GINS) is essential for chromosomal DNA replication in eukaryotic cells, both for the initiation of replication at origins and also for normal replication fork progression. The MCM complex is a DNA helicase that most likely functions as the catalytic core of the replicative helicase, unwinding the parental duplex DNA ahead of the moving replication fork, whereas Cdc45 and the GINS complex are believed to act as accessory factors for MCM. Results To investigate interactions between components of the CMG complex, we have used bimolecular fluorescence complementation (BiFC) in the fission yeast Schizosaccharomyces pombe for the first time, to analyse protein-protein interactions between GINS and MCM subunits expressed from their native chromosomal loci. We demonstrate interactions between GINS and MCM in the nuclei of exponentially-growing fission yeast cells and on chromatin in binucleate S-phase cells. In addition we present evidence of MCM-MCM interactions in diploid fission yeast cells. As with GINS-MCM interactions, MCM-MCM interactions also occur on chromatin in S-phase cells. Conclusion Bimolecular fluorescence complementation can be used in fission yeast to visualise interactions between two of the three components of the CMG complex, offering the prospect that this technique could in the future be used to allow studies on replication protein dynamics in living S. pombe cells. PMID:19228417

  6. Construction of the first compendium of chemical-genetic profiles in the fission yeast Schizosaccharomyces pombe and comparative compendium approach

    SciTech Connect

    Han, Sangjo; Lee, Minho; Chang, Hyeshik; Nam, Miyoung; Park, Han-Oh; Kwak, Youn-Sig; Ha, Hye-jeong; Kim, Dongsup; Hwang, Sung-Ook; Hoe, Kwang-Lae; Kim, Dong-Uk

    2013-07-12

    Highlights: •The first compendium of chemical-genetic profiles form fission yeast was generated. •The first HTS of drug mode-of-action in fission yeast was performed. •The first comparative chemical genetic analysis between two yeasts was conducted. -- Abstract: Genome-wide chemical genetic profiles in Saccharomyces cerevisiae since the budding yeast deletion library construction have been successfully used to reveal unknown mode-of-actions of drugs. Here, we introduce comparative approach to infer drug target proteins more accurately using two compendiums of chemical-genetic profiles from the budding yeast S. cerevisiae and the fission yeast Schizosaccharomyces pombe. For the first time, we established DNA-chip based growth defect measurement of genome-wide deletion strains of S. pombe, and then applied 47 drugs to the pooled heterozygous deletion strains to generate chemical-genetic profiles in S. pombe. In our approach, putative drug targets were inferred from strains hypersensitive to given drugs by analyzing S. pombe and S. cerevisiae compendiums. Notably, many evidences in the literature revealed that the inferred target genes of fungicide and bactericide identified by such comparative approach are in fact the direct targets. Furthermore, by filtering out the genes with no essentiality, the multi-drug sensitivity genes, and the genes with less eukaryotic conservation, we created a set of drug target gene candidates that are expected to be directly affected by a given drug in human cells. Our study demonstrated that it is highly beneficial to construct the multiple compendiums of chemical genetic profiles using many different species. The fission yeast chemical-genetic compendium is available at (http://pombe.kaist.ac.kr/compendium)

  7. The Fission Yeast Nup107-120 Complex Functionally Interacts with the Small GTPase Ran/Spi1 and Is Required for mRNA Export, Nuclear Pore Distribution, and Proper Cell Division

    PubMed Central

    Baï, Siau Wei; Rouquette, Jacques; Umeda, Makoto; Faigle, Wolfgang; Loew, Damarys; Sazer, Shelley; Doye, Valérie

    2004-01-01

    We have characterized Schizosaccharomyces pombe open reading frames encoding potential orthologues of constituents of the evolutionarily conserved Saccharomyces cerevisiae Nup84 vertebrate Nup107-160 nuclear pore subcomplex, namely Nup133a, Nup133b, Nup120, Nup107, Nup85, and Seh1. In spite of rather weak sequence conservation, in vivo analyses demonstrated that these S. pombe proteins are localized at the nuclear envelope. Biochemical data confirmed the organization of these nucleoporins within conserved complexes. Although examination of the S. cerevisiae and S. pombe deletion mutants revealed different viability phenotypes, functional studies indicated that the involvement of this complex in nuclear pore distribution and mRNA export has been conserved between these highly divergent yeasts. Unexpectedly, microscopic analyses of some of the S. pombe mutants revealed cell division defects at the restrictive temperature (abnormal septa and mitotic spindles and chromosome missegregation) that were reminiscent of defects occurring in several S. pombe GTPase Ran (RanSp)/Spi1 cycle mutants. Furthermore, deletion of nup120 moderately altered the nuclear location of RanSp/Spi1, whereas overexpression of a nonfunctional RanSp/Spi1-GFP allele was specifically toxic in the Δnup120 and Δnup133b mutant strains, indicating a functional and genetic link between constituents of the S. pombe Nup107-120 complex and of the RanSp/Spi1 pathway. PMID:15226438

  8. Functional interactions of Rec24, the fission yeast ortholog of mouse Mei4, with the meiotic recombination–initiation complex

    PubMed Central

    Bonfils, Sandrine; Rozalén, Ana E.; Smith, Gerald R.; Moreno, Sergio; Martín-Castellanos, Cristina

    2011-01-01

    A physical connection between each pair of homologous chromosomes is crucial for reductional chromosome segregation during the first meiotic division and therefore for successful meiosis. Connection is provided by recombination (crossing over) initiated by programmed DNA double-strand breaks (DSBs). Although the topoisomerase-like protein Spo11 makes DSBs and is evolutionarily conserved, how Spo11 (Rec12 in fission yeast) is regulated to form DSBs at the proper time and place is poorly understood. Several additional (accessory) proteins for DSB formation have been inferred in different species from yeast to mice. Here, we show that Rec24 is a bona fide accessory protein in Schizosaccharomyces pombe. Rec24 is required genome-wide for crossing-over and is recruited to meiotic chromosomes during prophase in a Rec12-independent manner forming foci on linear elements (LinEs), structurally related to the synaptonemal complex of other eukaryotes. Stabilization of Rec24 on LinEs depends on another accessory protein, Rec7, with which Rec24 forms complexes in vivo. We propose that Rec24 marks LinE-associated recombination sites, that stabilization of its binding by Rec7 facilitates the loading or activation of Rec12, and that only stabilized complexes containing Rec24 and Rec7 promote DSB formation. Based on the recent report of Rec24 and Rec7 conservation, interaction between Rec24 and Rec7 might be widely conserved in DSB formation. PMID:21429938

  9. The fission yeast spore is coated by a proteinaceous surface layer comprising mainly Isp3

    PubMed Central

    Fukunishi, Kana; Miyakubi, Kana; Hatanaka, Mitsuko; Otsuru, Natsumi; Hirata, Aiko; Shimoda, Chikashi; Nakamura, Taro

    2014-01-01

    The spore is a dormant cell that is resistant to various environmental stresses. As compared with the vegetative cell wall, the spore wall has a more extensive structure that confers resistance on spores. In the fission yeast Schizosaccharomyces pombe, the polysaccharides glucan and chitosan are major components of the spore wall; however, the structure of the spore surface remains unknown. We identify the spore coat protein Isp3/Meu4. The isp3 disruptant is viable and executes meiotic nuclear divisions as efficiently as the wild type, but isp3∆ spores show decreased tolerance to heat, digestive enzymes, and ethanol. Electron microscopy shows that an electron-dense layer is formed at the outermost region of the wild-type spore wall. This layer is not observed in isp3∆ spores. Furthermore, Isp3 is abundantly detected in this layer by immunoelectron microscopy. Thus Isp3 constitutes the spore coat, thereby conferring resistance to various environmental stresses. PMID:24623719

  10. Gradients of phosphatidylserine contribute to plasma membrane charge localization and cell polarity in fission yeast

    PubMed Central

    Haupt, Armin; Minc, Nicolas

    2017-01-01

    Surface charges at the inner leaflet of the plasma membrane may contribute to regulate the surface recruitment of key signaling factors. Phosphatidylserine (PS) is an abundant charged lipid that may regulate charge distribution in different cell types. Here we characterize the subcellular distribution and function of PS in the rod-shaped, polarized fission yeast. We find that PS preferably accumulates at cell tips and defines a gradient of negative charges along the cell surface. This polarization depends on actin-mediated endocytosis and contributes to the subcellular partitioning of charged polarity-regulating Rho GTPases like Rho1 or Cdc42 in a protein charge–dependent manner. Cells depleted of PS have altered cell dimensions and fail to properly regulate growth from the second end, suggesting a role for PS and membrane charge in polarized cell growth. PMID:27852900

  11. Force- and length-dependent catastrophe activities explain interphase microtubule organization in fission yeast.

    PubMed

    Foethke, Dietrich; Makushok, Tatyana; Brunner, Damian; Nédélec, François

    2009-01-01

    The cytoskeleton is essential for the maintenance of cell morphology in eukaryotes. In fission yeast, for example, polarized growth sites are organized by actin, whereas microtubules (MTs) acting upstream control where growth occurs. Growth is limited to the cell poles when MTs undergo catastrophes there and not elsewhere on the cortex. Here, we report that the modulation of MT dynamics by forces as observed in vitro can quantitatively explain the localization of MT catastrophes in Schizosaccharomyces pombe. However, we found that it is necessary to add length-dependent catastrophe rates to make the model fully consistent with other previously measured traits of MTs. We explain the measured statistical distribution of MT-cortex contact times and re-examine the curling behavior of MTs in unbranched straight tea1Delta cells. Importantly, the model demonstrates that MTs together with associated proteins such as depolymerizing kinesins are, in principle, sufficient to mark the cell poles.

  12. Transcription factors mediate condensin recruitment and global chromosomal organization in fission yeast

    PubMed Central

    Kim, Kyoung-Dong; Tanizawa, Hideki; Iwasaki, Osamu; Noma, Ken-ichi

    2016-01-01

    It is becoming clear that Structural Maintenance of Chromosomes (SMC) complexes, such as condensin and cohesin, are involved in the three-dimensional genome organization, yet the exact roles of these complexes in the functional organization remain unclear. This study employs the ChIA-PET approach to comprehensively identify genome-wide associations mediated by condensin and cohesin in fission yeast. We find that although cohesin and condensin often bind to the same loci, they direct different association networks and generate small and larger chromatin domains, respectively. Cohesin mediates local associations between loci positioned within 100 kb; condensin can drive longer-range associations. Moreover, condensin, but not cohesin, connects cell cycle-regulated genes bound by mitotic transcription factors. This study describes the different functions of condensin and cohesin in genome organization and how specific transcription factors function in condensin loading, cell cycle-dependent genome organization, and mitotic chromosome organization to support faithful chromosome segregation. PMID:27548313

  13. Growth requirements of san francisco sour dough yeasts and bakers' yeast.

    PubMed

    Henry, N

    1976-03-01

    The growth requirements of several yeasts isolated from San Francisco sour dough mother sponges were compared with those of bakers' yeast. The sour dough yeasts studied were one strain of Saccharomyces uvarum, one strain of S. inusitatus, and four strains of S. exiguus. S. inusitatus was the only yeast found to have an amino acid requirement, namely, methionine. All of the yeasts had an absolute requirement for pantothenic acid and a partial requirement for biotin. Inositol was stimulatory to all except bakers' yeast. All strains of S. exiguus required niacin and thiamine. Interestingly, S. inusitatus, the only yeast that required methionine, also needed folic acid. For optimal growth of S. exiguus in a molasses medium, supplementation with thiamine was required.

  14. Purification, crystallization and preliminary X-ray diffraction analysis of the histone chaperone cia1 from fission yeast

    SciTech Connect

    Umehara, Takashi; Otta, Yumi; Tsuganezawa, Keiko; Matsumoto, Takehisa; Tanaka, Akiko; Horikoshi, Masami; Padmanabhan, Balasundaram; Yokoyama, Shigeyuki

    2005-11-01

    The histone chaperone cia1 from fission yeast has been overexpressed in E. coli, purified and crystallized using the vapour-diffusion method. In fission yeast, cia1{sup +} is an essential gene that encodes a histone chaperone, a homologue of human CIA (CCG1-interacting factor A) and budding yeast Asf1p (anti-silencing function-1), which both facilitate nucleosome assembly by interacting with the core histones H3/H4. The conserved domain (residues 1–161) of the cia1{sup +}-encoded protein was expressed in Escherichia coli, purified to near-homogeneity and crystallized by the sitting-drop vapour-diffusion method. The protein was crystallized in the monoclinic space group C2, with unit-cell parameters a = 79.16, b = 40.53, c = 69.79 Å, β = 115.93° and one molecule per asymmetric unit. The crystal diffracted to beyond 2.10 Å resolution using synchrotron radiation.

  15. Cell cycle-dependent specific positioning and clustering of centromeres and telomeres in fission yeast

    PubMed Central

    1993-01-01

    Fluorescence in situ hybridization (FISH) shows that fission yeast centromeres and telomeres make up specific spatial arrangements in the nucleus. Their positioning and clustering are cell cycle regulated. In G2, centromeres cluster adjacent to the spindle pole body (SPB), while in mitosis, their association with each other and with the SPB is disrupted. Similarly, telomeres cluster at the nuclear periphery in G2 and their associations are disrupted in mitosis. Mitotic centromeres interact with the spindle. They remain undivided until the spindle reaches a critical length, then separate and move towards the poles. This demonstrated, for the first time, that anaphase A occurs in fission yeast. The mode of anaphase A and B is similar to that of higher eukaryotes. In nda3 and cut7 mutants defective in tubulin of a kinesin-related motor, cells are blocked in early stages of mitosis due to the absence of the spindle, and centromeres dissociate but remain close to the SPB, whereas in a metaphase-arrested nuc2 mutant, they reside at the middle of the spindle. FISH is therefore a powerful tool for analyzing mitotic chromosome movement and disjunction using various mutants. Surprisingly, in top2 defective in DNA topoisomerase II, while most chromatid DNAs remain undivided, sister centromeres are separated. Significance of this finding is discussed. In contrast, most chromatid DNAs are separated but telomeric DNAs are not in cut1 mutant. In cut1, the dependence of SPB duplication on the completion of mitosis is abolished. In crm1 mutant cells defective in higher-order chromosome organization, the interphase arrangements of centromeres and telomeres are disrupted. PMID:8388878

  16. A mutation of the fission yeast EB1 overcomes negative regulation by phosphorylation and stabilizes microtubules

    SciTech Connect

    Iimori, Makoto; Ozaki, Kanako; Chikashige, Yuji; Habu, Toshiyuki; Hiraoka, Yasushi; Maki, Takahisa; Hayashi, Ikuko; Obuse, Chikashi; Matsumoto, Tomohiro

    2012-02-01

    Mal3 is a fission yeast homolog of EB1, a plus-end tracking protein (+ TIP). We have generated a mutation (89R) replacing glutamine with arginine in the calponin homology (CH) domain of Mal3. Analysis of the 89R mutant in vitro has revealed that the mutation confers a higher affinity to microtubules and enhances the intrinsic activity to promote the microtubule-assembly. The mutant Mal3 is no longer a + TIP, but binds strongly the microtubule lattice. Live cell imaging has revealed that while the wild type Mal3 proteins dissociate from the tip of the growing microtubules before the onset of shrinkage, the mutant Mal3 proteins persist on microtubules and reduces a rate of shrinkage after a longer pausing period. Consequently, the mutant Mal3 proteins cause abnormal elongation of microtubules composing the spindle and aster. Mal3 is phosphorylated at a cluster of serine/threonine residues in the linker connecting the CH and EB1-like C-terminal motif domains. The phosphorylation occurs in a microtubule-dependent manner and reduces the affinity of Mal3 to microtubules. We propose that because the 89R mutation is resistant to the effect of phosphorylation, it can associate persistently with microtubules and confers a stronger stability of microtubules likely by reinforcing the cylindrical structure. -- Highlights: Black-Right-Pointing-Pointer We characterize a mutation (mal3-89R) in fission yeast homolog of EB1. Black-Right-Pointing-Pointer The mutation enhances the activity to assemble microtubules. Black-Right-Pointing-Pointer Mal3 is phosphorylated in a microtubule-dependent manner. Black-Right-Pointing-Pointer The phosphorylation negatively regulates the Mal3 activity.

  17. A Genetic and Pharmacological Analysis of Isoprenoid Pathway by LC-MS/MS in Fission Yeast

    PubMed Central

    Takami, Tomonori; Fang, Yue; Zhou, Xin; Jaiseng, Wurentuya; Ma, Yan; Kuno, Takayoshi

    2012-01-01

    Currently, statins are the only drugs acting on the mammalian isoprenoid pathway. The mammalian genes in this pathway are not easily amenable to genetic manipulation. Thus, it is difficult to study the effects of the inhibition of various enzymes on the intermediate and final products in the isoprenoid pathway. In fission yeast, antifungal compounds such as azoles and terbinafine are available as inhibitors of the pathway in addition to statins, and various isoprenoid pathway mutants are also available. Here in these mutants, treated with statins or antifungals, we quantified the final and intermediate products of the fission yeast isoprenoid pathway using liquid chromatography-mass spectrometry/mass spectrometry. In hmg1-1, a mutant of the gene encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR), ergosterol (a final sterol product), and squalene (an intermediate pathway product), were decreased to approximately 80% and 10%, respectively, compared with that of wild-type cells. Consistently in wild-type cells, pravastatin, an HMGR inhibitor decreased ergosterol and squalene, and the effect was more pronounced on squalene. In hmg1-1 mutant and in wild-type cells treated with pravastatin, the decrease in the levels of farnesyl pyrophosphate and geranylgeranyl pyrophosphate respectively was larger than that of ergosterol but was smaller than that of squalene. In Δerg6 or Δsts1 cells, mutants of the genes involved in the last step of the pathway, ergosterol was not detected, and the changes of intermediate product levels were distinct from that of hmg1-1 mutant. Notably, in wild-type cells miconazole and terbinafine only slightly decreased ergosterol level. Altogether, these studies suggest that the pleiotropic phenotypes caused by the hmg1-1 mutation and pravastatin might be due to decreased levels of isoprenoid pyrophosphates or other isoprenoid pathway intermediate products rather than due to a decreased ergosterol level. PMID:23145048

  18. A Genetic Screen for Fission Yeast Gene Deletion Mutants Exhibiting Hypersensitivity to Latrunculin A

    PubMed Central

    Asadi, Farzad; Michalski, Dorothy; Karagiannis, Jim

    2016-01-01

    Fission yeast cells treated with low doses of the actin depolymerizing drug, latrunculin A (LatA), delay entry into mitosis via a mechanism that is dependent on both the Clp1p and Rad24p proteins. During this delay, cells remain in a cytokinesis-competent state that is characterized by continuous repair and/or reestablishment of the actomyosin ring. In this manner, cells ensure the faithful completion of the preceding cytokinesis in response to perturbation of the cell division machinery. To uncover other genes with a role in this response, or simply genes with roles in adapting to LatA-induced stress, we carried out a genome-wide screen and identified a group of 38 gene deletion mutants that are hyper-sensitive to the drug. As expected, we found genes affecting cytokinesis and/or the actin cytoskeleton within this set (ain1, acp2, imp2). We also identified genes with roles in histone modification (tra1, ngg1), intracellular transport (apl5, aps3), and glucose-mediated signaling (git3, git5, git11, pka1, cgs2). Importantly, while the identified gene deletion mutants are prone to cytokinesis failure in the presence of LatA, they are nevertheless fully capable of cell division in the absence of the drug. These results indicate that fission yeast cells make use of a diverse set of regulatory modules to counter abnormal cytoskeletal perturbations, and furthermore, that these modules act redundantly to ensure cell survival and proliferation. PMID:27466272

  19. Enzyme activities of D-glucose metabolism in the fission yeast Schizosaccharomyces pombe.

    PubMed

    Tsai, C S; Shi, J L; Beehler, B W; Beck, B

    1992-12-01

    The activities of key enzymes that are members of D-glucose metabolic pathways in Schizosaccharomyces pombe undergoing respirative, respirofermentative, and fermentative metabolisms are monitored. The steady-state activities of glycolytic enzymes, except phosphofructokinase, decrease with a reduced efficiency in D-glucose utilization by yeast continuous culture. On the other hand, the enzymic activities of pentose monophosphate pathway reach the maximum when the cell mass production of the cultures is optimum. Enzymes of tricarboxylate cycle exhibit the maximum activities at approximately the washout rate. The steady-state activity of pyruvate dehydrogenase complex increases rapidly when D-glucose is efficiently utilized. By comparison, the activity of pyruvate decarboxylase begins to increase only when ethanol production occurs. Depletion of dissolved oxygen suppresses the activity of pyruvate dehydrogenase complex but facilitates that of pyruvate decarboxylase. Acetate greatly enhances the acetyl CoA synthetase activity. Similarly, ethanol stimulates alcohol dehydrogenase and aldehyde dehydrogenase activities. Evidence for the existence of alcohol dehydrogenase isozymes in the fission yeast is presented.

  20. Multifaceted effects of antimetabolite and anticancer drug, 2-deoxyglucose on eukaryotic cancer models budding and fission yeast.

    PubMed

    Vishwanatha, Akshay; D'Souza, Cletus Joseph Michael

    2017-03-01

    Glycolytic inhibitors are of interest therapeutically as they are effective against cancers that display increased glycolytic rate and mitochondrial defects. 2-Deoxyglucose (2-DG) is one such glycolytic inhibitor and was identified to be a competitive inhibitor of glucose. Studies from past few decades have shown that the mechanism of action of 2-DG is complex involving several metabolic and signaling pathways. Budding yeast Saccharomyces cerevisiae and fission yeast Schizosaccharomyces pombe are two important models for studying metabolism, cell cycle and cell signaling. These two unicellular eukaryotes are Crabtree positive yeasts exhibiting a metabolism similar to that of cancer cells. Effects of 2-DG in yeast is of interest owing to these similarities and hence yeasts have emerged as ideal model organisms to study the mode of action and resistance to 2-DG. In this review, we summarize the studies on biological effect and resistance to 2-DG in budding and fission yeasts and give an insight into its possible mechanism of action as models for understanding cancer metabolism and drugs affecting cancer progression. © 2017 IUBMB Life, 69(3):137-147, 2017.

  1. TORC1 signaling inhibition by rapamycin and caffeine affect lifespan, global gene expression, and cell proliferation of fission yeast.

    PubMed

    Rallis, Charalampos; Codlin, Sandra; Bähler, Jürg

    2013-08-01

    Target of rapamycin complex 1 (TORC1) is implicated in growth control and aging from yeast to humans. Fission yeast is emerging as a popular model organism to study TOR signaling, although rapamycin has been thought to not affect cell growth in this organism. Here, we analyzed the effects of rapamycin and caffeine, singly and combined, on multiple cellular processes in fission yeast. The two drugs led to diverse and specific phenotypes that depended on TORC1 inhibition, including prolonged chronological lifespan, inhibition of global translation, inhibition of cell growth and division, and reprograming of global gene expression mimicking nitrogen starvation. Rapamycin and caffeine differentially affected these various TORC1-dependent processes. Combined drug treatment augmented most phenotypes and effectively blocked cell growth. Rapamycin showed a much more subtle effect on global translation than did caffeine, while both drugs were effective in prolonging chronological lifespan. Rapamycin and caffeine did not affect the lifespan via the pH of the growth media. Rapamycin prolonged the lifespan of nongrowing cells only when applied during the growth phase but not when applied after cells had stopped proliferation. The doses of rapamycin and caffeine strongly correlated with growth inhibition and with lifespan extension. This comprehensive analysis will inform future studies into TORC1 function and cellular aging in fission yeast and beyond.

  2. A New Membrane Protein Sbg1 Links the Contractile Ring Apparatus and Septum Synthesis Machinery in Fission Yeast

    PubMed Central

    Sethi, Kriti; Palani, Saravanan; Cortés, Juan C. G.; Sato, Mamiko; Sevugan, Mayalagu; Ramos, Mariona; Vijaykumar, Shruthi; Osumi, Masako; Naqvi, Naweed I.; Ribas, Juan Carlos; Balasubramanian, Mohan

    2016-01-01

    Cytokinesis in many organisms requires a plasma membrane anchored actomyosin ring, whose contraction facilitates cell division. In yeast and fungi, actomyosin ring constriction is also coordinated with division septum assembly. How the actomyosin ring interacts with the plasma membrane and the plasma membrane-localized septum synthesizing machinery remains poorly understood. In Schizosaccharomyces pombe, an attractive model organism to study cytokinesis, the β-1,3-glucan synthase Cps1p / Bgs1p, an integral membrane protein, localizes to the plasma membrane overlying the actomyosin ring and is required for primary septum synthesis. Through a high-dosage suppressor screen we identified an essential gene, sbg1+ (suppressor of beta glucan synthase 1), which suppressed the colony formation defect of Bgs1-defective cps1-191 mutant at higher temperatures. Sbg1p, an integral membrane protein, localizes to the cell ends and to the division site. Sbg1p and Bgs1p physically interact and are dependent on each other to localize to the division site. Loss of Sbg1p results in an unstable actomyosin ring that unravels and slides, leading to an inability to deposit a single contiguous division septum and an important reduction of the β-1,3-glucan proportion in the cell wall, coincident with that observed in the cps1-191 mutant. Sbg1p shows genetic and / or physical interaction with Rga7p, Imp2p, Cdc15p, and Pxl1p, proteins known to be required for actomyosin ring integrity and efficient septum synthesis. This study establishes Sbg1p as a key member of a group of proteins that link the plasma membrane, the actomyosin ring, and the division septum assembly machinery in fission yeast. PMID:27749909

  3. Fission yeast pak1+ encodes a protein kinase that interacts with Cdc42p and is involved in the control of cell polarity and mating.

    PubMed Central

    Ottilie, S; Miller, P J; Johnson, D I; Creasy, C L; Sells, M A; Bagrodia, S; Forsburg, S L; Chernoff, J

    1995-01-01

    A STE20/p65pak homolog was isolated from fission yeast by PCR. The pak1+ gene encodes a 72 kDa protein containing a putative p21-binding domain near its amino-terminus and a serine/threonine kinase domain near its carboxyl-terminus. The Pak1 protein autophosphorylates on serine residues and preferentially binds to activated Cdc42p both in vitro and in vivo. This binding is mediated through the p21 binding domain on Pak1p and the effector domain on Cdc42p. Overexpression of an inactive mutant form of pak1 gives rise to cells with markedly abnormal shape with mislocalized actin staining. Pak1 overexpression does not, however, suppress lethality associated with cdc42-null cells or the morphologic defeat caused by overexpression of mutant cdc42 alleles. Gene disruption of pak1+ establishes that, like cdc42+, pak1+ function is required for cell viability. In budding yeast, pak1+ expression restores mating function to STE20-null cells and, in fission yeast, overexpression of an inactive form of Pak inhibits mating. These results indicate that the Pak1 protein is likely to be an effector for Cdc42p or a related GTPase, and suggest that Pak1p is involved in the maintenance of cell polarity and in mating. Images PMID:8846783

  4. An Imaging Flow Cytometry-based approach to analyse the fission yeast cell cycle in fixed cells.

    PubMed

    Patterson, James O; Swaffer, Matthew; Filby, Andrew

    2015-07-01

    Fission yeast (Schizosaccharomyces pombe) is an excellent model organism for studying eukaryotic cell division because many of the underlying principles and key regulators of cell cycle biology are conserved from yeast to humans. As such it can be employed as tool for understanding complex human diseases that arise from dis-regulation in cell cycle controls, including cancers. Conventional Flow Cytometry (CFC) is a high-throughput, multi-parameter, fluorescence-based single cell analysis technology. It is widely used for studying the mammalian cell cycle both in the context of the normal and disease states by measuring changes in DNA content during the transition through G1, S and G2/M using fluorescent DNA-binding dyes. Unfortunately analysis of the fission yeast cell cycle by CFC is not straightforward because, unlike mammalian cells, cytokinesis occurs after S-phase meaning that bi-nucleated G1 cells have the same DNA content as mono-nucleated G2 cells and cannot be distinguished using total integrated fluorescence (pulse area). It has been elegantly shown that the width of the DNA pulse can be used to distinguish G2 cells with a single 2C foci versus G1 cells with two 1C foci, however the accuracy of this measurement is dependent on the orientation of the cell as it traverses the laser beam. To this end we sought to improve the accuracy of the fission yeast cell cycle analysis and have developed an Imaging Flow Cytometry (IFC)-based method that is able to preserve the high throughput, objective analysis afforded by CFC in combination with the spatial and morphometric information provide by microscopy. We have been able to derive an analysis framework for subdividing the yeast cell cycle that is based on intensiometric and morphometric measurements and is thus robust against orientation-based miss-classification. In addition we can employ image-based metrics to define populations of septated/bi-nucleated cells and measure cellular dimensions. To our knowledge

  5. The small GTPase Rab5 homologue Ypt5 regulates cell morphology, sexual development, ion-stress response and vacuolar formation in fission yeast

    SciTech Connect

    Tsukamoto, Yuta; Katayama, Chisako; Shinohara, Miki; Shinohara, Akira; Maekawa, Shohei; Miyamoto, Masaaki

    2013-11-29

    Highlights: •Multiple functions of Rab5 GTPase in fission yeast were found. •Roles of Rab5 in fission yeast were discussed. •Relation between Rab5 and actin cytoskeleton were discussed. -- Abstract: Inner-membrane transport is critical to cell function. Rab family GTPases play an important role in vesicle transport. In mammalian cells, Rab5 is reported to be involved in the regulation of endosome formation, phagocytosis and chromosome alignment. Here, we examined the role of the fission yeast Rab5 homologue Ypt5 using a point mutant allele. Mutant cells displayed abnormal cell morphology, mating, sporulation, endocytosis, vacuole fusion and responses to ion stress. Our data strongly suggest that fission yeast Rab5 is involved in the regulation of various types of cellular functions.

  6. Drosophila Wee1 kinase rescues fission yeast from mitotic catastrophe and phosphorylates Drosophila Cdc2 in vitro.

    PubMed Central

    Campbell, S D; Sprenger, F; Edgar, B A; O'Farrell, P H

    1995-01-01

    Cdc2 kinase activity is required for triggering entry into mitosis in all known eukaryotes. Elaborate mechanisms have evolved for regulating Cdc2 activity so that mitosis occurs in a timely manner, when preparations for its execution are complete. In Schizosaccharomyces pombe, Wee1 and a related Mik1 kinase are Cdc2-inhibitory kinases that are required for preventing premature activation of the mitotic program. To identify Cdc2-inhibitory kinases in Drosophila, we screened for cDNA clones that rescue S. pombe wee1- mik1- mutants from lethal mitotic catastrophe. One of the genes identified in this screen, Drosophila wee1 (Dwee1), encodes a new Wee1 homologue. Dwee1 kinase is closely related to human and Xenopus Wee1 homologues, and can inhibit Cdc2 activity by phosphorylating a critical tyrosine residue. Dwee1 mRNA is maternally provided to embryos, and is zygotically expressed during the postblastoderm divisions of embryogenesis. Expression remains high in the proliferating cells of the central nervous system well after cells in the rest of the embryo have ceased dividing. The loss of zygotically expressed Dwee1 does not lead to mitotic catastrophe during postblastoderm cycles 14 to 16. This result may indicate that maternally provided Dwee1 is sufficient for regulating Cdc2 during embryogenesis, or it may reflect the presence of a redundant Cdc2 inhibitory kinase, as in fission yeast. Images PMID:8573790

  7. Fission Yeast Receptor of Activated C Kinase (RACK1) Ortholog Cpc2 Regulates Mitotic Commitment through Wee1 Kinase*

    PubMed Central

    Núñez, Andrés; Franco, Alejandro; Soto, Teresa; Vicente, Jero; Gacto, Mariano; Cansado, José

    2010-01-01

    In the fission yeast Schizosaccharomyces pombe, Wee1-dependent inhibitory phosphorylation of the highly conserved Cdc2/Cdk1 kinase determines the mitotic onset when cells have reached a defined size. The receptor of activated C kinase (RACK1) is a scaffolding protein strongly conserved among eukaryotes which binds to other proteins to regulate multiple processes in mammalian cells, including the modulation of cell cycle progression during G1/S transition. We have recently described that Cpc2, the fission yeast ortholog to RACK1, controls from the ribosome the activation of MAPK cascades and the cellular defense against oxidative stress by positively regulating the translation of specific genes whose products participate in the above processes. Intriguingly, mutants lacking Cpc2 display an increased cell size at division, suggesting the existence of a specific cell cycle defect at the G2/M transition. In this work we show that protein levels of Wee1 mitotic inhibitor are increased in cells devoid of Cpc2, whereas the levels of Cdr2, a Wee1 inhibitor, are down-regulated in the above mutant. On the contrary, the kinetics of G1/S transition was virtually identical both in control and Cpc2-less strains. Thus, our results suggest that in fission yeast Cpc2/RACK1 positively regulates from the ribosome the mitotic onset by modulating both the protein levels and the activity of Wee1. This novel mechanism of translational control of cell cycle progression might be conserved in higher eukaryotes. PMID:20974849

  8. Functional redundancies, distinct localizations and interactions among three fission yeast homologs of centromere protein-B.

    PubMed Central

    Irelan, J T; Gutkin, G I; Clarke, L

    2001-01-01

    Several members of protein families that are conserved in higher eukaryotes are known to play a role in centromere function in the fission yeast Schizosaccharomyces pombe, including two homologs of the mammalian centromere protein CENP-B, Abp1p and Cbh1p. Here we characterize a third S. pombe CENP-B homolog, Cbh2p (CENP-B homolog 2). cbh2Delta strains exhibited a modest elevation in minichromosome loss, similar to cbh1Delta or abp1Delta strains. cbh2Delta cbh1Delta strains showed little difference in growth or minichromosome loss rate when compared to single deletion strains. In contrast, cbh2Delta abp1Delta strains displayed dramatic morphological and chromosome segregation defects, as well as enhancement of the slow-growth phenotype of abp1Delta strains, indicating partial functional redundancy between these proteins. Both cbh2Delta abp1Delta and cbh1Delta abp1Delta strains also showed strongly enhanced sensitivity to a microtubule-destabilizing drug, consistent with a mitotic function for these proteins. Cbh2p was localized to the central core and core-associated repeat regions of centromeric heterochromatin, but not at several other centromeric and arm locations tested. Thus, like its mammalian counterpart, Cbh2p appeared to be localized exclusively to a portion of centromeric heterochromatin. In contrast, Abp1p was detected in both centromeric heterochromatin and in chromatin at two of three replication origins tested. Cbh2p and Abp1p homodimerized in the budding yeast two-hybrid assay, but did not interact with each other. These results suggest that indirect cooperation between different CENP-B-like DNA binding proteins with partially overlapping chromatin distributions helps to establish a functional centromere. PMID:11238404

  9. Degradation of HMG-CoA reductase-induced membranes in the fission yeast, Schizosaccharomyces pombe

    PubMed Central

    1995-01-01

    Elevated levels of certain membrane proteins, including the sterol biosynthetic enzyme HMG-CoA reductase, induce proliferation of the endoplasmic reticulum. When the amounts of these proteins return to basal levels, the proliferated membranes are degraded, but the molecular details of this degradation remain unknown. We have examined the degradation of HMG-CoA reductase-induced membranes in the fission yeast, Schizosaccharomyces pombe. In this yeast, increased levels of the Saccharomyces cerevisiae HMG-CoA reductase isozyme encoded by HMG1 induced several types of membranes, including karmellae, which formed a cap of stacked membranes that partially surrounded the nucleus. When expression of HMG1 was repressed, the karmellae detached from the nucleus and formed concentric, multilayered membrane whorls that were then degraded. During the degradation process, CDCFDA-stained compartments distinct from preexisting vacuoles formed within the interior of the whorls. In addition to these compartments, particles that contained neutral lipids also formed within the whorl. As the thickness of the whorl decreased, the lipid particle became larger. When degradation was complete, only the lipid particle remained. Cycloheximide treatment did not prevent the formation of whorls. Thus, new protein synthesis was not needed for the initial stages of karmellae degradation. On the contrary, cycloheximide promoted the detachment of karmellae to form whorls, suggesting that a short lived protein may be involved in maintaining karmellae integrity. Taken together, these results demonstrate that karmellae membranes differentiated into self-degradative organelles. This process may be a common pathway by which ER membranes are turned over in cells. PMID:7559789

  10. LEM2 recruits CHMP7 for ESCRT-mediated nuclear envelope closure in fission yeast and human cells.

    PubMed

    Gu, Mingyu; LaJoie, Dollie; Chen, Opal S; von Appen, Alexander; Ladinsky, Mark S; Redd, Michael J; Nikolova, Linda; Bjorkman, Pamela J; Sundquist, Wesley I; Ullman, Katharine S; Frost, Adam

    2017-03-14

    Endosomal sorting complexes required for transport III (ESCRT-III) proteins have been implicated in sealing the nuclear envelope in mammals, spindle pole body dynamics in fission yeast, and surveillance of defective nuclear pore complexes in budding yeast. Here, we report that Lem2p (LEM2), a member of the LEM (Lap2-Emerin-Man1) family of inner nuclear membrane proteins, and the ESCRT-II/ESCRT-III hybrid protein Cmp7p (CHMP7), work together to recruit additional ESCRT-III proteins to holes in the nuclear membrane. In Schizosaccharomyces pombe, deletion of the ATPase vps4 leads to severe defects in nuclear morphology and integrity. These phenotypes are suppressed by loss-of-function mutations that arise spontaneously in lem2 or cmp7, implying that these proteins may function upstream in the same pathway. Building on these genetic interactions, we explored the role of LEM2 during nuclear envelope reformation in human cells. We found that CHMP7 and LEM2 enrich at the same region of the chromatin disk periphery during this window of cell division and that CHMP7 can bind directly to the C-terminal domain of LEM2 in vitro. We further found that, during nuclear envelope formation, recruitment of the ESCRT factors CHMP7, CHMP2A, and IST1/CHMP8 all depend on LEM2 in human cells. We conclude that Lem2p/LEM2 is a conserved nuclear site-specific adaptor that recruits Cmp7p/CHMP7 and downstream ESCRT factors to the nuclear envelope.

  11. LEM2 recruits CHMP7 for ESCRT-mediated nuclear envelope closure in fission yeast and human cells

    PubMed Central

    Gu, Mingyu; LaJoie, Dollie; Chen, Opal S.; von Appen, Alexander; Ladinsky, Mark S.; Redd, Michael J.; Nikolova, Linda; Bjorkman, Pamela J.; Sundquist, Wesley I.; Ullman, Katharine S.; Frost, Adam

    2017-01-01

    Endosomal sorting complexes required for transport III (ESCRT-III) proteins have been implicated in sealing the nuclear envelope in mammals, spindle pole body dynamics in fission yeast, and surveillance of defective nuclear pore complexes in budding yeast. Here, we report that Lem2p (LEM2), a member of the LEM (Lap2-Emerin-Man1) family of inner nuclear membrane proteins, and the ESCRT-II/ESCRT-III hybrid protein Cmp7p (CHMP7), work together to recruit additional ESCRT-III proteins to holes in the nuclear membrane. In Schizosaccharomyces pombe, deletion of the ATPase vps4 leads to severe defects in nuclear morphology and integrity. These phenotypes are suppressed by loss-of-function mutations that arise spontaneously in lem2 or cmp7, implying that these proteins may function upstream in the same pathway. Building on these genetic interactions, we explored the role of LEM2 during nuclear envelope reformation in human cells. We found that CHMP7 and LEM2 enrich at the same region of the chromatin disk periphery during this window of cell division and that CHMP7 can bind directly to the C-terminal domain of LEM2 in vitro. We further found that, during nuclear envelope formation, recruitment of the ESCRT factors CHMP7, CHMP2A, and IST1/CHMP8 all depend on LEM2 in human cells. We conclude that Lem2p/LEM2 is a conserved nuclear site-specific adaptor that recruits Cmp7p/CHMP7 and downstream ESCRT factors to the nuclear envelope. PMID:28242692

  12. Kinesin-8 effects on mitotic microtubule dynamics contribute to spindle function in fission yeast

    PubMed Central

    Gergely, Zachary R.; Crapo, Ammon; Hough, Loren E.; McIntosh, J. Richard; Betterton, Meredith D.

    2016-01-01

    Kinesin-8 motor proteins destabilize microtubules. Their absence during cell division is associated with disorganized mitotic chromosome movements and chromosome loss. Despite recent work studying effects of kinesin-8s on microtubule dynamics, it remains unclear whether the kinesin-8 mitotic phenotypes are consequences of their effect on microtubule dynamics, their well-established motor activity, or additional, unknown functions. To better understand the role of kinesin-8 proteins in mitosis, we studied the effects of deletion of the fission yeast kinesin-8 proteins Klp5 and Klp6 on chromosome movements and spindle length dynamics. Aberrant microtubule-driven kinetochore pushing movements and tripolar mitotic spindles occurred in cells lacking Klp5 but not Klp6. Kinesin-8–deletion strains showed large fluctuations in metaphase spindle length, suggesting a disruption of spindle length stabilization. Comparison of our results from light microscopy with a mathematical model suggests that kinesin-8–induced effects on microtubule dynamics, kinetochore attachment stability, and sliding force in the spindle can explain the aberrant chromosome movements and spindle length fluctuations seen. PMID:27146110

  13. Cellular economy in fission yeast cells continuously cultured with limited nitrogen resources

    PubMed Central

    Chikashige, Yuji; Arakawa, Shin'ichi; Leibnitz, Kenji; Tsutsumi, Chihiro; Mori, Chie; Osakada, Hiroko; Murata, Masayuki; Haraguchi, Tokuko; Hiraoka, Yasushi

    2015-01-01

    In ribosome biogenesis, a large fraction of ribosomes is used for producing ribosomal proteins themselves. Here, we applied simulation and experimentation to determine what fraction of ribosomes should be allocated for the synthesis of ribosomal proteins to optimize cellular economy for growth. We define the “r-fraction” as the fraction of mRNA of the ribosomal protein genes out of the total mRNA, and we simulated the effect of the r-fraction on the number of ribosomes. We then empirically measured the amount of protein and RNA in fission yeast cells cultured with high and low nitrogen sources. In the cells cultured with a low nitrogen source, the r-fraction decreased from 0.46 to 0.42 with a 40% reduction of rRNA, but the reduction of the total protein was smaller at 30%. These results indicate that the r-fraction is internally controlled to optimize the efficiency of protein synthesis at a limited cellular cost. PMID:26486373

  14. Properties of African Cassava Mosaic Virus Capsid Protein Expressed in Fission Yeast

    PubMed Central

    Hipp, Katharina; Schäfer, Benjamin; Kepp, Gabi; Jeske, Holger

    2016-01-01

    The capsid proteins (CPs) of geminiviruses combine multiple functions for packaging the single-stranded viral genome, insect transmission and shuttling between the nucleus and the cytoplasm. African cassava mosaic virus (ACMV) CP was expressed in fission yeast, and purified by SDS gel electrophoresis. After tryptic digestion of this protein, mass spectrometry covered 85% of the amino acid sequence and detected three N-terminal phosphorylation sites (threonine 12, serines 25 and 62). Differential centrifugation of cell extracts separated the CP into two fractions, the supernatant and pellet. Upon isopycnic centrifugation of the supernatant, most of the CP accumulated at densities typical for free proteins, whereas the CP in the pellet fraction showed a partial binding to nucleic acids. Size-exclusion chromatography of the supernatant CP indicated high order complexes. In DNA binding assays, supernatant CP accelerated the migration of ssDNA in agarose gels, which is a first hint for particle formation. Correspondingly, CP shifted ssDNA to the expected densities of virus particles upon isopycnic centrifugation. Nevertheless, electron microscopy did not reveal any twin particles, which are characteristic for geminiviruses. PMID:27399762

  15. ATP analog-sensitive Pat1 protein kinase for synchronous fission yeast meiosis at physiological temperature

    PubMed Central

    Cipak, Lubos; Hyppa, Randy; Smith, Gerald; Gregan, Juraj

    2012-01-01

    To study meiosis, synchronous cultures are often indispensable, especially for physical analyses of DNA and proteins. A temperature-sensitive allele of the Pat1 protein kinase (pat1-114) has been widely used to induce synchronous meiosis in the fission yeast Schizosaccharomyces pombe, but pat1-114-induced meiosis differs from wild-type meiosis, and some of these abnormalities might be due to higher temperature needed to inactivate the Pat1 kinase. Here, we report an ATP analog-sensitive allele of Pat1 [Pat1(L95A), designated pat1-as2] that can be used to generate synchronous meiotic cultures at physiological temperature. In pat1-as2 meiosis, chromosomes segregate with higher fidelity, and spore viability is higher than in pat1-114 meiosis, although recombination is lower by a factor of 2–3 in these mutants than in starvation-induced pat1+ meiosis. Addition of the mat-Pc gene improved chromosome segregation and spore viability to nearly the level of starvation-induced meiosis. We conclude that pat1-as2 mat-Pc cells offer synchronous meiosis with most tested properties similar to those of wild-type meiosis. PMID:22487684

  16. Ultrastructure and behavior of actin cytoskeleton during cell wall formation in the fission yeast Schizosaccharomyces pombe.

    PubMed

    Takagi, Tomoko; Ishijima, Sanae A; Ochi, Hisako; Osumi, Masako

    2003-01-01

    Fluorescence microscopy has shown that F-actin of the fission yeast Schizosaccharomyces pombe forms patch, cable and ring structures. To study the relationship between cell wall formation and the actin cytoskeleton, the process of cell wall regeneration from the protoplast was investigated by transmission electron microscopy (TEM), immunoelectron microscopy (IEM) and three-dimensional reconstruction analysis. During cell wall regeneration from the protoplast, localization of F-actin patches was similar to that of the newly synthesized cell wall materials, as shown by confocal laser scanning microscopy (CLSM). In serial sectioned TEM images, filasomes were spherical, 100-300 nm in diameter and consisted of a single microvesicle (35-70 nm diameter) surrounded by fine filaments. Filasomes were adjacent to the newly formed glucan fibrils in single, cluster or rosary forms. By IEM analysis, we found that colloidal gold particles indicating actin molecules were present in the filamentous area of filasomes. Three-dimensional reconstruction images of serial sections clarified that the distribution of filasomes corresponded to the distribution of F-actin patches revealed by CLSM. Thus, a filasome is one of the F-actin patch structures appearing in the cytoplasm at the site of the initial formation of the cell wall and it may play an important role in this action.

  17. Multiple crosstalk between TOR and the cell integrity MAPK signaling pathway in fission yeast

    PubMed Central

    Madrid, Marisa; Vázquez-Marín, Beatriz; Franco, Alejandro; Soto, Teresa; Vicente-Soler, Jero; Gacto, Mariano; Cansado, José

    2016-01-01

    In eukaryotic cells, the highly conserved Target of Rapamycin (TOR) and the Mitogen Activated Protein Kinase (MAPK) signaling pathways elicit adaptive responses to extra- and intracellular conditions by regulating essential cellular functions. However, the nature of the functional relationships between both pathways is not fully understood. In the fission yeast Schizosaccharomyces pombe the cell integrity MAPK pathway (CIP) regulates morphogenesis, cell wall structure and ionic homeostasis. We show that the Rab GTPase Ryh1, a TORC2 complex activator, cross-activates the CIP and its core member, the MAPK Pmk1, by two distinct mechanisms. The first one involves TORC2 and its downstream effector, Akt ortholog Gad8, which together with TORC1 target Psk1 increase protein levels of the PKC ortholog Pck2 during cell wall stress or glucose starvation. Also, Ryh1 activates Pmk1 in a TORC2-independent fashion by prompting plasma membrane trafficking and stabilization of upstream activators of the MAPK cascade, including PDK ortholog Ksg1 or Rho1 GEF Rgf1. Besides, stress-activated Pmk1 cross-inhibits Ryh1 signaling by decreasing the GTPase activation cycle, and this ensures cell growth during alterations in phosphoinositide metabolism. Our results reveal a highly intricate cross-regulatory relationship between both pathways that warrants adequate cell adaptation and survival in response to environmental changes. PMID:27876895

  18. Wall mechanics and exocytosis define the shape of growth domains in fission yeast

    NASA Astrophysics Data System (ADS)

    Abenza, Juan F.; Couturier, Etienne; Dodgson, James; Dickmann, Johanna; Chessel, Anatole; Dumais, Jacques; Salas, Rafael E. Carazo

    2015-10-01

    The amazing structural variety of cells is matched only by their functional diversity, and reflects the complex interplay between biochemical and mechanical regulation. How both regulatory layers generate specifically shaped cellular domains is not fully understood. Here, we report how cell growth domains are shaped in fission yeast. Based on quantitative analysis of cell wall expansion and elasticity, we develop a model for how mechanics and cell wall assembly interact and use it to look for factors underpinning growth domain morphogenesis. Surprisingly, we find that neither the global cell shape regulators Cdc42-Scd1-Scd2 nor the major cell wall synthesis regulators Bgs1-Bgs4-Rgf1 are reliable predictors of growth domain geometry. Instead, their geometry can be defined by cell wall mechanics and the cortical localization pattern of the exocytic factors Sec6-Syb1-Exo70. Forceful re-directioning of exocytic vesicle fusion to broader cortical areas induces proportional shape changes to growth domains, demonstrating that both features are causally linked.

  19. Lipid Droplets Form from Distinct Regions of the Cell in the Fission Yeast Schizosaccharomyces pombe.

    PubMed

    Meyers, Alex; Del Rio, Zuania P; Beaver, Rachael A; Morris, Ryan M; Weiskittel, Taylor M; Alshibli, Amany K; Mannik, Jaana; Morrell-Falvey, Jennifer; Dalhaimer, Paul

    2016-06-01

    Eukaryotic cells store cholesterol/sterol esters (SEs) and triacylglycerols (TAGs) in lipid droplets, which form from the contiguous endoplasmic reticulum (ER) network. However, it is not known if droplets preferentially form from certain regions of the ER over others. Here, we used fission yeast Schizosaccharomyces pombe cells where the nuclear and cortical/peripheral ER domains are distinguishable by light microscopy to show that SE-enriched lipid droplets form away from the nucleus at the cell tips, whereas TAG-enriched lipid droplets form around the nucleus. Sterols localize to the regions of the cells where droplets enriched in SEs are observed. TAG droplet formation around the nucleus appears to be a strong function of diacylglycerol (DAG) homeostasis with Cpt1p, which coverts DAG into phosphatidylcholine and phosphatidylethanolamine localized exclusively to the nuclear ER. Also, Dgk1p, which converts DAG into phosphatidic acid localized strongly to the nuclear ER over the cortical/peripheral ER. We also show that TAG more readily translocates from the ER to lipid droplets than do SEs. The results augment the standard lipid droplet formation model, which has SEs and TAGs flowing into the same nascent lipid droplet regardless of its biogenesis point in the cell.

  20. Nuclear envelope attachment is not necessary for telomere function in fission yeast.

    PubMed

    Chikashige, Yuji; Haraguchi, Tokuko; Hiraoka, Yasushi

    2010-01-01

    Inner nuclear membrane (INM) proteins can be important for positioning chromosomes within the nucleus. Little is known about INM proteins in the fission yeast Schizossacharomayces pombe. Telomeres are the most obvious chromosomal sites that are anchored to the nuclear envelope in this organism. A group of proteins that tether telomeres to the spindle-pole body (SPB) during meiotic prophase, such as Bqt1, Bqt2 and Sad1, has been identified previously, but proteins for anchoring telomeres to the nuclear envelope in vegetative cells have not been identified until recently. A recent report demonstrates that Bqt3 and Bqt4 are INM proteins that affect nuclear positioning of telomeres in vegetative cells, and consequently affect the telomere clustering in meiotic prophase. Interestingly, in the absence of Bqt4, telomeres are separated from the nuclear envelope but telomere silencing and telomere length are properly regulated. An important implication of these results is that the functional integrity of telomeres is maintained independently of their connection to the nuclear envelope.

  1. Biological significance of nuclear localization of mitogen-activated protein kinase Pmk1 in fission yeast.

    PubMed

    Sánchez-Mir, Laura; Franco, Alejandro; Madrid, Marisa; Vicente-Soler, Jero; Villar-Tajadura, M Antonia; Soto, Teresa; Pérez, Pilar; Gacto, Mariano; Cansado, José

    2012-07-27

    Mitogen-activated protein kinase (MAPK) signaling pathways play a fundamental role in the response of eukaryotic cells to environmental changes. Also, much evidence shows that the stimulus-dependent nuclear targeting of this class of regulatory kinases is crucial for adequate regulation of distinct cellular events. In the fission yeast Schizosaccharomyces pombe, the cell integrity MAPK pathway, whose central element is the MAPK Pmk1, regulates multiple processes such as cell wall integrity, vacuole fusion, cytokinesis, and ionic homeostasis. In non-stressed cells Pmk1 is constitutively localized in both cytoplasm and nucleus, and its localization pattern appears unaffected by its activation status or in response to stress, thus questioning the biological significance of the presence of this MAPK into the nucleus. We have addressed this issue by characterizing mutants expressing Pmk1 versions excluded from the cell nucleus and anchored to the plasma membrane in different genetic backgrounds. Although nuclear Pmk1 partially regulates cell wall integrity at a transcriptional level, membrane-tethered Pmk1 performs many of the biological functions assigned to wild type MAPK like regulation of chloride homeostasis, vacuole fusion, and cellular separation. However, we found that down-regulation of nuclear Pmk1 by MAPK phosphatases induced by the stress activated protein kinase pathway is important for the fine modulation of extranuclear Pmk1 activity. These results highlight the importance of the control of MAPK activity at subcellular level.

  2. Fission yeast Vps1 and Atg8 contribute to oxidative stress resistance.

    PubMed

    Mikawa, Takumi; Kanoh, Junko; Ishikawa, Fuyuki

    2010-03-01

    Organisms have evolved diverse means to protect themselves from oxidative stress. To better understand the molecular mechanisms involved in oxidative stress resistance, we screened fission yeast mutants sensitive to paraquat, a reagent acting on the mitochondria to generate reactive oxygen species. Among the mutants we isolated, we focused on a mutant defective in the vps1(+) (vacuolar protein sorting 1) gene that encodes a dynamin-related protein family member. vps1Δ exhibited aberrant mitochondrial and vacuolar morphology on treatment with paraquat. vps1Δ was sensitive to osmotic stress, high concentrations of Ca(2+) and Fe(2+). Interestingly, the deletion of atg8(+), a gene essential for the autophagy pathway, exhibited strong genetic interactions with vps1Δ. The vps1Δatg8Δ double mutant was additively sensitive to oxidative stress, osmotic stress and Ca(2+). The deletion of vps1(+) rescued the bizarre vacuolar morphology shown by atg8Δ. Such genetic interactions were not observed with other atg mutants. Furthermore, the atg8-G116A mutant did not show abnormal vacuolar morphology while being sensitive to nitrogen starvation, an autophagy-related phenotype. Taken together, we conclude that atg8(+) regulates vacuolar functions independently of its role in autophagy. We propose that Vps1 and Atg8 cooperatively participate in vacuolar function, thereby contributing to oxidative stress resistance.

  3. Shape and Size of the Fission Yeast Nucleus are governed by Equilibrium Mechanics

    NASA Astrophysics Data System (ADS)

    Lim, Gerald; Huber, Greg; Miller, Jonathan; Sazer, Shelley

    2006-03-01

    Nuclear morphogenesis in the asexual reproduction of Schizosaccharomyces pombe (fission yeast) consists of two stages: (i) volume-doubling growth, in which a round nucleus inflates uniformly, and (ii) division, in which the nucleus undergoes shape changes from round to oblong to peanut to dumbbell before it resolves into two smaller, round daughter nuclei, driven by the formation and elongation of a microtubule-based spindle within the nucleus. The combined volume of the daughter nuclei immediately after division is the same as the volume of the single nucleus at the onset of division. Consequently, the nuclear envelope (NE) area must increase by 26% during division. We are developing a model in order to determine the mechanics governing these shape and size changes. It is based on current knowledge of the nuclear structure, insight from normal and abnormal nuclei, and concepts from the mechanics governing lipid-bilayer membranes. We predict that (a) the NE prefers to be flat, (b) the NE is under tension, (c) the nucleus has an internal pressure, (d) nuclear growth is governed by the Law of Laplace, and (e) some abnormal nuclei behave like vesicles with encapsulated microtubules.

  4. Failed gene conversion leads to extensive end processing and chromosomal rearrangements in fission yeast

    PubMed Central

    Tinline-Purvis, Helen; Savory, Andrew P; Cullen, Jason K; Davé, Anoushka; Moss, Jennifer; Bridge, Wendy L; Marguerat, Samuel; Bähler, Jürg; Ragoussis, Jiannis; Mott, Richard; A Walker, Carol; Humphrey, Timothy C

    2009-01-01

    Loss of heterozygosity (LOH), a causal event in cancer and human genetic diseases, frequently encompasses multiple genetic loci and whole chromosome arms. However, the mechanisms by which such extensive LOH arises, and how it is suppressed in normal cells is poorly understood. We have developed a genetic system to investigate the mechanisms of DNA double-strand break (DSB)-induced extensive LOH, and its suppression, using a non-essential minichromosome, Ch16, in fission yeast. We find extensive LOH to arise from a new break-induced mechanism of isochromosome formation. Our data support a model in which Rqh1 and Exo1-dependent end processing from an unrepaired DSB leads to removal of the broken chromosome arm and to break-induced replication of the intact arm from the centromere, a considerable distance from the initial lesion. This process also promotes genome-wide copy number variation. A genetic screen revealed Rhp51, Rhp55, Rhp57 and the MRN complex to suppress both isochromosome formation and chromosome loss, in accordance with these events resulting from extensive end processing associated with failed homologous recombination repair. PMID:19798055

  5. Dynamic transition of transcription and chromatin landscape during fission yeast adaptation to glucose starvation.

    PubMed

    Oda, Arisa; Takemata, Naomichi; Hirata, Yoshito; Miyoshi, Tomoichiro; Suzuki, Yutaka; Sugano, Sumio; Ohta, Kunihiro

    2015-05-01

    Shortage of glucose, the primary energy source for all organisms, is one of the most critical stresses influencing cell viability. Glucose starvation promptly induces changes in mRNA and noncoding RNA (ncRNA) transcription. We previously reported that glucose starvation induces long ncRNA (lncRNA) transcription in the 5' segment of a fission yeast gluconeogenesis gene (fbp1+), which leads to stepwise chromatin alteration around the fbp1+ promoter and to subsequent robust gene activation. Here, we analyzed genomewide transcription by strand-specific RNA sequencing, together with chromatin landscape by immunoprecipitation sequencing (ChIP-seq). Clustering analysis showed that distinct mRNAs and ncRNAs are induced at the early, middle and later stages of cellular response to glucose starvation. The starvation-induced transcription depends substantially on the stress-responsive transcription factor Atf1. Using a new computer program that examines dynamic changes in expression patterns, we identified ncRNAs with similar behavior to the fbp1+ lncRNA. We confirmed that there are continuous lncRNAs associated with local reduction of histone density. Overlapping with the regions for transcription of these lncRNAs, antisense RNAs are antagonistically transcribed under glucose-rich conditions. These results suggest that Atf1-dependent integrated networks of mRNA and lncRNA govern drastic changes in cell physiology in response to glucose starvation.

  6. Genome rearrangements and pervasive meiotic drive cause hybrid infertility in fission yeast

    PubMed Central

    Zanders, Sarah E; Eickbush, Michael T; Yu, Jonathan S; Kang, Ji-Won; Fowler, Kyle R; Smith, Gerald R; Malik, Harmit Singh

    2014-01-01

    Hybrid sterility is one of the earliest postzygotic isolating mechanisms to evolve between two recently diverged species. Here we identify causes underlying hybrid infertility of two recently diverged fission yeast species Schizosaccharomyces pombe and S. kambucha, which mate to form viable hybrid diploids that efficiently complete meiosis, but generate few viable gametes. We find that chromosomal rearrangements and related recombination defects are major but not sole causes of hybrid infertility. At least three distinct meiotic drive alleles, one on each S. kambucha chromosome, independently contribute to hybrid infertility by causing nonrandom spore death. Two of these driving loci are linked by a chromosomal translocation and thus constitute a novel type of paired meiotic drive complex. Our study reveals how quickly multiple barriers to fertility can arise. In addition, it provides further support for models in which genetic conflicts, such as those caused by meiotic drive alleles, can drive speciation. DOI: http://dx.doi.org/10.7554/eLife.02630.001 PMID:24963140

  7. Minishelterins separate telomere length regulation and end protection in fission yeast.

    PubMed

    Pan, Lili; Hildebrand, Katie; Stutz, Cian; Thomä, Nicolas; Baumann, Peter

    2015-06-01

    The conserved shelterin complex is critical for chromosome capping and maintaining telomere length homeostasis. In fission yeast, shelterin is comprised of five proteins. Taz1, Rap1, and Poz1 function as negative regulators of telomere elongation, whereas Pot1 and Tpz1 are critical for end capping and telomerase recruitment. How the five proteins work together to safeguard chromosome ends and promote telomere length homeostasis is a matter of great interest. Using a combination of deletions, fusions, and tethers, we define key elements of shelterin important for telomere length regulation. Surprisingly, deletion of the entire Rap1 and Poz1 proteins does not impair telomere length regulation as long as a static bridge is provided between Taz1 and Tpz1. Cells harboring minishelterin display wild-type telomere length and intact subtelomeric silencing. However, protection against end fusions in G1 is compromised in the absence of Rap1. Our data reveal a remarkable plasticity in shelterin architecture and separate functions in length regulation and end protection.

  8. Two Portable Recombination Enhancers Direct Donor Choice in Fission Yeast Heterochromatin

    PubMed Central

    Jakočiūnas, Tadas; Holm, Lærke Rebekka; Verhein-Hansen, Janne; Trusina, Ala; Thon, Geneviève

    2013-01-01

    Mating-type switching in fission yeast results from gene conversions of the active mat1 locus by heterochromatic donors. mat1 is preferentially converted by mat2-P in M cells and by mat3-M in P cells. Here, we report that donor choice is governed by two portable recombination enhancers capable of promoting use of their adjacent cassette even when they are transposed to an ectopic location within the mat2-mat3 heterochromatic domain. Cells whose silent cassettes are swapped to mat2-M mat3-P switch mating-type poorly due to a defect in directionality but cells whose recombination enhancers were transposed together with the cassette contents switched like wild type. Trans-acting mutations that impair directionality affected the wild-type and swapped cassettes in identical ways when the recombination enhancers were transposed together with their cognate cassette, showing essential regulatory steps occur through the recombination enhancers. Our observations lead to a model where heterochromatin biases competitions between the two recombination enhancers to achieve directionality. PMID:24204285

  9. A single-headed fission yeast myosin V transports actin in a tropomyosin-dependent manner

    PubMed Central

    Tang, Qing; Krementsova, Elena B.; Bookwalter, Carol S.; Lord, Matthew

    2016-01-01

    Myo51, a class V myosin in fission yeast, localizes to and assists in the assembly of the contractile ring, a conserved eukaryotic actomyosin structure that facilitates cytokinesis. Rng8 and Rng9 are binding partners that dictate the cellular localization and function of Myo51. Myo51 was expressed in insect cells in the presence or absence of Rng8/9. Surprisingly, electron microscopy of negatively stained images and hydrodynamic measurements showed that Myo51 is single headed, unlike most class V myosins. When Myo51–Rng8/9 was bound to actin-tropomyosin, two attachment sites were observed: the typical ATP-dependent motor domain attachment and a novel ATP-independent binding of the tail mediated by Rng8/9. A modified motility assay showed that this additional binding site anchors Myo51–Rng8/9 so that it can cross-link and slide actin-tropomyosin filaments relative to one another, functions that may explain the role of this motor in contractile ring assembly. PMID:27432898

  10. Biological Significance of Nuclear Localization of Mitogen-activated Protein Kinase Pmk1 in Fission Yeast*

    PubMed Central

    Sánchez-Mir, Laura; Franco, Alejandro; Madrid, Marisa; Vicente-Soler, Jero; Villar-Tajadura, M. Antonia; Soto, Teresa; Pérez, Pilar; Gacto, Mariano; Cansado, José

    2012-01-01

    Mitogen-activated protein kinase (MAPK) signaling pathways play a fundamental role in the response of eukaryotic cells to environmental changes. Also, much evidence shows that the stimulus-dependent nuclear targeting of this class of regulatory kinases is crucial for adequate regulation of distinct cellular events. In the fission yeast Schizosaccharomyces pombe, the cell integrity MAPK pathway, whose central element is the MAPK Pmk1, regulates multiple processes such as cell wall integrity, vacuole fusion, cytokinesis, and ionic homeostasis. In non-stressed cells Pmk1 is constitutively localized in both cytoplasm and nucleus, and its localization pattern appears unaffected by its activation status or in response to stress, thus questioning the biological significance of the presence of this MAPK into the nucleus. We have addressed this issue by characterizing mutants expressing Pmk1 versions excluded from the cell nucleus and anchored to the plasma membrane in different genetic backgrounds. Although nuclear Pmk1 partially regulates cell wall integrity at a transcriptional level, membrane-tethered Pmk1 performs many of the biological functions assigned to wild type MAPK like regulation of chloride homeostasis, vacuole fusion, and cellular separation. However, we found that down-regulation of nuclear Pmk1 by MAPK phosphatases induced by the stress activated protein kinase pathway is important for the fine modulation of extranuclear Pmk1 activity. These results highlight the importance of the control of MAPK activity at subcellular level. PMID:22685296

  11. Lipid droplets form from distinct regions of the cell in the fission yeast Schizosaccharomyces pombe

    DOE PAGES

    Meyers, Alex; del Rio, Zuania P.; Beaver, Rachael A.; ...

    2016-04-29

    Eukaryotic cells store cholesterol/sterol esters (SEs) and triacylglycerols (TAGs) in lipid droplets, which form from the contiguous endoplasmic reticulum (ER) network. However, it is not known if droplets preferentially form from certain regions of the ER over others. Here, we used fission yeast Schizosaccharomyces pombe cells where the nuclear and cortical/peripheral ER domains are distinguishable by light microscopy to show that SE-enriched lipid droplets form away from the nucleus at the cell tips, whereas TAG-enriched lipid droplets form around the nucleus. Sterols localize to the regions of the cells where droplets enriched in SEs are observed. TAG droplet formation aroundmore » the nucleus appears to be a strong function of diacylglycerol (DAG) homeostasis with Cpt1p, which coverts DAG into phosphatidylcholine and phosphatidylethanolamine localized exclusively to the nuclear ER. Also, Dgk1p, which converts DAG into phosphatidic acid localized strongly to the nuclear ER over the cortical/peripheral ER. We also show that TAG more readily translocates from the ER to lipid droplets than do SEs. Lastly, the results augment the standard lipid droplet formation model, which has SEs and TAGs flowing into the same nascent lipid droplet regardless of its biogenesis point in the cell.« less

  12. High level constitutive expression of luciferase reporter by lsd90 promoter in fission yeast.

    PubMed

    Verma, Hemant Kumar; Shukla, Poonam; Alfatah, Md; Khare, Asheesh Kumar; Upadhyay, Udita; Ganesan, Kaliannan; Singh, Jagmohan

    2014-01-01

    Because of a large number of molecular similarities with higher eukaryotes, the fission yeast Schizosaccharomyces pombe has been considered a potentially ideal host for expressing human proteins having therapeutic and pharmaceutical applications. However, efforts in this direction are hampered by lack of a strong promoter. Here, we report the isolation and characterization of a strong, constitutive promoter from S. pombe. A new expression vector was constructed by cloning the putative promoter region of the lsd90 gene (earlier reported to be strongly induced by heat stress) into a previously reported high copy number vector pJH5, which contained an ARS element corresponding to the mat2P flanking region and a truncated URA3m selectable marker. The resulting vector was used to study and compare the level of expression of the luciferase reporter with that achieved with the known vectors containing regulatable promoter nmt1 and the strong constitutive promoter adh1 in S. pombe and the methanol-inducible AOX1 promoter in Pichia pastoris. Following growth in standard media the new vector containing the putative lsd90 promoter provided constitutive expression of luciferase, at a level, which was 19-, 39- and 10-fold higher than that achieved with nmt1, adh1 and AOX1 promoters, respectively. These results indicate a great potential of the new lsd90 promoter-based vector for commercial scale expression of therapeutic proteins in S. pombe.

  13. The contractile ring coordinates curvature-dependent septum assembly during fission yeast cytokinesis

    PubMed Central

    Zhou, Zhou; Munteanu, Emilia Laura; He, Jun; Ursell, Tristan; Bathe, Mark; Huang, Kerwyn Casey; Chang, Fred

    2015-01-01

    The functions of the actin-myosin–based contractile ring in cytokinesis remain to be elucidated. Recent findings show that in the fission yeast Schizosaccharomyces pombe, cleavage furrow ingression is driven by polymerization of cell wall fibers outside the plasma membrane, not by the contractile ring. Here we show that one function of the ring is to spatially coordinate septum cell wall assembly. We develop an improved method for live-cell imaging of the division apparatus by orienting the rod-shaped cells vertically using microfabricated wells. We observe that the septum hole and ring are circular and centered in wild-type cells and that in the absence of a functional ring, the septum continues to ingress but in a disorganized and asymmetric manner. By manipulating the cleavage furrow into different shapes, we show that the ring promotes local septum growth in a curvature-dependent manner, allowing even a misshapen septum to grow into a more regular shape. This curvature-dependent growth suggests a model in which contractile forces of the ring shape the septum cell wall by stimulating the cell wall machinery in a mechanosensitive manner. Mechanical regulation of the cell wall assembly may have general relevance to the morphogenesis of walled cells. PMID:25355954

  14. In vivo direct patulin-induced fluidization of the plasma membrane of fission yeast Schizosaccharomyces pombe.

    PubMed

    Horváth, Eszter; Papp, Gábor; Belágyi, József; Gazdag, Zoltán; Vágvölgyi, Csaba; Pesti, Miklós

    2010-07-01

    Patulin is a toxic metabolite produced by various species of Penicillium, Aspergillus and Byssochlamys. In the present study, its effects on the plasma membrane of fission yeast Schizosaccharomyces pombe were investigated. The phase-transition temperature (G) of untreated cells, measured by electron paramagnetic resonance spectrometry proved to be 14.1 degrees C. Treatment of cells for 20 min with 50, 500, or 1000 microM patulin resulted in a decrease of the G value of the plasma membrane to 13.9, 10.1 or 8.7 degrees C, respectively. This change in the transition temperature was accompanied by the loss of compounds absorbing light at 260 nm. Treatment of cells with 50, 500 or 1000 microM patulin for 20 min induced the efflux of 25%, 30.5% or 34%, respectively, of these compounds. Besides its cytotoxic effects an adaptation process was observed. This is the first study to describe the direct interaction of patulin with the plasma membrane, a process which could definitely contribute to the adverse toxic effects induced by patulin.

  15. The fission yeast CENP-B protein Abp1 prevents pervasive transcription of repetitive DNA elements.

    PubMed

    Daulny, Anne; Mejía-Ramírez, Eva; Reina, Oscar; Rosado-Lugo, Jesus; Aguilar-Arnal, Lorena; Auer, Herbert; Zaratiegui, Mikel; Azorin, Fernando

    2016-10-01

    It is well established that eukaryotic genomes are pervasively transcribed producing cryptic unstable transcripts (CUTs). However, the mechanisms regulating pervasive transcription are not well understood. Here, we report that the fission yeast CENP-B homolog Abp1 plays an important role in preventing pervasive transcription. We show that loss of abp1 results in the accumulation of CUTs, which are targeted for degradation by the exosome pathway. These CUTs originate from different types of genomic features, but the highest increase corresponds to Tf2 retrotransposons and rDNA repeats, where they map along the entire elements. In the absence of abp1, increased RNAPII-Ser5P occupancy is observed throughout the Tf2 coding region and, unexpectedly, RNAPII-Ser5P is enriched at rDNA repeats. Loss of abp1 also results in Tf2 derepression and increased nucleolus size. Altogether these results suggest that Abp1 prevents pervasive RNAPII transcription of repetitive DNA elements (i.e., Tf2 and rDNA repeats) from internal cryptic sites.

  16. Wall mechanics and exocytosis define the shape of growth domains in fission yeast.

    PubMed

    Abenza, Juan F; Couturier, Etienne; Dodgson, James; Dickmann, Johanna; Chessel, Anatole; Dumais, Jacques; Carazo Salas, Rafael E

    2015-10-12

    The amazing structural variety of cells is matched only by their functional diversity, and reflects the complex interplay between biochemical and mechanical regulation. How both regulatory layers generate specifically shaped cellular domains is not fully understood. Here, we report how cell growth domains are shaped in fission yeast. Based on quantitative analysis of cell wall expansion and elasticity, we develop a model for how mechanics and cell wall assembly interact and use it to look for factors underpinning growth domain morphogenesis. Surprisingly, we find that neither the global cell shape regulators Cdc42-Scd1-Scd2 nor the major cell wall synthesis regulators Bgs1-Bgs4-Rgf1 are reliable predictors of growth domain geometry. Instead, their geometry can be defined by cell wall mechanics and the cortical localization pattern of the exocytic factors Sec6-Syb1-Exo70. Forceful re-directioning of exocytic vesicle fusion to broader cortical areas induces proportional shape changes to growth domains, demonstrating that both features are causally linked.

  17. Role for RACK1 Orthologue Cpc2 in the Modulation of Stress Response in Fission Yeast

    PubMed Central

    Núñez, Andrés; Franco, Alejandro; Madrid, Marisa; Soto, Teresa; Vicente, Jero; Cansado, José

    2009-01-01

    The receptor of activated C kinase (RACK1) is a protein highly conserved among eukaryotes. In mammalian cells, RACK1 functions as an adaptor to favor protein kinase C (PKC)-mediated phosphorylation and subsequent activation of c-Jun NH2-terminal kinase mitogen-activated protein kinase. Cpc2, the RACK1 orthologue in the fission yeast Schizosaccharomyces pombe, is involved in the control of G2/M transition and interacts with Pck2, a PKC-type protein member of the cell integrity Pmk1 mitogen-activated protein kinase (MAPK) pathway. Both RACK1 and Cpc2 are structural components of the 40S ribosomal subunit, and recent data suggest that they might be involved in the control of translation. In this work, we present data supporting that Cpc2 negatively regulates the cell integrity transduction pathway by favoring translation of the tyrosine-phosphatases Pyp1 and Pyp2 that deactivate Pmk1. In addition, Cpc2 positively regulates the synthesis of the stress-responsive transcription factor Atf1 and the cytoplasmic catalase, a detoxificant enzyme induced by treatment with hydrogen peroxide. These results provide for the first time strong evidence that the RACK1-type Cpc2 protein controls from the ribosome the extent of the activation of MAPK cascades, the cellular defense against oxidative stress, and the progression of the cell cycle by regulating positively the translation of specific gene products involved in key biological processes. PMID:19625445

  18. Med13p prevents mitochondrial fission and programmed cell death in yeast through nuclear retention of cyclin C.

    PubMed

    Khakhina, Svetlana; Cooper, Katrina F; Strich, Randy

    2014-09-15

    The yeast cyclin C-Cdk8 kinase forms a complex with Med13p to repress the transcription of genes involved in the stress response and meiosis. In response to oxidative stress, cyclin C displays nuclear to cytoplasmic relocalization that triggers mitochondrial fission and promotes programmed cell death. In this report, we demonstrate that Med13p mediates cyclin C nuclear retention in unstressed cells. Deleting MED13 allows aberrant cytoplasmic cyclin C localization and extensive mitochondrial fragmentation. Loss of Med13p function resulted in mitochondrial dysfunction and hypersensitivity to oxidative stress-induced programmed cell death that were dependent on cyclin C. The regulatory system controlling cyclin C-Med13p interaction is complex. First, a previous study found that cyclin C phosphorylation by the stress-activated MAP kinase Slt2p is required for nuclear to cytoplasmic translocation. This study found that cyclin C-Med13p association is impaired when the Slt2p target residue is substituted with a phosphomimetic amino acid. The second step involves Med13p destruction mediated by the 26S proteasome and cyclin C-Cdk8p kinase activity. In conclusion, Med13p maintains mitochondrial structure, function, and normal oxidative stress sensitivity through cyclin C nuclear retention. Releasing cyclin C from the nucleus involves both its phosphorylation by Slt2p coupled with Med13p destruction.

  19. Stimulation of fission yeast and mouse Hop2-Mnd1 of the Dmc1 and Rad51 recombinases

    PubMed Central

    Ploquin, Mickaël; Petukhova, Galina V.; Morneau, Dany; Déry, Ugo; Bransi, Ali; Stasiak, Andrzej; Camerini-Otero, R. Daniel; Masson, Jean-Yves

    2007-01-01

    Genetic analysis of fission yeast suggests a role for the spHop2–Mnd1 proteins in the Rad51 and Dmc1-dependent meiotic recombination pathways. In order to gain biochemical insights into this process, we purified Schizosaccharomyces pombe Hop2-Mnd1 to homogeneity. spHop2 and spMnd1 interact by co-immunoprecipitation and two-hybrid analysis. Electron microscopy reveals that S. pombe Hop2–Mnd1 binds single-strand DNA ends of 3′-tailed DNA. Interestingly, spHop2-Mnd1 promotes the renaturation of complementary single-strand DNA and catalyses strand exchange reactions with short oligonucleotides. Importantly, we show that spHop2-Mnd1 stimulates spDmc1-dependent strand exchange and strand invasion. Ca2+ alleviate the requirement for the order of addition of the proteins on DNA. We also demonstrate that while spHop2-Mnd1 affects spDmc1 specifically, mHop2 or mHop2-Mnd1 stimulates both the hRad51 and hDmc1 recombinases in strand exchange assays. Thus, our results suggest a crucial role for S. pombe and mouse Hop2-Mnd1 in homologous pairing and strand exchange and reveal evolutionary divergence in their specificity for the Dmc1 and Rad51 recombinases. PMID:17426123

  20. Roles of the TRAPP-II Complex and the Exocyst in Membrane Deposition during Fission Yeast Cytokinesis

    PubMed Central

    Wang, Ning; Lee, I-Ju; Rask, Galen; Wu, Jian-Qiu

    2016-01-01

    The cleavage-furrow tip adjacent to the actomyosin contractile ring is believed to be the predominant site for plasma-membrane insertion through exocyst-tethered vesicles during cytokinesis. Here we found that most secretory vesicles are delivered by myosin-V on linear actin cables in fission yeast cytokinesis. Surprisingly, by tracking individual exocytic and endocytic events, we found that vesicles with new membrane are deposited to the cleavage furrow relatively evenly during contractile-ring constriction, but the rim of the cleavage furrow is the main site for endocytosis. Fusion of vesicles with the plasma membrane requires vesicle tethers. Our data suggest that the transport particle protein II (TRAPP-II) complex and Rab11 GTPase Ypt3 help to tether secretory vesicles or tubulovesicular structures along the cleavage furrow while the exocyst tethers vesicles at the rim of the division plane. We conclude that the exocyst and TRAPP-II complex have distinct localizations at the division site, but both are important for membrane expansion and exocytosis during cytokinesis. PMID:27082518

  1. The novel proteins Rng8 and Rng9 regulate the myosin-V Myo51 during fission yeast cytokinesis

    PubMed Central

    Wang, Ning; Lo Presti, Libera; Zhu, Yi-Hua; Kang, Minhee; Martin, Sophie G.

    2014-01-01

    The myosin-V family of molecular motors is known to be under sophisticated regulation, but our knowledge of the roles and regulation of myosin-Vs in cytokinesis is limited. Here, we report that the myosin-V Myo51 affects contractile ring assembly and stability during fission yeast cytokinesis, and is regulated by two novel coiled-coil proteins, Rng8 and Rng9. Both rng8Δ and rng9Δ cells display similar defects as myo51Δ in cytokinesis. Rng8 and Rng9 are required for Myo51’s localizations to cytoplasmic puncta, actin cables, and the contractile ring. Myo51 puncta contain multiple Myo51 molecules and walk continuously on actin filaments in rng8+ cells, whereas Myo51 forms speckles containing only one dimer and does not move efficiently on actin tracks in rng8Δ. Consistently, Myo51 transports artificial cargos efficiently in vivo, and this activity is regulated by Rng8. Purified Rng8 and Rng9 form stable higher-order complexes. Collectively, we propose that Rng8 and Rng9 form oligomers and cluster multiple Myo51 dimers to regulate Myo51 localization and functions. PMID:24798735

  2. Identification of a Sgo2-Dependent but Mad2-Independent Pathway Controlling Anaphase Onset in Fission Yeast.

    PubMed

    Meadows, John C; Lancaster, Theresa C; Buttrick, Graham J; Sochaj, Alicja M; Messin, Liam J; Del Mar Mora-Santos, Maria; Hardwick, Kevin G; Millar, Jonathan B A

    2017-02-07

    The onset of anaphase is triggered by activation of the anaphase-promoting complex/cyclosome (APC/C) following silencing of the spindle assembly checkpoint (SAC). APC/C triggers ubiquitination of Securin and Cyclin B, which leads to loss of sister chromatid cohesion and inactivation of Cyclin B/Cdk1, respectively. This promotes relocalization of Aurora B kinase and other components of the chromosome passenger complex (CPC) from centromeres to the spindle midzone. In fission yeast, this is mediated by Clp1 phosphatase-dependent interaction of CPC with Klp9/MKLP2 (kinesin-6). When this interaction is disrupted, kinetochores bi-orient normally, but APC/C activation is delayed via a mechanism that requires Sgo2 and some (Bub1, Mph1/Mps1, and Mad3), but not all (Mad1 and Mad2), components of the SAC and the first, but not second, lysine, glutamic acid, glutamine (KEN) box in Mad3. These data indicate that interaction of CPC with Klp9 terminates a Sgo2-dependent, but Mad2-independent, APC/C-inhibitory pathway that is distinct from the canonical SAC.

  3. Transcription Termination Factor reb1p Causes Two Replication Fork Barriers at Its Cognate Sites in Fission Yeast Ribosomal DNA In Vivo

    PubMed Central

    Sánchez-Gorostiaga, Alicia; López-Estraño, Carlos; Krimer, Dora B.; Schvartzman, Jorge B.; Hernández, Pablo

    2004-01-01

    Polar replication fork barriers (RFBs) near the 3′ end of the rRNA transcriptional unit are a conserved feature of ribosomal DNA (rDNA) replication in eukaryotes. In the mouse, in vivo studies indicate that the cis-acting Sal boxes required for rRNA transcription termination are also involved in replication fork blockage. On the contrary, in the budding yeast Saccharomyces cerevisiae, the rRNA transcription termination factors are not required for RFBs. Here we characterized the rDNA RFBs in the fission yeast Schizosaccharomyces pombe. S. pombe rDNA contains three closely spaced polar replication barriers named RFB1, RFB2, and RFB3 in the 3′ to 5′ order. The transcription termination protein reb1 and its two binding sites, present at the 3′ end of the coding region, were required for fork arrest at RFB2 and RFB3 in vivo. On the other hand, fork arrest at the strongest RFB1 barrier was independent of the above transcription termination factors. Therefore, RFB2 and RFB3 resemble the barriers present in the mouse rDNA, whereas RFB1 is similar to the budding yeast RFBs. These results suggest that during evolution, cis- and trans-acting factors required for rRNA transcription termination became involved in replication fork blockage also. S. pombe is suggested to be a transitional species in which both mechanisms coexist. PMID:14673172

  4. B-type cyclins regulate G1 progression in fission yeast in opposition to the p25rum1 cdk inhibitor.

    PubMed Central

    Martin-Castellanos, C; Labib, K; Moreno, S

    1996-01-01

    The onset of S phase in fission yeast is regulated at Start, the point of commitment to the mitotic cell cycle. The p34cdc2 kinase is essential for G1 progression past Start, but until now its regulation has been poorly understood. Here we show that the cig2/cyc17 B-type cyclin has an important role in G1 progression, and demonstrate that p34cdc2 kinase activity is periodically associated with cig2 in G1. Cells lacking cig2 are defective in G1 progression, and this is particularly clear in small cells that must regulate Start with respect to cell size. We also find that the cig1 B-type cyclin can promote G1 progression. Whilst p25rum1 can inhibit cig2/cdc2 activity in vitro, and may transiently inhibit this complex in vivo, cig1 is regulated independently of p25rum1. Since cig1/cdc2 kinase activity peaks in mitotic cells, and decreases after mitosis with similar kinetics to cdc13-associated kinase activity, we suggest that cig2 is likely to be the principal fission yeast G1 cyclin. cig2 protein levels accumulate in G1 cells, and we propose that p25rum1 may transiently inhibit cig2-associated p34cdc2 activity until the critical cell size required for Start is reached. Images PMID:8631305

  5. Mechanisms of expression and translocation of major fission yeast glucose transporters regulated by CaMKK/phosphatases, nuclear shuttling, and TOR.

    PubMed

    Saitoh, Shigeaki; Mori, Ayaka; Uehara, Lisa; Masuda, Fumie; Soejima, Saeko; Yanagida, Mitsuhiro

    2015-01-15

    Hexose transporters are required for cellular glucose uptake; thus they play a pivotal role in glucose homeostasis in multicellular organisms. Using fission yeast, we explored hexose transporter regulation in response to extracellular glucose concentrations. The high-affinity transporter Ght5 is regulated with regard to transcription and localization, much like the human GLUT transporters, which are implicated in diabetes. When restricted to a glucose concentration equivalent to that of human blood, the fission yeast transcriptional regulator Scr1, which represses Ght5 transcription in the presence of high glucose, is displaced from the nucleus. Its displacement is dependent on Ca(2+)/calmodulin-dependent kinase kinase, Ssp1, and Sds23 inhibition of PP2A/PP6-like protein phosphatases. Newly synthesized Ght5 locates preferentially at the cell tips with the aid of the target of rapamycin (TOR) complex 2 signaling. These results clarify the evolutionarily conserved molecular mechanisms underlying glucose homeostasis, which are essential for preventing hyperglycemia in humans.

  6. An unconventional interaction between Dis1/TOG and Mal3/EB1 in fission yeast promotes the fidelity of chromosome segregation

    PubMed Central

    Matsuo, Yuzy; Maurer, Sebastian P.; Yukawa, Masashi; Zakian, Silva; Singleton, Martin R.; Surrey, Thomas

    2016-01-01

    ABSTRACT Dynamic microtubule plus-ends interact with various intracellular target regions such as the cell cortex and the kinetochore. Two conserved families of microtubule plus-end-tracking proteins, the XMAP215, ch-TOG or CKAP5 family and the end-binding 1 (EB1, also known as MAPRE1) family, play pivotal roles in regulating microtubule dynamics. Here, we study the functional interplay between fission yeast Dis1, a member of the XMAP215/TOG family, and Mal3, an EB1 protein. Using an in vitro microscopy assay, we find that purified Dis1 autonomously tracks growing microtubule ends and is a bona fide microtubule polymerase. Mal3 recruits additional Dis1 to microtubule ends, explaining the synergistic enhancement of microtubule dynamicity by these proteins. A non-canonical binding motif in Dis1 mediates the interaction with Mal3. X-ray crystallography shows that this new motif interacts in an unconventional configuration with the conserved hydrophobic cavity formed within the Mal3 C-terminal region that typically interacts with the canonical SXIP motif. Selectively perturbing the Mal3–Dis1 interaction in living cells demonstrates that it is important for accurate chromosome segregation. Whereas, in some metazoans, the interaction between EB1 and the XMAP215/TOG family members requires an additional binding partner, fission yeast relies on a direct interaction, indicating evolutionary plasticity of this critical interaction module. PMID:27872152

  7. The Msd1–Wdr8–Pkl1 complex anchors microtubule minus ends to fission yeast spindle pole bodies

    PubMed Central

    Yukawa, Masashi; Ikebe, Chiho

    2015-01-01

    The minus ends of spindle microtubules are anchored to a microtubule-organizing center. The conserved Msd1/SSX2IP proteins are localized to the spindle pole body (SPB) and the centrosome in fission yeast and humans, respectively, and play a critical role in microtubule anchoring. In this paper, we show that fission yeast Msd1 forms a ternary complex with another conserved protein, Wdr8, and the minus end–directed Pkl1/kinesin-14. Individual deletion mutants displayed the identical spindle-protrusion phenotypes. Msd1 and Wdr8 were delivered by Pkl1 to mitotic SPBs, where Pkl1 was tethered through Msd1–Wdr8. The spindle-anchoring defect imposed by msd1/wdr8/pkl1 deletions was suppressed by a mutation of the plus end–directed Cut7/kinesin-5, which was shown to be mutual. Intriguingly, Pkl1 motor activity was not required for its anchoring role once targeted to the SPB. Therefore, spindle anchoring through Msd1–Wdr8–Pkl1 is crucial for balancing the Cut7/kinesin-5–mediated outward force at the SPB. Our analysis provides mechanistic insight into the spatiotemporal regulation of two opposing kinesins to ensure mitotic spindle bipolarity. PMID:25987607

  8. Counteractive roles of protein phosphatase 2C (PP2C) and a MAP kinase kinase homolog in the osmoregulation of fission yeast.

    PubMed

    Shiozaki, K; Russell, P

    1995-02-01

    With the goal of discovering the cellular functions of type 2C protein phosphatases, we have cloned and analyzed two ptc (phosphatase two C) genes, ptc2+ and ptc3+, from the fission yeast Schizosaccharomyces pombe. Together with the previously identified ptc1+ gene, the enzymes encoded by these genes account for approximately 90% of the measurable PP2C activity in fission yeast cells. No obvious growth defects result from individual disruptions of ptc genes, but a delta ptc1 delta ptc3 double mutant displays aberrant cell morphology and temperature-sensitive cell lysis that is further accentuated in a delta ptc1 delta ptc2 delta ptc3 triple mutant. These phenotypes are almost completely suppressed by the presence of osmotic stabilizers, strongly indicating that PP2C has an important role in osmoregulation. Genetic suppression of delta ptc1 delta ptc3 lethality identified two loci, mutations of which render cells hypersensitive to high-osmolarity media. One locus is identical to wis1+, encoding a MAP kinase kinase (MEK) homolog. The Wis1 sequence is most closely related to the Saccharomyces cerevisiae MEK encoded by PBS2, which is required for osmoregulation. These data indicate that divergent yeasts have functionally conserved MAP kinase pathways, which are required to increase intracellular osmotic concentrations in response to osmotic stress. Moreover, our observations implicate PP2C enzymes as also having an important role in signal transduction processes involved in osmoregulation, probably acting to negatively regulate the osmosensing signal that is transmitted through Wis1 MAP kinase kinase.

  9. Abundance of prereplicative complexes (Pre-RCs) facilitates recombinational repair under replication stress in fission yeast.

    PubMed

    Maki, Kentaro; Inoue, Takahiro; Onaka, Atsushi; Hashizume, Hiroko; Somete, Naoko; Kobayashi, Yuko; Murakami, Shigefumi; Shigaki, Chikako; Takahashi, Tatsuro S; Masukata, Hisao; Nakagawa, Takuro

    2011-12-02

    Mcm2-7 complexes are loaded onto chromatin with the aid of Cdt1 and Cdc18/Cdc6 and form prereplicative complexes (pre-RCs) at multiple sites on each chromosome. Pre-RCs are essential for DNA replication and surviving replication stress. However, the mechanism by which pre-RCs contribute to surviving replication stress is largely unknown. Here, we isolated the fission yeast mcm6-S1 mutant that was hypersensitive to methyl methanesulfonate (MMS) and camptothecin (CPT), both of which cause forks to collapse. The mcm6-S1 mutation impaired the interaction with Cdt1 and decreased the binding of minichromosome maintenance (MCM) proteins to replication origins. Overexpression of Cdt1 restored MCM binding and suppressed the sensitivity to MMS and CPT, suggesting that the Cdt1-Mcm6 interaction is important for the assembly of pre-RCs and the repair of collapsed forks. MMS-induced Chk1 phosphorylation and Rad22/Rad52 focus formation occurred normally, whereas cells containing Rhp54/Rad54 foci, which are involved in DNA strand exchange and dissociation of the joint molecules, were increased. Remarkably, G(1) phase extension through deletion of an S phase cyclin, Cig2, as well as Cdt1 overexpression restored pre-RC assembly and suppressed Rhp54 accumulation. A cdc18 mutation also caused hypersensitivity to MMS and CPT and accumulation of Rhp54 foci. These data suggest that an abundance of pre-RCs facilitates a late step in the recombinational repair of collapsed forks in the following S phase.

  10. Conserved and Diverged Functions of the Calcineurin-Activated Prz1 Transcription Factor in Fission Yeast.

    PubMed

    Chatfield-Reed, Kate; Vachon, Lianne; Kwon, Eun-Joo Gina; Chua, Gordon

    2016-04-01

    Gene regulation in response to intracellular calcium is mediated by the calcineurin-activated transcription factor Prz1 in the fission yeast Schizosaccharomyces pombe Genome-wide studies of the Crz1 and CrzA fungal orthologs have uncovered numerous target genes involved in conserved and species-specific cellular processes. In contrast, very few target genes of Prz1 have been published. This article identifies an extensive list of genes using transcriptome and ChIP-chip analyses under inducing conditions of Prz1, including CaCl2 and tunicamycin treatment, as well as a ∆pmr1 genetic background. We identified 165 upregulated putative target genes of Prz1 in which the majority contained a calcium-dependent response element in their promoters, similar to that of the Saccharomyces cerevisiae ortholog Crz1 These genes were functionally enriched for Crz1-conserved processes such as cell-wall biosynthesis. Overexpression of prz1(+)increased resistance to the cell-wall degradation enzyme zymolyase, likely from upregulation of theO-mannosyltransferase encoding gene omh1(+) Loss of omh1(+)abrogates this phenotype. We uncovered a novel inhibitory role in flocculation for Prz1. Loss of prz1(+)resulted in constitutive flocculation and upregulation of genes encoding the flocculins Gsf2 and Pfl3, as well as the transcription factor Cbf12. The constitutive flocculation of the ∆prz1 strain was abrogated by the loss of gsf2(+) or cbf12(+) This study reveals that Prz1 functions as a positive and negative transcriptional regulator of genes involved in cell-wall biosynthesis and flocculation, respectively. Moreover, comparison of target genes between Crz1/CrzA and Prz1 indicate some conservation in DNA-binding specificity, but also substantial rewiring of the calcineurin-mediated transcriptional regulatory network.

  11. Conserved and Diverged Functions of the Calcineurin-Activated Prz1 Transcription Factor in Fission Yeast

    PubMed Central

    Chatfield-Reed, Kate; Vachon, Lianne; Kwon, Eun-Joo Gina; Chua, Gordon

    2016-01-01

    Gene regulation in response to intracellular calcium is mediated by the calcineurin-activated transcription factor Prz1 in the fission yeast Schizosaccharomyces pombe. Genome-wide studies of the Crz1 and CrzA fungal orthologs have uncovered numerous target genes involved in conserved and species-specific cellular processes. In contrast, very few target genes of Prz1 have been published. This article identifies an extensive list of genes using transcriptome and ChIP-chip analyses under inducing conditions of Prz1, including CaCl2 and tunicamycin treatment, as well as a ∆pmr1 genetic background. We identified 165 upregulated putative target genes of Prz1 in which the majority contained a calcium-dependent response element in their promoters, similar to that of the Saccharomyces cerevisiae ortholog Crz1. These genes were functionally enriched for Crz1-conserved processes such as cell-wall biosynthesis. Overexpression of prz1+ increased resistance to the cell-wall degradation enzyme zymolyase, likely from upregulation of the O-mannosyltransferase encoding gene omh1+. Loss of omh1+ abrogates this phenotype. We uncovered a novel inhibitory role in flocculation for Prz1. Loss of prz1+ resulted in constitutive flocculation and upregulation of genes encoding the flocculins Gsf2 and Pfl3, as well as the transcription factor Cbf12. The constitutive flocculation of the ∆prz1 strain was abrogated by the loss of gsf2+ or cbf12+. This study reveals that Prz1 functions as a positive and negative transcriptional regulator of genes involved in cell-wall biosynthesis and flocculation, respectively. Moreover, comparison of target genes between Crz1/CrzA and Prz1 indicate some conservation in DNA-binding specificity, but also substantial rewiring of the calcineurin-mediated transcriptional regulatory network. PMID:26896331

  12. Widespread exon skipping triggers degradation by nuclear RNA surveillance in fission yeast.

    PubMed

    Bitton, Danny A; Atkinson, Sophie R; Rallis, Charalampos; Smith, Graeme C; Ellis, David A; Chen, Yuan Y C; Malecki, Michal; Codlin, Sandra; Lemay, Jean-François; Cotobal, Cristina; Bachand, François; Marguerat, Samuel; Mata, Juan; Bähler, Jürg

    2015-06-01

    Exon skipping is considered a principal mechanism by which eukaryotic cells expand their transcriptome and proteome repertoires, creating different splice variants with distinct cellular functions. Here we analyze RNA-seq data from 116 transcriptomes in fission yeast (Schizosaccharomyces pombe), covering multiple physiological conditions as well as transcriptional and RNA processing mutants. We applied brute-force algorithms to detect all possible exon-skipping events, which were widespread but rare compared to normal splicing events. Exon-skipping events increased in cells deficient for the nuclear exosome or the 5'-3' exonuclease Dhp1, and also at late stages of meiotic differentiation when nuclear-exosome transcripts decreased. The pervasive exon-skipping transcripts were stochastic, did not increase in specific physiological conditions, and were mostly present at less than one copy per cell, even in the absence of nuclear RNA surveillance and during late meiosis. These exon-skipping transcripts are therefore unlikely to be functional and may reflect splicing errors that are actively removed by nuclear RNA surveillance. The average splicing rate by exon skipping was ∼ 0.24% in wild type and ∼ 1.75% in nuclear exonuclease mutants. We also detected approximately 250 circular RNAs derived from single or multiple exons. These circular RNAs were rare and stochastic, although a few became stabilized during quiescence and in splicing mutants. Using an exhaustive search algorithm, we also uncovered thousands of previously unknown splice sites, indicating pervasive splicing; yet most of these splicing variants were cryptic and increased in nuclear degradation mutants. This study highlights widespread but low frequency alternative or aberrant splicing events that are targeted by nuclear RNA surveillance.

  13. Activation of the cell integrity pathway is channelled through diverse signalling elements in fission yeast.

    PubMed

    Barba, Gregorio; Soto, Teresa; Madrid, Marisa; Núñez, Andrés; Vicente, Jeronima; Gacto, Mariano; Cansado, José

    2008-04-01

    MAPK Pmk1p is the central element of a cascade involved in the maintenance of cell integrity and other functions in Schizosaccharomyces pombe. Pmk1p becomes activated by multiple stressing situations and also during cell separation. GTPase Rho2p acts upstream of the protein kinase C homolog Pck2p to activate the Pmk1 signalling pathway through direct interaction with MAPKKK Mkh1p. In this work we analyzed the functional significance of both Rho2p and Pck2p in the transduction of various stress signals by the cell integrity pathway. The results indicate that basal Pmk1p activity can be positively regulated by alternative mechanisms which are independent on the control by Rho2p and/or Pck2p. Unexpectedly, Pck1p, another protein kinase C homolog, negatively modulates Pmk1p basal activity by an unknown mechanism. Moreover, different elements appear to regulate the stress-induced activation of Pmk1p depending on the nature of the triggering stimuli. Whereas Pmk1p activation induced by hyper- or hypotonic stresses is channeled through Rho2p-Pck2p, other stressors, like glucose deprivation or cell wall disturbance, are transduced via other pathways in addition to that of Rho2p-Pck2p. On the contrary, Pmk1p activation observed during cell separation or after treatment with hydrogen peroxide does not involve Rho2p-Pck2p. Finally, Pck2p function is critical to maintain a Pmk1p basal activity that allows Pmk1p activation induced by heat stress. These data demonstrate the existence of a complex signalling network modulating Pmk1p activation in response to a variety of stresses in fission yeast.

  14. Meiotic Recombination Hotspots of Fission Yeast Are Directed to Loci that Express Non-Coding RNA

    PubMed Central

    Wahls, Wayne P.; Siegel, Eric R.; Davidson, Mari K.

    2008-01-01

    Background Polyadenylated, mRNA-like transcripts with no coding potential are abundant in eukaryotes, but the functions of these long non-coding RNAs (ncRNAs) are enigmatic. In meiosis, Rec12 (Spo11) catalyzes the formation of dsDNA breaks (DSBs) that initiate homologous recombination. Most meiotic recombination is positioned at hotspots, but knowledge of the mechanisms is nebulous. In the fission yeast genome DSBs are located within 194 prominent peaks separated on average by 65-kbp intervals of DNA that are largely free of DSBs. Methodology/Principal Findings We compared the genome-wide distribution of DSB peaks to that of polyadenylated ncRNA molecules of the prl class. DSB peaks map to ncRNA loci that may be situated within ORFs, near the boundaries of ORFs and intergenic regions, or most often within intergenic regions. Unconditional statistical tests revealed that this colocalization is non-random and robust (P≤5.5×10−8). Furthermore, we tested and rejected the hypothesis that the ncRNA loci and DSB peaks localize preferentially, but independently, to a third entity on the chromosomes. Conclusions/Significance Meiotic DSB hotspots are directed to loci that express polyadenylated ncRNAs. This reveals an unexpected, possibly unitary mechanism for what directs meiotic recombination to hotspots. It also reveals a likely biological function for enigmatic ncRNAs. We propose specific mechanisms by which ncRNA molecules, or some aspect of RNA metabolism associated with ncRNA loci, help to position recombination protein complexes at DSB hotspots within chromosomes. PMID:18682829

  15. A Targeted Mutation Identified through pKa Measurements Indicates a Postrecruitment Role for Fis1 in Yeast Mitochondrial Fission.

    PubMed

    Koppenol-Raab, Marijke; Harwig, Megan Cleland; Posey, Ammon E; Egner, John M; MacKenzie, Kevin R; Hill, R Blake

    2016-09-23

    The tail-anchored protein Fis1 is implicated as a passive tether in yeast mitochondrial fission. We probed the functional role of Fis1 Glu-78, whose elevated side chain pKa suggests participation in protein interactions. Fis1 binds partners Mdv1 or Dnm1 tightly, but mutation E78A weakens Fis1 interaction with Mdv1, alters mitochondrial morphology, and abolishes fission in a growth assay. In fis1Δ rescue experiments, Fis1-E78A causes a novel localization pattern in which Dnm1 uniformly coats the mitochondria. By contrast, Fis1-E78A at lower expression levels recruits Dnm1 into mitochondrial punctate structures but fails to support normal fission. Thus, Fis1 makes multiple interactions that support Dnm1 puncta formation and may be essential after this step, supporting a revised model for assembly of the mitochondrial fission machinery. The insights gained by mutating a residue with a perturbed pKa suggest that side chain pKa values inferred from routine NMR sample pH optimization could provide useful leads for functional investigations.

  16. The puc1 Cyclin Regulates the G1 Phase of the Fission Yeast Cell Cycle in Response to Cell Size

    PubMed Central

    Martín-Castellanos, Cristina; Blanco, Miguel A.; de Prada, José M.; Moreno, Sergio

    2000-01-01

    Eukaryotic cells coordinate cell size with cell division by regulating the length of the G1 and G2 phases of the cell cycle. In fission yeast, the length of the G1 phase depends on a precise balance between levels of positive (cig1, cig2, puc1, and cdc13 cyclins) and negative (rum1 and ste9-APC) regulators of cdc2. Early in G1, cyclin proteolysis and rum1 inhibition keep the cdc2/cyclin complexes inactive. At the end of G1, the balance is reversed and cdc2/cyclin activity down-regulates both rum1 and the cyclin-degrading activity of the APC. Here we present data showing that the puc1 cyclin, a close relative of the Cln cyclins in budding yeast, plays an important role in regulating the length of G1. Fission yeast cells lacking cig1 and cig2 have a cell cycle distribution similar to that of wild-type cells, with a short G1 and a long G2. However, when the puc1+ gene is deleted in this genetic background, the length of G1 is extended and these cells undergo S phase with a greater cell size than wild-type cells. This G1 delay is completely abolished in cells lacking rum1. Cdc2/puc1 function may be important to down-regulate the rum1 Cdk inhibitor at the end of G1. PMID:10679013

  17. Fission yeast Tor2 links nitrogen signals to cell proliferation and acts downstream of the Rheb GTPase.

    PubMed

    Uritani, Masahiro; Hidaka, Hidetoshi; Hotta, Yukari; Ueno, Masaru; Ushimaru, Takashi; Toda, Takashi

    2006-12-01

    The target of rapamycin (Tor) plays a pivotal role in cell growth and metabolism. Yeast contains two related proteins, Tor1 and Tor2. In fission yeast, Tor1 is dispensable for normal growth but is involved in amino acid uptake and cell survival under various stress conditions. In contrast, Tor2 is essential for cell proliferation; however, its physiological function remains unknown. Here we characterize the roles of fission yeast Tor2 by creating temperature sensitive (tor2(ts)) mutants. Remarkably, we have found that tor2(ts) mimics nitrogen starvation responses, because the mutant displays a number of phenotypes that are normally induced only on nitrogen deprivation. These include G1 cell-cycle arrest with a small cell size, induction of autophagy and commitment to sexual differentiation. By contrast, tor1Deltator2(ts) double mutant cells show distinct phenotypes, as the cells cease division with normal cell size in the absence of G1 arrest. Tor2 physically interacts with the conserved Rhb1/GTPase. Intriguingly, over-expression of rhb1(+) or deletion of Rhb1-GAP-encoding tsc2(+) is capable of rescuing stress-sensitive phenotypes of the tor1 mutant, implying that Tor1 and Tor2 also share functions in cell survival under adverse environment. We propose that Tor1 and Tor2 are involved in both corroborative and independent roles in nutrient sensing and stress response pathways.

  18. Rapid regulation of nuclear proteins by rapamycin-induced translocation in fission yeast.

    PubMed

    Ding, Lin; Laor, Dana; Weisman, Ronit; Forsburg, Susan L

    2014-07-01

    Genetic analysis of protein function requires a rapid means of inactivating the gene under study. Typically, this exploits temperature-sensitive mutations or promoter shut-off techniques. We report the adaptation to Schizosaccharomyces pombe of the anchor-away technique, originally designed in budding yeast by Laemmli lab. This method relies on a rapamycin-mediated interaction between the FRB- and FKBP12-binding domains to relocalize nuclear proteins of interest to the cytoplasm. We demonstrate a rapid nuclear depletion of abundant proteins as proof of principle.

  19. Single site suppressors of a fission yeast temperature-sensitive mutant in cdc48 identified by whole genome sequencing.

    PubMed

    Marinova, Irina N; Engelbrecht, Jacob; Ewald, Adrian; Langholm, Lasse L; Holmberg, Christian; Kragelund, Birthe B; Gordon, Colin; Nielsen, Olaf; Hartmann-Petersen, Rasmus

    2015-01-01

    The protein called p97 in mammals and Cdc48 in budding and fission yeast is a homo-hexameric, ring-shaped, ubiquitin-dependent ATPase complex involved in a range of cellular functions, including protein degradation, vesicle fusion, DNA repair, and cell division. The cdc48+ gene is essential for viability in fission yeast, and point mutations in the human orthologue have been linked to disease. To analyze the function of p97/Cdc48 further, we performed a screen for cold-sensitive suppressors of the temperature-sensitive cdc48-353 fission yeast strain. In total, 29 independent pseudo revertants that had lost the temperature-sensitive growth defect of the cdc48-353 strain were isolated. Of these, 28 had instead acquired a cold-sensitive phenotype. Since the suppressors were all spontaneous mutants, and not the result of mutagenesis induced by chemicals or UV irradiation, we reasoned that the genome sequences of the 29 independent cdc48-353 suppressors were most likely identical with the exception of the acquired suppressor mutations. This prompted us to test if a whole genome sequencing approach would allow us to map the mutations. Indeed genome sequencing unambiguously revealed that the cold-sensitive suppressors were all second site intragenic cdc48 mutants. Projecting these onto the Cdc48 structure revealed that while the original temperature-sensitive G338D mutation is positioned near the central pore in the hexameric ring, the suppressor mutations locate to subunit-subunit and inter-domain boundaries. This suggests that Cdc48-353 is structurally compromized at the restrictive temperature, but re-established in the suppressor mutants. The last suppressor was an extragenic frame shift mutation in the ufd1 gene, which encodes a known Cdc48 co-factor. In conclusion, we show, using a novel whole genome sequencing approach, that Cdc48-353 is structurally compromized at the restrictive temperature, but stabilized in the suppressors.

  20. Involvement of the spliceosomal U4 small nuclear RNA in heterochromatic gene silencing at fission yeast centromeres.

    PubMed

    Chinen, Madoka; Morita, Misato; Fukumura, Kazuhiro; Tani, Tokio

    2010-02-19

    prp13-1 is one of the mutants isolated in a screen for defective pre-mRNA splicing at a nonpermissive temperature in fission yeast Schizosaccharomyces pombe. We cloned the prp13(+) gene and found that it encodes U4 small nuclear RNA (snRNA) involved in the assembly of the spliceosome. The prp13-1 mutant produced elongated cells, a phenotype similar to cell division cycle mutants, and displays a high incidence of lagging chromosomes on anaphase spindles. The mutant is hypersensitive to the microtubule-destabilizing drug thiabendazole, supporting that prp13-1 has a defect in chromosomal segregation. We found that the prp13-1 mutation resulted in expression of the ura4(+) gene inserted in the pericentromeric heterochromatin region and reduced recruitment of the heterochromatin protein Swi6p to that region, indicating defects in the formation of pericentromeric heterochromatin, which is essential for the segregation of chromosomes, in prp13-1. The formation of centromeric heterochromatin is induced by the RNA interference (RNAi) system in S. pombe. In prp13-1, the processing of centromeric noncoding RNAs to siRNAs, which direct the heterochromatin formation, was impaired and unprocessed noncoding RNAs were accumulated. These results suggest that U4 snRNA is required for the RNAi-directed heterochromatic gene silencing at the centromeres. In relation to the linkage between the spliceosomal U4 snRNA and the RNAi-directed formation of heterochromatin, we identified a mRNA-type intron in the centromeric noncoding RNAs. We propose a model in which the assembly of the spliceosome or a sub-spliceosome complex on the intron-containing centromeric noncoding RNAs facilitates the RNAi-directed formation of heterochromatin at centromeres, through interaction with the RNA-directed RNA polymerase complex.

  1. Widespread Use of TATA Elements in the Core Promoters for RNA Polymerases III, II, and I in Fission Yeast

    PubMed Central

    Hamada, Mitsuhiro; Huang, Ying; Lowe, Todd M.; Maraia, Richard J.

    2001-01-01

    In addition to directing transcription initiation, core promoters integrate input from distal regulatory elements. Except for rare exceptions, it has been generally found that eukaryotic tRNA and rRNA genes do not contain TATA promoter elements and instead use protein-protein interactions to bring the TATA-binding protein (TBP), to the core promoter. Genomewide analysis revealed TATA elements in the core promoters of tRNA and 5S rRNA (Pol III), U1 to U5 snRNA (Pol II), and 37S rRNA (Pol I) genes in Schizosaccharomyces pombe. Using tRNA-dependent suppression and other in vivo assays, as well as in vitro transcription, we demonstrated an obligatory requirement for upstream TATA elements for tRNA and 5S rRNA expression in S. pombe. The Pol III initiation factor Brf is found in complexes with TFIIIC and Pol III in S. pombe, while TBP is not, consistent with independent recruitment of TBP by TATA. Template commitment assays are consistent with this and confirm that the mechanisms of transcription complex assembly and initiation by Pol III in S. pombe differ substantially from those in other model organisms. The results were extended to large-rRNA synthesis, as mutation of the TATA element in the Pol I promoter also abolishes rRNA expression in fission yeast. A survey of other organisms' genomes reveals that a substantial number of eukaryotes may use widespread TATAs for transcription. These results indicate the presence of TATA-unified transcription systems in contemporary eukaryotes and provide insight into the residual need for TBP by all three Pols in other eukaryotes despite a lack of TATA elements in their promoters. PMID:11564871

  2. Involvement of the Spliceosomal U4 Small Nuclear RNA in Heterochromatic Gene Silencing at Fission Yeast Centromeres*

    PubMed Central

    Chinen, Madoka; Morita, Misato; Fukumura, Kazuhiro; Tani, Tokio

    2010-01-01

    prp13-1 is one of the mutants isolated in a screen for defective pre-mRNA splicing at a nonpermissive temperature in fission yeast Schizosaccharomyces pombe. We cloned the prp13+ gene and found that it encodes U4 small nuclear RNA (snRNA) involved in the assembly of the spliceosome. The prp13-1 mutant produced elongated cells, a phenotype similar to cell division cycle mutants, and displays a high incidence of lagging chromosomes on anaphase spindles. The mutant is hypersensitive to the microtubule-destabilizing drug thiabendazole, supporting that prp13-1 has a defect in chromosomal segregation. We found that the prp13-1 mutation resulted in expression of the ura4+ gene inserted in the pericentromeric heterochromatin region and reduced recruitment of the heterochromatin protein Swi6p to that region, indicating defects in the formation of pericentromeric heterochromatin, which is essential for the segregation of chromosomes, in prp13-1. The formation of centromeric heterochromatin is induced by the RNA interference (RNAi) system in S. pombe. In prp13-1, the processing of centromeric noncoding RNAs to siRNAs, which direct the heterochromatin formation, was impaired and unprocessed noncoding RNAs were accumulated. These results suggest that U4 snRNA is required for the RNAi-directed heterochromatic gene silencing at the centromeres. In relation to the linkage between the spliceosomal U4 snRNA and the RNAi-directed formation of heterochromatin, we identified a mRNA-type intron in the centromeric noncoding RNAs. We propose a model in which the assembly of the spliceosome or a sub-spliceosome complex on the intron-containing centromeric noncoding RNAs facilitates the RNAi-directed formation of heterochromatin at centromeres, through interaction with the RNA-directed RNA polymerase complex. PMID:20018856

  3. Fission yeast nucleolar protein Dnt1 regulates G2/M transition and cytokinesis by downregulating Wee1 kinase.

    PubMed

    Yu, Zhi-Yong; Zhang, Meng-Ting; Wang, Gao-Yuan; Xu, Dan; Keifenheim, Daniel; Franco, Alejandro; Cansado, Jose; Masuda, Hirohisa; Rhind, Nick; Wang, Yamei; Jin, Quan-Wen

    2013-11-01

    Cytokinesis involves temporally and spatially coordinated action of the cell cycle, cytoskeletal and membrane systems to achieve separation of daughter cells. The septation initiation network (SIN) and mitotic exit network (MEN) signaling pathways regulate cytokinesis and mitotic exit in the yeasts Schizosaccharomyces pombe and Saccharomyces cerevisiae, respectively. Previously, we have shown that in fission yeast, the nucleolar protein Dnt1 negatively regulates the SIN pathway in a manner that is independent of the Cdc14-family phosphatase Clp1/Flp1, but how Dnt1 modulates this pathway has remained elusive. By contrast, it is clear that its budding yeast relative, Net1/Cfi1, regulates the homologous MEN signaling pathway by sequestering Cdc14 phosphatase in the nucleolus before mitotic exit. In this study, we show that dnt1(+) positively regulates G2/M transition during the cell cycle. By conducting epistasis analyses to measure cell length at septation in double mutant (for dnt1 and genes involved in G2/M control) cells, we found a link between dnt1(+) and wee1(+). Furthermore, we showed that elevated protein levels of the mitotic inhibitor Wee1 kinase and the corresponding attenuation in Cdk1 activity is responsible for the rescuing effect of dnt1Δ on SIN mutants. Finally, our data also suggest that Dnt1 modulates Wee1 activity in parallel with SCF-mediated Wee1 degradation. Therefore, this study reveals an unexpected missing link between the nucleolar protein Dnt1 and the SIN signaling pathway, which is mediated by the Cdk1 regulator Wee1 kinase. Our findings also define a novel mode of regulation of Wee1 and Cdk1, which is important for integration of the signals controlling the SIN pathway in fission yeast.

  4. Fission yeast nucleolar protein Dnt1 regulates G2/M transition and cytokinesis by downregulating Wee1 kinase

    PubMed Central

    Yu, Zhi-yong; Zhang, Meng-ting; Wang, Gao-yuan; Xu, Dan; Keifenheim, Daniel; Franco, Alejandro; Cansado, Jose; Masuda, Hirohisa; Rhind, Nick; Wang, Yamei; Jin, Quan-wen

    2013-01-01

    Summary Cytokinesis involves temporally and spatially coordinated action of the cell cycle, cytoskeletal and membrane systems to achieve separation of daughter cells. The septation initiation network (SIN) and mitotic exit network (MEN) signaling pathways regulate cytokinesis and mitotic exit in the yeasts Schizosaccharomyces pombe and Saccharomyces cerevisiae, respectively. Previously, we have shown that in fission yeast, the nucleolar protein Dnt1 negatively regulates the SIN pathway in a manner that is independent of the Cdc14-family phosphatase Clp1/Flp1, but how Dnt1 modulates this pathway has remained elusive. By contrast, it is clear that its budding yeast relative, Net1/Cfi1, regulates the homologous MEN signaling pathway by sequestering Cdc14 phosphatase in the nucleolus before mitotic exit. In this study, we show that dnt1+ positively regulates G2/M transition during the cell cycle. By conducting epistasis analyses to measure cell length at septation in double mutant (for dnt1 and genes involved in G2/M control) cells, we found a link between dnt1+ and wee1+. Furthermore, we showed that elevated protein levels of the mitotic inhibitor Wee1 kinase and the corresponding attenuation in Cdk1 activity is responsible for the rescuing effect of dnt1Δ on SIN mutants. Finally, our data also suggest that Dnt1 modulates Wee1 activity in parallel with SCF-mediated Wee1 degradation. Therefore, this study reveals an unexpected missing link between the nucleolar protein Dnt1 and the SIN signaling pathway, which is mediated by the Cdk1 regulator Wee1 kinase. Our findings also define a novel mode of regulation of Wee1 and Cdk1, which is important for integration of the signals controlling the SIN pathway in fission yeast. PMID:24006256

  5. A genome–wide screen to identify genes controlling the rate of entry into mitosis in fission yeast

    PubMed Central

    Moris, Naomi; Nurse, Paul

    2016-01-01

    ABSTRACT We have carried out a haploinsufficiency (HI) screen in fission yeast using heterozygous deletion diploid mutants of a genome-wide set of cell cycle genes to identify genes encoding products whose level determines the rate of progression through the cell cycle. Cell size at division was used as a measure of advancement or delay of the G2-M transition of rod-shaped fission yeast cells. We found that 13 mutants were significantly longer or shorter (greater than 10%) than control cells at cell division. These included mutants of the cdc2, cdc25, wee1 and pom1 genes, which have previously been shown to play a role in the timing of entry into mitosis, and which validate this approach. Seven of these genes are involved in regulation of the G2-M transition, 5 for nuclear transport and one for nucleotide metabolism. In addition we identified 4 more genes that were 8–10% longer or shorter than the control that also had roles in regulation of the G2-M transition or in nuclear transport. The genes identified here are all conserved in human cells, suggesting that this dataset will be useful as a basis for further studies to identify rate-limiting steps for progression through the cell cycle in other eukaryotes. PMID:27736299

  6. Roles of the novel coiled-coil protein Rng10 in septum formation during fission yeast cytokinesis

    PubMed Central

    Liu, Yajun; Lee, I-Ju; Sun, Mingzhai; Lower, Casey A.; Runge, Kurt W.; Ma, Jianjie; Wu, Jian-Qiu

    2016-01-01

    Rho GAPs are important regulators of Rho GTPases, which are involved in various steps of cytokinesis and other processes. However, regulation of Rho-GAP cellular localization and function is not fully understood. Here we report the characterization of a novel coiled-coil protein Rng10 and its relationship with the Rho-GAP Rga7 in fission yeast. Both rng10Δ and rga7Δ result in defective septum and cell lysis during cytokinesis. Rng10 and Rga7 colocalize on the plasma membrane at the cell tips during interphase and at the division site during cell division. Rng10 physically interacts with Rga7 in affinity purification and coimmunoprecipitation. Of interest, Rga7 localization is nearly abolished without Rng10. Moreover, Rng10 and Rga7 work together to regulate the accumulation and dynamics of glucan synthases for successful septum formation in cytokinesis. Our results show that cellular localization and function of the Rho-GAP Rga7 are regulated by a novel protein, Rng10, during cytokinesis in fission yeast. PMID:27385337

  7. A genome-wide screen to identify genes controlling the rate of entry into mitosis in fission yeast.

    PubMed

    Moris, Naomi; Shrivastava, Jaya; Jeffery, Linda; Li, Juan-Juan; Hayles, Jacqueline; Nurse, Paul

    2016-11-16

    We have carried out a haploinsufficiency (HI) screen in fission yeast using heterozygous deletion diploid mutants of a genome-wide set of cell cycle genes to identify genes encoding products whose level determines the rate of progression through the cell cycle. Cell size at division was used as a measure of advancement or delay of the G2-M transition of rod-shaped fission yeast cells. We found that 13 mutants were significantly longer or shorter (greater than 10%) than control cells at cell division. These included mutants of the cdc2, cdc25, wee1 and pom1 genes, which have previously been shown to play a role in the timing of entry into mitosis, and which validate this approach. Seven of these genes are involved in regulation of the G2-M transition, 5 for nuclear transport and one for nucleotide metabolism. In addition we identified 4 more genes that were 8-10% longer or shorter than the control that also had roles in regulation of the G2-M transition or in nuclear transport. The genes identified here are all conserved in human cells, suggesting that this dataset will be useful as a basis for further studies to identify rate-limiting steps for progression through the cell cycle in other eukaryotes.

  8. Long non-coding RNA-mediated transcriptional interference of a permease gene confers drug tolerance in fission yeast.

    PubMed

    Ard, Ryan; Tong, Pin; Allshire, Robin C

    2014-11-27

    Most long non-coding RNAs (lncRNAs) encoded by eukaryotic genomes remain uncharacterized. Here we focus on a set of intergenic lncRNAs in fission yeast. Deleting one of these lncRNAs exhibited a clear phenotype: drug sensitivity. Detailed analyses of the affected locus revealed that transcription of the nc-tgp1 lncRNA regulates drug tolerance by repressing the adjacent phosphate-responsive permease gene transporter for glycerophosphodiester 1 (tgp1(+)). We demonstrate that the act of transcribing nc-tgp1 over the tgp1(+) promoter increases nucleosome density, prevents transcription factor access and thus represses tgp1(+) without the need for RNA interference or heterochromatin components. We therefore conclude that tgp1(+) is regulated by transcriptional interference. Accordingly, decreased nc-tgp1 transcription permits tgp1(+) expression upon phosphate starvation. Furthermore, nc-tgp1 loss induces tgp1(+) even in repressive conditions. Notably, drug sensitivity results directly from tgp1(+) expression in the absence of the nc-tgp1 RNA. Thus, transcription of an lncRNA governs drug tolerance in fission yeast.

  9. Genetic Interaction Mapping Reveals a Role for the SWI/SNF Nucleosome Remodeler in Spliceosome Activation in Fission Yeast

    PubMed Central

    Patrick, Kristin L.; Ryan, Colm J.; Xu, Jiewei; Lipp, Jesse J.; Nissen, Kelly E.; Roguev, Assen; Shales, Michael; Krogan, Nevan J.; Guthrie, Christine

    2015-01-01

    Although numerous regulatory connections between pre-mRNA splicing and chromatin have been demonstrated, the precise mechanisms by which chromatin factors influence spliceosome assembly and/or catalysis remain unclear. To probe the genetic network of pre-mRNA splicing in the fission yeast Schizosaccharomyces pombe, we constructed an epistatic mini-array profile (E-MAP) and discovered many new connections between chromatin and splicing. Notably, the nucleosome remodeler SWI/SNF had strong genetic interactions with components of the U2 snRNP SF3 complex. Overexpression of SF3 components in ΔSWI/SNF cells led to inefficient splicing of many fission yeast introns, predominantly those with non-consensus splice sites. Deletion of SWI/SNF decreased recruitment of the splicing ATPase Prp2, suggesting that SWI/SNF promotes co-transcriptional spliceosome assembly prior to first step catalysis. Importantly, defects in SWI/SNF as well as SF3 overexpression each altered nucleosome occupancy along intron-containing genes, illustrating that the chromatin landscape both affects—and is affected by—co-transcriptional splicing. PMID:25825871

  10. Local and global analysis of endocytic patch dynamics in fission yeast using a new “temporal superresolution” realignment method

    PubMed Central

    Berro, Julien; Pollard, Thomas D.

    2014-01-01

    Quantitative microscopy is a valuable tool for inferring molecular mechanisms of cellular processes such as clathrin-mediated endocytosis, but, for quantitative microscopy to reach its potential, both data collection and analysis needed improvement. We introduce new tools to track and count endocytic patches in fission yeast to increase the quality of the data extracted from quantitative microscopy movies. We present a universal method to achieve “temporal superresolution” by aligning temporal data sets with higher temporal resolution than the measurement intervals. These methods allowed us to extract new information about endocytic actin patches in wild-type cells from measurements of the fluorescence of fimbrin-mEGFP. We show that the time course of actin assembly and disassembly varies <600 ms between patches. Actin polymerizes during vesicle formation, but we show that polymerization does not participate in vesicle movement other than to limit the complex diffusive motions of newly formed endocytic vesicles, which move faster as the surrounding actin meshwork decreases in size over time. Our methods also show that the number of patches in fission yeast is proportional to cell length and that the variability in the repartition of patches between the tips of interphase cells has been underestimated. PMID:25143395

  11. The RNA-binding protein Spo5 promotes meiosis II by regulating cyclin Cdc13 in fission yeast.

    PubMed

    Arata, Mayumi; Sato, Masamitsu; Yamashita, Akira; Yamamoto, Masayuki

    2014-03-01

    Meiosis comprises two consecutive nuclear divisions, meiosis I and II. Despite this unique progression through the cell cycle, little is known about the mechanisms controlling the sequential divisions. In this study, we carried out a genetic screen to identify factors that regulate the initiation of meiosis II in the fission yeast Schizosaccharomyces pombe. We identified mutants deficient in meiosis II progression and repeatedly isolated mutants defective in spo5, which encodes an RNA-binding protein. Using fluorescence microscopy to visualize YFP-tagged protein, we found that spo5 mutant cells precociously lost Cdc13, the major B-type cyclin in fission yeast, before meiosis II. Importantly, the defect in meiosis II was rescued by increasing CDK activity. In wild-type cells, cdc13 transcripts increased during meiosis II, but this increase in cdc13 expression was weaker in spo5 mutants. Thus, Spo5 is a novel regulator of meiosis II that controls the level of cdc13 expression and promotes de novo synthesis of Cdc13. We previously reported that inhibition of Cdc13 degradation is necessary to initiate meiosis II; together with the previous information, the current findings indicate that the dual control of Cdc13 by de novo synthesis and suppression of proteolysis ensures the progression of meiosis II.

  12. Anillin-related protein Mid1 regulates timely formation of the contractile ring in the fission yeast Schizosaccharomyces japonicus.

    PubMed

    Yasuda, Tsuyoshi; Takaine, Masak; Numata, Osamu; Nakano, Kentaro

    2016-06-01

    In the fission yeast Schizosaccharomyces pombe (Sp), Mid1/Dmf1 plays an important role in positioning the division site by inducing formation of the contractile ring (CR). Mid1, emanating from the nucleus located in the cell center, forms a dozen of nodes in the middle cell cortex ahead of mitosis, and actin filaments and myosin II accumulated at each node interact and assemble the CR in metaphase. Curiously, in another fission yeast S. japonicus (Sj), CR formation begins after nuclear segregation in late anaphase. Here, we investigated the role of S. japonicus Mid1 during mitosis to compare the molecular mechanisms that determine the cell division site in Schizosaccharomyces. Similar to Sp Mid1, Sj Mid1 often accumulated in the nucleus of interphase cells. Moreover, Sj Mid1 localized to cortical dots with myosin II in the future division site and formed a medial ring in mitotic cells. However, S. japonicus cells without Mid1 function still carried out symmetrical binary division. Therefore, the Mid1 dependency for positional control of the cell division site is possibly different between the two species. Meanwhile, we found that Sj Mid1 enhanced CR formation, in a manner possibly similar to that by Sp Mid1.

  13. Mutation of histone H3 serine 86 disrupts GATA factor Ams2 expression and precise chromosome segregation in fission yeast.

    PubMed

    Lim, Kim Kiat; Ong, Terenze Yao Rui; Tan, Yue Rong; Yang, Eugene Guorong; Ren, Bingbing; Seah, Kwi Shan; Yang, Zhe; Tan, Tsu Soo; Dymock, Brian W; Chen, Ee Sin

    2015-09-15

    Eukaryotic genomes are packed into discrete units, referred to as nucleosomes, by organizing around scaffolding histone proteins. The interplay between these histones and the DNA can dynamically regulate the function of the chromosomal domain. Here, we interrogated the function of a pair of juxtaposing serine residues (S86 and S87) that reside within the histone fold of histone H3. We show that fission yeast cells expressing a mutant histone H3 disrupted at S86 and S87 (hht2-S86AS87A) exhibited unequal chromosome segregation, disrupted transcriptional silencing of centromeric chromatin, and reduced expression of Ams2, a GATA-factor that regulates localization of the centromere-specific histone H3 variant CENP-A. We found that overexpression of ams2(+) could suppress the chromosome missegregation phenotype that arose in the hht2-S86AS87A mutant. We further demonstrate that centromeric localization of SpCENP-A(cnp1-1) was significantly compromised in hht2-S86AS87A, suggesting synergism between histone H3 and the centromere-targeting domain of SpCENP-A. Taken together, our work presents evidence for an uncharacterized serine residue in fission yeast histone H3 that affects centromeric integrity via regulating the expression of the SpCENP-A-localizing Ams2 protein. [173/200 words].

  14. Genetic interaction mapping reveals a role for the SWI/SNF nucleosome remodeler in spliceosome activation in fission yeast.

    PubMed

    Patrick, Kristin L; Ryan, Colm J; Xu, Jiewei; Lipp, Jesse J; Nissen, Kelly E; Roguev, Assen; Shales, Michael; Krogan, Nevan J; Guthrie, Christine

    2015-03-01

    Although numerous regulatory connections between pre-mRNA splicing and chromatin have been demonstrated, the precise mechanisms by which chromatin factors influence spliceosome assembly and/or catalysis remain unclear. To probe the genetic network of pre-mRNA splicing in the fission yeast Schizosaccharomyces pombe, we constructed an epistatic mini-array profile (E-MAP) and discovered many new connections between chromatin and splicing. Notably, the nucleosome remodeler SWI/SNF had strong genetic interactions with components of the U2 snRNP SF3 complex. Overexpression of SF3 components in ΔSWI/SNF cells led to inefficient splicing of many fission yeast introns, predominantly those with non-consensus splice sites. Deletion of SWI/SNF decreased recruitment of the splicing ATPase Prp2, suggesting that SWI/SNF promotes co-transcriptional spliceosome assembly prior to first step catalysis. Importantly, defects in SWI/SNF as well as SF3 overexpression each altered nucleosome occupancy along intron-containing genes, illustrating that the chromatin landscape both affects--and is affected by--co-transcriptional splicing.

  15. The Fission Yeast FANCM Ortholog Directs Non-Crossover Recombination During Meiosis

    PubMed Central

    Lorenz, Alexander; Osman, Fekret; Sun, Weili; Nandi, Saikat; Steinacher, Roland; Whitby, Matthew C.

    2012-01-01

    The formation of healthy gametes depends on programmed DNA double strand breaks (DSBs), which are each repaired as a crossover (CO) or non-crossover (NCO) from a homologous template. Although most of these DSBs are repaired without giving COs, little is known about the genetic requirements of NCO-specific recombination. We show that Fml1, the Fanconi anemia complementation group M (FANCM)-ortholog of Schizosaccharomyces pombe, directs the formation of NCOs during meiosis in competition with the Mus81-dependent pro-CO pathway. We also define the Rad51/Dmc1-mediator Swi5-Sfr1 as a major determinant in biasing the recombination process in favour of Mus81, to ensure the appropriate amount of COs to guide meiotic chromosome segregation. The conservation of these proteins from yeast to Humans suggests that this interplay may be a general feature of meiotic recombination. PMID:22723423

  16. Global Fitness Profiling Identifies Arsenic and Cadmium Tolerance Mechanisms in Fission Yeast

    PubMed Central

    Guo, Lan; Ganguly, Abantika; Sun, Lingling; Suo, Fang; Du, Li-Lin; Russell, Paul

    2016-01-01

    Heavy metals and metalloids such as cadmium [Cd(II)] and arsenic [As(III)] are widespread environmental toxicants responsible for multiple adverse health effects in humans. However, the molecular mechanisms underlying metal-induced cytotoxicity and carcinogenesis, as well as the detoxification and tolerance pathways, are incompletely understood. Here, we use global fitness profiling by barcode sequencing to quantitatively survey the Schizosaccharomyces pombe haploid deletome for genes that confer tolerance of cadmium or arsenic. We identified 106 genes required for cadmium resistance and 110 genes required for arsenic resistance, with a highly significant overlap of 36 genes. A subset of these 36 genes account for almost all proteins required for incorporating sulfur into the cysteine-rich glutathione and phytochelatin peptides that chelate cadmium and arsenic. A requirement for Mms19 is explained by its role in directing iron–sulfur cluster assembly into sulfite reductase as opposed to promoting DNA repair, as DNA damage response genes were not enriched among those required for cadmium or arsenic tolerance. Ubiquinone, siroheme, and pyridoxal 5′-phosphate biosynthesis were also identified as critical for Cd/As tolerance. Arsenic-specific pathways included prefoldin-mediated assembly of unfolded proteins and protein targeting to the peroxisome, whereas cadmium-specific pathways included plasma membrane and vacuolar transporters, as well as Spt–Ada–Gcn5-acetyltransferase (SAGA) transcriptional coactivator that controls expression of key genes required for cadmium tolerance. Notable differences are apparent with corresponding screens in the budding yeast Saccharomyces cerevisiae, underscoring the utility of analyzing toxic metal defense mechanisms in both organisms. PMID:27558664

  17. Microtubule-driven nuclear movements and linear elements as meiosis-specific characteristics of the fission yeasts Schizosaccharomyces versatilis and Schizosaccharomyces pombe.

    PubMed

    Svoboda, A; Bähler, J; Kohli, J

    1995-11-01

    Meiotic prophase in Schizosaccharomyces pombe is characterized by striking nuclear movements and the formation of linear elements along chromosomes instead of tripartite synaptonemal complexes. We analysed the organization of nuclei and microtubules in cells of fission yeasts undergoing sexual differentiation. S. japonicus var. versatilis and S. pombe cells were studied in parallel, taking advantage of the better cytology in S. versatilis. During conjugation, microtubules were directed towards the mating projection. These microtubules seem to lead the haploid nuclei together in the zygote by interaction with the spindle pole bodies at the nuclear periphery. After karyogamy, arrays of microtubules emanating from the spindle pole body of the diploid nucleus extended to both cell poles. The same differentiated microtubule configuration was elaborated upon induction of azygotic meiosis in S. pombe. The cyclic movements of the elongated nuclei between the cell poles is reflected by a dynamic and coordinated shortening and lengthening of the two microtubule arrays. When the nucleus was at a cell end, one array was short while the other bridged the whole cell length. Experiments with inhibitors showed that microtubules are required for karyogamy and for the elongated shape and movement of nuclei during meiotic prophase. In both fission yeasts the SPBs and nucleoli are at the leading ends of the moving nuclei. Astral and cytoplasmic microtubules were also prominent during meiotic divisions and sporulation. We further show that in S. versatilis the linear elements formed during meiotic prophase are similar to those in S. pombe. Tripartite synaptonemal complexes were never detected. Taken together, these findings suggest that S. pombe and S. versatilis share basic characteristics in the organization of microtubules and the structure and behaviour of nuclei during their meiotic cell cycle. The prominent differentiations of microtubules and nuclei may be involved in the

  18. Fission Yeast Myosin-I, Myo1p, Stimulates Actin Assembly by Arp2/3 Complex and Shares Functions with Wasp

    PubMed Central

    Lee, Wei-Lih; Bezanilla, Magdalena; Pollard, Thomas D.

    2000-01-01

    Fission yeast myo1+ encodes a myosin-I with all three tail homology domains (TH1, 2, 3) found in typical long-tailed myosin-Is. Myo1p tail also contains a COOH-terminal acidic region similar to the A-domain of WASp/Scar proteins and other fungal myosin-Is. Our analysis shows that Myo1p and Wsp1p, the fission yeast WASp-like protein, share functions and cooperate in controlling actin assembly. First, Myo1p localizes to cortical patches enriched at tips of growing cells and at sites of cell division. Myo1p patches partially colocalize with actin patches and are dependent on an intact actin cytoskeleton. Second, although deletion of myo1+ is not lethal, Δmyo1 cells have actin cytoskeletal defects, including loss of polarized cell growth, delocalized actin patches, and mating defects. Third, additional disruption of wsp1+ is synthetically lethal, suggesting that these genes may share functions. In mapping the domains of Myo1p tail that share function with Wsp1p, we discovered that a Myo1p construct with just the head and TH1 domains is sufficient for cortical localization and to rescue all Δmyo1 defects. However, it fails to rescue the Δmyo1 Δwsp1 lethality. Additional tail domains, TH2 and TH3, are required to complement the double mutant. Fourth, we show that a recombinant Myo1p tail binds to Arp2/3 complex and activates its actin nucleation activity. PMID:11076964

  19. The Mitochondrial Fission Receptor MiD51 Requires ADP as a Cofactor

    PubMed Central

    Losón, Oliver C.; Liu, Raymond; Rome, Michael E.; Meng, Shuxia; Kaiser, Jens T.; Shan, Shu-ou; Chan, David C.

    2014-01-01

    SUMMARY Mitochondrial fission requires recruitment of dynamin-related protein 1 (Drp1) to the mitochondrial surface and activation of its GTP-dependent scission function. The Drp1 receptors MiD49 and MiD51 recruit Drp1 to facilitate mitochondrial fission, but their mechanism of action is poorly understood. Using X-ray crystallography, we demonstrate that MiD51 contains a nucleotidyl transferase domain that binds ADP with high affinity. MiD51 recruits Drp1 via a surface loop that functions independently of ADP binding. However, in the absence of nucleotide binding, the recruited Drp1 cannot be activated for fission. Purified MiD51 strongly inhibits Drp1 assembly and GTP hydrolysis in the absence of ADP. Addition of ADP relieves this inhibition and promotes Drp1 assembly into spirals with enhanced GTP hydrolysis. Our results reveal ADP as an essential cofactor for MiD51 during mitochondrial fission. PMID:24508339

  20. The mitochondrial fission receptor MiD51 requires ADP as a cofactor.

    PubMed

    Losón, Oliver C; Liu, Raymond; Rome, Michael E; Meng, Shuxia; Kaiser, Jens T; Shan, Shu-ou; Chan, David C

    2014-03-04

    Mitochondrial fission requires recruitment of dynamin-related protein 1 (Drp1) to the mitochondrial surface and activation of its GTP-dependent scission function. The Drp1 receptors MiD49 and MiD51 recruit Drp1 to facilitate mitochondrial fission, but their mechanism of action is poorly understood. Using X-ray crystallography, we demonstrate that MiD51 contains a nucleotidyl transferase domain that binds ADP with high affinity. MiD51 recruits Drp1 via a surface loop that functions independently of ADP binding. However, in the absence of nucleotide binding, the recruited Drp1 cannot be activated for fission. Purified MiD51 strongly inhibits Drp1 assembly and GTP hydrolysis in the absence of ADP. Addition of ADP relieves this inhibition and promotes Drp1 assembly into spirals with enhanced GTP hydrolysis. Our results reveal ADP as an essential cofactor for MiD51 during mitochondrial fission.

  1. The Fun30 chromatin remodeler Fft3 controls nuclear organization and chromatin structure of insulators and subtelomeres in fission yeast.

    PubMed

    Steglich, Babett; Strålfors, Annelie; Khorosjutina, Olga; Persson, Jenna; Smialowska, Agata; Javerzat, Jean-Paul; Ekwall, Karl

    2015-03-01

    In eukaryotic cells, local chromatin structure and chromatin organization in the nucleus both influence transcriptional regulation. At the local level, the Fun30 chromatin remodeler Fft3 is essential for maintaining proper chromatin structure at centromeres and subtelomeres in fission yeast. Using genome-wide mapping and live cell imaging, we show that this role is linked to controlling nuclear organization of its targets. In fft3∆ cells, subtelomeres lose their association with the LEM domain protein Man1 at the nuclear periphery and move to the interior of the nucleus. Furthermore, genes in these domains are upregulated and active chromatin marks increase. Fft3 is also enriched at retrotransposon-derived long terminal repeat (LTR) elements and at tRNA genes. In cells lacking Fft3, these sites lose their peripheral positioning and show reduced nucleosome occupancy. We propose that Fft3 has a global role in mediating association between specific chromatin domains and the nuclear envelope.

  2. Fission yeast APC/C activators Slp1 and Fzr1 sequentially trigger two consecutive nuclear divisions during meiosis.

    PubMed

    Chikashige, Yuji; Yamane, Miho; Okamasa, Kasumi; Osakada, Hiroko; Tsutsumi, Chihiro; Nagahama, Yuki; Fukuta, Noriko; Haraguchi, Tokuko; Hiraoka, Yasushi

    2017-02-28

    In meiosis, two rounds of nuclear division occur consecutively without DNA replication between the divisions. We isolated a fission yeast mutant in which the nucleus divides only once to generate two spores, as opposed to four, in meiosis. In this mutant, we found that the initiation codon of the slp1(+) gene is converted to ATA, producing a reduced amount of Slp1. As a member of the Fizzy family of APC/C activators, Slp1 is essential for vegetative growth; however, the mutant allele shows a phenotype only in meiosis. Slp1 insufficiency delays degradation of maturation-promoting factor (MPF) at the first meiotic division, and another APC/C activator, Fzr1, which acts late in meiosis, terminates meiosis immediately after the delayed first division to produce two viable spores. This article is protected by copyright. All rights reserved.

  3. Nuclear displacement and fluorescence recovery after photobleaching (FRAP) assays to study division site placement and cytokinesis in fission yeast.

    PubMed

    Ullal, P; Bhatia, P; Martin, S G

    2017-01-01

    Cytokinesis is an essential cellular event that completes the cell division cycle. It begins with the assembly of an actomyosin contractile ring that undergoes constriction concomitant with the septum formation to divide the cell in two. Placement of the septum at the right position is important to ensure fidelity of the division process. In fission yeast, the medially placed nucleus is a major spatial cue to position the site of division. In this chapter, we describe a simple synthetic biology-based approach to displace the nucleus and study the consequence on division site positioning. We also describe how to perform fluorescence recovery after photobleaching to follow the dynamics of cytokinetic proteins at defined time points by live-cell microscopy.

  4. Interaction between Pheromone and Its Receptor of the Fission Yeast Schizosaccharomyces pombe Examined by a Force Spectroscopy Study

    PubMed Central

    Sasuga, Shintaro; Abe, Ryohei; Nikaido, Osamu; Kiyosaki, Shoichi; Sekiguchi, Hiroshi; Ikai, Atsushi; Osada, Toshiya

    2012-01-01

    Interaction between P-factor, a peptide pheromone composed of 23 amino acid residues, and its pheromone receptor, Mam2, on the cell surface of the fission yeast Schizosaccharomyces pombe was examined by an atomic force microscope (AFM). An AFM tip was modified with P-factor derivatives to perform force curve measurements. The specific interaction force between P-factor and Mam2 was calculated to be around 120 pN at a probe speed of 1.74 μm/s. When the AFM tip was modified with truncated P-factor derivative lacking C-terminal Leu, the specific interaction between the tip and the cell surface was not observed. These results were also confirmed with an assay system using a green fluorescent protein (GFP) reporter gene to monitor the activation level of signal transduction following the interaction of Mam2 with P-factor. PMID:22500108

  5. Interaction between pheromone and its receptor of the fission yeast Schizosaccharomyces pombe examined by a force spectroscopy study.

    PubMed

    Sasuga, Shintaro; Abe, Ryohei; Nikaido, Osamu; Kiyosaki, Shoichi; Sekiguchi, Hiroshi; Ikai, Atsushi; Osada, Toshiya

    2012-01-01

    Interaction between P-factor, a peptide pheromone composed of 23 amino acid residues, and its pheromone receptor, Mam2, on the cell surface of the fission yeast Schizosaccharomyces pombe was examined by an atomic force microscope (AFM). An AFM tip was modified with P-factor derivatives to perform force curve measurements. The specific interaction force between P-factor and Mam2 was calculated to be around 120 pN at a probe speed of 1.74 μm/s. When the AFM tip was modified with truncated P-factor derivative lacking C-terminal Leu, the specific interaction between the tip and the cell surface was not observed. These results were also confirmed with an assay system using a green fluorescent protein (GFP) reporter gene to monitor the activation level of signal transduction following the interaction of Mam2 with P-factor.

  6. Inhibition of splicing and nuclear retention of pre-mRNA by spliceostatin A in fission yeast

    SciTech Connect

    Lo, Chor-Wai; Kaida, Daisuke; Nishimura, Shinichi; Matsuyama, Akihisa; Yashiroda, Yoko; Taoka, Hiroshi; Ishigami, Ken; Watanabe, Hidenori; Nakajima, Hidenori; Tani, Tokio; Horinouchi, Sueharu; Yoshida, Minoru

    2007-12-21

    Nuclear retention of pre-mRNAs is tightly regulated by several security mechanisms that prevent pre-mRNA export into the cytoplasm. Recently, spliceostatin A, a methylated derivative of a potent antitumor microbial metabolite FR901464, was found to cause pre-mRNA accumulation and translation in mammalian cells. Here we report that spliceostatin A also inhibits splicing and nuclear retention of pre-mRNA in a fission yeast strain that lacks the multidrug resistance protein Pmd1. As observed in mammalian cells, spliceostatin A is bound to components of the SF3b complex in the spliceosome. Furthermore, overexpression of nup211, a homolog of Saccharomyces cerevisiae MLP1, suppresses translation of pre-mRNAs accumulated by spliceostatin A. These results suggest that the SF3b complex has a conserved role in pre-mRNA retention, which is independent of the Mlp1 function.

  7. Roles of a Fimbrin and an α-Actinin-like Protein in Fission Yeast Cell Polarization and Cytokinesis

    PubMed Central

    Wu, Jian-Qiu; Bähler, Jürg; Pringle, John R.

    2001-01-01

    Eukaryotic cells contain many actin-interacting proteins, including the α-actinins and the fimbrins, both of which have actin cross-linking activity in vitro. We report here the identification and characterization of both an α-actinin-like protein (Ain1p) and a fimbrin (Fim1p) in the fission yeast Schizosaccharomyces pombe. Ain1p localizes to the actomyosin-containing medial ring in an F-actin–dependent manner, and the Ain1p ring contracts during cytokinesis. ain1 deletion cells have no obvious defects under normal growth conditions but display severe cytokinesis defects, associated with defects in medial-ring and septum formation, under certain stress conditions. Overexpression of Ain1p also causes cytokinesis defects, and the ain1 deletion shows synthetic effects with other mutations known to affect medial-ring positioning and/or organization. Fim1p localizes both to the cortical actin patches and to the medial ring in an F-actin–dependent manner, and several lines of evidence suggest that Fim1p is involved in polarization of the actin cytoskeleton. Although a fim1 deletion strain has no detectable defect in cytokinesis, overexpression of Fim1p causes a lethal cytokinesis defect associated with a failure to form the medial ring and concentrate actin patches at the cell middle. Moreover, an ain1 fim1 double mutant has a synthetical-lethal defect in medial-ring assembly and cell division. Thus, Ain1p and Fim1p appear to have an overlapping and essential function in fission yeast cytokinesis. In addition, protein-localization and mutant-phenotype data suggest that Fim1p, but not Ain1p, plays important roles in mating and in spore formation. PMID:11294907

  8. The fission yeast Schizosaccharomyces pombe as a model to understand how peroxiredoxins influence cell responses to hydrogen peroxide.

    PubMed

    Veal, Elizabeth A; Tomalin, Lewis E; Morgan, Brian A; Day, Alison M

    2014-08-01

    As a more selectively reactive oxygen species, H2O2 (hydrogen peroxide) has been co-opted as a signalling molecule, but high levels can still lead to lethal amounts of cell damage. 2-Cys Prxs (peroxiredoxins) are ubiquitous thioredoxin peroxidases which utilize reversibly oxidized catalytic cysteine residues to reduce peroxides. As such, Prxs potentially make an important contribution to the repertoire of cell defences against oxidative damage. Although the abundance of eukaryotic 2-Cys Prxs suggests an important role in maintaining cell redox, the surprising sensitivity of their thioredoxin peroxidase activity to inactivation by H2O2 has raised questions as to their role as an oxidative stress defence. Indeed, work in model yeast has led the way in revealing that Prxs do much more than simply remove peroxides and have even uncovered circumstances where their thioredoxin peroxidase activity is detrimental. In the present paper, we focus on what we have learned from studies in the fission yeast Schizosaccharomyces pombe about the different roles of 2-Cys Prxs in responses to H2O2 and discuss the general implications of these findings for other systems.

  9. [Molecular cloning of some components of the translation apparatus of fission yeast Schizosaccharomyces pombe and a list of its cytoplasm ic proteins genes].

    PubMed

    Shpakovskiĭ, G V; Baranova, G M; Wood, V; Gwilliam, R G; Shematorova, E K; Korol'chuk, O L; Lebedenko, E N

    1999-06-01

    Full-length cDNAs of four new genes encoding cytoplasmic ribosomal proteins L14 and L20 (large ribosomal subunit) and S1 and S27 (small ribosomal subunit) were isolated and sequenced during the analysis of the fission yeast Schizosaccharomyces pombe genome. One of the Sz. pombe genes encoding translation elongation factor EF-2 was also cloned and its precise position on chromosome I established. A unified nomenclature was proposed, and the list of all known genetic determinants encoding cytoplasmic ribosomal proteins of Sz. pombe was compiled. By now, 76 genes/cDNAs encoding different ribosomal proteins have been identified in the fission yeast genome. Among them, 35 genes are duplicated and three homologous genes are identified for each of the ribosomal proteins L2, L16, P1, and P2.

  10. The fission yeast Cdc1 protein, a homologue of the small subunit of DNA polymerase delta, binds to Pol3 and Cdc27.

    PubMed Central

    MacNeill, S A; Moreno, S; Reynolds, N; Nurse, P; Fantes, P A

    1996-01-01

    cdc1+ is required for cell cycle progression in Schizosaccharomyces pombe. Cells carrying temperature-sensitive cdc1 mutants undergo cell cycle arrest when shifted to the restrictive temperature, becoming highly elongated. Here we describe the cloning and sequencing of cdc1+, which is shown to encode a 462 residue protein that displays significant sequence similarity to the small subunit of mammalian DNA polymerase delta. cdc1+ interacts genetically with pol3+, which encodes the large subunit of DNA polymerase delta in fission yeast, and the Cdc1 protein binds to Pol3 in vitro, strongly suggesting that Cdc1 is likely to be the small subunit of Pol delta. In addition, we show that cdc1+ overexpression is sufficient to rescue cells carrying temperature-sensitive cdc27 alleles and that the Cdc1 and Cdc27 proteins interact in vivo and in vitro. Deletion of either cdc1+ or cdc27+ results in cell cycle arrest with the arrested cells having a single nucleus with 2C DNA content. No evidence was obtained for a cut phenotype, indicating that neither cdc1+ nor cdc27+ is required for checkpoint function. cdc1 mutant cells are supersensitive to the DNA synthesis inhibitor hydroxyurea and to the DNA damaging agent MMS, display increased frequency of mini-chromosome loss and have an extended S phase. Images PMID:8887553

  11. A role for calcium in the regulation of neutral trehalase activity in the fission yeast Schizosaccharomyces pombe.

    PubMed Central

    Franco, Alejandro; Soto, Teresa; Vicente-Soler, Jero; Paredes, Vanessa; Madrid, Marisa; Gacto, Mariano; Cansado, José

    2003-01-01

    Neutral trehalases mobilize trehalose accumulated by fungal cells as a protective and storage carbohydrate. A structural feature of these enzymes is the presence of an EF-like motif similar to that shown by many Ca2+-binding proteins. In this study we provide direct evidence for physical binding of Ca2+ to neutral trehalase (Ntp1p) of the fission yeast Schizosaccharomyces pombe, and show that aspartic residues at positions 97 and 108 in the conserved putative Ca2+-binding motif of Ntp1p appear to be responsible for this interaction. Mutations in these residues do not interfere with the ability of Ntp1p to associate in vivo with trehalose-6-phosphate synthase, but prevent activation of neutral trehalase triggered by the addition of glucose or by subjecting cells to stressing conditions. Strains expressing Ntp1p variants that are unable to bind Ca2+ partially resemble those devoid of the ntp1+ gene in terms of trehalose hyperaccumulation. Gel filtration of cell extracts from wild-type cells after EDTA treatment or from cells containing Ntp1p with mutations in aspartic acid residues within the Ca2+-binding site revealed that Ntp1p eluted mainly in an inactive conformation instead of the dimeric or trimeric active form of the enzyme. These results suggest that activation of S. pombe Ntp1p under different conditions depends upon Ca2+ binding through the Ca2+-binding motif as a prerequisite for correct enzyme oligomerization to its active form. Given the high degree of conservation of the Ca2+ accommodation site, this might be a general mechanism regulating neutral trehalase activity in other yeasts and filamentous fungi. PMID:12943532

  12. Nitrogen depletion in the fission yeast Schizosaccharomyces pombe causes nucleosome loss in both promoters and coding regions of activated genes

    PubMed Central

    Kristell, Carolina; Orzechowski Westholm, Jakub; Olsson, Ida; Ronne, Hans; Komorowski, Jan; Bjerling, Pernilla

    2010-01-01

    Gene transcription is associated with local changes in chromatin, both in nucleosome positions and in chemical modifications of the histones. Chromatin dynamics has mostly been studied on a single-gene basis. Those genome-wide studies that have been made primarily investigated steady-state transcription. However, three studies of genome-wide changes in chromatin during the transcriptional response to heat shock in the budding yeast Saccharomyces cerevisiae revealed nucleosome eviction in promoter regions but only minor effects in coding regions. Here, we describe the short-term response to nitrogen starvation in the fission yeast Schizosaccharomyces pombe. Nitrogen depletion leads to a fast induction of a large number of genes in S. pombe and is thus suitable for genome-wide studies of chromatin dynamics during gene regulation. After 20 min of nitrogen removal, 118 transcripts were up-regulated. The distribution of regulated genes throughout the genome was not random; many up-regulated genes were found in clusters, while large parts of the genome were devoid of up-regulated genes. Surprisingly, this up-regulation was associated with nucleosome eviction of equal magnitudes in the promoters and in the coding regions. The nucleosome loss was not limited to induction by nitrogen depletion but also occurred during cadmium treatment. Furthermore, the lower nucleosome density persisted for at least 60 min after induction. Two highly induced genes, urg1+ and urg2+, displayed a substantial nucleosome loss, with only 20% of the nucleosomes being left in the coding region. We conclude that nucleosome loss during transcriptional activation is not necessarily limited to promoter regions. PMID:20086243

  13. Coexpression of redox partners increases the hydrocortisone (cortisol) production efficiency in CYP11B1 expressing fission yeast Schizosaccharomyces pombe.

    PubMed

    Hakki, Tarek; Zearo, Silvia; Drăgan, Călin-Aurel; Bureik, Matthias; Bernhardt, Rita

    2008-02-01

    Cytochromes P450 play a vital role in the steroid biosynthesis pathway of the adrenal gland. An example of an essential P450 cytochrome is the steroid 11beta-hydroxylase CYP11B1, which catalyses the conversion of 11-deoxycorticol to hydrocortisone. However, despite its high biotechnological potential, this enzyme has so far been unsuccessfully employed in present-day biotechnology due to a poor expression yield and inherent protein instability. In this study, CYP11B1 was biotransformed into various strains of the yeast Schizosaccharomyces pombe, all of which also expressed the electron transfer proteins adrenodoxin and/or adrenodoxin reductase - central components of the mitochondrial P450 system - in order to maximise hydrocortisone production efficiency in our proposed model system. Site-directed mutagenesis of CYP11B1 at positions 52 and 78 was performed in order to evaluate the impact of altering the amino acids at these sites. It was found that the presence of an isoleucine at position 78 conferred the highest 11beta-hydroxylation activity of CYP11B1. Coexpression of adrenodoxin and adrenodoxin reductase appeared to further increase the 11beta-hydroxylase activity of the enzyme (3.4 fold). Adrenodoxin mutants which were found to significantly enhance enzyme efficiency in other cytochromes in previous studies were also tested in our system. It was found that, in this case, the wild type adrenodoxin was more efficient. The new fission yeast strain TH75 coexpressing the wild type Adx and AdR displays high hydrocortisone production efficiency at an average of 1mM hydrocortisone over a period of 72h, the highest value published to date for this biotransformation. Finally, our research shows that pTH2 is an ideal plasmid for the coexpression of the mitochondrial electron transfer counterparts, adrenodoxin and adrenodoxin reductase, in Schizosaccharomyces pombe, and so could serve as a convenient tool for future biotechnological applications.

  14. Neuronal Calcium Sensor-1 (Ncs1p) Is Up-regulated by Calcineurin to Promote Ca2+ Tolerance in Fission Yeast*

    PubMed Central

    Hamasaki-Katagiri, Nobuko; Ames, James B.

    2010-01-01

    Neuronal calcium sensor (NCS) proteins regulate signal transduction and are highly conserved from yeast to humans. NCS homolog in fission yeast (Ncs1p) is essential for cell growth under extreme Ca2+ conditions. Ncs1p expression increases ∼100-fold when fission yeast grows in high extracellular Ca2+ (>0.1 m). Here, we show that Ca2+-induced expression of Ncs1p is controlled at the level of transcription. Transcriptional reporter assays show that ncs1 promoter activity increased 30-fold when extracellular Ca2+ was raised to 0.1 m and was highly Ca2+-specific. Ca2+-dependent transcription of ncs1 is abolished by the calcineurin inhibitor (FK506) and by knocking out the calcineurin target, prz1. Thus, Ca2+-induced expression of Ncs1p is linked to the calcineurin/prz1 stress response. The Ca2+-responsive ncs1 promoter region consists of 130 nucleotides directly upstream from the start codon and contains tandem repeats of the sequence, 5′-caact-3′, that binds to Prz1p. The Ca2+-sensitive ncs1Δ phenotype is rescued by a yam8 null mutation, suggesting a possible interaction between Ncs1p and the Ca2+ channel, Yam8p. Ca2+ uptake and Ncs1p binding to yeast membranes are both decreased in yam8Δ, suggesting Ca2+-induced binding of Ncs1p to Yam8p results in channel closure. We propose that Ncs1p promotes Ca2+ tolerance in fission yeast, in part by cytosolic Ca2+ buffering and perhaps by negatively regulating the Yam8p Ca2+ channel. PMID:20018864

  15. Sbg1 Is a Novel Regulator for the Localization of the β-Glucan Synthase Bgs1 in Fission Yeast

    PubMed Central

    Davidson, Reshma; Pontasch, Josef A.; Wu, Jian-Qiu

    2016-01-01

    Glucan synthases synthesize glucans, complex polysaccharides that are the major components in fungal cell walls and division septa. Studying regulation of glucan synthases is important as they are essential for fungal cell survival and thus popular targets for anti-fungal drugs. Linear 1,3-β-glucan is the main component of primary septum and is synthesized by the conserved β-glucan synthase Bgs1 in fission yeast cytokinesis. It is known that Rho1 GTPase regulates Bgs1 catalytic activity and the F-BAR protein Cdc15 plays a role in Bgs1 delivery to the plasma membrane. Here we characterize a novel protein Sbg1 that is present in a complex with Bgs1 and regulates its protein levels and localization. Sbg1 is essential for contractile-ring constriction and septum formation during cytokinesis. Sbg1 and Bgs1 physically interact and are interdependent for localization to the plasma membrane. Bgs1 is less stable and/or mis-targeted to vacuoles in sbg1 mutants. Moreover, Sbg1 plays an earlier and more important role in Bgs1 trafficking and localization than Cdc15. Together, our data reveal a new mode of regulation for the essential β-glucan synthase Bgs1 by the novel protein Sbg1. PMID:27898700

  16. A genetic approach to study H2O2 scavenging in fission yeast--distinct roles of peroxiredoxin and catalase.

    PubMed

    Paulo, Esther; García-Santamarina, Sarela; Calvo, Isabel A; Carmona, Mercè; Boronat, Susanna; Domènech, Alba; Ayté, José; Hidalgo, Elena

    2014-04-01

    The main peroxiredoxin in Schizosaccharomyces pombe, Tpx1, is important to sustain aerobic growth, and cells lacking this protein are only able to grow on solid plates under anaerobic conditions. We have found that deletion of the gene coding for thioredoxin reductase, trr1, is a suppressor of the sensitivity to aerobic growth of Δtpx1 cells, so that cells lacking both proteins are able to grow on solid plates in the presence of oxygen. We have investigated this suppression effect, and determined that it depends on the presence of catalase, which is constitutively expressed in Δtrr1 cells in a transcription factor Pap1-dependent manner. A complete characterization of the repertoire of hydrogen peroxide scavenging activities in fission yeast suggests that Tpx1 is the only enzyme with sufficient sensitivity for peroxides and cellular abundance as to control the low levels produced during aerobic growth, catalase being the next barrier of detoxification when the steady-state levels of peroxides are increased in Δtpx1 cells. Gpx1, the only glutathione peroxidase encoded by the S. pombe genome, only has a minor secondary role when extracellular peroxides are added. Our study proposes non-overlapping roles for the different hydrogen peroxide scavenging activities of this eukaryotic organism.

  17. Quantitative Phosphoproteomics Reveals Pathways for Coordination of Cell Growth and Division by the Conserved Fission Yeast Kinase Pom1*

    PubMed Central

    Kettenbach, Arminja N.; Deng, Lin; Wu, Youjun; Baldissard, Suzanne; Adamo, Mark E.; Gerber, Scott A.; Moseley, James B.

    2015-01-01

    Complex phosphorylation-dependent signaling networks underlie the coordination of cellular growth and division. In the fission yeast Schizosaccharomyces pombe, the Dual specificity tyrosine-(Y)-phosphorylation regulated kinase (DYRK) family protein kinase Pom1 regulates cell cycle progression through the mitotic inducer Cdr2 and controls cell polarity through unknown targets. Here, we sought to determine the phosphorylation targets of Pom1 kinase activity by SILAC-based phosphoproteomics. We defined a set of high-confidence Pom1 targets that were enriched for cytoskeletal and cell growth functions. Cdr2 was the only cell cycle target of Pom1 kinase activity that we identified in cells. Mutation of Pom1-dependent phosphorylation sites in the C terminus of Cdr2 inhibited mitotic entry but did not impair Cdr2 localization. In addition, we found that Pom1 phosphorylated multiple substrates that function in polarized cell growth, including Tea4, Mod5, Pal1, the Rho GAP Rga7, and the Arf GEF Syt22. Purified Pom1 phosphorylated these cell polarity targets in vitro, confirming that they are direct substrates of Pom1 kinase activity and likely contribute to regulation of polarized growth by Pom1. Our study demonstrates that Pom1 acts in a linear pathway to control cell cycle progression while regulating a complex network of cell growth targets. PMID:25720772

  18. Genotoxicity study with special reference to DNA damage by comet assay in fission yeast, Schizosaccharomyces pombe exposed to drinking water.

    PubMed

    Banerjee, Pamela; Talapatra, Soumendra N; Mandal, Nivedita; Sundaram, Geetanjali; Mukhopadhyay, Aniruddha; Chattopadhyay, Dhrubajyoti; Banerjee, Sudip K

    2008-01-01

    The objective of this study was to investigate genotoxicity, especially DNA damage, in drinking water samples collected from tap by using fission yeast Schizosaccharomyces pombe as a model organism. Generally raw water potabolization is done by treatment with polymeric coagulant, alum, chlorine, etc. In the comet test, highly significant (P<0.001) effects of DNA damage were detected in treated water (tap water) when compared to negative control (raw water) as well as laboratory control (distilled water) samples for both 1 h and 2 h exposure. In the water treatment plant, raw water treatment is done by the process of prechlorination, alum and polymeric coagulant (CatflocT) dosing, postchlorination, filtration and final discharge for consumption. In conclusion it can be stated from the results that chlorinated disinfectant, alum and polymeric coagulant (CatflocT) mixture used in drinking water has a potent cumulative genotoxic effect in the eukaryotic cells and may pose potential genotoxic risk for human health following long-term consumption.

  19. Gene amplification at a locus encoding a putative Na+/H+ antiporter confers sodium and lithium tolerance in fission yeast.

    PubMed Central

    Jia, Z P; McCullough, N; Martel, R; Hemmingsen, S; Young, P G

    1992-01-01

    We have identified a new locus, sodium 2 (sod2) based on selection for increased LiCl tolerance in fission yeast, Schizosaccharomyces pombe. Tolerant strains have enhanced pH-dependent Na+ export capacity and sodium transport experiments suggest that the gene encodes an Na+/H+ antiport. The predicted sod2 gene product can be placed in the broad class of transporters which possess 12 hydrophobic transmembrane domains. The protein shows some sequence similarity to the human and bacterial Na+/H+ antiporters. Overexpression of sod2 increased Na+ export capacity and conferred sodium tolerance. Osmotolerance was not affected and sod2 cells were unaffected for growth in K+. In a sod2 disruption strain cells were incapable of exporting sodium. They were hypersensitive to Na+ or Li+ and could not grow under conditions that approximate pH7. The sod2 gene amplification could be selected stepwise and the degree of such amplification correlated with the level of Na+ or Li+ tolerance. Images PMID:1314171

  20. Lipid droplets form from distinct regions of the cell in the fission yeast Schizosaccharomyces pombe

    SciTech Connect

    Meyers, Alex; del Rio, Zuania P.; Beaver, Rachael A.; Morris, Ryan M.; Weiskittel, Taylor M.; Alshibli, Amany K.; Mannik, Jaana; Morrell-Falvey, Jennifer; Dalhaimer, Paul

    2016-04-29

    Eukaryotic cells store cholesterol/sterol esters (SEs) and triacylglycerols (TAGs) in lipid droplets, which form from the contiguous endoplasmic reticulum (ER) network. However, it is not known if droplets preferentially form from certain regions of the ER over others. Here, we used fission yeast Schizosaccharomyces pombe cells where the nuclear and cortical/peripheral ER domains are distinguishable by light microscopy to show that SE-enriched lipid droplets form away from the nucleus at the cell tips, whereas TAG-enriched lipid droplets form around the nucleus. Sterols localize to the regions of the cells where droplets enriched in SEs are observed. TAG droplet formation around the nucleus appears to be a strong function of diacylglycerol (DAG) homeostasis with Cpt1p, which coverts DAG into phosphatidylcholine and phosphatidylethanolamine localized exclusively to the nuclear ER. Also, Dgk1p, which converts DAG into phosphatidic acid localized strongly to the nuclear ER over the cortical/peripheral ER. We also show that TAG more readily translocates from the ER to lipid droplets than do SEs. Lastly, the results augment the standard lipid droplet formation model, which has SEs and TAGs flowing into the same nascent lipid droplet regardless of its biogenesis point in the cell.

  1. Negative regulation of meiotic gene expression by the nuclear poly(a)-binding protein in fission yeast.

    PubMed

    St-André, Olivier; Lemieux, Caroline; Perreault, Audrey; Lackner, Daniel H; Bähler, Jürg; Bachand, François

    2010-09-03

    Meiosis is a cellular differentiation process in which hundreds of genes are temporally induced. Because the expression of meiotic genes during mitosis is detrimental to proliferation, meiotic genes must be negatively regulated in the mitotic cell cycle. Yet, little is known about mechanisms used by mitotic cells to repress meiosis-specific genes. Here we show that the poly(A)-binding protein Pab2, the fission yeast homolog of mammalian PABPN1, controls the expression of several meiotic transcripts during mitotic division. Our results from chromatin immunoprecipitation and promoter-swapping experiments indicate that Pab2 controls meiotic genes post-transcriptionally. Consistently, we show that the nuclear exosome complex cooperates with Pab2 in the negative regulation of meiotic genes. We also found that Pab2 plays a role in the RNA decay pathway orchestrated by Mmi1, a previously described factor that functions in the post-transcriptional elimination of meiotic transcripts. Our results support a model in which Mmi1 selectively targets meiotic transcripts for degradation via Pab2 and the exosome. Our findings have therefore uncovered a mode of gene regulation whereby a poly(A)-binding protein promotes RNA degradation in the nucleus to prevent untimely expression.

  2. Characterization of cytopathic factors through genome-wide analysis of the Zika viral proteins in fission yeast

    PubMed Central

    Li, Ge; Poulsen, Melissa; Fenyvuesvolgyi, Csaba; Yashiroda, Yoko; Yoshida, Minoru; Simard, J. Marc; Gallo, Robert C.; Zhao, Richard Y.

    2017-01-01

    The Zika virus (ZIKV) causes microcephaly and the Guillain-Barré syndrome. Little is known about how ZIKV causes these conditions or which ZIKV viral protein(s) is responsible for the associated ZIKV-induced cytopathic effects, including cell hypertrophy, growth restriction, cell-cycle dysregulation, and cell death. We used fission yeast for the rapid, global functional analysis of the ZIKV genome. All 14 proteins or small peptides were produced under an inducible promoter, and we measured the intracellular localization and the specific effects on ZIKV-associated cytopathic activities of each protein. The subcellular localization of each ZIKV protein was in overall agreement with its predicted protein structure. Five structural and two nonstructural ZIKV proteins showed various levels of cytopathic effects. The expression of these ZIKV proteins restricted cell proliferation, induced hypertrophy, or triggered cellular oxidative stress leading to cell death. The expression of premembrane protein (prM) resulted in cell-cycle G1 accumulation, whereas membrane-anchored capsid (anaC), membrane protein (M), envelope protein (E), and nonstructural protein 4A (NS4A) caused cell-cycle G2/M accumulation. A mechanistic study revealed that NS4A-induced cellular hypertrophy and growth restriction were mediated specifically through the target of rapamycin (TOR) cellular stress pathway involving Tor1 and type 2A phosphatase activator Tip41. These findings should provide a reference for future research on the prevention and treatment of ZIKV diseases. PMID:28049830

  3. Structure and Biochemical Properties of Fission Yeast Arp2/3 Complex Lacking the Arp2 Subunit

    SciTech Connect

    Nolen, B.; Pollard, T

    2008-01-01

    Arp2/3 (actin-related protein 2/3) complex is a seven-subunit complex that nucleates branched actin filaments in response to cellular signals. Nucleation-promoting factors such as WASp/Scar family proteins activate the complex by facilitating the activating conformational change and recruiting the first actin monomer for the daughter branch. Here we address the role of the Arp2 subunit in the function of Arp2/3 complex by isolating a version of the complex lacking Arp2 (Arp2? Arp2/3 complex) from fission yeast. An x-ray crystal structure of the ?Arp2 Arp2/3 complex showed that the rest of the complex is unperturbed by the loss of Arp2. However, the Arp2? Arp2/3 complex was inactive in actin nucleation assays, indicating that Arp2 is essential to form a branch. A fluorescence anisotropy assay showed that Arp2 does not contribute to the affinity of the complex for Wsp1-VCA, a Schizosaccharomyces pombe nucleation-promoting factor protein. Fluorescence resonance energy transfer experiments showed that the loss of Arp2 does not prevent VCA from recruiting an actin monomer to the complex. Truncation of the N terminus of ARPC5, the smallest subunit in the complex, increased the yield of Arp2? Arp2/3 complex during purification but did not compromise nucleation activity of the full Arp2/3 complex.

  4. Cell length growth in fission yeast: an analysis of its bilinear character and the nature of its rate change transition.

    PubMed

    Horváth, Anna; Rácz-Mónus, Anna; Buchwald, Peter; Sveiczer, Ákos

    2013-11-01

    During their mitotic cycle, cylindrical fission yeast cells grow exclusively at their tips. Length growth starts at birth and halts at mitotic onset when the cells begin to prepare for division. While the growth pattern was initially considered to be exponential, during the last three decades an increasing amount of evidence indicated that it is rather a bilinear function [two linear segments separated by a rate change point (RCP)]. The main focus of this work was to clarify this and to elucidate the further question of whether the rate change occurs abruptly at the RCP or more smoothly during a transition period around it. We have analyzed the individual growth patterns obtained by time-lapse microscopy of 60 wild-type cells separately as well as that of the 'average' cell generated from their superposition. Linear, exponential, and bilinear functions were fitted to the data, and their suitability was compared using objective model selection criteria. This analysis found the overwhelming majority of the cells (70%) to have a bilinear growth pattern with close to half of them showing a smooth and not an abrupt transition. The growth pattern of the average cell was also found to be bilinear with a smooth transition.

  5. The Scw1 RNA-binding domain protein regulates septation and cell-wall structure in fission yeast.

    PubMed Central

    Karagiannis, Jim; Oulton, Rena; Young, Paul G

    2002-01-01

    Loss of the nonessential RNA-binding domain protein, Scw1, increases resistance to cell-wall-degrading enzymes in fission yeast. Surprisingly, scw1 null mutations also suppress the lethality of mutations (cdc11-136, cdc7-24, cdc14-118, sid1-239, sid2-250, sid3-106, sid4-A1, and mob1-1) at all levels of the sid pathway. This pathway forms part of the septation initiation network (SIN), which regulates the onset of septum formation and ensures the proper coupling of mitosis to cytokinesis. In contrast, scw1(-) mutations do not suppress ts alleles of the rng genes, cdc12 or cdc15. These mutations also prevent the formation of a septum and in addition block assembly and/or function of the contractile acto-myosin ring. sid mutants exhibit a hyper-sensitivity to cell-wall-degrading enzymes that is suppressed by loss of Scw1. Furthermore, scw1(-)-mediated rescue of sid mutants is abolished in the presence of calcofluor white, a compound that interferes with cell-wall synthesis. These data suggest that Scw1 acts in opposition to the SIN as a negative regulator of cell-wall/septum deposition. Unlike components of the SIN, Scw1 is predominantly a cytoplasmic protein and is not localized to the spindle pole body. PMID:12242222

  6. Molecular organization of cytokinesis nodes and contractile rings by super-resolution fluorescence microscopy of live fission yeast

    PubMed Central

    Laplante, Caroline; Huang, Fang; Tebbs, Irene R.; Bewersdorf, Joerg; Pollard, Thomas D.

    2016-01-01

    Cytokinesis in animals, fungi, and amoebas depends on the constriction of a contractile ring built from a common set of conserved proteins. Many fundamental questions remain about how these proteins organize to generate the necessary tension for cytokinesis. Using quantitative high-speed fluorescence photoactivation localization microscopy (FPALM), we probed this question in live fission yeast cells at unprecedented resolution. We show that nodes, protein assembly precursors to the contractile ring, are discrete structural units with stoichiometric ratios and distinct distributions of constituent proteins. Anillin Mid1p, Fes/CIP4 homology-Bin/amphiphysin/Rvs (F-BAR) Cdc15p, IQ motif containing GTPase-activating protein (IQGAP) Rng2p, and formin Cdc12p form the base of the node that anchors the ends of myosin II tails to the plasma membrane, with myosin II heads extending into the cytoplasm. This general node organization persists in the contractile ring where nodes move bidirectionally during constriction. We observed the dynamics of the actin network during cytokinesis, starting with the extension of short actin strands from nodes, which sometimes connected neighboring nodes. Later in cytokinesis, a broad network of thick bundles coalesced into a tight ring around the equator of the cell. The actin ring was ∼125 nm wide and ∼125 nm thick. These observations establish the organization of the proteins in the functional units of a cytokinetic contractile ring. PMID:27647921

  7. Constriction model of actomyosin ring for cytokinesis by fission yeast using a two-state sliding filament mechanism

    NASA Astrophysics Data System (ADS)

    Jung, Yong-Woon; Mascagni, Michael

    2014-09-01

    We developed a model describing the structure and contractile mechanism of the actomyosin ring in fission yeast, Schizosaccharomyces pombe. The proposed ring includes actin, myosin, and α-actinin, and is organized into a structure similar to that of muscle sarcomeres. This structure justifies the use of the sliding-filament mechanism developed by Huxley and Hill, but it is probably less organized relative to that of muscle sarcomeres. Ring contraction tension was generated via the same fundamental mechanism used to generate muscle tension, but some physicochemical parameters were adjusted to be consistent with the proposed ring structure. Simulations allowed an estimate of ring constriction tension that reproduced the observed ring constriction velocity using a physiologically possible, self-consistent set of parameters. Proposed molecular-level properties responsible for the thousand-fold slower constriction velocity of the ring relative to that of muscle sarcomeres include fewer myosin molecules involved, a less organized contractile configuration, a low α-actinin concentration, and a high resistance membrane tension. Ring constriction velocity is demonstrated as an exponential function of time despite a near linear appearance. We proposed a hypothesis to explain why excess myosin heads inhibit constriction velocity rather than enhance it. The model revealed how myosin concentration and elastic resistance tension are balanced during cytokinesis in S. pombe.

  8. The fission yeast pleckstrin homology domain protein Spo7 is essential for initiation of forespore membrane assembly and spore morphogenesis

    PubMed Central

    Nakamura-Kubo, Michiko; Hirata, Aiko; Shimoda, Chikashi; Nakamura, Taro

    2011-01-01

    Sporulation in fission yeast represents a unique mode of cell division in which a new cell is formed within the cytoplasm of a mother cell. This event is accompanied by formation of the forespore membrane (FSM), which becomes the plasma membrane of spores. At prophase II, the spindle pole body (SPB) forms an outer plaque, from which formation of the FSM is initiated. Several components of the SPB play an indispensable role in SPB modification, and therefore in sporulation. In this paper, we report the identification of a novel SPB component, Spo7, which has a pleckstrin homology (PH) domain. We found that Spo7 was essential for initiation of FSM assembly, but not for SPB modification. Spo7 directly bound to Meu14, a component of the leading edge of the FSM, and was essential for proper localization of Meu14. The PH domain of Spo7 had affinity for phosphatidylinositol 3-phosphate (PI3P). spo7 mutants lacking the PH domain showed aberrant spore morphology, similar to that of meu14 and phosphatidylinositol 3-kinase (pik3) mutants. Our study suggests that Spo7 coordinates formation of the leading edge and initiation of FSM assembly, thereby accomplishing accurate formation of the FSM. PMID:21775631

  9. Natural genetic variation impacts expression levels of coding, non-coding, and antisense transcripts in fission yeast

    PubMed Central

    Clément-Ziza, Mathieu; Marsellach, Francesc X; Codlin, Sandra; Papadakis, Manos A; Reinhardt, Susanne; Rodríguez-López, María; Martin, Stuart; Marguerat, Samuel; Schmidt, Alexander; Lee, Eunhye; Workman, Christopher T; Bähler, Jürg; Beyer, Andreas

    2014-01-01

    Our current understanding of how natural genetic variation affects gene expression beyond well-annotated coding genes is still limited. The use of deep sequencing technologies for the study of expression quantitative trait loci (eQTLs) has the potential to close this gap. Here, we generated the first recombinant strain library for fission yeast and conducted an RNA-seq-based QTL study of the coding, non-coding, and antisense transcriptomes. We show that the frequency of distal effects (trans-eQTLs) greatly exceeds the number of local effects (cis-eQTLs) and that non-coding RNAs are as likely to be affected by eQTLs as protein-coding RNAs. We identified a genetic variation of swc5 that modifies the levels of 871 RNAs, with effects on both sense and antisense transcription, and show that this effect most likely goes through a compromised deposition of the histone variant H2A.Z. The strains, methods, and datasets generated here provide a rich resource for future studies. PMID:25432776

  10. The anaphase-promoting complex/cyclosome controls repair and recombination by ubiquitylating Rhp54 in fission yeast.

    PubMed

    Trickey, Michelle; Grimaldi, Margaret; Yamano, Hiroyuki

    2008-06-01

    Homologous recombination (HR) is important for maintaining genome integrity and for the process of meiotic chromosome segregation and the generation of variation. HR is regulated throughout the cell cycle, being prevalent in the S and G2 phases and suppressed in the G1 phase. Here we show that the anaphase-promoting complex/cyclosome (APC/C) regulates homologous recombination in the fission yeast Schizosaccharomyces pombe by ubiquitylating Rhp54 (an ortholog of Rad54). We show that Rhp54 is a novel APC/C substrate that is destroyed in G1 phase in a KEN-box- and Ste9/Fizzy-related manner. The biological consequences of failing to temporally regulate HR via Rhp54 degradation are seen in haploid cells only in the absence of antirecombinase Srs2 function and are more extensive in diploid cells, which become sensitive to a range of DNA-damaging agents, including hydroxyurea, methyl methanesulfonate, bleomycin, and UV. During meiosis, expression of nondegradable Rhp54 inhibits interhomolog recombination and stimulates sister chromatid recombination. We thus propose that it is critical to control levels of Rhp54 in G1 to suppress HR repair of double-strand breaks and during meiosis to coordinate interhomolog recombination.

  11. Two fission yeast B-type cyclins, cig2 and Cdc13, have different functions in mitosis.

    PubMed Central

    Bueno, A; Russell, P

    1993-01-01

    Cyclin B interacts with Cdc2 kinase to induce cell cycle events, particularly those of mitosis. The existence of cyclin B subtypes in several species has been known for some time, leading to speculation that key events of mitosis may be carried out by distinct functional classes of Cdc2/cyclin B. We report the discovery of cig2, a third B-type cyclin gene in Schizosaccharomyces pombe. Disruption of cig2 delays the onset of mitosis, to the degree that a cig2 null allele rescues mitotic catastrophe mutants, including those that are unable to carry out the inhibitory tyrosyl phosphorylation of Cdc2 kinase. Consistent with this, a cig2 null allele exhibits synthetic lethal interactions with cdc25ts and cdc2ts mutations. Mitotic phenotypes caused by disruption of cig2 are not reversed by increased production of Cdc13, the other fission yeast B-type cyclin that functions in mitosis. Likewise, a cdc13ts mutation is not rescued by increased gene dosage of cig2+. These data indicate that Cdc13 and Cig2 interact with Cdc2 to carry out different functions in mitosis. We suggest that some cyclin B subtypes found in other species, including humans, are also likely to have distinct, nonoverlapping functions in mitosis. Images PMID:8455610

  12. Interaction of a small heat shock protein of the fission yeast, Schizosaccharomyces pombe, with a denatured protein at elevated temperature.

    PubMed

    Hirose, Maya; Tohda, Hideki; Giga-Hama, Yuko; Tsushima, Reiko; Zako, Tamotsu; Iizuka, Ryo; Pack, Changi; Kinjo, Masataka; Ishii, Noriyuki; Yohda, Masafumi

    2005-09-23

    We have expressed, purified, and characterized one small heat shock protein of the fission yeast Schizosaccharomyces pombe, SpHsp16.0. SpHsp16.0 was able to protect citrate synthase from thermal aggregation at 45 degrees C with high efficiency. It existed as a hexadecameric globular oligomer near the physiological growth temperature. At elevated temperatures, the oligomer dissociated into small species, probably dimers. The dissociation was completely reversible, and the original oligomer reformed immediately after the temperature dropped. Large complexes of SpHsp16.0 and denatured citrate synthase were observed by size exclusion chromatography and electron microscopy following incubation at 45 degrees C and then cooling. However, such large complexes did not elute from the size exclusion column incubated at 45 degrees C. The denatured citrate synthase protected from aggregation was trapped by a GroEL trap mutant at 45 degrees C. These results suggest that the complex of SpHsp16.0 and denatured citrate synthase at elevated temperatures is in the transient state and has a hydrophobic nature. Analyses of the interaction between SpHsp16.0 and denatured citrate synthase by fluorescence cross-correlation spectrometry have also shown that the characteristics of SpHsp16.0-denatured citrate synthase complex at the elevated temperature are different from those of the large complex obtained after the shift to lowered temperatures.

  13. Constriction model of actomyosin ring for cytokinesis by fission yeast using a two-state sliding filament mechanism

    SciTech Connect

    Jung, Yong-Woon; Mascagni, Michael

    2014-09-28

    We developed a model describing the structure and contractile mechanism of the actomyosin ring in fission yeast, Schizosaccharomyces pombe. The proposed ring includes actin, myosin, and α-actinin, and is organized into a structure similar to that of muscle sarcomeres. This structure justifies the use of the sliding-filament mechanism developed by Huxley and Hill, but it is probably less organized relative to that of muscle sarcomeres. Ring contraction tension was generated via the same fundamental mechanism used to generate muscle tension, but some physicochemical parameters were adjusted to be consistent with the proposed ring structure. Simulations allowed an estimate of ring constriction tension that reproduced the observed ring constriction velocity using a physiologically possible, self-consistent set of parameters. Proposed molecular-level properties responsible for the thousand-fold slower constriction velocity of the ring relative to that of muscle sarcomeres include fewer myosin molecules involved, a less organized contractile configuration, a low α-actinin concentration, and a high resistance membrane tension. Ring constriction velocity is demonstrated as an exponential function of time despite a near linear appearance. We proposed a hypothesis to explain why excess myosin heads inhibit constriction velocity rather than enhance it. The model revealed how myosin concentration and elastic resistance tension are balanced during cytokinesis in S. pombe.

  14. Structure of the second RRM domain of Nrd1, a fission yeast MAPK target RNA binding protein, and implication for its RNA recognition and regulation

    SciTech Connect

    Kobayashi, Ayaho; Kanaba, Teppei; Satoh, Ryosuke; Fujiwara, Toshinobu; Ito, Yutaka; Sugiura, Reiko; Mishima, Masaki

    2013-07-19

    Highlights: •Solution structure of the second RRM of Nrd1 was determined. •RNA binding site of the second RRM was estimated. •Regulatory mechanism of RNA binding by phosphorylation is discussed. -- Abstract: Negative regulator of differentiation 1 (Nrd1) is known as a negative regulator of sexual differentiation in fission yeast. Recently, it has been revealed that Nrd1 also regulates cytokinesis, in which physical separation of the cell is achieved by a contractile ring comprising many proteins including actin and myosin. Cdc4, a myosin II light chain, is known to be required for cytokinesis. Nrd1 binds and stabilizes Cdc4 mRNA, and thereby suppressing the cytokinesis defects of the cdc4 mutants. Interestingly, Pmk1 MAPK phosphorylates Nrd1, resulting in markedly reduced RNA binding activity. Furthermore, Nrd1 localizes to stress granules in response to various stresses, and Pmk1 phosphorylation enhances the localization. Nrd1 consists of four RRM domains, although the mechanism by which Pmk1 regulates the RNA binding activity of Nrd1 is unknown. In an effort to delineate the relationship between Nrd1 structure and function, we prepared each RNA binding domain of Nrd1 and examined RNA binding to chemically synthesized oligo RNA using NMR. The structure of the second RRM domain of Nrd1 was determined and the RNA binding site on the second RRM domain was mapped by NMR. A plausible mechanism pertaining to the regulation of RNA binding activity by phosphorylation is also discussed.

  15. The Putative Exchange Factor Gef3p Interacts with Rho3p GTPase and the Septin Ring during Cytokinesis in Fission Yeast*

    PubMed Central

    Muñoz, Sofía; Manjón, Elvira; Sánchez, Yolanda

    2014-01-01

    The small GTP-binding proteins of the Rho family and its regulatory proteins play a central role in cytokinetic actomyosin ring assembly and cytokinesis. Here we show that the fission yeast guanine nucleotide exchange factor Gef3p interacts with Rho3p at the division site. Gef3p contains a putative DH homology domain and a BAR/IMD-like domain. The protein localized to the division site late in mitosis, where it formed a ring that did not constrict with actomyosin ring (cytokinetic actomyosin ring) invagination; instead, it split into a double ring that resembled the septin ring. Gef3p co-localized with septins and Mid2p and required septins and Mid2p for its localization. Gef3p interacts physically with the GTP-bound form of Rho3p. Although Gef3p is not essential for cell separation, the simultaneous disruption of gef3+ and Rho3p-interacting proteins, such as Sec8p, an exocyst component, Apm1p, a subunit of the clathrin adaptor complex or For3p, an actin-polymerizing protein, yielded cells with strong defects in septation and polarity respectively. Our results suggest that interactions between septins and Rho-GEFs provide a new targeting mechanism for GTPases in cytokinesis, in this case probably contributing to Rho3p function in vesicle tethering and vesicle trafficking in the later steps of cell separation. PMID:24947517

  16. Contrasting effects of Elg1-RFC and Ctf18-RFC inactivation in the absence of fully functional RFC in fission yeast.

    PubMed

    Kim, Jiyoung; Robertson, Kathryn; Mylonas, Katie J L; Gray, Fiona C; Charapitsa, Iryna; MacNeill, Stuart A

    2005-01-01

    Proliferating cell nuclear antigen loading onto DNA by replication factor C (RFC) is a key step in eukaryotic DNA replication and repair processes. In this study, the C-terminal domain (CTD) of the large subunit of fission yeast RFC is shown to be essential for its function in vivo. Cells carrying a temperature-sensitive mutation in the CTD, rfc1-44, arrest with incompletely replicated chromosomes, are sensitive to DNA damaging agents, are synthetically lethal with other DNA replication mutants, and can be suppressed by mutations in rfc5. To assess the contribution of the RFC-like complexes Elg1-RFC and Ctf18-RFC to the viability of rfc1-44, genes encoding the large subunits of these complexes have been deleted and overexpressed. Inactivation of Ctf18-RFC by the deletion of ctf18+, dcc1+ or ctf8+ is lethal in an rfc1-44 background showing that full Ctf18-RFC function is required in the absence of fully functional RFC. In contrast, rfc1-44 elg1Delta cells are viable and overproduction of Elg1 in rfc1-44 is lethal, suggesting that Elg1-RFC plays a negative role when RFC function is inhibited. Consistent with this, the deletion of elg1+ is shown to restore viability to rfc1-44 ctf18Delta cells.

  17. Transient structural variations have strong effects on quantitative traits and reproductive isolation in fission yeast

    PubMed Central

    Jeffares, Daniel C.; Jolly, Clemency; Hoti, Mimoza; Speed, Doug; Shaw, Liam; Rallis, Charalampos; Balloux, Francois; Dessimoz, Christophe; Bähler, Jürg; Sedlazeck, Fritz J.

    2017-01-01

    Large structural variations (SVs) within genomes are more challenging to identify than smaller genetic variants but may substantially contribute to phenotypic diversity and evolution. We analyse the effects of SVs on gene expression, quantitative traits and intrinsic reproductive isolation in the yeast Schizosaccharomyces pombe. We establish a high-quality curated catalogue of SVs in the genomes of a worldwide library of S. pombe strains, including duplications, deletions, inversions and translocations. We show that copy number variants (CNVs) show a variety of genetic signals consistent with rapid turnover. These transient CNVs produce stoichiometric effects on gene expression both within and outside the duplicated regions. CNVs make substantial contributions to quantitative traits, most notably intracellular amino acid concentrations, growth under stress and sugar utilization in winemaking, whereas rearrangements are strongly associated with reproductive isolation. Collectively, these findings have broad implications for evolution and for our understanding of quantitative traits including complex human diseases. PMID:28117401

  18. Peroxisome fission in Hansenula polymorpha requires Mdv1 and Fis1, two proteins also involved in mitochondrial fission.

    PubMed

    Nagotu, Shirisha; Krikken, Arjen M; Otzen, Marleen; Kiel, Jan A K W; Veenhuis, Marten; van der Klei, Ida J

    2008-09-01

    We show that Mdv1 and Caf4, two components of the mitochondrial fission machinery in Saccharomyces cerevisiae, also function in peroxisome proliferation. Deletion of MDV1, CAF4 or both, however, had only a minor effect on peroxisome numbers at peroxisome-inducing growth conditions, most likely related to the fact that Vps1--and not Dnm1--is the key player in peroxisome fission in this organism. In contrast, in Hansenula polymorpha, which has only a Dnm1-dependent peroxisome fission machinery, deletion of MDV1 led to a drastic reduction of peroxisome numbers. This phenotype was accompanied by a strong defect in mitochondrial fission. The MDV1 paralog CAF4 is absent in H. polymorpha. In wild-type H. polymorpha, cells Dnm1-mCherry and green fluorescent protein (GFP)-Mdv1 colocalize in spots that associate with both peroxisomes and mitochondria. Furthermore, Fis1 is essential to recruit Mdv1 to the peroxisomal and mitochondrial membrane. However, formation of GFP-Mdv1 spots--and related to this normal organelle fission--is strictly dependent on the presence of Dnm1. In dnm1 cells, GFP-Mdv1 is dispersed over the surface of peroxisomes and mitochondria. Also, in H. polymorpha mdv1 or fis1 cells, the number of Dnm1-GFP spots is strongly reduced. These spots still associate to organelles but are functionally inactive.

  19. Citrinin-induced fluidization of the plasma membrane of the fission yeast Schizosaccharomyces pombe.

    PubMed

    Blaskó, Ágnes; Mike, Nóra; Gróf, Pál; Gazdag, Zoltán; Czibulya, Zsuzsanna; Nagy, Lívia; Kunsági-Máté, Sándor; Pesti, Miklós

    2013-09-01

    Citrinin (CTN) is a toxic fungal metabolite that is a hazardous contaminant of foods and feeds. In the present study, its acute toxicity and effects on the plasma membrane of Schizosaccharomyces pombe were investigated. The minimum inhibitory concentration of CTN against the yeast cells proved to be 500 μM. Treatment with 0, 250, 500 or 1000 μM CTN for 60 min resulted in a 0%, 2%, 21% or 100% decrease, respectively, in the survival rate of the cell population. Treatment of cells with 0, 100, 500 or 1000 μM CTN for 20 min induced decrease in the phase-transition temperature of the 5-doxylstearic acid-labeled plasma membrane to 16.51, 16.04, 14.18 or 13.98°C, respectively as measured by electron paramagnetic resonance spectroscopy. This perturbation was accompanied by the efflux of essential K⁺ from the cells. The existence of an interaction between CTN and glutathione was detected for the first time by spectrofluorometry. Our observations may suggest a direct interaction of CTN with the free sulfhydryl groups of the integral proteins of the plasma membrane, leading to dose-dependent membrane fluidization. The change in fluidity disturbed the ionic homeostasis, contributing to the death of the cells, which is a novel aspect of CTN cytotoxicity.

  20. Characterization of the ptr5+ gene involved in nuclear mRNA export in fission yeast.

    PubMed

    Watanabe, Nobuyoshi; Ikeda, Terumasa; Mizuki, Fumitaka; Tani, Tokio

    2012-02-03

    To analyze the mechanisms of mRNA export from the nucleus to the cytoplasm, we have isolated eleven mutants, ptr [poly(A)(+) RNA transport] 1 to 11, which accumulate poly(A)(+) RNA in the nucleus at a nonpermissive temperature in Schizosaccharomyces pombe. Of those, the ptr5-1 mutant shows dots- or a ring-like accumulation of poly(A)(+) RNA at the nuclear periphery after shifting to the nonpermissive temperature. We cloned the ptr5(+) gene and found that it encodes a component of the nuclear pore complex (NPC), nucleoporin 85 (Nup85). The ptr5-1 mutant shows no defects in protein transport, suggesting the specific involvement of Ptr5p/Nup85p in nuclear mRNA export in S. pombe. We identified Seh1p, a nucleoporin interacting with Nup85p, an mRNA-binding protein Mlo3p, and Sac3p, a component of the TREX-2 complex involved in coupling of nuclear mRNA export with transcription, as multi-copy suppressors for the ptr5-1 mutation. In addition, we found that the ptr5-1 mutation is synthetically lethal with a mutation of the mRNA export factor Rae1p, and that the double mutant exaggerates defective nuclear mRNA export, suggesting that Ptr5p/Nup85p is involved in nuclear mRNA export through Rae1p. Interestingly, the ptr5-1 mutation also showed synthetic effects with several prp pre-mRNA splicing mutations, suggesting a functional linkage between the NPCs and the splicing apparatus in the yeast nucleus.

  1. Characterization of the ptr5{sup +} gene involved in nuclear mRNA export in fission yeast

    SciTech Connect

    Watanabe, Nobuyoshi; Ikeda, Terumasa; Mizuki, Fumitaka; Tani, Tokio

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer We cloned the ptr5{sup +} gene involved in nuclear mRNA export in fission yeast. Black-Right-Pointing-Pointer The ptr5{sup +} gene was found to encode nucleoporin 85 (Nup85). Black-Right-Pointing-Pointer Seh1p and Mlo3p are multi-copy suppressors for the ptr5 mutation. Black-Right-Pointing-Pointer Ptr5p/Nup85p functions in nuclear mRNA export through the mRNA export factor Rae1p. Black-Right-Pointing-Pointer Ptr5p/Nup85p interacts genetically with pre-mRNA splicing factors. -- Abstract: To analyze the mechanisms of mRNA export from the nucleus to the cytoplasm, we have isolated eleven mutants, ptr [poly(A){sup +} RNA transport] 1 to 11, which accumulate poly(A){sup +} RNA in the nucleus at a nonpermissive temperature in Schizosaccharomyces pombe. Of those, the ptr5-1 mutant shows dots- or a ring-like accumulation of poly(A){sup +} RNA at the nuclear periphery after shifting to the nonpermissive temperature. We cloned the ptr5{sup +} gene and found that it encodes a component of the nuclear pore complex (NPC), nucleoporin 85 (Nup85). The ptr5-1 mutant shows no defects in protein transport, suggesting the specific involvement of Ptr5p/Nup85p in nuclear mRNA export in S. pombe. We identified Seh1p, a nucleoporin interacting with Nup85p, an mRNA-binding protein Mlo3p, and Sac3p, a component of the TREX-2 complex involved in coupling of nuclear mRNA export with transcription, as multi-copy suppressors for the ptr5-1 mutation. In addition, we found that the ptr5-1 mutation is synthetically lethal with a mutation of the mRNA export factor Rae1p, and that the double mutant exaggerates defective nuclear mRNA export, suggesting that Ptr5p/Nup85p is involved in nuclear mRNA export through Rae1p. Interestingly, the ptr5-1 mutation also showed synthetic effects with several prp pre-mRNA splicing mutations, suggesting a functional linkage between the NPCs and the splicing apparatus in the yeast nucleus.

  2. Individual letters of the RNA polymerase II CTD code govern distinct gene expression programs in fission yeast

    PubMed Central

    Schwer, Beate; Bitton, Danny Asher; Sanchez, Ana M.; Bähler, Jürg; Shuman, Stewart

    2014-01-01

    The primary structure and phosphorylation pattern of the tandem Y1S2P3T4S5P6S7 repeats of the RNA polymerase II carboxyl-terminal domain (CTD) comprise an informational code that coordinates transcription, chromatin modification, and RNA processing. To gauge the contributions of individual CTD coding “letters” to gene expression, we analyzed the poly(A)+ transcriptomes of fission yeast mutants that lack each of the four inessential CTD phosphoacceptors: Tyr1, Ser2, Thr4, and Ser7. There was a hierarchy of CTD mutational effects with respect to the number of dysregulated protein-coding RNAs, with S2A (n = 227) >> Y1F (n = 71) > S7A (n = 58) >> T4A (n = 7). The majority of the protein-coding RNAs affected in Y1F cells were coordinately affected by S2A, suggesting that Tyr1-Ser2 constitutes a two-letter code “word.” Y1F and S2A elicited increased expression of genes encoding proteins involved in iron uptake (Frp1, Fip1, Fio1, Str3, Str1, Sib1), without affecting the expression of the genes that repress the iron regulon, implying that Tyr1-Ser2 transduces a repressive signal. Y1F and S2A cells had increased levels of ferric reductase activity and were hypersensitive to phleomycin, indicative of elevated intracellular iron. The T4A and S7A mutations had opposing effects on the phosphate response pathway. T4A reduced the expression of two genes encoding proteins involved in phosphate acquisition (the Pho1 acid phosphatase and the phosphate transporter SPBC8E4.01c), without affecting the expression of known genes that regulate the phosphate response pathway, whereas S7A increased pho1+ expression. These results highlight specific cellular gene expression programs that are responsive to distinct CTD cues. PMID:24591591

  3. Rho1 GTPase and PKC ortholog Pck1 are upstream activators of the cell integrity MAPK pathway in fission yeast.

    PubMed

    Sánchez-Mir, Laura; Soto, Teresa; Franco, Alejandro; Madrid, Marisa; Viana, Raúl A; Vicente, Jero; Gacto, Mariano; Pérez, Pilar; Cansado, José

    2014-01-01

    In the fission yeast Schizosaccharomyces pombe the cell integrity pathway (CIP) orchestrates multiple biological processes like cell wall maintenance and ionic homeostasis by fine tuning activation of MAPK Pmk1 in response to various environmental conditions. The small GTPase Rho2 positively regulates the CIP through protein kinase C ortholog Pck2. However, Pmk1 retains some function in mutants lacking either Rho2 or Pck2, suggesting the existence of additional upstream regulatory elements to modulate its activity depending on the nature of the environmental stimulus. The essential GTPase Rho1 is a candidate to control the activity of the CIP by acting upstream of Pck2, whereas Pck1, a second PKC ortholog, appears to negatively regulate Pmk1 activity. However, the exact regulatory nature of these two proteins within the CIP has remained elusive. By exhaustive characterization of strains expressing a hypomorphic Rho1 allele (rho1-596) in different genetic backgrounds we show that both Rho1 and Pck1 are positive upstream regulatory members of the CIP in addition to Rho2 and Pck2. In this new model Rho1 and Rho2 control Pmk1 basal activity during vegetative growth mainly through Pck2. Notably, whereas Rho2-Pck2 elicit Pmk1 activation in response to most environmental stimuli, Rho1 drives Pmk1 activation through either Pck2 or Pck1 exclusively in response to cell wall damage. Our study reveals the intricate and complex functional architecture of the upstream elements participating in this signaling pathway as compared to similar routes from other simple eukaryotic organisms.

  4. Role of the protein kinase Kin1 and nuclear centering in actomyosin ring formation in fission yeast.

    PubMed

    Cadou, Angela; La Carbona, Stéphanie; Couturier, Anne; Le Goff, Cathy; Le Goff, Xavier

    2009-08-01

    Cytokinesis is the last step of the cell cycle, producing two daughter cells inheriting equal genetic information. This process involves the assembly of an actomyosin ring during mitosis. In the fission yeast Schizosaccharomyces pombe, cytokinesis occurs at the geometric cell centre, a position which is defined by the interphase nucleus and the anilin-related Mid1 protein. The pom1Delta, tea1Delta and tea4Delta mutants are defective in restricting Mid1 as a band around the nucleus and misplace the division site. We previously reported that inhibition of the protein kinase Kin1 promoted failure of cytokinesis in pom1Delta and tea1Delta cells but the mechanism involving Kin1 remained elusive. Here we investigated the contribution of Kin1 in cytokinesis. We show that Kin1-GFP has a dynamic cell cycle regulated distribution. Like pom1Delta and tea1Delta, tea4Delta exhibits a strong genetic interaction with kin1Delta. Using a conditional repressible kin1 allele that only alters interphase nuclear centering, we observed that Kin1 downregulation severely compromised actomyosin ring formation and septum synthesis in tea4Delta cells. In addition, nuclear displacement induced either by overexpression of a putative catalytically inactive Kin1 mutant, by chemically mediated microtubule depolymerization or by mutation in the par1Delta gene impaired cytokinesis in tea4Delta but not tea4(+) cells. We propose that nuclear mispositioning exacerbates the tea4Delta, pom1Delta and tea1Delta cell division phenotype. Our work reveal that nuclear centering becomes essential when Pom1/Tea1/Tea4 function is compromised and that Kin1 expression level is a key regulatory element in this situation. Our results suggest the existence of distinct overlapping control mechanisms to ensure efficient cell division.

  5. Hsp90 interaction with Cdc2 and Plo1 kinases contributes to actomyosin ring condensation in fission yeast.

    PubMed

    Santino, Andrea; Tallada, Victor A; Jimenez, Juan; Garzón, Andrés

    2012-08-01

    In Schizosaccharomyces pombe, cytokinesis occurs by ordered recruitment of actomyosin components at the division site, followed by lateral condensation to produce a ring-like structure early in anaphase, which eventually matures and contracts at the end of mitosis. We found that in temperature-sensitive hsp90-w1 mutant cells, encoding an Hsp90 mutant protein, ring components were recruited to form a cortical network at the division site, but this network failed to condense into a compact ring, suggesting a role for Hsp90 in this particular step. hsp90-w1 mutant shows strong genetic interaction with specific mutant alleles of the fission yeast cdc2, such as cdc2-33. Interestingly, actomyosin ring defects in hsp90-w1 cdc2-33 mutant cells resembled that of hsp90-w1 single mutant at restrictive temperature. Noteworthy, similar genetic interaction was found with a mutant allele of polo-like kinase, plo1-ts4, suggesting that Hsp90 collaborates with Cdc2 and Plo1 cell cycle kinases to condense medial ring components. In vitro analyses suggested that Cdc2 and Plo1 physically interact with Hsp90. Association of Cdc2 to Hsp90 was ATP independent, while Plo1 binds to this chaperone in an ATP-dependent manner, indicating that these two kinases interact with different Hsp90 complexes. Overall, our analyses of hsp90-w1 reveal a possible role for this chaperone in medial ring condensation in association with Cdc2 and Plo1 kinases.

  6. Fission yeast LAMMER kinase Lkh1 regulates the cell cycle by phosphorylating the CDK-inhibitor Rum1

    SciTech Connect

    Yu, Eun-Young; Lee, Ju-Hee; Kang, Won-Hwa; Park, Yun-Hee; Kim, Lila; Park, Hee-Moon

    2013-03-01

    Highlights: ► Deletion of lkh1{sup +} made cells pass the G1/S phase faster than the wild type. ► Lkh1 can interact with a cyclin-dependent kinase inhibitor (CKI) Rum1. ► Lkh1 can phosphorylate Rum1 to activate its CKI activity. ► Thr110 was confirmed as the Lkh1-dependent phosphorylation site of Rum1. ► Positive acting mechanism for the Rum1 activation is reported for the first time. - Abstract: In eukaryotes, LAMMER kinases are involved in various cellular events, including the cell cycle. However, no attempt has been made to investigate the mechanisms that underlie the involvement of LAMMER kinase. In this study, we performed a functional analysis of LAMMER kinase using the fission yeast, Schizosaccharomyces pombe. FACS analyses revealed that deletion of the gene that encodes the LAMMER kinase Lkh1 made mutant cells pass through the G1/S phase faster than their wild-type counterparts. Co-immunoprecipitation and an in vitro kinase assay also revealed that Lkh1 can interact with and phosphorylate Rum1 to activate this molecule as a cyclin-dependent kinase inhibitor, which blocks cell cycle progression from the G1 phase to the S phase. Peptide mass fingerprinting and kinase assay with Rum1{sup T110A} confirmed T110 as the Lkh1-dependent phosphorylation residue. In this report we present for the first time a positive acting mechanism that is responsible for the CKI activity of Rum1, in which the LAMMER kinase-mediated phosphorylation of Rum1 is involved.

  7. C-terminal region of Mad2 plays an important role during mitotic spindle checkpoint in fission yeast Schizosaccharomyces pombe.

    PubMed

    Singh, Gaurav Kumar; Karade, Sharanbasappa Shrimant; Ranjan, Rajeev; Ahamad, Nafees; Ahmed, Shakil

    2017-02-01

    The mitotic arrest deficiency 2 (Mad2) protein is an essential component of the spindle assembly checkpoint that interacts with Cdc20/Slp1 and inhibit its ability to activate anaphase promoting complex/cyclosome (APC/C). In bladder cancer cell line the C-terminal residue of the mad2 gene has been found to be deleted. In this study we tried to understand the role of the C-terminal region of mad2 on the spindle checkpoint function. To envisage the role of C-terminal region of Mad2, we truncated 25 residues of Mad2 C-terminal region in fission yeast S.pombe and characterized its effect on spindle assembly checkpoint function. The cells containing C-terminal truncation of Mad2 exhibit sensitivity towards microtubule destabilizing agent suggesting perturbation of spindle assembly checkpoint. Further, the C-terminal truncation of Mad2 exhibit reduced viability in the nda3-KM311 mutant background at non-permissive temperature. Truncation in mad2 gene also affects its foci forming ability at unattached kinetochore suggesting that the mad2-∆CT mutant is unable to maintain spindle checkpoint activation. However, in response to the defective microtubule, only brief delay of mitotic progression was observed in Mad2 C-terminal truncation mutant. In addition we have shown that the deletion of two β strands of Mad2 protein abolishes its ability to interact with APC activator protein Slp1/Cdc20. We purpose that the truncation of two β strands (β7 and β8) of Mad2 destabilize the safety belt and affect the Cdc20-Mad2 interaction leading to defects in the spindle checkpoint activation.

  8. Yeast heterochromatin is a dynamic structure that requires silencers continuously

    PubMed Central

    Cheng, Tzu-Hao; Gartenberg, Marc R.

    2000-01-01

    Transcriptional silencing of the HM loci in yeast requires cis-acting elements, termed silencers, that function during S-phase passage to establish the silent state. To study the role of the regulatory elements in maintenance of repression, site-specific recombination was used to uncouple preassembled silent chromatin fragments from silencers. DNA rings excised from HMR were initially silent but ultimately reactivated, even in G1- or G2/M-arrested cells. In contrast, DNA rings bearing HML-derived sequence were stably repressed due to the presence of a protosilencing element. These data show that silencers (or protosilencers) are required continuously for maintenance of silent chromatin. Reactivation of unstably repressed rings was blocked by overexpression of silencing proteins Sir3p and Sir4p, and chromatin immunoprecipitation studies showed that overexpressed Sir3p was incorporated into silent chromatin. Importantly, the protein was incorporated even when expressed outside of S phase, during G1 arrest. That silencing factors can associate with and stabilize preassembled silent chromatin in non-S-phase cells demonstrates that heterochromatin in yeast is dynamic. PMID:10691737

  9. Glucocorticoid Modulation of Mitochondrial Function in Hepatoma Cells Requires the Mitochondrial Fission Protein Drp1

    PubMed Central

    Hernández-Alvarez, María Isabel; Paz, José C.; Sebastián, David; Muñoz, Juan Pablo; Liesa, Marc; Segalés, Jessica; Palacín, Manuel

    2013-01-01

    Abstract Aims: Glucocorticoids, such as dexamethasone, enhance hepatic energy metabolism and gluconeogenesis partly through changes in mitochondrial function. Mitochondrial function is influenced by the balance between mitochondrial fusion and fission events. However, whether glucocorticoids modulate mitochondrial function through the regulation of mitochondrial dynamics is currently unknown. Results: Here, we report that the effects of dexamethasone on mitochondrial function and gluconeogenesis in hepatoma cells are dependent on the mitochondrial fission protein dynamin-related protein 1 (Drp1). Dexamethasone increased routine oxygen consumption, maximal respiratory capacity, superoxide anion, proton leak, and gluconeogenesis in hepatoma cells. Under these conditions, dexamethasone altered mitochondrial morphology, which was paralleled by a large increase in Drp1 expression, and reduced mitofusin 1 (Mfn1) and Mfn2. In vivo dexamethasone treatment also enhanced Drp1 expression in mouse liver. On the basis of these observations, we analyzed the dependence on the Drp1 function of dexamethasone effects on mitochondrial respiration and gluconeogenesis. We show that the increase in mitochondrial respiration and gluconeogenesis induced by dexamethasone are hampered by the inhibition of Drp1 function. Innovation: Our findings provide the first evidence that the effects of glucocorticoids on hepatic metabolism require the mitochondrial fission protein Drp1. Conclusion: In summary, we demonstrate that the mitochondrial effects of dexamethasone both on mitochondrial respiration and on the gluconeogenic pathway depend on Drp1. Antioxid. Redox Signal. 19, 366–378. PMID:22703557

  10. p63cdc13, a B-type cyclin, is associated with both the nucleolar and chromatin domains of the fission yeast nucleus.

    PubMed

    Gallagher, I M; Alfa, C E; Hyams, J S

    1993-11-01

    The cellular distribution of the fission yeast mitotic cyclin B, p63cdc13, was investigated by a combination of indirect immunofluorescence light microscopy, immunogold electron microscopy, and nuclear isolation and fractionation. Immunofluorescence microscopy of wild-type cells and the cold-sensitive mutant dis2.11 with a monospecific anti-p63cdc13 antiserum was consistent with the association of a major subpopulation of fission yeast M-phase protein kinase with the nucleolus. Immunogold electron microscopy of freeze-substituted wild-type cells identified two nuclear populations of p63cdc13, one associated with the nucleolus, the other with the chromatin domain. To investigate the cell cycle regulation of nuclear labeling, the mutant cdc25.22 was synchronized through mitosis by temperature arrest and release. Immunogold labeling of cells arrested at G2M revealed gold particles present abundantly over the nucleolus and less densely over the chromatin region of the nucleus. Small vesicles around the nucleus were also labeled by anti-p63cdc13, but few gold particles were detected over the cytoplasm. Labeling of all cell compartments declined to zero through mitosis. Cell fractionation confirmed that p63cdc13 was substantially enriched in both isolated nuclei and in a fraction containing small vesicles and organelles. p63cdc13 was not extracted from nuclei by treatment with RNase A, Nonidet P40 (NP-40), Triton X-100, and 0.1 M NaCl, although partial solubilization was observed with DNase I and 1 M NaCl. A known nucleolar protein NOP1, partitioned in a similar manner to p63cdc13, as did p34cdc2, the other subunit of the M-phase protein kinase. We conclude that a major subpopulation of the fission yeast mitotic cyclin B is targeted to structural elements of the nucleus and nucleolus.

  11. RNAi in fission yeast finds new targets and new ways of targeting at the nuclear periphery.

    PubMed

    Holoch, Daniel; Moazed, Danesh

    2012-04-15

    RNAi in Schizosaccharomyces pombe is critical for centromeric heterochromatin formation. It has remained unclear, however, whether RNAi also regulates the expression of protein-coding loci. In the April 1, 2012, issue of Genes & Development, Woolcock and colleagues (pp. 683-667) reported an elegant mechanism for the conditional RNAi-mediated repression of stress response genes involving association with Dcr1 at the nuclear pore. Unexpectedly, the initial targeting of RNAi components to these genes does not require small RNA guides.

  12. Ca(2+) and H+ homeostasis in fission yeast: a role of Ca(2+)/H+ exchange and distinct V-H+-ATPases of the secretory pathway organelles.

    PubMed

    Okorokov, L A; Silva, F E; Okorokova Façanha, A L

    2001-09-14

    We determined the H+ and Ca(2+) uptake by fission yeast membranes separated on sucrose gradient and found that (i) Ca(2+) sequestering is due to Ca(2+)/H+ antiporter(s) localized to secretory pathway organelles while Ca(2+)-ATPase activity is not detectable in their membranes; (ii) immunochemically distinct V-H+-ATPases acidify the lumen of the secretory pathway organelles. The data indicate that the endoplasmic reticulum, Golgi and vacuole form a network of Ca(2+) and H+ stores in the single cell, providing favorable conditions for such key processes as protein folding/sorting, membrane fusion, ion homeostasis and Ca(2+) signaling in a differential and local manner.

  13. Modulation of Spc1 stress-activated protein kinase activity by methylglyoxal through inhibition of protein phosphatase in the fission yeast Schizosaccharomyces pombe

    SciTech Connect

    Takatsume, Yoshifumi; Izawa, Shingo; Inoue, Yoshiharu

    2007-11-30

    Methylglyoxal, a ubiquitous metabolite derived from glycolysis has diverse physiological functions in yeast cells. Previously, we have reported that extracellularly added methylglyoxal activates Spc1, a stress-activated protein kinase (SAPK), in the fission yeast Schizosaccharomyces pombe [Y. Takatsume, S. Izawa, Y. Inoue, J. Biol. Chem. 281 (2006) 9086-9092]. Phosphorylation of Spc1 by treatment with methylglyoxal in S. pombe cells defective in glyoxalase I, an enzyme crucial for the metabolism of methylglyoxal, continues for a longer period than in wild-type cells. Here we show that methylglyoxal inhibits the activity of the protein phosphatase responsible for the dephosphorylation of Spc1 in vitro. In addition, we found that methylglyoxal inhibits human protein tyrosine phosphatase 1B (PTP1B) also. We propose a model for the regulation of the activity of the Spc1-SAPK signaling pathway by methylglyoxal in S. pombe.

  14. Cylindrical cellular geometry ensures fidelity of division site placement in fission yeast.

    PubMed

    Mishra, Mithilesh; Huang, Yinyi; Srivastava, Pragya; Srinivasan, Ramanujam; Sevugan, Mayalagu; Shlomovitz, Roie; Gov, Nir; Rao, Madan; Balasubramanian, Mohan

    2012-08-15

    Successful cytokinesis requires proper assembly of the contractile actomyosin ring, its stable positioning on the cell surface and proper constriction. Over the years, many of the key molecular components and regulators of the assembly and positioning of the actomyosin ring have been elucidated. Here we show that cell geometry and mechanics play a crucial role in the stable positioning and uniform constriction of the contractile ring. Contractile rings that assemble in locally spherical regions of cells are unstable and slip towards the poles. By contrast, actomyosin rings that assemble on locally cylindrical portions of the cell under the same conditions do not slip, but uniformly constrict the cell surface. The stability of the rings and the dynamics of ring slippage can be described by a simple mechanical model. Using fluorescence imaging, we verify some of the quantitative predictions of the model. Our study reveals an intimate interplay between geometry and actomyosin dynamics, which are likely to apply in a variety of cellular contexts.

  15. The Fission Yeast Homeodomain Protein Yox1p Binds to MBF and Confines MBF-Dependent Cell-Cycle Transcription to G1-S via Negative Feedback

    PubMed Central

    Aligianni, Sofia; Lackner, Daniel H.; Klier, Steffi; Rustici, Gabriella; Wilhelm, Brian T.; Marguerat, Samuel; Codlin, Sandra; Brazma, Alvis; de Bruin, Robertus A. M.; Bähler, Jürg

    2009-01-01

    The regulation of the G1- to S-phase transition is critical for cell-cycle progression. This transition is driven by a transient transcriptional wave regulated by transcription factor complexes termed MBF/SBF in yeast and E2F-DP in mammals. Here we apply genomic, genetic, and biochemical approaches to show that the Yox1p homeodomain protein of fission yeast plays a critical role in confining MBF-dependent transcription to the G1/S transition of the cell cycle. The yox1 gene is an MBF target, and Yox1p accumulates and preferentially binds to MBF-regulated promoters, via the MBF components Res2p and Nrm1p, when they are transcriptionally repressed during the cell cycle. Deletion of yox1 results in constitutively high transcription of MBF target genes and loss of their cell cycle–regulated expression, similar to deletion of nrm1. Genome-wide location analyses of Yox1p and the MBF component Cdc10p reveal dozens of genes whose promoters are bound by both factors, including their own genes and histone genes. In addition, Cdc10p shows promiscuous binding to other sites, most notably close to replication origins. This study establishes Yox1p as a new regulatory MBF component in fission yeast, which is transcriptionally induced by MBF and in turn inhibits MBF-dependent transcription. Yox1p may function together with Nrm1p to confine MBF-dependent transcription to the G1/S transition of the cell cycle via negative feedback. Compared to the orthologous budding yeast Yox1p, which indirectly functions in a negative feedback loop for cell-cycle transcription, similarities but also notable differences in the wiring of the regulatory circuits are evident. PMID:19714215

  16. Nonmedially assembled F-actin cables incorporate into the actomyosin ring in fission yeast

    PubMed Central

    Huang, Junqi; Huang, Yinyi; Yu, Haochen; Subramanian, Dhivya; Padmanabhan, Anup; Thadani, Rahul; Tao, Yaqiong; Tang, Xie; Wedlich-Soldner, Roland

    2012-01-01

    In many eukaryotes, cytokinesis requires the assembly and constriction of an actomyosin-based contractile ring. Despite the central role of this ring in cytokinesis, the mechanism of F-actin assembly and accumulation in the ring is not fully understood. In this paper, we investigate the mechanism of F-actin assembly during cytokinesis in Schizosaccharomyces pombe using lifeact as a probe to monitor actin dynamics. Previous work has shown that F-actin in the actomyosin ring is assembled de novo at the division site. Surprisingly, we find that a significant fraction of F-actin in the ring was recruited from formin-Cdc12p nucleated long actin cables that were generated at multiple nonmedial locations and incorporated into the ring by a combination of myosin II and myosin V activities. Our results, together with findings in animal cells, suggest that de novo F-actin assembly at the division site and directed transport of F-actin cables assembled elsewhere can contribute to ring assembly. PMID:23185032

  17. Molecular properties of the N-terminal extension of the fission yeast kinesin-5, Cut7.

    PubMed

    Edamatsu, M

    2016-02-11

    Kinesin-5 plays an essential role in spindle formation and function, and serves as a potential target for anti-cancer drugs. The aim of this study was to elucidate the molecular properties of the N-terminal extension of the Schizosaccharomyces pombe kinesin-5, Cut7. This extension is rich in charged amino acids and predicted to be intrinsically disordered. In S. pombe cells, a Cut7 construct lacking half the N-terminal extension failed to localize along the spindle microtubules and formed a monopolar spindle. However, a construct lacking the entire N-terminal extension exhibited normal localization and formed a typical bipolar spindle. In addition, in vitro analyses revealed that the truncated Cut7 constructs demonstrated similar motile velocities and directionalities as the wild-type motor protein, but the microtubule landing rates were significantly reduced. These findings suggest that the N-terminal extension is not required for normal Cut7 intracellular localization or function, but alters the microtubule-binding properties of this protein in vitro.

  18. Chromosome conformation maps in fission yeast reveal cell cycle dependent sub nuclear structure.

    PubMed

    Grand, Ralph S; Pichugina, Tatyana; Gehlen, Lutz R; Jones, M Beatrix; Tsai, Peter; Allison, Jane R; Martienssen, Robert; O'Sullivan, Justin M

    2014-11-10

    Successful progression through the cell cycle requires spatial and temporal regulation of gene transcript levels and the number, positions and condensation levels of chromosomes. Here we present a high resolution survey of genome interactions in Schizosaccharomyces pombe using synchronized cells to investigate cell cycle dependent changes in genome organization and transcription. Cell cycle dependent interactions were captured between and within S. pombe chromosomes. Known features of genome organization (e.g. the clustering of telomeres and retrotransposon long terminal repeats (LTRs)) were observed throughout the cell cycle. There were clear correlations between transcript levels and chromosomal interactions between genes, consistent with a role for interactions in transcriptional regulation at specific stages of the cell cycle. In silico reconstructions of the chromosome organization within the S. pombe nuclei were made by polymer modeling. These models suggest that groups of genes with high and low, or differentially regulated transcript levels have preferred positions within the S. pombe nucleus. We conclude that the S. pombe nucleus is spatially divided into functional sub-nuclear domains that correlate with gene activity. The observation that chromosomal interactions are maintained even when chromosomes are fully condensed in M phase implicates genome organization in epigenetic inheritance and bookmarking.

  19. Characterization of nuclear pore complex components in fission yeast Schizosaccharomyces pombe.

    PubMed

    Asakawa, Haruhiko; Yang, Hui-Ju; Yamamoto, Takaharu G; Ohtsuki, Chizuru; Chikashige, Yuji; Sakata-Sogawa, Kumiko; Tokunaga, Makio; Iwamoto, Masaaki; Hiraoka, Yasushi; Haraguchi, Tokuko

    2014-01-01

    The nuclear pore complex (NPC) is an enormous proteinaceous complex composed of multiple copies of about 30 different proteins called nucleoporins. In this study, we analyzed the composition of the NPC in the model organism Schizosaccharomyces pombe using strains in which individual nucleoporins were tagged with GFP. We identified 31 proteins as nucleoporins by their localization to the nuclear periphery. Gene disruption analysis in previous studies coupled with gene disruption analysis in the present study indicates that 15 of these nucleoporins are essential for vegetative cell growth and the other 16 nucleoporins are non-essential. Among the 16 non-essential nucleoporins, 11 are required for normal progression through meiosis and their disruption caused abnormal spore formation or poor spore viability. Based on fluorescence measurements of GFP-fused nucleoporins, we estimated the composition of the NPC in S. pombe and found that the organization of the S. pombe NPC is largely similar to that of other organisms; a single NPC was estimated as being 45.8-47.8 MDa in size. We also used fluorescence measurements of single NPCs and quantitative western blotting to analyze the composition of the Nup107-Nup160 subcomplex, which plays an indispensable role in NPC organization and function. Our analysis revealed low amounts of Nup107 and Nup131 and high amounts of Nup132 in the Nup107-Nup160 subcomplex, suggesting that the composition of this complex in S. pombe may differ from that in S. cerevisiae and humans. Comparative analysis of NPCs in various organisms will lead to a comprehensive understanding of the functional architecture of the NPC.

  20. Pheromone-regulated genes required for yeast mating differentiation.

    PubMed

    Erdman, S; Lin, L; Malczynski, M; Snyder, M

    1998-02-09

    Yeast cells mate by an inducible pathway that involves agglutination, mating projection formation, cell fusion, and nuclear fusion. To obtain insight into the mating differentiation of Saccharomyces cerevisiae, we carried out a large-scale transposon tagging screen to identify genes whose expression is regulated by mating pheromone. 91,200 transformants containing random lacZ insertions were screened for beta-galactosidase (beta-gal) expression in the presence and absence of alpha factor, and 189 strains containing pheromone-regulated lacZ insertions were identified. Transposon insertion alleles corresponding to 20 genes that are novel or had not previously been known to be pheromone regulated were examined for effects on the mating process. Mutations in four novel genes, FIG1, FIG2, KAR5/ FIG3, and FIG4 were found to cause mating defects. Three of the proteins encoded by these genes, Fig1p, Fig2p, and Fig4p, are dispensible for cell polarization in uniform concentrations of mating pheromone, but are required for normal cell polarization in mating mixtures, conditions that involve cell-cell communication. Fig1p and Fig2p are also important for cell fusion and conjugation bridge shape, respectively. The fourth protein, Kar5p/Fig3p, is required for nuclear fusion. Fig1p and Fig2p are likely to act at the cell surface as Fig1:: beta-gal and Fig2::beta-gal fusion proteins localize to the periphery of mating cells. Fig4p is a member of a family of eukaryotic proteins that contain a domain homologous to the yeast Sac1p. Our results indicate that a variety of novel genes are expressed specifically during mating differentiation to mediate proper cell morphogenesis, cell fusion, and other steps of the mating process.

  1. The Srp54 GTPase is essential for protein export in the fission yeast Schizosaccharomyces pombe.

    PubMed

    Althoff, S M; Stevens, S W; Wise, J A

    1994-12-01

    Signal recognition particle (SRP) is a cytoplasmic ribonucleoprotein required for targeting a subset of presecretory proteins to the endoplasmic reticulum (ER) membrane. Here we report the results of a series of experiments to define the function of the Schizosaccharomyces pombe homolog of the 54-kDa subunit of mammalian SRP. One-step gene disruption reveals that the Srp54 protein, like SRP RNA, is essential for viability in S. pombe. Precursor to the secretory protein acid phosphatase accumulates in cells in which Srp54 synthesis has been repressed under the control of a regulated promoter, indicating that S. pombe SRP functions in protein targeting. In common with other Srp54 homologs, the S. pombe protein has a modular structure consisting of an amino-terminal G (GTPase) domain and a carboxyl-terminal M (methionine-rich) domain. We have analyzed the effects of 17 site-specific mutations designed to alter the function of each of the four GTPase consensus motifs individually. Several alleles, including some with relatively conservative amino acid substitutions, confer lethal or conditional phenotypes, indicating that GTP binding and hydrolysis are critical to the in vivo role of the protein. Two mutations (R to L at position 194 [R194L] and R194H) which were designed, by analogy to oncogenic mutations in rats, to dramatically decrease the catalytic rate and one (T248N) predicted to alter nucleotide binding specificity produce proteins that are unable to support growth at 18 degrees C. Consistent with its design, the R194L mutant hydrolyzes GTP at a reduced rate relative to wild-type Srp54 in enzymatic assays on immunoprecipitated proteins. In strains that also contain wild-type srp54, this mutant protein, as well as others designed to be locked in a GTP-bound conformation, exhibits temperature-dependent dominant inhibitory effects on growth, while a mutant predicted to be GDP locked does not interfere with the function of the wild-type protein. These results form

  2. Golgi membrane fission requires the CtBP1-S/BARS-induced activation of lysophosphatidic acid acyltransferase δ.

    PubMed

    Pagliuso, Alessandro; Valente, Carmen; Giordano, Lucia Laura; Filograna, Angela; Li, Guiling; Circolo, Diego; Turacchio, Gabriele; Marzullo, Vincenzo Manuel; Mandrich, Luigi; Zhukovsky, Mikhail A; Formiggini, Fabio; Polishchuk, Roman S; Corda, Daniela; Luini, Alberto

    2016-07-12

    Membrane fission is an essential cellular process by which continuous membranes split into separate parts. We have previously identified CtBP1-S/BARS (BARS) as a key component of a protein complex that is required for fission of several endomembranes, including basolateral post-Golgi transport carriers. Assembly of this complex occurs at the Golgi apparatus, where BARS binds to the phosphoinositide kinase PI4KIIIβ through a 14-3-3γ dimer, as well as to ARF and the PKD and PAK kinases. We now report that, when incorporated into this complex, BARS binds to and activates a trans-Golgi lysophosphatidic acid (LPA) acyltransferase type δ (LPAATδ) that converts LPA into phosphatidic acid (PA); and that this reaction is essential for fission of the carriers. LPA and PA have unique biophysical properties, and their interconversion might facilitate the fission process either directly or indirectly (via recruitment of proteins that bind to PA, including BARS itself).

  3. Golgi membrane fission requires the CtBP1-S/BARS-induced activation of lysophosphatidic acid acyltransferase δ

    PubMed Central

    Pagliuso, Alessandro; Valente, Carmen; Giordano, Lucia Laura; Filograna, Angela; Li, Guiling; Circolo, Diego; Turacchio, Gabriele; Marzullo, Vincenzo Manuel; Mandrich, Luigi; Zhukovsky, Mikhail A.; Formiggini, Fabio; Polishchuk, Roman S.; Corda, Daniela; Luini, Alberto

    2016-01-01

    Membrane fission is an essential cellular process by which continuous membranes split into separate parts. We have previously identified CtBP1-S/BARS (BARS) as a key component of a protein complex that is required for fission of several endomembranes, including basolateral post-Golgi transport carriers. Assembly of this complex occurs at the Golgi apparatus, where BARS binds to the phosphoinositide kinase PI4KIIIβ through a 14-3-3γ dimer, as well as to ARF and the PKD and PAK kinases. We now report that, when incorporated into this complex, BARS binds to and activates a trans-Golgi lysophosphatidic acid (LPA) acyltransferase type δ (LPAATδ) that converts LPA into phosphatidic acid (PA); and that this reaction is essential for fission of the carriers. LPA and PA have unique biophysical properties, and their interconversion might facilitate the fission process either directly or indirectly (via recruitment of proteins that bind to PA, including BARS itself). PMID:27401954

  4. Rga4 modulates the activity of the fission yeast cell integrity MAPK pathway by acting as a Rho2 GTPase-activating protein.

    PubMed

    Soto, Teresa; Villar-Tajadura, Maria Antonia; Madrid, Marisa; Vicente, Jero; Gacto, Mariano; Pérez, Pilar; Cansado, José

    2010-04-09

    Rho GTPase-activating proteins (GAPs) are responsible for the inactivation of Rho GTPases, which are involved in the regulation of critical biological responses in eukaryotic cells, ranging from cell cycle control to cellular morphogenesis. The genome of fission yeast Schizosaccharomyces pombe contains six genes coding for putative Rho GTPases, whereas nine genes code for predicted Rho GAPs (Rga1 to Rga9). One of them, Rga4, has been recently described as a Cdc42 GAP, involved in the control of cell diameter and symmetry in fission yeast. In this work we show that Rga4 is also a Rho2 GAP that negatively modulates the activity of the cell integrity pathway and its main effector, MAPK Pmk1. The DYRK-type protein kinase Pom1, which regulates both the localization and phosphorylation state of Rga4, is also a negative regulator of the Pmk1 pathway, but this control is not dependent upon the Rga4 role as a Rho2-GAP. Hence, two subsets of Rga4 negatively regulate Cdc42 and Rho2 functions in a specific and unrelated way. Finally, we show that Rga7, another Rho2 GAP, down-regulates the Pmk1 pathway in addition to Rga4. These results reinforce the notion of the existence of complex mechanisms determining the selectivity of Rho GAPs toward Rho GTPases and their functions.

  5. Chemical shift assignments of the first and second RRMs of Nrd1, a fission yeast MAPK-target RNA binding protein.

    PubMed

    Kobayashi, Ayaho; Kanaba, Teppei; Satoh, Ryosuke; Ito, Yutaka; Sugiura, Reiko; Mishima, Masaki

    2017-03-11

    Negative regulator differentiation 1 (Nrd1), a fission yeast RNA binding protein, modulates cytokinesis and sexual development and contributes to stress granule formation in response to environmental stresses. Nrd1 comprises four RRM domains and binds and stabilizes Cdc4 mRNA that encodes the myosin II light chain. Nrd1 binds the Cpc2 fission-yeast RACK1 homolog, and the interaction promotes Nrd1 localization to stress granules. Interestingly, Pmk1 mitogen-activated protein kinase phosphorylates Thr40 in the unstructured N-terminal region and Thr126 in the first RRM domain of Nrd1. Phosphorylation significantly reduces RNA-binding activity and likely modulates Nrd1 function. To reveal the relationship between the structure and function of Nrd1 and how phosphorylation affects structure, we used heteronuclear NMR techniques to investigate the three-dimensional structure of Nrd1. Here we report the (1)H, (13)C, and (15)N resonance assignments of RRM1-RRM2 (residues 108-284) comprising the first and second RRMs obtained using heteronuclear NMR techniques. Secondary structures derived from the chemical shifts are reported. These data should contribute to the understanding of the three-dimensional structure of the RRM1-RRM2 region of Nrd1 and the perturbation caused by phosphorylation.

  6. Rho1-GEFs Rgf1 and Rgf2 are involved in formation of cell wall and septum, while Rgf3 is involved in cytokinesis in fission yeast.

    PubMed

    Mutoh, Tadashi; Nakano, Kentaro; Mabuchi, Issei

    2005-12-01

    The Rho GTPase acts as a binary molecular switch by converting between a GDP-bound inactive and a GTP-bound active conformational state. The guanine nucleotide exchange factors (GEFs) are critical activators of Rho. Rho1 has been shown to regulate actin cytoskeleton and cell wall synthesis in the fission yeast Schizosaccharomyces pombe. Here we studied function of fission yeast RhoGEFs, Rgf1, Rgf2, and Rgf3. It was shown that these proteins have similar molecular structures, and function as GEFs for Rho1. Disruption of either rgf1 or rgf2 did not show a serious effect on the cell. On the other hand, disruption of rgf3 caused severe defects in contractile ring formation, F-actin patch localization, and septation during cytokinesis. Rgf1 and Rgf2 were localized to the cell ends during interphase and the septum. Rgf3 formed a ring at the division site, which was located outside the contractile ring and inside the septum where Rho1 was accumulated. In summary, Rgf1 and Rgf2 show functional redundancy, and roles of these RhoGEFs are likely to be different from that of Rgf3. Rho1 is likely to be activated by Rgf3 at the division site, and involved in contractile ring formation and/or maintenance and septation.

  7. SUMOylation regulates telomere length by targeting the shelterin subunit Tpz1Tpp1 to modulate shelterin–Stn1 interaction in fission yeast

    PubMed Central

    Miyagawa, Keisuke; Low, Ross S.; Santosa, Venny; Tsuji, Hiroki; Moser, Bettina A.; Fujisawa, Shiho; Harland, Jennifer L.; Raguimova, Olga N.; Go, Andrew; Ueno, Masaru; Matsuyama, Akihisa; Yoshida, Minoru; Nakamura, Toru M.; Tanaka, Katsunori

    2014-01-01

    Telomeres protect DNA ends of linear eukaryotic chromosomes from degradation and fusion, and ensure complete replication of the terminal DNA through recruitment of telomerase. The regulation of telomerase is a critical area of telomere research and includes cis regulation by the shelterin complex in mammals and fission yeast. We have identified a key component of this regulatory pathway as the SUMOylation [the covalent attachment of a small ubiquitin-like modifier (SUMO) to target proteins] of a shelterin subunit in fission yeast. SUMOylation is known to be involved in the negative regulation of telomere extension by telomerase; however, how SUMOylation limits the action of telomerase was unknown until now. We show that SUMOylation of the shelterin subunit TPP1 homolog in Schizosaccharomyces pombe (Tpz1) on lysine 242 is important for telomere length homeostasis. Furthermore, we establish that Tpz1 SUMOylation prevents telomerase accumulation at telomeres by promoting recruitment of Stn1-Ten1 to telomeres. Our findings provide major mechanistic insights into how the SUMOylation pathway collaborates with shelterin and Stn1-Ten1 complexes to regulate telomere length. PMID:24711392

  8. ADP-ribosylation factor arf6p may function as a molecular switch of new end take off in fission yeast

    SciTech Connect

    Fujita, Atsushi

    2008-02-01

    Small GTPases act as molecular switches in a wide variety of cellular processes. In fission yeast Schizosaccharomyces pombe, the directions of cell growth change from a monopolar manner to a bipolar manner, which is known as 'New End Take Off' (NETO). Here I report the identification of a gene, arf6{sup +}, encoding an ADP-ribosylation factor small GTPase, that may be essential for NETO. arf6{delta} cells completely fail to undergo NETO. arf6p localizes at both cell ends and presumptive septa in a cell-cycle dependent manner. And its polarized localization is not dependent on microtubules, actin cytoskeletons and some NETO factors (bud6p, for3p, tea1p, tea3p, and tea4p). Notably, overexpression of a fast GDP/GTP-cycling mutant of arf6p can advance the timing of NETO. These findings suggest that arf6p functions as a molecular switch for the activation of NETO in fission yeast.

  9. Integrity of the yeast mitochondrial genome, but not its distribution and inheritance, relies on mitochondrial fission and fusion.

    PubMed

    Osman, Christof; Noriega, Thomas R; Okreglak, Voytek; Fung, Jennifer C; Walter, Peter

    2015-03-03

    Mitochondrial DNA (mtDNA) is essential for mitochondrial and cellular function. In Saccharomyces cerevisiae, mtDNA is organized in nucleoprotein structures termed nucleoids, which are distributed throughout the mitochondrial network and are faithfully inherited during the cell cycle. How the cell distributes and inherits mtDNA is incompletely understood although an involvement of mitochondrial fission and fusion has been suggested. We developed a LacO-LacI system to noninvasively image mtDNA dynamics in living cells. Using this system, we found that nucleoids are nonrandomly spaced within the mitochondrial network and observed the spatiotemporal events involved in mtDNA inheritance. Surprisingly, cells deficient in mitochondrial fusion and fission distributed and inherited mtDNA normally, pointing to alternative pathways involved in these processes. We identified such a mechanism, where we observed fission-independent, but F-actin-dependent, tip generation that was linked to the positioning of mtDNA to the newly generated tip. Although mitochondrial fusion and fission were dispensable for mtDNA distribution and inheritance, we show through a combination of genetics and next-generation sequencing that their absence leads to an accumulation of mitochondrial genomes harboring deleterious structural variations that cluster at the origins of mtDNA replication, thus revealing crucial roles for mitochondrial fusion and fission in maintaining the integrity of the mitochondrial genome.

  10. A Positive Feedback Loop Links Opposing Functions of P-TEFb/Cdk9 and Histone H2B Ubiquitylation to Regulate Transcript Elongation in Fission Yeast

    PubMed Central

    Jacques, Pierre-Étienne; Pagé, Viviane; Nagy, Stephen; Racine, Ariane; St. Amour, Courtney V.; Zhang, Chao; Shokat, Kevan M.; Schwer, Beate; Robert, François; Fisher, Robert P.; Tanny, Jason C.

    2012-01-01

    Transcript elongation by RNA polymerase II (RNAPII) is accompanied by conserved patterns of histone modification. Whereas histone modifications have established roles in transcription initiation, their functions during elongation are not understood. Mono-ubiquitylation of histone H2B (H2Bub1) plays a key role in coordinating co-transcriptional histone modification by promoting site-specific methylation of histone H3. H2Bub1 also regulates gene expression through an unidentified, methylation-independent mechanism. Here we reveal bidirectional communication between H2Bub1 and Cdk9, the ortholog of metazoan positive transcription elongation factor b (P-TEFb), in the fission yeast Schizosaccharomyces pombe. Chemical and classical genetic analyses indicate that lowering Cdk9 activity or preventing phosphorylation of its substrate, the transcription processivity factor Spt5, reduces H2Bub1 in vivo. Conversely, mutations in the H2Bub1 pathway impair Cdk9 recruitment to chromatin and decrease Spt5 phosphorylation. Moreover, an Spt5 phosphorylation-site mutation, combined with deletion of the histone H3 Lys4 methyltransferase Set1, phenocopies morphologic and growth defects due to H2Bub1 loss, suggesting independent, partially redundant roles for Cdk9 and Set1 downstream of H2Bub1. Surprisingly, mutation of the histone H2B ubiquitin-acceptor residue relaxes the Cdk9 activity requirement in vivo, and cdk9 mutations suppress cell-morphology defects in H2Bub1-deficient strains. Genome-wide analyses by chromatin immunoprecipitation also demonstrate opposing effects of Cdk9 and H2Bub1 on distribution of transcribing RNAPII. Therefore, whereas mutual dependence of H2Bub1 and Spt5 phosphorylation indicates positive feedback, mutual suppression by cdk9 and H2Bub1-pathway mutations suggests antagonistic functions that must be kept in balance to regulate elongation. Loss of H2Bub1 disrupts that balance and leads to deranged gene expression and aberrant cell morphologies, revealing a

  11. The effect of coenzyme Q10 included by γ-cyclodextrin on the growth of fission yeast studied by microscope Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Nishida, Tatsuro; Kaino, Tomohiro; Ikarashi, Ryo; Nakata, Daisuke; Terao, Keiji; Ando, Masahiro; Hamaguchi, Hiro-o.; Kawamukai, Makoto; Yamamoto, Tatsuyuki

    2013-09-01

    The inclusion complex of coenzyme Q10 (CoQ10) by γ-cyclodextrin (γ-CD), CoQ10-CD complex, was recently developed. The addition of the CoQ10-CD complex recovered the growth of a fission yeast mutant strain, Δdps1, which otherwise cannot grow well due to the lack of coenzyme Q producing ability. However, the oxygen consumption rate of this strain was not restored by the addition of the CoQ10-CD complex. The addition of two other anti-oxidative reagents, glutathione and ascorbic acid, also recovered the growth of the Δdps1 strain as well. These results indicated that the recovery of the growth of Δdps1 was brought about by the anti-oxidative property of CoQ10. The intensity of Raman spectra of Δdps1 at 1602 cm-1, which is prominently observed for the wild type of the fission yeast, was compared between before and after addition of the CoQ10-CD complex. The signal was very weakly observed for Δdps1 and did not increase in intensity by the addition of the CoQ10-CD complex. These results suggested the recovery of the growth of Δdps1 was brought about not by the restoration of respiration function of Δdps1 but by the anti-oxidative property of CoQ10 to result in the decrease in the oxidative stress.

  12. Nuclear protein quality is regulated by the ubiquitin-proteasome system through the activity of Ubc4 and San1 in fission yeast.

    PubMed

    Matsuo, Yuzy; Kishimoto, Hayafumi; Tanae, Katsuhiro; Kitamura, Kenji; Katayama, Satoshi; Kawamukai, Makoto

    2011-04-15

    Eukaryotic cells monitor and maintain protein quality through a set of protein quality control (PQC) systems whose role is to minimize the harmful effects of the accumulation of aberrant proteins. Although these PQC systems have been extensively studied in the cytoplasm, nuclear PQC systems are not well understood. The present work shows the existence of a nuclear PQC system mediated by the ubiquitin-proteasome system in the fission yeast Schizosaccharomyces pombe. Asf1-30, a mutant form of the histone chaperone Asf1, was used as a model substrate for the study of the nuclear PQC. A temperature-sensitive Asf1-30 protein localized to the nucleus was selectively degraded by the ubiquitin-proteasome system. The Asf1-30 mutant protein was highly ubiquitinated at higher temperatures, and it remained stable in an mts2-1 mutant, which lacks proteasome activity. The E2 enzyme Ubc4 was identified among 11 candidate proteins as the ubiquitin-conjugating enzyme in this system, and San1 was selected among 100 candidates as the ubiquitin ligase (E3) targeting Asf1-30 for degradation. San1, but not other nuclear E3s, showed specificity for the mutant nuclear Asf1-30, but did not show activity against wild-type Asf1. These data clearly showed that the aberrant nuclear protein was degraded by a defined set of E1-E2-E3 enzymes through the ubiquitin-proteasome system. The data also show, for the first time, the presence of a nuclear PQC system in fission yeast.

  13. Remodeling of the Fission Yeast Cdc42 Cell-Polarity Module via the Sty1 p38 Stress-Activated Protein Kinase Pathway.

    PubMed

    Mutavchiev, Delyan R; Leda, Marcin; Sawin, Kenneth E

    2016-11-07

    The Rho family GTPase Cdc42 is a key regulator of eukaryotic cellular organization and cell polarity [1]. In the fission yeast Schizosaccharomyces pombe, active Cdc42 and associated effectors and regulators (the "Cdc42 polarity module") coordinate polarized growth at cell tips by controlling the actin cytoskeleton and exocytosis [2-4]. Localization of the Cdc42 polarity module to cell tips is thus critical for its function. Here we show that the fission yeast stress-activated protein kinase Sty1, a homolog of mammalian p38 MAP kinase, regulates localization of the Cdc42 polarity module. In wild-type cells, treatment with latrunculin A, a drug that leads to actin depolymerization, induces dispersal of the Cdc42 module from cell tips and cessation of polarized growth [5, 6]. We show that latrunculin A treatment also activates the Sty1 MAP kinase pathway and, strikingly, we find that loss of Sty1 MAP kinase signaling prevents latrunculin A-induced dispersal of the Cdc42 module, allowing polarized growth even in complete absence of the actin cytoskeleton. Regulation of the Cdc42 module by Sty1 is independent of Sty1's role in stress-induced gene expression. We also describe a system for activation of Sty1 kinase "on demand" in the absence of any external stress, and use this to show that Sty1 activation alone is sufficient to disperse the Cdc42 module from cell tips in otherwise unperturbed cells. During nitrogen-starvation-induced quiescence, inhibition of Sty1 converts non-growing, depolarized cells into growing, polarized cells. Our results place MAP kinase Sty1 as an important physiological regulator of the Cdc42 polarity module.

  14. Acetylated Histone H3K9 is associated with meiotic recombination hotspots, and plays a role in recombination redundantly with other factors including the H3K4 methylase Set1 in fission yeast.

    PubMed

    Yamada, Shintaro; Ohta, Kunihiro; Yamada, Takatomi

    2013-04-01

    Histone modifications are associated with meiotic recombination hotspots, discrete sites with augmented recombination frequency. For example, trimethylation of histone H3 lysine4 (H3K4me3) marks most hotspots in budding yeast and mouse. Modified histones are known to regulate meiotic recombination partly by promoting DNA double-strand break (DSB) formation at hotspots, but the role and precise landscape of involved modifications remain unclear. Here, we studied hotspot-associated modifications in fission yeast and found general features: acetylation of H3 lysine9 (H3K9ac) is elevated, and H3K4me3 is not significantly enriched. Mutating H3K9 to non-acetylatable alanine mildly reduced levels of the DSB-inducing protein Rec12 (the fission yeast homologue of Spo11) and DSB at hotspots, indicating that H3K9ac may be involved in DSB formation by enhancing the interaction between Rec12 and hotspots. In addition, we found that the lack of the H3K4 methyltransferase Set1 generally increased Rec12 binding to chromatin but partially reduced DSB formation at some loci, suggesting that Set1 is also involved in DSB formation. These results suggest that meiotic DSB formation is redundantly regulated by multiple chromatin-related factors including H3K9ac and Set1 in fission yeast.

  15. Acetylated Histone H3K9 is associated with meiotic recombination hotspots, and plays a role in recombination redundantly with other factors including the H3K4 methylase Set1 in fission yeast

    PubMed Central

    Yamada, Shintaro; Ohta, Kunihiro; Yamada, Takatomi

    2013-01-01

    Histone modifications are associated with meiotic recombination hotspots, discrete sites with augmented recombination frequency. For example, trimethylation of histone H3 lysine4 (H3K4me3) marks most hotspots in budding yeast and mouse. Modified histones are known to regulate meiotic recombination partly by promoting DNA double-strand break (DSB) formation at hotspots, but the role and precise landscape of involved modifications remain unclear. Here, we studied hotspot-associated modifications in fission yeast and found general features: acetylation of H3 lysine9 (H3K9ac) is elevated, and H3K4me3 is not significantly enriched. Mutating H3K9 to non-acetylatable alanine mildly reduced levels of the DSB-inducing protein Rec12 (the fission yeast homologue of Spo11) and DSB at hotspots, indicating that H3K9ac may be involved in DSB formation by enhancing the interaction between Rec12 and hotspots. In addition, we found that the lack of the H3K4 methyltransferase Set1 generally increased Rec12 binding to chromatin but partially reduced DSB formation at some loci, suggesting that Set1 is also involved in DSB formation. These results suggest that meiotic DSB formation is redundantly regulated by multiple chromatin-related factors including H3K9ac and Set1 in fission yeast. PMID:23382177

  16. A new phosphate-starvation response in fission yeast requires the endocytic function of myosin I.

    PubMed

    Petrini, Edoardo; Baillet, Victoire; Cridge, Jake; Hogan, Cassandra J; Guillaume, Cindy; Ke, Huiling; Brandetti, Elisa; Walker, Simon; Koohy, Hashem; Spivakov, Mikhail; Varga-Weisz, Patrick

    2015-10-15

    Endocytosis is essential for uptake of many substances into the cell, but how it links to nutritional signalling is poorly understood. Here, we show a new role for endocytosis in regulating the response to low phosphate in Schizosaccharomyces pombe. Loss of function of myosin I (Myo1), Sla2/End4 or Arp2, proteins involved in the early steps of endocytosis, led to increased proliferation in low-phosphate medium compared to controls. We show that once cells are deprived of phosphate they undergo a quiescence response that is dependent on the endocytic function of Myo1. Transcriptomic analysis revealed a wide perturbation of gene expression with induction of stress-regulated genes upon phosphate starvation in wild-type but not Δmyo1 cells. Thus, endocytosis plays a pivotal role in mediating the cellular response to nutrients, bridging the external environment and internal molecular functions of the cell.

  17. Peroxisomal fission is induced during appressorium formation and is required for full virulence of the rice blast fungus.

    PubMed

    Chen, Xiao-Lin; Shen, Mi; Yang, Jun; Xing, Yunfei; Chen, Deng; Li, Zhigang; Zhao, Wensheng; Zhang, Yan

    2017-02-01

    Peroxisomes are involved in various metabolic processes and are important for virulence in different pathogenic fungi. How peroxisomes rapidly emerge in the appressorium during fungal infection is poorly understood. Here, we describe a gene, PEF1, which can regulate peroxisome formation in the appressorium by controlling peroxisomal fission, and is required for plant infection in the rice blast fungus Magnaporthe oryzae. Targeted deletion of PEF1 resulted in a reduction in virulence and a delay in penetration and invasive growth in host cells. PEF1 was particularly expressed during appressorial development, and its encoding protein was co-localized with peroxisomes during appressorial development. Compared with the massive vesicle-shaped peroxisomes formed in the wild-type appressorium, the Δpef1 mutant could only form stringy linked immature peroxisomes, suggesting that PEF1 was involved in peroxisomal fission during appressorium formation. We also found that the Δpef1 mutant could not utilize fatty acids efficiently, which can improve significantly the expression level of PEF1 and induce peroxisomal fission. As expected, the Δpef1 mutant showed reduced intracellular production of reactive oxygen species (ROS) during appressorium formation and induced ROS accumulation in host cells during infection. Taken together, PEF1-mediated peroxisomal fission is important for fungal infection by controlling the number of peroxisomes in the appressorium.

  18. Geometry of membrane fission.

    PubMed

    Frolov, Vadim A; Escalada, Artur; Akimov, Sergey A; Shnyrova, Anna V

    2015-01-01

    Cellular membranes define the functional geometry of intracellular space. Formation of new membrane compartments and maintenance of complex organelles require division and disconnection of cellular membranes, a process termed membrane fission. Peripheral membrane proteins generally control membrane remodeling during fission. Local membrane stresses, reflecting molecular geometry of membrane-interacting parts of these proteins, sum up to produce the key membrane geometries of fission: the saddle-shaped neck and hour-glass hemifission intermediate. Here, we review the fundamental principles behind the translation of molecular geometry into membrane shape and topology during fission. We emphasize the central role the membrane insertion of specialized protein domains plays in orchestrating fission in vitro and in cells. We further compare individual to synergistic action of the membrane insertion during fission mediated by individual protein species, proteins complexes or membrane domains. Finally, we describe how local geometry of fission intermediates defines the functional design of the protein complexes catalyzing fission of cellular membranes.

  19. A dynamin-actin interaction is required for vesicle scission during endocytosis in yeast.

    PubMed

    Palmer, Sarah E; Smaczynska-de Rooij, Iwona I; Marklew, Christopher J; Allwood, Ellen G; Mishra, Ritu; Johnson, Simeon; Goldberg, Martin W; Ayscough, Kathryn R

    2015-03-30

    Actin is critical for endocytosis in yeast cells, and also in mammalian cells under tension. However, questions remain as to how force generated through actin polymerization is transmitted to the plasma membrane to drive invagination and scission. Here, we reveal that the yeast dynamin Vps1 binds and bundles filamentous actin. Mutational analysis of Vps1 in a helix of the stalk domain identifies a mutant RR457-458EE that binds actin more weakly. In vivo analysis of Vps1 function demonstrates that the mutation disrupts endocytosis but not other functions of Vps1 such as vacuolar trafficking or peroxisome fission. The mutant Vps1 is stably expressed in cells and co-localizes with the endocytic reporters Abp1 and the amphiphysin Rvs167. Detailed analysis of individual endocytic patch behavior indicates that the mutation causes aberrant movements in later stages of endocytosis, consistent with a scission defect. Ultrastructural analysis of yeast cells using electron microscopy reveals a significant increase in invagination depth, further supporting a role for the Vps1-actin interaction during scission. In vitro analysis of the mutant protein demonstrates that--like wild-type Vps1--it is able to form oligomeric rings, but, critically, it has lost its ability to bundle actin filaments into higher-order structures. A model is proposed in which actin filaments bind Vps1 during invagination, and this interaction is important to transduce the force of actin polymerization to the membrane to drive successful scission.

  20. Unique regulation of glyoxalase I activity during osmotic stress response in the fission yeast Schizosaccharomyces pombe: neither the mRNA nor the protein level of glyoxalase I increase under conditions that enhance its activity.

    PubMed

    Takatsume, Yoshifumi; Izawa, Shingo; Inoue, Yoshiharu

    2005-03-01

    Glyoxalase I is a ubiquitous enzyme that catalyzes the conversion of methylglyoxal, a toxic 2-oxoaldehyde derived from glycolysis, to S-D-lactoylglutathione. The activity of glyoxalase I in the fission yeast Schizosaccharomyces pombe was increased by osmotic stress induced by sorbitol. However, neither the mRNA levels of its structural gene nor its protein levels increased under the same conditions. Cycloheximide blocked the induction of glyoxalase I activity in cells exposed to osmotic stress. In addition, glyoxalase I activity was increased in stress-activated protein kinase-deficient mutants (wis1 and spc1). We present evidence for the post-translational regulation of glyoxalase I by osmotic stress in the fission yeast.

  1. N-Termini of Fungal CSL Transcription Factors Are Disordered, Enriched in Regulatory Motifs and Inhibit DNA Binding in Fission Yeast

    PubMed Central

    Převorovský, Martin; Atkinson, Sophie R.; Ptáčková, Martina; McLean, Janel R.; Gould, Kathleen; Folk, Petr; Půta, František; Bähler, Jürg

    2011-01-01

    Background CSL (CBF1/RBP-Jκ/Suppressor of Hairless/LAG-1) transcription factors are the effector components of the Notch receptor signalling pathway, which is critical for metazoan development. The metazoan CSL proteins (class M) can also function in a Notch-independent manner. Recently, two novel classes of CSL proteins, designated F1 and F2, have been identified in fungi. The role of the fungal CSL proteins is unclear, because the Notch pathway is not present in fungi. In fission yeast, the Cbf11 and Cbf12 CSL paralogs play antagonistic roles in cell adhesion and the coordination of cell and nuclear division. Unusually long N-terminal extensions are typical for fungal and invertebrate CSL family members. In this study, we investigate the functional significance of these extended N-termini of CSL proteins. Methodology/Principal Findings We identify 15 novel CSL family members from 7 fungal species and conduct bioinformatic analyses of a combined dataset containing 34 fungal and 11 metazoan CSL protein sequences. We show that the long, non-conserved N-terminal tails of fungal CSL proteins are likely disordered and enriched in phosphorylation sites and PEST motifs. In a case study of Cbf12 (class F2), we provide experimental evidence that the protein is proteolytically processed and that the N-terminus inhibits the Cbf12-dependent DNA binding activity in an electrophoretic mobility shift assay. Conclusions/Significance This study provides insight into the characteristics of the long N-terminal tails of fungal CSL proteins that may be crucial for controlling DNA-binding and CSL function. We propose that the regulation of DNA binding by Cbf12 via its N-terminal region represents an important means by which fission yeast strikes a balance between the class F1 and class F2 paralog activities. This mode of regulation might be shared with other CSL-positive fungi, some of which are relevant to human disease and biotechnology. PMID:21858190

  2. Mitochondrial fission is required for cardiomyocyte hypertrophy mediated by a Ca2+-calcineurin signaling pathway

    PubMed Central

    Pennanen, Christian; Parra, Valentina; López-Crisosto, Camila; Morales, Pablo E.; del Campo, Andrea; Gutierrez, Tomás; Rivera-Mejías, Pablo; Kuzmicic, Jovan; Chiong, Mario; Zorzano, Antonio; Rothermel, Beverly A.; Lavandero, Sergio

    2014-01-01

    ABSTRACT Cardiomyocyte hypertrophy has been associated with diminished mitochondrial metabolism. Mitochondria are crucial organelles for the production of ATP, and their morphology and function are regulated by the dynamic processes of fusion and fission. The relationship between mitochondrial dynamics and cardiomyocyte hypertrophy is still poorly understood. Here, we show that treatment of cultured neonatal rat cardiomyocytes with the hypertrophic agonist norepinephrine promotes mitochondrial fission (characterized by a decrease in mitochondrial mean volume and an increase in the relative number of mitochondria per cell) and a decrease in mitochondrial function. We demonstrate that norepinephrine acts through α1-adrenergic receptors to increase cytoplasmic Ca2+, activating calcineurin and promoting migration of the fission protein Drp1 (encoded by Dnml1) to mitochondria. Dominant-negative Drp1 (K38A) not only prevented mitochondrial fission, it also blocked hypertrophic growth of cardiomyocytes in response to norepinephrine. Remarkably, an antisense adenovirus against the fusion protein Mfn2 (AsMfn2) was sufficient to increase mitochondrial fission and stimulate a hypertrophic response without agonist treatment. Collectively, these results demonstrate the importance of mitochondrial dynamics in the development of cardiomyocyte hypertrophy and metabolic remodeling. PMID:24777478

  3. Mitochondrial fission is required for cardiomyocyte hypertrophy mediated by a Ca2+-calcineurin signaling pathway.

    PubMed

    Pennanen, Christian; Parra, Valentina; López-Crisosto, Camila; Morales, Pablo E; Del Campo, Andrea; Gutierrez, Tomás; Rivera-Mejías, Pablo; Kuzmicic, Jovan; Chiong, Mario; Zorzano, Antonio; Rothermel, Beverly A; Lavandero, Sergio

    2014-06-15

    Cardiomyocyte hypertrophy has been associated with diminished mitochondrial metabolism. Mitochondria are crucial organelles for the production of ATP, and their morphology and function are regulated by the dynamic processes of fusion and fission. The relationship between mitochondrial dynamics and cardiomyocyte hypertrophy is still poorly understood. Here, we show that treatment of cultured neonatal rat cardiomyocytes with the hypertrophic agonist norepinephrine promotes mitochondrial fission (characterized by a decrease in mitochondrial mean volume and an increase in the relative number of mitochondria per cell) and a decrease in mitochondrial function. We demonstrate that norepinephrine acts through α1-adrenergic receptors to increase cytoplasmic Ca(2+), activating calcineurin and promoting migration of the fission protein Drp1 (encoded by Dnml1) to mitochondria. Dominant-negative Drp1 (K38A) not only prevented mitochondrial fission, it also blocked hypertrophic growth of cardiomyocytes in response to norepinephrine. Remarkably, an antisense adenovirus against the fusion protein Mfn2 (AsMfn2) was sufficient to increase mitochondrial fission and stimulate a hypertrophic response without agonist treatment. Collectively, these results demonstrate the importance of mitochondrial dynamics in the development of cardiomyocyte hypertrophy and metabolic remodeling.

  4. 40 CFR 180.1246 - Yeast Extract Hydrolysate from Saccharomyces cerevisiae: exemption from the requirement of a...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Yeast Extract Hydrolysate from... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1246 Yeast Extract Hydrolysate from... exemption from the requirement of a tolerance for residues of the biochemical pesticide Yeast...

  5. 40 CFR 180.1246 - Yeast Extract Hydrolysate from Saccharomyces cerevisiae: exemption from the requirement of a...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Yeast Extract Hydrolysate from... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1246 Yeast Extract Hydrolysate from... exemption from the requirement of a tolerance for residues of the biochemical pesticide Yeast...

  6. 40 CFR 180.1246 - Yeast Extract Hydrolysate from Saccharomyces cerevisiae: exemption from the requirement of a...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Yeast Extract Hydrolysate from... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1246 Yeast Extract Hydrolysate from... exemption from the requirement of a tolerance for residues of the biochemical pesticide Yeast...

  7. 40 CFR 180.1246 - Yeast Extract Hydrolysate from Saccharomyces cerevisiae: exemption from the requirement of a...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Yeast Extract Hydrolysate from... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1246 Yeast Extract Hydrolysate from... exemption from the requirement of a tolerance for residues of the biochemical pesticide Yeast...

  8. 40 CFR 180.1246 - Yeast Extract Hydrolysate from Saccharomyces cerevisiae: exemption from the requirement of a...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Yeast Extract Hydrolysate from... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1246 Yeast Extract Hydrolysate from... exemption from the requirement of a tolerance for residues of the biochemical pesticide Yeast...

  9. Identification of a 14-3-3 protein from Lentinus edodes that interacts with CAP (adenylyl cyclase-associated protein), and conservation of this interaction in fission yeast.

    PubMed

    Zhou, G L; Yamamoto, T; Ozoe, F; Yano, D; Tanaka, K; Matsuda, H; Kawamukai, M

    2000-01-01

    We previously identified a gene encoding a CAP (adenylyl cyclase-associated protein) homologue from the edible Basidiomycete Lentinus edodes. To further discover the cellular functions of the CAP protein, we searched for CAP-interacting proteins using a yeast two-hybrid system. Among the candidates thus obtained, many clones encoded the C-terminal half of an L. edodes 14-3-3 homologue (designated cip3). Southern blot analysis indicated that L. edodes contains only one 14-3-3 gene. Overexpression of the L. edodes 14-3-3 protein in the fission yeast Schizosaccharomyces pombe rad24 null cells complemented the loss of endogenous 14-3-3 protein functions in cell morphology and UV sensitivity, suggesting functional conservation of 14-3-3 proteins between L. edodes and S. pombe. The interaction between L. edodes CAP and 14-3-3 protein was restricted to the N-terminal domain of CAP and was confirmed by in vitro co-precipitation. Results from both the two-hybrid system and in vivo co-precipitation experiments showed the conservation of this interaction in S. pombe. The observation that a 14-3-3 protein interacts with the N-terminal portion of CAP but not with full-length CAP in L. edodes and S. pombe suggests that the C-terminal region of CAP may have a negative effect on the interaction between CAP and 14-3-3 proteins, and 14-3-3 proteins may play a role in regulation of CAP function.

  10. Coordinated regulation by two VPS9 domain-containing guanine nucleotide exchange factors in small GTPase Rab5 signaling pathways in fission yeast

    SciTech Connect

    Tsukamoto, Yuta; Kagiwada, Satoshi; Shimazu, Sayuri; Takegawa, Kaoru; Noguchi, Tetsuko; Miyamoto, Masaaki

    2015-03-20

    The small GTPase Rab5 is reported to regulate various cellular functions, such as vesicular transport and endocytosis. VPS9 domain-containing proteins are thought to activate Rab5(s) by their guanine-nucleotide exchange activities. Numerous VPS9 proteins have been identified and are structurally conserved from yeast to mammalian cells. However, the functional relationships among VPS9 proteins in cells remain unclear. Only one Rab5 and two VPS9 proteins were identified in the Schizosaccharomyces pombe genome. Here, we examined the cellular function of two VPS9 proteins and the relationship between these proteins in cellular functions. Vps901-GFP and Vps902-GFP exhibited dotted signals in vegetative and differentiated cells. vps901 deletion mutant (Δvps901) cells exhibited a phenotype deficient in the mating process and responses to high concentrations of ions, such as calcium and metals, and Δvps901Δvps902 double mutant cells exhibited round cell shapes similar to ypt5-909 (Rab5 mutant allele) cells. Deletion of both vps901 and vps902 genes completely abolished the mating process and responses to various stresses. A lack of vacuole formation and aberrant inner cell membrane structures were also observed in Δvps901Δvps902 cells by electron microscopy. These data strongly suggest that Vps901 and Vps902 are cooperatively involved in the regulation of cellular functions, such as cell morphology, sexual development, response to ion stresses, and vacuole formation, via Rab5 signaling pathways in fission yeast cells. - Highlights: • Roles of Rab5 activator VPS9 proteins in cellular functions. • Cooperation between VPS9 proteins in Rab5 signaling pathway. • Roles of each VPS9 protein in Rab5 signaling pathway are discussed.

  11. Genetic interactions and functional analyses of the fission yeast gsk3 and amk2 single and double mutants defective in TORC1-dependent processes

    PubMed Central

    Rallis, Charalampos; Townsend, StJohn; Bähler, Jürg

    2017-01-01

    The Target of Rapamycin (TOR) signalling network plays important roles in aging and disease. The AMP-activated protein kinase (AMPK) and the Gsk3 kinase inhibit TOR during stress. We performed genetic interaction screens using synthetic genetic arrays (SGA) with gsk3 and amk2 as query mutants, the latter encoding the regulatory subunit of AMPK. We identified 69 negative and 82 positive common genetic interactors, with functions related to cellular growth and stress. The 120 gsk3-specific negative interactors included genes functioning in translation and ribosomes. The 215 amk2-specific negative interactors included genes functioning in chromatin silencing and DNA damage repair. Both amk2- and gsk3-specific interactors were enriched in phenotype categories related to abnormal cell size and shape. We also performed SGA screen with the amk2 gsk3 double mutant as a query. Mutants sensitive to 5-fluorouracil, an anticancer drug are under-represented within the 305 positive interactors specific for the amk2 gsk3 query. The triple-mutant SGA screen showed higher number of negative interactions than the double mutant SGA screens and uncovered additional genetic network information. These results reveal common and specialized roles of AMPK and Gsk3 in mediating TOR-dependent processes, indicating that AMPK and Gsk3 act in parallel to inhibit TOR function in fission yeast. PMID:28281664

  12. The dual role of fission yeast Tbc1/cofactor C orchestrates microtubule homeostasis in tubulin folding and acts as a GAP for GTPase Alp41/Arl2

    PubMed Central

    Mori, Risa; Toda, Takashi

    2013-01-01

    Supplying the appropriate amount of correctly folded α/β-tubulin heterodimers is critical for microtubule dynamics. Formation of assembly-competent heterodimers is remarkably elaborate at the molecular level, in which the α- and β-tubulins are separately processed in a chaperone-dependent manner. This sequential step is performed by the tubulin-folding cofactor pathway, comprising a specific set of regulatory proteins: cofactors A–E. We identified the fission yeast cofactor: the orthologue of cofactor C, Tbc1. In addition to its roles in tubulin folding, Tbc1 acts as a GAP in regulating Alp41/Arl2, a highly conserved small GTPase. Of interest, the expression of GDP- or GTP-bound Alp41 showed the identical microtubule loss phenotype, suggesting that continuous cycling between these forms is important for its functions. In addition, we found that Alp41 interacts with Alp1D, the orthologue of cofactor D, specifically when in the GDP-bound form. Intriguingly, Alp1D colocalizes with microtubules when in excess, eventually leading to depolymerization, which is sequestered by co-overproducing GDP-bound Alp41. We present a model of the final stages of the tubulin cofactor pathway that includes a dual role for both Tbc1 and Alp1D in opposing regulation of the microtubule. PMID:23576550

  13. Meiotic nuclear movements in fission yeast are regulated by the transcription factor Mei4 downstream of a Cds1-dependent replication checkpoint pathway.

    PubMed

    Ruan, Kun; Yamamoto, Takaharu G; Asakawa, Haruhiko; Chikashige, Yuji; Masukata, Hisao; Haraguchi, Tokuko; Hiraoka, Yasushi

    2015-03-01

    In meiosis, the fission yeast nucleus displays an elongated morphology, moving back and forth within the cell; these nuclear movements continue for approximately 2 h before meiotic nuclear divisions. Meiotic DNA replication occurs in an early phase of the nuclear movements and is followed by meiotic prophase. Here we report that in mutants deficient in meiotic DNA replication, the duration of nuclear movements is strikingly prolonged to four to 5 h. We found that this prolongation was caused by the Cds1-dependent replication checkpoint, which represses expression of the mei4(+) gene encoding a meiosis-specific transcription factor. In the absence of Mei4, nuclear movements persisted for more than 8 h. In contrast, overproduction of Mei4 accelerated termination of nuclear movements to approximately 30 min. These results show that Mei4 is involved in the termination of nuclear movements and that Mei4-mediated regulatory pathways link a DNA replication checkpoint to the termination of nuclear movements.

  14. Red5 and three nuclear pore components are essential for efficient suppression of specific mRNAs during vegetative growth of fission yeast.

    PubMed

    Sugiyama, Tomoyasu; Wanatabe, Nobuyoshi; Kitahata, Eri; Tani, Tokio; Sugioka-Sugiyama, Rie

    2013-07-01

    Zinc-finger domains are found in many nucleic acid-binding proteins in both prokaryotes and eukaryotes. Proteins carrying zinc-finger domains have important roles in various nuclear transactions, including transcription, mRNA processing and mRNA export; however, for many individual zinc-finger proteins in eukaryotes, the exact function of the protein is not fully understood. Here, we report that Red5 is involved in efficient suppression of specific mRNAs during vegetative growth of Schizosaccharomyces pombe. Red5, which contains five C3H1-type zinc-finger domains, localizes to the nucleus where it forms discrete dots. A red5 point mutation, red5-2, results in the upregulation of specific meiotic mRNAs in vegetative mutant red5-2 cells; northern blot data indicated that these meiotic mRNAs in red5-2 cells have elongated poly(A) tails. RNA-fluorescence in situ hybridization results demonstrate that poly(A)(+) RNA species accumulate in the nucleolar regions of red5-deficient cells. Moreover, Red5 genetically interacts with several mRNA export factors. Unexpectedly, three components of the nuclear pore complex also suppress a specific set of meiotic mRNAs. These results indicate that Red5 function is important to meiotic mRNA degradation; they also suggest possible connections among selective mRNA decay, mRNA export and the nuclear pore complex in vegetative fission yeast.

  15. Nuclear shape, growth and integrity in the closed mitosis of fission yeast depend on the Ran-GTPase system, the spindle pole body and the endoplasmic reticulum.

    PubMed

    Gonzalez, Yanira; Meerbrey, Kristen; Chong, Jennifer; Torii, Yoshihiro; Padte, Neal N; Sazer, Shelley

    2009-07-15

    The double lipid bilayer of the nuclear envelope (NE) remains intact during closed mitosis. In the fission yeast Schizosaccharomyces pombe, the intranuclear mitotic spindle has envelope-embedded spindle pole bodies (SPB) at its ends. As the spindle elongates and the nucleus divides symmetrically, nuclear volume remains constant but nuclear area rapidly increases by 26%. When Ran-GTPase function is compromised in S. pombe, nuclear division is strikingly asymmetrical and the newly synthesized SPB is preferentially associated with the smaller nucleus, indicative of a Ran-dependent SPB defect that interferes with symmetrical nuclear division. A second defect, which specifically influences the NE, results in breakage of the NE upon spindle elongation. This defect, but not asymmetric nuclear division, is partially rescued by slowing spindle elongation, stimulating endoplasmic reticulum (ER) proliferation or changing conformation of the ER membrane. We propose that redistribution of lipid within the ER-NE network is crucial for mitosis-specific NE changes in both open and closed mitosis.

  16. A novel function of the mitochondrial transcription factor Mtf1 in fission yeast; Mtf1 regulates the nuclear transcription of srk1.

    PubMed

    Sun, Wenxia; Wang, Zhe; Jiang, Hengyi; Zhang, Jing; Bähler, Jürg; Chen, Dongrong; Murchie, Alastair I H

    2011-04-01

    In eukaryotic cells, Mtf1 and its homologues function as mitochondrial transcription factors for the mitochondrial RNA polymerase in the mitochondrion. Here we show that in fission yeast Mtf1 exerts a non-mitochondrial function as a nuclear factor that regulates transcription of srk1, which is a kinase involved in the stress response and cell cycle progression. We first found Mtf1 expression in the nucleus. A ChIP-chip approach identified srk1 as a putative Mtf1 target gene. Over expression of Mtf1 induced transcription of the srk1 gene and Mtf1 deletion led to a reduction in transcription of the srk1 gene in vivo. Mtf1 overexpression causes cell elongation in a srk1 dependent manner. Mtf1 overexpression can cause cytoplasmic accumulation of Cdc25. We also provide biochemical evidence that Mtf1 binds to the upstream sequence of srk1. This is the first evidence that a mitochondrial transcription factor Mtf1 can regulate a nuclear gene. Mtf1 may also have a role in cell cycle progression.

  17. Targeting of SUMO substrates to a Cdc48–Ufd1–Npl4 segregase and STUbL pathway in fission yeast

    PubMed Central

    Køhler, Julie Bonne; Tammsalu, Triin; Jørgensen, Maria Mønster; Steen, Nana; Hay, Ronald Thomas; Thon, Geneviève

    2015-01-01

    In eukaryotes, the conjugation of proteins to the small ubiquitin-like modifier (SUMO) regulates numerous cellular functions. A proportion of SUMO conjugates are targeted for degradation by SUMO-targeted ubiquitin ligases (STUbLs) and it has been proposed that the ubiquitin-selective chaperone Cdc48/p97-Ufd1-Npl4 facilitates this process. However, the extent to which the two pathways overlap, and how substrates are selected, remains unknown. Here we address these questions in fission yeast through proteome-wide analyses of SUMO modification sites. We identify over a thousand sumoylated lysines in a total of 468 proteins and quantify changes occurring in the SUMO modification status when the STUbL or Ufd1 pathways are compromised by mutations. The data suggest the coordinated processing of several classes of SUMO conjugates, many dynamically associated with centromeres or telomeres. They provide new insights into subnuclear organization and chromosome biology, and, altogether, constitute an extensive resource for the molecular characterization of SUMO function and dynamics. PMID:26537787

  18. Mutation of a conserved residue enhances the sensitivity of analogue-sensitised kinases to generate a novel approach to the study of mitosis in fission yeast.

    PubMed

    Tay, Ye-Dee; Patel, Avinash; Kaemena, Daniel F; Hagan, Iain M

    2013-11-01

    The chemical genetic strategy in which mutational enlargement of the ATP-binding site sensitises of a protein kinase to bulky ATP analogues has proved to be an elegant tool for the generation of conditional analogue-sensitive kinase alleles in a variety of model organisms. Here, we describe a novel substitution mutation in the kinase domain that can enhance the sensitivity of analogue-sensitive kinases. Substitution of a methionine residue to phenylalanine in the +2 position after HRDLKxxN motif of the subdomain VIb within the kinase domain markedly increased the sensitivities of the analogue-sensitive kinases to ATP analogues in three out of five S. pombe kinases (i.e. Plo1, Orb5 and Wee1) that harbor this conserved methionine residue. Kinome alignment established that a methionine residue is found at this site in 5-9% of kinases in key model organisms, suggesting that a broader application of this structural modification may enhance ATP analogue sensitivity of analogue-sensitive kinases in future studies. We also show that the enhanced sensitivity of the wee1.as8 allele in a cdc25.22 background can be exploited to generate highly synchronised mitotic and S phase progression at 36°C. Proof-of-principle experiments show how this novel synchronisation technique will prove of great use in the interrogation of the mitotic or S-phase functions through temperature sensitivity mutation of molecules of interest in fission yeast.

  19. A metabolic strategy to enhance long-term survival by Phx1 through stationary phase-specific pyruvate decarboxylases in fission yeast.

    PubMed

    Kim, Ji-Yoon; Kim, Eun-Jung; Lopez-Maury, Luis; Bähler, Jürg; Roe, Jung-Hye

    2014-07-01

    In the fission yeast Schizosaccharomyces pombe, the stationary phase-specific transcription factor Phx1 contributes to long-term survival, stress tolerance, and meiosis. We identified Phx1-dependent genes through transcriptome analysis, and further analyzed those related with carbohydrate and thiamine metabolism, whose expression decreased in ∆phx1. Consistent with mRNA changes, the level of thiamine pyrophosphate (TPP) and TPP-utilizing pyruvate decarboxylase activity that converts pyruvate to acetaldehyde were also reduced in the mutant. Therefore, Phx1 appears to shift metabolic flux by diverting pyruvate from the TCA cycle and respiration to ethanol fermentation. Among the four predicted genes for pyruvate decarboxylase, only the Phx1-dependent genes (pdc201+ and pdc202+) contributed to long-term survival as judged by mutation and overexpression studies. These findings indicate that the Phx1-mediated long-term survival is achieved primarily through increasing the synthesis and activity of pyruvate decarboxylase. Consistent with this hypothesis, we observed that Phx1 curtailed respiration when cells entered stationary phase. Introduction of Δphx1 mutation compromised the long-lived phenotypes of Δpka1 and Δsck2 mutants that are devoid of pro-aging kinases of nutrient-signalling pathways, and of the Δpyp1 mutant with constitutively activated stress-responsive kinase Sty1. Therefore, achievement of long-term viability through both nutrient limitation and anti-stress response appears to be dependent on Phx1.

  20. The F-actin bundler α-actinin Ain1 is tailored for ring assembly and constriction during cytokinesis in fission yeast

    PubMed Central

    Li, Yujie; Christensen, Jenna R.; Homa, Kaitlin E.; Hocky, Glen M.; Fok, Alice; Sees, Jennifer A.; Voth, Gregory A.; Kovar, David R.

    2016-01-01

    The actomyosin contractile ring is a network of cross-linked actin filaments that facilitates cytokinesis in dividing cells. Contractile ring formation has been well characterized in Schizosaccharomyces pombe, in which the cross-linking protein α-actinin SpAin1 bundles the actin filament network. However, the specific biochemical properties of SpAin1 and whether they are tailored for cytokinesis are not known. Therefore we purified SpAin1 and quantified its ability to dynamically bind and bundle actin filaments in vitro using a combination of bulk sedimentation assays and direct visualization by two-color total internal reflection fluorescence microscopy. We found that, while SpAin1 bundles actin filaments of mixed polarity like other α-actinins, SpAin1 has lower bundling activity and is more dynamic than human α-actinin HsACTN4. To determine whether dynamic bundling is important for cytokinesis in fission yeast, we created the less dynamic bundling mutant SpAin1(R216E). We found that dynamic bundling is critical for cytokinesis, as cells expressing SpAin1(R216E) display disorganized ring material and delays in both ring formation and constriction. Furthermore, computer simulations of initial actin filament elongation and alignment revealed that an intermediate level of cross-linking best facilitates filament alignment. Together our results demonstrate that dynamic bundling by SpAin1 is important for proper contractile ring formation and constriction. PMID:27075176

  1. The exocytic Rabs Ypt3 and Ypt2 regulate the early step of biogenesis of the spore plasma membrane in fission yeast

    PubMed Central

    Imada, Kazuki; Nakamura, Taro

    2016-01-01

    During fission yeast sporulation, a membrane compartment called the forespore membrane (FSM) is newly formed on the spindle pole body (SPB). The FSM expands by membrane vesicle fusion, encapsulates the daughter nucleus resulting from meiosis, and eventually matures into the plasma membrane of the spore. Although many of the genes involved in FSM formation have been identified, its molecular mechanism is not fully understood. Here a genetic screen for sporulation-deficient mutations identified Ypt3, a Rab-family small GTPase known to function in the exocytic pathway. The ypt3-ki8 mutant showed defects in both the initiation of FSM biogenesis and FSM expansion. We also show that a mutation in Ypt2, another Rab protein that may function in the same pathway as Ypt3, compromises the initiation of FSM formation. As meiosis proceeds, both GFP-Ypt3 and GFP-Ypt2 are observed at the SPB and then relocalize to the FSM. Their localizations at the SPB precede FSM formation and depend on the meiotic SPB component Spo13, a putative GDP/GTP exchange factor for Ypt2. Given that Spo13 is essential for initiating FSM formation, these results suggest that two exocytic Rabs, Ypt3 and Ypt2, regulate the initiation of FSM formation on the SPB in concert with Spo13. PMID:27630265

  2. Accumulation of Trehalose by Overexpression of tps1, Coding for Trehalose-6-Phosphate Synthase, Causes Increased Resistance to Multiple Stresses in the Fission Yeast Schizosaccharomyces pombe

    PubMed Central

    Soto, Teresa; Fernández, Juana; Vicente-Soler, Jero; Cansado, Jose; Gacto, Mariano

    1999-01-01

    Recent studies have shown that heat shock proteins and trehalose synthesis are important factors in the thermotolerance of the fission yeast Schizosaccharomyces pombe. We examined the effects of trehalose-6-phosphate (trehalose-6P) synthase overexpression on resistance to several stresses in cells of S. pombe transformed with a plasmid bearing the tps1 gene, which codes for trehalose-6P synthase, under the control of the strong thiamine-repressible promoter. Upon induction of trehalose-6P synthase, the elevated levels of intracellular trehalose correlated not only with increased tolerance to heat shock but also with resistance to freezing and thawing, dehydration, osmostress, and toxic levels of ethanol, indicating that trehalose may be the stress metabolite underlying the overlap in induced tolerance to these stresses. Among the isogenic strains transformed with this construct, one in which the gene coding for the trehalose-hydrolyzing enzyme, neutral trehalase, was disrupted accumulated trehalose to a greater extent and was more resistant to the above stresses. Increased trehalose concentration is thus a major determinant of the general stress protection response in S. pombe. PMID:10223994

  3. Set3 contributes to heterochromatin integrity by promoting transcription of subunits of Clr4-Rik1-Cul4 histone methyltransferase complex in fission yeast

    PubMed Central

    Yu, Yao; Zhou, Huan; Deng, Xiaolong; Wang, Wenchao; Lu, Hong

    2016-01-01

    Heterochromatin formation in fission yeast depends on RNAi machinery and histone-modifying enzymes. One of the key histone-modifying complexes is Clr4-Rik1-Cul4 methyltransferase complex (CLRC), which mediates histone H3K9 methylation, a hallmark for heterochromatin. CLRC is composed of the Clr4 histone methyltransferase, Rik1, Raf1, Raf2 and Pcu4. However, transcriptional regulation of the CLRC subunits is not well understood. In this study, we identified Set3, a core subunit of the Set3/Hos2 histone deacetylase complex (Set3C), as a contributor to the integrity and silencing of heterochromatin at centromeres, telomeres and silent mating-type locus. This novel role of Set3 relies on its PHD finger, but is independent of deacetylase activity or structural integrity of Set3C. Set3 is not located to the centromeric region. Instead, Set3 is targeted to the promoters of clr4+ and rik1+, probably through its PHD finger. Set3 promotes transcription of clr4+ and rik1+. Consistently, the protein levels of Clr4 and Rik1 were reduced in the set3Δ mutant. The heterochromatin silencing defect in the set3Δ mutant could be rescued by overexpressing of clr4+ or rik1+. Our study suggests transcriptional activation of essential heterochromatin factors underlies the tight regulation of heterochromatin integrity. PMID:27538348

  4. The fission yeast RNA binding protein Mmi1 regulates meiotic genes by controlling intron specific splicing and polyadenylation coupled RNA turnover.

    PubMed

    Chen, Huei-Mei; Futcher, Bruce; Leatherwood, Janet

    2011-01-01

    The polyA tails of mRNAs are monitored by the exosome as a quality control mechanism. We find that fission yeast, Schizosaccharomyces pombe, adopts this RNA quality control mechanism to regulate a group of 30 or more meiotic genes at the level of both splicing and RNA turnover. In vegetative cells the RNA binding protein Mmi1 binds to the primary transcripts of these genes. We find the novel motif U(U/C/G)AAAC highly over-represented in targets of Mmi1. Mmi1 can specifically regulate the splicing of particular introns in a transcript: it inhibits the splicing of introns that are in the vicinity of putative Mmi1 binding sites, while allowing the splicing of other introns that are far from such sites. In addition, binding of Mmi1, particularly near the 3' end, alters 3' processing to promote extremely long polyA tails of up to a kilobase. The hyperadenylated transcripts are then targeted for degradation by the nuclear exonuclease Rrp6. The nuclear polyA binding protein Pab2 assists this hyperadenylation-mediated RNA decay. Rrp6 also targets other hyperadenylated transcripts, which become hyperadenylated in an unknown, but Mmi1-independent way. Thus, hyperadenylation may be a general signal for RNA degradation. In addition, binding of Mmi1 can affect the efficiency of 3' cleavage. Inactivation of Mmi1 in meiosis allows meiotic expression, through splicing and RNA stabilization, of at least 29 target genes, which are apparently constitutively transcribed.

  5. The Mitochondrial Fission Protein hFis1 Requires the Endoplasmic Reticulum Gateway to Induce Apoptosis

    PubMed Central

    Alirol, Emilie; James, Dominic; Huber, Denise; Marchetto, Andrea; Vergani, Lodovica

    2006-01-01

    Mitochondrial fission ensures organelle inheritance during cell division and participates in apoptosis. The fission protein hFis1 triggers caspase-dependent cell death, by causing the release of cytochrome c from mitochondria. Here we show that mitochondrial fission induced by hFis1 is genetically distinct from apoptosis. In cells lacking the multidomain proapoptotic Bcl-2 family members Bax and Bak (DKO), hFis1 caused mitochondrial fragmentation but not organelle dysfunction and apoptosis. Similarly, a mutant in the intermembrane region of hFis1-induced fission but not cell death, further dissociating mitochondrial fragmentation from apoptosis induction. Selective correction of the endoplasmic reticulum (ER) defect of DKO cells restored killing by hFis1, indicating that death by hFis1 relies on the ER gateway of apoptosis. Consistently, hFis1 did not directly activate BAX and BAK, but induced Ca2+-dependent mitochondrial dysfunction. Thus, hFis1 is a bifunctional protein that independently regulates mitochondrial fragmentation and ER-mediated apoptosis. PMID:16914522

  6. Multiple Conserved Domains of the Nucleoporin Nup124p and Its Orthologs Nup1p and Nup153 Are Critical for Nuclear Import and Activity of the Fission Yeast Tf1 Retrotransposon

    PubMed Central

    Sistla, Srivani; Pang, Junxiong Vincent; Wang, Cui Xia

    2007-01-01

    The nucleoporin Nup124p is a host protein required for the nuclear import of both, retrotransposon Tf1-Gag as well as the retroviral HIV-1 Vpr in fission yeast. The human nucleoporin Nup153 and the Saccharomyces cerevisiae Nup1p were identified as orthologs of Nup124p. In this study, we show that all three nucleoporins share a large FG/FXFG-repeat domain and a C-terminal peptide sequence, GRKIxxxxxRRKx, that are absolutely essential for Tf1 retrotransposition. Though the FXFG domain was essential, the FXFG repeats themselves could be eliminated without loss of retrotransposon activity, suggesting the existence of a common element unrelated to FG/FXFG motifs. The Nup124p C-terminal peptide, GRKIAVPRSRRKR, was extremely sensitive to certain single amino acid changes within stretches of the basic residues. On the basis of our comparative study of Nup124p, Nup1p, and Nup153 domains, we have developed peptides that specifically knockdown retrotransposon activity by disengaging the Tf1-Gag from its host nuclear transport machinery without any harmful consequence to the host itself. Our results imply that those domains challenged a specific pathway affecting Tf1 transposition. Although full-length Nup1p or Nup153 does not complement Nup124p, the functionality of their conserved domains with reference to Tf1 activity suggests that these three proteins evolved from a common ancestor. PMID:17615301

  7. An extended dsRBD with a novel zinc-binding motif mediates nuclear retention of fission yeast Dicer.

    PubMed

    Barraud, Pierre; Emmerth, Stephan; Shimada, Yukiko; Hotz, Hans-Rudolf; Allain, Frédéric H-T; Bühler, Marc

    2011-08-16

    Dicer proteins function in RNA interference (RNAi) pathways by generating small RNAs (sRNAs). Here, we report the solution structure of the C-terminal domain of Schizosaccharomyces pombe Dicer (Dcr1). The structure reveals an unusual double-stranded RNA binding domain (dsRBD) fold embedding a novel zinc-binding motif that is conserved among dicers in yeast. Although the C-terminal domain of Dcr1 still binds nucleic acids, this property is dispensable for proper functioning of Dcr1. In contrast, disruption of zinc coordination renders Dcr1 mainly cytoplasmic and leads to remarkable changes in gene expression and loss of heterochromatin assembly. In summary, our results reveal novel insights into the mechanism of nuclear retention of Dcr1 and raise the possibility that this new class of dsRBDs might generally function in nucleocytoplasmic trafficking and not substrate binding. The C-terminal domain of Dcr1 constitutes a novel regulatory module that might represent a potential target for therapeutic intervention with fungal diseases.

  8. Inner nuclear membrane protein Lem2 facilitates Rad3-mediated checkpoint signaling under replication stress induced by nucleotide depletion in fission yeast.

    PubMed

    Xu, Yong-Jie

    2016-04-01

    DNA replication checkpoint is a highly conserved cellular signaling pathway critical for maintaining genome integrity in eukaryotes. It is activated when DNA replication is perturbed. In Schizosaccharomyces pombe, perturbed replication forks activate the sensor kinase Rad3 (ATR/Mec1), which works cooperatively with mediator Mrc1 and the 9-1-1 checkpoint clamp to phosphorylate the effector kinase Cds1 (CHK2/Rad53). Phosphorylation of Cds1 promotes autoactivation of the kinase. Activated Cds1 diffuses away from the forks and stimulates most of the checkpoint responses under replication stress. Although this signaling pathway has been well understood in fission yeast, how the signaling is initiated and thus regulated remains incompletely understood. Previous studies have shown that deletion of lem2(+) sensitizes cells to the inhibitor of ribonucleotide reductase, hydroxyurea. However, the underlying mechanism is still not well understood. This study shows that in the presence of hydroxyurea, Lem2 facilitates Rad3-mediated checkpoint signaling for Cds1 activation. Without Lem2, all known Rad3-dependent phosphorylations critical for replication checkpoint signaling are seriously compromised, which likely causes the aberrant mitosis and drug sensitivity observed in this mutant. Interestingly, the mutant is not very sensitive to DNA damage and the DNA damage checkpoint remains largely intact, suggesting that the main function of Lem2 is to facilitate checkpoint signaling in response to replication stress. Since Lem2 is an inner nuclear membrane protein, these results also suggest that the replication checkpoint may be spatially regulated inside the nucleus, a previously unknown mechanism.

  9. Interactions among a Fimbrin, a Capping Protein, and an Actin-depolymerizing Factor in Organization of the Fission Yeast Actin Cytoskeleton

    PubMed Central

    Nakano, Kentaro; Satoh, Kazuomi; Morimatsu, Akeshi; Ohnuma, Masaaki; Mabuchi, Issei

    2001-01-01

    We report studies of the fission yeast fimbrin-like protein Fim1, which contains two EF-hand domains and two actin-binding domains (ABD1 and ABD2). Fim1 is a component of both F-actin patches and the F-actin ring, but not of F-actin cables. Fim1 cross-links F-actin in vitro, but a Fim1 protein lacking either EF-hand domains (Fim1A12) or both the EF-hand domains and ABD1 (Fim1A2) has no actin cross-linking activity. Overexpression of Fim1 induced the formation of F-actin patches throughout the cell cortex, whereas the F-actin patches disappear in cells overexpressing Fim1A12 or Fim1A2. Thus, the actin cross-linking activity of Fim1 is probably important for the formation of F-actin patches. The overexpression of Fim1 also excluded the actin-depolymerizing factor Adf1 from the F-actin patches and inhibited the turnover of actin in these structures. Thus, Fim1 may function in stabilizing the F-actin patches. We also isolated the gene encoding Acp1, a subunit of the heterodimeric F-actin capping protein. fim1 acp1 double null cells showed more severe defects in the organization of the actin cytoskeleton than those seen in each single mutant. Thus, Fim1 and Acp1 may function in a similar manner in the organization of the actin cytoskeleton. Finally, genetic studies suggested that Fim1 may function in cytokinesis in cooperation with Cdc15 (PSTPIP) and Rng2 (IQGAP), respectively. PMID:11694585

  10. Expression of the fission yeast cell cycle regulator cdc25 induces de novo shoot formation in tobacco: evidence of a cytokinin-like effect by this mitotic activator.

    PubMed

    Suchomelová, Petra; Velgová, Denisa; Masek, Tomás; Francis, Dennis; Rogers, Hilary J; Marchbank, Angela M; Lipavská, Helena

    2004-01-01

    During the last decade, the cell cycle and its control by cyclin-dependent kinases (CDKs) has been extensively studied in eukaryotes. The regulation of CDK activity includes, among others, its activation by Cdc25 phosphatase at G2/M. However, within the plant kingdom studies of this regulation have lagged behind and a plant cdc25 homologue has not been identified yet. Here, we report on the effects of transformation of tobacco (Nicotiana tabacum L., cv. Samsun) with fission yeast (Schizosaccharomyces pombe) cdc25 (Spcdc25) on de novo plant organ formation, a process dependent on rate and orientation of cell division. On shoot-inducing medium (low 1-naphthylacetic acid (NAA), high 6-benzylaminopurine (BAP)) the number of shoots formed on internode segments cultured from transgenic plants was substantially higher than in the non-transformed controls. Anatomical observations indicated that the shoot formation process was accelerated but with no changes in the quality and sequence of shoot development. Surprisingly, and in contrast to the controls, when on root-inducing medium (high NAA, low BAP) cultured segments from transgenic plants failed to initiate hardly any roots. Instead, they continued to form shoots at low frequencies. Moreover, in marked contrast to the controls, stem segments from transgenic plants were able to form shoots even without the addition of exogenous growth regulators to the medium. The results indicate that Spcdc25 expression in culture tobacco stem segments mimicked the developmental effects caused by an exogenous hormone balance shifted towards cytokinins. The observed cytokinin-like effects of Spcdc25 transformation are consistent with the concept of an interaction between cell cycle regulators and phytohormones during plant development.

  11. Oxygen requirements of the food spoilage yeast Zygosaccharomyces bailii in synthetic and complex media.

    PubMed

    Rodrigues, F; Côrte-Real, M; Leão, C; van Dijken, J P; Pronk, J T

    2001-05-01

    Most yeast species can ferment sugars to ethanol, but only a few can grow in the complete absence of oxygen. Oxygen availability might, therefore, be a key parameter in spoilage of food caused by fermentative yeasts. In this study, the oxygen requirement and regulation of alcoholic fermentation were studied in batch cultures of the spoilage yeast Zygosaccharomyces bailii at a constant pH, pH 3.0. In aerobic, glucose-grown cultures, Z. bailii exhibited aerobic alcoholic fermentation similar to that of Saccharomyces cerevisiae and other Crabtree-positive yeasts. In anaerobic fermentor cultures grown on a synthetic medium supplemented with glucose, Tween 80, and ergosterol, S. cerevisiae exhibited rapid exponential growth. Growth of Z. bailii under these conditions was extremely slow and linear. These linear growth kinetics indicate that cell proliferation of Z. bailii in the anaerobic fermentors was limited by a constant, low rate of oxygen leakage into the system. Similar results were obtained with the facultatively fermentative yeast Candida utilis. When the same experimental setup was used for anaerobic cultivation, in complex YPD medium, Z. bailii exhibited exponential growth and vigorous fermentation, indicating that a nutritional requirement for anaerobic growth was met by complex-medium components. Our results demonstrate that restriction of oxygen entry into foods and beverages, which are rich in nutrients, is not a promising strategy for preventing growth and gas formation by Z. bailii. In contrast to the growth of Z. bailii, anaerobic growth of S. cerevisiae on complex YPD medium was much slower than growth in synthetic medium, which probably reflected the superior tolerance of the former yeast to organic acids at low pH.

  12. Yeast Pho85 kinase is required for proper gene expression during the diauxic shift.

    PubMed

    Nishizawa, Masafumi; Katou, Yuki; Shirahige, Katsuhiko; Toh-e, Akio

    2004-08-01

    The budding yeast Saccharomyces cerevisiae changes its gene expression profile when environmental nutritional conditions are changed. Protein kinases including cyclic AMP-dependent kinase, Snf1 and Tor kinases play important roles in this process. Pho85 kinase, a member of the yeast cyclin-dependent kinase family, is involved in the regulation of phosphate metabolism and reserve carbohydrates, and thus is implicated to function as a nutrient-sensing kinase. Upon depletion of glucose in the medium, yeast cells undergo a diauxic shift, accompanied by a carbon metabolic pathway shift, stimulation of mitochondrial function and downregulation of ribosome biogenesis and protein synthesis. We analysed the effect of a pho85Delta mutation on the expression profiles of the genes in this process to investigate whether Pho85 kinase participates in the yeast diauxy. We found that, in the absence of PHO85, a majority of mitochondrial genes were not properly induced, that proteasome-related and chaperonin genes were more repressed, and that, when glucose was still present in the medium, a certain class of genes involved in ribosome biogenesis (ribosomal protein and rRNA processing genes) was repressed, whereas those involved in gluconeogenesis and the glyoxylate cycle were induced. We also found that PHO85 is required for proper expression of several metal sensor genes and their regulatory genes. These results suggest that Pho85 is required for proper onset of changes in expression profiles of genes responsible for the diauxic shift.

  13. Yeast sterol regulatory element-binding protein (SREBP) cleavage requires Cdc48 and Dsc5, a ubiquitin regulatory X domain-containing subunit of the Golgi Dsc E3 ligase.

    PubMed

    Stewart, Emerson V; Lloyd, S Julie-Ann; Burg, John S; Nwosu, Christine C; Lintner, Robert E; Daza, Riza; Russ, Carsten; Ponchner, Karen; Nusbaum, Chad; Espenshade, Peter J

    2012-01-02

    Schizosaccharomyces pombe Sre1 is a membrane-bound transcription factor that controls adaptation to hypoxia. Like its mammalian homolog, sterol regulatory element-binding protein (SREBP), Sre1 activation requires release from the membrane. However, in fission yeast, this release occurs through a strikingly different mechanism that requires the Golgi Dsc E3 ubiquitin ligase complex and the proteasome. The mechanistic details of Sre1 cleavage, including the link between the Dsc E3 ligase complex and proteasome, are not well understood. Here, we present results of a genetic selection designed to identify additional components required for Sre1 cleavage. From the selection, we identified two new components of the fission yeast SREBP pathway: Dsc5 and Cdc48. The AAA (ATPase associated with diverse cellular activities) ATPase Cdc48 and Dsc5, a ubiquitin regulatory X domain-containing protein, interact with known Dsc complex components and are required for SREBP cleavage. These findings provide a mechanistic link between the Dsc E3 ligase complex and the proteasome in SREBP cleavage and add to a growing list of similarities between the Dsc E3 ligase and membrane E3 ligases involved in endoplasmic reticulum-associated degradation.

  14. The spliceosome-associated protein Nrl1 suppresses homologous recombination-dependent R-loop formation in fission yeast

    PubMed Central

    Aronica, Lucia; Kasparek, Torben; Ruchman, David; Marquez, Yamile; Cipak, Lubos; Cipakova, Ingrid; Anrather, Dorothea; Mikolaskova, Barbora; Radtke, Maximilian; Sarkar, Sovan; Pai, Chen-Chun; Blaikley, Elizabeth; Walker, Carol; Shen, Kuo-Fang; Schroeder, Renee; Barta, Andrea; Forsburg, Susan L.; Humphrey, Timothy C.

    2016-01-01

    The formation of RNA–DNA hybrids, referred to as R-loops, can promote genome instability and cancer development. Yet the mechanisms by which R-loops compromise genome instability are poorly understood. Here, we establish roles for the evolutionarily conserved Nrl1 protein in pre-mRNA splicing regulation, R-loop suppression and in maintaining genome stability. nrl1Δ mutants exhibit endogenous DNA damage, are sensitive to exogenous DNA damage, and have defects in homologous recombination (HR) repair. Concomitantly, nrl1Δ cells display significant changes in gene expression, similar to those induced by DNA damage in wild-type cells. Further, we find that nrl1Δ cells accumulate high levels of R-loops, which co-localize with HR repair factors and require Rad51 and Rad52 for their formation. Together, our findings support a model in which R-loop accumulation and subsequent DNA damage sequesters HR factors, thereby compromising HR repair at endogenously or exogenously induced DNA damage sites, leading to genome instability. PMID:26682798

  15. The Tubulation Activity of a Fission Yeast F-BAR Protein Is Dispensable for Its Function in Cytokinesis.

    PubMed

    McDonald, Nathan A; Takizawa, Yoshimasa; Feoktistova, Anna; Xu, Ping; Ohi, Melanie D; Vander Kooi, Craig W; Gould, Kathleen L

    2016-01-26

    F-BAR proteins link cellular membranes to the actin cytoskeleton in many biological processes. Here we investigated the function of the Schizosaccharomyces pombe Imp2 F-BAR domain in cytokinesis and find that it is critical for Imp2's role in contractile ring constriction and disassembly. To understand mechanistically how the F-BAR domain functions, we determined its structure, elucidated how it interacts with membranes, and identified an interaction between dimers that allows helical oligomerization and membrane tubulation. Using mutations that block either membrane binding or tubulation, we find that membrane binding is required for Imp2's cytokinetic function but that oligomerization and tubulation, activities often deemed central to F-BAR protein function, are dispensable. Accordingly, F-BARs that do not have the capacity to tubulate membranes functionally substitute for the Imp2 F-BAR, establishing that its major role is as a cell-cycle-regulated bridge between the membrane and Imp2 protein partners, rather than as a driver of membrane curvature.

  16. The role of fnx1, a fission yeast multidrug resistance protein, in the transition of cells to a quiescent G0 state.

    PubMed

    Dimitrov, K; Sazer, S

    1998-09-01

    Most microorganisms live in conditions of nutrient limitation in their natural habitats. When exposed to these conditions they respond with physiological and morphological changes that enable them to survive. To obtain insights into the molecular mechanisms of this response a systematic genetic screen was performed to identify genes that when overexpressed can induce a starvation-like response in the yeast species Schizosaccharomyces pombe. One gene that meets these criteria, fnx1(+), induces, transcriptionally correlates with, and is required for the entry into the quiescent G0 state that is normally induced by nitrogen starvation. fnx1(+) encodes a protein with sequence similarity to the proton-driven plasma membrane transporters from the multidrug resistance group of the major facilitator superfamily of proteins. We propose that fnx1(+) plays a role in the entry into G0, possibly by facilitating the release of a signaling substance into the environment as a means of cell-to-cell communication.

  17. Homotypic vacuole fusion in yeast requires organelle acidification and not the V-ATPase membrane domain.

    PubMed

    Coonrod, Emily M; Graham, Laurie A; Carpp, Lindsay N; Carr, Tom M; Stirrat, Laura; Bowers, Katherine; Bryant, Nia J; Stevens, Tom H

    2013-11-25

    Studies of homotypic vacuole-vacuole fusion in the yeast Saccharomyces cerevisiae have been instrumental in determining the cellular machinery required for eukaryotic membrane fusion and have implicated the vacuolar H(+)-ATPase (V-ATPase). The V-ATPase is a multisubunit, rotary proton pump whose precise role in homotypic fusion is controversial. Models formulated from in vitro studies suggest that it is the proteolipid proton-translocating pore of the V-ATPase that functions in fusion, with further studies in worms, flies, zebrafish, and mice appearing to support this model. We present two in vivo assays and use a mutant V-ATPase subunit to establish that it is the H(+)-translocation/vacuole acidification function, rather than the physical presence of the V-ATPase, that promotes homotypic vacuole fusion in yeast. Furthermore, we show that acidification of the yeast vacuole in the absence of the V-ATPase rescues vacuole-fusion defects. Our results clarify the in vivo requirements of acidification for membrane fusion.

  18. Nuclear Fission

    NASA Astrophysics Data System (ADS)

    Denschlag, J. O.

    This chapter first gives a survey on the history of the discovery of nuclear fission. It briefly presents the liquid-drop and shell models and their application to the fission process. The most important quantities accessible to experimental determination such as mass yields, nuclear charge distribution, prompt neutron emission, kinetic energy distribution, ternary fragment yields, angular distributions, and properties of fission isomers are presented as well as the instrumentation and techniques used for their measurement. The contribution concentrates on the fundamental aspects of nuclear fission. The practical aspects of nuclear fission are discussed in http://dx.doi.org/10.1007/978-1-4419-0720-2_57 of Vol. 6.

  19. Mitochondrial inheritance is required for MEN-regulated cytokinesis in budding yeast.

    PubMed

    García-Rodríguez, Luis J; Crider, David G; Gay, Anna Card; Salanueva, Iñigo J; Boldogh, Istvan R; Pon, Liza A

    2009-11-03

    Mitochondrial inheritance, the transfer of mitochondria from mother to daughter cell during cell division, is essential for daughter cell viability. The mitochore, a mitochondrial protein complex containing Mdm10p, Mdm12p, and Mmm1p, is required for mitochondrial motility leading to inheritance in budding yeast. We observe a defect in cytokinesis in mitochore mutants and another mutant (mmr1Delta gem1Delta) with impaired mitochondrial inheritance. This defect is not observed in yeast that have no mitochondrial DNA or defects in mitochondrial protein import or assembly of beta-barrel proteins in the mitochondrial outer membrane. Deletion of MDM10 inhibits contractile-ring closure, but does not inhibit contractile-ring assembly, localization of a chromosomal passenger protein to the spindle during early anaphase, spindle alignment, nucleolar segregation, or nuclear migration during anaphase. Release of the mitotic exit network (MEN) component, Cdc14p, from the nucleolus during anaphase is delayed in mdm10Delta cells. Finally, hyperactivation of the MEN by deletion of BUB2 restores defects in cytokinesis in mdm10Delta and mmr1Delta gem1Delta cells and reduces the fidelity of mitochondrial segregation between mother and daughter cells in wild-type and mdm10Delta cells. Our studies identify a novel MEN-linked regulatory system that inhibits cytokinesis in response to defects in mitochondrial inheritance in budding yeast.

  20. Cap-independent translation is required for starvation-induced differentiation in yeast.

    PubMed

    Gilbert, Wendy V; Zhou, Kaihong; Butler, Tamira K; Doudna, Jennifer A

    2007-08-31

    Cellular internal ribosome entry sites (IRESs) are untranslated segments of mRNA transcripts thought to initiate protein synthesis in response to environmental stresses that prevent canonical 5' cap-dependent translation. Although numerous cellular mRNAs are proposed to have IRESs, none has a demonstrated physiological function or molecular mechanism. Here we show that seven yeast genes required for invasive growth, a developmental pathway induced by nutrient limitation, contain potent IRESs that require the initiation factor eIF4G for cap-independent translation. In contrast to the RNA structure-based activity of viral IRESs, we show that an unstructured A-rich element mediates internal initiation via recruitment of the poly(A) binding protein (Pab1) to the 5' untranslated region (UTR) of invasive growth messages. A 5'UTR mutation that impairs IRES activity compromises invasive growth, which indicates that cap-independent translation is required for physiological adaptation to stress.

  1. Mitochondrial translocation and interaction of cofilin and Drp1 are required for erucin-induced mitochondrial fission and apoptosis.

    PubMed

    Li, Guobing; Zhou, Jing; Budhraja, Amit; Hu, Xiaoye; Chen, Yibiao; Cheng, Qi; Liu, Lei; Zhou, Ting; Li, Ping; Liu, Ehu; Gao, Ning

    2015-01-30

    Cofilin is a member of the actin-depolymerizing factor (ADF) family protein, which plays an essential role in regulation of the mitochondrial apoptosis. It remains unclear how cofilin regulates the mitochondrial apoptosis. Here, we report for the first time that natural compound 4-methylthiobutyl isothiocyanate (erucin) found in consumable cruciferous vegetables induces mitochondrial fission and apoptosis in human breast cancer cells through the mitochondrial translocation of cofilin. Importantly, cofilin regulates erucin-induced mitochondrial fission by interacting with dynamin-related protein (Drp1). Knockdown of cofilin or Drp1 markedly reduced erucin-mediated mitochondrial translocation and interaction of cofilin and Drp1, mitochondrial fission, and apoptosis. Only dephosphorylated cofilin (Ser 3) and Drp1 (Ser 637) are translocated to the mitochondria. Cofilin S3E and Drp1 S637D mutants, which mimick the phosphorylated forms, suppressed mitochondrial translocation, fission, and apoptosis. Moreover, both dephosphorylation and mitochondrial translocation of cofilin and Drp1 are dependent on ROCK1 activation. In vivo findings confirmed that erucin-mediated inhibition of tumor growth in a breast cancer cell xenograft mouse model is associated with the mitochondrial translocation of cofilin and Drp1, fission and apoptosis. Our study reveals a novel role of cofilin in regulation of mitochondrial fission and suggests erucin as a potential drug for treatment of breast cancer.

  2. Rad4 Mainly Functions in Chk1-Mediated DNA Damage Checkpoint Pathway as a Scaffold Protein in the Fission Yeast Schizosaccharomyces pombe

    PubMed Central

    Yue, Ming; Zeng, Li; Singh, Amanpreet; Xu, Yongjie

    2014-01-01

    Rad4/Cut5 is a scaffold protein in the Chk1-mediated DNA damage checkpoint in S. pombe. However, whether it contains a robust ATR-activation domain (AAD) required for checkpoint signaling like its orthologs TopBP1 in humans and Dpb11 in budding yeast has been incompletely clear. To identify the putative AAD in Rad4, we carried out an extensive genetic screen looking for novel mutants with an enhanced sensitivity to replication stress or DNA damage in which the function of the AAD can be eliminated by the mutations. Two new mutations near the N-terminus were identified that caused significantly higher sensitivities to DNA damage or chronic replication stress than all previously reported mutants, suggesting that most of the checkpoint function of the protein is eliminated. However, these mutations did not affect the activation of Rad3 (ATR in humans) yet eliminated the scaffolding function of the protein required for the activation of Chk1. Several mutations were also identified in or near the recently reported AAD in the C-terminus of Rad4. However, all mutations in the C-terminus only slightly sensitized the cells to DNA damage. Interestingly, a mutant lacking the whole C-terminus was found resistant to DNA damage and replication stress almost like the wild type cells. Consistent with the resistance, all known Rad3 dependent phosphorylations of checkpoint proteins remained intact in the C-terminal deletion mutant, indicating that unlike that in Dpb11, the C-terminus of Rad4 does not contain a robust AAD. These results, together with those from the biochemical studies, show that Rad4 mainly functions as a scaffold protein in the Chk1, not the Cds1(CHK2 in humans), checkpoint pathway. It plays a minor role or is functionally redundant with an unknown factor in Rad3 activation. PMID:24663817

  3. The Yeast-Phase Virulence Requirement for α-Glucan Synthase Differs among Histoplasma capsulatum Chemotypes ▿ †

    PubMed Central

    Edwards, Jessica A.; Alore, Elizabeth A.; Rappleye, Chad A.

    2011-01-01

    Histoplasma capsulatum strains can be classified into two chemotypes based on cell wall composition. The cell wall of chemotype II yeast contains a layer of α-(1,3)-glucan that masks immunostimulatory β-(1,3)-glucans from detection by the Dectin-1 receptor on host phagocytes. This α-(1,3)-glucan cell wall component is essential for chemotype II Histoplasma virulence. In contrast, chemotype I yeast cells lack α-(1,3)-glucan in vitro, yet they remain fully virulent in vivo. Analysis of the chemotype I α-glucan synthase (AGS1) locus revealed a 2.7-kb insertion in the promoter region that diminishes AGS1 expression. Nonetheless, AGS1 mRNA can be detected during respiratory infection with chemotype I yeast, suggesting that α-(1,3)-glucan could be produced during in vivo growth despite its absence in vitro. To directly test whether AGS1 contributes to chemotype I strain virulence, we prevented AGS1 function by RNA interference and by insertional mutation. Loss of AGS1 function in chemotype I does not impair the cytotoxicity of ags1(−) mutant yeast to cultured macrophages, nor does it affect the intracellular growth of yeast. In a murine model of histoplasmosis, the ags1(−) chemotype I mutant strains show no defect in lung infection or in extrapulmonary dissemination. Together, these studies demonstrate that AGS1 expression is dispensable for chemotype I yeast virulence, in contrast to the case for chemotype II yeast. Despite the absence of cell wall α-(1,3)-glucan, chemotype I yeast can avoid detection by Dectin-1 in a growth stage-dependent manner. This suggests the production of a unique Histoplasma chemotype I factor that, at least partially, circumvents the α-(1,3)-glucan requirement for yeast virulence. PMID:21037179

  4. Arp2/3 complex and actin dynamics are required for actin-based mitochondrial motility in yeast

    PubMed Central

    Boldogh, Istvan R.; Yang, Hyeong-Cheol; Nowakowski, W. Dan; Karmon, Sharon L.; Hays, Lara G.; Yates, John R.; Pon, Liza A.

    2001-01-01

    The Arp2/3 complex is implicated in actin polymerization-driven movement of Listeria monocytogenes. Here, we find that Arp2p and Arc15p, two subunits of this complex, show tight, actin-independent association with isolated yeast mitochondria. Arp2p colocalizes with mitochondria. Consistent with this result, we detect Arp2p-dependent formation of actin clouds around mitochondria in intact yeast. Cells bearing mutations in ARP2 or ARC15 genes show decreased velocities of mitochondrial movement, loss of all directed movement and defects in mitochondrial morphology. Finally, we observe a decrease in the velocity and extent of mitochondrial movement in yeast in which actin dynamics are reduced but actin cytoskeletal structure is intact. These results support the idea that the movement of mitochondria in yeast is actin polymerization driven and that this movement requires Arp2/3 complex. PMID:11248049

  5. Spontaneous Fission

    DOE R&D Accomplishments Database

    Segre, Emilio

    1950-11-22

    The first attempt to discover spontaneous fission in uranium was made by [Willard] Libby, who, however, failed to detect it on account of the smallness of effect. In 1940, [K. A.] Petrzhak and [G. N.] Flerov, using more sensitive methods, discovered spontaneous fission in uranium and gave some rough estimates of the spontaneous fission decay constant of this substance. Subsequently, extensive experimental work on the subject has been performed by several investigators and will be quoted in the various sections. [N.] Bohr and [A.] Wheeler have given a theory of the effect based on the usual ideas of penetration of potential barriers. On this project spontaneous fission has been studied for the past several years in an effort to obtain a complete picture of the phenomenon. For this purpose the spontaneous fission decay constants {lambda} have been measured for separated isotopes of the heavy elements wherever possible. Moreover, the number {nu} of neutrons emitted per fission has been measured wherever feasible, and other characteristics of the spontaneous fission process have been studied. This report summarizes the spontaneous fission work done at Los Alamos up to January 1, 1945. A chronological record of the work is contained in the Los Alamos monthly reports.

  6. The AWA1 Gene Is Required for the Foam-Forming Phenotype and Cell Surface Hydrophobicity of Sake Yeast

    PubMed Central

    Shimoi, Hitoshi; Sakamoto, Kazutoshi; Okuda, Masaki; Atthi, Ratchanee; Iwashita, Kazuhiro; Ito, Kiyoshi

    2002-01-01

    Sake, a traditional alcoholic beverage in Japan, is brewed with sake yeasts, which are classified as Saccharomyces cerevisiae. Almost all sake yeasts form a thick foam layer on sake mash during the fermentation process because of their cell surface hydrophobicity, which increases the cells' affinity for bubbles. To reduce the amount of foam, nonfoaming mutants were bred from foaming sake yeasts. Nonfoaming mutants have hydrophilic cell surfaces and no affinity for bubbles. We have cloned a gene from a foam-forming sake yeast that confers foaming ability to a nonfoaming mutant. This gene was named AWA1 and structures of the gene and its product were analyzed. The N- and C-terminal regions of Awa1p have the characteristic sequences of a glycosylphosphatidylinositol anchor protein. The entire protein is rich in serine and threonine residues and has a lot of repetitive sequences. These results suggest that Awa1p is localized in the cell wall. This was confirmed by immunofluorescence microscopy and Western blotting analysis using hemagglutinin-tagged Awa1p. Moreover, an awa1 disruptant of sake yeast was hydrophilic and showed a nonfoaming phenotype in sake mash. We conclude that Awa1p is a cell wall protein and is required for the foam-forming phenotype and the cell surface hydrophobicity of sake yeast. PMID:11916725

  7. HSC90 is required for nascent hepatitis C virus core protein stability in yeast cells.

    PubMed

    Kubota, Naoko; Inayoshi, Yasutaka; Satoh, Naoko; Fukuda, Takashi; Iwai, Kenta; Tomoda, Hiroshi; Kohara, Michinori; Kataoka, Kazuhiro; Shimamoto, Akira; Furuichi, Yasuhiro; Nomoto, Akio; Naganuma, Akira; Kuge, Shusuke

    2012-07-30

    Hepatitis C virus core protein (Core) contributes to HCV pathogenicity. Here, we demonstrate that Core impairs growth in budding yeast. We identify HSP90 inhibitors as compounds that reduce intracellular Core protein level and restore yeast growth. Our results suggest that HSC90 (Hsc82) may function in the protection of the nascent Core polypeptide against degradation in yeast and the C-terminal region of Core corresponding to the organelle-interaction domain was responsible for Hsc82-dependent stability. The yeast system may be utilized to select compounds that can direct the C-terminal region to reduce the stability of Core protein.

  8. The Mre11-Rad50-Xrs2 complex is required for yeast DNA postreplication repair.

    PubMed

    Ball, Lindsay G; Hanna, Michelle D; Lambrecht, Amanda D; Mitchell, Bryan A; Ziola, Barry; Cobb, Jennifer A; Xiao, Wei

    2014-01-01

    Yeast DNA postreplication repair (PRR) bypasses replication-blocking lesions to prevent damage-induced cell death. PRR employs two different mechanisms to bypass damaged DNA, namely translesion synthesis (TLS) and error-free PRR, which are regulated via sequential ubiquitination of proliferating cell nuclear antigen (PCNA). We previously demonstrated that error-free PRR utilizes homologous recombination to facilitate template switching. To our surprise, genes encoding the Mre11-Rad50-Xrs2 (MRX) complex, which are also required for homologous recombination, are epistatic to TLS mutations. Further genetic analyses indicated that two other nucleases involved in double-strand end resection, Sae2 and Exo1, are also variably required for efficient lesion bypass. The involvement of the above genes in TLS and/or error-free PRR could be distinguished by the mutagenesis assay and their differential effects on PCNA ubiquitination. Consistent with the observation that the MRX complex is required for both branches of PRR, the MRX complex was found to physically interact with Rad18 in vivo. In light of the distinct and overlapping activities of the above nucleases in the resection of double-strand breaks, we propose that the interplay between distinct single-strand nucleases dictate the preference between TLS and error-free PRR for lesion bypass.

  9. CDC37 is required for p60v-src activity in yeast.

    PubMed Central

    Dey, B; Lightbody, J J; Boschelli, F

    1996-01-01

    Mutations in genes encoding the molecular chaperones Hsp90 and Ydj1p suppress the toxicity of the protein tyrosine kinase p60v-src in yeast by reducing its levels or its kinase activity. We describe isolation and characterization of novel p60v-src-resistant, temperature-sensitive cdc37 mutants, cdc37-34 and cdc37-17, which produce less p60v-src than the parental wild-type strain at 23 degrees C. However, p60v-src levels are not low enough to account for the resistance of these strains. Asynchronously growing cdc37-34 and cdc37-17 mutants arrest in G1 and G2/M when shifted from permissive temperatures (23 degrees C) to the restrictive temperature (37 degrees C), but hydroxyurea-synchronized cdc37-34 and cdc37-17 mutants arrest in G2/M when released from the hydroxyurea block and shifted from 23 to 37 degrees C. The previously described temperature-sensitive cdc37-1 mutant is p60v-src-sensitive and produces wild-type amounts of p60v-src at permissive temperatures but becomes p60v-src-resistant at its restrictive temperature, 38 degrees C. In all three cdc37 mutants, inactivation of Cdc37p by incubation at 38 degrees C reduces p60v-src-dependent tyrosine phosphorylation of yeast proteins to low or undetectable levels. Also, p60v-src levels are enriched in urea-solubilized extracts and depleted in detergent-solubilized extracts of all three cdc37 mutants prepared from cells incubated at the restrictive temperature. These results suggest that Cdc37p is required for maintenance of p60v-src in a soluble, biologically active form. Images PMID:8885235

  10. Singlet exciton fission photovoltaics.

    PubMed

    Lee, Jiye; Jadhav, Priya; Reusswig, Philip D; Yost, Shane R; Thompson, Nicholas J; Congreve, Daniel N; Hontz, Eric; Van Voorhis, Troy; Baldo, Marc A

    2013-06-18

    Singlet exciton fission, a process that generates two excitons from a single photon, is perhaps the most efficient of the various multiexciton-generation processes studied to date, offering the potential to increase the efficiency of solar devices. But its unique characteristic, splitting a photogenerated singlet exciton into two dark triplet states, means that the empty absorption region between the singlet and triplet excitons must be filled by adding another material that captures low-energy photons. This has required the development of specialized device architectures. In this Account, we review work to develop devices that harness the theoretical benefits of singlet exciton fission. First, we discuss singlet fission in the archetypal material, pentacene. Pentacene-based photovoltaic devices typically show high external and internal quantum efficiencies. They have enabled researchers to characterize fission, including yield and the impact of competing loss processes, within functional devices. We review in situ probes of singlet fission that modulate the photocurrent using a magnetic field. We also summarize studies of the dissociation of triplet excitons into charge at the pentacene-buckyball (C60) donor-acceptor interface. Multiple independent measurements confirm that pentacene triplet excitons can dissociate at the C60 interface despite their relatively low energy. Because triplet excitons produced by singlet fission each have no more than half the energy of the original photoexcitation, they limit the potential open circuit voltage within a solar cell. Thus, if singlet fission is to increase the overall efficiency of a solar cell and not just double the photocurrent at the cost of halving the voltage, it is necessary to also harvest photons in the absorption gap between the singlet and triplet energies of the singlet fission material. We review two device architectures that attempt this using long-wavelength materials: a three-layer structure that uses

  11. Fatty Acid Desaturase Mutants of Yeast: Growth Requirements and Electron Spin Resonance Spin-Label Distribution

    PubMed Central

    Wisnieski, Bernadine J.; Kiyomoto, Richard K.

    1972-01-01

    Two respiratory-sufficient and one respiratory-deficient (nuclear petite) strains of yeast Δ9-desaturase mutants were analyzed to determine which fatty acids would serve as replacements for the naturally occurring fatty acids, 16:1 Δ9cis and 18:1 Δ9cis. The requirement can be satisfied by several fatty acids differing in double-bond position, steric configuration, chain length, and degree of unsaturation. The features common to growth-supporting fatty acids are presented and the effects of varying the carbon source and temperature are considered. In addition, we illustrate several pitfalls encountered in membrane studies which exploit lipid-requiring organisms. Since the membrane fatty acid composition of these mutants can be modified readily, electron spin resonance spectroscopy is used to compare membranes of mutant strains enriched for different fatty acids. The lipid distribution pattern of the most commonly employed electron spin resonance spin-label, 12-nitroxide stearate, was ascertained and compared to that of 18:1 Δ9cis. PMID:4333377

  12. Stability of the mitochondrial genome requires an amino-terminal domain of yeast mitochondrial RNA polymerase

    PubMed Central

    Wang, Yuanhong; Shadel, Gerald S.

    1999-01-01

    Mitochondrial RNA (mtRNA) polymerases are related to bacteriophage RNA polymerases, but contain a unique amino-terminal extension of unknown origin and function. In addition to harboring mitochondrial targeting information, we show here that the amino-terminal extension of yeast mtRNA polymerase is required for a mtDNA maintenance function that is separable from the known RNA polymerization activity of the enzyme. Deletion of 185 N-terminal amino acids from the enzyme results in a temperature-sensitive mitochondrial petite phenotype, characterized by increased instability and eventual loss of the mitochondrial genome. Mitochondrial transcription initiation in vivo is largely unaffected by this mutation and expression of just the amino-terminal portion of the protein in trans partially suppresses the mitochondrial defect, indicating that the amino-terminal extension of the enzyme harbors an independent functional domain that is required for mtDNA replication and/or stability. These results suggest that amino-terminal extensions present in mtRNA polymerases comprise functional domains that couple additional activities to the transcription process in mitochondria. PMID:10393945

  13. Yeast vacuoles fragment in an asymmetrical two-phase process with distinct protein requirements.

    PubMed

    Zieger, Martin; Mayer, Andreas

    2012-09-01

    Yeast vacuoles fragment and fuse in response to environmental conditions, such as changes in osmotic conditions or nutrient availability. Here we analyze osmotically induced vacuole fragmentation by time-lapse microscopy. Small fragmentation products originate directly from the large central vacuole. This happens by asymmetrical scission rather than by consecutive equal divisions. Fragmentation occurs in two distinct phases. Initially, vacuoles shrink and generate deep invaginations that leave behind tubular structures in their vicinity. Already this invagination requires the dynamin-like GTPase Vps1p and the vacuolar proton gradient. Invaginations are stabilized by phosphatidylinositol 3-phosphate (PI(3)P) produced by the phosphoinositide 3-kinase complex II. Subsequently, vesicles pinch off from the tips of the tubular structures in a polarized manner, directly generating fragmentation products of the final size. This phase depends on the production of phosphatidylinositol-3,5-bisphosphate and the Fab1 complex. It is accelerated by the PI(3)P- and phosphatidylinositol 3,5-bisphosphate-binding protein Atg18p. Thus vacuoles fragment in two steps with distinct protein and lipid requirements.

  14. The Fission Yeast spo14+ Gene Encoding a Functional Homologue of Budding Yeast Sec12 Is Required for the Development of Forespore Membranes

    PubMed Central

    Nakamura-Kubo, Michiko; Nakamura, Taro; Hirata, Aiko; Shimoda, Chikashi

    2003-01-01

    The Schizosaccharomyces pombe spo14-B221 mutant was originally isolated as a sporulation-deficient mutant. However, the spo14+ gene is essential for cell viability and growth. spo14+ is identical to the previously characterized stl1+ gene encoding a putative homologue of Saccharomyces cerevisiae Sec12, which is essential for protein transport from the endoplasmic reticulum (ER) to the Golgi apparatus. In the spo14 mutant cells, ER-like membranes were accumulated beneath the plasma membrane and the ER/Golgi shuttling protein Rer1 remained in the ER. Sec12 is a guanine nucleotide exchange factor for the Sar1 GTPase. Overproduction of psr1+ coding for an S. pombe Sar1 homologue suppressed both the sporulation defect of spo14-B221 and cold-sensitive growth of newly isolated spo14-6 and spo14-7 mutants. These results indicate that Spo14 is involved in early steps of the protein secretory pathway. The spo14-B221 allele carries a single nucleotide change in the branch point consensus of the fifth intron, which reduces the abundance of the spo14 mRNA. During meiosis II, the forespore membrane was initiated near spindle pole bodies; however, subsequent extension of the membrane was arrested before its closure into a sac. We conclude that Spo14 is responsible for the assembly of the forespore membrane by supplying membrane vesicles. PMID:12631727

  15. Papulacandin B resistance in budding and fission yeasts: isolation and characterization of a gene involved in (1,3)beta-D-glucan synthesis in Saccharomyces cerevisiae.

    PubMed Central

    Castro, C; Ribas, J C; Valdivieso, M H; Varona, R; del Rey, F; Duran, A

    1995-01-01

    Papulacandin B, an antifungal agent that interferes with the synthesis of yeast cell wall (1,3)beta-D-glucan, was used to isolate resistant mutants in Schizosaccharomyces pombe and Saccharomyces cerevisiae. The resistance to papulacandin B always segregated as a recessive character that defines a single complementation group in both yeasts (pbr1+ and PBR1, respectively). Determination of several kinetic parameters of (1,3)beta-D-glucan synthase activity revealed no differences between S. pombe wild-type and pbr1 mutant strains except in the 50% inhibitory concentration for papulacandin B of the synthases (about a 50-fold increase in mutant activity). Inactivation of the synthase activity of both yeasts after in vivo treatment with the antifungal agent showed that mutant synthases were more resistant than the corresponding wild-type ones. Detergent dissociation of the S. pombe synthase into soluble and particulate fractions and subsequent reconstitution indicated that the resistance character of pbr1 mutants resides in the particulate fraction of the enzyme. Cloning and sequencing of PBR1 from S. cerevisiae revealed a gene identical to others recently reported (FKS1, ETG1, CWH53, and CND1). Its disruption leads to reduced levels of both (1,3)beta-D-glucan synthase activity and the alkali-insoluble cell wall fraction. Transformants containing the PBR1 gene reverse the defect in (1,3)beta-D-glucan synthase. It is concluded that Pbr1p is probably part of the (1,3)beta-D-glucan synthase complex. PMID:7592316

  16. Nitrogen requirements of commercial wine yeast strains during fermentation of a synthetic grape must.

    PubMed

    Gutiérrez, Alicia; Chiva, Rosana; Sancho, Marta; Beltran, Gemma; Arroyo-López, Francisco Noé; Guillamon, José Manuel

    2012-08-01

    Nitrogen deficiencies in grape musts are one of the main causes of stuck or sluggish wine fermentations. Currently, the most common method for dealing with nitrogen-deficient fermentations is adding supplementary nitrogen (usually ammonium phosphate). However, it is important to know the specific nitrogen requirement of each strain, to avoid excessive addition that can lead to microbial instability and ethyl carbamate accumulation. In this study, we aimed to determine the effect of increasing nitrogen concentrations of three different nitrogen sources on growth and fermentation performance in four industrial wine yeast strains. This task was carried out using statistical modeling techniques. The strains PDM and RVA showed higher growth-rate and maximum population size and consumed nitrogen much more quickly than strains ARM and TTA. Likewise, the strains PDM and RVA were also the greatest nitrogen demanders. Thus, we can conclude that these differences in nitrogen demand positively correlated with higher growth rate and higher nitrogen uptake rate. The most direct effect of employing an adequate nitrogen concentration is the increase in biomass, which involves a higher fermentation rate. However, the impact of nitrogen on fermentation rate is not exclusively due to the increase in biomass because the strain TTA, which showed the worst growth behavior, had the best fermentation activity. Some strains may adapt a strategy whereby fewer cells with higher metabolic activity are produced. Regarding the nitrogen source used, all the strains showed the better and worse fermentation performance with arginine and ammonium, respectively.

  17. Histones are required for transcription of yeast rRNA genes by RNA polymerase I.

    PubMed

    Tongaonkar, Prasad; French, Sarah L; Oakes, Melanie L; Vu, Loan; Schneider, David A; Beyer, Ann L; Nomura, Masayasu

    2005-07-19

    Nucleosomes and their histone components have generally been recognized to act negatively on transcription. However, purified upstream activating factor (UAF), a transcription initiation factor required for RNA polymerase (Pol) I transcription in Saccharomyces cerevisiae, contains histones H3 and H4 and four nonhistone protein subunits. Other studies have shown that histones H3 and H4 are associated with actively transcribed rRNA genes. To examine their functional role in Pol I transcription, we constructed yeast strains in which synthesis of H3 is achieved from the glucose-repressible GAL10 promoter. We found that partial depletion of H3 (approximately 50% depletion) resulted in a strong inhibition (>80%) of Pol I transcription. A combination of biochemical analysis and electron microscopic (EM) analysis of Miller chromatin spreads indicated that initiation and elongation steps and rRNA processing were compromised upon histone depletion. A clear decrease in relative amounts of UAF, presumably caused by reduced stability, was also observed under the conditions of H3 depletion. Therefore, the observed inhibition of initiation can be explained, in part, by the decrease in UAF concentration. In addition, the EM results suggested that the defects in rRNA transcript elongation and processing may be a result of loss of histones from rRNA genes rather than (or in addition to) an indirect consequence of effects of histone depletion on expression of other genes. Thus, these results show functional importance of histones associated with actively transcribed rRNA genes.

  18. Coordinated Spindle Assembly and Orientation Requires Clb5p-Dependent Kinase in Budding Yeast

    PubMed Central

    Segal, Marisa; Clarke, Duncan J.; Maddox, Paul; Salmon, E.D.; Bloom, Kerry; Reed, Steven I.

    2000-01-01

    The orientation of the mitotic spindle along a polarity axis is critical in asymmetric cell divisions. In the budding yeast, Saccharomyces cerevisiae, loss of the S-phase B-type cyclin Clb5p under conditions of limited cyclin-dependent kinase activity (cdc28-4 clb5Δ cells) causes a spindle positioning defect that results in an undivided nucleus entering the bud. Based on time-lapse digital imaging microscopy of microtubules labeled with green fluorescent protein fusions to either tubulin or dynein, we observed that the asymmetric behavior of the spindle pole bodies during spindle assembly was lost in the cdc28-4 clb5Δ cells. As soon as a spindle formed, both poles were equally likely to interact with the bud cell cortex. Persistent dynamic interactions with the bud ultimately led to spindle translocation across the bud neck. Thus, the mutant failed to assign one spindle pole body the task of organizing astral microtubules towards the mother cell. Our data suggest that Clb5p-associated kinase is required to confer mother-bound behavior to one pole in order to establish correct spindle polarity. In contrast, B-type cyclins, Clb3p and Clb4p, though partially redundant with Clb5p for an early role in spindle morphogenesis, preferentially promote spindle assembly. PMID:10662771

  19. Components required for cytokinesis are important for bud site selection in yeast

    PubMed Central

    1993-01-01

    Polarized cell division is a fundamental process that occurs in a variety of organisms; it is responsible for the proper positioning of daughter cells and the correct segregation of cytoplasmic components. The SPA2 gene of yeast encodes a nonessential protein that localizes to sites of cell growth and to the site of cytokinesis. spa2 mutants exhibit slightly altered budding patterns. In this report, a genetic screen was used to isolate a novel ochre allele of CDC10, cdc10-10; strains containing this mutation require the SPA2 gene for growth. CDC10 encodes a conserved potential GTP-binding protein that previously has been shown to localize to the bud neck and to be important for cytokinesis. The genetic interaction of cdc10-10 and spa2 suggests a role for SPA2 in cytokinesis. Most importantly, strains that contain a cdc10-10 mutation and those containing mutations affecting other putative neck filament proteins do not form buds at their normal proximal location. The finding that a component involved in cytokinesis is also important in bud site selection provides strong evidence for the cytokinesis tag model; i.e., critical components at the site of cytokinesis are involved in determining the next site of polarized growth and division. PMID:8320260

  20. Constitutive turnover of histone H2A.Z at yeast promoters requires the preinitiation complex

    PubMed Central

    Tramantano, Michael; Sun, Lu; Au, Christy; Labuz, Daniel; Liu, Zhimin; Chou, Mindy; Shen, Chen; Luk, Ed

    2016-01-01

    The assembly of the preinitiation complex (PIC) occurs upstream of the +1 nucleosome which, in yeast, obstructs the transcription start site and is frequently assembled with the histone variant H2A.Z. To understand the contribution of the transcription machinery in the disassembly of the +1 H2A.Z nucleosome, conditional mutants were used to block PIC assembly. A quantitative ChIP-seq approach, which allows detection of global occupancy change, was employed to measure H2A.Z occupancy. Blocking PIC assembly resulted in promoter-specific H2A.Z accumulation, indicating that the PIC is required to evict H2A.Z. By contrast, H2A.Z eviction was unaffected upon depletion of INO80, a remodeler previously reported to displace nucleosomal H2A.Z. Robust PIC-dependent H2A.Z eviction was observed at active and infrequently transcribed genes, indicating that constitutive H2A.Z turnover is a general phenomenon. Finally, sites with strong H2A.Z turnover precisely mark transcript starts, providing a new metric for identifying cryptic and alternative sites of initiation. DOI: http://dx.doi.org/10.7554/eLife.14243.001 PMID:27438412

  1. Membrane fission reactions of the mammalian ESCRT pathway.

    PubMed

    McCullough, John; Colf, Leremy A; Sundquist, Wesley I

    2013-01-01

    The endosomal sorting complexes required for transport (ESCRT) pathway was initially defined in yeast genetic screens that identified the factors necessary to sort membrane proteins into intraluminal endosomal vesicles. Subsequent studies have revealed that the mammalian ESCRT pathway also functions in a series of other key cellular processes, including formation of extracellular microvesicles, enveloped virus budding, and the abscission stage of cytokinesis. The core ESCRT machinery comprises Bro1 family proteins and ESCRT-I, ESCRT-II, ESCRT-III, and VPS4 complexes. Site-specific adaptors recruit these soluble factors to assemble on different cellular membranes, where they carry out membrane fission reactions. ESCRT-III proteins form filaments that draw membranes together from the cytoplasmic face, and mechanistic models have been advanced to explain how ESCRT-III filaments and the VPS4 ATPase can work together to catalyze membrane fission.

  2. Membrane Fission Reactions of the Mammalian ESCRT Pathway

    PubMed Central

    McCullough, John; Colf, Leremy A.; Sundquist, Wesley I.

    2014-01-01

    The endosomal sorting complexes required for transport (ESCRT) pathway was initially defined in yeast genetic screens that identified the factors necessary to sort membrane proteins into intraluminal endosomal vesicles. Subsequent studies have revealed that the mammalian ESCRT pathway also functions in a series of other key cellular processes, including formation of extracellular microvesicles, enveloped virus budding, and the abscission stage of cytokinesis. The core ESCRT machinery comprises Bro1 family proteins and ESCRT-I, ESCRT-II, ESCRT-III, and VPS4. Site-specific adaptors recruit these soluble factors to assemble on different cellular membranes, where they carry out membrane fission reactions. ESCRT-III proteins form filaments that draw membranes together from the cytoplasmic face, and mechanistic models have been advanced to explain how ESCRT-III filaments and the VPS4 ATPase can work together to catalyze membrane fission. PMID:23527693

  3. Benchmarking nuclear fission theory

    SciTech Connect

    Bertsch, G. F.; Loveland, W.; Nazarewicz, W.; Talou, P.

    2015-05-14

    We suggest a small set of fission observables to be used as test cases for validation of theoretical calculations. Thus, the purpose is to provide common data to facilitate the comparison of different fission theories and models. The proposed observables are chosen from fission barriers, spontaneous fission lifetimes, fission yield characteristics, and fission isomer excitation energies.

  4. Deletion of btn1, an orthologue of CLN3, increases glycolysis and perturbs amino acid metabolism in the fission yeast model of Batten disease.

    PubMed

    Pears, Michael R; Codlin, Sandra; Haines, Rebecca L; White, Ian J; Mortishire-Smith, Russell J; Mole, Sara E; Griffin, Julian L

    2010-06-01

    The neuronal ceroid lipofuscinoses (NCLs) constitute a group of autosomal recessive neurodegenerative diseases affecting children. To date, the disease pathogenesis remains unknown, although the role of lysosomal impairment is widely recognized across the different diseases. Recently, the creation of simple models of juvenile NCL (Batten disease) has provided additional insights into the disease mechanism at the molecular level. We report defects in metabolism identified in the Schizosacchromyces pombe yeast model, where btn1, the orthologue of CLN3, has been deleted, using a metabolomics approach based on high resolution 1H and 13C NMR spectroscopy. Such changes represent the first documented metabolic changes associated with deletion of btn1. A decrease in extracellular glucose and increases in the concentration of extracellular ethanol and alanine labelling demonstrate increased glycolytic flux that may arise from vacuolar impairment, whilst amino acid changes were detected which were also in accordance with defective vacuolar functionality. That these changes were detected using a metabolomic based approach advocates its use to further analyse other yeast models of human disease to better understand the function of orthologue genes.

  5. The interaction between the yeast telomerase RNA and the Est1 protein requires three structural elements.

    PubMed

    Lubin, Johnathan W; Tucey, Timothy M; Lundblad, Victoria

    2012-09-01

    In the budding yeast Saccharomyces cerevisiae, the telomerase enzyme is composed of a 1.3-kb TLC1 RNA that forms a complex with Est2 (the catalytic subunit) and two regulatory proteins, Est1 and Est3. Previous work has identified a conserved 5-nt bulge, present in a long helical arm of TLC1, which mediates binding of Est1 to TLC1. However, increased expression of Est1 can bypass the consequences of removal of this RNA bulge, indicating that there are additional binding site(s) for Est1 on TLC1. We report here that a conserved single-stranded internal loop immediately adjacent to the bulge is also required for the Est1-RNA interaction; furthermore, a TLC1 variant that lacks this internal loop but retains the bulge cannot be suppressed by Est1 overexpression, arguing that the internal loop may be a more critical element for Est1 binding. An additional structural feature consisting of a single-stranded region at the base of the helix containing the bulge and internal loop also contributes to recognition of TLC1 by Est1, potentially by providing flexibility to this helical arm. Association of Est1 with each of these TLC1 motifs was assessed using a highly sensitive biochemical assay that simultaneously monitors the relative levels of the Est1 and Est2 proteins in the telomerase complex. The identification of three elements of TLC1 that are required for Est1 association provides a detailed view of this particular protein-RNA interaction.

  6. A Role for Fis1 in Both Mitochondrial and Peroxisomal Fission in Mammalian CellsD⃞

    PubMed Central

    Koch, Annett; Yoon, Yisang; Bonekamp, Nina A.; McNiven, Mark A.; Schrader, Michael

    2005-01-01

    The mammalian dynamin-like protein DLP1/Drp1 has been shown to mediate both mitochondrial and peroxisomal fission. In this study, we have examined whether hFis1, a mammalian homologue of yeast Fis1, which has been shown to participate in mitochondrial fission by an interaction with DLP1/Drp1, is also involved in peroxisomal growth and division. We show that hFis1 localizes to peroxisomes in addition to mitochondria. Through differential tagging and deletion experiments, we demonstrate that the transmembrane domain and the short C-terminal tail of hFis1 is both necessary and sufficient for its targeting to peroxisomes and mitochondria, whereas the N-terminal region is required for organelle fission. hFis1 promotes peroxisome division upon ectopic expression, whereas silencing of Fis1 by small interfering RNA inhibited fission and caused tubulation of peroxisomes. These findings provide the first evidence for a role of Fis1 in peroxisomal fission and suggest that the fission machinery of mitochondria and peroxisomes shares common components. PMID:16107562

  7. Fission Spectrum

    DOE R&D Accomplishments Database

    Bloch, F.; Staub, H.

    1943-08-18

    Measurements of the spectrum of the fission neutrons of 25 are described, in which the energy of the neutrons is determined from the ionization produced by individual hydrogen recoils. The slow neutrons producing fission are obtained by slowing down the fast neutrons from the Be-D reaction of the Stanford cyclotron. In order to distinguish between fission neutrons and the remaining fast cyclotron neutrons both the cyclotron current and the pusle amplifier are modulated. A hollow neutron container, in which slow neutrons have a lifetime of about 2 milliseconds, avoids the use of large distances. This method results in much higher intensities than the usual modulation arrangement. The results show a continuous distribution of neutrons with a rather wide maximum at about 0.8 MV falling off to half of its maximum value at 2.0 MV. The total number of netrons is determined by comparison with the number of fission fragments. The result seems to indicate that only about 30% of the neutrons have energies below .8 MV. Various tests are described which were performed in order to rule out modification of the spectrum by inelastic scattering. Decl. May 4, 1951

  8. Bimodal fission

    SciTech Connect

    Hulet, E.K.

    1989-04-19

    In recent years, we have measured the mass and kinetic-energy distributions from the spontaneous fission of /sup 258/Fm, /sup 259/Md, /sup 260/Md, /sup 258/No, /sup 262/No, and /sup 260/(104). All are observed to fission with a symmetrical division of mass, whereas the total-kinetic-energy (TKE) distributions strongly deviated from the Gaussian shape characteristically found in the fission of all other actinides. When the TKE distributions are resolved into two Gaussians the constituent peaks lie near 200 and near 233 MeV. We conclude two modes or bimodal fission is occurring in five of the six nuclides studied. Both modes are possible in the same nuclides, but one generally predominates. We also conclude the low-energy but mass-symmetrical mode is likely to extend to far heavier nuclei; while the high-energy mode will be restricted to a smaller region, a region of nuclei defined by the proximity of the fragments to the strong neutron and proton shells in /sup 132/Sn. 16 refs., 7 figs., 1 tab.

  9. The involvement of ATP sulfurylase in Se(VI) and Cr(VI) reduction processes in the fission yeast Schizosaccharomyces pombe.

    PubMed

    Raspor, P; Fujs, S; Banszky, L; Maraz, A; Batic, M

    2003-11-01

    The response of Schizosaccharomyces pombe towards the oxyanions selenate [Se(VI)] and dichromate [Cr(VI)] was investigated in order to establish the involvement of the yeast ATP sulfurylase in their reduction. An ATP sulfurylase-defective/selenate-resistant mutant of S. pombe (B-579 Se(R) -2) and an ATP sulfurylase-active/selenate-sensitive strain of S. pombe (B-579 Se(S)) were included in this study. The inhibitory effect of Se(VI) and Cr(VI) oxyanions on growth and bioaccumulation was measured. The sensitive strain showed natural sensitivity to selenate while the resistant mutant tolerated a 100-fold higher concentration of selenate. These results indicate that selenate toxicity to microorganisms is connected with the reduction of selenate to selenite. Both strains showed similar sensitivity to Cr(VI) and in this study there was no evidence that ATP sulfurylase participates in the reduction process of Cr(VI).

  10. Minimum length of direct repeat sequences required for efficient homologous recombination induced by zinc finger nuclease in yeast.

    PubMed

    Ren, ChongHua; Yan, Qiang; Zhang, ZhiYing

    2014-10-01

    Zinc finger nuclease (ZFN) technology is a powerful molecular tool for targeted genome modifications and genetic engineering. However, screening for specific ZFs and validation of ZFN activity are labor intensive and time consuming. We previously designed a yeast-based ZFN screening and validation system by inserting a ZFN binding site flanked by a 164 bp direct repeat sequence into the middle of a Gal4 transcription factor, disrupting the open reading frame of the yeast Gal4 gene. Expression of the ZFN causes a double stranded break at its binding site, which promotes the cellular DNA repair system to restore expression of a functional Gal transcriptional factor via homologous recombination. Expression of Gal4 transcription factor leads to activation of three reporter genes in an AH109 yeast two-hybrid strain. However, the 164 bp direct repeat appears to generate spontaneous homologous recombination frequently, resulting in many false positive ZFNs. To overcome this, a series of DNA fragments of various lengths from 10 to 150 bp with 10 bp increase each and 164 bp direct repeats flanking the ZFN binding site were designed and constructed. The results demonstrated that the minimum length required for ZFN-induced homologous recombination was 30 bp, which almost eliminated spontaneous recombination. Using the 30 bp direct repeat sequence, ZFN could efficiently induce homologous recombination, while false positive ZFNs resulting from spontaneous homologous recombination were minimized. Thus, this study provided a simple, fast and sensitive ZFN screening and activity validation system in yeast.

  11. Yeast general transcription factor GFI: sequence requirements for binding to DNA and evolutionary conservation.

    PubMed Central

    Dorsman, J C; van Heeswijk, W C; Grivell, L A

    1990-01-01

    GFI is an abundant DNA binding protein in the yeast S. cerevisiae. The protein binds to specific sequences in both ARS elements and the upstream regions of a large number of genes and is likely to play an important role in yeast cell growth. To get insight into the relative strength of the various GFI-DNA binding sites within the yeast genome, we have determined dissociation rates for several GFI-DNA complexes and found them to vary over a 70-fold range. Strong binding sites for GFI are present in the upstream activating sequences of the gene encoding the 40 kDa subunit II of the QH2:cytochrome c reductase, the gene encoding ribosomal protein S33 and in the intron of the actin gene. The binding site in the ARS1-TRP1 region is of intermediate strength. All strong binding sites conform to the sequence 5' RTCRYYYNNNACG-3'. Modification interference experiments and studies with mutant binding sites indicate that critical bases for GFI recognition are within the two elements of the consensus DNA recognition sequence. Proteins with the DNA binding specificities of GFI and GFII can also be detected in the yeast K. lactis, suggesting evolutionary conservation of at least the respective DNA-binding domains in both yeasts. Images PMID:2187179

  12. Fission modelling with FIFRELIN

    NASA Astrophysics Data System (ADS)

    Litaize, Olivier; Serot, Olivier; Berge, Léonie

    2015-12-01

    The nuclear fission process gives rise to the formation of fission fragments and emission of particles (n,γ , e-) . The particle emission from fragments can be prompt and delayed. We present here the methods used in the FIFRELIN code, which simulates the prompt component of the de-excitation process. The methods are based on phenomenological models associated with macroscopic and/or microscopic ingredients. Input data can be provided by experiment as well as by theory. The fission fragment de-excitation can be performed within Weisskopf (uncoupled neutron and gamma emission) or a Hauser-Feshbach (coupled neutron/gamma emission) statistical theory. We usually consider five free parameters that cannot be provided by theory or experiments in order to describe the initial distributions required by the code. In a first step this set of parameters is chosen to reproduce a very limited set of target observables. In a second step we can increase the statistics to predict all other fission observables such as prompt neutron, gamma and conversion electron spectra but also their distributions as a function of any kind of parameters such as, for instance, the neutron, gamma and electron number distributions, the average prompt neutron multiplicity as a function of fission fragment mass, charge or kinetic energy, and so on. Several results related to different fissioning systems are presented in this work. The goal in the next decade will be i) to replace some macroscopic ingredients or phenomenological models by microscopic calculations when available and reliable, ii) to be a support for experimentalists in the design of detection systems or in the prediction of necessary beam time or count rates with associated statistics when measuring fragments and emitted particle in coincidence iii) extend the model to be able to run a calculation when no experimental input data are available, iv) account for multiple chance fission and gamma emission before fission, v) account for the

  13. Torin1-mediated TOR kinase inhibition reduces Wee1 levels and advances mitotic commitment in fission yeast and HeLa cells.

    PubMed

    Atkin, Jane; Halova, Lenka; Ferguson, Jennifer; Hitchin, James R; Lichawska-Cieslar, Agata; Jordan, Allan M; Pines, Jonathon; Wellbrock, Claudia; Petersen, Janni

    2014-03-15

    The target of rapamycin (TOR) kinase regulates cell growth and division. Rapamycin only inhibits a subset of TOR activities. Here we show that in contrast to the mild impact of rapamycin on cell division, blocking the catalytic site of TOR with the Torin1 inhibitor completely arrests growth without cell death in Schizosaccharomyces pombe. A mutation of the Tor2 glycine residue (G2040D) that lies adjacent to the key Torin-interacting tryptophan provides Torin1 resistance, confirming the specificity of Torin1 for TOR. Using this mutation, we show that Torin1 advanced mitotic onset before inducing growth arrest. In contrast to TOR inhibition with rapamycin, regulation by either Wee1 or Cdc25 was sufficient for this Torin1-induced advanced mitosis. Torin1 promoted a Polo and Cdr2 kinase-controlled drop in Wee1 levels. Experiments in human cell lines recapitulated these yeast observations: mammalian TOR (mTOR) was inhibited by Torin1, Wee1 levels declined and mitotic commitment was advanced in HeLa cells. Thus, the regulation of the mitotic inhibitor Wee1 by TOR signalling is a conserved mechanism that helps to couple cell cycle and growth controls.

  14. A Conserved Non-Canonical Docking Mechanism Regulates the Binding of Dual Specificity Phosphatases to Cell Integrity Mitogen-Activated Protein Kinases (MAPKs) in Budding and Fission Yeasts

    PubMed Central

    Sacristán-Reviriego, Almudena; Madrid, Marisa; Cansado, José; Martín, Humberto; Molina, María

    2014-01-01

    Dual-specificity MAPK phosphatases (MKPs) are essential for the negative regulation of MAPK pathways. Similar to other MAPK-interacting proteins, most MKPs bind MAPKs through specific docking domains known as D-motifs. However, we found that the Saccharomyces cerevisiae MKP Msg5 binds the MAPK Slt2 within the cell wall integrity (CWI) pathway through a distinct motif (IYT). Here, we demonstrate that the IYT motif mediates binding of the Msg5 paralogue Sdp1 to Slt2 as well as of the MKP Pmp1 to its CWI MAPK counterpart Pmk1 in the evolutionarily distant yeast Schizosaccharomyces pombe. As a consequence, removal of the IYT site in Msg5, Sdp1 and Pmp1 reduces MAPK trapping caused by the overexpression of catalytically inactive versions of these phosphatases. Accordingly, an intact IYT site is necessary for inactive Sdp1 to prevent nuclear accumulation of Slt2. We also show that both Ile and Tyr but not Thr are essential for the functionality of the IYT motif. These results provide mechanistic insight into MKP-MAPK interplay and stress the relevance of this conserved non-canonical docking site in the regulation of the CWI pathway in fungi. PMID:24465549

  15. Fission meter

    DOEpatents

    Rowland, Mark S [Alamo, CA; Snyderman, Neal J [Berkeley, CA

    2012-04-10

    A neutron detector system for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly into information that a first responder can use to discriminate materials. The system comprises counting neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source.

  16. Yeast acetic acid-induced programmed cell death can occur without cytochrome c release which requires metacaspase YCA1.

    PubMed

    Guaragnella, Nicoletta; Bobba, Antonella; Passarella, Salvatore; Marra, Ersilia; Giannattasio, Sergio

    2010-01-04

    To investigate the role of cytochrome c (cyt c) release in yeast acetic acid-induced programmed cell death (AA-PCD), wild type (wt) and cells lacking metacaspase (Deltayca1), cytochrome c (Deltacyc1,7) and both (Deltacyc1,7Deltayca1) were compared for AA-PCD occurrence, hydrogen peroxide (H(2)O(2)) production and caspase activity. AA-PCD occurs in Deltacyc1,7 and Deltacyc1,7Deltayca1 cells slower than in wt, but similar to that in Deltayca1 cells, in which no cytochrome c release occurs. Both H(2)O(2) production and caspase activation occur in these cells with early and extra-activation in Deltacyc1,7 cells. We conclude that alternative death pathways can be activated in yeast AA-PCD, one dependent on cyt c release, which requires YCA1, and the other(s) independent on it.

  17. Geranylgeranyl diphosphate synthase in fission yeast is a heteromer of farnesyl diphosphate synthase (FPS), Fps1, and an FPS-like protein, Spo9, essential for sporulation.

    PubMed

    Ye, Yanfang; Fujii, Makoto; Hirata, Aiko; Kawamukai, Makoto; Shimoda, Chikashi; Nakamura, Taro

    2007-09-01

    Both farnesyl diphosphate synthase (FPS) and geranylgeranyl diphosphate synthase (GGPS) are key enzymes in the synthesis of various isoprenoid-containing compounds and proteins. Here, we describe two novel Schizosaccharomyces pombe genes, fps1(+) and spo9(+), whose products are similar to FPS in primary structure, but whose functions differ from one another. Fps1 is essential for vegetative growth, whereas, a spo9 null mutant exhibits temperature-sensitive growth. Expression of fps1(+), but not spo9(+), suppresses the lethality of a Saccharomyces cerevisiae FPS-deficient mutant and also restores ubiquinone synthesis in an Escherichia coli ispA mutant, which lacks FPS activity, indicating that S. pombe Fps1 in fact functions as an FPS. In contrast to a typical FPS gene, no apparent GGPS homologues have been found in the S. pombe genome. Interestingly, although neither fps1(+) nor spo9(+) expression alone in E. coli confers clear GGPS activity, coexpression of both genes induces such activity. Moreover, the GGPS activity is significantly reduced in the spo9 mutant. In addition, the spo9 mutation perturbs the membrane association of a geranylgeranylated protein, but not that of a farnesylated protein. Yeast two-hybrid and coimmunoprecipitation analyses indicate that Fps1 and Spo9 physically interact. Thus, neither Fps1 nor Spo9 alone functions as a GGPS, but the two proteins together form a complex with GGPS activity. Because spo9 was originally identified as a sporulation-deficient mutant, we show here that expansion of the forespore membrane is severely inhibited in spo9Delta cells. Electron microscopy revealed significant accumulation membrane vesicles in spo9Delta cells. We suggest that lack of GGPS activity in a spo9 mutant results in impaired protein prenylation in certain proteins responsible for secretory function, thereby inhibiting forespore membrane formation.

  18. Fission Yeast Apc15 Stabilizes MCC-Cdc20-APC/C Complexes, Ensuring Efficient Cdc20 Ubiquitination and Checkpoint Arrest.

    PubMed

    May, Karen M; Paldi, Flora; Hardwick, Kevin G

    2017-03-28

    During mitosis, cells must segregate the replicated copies of their genome to their daughter cells with extremely high fidelity. Segregation errors lead to an abnormal chromosome number (aneuploidy), which typically results in disease or cell death [1]. Chromosome segregation and anaphase onset are initiated through the action of the multi-subunit E3 ubiquitin ligase known as the anaphase-promoting complex or cyclosome (APC/C [2]). The APC/C is inhibited by the spindle checkpoint in the presence of kinetochore attachment defects [3, 4]. Here we demonstrate that two non-essential APC/C subunits (Apc14 and Apc15) regulate association of spindle checkpoint proteins, in the form of the mitotic checkpoint complex (MCC), with the APC/C. apc14Δ mutants display increased MCC association with the APC/C and are unable to silence the checkpoint efficiently. Conversely, apc15Δ mutants display reduced association between the MCC and APC/C, are defective in poly-ubiquitination of Cdc20, and are checkpoint defective. In vitro reconstitution studies have shown that human MCC-APC/C can contain two molecules of Cdc20 [5-7]. Using a yeast strain expressing two Cdc20 genes with different epitope tags, we show by co-immunoprecipitation that this is true in vivo. MCC binding to the second molecule of Cdc20 is mediated via the C-terminal KEN box in Mad3. Somewhat surprisingly, complexes containing both molecules of Cdc20 accumulate in apc15Δ cells, and the implications of this observation are discussed.

  19. Transcription of lncRNA prt, clustered prt RNA sites for Mmi1 binding, and RNA polymerase II CTD phospho-sites govern the repression of pho1 gene expression under phosphate-replete conditions in fission yeast.

    PubMed

    Chatterjee, Debashree; Sanchez, Ana M; Goldgur, Yehuda; Shuman, Stewart; Schwer, Beate

    2016-07-01

    Expression of fission yeast Pho1 acid phosphatase is repressed during growth in phosphate-rich medium. Repression is mediated by transcription of the prt locus upstream of pho1 to produce a long noncoding (lnc) prt RNA. Repression is also governed by RNA polymerase II CTD phosphorylation status, whereby inability to place a Ser7-PO4 mark (as in S7A) derepresses Pho1 expression, and inability to place a Thr4-PO4 mark (as in T4A) hyper-represses Pho1 in phosphate replete cells. Here we find that basal pho1 expression from the prt-pho1 locus is inversely correlated with the activity of the prt promoter, which resides in a 110-nucleotide DNA segment preceding the prt transcription start site. CTD mutations S7A and T4A had no effect on the activity of the prt promoter or the pho1 promoter, suggesting that S7A and T4A affect post-initiation events in prt lncRNA synthesis that make it less and more repressive of pho1, respectively. prt lncRNA contains clusters of DSR (determinant of selective removal) sequences recognized by the YTH-domain-containing protein Mmi1. Altering the nucleobase sequence of two DSR clusters in the prt lncRNA caused hyper-repression of pho1 in phosphate replete cells, concomitant with increased levels of the prt transcript. The isolated Mmi1 YTH domain binds to RNAs with single or tandem DSR elements, to the latter in a noncooperative fashion. We report the 1.75 Å crystal structure of the Mmi1 YTH domain and provide evidence that Mmi1 recognizes DSR RNA via a binding mode distinct from that of structurally homologous YTH proteins that recognize m(6)A-modified RNA.

  20. Assessing the mechanisms responsible for differences between nitrogen requirements of saccharomyces cerevisiae wine yeasts in alcoholic fermentation.

    PubMed

    Brice, Claire; Sanchez, Isabelle; Tesnière, Catherine; Blondin, Bruno

    2014-02-01

    Nitrogen is an essential nutrient for Saccharomyces cerevisiae wine yeasts during alcoholic fermentation, and its abundance determines the fermentation rate and duration. The capacity to ferment under conditions of nitrogen deficiency differs between yeasts. A characterization of the nitrogen requirements of a set of 23 strains revealed large differences in their fermentative performances under nitrogen deficiency, and these differences reflect the nitrogen requirements of the strains. We selected and compared two groups of strains, one with low nitrogen requirements (LNRs) and the other with high nitrogen requirements (HNRs). A comparison of various physiological traits indicated that the differences are not related to the ability to store nitrogen or the protein content. No differences in protein synthesis activity were detected between strains with different nitrogen requirements. Transcriptomic analysis revealed expression patterns specific to each of the two groups of strains, with an overexpression of stress genes in HNR strains and a stronger expression of biosynthetic genes in LNR strains. Our data suggest that differences in glycolytic flux may originate from variations in nitrogen sensing and signaling under conditions of starvation.

  1. Nuclear inner membrane fusion facilitated by yeast Jem1p is required for spindle pole body fusion but not for the first mitotic nuclear division during yeast mating.

    PubMed

    Nishikawa, Shuh-ichi; Hirata, Aiko; Endo, Toshiya

    2008-11-01

    During mating of budding yeast, Saccharomyces cerevisiae, two haploid nuclei fuse to produce a diploid nucleus. The process of nuclear fusion requires two J proteins, Jem1p in the endoplasmic reticulum (ER) lumen and Sec63p, which forms a complex with Sec71p and Sec72p, in the ER membrane. Zygotes of mutants defective in the functions of Jem1p or Sec63p contain two haploid nuclei that were closely apposed but failed to fuse. Here we analyzed the ultrastructure of nuclei in jem1 Delta and sec71 Delta mutant zygotes using electron microscope with the freeze-substituted fixation method. Three-dimensional reconstitution of nuclear structures from electron microscope serial sections revealed that Jem1p facilitates nuclear inner-membrane fusion and spindle pole body (SPB) fusion while Sec71p facilitates nuclear outer-membrane fusion. Two haploid SPBs that failed to fuse could duplicate, and mitotic nuclear division of the unfused haploid nuclei started in jem1 Delta and sec71 Delta mutant zygotes. This observation suggests that nuclear inner-membrane fusion is required for SPB fusion, but not for SPB duplication in the first mitotic cell division.

  2. Identification and characterization of a gene and protein required for glycosylation in the yeast Golgi.

    PubMed

    Devlin, C; Ballou, C E

    1990-11-01

    The MNN2 gene of Saccharomyces cerevisiae has been cloned by complementation of the mnn2 mutant phenotype scored by a change in cell surface carbohydrate structure resulting from a lack of alpha 1----2-mannose branching in the outer chain. The gene was subcloned as a 3 kb DNA fragment that integrated at the MNN2 locus, and a gene disruption yielded the mnn2 phenotype. A lacZ-MNN2 gene fusion protein, produced in Escherichia coli, was used to raise a specific antiserum that recognized a 65 kD wild-type yeast protein. This MNN2 gene product lacks N-linked carbohydrate but appears to be an integral membrane protein. Overproduction of MNN2p does not enhance the alpha 1----2-mannosyltransferase activity of yeast cells. The results suggest that MNN2p is a Golgi-associated protein that is involved in mannoprotein sorting rather than glycosylation.

  3. Balanced CoQ6 biosynthesis is required for lifespan and mitophagy in yeast

    PubMed Central

    González-Mariscal, Isabel; Martín-Montalvo, Aléjandro; Ojeda-González, Cristina; Rodríguez-Eguren, Adolfo; Gutiérrez-Ríos, Purificación; Navas, Plácido; Santos-Ocaña, Carlos

    2017-01-01

    Coenzyme Q is an essential lipid with redox capacity that is present in all organisms. In yeast its biosynthesis depends on a multiprotein complex in which Coq7 protein has both catalytic and regulatory functions. Coq7 modulates CoQ6 levels through a phosphorylation cycle, where dephosphorylation of three amino acids (Ser/Thr) by the mitochondrial phosphatase Ptc7 increases the levels of CoQ6. Here we analyzed the role of Ptc7 and the phosphorylation state of Coq7 in yeast mitochondrial function. The conversion of the three Ser/Thr to alanine led to a permanently active form of Coq7 that caused a 2.5-fold increase of CoQ6 levels, albeit decreased mitochondrial respiratory chain activity and oxidative stress resistance capacity. This resulted in an increase in endogenous ROS production and shortened the chronological life span (CLS) compared to wild type. The null PTC7 mutant (ptc7∆) strain showed a lower biosynthesis rate of CoQ6 and a significant shortening of the CLS. The reduced CLS observed in ptc7Δ was restored by the overexpression of PTC7 but not by the addition of exogenous CoQ6. Overexpression of PTC7 increased mitophagy in a wild type strain. This finding suggests an additional Ptc7 function beyond the regulation of CoQ biosynthesis. Genetic disruption of PTC7 prevented mitophagy activation in conditions of nitrogen deprivation. In brief, we show that, in yeast, Ptc7 modulates the adaptation to respiratory metabolism by dephosphorylating Coq7 to supply newly synthesized CoQ6, and by activating mitophagy to remove defective mitochondria at stationary phase, guaranteeing a proper CLS in yeast. PMID:28357388

  4. The 1p36 Tumor Suppressor KIF 1Bβ Is Required for Calcineurin Activation, Controlling Mitochondrial Fission and Apoptosis.

    PubMed

    Li, Shuijie; Fell, Stuart M; Surova, Olga; Smedler, Erik; Wallis, Karin; Chen, Zhi Xiong; Hellman, Ulf; Johnsen, John Inge; Martinsson, Tommy; Kenchappa, Rajappa S; Uhlén, Per; Kogner, Per; Schlisio, Susanne

    2016-01-25

    KIF1Bβ is a candidate 1p36 tumor suppressor that regulates apoptosis in the developing sympathetic nervous system. We found that KIF1Bβ activates the Ca(2+)-dependent phosphatase calcineurin (CN) by stabilizing the CN-calmodulin complex, relieving enzymatic autoinhibition and enabling CN substrate recognition. CN is the key mediator of cellular responses to Ca(2+) signals and its deregulation is implicated in cancer, cardiac, neurodegenerative, and immune disease. We show that KIF1Bβ affects mitochondrial dynamics through CN-dependent dephosphorylation of Dynamin-related protein 1 (DRP1), causing mitochondrial fission and apoptosis. Furthermore, KIF1Bβ actuates recognition of all known CN substrates, implying a general mechanism for KIF1Bβ in Ca(2+) signaling and how Ca(2+)-dependent signaling is executed by CN. Pathogenic KIF1Bβ mutations previously identified in neuroblastomas and pheochromocytomas all fail to activate CN or stimulate DRP1 dephosphorylation. Importantly, KIF1Bβ and DRP1 are silenced in 1p36 hemizygous-deleted neuroblastomas, indicating that deregulation of calcineurin and mitochondrial dynamics contributes to high-risk and poor-prognosis neuroblastoma.

  5. A hemi-fission intermediate links two mechanistically distinct stages of membrane fission.

    PubMed

    Mattila, Juha-Pekka; Shnyrova, Anna V; Sundborger, Anna C; Hortelano, Eva Rodriguez; Fuhrmans, Marc; Neumann, Sylvia; Müller, Marcus; Hinshaw, Jenny E; Schmid, Sandra L; Frolov, Vadim A

    2015-08-06

    Fusion and fission drive all vesicular transport. Although topologically opposite, these reactions pass through the same hemi-fusion/fission intermediate, characterized by a 'stalk' in which only the outer membrane monolayers of the two compartments have merged to form a localized non-bilayer connection. Formation of the hemi-fission intermediate requires energy input from proteins catalysing membrane remodelling; however, the relationship between protein conformational rearrangements and hemi-fusion/fission remains obscure. Here we analysed how the GTPase cycle of human dynamin 1, the prototypical membrane fission catalyst, is directly coupled to membrane remodelling. We used intramolecular chemical crosslinking to stabilize dynamin in its GDP·AlF4(-)-bound transition state. In the absence of GTP this conformer produced stable hemi-fission, but failed to progress to complete fission, even in the presence of GTP. Further analysis revealed that the pleckstrin homology domain (PHD) locked in its membrane-inserted state facilitated hemi-fission. A second mode of dynamin activity, fuelled by GTP hydrolysis, couples dynamin disassembly with cooperative diminishing of the PHD wedging, thus destabilizing the hemi-fission intermediate to complete fission. Molecular simulations corroborate the bimodal character of dynamin action and indicate radial and axial forces as dominant, although not independent, drivers of hemi-fission and fission transformations, respectively. Mirrored in the fusion reaction, the force bimodality might constitute a general paradigm for leakage-free membrane remodelling.

  6. A hemi-fission intermediate links two mechanistically distinct stages of membrane fission

    PubMed Central

    Sundborger, Anna C.; Hortelano, Eva Rodriguez; Fuhrmans, Marc; Neumann, Sylvia; Müller, Marcus; Hinshaw, Jenny E.; Schmid, Sandra L.; Frolov, Vadim A.

    2015-01-01

    Fusion and fission drive all vesicular transport. Although topologically opposite, these reactions pass through the same hemi-fusion/fission intermediate1,2, characterized by a ‘stalk’ in which only the inner monolayers of the two compartments have merged to form a localized non-bilayer connection1-3. Formation of the hemi-fission intermediate requires energy input from proteins catalyzing membrane remodeling; however the relationship between protein conformational rearrangements and hemi-fusion/fission remains obscure. Here we analyzed how the GTPase cycle of dynamin, the prototypical membrane fission catalyst4-6, is directly coupled to membrane remodeling. We used intra-molecular chemical cross-linking to stabilize dynamin in its GDP•AlF4--bound transition-state. In the absence of GTP this conformer produced stable hemi-fission, but failed to progress to complete fission, even in the presence of GTP. Further analysis revealed that the pleckstrin homology domain (PHD) locked in its membrane-inserted state facilitated hemi-fission. A second mode of dynamin activity, fueled by GTP hydrolysis, couples dynamin disassembly with cooperative diminishing of the PHD wedging, thus destabilizing the hemi-fission intermediate to complete fission. Molecular simulations corroborate the bimodal character of dynamin action and indicate radial and axial forces as dominant, although not independent drivers of hemi-fission and fission transformations, respectively. Mirrored in the fusion reaction7-8, the force bimodality might constitute a general paradigm for leakage-free membrane remodeling. PMID:26123023

  7. Functional conservation of coenzyme Q biosynthetic genes among yeasts, plants, and humans.

    PubMed

    Hayashi, Kazuhiro; Ogiyama, Yuki; Yokomi, Kazumasa; Nakagawa, Tsuyoshi; Kaino, Tomohiro; Kawamukai, Makoto

    2014-01-01

    Coenzyme Q (CoQ) is an essential factor for aerobic growth and oxidative phosphorylation in the electron transport system. The biosynthetic pathway for CoQ has been proposed mainly from biochemical and genetic analyses of Escherichia coli and Saccharomyces cerevisiae; however, the biosynthetic pathway in higher eukaryotes has been explored in only a limited number of studies. We previously reported the roles of several genes involved in CoQ synthesis in the fission yeast Schizosaccharomyces pombe. Here, we expand these findings by identifying ten genes (dps1, dlp1, ppt1, and coq3-9) that are required for CoQ synthesis. CoQ10-deficient S. pombe coq deletion strains were generated and characterized. All mutant fission yeast strains were sensitive to oxidative stress, produced a large amount of sulfide, required an antioxidant to grow on minimal medium, and did not survive at the stationary phase. To compare the biosynthetic pathway of CoQ in fission yeast with that in higher eukaryotes, the ability of CoQ biosynthetic genes from humans and plants (Arabidopsis thaliana) to functionally complement the S. pombe coq deletion strains was determined. With the exception of COQ9, expression of all other human and plant COQ genes recovered CoQ10 production by the fission yeast coq deletion strains, although the addition of a mitochondrial targeting sequence was required for human COQ3 and COQ7, as well as A. thaliana COQ6. In summary, this study describes the functional conservation of CoQ biosynthetic genes between yeasts, humans, and plants.

  8. Nuclear import of the yeast hexokinase 2 protein requires α/β-importin-dependent pathway.

    PubMed

    Peláez, Rafael; Fernández-García, Paula; Herrero, Pilar; Moreno, Fernando

    2012-01-27

    Hexokinase 2 (Hxk2) from Saccharomyces cerevisiae was one of the first metabolic enzymes described as a multifunctional protein. Hxk2 has a double subcellular localization and role, it functions as a glycolytic enzyme in the cytoplasm and as a regulator of gene transcription of several Mig1-regulated genes in the nucleus. However, the mechanism by which Hxk2 enters in the nucleus was unknown until now. Here, we report that the Hxk2 protein is an import substrate of the carriers α-importin (Kap60 in yeast) and β-importin (Kap95 in yeast). We also show that the Hxk2 nuclear import and the binding of Hxk2 with Kap60 are glucose-dependent and involve one lysine-rich nuclear localization sequence (NLS), located between lysine 6 and lysine 12. Moreover, Kap95 facilitates the recognition of the Hxk2 NLS1 motif by Kap60 and both importins are essential for Hxk2 nuclear import. It is also demonstrated that Hxk2 nuclear import and its binding to Kap95 and Kap60 depend on the Gsp1-GTP/GDP protein levels. Thus, our study uncovers Hxk2 as a new cargo for the α/β-importin pathway of S. cerevisiae.

  9. Fission Yeast SCYL1/2 Homologue Ppk32: A Novel Regulator of TOR Signalling That Governs Survival during Brefeldin A Induced Stress to Protein Trafficking.

    PubMed

    Kowalczyk, Katarzyna M; Petersen, Janni

    2016-05-01

    Target of Rapamycin (TOR) signalling allows eukaryotic cells to adjust cell growth in response to changes in their nutritional and environmental context. The two distinct TOR complexes (TORC1/2) localise to the cell's internal membrane compartments; the endoplasmic reticulum (ER), Golgi apparatus and lysosomes/vacuoles. Here, we show that Ppk32, a SCYL family pseudo-kinase, is a novel regulator of TOR signalling. The absence of ppk32 expression confers resistance to TOR inhibition. Ppk32 inhibition of TORC1 is critical for cell survival following Brefeldin A (BFA) induced stress. Treatment of wild type cells with either the TORC1 specific inhibitor rapamycin or the general TOR inhibitor Torin1 confirmed that a reduction in TORC1 activity promoted recovery from BFA induced stress. Phosphorylation of Ppk32 on two residues that are conserved within the SCYL pseudo-kinase family are required for this TOR inhibition. Phosphorylation on these sites controls Ppk32 protein levels and sensitivity to BFA. BFA induced ER stress does not account for the response to BFA that we report here, however BFA is also known to induce Golgi stress and impair traffic to lysosomes. In summary, Ppk32 reduce TOR signalling in response to BFA induced stress to support cell survival.

  10. Fission yeast decaprenyl diphosphate synthase consists of Dps1 and the newly characterized Dlp1 protein in a novel heterotetrameric structure.

    PubMed

    Saiki, Ryoichi; Nagata, Ai; Uchida, Naonori; Kainou, Tomohiro; Matsuda, Hideyuki; Kawamukai, Makoto

    2003-10-01

    The analysis of the structure and function of long chain-producing polyprenyl diphosphate synthase, which synthesizes the side chain of ubiquinone, has largely focused on the prokaryotic enzymes, and little is known about the eukaryotic counterparts. Here we show that decaprenyl diphosphate synthase from Schizosaccharomyces pombe is comprised of a novel protein named Dlp1 acting in partnership with Dps1. Dps1 is highly homologous to other prenyl diphosphate synthases but Dlp1 shares only weak homology with Dps1. We showed that the two proteins must be present simultaneously in Escherichia coli transformants before ubiquinone-10, which is produced by S. pombe but not by E. coli, is generated. Furthermore, the two proteins were shown to form a heterotetrameric complex. This is unlike the prokaryotic counterparts, which are homodimers. The deletion mutant of dlp1 lacked the enzymatic activity of decaprenyl diphosphate synthase, did not produce ubiquinone-10 and had the typical ubiquinone-deficient S. pombe phenotypes, namely hypersensitivity to hydrogen peroxide, the need for antioxidants for growth on minimal medium and an elevated production of H2S. Both the dps1 (formerly dps) and dlp1 mutants could generate ubiquinone when they were transformed with a bacterial decaprenyl diphosphate synthase, which functions in its host as a homodimer. This indicates that both dps1 and dlp1 are required for the S. pombe enzymatic activity. Thus, decaprenyl diphosphate from a eukaryotic origin has a heterotetrameric structure that is not found in prokaryotes.

  11. A Cascade of Iron-Containing Proteins Governs the Genetic Iron Starvation Response to Promote Iron Uptake and Inhibit Iron Storage in Fission Yeast

    PubMed Central

    Carmona, Mercè; Ayté, José; Hidalgo, Elena

    2015-01-01

    Iron is an essential cofactor, but it is also toxic at high levels. In Schizosaccharomyces pombe, the sensor glutaredoxin Grx4 guides the activity of the repressors Php4 and Fep1 to mediate a complex transcriptional response to iron deprivation: activation of Php4 and inactivation of Fep1 leads to inhibition of iron usage/storage, and to promotion of iron import, respectively. However, the molecular events ruling the activity of this double-branched pathway remained elusive. We show here that Grx4 incorporates a glutathione-containing iron-sulfur cluster, alone or forming a heterodimer with the BolA-like protein Fra2. Our genetic study demonstrates that Grx4-Fra2, but not Fep1 nor Php4, participates not only in iron starvation signaling but also in iron-related aerobic metabolism. Iron-containing Grx4 binds and inactivates the Php4 repressor; upon iron deprivation, the cluster in Grx4 is probably disassembled, the proteins dissociate, and Php4 accumulates at the nucleus and represses iron consumption genes. Fep1 is also an iron-containing protein, and the tightly bound iron is required for transcriptional repression. Our data suggest that the cluster-containing Grx4-Fra2 heterodimer constitutively binds to Fep1, and upon iron deprivation the disassembly of the iron cluster between Grx4 and Fra2 promotes reverse metal transfer from Fep1 to Grx4-Fra2, and de-repression of iron-import genes. Our genetic and biochemical study demonstrates that the glutaredoxin Grx4 independently governs the Php4 and Fep1 repressors through metal transfer. Whereas iron loss from Grx4 seems to be sufficient to release Php4 and allow its nuclear accumulation, total or partial disassembly of the Grx4-Fra2 cluster actively participates in iron-containing Fep1 activation by sequestering its iron and decreasing its interaction with promoters. PMID:25806539

  12. Yeast Gdt1 is a Golgi-localized calcium transporter required for stress-induced calcium signaling and protein glycosylation

    PubMed Central

    Colinet, Anne-Sophie; Sengottaiyan, Palanivelu; Deschamps, Antoine; Colsoul, Marie-Lise; Thines, Louise; Demaegd, Didier; Duchêne, Marie-Clémence; Foulquier, François; Hols, Pascal; Morsomme, Pierre

    2016-01-01

    Calcium signaling depends on a tightly regulated set of pumps, exchangers, and channels that are responsible for controlling calcium fluxes between the different subcellular compartments of the eukaryotic cell. We have recently reported that two members of the highly-conserved UPF0016 family, human TMEM165 and budding yeast Gdt1p, are functionally related and might form a new group of Golgi-localized cation/Ca2+ exchangers. Defects in the human protein TMEM165 are known to cause a subtype of Congenital Disorders of Glycosylation. Using an assay based on the heterologous expression of GDT1 in the bacterium Lactococcus lactis, we demonstrated the calcium transport activity of Gdt1p. We observed a Ca2+ uptake activity in cells expressing GDT1, which was dependent on the external pH, indicating that Gdt1p may act as a Ca2+/H+ antiporter. In yeast, we found that Gdt1p controls cellular calcium stores and plays a major role in the calcium response induced by osmotic shock when the Golgi calcium pump, Pmr1p, is absent. Importantly, we also discovered that, in the presence of a high concentration of external calcium, Gdt1p is required for glycosylation of carboxypeptidase Y and the glucanosyltransferase Gas1p. Finally we showed that glycosylation process is restored by providing more Mn2+ to the cells. PMID:27075443

  13. Characterization of two genes required for the position-effect control of yeast mating-type genes.

    PubMed Central

    Shore, D; Squire, M; Nasmyth, K A

    1984-01-01

    The mating type of haploid yeast (a or alpha) is determined by information present at the MAT locus. Identical copies of a and alpha information are present at distal loci (HMR and HML), but transcription of these copies is repressed by the action, in trans, of four unlinked genes called SIR (silent information regulator). Repression by SIR also requires, in cis, DNA sequences called E which are found to the left of HML and HMR (but not MAT) and are greater than 1 kb from the mating-type gene promoters. SIR control can act on other promoters when they are brought near the E sequence, and thus the SIR gene products act in some general manner to repress transcription. We have determined the DNA sequence of two fragments which complement mutations in the SIR2 and SIR3 genes and show that these contain the structural genes by mapping the cloned sequences onto the yeast chromosome. The SIR2 and SIR3 coding sequences were identified by constructing gene disruptions and using these mutations to replace the normal chromosomal copies. Such null mutants of both SIR2 and SIR3 are defective in the position-effect control of the silent loci but have no other detectable phenotype. We have mapped the 5' and 3' ends of the SIR2 and SIR3 mRNAs and show that their level is unaffected by mutations in any of the four known SIR complementation groups. Images Fig. 2. Fig. 3. Fig. 4. PMID:6098447

  14. Structural Requirements for Function of Yeast GGAs in Vacuolar Protein Sorting, α-Factor Maturation, and Interactions with Clathrin

    PubMed Central

    Mullins, Chris; Bonifacino, Juan S.

    2001-01-01

    The GGAs (Golgi-localized, gamma-ear-containing, ARF-binding proteins) are a family of multidomain adaptor proteins involved in protein sorting at the trans-Golgi network of eukaryotic cells. Here we present results from a functional characterization of the two Saccharomyces cerevisiae GGAs, Gga1p and Gga2p. We show that deletion of both GGA genes causes defects in sorting of carboxypeptidase Y (CPY) and proteinase A to the vacuole, vacuolar morphology, and maturation of α-factor. A structure-function analysis reveals a requirement of the VHS, GAT, and hinge for function, while the GAE domain is less important. We identify putative clathrin-binding motifs in the hinge domain of both yeast GGAs. These motifs are shown to mediate clathrin binding in vitro. While mutation of these motifs alone does not block function of the GGAs in vivo, combining these mutations with truncations of the hinge and GAE domains diminishes function, suggesting functional cooperation between different clathrin-binding elements. Thus, these observations demonstrate that the yeast GGAs play important roles in the CPY pathway, vacuole biogenesis, and α-factor maturation and identify structural determinants that are critical for these functions. PMID:11689690

  15. Dynamin and clathrin are required for the biogenesis of a distinct class of secretory vesicles in yeast.

    PubMed

    Gurunathan, Sangiliyandi; David, Doris; Gerst, Jeffrey E

    2002-02-15

    Yeast produce two classes of secretory vesicles (SVs) that differ in both density and cargo protein content. In late-acting secretory mutants (e.g. snc1(ala43) and sec6-4), both low- (LDSV) and high-density (HDSV) classes of vesicles accumulate at restrictive temperatures. Here, we have found that disruptions in the genes encoding a dynamin-related protein (VPS1) or clathrin heavy chain (CHC1) abolish HDSV production, yielding LDSVs that contain all secreted cargos. Interestingly, disruption of the PEP12 gene, which encodes the t-SNARE that mediates all Golgi to pre-vacuolar compartment (PVC) transport, also abolishes HDSV production. In contrast, deletions in genes that selectively confer vacuolar hydrolase sorting to the PVC or protein transport to the vacuole (i.e. VPS34 and VAM3, respectively) have no effect. Thus, one branch of the secretory pathway in yeast involves an intermediate sorting compartment and has a specific requirement for clathrin and a dynamin-related protein in SV biogenesis.

  16. Modulation of yeast alkaline cation tolerance by Ypi1 requires calcineurin.

    PubMed

    Marquina, Maribel; González, Asier; Barreto, Lina; Gelis, Samuel; Muñoz, Iván; Ruiz, Amparo; Alvarez, Mari Carmen; Ramos, José; Ariño, Joaquín

    2012-04-01

    Ypi1 was discovered as an essential protein able to act as a regulatory subunit of the Saccharomyces cerevisiae type 1 protein phosphatase Glc7 and play a key role in mitosis. We show here that partial depletion of Ypi1 causes lithium sensitivity and that high levels of this protein confer a lithium-tolerant phenotype to yeast cells. Remarkably, this phenotype was independent of the role of Ypi1 as a Glc7 regulatory subunit. Lithium tolerance in cells overexpressing Ypi1 was caused by a combination of increased efflux of lithium, mediated by augmented expression of the alkaline cation ATPase ENA1, and decreased lithium influx through the Trk1,2 high-affinity potassium transporters. Deletion of CNB1, encoding the regulatory subunit of the calcineurin phosphatase, blocked Ypi1-induced expression of ENA1, normalized Li(+) fluxes, and abolished the Li(+) hypertolerant phenotype of Ypi1-overexpressing cells. These results point to a complex role of Ypi1 on the regulation of cation homeostasis, largely mediated by the calcineurin phosphatase.

  17. Requirements for Carnitine Shuttle-Mediated Translocation of Mitochondrial Acetyl Moieties to the Yeast Cytosol

    PubMed Central

    van Rossum, Harmen M.; Kozak, Barbara U.; Niemeijer, Matthijs S.; Dykstra, James C.; Luttik, Marijke A. H.; van Maris, Antonius J. A.

    2016-01-01

    ABSTRACT In many eukaryotes, the carnitine shuttle plays a key role in intracellular transport of acyl moieties. Fatty acid-grown Saccharomyces cerevisiae cells employ this shuttle to translocate acetyl units into their mitochondria. Mechanistically, the carnitine shuttle should be reversible, but previous studies indicate that carnitine shuttle-mediated export of mitochondrial acetyl units to the yeast cytosol does not occur in vivo. This apparent unidirectionality was investigated by constitutively expressing genes encoding carnitine shuttle-related proteins in an engineered S. cerevisiae strain, in which cytosolic acetyl coenzyme A (acetyl-CoA) synthesis could be switched off by omitting lipoic acid from growth media. Laboratory evolution of this strain yielded mutants whose growth on glucose, in the absence of lipoic acid, was l-carnitine dependent, indicating that in vivo export of mitochondrial acetyl units to the cytosol occurred via the carnitine shuttle. The mitochondrial pyruvate dehydrogenase complex was identified as the predominant source of acetyl-CoA in the evolved strains. Whole-genome sequencing revealed mutations in genes involved in mitochondrial fatty acid synthesis (MCT1), nuclear-mitochondrial communication (RTG2), and encoding a carnitine acetyltransferase (YAT2). Introduction of these mutations into the nonevolved parental strain enabled l-carnitine-dependent growth on glucose. This study indicates intramitochondrial acetyl-CoA concentration and constitutive expression of carnitine shuttle genes as key factors in enabling in vivo export of mitochondrial acetyl units via the carnitine shuttle. PMID:27143389

  18. A DEAD-box-family protein is required for nucleocytoplasmic transport of yeast mRNA.

    PubMed Central

    Liang, S; Hitomi, M; Hu, Y H; Liu, Y; Tartakoff, A M

    1996-01-01

    An enormous variety of primary and secondary mRNA structures are compatible with export from the nucleus to the cytoplasm. Therefore, there seems to be a mechanism for RNA export which is independent of sequence recognition. There nevertheless is likely to be some relatively uniform mechanism which allows transcripts to be packaged as ribonucleoprotein particles, to gain access to the periphery of the nucleus and ultimately to translocate across nuclear pores. To study these events, we and others have generated temperature-sensitive recessive mRNA transport (mtr) mutants of Saccharomyces cerevisiae which accumulate poly(A)+ RNA in the nucleus at 37 degrees C. Several of the corresponding genes have been cloned. Upon depletion of one of these proteins, Mtr4p, conspicuous amounts of nuclear poly(A)+ RNA accumulate in association with the nucleolus. Corresponding dense material is also seen by electron microscopy. MTR4 is essential for growth and encodes a novel nuclear protein with a size of approximately 120 kDa. Mtr4p shares characteristic motifs with DEAD-box RNA helicases and associates with RNA. It therefore may well affect RNA conformation. It shows extensive homology to a human predicted gene product and the yeast antiviral protein Ski2p. Critical residues of Mtr4p, including the mtr4-1 point mutation, have been identified. Mtr4p may serve as a chaperone which translocates or normalizes the structure of mRNAs in preparation for export. PMID:8756671

  19. Nuclear export of the yeast hexokinase 2 protein requires the Xpo1 (Crm1)-dependent pathway.

    PubMed

    Peláez, Rafael; Herrero, Pilar; Moreno, Fernando

    2009-07-31

    Hexokinase 2 (Hxk2) from Saccharomyces cerevisiae was one of the first metabolic enzymes described as a multifunctional protein. Hxk2 has a double subcellular localization; it functions as a glycolytic enzyme in the cytoplasm and as a regulator of gene transcription of several Mig1-regulated genes in the nucleus. However, the mechanism by which Hxk2 enters and leaves the nucleus is still unknown. In low glucose conditions, Hxk2 is phosphorylated at serine 14, but how this phosphorylation may affect glucose signaling is also unknown at the moment. Here we report that the Hxk2 protein is an export substrate of the carrier protein Xpo1 (Crm1). We also show that the Hxk2 nuclear export and the binding of Hxk2 and Xpo1 involve two leucine-rich nuclear export signals (NES) located between leucine 23 and isoleucine 33 (NES1) and between leucine 310 and leucine 318 (NES2). We also show that the Hxk2 phosphorylation at serine 14 promotes Hxk2 export by facilitating the association of Hxk2 with Xpo1. Our study uncovers a new cargo for the Xpo1 yeast exportin and identifies Hxk2 phosphorylation at serine 14 as a regulatory mechanism that controls its nuclear exit in function of the glucose levels.

  20. Vps factors are required for efficient transcription elongation in budding yeast.

    PubMed

    Gaur, Naseem A; Hasek, Jiri; Brickner, Donna Garvey; Qiu, Hongfang; Zhang, Fan; Wong, Chi-Ming; Malcova, Ivana; Vasicova, Pavla; Brickner, Jason H; Hinnebusch, Alan G

    2013-03-01

    There is increasing evidence that certain Vacuolar protein sorting (Vps) proteins, factors that mediate vesicular protein trafficking, have additional roles in regulating transcription factors at the endosome. We found that yeast mutants lacking the phosphatidylinositol 3-phosphate [PI(3)P] kinase Vps34 or its associated protein kinase Vps15 display multiple phenotypes indicating impaired transcription elongation. These phenotypes include reduced mRNA production from long or G+C-rich coding sequences (CDS) without affecting the associated GAL1 promoter activity, and a reduced rate of RNA polymerase II (Pol II) progression through lacZ CDS in vivo. Consistent with reported genetic interactions with mutations affecting the histone acetyltransferase complex NuA4, vps15Δ and vps34Δ mutations reduce NuA4 occupancy in certain transcribed CDS. vps15Δ and vps34Δ mutants also exhibit impaired localization of the induced GAL1 gene to the nuclear periphery. We found unexpectedly that, similar to known transcription elongation factors, these and several other Vps factors can be cross-linked to the CDS of genes induced by Gcn4 or Gal4 in a manner dependent on transcriptional induction and stimulated by Cdk7/Kin28-dependent phosphorylation of the Pol II C-terminal domain (CTD). We also observed colocalization of a fraction of Vps15-GFP and Vps34-GFP with nuclear pores at nucleus-vacuole (NV) junctions in live cells. These findings suggest that Vps factors enhance the efficiency of transcription elongation in a manner involving their physical proximity to nuclear pores and transcribed chromatin.

  1. Intestinal resident yeast Candida glabrata requires Cyb2p-mediated lactate assimilation to adapt in mouse intestine.

    PubMed

    Ueno, Keigo; Matsumoto, Yasuhiko; Uno, Jun; Sasamoto, Kaname; Sekimizu, Kazuhisa; Kinjo, Yuki; Chibana, Hiroji

    2011-01-01

    The intestinal resident Candida glabrata opportunistically infects humans. However few genetic factors for adaptation in the intestine are identified in this fungus. Here we describe the C. glabrata CYB2 gene encoding lactate dehydrogenase as an adaptation factor for survival in the intestine. CYB2 was identified as a virulence factor by a silkworm infection study. To determine the function of CYB2, we analysed in vitro phenotypes of the mutant Δcyb2. The Δcyb2 mutant grew well in glucose medium under aerobic and anaerobic conditions, was not supersensitive to nitric oxide which has fungicidal-effect in phagocytes, and had normal levels of general virulence factors protease, lipase and adherence activities. A previous report suggested that Cyb2p is responsible for lactate assimilation. Additionally, it was speculated that lactate assimilation was required for Candida virulence because Candida must synthesize glucose via gluconeogenesis under glucose-limited conditions such as in the host. Indeed, the Δcyb2 mutant could not grow on lactate medium in which lactate is the sole carbon source in the absence of glucose, indicating that Cyb2p plays a role in lactate assimilation. We hypothesized that Cyb2p-mediated lactate assimilation is necessary for proliferation in the intestinal tract, as the intestine is rich in lactate produced by bacteria flora, but not glucose. The Δcyb2 mutant showed 100-fold decreased adaptation and few cells of Saccharomyces cerevisiae can adapt in mouse ceca. Interestingly, C. glabrata could assimilate lactate under hypoxic conditions, dependent on CYB2, but not yeast S. cerevisiae. Because accessible oxygen is limited in the intestine, the ability for lactate assimilation in hypoxic conditions may provide an advantage for a pathogenic yeast. From those results, we conclude that Cyb2p-mediated lactate assimilation is an intestinal adaptation factor of C. glabrata.

  2. Compact fission counter for DANCE

    SciTech Connect

    Wu, C Y; Chyzh, A; Kwan, E; Henderson, R; Gostic, J; Carter, D; Bredeweg, T; Couture, A; Jandel, M; Ullmann, J

    2010-11-06

    The Detector for Advanced Neutron Capture Experiments (DANCE) consists of 160 BF{sub 2} crystals with equal solid-angle coverage. DANCE is a 4{pi} {gamma}-ray calorimeter and designed to study the neutron-capture reactions on small quantities of radioactive and rare stable nuclei. These reactions are important for the radiochemistry applications and modeling the element production in stars. The recognition of capture event is made by the summed {gamma}-ray energy which is equivalent of the reaction Q-value and unique for a given capture reaction. For a selective group of actinides, where the neutron-induced fission reaction competes favorably with the neutron capture reaction, additional signature is needed to distinguish between fission and capture {gamma} rays for the DANCE measurement. This can be accomplished by introducing a detector system to tag fission fragments and thus establish a unique signature for the fission event. Once this system is implemented, one has the opportunity to study not only the capture but also fission reactions. A parallel-plate avalanche counter (PPAC) has many advantages for the detection of heavy charged particles such as fission fragments. These include fast timing, resistance to radiation damage, and tolerance of high counting rate. A PPAC also can be tuned to be insensitive to {alpha} particles, which is important for experiments with {alpha}-emitting actinides. Therefore, a PPAC is an ideal detector for experiments requiring a fast and clean trigger for fission. A PPAC with an ingenious design was fabricated in 2006 by integrating amplifiers into the target assembly. However, this counter was proved to be unsuitable for this application because of issues related to the stability of amplifiers and the ability to separate fission fragments from {alpha}'s. Therefore, a new design is needed. A LLNL proposal to develop a new PPAC for DANCE was funded by NA22 in FY09. The design goal is to minimize the mass for the proposed counter

  3. Mutual control of membrane fission and fusion proteins.

    PubMed

    Peters, Christopher; Baars, Tonie L; Bühler, Susanne; Mayer, Andreas

    2004-11-24

    Membrane fusion and fission are antagonistic reactions controlled by different proteins. Dynamins promote membrane fission by GTP-driven changes of conformation and polymerization state, while SNAREs fuse membranes by forming complexes between t- and v-SNAREs from apposed vesicles. Here, we describe a role of the dynamin-like GTPase Vps1p in fusion of yeast vacuoles. Vps1p forms polymers that couple several t-SNAREs together. At the onset of fusion, the SNARE-activating ATPase Sec18p/NSF and the t-SNARE depolymerize Vps1p and release it from the membrane. This activity is independent of the SNARE coactivator Sec17p/alpha-SNAP and of the v-SNARE. Vps1p release liberates the t-SNAREs for initiating fusion and at the same time disrupts fission activity. We propose that reciprocal control between fusion and fission components exists, which may prevent futile cycles of fission and fusion.

  4. Fission Surface Power Technology Development Status

    NASA Technical Reports Server (NTRS)

    Palac, Donald T.; Mason, Lee S.; Houts, Michael G.; Harlow, Scott

    2010-01-01

    Power is a critical consideration in planning exploration of the surfaces of the Moon, Mars, and beyond. Nuclear power is an important option, especially for locations in the solar system where sunlight is limited in availability or intensity. NASA is maintaining the option for fission surface power for the Moon and Mars by developing and demonstrating technology for an affordable fission surface power system. Because affordability drove the determination of the system concept that this technology will make possible, low development and recurring costs result, while required safety standards are maintained. However, an affordable approach to fission surface power also provides the benefits of simplicity, robustness, and conservatism in design. This paper will illuminate the multiplicity of benefits to an affordable approach to fission surface power, and will describe how the foundation for these benefits is being developed and demonstrated in the Exploration Technology Development Program s Fission Surface Power Project.

  5. Prm3p is a pheromone-induced peripheral nuclear envelope protein required for yeast nuclear fusion.

    PubMed

    Shen, Shu; Tobery, Cynthia E; Rose, Mark D

    2009-05-01

    Nuclear membrane fusion is the last step in the mating pathway of the yeast Saccharomyces cerevisiae. We adapted a bioinformatics approach to identify putative pheromone-induced membrane proteins potentially required for nuclear membrane fusion. One protein, Prm3p, was found to be required for nuclear membrane fusion; disruption of PRM3 caused a strong bilateral defect, in which nuclear congression was completed but fusion did not occur. Prm3p was localized to the nuclear envelope in pheromone-responding cells, with significant colocalization with the spindle pole body in zygotes. A previous report, using a truncated protein, claimed that Prm3p is localized to the inner nuclear envelope. Based on biochemistry, immunoelectron microscopy and live cell microscopy, we find that functional Prm3p is a peripheral membrane protein exposed on the cytoplasmic face of the outer nuclear envelope. In support of this, mutations in a putative nuclear localization sequence had no effect on full-length protein function or localization. In contrast, point mutations and deletions in the highly conserved hydrophobic carboxy-terminal domain disrupted both protein function and localization. Genetic analysis, colocalization, and biochemical experiments indicate that Prm3p interacts directly with Kar5p, suggesting that nuclear membrane fusion is mediated by a protein complex.

  6. Retrieval of HDEL proteins is required for growth of yeast cells

    PubMed Central

    1994-01-01

    The ERD2 gene of Saccharomyces cerevisiae encodes the receptor which retrieves HDEL-containing containing ER proteins from the Golgi apparatus. Viable erd2 mutants have been isolated that show no obvious HDEL-dependent retention of the luminal ER protein BiP, suggesting that retrieval of HDEL proteins is not essential for growth. However, cells that lack Erd2p completely have a defective Golgi apparatus and cannot grow. This observation led to the suggestion that the receptor had a second function, possibly related to its ability to recycle from Golgi to ER. In this paper we investigate the requirements for Erd2p to support growth. We show that mutations that block its recycling also prevent growth. In addition, we show that all mutant receptors that can support growth have a residual ability to retrieve BiP, which is detectable when they are overexpressed. Mere recycling of an inactive form of the receptor, mediated by a cytoplasmic KKXX sequence, is not sufficient for growth. Furthermore, saturation of the receptor by expression of an HDEL-tagged version of pro-alpha factor inhibits growth, even of strains that do not show obvious BiP retention. We conclude that growth requires the HDEL-dependent retrieval of one or more proteins, and that these proteins can be recognized even under conditions where BiP is secreted. Genetic screens have failed to identify any one protein whose loss could account for the Erd2p requirement. Therefore, a growth may require the retention of multiple HDEL proteins in the ER, or alternatively the removal of such proteins from the Golgi apparatus. PMID:7929564

  7. Distinct steps in yeast spore morphogenesis require distinct SMK1 MAP kinase thresholds.

    PubMed Central

    Wagner, M; Briza, P; Pierce, M; Winter, E

    1999-01-01

    The SMK1 mitogen-activated protein kinase is required for spore morphogenesis in Saccharomyces cerevisiae. In contrast to the multiple aberrant spore wall assembly patterns seen even within a single smk1 null ascus, different smk1 missense mutants block in a coordinated fashion at intermediate stages. One smk1 mutant forms asci in which the four spores are surrounded only by prospore wall-like structures, while another smk1 mutant forms asci in which the spores are surrounded by inner but not outer spore wall layers. Stepwise increases in gene dosage of a hypomorphic smk1 allele allow for the completion of progressively later morphological and biochemical events and for the acquisition of distinct spore-resistance phenotypes. Furthermore, smk1 allelic spore phenotypes can be recapitulated by reducing wild-type SMK1 expression. The data demonstrate that SMK1 is required for the execution of multiple steps in spore morphogenesis that require increasing thresholds of SMK1 activity. These results suggest that quantitative changes in mitogen-activated protein kinase signaling play a role in coordinating multiple events of a single cellular differentiation program. PMID:10101160

  8. Mal3, the Schizosaccharomyces pombe homolog of EB1, is required for karyogamy and for promoting oscillatory nuclear movement during meiosis.

    PubMed

    Polakova, Silvia; Benko, Zsigmond; Zhang, Lijuan; Gregan, Juraj

    2014-01-01

    Two successive rounds of chromosome segregation following a single round of DNA replication enable the production of haploid gametes during meiosis. In the fission yeast Schizosaccharomyces pombe, karyogamy is the process where the nuclei from 2 haploid cells fuse to create a diploid nucleus, which then undergoes meiosis to produce 4 haploid spores. By screening a collection of S. pombe deletion strains, we found that the deletion of 2 genes, mal3 and mto1, leads to the production of asci containing up to 8 spores. Here, we show that Mal3, the fission yeast member of the EB1 family of conserved microtubule plus-end tracking proteins, is required for karyogamy, oscillatory nuclear movement, and proper segregation of chromosomes during meiosis. In the absence of Mal3, meiosis frequently initiates before the completion of karyogamy, thus producing up to 8 nuclei in a single ascus. Our results provide new evidence that fission yeast can initiate meiosis prior to completing karyogamy.

  9. Fission Technology for Exploring and Utilizing the Solar System

    NASA Technical Reports Server (NTRS)

    Houts, Mike; VanDyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Salvail, Pat; Hrbub, Ivana; Schmidt, George R. (Technical Monitor)

    2000-01-01

    Fission technology can enable rapid, affordable access to any point in the solar system. Potential fission-based transportation options include bimodal nuclear thermal rockets, high specific energy propulsion systems, and pulsed fission propulsion systems. In-space propellant re-supply enhances the effective performance of all systems, but requires significant infrastructure development. Safe, timely, affordable utilization of first-generation space fission propulsion systems will enable the development of more advanced systems. First generation space systems will build on over 45 years of US and international space fission system technology development to minimize cost,

  10. Swa2, the yeast homolog of mammalian auxilin, is specifically required for the propagation of the prion variant [URE 3‐1

    PubMed Central

    Troisi, Elizabeth M.; Rockman, Michael E.; Nguyen, Phil P.; Oliver, Emily E.

    2015-01-01

    Summary Yeast prions require a core set of chaperone proteins including Sis1, Hsp70 and Hsp104 to generate new amyloid templates for stable propagation, yet emerging studies indicate that propagation of some prions requires additional chaperone activities, demonstrating chaperone specificity beyond the common amyloid requirements. To comprehensively assess such prion‐specific requirements for the propagation of the [URE 3] prion variant [URE 3‐1], we screened 12 yeast cytosolic J‐proteins, and here we report a novel role for the J‐protein Swa2/Aux1. Swa2 is the sole yeast homolog of the mammalian protein auxilin, which, like Swa2, functions in vesicle‐mediated endocytosis by disassembling the structural lattice formed by the protein clathrin. We found that, in addition to Sis1, [URE 3‐1] is specifically dependent upon Swa2, but not on any of the 11 other J‐proteins. Further, we show that [URE 3‐1] propagation requires both a functional J‐domain and the tetratricopeptide repeat (TPR) domain, but surprisingly does not require Swa2‐clathrin binding. Because the J‐domain of Swa2 can be replaced with the J‐domains of other proteins, our data strongly suggest that prion‐chaperone specificity arises from the Swa2 TPR domain and supports a model where Swa2 acts through Hsp70, most likely to provide additional access points for Hsp104 to promote prion template generation. PMID:26031938

  11. The Yeast Elongator Histone Acetylase Requires Sit4-dependent Dephosphorylation for Toxin-Target Capacity

    PubMed Central

    Jablonowski, Daniel; Fichtner, Lars; Stark, Michael J.R.; Schaffrath, Raffael

    2004-01-01

    Kluyveromyces lactis zymocin, a heterotrimeric toxin complex, imposes a G1 cell cycle block on Saccharomyces cerevisiae that requires the toxin-target (TOT) function of holo-Elongator, a six-subunit histone acetylase. Here, we demonstrate that Elongator is a phospho-complex. Phosphorylation of its largest subunit Tot1 (Elp1) is supported by Kti11, an Elongator-interactor essential for zymocin action. Tot1 dephosphorylation depends on the Sit4 phosphatase and its associators Sap185 and Sap190. Zymocin-resistant cells lacking or overproducing Elongator-associator Tot4 (Kti12), respectively, abolish or intensify Tot1 phosphorylation. Excess Sit4·Sap190 antagonizes the latter scenario to reinstate zymocin sensitivity in multicopy TOT4 cells, suggesting physical competition between Sit4 and Tot4. Consistently, Sit4 and Tot4 mutually oppose Tot1 de-/phosphorylation, which is dispensable for integrity of holo-Elongator but crucial for the TOT-dependent G1 block by zymocin. Moreover, Sit4, Tot4, and Tot1 cofractionate, Sit4 is nucleocytoplasmically localized, and sit4Δ-nuclei retain Tot4. Together with the findings that sit4Δ and totΔ cells phenocopy protection against zymocin and the ceramide-induced G1 block, Sit4 is functionally linked to Elongator in cell cycle events targetable by antizymotics. PMID:14718557

  12. STT3, a highly conserved protein required for yeast oligosaccharyl transferase activity in vivo.

    PubMed Central

    Zufferey, R; Knauer, R; Burda, P; Stagljar, I; te Heesen, S; Lehle, L; Aebi, M

    1995-01-01

    N-linked glycosylation is a ubiquitous protein modification, and is essential for viability in eukaryotic cells. A lipid-linked core-oligosaccharide is assembled at the membrane of the endoplasmic reticulum and transferred to selected asparagine residues of nascent polypeptide chains by the oligosaccharyl transferase (OTase) complex. Based on the synthetic lethal phenotype of double mutations affecting the assembly of the lipid-linked core-oligosaccharide and the OTase activity, we have performed a novel screen for mutants in Saccharomyces cerevisiae with altered N-linked glycosylation. Besides novel mutants deficient in the assembly of the lipid-linked oligosaccharide (alg mutants), we identified the STT3 locus as being required for OTase activity in vivo. The essential STT3 protein is approximately 60% identical in amino acid sequence to its human homologue. A mutation in the STT3 locus affects substrate specificity of the OTase complex in vivo and in vitro. In stt3-3 cells very little glycosyl transfer occurs from incomplete lipid-linked oligosaccharide, whereas the transfer of full-length Glc3Man9GlcNAc2 is hardly affected as compared with wild-type cells. Depletion of the STT3 protein results in loss of transferase activity in vivo and a deficiency in the assembly of OTase complex. Images PMID:7588624

  13. NDC1: a nuclear periphery component required for yeast spindle pole body duplication

    PubMed Central

    1993-01-01

    The spindle pole body (SPB) of Saccharomyces cerevisiae serves as the centrosome in this organism, undergoing duplication early in the cell cycle to generate the two poles of the mitotic spindle. The conditional lethal mutation ndc1-1 has previously been shown to cause asymmetric segregation, wherein all the chromosomes go to one pole of the mitotic spindle (Thomas, J. H., and D. Botstein. 1986. Cell. 44:65-76). Examination by electron microscopy of mutant cells subjected to the nonpermissive temperature reveals a defect in SPB duplication. Although duplication is seen to occur, the nascent SPB fails to undergo insertion into the nuclear envelope. The parental SPB remains functional, organizing a monopolar spindle to which all the chromosomes are presumably attached. Order-of-function experiments reveal that the NDC1 function is required in G1 after alpha-factor arrest but before the arrest caused by cdc34. Molecular analysis shows that the NDC1 gene is essential and that it encodes a 656 amino acid protein (74 kD) with six or seven putative transmembrane domains. This evidence for membrane association is further supported by immunofluorescent localization of the NDC1 product to the vicinity of the nuclear envelope. These findings suggest that the NDC1 protein acts within the nuclear envelope to mediate insertion of the nascent SPB. PMID:8349727

  14. Gcn4 is required for the response to peroxide stress in the yeast Saccharomyces cerevisiae.

    PubMed

    Mascarenhas, Claire; Edwards-Ingram, Laura C; Zeef, Leo; Shenton, Daniel; Ashe, Mark P; Grant, Chris M

    2008-07-01

    An oxidative stress occurs when reactive oxygen species overwhelm the cellular antioxidant defenses. We have examined the regulation of protein synthesis in Saccharomyces cerevisiae in response to oxidative stress induced by exposure to hydroperoxides (hydrogen peroxide, and cumene hydroperoxide), a thiol oxidant (diamide), and a heavy metal (cadmium). Examination of translational activity indicates that these oxidants inhibit translation at the initiation and postinitiation phases. Inhibition of translation initiation in response to hydroperoxides is entirely dependent on phosphorylation of the alpha subunit of eukaryotic initiation factor (eIF)2 by the Gcn2 kinase. Activation of Gcn2 is mediated by uncharged tRNA because mutation of its HisRS domain abolishes regulation in response to hydroperoxides. Furthermore, Gcn4 is translationally up-regulated in response to H(2)O(2), and it is required for hydroperoxide resistance. We used transcriptional profiling to identify a wide range of genes that mediate this response as part of the Gcn4-dependent H(2)O(2)-regulon. In contrast to hydroperoxides, regulation of translation initiation in response to cadmium and diamide depends on both Gcn2 and the eIF4E binding protein Eap1. Thus, the response to oxidative stress is mediated by oxidant-specific regulation of translation initiation, and we suggest that this is an important mechanism underlying the ability of cells to adapt to different oxidants.

  15. Fission Reaction Event Yield Algorithm

    SciTech Connect

    Hagmann, Christian; Verbeke, Jerome; Vogt, Ramona; Roundrup, Jorgen

    2016-05-31

    FREYA (Fission Reaction Event Yield Algorithm) is a code that simulated the decay of a fissionable nucleus at specified excitation energy. In its present form, FREYA models spontaneous fission and neutron-induced fission up to 20 MeV. It includes the possibility of neutron emission from the nuclear prior to its fussion (nth chance fission).

  16. Normal Function of the Yeast TOR Pathway Requires the Type 2C Protein Phosphatase Ptc1▿ †

    PubMed Central

    González, Asier; Ruiz, Amparo; Casamayor, Antonio; Ariño, Joaquín

    2009-01-01

    Yeast ptc1 mutants are rapamycin and caffeine sensitive, suggesting a functional connection between Ptc1 and the TOR pathway that is not shared by most members of the type 2C phosphatase family. Genome-wide profiling revealed that the ptc1 mutation largely attenuates the transcriptional response to rapamycin. The lack of Ptc1 significantly prevents the nuclear translocation of Gln3 and Msn2 transcription factors to the nucleus, as well as the dephosphorylation of the Npr1 kinase, in response to rapamycin. This could explain the observed decrease in both the basal and rapamycin-induced expression of several genes subjected to nitrogen catabolite repression (GAT1, MEP1, and GLN1) and stress response element (STRE)-driven promoters. Interestingly, this decrease is abolished in the absence of the Sit4 phosphatase. Epitasis analysis indicates that the mutation of SIT4 or TIP41, encoding a Tap42-interacting protein, abolishes the sensitivity of the ptc1 strain to rapamycin and caffeine. All of these results suggest that Ptc1 is required for normal TOR signaling, possibly by regulating a step upstream of Sit4 function. According to this hypothesis, we observe that the mutation of PTC1 drastically diminishes the rapamycin-induced interaction between Tap42 and Tip41, and this can be explained by lower-than-normal levels of Tip41 in ptc1 cells. Ptc1 is not necessary for the normal expression of the TIP41 gene; instead, its absence dramatically affects the stability of Tip41. The lack of Ptc1 partially abolishes the rapamycin-induced dephosphorylation of Tip41, which may further decrease Tap42 binding. Reduced Tip41 levels contribute to the ptc1 phenotypes, although additional Ptc1 targets must exist. All of these results provide the first evidence showing that a type 2C protein phosphatase is required for the normal functioning of the TOR pathway. PMID:19273591

  17. Mcp7, a meiosis-specific coiled-coil protein of fission yeast, associates with Meu13 and is required for meiotic recombination

    PubMed Central

    Saito, Takamune T.; Tougan, Takahiro; Kasama, Takashi; Okuzaki, Daisuke; Nojima, Hiroshi

    2004-01-01

    We previously showed that Meu13 of Schizosaccharomyces pombe functions in homologous pairing and recombination at meiosis I. Here we show that a meiosis-specific gene encodes a coiled-coil protein that complexes with Meu13 during meiosis in vivo. This gene denoted as mcp7+ (after meiotic coiled-coil protein) is an ortholog of Mnd1 of Saccharomyces cerevisiae. Mcp7 proteins are detected on meiotic chromatin. The phenotypes of mcp7Δ cells are similar to those of meu13Δ cells as they show reduced recombination rates and spore viability and produce spores with abnormal morphology. However, a delay in initiation of meiosis I chromosome segregation of mcp7Δ cells is not so conspicuous as meu13Δ cells, and no meiotic delay is observed in mcp7Δmeu13Δ cells. Mcp7 and Meu13 proteins depend on each other differently; Mcp7 becomes more stable in meu13Δ cells, whereas Meu13 becomes less stable in mcp7Δ cells. Genetic analysis shows that Mcp7 acts in the downstream of Dmc1, homologs of Escherichia coli RecA protein, for both recombination and subsequent sporulation. Taken together, we conclude that Mcp7 associates with Meu13 and together they play a key role in meiotic recombination. PMID:15210864

  18. Mcp7, a meiosis-specific coiled-coil protein of fission yeast, associates with Meu13 and is required for meiotic recombination.

    PubMed

    Saito, Takamune T; Tougan, Takahiro; Kasama, Takashi; Okuzaki, Daisuke; Nojima, Hiroshi

    2004-01-01

    We previously showed that Meu13 of Schizosaccharomyces pombe functions in homologous pairing and recombination at meiosis I. Here we show that a meiosis-specific gene encodes a coiled-coil protein that complexes with Meu13 during meiosis in vivo. This gene denoted as mcp7+ (after meiotic coiled-coil protein) is an ortholog of Mnd1 of Saccharomyces cerevisiae. Mcp7 proteins are detected on meiotic chromatin. The phenotypes of mcp7Delta cells are similar to those of meu13Delta cells as they show reduced recombination rates and spore viability and produce spores with abnormal morphology. However, a delay in initiation of meiosis I chromosome segregation of mcp7Delta cells is not so conspicuous as meu13Delta cells, and no meiotic delay is observed in mcp7Deltameu13Delta cells. Mcp7 and Meu13 proteins depend on each other differently; Mcp7 becomes more stable in meu13Delta cells, whereas Meu13 becomes less stable in mcp7Delta cells. Genetic analysis shows that Mcp7 acts in the downstream of Dmc1, homologs of Escherichia coli RecA protein, for both recombination and subsequent sporulation. Taken together, we conclude that Mcp7 associates with Meu13 and together they play a key role in meiotic recombination.

  19. A transferable model for singlet-fission kinetics.

    PubMed

    Yost, Shane R; Lee, Jiye; Wilson, Mark W B; Wu, Tony; McMahon, David P; Parkhurst, Rebecca R; Thompson, Nicholas J; Congreve, Daniel N; Rao, Akshay; Johnson, Kerr; Sfeir, Matthew Y; Bawendi, Moungi G; Swager, Timothy M; Friend, Richard H; Baldo, Marc A; Van Voorhis, Troy

    2014-06-01

    Exciton fission is a process that occurs in certain organic materials whereby one singlet exciton splits into two independent triplets. In photovoltaic devices these two triplet excitons can each generate an electron, producing quantum yields per photon of >100% and potentially enabling single-junction power efficiencies above 40%. Here, we measure fission dynamics using ultrafast photoinduced absorption and present a first-principles expression that successfully reproduces the fission rate in materials with vastly different structures. Fission is non-adiabatic and Marcus-like in weakly interacting systems, becoming adiabatic and coupling-independent at larger interaction strengths. In neat films, we demonstrate fission yields near unity even when monomers are separated by >5 Å. For efficient solar cells, however, we show that fission must outcompete charge generation from the singlet exciton. This work lays the foundation for tailoring molecular properties like solubility and energy level alignment while maintaining the high fission yield required for photovoltaic applications.

  20. A transferable model for singlet-fission kinetics

    NASA Astrophysics Data System (ADS)

    Yost, Shane R.; Lee, Jiye; Wilson, Mark W. B.; Wu, Tony; McMahon, David P.; Parkhurst, Rebecca R.; Thompson, Nicholas J.; Congreve, Daniel N.; Rao, Akshay; Johnson, Kerr; Sfeir, Matthew Y.; Bawendi, Moungi G.; Swager, Timothy M.; Friend, Richard H.; Baldo, Marc A.; van Voorhis, Troy

    2014-06-01

    Exciton fission is a process that occurs in certain organic materials whereby one singlet exciton splits into two independent triplets. In photovoltaic devices these two triplet excitons can each generate an electron, producing quantum yields per photon of >100% and potentially enabling single-junction power efficiencies above 40%. Here, we measure fission dynamics using ultrafast photoinduced absorption and present a first-principles expression that successfully reproduces the fission rate in materials with vastly different structures. Fission is non-adiabatic and Marcus-like in weakly interacting systems, becoming adiabatic and coupling-independent at larger interaction strengths. In neat films, we demonstrate fission yields near unity even when monomers are separated by >5 Å. For efficient solar cells, however, we show that fission must outcompete charge generation from the singlet exciton. This work lays the foundation for tailoring molecular properties like solubility and energy level alignment while maintaining the high fission yield required for photovoltaic applications.

  1. Signaling of chloroquine-induced stress in the yeast Saccharomyces cerevisiae requires the Hog1 and Slt2 mitogen-activated protein kinase pathways.

    PubMed

    Baranwal, Shivani; Azad, Gajendra Kumar; Singh, Vikash; Tomar, Raghuvir S

    2014-09-01

    Chloroquine (CQ) has been under clinical use for several decades, and yet little is known about CQ sensing and signaling mechanisms or about their impact on various biological pathways. We employed the budding yeast Saccharomyces cerevisiae as a model organism to study the pathways targeted by CQ. Our screening with yeast mutants revealed that it targets histone proteins and histone deacetylases (HDACs). Here, we also describe the novel role of mitogen-activated protein kinases Hog1 and Slt2, which aid in survival in the presence of CQ. Cells deficient in Hog1 or Slt2 are found to be CQ hypersensitive, and both proteins were phosphorylated in response to CQ exposure. CQ-activated Hog1p is translocated to the nucleus and facilitates the expression of GPD1 (glycerol-3-phosphate dehydrogenase), which is required for the synthesis of glycerol (one of the major osmolytes). Moreover, cells treated with CQ exhibited an increase in intracellular reactive oxygen species (ROS) levels and the effects were rescued by addition of reduced glutathione to the medium. The deletion of SOD1, the superoxide dismutase in yeast, resulted in hypersensitivity to CQ. We have also observed P38 as well as P42/44 phosphorylation in HEK293T human cells upon exposure to CQ, indicating that the kinds of responses generated in yeast and human cells are similar. In summary, our findings define the multiple biological pathways targeted by CQ that might be useful for understanding the toxicity modulated by this pharmacologically important molecule.

  2. Maximal stimulation of meiotic recombination by a yeast transcription factor requires the transcription activation domain and a DNA-binding domain.

    PubMed Central

    Kirkpatrick, D T; Fan, Q; Petes, T D

    1999-01-01

    The DNA sequences located upstream of the yeast HIS4 represent a very strong meiotic recombination hotspot. Although the activity of this hotspot requires the transcription activator Rap1p, the level of HIS4 transcription is not directly related to the level of recombination. We find that the recombination-stimulating activity of Rap1p requires the transcription activation domain of the protein. We show that a hybrid protein with the Gal4p DNA-binding domain and the Rap1p activation domain can stimulate recombination in a strain in which Gal4p-binding sites are inserted upstream of HIS4. In addition, we find recombination hotspot activity associated with the Gal4p DNA-binding sites that is independent of known transcription factors. We suggest that yeast cells have two types of recombination hotspots, alpha (transcription factor dependent) and beta (transcription factor independent). PMID:10224246

  3. Transport properties of fission product vapors

    SciTech Connect

    Im, K.H.; Ahluwalia, R.K.

    1983-07-01

    Kinetic theory of gases is used to calculate the transport properties of fission product vapors in a steam and hydrogen environment. Provided in tabular form is diffusivity of steam and hydrogen, viscosity and thermal conductivity of the gaseous mixture, and diffusivity of cesium iodide, cesium hydroxide, diatomic tellurium and tellurium dioxide. These transport properties are required in determining the thermal-hydraulics of and fission product transport in light water reactors.

  4. The membrane remodeling protein Pex11p activates the GTPase Dnm1p during peroxisomal fission

    PubMed Central

    Opalinski, Lukasz; Landgraf, Christiane; Costello, Joseph; Schrader, Michael; Krikken, Arjen M.; Knoops, Kèvin; Kram, Anita M.; Volkmer, Rudolf; van der Klei, Ida J.

    2015-01-01

    The initial phase of peroxisomal fission requires the peroxisomal membrane protein Peroxin 11 (Pex11p), which remodels the membrane, resulting in organelle elongation. Here, we identify an additional function for Pex11p, demonstrating that Pex11p also plays a crucial role in the final step of peroxisomal fission: dynamin-like protein (DLP)-mediated membrane scission. First, we demonstrate that yeast Pex11p is necessary for the function of the GTPase Dynamin-related 1 (Dnm1p) in vivo. In addition, our data indicate that Pex11p physically interacts with Dnm1p and that inhibiting this interaction compromises peroxisomal fission. Finally, we demonstrate that Pex11p functions as a GTPase activating protein (GAP) for Dnm1p in vitro. Similar observations were made for mammalian Pex11β and the corresponding DLP Drp1, indicating that DLP activation by Pex11p is conserved. Our work identifies a previously unknown requirement for a GAP in DLP function. PMID:25941407

  5. VID22 is required for transcriptional activation of the PSD2 gene in the yeast Saccharomyces cerevisiae.

    PubMed

    Miyata, Non; Miyoshi, Takuya; Yamaguchi, Takanori; Nakazono, Toshimitsu; Tani, Motohiro; Kuge, Osamu

    2015-12-15

    Phosphatidylethanolamine (PE) in the yeast Saccharomyces cerevisiae is synthesized through decarboxylation of phosphatidylserine (PS), catalysed by PS decarboxylase 1 (Psd1p) and 2 (Psd2p) and the cytidine 5'-diphosphate (CDP)-ethanolamine (CDP-Etn) pathway. PSD1 null (psd1Δ) and PSD2 null (psd2Δ) mutants are viable in a synthetic minimal medium, but a psd1Δ psd2Δ double mutant exhibits Etn auxotrophy, which is incorporated into PE through the CDP-Etn pathway. We have previously shown that psd1Δ is synthetic lethal with deletion of VID22 (vid22Δ) [Kuroda et al. (2011) Mol. Microbiol. 80: , 248-265]. In the present study, we found that vid22Δ mutant exhibits Etn auxotrophy under PSD1-depressed conditions. Deletion of VID22 in wild-type and PSD1-depressed cells caused partial defects in PE formation through decarboxylation of PS. The enzyme activity of PS decarboxylase in an extract of vid22Δ cells was ∼70% of that in wild-type cells and similar to that in psd2Δ cells and the PS decarboxylase activity remaining in the PSD1-depressed cells became almost negligible with deletion of VID22. Thus, the vid22Δ mutation was suggested to cause a defect in the Psd2p activity. Furthermore, vid22Δ cells were shown to be defective in expression of the PSD2 gene tagged with 6×HA, the defect being ameliorated by replacement of the native promoter of the PSD2 gene with a CYC1 promoter. In addition, an α-galactosidase reporter assay revealed that the activity of the promoter of the PSD2 gene in vid22Δ cells was ∼5% of that in wild-type cells. These results showed that VID22 is required for transcriptional activation of the PSD2 gene.

  6. Novel roles for actin in mitochondrial fission.

    PubMed

    Hatch, Anna L; Gurel, Pinar S; Higgs, Henry N

    2014-11-01

    Mitochondrial dynamics, including fusion, fission and translocation, are crucial to cellular homeostasis, with roles in cellular polarity, stress response and apoptosis. Mitochondrial fission has received particular attention, owing to links with several neurodegenerative diseases. A central player in fission is the cytoplasmic dynamin-related GTPase Drp1, which oligomerizes at the fission site and hydrolyzes GTP to drive membrane ingression. Drp1 recruitment to the outer mitochondrial membrane (OMM) is a key regulatory event, which appears to require a pre-constriction step in which the endoplasmic reticulum (ER) and mitochondrion interact extensively, a process termed ERMD (ER-associated mitochondrial division). It is unclear how ER-mitochondrial contact generates the force required for pre-constriction or why pre-constriction leads to Drp1 recruitment. Recent results, however, show that ERMD might be an actin-based process in mammals that requires the ER-associated formin INF2 upstream of Drp1, and that myosin II and other actin-binding proteins might be involved. In this Commentary, we present a mechanistic model for mitochondrial fission in which actin and myosin contribute in two ways; firstly, by supplying the force for pre-constriction and secondly, by serving as a coincidence detector for Drp1 binding. In addition, we discuss the possibility that multiple fission mechanisms exist in mammals.

  7. Novel roles for actin in mitochondrial fission

    PubMed Central

    Hatch, Anna L.; Gurel, Pinar S.; Higgs, Henry N.

    2014-01-01

    ABSTRACT Mitochondrial dynamics, including fusion, fission and translocation, are crucial to cellular homeostasis, with roles in cellular polarity, stress response and apoptosis. Mitochondrial fission has received particular attention, owing to links with several neurodegenerative diseases. A central player in fission is the cytoplasmic dynamin-related GTPase Drp1, which oligomerizes at the fission site and hydrolyzes GTP to drive membrane ingression. Drp1 recruitment to the outer mitochondrial membrane (OMM) is a key regulatory event, which appears to require a pre-constriction step in which the endoplasmic reticulum (ER) and mitochondrion interact extensively, a process termed ERMD (ER-associated mitochondrial division). It is unclear how ER–mitochondrial contact generates the force required for pre-constriction or why pre-constriction leads to Drp1 recruitment. Recent results, however, show that ERMD might be an actin-based process in mammals that requires the ER-associated formin INF2 upstream of Drp1, and that myosin II and other actin-binding proteins might be involved. In this Commentary, we present a mechanistic model for mitochondrial fission in which actin and myosin contribute in two ways; firstly, by supplying the force for pre-constriction and secondly, by serving as a coincidence detector for Drp1 binding. In addition, we discuss the possibility that multiple fission mechanisms exist in mammals. PMID:25217628

  8. Fermentative capacity of dry active wine yeast requires a specific oxidative stress response during industrial biomass growth.

    PubMed

    Pérez-Torrado, Roberto; Gómez-Pastor, Rocío; Larsson, Christer; Matallana, Emilia

    2009-01-01

    Induction of the oxidative stress response has been described under many physiological conditions in Saccharomyces cerevisiae, including industrial fermentation for wine yeast biomass production where cells are grown through several batch and fed-batch cultures on molasses. Here, we investigate the influence of aeration on the expression changes of different gene markers for oxidative stress and compare the induction profiles to the accumulation of several intracellular metabolites in order to correlate the molecular response to physiological and metabolic changes. We also demonstrate that this specific oxidative response is relevant for wine yeast performance by construction of a genetically engineered wine yeast strain overexpressing the TRX2 gene that codifies a thioredoxin, one of the most important cellular defenses against oxidative damage. This modified strain displays an improved fermentative capacity and lower levels of oxidative cellular damages than its parental strain after dry biomass production.

  9. The Fission Barrier Landscape

    SciTech Connect

    Phair, L.; Moretto, L. G.

    2008-04-17

    Fission excitation functions have been measured for a chain of neighboring compound nuclei from {sup 207}Po to {sup 212}Po. We present a new analysis which provides a determination of the fission barriers and ground state shell effects with nearly spectroscopic accuracy. The accuracy achieved in this analysis may lead to a future detailed exploration of the saddle mass surface and its spectroscopy.

  10. Fission gas detection system

    DOEpatents

    Colburn, Richard P.

    1985-01-01

    A device for collecting fission gas released by a failed fuel rod which device uses a filter to pass coolant but which filter blocks fission gas bubbles which cannot pass through the filter due to the surface tension of the bubble.

  11. Fission Measurements with Dance

    NASA Astrophysics Data System (ADS)

    Jandel, M.; Bredeweg, T. A.; Fowler, M. M.; Bond, E. M.; Chadwick, M. B.; Clement, R. R.; Couture, A.; O'Donnell, J. M.; Haight, R. C.; Keksis, A. L.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Agvaanluvsan, U.; Dashdorj, D.; Macri, R. A.; Parker, W. E.; Wilk, P. A.; Wu, C. Y.; Becker, J. A.; Angell, C. T.; Tonchev, A. P.; Baker, J. D.

    2008-08-01

    Neutron capture cross section measurements on actinides are complicated by the presence of neutron-induced fission. An efficient fission tagging detector used in coincidence with the Detector for Advanced Neutron Capture Experiments (DANCE) provides a powerful tool in undertaking simultaneous measurements of (n,γ) and (n,f) cross sections. Preliminary results on 235U(n,γ) and (n,f) and 242mAm(n,f) cross sections measured with DANCE and a custom fission-tagging parallel plate avalanche counter (PPAC) are presented. Additional measurements of γ-ray cluster multiplicity distributions for neutron-induced fission of 235U and 242mAm and spontaneous fission of 252Cf are shown, as well as γ-ray energy and average γ-ray energy distributions.

  12. Biomodal spontaneous fission

    SciTech Connect

    Hulet, E.K. )

    1989-09-26

    Investigations of mass and kinetic-energy distributions from spontaneous fission have been extended in recent years to an isotope of element 104 and, for half-lives, to an isotope of element 108. The results have been surprising in that spontaneous fission half-lives have turned out to be much longer than expected and mass and kinetic- energy distributions were found to abruptly shift away from those of the lighter actinides, showing two modes of fission. These new developments have caused a re-evaluation of our understanding of the fission process, bringing an even deeper appreciation of the role played by nuclear shell effects upon spontaneous fission properties. 16 refs., 10 figs.

  13. Zebrafish ("Danio rerio") endomembrane antiporter similar to a yeast cation/H(+) transporter is required for neural crest development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    CAtion/H (+) eXchangers (CAXs) are integral membrane proteins that transport Ca (2+) or other cations by exchange with protons. While several yeast and plant CAX proteins have been characterized, no functional analysis of a vertebrate CAX homologue has yet been reported. In this study, we further ch...

  14. A novel Sec18p/NSF-dependent complex required for Golgi-to-endosome transport in yeast.

    PubMed

    Burd, C G; Peterson, M; Cowles, C R; Emr, S D

    1997-06-01

    The vacuolar protein-sorting (VPS) pathway of Saccharomyces cerevisiae mediates localization of proteins from the trans-Golgi to the