Temperature-viscosity models reassessed.
Peleg, Micha
2017-05-04
The temperature effect on viscosity of liquid and semi-liquid foods has been traditionally described by the Arrhenius equation, a few other mathematical models, and more recently by the WLF and VTF (or VFT) equations. The essence of the Arrhenius equation is that the viscosity is proportional to the absolute temperature's reciprocal and governed by a single parameter, namely, the energy of activation. However, if the absolute temperature in K in the Arrhenius equation is replaced by T + b where both T and the adjustable b are in °C, the result is a two-parameter model, which has superior fit to experimental viscosity-temperature data. This modified version of the Arrhenius equation is also mathematically equal to the WLF and VTF equations, which are known to be equal to each other. Thus, despite their dissimilar appearances all three equations are essentially the same model, and when used to fit experimental temperature-viscosity data render exactly the same very high regression coefficient. It is shown that three new hybrid two-parameter mathematical models, whose formulation bears little resemblance to any of the conventional models, can also have excellent fit with r 2 ∼ 1. This is demonstrated by comparing the various models' regression coefficients to published viscosity-temperature relationships of 40% sucrose solution, soybean oil, and 70°Bx pear juice concentrate at different temperature ranges. Also compared are reconstructed temperature-viscosity curves using parameters calculated directly from 2 or 3 data points and fitted curves obtained by nonlinear regression using a larger number of experimental viscosity measurements.
Prager, Jens; Najm, Habib N.; Sargsyan, Khachik; ...
2013-02-23
We study correlations among uncertain Arrhenius rate parameters in a chemical model for hydrocarbon fuel-air combustion. We consider correlations induced by the use of rate rules for modeling reaction rate constants, as well as those resulting from fitting rate expressions to empirical measurements arriving at a joint probability density for all Arrhenius parameters. We focus on homogeneous ignition in a fuel-air mixture at constant-pressure. We also outline a general methodology for this analysis using polynomial chaos and Bayesian inference methods. Finally, we examine the uncertainties in both the Arrhenius parameters and in predicted ignition time, outlining the role of correlations,more » and considering both accuracy and computational efficiency.« less
Correlated parameter fit of arrhenius model for thermal denaturation of proteins and cells.
Qin, Zhenpeng; Balasubramanian, Saravana Kumar; Wolkers, Willem F; Pearce, John A; Bischof, John C
2014-12-01
Thermal denaturation of proteins is critical to cell injury, food science and other biomaterial processing. For example protein denaturation correlates strongly with cell death by heating, and is increasingly of interest in focal thermal therapies of cancer and other diseases at temperatures which often exceed 50 °C. The Arrhenius model is a simple yet widely used model for both protein denaturation and cell injury. To establish the utility of the Arrhenius model for protein denaturation at 50 °C and above its sensitivities to the kinetic parameters (activation energy E a and frequency factor A) were carefully examined. We propose a simplified correlated parameter fit to the Arrhenius model by treating E a, as an independent fitting parameter and allowing A to follow dependently. The utility of the correlated parameter fit is demonstrated on thermal denaturation of proteins and cells from the literature as a validation, and new experimental measurements in our lab using FTIR spectroscopy to demonstrate broad applicability of this method. Finally, we demonstrate that the end-temperature within which the denaturation is measured is important and changes the kinetics. Specifically, higher E a and A parameters were found at low end-temperature (50 °C) and reduce as end-temperatures increase to 70 °C. This trend is consistent with Arrhenius parameters for cell injury in the literature that are significantly higher for clonogenics (45-50 °C) vs. membrane dye assays (60-70 °C). Future opportunities to monitor cell injury by spectroscopic measurement of protein denaturation are discussed.
Correlated Parameter Fit of Arrhenius Model for Thermal Denaturation of Proteins and Cells
Qin, Zhenpeng; Balasubramanian, Saravana Kumar; Wolkers, Willem F.; Pearce, John A.; Bischof, John C.
2014-01-01
Thermal denaturation of proteins is critical to cell injury, food science and other biomaterial processing. For example protein denaturation correlates strongly with cell death by heating, and is increasingly of interest in focal thermal therapies of cancer and other diseases at temperatures which often exceed 50 °C. The Arrhenius model is a simple yet widely used model for both protein denaturation and cell injury. To establish the utility of the Arrhenius model for protein denaturation at 50 °C and above its sensitivities to the kinetic parameters (activation energy Ea and frequency factor A) were carefully examined. We propose a simplified correlated parameter fit to the Arrhenius model by treating Ea, as an independent fitting parameter and allowing A to follow dependently. The utility of the correlated parameter fit is demonstrated on thermal denaturation of proteins and cells from the literature as a validation, and new experimental measurements in our lab using FTIR spectroscopy to demonstrate broad applicability of this method. Finally, we demonstrate that the end-temperature within which the denaturation is measured is important and changes the kinetics. Specifically, higher Ea and A parameters were found at low end-temperature (50°C) and reduce as end-temperatures increase to 70 °C. This trend is consistent with Arrhenius parameters for cell injury in the literature that are significantly higher for clonogenics (45 – 50 °C) vs. membrane dye assays (60 –70 °C). Future opportunities to monitor cell injury by spectroscopic measurement of protein denaturation are discussed. PMID:25205396
NASA Astrophysics Data System (ADS)
Ream, Allen E.; Slattery, John C.; Cizmas, Paul G. A.
2018-04-01
This paper presents a new method for determining the Arrhenius parameters of a reduced chemical mechanism such that it satisfies the second law of thermodynamics. The strategy is to approximate the progress of each reaction in the reduced mechanism from the species production rates of a detailed mechanism by using a linear least squares method. A series of non-linear least squares curve fittings are then carried out to find the optimal Arrhenius parameters for each reaction. At this step, the molar rates of production are written such that they comply with a theorem that provides the sufficient conditions for satisfying the second law of thermodynamics. This methodology was used to modify the Arrhenius parameters for the Westbrook and Dryer two-step mechanism and the Peters and Williams three-step mechanism for methane combustion. Both optimized mechanisms showed good agreement with the detailed mechanism for species mole fractions and production rates of most major species. Both optimized mechanisms showed significant improvement over previous mechanisms in minor species production rate prediction. Both optimized mechanisms produced no violations of the second law of thermodynamics.
Estimating Arrhenius parameters using temperature programmed molecular dynamics.
Imandi, Venkataramana; Chatterjee, Abhijit
2016-07-21
Kinetic rates at different temperatures and the associated Arrhenius parameters, whenever Arrhenius law is obeyed, are efficiently estimated by applying maximum likelihood analysis to waiting times collected using the temperature programmed molecular dynamics method. When transitions involving many activated pathways are available in the dataset, their rates may be calculated using the same collection of waiting times. Arrhenius behaviour is ascertained by comparing rates at the sampled temperatures with ones from the Arrhenius expression. Three prototype systems with corrugated energy landscapes, namely, solvated alanine dipeptide, diffusion at the metal-solvent interphase, and lithium diffusion in silicon, are studied to highlight various aspects of the method. The method becomes particularly appealing when the Arrhenius parameters can be used to find rates at low temperatures where transitions are rare. Systematic coarse-graining of states can further extend the time scales accessible to the method. Good estimates for the rate parameters are obtained with 500-1000 waiting times.
Estimating Arrhenius parameters using temperature programmed molecular dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imandi, Venkataramana; Chatterjee, Abhijit, E-mail: abhijit@che.iitb.ac.in
2016-07-21
Kinetic rates at different temperatures and the associated Arrhenius parameters, whenever Arrhenius law is obeyed, are efficiently estimated by applying maximum likelihood analysis to waiting times collected using the temperature programmed molecular dynamics method. When transitions involving many activated pathways are available in the dataset, their rates may be calculated using the same collection of waiting times. Arrhenius behaviour is ascertained by comparing rates at the sampled temperatures with ones from the Arrhenius expression. Three prototype systems with corrugated energy landscapes, namely, solvated alanine dipeptide, diffusion at the metal-solvent interphase, and lithium diffusion in silicon, are studied to highlight variousmore » aspects of the method. The method becomes particularly appealing when the Arrhenius parameters can be used to find rates at low temperatures where transitions are rare. Systematic coarse-graining of states can further extend the time scales accessible to the method. Good estimates for the rate parameters are obtained with 500-1000 waiting times.« less
Knies, Jennifer L.; Kingsolver, Joel G.
2013-01-01
The initial rise of fitness that occurs with increasing temperature is attributed to Arrhenius kinetics, in which rates of reaction increase exponentially with increasing temperature. Models based on Arrhenius typically assume single rate-limiting reaction(s) over some physiological temperature range for which all the rate-limiting enzymes are in 100% active conformation. We test this assumption using datasets for microbes that have measurements of fitness (intrinsic rate of population growth) at many temperatures and over a broad temperature range, and for diverse ectotherms that have measurements at fewer temperatures. When measurements are available at many temperatures, strictly Arrhenius kinetics is rejected over the physiological temperature range. However, over a narrower temperature range, we cannot reject strictly Arrhenius kinetics. The temperature range also affects estimates of the temperature dependence of fitness. These results indicate that Arrhenius kinetics only apply over a narrow range of temperatures for ectotherms, complicating attempts to identify general patterns of temperature dependence. PMID:20528477
Knies, Jennifer L; Kingsolver, Joel G
2010-08-01
The initial rise of fitness that occurs with increasing temperature is attributed to Arrhenius kinetics, in which rates of reaction increase exponentially with increasing temperature. Models based on Arrhenius typically assume single rate-limiting reactions over some physiological temperature range for which all the rate-limiting enzymes are in 100% active conformation. We test this assumption using data sets for microbes that have measurements of fitness (intrinsic rate of population growth) at many temperatures and over a broad temperature range and for diverse ectotherms that have measurements at fewer temperatures. When measurements are available at many temperatures, strictly Arrhenius kinetics are rejected over the physiological temperature range. However, over a narrower temperature range, we cannot reject strictly Arrhenius kinetics. The temperature range also affects estimates of the temperature dependence of fitness. These results indicate that Arrhenius kinetics only apply over a narrow range of temperatures for ectotherms, complicating attempts to identify general patterns of temperature dependence.
Analysis of S2QA- charge recombination with the Arrhenius, Eyring and Marcus theories.
Rantamäki, Susanne; Tyystjärvi, Esa
2011-01-01
The Q band of photosynthetic thermoluminescence, measured in the presence of a herbicide that blocks electron transfer from PSII, is associated with recombination of the S(2)Q(A)(-) charge pair. The same charge recombination reaction can be monitored with chlorophyll fluorescence. It has been shown that the recombination occurs via three competing routes of which one produces luminescence. In the present study, we measured the thermoluminescence Q band and the decay of chlorophyll fluorescence yield after a single turnover flash at different temperatures from spinach thylakoids. The data were analyzed using the commonly used Arrhenius theory, the Eyring rate theory and the Marcus theory of electron transfer. The fitting error was minimized for both thermoluminescence and fluorescence by adjusting the global, phenomenological constants obtained when the reaction rate theories were applied to the multi-step recombination reaction. For chlorophyll fluorescence, all three theories give decent fits. The peak position of the thermoluminescence Q band is correct by all theories but the form of the Q band is somewhat different in curves predicted by the three theories. The Eyring and Marcus theories give good fits for the decreasing part of the thermoluminescence curve and Marcus theory gives the closest fit for the rising part. Copyright © 2011 Elsevier B.V. All rights reserved.
Katkov, Igor I
2008-10-01
Some aspects of proper linearization of the Boyle-van't Hoff (BVH) relationship for calculation of the osmotically inactive volume v(b), and Arrhenius plot (AP) for the activation energy E(a) are discussed. It is shown that the commonly used determination of the slope and the intercept (v(b)), which are presumed to be independent from each other, is invalid if the initial intracellular molality m(0) is known. Instead, the linear regression with only one independent parameter (v(b)) or the Least Square Method (LSM) with v(b) as the only fitting LSM parameter must be applied. The slope can then be calculated from the BVH relationship as the function of v(b). In case of unknown m(0) (for example, if cells are preloaded with trehalose, or electroporation caused ion leakage, etc.), it is considered as the second independent statistical parameter to be found. In this (and only) scenario, all three methods give the same results for v(b) and m(0). AP can be linearized only for water hydraulic conductivity (L(p)) and solute mobility (omega(s)) while water and solute permeabilities P(w) identical withL(p)RT and P(s) identical withomega(s)RT cannot be linearized because they have pre-exponential factor (RT) that depends on the temperature T.
Waterman, Kenneth C; Swanson, Jon T; Lippold, Blake L
2014-10-01
Three competing mathematical fitting models (a point-by-point estimation method, a linear fit method, and an isoconversion method) of chemical stability (related substance growth) when using high temperature data to predict room temperature shelf-life were employed in a detailed comparison. In each case, complex degradant formation behavior was analyzed by both exponential and linear forms of the Arrhenius equation. A hypothetical reaction was used where a drug (A) degrades to a primary degradant (B), which in turn degrades to a secondary degradation product (C). Calculated data with the fitting models were compared with the projected room-temperature shelf-lives of B and C, using one to four time points (in addition to the origin) for each of three accelerated temperatures. Isoconversion methods were found to provide more accurate estimates of shelf-life at ambient conditions. Of the methods for estimating isoconversion, bracketing the specification limit at each condition produced the best estimates and was considerably more accurate than when extrapolation was required. Good estimates of isoconversion produced similar shelf-life estimates fitting either linear or nonlinear forms of the Arrhenius equation, whereas poor isoconversion estimates favored one method or the other depending on which condition was most in error. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Whitney, Jon; Carswell, William; Rylander, Nichole
2013-06-01
Predictions of injury in response to photothermal therapy in vivo are frequently made using Arrhenius parameters obtained from cell monolayers exposed to laser or water bath heating. However, the impact of different heating methods and cellular microenvironments on Arrhenius predictions has not been thoroughly investigated. This study determined the influence of heating method (water bath and laser irradiation) and cellular microenvironment (cell monolayers and tissue phantoms) on Arrhenius parameters and spatial viability. MDA-MB-231 cells seeded in monolayers and sodium alginate phantoms were heated with a water bath for 3-20 min at 46, 50, and 54 °C or laser irradiated (wavelength of 1064 nm and fluences of 40 W/cm(2) or 3.8 W/cm(2) for 0-4 min) in combination with photoabsorptive carbon nanohorns. Spatial viability was measured using digital image analysis of cells stained with calcein AM and propidium iodide and used to determine Arrhenius parameters. The influence of microenvironment and heating method on Arrhenius parameters and capability of parameters derived from more simplistic experimental conditions (e.g. water bath heating of monolayers) to predict more physiologically relevant systems (e.g. laser heating of phantoms) were assessed. Arrhenius predictions of the treated area (<1% viable) under-predicted the measured areas in photothermally treated phantoms by 23 mm(2) using water bath treated cell monolayer parameters, 26 mm(2) using water bath treated phantom parameters, 27 mm(2) using photothermally treated monolayer parameters, and 0.7 mm(2) using photothermally treated phantom parameters. Heating method and cellular microenvironment influenced Arrhenius parameters, with heating method having the greater impact.
Sensitivity of viscosity Arrhenius parameters to polarity of liquids
NASA Astrophysics Data System (ADS)
Kacem, R. B. H.; Alzamel, N. O.; Ouerfelli, N.
2017-09-01
Several empirical and semi-empirical equations have been proposed in the literature to estimate the liquid viscosity upon temperature. In this context, this paper aims to study the effect of polarity of liquids on the modeling of the viscosity-temperature dependence, considering particularly the Arrhenius type equations. To achieve this purpose, the solvents are classified into three groups: nonpolar, borderline polar and polar solvents. Based on adequate statistical tests, we found that there is strong evidence that the polarity of solvents affects significantly the distribution of the Arrhenius-type equation parameters and consequently the modeling of the viscosity-temperature dependence. Thus, specific estimated values of parameters for each group of liquids are proposed in this paper. In addition, the comparison of the accuracy of approximation with and without classification of liquids, using the Wilcoxon signed-rank test, shows a significant discrepancy of the borderline polar solvents. For that, we suggested in this paper new specific coefficient values of the simplified Arrhenius-type equation for better estimation accuracy. This result is important given that the accuracy in the estimation of the viscosity-temperature dependence may affect considerably the design and the optimization of several industrial processes.
Tian, Lu; Wei, Wan-Zhi; Mao, You-An
2004-04-01
The adsorption of human serum albumin onto hydroxyapatite-modified silver electrodes has been in situ investigated by utilizing the piezoelectric quartz crystal impedance technique. The changes of equivalent circuit parameters were used to interpret the adsorption process. A kinetic model of two consecutive steps was derived to describe the process and compared with a first-order kinetic model by using residual analysis. The experimental data of frequency shift fitted to the model and kinetics parameters, k1, k2, psi1, psi2 and qr, were obtained. All fitted results were in reasonable agreement with the corresponding experimental results. Two adsorption constants (7.19 kJ mol(-1) and 22.89 kJ mol(-1)) were calculated according to the Arrhenius formula.
The effect of carbon-chain oxygenation in the carbon-carbon dissociation.
Dos Santos, Lisandra Paulino; Baptista, Leonardo
2018-06-01
Currently, there is a trend of moving away from the use of fossil fuels to the use of biofuels. This modification changes the molecular structure of gasoline and diesel constituents, which should impact pollutant emissions and engine efficiency. An important property of automotive fuels is the resistance to autoignition. The goal of the present work is to evaluate thermochemical and kinetic parameters that govern the carbon-carbon bond dissociation and relate these parameters, in conjunction with molecular properties, to autoignition resistance. Three model reactions were investigated in the present work: dissociation of ethane, ethanol, and ethanal. All studies were conducted at the multiconfigurational level of theory, and the rate coefficients were evaluated from 300 to 2000 K. The comparison of dissociation energies and Arrhenius expressions indicates that autoignition resistance is related to the kinetic control of dissociation reactions and it is possible to relate the higher octane number of ethanol based fuels to the kinetics parameters of carbon-carbon bond fission. Graphical abstract Effect of the functional group in the Arrhenius parameters of the C-C dissociation. Arrhenius curves calculated at NEVPT2(6,6)/6-311G(2df,2pd).
NASA Astrophysics Data System (ADS)
Švajdlenková, H.; Ruff, A.; Lunkenheimer, P.; Loidl, A.; Bartoš, J.
2017-08-01
We report a broadband dielectric spectroscopic (BDS) study on the clustering fragile glass-former meta-toluidine (m-TOL) from 187 K up to 289 K over a wide frequency range of 10-3-109 Hz with focus on the primary α relaxation and the secondary β relaxation above the glass temperature Tg. The broadband dielectric spectra were fitted by using the Havriliak-Negami (HN) and Cole-Cole (CC) models. The β process disappearing at Tβ,disap = 1.12Tg exhibits non-Arrhenius dependence fitted by the Vogel-Fulcher-Tamman-Hesse equation with T0βVFTH in accord with the characteristic differential scanning calorimetry (DSC) limiting temperature of the glassy state. The essential feature of the α process consists in the distinct changes of its spectral shape parameter βHN marked by the characteristic BDS temperatures TB1βHN and TB2βHN. The primary α relaxation times were fitted over the entire temperature and frequency range by several current three-parameter up to six-parameter dynamic models. This analysis reveals that the crossover temperatures of the idealized mode coupling theory model (TcMCT), the extended free volume model (T0EFV), and the two-order parameter (TOP) model (Tmc) are close to TB1βHN, which provides a consistent physical rationalization for the first change of the shape parameter. In addition, the other two characteristic TOP temperatures T0TOP and TA are coinciding with the thermodynamic Kauzmann temperature TK and the second change of the shape parameter at around TB2βHN, respectively. These can be related to the onset of the liquid-like domains in the glassy state or the disappearance of the solid-like domains in the normal liquid state.
Application of the compensated Arrhenius formalism to fluidity data of polar organic liquids.
Petrowsky, Matt; Fleshman, Allison M; Frech, Roger
2013-03-14
The temperature dependence of viscosity (the reciprocal of fluidity) in polar liquids has been studied for over a century, but the available theoretical models have serious limitations. Consequently, the viscosity is often described with empirical equations using adjustable fitting parameters that offer no insight into the molecular mechanism of transport. We have previously reported a novel approach called the compensated Arrhenius formalism (CAF) to describe ionic conductivity, self-diffusion, and dielectric relaxation in terms of molecular and system properties. Here the CAF is applied to fluidity data of pure n-acetates, 2-ketones, n-nitriles, and n-alcohols over the temperature range 5-85 °C. The fluidity is represented as an Arrhenius-like expression that includes a static dielectric constant dependence in the exponential prefactor. The dielectric constant dependence results from the dependence of mass and charge transport on the molecular dipole moment and the solvent dipole density. The CAF is the only self-consistent description of fluid transport in polar liquids written solely in terms of molecular and system parameters. A scaling procedure is used to calculate the activation energy for transport. We find that the activation energies for fluidity of the aprotic liquids are comparable in value, whereas a higher average E(a) value is observed for the n-alcohol data. Finally, we contrast the molecular description of transport presented here with the conventional hydrodynamic model.
Thermochemical Ablation Analysis of the Orion Heatshield
NASA Technical Reports Server (NTRS)
Sixel, William
2015-01-01
The Orion Multi-Purpose Crew Vehicle will one day carry astronauts to the Moon and beyond, and Orion's heatshield is a critical component in ensuring their safe return to Earth. The Orion heatshield is the structural component responsible for absorbing the intense heating environment caused by re-entry to Earth's atmosphere. The heatshield is primarily composed of Avcoat, an ablative material that is consumed during the re-entry process. Ablation is primarily characterized by two processes: pyrolysis and recession. The decomposition of in-depth virgin material is known as pyrolysis. Recession occurs when the exposed surface of the heatshield reacts with the surrounding flow. The Orion heatshield design was changed from an individually filled Avcoat honeycomb to a molded block Avcoat design. The molded block Avcoat heatshield relies on an adhesive bond to keep it attached to the capsule. In some locations on the heatshield, the integrity of the adhesive bond cannot be verified. For these locations, a mechanical retention device was proposed. Avcoat ablation was modelled in CHAR and the in-depth virgin material temperatures were used in a Thermal Desktop model of the mechanical retention device. The retention device was analyzed and shown to cause a large increase in the maximum bondline temperature. In order to study the impact of individual ablation modelling parameters on the heatshield sizing process, a Monte Carlo simulation of the sizing process was proposed. The simulation will give the sensitivity of the ablation model to each of its input parameters. As part of the Monte Carlo simulation, statistical uncertainties on material properties were required for Avcoat. Several properties were difficult to acquire uncertainties for: the pyrolysis gas enthalpy, non-dimensional mass loss rate (B´c), and Arrhenius equation parameters. Variability in the elemental composition of Avcoat was used as the basis for determining the statistical uncertainty in pyrolysis gas enthalpy and B´c. A MATLAB program was developed to allow for faster, more accurate and automated computation of Arrhenius reaction parameters. These parameters are required for a material model to be used in the CHAR ablation analysis program. This MATLAB program, along with thermogravimetric analysis (TGA) data, was used to generate uncertainties on the Arrhenius parameters for Avcoat. In addition, the TGA fitting program was developed to provide Arrhenius parameters for the ablation model of the gap filler material, RTV silicone.
Contribution to modeling the viscosity Arrhenius-type equation for saturated pure fluids
NASA Astrophysics Data System (ADS)
Tian, Jianxiang; Zhang, Laibin
2016-09-01
Recently, Haj-Kacem et al. proposed an equation modeling the relationship between the two parameters of viscosity Arrhenius-type equations [Fluid Phase Equilibria 383, 11 (2014)]. The authors found that the two parameters are dependent upon each other in an exponential function form. In this paper, we reconsidered their ideas and calculated the two parameter values for 49 saturated pure fluids by using the experimental data in the NIST WebBook. Our conclusion is different with the ones of Haj-Kacem et al. We found that (the linearity shown by) the Arrhenius equation stands strongly only in low temperature range and that the two parameters of the Arrhenius equation are independent upon each other in the whole temperature range from the triple point to the critical point.
Stoch, G; Ylinen, E E; Birczynski, A; Lalowicz, Z T; Góra-Marek, K; Punkkinen, M
2013-02-01
A new method is introduced for analyzing deuteron spin-lattice relaxation in molecular systems with a broad distribution of activation energies and correlation times. In such samples the magnetization recovery is strongly non-exponential but can be fitted quite accurately by three exponentials. The considered system may consist of molecular groups with different mobility. For each group a Gaussian distribution of the activation energy is introduced. By assuming for every subsystem three parameters: the mean activation energy E(0), the distribution width σ and the pre-exponential factor τ(0) for the Arrhenius equation defining the correlation time, the relaxation rate is calculated for every part of the distribution. Experiment-based limiting values allow the grouping of the rates into three classes. For each class the relaxation rate and weight is calculated and compared with experiment. The parameters E(0), σ and τ(0) are determined iteratively by repeating the whole cycle many times. The temperature dependence of the deuteron relaxation was observed in three samples containing CD(3)OH (200% and 100% loading) and CD(3)OD (200%) in NaX zeolite and analyzed by the described method between 20K and 170K. The obtained parameters, equal for all the three samples, characterize the methyl and hydroxyl mobilities of the methanol molecules at two different locations. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kuki, Ákos; Czifrák, Katalin; Karger-Kocsis, József; Zsuga, Miklós; Kéki, Sándor
2015-02-01
The prediction of shape-memory behavior is essential regarding the design of a smart material for different applications. This paper proposes a simple and quick method for the prediction of shape-memory behavior of amorphous shape memory polymers (SMPs) on the basis of a single dynamic mechanical analysis (DMA) temperature sweep at constant frequency. All the parameters of the constitutive equations for linear viscoelasticity are obtained by fitting the DMA curves. The change with the temperature of the time-temperature superposition shift factor ( a T ) is expressed by the Williams-Landel-Ferry (WLF) model near and above the glass transition temperature ( T g ), and by the Arrhenius law below T g . The constants of the WLF and Arrhenius equations can also be determined. The results of our calculations agree satisfactorily with the experimental free recovery curves from shape-memory tests.
ARRHENIUS MODEL FOR HIGH-TEMPERATURE GLASS VISCOSITY WITH A CONSTANT PRE-EXPONENTIAL FACTOR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hrma, Pavel R.
2008-04-15
A simplified form of the Arrhenius equation, ln η = A + B(x)/T, where η is the viscosity, T the temperature, x the composition vector, and A and B the Arrhenius coefficients, was fitted to glass-viscosity data for the processing temperature range (the range at which the viscosity is within 1 to 103 Pa.s) while setting A = constant and treating B(x) as a linear function of mass fractions of major components. Fitting the Arrhenius equation to over 550 viscosity data of commercial glasses and approximately 1000 viscosity data of glasses for nuclear-waste glasses resulted in the A values ofmore » -11.35 and -11.48, respectively. The R2 value ranged from 0.92 to 0.99 for commercial glasses and was 0.98 for waste glasses. The Arrhenius models estimate viscosities for melts of commercial glasses containing 42 to 84 mass% SiO2 within the temperature range of 1100 to 1550°C and viscosity range of 5 to 400 Pa.s and for waste glasses containing 32 to 60 mass% SiO2 within the temperature range of 850 to 1450°C and viscosity range of 0.4 to 250 Pa.s.« less
Predictive modeling of surimi cake shelf life at different storage temperatures
NASA Astrophysics Data System (ADS)
Wang, Yatong; Hou, Yanhua; Wang, Quanfu; Cui, Bingqing; Zhang, Xiangyu; Li, Xuepeng; Li, Yujin; Liu, Yuanping
2017-04-01
The Arrhenius model of the shelf life prediction which based on the TBARS index was established in this study. The results showed that the significant changed of AV, POV, COV and TBARS with temperature increased, and the reaction rate constants k was obtained by the first order reaction kinetics model. Then the secondary model fitting was based on the Arrhenius equation. There was the optimal fitting accuracy of TBARS in the first and the secondary model fitting (R2≥0.95). The verification test indicated that the relative error between the shelf life model prediction value and actual value was within ±10%, suggesting the model could predict the shelf life of surimi cake.
Švajdlenková, H; Ruff, A; Lunkenheimer, P; Loidl, A; Bartoš, J
2017-08-28
We report a broadband dielectric spectroscopic (BDS) study on the clustering fragile glass-former meta-toluidine (m-TOL) from 187 K up to 289 K over a wide frequency range of 10 -3 -10 9 Hz with focus on the primary α relaxation and the secondary β relaxation above the glass temperature T g . The broadband dielectric spectra were fitted by using the Havriliak-Negami (HN) and Cole-Cole (CC) models. The β process disappearing at T β,disap = 1.12T g exhibits non-Arrhenius dependence fitted by the Vogel-Fulcher-Tamman-Hesse equation with T 0β VFTH in accord with the characteristic differential scanning calorimetry (DSC) limiting temperature of the glassy state. The essential feature of the α process consists in the distinct changes of its spectral shape parameter β HN marked by the characteristic BDS temperatures T B1 βHN and T B2 βHN . The primary α relaxation times were fitted over the entire temperature and frequency range by several current three-parameter up to six-parameter dynamic models. This analysis reveals that the crossover temperatures of the idealized mode coupling theory model (T c MCT ), the extended free volume model (T 0 EFV ), and the two-order parameter (TOP) model (T m c ) are close to T B1 βHN , which provides a consistent physical rationalization for the first change of the shape parameter. In addition, the other two characteristic TOP temperatures T 0 TOP and T A are coinciding with the thermodynamic Kauzmann temperature T K and the second change of the shape parameter at around T B2 βHN , respectively. These can be related to the onset of the liquid-like domains in the glassy state or the disappearance of the solid-like domains in the normal liquid state.
A Best-Fit Line Using the Method of Averages.
ERIC Educational Resources Information Center
Hoppe, Jack
2002-01-01
Describes a method for calculating lines of best fit that is easy to understand and apply. Presents an example using the Arrhenius plot of a first-order reaction from which the energy of activation is calculated. (MM)
Daneshfar, Rambod; Klassen, John S
2006-09-01
Arrhenius activation parameters (E(a), A) for the loss of neutral nucleobases from a series of T-rich, doubly and triply deprotonated 15- and 20-mer oligodeoxynucleotides (ODN) containing a single reactive base (X = A or C) with the sequence, XT14, XT19 and T19X, have been determined using the blackbody infrared radiative dissociation technique. The A-containing anions are significantly more reactive (> or =3000 times) than the C-containing ions over the temperature range investigated. Importantly, the Arrhenius parameters for the loss of AH exhibit a strong dependence on size of the ODN and, to some extent, the charge state; the Arrhenius parameters increase with size and charge (Ea = 29-39 kcal mol(-1), A = 10(15)-10(20) s(-1)). In contrast, the parameters for the loss of CH are much less sensitive to size (Ea = 35-39 kcal mol(-1), A = 10(14)-10(17) s(-1)). The results are consistent with a greater contribution from the internal solvation of the reactive base to the Arrhenius parameters for the loss of A, compared with C, from the 15- and 20-mers. To further probe differences in internal solvation of A and C, hydrogen/deuterium exchange was carried out on AT19(-3), T19A(-3), CT19(-3) and T19C(-3) using D2O as the exchange reagent. However, the H/D exchange results did not reveal any differences in internal solvation within the ODN anions. Arrhenius parameters for the dissociation of noncovalent complexes of T20(-3) and the neutral nucleobase AH or CH have also been determined. Differences in the parameters indicate differences in the nature of the intermolecular interactions. It is proposed that neutral A-T interactions (i.e., base-base), which originate in solution, dominate in the case of (T20 + AH)(-3), while charge solvation, involving CH and a deprotonated phosphate group, is present for (T20 + CH)(-3).
Abdullah, Norazlin; Yusof, Yus A.; Talib, Rosnita A.
2017-01-01
Abstract This study has modeled the rheological behavior of thermosonic extracted pink‐fleshed guava, pink‐fleshed pomelo, and soursop juice concentrates at different concentrations and temperatures. The effects of concentration on consistency coefficient (K) and flow behavior index (n) of the fruit juice concentrates was modeled using a master curve which utilized the concentration‐temperature shifting to allow a general prediction of rheological behaviors covering a wide concentration. For modeling the effects of temperature on K and n, the integration of two functions from the Arrhenius and logistic sigmoidal growth equations has provided a new model which gave better description of the properties. It also alleviated the problems of negative region when using the Arrhenius model alone. The fitted regression using this new model has improved coefficient of determination, R 2 values above 0.9792 as compared to using the Arrhenius and logistic sigmoidal models alone, which presented minimum R 2 of 0.6243 and 0.9440, respectively. Practical applications In general, juice concentrate is a better form of food for transportation, preservation, and ingredient. Models are necessary to predict the effects of processing factors such as concentration and temperature on the rheological behavior of juice concentrates. The modeling approach allows prediction of behaviors and determination of processing parameters. The master curve model introduced in this study simplifies and generalized rheological behavior of juice concentrates over a wide range of concentration when temperature factor is insignificant. The proposed new mathematical model from the combination of the Arrhenius and logistic sigmoidal growth models has improved and extended description of rheological properties of fruit juice concentrates. It also solved problems of negative values of consistency coefficient and flow behavior index prediction using existing model, the Arrhenius equation. These rheological data modeling provide good information for the juice processing and equipment manufacturing needs. PMID:29479123
ERIC Educational Resources Information Center
Salvador, F.; And Others
1984-01-01
Describes a method which adapts itself to the characteristics of the kinetics of a chemical reaction in solution, enabling students to determine the Arrhenius parameters with satisfactory accuracy by means of a single non-isothermic experiment. Both activation energy and the preexponential factor values can be obtained by the method. (JN)
NASA Technical Reports Server (NTRS)
Schroeder, M. A.
1980-01-01
A summary of a literature review on thermal decomposition of HMX and RDX is presented. The decomposition apparently fits first order kinetics. Recommended values for Arrhenius parameters for HMX and RDX decomposition in the gaseous and liquid phases and for decomposition of RDX in solution in TNT are given. The apparent importance of autocatalysis is pointed out, as are some possible complications that may be encountered in interpreting extending or extrapolating kinetic data for these compounds from measurements carried out below their melting points to the higher temperatures and pressure characteristic of combustion.
Numerical Simulation of Combustion and Extinction of a Solid Cylinder in Low-Speed Cross Flow
NASA Technical Reports Server (NTRS)
Tien, J. S.; Yang, Chin Tien
1998-01-01
The combustion and extinction behavior of a diffusion flame around a solid fuel cylinder (PMMA) in low-speed forced flow in zero gravity was studied numerically using a quasi-steady gas phase model. This model includes two-dimensional continuity, full Navier Stokes' momentum, energy, and species equations with a one-step overall chemical reaction and second-order finite-rate Arrhenius kinetics. Surface radiation and Arrhenius pyrolysis kinetics are included on the solid fuel surface description and a parameter Phi, representing the percentage of gas-phase conductive heat flux going into the solid, is introduced into the interfacial energy balance boundary condition to complete the description for the quasi-steady gas-phase system. The model was solved numerically using a body-fitted coordinate transformation and the SIMPLE algorithm. The effects of varying freestream velocity and Phi were studied. These parameters have a significant effect on the flame structure and extinction limits. Two flame modes were identified: envelope flame and wake flame. Two kinds of flammability limits were found: quenching at low-flow speeds due to radiative loss and blow-off at high flow speeds due to insufficient gas residence time. A flammability map was constructed showing the existence of maximum Phi above which the solid is not flammable at any freestream velocity.
Sánchez-Jiménez, Pedro E; Pérez-Maqueda, Luis A; Perejón, Antonio; Criado, José M
2013-02-05
This paper provides some clarifications regarding the use of model-fitting methods of kinetic analysis for estimating the activation energy of a process, in response to some results recently published in Chemistry Central journal. The model fitting methods of Arrhenius and Savata are used to determine the activation energy of a single simulated curve. It is shown that most kinetic models correctly fit the data, each providing a different value for the activation energy. Therefore it is not really possible to determine the correct activation energy from a single non-isothermal curve. On the other hand, when a set of curves are recorded under different heating schedules are used, the correct kinetic parameters can be clearly discerned. Here, it is shown that the activation energy and the kinetic model cannot be unambiguously determined from a single experimental curve recorded under non isothermal conditions. Thus, the use of a set of curves recorded under different heating schedules is mandatory if model-fitting methods are employed.
Systematic variations of argon diffusion in feldspars and implications for thermochronometry
Cassata, William S.; Renne, Paul R.
2013-03-07
Coupled information about the time-dependent production and temperature-dependent diffusion of radiogenic argon in feldspars can be used to constrain the thermal evolution attending a host of Earth and planetary processes. To better assess the accuracy of thermal models, an understanding of the mechanisms and pathways by which argon diffuses in feldspars is desirable. Here we present step-heating Ar diffusion experiments conducted on feldspars with diverse compositions, structural states, and microstructural characteristics. The experiments reveal systematic variations in diffusive behavior that appear closely related to these variables, with apparent closure temperatures for 0.1–1 mm grains of ~200–400 °C (assuming a 10more » °C/Ma cooling rate). Given such variability, there is no broadly applicable set of diffusion parameters that can be utilized in feldspar thermal modeling; sample-specific data are required. Diffusion experiments conducted on oriented cleavage flakes do not reveal directionally-dependent diffusive anisotropy to within the resolution limits of our approach (approximately a factor of 2). Additional experiments aimed at constraining the physical significance of the diffusion domain are presented and indicate that unaltered feldspar crystals with or without coherent exsolution lamellae diffuse at the grain-scale, whereas feldspars containing hydrothermal alteration and/or incoherent sub-grain intergrowths do not. Arrhenius plots for argon diffusion in plagioclase and alkali feldspars appear to reflect a confluence of intrinsic diffusion kinetics and structural transitions that occur during incremental heating experiments. These structural transitions, along with sub-grain domain size variations, cause deviations from linearity (i.e., upward and downward curvature) on Arrhenius plots. An atomistic model for Arrhenius behavior is proposed that incorporates the variable lattice deformations of different feldspars in response to heating and compression. Furthermore, the resulting implications for accurately extrapolating laboratory-derived diffusion parameters to natural settings and over geologic time are discussed. We find that considerable inaccuracies may exist in published thermal histories obtained using multiple diffusion domain (MDD) models fit to Arrhenius plots for exsolved alkali feldspar, where the inferred Ar partial retention zones may be spuriously hot.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milder, S.J.
1985-10-09
The effect of environment on the temperature dependence of the nonradiative decay of the /sup 3/A/sup 2/ state of Rh/sub 2/(TMB)/sub 4//sup 2 +/ (TMB = 2,5-dimethyl-2,5-diisocyanohexane) is studied. The temperature dependence of the observed nonradiative decay rate can be approximately fit to an Arrhenius-like expression: k/sub obsd/ = k/sub 0/ + Ae/sup -E/sub a//RT/. Arrhenius parameters are obtained in seven different environments, with the activation energies varying from 1970 to 3420 cm/sup -1/. A plot of 1n A vs. E/sub a/, known as a Barclay-Butler plot, is linear, with slope = 3.3 x 10/sup -3/ cm and y interceptmore » = 20.0. The linear Barclay-Butler plot suggests that the activated decay from the /sup 3/A/sub 2/ state of Rh/sub 2/(TMB)/sub 4//sup 2 +/ has the same mechanism, regardless of environment. Single-crystal, dilute-plastic, and dilute-crystal environments have been tested. 13 references, 4 figures.« less
NASA Astrophysics Data System (ADS)
Alster, C. J.; Koyama, A.; Johnson, N. G.; von Fischer, J.
2015-12-01
Soil microbes catalyze many key ecosystem functions, including soil respiration, and are thus important for understanding global carbon cycles and other biogeochemical cycles. One important component in predicting rates of respiration is determining how microbial communities respond to temperature. A range of models have been developed for determining temperature sensitivity of soil biological activities, most of which are based on the Arrhenius equation. This equation predicts an exponential increase in rate with temperature, despite field and laboratory results suggesting a temperature optimum below the denaturation point. Recently, Schipper et al. (2014) developed a novel theory, Macromolecular Rate Theory (MMRT), which explains this trend due to heat capacity (CP) changes associated with enzymes. We applied MMRT to respiration data collected using a reciprocal transplant design with soils from three different sites across the U.S. Great Plains to isolate the effects of microbial community type from edaphic factors. We found that MMRT provided a better fit to the data than Arrhenius in 8 out of the 9 soil x inocula combinations. Our analysis revealed that the microbial communities have distinct CP values largely independent of soil type. These results have significant implications for fundamental understanding of microbial enzyme dynamics in soils as well as for ecosystem and global carbon modeling.
Statistical modelling of thermal annealing of fission tracks in apatite
NASA Astrophysics Data System (ADS)
Laslett, G. M.; Galbraith, R. F.
1996-12-01
We develop an improved methodology for modelling the relationship between mean track length, temperature, and time in fission track annealing experiments. We consider "fanning Arrhenius" models, in which contours of constant mean length on an Arrhenius plot are straight lines meeting at a common point. Features of our approach are explicit use of subject matter knowledge, treating mean length as the response variable, modelling of the mean-variance relationship with two components of variance, improved modelling of the control sample, and using information from experiments in which no tracks are seen. This approach overcomes several weaknesses in previous models and provides a robust six parameter model that is widely applicable. Estimation is via direct maximum likelihood which can be implemented using a standard numerical optimisation package. Because the model is highly nonlinear, some reparameterisations are needed to achieve stable estimation and calculation of precisions. Experience suggests that precisions are more convincingly estimated from profile log-likelihood functions than from the information matrix. We apply our method to the B-5 and Sr fluorapatite data of Crowley et al. (1991) and obtain well-fitting models in both cases. For the B-5 fluorapatite, our model exhibits less fanning than that of Crowley et al. (1991), although fitted mean values above 12 μm are fairly similar. However, predictions can be different, particularly for heavy annealing at geological time scales, where our model is less retentive. In addition, the refined error structure of our model results in tighter prediction errors, and has components of error that are easier to verify or modify. For the Sr fluorapatite, our fitted model for mean lengths does not differ greatly from that of Crowley et al. (1991), but our error structure is quite different.
Blackbody infrared radiative dissociation of oligonucleotide anions.
Klassen, J S; Schnier, P D; Williams, E R
1998-11-01
The dissociation kinetics of a series of doubly deprotonated oligonucleotide 7-mers [d(A)7(2-), d(AATTAAT)2-, d(TTAATTA)2-, and d(CCGGCCG)2-] were measured using blackbody infrared radiative dissociation in a Fourier-transform mass spectrometer. The oligonucleotides dissociate first by cleavage at the glycosidic bond leading to the loss of a neutral nucleobase, followed by cleavage at the adjacent (5') phosphodiester bond to produce structurally informative a-base and w type ions. From the temperature dependence of the unimolecular dissociation rate constants, Arrhenius activation parameters in the zero-pressure limit are obtained for the loss of base. The measured Arrhenius parameters are dependent on the identity of the nucleobase. The process involving the loss of an adenine base from the dianions, d(A)7(2-), d(AATTAAT)2-, and d(TTAATTA)2- has an average activation energy (Ea) of approximately 1.0 eV and a preexponential factor (A) of 10(10) s-1. Both guanine and cytosine base loss occurs for d(CCGGCCG)2-. The average Arrhenius parameters for the loss of cytosine and guanine are Ea = 1.32 +/- 0.03 eV and A = 10(13.3 +/- 0.3) s-1. No loss of thymine was observed for mixed adenine-thymine oligonucleotides. Neither base loss nor any other fragmentation reactions occur for d(T)7(2-) over a 600 s reaction delay at 207 degrees C, a temperature close to the upper limit accessible with our instrument. The Arrhenius parameters indicate that the preferred cleavage sites for mixed oligonucleotides of similar mass-to-charge ratio will be strongly dependent on the internal energy of the precursor ions. At low internal energies (effective temperatures below 475 K), loss of adenine and subsequent cleavage of the adjacent phosphoester bonds will dominate, whereas at higher energies, preferential cleavage at C and G residues will occur. The magnitude of the A factors < or = 10(13) s-1 measured for the loss of the three nucleobases (A, G, and C) is indicative of an entropically neutral or disfavored process as the rate limiting step for this reaction.
Blackbody Infrared Radiative Dissociation of Oligonucleotide Anions
Klassen, John S.; Schnier, Paul D.; Williams, Evan R.
2005-01-01
The dissociation kinetics of a series of doubly deprotonated oligonucleotide 7-mers [ d(A)72-, d(AATTAAT)2−, d(TTAATTA)2−, and d(CCGGCCG)2−] were measured using blackbody infrared radiative dissociation in a Fourier-transform mass spectrometer. The oligonucleotides dissociate first by cleavage at the glycosidic bond leading to the loss of a neutral nucleobase, followed by cleavage at the adjacent (5′) phosphodiester bond to produce structurally informative a-base and w type ions. From the temperature dependence of the unimolecular dissociation rate constants, Arrhenius activation parameters in the zero-pressure limit are obtained for the loss of base. The measured Arrhenius parameters are dependent on the identity of the nucleobase. The process involving the loss of an adenine base from the dianions, d(A)72-, d(AATTAAT)2−, and d(TTAATTA)2− has an average activation energy (Ea) of ~1.0 eV and a preexponential factor (A) of 1010 s−1. Both guanine and cytosine base loss occurs for d(CCGGCCG)2−. The average Arrhenius parameters for the loss of cytosine and guanine are Ea = 1.32 ± 0.03 eV and A = 1013.3±0.3 s−1. No loss of thymine was observed for mixed adenine–thymine oligonucleotides. Neither base loss nor any other fragmentation reactions occur for d(T)72- over a 600 s reaction delay at 207 °C, a temperature close to the upper limit accessible with our instrument. The Arrhenius parameters indicate that the preferred cleavage sites for mixed oligonucleotides of similar mass-to-charge ratio will be strongly dependent on the internal energy of the precursor ions. At low internal energies (effective temperatures below 475 K), loss of adenine and subsequent cleavage of the adjacent phosphoester bonds will dominate, whereas at higher energies, preferential cleavage at C and G residues will occur. The magnitude of the A factors ≤1013 s−1 measured for the loss of the three nucleobases (A, G, and C) is indicative of an entropically neutral or disfavored process as the rate limiting step for this reaction. PMID:9794082
Remini, Hocine; Mertz, Christian; Belbahi, Amine; Achir, Nawel; Dornier, Manuel; Madani, Khodir
2015-04-15
The stability of ascorbic acid and colour intensity in pasteurised blood orange juice (Citrus sinensis [L.] Osbeck) during one month of storage was investigated at 4-37 °C. The effects of ascorbic acid fortification (at 100, 200 mg L(-1)) and deaeration, temperature/time storage on the kinetic behaviour were determined. Ascorbic acid was monitored by HPLC-DAD and colour intensity by spectrophotometric measurements. Degradation kinetics were best fitted by first-order reaction models for both ascorbic acid and colour intensity. Three models (Arrhenius, Eyring and Ball) were used to assess the temperature-dependent degradation. Following the Arrhenius model, activation energies were ranged from 51 to 135 kJ mol(-1) for ascorbic acid and from 49 to 99 kJ mol(-1) for colour intensity. The effect of storage temperature and deaeration are the most influent factors on kinetics degradation, while the fortification revealed no significant effect on ascorbic acid content and colour intensity. Copyright © 2014 Elsevier Ltd. All rights reserved.
Drying kinetics of onion ( Allium cepa L.) slices with convective and microwave drying
NASA Astrophysics Data System (ADS)
Demiray, Engin; Seker, Anıl; Tulek, Yahya
2017-05-01
Onion slices were dried using two different drying techniques, convective and microwave drying. Convective drying treatments were carried out at different temperatures (50, 60 and 70 °C). Three different microwave output powers 328, 447 and 557 W were used in microwave drying. In convective drying, effective moisture diffusivity was estimated to be between 3.49 × 10-8 and 9.44 × 10-8 m2 s-1 within the temperature range studied. The effect of temperature on the diffusivity was described by the Arrhenius equation with an activation energy of 45.60 kJ mol-1. At increasing microwave power values, the effective moisture diffusivity values ranged from 2.59 × 10-7 and 5.08 × 10-8 m2 s-1. The activation energy for microwave drying of samples was calculated using an exponential expression based on Arrhenius equation. Among of the models proposed, Page's model gave a better fit for all drying conditions used.
Oakes, Jesse; Nguyen, Tina; Britt, B Mark
2003-06-01
Ellman's method was used to determine the Michaelis-Menten parameters for the hydrolysis of acetylthiocholine by Electrophorus electricus acetylcholinesterase from 12 to 37 degrees C. Arrhenius analysis revealed that the activation energy for formation of the enzyme/substrate complex is 22.2 +/- 1.1 kJ/mole. The Arrhenius plot of k(cat) is markedly curved and attributed to comparable rates of acylation and deacylation due to the absence of evidence for a temperature-dependent enzyme conformational change by differential scanning calorimetry.
Tarlak, Fatih; Ozdemir, Murat; Melikoglu, Mehmet
2018-02-02
The growth data of Pseudomonas spp. on sliced mushrooms (Agaricus bisporus) stored between 4 and 28°C were obtained and fitted to three different primary models, known as the modified Gompertz, logistic and Baranyi models. The goodness of fit of these models was compared by considering the mean squared error (MSE) and the coefficient of determination for nonlinear regression (pseudo-R 2 ). The Baranyi model yielded the lowest MSE and highest pseudo-R 2 values. Therefore, the Baranyi model was selected as the best primary model. Maximum specific growth rate (r max ) and lag phase duration (λ) obtained from the Baranyi model were fitted to secondary models namely, the Ratkowsky and Arrhenius models. High pseudo-R 2 and low MSE values indicated that the Arrhenius model has a high goodness of fit to determine the effect of temperature on r max . Observed number of Pseudomonas spp. on sliced mushrooms from independent experiments was compared with the predicted number of Pseudomonas spp. with the models used by considering the B f and A f values. The B f and A f values were found to be 0.974 and 1.036, respectively. The correlation between the observed and predicted number of Pseudomonas spp. was high. Mushroom spoilage was simulated as a function of temperature with the models used. The models used for Pseudomonas spp. growth can provide a fast and cost-effective alternative to traditional microbiological techniques to determine the effect of storage temperature on product shelf-life. The models can be used to evaluate the growth behaviour of Pseudomonas spp. on sliced mushroom, set limits for the quantitative detection of the microbial spoilage and assess product shelf-life. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wan, Fubin; Tan, Yuanyuan; Jiang, Zhenhua; Chen, Xun; Wu, Yinong; Zhao, Peng
2017-12-01
Lifetime and reliability are the two performance parameters of premium importance for modern space Stirling-type pulse tube refrigerators (SPTRs), which are required to operate in excess of 10 years. Demonstration of these parameters provides a significant challenge. This paper proposes a lifetime prediction and reliability estimation method that utilizes accelerated degradation testing (ADT) for SPTRs related to gaseous contamination failure. The method was experimentally validated via three groups of gaseous contamination ADT. First, the performance degradation model based on mechanism of contamination failure and material outgassing characteristics of SPTRs was established. Next, a preliminary test was performed to determine whether the mechanism of contamination failure of the SPTRs during ADT is consistent with normal life testing. Subsequently, the experimental program of ADT was designed for SPTRs. Then, three groups of gaseous contamination ADT were performed at elevated ambient temperatures of 40 °C, 50 °C, and 60 °C, respectively and the estimated lifetimes of the SPTRs under normal condition were obtained through acceleration model (Arrhenius model). The results show good fitting of the degradation model with the experimental data. Finally, we obtained the reliability estimation of SPTRs through using the Weibull distribution. The proposed novel methodology enables us to take less than one year time to estimate the reliability of the SPTRs designed for more than 10 years.
Yang, Li; Sun, Rui; Hase, William L
2011-11-08
In a previous study (J. Chem. Phys.2008, 129, 094701) it was shown that for a large molecule, with a total energy much greater than its barrier for decomposition and whose vibrational modes are harmonic oscillators, the expressions for the classical Rice-Ramsperger-Kassel-Marcus (RRKM) (i.e., RRK) and classical transition-state theory (TST) rate constants become equivalent. Using this relationship, a molecule's unimolecular rate constants versus temperature may be determined from chemical dynamics simulations of microcanonical ensembles for the molecule at different total energies. The simulation identifies the molecule's unimolecular pathways and their Arrhenius parameters. In the work presented here, this approach is used to study the thermal decomposition of CH3-NH-CH═CH-CH3, an important constituent in the polymer of cross-linked epoxy resins. Direct dynamics simulations, at the MP2/6-31+G* level of theory, were used to investigate the decomposition of microcanonical ensembles for this molecule. The Arrhenius A and Ea parameters determined from the direct dynamics simulation are in very good agreement with the TST Arrhenius parameters for the MP2/6-31+G* potential energy surface. The simulation method applied here may be particularly useful for large molecules with a multitude of decomposition pathways and whose transition states may be difficult to determine and have structures that are not readily obvious.
Arrhenius equation for modeling feedyard ammonia emissions using temperature and diet crude protein.
Todd, Richard W; Cole, N Andy; Waldrip, Heidi M; Aiken, Robert M
2013-01-01
Temperature controls many processes of NH volatilization. For example, urea hydrolysis is an enzymatically catalyzed reaction described by the Arrhenius equation. Diet crude protein (CP) controls NH emission by affecting N excretion. Our objectives were to use the Arrhenius equation to model NH emissions from beef cattle () feedyards and test predictions against observed emissions. Per capita NH emission rate (PCER), air temperature (), and CP were measured for 2 yr at two Texas Panhandle feedyards. Data were fitted to analogs of the Arrhenius equation: PCER = () and PCER = (,CP). The models were applied at a third feedyard to predict NH emissions and compare predicted to measured emissions. Predicted mean NH emissions were within -9 and 2% of observed emissions for the () and (T,CP) models, respectively. Annual emission factors calculated from models underestimated annual NH emission by 11% [() model] or overestimated emission by 8% [(,CP) model]. When from a regional weather station and three classes of CP drove the models, the () model overpredicted annual NH emission of the low CP class by 14% and underpredicted emissions of the optimum and high CP classes by 1 and 39%, respectively. The (,CP) model underpredicted NH emissions by 15, 4, and 23% for low, optimum, and high CP classes, respectively. Ammonia emission was successfully modeled using only, but including CP improved predictions. The empirical () and (,CP) models can successfully model NH emissions in the Texas Panhandle. Researchers are encouraged to test the models in other regions where high-quality NH emissions data are available. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Unusual kinetics of thermal decay of dim-light photoreceptors in vertebrate vision
Guo, Ying; Sekharan, Sivakumar; Liu, Jian; Batista, Victor S.; Tully, John C.; Yan, Elsa C. Y.
2014-01-01
We present measurements of rate constants for thermal-induced reactions of the 11-cis retinyl chromophore in vertebrate visual pigment rhodopsin, a process that produces noise and limits the sensitivity of vision in dim light. At temperatures of 52.0–64.6 °C, the rate constants fit well to an Arrhenius straight line with, however, an unexpectedly large activation energy of 114 ± 8 kcal/mol, which is much larger than the 60-kcal/mol photoactivation energy at 500 nm. Moreover, we obtain an unprecedentedly large prefactor of 1072±5 s−1, which is roughly 60 orders of magnitude larger than typical frequencies of molecular motions! At lower temperatures, the measured Arrhenius parameters become more normal: Ea = 22 ± 2 kcal/mol and Apref = 109±1 s−1 in the range of 37.0–44.5 °C. We present a theoretical framework and supporting calculations that attribute this unusual temperature-dependent kinetics of rhodopsin to a lowering of the reaction barrier at higher temperatures due to entropy-driven partial breakup of the rigid hydrogen-bonding network that hinders the reaction at lower temperatures. PMID:25002518
Unusual kinetics of thermal decay of dim-light photoreceptors in vertebrate vision.
Guo, Ying; Sekharan, Sivakumar; Liu, Jian; Batista, Victor S; Tully, John C; Yan, Elsa C Y
2014-07-22
We present measurements of rate constants for thermal-induced reactions of the 11-cis retinyl chromophore in vertebrate visual pigment rhodopsin, a process that produces noise and limits the sensitivity of vision in dim light. At temperatures of 52.0-64.6 °C, the rate constants fit well to an Arrhenius straight line with, however, an unexpectedly large activation energy of 114 ± 8 kcal/mol, which is much larger than the 60-kcal/mol photoactivation energy at 500 nm. Moreover, we obtain an unprecedentedly large prefactor of 10(72±5) s(-1), which is roughly 60 orders of magnitude larger than typical frequencies of molecular motions! At lower temperatures, the measured Arrhenius parameters become more normal: Ea = 22 ± 2 kcal/mol and Apref = 10(9±1) s(-1) in the range of 37.0-44.5 °C. We present a theoretical framework and supporting calculations that attribute this unusual temperature-dependent kinetics of rhodopsin to a lowering of the reaction barrier at higher temperatures due to entropy-driven partial breakup of the rigid hydrogen-bonding network that hinders the reaction at lower temperatures.
Mathematical models for prediction of rheological parameters in vinasses derived from sugar cane
NASA Astrophysics Data System (ADS)
Chacua, Leidy M.; Ayala, Germán; Rojas, Hernán; Agudelo, Ana C.
2016-04-01
The rheological behaviour of vinasses derived from sugar cane was studied as a function of time (0 and 600 s), soluble solids content (44 and 60 °Brix), temperature (10 and 50°C), and shear rate (0.33 and 1.0 s-1). The results indicated that vinasses were time-independent at 25°C, where shear stress values ranged between 0.01 and 0.08 Pa. Flow curves showed a shear-thinning rheological behaviour in vinasses with a flow behaviour index between 0.69 and 0.89, for temperature between 10 and 20°C. With increasing temperature, the flow behaviour index was modified, reaching values close to 1.0. The Arrhenius model described well the thermal activation of shear stress and the consistency coefficient as a function of temperature. Activation energy from the Arrhenius model ranged between 31 and 45 kJ mol-1. Finally, the consistency coefficient as a function of the soluble solids content and temperature was well fitted using an exponential model (R2 = 0.951), showing that the soluble solids content and temperature have an opposite effect on consistency coefficient values.
Schmidtke, B; Petzold, N; Kahlau, R; Hofmann, M; Rössler, E A
2012-10-01
The phenomenon of the glass transition is an unresolved problem in condensed matter physics. Its prominent feature, the super-Arrhenius temperature dependence of the transport coefficients, remains a challenge to be described over the full temperature range. For a series of molecular glass formers, we combined τ(T) collected from dielectric spectroscopy and dynamic light scattering covering a range 10(-12) s < τ(T) < 10(2) s. Describing the dynamics in terms of an activation energy E(T), we distinguish a high-temperature regime characterized by an Arrhenius law with a constant activation energy E(∞) and a low-temperature regime for which E(coop)(T) ≡ E(T)-E(∞) increases exponentially while cooling. A scaling is introduced, specifically E(coop)(T)/E(∞) [proportionality] exp[-λ(T/T(A)-1)], where λ is a fragility parameter and T(A) a reference temperature proportional to E(∞). In order to describe τ(T) still the attempt time τ(∞) has to be specified. Thus, a single interaction parameter E(∞) describing the high-temperature regime together with λ controls the temperature dependence of low-temperature cooperative dynamics.
Nirdnoy, W; Komaratat, P; Wilairat, P
1988-02-01
Sarcoplasmic reticulum Ca2+-ATPase from rabbit skeletal muscle has an Arrhenius curve of enzyme activity with a discontinuity at about 20 degrees C. Preparations treated with FeSO4 and ascorbic acid and from a vitamin E-deficient dystrophic rabbit have 22% of the normal activity and a linear Arrhenius curve (Promkhatkaew, D., Komaratat, P., & Wilairat, P. (1985) Biochem. Int. 10, 937-943). All three preparations were cross-linked to the same extent by dimethyl suberimidate and copper-phenanthroline reagent at temperatures above and below the temperature of the Arrhenius discontinuity. Both iron-ascorbate-treated Ca2+-ATPase and that from a vitamin E-deficient animal had 50% of the normal sulfhydryl content, but the disulfide and free amino contents were unaltered. These observations suggest that loss of sulfhydryl groups through lipid peroxidation, both in vivo and in vitro, resulted in reduction of Ca2+-ATPase activity and loss of the break in the Arrhenius plot. Changes in Ca2+-ATPase polypeptide aggregational state could not account for the discontinuity in the Arrhenius curve as revealed by the similar extent of cross-linking of the three enzyme preparations at temperatures above and below the temperature of the Arrhenius discontinuity.
Arrhenius activation energy of damage to catalase during spray-drying.
Schaefer, Joachim; Lee, Geoffrey
2015-07-15
The inactivation of catalase during spray-drying over a range of outlet gas temperatures could be closely represented by the Arrhenius equation. From this an activation energy for damage to the catalase could be calculated. The close fit to Arrhenius suggests that the thermally-induced part of inactivation of the catalase during the complex drying and particle-formation processes takes place at constant temperature. These processes are rapid compared with the residence time of the powder in the collecting vessel of the cyclone where dried catalase is exposed to a constant temperature equal to approximately the drying gas outlet temperature. A lower activation energy after spray drying with the ultrasonic nozzle was found than with the 2-fluid nozzle under otherwise identical spray drying conditions. It is feasible that the ultrasonic nozzle when mounted in the lid of the spray dryer heats up toward the drying gas inlet temperature much more that the air-cooled 2-fluid nozzle. Calculation of the Arrhenius activation energy also showed how the stabilizing efficacy of trehalose and mannitol on the catalase varies in strength across the range of drying gas inlet and outlet temperatures examined. Copyright © 2015 Elsevier B.V. All rights reserved.
Oxidation of chlorinated ethenes by heat-activated persulfate: kinetics and products.
Waldemer, Rachel H; Tratnyek, Paul G; Johnson, Richard L; Nurmi, James T
2007-02-01
In situ chemical oxidation (ISCO) and in situ thermal remediation (ISTR) are applicable to treatment of groundwater contaminated with chlorinated ethenes. ISCO with persulfate (S2O8(2-)) requires activation, and this can be achieved with the heat from ISTR, so there may be advantages to combining these technologies. To explore this possibility, we determined the kinetics and products of chlorinated ethene oxidation with heat-activated persulfate and compared them to the temperature dependence of other degradation pathways. The kinetics of chlorinated ethene disappearance were pseudo-first-order for 1-2 half-lives, and the resulting rate constants-measured from 30 to 70 degrees C--fit the Arrhenius equation, yielding apparent activation energies of 101 +/- 4 kJ mol(-1) for tetrachloroethene (PCE), 108 +/- 3 kJ mol(-1) for trichloroethene (TCE), 144 +/- 5 kJ mol(-1) for cis-1,2-dichloroethene (cis-DCE), and 141 +/- 2 kJ mol(-1) for trans-1,2-dichloroethene (trans-DCE). Chlorinated byproducts were observed, but most of the parent material was completely dechlorinated. Arrhenius parameters for hydrolysis and oxidation by persulfate or permanganate were used to calculate rates of chlorinated ethene degradation by these processes over the range of temperatures relevant to ISTR and the range of oxidant concentrations and pH relevant to ISCO.
NASA Astrophysics Data System (ADS)
Zhang, Xiaodong; Moore, Michael E.; Lee, Kyung-Min; Lukosi, Eric D.; Hayward, Jason P.
2016-07-01
Undoped lithium-6 enriched glasses coated with pure cerium (99.9%) with a gold protection layer on top were heated at three different temperatures (500, 550, and 600 °C) for varied durations (1, 2, and 4 h). Diffusion profiles of cerium in such glasses were obtained with the conventional Rutherford backscattering technique. Through fitting the diffusion profiles with the thin-film solution of Fick's second law, diffusion coefficients of cerium with different annealing temperatures and durations were solved. Then, the activation energy of cerium for the diffusion process in the studied glasses was found to be 114 kJ/mol with the Arrhenius equation.
Aliev, Abil E; Kulke, Martin; Khaneja, Harmeet S; Chudasama, Vijay; Sheppard, Tom D; Lanigan, Rachel M
2014-02-01
We propose a new approach for force field optimizations which aims at reproducing dynamics characteristics using biomolecular MD simulations, in addition to improved prediction of motionally averaged structural properties available from experiment. As the source of experimental data for dynamics fittings, we use (13) C NMR spin-lattice relaxation times T1 of backbone and sidechain carbons, which allow to determine correlation times of both overall molecular and intramolecular motions. For structural fittings, we use motionally averaged experimental values of NMR J couplings. The proline residue and its derivative 4-hydroxyproline with relatively simple cyclic structure and sidechain dynamics were chosen for the assessment of the new approach in this work. Initially, grid search and simplexed MD simulations identified large number of parameter sets which fit equally well experimental J couplings. Using the Arrhenius-type relationship between the force constant and the correlation time, the available MD data for a series of parameter sets were analyzed to predict the value of the force constant that best reproduces experimental timescale of the sidechain dynamics. Verification of the new force-field (termed as AMBER99SB-ILDNP) against NMR J couplings and correlation times showed consistent and significant improvements compared to the original force field in reproducing both structural and dynamics properties. The results suggest that matching experimental timescales of motions together with motionally averaged characteristics is the valid approach for force field parameter optimization. Such a comprehensive approach is not restricted to cyclic residues and can be extended to other amino acid residues, as well as to the backbone. Copyright © 2013 Wiley Periodicals, Inc.
Analysis of constant tension-induced rupture of lipid membranes using activation energy.
Karal, Mohammad Abu Sayem; Levadnyy, Victor; Yamazaki, Masahito
2016-05-11
The stretching of biomembranes and lipid membranes plays important roles in various physiological and physicochemical phenomena. Here we analyzed the rate constant kp of constant tension-induced rupture of giant unilamellar vesicles (GUVs) as a function of tension σ using their activation energy Ua. To determine the values of kp, we applied constant tension to a GUV membrane using the micropipette aspiration method and observed the rupture of GUVs, and then analyzed these data statistically. First, we investigated the temperature dependence of kp for GUVs of charged lipid membranes composed of negatively charged dioleoylphosphatidylglycerol (DOPG) and electrically neutral dioleoylphosphatidylcholine (DOPC). By analyzing this result, the values of Ua of tension-induced rupture of DOPG/DOPC-GUVs were obtained. Ua decreased with an increase in σ, supporting the classical theory of tension-induced pore formation. The analysis of the relationship between Ua and σ using the theory on the electrostatic interaction effects on the tension-induced rupture of GUVs provided the equation of Ua including electrostatic interaction effects, which well fits the experimental data of the tension dependence of Ua. A constant which does not depend on tension, U0, was also found to contribute significantly to Ua. The Arrhenius equations for kp using the equation of Ua and the parameters determined by the above analysis fit well to the experimental data of the tension dependence of kp for DOPG/DOPC-GUVs as well as for DOPC-GUVs. On the basis of these results, we discussed the possible elementary processes underlying the tension-induced rupture of GUVs of lipid membranes. These results indicate that the Arrhenius equation using the experimentally determined Ua is useful in the analysis of tension-induced rupture of GUVs.
Carvalho-Silva, Valter H; Aquilanti, Vincenzo; de Oliveira, Heibbe C B; Mundim, Kleber C
2017-01-30
A formulation is presented for the application of tools from quantum chemistry and transition-state theory to phenomenologically cover cases where reaction rates deviate from Arrhenius law at low temperatures. A parameter d is introduced to describe the deviation for the systems from reaching the thermodynamic limit and is identified as the linearizing coefficient in the dependence of the inverse activation energy with inverse temperature. Its physical meaning is given and when deviation can be ascribed to quantum mechanical tunneling its value is calculated explicitly. Here, a new derivation is given of the previously established relationship of the parameter d with features of the barrier in the potential energy surface. The proposed variant of transition state theory permits comparison with experiments and tests against alternative formulations. Prescriptions are provided and implemented to three hydrogen transfer reactions: CH 4 + OH → CH 3 + H 2 O, CH 3 Cl + OH → CH 2 Cl + H 2 O and H 2 + CN → H + HCN, widely investigated both experimentally and theoretically. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Humidity-corrected Arrhenius equation: The reference condition approach.
Naveršnik, Klemen; Jurečič, Rok
2016-03-16
Accelerated and stress stability data is often used to predict shelf life of pharmaceuticals. Temperature, combined with humidity accelerates chemical decomposition and the Arrhenius equation is used to extrapolate accelerated stability results to long-term stability. Statistical estimation of the humidity-corrected Arrhenius equation is not straightforward due to its non-linearity. A two stage nonlinear fitting approach is used in practice, followed by a prediction stage. We developed a single-stage statistical procedure, called the reference condition approach, which has better statistical properties (less collinearity, direct estimation of uncertainty, narrower prediction interval) and is significantly easier to use, compared to the existing approaches. Our statistical model was populated with data from a 35-day stress stability study on a laboratory batch of vitamin tablets and required mere 30 laboratory assay determinations. The stability prediction agreed well with the actual 24-month long term stability of the product. The approach has high potential to assist product formulation, specification setting and stability statements. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Suproniuk, M.; Pawłowski, M.; Wierzbowski, M.; Majda-Zdancewicz, E.; Pawłowski, Ma.
2018-04-01
The procedure for determination of trap parameters by photo-induced transient spectroscopy is based on the Arrhenius plot that illustrates a thermal dependence of the emission rate. In this paper, we show that the Arrhenius plot obtained by the correlation method is shifted toward lower temperatures as compared to the one obtained with the inverse Laplace transformation. This shift is caused by the model adequacy error of the correlation method and introduces errors to a calculation procedure of defect center parameters. The effect is exemplified by comparing the results of the determination of trap parameters with both methods based on photocurrent transients for defect centers observed in tin-doped neutron-irradiated silicon crystals and in gallium arsenide grown with the Vertical Gradient Freeze method.
NASA Astrophysics Data System (ADS)
Ganje, Mohammad; Jafari, Seid Mahdi; Farzaneh, Vahid; Malekjani, Narges
2018-06-01
To study the kinetics of color degradation, the tomato paste was designed to be processed at three different temperatures including 60, 70 and 80 °C for 25, 50, 75 and 100 min. a/b ratio, total color difference, saturation index and hue angle were calculated with the use of three main color parameters including L (lightness), a (redness-greenness) and b (yellowness-blueness) values. Kinetics of color degradation was developed by Arrhenius equation and the alterations were modelled with the use of response surface methodology (RSM). It was detected that all of the studied responses followed a first order reaction kinetics with an exception in TCD parameter (zeroth order). TCD and a/b respectively with the highest and lowest activation energy presented the highest sensitivity to the temperature alterations. The maximum and minimum rates of alterations were observed by TCD and b parameters, respectively. It was obviously determined that all of the studied parameters (responses) were affected by the selected independent parameters.
Sussman, Marshall S; Yang, Issac Y; Fok, Kai-Ho; Wintersperger, Bernd J
2016-06-01
The Modified Look-Locker Inversion Recovery (MOLLI) technique is used for T1 mapping in the heart. However, a drawback of this technique is that it requires lengthy rest periods in between inversion groupings to allow for complete magnetization recovery. In this work, a new MOLLI fitting algorithm (inversion group [IG] fitting) is presented that allows for arbitrary combinations of inversion groupings and rest periods (including no rest period). Conventional MOLLI algorithms use a three parameter fitting model. In IG fitting, the number of parameters is two plus the number of inversion groupings. This increased number of parameters permits any inversion grouping/rest period combination. Validation was performed through simulation, phantom, and in vivo experiments. IG fitting provided T1 values with less than 1% discrepancy across a range of inversion grouping/rest period combinations. By comparison, conventional three parameter fits exhibited up to 30% discrepancy for some combinations. The one drawback with IG fitting was a loss of precision-approximately 30% worse than the three parameter fits. IG fitting permits arbitrary inversion grouping/rest period combinations (including no rest period). The cost of the algorithm is a loss of precision relative to conventional three parameter fits. Magn Reson Med 75:2332-2340, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
The mathematical origins of the kinetic compensation effect: 2. The effect of systematic errors.
Barrie, Patrick J
2012-01-07
The kinetic compensation effect states that there is a linear relationship between Arrhenius parameters ln A and E for a family of related processes. It is a widely observed phenomenon in many areas of science, notably heterogeneous catalysis. This paper explores mathematical, rather than physicochemical, explanations for the compensation effect in certain situations. Three different topics are covered theoretically and illustrated by examples. Firstly, the effect of systematic errors in experimental kinetic data is explored, and it is shown that these create apparent compensation effects. Secondly, analysis of kinetic data when the Arrhenius parameters depend on another parameter is examined. In the case of temperature programmed desorption (TPD) experiments when the activation energy depends on surface coverage, it is shown that a common analysis method induces a systematic error, causing an apparent compensation effect. Thirdly, the effect of analysing the temperature dependence of an overall rate of reaction, rather than a rate constant, is investigated. It is shown that this can create an apparent compensation effect, but only under some conditions. This result is illustrated by a case study for a unimolecular reaction on a catalyst surface. Overall, the work highlights the fact that, whenever a kinetic compensation effect is observed experimentally, the possibility of it having a mathematical origin should be carefully considered before any physicochemical conclusions are drawn.
Aliev, Abil E; Kulke, Martin; Khaneja, Harmeet S; Chudasama, Vijay; Sheppard, Tom D; Lanigan, Rachel M
2014-01-01
We propose a new approach for force field optimizations which aims at reproducing dynamics characteristics using biomolecular MD simulations, in addition to improved prediction of motionally averaged structural properties available from experiment. As the source of experimental data for dynamics fittings, we use 13C NMR spin-lattice relaxation times T1 of backbone and sidechain carbons, which allow to determine correlation times of both overall molecular and intramolecular motions. For structural fittings, we use motionally averaged experimental values of NMR J couplings. The proline residue and its derivative 4-hydroxyproline with relatively simple cyclic structure and sidechain dynamics were chosen for the assessment of the new approach in this work. Initially, grid search and simplexed MD simulations identified large number of parameter sets which fit equally well experimental J couplings. Using the Arrhenius-type relationship between the force constant and the correlation time, the available MD data for a series of parameter sets were analyzed to predict the value of the force constant that best reproduces experimental timescale of the sidechain dynamics. Verification of the new force-field (termed as AMBER99SB-ILDNP) against NMR J couplings and correlation times showed consistent and significant improvements compared to the original force field in reproducing both structural and dynamics properties. The results suggest that matching experimental timescales of motions together with motionally averaged characteristics is the valid approach for force field parameter optimization. Such a comprehensive approach is not restricted to cyclic residues and can be extended to other amino acid residues, as well as to the backbone. Proteins 2014; 82:195–215. © 2013 Wiley Periodicals, Inc. PMID:23818175
GLASS VISCOSITY AS A FUNCTION OF TEMPERATURE AND COMPOSITION: A MODEL BASED ON ADAM-GIBBS EQUATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hrma, Pavel R.
2008-07-01
Within the temperature range and composition region of processing and product forming, the viscosity of commercial and waste glasses spans over 12 orders of magnitude. This paper shows that a generalized Adam-Gibbs relationship reasonably approximates the real behavior of glasses with four temperature-independent parameters of which two are linear functions of the composition vector. The equation is subjected to two constraints, one requiring that the viscosity-temperature relationship approaches the Arrhenius function at high temperatures with a composition-independent pre-exponential factor and the other that the viscosity value is independent of composition at the glass-transition temperature. Several sets of constant coefficients weremore » obtained by fitting the generalized Adam-Gibbs equation to data of two glass families: float glass and Hanford waste glass. Other equations (the Vogel-Fulcher-Tammann equation, original and modified, the Avramov equation, and the Douglass-Doremus equation) were fitted to float glass data series and compared with the Adam-Gibbs equation, showing that Adam-Gibbs glass appears an excellent approximation of real glasses even as compared with other candidate constitutive relations.« less
Temperature Sensitivity as a Microbial Trait Using Parameters from Macromolecular Rate Theory
Alster, Charlotte J.; Baas, Peter; Wallenstein, Matthew D.; Johnson, Nels G.; von Fischer, Joseph C.
2016-01-01
The activity of soil microbial extracellular enzymes is strongly controlled by temperature, yet the degree to which temperature sensitivity varies by microbe and enzyme type is unclear. Such information would allow soil microbial enzymes to be incorporated in a traits-based framework to improve prediction of ecosystem response to global change. If temperature sensitivity varies for specific soil enzymes, then determining the underlying causes of variation in temperature sensitivity of these enzymes will provide fundamental insights for predicting nutrient dynamics belowground. In this study, we characterized how both microbial taxonomic variation as well as substrate type affects temperature sensitivity. We measured β-glucosidase, leucine aminopeptidase, and phosphatase activities at six temperatures: 4, 11, 25, 35, 45, and 60°C, for seven different soil microbial isolates. To calculate temperature sensitivity, we employed two models, Arrhenius, which predicts an exponential increase in reaction rate with temperature, and Macromolecular Rate Theory (MMRT), which predicts rate to peak and then decline as temperature increases. We found MMRT provided a more accurate fit and allowed for more nuanced interpretation of temperature sensitivity in all of the enzyme × isolate combinations tested. Our results revealed that both the enzyme type and soil isolate type explain variation in parameters associated with temperature sensitivity. Because we found temperature sensitivity to be an inherent and variable property of an enzyme, we argue that it can be incorporated as a microbial functional trait, but only when using the MMRT definition of temperature sensitivity. We show that the Arrhenius metrics of temperature sensitivity are overly sensitive to test conditions, with activation energy changing depending on the temperature range it was calculated within. Thus, we propose the use of the MMRT definition of temperature sensitivity for accurate interpretation of temperature sensitivity of soil microbial enzymes. PMID:27909429
Are tropical small mammals physiologically vulnerable to Arrhenius effects and climate change?
Lovegrove, Barry G; Canale, Cindy; Levesque, Danielle; Fluch, Gerhard; Reháková-Petrů, Milada; Ruf, Thomas
2014-01-01
There is some urgency in the necessity to incorporate physiological data into mechanistic, trait-based, demographic climate change models. Physiological responses at the individual level provide the mechanistic link between environmental changes and individual performances and hence population dynamics. Here we consider the causal relationship between ambient temperature (Ta) and metabolic rate (MR), namely, the Arrhenius effect, which is directly affected by global warming through increases in average global air temperatures and the increase in the frequency and intensity of extreme climate events. We measured and collated data for several small, free-ranging tropical arboreal mammals and evaluated their vulnerability to Arrhenius effects and putative heat stress associated with climate change. Skin temperatures (Tskin) were obtained from free-ranging tarsiers (Tarsius syrichta) on Bohol Island, Philippines. Core body temperature (Tb) was obtained from the greater hedgehog tenrec (Setifer setosus) and the gray brown mouse lemur (Microcebus ravelobensis) from Ankarafantsika, Madagascar. Tskin for another mouse lemur, Microcebus griseorufus, was obtained from the literature. All four species showed evidence of hyperthermia during the daytime rest phase in the form of either Tskin or Tb that was higher than the normothermic Tb during the nighttime active phase. Potentially, tropical arboreal mammals with the lowest MRs and Tb, such as tarsiers, are the most vulnerable to sustained heat stress because their Tb is already close to Ta. Climate change may involve increases in MRs due to Arrhenius effects, especially during the rest phase or during torpor and hibernation. The most likely outcome of increased Arrhenius effects with climate change will be an increase in energy expenditure at the expense of other critical functions such as reproduction or growth and will thus affect fitness. However, we propose that these hypothetical Arrhenius costs can be, and in some species probably are, offset by the use of hyperthermic daily torpor, that is, hypometabolism at high Ta.
A comparative study of kinetic and connectionist modeling for shelf-life prediction of Basundi mix.
Ruhil, A P; Singh, R R B; Jain, D K; Patel, A A; Patil, G R
2011-04-01
A ready-to-reconstitute formulation of Basundi, a popular Indian dairy dessert was subjected to storage at various temperatures (10, 25 and 40 °C) and deteriorative changes in the Basundi mix were monitored using quality indices like pH, hydroxyl methyl furfural (HMF), bulk density (BD) and insolubility index (II). The multiple regression equations and the Arrhenius functions that describe the parameters' dependence on temperature for the four physico-chemical parameters were integrated to develop mathematical models for predicting sensory quality of Basundi mix. Connectionist model using multilayer feed forward neural network with back propagation algorithm was also developed for predicting the storage life of the product employing artificial neural network (ANN) tool box of MATLAB software. The quality indices served as the input parameters whereas the output parameters were the sensorily evaluated flavour and total sensory score. A total of 140 observations were used and the prediction performance was judged on the basis of per cent root mean square error. The results obtained from the two approaches were compared. Relatively lower magnitudes of percent root mean square error for both the sensory parameters indicated that the connectionist models were better fitted than kinetic models for predicting storage life.
Inference of reaction rate parameters based on summary statistics from experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khalil, Mohammad; Chowdhary, Kamaljit Singh; Safta, Cosmin
Here, we present the results of an application of Bayesian inference and maximum entropy methods for the estimation of the joint probability density for the Arrhenius rate para meters of the rate coefficient of the H 2/O 2-mechanism chain branching reaction H + O 2 → OH + O. Available published data is in the form of summary statistics in terms of nominal values and error bars of the rate coefficient of this reaction at a number of temperature values obtained from shock-tube experiments. Our approach relies on generating data, in this case OH concentration profiles, consistent with the givenmore » summary statistics, using Approximate Bayesian Computation methods and a Markov Chain Monte Carlo procedure. The approach permits the forward propagation of parametric uncertainty through the computational model in a manner that is consistent with the published statistics. A consensus joint posterior on the parameters is obtained by pooling the posterior parameter densities given each consistent data set. To expedite this process, we construct efficient surrogates for the OH concentration using a combination of Pad'e and polynomial approximants. These surrogate models adequately represent forward model observables and their dependence on input parameters and are computationally efficient to allow their use in the Bayesian inference procedure. We also utilize Gauss-Hermite quadrature with Gaussian proposal probability density functions for moment computation resulting in orders of magnitude speedup in data likelihood evaluation. Despite the strong non-linearity in the model, the consistent data sets all res ult in nearly Gaussian conditional parameter probability density functions. The technique also accounts for nuisance parameters in the form of Arrhenius parameters of other rate coefficients with prescribed uncertainty. The resulting pooled parameter probability density function is propagated through stoichiometric hydrogen-air auto-ignition computations to illustrate the need to account for correlation among the Arrhenius rate parameters of one reaction and across rate parameters of different reactions.« less
Inference of reaction rate parameters based on summary statistics from experiments
Khalil, Mohammad; Chowdhary, Kamaljit Singh; Safta, Cosmin; ...
2016-10-15
Here, we present the results of an application of Bayesian inference and maximum entropy methods for the estimation of the joint probability density for the Arrhenius rate para meters of the rate coefficient of the H 2/O 2-mechanism chain branching reaction H + O 2 → OH + O. Available published data is in the form of summary statistics in terms of nominal values and error bars of the rate coefficient of this reaction at a number of temperature values obtained from shock-tube experiments. Our approach relies on generating data, in this case OH concentration profiles, consistent with the givenmore » summary statistics, using Approximate Bayesian Computation methods and a Markov Chain Monte Carlo procedure. The approach permits the forward propagation of parametric uncertainty through the computational model in a manner that is consistent with the published statistics. A consensus joint posterior on the parameters is obtained by pooling the posterior parameter densities given each consistent data set. To expedite this process, we construct efficient surrogates for the OH concentration using a combination of Pad'e and polynomial approximants. These surrogate models adequately represent forward model observables and their dependence on input parameters and are computationally efficient to allow their use in the Bayesian inference procedure. We also utilize Gauss-Hermite quadrature with Gaussian proposal probability density functions for moment computation resulting in orders of magnitude speedup in data likelihood evaluation. Despite the strong non-linearity in the model, the consistent data sets all res ult in nearly Gaussian conditional parameter probability density functions. The technique also accounts for nuisance parameters in the form of Arrhenius parameters of other rate coefficients with prescribed uncertainty. The resulting pooled parameter probability density function is propagated through stoichiometric hydrogen-air auto-ignition computations to illustrate the need to account for correlation among the Arrhenius rate parameters of one reaction and across rate parameters of different reactions.« less
Arrhenius parameters for primary thermal injury in human tonsillar tissue
NASA Astrophysics Data System (ADS)
McMillan, Kathleen; Radabaugh, Rebecca; Coad, James E.
2011-03-01
Clinical implementation of a thermal therapy requires the ability to predict tissue injury following exposures to specific thermal histories. As part of an effort to develop a nonexcisional alternative to tonsillectomy, the degree of primary hyperthermic tissue injury in human tonsil was characterized. Fifteen fresh pediatric hypertrophic tonsillectomy specimens were sectioned and treated in a NIST-calibrated saline bath at temperatures of 40 to 70°C with hold times of one to seven minutes. The treated tissues were subsequently nitroblue tetrazolium (NBT) stained to assess for thermal respiratory enzyme inactivation as a marker of cellular injury/death. The NBT stains were quantitatively image analyzed and used to calculate Arrhenius parameters for primary thermal injury in human tonsils.
Non-Arrhenius viscosity related to short-time ion dynamics in a fragile molten salt.
Singh, Prabhakar; Banhatti, Radha D; Funke, Klaus
2005-03-21
The equation T x sigmaDC(T) = alpha x exp[--(E*/kappa(B)T)--gamma x exp(E*/kappa(B)T)] has been used to understand the non-Arrhenius behaviour of the DC conductivity in supercooled glass-forming melts. Here, alpha, gamma and E* are parameters, E* denoting the activation energy for an elementary displacive step. Unlike the empirical VTF relation, our equation provides a link between the long-time and the short-time ion dynamics as observed in broad-band conductivity spectra. Surprisingly, the same equation with the same value of E* but different gamma successfully describes the fluidity (inverse viscosity) of a fragile glass-forming melt. This opens up the possibility of relating non-Arrhenius viscosities to short-time properties, which is in agreement with recent experimental and computer-simulation results.
Qin, Qin; Huang, Alan J; Hua, Jun; Desmond, John E; Stevens, Robert D; van Zijl, Peter C M
2014-02-01
Measurement of the cerebral blood flow (CBF) with whole-brain coverage is challenging in terms of both acquisition and quantitative analysis. In order to fit arterial spin labeling-based perfusion kinetic curves, an empirical three-parameter model which characterizes the effective impulse response function (IRF) is introduced, which allows the determination of CBF, the arterial transit time (ATT) and T(1,eff). The accuracy and precision of the proposed model were compared with those of more complicated models with four or five parameters through Monte Carlo simulations. Pseudo-continuous arterial spin labeling images were acquired on a clinical 3-T scanner in 10 normal volunteers using a three-dimensional multi-shot gradient and spin echo scheme at multiple post-labeling delays to sample the kinetic curves. Voxel-wise fitting was performed using the three-parameter model and other models that contain two, four or five unknown parameters. For the two-parameter model, T(1,eff) values close to tissue and blood were assumed separately. Standard statistical analysis was conducted to compare these fitting models in various brain regions. The fitted results indicated that: (i) the estimated CBF values using the two-parameter model show appreciable dependence on the assumed T(1,eff) values; (ii) the proposed three-parameter model achieves the optimal balance between the goodness of fit and model complexity when compared among the models with explicit IRF fitting; (iii) both the two-parameter model using fixed blood T1 values for T(1,eff) and the three-parameter model provide reasonable fitting results. Using the proposed three-parameter model, the estimated CBF (46 ± 14 mL/100 g/min) and ATT (1.4 ± 0.3 s) values averaged from different brain regions are close to the literature reports; the estimated T(1,eff) values (1.9 ± 0.4 s) are higher than the tissue T1 values, possibly reflecting a contribution from the microvascular arterial blood compartment. Copyright © 2013 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Gao, Zhi-yu; Kang, Yu; Li, Yan-shuai; Meng, Chao; Pan, Tao
2018-04-01
Elevated-temperature flow behavior of a novel Ni-Cr-Mo-B ultra-heavy-plate steel was investigated by conducting hot compressive deformation tests on a Gleeble-3800 thermo-mechanical simulator at a temperature range of 1123 K–1423 K with a strain rate range from 0.01 s‑1 to10 s‑1 and a height reduction of 70%. Based on the experimental results, classic strain-compensated Arrhenius-type, a new revised strain-compensated Arrhenius-type and classic modified Johnson-Cook constitutive models were developed for predicting the high-temperature deformation behavior of the steel. The predictability of these models were comparatively evaluated in terms of statistical parameters including correlation coefficient (R), average absolute relative error (AARE), average root mean square error (RMSE), normalized mean bias error (NMBE) and relative error. The statistical results indicate that the new revised strain-compensated Arrhenius-type model could give prediction of elevated-temperature flow stress for the steel accurately under the entire process conditions. However, the predicted values by the classic modified Johnson-Cook model could not agree well with the experimental values, and the classic strain-compensated Arrhenius-type model could track the deformation behavior more accurately compared with the modified Johnson-Cook model, but less accurately with the new revised strain-compensated Arrhenius-type model. In addition, reasons of differences in predictability of these models were discussed in detail.
Kinetics of Death of Bacterial Spores at Elevated Temperatures
Wang, Daniel I-C.; Scharer, Jeno; Humphrey, Arthur E.
1964-01-01
The kinetics of death of Bacillus stearothermophilus spores (FS 7954) suspended in phosphate buffer (pH 7) were studied over a temperature range of 127.2 to 143.8 C and exposure times of 0.203 to 4.150 sec. These short exposure were achieved by use of a tubular flow reactor in which a suspension of spores was injected into a hot flowing stream at the entrance of the reactor. Thermal equilibria of the suspension with the hot stream was achieved within 0.0006 sec. After flow through a fixed length of reactor, the stream containing the spores was cooled by flash vaporization and then assayed for viable count. The death rate data were fitted by a logarithmic expression. However, logarithmic death rate was only approximated in the tail or high-kill regions of exposure. Death rate constants obtained from this portion of the data were found to correlate by Arrhenius as well as Absolute Reaction Rate Theory relationships. Thermal-death time curves were found to correlate the data rather poorly. The activation energy and frequency constant for an Arrhenius relationship fit of the data were found to be 83.6 kcal/gmole and 1047.2 min-1, respectively. The standard enthalpy and entropy changes for an Absolute Reaction Rate Theory relationship fit of the data were found to be 84.4 kcal/gmole and 157 cal/gmole-K, respectively. PMID:14215978
He, Xiaoming; Bhowmick, Sankha; Bischof, John C
2009-07-01
The Arrhenius and thermal isoeffective dose (TID) models are the two most commonly used models for predicting hyperthermic injury. The TID model is essentially derived from the Arrhenius model, but due to a variety of assumptions and simplifications now leads to different predictions, particularly at temperatures higher than 50 degrees C. In the present study, the two models are compared and their appropriateness tested for predicting hyperthermic injury in both the traditional hyperthermia (usually, 43-50 degrees C) and thermal surgery (or thermal therapy/thermal ablation, usually, >50 degrees C) regime. The kinetic parameters of thermal injury in both models were obtained from the literature (or literature data), tabulated, and analyzed for various prostate and kidney systems. It was found that the kinetic parameters vary widely, and were particularly dependent on the cell or tissue type, injury assay used, and the time when the injury assessment was performed. In order to compare the capability of the two models for thermal injury prediction, thermal thresholds for complete killing (i.e., 99% cell or tissue injury) were predicted using the models in two important urologic systems, viz., the benign prostatic hyperplasia tissue and the normal porcine kidney tissue. The predictions of the two models matched well at temperatures below 50 degrees C. At higher temperatures, however, the thermal thresholds predicted using the TID model with a constant R value of 0.5, the value commonly used in the traditional hyperthermia literature, are much lower than those predicted using the Arrhenius model. This suggests that traditional use of the TID model (i.e., R=0.5) is inappropriate for predicting hyperthermic injury in the thermal surgery regime (>50 degrees C). Finally, the time-temperature relationships for complete killing (i.e., 99% injury) were calculated and analyzed using the Arrhenius model for the various prostate and kidney systems.
Aquilanti, Vincenzo; Coutinho, Nayara Dantas
2017-01-01
This article surveys the empirical information which originated both by laboratory experiments and by computational simulations, and expands previous understanding of the rates of chemical processes in the low-temperature range, where deviations from linearity of Arrhenius plots were revealed. The phenomenological two-parameter Arrhenius equation requires improvement for applications where interpolation or extrapolations are demanded in various areas of modern science. Based on Tolman's theorem, the dependence of the reciprocal of the apparent activation energy as a function of reciprocal absolute temperature permits the introduction of a deviation parameter d covering uniformly a variety of rate processes, from those where quantum mechanical tunnelling is significant and d < 0, to those where d > 0, corresponding to the Pareto–Tsallis statistical weights: these generalize the Boltzmann–Gibbs weight, which is recovered for d = 0. It is shown here how the weights arise, relaxing the thermodynamic equilibrium limit, either for a binomial distribution if d > 0 or for a negative binomial distribution if d < 0, formally corresponding to Fermion-like or Boson-like statistics, respectively. The current status of the phenomenology is illustrated emphasizing case studies; specifically (i) the super-Arrhenius kinetics, where transport phenomena accelerate processes as the temperature increases; (ii) the sub-Arrhenius kinetics, where quantum mechanical tunnelling propitiates low-temperature reactivity; (iii) the anti-Arrhenius kinetics, where processes with no energetic obstacles are rate-limited by molecular reorientation requirements. Particular attention is given for case (i) to the treatment of diffusion and viscosity, for case (ii) to formulation of a transition rate theory for chemical kinetics including quantum mechanical tunnelling, and for case (iii) to the stereodirectional specificity of the dynamics of reactions strongly hindered by the increase of temperature. This article is part of the themed issue ‘Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces’. PMID:28320904
Aquilanti, Vincenzo; Coutinho, Nayara Dantas; Carvalho-Silva, Valter Henrique
2017-04-28
This article surveys the empirical information which originated both by laboratory experiments and by computational simulations, and expands previous understanding of the rates of chemical processes in the low-temperature range, where deviations from linearity of Arrhenius plots were revealed. The phenomenological two-parameter Arrhenius equation requires improvement for applications where interpolation or extrapolations are demanded in various areas of modern science. Based on Tolman's theorem, the dependence of the reciprocal of the apparent activation energy as a function of reciprocal absolute temperature permits the introduction of a deviation parameter d covering uniformly a variety of rate processes, from those where quantum mechanical tunnelling is significant and d < 0, to those where d > 0, corresponding to the Pareto-Tsallis statistical weights: these generalize the Boltzmann-Gibbs weight, which is recovered for d = 0. It is shown here how the weights arise, relaxing the thermodynamic equilibrium limit, either for a binomial distribution if d > 0 or for a negative binomial distribution if d < 0, formally corresponding to Fermion-like or Boson-like statistics, respectively. The current status of the phenomenology is illustrated emphasizing case studies; specifically (i) the super -Arrhenius kinetics, where transport phenomena accelerate processes as the temperature increases; (ii) the sub -Arrhenius kinetics, where quantum mechanical tunnelling propitiates low-temperature reactivity; (iii) the anti -Arrhenius kinetics, where processes with no energetic obstacles are rate-limited by molecular reorientation requirements. Particular attention is given for case (i) to the treatment of diffusion and viscosity, for case (ii) to formulation of a transition rate theory for chemical kinetics including quantum mechanical tunnelling, and for case (iii) to the stereodirectional specificity of the dynamics of reactions strongly hindered by the increase of temperature.This article is part of the themed issue 'Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces'. © 2017 The Author(s).
Cisse, Mady; Vaillant, Fabrice; Acosta, Oscar; Dhuique-Mayer, Claudie; Dornier, Manuel
2009-07-22
Anthocyanin stability was assessed over temperatures ranging from 30 to 90 degrees C for seven products: blood orange juice [Citrus sinensis (L.) Osbeck]; two tropical highland blackberry juices (Rubus adenotrichus Schlech.), one with high content and the other with low content of suspended insoluble solids (SIS); and four roselle extracts (Hibiscus sabdariffa L.). The blackberry juice showed the highest content of anthocyanins with 1.2 g/L (two times less in the roselle extracts and 12 times less in the blood orange juice). The rate constant for anthocyanin degradation and isothermal kinetic parameters were calculated according to three models: Arrhenius, Eyring, and Ball. Anthocyanins in blood orange juice presented the highest rate constant for degradation, followed by the blackberry juices and roselle extracts. Values of activation energies were 66 and 37 kJ/mol, respectively, for blood orange and blackberry and 47-61 kJ/mol for roselle extracts. For the blackberry juices, a high SIS content provided only slight protection for the anthocyanins. The increasing content of dissolved oxygen, from 0.5 to 8.5 g/L, did not significantly increase the rate constant. For both isothermal and nonisothermal treatments, all three models accurately predicted anthocyanin losses from different food matrices.
NASA Astrophysics Data System (ADS)
Jansen-Glaw, B.; Rössler, E.; Taupitz, M.; Vieth, H. M.
1989-06-01
Deuterated hexamethylbenzene (HMB) is used as a probe molecule for 2H NMR studies of the crystalline state of hexachlorobenzene and of several organic glasses. By measuring the spin-lattice relaxation and the line shape in the temperature range of 4-300 K the dynamical parameters of the molecular reorientation are investigated. For the system HMB/hexachlorobenzene, we find exponential relaxation and for the corresponding T1 an increase of its activation energy by a factor of 2 in comparison to the neat HMB. A homogeneous mixing of the guest and host molecules is found at least for guest concentrations up to 7%. In contrast, nonexponential spin-lattice relaxation is characteristic for all glass matrices, indicating motional heterogeneities. A log-Gauss distribution for the corresponding motional correlation times gives a good fit of the data. Its width parameter decreases linearly with temperature, while the mean correlation times are described by an Arrhenius law. The mean activation energy is reduced by a factor of about 3.5 as compared to neat HMB, demonstrating a loose packing of the molecules in the glass matrices.
X-ray microtomography study of the compaction process of rods under tapping.
Fu, Yang; Xi, Yan; Cao, Yixin; Wang, Yujie
2012-05-01
We present an x-ray microtomography study of the compaction process of cylindrical rods under tapping. The process is monitored by measuring the evolution of the orientational order parameter, local, and overall packing densities as a function of the tapping number for different tapping intensities. The slow relaxation dynamics of the orientational order parameter can be well fitted with a stretched-exponential law with stretching exponents ranging from 0.9 to 1.6. The corresponding relaxation time versus tapping intensity follows an Arrhenius behavior which is reminiscent of the slow dynamics in thermal glassy systems. We also investigated the boundary effect on the ordering process and found that boundary rods order faster than interior ones. In searching for the underlying mechanism of the slow dynamics, we estimated the initial random velocities of the rods under tapping and found that the ordering process is compatible with a diffusion mechanism. The average coordination number as a function of the tapping number at different tapping intensities has also been measured, which spans a range from 6 to 8.
NASA Astrophysics Data System (ADS)
Sinha, Subhojyoti; Kumar Chatterjee, Sanat; Ghosh, Jiten; Kumar Meikap, Ajit
2013-03-01
We have used Rietveld refinement technique to extract the microstructural parameters of thioglycolic acid capped CdSe quantum dots. The quantum dot formation and its efficient capping are further confirmed by HR-TEM, UV-visible and FT-IR spectroscopy. Comparative study of the variation of dc conductivity with temperature (298 K ≤ T ≤ 460 K) is given considering Arrhenius formalism, small polaron hopping and Schnakenberg model. We observe that only Schnakenberg model provides good fit to the non-linear region of the variation of dc conductivity with temperature. Experimental variation of ac conductivity and dielectric parameters with temperature (298 K ≤ T ≤ 460 K) and frequency (80 Hz ≤ f ≤ 2 MHz) are discussed in the light of hopping theory and quantum confinement effect. We have elucidated the observed non-linearity in the I-V curves (measured within ±50 V), at dark and at ambient light, in view of tunneling mechanism. Tunnel exponents and non-linearity weight factors have also been evaluated in this regard.
Fu, Mingkun; Perlman, Michael; Lu, Qing; Varga, Csanad
2015-03-25
An accelerated stress approach utilizing the moisture-modified Arrhenius equation and JMP statistical software was utilized to quantitatively assess the solid state stability of an investigational oncology drug MLNA under the influence of temperature (1/T) and humidity (%RH). Physical stability of MLNA under stress conditions was evaluated by using XRPD, DSC, TGA, and DVS, while chemical stability was evaluated by using HPLC. The major chemical degradation product was identified as a hydrolysis product of MLNA drug substance, and was subsequently subjected to an investigation of kinetics based on the isoconversion concept. A mathematical model (ln k=-11,991×(1/T)+0.0298×(%RH)+29.8823) based on the initial linear kinetics observed for the formation of this degradant at all seven stress conditions was built by using the moisture-modified Arrhenius equation and JMP statistical software. Comparison of the predicted versus experimental lnk values gave a mean deviation value of 5.8%, an R(2) value of 0.94, a p-value of 0.0038, and a coefficient of variation of the root mean square error CV(RMSE) of 7.9%. These statistics all indicated a good fit to the model for the stress data of MLNA. Both temperature and humidity were shown to have a statistically significant impact on stability by using effect leverage plots (p-value<0.05 for both 1/T and %RH). Inclusion of a term representing the interaction of relative humidity and temperature (%RH×1/T) was shown not to be justified by using Analysis of Covariance (ANCOVA), which supported the use of the moisture-corrected Arrhenius equation modeling theory. The model was found to be of value to aid setting of specifications and retest period, and storage condition selection. A model was also generated using only four conditions, as an example from a resource saving perspective, which was found to provide a good fit to the entire set of data. Copyright © 2015 Elsevier B.V. All rights reserved.
Correlation between the Arrhenius crossover and the glass forming ability in metallic glasses.
Wen, Tongqi; Yao, Wenjing; Wang, Nan
2017-10-13
The distinctive characteristic of the metallic glass-forming system is that the variation in viscosity with temperature obeys Vogel-Fulcher-Tammann (VFT) relationship in the undercooled state and Arrhenius relationship in the high temperature region. A dimensionless index has thus been proposed based on the Arrhenius-VFT crossover and the classical nucleation rate and growth rate theory to evaluate the glass-forming ability (GFA). The indicator G(a) is expressed with the combination of T g , the glass transition temperature, T x , the onset crystallization temperature, T l , the liquidus temperature, T 0 , the VFT temperature, and a a constant that could be determined according to the best correlation between G(a) and the critical cooling rate (R c ). Compared with other GFA indexes, G(a) shows the best fit with R c , with the square of the correlation coefficient (R 2 ) being 0.9238 when a = 0.15 for the 23 various alloy systems concerned about. Our results indicate the crossover in the viscosity variation has key effect on GFA and one can use the index G(a) to predict R c and GFA for different alloys effectively.
Molecular Dynamics Simulation of Thermodynamic Properties in Uranium Dioxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xiangyu; Wu, Bin; Gao, Fei
2014-03-01
In the present study, we investigated the thermodynamic properties of uranium dioxide (UO2) by molecular dynamics (MD) simulations. As for solid UO2, the lattice parameter, density, and enthalpy obtained by MD simulations were in good agreement with existing experimental data and previous theoretical predictions. The calculated thermal conductivities matched the experiment results at the midtemperature range but were underestimated at very low and very high temperatures. The calculation results of mean square displacement represented the stability of uranium at all temperatures and the high mobility of oxygen toward 3000 K. By fitting the diffusivity constant of oxygen with the Vogel-Fulcher-Tammanmore » law, we noticed a secondary phase transition near 2006.4 K, which can be identified as a ‘‘strong’’ to ‘‘fragile’’ supercooled liquid or glass phase transition in UO2. By fitting the oxygen diffusion constant with the Arrhenius equation, activation energies of 2.0 and 2.7 eV that we obtained were fairly close to the recommended values of 2.3 to 2.6 eV. Xiangyu Wang, Bin Wu, Fei Gao, Xin Li, Xin Sun, Mohammed A. Khaleel, Ademola V. Akinlalu and Li Liu« less
Ruthenium(III) catalyzed oxidation of sugar alcohols by dichloroisocyanuric acid—A kinetic study
NASA Astrophysics Data System (ADS)
Lakshman Kumar, Y.; Venkata Nadh, R.; Radhakrishnamurti, P. S.
2016-02-01
Kinetics of ruthenium(III) catalyzed oxidation of biologically important sugar alcohols (myo-inositol, D-sorbitol, and D-mannitol) by dichloroisocyanuric acid was carried out in aqueous acetic acid—perchloric medium. The reactions were found to be first order in case of oxidant and ruthenium(III). Zero order was observed with the concentrations of sorbitol and mannitol whereas, a positive fractional order was found in the case of inositol concentration. An inverse fractional order was observed with perchloric acid in oxidation of three substrates. Arrhenius parameters were calculated and a plausible mechanism was proposed.
NASA Technical Reports Server (NTRS)
Gross, Bernard
1996-01-01
Material characterization parameters obtained from naturally flawed specimens are necessary for reliability evaluation of non-deterministic advanced ceramic structural components. The least squares best fit method is applied to the three parameter uniaxial Weibull model to obtain the material parameters from experimental tests on volume or surface flawed specimens subjected to pure tension, pure bending, four point or three point loading. Several illustrative example problems are provided.
Microwave and hot air drying of garlic puree: drying kinetics and quality characteristics
NASA Astrophysics Data System (ADS)
İlter, Işıl; Akyıl, Saniye; Devseren, Esra; Okut, Dilara; Koç, Mehmet; Kaymak Ertekin, Figen
2018-02-01
In this study, the effect of hot air and microwave drying on drying kinetics and some quality characteristics such as water activity, color, optic index and volatile oil of garlic puree was investigated. Optic index representing browning of the garlic puree increased excessively with an increase in microwave power and hot air drying temperature. However, volatile oil content of the dried samples was decreased by increasing of temperature and microwave power. By increasing drying temperature (50, 60 and 70 °C) and microwave power (180, 360 and 540 W), the drying time decreased from 8.5 h to 4 min. In order to determine the kinetic parameters, the experimental drying data were fitted to various semi-empirical models beside 2nd Fick's diffusion equation. Among them, the Page model gave a better fit for microwave-drying, while Logarithmic model gave a better fit for hot air drying. By increasing the microwave power and hot air drying temperature, the effective moisture diffusivity, De values ranged from 0.76×10-8 to 2.85×10-8 m2/s and from 2.21×10-10 to 3.07×10-10 m2/s, respectively. The activation energy was calculated as 20.90 kJ/mol for hot air drying and 21.96 W/g for microwave drying using an Arrhenius type equation.
Nonlinear estimation of parameters in biphasic Arrhenius plots.
Puterman, M L; Hrboticky, N; Innis, S M
1988-05-01
This paper presents a formal procedure for the statistical analysis of data on the thermotropic behavior of membrane-bound enzymes generated using the Arrhenius equation and compares the analysis to several alternatives. Data is modeled by a bent hyperbola. Nonlinear regression is used to obtain estimates and standard errors of the intersection of line segments, defined as the transition temperature, and slopes, defined as energies of activation of the enzyme reaction. The methodology allows formal tests of the adequacy of a biphasic model rather than either a single straight line or a curvilinear model. Examples on data concerning the thermotropic behavior of pig brain synaptosomal acetylcholinesterase are given. The data support the biphasic temperature dependence of this enzyme. The methodology represents a formal procedure for statistical validation of any biphasic data and allows for calculation of all line parameters with estimates of precision.
NASA Astrophysics Data System (ADS)
Schipper, L. A.; O'Neill, T.; Arcus, V. L.
2014-12-01
One of the most fundamental factors controlling all biological and chemical processes is changing temperature. Temperature dependence was originally described by the Arrhenius function in the 19th century. This function provides an excellent description of chemical reaction rates. However, the Arrhenius function does not predict the temperature optimum of biological rates that is clearly evident in laboratory and field measurements. Previously, the temperature optimum of biological processes has been ascribed to denaturation of enzymes but the observed temperature optima in soil are often rather modest, occurring at about 40-50°C and generally less than recognised temperatures for protein unfolding. We have modified the Arrhenius function incorporating a temperature-dependent activation energy derived directly from first principles from thermodynamics of macromolecules. MacroMolecular Rate Theory (MMRT) accounts for large changes in the flexibility of enzymes during catalysis that result in changes in heat capacity (ΔC‡p) of the enzyme during the reaction. MMRT predicts an initially Arrhenius-like response followed by a temperature optimum without the need for enzyme denaturation (Hobbs et al., 2013. ACS Chemical Biology. 8: 2388-2393). Denaturation, of course, occurs at much higher temperatures. We have shown that MMRT fits biogeochemical data collected from laboratory and field studies with important implications for changes in absolute temperature sensitivity as temperature rises (Schipper et al., 2014. Global Change Biology). As the temperature optimum is approached the absolute temperature sensitivity of biological processes decreases to zero. Consequently, the absolute temperature-sensitivity of soil biological processes depends on both the change in ecosystem temperature and the temperature optimum of the biological process. MMRT also very clearly explains why Q10 values decline with increasing temperature more quickly than would be predicted from the Arrhenius function. Temperature optima of many soil biological processes including respiration are very poorly documented but would lead to a better understanding of how soil systems will respond to increasing global temperatures.
Gonçalves, Elsa M; Pinheiro, Joaquina; Alegria, Carla; Abreu, Marta; Brandão, Teresa R S; Silva, Cristina L M
2009-06-24
The effects of water blanching treatment on peroxidase inactivation, total phenolic content, color parameters [-a*/b* and hue (h degrees*)], texture (maximum shear force), and sensory attributes (color and texture, evaluated by a trained panel) of broccoli (Brassica oleracea L. ssp. Italica) were studied at five temperatures (70, 75, 80, 85, and 90 degrees C). Experimental results showed that all studied broccoli quality parameters suffered significative changes due to blanching treatments. The vegetal total phenolic content showed a marked decline. Degradation on objective color and texture measurements and alterations in sensorial attributes were detected. Correlations between sensory and instrumental measurements have been found. Under the conditions 70 degrees C and 6.5 min or 90 degrees C and 0.4 min, 90% of the initial peroxidase activity was reduced. At these conditions, no significant alterations were detected by panelists, and a small amount of phenolic content was lost (ca. 16 and 10%, respectively). The peroxidase inactivation and phenolic content degradation were found to follow first-order reaction models. The zero-order reaction model showed a good fit to the broccoli color (-a*/b* and h degrees*), texture, and sensory parameters changes. The temperature effect was well-described by the Arrhenius law.
Popova, V A; Surovtsev, N V
2014-09-01
The temperature dependences of α relaxation time τ(α)(T) of three glass-forming liquids (salol, o-terphenyl, and α-picoline) were investigated by a depolarized light scattering technique. A detailed description of τ(α)(T) near T(A), the temperature of the transition from the Arrhenius law at high temperatures to a non-Arrhenius behavior of τ(α)(T) at lower temperatures, was done. It was found that this transition is quite sharp. If the transition is described as switching from the Arrhenius law to the Vogel-Fulcher-Tammann law, it occurs within the temperature range of about 15 K or less. Most of the known expressions for τ(α)(T) cannot describe this sharp transition. Our analysis revealed that this transition can be described either as a discontinuous transition in the spirit of the frustration-limited domain theory [D. Kivelson, G. Tarjus, X. Zhao, and S. A. Kivelson, Phys. Rev. E 53, 751 (1996)], implying a phase transition, or by a phenomenological expression recently suggested [B. Schmidtke, N. Petzold, R. Kahlau, M. Hofmann, and E. A. Rössler, Phys. Rev. E 86, 041507 (2012)], where the activation energy includes the term depending exponentially on temperature.
ERIC Educational Resources Information Center
Hardee, John R.; Delgado, Bryan; Jones, Wray
2011-01-01
The kinetic parameters for the conversion of alpha-D-glucose to beta-D-glucose were measured using a blood glucometer. The reaction order, rate constant, and Arrhenius activation energy are reported for the noncatalyzed reaction and turnover number and Michaelis constant are reported for the reaction catalyzed by porcine kidney mutarotase. The…
Schmid, Rochus; Basting, Daniel
2005-03-24
Experimental evidence suggests that the energy of activation for the first homolytic Ga-C bond fission of GaMe3 of Ea = 249 kJ/mol, measured by Jacko and Price in a hot-wall tube reactor, is affected by surface catalytic effects. In this contribution, the rate constant for this crucial step in the gas-phase pyrolysis of GaMe3 has been calculated by variational transition state theory. By a basis set extrapolation on the MP2/cc-pVXZ level and a correlation correction from CCSD(T)/cc-pVDZ level, a theoretical "best estimate" for the bond energy of Delta H(289K) = 327.2 kJ/mol was derived. For the VTST calculation on the B3LYP/cc-pVDZ level, the energies were corrected to reproduce this bond energy. Partition functions of the transitional modes were approximated by a hindered rotor approximation to be valid along the whole reaction coordinate defined by the Ga-C bond length. On the basis of the canonical transition state theory, reaction rates were determined using the maxima of the free energy Delta G++. An Arrhenius-type rate law was fitted to these rate constants, yielding an apparent energy of activation of Ea = 316.7 kJ/mol. The preexponential factor A = 3.13 x 10(16) 1/s is an order of magnitude larger than the experimental results because of a larger release of entropy at the transition state as compared to that of the unknown surface catalyzed mechanism.
NASA Astrophysics Data System (ADS)
Shibata, Tomohiko; Tominaga, Ayane; Takayama, Haruki; Kojima, Seiji
2013-02-01
Brillouin scattering spectroscopy has been applied to study the dynamical properties of glass transition of trehalose aqueous solutions in a high-frequency gigahertz range and in the temperature range (-190°C ≤ T ≤ 100°C). The temperature variations of sound velocity and attenuation were accurately determined using the refractive index measured by a prism-coupling method. The temperature dependence of relaxation time of the structural relaxation process was determined by the Debye model. Its temperature dependence shows Arrhenius behavior in a liquid state. The parameters of Arrhenius law were also determined as a function of trehalose concentration.
Pressure and Temperature Dependence of the Reaction of Vinyl Radical with Ethylene
NASA Technical Reports Server (NTRS)
Ismail, Huzeifa; Goldsmith, C. Franklin; Abel, Paul R.; Howe, Pui-Teng; Fahr, Askar; Halpern, Joshua B.; Jusinski, Leonard E.; Georgievskii, Yuri; Taatjes, Craig A.; Green, William H.
2007-01-01
This work reports measurements of absolute rate coefficients and Rice-Ramsperger-Kassel-Marcus (RRKM) master equation simulations of the C2H3 + C2H4 reaction. Direct kinetic studies were performed over a temperature range of 300-700 K and pressures of 20 and 133 mbar. Vinyl radicals (H2C=CH) were generated by laser photolysis of vinyl iodide (C2H31) at 266 nm, and time-resolved absorption spectroscopy was used to probe vinyl radicals through absorption at 423.2 nm. Measurements at 20 mbar are in good agreement with previous determinations at higher temperature. A weighted three-parameter Arrhenius fit to the experimental rate constant at 133 mbar, with the temperature exponent fixed, gives k = (7 +/- 1) x 10(exp -l4) cu cm/molecule/s (T/298 K)(exp 2) exp[-(1430 +/- 70) K/T]. RRKM master equation simulations, based on G3 calculations of stationary points on the C4H7 potential energy surface, were carried out to predict rate coefficients and product branching fractions. The predicted branching to 1-methylallyl product is relatively small under the conditions of the present experiments but increases as the pressure is lowered. Analysis of end products of 248 nm photolysis of vinyl iodide/ethylene mixtures at total pressures between 27 and 933 mbar provides no direct evidence for participation of I -methylallyl.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kane, V.E.
1982-01-01
A class of goodness-of-fit estimators is found to provide a useful alternative in certain situations to the standard maximum likelihood method which has some undesirable estimation characteristics for estimation from the three-parameter lognormal distribution. The class of goodness-of-fit tests considered include the Shapiro-Wilk and Filliben tests which reduce to a weighted linear combination of the order statistics that can be maximized in estimation problems. The weighted order statistic estimators are compared to the standard procedures in Monte Carlo simulations. Robustness of the procedures are examined and example data sets analyzed.
Batiha, Marwan; Altarawneh, Mohammednoor; Al-Harahsheh, Mohammad; Altarawneh, Ibrahem; Rawadieh, Saleh
2011-01-01
Reaction and activation energy barriers are calculated for the H abstraction reactions (C6H5SH + X• → C6H5S + XH, X = H, OH and HO2) at the BB1K/GTLarge level of theory. The corresponding reactions with H2S and CH3SH are also investigated using the G3B3 and CBS-QB3 methods in order to demonstrate the accuracy of BB1K functional in finding activation barriers for hydrogen atom transfer reactions. Arrhenius parameters for the title reactions are fitted in the temperature range of 300 K–2000 K. The calculated reaction enthalpies are in good agreement with their corresponding experimental reaction enthalpies. It is found that H abstraction by OH radicals from the thiophenol molecule proceed in a much slower rate in reference to the analogous phenol molecule. ΔfH298o of thiophenoxy radical is calculated to be 63.3 kcal/mol. Kinetic parameters presented herein should be useful in describing the decomposition rate of thiophenol; i.e., one of the major aromatic sulfur carriers, at high temperatures. PMID:22485200
Function approximation and documentation of sampling data using artificial neural networks.
Zhang, Wenjun; Barrion, Albert
2006-11-01
Biodiversity studies in ecology often begin with the fitting and documentation of sampling data. This study is conducted to make function approximation on sampling data and to document the sampling information using artificial neural network algorithms, based on the invertebrate data sampled in the irrigated rice field. Three types of sampling data, i.e., the curve species richness vs. the sample size, the curve rarefaction, and the curve mean abundance of newly sampled species vs.the sample size, are fitted and documented using BP (Backpropagation) network and RBF (Radial Basis Function) network. As the comparisons, The Arrhenius model, and rarefaction model, and power function are tested for their ability to fit these data. The results show that the BP network and RBF network fit the data better than these models with smaller errors. BP network and RBF network can fit non-linear functions (sampling data) with specified accuracy and don't require mathematical assumptions. In addition to the interpolation, BP network is used to extrapolate the functions and the asymptote of the sampling data can be drawn. BP network cost a longer time to train the network and the results are always less stable compared to the RBF network. RBF network require more neurons to fit functions and generally it may not be used to extrapolate the functions. The mathematical function for sampling data can be exactly fitted using artificial neural network algorithms by adjusting the desired accuracy and maximum iterations. The total numbers of functional species of invertebrates in the tropical irrigated rice field are extrapolated as 140 to 149 using trained BP network, which are similar to the observed richness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aghili Yajadda, Mir Massoud
2014-10-21
We have shown both theoretically and experimentally that tunnel currents in networks of disordered irregularly shaped nanoparticles (NPs) can be calculated by considering the networks as arrays of parallel nonlinear resistors. Each resistor is described by a one-dimensional or a two-dimensional array of equal size nanoparticles that the tunnel junction gaps between nanoparticles in each resistor is assumed to be equal. The number of tunnel junctions between two contact electrodes and the tunnel junction gaps between nanoparticles are found to be functions of Coulomb blockade energies. In addition, the tunnel barriers between nanoparticles were considered to be tilted at highmore » voltages. Furthermore, the role of thermal expansion coefficient of the tunnel junction gaps on the tunnel current is taken into account. The model calculations fit very well to the experimental data of a network of disordered gold nanoparticles, a forest of multi-wall carbon nanotubes, and a network of few-layer graphene nanoplates over a wide temperature range (5-300 K) at low and high DC bias voltages (0.001 mV–50 V). Our investigations indicate, although electron cotunneling in networks of disordered irregularly shaped NPs may occur, non-Arrhenius behavior at low temperatures cannot be described by the cotunneling model due to size distribution in the networks and irregular shape of nanoparticles. Non-Arrhenius behavior of the samples at zero bias voltage limit was attributed to the disorder in the samples. Unlike the electron cotunneling model, we found that the crossover from Arrhenius to non-Arrhenius behavior occurs at two temperatures, one at a high temperature and the other at a low temperature.« less
Jaiswal, Abhishek; Egami, Takeshi; Kelton, K F; Schweizer, Kenneth S; Zhang, Yang
2016-11-11
We report the observation of a distinct correlation between the kinetic fragility index m and the reduced Arrhenius crossover temperature θ_{A}=T_{A}/T_{g} in various glass-forming liquids, identifying three distinguishable groups. In particular, for 11 glass-forming metallic liquids, we universally observe a crossover in the mean diffusion coefficient from high-temperature Arrhenius to low-temperature super-Arrhenius behavior at approximately θ_{A}≈2 which is in the stable liquid phases. In contrast, for fragile molecular liquids, this crossover occurs at much lower θ_{A}≈1.4 and usually in their supercooled states. The θ_{A} values for strong network liquids spans a wide range higher than 2. Intriguingly, the high-temperature activation barrier E_{∞} is universally found to be ∼11k_{B}T_{g} and uncorrelated with the fragility or the reduced crossover temperature θ_{A} for metallic and molecular liquids. These observations provide a way to estimate the low-temperature glassy characteristics (T_{g} and m) from the high-temperature liquid quantities (E_{∞} and θ_{A}).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaiswal, Abhishek; Egami, Takeshi; Kelton, K. F.
2016-11-10
In this paper, we report the observation of a distinct correlation between the kinetic fragility index m and the reduced Arrhenius crossover temperature θ A = T A/T g in various glass-forming liquids, identifying three distinguishable groups. In particular, for 11 glass-forming metallic liquids, we universally observe a crossover in the mean diffusion coefficient from high-temperature Arrhenius to low-temperature super-Arrhenius behavior at approximately θ A ≈ 2 which is in the stable liquid phases. In contrast, for fragile molecular liquids, this crossover occurs at much lower θ A ≈ 1.4 and usually in their supercooled states. The θ A valuesmore » for strong network liquids spans a wide range higher than 2. Intriguingly, the high-temperature activation barrier E ∞ is universally found to be ~11k BT g and uncorrelated with the fragility or the reduced crossover temperature θ A for metallic and molecular liquids. Finally, these observations provide a way to estimate the low-temperature glassy characteristics (T g and m) from the high-temperature liquid quantities (E ∞ and θ A).« less
Indirect color prediction of amorphous carbohydrate melts as a function of thermal history.
van Sleeuwen, Rutger M T; Gosse, Anaїck J; Normand, Valery
2013-07-01
Glassy carbohydrate microcapsules are widely used for the encapsulation of flavors in food applications, and are made using various thermal processes (for example, extrusion). During manufacturing, these carbohydrate melts are held at elevated temperatures and color can form due to nonenzymatic browning reactions. These reactions can negatively or positively affect the color and flavor of microcapsules. The rate of color formation of maltodextrin and maltodextrin/sucrose melts at elevated temperatures was determined spectrophotometrically and was found to follow pseudo zero-order kinetics. The effect of temperature was adequately modeled by an Arrhenius relationship. Reaction rate constants and Arrhenius parameters were determined for individual wavelengths in the visible range (360 to 700 nm at 1 nm intervals). Transient processes (temperature changes with time) were modeled as a sequence of small isothermal events, and the equivalent thermal history at a reference temperature calculated using the Arrhenius relationship. Therefore, spectral transmittance curves could be predicted with knowledge of the time/temperature relationship. Validation was conducted by subjecting both melts to a transient thermal history. Experimental transmittance spectrum compared favorably against predicted values. These spectra were optionally converted to any desirable color space (for example, CIELAB, XYZ, RGB) or derived parameter (for example, Browning Index). The tool could be used to better control nonenzymatic browning reactions in industrial food processes. © 2013 Institute of Food Technologists®
Karakaya, Pelin; Sidhoum, Mohammed; Christodoulatos, Christos; Nicolich, Steve; Balas, Wendy
2005-04-11
The recently developed polycyclic nitramine CL-20 is considered as a possible replacement for the monocyclic nitramines RDX and HMX. The present study reports aqueous solubility data for CL-20, as well as the kinetic parameters for its alkaline hydrolysis with sodium hydroxide below and above its solubility limits. Aqueous solubility of CL-20 was measured in the temperature range of 4-69 degrees C and the data were fitted to a generalized solubility model. Alkaline hydrolysis experiments were conducted at 15, 20, 30 and 40 degrees C, with hydroxide concentrations ranging from 0.25 to 300 mM. Like RDX and HMX, alkaline hydrolysis of CL-20 follows second-order kinetics. CL-20 alkaline hydrolysis was found to proceed at a significantly faster rate than RDX. The temperature dependency of the second-order rate constants was evaluated using the Arrhenius model. The activation energy for CL-20 was found to be within close range of the activation energies reported for RDX and HMX.
Modeling and prediction of relaxation of polar order in high-activity nonlinear optical polymers
NASA Astrophysics Data System (ADS)
Guenthner, Andrew J.; Lindsay, Geoffrey A.; Wright, Michael E.; Fallis, Stephen; Ashley, Paul R.; Sanghadasa, Mohan
2007-09-01
Mach-Zehnder optical modulators were fabricated using the CLD and FTC chromophores in polymer-on-silicon optical waveguides. Up to 17 months of oven-ageing stability are reported for the poled polymer films. Modulators containing an FTC-polyimide had the best over all aging performance. To model and extrapolate the ageing data, a relaxation correlation function attributed to A. K. Jonscher was compared to the well-established stretched exponential correlation function. Both models gave a good fit to the data. The Jonscher model predicted a slower relaxation rate in the out years. Analysis showed that collecting data for a longer period relative to the relaxation time was more important for generating useful predictions than the precision with which individual model parameters could be estimated. Thus from a practical standpoint, time-temperature superposition must be assumed in order to generate meaningful predictions. For this purpose, Arrhenius-type expressions were found to relate the model time constants to the ageing temperatures.
Single-level resonance parameters fit nuclear cross-sections
NASA Technical Reports Server (NTRS)
Drawbaugh, D. W.; Gibson, G.; Miller, M.; Page, S. L.
1970-01-01
Least squares analyses of experimental differential cross-section data for the U-235 nucleus have yielded single level Breit-Wigner resonance parameters that fit, simultaneously, three nuclear cross sections of capture, fission, and total.
Modeling of outgassing and matrix decomposition in carbon-phenolic composites
NASA Technical Reports Server (NTRS)
Mcmanus, Hugh L.
1993-01-01
A new release rate equation to model the phase change of water to steam in composite materials was derived from the theory of molecular diffusion and equilibrium moisture concentration. The new model is dependent on internal pressure, the microstructure of the voids and channels in the composite materials, and the diffusion properties of the matrix material. Hence, it is more fundamental and accurate than the empirical Arrhenius rate equation currently in use. The model was mathematically formalized and integrated into the thermostructural analysis code CHAR. Parametric studies on variation of several parameters have been done. Comparisons to Arrhenius and straight-line models show that the new model produces physically realistic results under all conditions.
Modelling drug degradation in a spray dried polymer dispersion using a modified Arrhenius equation.
Patterson, Adele; Ferreira, Ana P; Banks, Elizabeth; Skeene, Kirsty; Clarke, Graham; Nicholson, Sarah; Rawlinson-Malone, Clare
2015-01-15
The Pharmaceutical industry is increasingly utilizing amorphous technologies to overcome solubility challenges. A common approach is the use of drug in polymer dispersions to prevent recrystallization of the amorphous drug. Understanding the factors affecting chemical and physical degradation of the drug within these complex systems, e.g., temperature and relative humidity, is an important step in the selection of a lead formulation, and development of appropriate packaging/storage control strategies. The Arrhenius equation has been used as the basis of a number of models to predict the chemical stability of formulated product. In this work, we investigate the increase in chemical degradation seen for one particular spray dried dispersion formulation using hydroxypropyl methylcellulose acetate succinate (HPMC-AS). Samples, prepared using polymers with different substitution levels, were placed on storage for 6 months under a range of different temperature and relative humidity conditions and the degradant level monitored using high-performance liquid chromatography (HPLC). While the data clearly illustrates the impact of temperature and relative humidity on the degradant levels detected, it also highlighted that these terms do not account for all the variability in the data. An extension of the Arrhenius equation to include a term for the polymer chemistry, specifically the degree of succinoyl substitution on the polymer backbone, was shown to improve the fit of the model to the data. Copyright © 2014 Elsevier B.V. All rights reserved.
Measurement and modeling of dielectric properties of Pb(Zr,Ti)O3 ferroelectric thin films.
Renoud, Raphaël; Borderon, Caroline; Gundel, Hartmut W
2011-09-01
In this study, the real and imaginary parts of the complex permittivity of lead zirconate titanate ferroelectric thin films are studied in the frequency range of 100 Hz to 100 MHz. The permittivity is well fitted by the Cole-Cole model. The variation of the relaxation time with the temperature is described by the Arrhenius law and an activation energy of 0.38 eV is found. Because of its nonlinear character, the dielectric response of the ferroelectric sample depends on the amplitude of the applied ac electric field. The permittivity is composed of three different contributions: the first is due to intrinsic lattice, the second is due to domain wall vibrations, and the third is due to domain wall jumps between pinning centers. This last contribution depends on the electric field, so it is important to control the field amplitude to obtain the desired values of permittivity and tunability.
Johnson, H A; Wiske, P S
1976-08-01
This is a study of the manner in which the respiratory system of the cell is injured either by elevated temperature or by exposure to diluted formaldehyde. Molecular mechanisms were identified by thermokinetic measurements. The rates at which respiratory failure developed in mouse liver slices in an injurious environment were measured at various temperatures. The data were fitted to the Arrhenius equation, and the effective activation energies of the injury processes were calculated. These data show that (1) the thermokinetics of injury to the cell's respiratory system, whether by thermal or chemical means, follows the Arrhenius law. (2) Thermal injury of the cell's respiratory system has a high activation energy, indicating that the critical, rate-determining event is a protein denaturation. Other mechanisms such as imbalance of metabolic reaction rates and thermal liquefaction of membrane lipids can be ruled out. (3) Repression of cell respiration by diluted formaldehyde has an activation energy compatible with a chemical reaction but low enough to exclude protein denaturation as a mechanism.
Taylor, Brian A.; Elliott, Andrew M.; Hwang, Ken-Pin; Hazle, John D.; Stafford, R. Jason
2011-01-01
In order to investigate simultaneous MR temperature imaging and direct validation of tissue damage during thermal therapy, temperature-dependent signal changes in proton resonance frequency (PRF) shifts, R2* values, and T1-weighted amplitudes are measured from one technique in ex vivo tissue heated with a 980-nm laser at 1.5T and 3.0T. Using a multi-gradient echo acquisition and signal modeling with the Stieglitz-McBride algorithm, the temperature sensitivity coefficient (TSC) values of these parameters are measured in each tissue at high spatiotemporal resolutions (1.6×1.6×4mm3,≤5sec) at the range of 25-61 °C. Non-linear changes in MR parameters are examined and correlated with an Arrhenius rate dose model of thermal damage. Using logistic regression, the probability of changes in these parameters is calculated as a function of thermal dose to determine if changes correspond to thermal damage. Temperature calibrations demonstrate TSC values which are consistent with previous studies. Temperature sensitivity of R2* and, in some cases, T1-weighted amplitudes are statistically different before and after thermal damage occurred. Significant changes in the slopes of R2* as a function of temperature are observed. Logistic regression analysis shows that these changes could be accurately predicted using the Arrhenius rate dose model (Ω=1.01±0.03), thereby showing that the changes in R2* could be direct markers of protein denaturation. Overall, by using a chemical shift imaging technique with simultaneous temperature estimation, R2* mapping and T1-W imaging, it is shown that changes in the sensitivity of R2* and, to a lesser degree, T1-W amplitudes are measured in ex vivo tissue when thermal damage is expected to occur according to Arrhenius rate dose models. These changes could possibly be used for direct validation of thermal damage in contrast to model-based predictions. PMID:21721063
Outdoor ground impedance models.
Attenborough, Keith; Bashir, Imran; Taherzadeh, Shahram
2011-05-01
Many models for the acoustical properties of rigid-porous media require knowledge of parameter values that are not available for outdoor ground surfaces. The relationship used between tortuosity and porosity for stacked spheres results in five characteristic impedance models that require not more than two adjustable parameters. These models and hard-backed-layer versions are considered further through numerical fitting of 42 short range level difference spectra measured over various ground surfaces. For all but eight sites, slit-pore, phenomenological and variable porosity models yield lower fitting errors than those given by the widely used one-parameter semi-empirical model. Data for 12 of 26 grassland sites and for three beech wood sites are fitted better by hard-backed-layer models. Parameter values obtained by fitting slit-pore and phenomenological models to data for relatively low flow resistivity grounds, such as forest floors, porous asphalt, and gravel, are consistent with values that have been obtained non-acoustically. Three impedance models yield reasonable fits to a narrow band excess attenuation spectrum measured at short range over railway ballast but, if extended reaction is taken into account, the hard-backed-layer version of the slit-pore model gives the most reasonable parameter values.
Comparative Analyses of Creep Models of a Solid Propellant
NASA Astrophysics Data System (ADS)
Zhang, J. B.; Lu, B. J.; Gong, S. F.; Zhao, S. P.
2018-05-01
The creep experiments of a solid propellant samples under five different stresses are carried out at 293.15 K and 323.15 K. In order to express the creep properties of this solid propellant, the viscoelastic model i.e. three Parameters solid, three Parameters fluid, four Parameters solid, four Parameters fluid and exponential model are involved. On the basis of the principle of least squares fitting, and different stress of all the parameters for the models, the nonlinear fitting procedure can be used to analyze the creep properties. The study shows that the four Parameters solid model can best express the behavior of creep properties of the propellant samples. However, the three Parameters solid and exponential model cannot very well reflect the initial value of the creep process, while the modified four Parameters models are found to agree well with the acceleration characteristics of the creep process.
NASA Technical Reports Server (NTRS)
Laufer, A. H.; Gardner, E. P.; Kwok, T. L.; Yung, Y. L.
1983-01-01
The rate coefficients, including Arrhenius parameters, have been computed for a number of chemical reactions involving hydrocarbon species for which experimental data are not available and which are important in planetary atmospheric models. The techniques used to calculate the kinetic parameters include the Troe and semiempirical bond energy-bond order (BEBO) or bond strength-bond length (BSBL) methods.
Autoxidation of jet fuels: Implications for modeling and thermal stability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heneghan, S.P.; Chin, L.P.
1995-05-01
The study and modeling of jet fuel thermal deposition is dependent on an understanding of and ability to model the oxidation chemistry. Global modeling of jet fuel oxidation is complicated by several facts. First, liquid jet fuels are hard to heat rapidly and fuels may begin to oxidize during the heat-up phase. Non-isothermal conditions can be accounted for but the evaluation of temperature versus time is difficult. Second, the jet fuels are a mixture of many compounds that may oxidize at different rates. Third, jet fuel oxidation may be autoaccelerating through the decomposition of the oxidation products. Attempts to modelmore » the deposition of jet fuels in two different flowing systems showed the inadequacy of a simple two-parameter global Arrhenius oxidation rate constant. Discarding previous assumptions about the form of the global rate constants results in a four parameter model (which accounts for autoacceleration). This paper discusses the source of the rate constant form and the meaning of each parameter. One of these parameters is associated with the pre-exponential of the autoxidation chain length. This value is expected to vary inversely to thermal stability. We calculate the parameters for two different fuels and discuss the implication to thermal and oxidative stability of the fuels. Finally, we discuss the effect of non-Arrhenius behavior on current modeling of deposition efforts.« less
NASA Astrophysics Data System (ADS)
Kurniadi, M.; Bintang, R.; Kusumaningrum, A.; Nursiwi, A.; Nurhikmat, A.; Susanto, A.; Angwar, M.; Triwiyono; Frediansyah, A.
2017-12-01
Research on shelf-life prediction of canned fried rice using Accelerated Shelf-life Test (ASLT) of Arrhenius model has been conducted. The aim of this research to predict shelf life of canned-fried rice products. Lethality value of 121°C for 15 and 20 minutes and Total Plate count methods are used to determine time and temperatures of sterilization process.Various storage temperatures of ASLT Arrhenius method were 35, 45 and 55°C during 35days. Rancidity is one of the derivation quality of canned fried rice. In this research, sample of canned fried rice is tested using rancidity value (TBA). TBA value was used as parameter which be measured once a week periodically. The use of can for fried rice without any chemical preservative is one of the advantage of the product, additionaly the use of physicalproperties such as temperature and pressure during its process can extend the shelf life and reduce the microbial contamination. The same research has never done before for fried rice as ready to eat meal. The result showed that the optimum conditions of sterilization process were 121°C,15 minutes with total plate count number of 9,3 × 101 CFU/ml. Lethality value of canned fried rice at 121°C,15 minutes was 3.63 minutes. The calculated Shelf-life of canned fried rice using Accelerated Shelf-life Test (ASLT) of Arrhenius method was 10.3 months.
Kinetic compensation effect in the thermal desorption of a binary gas mixture
NASA Astrophysics Data System (ADS)
Zuniga-Hansen, Nayeli; Silbert, Leonardo E.; Calbi, M. Mercedes
The kinetic compensation effect, observed in many different areas of science, is the systematic change in the magnitudes of the Arrhenius parameters Ea, the energy of activation and ν, the preexponential factor, as a response to external perturbing parameters. Its existence continues to be debated as it has not been explicitly demonstrated and its physical origins remain poorly understood. As part of a systematic study of different factors that alter the energy of activation during thermal desorption, we have performed numerical studies of the effects of adsorbate-adsorbate interactions on the Arrhenius parameters, as well as the effects of changes in surface morphology. Our results have consistently shown that there is a partial compensation effect between Ea and lnν and a tendency towards isokinetic equilibrium when the system transitions from an interacting to a non-interacting regime. In the present work we study the effects of the presence of two different chemical species. With our systematic study we expect to provide a deeper insight into the microscopic events that originate compensation effects, not only in our system, but also in other fields where these effects have been reported.
NASA Astrophysics Data System (ADS)
Shan, Y.; Eric, W.; Gao, L.; Zhao, T.; Yin, Y.
2015-12-01
In this study, we have evaluated the performance of size distribution functions (SDF) with 2- and 3-moments in fitting the observed size distribution of rain droplets at three different heights. The goal is to improve the microphysics schemes in meso-scale models, such as Weather Research and Forecast (WRF). Rain droplets were observed during eight periods of different rain types at three stations on the Yellow Mountain in East China. The SDF in this study were M-P distribution with a fixed shape parameter in Gamma SDF(FSP). Where the Gamma SDFs were obtained with three diagnosis methods with the shape parameters based on Milbrandt (2010; denoted DSPM10), Milbrandt (2005; denoted DSPM05) and Seifert (2008; denoted DSPS08) for solving the shape parameter(SSP) and Lognormal SDF. Based on the preliminary experiments, three ensemble methods deciding Gamma SDF was also developed and assessed. The magnitude of average relative error caused by applying a FSP was 10-2 for fitting 0-order moment of the observed rain droplet distribution, and the magnitude of average relative error changed to 10-1 and 100 respectively for 1-4 order moments and 5-6 order moments. To different extent, DSPM10, DSPM05, DSPS08, SSP and ensemble methods could improve fitting accuracies for 0-6 order moments, especially the one coupling SSP and DSPS08 methods, which provided a average relative error 6.46% for 1-4 order moments and 11.90% for 5-6 order moments, respectively. The relative error of fitting three moments using the Lognormal SDF was much larger than that of Gamma SDF. The threshold value of shape parameter ranged from 0 to 8, because values beyond this range could cause overflow in the calculation. When average diameter of rain droplets was less than 2mm, the possibility of unavailable shape parameter value(USPV) increased with a decreasing droplet size. There was strong sensitivity of moment group in fitting accuracy. When ensemble method coupling SSP and DSPS08 was used, a better fit to 1-3-5 moments of the SDF was possible compared to fitting the 0-3-6 moment group.
Unraveling the Age Hardening Response in U-Nb Alloys
Hackenberg, Robert Errol; Hemphill, Geralyn M. Sewald; Forsyth, Robert Thomas; ...
2016-11-15
Complicating factors that have stymied understanding of uranium-niobium’s aging response are briefly reviewed, including (1) niobium inhomogeneity, (2) machining damage effects on tensile properties, (3) early-time transients of ductility increase, and (4) the variety of phase transformations. A simple Logistic-Arrhenius model was applied to predict yield and ultimate tensile strengths and tensile elongation of U-4Nb as a function of thermal age. Lastly, fits to each model yielded an apparent activation energy that was compared with phase transformation mechanisms.
Monkos, Karol
2013-03-01
The paper presents the results of viscosity determinations on aqueous solutions of human serum albumin (HSA) at isoelectric point over a wide range of concentrations and at temperatures ranging from 5°C to 45°C. On the basis of a modified Arrhenius equation and Mooney's formula some hydrodynamic parameters were obtained. They are compared with those previously obtained for HSA in solutions at neutral pH. The activation energy and entropy of viscous flow and the intrinsic viscosity reach a maximum value, and the effective specific volume, the self-crowding factor and the Huggins coefficient a minimum value in solutions at isoelectric point. Using the dimensionless parameter [η]c, the existence of three ranges of concentrations: diluted, semi-diluted and concentrated, was shown. By applying Lefebvre's relation for the relative viscosity in the semi-dilute regime, the Mark-Houvink-Kuhn-Sakurada (MHKS) exponent was established. The analysis of the results obtained from the three ranges of concentrations showed that both conformation and stiffness of HSA molecules in solutions at isoelectric point and at neutral pH are the same.
Moran, Richard; Smith, Joshua H; García, José J
2014-11-28
The mechanical properties of human brain tissue are the subject of interest because of their use in understanding brain trauma and in developing therapeutic treatments and procedures. To represent the behavior of the tissue, we have developed hyperelastic mechanical models whose parameters are fitted in accordance with experimental test results. However, most studies available in the literature have fitted parameters with data of a single type of loading, such as tension, compression, or shear. Recently, Jin et al. (Journal of Biomechanics 46:2795-2801, 2013) reported data from ex vivo tests of human brain tissue under tension, compression, and shear loading using four strain rates and four different brain regions. However, they do not report parameters of energy functions that can be readily used in finite element simulations. To represent the tissue behavior for the quasi-static loading conditions, we aimed to determine the best fit of the hyperelastic parameters of the hyperfoam, Ogden, and polynomial strain energy functions available in ABAQUS for the low strain rate data, while simultaneously considering all three loading modes. We used an optimization process conducted in MATLAB, calling iteratively three finite element models developed in ABAQUS that represent the three loadings. Results showed a relatively good fit to experimental data in all loading modes using two terms in the energy functions. Values for the shear modulus obtained in this analysis (897-1653Pa) are in the range of those presented in other studies. These energy-function parameters can be used in brain tissue simulations using finite element models. Copyright © 2014 Elsevier Ltd. All rights reserved.
Güzel, Fuat; Yakut, Hakan; Topal, Giray
2008-05-30
In this study, the effect of temperature on the adsorption of Mn(II), Ni(II), Co(II) and Cu(II) from aqueous solution by modified carrot residues (MCR) was investigated. The equilibrium contact times of adsorption process for each heavy metals-MCR systems were determined. Kinetic data obtained for each heavy metal by MCR at different temperatures were applied to the Lagergren equation, and adsorption rate constants (kads) at these temperatures were determined. These rate constants related to the adsorption of heavy metal by MCR were applied to the Arrhenius equation, and activation energies (Ea) were determined. In addition, the isotherms for adsorption of each heavy metal by MCR at different temperatures were also determined. These isothermal data were applied to linear forms of isotherm equations that they fit the Langmuir adsorption isotherm, and the Langmuir constants (qm and b) were calculated. b constants determined at different temperatures were applied to thermodynamic equations, and thermodynamic parameters such as enthalpy (Delta H), free energy (Delta G), and entropy (Delta S) were calculated and these values show that adsorption of heavy metal on MCR was an endothermic process and process of adsorption was favoured at high temperatures.
Kinetics of Hydrothermal Inactivation of Endotoxins ▿
Li, Lixiong; Wilbur, Chris L.; Mintz, Kathryn L.
2011-01-01
A kinetic model was established for the inactivation of endotoxins in water at temperatures ranging from 210°C to 270°C and a pressure of 6.2 × 106 Pa. Data were generated using a bench scale continuous-flow reactor system to process feed water spiked with endotoxin standard (Escherichia coli O113:H10). Product water samples were collected and quantified by the Limulus amebocyte lysate assay. At 250°C, 5-log endotoxin inactivation was achieved in about 1 s of exposure, followed by a lower inactivation rate. This non-log-linear pattern is similar to reported trends in microbial survival curves. Predictions and parameters of several non-log-linear models are presented. In the fast-reaction zone (3- to 5-log reduction), the Arrhenius rate constant fits well at temperatures ranging from 120°C to 250°C on the basis of data from this work and the literature. Both biphasic and modified Weibull models are comparable to account for both the high and low rates of inactivation in terms of prediction accuracy and the number of parameters used. A unified representation of thermal resistance curves for a 3-log reduction and a 3 D value associated with endotoxin inactivation and microbial survival, respectively, is presented. PMID:21193667
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hranisavljevic, J.; Michael, V.; Chemistry
1998-09-24
The shock tube technique coupled with H-atom atomic resonance absorption spectrometry has been used to study the reactions (1) CF{sub 3} + H{sub 2} {yields} CF{sub 3}H + H and (2) CF{sub 3}H + H{yields} CF{sub 3} + H{sub 2} over the temperature ranges 1168-1673 K and 1111-1550 K, respectively. The results can be represented by the Arrhenius expressions k1 = 2.56 x 10{sup -11} exp(-8549K/T) and k2 = 6.13 x 10{sup -11} exp(-7364K/T), both in cm3 molecule-1 s-1. Equilibrium constants were calculated from the two Arrhenius expressions in the overlapping temperature range, and good agreement was obtained with themore » literature values. The rate constants for reaction 2 were converted into rate constants for reaction 1 using literature equilibrium constants. These data are indistinguishable from direct k1 measurements, and an Arrhenius fit for the joint set is k{sub 1} = 1.88 x 10{sup -11} exp(-8185K/T) cm3 molecule-1 s-1. The CF{sub 3} + H{sub 2} {yields} CF{sub 3}H + H reaction was further modeled using conventional transition-state theory, which included ab initio electronic structure determinations of reactants, transition state, and products.« less
van Baalen, Sophie; Leemans, Alexander; Dik, Pieter; Lilien, Marc R; Ten Haken, Bennie; Froeling, Martijn
2017-07-01
To evaluate if a three-component model correctly describes the diffusion signal in the kidney and whether it can provide complementary anatomical or physiological information about the underlying tissue. Ten healthy volunteers were examined at 3T, with T 2 -weighted imaging, diffusion tensor imaging (DTI), and intravoxel incoherent motion (IVIM). Diffusion tensor parameters (mean diffusivity [MD] and fractional anisotropy [FA]) were obtained by iterative weighted linear least squares fitting of the DTI data and mono-, bi-, and triexponential fit parameters (D 1 , D 2 , D 3 , f fast2 , f fast3 , and f interm ) using a nonlinear fit of the IVIM data. Average parameters were calculated for three regions of interest (ROIs) (cortex, medulla, and rest) and from fiber tractography. Goodness of fit was assessed with adjusted R 2 ( Radj2) and the Shapiro-Wilk test was used to test residuals for normality. Maps of diffusion parameters were also visually compared. Fitting the diffusion signal was feasible for all models. The three-component model was best able to describe fast signal decay at low b values (b < 50), which was most apparent in Radj2 of the ROI containing high diffusion signals (ROI rest ), which was 0.42 ± 0.14, 0.61 ± 0.11, 0.77 ± 0.09, and 0.81 ± 0.08 for DTI, one-, two-, and three-component models, respectively, and in visual comparison of the fitted and measured S 0 . None of the models showed significant differences (P > 0.05) between the diffusion constant of the medulla and cortex, whereas the f fast component of the two and three-component models were significantly different (P < 0.001). Triexponential fitting is feasible for the diffusion signal in the kidney, and provides additional information. 2 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;46:228-239. © 2016 The Authors Journal of Magnetic Resonance Imaging published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
NASA Technical Reports Server (NTRS)
Starlinger, Alois; Duffy, Stephen F.; Palko, Joseph L.
1993-01-01
New methods are presented that utilize the optimization of goodness-of-fit statistics in order to estimate Weibull parameters from failure data. It is assumed that the underlying population is characterized by a three-parameter Weibull distribution. Goodness-of-fit tests are based on the empirical distribution function (EDF). The EDF is a step function, calculated using failure data, and represents an approximation of the cumulative distribution function for the underlying population. Statistics (such as the Kolmogorov-Smirnov statistic and the Anderson-Darling statistic) measure the discrepancy between the EDF and the cumulative distribution function (CDF). These statistics are minimized with respect to the three Weibull parameters. Due to nonlinearities encountered in the minimization process, Powell's numerical optimization procedure is applied to obtain the optimum value of the EDF. Numerical examples show the applicability of these new estimation methods. The results are compared to the estimates obtained with Cooper's nonlinear regression algorithm.
Kinetics and thermodynamics of Pb(II) adsorption onto modified spent grain from aqueous solutions
NASA Astrophysics Data System (ADS)
Li, Qingzhu; Chai, Liyuan; Yang, Zhihui; Wang, Qingwei
2009-01-01
Spent grain, a main by-product of the brewing industry, is available in large quantities, but its main application has been limited to animal feeding. Nevertheless, in this study, spent grain modified with 1 M NaCl solution as a novel adsorbent has been used for the adsorption of Pb(II) in aqueous solutions. Isotherms, kinetics and thermodynamics of Pb(II) adsorption onto modified spent grain were studied. The equilibrium data were well fitted with Langmuir, Freundlich and Dubinin-Radushkevick (D-R) isotherm models. The kinetics of Pb(II) adsorption followed pseudo-second-order model, using the rate constants of pseudo-second-order model, the activation energy ( Ea) of Pb(II) adsorption was determined as 12.33 kJ mol -1 according to the Arrhenius equation. Various thermodynamic parameters such as Δ Gads, Δ Hads and Δ Sads were also calculated. Thermodynamic results indicate that Pb(II) adsorption onto modified spent grain is a spontaneous and endothermic process. Therefore, it can be concluded that modified spent grain as a new effective adsorbent has potential for Pb(II) removal from aqueous solutions.
Aral, Serdar; Beşe, Ayşe Vildan
2016-11-01
Thin layer drying characteristics and physicochemical properties of hawthorn fruit (Crataegus spp.) were investigated using a convective dryer at air temperatures 50, 60 and 70°C and air velocities of 0.5, 0.9 and 1.3m/s. The drying process of hawthorn took place in the falling rate period, and the drying time decreased with increasing air temperature and velocity. The experimental data obtained during the drying process were fitted to eleven different mathematical models. The Midilli et al.'s model was found to be the best appropriate model for explaining the drying behavior of hawthorn fruit. Effective moisture diffusion coefficients (Deff) were calculated by Fick's diffusion model and their values varied from 2.34×10(-10)m(2)/s to 2.09×10(-9)m(2)/s. An Arrhenius-type equation was applied to determine the activation energies. While the shrinkage decreased, the rehydration ratio increased with increasing air temperature and air velocity. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kane, V.E.
1979-10-01
The standard maximum likelihood and moment estimation procedures are shown to have some undesirable characteristics for estimating the parameters in a three-parameter lognormal distribution. A class of goodness-of-fit estimators is found which provides a useful alternative to the standard methods. The class of goodness-of-fit tests considered include the Shapiro-Wilk and Shapiro-Francia tests which reduce to a weighted linear combination of the order statistics that can be maximized in estimation problems. The weighted-order statistic estimators are compared to the standard procedures in Monte Carlo simulations. Bias and robustness of the procedures are examined and example data sets analyzed including geochemical datamore » from the National Uranium Resource Evaluation Program.« less
Rate Coefficients of C2H with C2H4, C2H6, and H2 from 150 to 359 K
NASA Technical Reports Server (NTRS)
Opansky, Brian J.; Leone, Stephen R.
1996-01-01
Rate coefficients for the reactions C2H with C2H4, C2H6, and H2 are measured over the temperature range 150-359 K using transient infrared laser absorption spectroscopy. The ethynyl radical is formed by photolysis of C2H2 with a pulsed excimer laser at 193 nm, and its transient absorption is monitored with a color center laser on the Q(sub 11)(9) line of the A(sup 2) Pi-Chi(sup 2) Sigma transition at 3593.68 cm(exp -1). Over the experimental temperature range 150-359 K the rate constants of C2H with C2H4, C2H6, and H2 can be fitted to the Arrhenius expressions k(sub C2H4) = (7.8 +/- 0.6) x 10(exp -11) exp[(134 +/- 44)/T], k(sub C2H6) = (3.5 +/- 0.3) x 10(exp -11) exp[(2.9 +/- 16)/T], and k(sub H2) = (1.2 +/- 0.3) x 10(exp -11) exp[(-998 +/- 57)]/T cm(exp 3) molecule(exp -1) sec(exp -1). The data for C2H with C2H4 and C2H6 indicate a negligible activation energy to product formation shown by the mild negative temperature dependence of both reactions. When the H2 data are plotted together with the most recent high-temperature results from 295 to 854 K, a slight curvature is observed. The H2 data can be fit to the non-Arrhenius form k(sub H2) = 9.2 x 10(exp -18) T(sup 2.17 +/- 0.50) exp[(-478 +/- 165)/T] cm(exp 3) molecules(exp -1) sec(exp -1). The curvature in the Arrhenius plot is discussed in terms of both quantum mechanical tunneling of the H atom from H2 to the C2H radical and bending mode contributions to the partition function.
NASA Astrophysics Data System (ADS)
Nurhayati, R.; Rahayu NH, E.; Susanto, A.; Khasanah, Y.
2017-04-01
Gudeg is traditional food from Yogyakarta. It is consist of jackfruit, chicken, egg and coconut milk. Gudeg generally have a short shelf life. Canning or commercial sterilization is one way to extend the shelf life of gudeg. This aims of this research is to predict the shelf life of Andrawinaloka canned gudeg with Accelerated Shelf Life Test methods, Arrhenius model. Canned gudeg stored at three different temperature, there are 37, 50 and 60°C for two months. Measuring the number of Thio Barbituric Acid (TBA), as a critical aspect, were tested every 7 days. Arrhenius model approach is done with the equation order 0 and order 1. The analysis showed that the equation of order 0 can be used as an approach to estimating the shelf life of canned gudeg. The storage of Andrawinaloka canned gudeg at 30°C is predicted untill 21 months and 24 months for 25°C.
Modeling the degradation kinetics of ascorbic acid.
Peleg, Micha; Normand, Mark D; Dixon, William R; Goulette, Timothy R
2018-06-13
Most published reports on ascorbic acid (AA) degradation during food storage and heat preservation suggest that it follows first-order kinetics. Deviations from this pattern include Weibullian decay, and exponential drop approaching finite nonzero retention. Almost invariably, the degradation rate constant's temperature-dependence followed the Arrhenius equation, and hence the simpler exponential model too. A formula and freely downloadable interactive Wolfram Demonstration to convert the Arrhenius model's energy of activation, E a , to the exponential model's c parameter, or vice versa, are provided. The AA's isothermal and non-isothermal degradation can be simulated with freely downloadable interactive Wolfram Demonstrations in which the model's parameters can be entered and modified by moving sliders on the screen. Where the degradation is known a priori to follow first or other fixed order kinetics, one can use the endpoints method, and in principle the successive points method too, to estimate the reaction's kinetic parameters from considerably fewer AA concentration determinations than in the traditional manner. Freeware to do the calculations by either method has been recently made available on the Internet. Once obtained in this way, the kinetic parameters can be used to reconstruct the entire degradation curves and predict those at different temperature profiles, isothermal or dynamic. Comparison of the predicted concentration ratios with experimental ones offers a way to validate or refute the kinetic model and the assumptions on which it is based.
Joshi, Nabin R; Ly, Emma; Viswanathan, Suresh
2017-08-01
To assess the effect of age and test-retest reliability of the intensity response function of the full-field photopic negative response (PhNR) in normal healthy human subjects. Full-field electroretinograms (ERGs) were recorded from one eye of 45 subjects, and 39 of these subjects were tested on two separate days with a Diagnosys Espion System (Lowell, MA, USA). The visual stimuli consisted of brief (<5 ms) red flashes ranging from 0.00625 to 6.4 phot cd.s/m 2 , delivered on a constant 7 cd/m 2 blue background. PhNR amplitudes were measured at its trough from baseline (BT) and from the preceding b-wave peak (PT), and b-wave amplitude was measured at its peak from the preceding a-wave trough or baseline if the a-wave was not present. The intensity response data of all three ERG measures were fitted with a generalized Naka-Rushton function to derive the saturated amplitude (V max ), semisaturation constant (K) and slope (n) parameters. Effect of age on the fit parameters was assessed with linear regression, and test-retest reliability was assessed with the Wilcoxon signed-rank test and Bland-Altman analysis. Holm's correction was applied to account for multiple comparisons. V max of BT was significantly smaller than that of PT and b-wave, and the V max of PT and b-wave was not significantly different from each other. The slope parameter n was smallest for BT and the largest for b-wave and the difference between the slopes of all three measures were statistically significant. Small differences observed in the mean values of K for the different measures did not reach statistical significance. The Wilcoxon signed-rank test indicated no significant differences between the two test visits for any of the Naka-Rushton parameters for the three ERG measures, and the Bland-Altman plots indicated that the mean difference between test and retest measurements of the different fit parameters was close to zero and within 6% of the average of the test and retest values of the respective parameters for all three ERG measurements, indicating minimal bias. While the coefficient of reliability (COR, defined as 1.96 times the standard deviation of the test and retest difference) of each fit parameter was more or less comparable across the three ERG measurements, the %COR (COR normalized to the mean test and retest measures) was generally larger for BT compared to both PT and b-wave for each fit parameter. The Naka-Rushton fit parameters did not show statistically significant changes with age for any of the ERG measures when corrections were applied for multiple comparisons. However, the V max of BT demonstrated a weak correlation with age prior to correction for multiple comparisons, and the effect of age on this parameter showed greater significance when the measure was expressed as a ratio of the V max of b-wave from the same subject. V max of the BT amplitude measure of PhNR at the best was weakly correlated with age. None of the other parameters of the Naka-Rushton fit to the intensity response data of either the PhNR or the b-wave showed any systematic changes with age. The test-retest reliability of the fit parameters for PhNR BT amplitude measurements appears to be lower than those of the PhNR PT and b-wave amplitude measurements.
An MLE method for finding LKB NTCP model parameters using Monte Carlo uncertainty estimates
NASA Astrophysics Data System (ADS)
Carolan, Martin; Oborn, Brad; Foo, Kerwyn; Haworth, Annette; Gulliford, Sarah; Ebert, Martin
2014-03-01
The aims of this work were to establish a program to fit NTCP models to clinical data with multiple toxicity endpoints, to test the method using a realistic test dataset, to compare three methods for estimating confidence intervals for the fitted parameters and to characterise the speed and performance of the program.
de Souza, Vanessa K; Wales, David J
2006-02-10
On short time scales an underlying Arrhenius temperature dependence of the diffusion constant can be extracted from the fragile, super-Arrhenius diffusion of a binary Lennard-Jones mixture. This Arrhenius diffusion is related to the true super-Arrhenius behavior by a factor that depends on the average angle between steps in successive time windows. The correction factor accounts for the fact that on average, successive displacements are negatively correlated, and this effect can therefore be linked directly with the higher apparent activation energy for diffusion at low temperature.
Numerical models of cell death in RF ablation with monopolar and bipolar probes
NASA Astrophysics Data System (ADS)
Bright, Benjamin M.; Pearce, John A.
2013-02-01
Radio frequency (RF) is used clinically to treat unresectible tumors. Finite element modeling has proven useful in treatment planning and applicator design. Typically isotherms in the middle 50s °C have been used as the parameter of assessment in these models. We compare and contrast isotherms for multiple known Arrhenius thermal damage predictors including collagen denaturation, vascular disruption, liver coagulation and cell death. Models for RITA probe geometries are included in the study. Comparison to isotherms is sensible when the activation time is held constant, but varies considerably when heating times vary. The purpose of this paper is to demonstrate the importance of looking at specific processes and keeping track of the methods used to derive the Arrhenius coefficients in order to study the extremely complex cell death processes due to thermal therapies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hranisavljevic, J.; Michael, J.V.
1998-09-24
The shock tube technique coupled with H-atom atomic resonance absorption spectrometry has been used to study the reactions (1) CF{sub 3} + H{sub 2} {r_arrow} CF{sub 3}H + H and (2) CF{sub 3}H + H {r_arrow} CF{sub 3} + H{sub 2} over the temperature ranges 1168--1673 K and 1111--1550 K, respectively. The results can be represented by the Arrhenius expressions k{sub 1} = 2.56 {times} 10{sup {minus}11} exp({minus}8549K/T) and k{sub 2} = 6.13 {times} 10{sup {minus}11} exp({minus}7364K/T), both in cm{sup 3} molecule{sup {minus}1} s{sup {minus}1}. Equilibrium constants were calculated from the two Arrhenius expressions in the overlapping temperature range, andmore » good agreement was obtained with the literature values. The rate constants for reaction 2 were converted into rate constants for reaction 1 using literature equilibrium constants. These data are indistinguishable from direct k{sub 1} measurements, and an Arrhenius fit for the joint set is k{sub 1} = 1.88 {times} 10{sup {minus}11} exp({minus}8185K/T) cm{sup 3} molecule{sup {minus}1} s{sup {minus}1}. The CF{sub 3} + H{sub 2} {r_arrow} CF{sub 3}H + H reaction was further modeled using conventional transition-state theory, which included ab initio electronic structure determinations of reactants, transition state, and products.« less
Belsky, Kirill S; Sulimov, Artem V; Bulgakov, Boris A; Babkin, Alexandr V; Kepman, Alexey V
2017-08-01
Hydrolysis data for Bis(3-(3,4-dicyanophenoxy)phenyl) phenyl phosphate and Bis(3-(3,4-dicyanophenoxy)phenyl) phenylphosphonate under pH 4, 7 and 10 are presented. Conversion/time plots collected by HPLC analysis, typical chromatograms and NMR spectra of the reactions products are given. Pseudo-first order rate constants are determined for both substrates at 25, 50 and 80 °C. Activation parameters were calculated from Arrhenius equation.
NASA Astrophysics Data System (ADS)
Demiray, Engin; Tulek, Yahya
2017-05-01
Rehydration, which is a complex process aimed at the restoration of raw material properties when dried material comes in contact with water. In the present research, studies were conducted to probe the kinetics of rehydration of sun-dried red peppers. The kinetics associated with rehydrating sun-dried red peppers was studied at three different temperatures (25, 35 and 45 °C). To describe the rehydration kinetics, four different models, Peleg's, Weibull, first order and exponential association, were considered. Between these four models proposed Weibull model gave a better fit for all rehydration conditions applied. The effective moisture diffusivity values of red peppers increased as water rehydration temperature increased. The values of the effective moisture diffusivity of red peppers were in the range 1.37 × 10-9-1.48 × 10-9 m2 s-1. On the other hand, the activation energy for rehydration kinetic was also calculated using Arrhenius equation and found as 3.17 kJ mol-1.
NASA Technical Reports Server (NTRS)
Giver, Lawrence P.; Benner, D. C.; Tomasko, M. G.; Fink, U.; Kerola, D.
1990-01-01
Transmission measurements made on near-infrared laboratory methane spectra have previously been fit using a Malkmus band model. The laboratory spectra were obtained in three groups at temperatures averaging 112, 188, and 295 K; band model fitting was done separately for each temperature group. These band model parameters cannot be used directly in scattering atmosphere model computations, so an exponential sum model is being developed which includes pressure and temperature fitting parameters. The goal is to obtain model parameters by least square fits at 10/cm intervals from 3800 to 9100/cm. These results will be useful in the interpretation of current planetary spectra and also NIMS spectra of Jupiter anticipated from the Galileo mission.
Fitting Item Response Theory Models to Two Personality Inventories: Issues and Insights.
Chernyshenko, O S; Stark, S; Chan, K Y; Drasgow, F; Williams, B
2001-10-01
The present study compared the fit of several IRT models to two personality assessment instruments. Data from 13,059 individuals responding to the US-English version of the Fifth Edition of the Sixteen Personality Factor Questionnaire (16PF) and 1,770 individuals responding to Goldberg's 50 item Big Five Personality measure were analyzed. Various issues pertaining to the fit of the IRT models to personality data were considered. We examined two of the most popular parametric models designed for dichotomously scored items (i.e., the two- and three-parameter logistic models) and a parametric model for polytomous items (Samejima's graded response model). Also examined were Levine's nonparametric maximum likelihood formula scoring models for dichotomous and polytomous data, which were previously found to provide good fits to several cognitive ability tests (Drasgow, Levine, Tsien, Williams, & Mead, 1995). The two- and three-parameter logistic models fit some scales reasonably well but not others; the graded response model generally did not fit well. The nonparametric formula scoring models provided the best fit of the models considered. Several implications of these findings for personality measurement and personnel selection were described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wemhoff, A P; Burnham, A K; Nichols III, A L
The reduction of the number of reactions in kinetic models for both the HMX beta-delta phase transition and thermal cookoff provides an attractive alternative to traditional multi-stage kinetic models due to reduced calibration effort requirements. In this study, we use the LLNL code ALE3D to provide calibrated kinetic parameters for a two-reaction bidirectional beta-delta HMX phase transition model based on Sandia Instrumented Thermal Ignition (SITI) and Scaled Thermal Explosion (STEX) temperature history curves, and a Prout-Tompkins cookoff model based on One-Dimensional Time to Explosion (ODTX) data. Results show that the two-reaction bidirectional beta-delta transition model presented here agrees as wellmore » with STEX and SITI temperature history curves as a reversible four-reaction Arrhenius model, yet requires an order of magnitude less computational effort. In addition, a single-reaction Prout-Tompkins model calibrated to ODTX data provides better agreement with ODTX data than a traditional multi-step Arrhenius model, and can contain up to 90% less chemistry-limited time steps for low-temperature ODTX simulations. Manual calibration methods for the Prout-Tompkins kinetics provide much better agreement with ODTX experimental data than parameters derived from Differential Scanning Calorimetry (DSC) measurements at atmospheric pressure. The predicted surface temperature at explosion for STEX cookoff simulations is a weak function of the cookoff model used, and a reduction of up to 15% of chemistry-limited time steps can be achieved by neglecting the beta-delta transition for this type of simulation. Finally, the inclusion of the beta-delta transition model in the overall kinetics model can affect the predicted time to explosion by 1% for the traditional multi-step Arrhenius approach, while up to 11% using a Prout-Tompkins cookoff model.« less
Application of global kinetic models to HMX beta-delta transition and cookoff processes.
Wemhoff, Aaron P; Burnham, Alan K; Nichols, Albert L
2007-03-08
The reduction of the number of reactions in kinetic models for both the HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) beta-delta phase transition and thermal cookoff provides an attractive alternative to traditional multi-stage kinetic models due to reduced calibration effort requirements. In this study, we use the LLNL code ALE3D to provide calibrated kinetic parameters for a two-reaction bidirectional beta-delta HMX phase transition model based on Sandia instrumented thermal ignition (SITI) and scaled thermal explosion (STEX) temperature history curves, and a Prout-Tompkins cookoff model based on one-dimensional time to explosion (ODTX) data. Results show that the two-reaction bidirectional beta-delta transition model presented here agrees as well with STEX and SITI temperature history curves as a reversible four-reaction Arrhenius model yet requires an order of magnitude less computational effort. In addition, a single-reaction Prout-Tompkins model calibrated to ODTX data provides better agreement with ODTX data than a traditional multistep Arrhenius model and can contain up to 90% fewer chemistry-limited time steps for low-temperature ODTX simulations. Manual calibration methods for the Prout-Tompkins kinetics provide much better agreement with ODTX experimental data than parameters derived from differential scanning calorimetry (DSC) measurements at atmospheric pressure. The predicted surface temperature at explosion for STEX cookoff simulations is a weak function of the cookoff model used, and a reduction of up to 15% of chemistry-limited time steps can be achieved by neglecting the beta-delta transition for this type of simulation. Finally, the inclusion of the beta-delta transition model in the overall kinetics model can affect the predicted time to explosion by 1% for the traditional multistep Arrhenius approach, and up to 11% using a Prout-Tompkins cookoff model.
Schlee, Sandra; Klein, Thomas; Schumacher, Magdalena; Nazet, Julian; Merkl, Rainer; Steinhoff, Heinz-Jürgen; Sterner, Reinhard
2018-03-08
It is important to understand how the catalytic activity of enzymes is related to their conformational flexibility. We have studied this activity-flexibility correlation using the example of indole-3-glycerol phosphate synthase from Sulfolobus solfataricus (ssIGPS), which catalyzes the fifth step in the biosynthesis of tryptophan. ssIGPS is a thermostable representative of enzymes with the frequently encountered and catalytically versatile (βα) 8 -barrel fold. Four variants of ssIGPS with increased catalytic turnover numbers were analyzed by transient kinetics at 25 °C, and wild-type ssIGPS was likewise analyzed both at 25 °C and at 60 °C. Global fitting with a minimal three-step model provided the individual rate constants for substrate binding, chemical transformation, and product release. The results showed that in both cases, namely, the application of activating mutations and temperature increase, the net increase in the catalytic turnover number is afforded by acceleration of the product release rate relative to the chemical transformation steps. Measurements of the solvent viscosity effect at 25 °C versus 60 °C confirmed this change in the rate-determining step with temperature, which is in accordance with a kink in the Arrhenius diagram of ssIGPS at ∼40 °C. When rotational diffusion rates of electron paramagnetic spin-labels attached to active site loop β1α1 are plotted in the form of an Arrhenius diagram, kinks are observed at the same temperature. These findings, together with molecular dynamics simulations, demonstrate that a different degree of loop mobility correlates with different rate-limiting steps in the catalytic mechanism of ssIGPS.
Waller, Niels G; Feuerstahler, Leah
2017-01-01
In this study, we explored item and person parameter recovery of the four-parameter model (4PM) in over 24,000 real, realistic, and idealized data sets. In the first analyses, we fit the 4PM and three alternative models to data from three Minnesota Multiphasic Personality Inventory-Adolescent form factor scales using Bayesian modal estimation (BME). Our results indicated that the 4PM fits these scales better than simpler item Response Theory (IRT) models. Next, using the parameter estimates from these real data analyses, we estimated 4PM item parameters in 6,000 realistic data sets to establish minimum sample size requirements for accurate item and person parameter recovery. Using a factorial design that crossed discrete levels of item parameters, sample size, and test length, we also fit the 4PM to an additional 18,000 idealized data sets to extend our parameter recovery findings. Our combined results demonstrated that 4PM item parameters and parameter functions (e.g., item response functions) can be accurately estimated using BME in moderate to large samples (N ⩾ 5, 000) and person parameters can be accurately estimated in smaller samples (N ⩾ 1, 000). In the supplemental files, we report annotated [Formula: see text] code that shows how to estimate 4PM item and person parameters in [Formula: see text] (Chalmers, 2012 ).
2014-01-01
Background Urease, one of the highly efficient known enzymes, catalyzes the hydrolysis of urea into ammonia and carbon dioxide. The present study aimed to extract urease from pea seeds (Pisum Sativum L). The enzyme was then purified in three consequence steps: acetone precipitation, DEAE-cellulose ion-exchange chromatography, and gel filtration chromatography (Sephacryl S-200 column). Results The purification fold was 12.85 with a yield of 40%. The molecular weight of the isolated urease was estimated by chromatography to be 269,000 Daltons. Maximum urease activity (190 U/g) was achieved at the optimum conditions of 40°C and pH of 7.5 after 5 min of incubation. The kinetic parameters, K m and V max , were estimated by Lineweaver-Burk fits and found to be 500 mM and 333.3 U/g, respectively. The thermodynamic constants of activation, ΔH, E a , and ΔS, were determined using Arrhenius plot and found to be 21.20 kJ/mol, 23.7 kJ/mol, and 1.18 kJ/mol/K, respectively. Conclusions Urease was purified from germinating Pisum Sativum L. seeds. The purification fold, yield, and molecular weight were determined. The effects of pH, concentration of enzyme, temperature, concentration of substrate, and storage period on urease activity were examined. This may provide an insight on the various aspects of the property of the enzyme. The significance of extracting urease from different sources could play a good role in understanding the metabolism of urea in plants. PMID:25065975
Hydrotreating of coal liquids, Phase Two. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, D.B.; Bogdanor, J.M.
1982-06-01
The purpose of this study was to determine the kinetic parameters for the pseudo first-order denitrogenation and desulfurization of an SASOL coal naphtha. Only the fraction boiling over 95/sup 0/C (at 25.8 mmHg) was hydrotreated due to the high volatility of the whole naphtha. Dodecane was used as a diluent to further reduce the volatility of the hydrotreated naphtha bottoms. A commercial Ni-Mo catalyst (HDS9A) was employed. Based on chromatographic results, nitrogen and sulfur were successfully removed from the naphtha bottoms. The mathematical model developed to describe the pseudo first-order denitrogenation and desulfurization of the naphtha bottoms in the semi-batch,more » slurry reactor was adequate to explain the experimental results. The Arrhenius plot of the rate constants, determined by fitting the data to the model equation, for the desulfurization of the naphtha bottoms, yielded a straight line for the three temperatures used, 221, 235, and 251/sup 0/C at a pressure of 800 psig. This indicates that the assumption of a pseudo first-order reaction for the desulfurization of the naphtha bottoms is valid. The estimate of the activation energy, 8558 cal/g mole, for the desulfurization is consistent with the literature. The desulfurizationwas much faster than the denitrogenation reaction. This observation is also consistent with the literature. The estimate of the activation energy, 4560 cal/g mole, for the denitrogenation of the naphtha bottoms, was lower than expected for the reaction occurring in the kinetic regime. Two possible explanations for this are discussed.« less
ERIC Educational Resources Information Center
Rakkapao, Suttida; Prasitpong, Singha; Arayathanitkul, Kwan
2016-01-01
This study investigated the multiple-choice test of understanding of vectors (TUV), by applying item response theory (IRT). The difficulty, discriminatory, and guessing parameters of the TUV items were fit with the three-parameter logistic model of IRT, using the parscale program. The TUV ability is an ability parameter, here estimated assuming…
Torun, Mehmet; Dincer, Cuneyt; Topuz, Ayhan; Sahin-Nadeem, Hilal; Ozdemir, Feramuz
2015-05-01
In the present study, aqueous extraction kinetics of total soluble solids (TSS), total phenolic content (TPC) and total flavonoid content (TFC) from Salvia fruticosa leaves were investigated throughout 150 min. of extraction period against temperature (60-80 °C), particle size (2-8 mm) and loading percentage (1-4 %). The extract yielded 25 g/100 g TSS which contained 30 g/100 g TPC and 25 g/100 g TFC. The extraction data in time course fit with reversible first order kinetic model. All tested variables showed significant effect on the estimated kinetic parameters except equilibrium concentration. Increasing the extraction temperature resulted high extraction rate constants and equilibrium concentrations of the tested variables notably above 70 °C. By using the Arrhenius relationship, activation energy of the TSS, TPC and TFC were determined as 46.11 ± 5.61, 36.80 ± 3.12 and 33.52 ± 2.23 kj/mol, respectively. By decreasing the particle size, the extraction rate constants and diffusion coefficients exponentially increased whereas equilibrium concentrations did not change significantly. The equilibrium concentrations of the tested parameters showed linear behavior with increasing the loading percentage of the sage, however; the change in extraction rates did not show linear behavior due to submerging effect of 4 % loading.
Relaxation mechanisms in glassy dynamics: the Arrhenius and fragile regimes.
Hentschel, H George E; Karmakar, Smarajit; Procaccia, Itamar; Zylberg, Jacques
2012-06-01
Generic glass formers exhibit at least two characteristic changes in their relaxation behavior, first to an Arrhenius-type relaxation at some characteristic temperature and then at a lower characteristic temperature to a super-Arrhenius (fragile) behavior. We address these transitions by studying the statistics of free energy barriers for different systems at different temperatures and space dimensions. We present a clear evidence for changes in the dynamical behavior at the transition to Arrhenius and then to a super-Arrhenius behavior. A simple model is presented, based on the idea of competition between single-particle and cooperative dynamics. We argue that Arrhenius behavior can take place as long as there is enough free volume for the completion of a simple T1 relaxation process. Once free volume is absent one needs a cooperative mechanism to "collect" enough free volume. We show that this model captures all the qualitative behavior observed in simulations throughout the considered temperature range.
Flash spectroscopy of purple membrane.
Xie, A H; Nagle, J F; Lozier, R H
1987-01-01
Flash spectroscopy data were obtained for purple membrane fragments at pH 5, 7, and 9 for seven temperatures from 5 degrees to 35 degrees C, at the magic angle for actinic versus measuring beam polarizations, at fifteen wavelengths from 380 to 700 nm, and for about five decades of time from 1 microsecond to completion of the photocycle. Signal-to-noise ratios are as high as 500. Systematic errors involving beam geometries, light scattering, absorption flattening, photoselection, temperature fluctuations, partial dark adaptation of the sample, unwanted actinic effects, and cooperativity were eliminated, compensated for, or are shown to be irrelevant for the conclusions. Using nonlinear least squares techniques, all data at one temperature and one pH were fitted to sums of exponential decays, which is the form required if the system obeys conventional first-order kinetics. The rate constants obtained have well behaved Arrhenius plots. Analysis of the residual errors of the fitting shows that seven exponentials are required to fit the data to the accuracy of the noise level. PMID:3580488
Flash spectroscopy of purple membrane.
Xie, A H; Nagle, J F; Lozier, R H
1987-04-01
Flash spectroscopy data were obtained for purple membrane fragments at pH 5, 7, and 9 for seven temperatures from 5 degrees to 35 degrees C, at the magic angle for actinic versus measuring beam polarizations, at fifteen wavelengths from 380 to 700 nm, and for about five decades of time from 1 microsecond to completion of the photocycle. Signal-to-noise ratios are as high as 500. Systematic errors involving beam geometries, light scattering, absorption flattening, photoselection, temperature fluctuations, partial dark adaptation of the sample, unwanted actinic effects, and cooperativity were eliminated, compensated for, or are shown to be irrelevant for the conclusions. Using nonlinear least squares techniques, all data at one temperature and one pH were fitted to sums of exponential decays, which is the form required if the system obeys conventional first-order kinetics. The rate constants obtained have well behaved Arrhenius plots. Analysis of the residual errors of the fitting shows that seven exponentials are required to fit the data to the accuracy of the noise level.
Assessing College Students' Understanding of Acid Base Chemistry Concepts
ERIC Educational Resources Information Center
Wan, Yanjun Jean
2014-01-01
Typically most college curricula include three acid base models: Arrhenius', Bronsted-Lowry's, and Lewis'. Although Lewis' acid base model is generally thought to be the most sophisticated among these three models, and can be further applied in reaction mechanisms, most general chemistry curricula either do not include Lewis' acid base model, or…
NASA Astrophysics Data System (ADS)
Cai, Jun; Wang, Kuaishe; Han, Yingying
2016-03-01
True stress and true strain values obtained from isothermal compression tests over a wide temperature range from 1,073 to 1,323 K and a strain rate range from 0.001 to 1 s-1 were employed to establish the constitutive equations based on Johnson Cook, modified Zerilli-Armstrong (ZA) and strain-compensated Arrhenius-type models, respectively, to predict the high-temperature flow behavior of Ti-6Al-4V alloy in α + β phase. Furthermore, a comparative study has been made on the capability of the three models to represent the elevated temperature flow behavior of Ti-6Al-4V alloy. Suitability of the three models was evaluated by comparing both the correlation coefficient R and the average absolute relative error (AARE). The results showed that the Johnson Cook model is inadequate to provide good description of flow behavior of Ti-6Al-4V alloy in α + β phase domain, while the predicted values of modified ZA model and the strain-compensated Arrhenius-type model could agree well with the experimental values except under some deformation conditions. Meanwhile, the modified ZA model could track the deformation behavior more accurately than other model throughout the entire temperature and strain rate range.
Strategies for fitting nonlinear ecological models in R, AD Model Builder, and BUGS
Bolker, Benjamin M.; Gardner, Beth; Maunder, Mark; Berg, Casper W.; Brooks, Mollie; Comita, Liza; Crone, Elizabeth; Cubaynes, Sarah; Davies, Trevor; de Valpine, Perry; Ford, Jessica; Gimenez, Olivier; Kéry, Marc; Kim, Eun Jung; Lennert-Cody, Cleridy; Magunsson, Arni; Martell, Steve; Nash, John; Nielson, Anders; Regentz, Jim; Skaug, Hans; Zipkin, Elise
2013-01-01
1. Ecologists often use nonlinear fitting techniques to estimate the parameters of complex ecological models, with attendant frustration. This paper compares three open-source model fitting tools and discusses general strategies for defining and fitting models. 2. R is convenient and (relatively) easy to learn, AD Model Builder is fast and robust but comes with a steep learning curve, while BUGS provides the greatest flexibility at the price of speed. 3. Our model-fitting suggestions range from general cultural advice (where possible, use the tools and models that are most common in your subfield) to specific suggestions about how to change the mathematical description of models to make them more amenable to parameter estimation. 4. A companion web site (https://groups.nceas.ucsb.edu/nonlinear-modeling/projects) presents detailed examples of application of the three tools to a variety of typical ecological estimation problems; each example links both to a detailed project report and to full source code and data.
Evaluation of the cure kinetics of the wood/pMDI bondline
David P. Harper; Michael P. Wolcott; Timothy G. Rials
2001-01-01
Micro-dielectric analysis (µDEA) and differentia1 scanning calorimetry (DSC) were used to monitor cure of polymeric diphenyl-methane diisocyanate (pMDI) resin with wood strands in a saturated steam environment. A first-order autocatalyzed kinetic model was employed to determine kinetic parameters. The kinetics were found to follow an Arrhenius relation. A single ramp...
Görgün, Erdem; Insel, Güçlü; Artan, Nazik; Orhon, Derin
2007-05-01
Organic carbon and nitrogen removal performance of a full-scale activated sludge plant treating pre-settled leather tanning wastewater was evaluated under dynamic process temperatures. Emphasis was placed upon observed nitrogen removal depicting a highly variable magnitude with changing process temperatures. As the plant was not specifically designed for this purpose, observed nitrogen removal could be largely attributed to simultaneous nitrification and denitrification presumably occurring at increased process temperatures (T>25 degrees C) and resulting low dissolved oxygen levels (DO<0.5 mgO2/L). Model evaluation using long-term data revealed that the yearly performance of activated sludge reactor could be successfully calibrated by means of temperature dependent parameters associated with nitrification, hydrolysis, ammonification and endogenous decay parameters. In this context, the Arrhenius coefficients of (i) for the maximum autotrophic growth rate, [image omitted]A, (ii) maximum hydrolysis rate, khs and (iii) endogenous heterotrophic decay rate, bH were found to be 1.045, 1.070 and 1.035, respectively. The ammonification rate (ka) defining the degradation of soluble organic nitrogen could not be characterized however via an Arrhenius-type equation.
Probability density functions for use when calculating standardised drought indices
NASA Astrophysics Data System (ADS)
Svensson, Cecilia; Prosdocimi, Ilaria; Hannaford, Jamie
2015-04-01
Time series of drought indices like the standardised precipitation index (SPI) and standardised flow index (SFI) require a statistical probability density function to be fitted to the observed (generally monthly) precipitation and river flow data. Once fitted, the quantiles are transformed to a Normal distribution with mean = 0 and standard deviation = 1. These transformed data are the SPI/SFI, which are widely used in drought studies, including for drought monitoring and early warning applications. Different distributions were fitted to rainfall and river flow data accumulated over 1, 3, 6 and 12 months for 121 catchments in the United Kingdom. These catchments represent a range of catchment characteristics in a mid-latitude climate. Both rainfall and river flow data have a lower bound at 0, as rains and flows cannot be negative. Their empirical distributions also tend to have positive skewness, and therefore the Gamma distribution has often been a natural and suitable choice for describing the data statistically. However, after transformation of the data to Normal distributions to obtain the SPIs and SFIs for the 121 catchments, the distributions are rejected in 11% and 19% of cases, respectively, by the Shapiro-Wilk test. Three-parameter distributions traditionally used in hydrological applications, such as the Pearson type 3 for rainfall and the Generalised Logistic and Generalised Extreme Value distributions for river flow, tend to make the transformed data fit better, with rejection rates of 5% or less. However, none of these three-parameter distributions have a lower bound at zero. This means that the lower tail of the fitted distribution may potentially go below zero, which would result in a lower limit to the calculated SPI and SFI values (as observations can never reach into this lower tail of the theoretical distribution). The Tweedie distribution can overcome the problems found when using either the Gamma or the above three-parameter distributions. The Tweedie is a three-parameter distribution which includes the Gamma distribution as a special case. It is bounded below at zero and has enough flexibility to fit most behaviours observed in the data. It does not always outperform the three-parameter distributions, but the rejection rates are similar. In addition, for certain parameter values the Tweedie distribution has a positive mass at zero, which means that ephemeral streams and months with zero rainfall can be modelled. It holds potential for wider application in drought studies in other climates and types of catchment.
Temperature dependence of feedyard ammonia emissions: The Arrhenius equation
USDA-ARS?s Scientific Manuscript database
Ammonia emissions from beef cattle feedyards exhibit an annual pattern-like temperature. This suggests that ammonia emissions may obey the Arrhenius temperature relationship. Our objective was to determine the Arrhenius relationship between mean monthly ammonia emissions from cattle feedyards and me...
Difference and similarity of dielectric relaxation processes among polyols
NASA Astrophysics Data System (ADS)
Minoguchi, Ayumi; Kitai, Kei; Nozaki, Ryusuke
2003-09-01
Complex permittivity measurements were performed on sorbitol, xylitol, and sorbitol-xylitol mixture in the supercooled liquid state in an extremely wide frequency range from 10 μHz to 500 MHz at temperatures near and above the glass transition temperature. We determined detailed behavior of the relaxation parameters such as relaxation frequency and broadening against temperature not only for the α process but also for the β process above the glass transition temperature, to the best of our knowledge, for the first time. Since supercooled liquids are in the quasi-equilibrium state, the behavior of all the relaxation parameters for the β process can be compared among the polyols as well as those for the α process. The relaxation frequencies of the α processes follow the Vogel-Fulcher-Tammann manner and the loci in the Arrhenius diagram are different corresponding to the difference of the glass transition temperatures. On the other hand, the relaxation frequencies of the β processes, which are often called as the Johari-Goldstein processes, follow the Arrhenius-type temperature dependence. The relaxation parameters for the β process are quite similar among the polyols at temperatures below the αβ merging temperature, TM. However, they show anomalous behavior near TM, which depends on the molecular size of materials. These results suggest that the origin of the β process is essentially the same among the polyols.
Liu, Ye; Zhang, Bingzi; Kinsinger, Corey L.; ...
2016-01-22
A random copolymer, tris(2,4,6-trimethoxyphenyl) phosphonium functionalized poly(2,6-dimethyl-1,4-phenylene oxide) (PPO-TPQP) was cast from three different solvents: dimethyl sulfoxide (DMSO), ethyl lactate, or a 41:59 vol% mixture of DMSO and ethyl lactate. Solvents were selected via analysis of the Hansen solubility parameters to vary the phase separation of the polymer in the films. An optimized mixture of DMSO and ethyl lactate chosen for film fabrication and this film was contrasted with films cast from the neat constituent solvents. Atomic force microscopy identified domains from nanometer to tens of nanometer sizes, while the light microscopy showed features on the order of micron. SAXSmore » revealed a cation scattering peak with a d-spacing from 7 to 15 Å. Trends in conductivity and water diffusion for the membranes vary depending on the solvent from which they are cast. The mixed solvent cast membrane shows a linear Arrhenius behavior indicating fully dissociated cationic/anionic groups, and has the highest bromide conductivity of 3 mS/cm at 95% RH, 90 °C. The ethyl lactate cast membrane shows a linear Arrhenius relation in conductivity, but a Vogel-Tamman-Fulcher behavior in its water self-diffusion. While water increases bromide dissociation, water and bromide transport in these films seems to be decoupled. Lastly, this is particularly true for the film cast from ethyl lactate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ye; Zhang, Bingzi; Kinsinger, Corey L.
A random copolymer, tris(2,4,6-trimethoxyphenyl) phosphonium functionalized poly(2,6-dimethyl-1,4-phenylene oxide) (PPO-TPQP) was cast from three different solvents: dimethyl sulfoxide (DMSO), ethyl lactate, or a 41:59 vol% mixture of DMSO and ethyl lactate. Solvents were selected via analysis of the Hansen solubility parameters to vary the phase separation of the polymer in the films. An optimized mixture of DMSO and ethyl lactate chosen for film fabrication and this film was contrasted with films cast from the neat constituent solvents. Atomic force microscopy identified domains from nanometer to tens of nanometer sizes, while the light microscopy showed features on the order of micron. SAXSmore » revealed a cation scattering peak with a d-spacing from 7 to 15 A. Trends in conductivity and water diffusion for the membranes vary depending on the solvent from which they are cast. The mixed solvent cast membrane shows a linear Arrhenius behavior indicating fully dissociated cationic/anionic groups, and has the highest bromide conductivity of 3 mS/cm at 95% RH, 90 degrees C. The ethyl lactate cast membrane shows a linear Arrhenius relation in conductivity, but a Vogel-Tamman-Fulcher behavior in its water self-diffusion. While water increases bromide dissociation, water and bromide transport in these films seems to be decoupled. This is particularly true for the film cast from ethyl lactate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ye; Zhang, Bingzi; Kinsinger, Corey L.
A random copolymer, tris(2,4,6-trimethoxyphenyl) phosphonium functionalized poly(2,6-dimethyl-1,4-phenylene oxide) (PPO-TPQP) was cast from three different solvents: dimethyl sulfoxide (DMSO), ethyl lactate, or a 41:59 vol% mixture of DMSO and ethyl lactate. Solvents were selected via analysis of the Hansen solubility parameters to vary the phase separation of the polymer in the films. An optimized mixture of DMSO and ethyl lactate chosen for film fabrication and this film was contrasted with films cast from the neat constituent solvents. Atomic force microscopy identified domains from nanometer to tens of nanometer sizes, while the light microscopy showed features on the order of micron. SAXSmore » revealed a cation scattering peak with a d-spacing from 7 to 15 Å. Trends in conductivity and water diffusion for the membranes vary depending on the solvent from which they are cast. The mixed solvent cast membrane shows a linear Arrhenius behavior indicating fully dissociated cationic/anionic groups, and has the highest bromide conductivity of 3 mS/cm at 95% RH, 90 °C. The ethyl lactate cast membrane shows a linear Arrhenius relation in conductivity, but a Vogel-Tamman-Fulcher behavior in its water self-diffusion. While water increases bromide dissociation, water and bromide transport in these films seems to be decoupled. Lastly, this is particularly true for the film cast from ethyl lactate.« less
An asymptotic analysis of supersonic reacting mixing layers
NASA Technical Reports Server (NTRS)
Jackson, T. L.; Hussaini, M. Y.
1987-01-01
The purpose of this paper is to present an asymptotic analysis of the laminar mixing of the simultaneous chemical reaction between parallel supersonic streams of two reacting species. The study is based on a one-step irreversible Arrhenius reaction and on large activation energy asymptotics. Essentially it extends the work of Linan and Crespo to include the effect of free shear and Mach number on the ignition regime, the deflagration regime and the diffusion flame regime. It is found that the effective parameter is the product of the characteristic Mach number and a shear parameter.
Anti-Arrhenius cleavage of covalent bonds in bottlebrush macromolecules on substrate.
Lebedeva, Natalia V; Nese, Alper; Sun, Frank C; Matyjaszewski, Krzysztof; Sheiko, Sergei S
2012-06-12
Spontaneous degradation of bottlebrush macromolecules on aqueous substrates was monitored by atomic force microscopy. Scission of C ─ C covalent bonds in the brush backbone occurred due to steric repulsion between the adsorbed side chains, which generated bond tension on the order of several nano-Newtons. Unlike conventional chemical reactions, the rate of bond scission was shown to decrease with temperature. This apparent anti-Arrhenius behavior was caused by a decrease in the surface energy of the underlying substrate upon heating, which results in a corresponding decrease of bond tension in the adsorbed macromolecules. Even though the tension dropped minimally from 2.16 to 1.89 nN, this was sufficient to overpower the increase in the thermal energy (k(B)T) in the Arrhenius equation. The rate constant of the bond-scission reaction was measured as a function of temperature and surface energy. Fitting the experimental data by a perturbed Morse potential V = V(0)(1 - e(-βx))(2) - fx, we determined the depth and width of the potential to be V(0) = 141 ± 19 kJ/mol and β(-1) = 0.18 ± 0.03 Å, respectively. Whereas the V(0) value is in reasonable agreement with the activation energy E(a) = 80-220 kJ/mol of mechanical and thermal degradation of organic polymers, it is significantly lower than the dissociation energy of a C ─ C bond D(e) = 350 kJ/mol. Moreover, the force constant K(x) = 2β(2)V(0) = 1.45 ± 0.36 kN/m of a strained bottlebrush along its backbone is markedly larger than the force constant of a C ─ C bond K(l) = 0.44 kN/m, which is attributed to additional stiffness due to deformation of the side chains.
Investigation of thermal denaturation of solid oxytocin by terahertz dielectric spectroscopy
NASA Astrophysics Data System (ADS)
Li, Xiangjun; Yang, Xiaojie; Liu, Jianjun; Du, Yong; Hong, Zhi
2014-07-01
We investigate the thermal denaturation of solid oxytocin using terahertz time domain spectroscopy(THz-TDS). When the peptide is heated up from 25°C to 107°C and cooled down to 25°C again, an irreversible decrease in its THz absorption coefficient and refractive index is observed. The corresponding frequency-dependent permittivity during heating is fitted by the Debye model with single relaxation time. The relaxation times during temperature rising agree very well with Arrhenius equation with the activation energy of 3.12kJ/(K•mol) as an indicator for its thermal denaturation difficulty.
Linear stability analysis of detonations via numerical computation and dynamic mode decomposition
NASA Astrophysics Data System (ADS)
Kabanov, Dmitry I.; Kasimov, Aslan R.
2018-03-01
We introduce a new method to investigate linear stability of gaseous detonations that is based on an accurate shock-fitting numerical integration of the linearized reactive Euler equations with a subsequent analysis of the computed solution via the dynamic mode decomposition. The method is applied to the detonation models based on both the standard one-step Arrhenius kinetics and two-step exothermic-endothermic reaction kinetics. Stability spectra for all cases are computed and analyzed. The new approach is shown to be a viable alternative to the traditional normal-mode analysis used in detonation theory.
Kumar, K Vasanth; Porkodi, K
2006-12-01
Equilibrium uptake of methylne blue onto lemon peel was fitted to the 2 two-parameter isotherm models namely Freundlich and Langmuir and 3 six-parameter isotherm models namely Redlich-Peterson, Toth, Radke-Prausnitz, Fritz-Schluender, Vieth-Sladek and Sips isotherms by non-linear method. A comparison between two-parameter and three-parameter isotherms was reported. The best fitting isotherm was the Sips isotherm followed by Langmuir isotherm and Redlich-Peterson isotherm equation. Redlich-Peterson isotherm is a special case of Langmuir isotherm when the Redlich-Peterson isotherm constant g was unity. Radke-Prausnitz, Toth, Vieth-Sladek isotherm were the same when the Toth isotherm constant, n(T) and the Radke-Prausnitz isotherm, m(RP) are equal to unity and when the Vieth-Sladek isotherm constant, K(VS) equals zero. The sorption capacity of lemon peel for methylene blue uptake was found to be 29 mg/g.
Corneal collagen denaturation in laser thermokeratoplasty
NASA Astrophysics Data System (ADS)
Brinkmann, Ralf; Kampmeier, Juergen; Grotehusmann, Ulf; Vogel, Alfred; Koop, Norbert; Asiyo-Vogel, Mary; Birngruber, Reginald
1996-05-01
In laserthermokeratoplasty (LTK) thermal denaturation and shrinkage of corneal collagen is used to correct hyperopia and astigmatism. In order to optimize dosimetry, the temperature at which maximal shrinkage of collagen fibrils occurs is of major interest. Since the exposure time in clinical LTK-treatment is limited to a few seconds, the kinetics of collagen denaturation as a rate process has to be considered, thus the time of exposure is of critical importance for threshold and shrinkage temperatures. We investigated the time-temperature correlation for corneal collagen denaturation within different time domains by turbidimetry of scattered HeNe laser probe light using a temperature controlled water bath and pulsed IR laser irradiation. In the temperature range of 60 degree(s)C to 95 degree(s)C we found an exponential relation between the denaturation time and temperature. For the typical LTK-treatment time of 2 s, a temperature of 95 degree(s)C is needed to induce thermal damage. Use of pulsed Holmium laser radiation gave significant scattering of HeNe laser probe light at calculated temperatures of around 100 degree(s)DC. Rate parameters according to the formalism of Arrhenius were fitted to these results. Force measurements showed the simultaneous onset of light scattering and collagen shrinkage.
Gong, Chen; Sun, Xiaomin; Zhang, Chenxi; Zhang, Xue; Niu, Junfeng
2014-01-01
Investigation of the degradation kinetics of perfluorooctanoic acid (PFOA) has been carried out to calculate rate constants of the main elementary reactions using the multichannel Rice-Ramsperger-Kassel-Marcus theory and canonical variational transition state theory with small-curvature tunneling correction over a temperature range of 200~500 K. The Arrhenius equations of rate constants of elementary reactions are fitted. The decarboxylation is role step in the degradation mechanism of PFOA. For the perfluorinated carboxylic acids from perfluorooctanoic acid to trifluoroacetic acid, the quantitative structure–activity relationship of the decarboxylation was analyzed with the genetic function approximation method and the structure–activity model was constructed. The main parameters governing rate constants of the decarboxylation reaction from the eight-carbon chain to the two-carbon chain were obtained. As the structure–activity model shows, the bond length and energy of C1–C2 (RC1–C2 and EC1–C2) are positively correlated to rate constants, while the volume (V), the energy difference between EHOMO and ELUMO (ΔE), and the net atomic charges on atom C2 (QC2) are negatively correlated. PMID:25196516
Modeling Deuterium Release from Plasma Implanted Surfaces
NASA Astrophysics Data System (ADS)
Grossman, A. A.; Doerner, R.; Hirooka, Y.; Luckhardt, S. C.; Sze, F. C.
1997-11-01
When energetic ions or atoms of hydrogen isotopes interact with a solid surface, they may either be reflected or they may be implanted, a slowing down process within the subsurface layer of the energetic particles to thermal velocities. Subsequent interactions of the thermalized particles are those of diffusion and trapping within the material and the possibility of re-emission from the solid via desorption. The diffusion equation and its boundary conditions govern the transport of this thermalized hydrogen within the material. Diffusivities obey an Arrhenius law over as much as fourteen orders of magnitude for the temperature range of interest for a fusion reactor first wall and divertor plate. Using TMAP4, a variety of diffusion models are set up for comparison with experiments on PISCES which involve implantation and desorption of deuterium from beryllium, tungsten, carbon and boron carbide. The parameters and characteristics of the models which give the closest fit to the experimental data are reported. At the high fluences of these experiments, it is necessary to take into account saturation effects during implantation using a separate implantation layer with thickness given by TRIM and a higher trapping to lattice ratio than in the bulk in order to model the experimental data.
Determination of the Arrhenius Activation Energy Using a Temperature-Programmed Flow Reactor.
ERIC Educational Resources Information Center
Chan, Kit-ha C.; Tse, R. S.
1984-01-01
Describes a novel method for the determination of the Arrhenius activation energy, without prejudging the validity of the Arrhenius equation or the concept of activation energy. The method involves use of a temperature-programed flow reactor connected to a concentration detector. (JN)
Arrhenius equation for modeling feedyard ammonia emissions using temperature and diet crude protein
USDA-ARS?s Scientific Manuscript database
Temperature controls many processes of ammonia volatilization. For example, urea hydrolysis is an enzymatically catalyzed reaction described by the Arrhenius equation. Diet crude protein (CP) controls ammonia emission by affecting N excretion. Objectives were to use the Arrhenius equation to model a...
Pyrolysis kinetics behavior of solid tire wastes available in Bangladesh.
Islam, M Rofiqul; Haniu, H; Fardoushi, J
2009-02-01
Pyrolysis kinetics of available bicycle/rickshaw, motorcycle and truck tire wastes in Bangladesh have been investigated thermogravimetrically in a nitrogen atmosphere at heating rates of 10 and 60 degrees C/min over a temperature range of 30-800 degrees C. The three tire wastes exhibited similar behaviors in that, when heating rate was increased, the initial reaction temperature decreased but the reaction range and reaction rate increased. The percentage of total weight loss was higher for truck tire waste and lower for bicycle/rickshaw tire waste. The pyrolysis of truck tire waste was found to be easier than that of bicycle/rickshaw and motorcycle tire wastes while it was comparatively more difficult for motorcycle tire waste. The overall rate equation for the three tire wastes has been modeled satisfactorily by one simplified equation from which the kinetic parameters of unreacted materials based on the Arrhenius form can be determined. The predicted rate equation compares fairly well with the measured TG and DTG data. DTA curves for all of the samples show that the degradation reactions are three main exotherms and one endotherm.
Anhydrous Weight Loss Prediction of Meranti Sawdust during Torrefaction using Rousset Model
NASA Astrophysics Data System (ADS)
Harun, Nur Hazirah Huda Mohd; Samad, Noor Asma Fazli Abdul; Saleh, Suriyati
2018-03-01
In torrefaction, the mass loss distribution is evaluated in terms of anhydrous weight loss (AWL). Since temperature gives significant effects on AWL and the behaviour of biomass is highly associated with the AWL, therefore a suitable model for estimating the reaction kinetics is necessary for describing the thermal degradation and predicting the AWL in order to improve its process. In this study, the kinetic parameters of Meranti sawdust are estimated by applying three-parallel reaction models namely the Rousset Model for torrefaction of Meranti sawdust at temperatures of 240°C, 270°C and 300°C. All kinetic parameters are estimated according to the degradation of biomass constituents which are lignin, cellulose and hemicellulose by following the Arrhenius Law. The result shows that AWL estimation using the kinetic parameters predicted from the Rousset model is in good agreement with the experimental result as the R2 value obtained is 0.99. It shows that the Rousset Model successfully described the degradation of lignin, cellulose and hemicellulose as well as the formation of char, volatile, tar and intermediate compound. Therefore it can be concluded that the Rousset Model is applicable to represent the torrefaction behaviour.
Alcalá-Quintana, Rocío; García-Pérez, Miguel A
2013-12-01
Research on temporal-order perception uses temporal-order judgment (TOJ) tasks or synchrony judgment (SJ) tasks in their binary SJ2 or ternary SJ3 variants. In all cases, two stimuli are presented with some temporal delay, and observers judge the order of presentation. Arbitrary psychometric functions are typically fitted to obtain performance measures such as sensitivity or the point of subjective simultaneity, but the parameters of these functions are uninterpretable. We describe routines in MATLAB and R that fit model-based functions whose parameters are interpretable in terms of the processes underlying temporal-order and simultaneity judgments and responses. These functions arise from an independent-channels model assuming arrival latencies with exponential distributions and a trichotomous decision space. Different routines fit data separately for SJ2, SJ3, and TOJ tasks, jointly for any two tasks, or also jointly for the three tasks (for common cases in which two or even the three tasks were used with the same stimuli and participants). Additional routines provide bootstrap p-values and confidence intervals for estimated parameters. A further routine is included that obtains performance measures from the fitted functions. An R package for Windows and source code of the MATLAB and R routines are available as Supplementary Files.
NASA Astrophysics Data System (ADS)
Souza, Paul M.; Beladi, Hossein; Singh, Rajkumar P.; Hodgson, Peter D.; Rolfe, Bernard
2018-05-01
This paper developed high-temperature deformation constitutive models for a Ti6Al4V alloy using an empirical-based Arrhenius equation and an enhanced version of the authors' physical-based EM + Avrami equations. The initial microstructure was a partially equiaxed α + β grain structure. A wide range of experimental data was obtained from hot compression of the Ti6Al4 V alloy at deformation temperatures ranging from 720 to 970 °C, and at strain rates varying from 0.01 to 10 s-1. The friction- and adiabatic-corrected flow curves were used to identify the parameter values of the constitutive models. Both models provided good overall accuracy of the flow stress. The generalized modified Arrhenius model was better at predicting the flow stress at lower strain rates. However, the model was inaccurate in predicting the peak strain. In contrast, the enhanced physical-based EM + Avrami model revealed very good accuracy at intermediate and high strain rates, but it was also better at predicting the peak strain. Blind sample tests revealed that the EM + Avrami maintained good predictions on new (unseen) data. Thus, the enhanced EM + Avrami model may be preferred over the Arrhenius model to predict the flow behavior of Ti6Al4V alloy during industrial forgings, when the initial microstructure is partially equiaxed.
Impact of fitting algorithms on errors of parameter estimates in dynamic contrast-enhanced MRI
NASA Astrophysics Data System (ADS)
Debus, C.; Floca, R.; Nörenberg, D.; Abdollahi, A.; Ingrisch, M.
2017-12-01
Parameter estimation in dynamic contrast-enhanced MRI (DCE MRI) is usually performed by non-linear least square (NLLS) fitting of a pharmacokinetic model to a measured concentration-time curve. The two-compartment exchange model (2CXM) describes the compartments ‘plasma’ and ‘interstitial volume’ and their exchange in terms of plasma flow and capillary permeability. The model function can be defined by either a system of two coupled differential equations or a closed-form analytical solution. The aim of this study was to compare these two representations in terms of accuracy, robustness and computation speed, depending on parameter combination and temporal sampling. The impact on parameter estimation errors was investigated by fitting the 2CXM to simulated concentration-time curves. Parameter combinations representing five tissue types were used, together with two arterial input functions, a measured and a theoretical population based one, to generate 4D concentration images at three different temporal resolutions. Images were fitted by NLLS techniques, where the sum of squared residuals was calculated by either numeric integration with the Runge-Kutta method or convolution. Furthermore two example cases, a prostate carcinoma and a glioblastoma multiforme patient, were analyzed in order to investigate the validity of our findings in real patient data. The convolution approach yields improved results in precision and robustness of determined parameters. Precision and stability are limited in curves with low blood flow. The model parameter ve shows great instability and little reliability in all cases. Decreased temporal resolution results in significant errors for the differential equation approach in several curve types. The convolution excelled in computational speed by three orders of magnitude. Uncertainties in parameter estimation at low temporal resolution cannot be compensated by usage of the differential equations. Fitting with the convolution approach is superior in computational time, with better stability and accuracy at the same time.
NASA Astrophysics Data System (ADS)
Safar, H.; Gammel, P. L.; Bishop, D. J.; Mitzi, D. B.; Kapitulnik, A.
1992-04-01
A SQUID voltmeter has been used to measure current-voltage curves in untwinned crystals of Bi2Sr2CaCu2O(8+delta) as a function of temperature and magnetic field. The data show a clear crossover from high-temperature Arrhenius behavior to a critical region associated with the low-temperature three-dimensional vortex-glass phase transition. The critical exponents v(z - 1) = 7 +/- 1 in this system are in accord with theoretical models and previous measurements in YBa2Cu3O7. The width of the critical region collapses below 2 T, reflecting the changing role of dimensionality with field.
Energy barriers, entropy barriers, and non-Arrhenius behavior in a minimal glassy model.
Du, Xin; Weeks, Eric R
2016-06-01
We study glassy dynamics using a simulation of three soft Brownian particles confined to a two-dimensional circular region. If the circular region is large, the disks freely rearrange, but rearrangements are rarer for smaller system sizes. We directly measure a one-dimensional free-energy landscape characterizing the dynamics. This landscape has two local minima corresponding to the two distinct disk configurations, separated by a free-energy barrier that governs the rearrangement rate. We study several different interaction potentials and demonstrate that the free-energy barrier is composed of a potential-energy barrier and an entropic barrier. The heights of both of these barriers depend on temperature and system size, demonstrating how non-Arrhenius behavior can arise close to the glass transition.
Price, W D; Williams, E R
1997-11-20
Unimolecular rate constants for blackbody infrared radiative dissociation (BIRD) were calculated for the model protonated peptide (AlaGly)(n) (n = 2-32) using a variety of dissociation parameters. Combinations of dissociation threshold energies ranging from 0.8 to 1.7 eV and transition entropies corresponding to Arrhenius preexponential factors ranging from very "tight" (A(infinity) = 10(9.9) s(-1)) to "loose" (A(infinity) = 10(16.8) s(-1)) were selected to represent dissociation parameters within the experimental temperature range (300-520 K) and kinetic window (k(uni) = 0.001-0.20 s(-1)) typically used in the BIRD experiment. Arrhenius parameters were determined from the temperature dependence of these values and compared to those in the rapid energy exchange (REX) limit. In this limit, the internal energy of a population of ions is given by a Boltzmann distribution, and kinetics are the same as those in the traditional high-pressure limit. For a dissociation process to be in this limit, the rate of photon exchange between an ion and the vacuum chamber walls must be significantly greater than the dissociation rate. Kinetics rapidly approach the REX limit either as the molecular size or threshold dissociation energy increases or as the transition-state entropy or experimental temperature decreases. Under typical experimental conditions, peptide ions larger than 1.6 kDa should be in the REX limit. Smaller ions may also be in the REX limit depending on the value of the threshold dissociation energy and transition-state entropy. Either modeling or information about the dissociation mechanism must be known in order to confirm REX limit kinetics for these smaller ions. Three principal factors that lead to the size dependence of REX limit kinetics are identified. With increasing molecular size, rates of radiative absorption and emission increase, internal energy distributions become relatively narrower, and the microcanonical dissociation rate constants increase more slowly over the energy distribution of ions. Guidelines established here should make BIRD an even more reliable method to obtain information about dissociation energetics and mechanisms for intermediate size molecules.
Price, William D.
2005-01-01
Unimolecular rate constants for blackbody infrared radiative dissociation (BIRD) were calculated for the model protonated peptide (AlaGly)n (n = 2–32) using a variety of dissociation parameters. Combinations of dissociation threshold energies ranging from 0.8 to 1.7 eV and transition entropies corresponding to Arrhenius preexponential factors ranging from very “tight” (A∞ = 109.9 s−1) to “loose” (A∞ = 1016.8 s−1) were selected to represent dissociation parameters within the experimental temperature range (300–520 K) and kinetic window (kuni = 0.001–0.20 s−1) typically used in the BIRD experiment. Arrhenius parameters were determined from the temperature dependence of these values and compared to those in the rapid energy exchange (REX) limit. In this limit, the internal energy of a population of ions is given by a Boltzmann distribution, and kinetics are the same as those in the traditional high-pressure limit. For a dissociation process to be in this limit, the rate of photon exchange between an ion and the vacuum chamber walls must be significantly greater than the dissociation rate. Kinetics rapidly approach the REX limit either as the molecular size or threshold dissociation energy increases or as the transition-state entropy or experimental temperature decreases. Under typical experimental conditions, peptide ions larger than 1.6 kDa should be in the REX limit. Smaller ions may also be in the REX limit depending on the value of the threshold dissociation energy and transition-state entropy. Either modeling or information about the dissociation mechanism must be known in order to confirm REX limit kinetics for these smaller ions. Three principal factors that lead to the size dependence of REX limit kinetics are identified. With increasing molecular size, rates of radiative absorption and emission increase, internal energy distributions become relatively narrower, and the microcanonical dissociation rate constants increase more slowly over the energy distribution of ions. Guidelines established here should make BIRD an even more reliable method to obtain information about dissociation energetics and mechanisms for intermediate size molecules. PMID:16604162
NASA Astrophysics Data System (ADS)
Song, Huan; Hu, Yaogai; Jiang, Chunhua; Zhou, Chen; Zhao, Zhengyu; Zou, Xianjian
2016-12-01
Scaling oblique ionogram plays an important role in obtaining ionospheric structure at the midpoint of oblique sounding path. The paper proposed an automatic scaling method to extract the trace and parameters of oblique ionogram based on hybrid genetic algorithm (HGA). The extracted 10 parameters come from F2 layer and Es layer, such as maximum observation frequency, critical frequency, and virtual height. The method adopts quasi-parabolic (QP) model to describe F2 layer's electron density profile that is used to synthesize trace. And it utilizes secant theorem, Martyn's equivalent path theorem, image processing technology, and echoes' characteristics to determine seven parameters' best fit values, and three parameter's initial values in QP model to set up their searching spaces which are the needed input data of HGA. Then HGA searches the three parameters' best fit values from their searching spaces based on the fitness between the synthesized trace and the real trace. In order to verify the performance of the method, 240 oblique ionograms are scaled and their results are compared with manual scaling results and the inversion results of the corresponding vertical ionograms. The comparison results show that the scaling results are accurate or at least adequate 60-90% of the time.
Item Vector Plots for the Multidimensional Three-Parameter Logistic Model
ERIC Educational Resources Information Center
Bryant, Damon; Davis, Larry
2011-01-01
This brief technical note describes how to construct item vector plots for dichotomously scored items fitting the multidimensional three-parameter logistic model (M3PLM). As multidimensional item response theory (MIRT) shows promise of being a very useful framework in the test development life cycle, graphical tools that facilitate understanding…
Basha, Shaik; Jaiswar, Santlal; Jha, Bhavanath
2010-09-01
The biosorption equilibrium isotherms of Ni(II) onto marine brown algae Lobophora variegata, which was chemically-modified by CaCl(2) were studied and modeled. To predict the biosorption isotherms and to determine the characteristic parameters for process design, twenty-three one-, two-, three-, four- and five-parameter isotherm models were applied to experimental data. The interaction among biosorbed molecules is attractive and biosorption is carried out on energetically different sites and is an endothermic process. The five-parameter Fritz-Schluender model gives the most accurate fit with high regression coefficient, R (2) (0.9911-0.9975) and F-ratio (118.03-179.96), and low standard error, SE (0.0902-0.0.1556) and the residual or sum of square error, SSE (0.0012-0.1789) values to all experimental data in comparison to other models. The biosorption isotherm models fitted the experimental data in the order: Fritz-Schluender (five-parameter) > Freundlich (two-parameter) > Langmuir (two-parameter) > Khan (three-parameter) > Fritz-Schluender (four-parameter). The thermodynamic parameters such as DeltaG (0), DeltaH (0) and DeltaS (0) have been determined, which indicates the sorption of Ni(II) onto L. variegata was spontaneous and endothermic in nature.
NASA Astrophysics Data System (ADS)
Liang, L. L.; Arcus, V. L.; Heskel, M.; O'Sullivan, O. S.; Weerasinghe, L. K.; Creek, D.; Egerton, J. J. G.; Tjoelker, M. G.; Atkin, O. K.; Schipper, L. A.
2017-12-01
Temperature is a crucial factor in determining the rates of ecosystem processes such as leaf respiration (R) - the flux of plant respired carbon dioxide (CO2) from leaves to the atmosphere. Generally, respiration rate increases exponentially with temperature as modelled by the Arrhenius equation, but a recent study (Heskel et al., 2016) showed a universally convergent temperature response of R using an empirical exponential/polynomial model whereby the exponent in the Arrhenius model is replaced by a quadratic function of temperature. The exponential/polynomial model has been used elsewhere to describe shoot respiration and plant respiration. What are the principles that underlie these empirical observations? Here, we demonstrate that macromolecular rate theory (MMRT), based on transition state theory for chemical kinetics, is equivalent to the exponential/polynomial model. We re-analyse the data from Heskel et al. 2016 using MMRT to show this equivalence and thus, provide an explanation based on thermodynamics, for the convergent temperature response of R. Using statistical tools, we also show the equivalent explanatory power of MMRT when compared to the exponential/polynomial model and the superiority of both of these models over the Arrhenius function. Three meaningful parameters emerge from MMRT analysis: the temperature at which the rate of respiration is maximum (the so called optimum temperature, Topt), the temperature at which the respiration rate is most sensitive to changes in temperature (the inflection temperature, Tinf) and the overall curvature of the log(rate) versus temperature plot (the so called change in heat capacity for the system, ). The latter term originates from the change in heat capacity between an enzyme-substrate complex and an enzyme transition state complex in enzyme-catalysed metabolic reactions. From MMRT, we find the average Topt and Tinf of R are 67.0±1.2 °C and 41.4±0.7 °C across global sites. The average curvature (average negative) is -1.2±0.1 kJ.mol-1K-1. MMRT extends the classic transition state theory to enzyme-catalysed reactions and scales up to more complex processes including micro-organism growth rates and ecosystem processes.
Koeppe, R A; Holthoff, V A; Frey, K A; Kilbourn, M R; Kuhl, D E
1991-09-01
The in vivo kinetic behavior of [11C]flumazenil ([11C]FMZ), a non-subtype-specific central benzodiazepine antagonist, is characterized using compartmental analysis with the aim of producing an optimized data acquisition protocol and tracer kinetic model configuration for the assessment of [11C]FMZ binding to benzodiazepine receptors (BZRs) in human brain. The approach presented is simple, requiring only a single radioligand injection. Dynamic positron emission tomography data were acquired on 18 normal volunteers using a 60- to 90-min sequence of scans and were analyzed with model configurations that included a three-compartment, four-parameter model, a three-compartment, three-parameter model, with a fixed value for free plus nonspecific binding; and a two-compartment, two-parameter model. Statistical analysis indicated that a four-parameter model did not yield significantly better fits than a three-parameter model. Goodness of fit was improved for three- versus two-parameter configurations in regions with low receptor density, but not in regions with moderate to high receptor density. Thus, a two-compartment, two-parameter configuration was found to adequately describe the kinetic behavior of [11C]FMZ in human brain, with stable estimates of the model parameters obtainable from as little as 20-30 min of data. Pixel-by-pixel analysis yields functional images of transport rate (K1) and ligand distribution volume (DV"), and thus provides independent estimates of ligand delivery and BZR binding.
Accelerated Aging of Lead-Free Propellant
NASA Technical Reports Server (NTRS)
Furrow, Keith W.; Jervey, David D.
2000-01-01
Following higher than expected 2-NDPA depletion rates in a lead-free doublebase formulation (RPD-422), an accelerated aging study was conducted to verify the depletion rates. A test plan was prepared to compare the aging characteristics of lead-free propellant and NOSIH-AA2. The study was also designed to determine which lead-free ballistic modifiers accelerated 2-NDPA depletion. The increased depletion rate occurred in propellants containing monobasic copper salicylate. Four lead-free propellants were then formulated to improved aging characteristics over previous lead-free propellant formulations. The new formulations reduced or replaced the monobasic copper salicylate. The new formulations had improved aging characteristics. Their burn rates, however, were unacceptable for use in a 2.75 inch rocket. To compare aging characteristics, stabilizer depletion rates of RPD-422, AA2, M28, and RLC 470/6A were measured or taken from the literature. The data were fit to a kinetic model. The model contained first and zero order terms which allowed the stabilizer concentration to go to zero. In the model, only the concentration of the primary stabilizer was considered. Derivatives beyond the first nitrated or nitroso derivative of 2-NPDA were not considered. The rate constants were fit to the Arrhenius equation and extrapolated to lower temperatures. The time to complete stabilizer depletion was estimated using the kinetic model. The four propellants were compared and the RPD-422 depleted faster at 45 C than both A22 and M28. These types of predictions depend on the validity of the model and on confidence in the Arrhenius relationship holding at lower temperatures. At 45 C, the zero order portion of the model dominates the depletion rate.
NASA Astrophysics Data System (ADS)
Quan, Guo-zheng; Zhan, Zong-yang; Wang, Tong; Xia, Yu-feng
2017-01-01
The response of true stress to strain rate, temperature and strain is a complex three-dimensional (3D) issue, and the accurate description of such constitutive relationships significantly contributes to the optimum process design. To obtain the true stress-strain data of ultra-high-strength steel, BR1500HS, a series of isothermal hot tensile tests were conducted in a wide temperature range of 973-1,123 K and a strain rate range of 0.01-10 s-1 on a Gleeble 3800 testing machine. Then the constitutive relationships were modeled by an optimally constructed and well-trained backpropagation artificial neural network (BP-ANN). The evaluation of BP-ANN model revealed that it has admirable performance in characterizing and predicting the flow behaviors of BR1500HS. A comparison on improved Arrhenius-type constitutive equation and BP-ANN model shows that the latter has higher accuracy. Consequently, the developed BP-ANN model was used to predict abundant stress-strain data beyond the limited experimental conditions. Then a 3D continuous interaction space for temperature, strain rate, strain and stress was constructed based on these predicted data. The developed 3D continuous interaction space for hot working parameters contributes to fully revealing the intrinsic relationships of BR1500HS steel.
NASA Astrophysics Data System (ADS)
Adams, Matthew P.; Collier, Catherine J.; Uthicke, Sven; Ow, Yan X.; Langlois, Lucas; O'Brien, Katherine R.
2017-01-01
When several models can describe a biological process, the equation that best fits the data is typically considered the best. However, models are most useful when they also possess biologically-meaningful parameters. In particular, model parameters should be stable, physically interpretable, and transferable to other contexts, e.g. for direct indication of system state, or usage in other model types. As an example of implementing these recommended requirements for model parameters, we evaluated twelve published empirical models for temperature-dependent tropical seagrass photosynthesis, based on two criteria: (1) goodness of fit, and (2) how easily biologically-meaningful parameters can be obtained. All models were formulated in terms of parameters characterising the thermal optimum (Topt) for maximum photosynthetic rate (Pmax). These parameters indicate the upper thermal limits of seagrass photosynthetic capacity, and hence can be used to assess the vulnerability of seagrass to temperature change. Our study exemplifies an approach to model selection which optimises the usefulness of empirical models for both modellers and ecologists alike.
Adams, Matthew P; Collier, Catherine J; Uthicke, Sven; Ow, Yan X; Langlois, Lucas; O'Brien, Katherine R
2017-01-04
When several models can describe a biological process, the equation that best fits the data is typically considered the best. However, models are most useful when they also possess biologically-meaningful parameters. In particular, model parameters should be stable, physically interpretable, and transferable to other contexts, e.g. for direct indication of system state, or usage in other model types. As an example of implementing these recommended requirements for model parameters, we evaluated twelve published empirical models for temperature-dependent tropical seagrass photosynthesis, based on two criteria: (1) goodness of fit, and (2) how easily biologically-meaningful parameters can be obtained. All models were formulated in terms of parameters characterising the thermal optimum (T opt ) for maximum photosynthetic rate (P max ). These parameters indicate the upper thermal limits of seagrass photosynthetic capacity, and hence can be used to assess the vulnerability of seagrass to temperature change. Our study exemplifies an approach to model selection which optimises the usefulness of empirical models for both modellers and ecologists alike.
Adams, Matthew P.; Collier, Catherine J.; Uthicke, Sven; Ow, Yan X.; Langlois, Lucas; O’Brien, Katherine R.
2017-01-01
When several models can describe a biological process, the equation that best fits the data is typically considered the best. However, models are most useful when they also possess biologically-meaningful parameters. In particular, model parameters should be stable, physically interpretable, and transferable to other contexts, e.g. for direct indication of system state, or usage in other model types. As an example of implementing these recommended requirements for model parameters, we evaluated twelve published empirical models for temperature-dependent tropical seagrass photosynthesis, based on two criteria: (1) goodness of fit, and (2) how easily biologically-meaningful parameters can be obtained. All models were formulated in terms of parameters characterising the thermal optimum (Topt) for maximum photosynthetic rate (Pmax). These parameters indicate the upper thermal limits of seagrass photosynthetic capacity, and hence can be used to assess the vulnerability of seagrass to temperature change. Our study exemplifies an approach to model selection which optimises the usefulness of empirical models for both modellers and ecologists alike. PMID:28051123
Three-dimensional deformable-model-based localization and recognition of road vehicles.
Zhang, Zhaoxiang; Tan, Tieniu; Huang, Kaiqi; Wang, Yunhong
2012-01-01
We address the problem of model-based object recognition. Our aim is to localize and recognize road vehicles from monocular images or videos in calibrated traffic scenes. A 3-D deformable vehicle model with 12 shape parameters is set up as prior information, and its pose is determined by three parameters, which are its position on the ground plane and its orientation about the vertical axis under ground-plane constraints. An efficient local gradient-based method is proposed to evaluate the fitness between the projection of the vehicle model and image data, which is combined into a novel evolutionary computing framework to estimate the 12 shape parameters and three pose parameters by iterative evolution. The recovery of pose parameters achieves vehicle localization, whereas the shape parameters are used for vehicle recognition. Numerous experiments are conducted in this paper to demonstrate the performance of our approach. It is shown that the local gradient-based method can evaluate accurately and efficiently the fitness between the projection of the vehicle model and the image data. The evolutionary computing framework is effective for vehicles of different types and poses is robust to all kinds of occlusion.
Thermal conductivity as influenced by the temperature and apparent viscosity of dairy products.
Gonçalves, B J; Pereira, C G; Lago, A M T; Gonçalves, C S; Giarola, T M O; Abreu, L R; Resende, J V
2017-05-01
This study aimed to evaluate the rheological behavior and thermal conductivity of dairy products, composed of the same chemical components but with different formulations, as a function of temperature. Subsequently, thermal conductivity was related to the apparent viscosity of yogurt, fermented dairy beverage, and fermented milk. Thermal conductivity measures and rheological tests were performed at 5, 10, 15, 20, and 25°C using linear probe heating and an oscillatory rheometer with concentric cylinder geometry, respectively. The results were compared with those calculated using the parallel, series, and Maxwell-Eucken models as a function of temperature, and the discrepancies in the results are discussed. Linear equations were fitted to evaluate the influence of temperature on the thermal conductivity of the dairy products. The rheological behavior, specifically apparent viscosity versus shear rate, was influenced by temperature. Herschel-Bulkley, power law, and Newton's law models were used to fit the experimental data. The Herschel-Bulkley model best described the adjustments for yogurt, the power law model did so for fermented dairy beverages, and Newton's law model did so for fermented milk and was then used to determine the rheological parameters. Fermented milk showed a Newtonian trend, whereas yogurt and fermented dairy beverage were shear thinning. Apparent viscosity was correlated with temperature by the Arrhenius equation. The formulation influenced the effective thermal conductivity. The relationship between the 2 properties was established by fixing the temperature and expressing conductivity as a function of apparent viscosity. Thermal conductivity increased with viscosity and decreased with increasing temperature. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wilks, Daniel S.
1993-10-01
Performance of 8 three-parameter probability distributions for representing annual extreme and partial duration precipitation data at stations in the northeastern and southeastern United States is investigated. Particular attention is paid to fidelity on the right tail, through use of a bootstrap procedure simulating extrapolation on the right tail beyond the data. It is found that the beta-κ distribution best describes the extreme right tail of annual extreme series, and the beta-P distribution is best for the partial duration data. The conventionally employed two-parameter Gumbel distribution is found to substantially underestimate probabilities associated with the larger precipitation amounts for both annual extreme and partial duration data. Fitting the distributions using left-censored data did not result in improved fits to the right tail.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Suan; Guan, Wenjian; Kang, Li
High solid conditions are desirable in pretreatment of lignocellulosic biomass. An advanced dilute-acid pretreatment reactor has been developed at National Renewable Energy Laboratory (NREL). It is a continuous auger-driven reactor that can be operated with high-solid charge at high temperature and with short residence time resulting high productivity and high sugar concentration. Here, we investigated the kinetics of the reactions associated with dilute-acid pretreatment of corn stover, covering the reaction conditions of the NREL reactor operation: 155-185 C, 1-2 wt% sulfuric acid concentration, and 1:2 solid to liquid ratio. The experimental data were fitted to a first-order biphasic model whichmore » assumes that xylan is comprised of two different fragments: fast and slow reacting fractions. Due to the high solid loading condition, significant amount of xylose oligomers was observed during the pretreatment. We also included the oligomers as an intermediate entity in the kinetic model. The effect of acid concentration was incorporated into the pre-exponential factor of Arrhenius equation. The kinetic model with bestfit kinetic parameters has shown good agreement with experimental data. The kinetic parameter values of the proposed model were noticeably different from those previously reported. The activation energies of xylan hydrolysis are lower and the acid exponents are higher than the average of literature values. The proposed model can serve as a useful tool for design and operation of pretreatment system pertaining to corn stover.« less
Shi, Suan; Guan, Wenjian; Kang, Li; ...
2017-09-13
High solid conditions are desirable in pretreatment of lignocellulosic biomass. An advanced dilute-acid pretreatment reactor has been developed at National Renewable Energy Laboratory (NREL). It is a continuous auger-driven reactor that can be operated with high-solid charge at high temperature and with short residence time resulting high productivity and high sugar concentration. Here, we investigated the kinetics of the reactions associated with dilute-acid pretreatment of corn stover, covering the reaction conditions of the NREL reactor operation: 155-185 C, 1-2 wt% sulfuric acid concentration, and 1:2 solid to liquid ratio. The experimental data were fitted to a first-order biphasic model whichmore » assumes that xylan is comprised of two different fragments: fast and slow reacting fractions. Due to the high solid loading condition, significant amount of xylose oligomers was observed during the pretreatment. We also included the oligomers as an intermediate entity in the kinetic model. The effect of acid concentration was incorporated into the pre-exponential factor of Arrhenius equation. The kinetic model with bestfit kinetic parameters has shown good agreement with experimental data. The kinetic parameter values of the proposed model were noticeably different from those previously reported. The activation energies of xylan hydrolysis are lower and the acid exponents are higher than the average of literature values. The proposed model can serve as a useful tool for design and operation of pretreatment system pertaining to corn stover.« less
Haldimann, M.; Alt, A.; Blanc, A.; Brunner, K.; Sager, F.; Dudler, V.
2013-01-01
Migration experiments with small sheets cut out from ovenable PET trays were performed in two-sided contact with 3% acetic acid as food simulant at various temperatures. The fraction of diffusible antimony (Sb) was estimated to be 62% in the PET sample under study. Apparent diffusion coefficients of Sb in PET trays were determined experimentally. Measurement of migration between 20 and 150°C yielded a linear Arrhenius plot over a wide temperature range from which the activation energy (Ea) of 188 ± 36 kJ mol−1 and the pre-exponential factor (D0) of 3.6 × 1014 cm2s−1 were determined for diffusing Sb species. Ea was similar to previously reported values for PET bottles obtained with a different experimental approach. Ea and D0 were applied as model parameters in migration modelling software for predicting the Sb transfer in real food. Ready meals intended for preparation in a baking oven were heated in the PET trays under study and the actual Sb migration into the food phase was measured by isotope dilution ICP-MS. It was shown that the predictive modelling reproduces correctly experimental data. PMID:23286325
Haldimann, M; Alt, A; Blanc, A; Brunner, K; Sager, F; Dudler, V
2013-01-01
Migration experiments with small sheets cut out from ovenable PET trays were performed in two-sided contact with 3% acetic acid as food simulant at various temperatures. The fraction of diffusible antimony (Sb) was estimated to be 62% in the PET sample under study. Apparent diffusion coefficients of Sb in PET trays were determined experimentally. Measurement of migration between 20 and 150°C yielded a linear Arrhenius plot over a wide temperature range from which the activation energy (E(a)) of 188 ± 36 kJ mol(-1) and the pre-exponential factor (D(0)) of 3.6 × 10(14) cm(2) s(-1) were determined for diffusing Sb species. E (a) was similar to previously reported values for PET bottles obtained with a different experimental approach. E (a) and D (0) were applied as model parameters in migration modelling software for predicting the Sb transfer in real food. Ready meals intended for preparation in a baking oven were heated in the PET trays under study and the actual Sb migration into the food phase was measured by isotope dilution ICP-MS. It was shown that the predictive modelling reproduces correctly experimental data.
Paraskevas, Paschalis D; Sabbe, Maarten K; Reyniers, Marie-Françoise; Papayannakos, Nikos G; Marin, Guy B
2014-10-09
Hydrogen-abstraction reactions play a significant role in thermal biomass conversion processes, as well as regular gasification, pyrolysis, or combustion. In this work, a group additivity model is constructed that allows prediction of reaction rates and Arrhenius parameters of hydrogen abstractions by hydrogen atoms from alcohols, ethers, esters, peroxides, ketones, aldehydes, acids, and diketones in a broad temperature range (300-2000 K). A training set of 60 reactions was developed with rate coefficients and Arrhenius parameters calculated by the CBS-QB3 method in the high-pressure limit with tunneling corrections using Eckart tunneling coefficients. From this set of reactions, 15 group additive values were derived for the forward and the reverse reaction, 4 referring to primary and 11 to secondary contributions. The accuracy of the model is validated upon an ab initio and an experimental validation set of 19 and 21 reaction rates, respectively, showing that reaction rates can be predicted with a mean factor of deviation of 2 for the ab initio and 3 for the experimental values. Hence, this work illustrates that the developed group additive model can be reliably applied for the accurate prediction of kinetics of α-hydrogen abstractions by hydrogen atoms from a broad range of oxygenates.
Montaño, A; Casado, F J; Rejano, L; Sanchez, A H; de Castro, A
2006-03-22
The kinetics of ascorbic acid (AA) loss during storage of packed table olives with two different levels of added AA was investigated. Three selected storage temperatures were assayed: 10 degrees C, ambient (20-24 degrees C), and 40 degrees C. The study was carried out in both pasteurized and unpasteurized product. The effect of pasteurization treatment alone on added AA was not significant. In the pasteurized product, in general AA degraded following a first-order kinetics. The activation energy calculated by using the Arrhenius model averaged 9 kcal/mol. For each storage temperature, the increase in initial AA concentration significantly decreased the AA degradation rate. In the unpasteurized product, AA was not detected after 20 days in samples stored at room temperature and AA degradation followed zero-order kinetics at 10 degrees C, whereas at 40 degrees C a second-order reaction showed the best fit. In both pasteurized and unpasteurized product, the low level of initial dehydroascorbic acid disappeared during storage. Furfural appeared to be formed during storage, mainly at 40 degrees C, following zero-order kinetics.
Kinetics of the Reactions of Cl((sup 2)P(sub J)) and Br((sup 2)P(sub 3/2)) with O3
NASA Technical Reports Server (NTRS)
Nicovich, J. M.; Kreutter, K. D.; Wine, P. H.
1997-01-01
A laser flash photolysis-resonance fluorescence technique has been employed to study the kinetics of the important stratospheric reactions Cl((sup 2)P(sub J)) + O3 yields ClO + O2 and Br((sup 2)P(sub 3/2)) + O3 yields BrO + O2 as a function of temperature. The temperature dependence observed for the Cl((sup 2)P(sub J)) + O3 reaction is nonArrhenius, but can be adequately described by the following two Arrhenius expressions (units are cu cm/(molecule.s), errors are 2 sigma and represent precision only): k(sub 1)(T) = (1.19 +/- 0.21) x 10(exp -11) exp[(-33 +/- 37)/T] for T = 189-269 K and k(sub 1)(T) = (2.49 +/- 0.38) x 10(exp -11) exp[(-233 +/- 46)/T] for 269-385 K. At temperatures below 230 K, the rate coefficients determined in this study are faster than any reported previously. Incorporation of our values for k(sub 1)(T) into stratospheric models would increase calculated ClO levels and decrease calculated HCI levels; hence the calculated efficiency of ClO catalyzed ozone destruction would increase. The temperature dependence observed for the Br((sup 2)P(sub 3/2)) + O3 reaction is adequately described by the following Arrhenius expression (units are cu cm/(molecule.s), errors are 2 sigma and represent precision only): k(sub 2)(T) = (1.50 +/- 0.16) x 10(exp -11)exp[(-775 +/- 30)/T for 195-392 K. While not in quantitative agreement with Arrhenius parameters reported in most previous studies, our results almost exactly reproduce the average of all earlier studies and therefore will not affect the choice of k(sub 2)(T) for use in modeling stratospheric BrO2 chemistry.
NASA Astrophysics Data System (ADS)
Krishna, M. Veera; Swarnalathamma, B. V.
2017-07-01
We considered the transient MHD flow of a reactive second grade fluid through porous medium between two infinitely long horizontal parallel plates when one of the plate is set into uniform accelerated motion in the presence of a uniform transverse magnetic field under Arrhenius reaction rate. The governing equations are solved by Laplace transform technique. The effects of the pertinent parameters on the velocity, temperature are discussed in detail. The shear stress and Nusselt number at the plates are also obtained analytically and computationally discussed with reference to governing parameters.
Marcus Bell-Shaped Electron Transfer Kinetics Observed in an Arrhenius Plot.
Waskasi, Morteza M; Kodis, Gerdenis; Moore, Ana L; Moore, Thomas A; Gust, Devens; Matyushov, Dmitry V
2016-07-27
The Marcus theory of electron transfer predicts a bell-shaped dependence of the reaction rate on the reaction free energy. The top of the "inverted parabola" corresponds to zero activation barrier when the electron-transfer reorganization energy and the reaction free energy add up to zero. Although this point has traditionally been reached by altering the chemical structures of donors and acceptors, the theory suggests that it can also be reached by varying other parameters of the system including temperature. We find here dramatic evidence of this phenomenon from experiments on a fullerene-porphyrin dyad. Following photoinduced electron transfer, the rate of charge recombination shows a bell-shaped dependence on the inverse temperature, first increasing with cooling and then decreasing at still lower temperatures. This non-Arrhenius rate law is a result of a strong, approximately hyperbolic temperature variation of the reorganization energy and the reaction free energy. Our results provide potentially the cleanest confirmation of the Marcus energy gap law so far since no modification of the chemical structure is involved.
Fragile-to-strong transition in liquid silica
NASA Astrophysics Data System (ADS)
Geske, Julian; Drossel, Barbara; Vogel, Michael
2016-03-01
We investigate anomalies in liquid silica with molecular dynamics simulations and present evidence for a fragile-to-strong transition at around 3100 K-3300 K. To this purpose, we studied the structure and dynamical properties of silica over a wide temperature range, finding four indicators of a fragile-to-strong transition. First, there is a density minimum at around 3000 K and a density maximum at 4700 K. The turning point is at 3400 K. Second, the local structure characterized by the tetrahedral order parameter changes dramatically around 3000 K from a higher-ordered, lower-density phase to a less ordered, higher-density phase. Third, the correlation time τ changes from an Arrhenius behavior below 3300 K to a Vogel-Fulcher-Tammann behavior at higher temperatures. Fourth, the Stokes-Einstein relation holds for temperatures below 3000 K, but is replaced by a fractional relation above this temperature. Furthermore, our data indicate that dynamics become again simple above 5000 K, with Arrhenius behavior and a classical Stokes-Einstein relation.
ERIC Educational Resources Information Center
Maydeu-Olivares, Alberto; Montano, Rosa
2013-01-01
We investigate the performance of three statistics, R [subscript 1], R [subscript 2] (Glas in "Psychometrika" 53:525-546, 1988), and M [subscript 2] (Maydeu-Olivares & Joe in "J. Am. Stat. Assoc." 100:1009-1020, 2005, "Psychometrika" 71:713-732, 2006) to assess the overall fit of a one-parameter logistic model…
Cell growth and catecholase production for Polyporus versicolor in submerged culture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carroad, P.A.; Wilke, C.R.
1977-04-01
Cell growth and catecholase production for Polyporus versicolor (ATCC 12679) were studied in mechanically agitated submerged culture, as functions of temperature. The exponential-phase growth rate exhibited a maximum at 28/sup 0/C. Over the range of 20/sup 0/C to approximately 30/sup 0/C, both cell mass and enzyme yield factors were constant. At higher temperatures (30 to 40/sup 0/C) cell mass yield factor decreased and enzyme yield factor increased. Specific respiration rate of P. versicolor was determined. Thermal deactivation of catecholase was investigated between 30 and 50/sup 0/C, and deactivation rates were fit to an Arrhenius rate expression.
Lutchen, K R
1990-08-01
A sensitivity analysis based on weighted least-squares regression is presented to evaluate alternative methods for fitting lumped-parameter models to respiratory impedance data. The goal is to maintain parameter accuracy simultaneously with practical experiment design. The analysis focuses on predicting parameter uncertainties using a linearized approximation for joint confidence regions. Applications are with four-element parallel and viscoelastic models for 0.125- to 4-Hz data and a six-element model with separate tissue and airway properties for input and transfer impedance data from 2-64 Hz. The criterion function form was evaluated by comparing parameter uncertainties when data are fit as magnitude and phase, dynamic resistance and compliance, or real and imaginary parts of input impedance. The proper choice of weighting can make all three criterion variables comparable. For the six-element model, parameter uncertainties were predicted when both input impedance and transfer impedance are acquired and fit simultaneously. A fit to both data sets from 4 to 64 Hz could reduce parameter estimate uncertainties considerably from those achievable by fitting either alone. For the four-element models, use of an independent, but noisy, measure of static compliance was assessed as a constraint on model parameters. This may allow acceptable parameter uncertainties for a minimum frequency of 0.275-0.375 Hz rather than 0.125 Hz. This reduces data acquisition requirements from a 16- to a 5.33- to 8-s breath holding period. These results are approximations, and the impact of using the linearized approximation for the confidence regions is discussed.
Thermogravimetric characteristics and kinetics of scrap tyre and Juglans regia shell co-pyrolysis.
Uzun, B B; Yaman, E
2014-10-01
The degradation kinetics of Juglans regia shell, scrap tyre and their blends were investigated using a thermogravimetric analysis method. Experiments were performed under dynamic conditions and a nitrogen atmosphere in the range 293 to 973 K at different heating rates. During pyrolysis of J. regia shell three mass loss zones were specified as removal of water, decomposition of hemicelluloses and cellulose, and decomposition of lignin. The degradation curves of scrap tyre showed merely one stage which was due to decomposition of styrene butadiene rubber. The kinetic parameters were calculated using both Arrhenius and Coats-Redfern methods. By adopting the Arrhenius method, the average value of activation energies of J. regia shell, scrap tyre and their 1 : 1 blends were found to be 69.22, 71.48 and 47.03 kJ mol(-1), respectively. Additionally, by using the Coats-Redfern method, the average value of activation energies of J. regia shell, scrap tyre and their 1 : 1 blend were determined as 99.85, 78.72 and 63.81 kJ mol(-1), respectively. The addition of J. regia shell to scrap tyre caused a reduction in the activation energies. The difference of weight loss was measured to examine interactions between raw materials. The maximum difference between experimental and theoretical mass loss was 5% at about 648 K with a heating rate of 20 K min(-1). These results indicated a significant synergistic effect was available during co-pyrolysis of J. regia shell and scrap tyre in the high temperature region. © The Author(s) 2014.
TRUMP. Transient & S-State Temperature Distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elrod, D.C.; Turner, W.D.
1992-03-03
TRUMP solves a general nonlinear parabolic partial differential equation describing flow in various kinds of potential fields, such as fields of temperature, pressure, or electricity and magnetism; simultaneously, it will solve two additional equations representing, in thermal problems, heat production by decomposition of two reactants having rate constants with a general Arrhenius temperature dependence. Steady-state and transient flow in one, two, or three dimensions are considered in geometrical configurations having simple or complex shapes and structures. Problem parameters may vary with spatial position, time, or primary dependent variables, temperature, pressure, or field strength. Initial conditions may vary with spatial position,more » and among the criteria that may be specified for ending a problem are upper and lower limits on the size of the primary dependent variable, upper limits on the problem time or on the number of time-steps or on the computer time, and attainment of steady state.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elrod, D.C.; Turner, W.D.
TRUMP solves a general nonlinear parabolic partial differential equation describing flow in various kinds of potential fields, such as fields of temperature, pressure, or electricity and magnetism; simultaneously, it will solve two additional equations representing, in thermal problems, heat production by decomposition of two reactants having rate constants with a general Arrhenius temperature dependence. Steady-state and transient flow in one, two, or three dimensions are considered in geometrical configurations having simple or complex shapes and structures. Problem parameters may vary with spatial position, time, or primary dependent variables, temperature, pressure, or field strength. Initial conditions may vary with spatial position,more » and among the criteria that may be specified for ending a problem are upper and lower limits on the size of the primary dependent variable, upper limits on the problem time or on the number of time-steps or on the computer time, and attainment of steady state.« less
Volume effects of late term normal tissue toxicity in prostate cancer radiotherapy
NASA Astrophysics Data System (ADS)
Bonta, Dacian Viorel
Modeling of volume effects for treatment toxicity is paramount for optimization of radiation therapy. This thesis proposes a new model for calculating volume effects in gastro-intestinal and genito-urinary normal tissue complication probability (NTCP) following radiation therapy for prostate carcinoma. The radiobiological and the pathological basis for this model and its relationship to other models are detailed. A review of the radiobiological experiments and published clinical data identified salient features and specific properties a biologically adequate model has to conform to. The new model was fit to a set of actual clinical data. In order to verify the goodness of fit, two established NTCP models and a non-NTCP measure for complication risk were fitted to the same clinical data. The method of fit for the model parameters was maximum likelihood estimation. Within the framework of the maximum likelihood approach I estimated the parameter uncertainties for each complication prediction model. The quality-of-fit was determined using the Aikaike Information Criterion. Based on the model that provided the best fit, I identified the volume effects for both types of toxicities. Computer-based bootstrap resampling of the original dataset was used to estimate the bias and variance for the fitted parameter values. Computer simulation was also used to estimate the population size that generates a specific uncertainty level (3%) in the value of predicted complication probability. The same method was used to estimate the size of the patient population needed for accurate choice of the model underlying the NTCP. The results indicate that, depending on the number of parameters of a specific NTCP model, 100 (for two parameter models) and 500 patients (for three parameter models) are needed for accurate parameter fit. Correlation of complication occurrence in patients was also investigated. The results suggest that complication outcomes are correlated in a patient, although the correlation coefficient is rather small.
The H,G_1,G_2 photometric system with scarce observational data
NASA Astrophysics Data System (ADS)
Penttilä, A.; Granvik, M.; Muinonen, K.; Wilkman, O.
2014-07-01
The H,G_1,G_2 photometric system was officially adopted at the IAU General Assembly in Beijing, 2012. The system replaced the H,G system from 1985. The 'photometric system' is a parametrized model V(α; params) for the magnitude-phase relation of small Solar System bodies, and the main purpose is to predict the magnitude at backscattering, H := V(0°), i.e., the (absolute) magnitude of the object. The original H,G system was designed using the best available data in 1985, but since then new observations have been made showing certain features, especially near backscattering, to which the H,G function has troubles adjusting to. The H,G_1,G_2 system was developed especially to address these issues [1]. With a sufficient number of high-accuracy observations and with a wide phase-angle coverage, the H,G_1,G_2 system performs well. However, with scarce low-accuracy data the system has troubles producing a reliable fit, as would any other three-parameter nonlinear function. Therefore, simultaneously with the H,G_1,G_2 system, a two-parameter version of the model, the H,G_{12} system, was introduced [1]. The two-parameter version ties the parameters G_1,G_2 into a single parameter G_{12} by a linear relation, and still uses the H,G_1,G_2 system in the background. This version dramatically improves the possibility to receive a reliable phase-curve fit to scarce data. The amount of observed small bodies is increasing all the time, and so is the need to produce estimates for the absolute magnitude/diameter/albedo and other size/composition related parameters. The lack of small-phase-angle observations is especially topical for near-Earth objects (NEOs). With these, even the two- parameter version faces problems. The previous procedure with the H,G system in such circumstances has been that the G-parameter has been fixed to some constant value, thus only fitting a single-parameter function. In conclusion, there is a definitive need for a reliable procedure to produce photometric fits to very scarce and low-accuracy data. There are a few details that should be considered with the H,G_1,G_2 or H,G_{12} systems with scarce data. The first point is the distribution of errors in the fit. The original H,G system allowed linear regression in the flux space, thus making the estimation computationally easier. The same principle was repeated with the H,G_1,G_2 system. There is, however, a major hidden assumption in the transformation. With regression modeling, the residuals should be distributed symmetrically around zero. If they are normally distributed, even better. We have noticed that, at least with some NEO observations, the residuals in the flux space are far from symmetric, and seem to be much more symmetric in the magnitude space. The result is that the nonlinear fit in magnitude space is far more reliable than the linear fit in the flux space. Since the computers and nonlinear regression algorithms are efficient enough, we conclude that, in many cases, with low-accuracy data the nonlinear fit should be favored. In fact, there are statistical procedures that should be employed with the photometric fit. At the moment, the choice between the three-parameter and two-parameter versions is simply based on subjective decision-making. By checking parameter error and model comparison statistics, the choice could be done objectively. Similarly, the choice between the linear fit in flux space and the nonlinear fit in magnitude space should be based on a statistical test of unbiased residuals. Furthermore, the so-called Box-Cox transform could be employed to find an optimal transformation somewhere between the magnitude and flux spaces. The H,G_1,G_2 system is based on cubic splines, and is therefore a bit more complicated to implement than a system with simpler basis functions. The same applies to a complete program that would automatically choose the best transforms to data, test if two- or three-parameter version of the model should be fitted, and produce the fitted parameters with their error estimates. Our group has already made implementations of the H,G_1,G_2 system publicly available [2]. We plan to implement the abovementioned improvements to the system and make also these tools public.
Glassy dynamics in three-dimensional embryonic tissues
Schötz, Eva-Maria; Lanio, Marcos; Talbot, Jared A.; Manning, M. Lisa
2013-01-01
Many biological tissues are viscoelastic, behaving as elastic solids on short timescales and fluids on long timescales. This collective mechanical behaviour enables and helps to guide pattern formation and tissue layering. Here, we investigate the mechanical properties of three-dimensional tissue explants from zebrafish embryos by analysing individual cell tracks and macroscopic mechanical response. We find that the cell dynamics inside the tissue exhibit features of supercooled fluids, including subdiffusive trajectories and signatures of caging behaviour. We develop a minimal, three-parameter mechanical model for these dynamics, which we calibrate using only information about cell tracks. This model generates predictions about the macroscopic bulk response of the tissue (with no fit parameters) that are verified experimentally, providing a strong validation of the model. The best-fit model parameters indicate that although the tissue is fluid-like, it is close to a glass transition, suggesting that small changes to single-cell parameters could generate a significant change in the viscoelastic properties of the tissue. These results provide a robust framework for quantifying and modelling mechanically driven pattern formation in tissues. PMID:24068179
Simulations of Flame Acceleration and Deflagration-to-Detonation Transitions in Methane-Air Systems
2010-03-17
are neglected. 3. Model parameter calibration The one-step Arrhenius kinetics used in this model cannot ex- actly reproduce all properties of laminar...with obstacles are compared to previ- ously reported experimental data. The results obtained using the simple reaction model qualitatively, and in...have taken in developing a multidimensional numerical model to study explosions in large-scale systems containing mixtures of nat- ural gas and air
Hermans, Ive; Jacobs, Pierre; Peeters, Jozef
2008-02-28
Abstraction of hydrogen atoms by pthalimide-N-oxyl radicals is an important step in the N-hydroxyphthalimide catalyzed autoxidation of hydrocarbons. In this contribution, the temperature dependency of this reaction is evaluated by a detailed transition state theory based kinetic analysis for the case of toluene. Tunneling was found to play a very important role, enhancing the rate constant by a factor of 20 at room temperature. As a result, tunneling, in combination with the existence of two distinct rotamers of the transition state, causes a pronounced temperature dependency of the pre-exponential frequency factor, and, as a consequence, marked curvature of the Arrhenius plot. This explains why earlier experimental studies over a limited temperature range around 300 K found formal Arrhenius activation energies and pre-factors that are 4 kcal mol(-1) and three orders of magnitude smaller than the actual energy barrier and the corresponding frequency factor, respectively. Also as a consequence of tunneling, substitution of a deuterium atom for a hydrogen atom causes a large decrease in the rate constant, in agreement with the measured kinetic isotope effects. The present theoretical analysis, complementary to the experimental rate coefficient data, allows for a reliable prediction of the rate coefficient at higher temperatures, relevant for actual autoxidation processes.
Shear-induced conformational ordering, relaxation, and crystallization of isotactic polypropylene.
An, Haining; Li, Xiangyang; Geng, Yong; Wang, Yunlong; Wang, Xiao; Li, Liangbin; Li, Zhongming; Yang, Chuanlu
2008-10-02
The shear-induced coil-helix transition of isotactic polypropylene (iPP) has been studied with time-resolved Fourier transform infrared spectroscopy at various temperatures. The effects of temperature, shear rate, and strain on the coil-helix transition were studied systematically. The induced conformational order increases with the shear rate and strain. A threshold of shear strain is required to induce conformational ordering. High temperature reduces the effect of shear on the conformational order, though a simple correlation was not found. Following the shear-induced conformational ordering, relaxation of helices occurs, which follows the first-order exponential decay at temperatures well above the normal melting point of iPP. The relaxation time versus temperature is fitted with an Arrhenius law, which generates an activation energy of 135 kJ/mol for the helix-coil transition of iPP. At temperatures around the normal melting point, two exponential decays are needed to fit well on the relaxation kinetic of helices. This suggests that two different states of helices are induced by shear: (i) isolated single helices far away from each other without interactions, which have a fast relaxation kinetic; (ii) aggregations of helices or helical bundles with strong interactions among each other, which have a much slower relaxation process. The helical bundles are assumed to be the precursors of nuclei for crystallization. The different helix concentrations and distributions are the origin of the three different processes of crystallization after shear. The correlation between the shear-induced conformational order and crystallization is discussed.
Robust and fast nonlinear optimization of diffusion MRI microstructure models.
Harms, R L; Fritz, F J; Tobisch, A; Goebel, R; Roebroeck, A
2017-07-15
Advances in biophysical multi-compartment modeling for diffusion MRI (dMRI) have gained popularity because of greater specificity than DTI in relating the dMRI signal to underlying cellular microstructure. A large range of these diffusion microstructure models have been developed and each of the popular models comes with its own, often different, optimization algorithm, noise model and initialization strategy to estimate its parameter maps. Since data fit, accuracy and precision is hard to verify, this creates additional challenges to comparability and generalization of results from diffusion microstructure models. In addition, non-linear optimization is computationally expensive leading to very long run times, which can be prohibitive in large group or population studies. In this technical note we investigate the performance of several optimization algorithms and initialization strategies over a few of the most popular diffusion microstructure models, including NODDI and CHARMED. We evaluate whether a single well performing optimization approach exists that could be applied to many models and would equate both run time and fit aspects. All models, algorithms and strategies were implemented on the Graphics Processing Unit (GPU) to remove run time constraints, with which we achieve whole brain dataset fits in seconds to minutes. We then evaluated fit, accuracy, precision and run time for different models of differing complexity against three common optimization algorithms and three parameter initialization strategies. Variability of the achieved quality of fit in actual data was evaluated on ten subjects of each of two population studies with a different acquisition protocol. We find that optimization algorithms and multi-step optimization approaches have a considerable influence on performance and stability over subjects and over acquisition protocols. The gradient-free Powell conjugate-direction algorithm was found to outperform other common algorithms in terms of run time, fit, accuracy and precision. Parameter initialization approaches were found to be relevant especially for more complex models, such as those involving several fiber orientations per voxel. For these, a fitting cascade initializing or fixing parameter values in a later optimization step from simpler models in an earlier optimization step further improved run time, fit, accuracy and precision compared to a single step fit. This establishes and makes available standards by which robust fit and accuracy can be achieved in shorter run times. This is especially relevant for the use of diffusion microstructure modeling in large group or population studies and in combining microstructure parameter maps with tractography results. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Fitting ARMA Time Series by Structural Equation Models.
ERIC Educational Resources Information Center
van Buuren, Stef
1997-01-01
This paper outlines how the stationary ARMA (p,q) model (G. Box and G. Jenkins, 1976) can be specified as a structural equation model. Maximum likelihood estimates for the parameters in the ARMA model can be obtained by software for fitting structural equation models. The method is applied to three problem types. (SLD)
On Least Squares Fitting Nonlinear Submodels.
ERIC Educational Resources Information Center
Bechtel, Gordon G.
Three simplifying conditions are given for obtaining least squares (LS) estimates for a nonlinear submodel of a linear model. If these are satisfied, and if the subset of nonlinear parameters may be LS fit to the corresponding LS estimates of the linear model, then one attains the desired LS estimates for the entire submodel. Two illustrative…
Interaction of D2 with H2O amorphous ice studied by temperature-programmed desorption experiments.
Amiaud, L; Fillion, J H; Baouche, S; Dulieu, F; Momeni, A; Lemaire, J L
2006-03-07
The gas-surface interaction of molecular hydrogen D2 with a thin film of porous amorphous solid water (ASW) grown at 10 K by slow vapor deposition has been studied by temperature-programmed-desorption (TPD) experiments. Molecular hydrogen diffuses rapidly into the porous network of the ice. The D2 desorption occurring between 10 and 30 K is considered here as a good probe of the effective surface of ASW interacting with the gas. The desorption kinetics have been systematically measured at various coverages. A careful analysis based on the Arrhenius plot method has provided the D2 binding energies as a function of the coverage. Asymmetric and broad distributions of binding energies were found, with a maximum population peaking at low energy. We propose a model for the desorption kinetics that assumes a complete thermal equilibrium of the molecules with the ice film. The sample is characterized by a distribution of adsorption sites that are filled according to a Fermi-Dirac statistic law. The TPD curves can be simulated and fitted to provide the parameters describing the distribution of the molecules as a function of their binding energy. This approach contributes to a correct description of the interaction of molecular hydrogen with the surface of possibly porous grain mantles in the interstellar medium.
Kumar, K Vasanth; Sivanesan, S
2005-08-31
Comparison analysis of linear least square method and non-linear method for estimating the isotherm parameters was made using the experimental equilibrium data of safranin onto activated carbon at two different solution temperatures 305 and 313 K. Equilibrium data were fitted to Freundlich, Langmuir and Redlich-Peterson isotherm equations. All the three isotherm equations showed a better fit to the experimental equilibrium data. The results showed that non-linear method could be a better way to obtain the isotherm parameters. Redlich-Peterson isotherm is a special case of Langmuir isotherm when the Redlich-Peterson isotherm constant g was unity.
Rault, Jacques
2015-08-01
The dynamical properties of glass formers (GFs) as a function of P, V, and T are reanalyzed in relation with the equations of state (EOS) proposed recently (Eur. Phys. J. E 37, 113 (2014)). The relaxation times τ of the cooperative non-Arrhenius α process and the individual Arrhenius β process are coupled via the Kohlrausch exponent n S(T, P). In the model n S is the sigmoidal logistic function depending on T (and P, and the α relaxation time τ α of GFs above T g verifies the pressure-modified VFT law: log τ α ∼ E β /nsRT, which can be put into a form with separated variables: log τ α ∼ f(T)g(P). From the variation of n S and τ α with T and P the Vogel temperature T 0 (τ α → ∝, n S = 0) and the crossover temperature (also called the merging or splitting temperature) T B (τ α ∼ τ β, n S ∼ 1) are determined. The proposed sm-VFT equation fits with excellent accuracy the experimental data of fragile and strong GFs under pressure. The properties generally observed in organic mineral and metallic GFs are explained: a) The Vogel temperature is independent of P (as suggested by the EOS properties), the crossover is pressure-dependent. b) In crystallizable GFs the T B (P) and Clapeyron curves T m(P) coincide. c) The α and β processes have the same ratio of the activation energies and volume, E*/V* (T- and P-independent), the compensation law is observed, this ratio depends on the anharmonicity Slater-Grüneisen parameter and on the critical pressure P* deduced from the EOS. d) The properties of the Fan Structure of the Tangents (FST) to the isotherms and isobars curves log τ versus P and T and to the isochrones curves P(T). e) The scaling law log τ = f(V (Λ) ) and the relation between Γ and γ. We conclude that these properties should be studied in detail in GFs submitted to negative pressures.
Huang, Lihan; Hwang, Andy; Phillips, John
2011-10-01
The objective of this work is to develop a mathematical model for evaluating the effect of temperature on the rate of microbial growth. The new mathematical model is derived by combination and modification of the Arrhenius equation and the Eyring-Polanyi transition theory. The new model, suitable for both suboptimal and the entire growth temperature ranges, was validated using a collection of 23 selected temperature-growth rate curves belonging to 5 groups of microorganisms, including Pseudomonas spp., Listeria monocytogenes, Salmonella spp., Clostridium perfringens, and Escherichia coli, from the published literature. The curve fitting is accomplished by nonlinear regression using the Levenberg-Marquardt algorithm. The resulting estimated growth rate (μ) values are highly correlated to the data collected from the literature (R(2) = 0.985, slope = 1.0, intercept = 0.0). The bias factor (B(f) ) of the new model is very close to 1.0, while the accuracy factor (A(f) ) ranges from 1.0 to 1.22 for most data sets. The new model is compared favorably with the Ratkowsky square root model and the Eyring equation. Even with more parameters, the Akaike information criterion, Bayesian information criterion, and mean square errors of the new model are not statistically different from the square root model and the Eyring equation, suggesting that the model can be used to describe the inherent relationship between temperature and microbial growth rates. The results of this work show that the new growth rate model is suitable for describing the effect of temperature on microbial growth rate. Practical Application: Temperature is one of the most significant factors affecting the growth of microorganisms in foods. This study attempts to develop and validate a mathematical model to describe the temperature dependence of microbial growth rate. The findings show that the new model is accurate and can be used to describe the effect of temperature on microbial growth rate in foods. Journal of Food Science © 2011 Institute of Food Technologists® No claim to original US government works.
Characterization of viscoelastic response and damping of composite materials used in flywheel rotors
NASA Astrophysics Data System (ADS)
Chen, Jianmin
The long-term goal for spacecraft flywheel systems with higher energy density at the system level requires new and innovative composite material concepts. Multi-Direction Composite (MDC) offers significant advantages over traditional filament-wound and multi-ring press-fit filament-wound wheels in providing higher energy density (i.e., less mass), better crack resistance, and enhanced safety. However there is a lack of systematic characterization for dynamic properties of MDC composite materials. In order to improve the flywheel materials reliability, durability and life time, it is very important to evaluate the time dependent aging effects and damping properties of MDC material, which are significant dynamic parameter for vibration and sound control, fatigue endurance, and impact resistance. The physical aging effects are quantified based on a set of creep curves measured at different aging time or different aging temperature. One parameter (tau) curve fit was proposed to represent the relationship of aging time and aging temperature between different master curves. The long term mechanical behavior was predicted by obtained master curves. The time and temperature shift factors of matrix were obtained from creep curves and the aging time shift rate were calculated. The aging effects on composite are obtained from experiments and compared with prediction. The mechanical quasi-behavior of MDC composite was analyzed. The correspondence principle was used to relate quasi-static elastic properties of composite materials to time-dependent properties of its constituent materials (i.e., fiber and matrix). The Prony series combined with the multi-data fitting method was applied to inverse Laplace transform and to calculate the time dependent stiffness matrix effectively. Accelerated time-dependent deformation of two flywheel rim designs were studied for a period equivalent to 31 years and are compared with hoop reinforcement only composite. Damping of pure resin and T700/epoxy composite lamina and laminate in longitudinal and transverse directions were investigated experimentally and analytically. The effect of aging on damping was also studied by placing samples at 60°C in an oven for extended periods. Damping master curves versus frequency were constructed from individual curves at different temperatures based on the Arrhenius equation. The damping response of the composite lamina was used to predict the response of laminate composites. Analytical results give close numerical values to experimental results from damping of cantilever beam laminated composite samples.
String model for the dynamics of glass-forming liquids
Pazmiño Betancourt, Beatriz A.; Douglas, Jack F.; Starr, Francis W.
2014-01-01
We test the applicability of a living polymerization theory to describe cooperative string-like particle rearrangement clusters (strings) observed in simulations of a coarse-grained polymer melt. The theory quantitatively describes the interrelation between the average string length L, configurational entropy Sconf, and the order parameter for string assembly Φ without free parameters. Combining this theory with the Adam-Gibbs model allows us to predict the relaxation time τ in a lower temperature T range than accessible by current simulations. In particular, the combined theories suggest a return to Arrhenius behavior near Tg and a low T residual entropy, thus avoiding a Kauzmann “entropy crisis.” PMID:24880303
String model for the dynamics of glass-forming liquids.
Pazmiño Betancourt, Beatriz A; Douglas, Jack F; Starr, Francis W
2014-05-28
We test the applicability of a living polymerization theory to describe cooperative string-like particle rearrangement clusters (strings) observed in simulations of a coarse-grained polymer melt. The theory quantitatively describes the interrelation between the average string length L, configurational entropy Sconf, and the order parameter for string assembly Φ without free parameters. Combining this theory with the Adam-Gibbs model allows us to predict the relaxation time τ in a lower temperature T range than accessible by current simulations. In particular, the combined theories suggest a return to Arrhenius behavior near Tg and a low T residual entropy, thus avoiding a Kauzmann "entropy crisis."
Estimating order statistics of network degrees
NASA Astrophysics Data System (ADS)
Chu, J.; Nadarajah, S.
2018-01-01
We model the order statistics of network degrees of big data sets by a range of generalised beta distributions. A three parameter beta distribution due to Libby and Novick (1982) is shown to give the best overall fit for at least four big data sets. The fit of this distribution is significantly better than the fit suggested by Olhede and Wolfe (2012) across the whole range of order statistics for all four data sets.
A mathematical solution for the parameters of three interfering resonances
NASA Astrophysics Data System (ADS)
Han, X.; Shen, C. P.
2018-04-01
The multiple-solution problem in determining the parameters of three interfering resonances from a fit to an experimentally measured distribution is considered from a mathematical viewpoint. It is shown that there are four numerical solutions for a fit with three coherent Breit-Wigner functions. Although explicit analytical formulae cannot be derived in this case, we provide some constraint equations between the four solutions. For the cases of nonrelativistic and relativistic Breit-Wigner forms of amplitude functions, a numerical method is provided to derive the other solutions from that already obtained, based on the obtained constraint equations. In real experimental measurements with more complicated amplitude forms similar to Breit-Wigner functions, the same method can be deduced and performed to get numerical solutions. The good agreement between the solutions found using this mathematical method and those directly from the fit verifies the correctness of the constraint equations and mathematical methodology used. Supported by National Natural Science Foundation of China (NSFC) (11575017, 11761141009), the Ministry of Science and Technology of China (2015CB856701) and the CAS Center for Excellence in Particle Physics (CCEPP)
Anti-Arrhenius cleavage of covalent bonds in bottlebrush macromolecules on substrate
Lebedeva, Natalia V.; Nese, Alper; Sun, Frank C.; Matyjaszewski, Krzysztof; Sheiko, Sergei S.
2012-01-01
Spontaneous degradation of bottlebrush macromolecules on aqueous substrates was monitored by atomic force microscopy. Scission of C─C covalent bonds in the brush backbone occurred due to steric repulsion between the adsorbed side chains, which generated bond tension on the order of several nano-Newtons. Unlike conventional chemical reactions, the rate of bond scission was shown to decrease with temperature. This apparent anti-Arrhenius behavior was caused by a decrease in the surface energy of the underlying substrate upon heating, which results in a corresponding decrease of bond tension in the adsorbed macromolecules. Even though the tension dropped minimally from 2.16 to 1.89 nN, this was sufficient to overpower the increase in the thermal energy (kBT) in the Arrhenius equation. The rate constant of the bond-scission reaction was measured as a function of temperature and surface energy. Fitting the experimental data by a perturbed Morse potential V = V0(1 - e-βx)2 - fx, we determined the depth and width of the potential to be V0 = 141 ± 19 kJ/mol and β-1 = 0.18 ± 0.03 Å, respectively. Whereas the V0 value is in reasonable agreement with the activation energy Ea = 80–220 kJ/mol of mechanical and thermal degradation of organic polymers, it is significantly lower than the dissociation energy of a C─C bond De = 350 kJ/mol. Moreover, the force constant Kx = 2β2V0 = 1.45 ± 0.36 kN/m of a strained bottlebrush along its backbone is markedly larger than the force constant of a C─C bond Kl = 0.44 kN/m, which is attributed to additional stiffness due to deformation of the side chains. PMID:22645366
Hsu, Shu-Hui; Kulasekere, Ravi; Roberson, Peter L
2010-08-05
Film calibration is time-consuming work when dose accuracy is essential while working in a range of photon scatter environments. This study uses the single-target single-hit model of film response to fit the calibration curves as a function of calibration method, processor condition, field size and depth. Kodak XV film was irradiated perpendicular to the beam axis in a solid water phantom. Standard calibration films (one dose point per film) were irradiated at 90 cm source-to-surface distance (SSD) for various doses (16-128 cGy), depths (0.2, 0.5, 1.5, 5, 10 cm) and field sizes (5 × 5, 10 × 10 and 20 × 20 cm²). The 8-field calibration method (eight dose points per film) was used as a reference for each experiment, taken at 95 cm SSD and 5 cm depth. The delivered doses were measured using an Attix parallel plate chamber for improved accuracy of dose estimation in the buildup region. Three fitting methods with one to three dose points per calibration curve were investigated for the field sizes of 5 × 5, 10 × 10 and 20 × 20 cm². The inter-day variation of model parameters (background, saturation and slope) were 1.8%, 5.7%, and 7.7% (1 σ) using the 8-field method. The saturation parameter ratio of standard to 8-field curves was 1.083 ± 0.005. The slope parameter ratio of standard to 8-field curves ranged from 0.99 to 1.05, depending on field size and depth. The slope parameter ratio decreases with increasing depth below 0.5 cm for the three field sizes. It increases with increasing depths above 0.5 cm. A calibration curve with one to three dose points fitted with the model is possible with 2% accuracy in film dosimetry for various irradiation conditions. The proposed fitting methods may reduce workload while providing energy dependence correction in radiographic film dosimetry. This study is limited to radiographic XV film with a Lumisys scanner.
NASA Astrophysics Data System (ADS)
Kleiner, Isabelle; Hougen, Jon T.
2017-06-01
In this talk we report on our progress in trying to make the hybrid Hamiltonian competitive with the pure-tunneling Hamiltonian for treating large-amplitude motions in methylamine. A treatment using the pure-tunneling model has the advantages of: (i) requiring relatively little computer time, (ii) working with relatively uncorrelated fitting parameters, and (iii) yielding in the vast majority of cases fits to experimental measurement accuracy. These advantages are all illustrated in the work published this past year on a gigantic v_{t} = 1 data set for the torsional fundamental band in methyl amine. A treatment using the hybrid model has the advantages of: (i) being able to carry out a global fit involving both v_{t} = 0 and v_{t} = 1 energy levels and (ii) working with fitting parameters that have a clearer physical interpretation. Unfortunately, a treatment using the hybrid model has the great disadvantage of requiring a highly correlated set of fitting parameters to achieve reasonable fitting accuracy, which complicates the search for a good set of molecular fitting parameters and a fit to experimental accuracy. At the time of writing this abstract, we have been able to carry out a fit with J up to 15 that includes all available infrared data in the v_{t} = 1-0 torsional fundamental band, all ground-state microwave data with K up to 10 and J up to 15, and about a hundred microwave lines within the v_{t} = 1 torsional state, achieving weighted root-mean-square (rms) deviations of about 1.4, 2.8, and 4.2 for these three categories of data. We will give an update of this situation at the meeting. I. Gulaczyk, M. Kreglewski, V.-M. Horneman, J. Mol. Spectrosc., in Press (2017).
Kinetics of the Reactions of IO Radicals with NO and NO2
NASA Technical Reports Server (NTRS)
Daykin, E. P.; Wine, P. H.
1997-01-01
A laser flash photolysis-long path absorption technique has been employed to study the kinetics of the reactions of IO radicals with NO and NO2 as a function of temperature and pressure. The IO and NO rate coefficient is independent of pressure over the range 40-200 Torr of N2, and its temperature dependence over the range 242-359 K is adequately described by the Arrhenius expression k(sub 1) = (6.9 +/- 1.7) x 10(exp -12) exp[(328 +/- 71)/T] cu cm/(molecule.s) (errors are 2 sigma, precision only). These Arrhenius parameters are similar to those determined previously for the ClO + NO and BrO + NO reactions. The IO and NO2 association reaction is found to be in the falloff regime over the temperature and pressure ranges investigated (254-354 K and 40-750 Torr of N2). Assuming F(sub c) = 0.4 independent of temperature, a physically reasonable set of falloff parameters which adequately describe the data are k(sub 0) = 7.7 x 10(exp -31)(T/300)(exp -5.0) cm(exp 6)/(molecule(exp 2).s) and k(sub infinity) = 1.55 x 10(exp -11)cu cm/(molecule.s) independent of temperature. The IO + NO2 rate coefficients determined in this study are about a factor of 2 faster than those reported in the only previous study of this reaction.
NASA Astrophysics Data System (ADS)
Alizadeh Nomeli, M.; Riaz, A.
2016-12-01
A new model is developed for geochemical reactions to access dissolution rate of minerals in saline aquifers with respect to saturated concentration of dissolved CO2 as a function of parameters that are dynamically available during computer program execution such as pressure, temperature, and salinity. A general Arrhenius-type equation, with an explicit dependence on the pH of brine, is employed to determine the rates of mineral dissolution. The amount of dissolved CO2 is determined with the help of an accurate PVTx model for the temperature range of 50-100C and pressures up to 600 bar relevant to the geologic sequestration of CO2. We show how activity coefficients for a given salinity condition alters solubility, pH, and reaction rates. We further evaluate the significance of the pre-exponential factor and the reaction order associated with the modified Arrhenius equation to determine the sensitivity of the reaction rates as a function to the pH of the system. It is found that the model can reasonably reproduce experimental data with new parameters that we obtain from sensitivity studies. Using the new rate equation, we investigate geochemically induced alterations of fracture geometry due to mineral dissolution. Finally, we use our model to evaluate the effects of temperature, pressure, and salinity on the actual efficiency of CO2 storage.
Zhao, Jinzhe; Zhao, Qi; Jiang, Yingxu; Li, Weitao; Yang, Yamin; Qian, Zhiyu; Liu, Jia
2018-06-01
Liver thermal ablation techniques have been widely used for the treatment of liver cancer. Kinetic model of damage propagation play an important role for ablation prediction and real-time efficacy assessment. However, practical methods for modeling liver thermal damage are rare. A minimally invasive optical method especially adequate for in situ liver thermal damage modeling is introduced in this paper. Porcine liver tissue was heated by water bath under different temperatures. During thermal treatment, diffuse reflectance spectrum of liver was measured by optical fiber and used to deduce reduced scattering coefficient (μ ' s ). Arrhenius parameters were obtained through non-isothermal heating approach with damage marker of μ ' s . Activation energy (E a ) and frequency factor (A) was deduced from these experiments. A pair of averaged value is 1.200 × 10 5 J mol -1 and 4.016 × 10 17 s -1 . The results were verified for their reasonableness and practicality. Therefore, it is feasible to modeling liver thermal damage based on minimally invasive measurement of optical property and in situ kinetic analysis of damage progress with Arrhenius model. These parameters and this method are beneficial for preoperative planning and real-time efficacy assessment of liver ablation therapy. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
dPotFit: A computer program to fit diatomic molecule spectral data to potential energy functions
NASA Astrophysics Data System (ADS)
Le Roy, Robert J.
2017-01-01
This paper describes program dPotFit, which performs least-squares fits of diatomic molecule spectroscopic data consisting of any combination of microwave, infrared or electronic vibrational bands, fluorescence series, and tunneling predissociation level widths, involving one or more electronic states and one or more isotopologs, and for appropriate systems, second virial coefficient data, to determine analytic potential energy functions defining the observed levels and other properties of each state. Four families of analytical potential functions are available for fitting in the current version of dPotFit: the Expanded Morse Oscillator (EMO) function, the Morse/Long-Range (MLR) function, the Double-Exponential/Long-Range (DELR) function, and the 'Generalized Potential Energy Function' (GPEF) of Šurkus, which incorporates a variety of polynomial functional forms. In addition, dPotFit allows sets of experimental data to be tested against predictions generated from three other families of analytic functions, namely, the 'Hannover Polynomial' (or "X-expansion") function, and the 'Tang-Toennies' and Scoles-Aziz 'HFD', exponential-plus-van der Waals functions, and from interpolation-smoothed pointwise potential energies, such as those obtained from ab initio or RKR calculations. dPotFit also allows the fits to determine atomic-mass-dependent Born-Oppenheimer breakdown functions, and singlet-state Λ-doubling, or 2Σ splitting radial strength functions for one or more electronic states. dPotFit always reports both the 95% confidence limit uncertainty and the "sensitivity" of each fitted parameter; the latter indicates the number of significant digits that must be retained when rounding fitted parameters, in order to ensure that predictions remain in full agreement with experiment. It will also, if requested, apply a "sequential rounding and refitting" procedure to yield a final parameter set defined by a minimum number of significant digits, while ensuring no significant loss of accuracy in the predictions yielded by those parameters.
Ichikawa, Shintaro; Motosugi, Utaroh; Hernando, Diego; Morisaka, Hiroyuki; Enomoto, Nobuyuki; Matsuda, Masanori; Onishi, Hiroshi
2018-04-10
To compare the abilities of three intravoxel incoherent motion (IVIM) imaging approximation methods to discriminate the histological grade of hepatocellular carcinomas (HCCs). Fifty-eight patients (60 HCCs) underwent IVIM imaging with 11 b-values (0-1000 s/mm 2 ). Slow (D) and fast diffusion coefficients (D * ) and the perfusion fraction (f) were calculated for the HCCs using the mean signal intensities in regions of interest drawn by two radiologists. Three approximation methods were used. First, all three parameters were obtained simultaneously using non-linear fitting (method A). Second, D was obtained using linear fitting (b = 500 and 1000), followed by non-linear fitting for D * and f (method B). Third, D was obtained by linear fitting, f was obtained using the regression line intersection and signals at b = 0, and non-linear fitting was used for D * (method C). A receiver operating characteristic analysis was performed to reveal the abilities of these methods to distinguish poorly-differentiated from well-to-moderately-differentiated HCCs. Inter-reader agreements were assessed using intraclass correlation coefficients (ICCs). The measurements of D, D * , and f in methods B and C (Az-value, 0.658-0.881) had better discrimination abilities than did those in method A (Az-value, 0.527-0.607). The ICCs of D and f were good to excellent (0.639-0.835) with all methods. The ICCs of D * were moderate with methods B (0.580) and C (0.463) and good with method A (0.705). The IVIM parameters may vary depending on the fitting methods, and therefore, further technical refinement may be needed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ewsuk, Kevin Gregory; Arguello, Jose Guadalupe, Jr.; Reiterer, Markus W.
2006-02-01
The ease and ability to predict sintering shrinkage and densification with the Skorohod-Olevsky viscous sintering (SOVS) model within a finite-element (FE) code have been improved with the use of an Arrhenius-type viscosity function. The need for a better viscosity function was identified by evaluating SOVS model predictions made using a previously published polynomial viscosity function. Predictions made using the original, polynomial viscosity function do not accurately reflect experimentally observed sintering behavior. To more easily and better predict sintering behavior using FE simulations, a thermally activated viscosity function based on creep theory was used with the SOVS model. In comparison withmore » the polynomial viscosity function, SOVS model predictions made using the Arrhenius-type viscosity function are more representative of experimentally observed viscosity and sintering behavior. Additionally, the effects of changes in heating rate on densification can easily be predicted with the Arrhenius-type viscosity function. Another attribute of the Arrhenius-type viscosity function is that it provides the potential to link different sintering models. For example, the apparent activation energy, Q, for densification used in the construction of the master sintering curve for a low-temperature cofire ceramic dielectric has been used as the apparent activation energy for material flow in the Arrhenius-type viscosity function to predict heating rate-dependent sintering behavior using the SOVS model.« less
NASA Astrophysics Data System (ADS)
Khondok, Piyoros; Sakulkalavek, Aparporn; Suwansukho, Kajpanya
2018-03-01
A simplified and powerful image processing procedures to separate the paddy of KHAW DOK MALI 105 or Thai jasmine rice and the paddy of sticky rice RD6 varieties were proposed. The procedures consist of image thresholding, image chain coding and curve fitting using polynomial function. From the fitting, three parameters of each variety, perimeters, area, and eccentricity, were calculated. Finally, the overall parameters were determined by using principal component analysis. The result shown that these procedures can be significantly separate both varieties.
Temperature dependence of ion transport: the compensated Arrhenius equation.
Petrowsky, Matt; Frech, Roger
2009-04-30
The temperature-dependent conductivity originating in a thermally activated process is often described by a simple Arrhenius expression. However, this expression provides a poor description of the data for organic liquid electrolytes and amorphous polymer electrolytes. Here, we write the temperature dependence of the conductivity as an Arrhenius expression and show that the experimentally observed non-Arrhenius behavior is due to the temperature dependence of the dielectric constant contained in the exponential prefactor. Scaling the experimentally measured conductivities to conductivities at a chosen reference temperature leads to a "compensated" Arrhenius equation that provides an excellent description of temperature-dependent conductivities. A plot of the prefactors as a function of the solvent dielectric constant results in a single master curve for each family of solvents. These data suggest that ion transport in these and related systems is governed by a single activated process differing only in the activation energy for each family of solvents. Connection is made to the shift factor used to describe electrical and mechanical relaxation in a wide range of phenomena, suggesting that this scaling procedure might have broad applications.
Long-Term Trends in Migration Timing Based on Thermal Response of a Temperate Forage Fish
NASA Astrophysics Data System (ADS)
Palamara, L. J.; Manderson, J.; Kohut, J. T.; Snow, A.
2016-02-01
The physiology of many marine animals is tightly coupled to their surrounding fluid environment. Several habitat features, most notably temperature, determine these animals' fitness by affecting their growth, survival, and reproductive success. In temperate regions, many species are mobile and able to track the specific temperatures encompassed by their thermal niches as the regional temperature distribution changes. Butterfish (Peprilus triacanthus), which demonstrate very strong seasonal and temperature-dependent migration patterns in the Mid-Atlantic Bight (MAB), a region exhibiting some of the highest seasonal and interannual temperature variability in the world, is an excellent example of this phenomenon. We developed a thermal niche model for butterfish based on the statistical relationship between catches and measured temperatures from spring and fall NMFS and NEAMAP surveys and several state inshore surveys, and fit parameters to the Boltzmann-Arrhenius function, a simple yet explanatory model of temperature dependence, so that the resulting curve closely matched the statistical relationship. This thermal relationship was coupled to over 30 years of daily shallow-water OI SST (optimal interpolation sea surface temperature) measured by satellite and various in situ platforms, and daily bottom temperatures estimated by a hydrodynamic hindcast ROMS (Regional Ocean Modeling System) model to examine long-term trends in thermal migration triggers into shallow inshore waters in the spring, and out of them to deep offshore wintering habitat in the fall. In many parts of the MAB, the "thermal fall" migration trigger was delayed during later decades of the time series compared to earlier decades. This suggests potential changes in butterfish productivity and life history stages, as well as potential changes in NMFS survey bias, as the ships are unable to tow in shallow waters and will catch most butterfish in deeper waters after the variable migration trigger.
Two-dimensional infrared spectroscopy of supercooled water.
Perakis, Fivos; Hamm, Peter
2011-05-12
We present two-dimensional infrared (2D IR) spectra of the OD stretch vibration of isotope diluted water (HOD/H(2)O) from ambient conditions (293 K) down to the metastable supercooled regime (260 K). We observe that spectral diffusion slows down from 700 fs to 2.6 ps as we lower the temperature. A comparison between measurements performed at the magic angle with those at parallel polarization shows that the 2D IR line shape is affected by the frequency-dependent anisotropy decay in the case of parallel polarization, altering the extracted correlation decay. A fit within the framework of an Arrhenius law reveals an activation energy of E(a) = 6.2 ± 0.2 kcal/mol and a pre-exponential factor of 1/A = 0.02 ± 0.01 fs. Alternatively, a power law fit results in an exponent γ = 2.2 and a singularity temperature T(s) = 221 K. We tentatively conclude that the power law provides the better physical picture to describe the dynamics of liquid water around the freezing point.
On the validity of the Arrhenius equation for electron attachment rate coefficients.
Fabrikant, Ilya I; Hotop, Hartmut
2008-03-28
The validity of the Arrhenius equation for dissociative electron attachment rate coefficients is investigated. A general analysis allows us to obtain estimates of the upper temperature bound for the range of validity of the Arrhenius equation in the endothermic case and both lower and upper bounds in the exothermic case with a reaction barrier. The results of the general discussion are illustrated by numerical examples whereby the rate coefficient, as a function of temperature for dissociative electron attachment, is calculated using the resonance R-matrix theory. In the endothermic case, the activation energy in the Arrhenius equation is close to the threshold energy, whereas in the case of exothermic reactions with an intermediate barrier, the activation energy is found to be substantially lower than the barrier height.
Computer simulation of storm runoff for three watersheds in Albuquerque, New Mexico
Knutilla, R.L.; Veenhuis, J.E.
1994-01-01
Rainfall-runoff data from three watersheds were selected for calibration and verification of the U.S. Geological Survey's Distributed Routing Rainfall-Runoff Model. The watersheds chosen are residentially developed. The conceptually based model uses an optimization process that adjusts selected parameters to achieve the best fit between measured and simulated runoff volumes and peak discharges. Three of these optimization parameters represent soil-moisture conditions, three represent infiltration, and one accounts for effective impervious area. Each watershed modeled was divided into overland-flow segments and channel segments. The overland-flow segments were further subdivided to reflect pervious and impervious areas. Each overland-flow and channel segment was assigned representative values of area, slope, percentage of imperviousness, and roughness coefficients. Rainfall-runoff data for each watershed were separated into two sets for use in calibration and verification. For model calibration, seven input parameters were optimized to attain a best fit of the data. For model verification, parameter values were set using values from model calibration. The standard error of estimate for calibration of runoff volumes ranged from 19 to 34 percent, and for peak discharge calibration ranged from 27 to 44 percent. The standard error of estimate for verification of runoff volumes ranged from 26 to 31 percent, and for peak discharge verification ranged from 31 to 43 percent.
A Person Fit Test for IRT Models for Polytomous Items
ERIC Educational Resources Information Center
Glas, C. A. W.; Dagohoy, Anna Villa T.
2007-01-01
A person fit test based on the Lagrange multiplier test is presented for three item response theory models for polytomous items: the generalized partial credit model, the sequential model, and the graded response model. The test can also be used in the framework of multidimensional ability parameters. It is shown that the Lagrange multiplier…
Biosorption of Basic Green 4 from aqueous solution by Ananas comosus (pineapple) leaf powder.
Chowdhury, Shamik; Chakraborty, Sagnik; Saha, Papita
2011-06-01
Biosorption characteristics of Ananas comosus (pineapple) leaf powder was investigated for decolorization of Basic Green 4 (BG 4), a cationic dye from its aqueous solutions employing a batch experimental set-up. Parameters that influence the sorption process such as pH, biosorbent dosage, contact time, initial dye concentration and temperature were systematically studied. The optimum conditions for removal of BG 4 were found to be pH 9.0, contact time=150 min, biosorbent dosage=5.0 g L(-1), initial dye concentration=50 mg L(-1). The temperature had a strong influence on the biosorption process. Further, the biosorbent was characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and Brunauer, Emmett, Teller (BET) surface area and pore size analysis. Experimental biosorption data were modeled by Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherms. The biosorption process followed the Langmuir isotherm model with high coefficients of correlation (R(2)>0.99) at different temperatures. The pseudo second order kinetic model fitted well in correlation to the experimental results. Activation energy of the biosorption process (E(a)) was found to be 45.79 kJ mol(-1) by using the Arrhenius equation, indicating chemisorption nature of BG 4 sorption onto pineapple leaf powder. Thermodynamic parameters suggest that the biosorption process is spontaneous and exothermic in nature. Overall, the present findings suggest that this environmentally friendly, efficient and low-cost biosorbent may be useful for the removal of BG 4 from aqueous media. Copyright © 2011 Elsevier B.V. All rights reserved.
Item Response Theory Modeling of the Philadelphia Naming Test.
Fergadiotis, Gerasimos; Kellough, Stacey; Hula, William D
2015-06-01
In this study, we investigated the fit of the Philadelphia Naming Test (PNT; Roach, Schwartz, Martin, Grewal, & Brecher, 1996) to an item-response-theory measurement model, estimated the precision of the resulting scores and item parameters, and provided a theoretical rationale for the interpretation of PNT overall scores by relating explanatory variables to item difficulty. This article describes the statistical model underlying the computer adaptive PNT presented in a companion article (Hula, Kellough, & Fergadiotis, 2015). Using archival data, we evaluated the fit of the PNT to 1- and 2-parameter logistic models and examined the precision of the resulting parameter estimates. We regressed the item difficulty estimates on three predictor variables: word length, age of acquisition, and contextual diversity. The 2-parameter logistic model demonstrated marginally better fit, but the fit of the 1-parameter logistic model was adequate. Precision was excellent for both person ability and item difficulty estimates. Word length, age of acquisition, and contextual diversity all independently contributed to variance in item difficulty. Item-response-theory methods can be productively used to analyze and quantify anomia severity in aphasia. Regression of item difficulty on lexical variables supported the validity of the PNT and interpretation of anomia severity scores in the context of current word-finding models.
Estimation of parameters of dose volume models and their confidence limits
NASA Astrophysics Data System (ADS)
van Luijk, P.; Delvigne, T. C.; Schilstra, C.; Schippers, J. M.
2003-07-01
Predictions of the normal-tissue complication probability (NTCP) for the ranking of treatment plans are based on fits of dose-volume models to clinical and/or experimental data. In the literature several different fit methods are used. In this work frequently used methods and techniques to fit NTCP models to dose response data for establishing dose-volume effects, are discussed. The techniques are tested for their usability with dose-volume data and NTCP models. Different methods to estimate the confidence intervals of the model parameters are part of this study. From a critical-volume (CV) model with biologically realistic parameters a primary dataset was generated, serving as the reference for this study and describable by the NTCP model. The CV model was fitted to this dataset. From the resulting parameters and the CV model, 1000 secondary datasets were generated by Monte Carlo simulation. All secondary datasets were fitted to obtain 1000 parameter sets of the CV model. Thus the 'real' spread in fit results due to statistical spreading in the data is obtained and has been compared with estimates of the confidence intervals obtained by different methods applied to the primary dataset. The confidence limits of the parameters of one dataset were estimated using the methods, employing the covariance matrix, the jackknife method and directly from the likelihood landscape. These results were compared with the spread of the parameters, obtained from the secondary parameter sets. For the estimation of confidence intervals on NTCP predictions, three methods were tested. Firstly, propagation of errors using the covariance matrix was used. Secondly, the meaning of the width of a bundle of curves that resulted from parameters that were within the one standard deviation region in the likelihood space was investigated. Thirdly, many parameter sets and their likelihood were used to create a likelihood-weighted probability distribution of the NTCP. It is concluded that for the type of dose response data used here, only a full likelihood analysis will produce reliable results. The often-used approximations, such as the usage of the covariance matrix, produce inconsistent confidence limits on both the parameter sets and the resulting NTCP values.
Predicting activation energy of thermolysis of polynitro arenes through molecular structure.
Keshavarz, Mohammad Hossein; Pouretedal, Hamid Reza; Shokrolahi, Arash; Zali, Abbas; Semnani, Abolfazl
2008-12-15
The paper presents a new method for activation energy or the Arrhenius parameter E(a) of the thermolysis in the condensed state for different polynitro arenes as an important class of energetic molecules. The methodology assumes that E(a) of a polynitro arene with general formula C(a)H(b)N(c)O(d) can be expressed as a function of optimized elemental composition as well as the contribution of specific molecular structural parameters. The new method can predict E(a) of the thermolysis under conditions of Soviet Manometric Method (SMM), which can be related to the other convenient methods. The new correlation has the root mean square (rms) and the average deviations of 13.79 and 11.94kJ/mol, respectively, for 20 polynitro arenes with different molecular structures. The proposed new method can also be used to predict E(a) of three polynitro arenes, i.e. 2,2',2'',4,4',4'',6,6',6''-nonanitro-1,1':3',1''-terphenyl (NONA), 3,3'-diamino-2,2',4,4',6,6'-hexanitro-1,1'-biphenyl-3,3'-diamine (DIPAM) and N,N-bis(2,4-dinitrophenyl)-2,4,6-trinitroaniline (NTFA), which have complex molecular structures.
Constitutive Modeling of High-Temperature Flow Behavior of an Nb Micro-alloyed Hot Stamping Steel
NASA Astrophysics Data System (ADS)
Zhang, Shiqi; Feng, Ding; Huang, Yunhua; Wei, Shizhong; Mohrbacher, Hardy; Zhang, Yue
2016-03-01
The thermal deformation behavior and constitutive models of an Nb micro-alloyed 22MnB5 steel were investigated by conducting isothermal uniaxial tensile tests at the temperature range of 873-1223 K with strain rates of 0.1-10 s-1. The results indicated that the investigated steel showed typical work hardening and dynamic recovery behavior during hot deformation, and the flow stress decreased with a decrease in strain rate and/or an increase in temperature. On the basis of the experimental data, the modified Johnson-Cook (modified JC), modified Norton-Hoff (modified NH), and Arrhenius-type (AT) constitutive models were established for the subject steel. However, the flow stress values predicted by these three models revealed some remarkable deviations from the experimental values for certain experimental conditions. Therefore, a new combined modified Norton-Hoff and Arrhenius-type constitutive model (combined modified NH-AT model), which accurately reflected both the work hardening and dynamic recovery behavior of the subject steel, was developed by introducing the modified parameter k ɛ. Furthermore, the accuracy of these constitutive models was assessed by the correlation coefficient, the average absolute relative error, and the root mean square error, which indicated that the flow stress values computed by the combined modified NH-AT model were highly consistent with the experimental values (R = 0.998, AARE = 1.63%, RMSE = 3.85 MPa). The result confirmed that the combined modified NH-AT model was suitable for the studied Nb micro-alloyed hot stamping steel. Additionally, the practicability of the new model was also verified using finite element simulations in ANSYS/LS-DYNA, and the results confirmed that the new model was practical and highly accurate.
Boer, H M T; Butler, S T; Stötzel, C; Te Pas, M F W; Veerkamp, R F; Woelders, H
2017-11-01
A recently developed mechanistic mathematical model of the bovine estrous cycle was parameterized to fit empirical data sets collected during one estrous cycle of 31 individual cows, with the main objective to further validate the model. The a priori criteria for validation were (1) the resulting model can simulate the measured data correctly (i.e. goodness of fit), and (2) this is achieved without needing extreme, probably non-physiological parameter values. We used a least squares optimization procedure to identify parameter configurations for the mathematical model to fit the empirical in vivo measurements of follicle and corpus luteum sizes, and the plasma concentrations of progesterone, estradiol, FSH and LH for each cow. The model was capable of accommodating normal variation in estrous cycle characteristics of individual cows. With the parameter sets estimated for the individual cows, the model behavior changed for 21 cows, with improved fit of the simulated output curves for 18 of these 21 cows. Moreover, the number of follicular waves was predicted correctly for 18 of the 25 two-wave and three-wave cows, without extreme parameter value changes. Estimation of specific parameters confirmed results of previous model simulations indicating that parameters involved in luteolytic signaling are very important for regulation of general estrous cycle characteristics, and are likely responsible for differences in estrous cycle characteristics between cows.
NASA Astrophysics Data System (ADS)
Kurniadi, Muhamad; Salam, Nur; Kusumaningrum, Annisa; Nursiwi, Asri; Angwar, Mukhamad; Susanto, Agus; Nurhikmat, Asep; Triwiyono, Frediansyah, Andri
2017-01-01
"Nasi Uduk" is one of the Indonesian traditional food made from rice, steamed with coconut milk and seasoning. For optimizing shelf-life, canned "nasi uduk" for military and disaster-response ration, was packed using cylindrical cans of 72,63 × 53,04 mm (Ø × h) in size. One of the important aspects on quality assessment of preserved product was its rancidity. The aim of this research was to determine shelf-life of canned "nasi uduk" using ASLT method of Arrhenius model. Storage temperatures set up at 35, 45 and 55°C for 35 days. Optimization of sterilization process was conducted to achieve the optimum conditions of sterilization. Target lethality value (Fo), microorganism total plate count (TPC) and rancidity levels (TBA) were used as parameters in this research. The results showed that the optimum sterilization conditions were 121 °C for 20 minutes, TPC value of 9.5 × 101 CFU/ml and Fo value 4.14 minutes. Predicted shelf-life of canned "nasi uduk" was 9.6 months which was average TBA value still bellow of the critical point.
NASA Astrophysics Data System (ADS)
Cronin, Nigel J.; Clegg, Peter J.
2005-04-01
Microwave Endometrial Ablation (MEA) is a technique that can be used for the treatment of abnormal uterine bleeding. The procedure involves sweeping a specially designed microwave applicator throughout the uterine cavity to achieve an ideally uniform depth of tissue necrosis of between 5 and 6mm. We have performed a computer analysis of the MEA procedure in which finite element analysis was used to determine the SAR pattern around the applicator. This was followed by a Green Function based solution of the Bioheat equation to determine the resulting induced temperatures. The method developed is applicable to situations involving a moving microwave source, as used in MEA. The validity of the simulation was verified by measurements in a tissue phantom material using a purpose built applicator and a calibrated pulling device. From the calculated temperatures the depth of necrosis was assessed through integration of the resulting rates of cell death estimated using the Arrhenius equation. The Arrhenius parameters used were derived from published data on BHK cells. Good agreement was seen between the calculated depths of cell necrosis and those found in human in-vivo testing.
NASA Astrophysics Data System (ADS)
Meot-Ner (Mautner), Michael; Somogyi, Árpád
2007-11-01
The internal energies of dissociating ions, activated chemically or collisionally, can be estimated using the kinetics of thermal dissociation. The thermal Arrhenius parameters can be combined with the observed dissociation rate of the activated ions using kdiss = Athermalexp(-Ea,thermal/RTeff). This Arrhenius-type relation yields the effective temperature, Teff, at which the ions would dissociate thermally at the same rate, or yield the same product distributions, as the activated ions. In turn, Teff is used to calculate the internal energy of the ions and the energy deposited by the activation process. The method yields an energy deposition efficiency of 10% for a chemical ionization proton transfer reaction and 8-26% for the surface collisions of various peptide ions. Internal energies of ions activated by chemical ionization or by gas phase collisions, and of ions produced by desorption methods such as fast atom bombardment, can be also evaluated. Thermal extrapolation is especially useful for ion-molecule reaction products and for biological ions, where other methods to evaluate internal energies are laborious or unavailable.
NASA Astrophysics Data System (ADS)
Craig, Norman C.; Groner, Peter; Conrad, Andrew R.; Gurusinghe, Ranil M.; Tubergen, Michael
2016-06-01
New measurements of microwave lines (A and E) of propene and its three 13C_1 isotopologues have been made in the 10-22 GHz region with FT accuracy. The revised lines for propene along with many hundreds from the literature were fitted with the ERHAM program for internal rotors to give improved rotational constants. The new constants for propene are A_0 = 46280.2904(16), B_0 = 9305.24260(30), and C_0 = 8134.22685(28) MHz. Lines for the 3-13C_1 species were observed in a pure sample; lines for the 1-13C_1 and 2-13C_1 species were observed in natural abundance. In fitting the limited sets of lines for the 13C_1 species, many of the centrifugal distortion constants and most of the tunneling parameters were transferred from the fit of propene itself with 27 parameters. Improved rotational constants for the 13C_1 species are reported.
Temperature dependence of the NO + O3 reaction rate from 195 to 369 K
NASA Technical Reports Server (NTRS)
Michael, J. V.; Allen, J. E., Jr.; Brobst, W. D.
1981-01-01
The temperature dependence of the NO + O3 reaction rate was examined by means of the fast flow technique. Several different experimental conditions and detection schemes were employed. With excess NO or excess O3, NO2 chemiluminescence was monitored. In addition, with excess O3, NO was followed by fluorescence induced by an NO microwave discharge lamp. The results of the three independent sets of data are compared and found to agree within experimental error, indicating the absence of secondary chemistry which might complicate the kinetics. The data exhibit curvature on an Arrhenius plot; however, the simple Arrhenius expression k = (2.6 + or - 0.8) x 10 to the -12th exp(-1435 + or - 64/T) cu cm/molecule s is an adequate description for T between 195 and 369 K. This result is compared to earlier determinations.
NASA Astrophysics Data System (ADS)
Jiménez-Forteza, Xisco; Keitel, David; Husa, Sascha; Hannam, Mark; Khan, Sebastian; Pürrer, Michael
2017-03-01
Numerical relativity is an essential tool in studying the coalescence of binary black holes (BBHs). It is still computationally prohibitive to cover the BBH parameter space exhaustively, making phenomenological fitting formulas for BBH waveforms and final-state properties important for practical applications. We describe a general hierarchical bottom-up fitting methodology to design and calibrate fits to numerical relativity simulations for the three-dimensional parameter space of quasicircular nonprecessing merging BBHs, spanned by mass ratio and by the individual spin components orthogonal to the orbital plane. Particular attention is paid to incorporating the extreme-mass-ratio limit and to the subdominant unequal-spin effects. As an illustration of the method, we provide two applications, to the final spin and final mass (or equivalently: radiated energy) of the remnant black hole. Fitting to 427 numerical relativity simulations, we obtain results broadly consistent with previously published fits, but improving in overall accuracy and particularly in the approach to extremal limits and for unequal-spin configurations. We also discuss the importance of data quality studies when combining simulations from diverse sources, how detailed error budgets will be necessary for further improvements of these already highly accurate fits, and how this first detailed study of unequal-spin effects helps in choosing the most informative parameters for future numerical relativity runs.
Kinetics of silicide formation over a wide range of heating rates spanning six orders of magnitude
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molina-Ruiz, Manel; Lopeandía, Aitor F.; Gonzalez-Silveira, Marta
Kinetic processes involving intermediate phase formation are often assumed to follow an Arrhenius temperature dependence. This behavior is usually inferred from limited data over narrow temperature intervals, where the exponential dependence is generally fully satisfied. However, direct evidence over wide temperature intervals is experimentally challenging and data are scarce. Here, we report a study of silicide formation between a 12 nm film of palladium and 15 nm of amorphous silicon in a wide range of heating rates, spanning six orders of magnitude, from 0.1 to 10{sup 5 }K/s, or equivalently more than 300 K of variation in reaction temperature. The calorimetric traces exhibit severalmore » distinct exothermic events related to interdiffusion, nucleation of Pd{sub 2}Si, crystallization of amorphous silicon, and vertical growth of Pd{sub 2}Si. Interestingly, the thickness of the initial nucleation layer depends on the heating rate revealing enhanced mass diffusion at the fastest heating rates during the initial stages of the reaction. In spite of this, the formation of the silicide strictly follows an Arrhenius temperature dependence over the whole temperature interval explored. A kinetic model is used to fit the calorimetric data over the complete heating rate range. Calorimetry is complemented by structural analysis through transmission electron microscopy and both standard and in-situ synchrotron X-ray diffraction.« less
Unger, Miriam; Ozaki, Yukihiro; Siesler, Heinz W
2014-01-01
In the present publication, the deuterium/hydrogen (D/H) exchange of liquid D2O exposed to water vapor of the surrounding atmosphere has been studied by variable-temperature Fourier transform near-infrared (FT-NIR) imaging spectroscopy. Apart from the visualization of the exchange process in the time-resolved FT-NIR images, kinetic parameters and the activation energy for this D/H exchange reaction have been derived from the Arrhenius plot of the variable-temperature spectroscopic data.
Ion transport mechanism in glasses: non-Arrhenius conductivity and nonuniversal features.
Murugavel, S; Vaid, C; Bhadram, V S; Narayana, C
2010-10-28
In this article, we report non-Arrhenius behavior in the temperature-dependent dc conductivity of alkali ion conducting silicate glasses well below their glass transition temperature. In contrast to the several fast ion-conducting and binary potassium silicate glasses, these glasses show a positive deviation in the Arrhenius plot. The observed non-Arrhenius behavior is completely reproducible in nature even after prolonged annealing close to the glass transition temperature of the respective glass sample. These results are the manifestation of local structural changes of the silicate network with temperature and give rise to different local environments into which the alkali ions hop, revealed by in situ high-temperature Raman spectroscopy. Furthermore, the present study provides new insights into the strong link between the dynamics of the alkali ions and different sites associated with it in the glasses.
Petrowsky, Matt; Glatzhofer, Daniel T; Frech, Roger
2013-11-21
The dependence of the reaction rate on solvent dielectric constant is examined for the reaction of trihexylamine with 1-bromohexane in a series of 2-ketones over the temperature range 25-80 °C. The rate constant data are analyzed using the compensated Arrhenius formalism (CAF), where the rate constant assumes an Arrhenius-like equation that also contains a dielectric constant dependence in the exponential prefactor. The CAF activation energies are substantially higher than those obtained using the simple Arrhenius equation. A master curve of the data is observed by plotting the prefactors against the solvent dielectric constant. The master curve shows that the reaction rate has a weak dependence on dielectric constant for values approximately less than 10 and increases more rapidly for dielectric constant values greater than 10.
Communication: On the origin of the non-Arrhenius behavior in water reorientation dynamics.
Stirnemann, Guillaume; Laage, Damien
2012-07-21
We combine molecular dynamics simulations and analytic modeling to determine the origin of the non-Arrhenius temperature dependence of liquid water's reorientation and hydrogen-bond dynamics between 235 K and 350 K. We present a quantitative model connecting hydrogen-bond exchange dynamics to local structural fluctuations, measured by the asphericity of Voronoi cells associated with each water molecule. For a fixed local structure the regular Arrhenius behavior is recovered, and the global anomalous temperature dependence is demonstrated to essentially result from a continuous shift in the unimodal structure distribution upon cooling. The non-Arrhenius behavior can thus be explained without invoking an equilibrium between distinct structures. In addition, the large width of the homogeneous structural distribution is shown to cause a growing dynamical heterogeneity and a non-exponential relaxation at low temperature.
Maskless and low-destructive nanofabrication on quartz by friction-induced selective etching
2013-01-01
A low-destructive friction-induced nanofabrication method is proposed to produce three-dimensional nanostructures on a quartz surface. Without any template, nanofabrication can be achieved by low-destructive scanning on a target area and post-etching in a KOH solution. Various nanostructures, such as slopes, hierarchical stages and chessboard-like patterns, can be fabricated on the quartz surface. Although the rise of etching temperature can improve fabrication efficiency, fabrication depth is dependent only upon contact pressure and scanning cycles. With the increase of contact pressure during scanning, selective etching thickness of the scanned area increases from 0 to 2.9 nm before the yield of the quartz surface and then tends to stabilise after the appearance of a wear. Refabrication on existing nanostructures can be realised to produce deeper structures on the quartz surface. Based on Arrhenius fitting of the etching rate and transmission electron microscopy characterization of the nanostructure, fabrication mechanism could be attributed to the selective etching of the friction-induced amorphous layer on the quartz surface. As a maskless and low-destructive technique, the proposed friction-induced method will open up new possibilities for further nanofabrication. PMID:23531381
18F-FLT uptake kinetics in head and neck squamous cell carcinoma: a PET imaging study.
Liu, Dan; Chalkidou, Anastasia; Landau, David B; Marsden, Paul K; Fenwick, John D
2014-04-01
To analyze the kinetics of 3(')-deoxy-3(')-[F-18]-fluorothymidine (18F-FLT) uptake by head and neck squamous cell carcinomas and involved nodes imaged using positron emission tomography (PET). Two- and three-tissue compartment models were fitted to 12 tumor time-activity-curves (TACs) obtained for 6 structures (tumors or involved nodes) imaged in ten dynamic PET studies of 1 h duration, carried out for five patients. The ability of the models to describe the data was assessed using a runs test, the Akaike information criterion (AIC) and leave-one-out cross-validation. To generate parametric maps the models were also fitted to TACs of individual voxels. Correlations between maps of different parameters were characterized using Pearson'sr coefficient; in particular the phosphorylation rate-constants k3-2tiss and k5 of the two- and three-tissue models were studied alongside the flux parameters KFLT- 2tiss and KFLT of these models, and standardized uptake values (SUV). A methodology based on expectation-maximization clustering and the Bayesian information criterion ("EM-BIC clustering") was used to distil the information from noisy parametric images. Fits of two-tissue models 2C3K and 2C4K and three-tissue models 3C5K and 3C6K comprising three, four, five, and six rate-constants, respectively, pass the runs test for 4, 8, 10, and 11 of 12 tumor TACs. The three-tissue models have lower AIC and cross-validation scores for nine of the 12 tumors. Overall the 3C6K model has the lowest AIC and cross-validation scores and its fitted parameter values are of the same orders of magnitude as literature estimates. Maps of KFLT and KFLT- 2tiss are strongly correlated (r = 0.85) and also correlate closely with SUV maps (r = 0.72 for KFLT- 2tiss, 0.64 for KFLT). Phosphorylation rate-constant maps are moderately correlated with flux maps (r = 0.48 for k3-2tiss vs KFLT- 2tiss and r = 0.68 for k5 vs KFLT); however, neither phosphorylation rate-constant correlates significantly with SUV. EM-BIC clustering reduces the parametric maps to a small number of levels--on average 5.8, 3.5, 3.4, and 1.4 for KFLT- 2tiss, KFLT, k3-2tiss, and k5. This large simplification is potentially useful for radiotherapy dose-painting, but demonstrates the high noise in some maps. Statistical simulations show that voxel level noise degrades TACs generated from the 3C6K model sufficiently that the average AIC score, parameter bias, and total uncertainty of 2C4K model fits are similar to those of 3C6K fits, whereas at the whole tumor level the scores are lower for 3C6K fits. For the patients studied here, whole tumor FLT uptake time-courses are represented better overall by a three-tissue than by a two-tissue model. EM-BIC clustering simplifies noisy parametric maps, providing the best description of the underlying information they contain and is potentially useful for radiotherapy dose-painting. However, the clustering highlights the large degree of noise present in maps of the phosphorylation rate-constantsk5 and k3-2tiss, which are conceptually tightly linked to cellular proliferation. Methods must be found to make these maps more robust-either by constraining other model parameters or modifying dynamic imaging protocols. © 2014 American Association of Physicists in Medicine.
Critical elements on fitting the Bayesian multivariate Poisson Lognormal model
NASA Astrophysics Data System (ADS)
Zamzuri, Zamira Hasanah binti
2015-10-01
Motivated by a problem on fitting multivariate models to traffic accident data, a detailed discussion of the Multivariate Poisson Lognormal (MPL) model is presented. This paper reveals three critical elements on fitting the MPL model: the setting of initial estimates, hyperparameters and tuning parameters. These issues have not been highlighted in the literature. Based on simulation studies conducted, we have shown that to use the Univariate Poisson Model (UPM) estimates as starting values, at least 20,000 iterations are needed to obtain reliable final estimates. We also illustrated the sensitivity of the specific hyperparameter, which if it is not given extra attention, may affect the final estimates. The last issue is regarding the tuning parameters where they depend on the acceptance rate. Finally, a heuristic algorithm to fit the MPL model is presented. This acts as a guide to ensure that the model works satisfactorily given any data set.
Fuzzy Performance between Surface Fitting and Energy Distribution in Turbulence Runner
Liang, Zhongwei; Liu, Xiaochu; Ye, Bangyan; Brauwer, Richard Kars
2012-01-01
Because the application of surface fitting algorithms exerts a considerable fuzzy influence on the mathematical features of kinetic energy distribution, their relation mechanism in different external conditional parameters must be quantitatively analyzed. Through determining the kinetic energy value of each selected representative position coordinate point by calculating kinetic energy parameters, several typical algorithms of complicated surface fitting are applied for constructing microkinetic energy distribution surface models in the objective turbulence runner with those obtained kinetic energy values. On the base of calculating the newly proposed mathematical features, we construct fuzzy evaluation data sequence and present a new three-dimensional fuzzy quantitative evaluation method; then the value change tendencies of kinetic energy distribution surface features can be clearly quantified, and the fuzzy performance mechanism discipline between the performance results of surface fitting algorithms, the spatial features of turbulence kinetic energy distribution surface, and their respective environmental parameter conditions can be quantitatively analyzed in detail, which results in the acquirement of final conclusions concerning the inherent turbulence kinetic energy distribution performance mechanism and its mathematical relation. A further turbulence energy quantitative study can be ensured. PMID:23213287
Li, Jian V; Johnston, Steven W; Yan, Yanfa; Levi, Dean H
2010-03-01
Thermally activated processes are characterized by two key quantities, activation energy (E(a)) and pre-exponential factor (nu(0)), which may be temperature dependent. The accurate measurement of E(a), nu(0), and their temperature dependence is critical for understanding the thermal activation mechanisms of non-Arrhenius processes. However, the classic 1D Arrhenius plot-based methods cannot unambiguously measure E(a), nu(0), and their temperature dependence due to the mathematical impossibility of resolving two unknown 1D arrays from one 1D experimental data array. Here, we propose a 2D Arrhenius plot method to solve this fundamental problem. Our approach measures E(a) at any temperature from matching the first and second moments of the data calculated with respect to temperature and rate in the 2D temperature-rate plane, and therefore is able to unambiguously solve E(a), nu(0), and their temperature dependence. The case study of deep level emission in a Cu(In,Ga)Se(2) solar cell using the 2D Arrhenius plot method reveals clear temperature dependent behavior of E(a) and nu(0), which has not been observable by its 1D predecessors.
Three-dimensional orbit and physical parameters of HD 6840
NASA Astrophysics Data System (ADS)
Wang, Xiao-Li; Ren, Shu-Lin; Fu, Yan-Ning
2016-02-01
HD 6840 is a double-lined visual binary with an orbital period of ˜7.5 years. By fitting the speckle interferometric measurements made by the 6 m BTA telescope and 3.5 m WIYN telescope, Balega et al. gave a preliminary astrometric orbital solution of the system in 2006. Recently, Griffin derived a precise spectroscopic orbital solution from radial velocities observed with OPH and Cambridge Coravel. However, due to the low precision of the determined orbital inclination, the derived component masses are not satisfying. By adding the newly collected astrometric data in the Fourth Catalog of Interferometric Measurements of Binary Stars, we give a three-dimensional orbit solution with high precision and derive the preliminary physical parameters of HD 6840 via a simultaneous fit including both astrometric and radial velocity measurements.
The Extended Erlang-Truncated Exponential distribution: Properties and application to rainfall data.
Okorie, I E; Akpanta, A C; Ohakwe, J; Chikezie, D C
2017-06-01
The Erlang-Truncated Exponential ETE distribution is modified and the new lifetime distribution is called the Extended Erlang-Truncated Exponential EETE distribution. Some statistical and reliability properties of the new distribution are given and the method of maximum likelihood estimate was proposed for estimating the model parameters. The usefulness and flexibility of the EETE distribution was illustrated with an uncensored data set and its fit was compared with that of the ETE and three other three-parameter distributions. Results based on the minimized log-likelihood ([Formula: see text]), Akaike information criterion (AIC), Bayesian information criterion (BIC) and the generalized Cramér-von Mises [Formula: see text] statistics shows that the EETE distribution provides a more reasonable fit than the one based on the other competing distributions.
Dalby, Andrew; Shamsir, Mohd Shahir
2015-01-01
Molecular dynamics simulations have been used extensively to model the folding and unfolding of proteins. The rates of folding and unfolding should follow the Arrhenius equation over a limited range of temperatures. This study shows that molecular dynamic simulations of the unfolding of crambin between 500K and 560K do follow the Arrhenius equation. They also show that while there is a large amount of variation between the simulations the average values for the rate show a very high degree of correlation.
Dalby, Andrew; Shamsir, Mohd Shahir
2015-01-01
Molecular dynamics simulations have been used extensively to model the folding and unfolding of proteins. The rates of folding and unfolding should follow the Arrhenius equation over a limited range of temperatures. This study shows that molecular dynamic simulations of the unfolding of crambin between 500K and 560K do follow the Arrhenius equation. They also show that while there is a large amount of variation between the simulations the average values for the rate show a very high degree of correlation. PMID:26539292
Rujkorakarn, Rong; Tanaka, Fumio
2009-01-01
The observed rates of photo-induced electron transfer (ET) from N,N'-dimethylaniline (DMA) to the excited pyrene (Py) in confined systems of pyrene-(CH(2))(n)-N,N'- dimethylaniline (PnD: n=1-3) were studied by molecular dynamic simulation (MD) and three kinds of electron transfer theories. ET parameters contained in Marcus theory (M theory), Bixon and Jortner theory (BJ theory) and Kakitani and Mataga theory (KM theory) were determined so as to fit the calculated fluorescence intensities with those obtained by the observed ET rates, according to a non-linear least squares method. Three-dimensional profiles of logarithm of calculated ET rates depending on two of three ET parameters, R, epsilon(0) and -DeltaG degrees were systematically examined with best-fit ET parameters of P1D. Bell shape dependencies of ET rate were predicted on R and on epsilon(0), and on -DeltaG degrees as well, by M theory and KM theory. The profiles of logarithm of ET rate calculated by BJ theory exhibited oscillatory dependencies not only on -DeltaG degrees , but also on R and on epsilon(0). Relationship between ET state and charge transfer complex was discussed with BJ theory.
Inference of missing data and chemical model parameters using experimental statistics
NASA Astrophysics Data System (ADS)
Casey, Tiernan; Najm, Habib
2017-11-01
A method for determining the joint parameter density of Arrhenius rate expressions through the inference of missing experimental data is presented. This approach proposes noisy hypothetical data sets from target experiments and accepts those which agree with the reported statistics, in the form of nominal parameter values and their associated uncertainties. The data exploration procedure is formalized using Bayesian inference, employing maximum entropy and approximate Bayesian computation methods to arrive at a joint density on data and parameters. The method is demonstrated in the context of reactions in the H2-O2 system for predictive modeling of combustion systems of interest. Work supported by the US DOE BES CSGB. Sandia National Labs is a multimission lab managed and operated by Nat. Technology and Eng'g Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell Intl, for the US DOE NCSA under contract DE-NA-0003525.
Some Empirical Evidence for Latent Trait Model Selection.
ERIC Educational Resources Information Center
Hutten, Leah R.
The results of this study suggest that for purposes of estimating ability by latent trait methods, the Rasch model compares favorably with the three-parameter logistic model. Using estimated parameters to make predictions about 25 actual number-correct score distributions with samples of 1,000 cases each, those predicted by the Rasch model fit the…
TransFit: Finite element analysis data fitting software
NASA Technical Reports Server (NTRS)
Freeman, Mark
1993-01-01
The Advanced X-Ray Astrophysics Facility (AXAF) mission support team has made extensive use of geometric ray tracing to analyze the performance of AXAF developmental and flight optics. One important aspect of this performance modeling is the incorporation of finite element analysis (FEA) data into the surface deformations of the optical elements. TransFit is software designed for the fitting of FEA data of Wolter I optical surface distortions with a continuous surface description which can then be used by SAO's analytic ray tracing software, currently OSAC (Optical Surface Analysis Code). The improved capabilities of Transfit over previous methods include bicubic spline fitting of FEA data to accommodate higher spatial frequency distortions, fitted data visualization for assessing the quality of fit, the ability to accommodate input data from three FEA codes plus other standard formats, and options for alignment of the model coordinate system with the ray trace coordinate system. TransFit uses the AnswerGarden graphical user interface (GUI) to edit input parameters and then access routines written in PV-WAVE, C, and FORTRAN to allow the user to interactively create, evaluate, and modify the fit. The topics covered include an introduction to TransFit: requirements, designs philosophy, and implementation; design specifics: modules, parameters, fitting algorithms, and data displays; a procedural example; verification of performance; future work; and appendices on online help and ray trace results of the verification section.
The Development of the Arrhenius Equation.
ERIC Educational Resources Information Center
Laidler, Keith J.
1984-01-01
Traces the development of the Arrhenius equation from its beginning, examining the more important alternate proposals and the work that supported them. Aside from its historical interest, this examination affords insight into how scientific progress is made. (JN)
Interactive Classroom Graphics--Simulating Non-Linear Arrhenius Plots.
ERIC Educational Resources Information Center
Ben-Zion, M.; Hoz, S.
1980-01-01
Describes two simulation programs using an interactive graphic display terminal that were developed for a course in physical organic chemistry. Demonstrates the energetic conditions that give rise to deviations from linearity in the Arrhenius equation. (CS)
Simonov, Sergey; Zorina, Leokadiya; Wzietek, Pawel; Rodríguez-Fortea, Antonio; Canadell, Enric; Mézière, Cécile; Bastien, Guillaume; Lemouchi, Cyprien; Garcia-Garibay, Miguel A; Batail, Patrick
2018-06-13
Here we present a study where what can be seen as a static modulation wave encompassing four successive arrays of interacting iodine atoms in crystalline 1,4-Bis((4'-(iodoethynyl)phenyl) ethynyl)bicyclo[2,2,2]octane rotors changes the structure from one-half molecule to three-and-a-half molecules in the asymmetric unit below a phase transition at 105 K. The remarkable finding is that the total 1 H spin-lattice relaxation rate, T 1 -1 , of unprecedented complexity to date in molecular rotors, is the weighted sum of the relaxation rates of the four contributing rotors relaxation rates, each with distinguishable exchange frequencies reflecting Arrhenius parameters with different activation barriers ( E a ) and attempt frequencies (τ o -1 ). This allows us to show in tandem with rotor-environment interaction energy calculations how the dynamics of molecular rotors are able to decode structural information from their surroundings with remarkable nanoscale precision.
Lu, Dianchen; Ramzan, M; Ullah, Naeem; Chung, Jae Dong; Farooq, Umer
2017-12-05
A numerical investigation of steady three dimensional nanofluid flow carrying effects of gyrotactic microorganism with anisotropic slip condition along a moving plate near a stagnation point is conducted. Additionally, influences of Arrhenius activation energy, joule heating accompanying binary chemical reaction and viscous dissipation are also taken into account. A system of nonlinear differential equations obtained from boundary layer partial differential equations is found by utilization of apposite transformations. RK fourth and fifth order technique of Maple software is engaged to acquire the solution of the mathematical model governing the presented fluid flow. A Comparison with previously done study is also made and a good agreement is achieved with existing results; hence reliable results are being presented. Evaluations are carried out for involved parameters graphically against velocity, temperature, concentration fields, microorganism distribution, density number, local Nusselt and Sherwood numbers. It is detected that microorganism distribution exhibit diminishing behavior for rising values of bio-convection Lewis and Peclet numbers.
Escherichia coli Survival in, and Release from, White-Tailed Deer Feces
Fry, Jessica; Ives, Rebecca L.; Rose, Joan B.
2014-01-01
White-tailed deer are an important reservoir for pathogens that can contribute a large portion of microbial pollution in fragmented agricultural and forest landscapes. The scarcity of experimental data on survival of microorganisms in and release from deer feces makes prediction of their fate and transport less reliable and development of efficient strategies for environment protection more difficult. The goal of this study was to estimate parameters for modeling Escherichia coli survival in and release from deer (Odocoileus virginianus) feces. Our objectives were as follows: (i) to measure survival of E. coli in deer pellets at different temperatures, (ii) to measure kinetics of E. coli release from deer pellets at different rainfall intensities, and (iii) to estimate parameters of models describing survival and release of microorganisms from deer feces. Laboratory experiments were conducted to study E. coli survival in deer pellets at three temperatures and to estimate parameters of Chick's exponential model with temperature correction based on the Arrhenius equation. Kinetics of E. coli release from deer pellets were measured at two rainfall intensities and used to derive the parameters of Bradford-Schijven model of bacterial release. The results showed that parameters of the survival and release models obtained for E. coli in this study substantially differed from those obtained by using other source materials, e.g., feces of domestic animals and manures. This emphasizes the necessity of comprehensive studies of survival of naturally occurring populations of microorganisms in and release from wildlife animal feces in order to achieve better predictions of microbial fate and transport in fragmented agricultural and forest landscapes. PMID:25480751
Schnier, Paul D.; Price, William D.; Strittmatter, Eric F.; Williams, Evan R.
2005-01-01
The dissociation kinetics of protonated leucine enkephalin and its proton and alkali metal bound dimers were investigated by blackbody infrared radiative dissociation in a Fourier-transform mass spectrometer. From the temperature dependence of the unimolecular dissociation rate constants, Arrhenius activation parameters in the zero-pressure limit are obtained. Protonated leucine enkephalin dissociates to form b4 and (M−H2O)+ ions with an average activation energy (Ea) of 1.1 eV and an A factor of 1010.5 s−1. The value of the A factor indicates that these dissociation processes are rearrangements. The b4 ions subsequently dissociate to form a4 ions via a process with a relatively high activation energy (1.3 eV), but one that is entropically favored. For the cationized dimers, the thermal stability decreases with increasing cation size, consistent with a simple electrostatic interaction in these noncovalent ion–molecule complexes. The Ea and A factors are indistinguishable within experimental error with values of ~1.5 eV and 1017 s−1, respectively. Although not conclusive, results from master equation modeling indicate that all these BIRD processes, except for b4 → a4, are in the rapid energy exchange limit. In this limit, the internal energy of the precursor ion population is given by a Boltzmann distribution and information about the energetics and dynamics of the reaction are obtained directly from the measured Arrhenius parameters. PMID:16554908
Li, Jun; Guo, Hua
2018-03-15
Thermal rate coefficients for the title reaction and its various isotopologues are computed using a tunneling-corrected transition-state theory on a global potential energy surface recently developed by fitting a large number of high-level ab initio points. The calculated rate coefficients are found to agree well with the measured ones in a wide temperature range, validating the accuracy of the potential energy surface. Strong non-Arrhenius effects are found at low temperatures. In addition, the calculations reproduced the primary and secondary kinetic isotope effects. These results confirm the strong influence of tunneling to this heavy-light-heavy hydrogen abstraction reaction.
NASA Astrophysics Data System (ADS)
Yaney, Perry P.; Ouchen, Fahima; Grote, James G.
2009-08-01
DC resistivity studies were carried out on biopolymer films of DNA-CTMA and silk fibroin, and on selected traditional polymer films, including PMMA and APC. Films of DNA-CTMA versus molecular weight and with conductive dopants PCBM, BAYTRON P and ammonium tetrachloroplatinate are reported. The films were spin coated on glass slides configured for measurements of volume dc resistance. The measurements used the alternating polarity method to record the applied voltage-dependent current independent of charging and background currents. The Arrhenius equation plus a constant was fitted to the conductivity versus temperature data of the polymers and the non-doped DNA-based biopolymers with activation energies ranging from 0.8 to 1.4 eV.
3D Material Response Analysis of PICA Pyrolysis Experiments
NASA Technical Reports Server (NTRS)
Oliver, Brandon A.
2017-01-01
Primarily interested in improving ablation modeling for use in inverse reconstruction of flight environments on ablative heat shields. Ablation model is essentially a component of the heat flux sensor, so model uncertainties lead to measurement uncertainties. Non-equilibrium processes have been known to be significant in low density ablators for a long time, but increased accuracy requirements of the reconstruction process necessitates incorporating this physical effect. Attempting to develop a pyrolysis model for implementation in material response based on the PICA data produced by Bessire and Minton. Pyrolysis gas species molar yields as a function of temperature and heating rate. Several problems encountered while trying to fit Arrhenius models to the data led to further investigation of the experimental setup.
The Arrhenius equation revisited.
Peleg, Micha; Normand, Mark D; Corradini, Maria G
2012-01-01
The Arrhenius equation has been widely used as a model of the temperature effect on the rate of chemical reactions and biological processes in foods. Since the model requires that the rate increase monotonically with temperature, its applicability to enzymatic reactions and microbial growth, which have optimal temperature, is obviously limited. This is also true for microbial inactivation and chemical reactions that only start at an elevated temperature, and for complex processes and reactions that do not follow fixed order kinetics, that is, where the isothermal rate constant, however defined, is a function of both temperature and time. The linearity of the Arrhenius plot, that is, Ln[k(T)] vs. 1/T where T is in °K has been traditionally considered evidence of the model's validity. Consequently, the slope of the plot has been used to calculate the reaction or processes' "energy of activation," usually without independent verification. Many experimental and simulated rate constant vs. temperature relationships that yield linear Arrhenius plots can also be described by the simpler exponential model Ln[k(T)/k(T(reference))] = c(T-T(reference)). The use of the exponential model or similar empirical alternative would eliminate the confusing temperature axis inversion, the unnecessary compression of the temperature scale, and the need for kinetic assumptions that are hard to affirm in food systems. It would also eliminate the reference to the Universal gas constant in systems where a "mole" cannot be clearly identified. Unless proven otherwise by independent experiments, one cannot dismiss the notion that the apparent linearity of the Arrhenius plot in many food systems is due to a mathematical property of the model's equation rather than to the existence of a temperature independent "energy of activation." If T+273.16°C in the Arrhenius model's equation is replaced by T+b, where the numerical value of the arbitrary constant b is substantially larger than T and T(reference), the plot of Ln k(T) vs. 1/(T+b) will always appear almost perfectly linear. Both the modified Arrhenius model version having the arbitrary constant b, Ln[k(T)/k(T(reference)) = a[1/ (T(reference)+b)-1/ (T+b)], and the exponential model can faithfully describe temperature dependencies traditionally described by the Arrhenius equation without the assumption of a temperature independent "energy of activation." This is demonstrated mathematically and with computer simulations, and with reprocessed classical kinetic data and published food results.
NASA Astrophysics Data System (ADS)
Gu, Yueqing; Bourke, Vincent; Kim, Jae Gwan; Xia, Mengna; Constantinescu, Anca; Mason, Ralph P.; Liu, Hanli
2003-07-01
Three oxygen-sensitive parameters (arterial hemoglobin oxygen saturation SaO2, tumor vascular oxygenated hemoglobin concentration [HbO2], and tumor oxygen tension pO2) were measured simultaneously by three different optical techniques (pulse oximeter, near infrared spectroscopy, and FOXY) to evaluate dynamic responses of breast tumors to carbogen (5% CO2 and 95% O2) intervention. All three parameters displayed similar trends in dynamic response to carbogen challenge, but with different response times. These response times were quantified by the time constants of the exponential fitting curves, revealing the immediate and the fastest response from the arterial SaO2, followed by changes in global tumor vascular [HbO2], and delayed responses for pO2. The consistency of the three oxygen-sensitive parameters demonstrated the ability of NIRS to monitor therapeutic interventions for rat breast tumors in-vivo in real time.
The influence of cold on the recovery of three neuromuscular blocking agents in man.
England, A J; Wu, X; Richards, K M; Redai, I; Feldman, S A
1996-03-01
The Arrhenius hypothesis suggests that change in temperature has a less marked effect on the rate of physical processes than on biological reactions. We have investigated the process underlying recovery from neuromuscular block in man by studying the effect of cooling on the rate of recovery from depolarising and non-depolarising block. Vecuronium, rocuronium and decamethonium (C10) neuromuscular block were investigated using the isolated forearm technique on awake human volunteers. In these experiments, one arm was cooled whilst the other was used as control. Moderate hypothermia decreased the rate of recovery from all three agents, but this was significantly less marked with the depolarising drug. The mean Q10 (the anticipated change in rate of a reaction across of 10 degrees C temperature gradient) of the rate of recovery for vecuronium was 3.21, rocuronium 2.86 and decamethonium 1.29. This suggests a different process in the recovery of these two types of drug. According to the Arrhenius hypothesis this would suggest that the recovery from non-depolarising drugs is likely to involve a biochemical mechanism and that recovery from decamethonium is controlled by a physical process.
A Comparison of the Fit of Empirical Data to Two Latent Trait Models. Report No. 92.
ERIC Educational Resources Information Center
Hutten, Leah R.
Goodness of fit of raw test score data were compared, using two latent trait models: the Rasch model and the Birnbaum three-parameter logistic model. Data were taken from various achievement tests and the Scholastic Aptitude Test (Verbal). A minimum sample size of 1,000 was required, and the minimum test length was 40 items. Results indicated that…
Tran, Thuy Thanh; Mittal, Aditya; Aldinger, Tanya; Polli, Joseph W.; Ayrton, Andrew; Ellens, Harma; Bentz, Joe
2005-01-01
The human multi-drug resistance membrane transporter, P-glycoprotein, or P-gp, has been extensively studied due to its importance to human health and disease. Thus far, the kinetic analysis of P-gp transport has been limited to steady-state Michaelis-Menten approaches or to compartmental models, neither of which can prove molecular mechanisms. Determination of the elementary kinetic rate constants of transport will be essential to understanding how P-gp works. The experimental system we use is a confluent monolayer of MDCKII-hMDR1 cells that overexpress P-gp. It is a physiologically relevant model system, and transport is measured without biochemical manipulations of P-gp. The Michaelis-Menten mass action reaction is used to model P-gp transport. Without imposing the steady-state assumptions, this reaction depends upon several parameters that must be simultaneously fitted. An exhaustive fitting of transport data to find all possible parameter vectors that best fit the data was accomplished with a reasonable computation time using a hierarchical algorithm. For three P-gp substrates (amprenavir, loperamide, and quinidine), we have successfully fitted the elementary rate constants, i.e., drug association to P-gp from the apical membrane inner monolayer, drug dissociation back into the apical membrane inner monolayer, and drug efflux from P-gp into the apical chamber, as well as the density of efflux active P-gp. All three drugs had overlapping ranges for the efflux active P-gp, which was a benchmark for the validity of the fitting process. One novel finding was that the association to P-gp appears to be rate-limited solely by drug lateral diffusion within the inner monolayer of the plasma membrane for all three drugs. This would be expected if P-gp structure were open to the lipids of the apical membrane inner monolayer, as has been suggested by recent structural studies. The fitted kinetic parameters show how P-gp efflux of a wide range of xenobiotics has been maximized. PMID:15501934
Bayesian Estimation in the One-Parameter Latent Trait Model.
1980-03-01
Journal of Mathematical and Statistical Psychology , 1973, 26, 31-44. (a) Andersen, E. B. A goodness of fit test for the Rasch model. Psychometrika, 1973, 28...technique for estimating latent trait mental test parameters. Educational and Psychological Measurement, 1976, 36, 705-715. Lindley, D. V. The...Lord, F. M. An analysis of verbal Scholastic Aptitude Test using Birnbaum’s three-parameter logistic model. Educational and Psychological
Utilization of Expert Knowledge in a Multi-Objective Hydrologic Model Automatic Calibration Process
NASA Astrophysics Data System (ADS)
Quebbeman, J.; Park, G. H.; Carney, S.; Day, G. N.; Micheletty, P. D.
2016-12-01
Spatially distributed continuous simulation hydrologic models have a large number of parameters for potential adjustment during the calibration process. Traditional manual calibration approaches of such a modeling system is extremely laborious, which has historically motivated the use of automatic calibration procedures. With a large selection of model parameters, achieving high degrees of objective space fitness - measured with typical metrics such as Nash-Sutcliffe, Kling-Gupta, RMSE, etc. - can easily be achieved using a range of evolutionary algorithms. A concern with this approach is the high degree of compensatory calibration, with many similarly performing solutions, and yet grossly varying parameter set solutions. To help alleviate this concern, and mimic manual calibration processes, expert knowledge is proposed for inclusion within the multi-objective functions, which evaluates the parameter decision space. As a result, Pareto solutions are identified with high degrees of fitness, but also create parameter sets that maintain and utilize available expert knowledge resulting in more realistic and consistent solutions. This process was tested using the joint SNOW-17 and Sacramento Soil Moisture Accounting method (SAC-SMA) within the Animas River basin in Colorado. Three different elevation zones, each with a range of parameters, resulted in over 35 model parameters simultaneously calibrated. As a result, high degrees of fitness were achieved, in addition to the development of more realistic and consistent parameter sets such as those typically achieved during manual calibration procedures.
NASA Technical Reports Server (NTRS)
Garvin, J. B.; Grosfils, E. B.; Sakimoto, S. E. H.
2000-01-01
This study combines MOLA altimetry with photographic imagery to begin assessing the extent to which sedimentary and volcanic processes have affected impact crater morphology in the Arrhenius region of Mars.
Smith, Geoff; Arshad, Muhammad Sohail; Polygalov, Eugene; Ermolina, Irina
2013-11-01
Impedance spectroscopy has been used for the measurement of the glass transition of a 10 % maltodextrin solution contained within a glass vial, with externally attached electrodes. Features of the pseudo-relaxation process, associated with the composite impedance of the glass vial-solution assembly, were characterised by the peak amplitude, C(peak)(″), and peak frequency, f(peak), of the capacitance spectra and the equivalent circuit elements that model the impedance spectra (i.e. the solution resistance and solution capacitance) and monitored every 3 min during re-heating of the solution. The time derivatives of all four parameters studied provided a glass transition in close agreement with DSC measurements (-17 °C) and at a precision of ± 0.5 °C. The temperature dependencies of the solution resistance and peak frequency were then characterised with the Arrhenius and Vogel-Fulcher-Tammann fit functions, at temperatures below and above Tg, respectively. The energy of activation (below Tg) was estimated at ~20 kJ mol(-1), and the fragility index (If) of the glass forming liquid (above Tg) was estimated at 0.9. The significance of the fragility index to the development, optimisation and control of the freeze-drying cycle is highlighted. Copyright © 2013 Elsevier B.V. All rights reserved.
Gao, Yide; Alecu, I M; Hsieh, P-C; Morgan, Brad P; Marshall, Paul; Krasnoperov, Lev N
2006-06-01
The rate constant for Cl + NH3 --> HCl + NH2 has been measured over 290-570 K by the time-resolved resonance fluorescence technique. Ground-state Cl atoms were generated by 193 nm excimer laser photolysis of CCl4 and reacted under pseudo-first-order conditions with excess NH3. The forward rate constant was fit by the expression k1 = (1.08 +/- 0.05) x 10(-11) exp(-11.47 +/- 0.16 kJ mol(-1)/RT) cm3 molecule(-1) s(-1), where the uncertainties in the Arrhenius parameters are +/-1 sigma and the 95% confidence limits for k1 are +/-11%. To rationalize the activation energy, which is 7.4 kJ mol(-1) below the endothermicity in the middle of the 1/T range, the potential energy surface was characterized with MPWB1K/6-31++G(2df,2p) theory. The products NH2 + HCl form a hydrogen-bonded adduct, separated from Cl + NH3 by a transition state lower in energy than the products. The rate constant for the reverse process k(-1) was derived via modified transition state theory, and the computed k(-1) exhibits a negative activation energy, which in combination with the experimental equilibrium constant yields k1 in fair accord with experiment.
Atomistic Simulations of Detonation Instabilities in Condensed Phase Systems
NASA Astrophysics Data System (ADS)
Kober, Edward; Heim, Andrew; Germann, Timothy; Jensen, Niels
2007-06-01
We report the results of simulations of condensed phase detonation phenomena using a model diatomic system: 2AB -> A2 + B2. The initial set of parameters for this system corresponded to the Model 0 set of C. White et al, which exhibits a steady, Chapman-Jouget (CJ) detonation structure with a reaction zone length of 30-100 å. This has a highly compressed CJ state (V/V0˜0.5) that does not consist of discrete molecular species. The potential form was modified so that a more molecular CJ state resulted, consistent with the models for conventional organic explosives. The new system has a less dense CJ state (V/V0˜0.8), and the reaction zone was substantially extended. The reaction rate fits Arrhenius-type kinetics with an activation energy of ˜2 eV, with a minor density dependence. In contrast, the original Model 0 system had a lower activation energy (˜1 eV) with a stronger density dependence. The new system exhibits quite marked two dimensional instability structures with well-defined wavelengths similar to what has been observed for gas-phase detonations and for nitromethane. Depending on the exothermicity and the width of the periodic simulations, these instabilities can result in either detonation failure or quasi-steady propagation. The observed propagation velocities are several per cent higher than CJ values derived from thermodynamic analyses.
The critical role of uncertainty in projections of hydrological extremes
NASA Astrophysics Data System (ADS)
Meresa, Hadush K.; Romanowicz, Renata J.
2017-08-01
This paper aims to quantify the uncertainty in projections of future hydrological extremes in the Biala Tarnowska River at Koszyce gauging station, south Poland. The approach followed is based on several climate projections obtained from the EURO-CORDEX initiative, raw and bias-corrected realizations of catchment precipitation, and flow simulations derived using multiple hydrological model parameter sets. The projections cover the 21st century. Three sources of uncertainty are considered: one related to climate projection ensemble spread, the second related to the uncertainty in hydrological model parameters and the third related to the error in fitting theoretical distribution models to annual extreme flow series. The uncertainty of projected extreme indices related to hydrological model parameters was conditioned on flow observations from the reference period using the generalized likelihood uncertainty estimation (GLUE) approach, with separate criteria for high- and low-flow extremes. Extreme (low and high) flow quantiles were estimated using the generalized extreme value (GEV) distribution at different return periods and were based on two different lengths of the flow time series. A sensitivity analysis based on the analysis of variance (ANOVA) shows that the uncertainty introduced by the hydrological model parameters can be larger than the climate model variability and the distribution fit uncertainty for the low-flow extremes whilst for the high-flow extremes higher uncertainty is observed from climate models than from hydrological parameter and distribution fit uncertainties. This implies that ignoring one of the three uncertainty sources may cause great risk to future hydrological extreme adaptations and water resource planning and management.
A Generalized QMRA Beta-Poisson Dose-Response Model.
Xie, Gang; Roiko, Anne; Stratton, Helen; Lemckert, Charles; Dunn, Peter K; Mengersen, Kerrie
2016-10-01
Quantitative microbial risk assessment (QMRA) is widely accepted for characterizing the microbial risks associated with food, water, and wastewater. Single-hit dose-response models are the most commonly used dose-response models in QMRA. Denoting PI(d) as the probability of infection at a given mean dose d, a three-parameter generalized QMRA beta-Poisson dose-response model, PI(d|α,β,r*), is proposed in which the minimum number of organisms required for causing infection, K min , is not fixed, but a random variable following a geometric distribution with parameter 0
NASA Astrophysics Data System (ADS)
Alster, Charlotte J.; Koyama, Akihiro; Johnson, Nels G.; Wallenstein, Matthew D.; von Fischer, Joseph C.
2016-06-01
There is compelling evidence that microbial communities vary widely in their temperature sensitivity and may adapt to warming through time. To date, this sensitivity has been largely characterized using a range of models relying on versions of the Arrhenius equation, which predicts an exponential increase in reaction rate with temperature. However, there is growing evidence from laboratory and field studies that observe nonmonotonic responses of reaction rates to variation in temperature, indicating that Arrhenius is not an appropriate model for quantitatively characterizing temperature sensitivity. Recently, Hobbs et al. (2013) developed macromolecular rate theory (MMRT), which incorporates thermodynamic temperature optima as arising from heat capacity differences between isoenzymes. We applied MMRT to measurements of respiration from soils incubated at different temperatures. These soils were collected from three grassland sites across the U.S. Great Plains and reciprocally transplanted, allowing us to isolate the effects of microbial community type from edaphic factors. We found that microbial community type explained roughly 30% of the variation in the CO2 production rate from the labile C pool but that temperature and soil type were most important in explaining variation in labile and recalcitrant C pool size. For six out of the nine soil × inoculum combinations, MMRT was superior to Arrhenius. The MMRT analysis revealed that microbial communities have distinct heat capacity values and temperature sensitivities sometimes independent of soil type. These results challenge the current paradigm for modeling temperature sensitivity of soil C pools and understanding of microbial enzyme dynamics.
Sorption and desorption studies of a reactive azo dye on effective disposal of redundant material.
Çelekli, Abuzer; Bozkurt, Hüseyin
2013-07-01
The effective disposal of redundant elephant dung (ED) is important for environmental protection and utilization of resource. The aim of this study was to remove a toxic-azo dye, Reactive Red (RR) 120, using this relatively cheap material as a new adsorbent. The FTIR-ATR spectra of ED powders before and after the sorption of RR 120 and zero point charge (pHzpc) of ED were determined. The sorption capacity of ED for removing of RR 120 were carried out as functions of particle size, adsorbent dose, pH, temperature, ionic strength, initial dye concentration, and contact time. Sorption isotherm, kinetic, activation energy, thermodynamic, and desorption parameters of RR 120 on ED were studied. The sorption process was found to be dependent on particle size, adsorbent dose, pH, temperature, ionic strength, initial dye concentration, and contact time. FTIR-ATR spectroscopy indicated that amine and amide groups have significant role on the sorption of RR 120 on ED. The pHzpc of ED was found to be 7.3. Sorption kinetic of RR 120 on ED was well described by sigmoidal Logistic model. The Langmuir isotherm was well fitted to the equilibrium data. The maximum sorption capacity was 95.71 mg g(-1). The sorption of RR 120 on ED was mainly physical and exothermic according to results of D-R isotherm, Arrhenius equation, thermodynamic, and desorption studies. The thermodynamic parameters showed that this process was feasible and spontaneous. This study showed that ED as a low-cost adsorbent had a great potential for the removal of RR 120 as an alternative eco-friendly process.
Creep-induced anisotropy in covalent adaptable network polymers.
Hanzon, Drew W; He, Xu; Yang, Hua; Shi, Qian; Yu, Kai
2017-10-11
Anisotropic polymers with aligned macromolecule chains exhibit directional strengthening of mechanical and physical properties. However, manipulating the orientation of polymer chains in a fully cured thermoset is almost impossible due to its permanently crosslinked nature. In this paper, we demonstrate that rearrangeable networks with bond exchange reactions (BERs) can be utilized to tailor the anisotropic mechanical properties of thermosetting polymers. When a constant force is maintained at BER activated temperatures, the malleable thermoset creeps in the direction of stress, and macromolecule chains align themselves in the same direction. The aligned polymer chains result in an anisotropic network with a stiffer mechanical behavior in the direction of creep, while with a more compliant behavior in the transverse direction. The degree of network anisotropy is proportional to the amount of creep strain. A multi-length scale constitutive model is developed to study the creep-induced anisotropy of thermosetting polymers. The model connects the micro-scale BER kinetics, orientation of polymer chains, and directional mechanical properties of network polymers. Without any fitting parameters, it is able to predict the evolution of creep strain at different temperatures and anisotropic stress-strain behaviors of CANs after creep. Predictions on the chain orientation are verified by molecular dynamics (MD) simulation. Based on parametric studies, it is shown that the influences of creep time and temperature on the network anisotropy can be generalized into a single parameter, and the evolution of directional modulus follows an Arrhenius type time-temperature superposition principle (TTSP). The presented work provides a facile approach to transform isotropic thermosets into anisotropic ones using simple heating, and their directional properties can be readily tailored by the processing conditions.
NASA Astrophysics Data System (ADS)
Huang, Xinyan; Rein, Guillermo
2013-04-01
Smouldering combustion of soil organic matter (SOM) such as peatlands leads to the largest fires on Earth and posses a possible positive feedback mechanism to climate change. In this work, a kinetic model, including 3-step chemical reactions and 1-step water evaporation is proposed to describe drying, pyrolysis and oxidation behaviour of peat. Peat is chosen as the most important type of SOM susceptible to smoudering, and a Chinese boreal peat sample is selected from the literature. A lumped model of mass loss based on four Arrhenius-type reactions is developed to predict its thermal and oxidative degradation under a range of heating rates. A genetic algorithm is used to solve the inverse problem, and find a group of kinetic and stoichiometric parameters for this peat that provides the best match to the thermogravimetric (TG) data from literature. A multi-objective fitness function is defined using the measurements of both mass loss and mass-loss rate in inert and normal atmospheres under a range of heating rates. Piece-wise optimization is conducted to separate the low temperature drying (<450 K) from the higher temperature pyrolysis and oxidation reaction (>450 K). Modelling results shows the proposed 3-step chemistry is the unique simplest scheme to satisfy all given TG data of this particular peat type. Afterward, this kinetic model and its kinetic parameters are incorporated into a simple one-dimensional species model to study the relative position of each reaction inside a smoulder front. Computational results show that the species model agrees with experimental observations. This is the first time that the smouldering kinetics of SOM is explained and predicted, thus helping to understanding this important natural and widespread phenomenon.
flexsurv: A Platform for Parametric Survival Modeling in R
Jackson, Christopher H.
2018-01-01
flexsurv is an R package for fully-parametric modeling of survival data. Any parametric time-to-event distribution may be fitted if the user supplies a probability density or hazard function, and ideally also their cumulative versions. Standard survival distributions are built in, including the three and four-parameter generalized gamma and F distributions. Any parameter of any distribution can be modeled as a linear or log-linear function of covariates. The package also includes the spline model of Royston and Parmar (2002), in which both baseline survival and covariate effects can be arbitrarily flexible parametric functions of time. The main model-fitting function, flexsurvreg, uses the familiar syntax of survreg from the standard survival package (Therneau 2016). Censoring or left-truncation are specified in ‘Surv’ objects. The models are fitted by maximizing the full log-likelihood, and estimates and confidence intervals for any function of the model parameters can be printed or plotted. flexsurv also provides functions for fitting and predicting from fully-parametric multi-state models, and connects with the mstate package (de Wreede, Fiocco, and Putter 2011). This article explains the methods and design principles of the package, giving several worked examples of its use. PMID:29593450
NASA Astrophysics Data System (ADS)
Chrobak, Ł.; Maliński, M.
2018-06-01
This paper presents a comparison of three nondestructive and contactless techniques used for determination of recombination parameters of silicon samples. They are: photoacoustic method, modulated free carriers absorption method and the photothermal radiometry method. In the paper the experimental set-ups used for measurements of the recombination parameters in these methods as also theoretical models used for interpretation of obtained experimental data have been presented and described. The experimental results and their respective fits obtained with these nondestructive techniques are shown and discussed. The values of the recombination parameters obtained with these methods are also presented and compared. Main advantages and disadvantages of presented methods have been discussed.
NASA Astrophysics Data System (ADS)
Filho, J. M. S.; Rodrigues Junior, C. A.; Sousa, D. G.; Oliveira, R. G. M.; Costa, M. M.; Barroso, G. C.; Sombra, A. S. B.
2017-07-01
The complex impedance spectroscopy study of magnesium niobate Mg4Nb2O9 (MN) ceramics with different additions of V2O5 (0%, 2%, 5%) was performed in this present paper. The preparation of MN samples were carried out by using the solid-state reaction method with a high-energy milling machine. Frequency and temperature dependence of the complex impedance, complex modulus analysis, and conductivity were measured and calculated at different temperatures by using a network impedance analyzer. A non-Debye type relaxation was observed showing a decentralization of the semicircles. Cole-Cole formalism was adopted here with the help of a computer program used to fit the experimental data. A typical universal dielectric response in the frequency-dependent conductivity at different temperatures was found. The frequency dependent ac conductivity at different temperatures indicates that the conduction process is thermally activated. The activation energy was obtained from the Arrhenius fitting by using conductivity and electrical modules data. The results would help to understand deeply the relaxation process in these types of materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klemm, R.B.; Nesbitt, F.L.; Skolnik, E.G.
The rate constant for the reaction of ground-state atomic oxygen with ethylene was determined by using two techniques: flash photolysis-resonance fluorescence (FP-RF, 244-1052 K) and discharge flow-resonance fluorescence (DF-RF, 298-1017 K). Kinetic complications due to the presence of molecular oxygen in the FP-RF experiments at high temperatures (T > 800 K) were overcome by using NO as the photolytic source of the O atoms. The rate constant, k/sub 1/ (T), derived in this study exhibits extreme non-Arrhenius behavior, but it can be successfully fit to the sum of exponentials expression, 244-1052 K, k/sub 1/(T) = (1.02 +/- 0.06) x 10/supmore » -11/ exp(-753 +/- 17 K/T) + (2.75 +/- 0.26) x 10/sup -10/ exp(-4220 +/- 550 K/T), in units of cm/sup 3/ molecule/sup -1/ s/sup -1/. Additionally, a fit of the results of this work to a simple transition-state theory expression and the comparison of these results with those of other workers are discussed.« less
Giannaki, Christoforos D; Aphamis, George; Sakkis, Panikos; Hadjicharalambous, Marios
2016-04-01
High intensity interval training (HIIT) has been recently promoted as an effective, low volume and time-efficient training method for improving fitness and health related parameters. The aim of the current study was to examine the effect of a combination of a group-based HIIT and conventional gym training on physical fitness and body composition parameters in healthy adults. Thirty nine healthy adults volunteered to participate in this eight-week intervention study. Twenty three participants performed regular gym training 4 days a week (C group), whereas the remaining 16 participants engaged twice a week in HIIT and twice in regular gym training (HIIT-C group) as the other group. Total body fat and visceral adiposity levels were calculated using bioelectrical impedance analysis. Physical fitness parameters such as cardiorespiratory fitness, speed, lower limb explosiveness, flexibility and isometric arm strength were assessed through a battery of field tests. Both exercise programs were effective in reducing total body fat and visceral adiposity (P<0.05) and improving handgrip strength, sprint time, jumping ability and flexibility (P<0.05) whilst only the combination of HIIT and conventional training improved cardiorespiratory fitness levels (P<0.05). A between of group changes analysis revealed that HIIT-C resulted in significantly greater reduction in both abdominal girth and visceral adiposity compared with conventional training (P<0.05). Eight weeks of combined group-based HIIT and conventional training improve various physical fitness parameters and reduce both total and visceral fat levels. This type of training was also found to be superior compared with conventional exercise training alone in terms of reducing more visceral adiposity levels. Group-based HIIT may consider as a good methods for individuals who exercise in gyms and craving to acquire significant fitness benefits in relatively short period of time.
NASA Technical Reports Server (NTRS)
Martin, William G.; Cairns, Brian; Bal, Guillaume
2014-01-01
This paper derives an efficient procedure for using the three-dimensional (3D) vector radiative transfer equation (VRTE) to adjust atmosphere and surface properties and improve their fit with multi-angle/multi-pixel radiometric and polarimetric measurements of scattered sunlight. The proposed adjoint method uses the 3D VRTE to compute the measurement misfit function and the adjoint 3D VRTE to compute its gradient with respect to all unknown parameters. In the remote sensing problems of interest, the scalar-valued misfit function quantifies agreement with data as a function of atmosphere and surface properties, and its gradient guides the search through this parameter space. Remote sensing of the atmosphere and surface in a three-dimensional region may require thousands of unknown parameters and millions of data points. Many approaches would require calls to the 3D VRTE solver in proportion to the number of unknown parameters or measurements. To avoid this issue of scale, we focus on computing the gradient of the misfit function as an alternative to the Jacobian of the measurement operator. The resulting adjoint method provides a way to adjust 3D atmosphere and surface properties with only two calls to the 3D VRTE solver for each spectral channel, regardless of the number of retrieval parameters, measurement view angles or pixels. This gives a procedure for adjusting atmosphere and surface parameters that will scale to the large problems of 3D remote sensing. For certain types of multi-angle/multi-pixel polarimetric measurements, this encourages the development of a new class of three-dimensional retrieval algorithms with more flexible parametrizations of spatial heterogeneity, less reliance on data screening procedures, and improved coverage in terms of the resolved physical processes in the Earth?s atmosphere.
On the Accuracy of Atmospheric Parameter Determination in BAFGK Stars
NASA Astrophysics Data System (ADS)
Ryabchikova, T.; Piskunov, N.; Shulyak, D.
2015-04-01
During the past few years, many papers determining the atmospheric parameters in FGK stars appeared in the literature where the accuracy of effective temperatures is given as 20-40 K. For main sequence stars within the 5 000-13 000 K temperature range, we have performed a comparative analysis of the parameters derived from the spectra by using the SME (Spectroscopy Made Easy) package and those found in the literature. Our sample includes standard stars Sirius, Procyon, δ Eri, and the Sun. Combining different spectral regions in the fitting procedure, we investigated an effect different atomic species have on the derived atmospheric parameters. The temperature difference may exceed 100 K depending on the spectral regions used in the SME procedure. It is shown that the atmospheric parameters derived with the SME procedure which includes wings of hydrogen lines in fitting agrees better with the results derived by the other methods and tools across a large part of the main sequence. For three stars—π Cet, 21 Peg, and Procyon—the atmospheric parameters were also derived by fitting a calculated energy distribution to the observed one. We found a substantial difference in the parameters inferred from different sets and combinations of spectrophotometric observations. An intercomparison of our results and literature data shows that the average accuracy of effective temperature determination for cool stars and for the early B-stars is 70-85 K and 170-200 K, respectively.
NASA Astrophysics Data System (ADS)
Li, Chaoyue; Feng, Shiyu; Shao, Lei; Pan, Jun; Liu, Weihua
2018-04-01
The diffusion coefficient of water in jet fuel was measured employing double-exposure digital holographic interferometry to clarify the diffusion process and make the aircraft fuel system safe. The experimental method and apparatus are introduced in detail, and the digital image processing program is coded in MATLAB according to the theory of the Fourier transform. At temperatures ranging from 278.15 K to 333.15 K in intervals of 5 K, the diffusion coefficient of water in RP-3 and RP-5 jet fuels ranges from 2.6967 × 10 -10 m2·s-1 to 8.7332 × 10 -10 m2·s-1 and from 2.3517 × 10 -10 m2·s-1 to 8.0099 × 10-10 m2·s-1, respectively. The relationship between the measured diffusion coefficient and temperature can be well fitted by the Arrhenius law. The diffusion coefficient of water in RP-3 jet fuel is higher than that of water in RP-5 jet fuel at the same temperature. Furthermore, the viscosities of the two jet fuels were measured and found to be expressible in the form of the Arrhenius equation. The relationship among the diffusion coefficient, viscosity and temperature is analyzed according to the classic prediction model, namely the Stokes-Einstein correlation, and this correlation is further revised via experimental data to obtain a more accurate predication result.
Statistical distributions of extreme dry spell in Peninsular Malaysia
NASA Astrophysics Data System (ADS)
Zin, Wan Zawiah Wan; Jemain, Abdul Aziz
2010-11-01
Statistical distributions of annual extreme (AE) series and partial duration (PD) series for dry-spell event are analyzed for a database of daily rainfall records of 50 rain-gauge stations in Peninsular Malaysia, with recording period extending from 1975 to 2004. The three-parameter generalized extreme value (GEV) and generalized Pareto (GP) distributions are considered to model both series. In both cases, the parameters of these two distributions are fitted by means of the L-moments method, which provides a robust estimation of them. The goodness-of-fit (GOF) between empirical data and theoretical distributions are then evaluated by means of the L-moment ratio diagram and several goodness-of-fit tests for each of the 50 stations. It is found that for the majority of stations, the AE and PD series are well fitted by the GEV and GP models, respectively. Based on the models that have been identified, we can reasonably predict the risks associated with extreme dry spells for various return periods.
Experimental Evidence for Hydrogen Tunneling when the Isotopic Arrhenius Prefactor (AH/AD) is Unity
Sharma, Sudhir C.; Klinman, Judith P.
2009-01-01
The temperature dependence of the kinetic isotope effect (KIE) is one of the major tools used for the investigation of hydrogen tunneling in condensed phase. Hydrogen transfer reactions displaying isotopic Arrhenius prefactor ratios (AH/AD) of unity are generally ascribed to a semi-classical mechanism. Here, we have identified a double mutant of soybean lipoxygenase (SLO-1, an enzyme previously shown to follow quantum mechanical hydrogen tunneling), that displays an AH/AD of unity and highly elevated (non-classical) KIEs. This observation highlights the shortcoming of assigning a hydrogen transfer reaction to a semi-classical model based solely on an Arrhenius prefactor ratio. PMID:19061319
NASA Technical Reports Server (NTRS)
Tsuge, S.; Sagara, K.
1978-01-01
The indeterminacy inherent to the formal extension of Arrhenius' law to reactions in turbulent flows is shown to be surmountable in the case of a binary exchange reaction with a sufficiently high activation energy. A preliminary calculation predicts that the turbulent reaction rate is invariant in the Arrhenius form except for an equivalently lowered activation energy. This is a reflection of turbulence-augmented molecular vigor, and causes an appreciable increase in the reaction rate. A similarity to the tunnel effect in quantum mechanics is indicated. The anomaly associated with the mild ignition of oxy-hydrogen mixtures is discussed in this light.
Statistical Analyses of Femur Parameters for Designing Anatomical Plates.
Wang, Lin; He, Kunjin; Chen, Zhengming
2016-01-01
Femur parameters are key prerequisites for scientifically designing anatomical plates. Meanwhile, individual differences in femurs present a challenge to design well-fitting anatomical plates. Therefore, to design anatomical plates more scientifically, analyses of femur parameters with statistical methods were performed in this study. The specific steps were as follows. First, taking eight anatomical femur parameters as variables, 100 femur samples were classified into three classes with factor analysis and Q-type cluster analysis. Second, based on the mean parameter values of the three classes of femurs, three sizes of average anatomical plates corresponding to the three classes of femurs were designed. Finally, based on Bayes discriminant analysis, a new femur could be assigned to the proper class. Thereafter, the average anatomical plate suitable for that new femur was selected from the three available sizes of plates. Experimental results showed that the classification of femurs was quite reasonable based on the anatomical aspects of the femurs. For instance, three sizes of condylar buttress plates were designed. Meanwhile, 20 new femurs are judged to which classes the femurs belong. Thereafter, suitable condylar buttress plates were determined and selected.
Zahariev, Federico; De Silva, Nuwan; Gordon, Mark S; Windus, Theresa L; Dick-Perez, Marilu
2017-03-27
A newly created object-oriented program for automating the process of fitting molecular-mechanics parameters to ab initio data, termed ParFit, is presented. ParFit uses a hybrid of deterministic and stochastic genetic algorithms. ParFit can simultaneously handle several molecular-mechanics parameters in multiple molecules and can also apply symmetric and antisymmetric constraints on the optimized parameters. The simultaneous handling of several molecules enhances the transferability of the fitted parameters. ParFit is written in Python, uses a rich set of standard and nonstandard Python libraries, and can be run in parallel on multicore computer systems. As an example, a series of phosphine oxides, important for metal extraction chemistry, are parametrized using ParFit. ParFit is in an open source program available for free on GitHub ( https://github.com/fzahari/ParFit ).
Wang, Yu-Kuo; Huang, Sheng-Cih; Wu, Yi-Fang; Chen, Yu-Ching; Lin, Yen-Ling; Nayak, Manoswini; Lin, Yan Ren; Chen, Wen-Hung; Chiu, Yi-Rong; Li, Thomas Tien-Hsiung; Yeh, Bo-Sou; Wu, Tung-Kung
2011-01-01
Recombinant thermostable direct hemolysin from Grimontia hollisae (Gh-rTDH) exhibits paradoxical Arrhenius effect, where the hemolytic activity is inactivated by heating at 60 oC but is reactivated by additional heating above 80 oC. This study investigated individual or collective mutational effect of Tyr53, Thr59, and Ser63 positions of Gh-rTDH on hemolytic activity, Arrhenius effect, and biophysical properties. In contrast to the Gh-rTDH wild-type (Gh-rTDHWT) protein, a 2-fold decrease of hemolytic activity and alteration of Arrhenius effect could be detected from the Gh-rTDHY53H/T59I and Gh-rTDHT59I/S63T double-mutants and the Gh-rTDHY53H/T59I/S63T triple-mutant. Differential scanning calorimetry results showed that the Arrhenius effect-loss and -retaining mutants consistently exhibited higher and lower endothermic transition temperatures, respectively, than that of the Gh-rTDHWT. Circular dichroism measurements of Gh-rTDHWT and Gh-rTDHmut showed a conspicuous change from a β-sheet to α-helix structure around the endothermic transition temperature. Consistent with the observation is the conformational change of the proteins from native globular form into fibrillar form, as determined by Congo red experiments and transmission electron microscopy. PMID:21494434
Quan, Guo-zheng; Yu, Chun-tang; Liu, Ying-ying; Xia, Yu-feng
2014-01-01
The stress-strain data of 20MnNiMo alloy were collected from a series of hot compressions on Gleeble-1500 thermal-mechanical simulator in the temperature range of 1173 ∼ 1473 K and strain rate range of 0.01 ∼ 10 s(-1). Based on the experimental data, the improved Arrhenius-type constitutive model and the artificial neural network (ANN) model were established to predict the high temperature flow stress of as-cast 20MnNiMo alloy. The accuracy and reliability of the improved Arrhenius-type model and the trained ANN model were further evaluated in terms of the correlation coefficient (R), the average absolute relative error (AARE), and the relative error (η). For the former, R and AARE were found to be 0.9954 and 5.26%, respectively, while, for the latter, 0.9997 and 1.02%, respectively. The relative errors (η) of the improved Arrhenius-type model and the ANN model were, respectively, in the range of -39.99% ∼ 35.05% and -3.77% ∼ 16.74%. As for the former, only 16.3% of the test data set possesses η-values within ± 1%, while, as for the latter, more than 79% possesses. The results indicate that the ANN model presents a higher predictable ability than the improved Arrhenius-type constitutive model.
Wang, Yu-Kuo; Huang, Sheng-Cih; Wu, Yi-Fang; Chen, Yu-Ching; Lin, Yen-Ling; Nayak, Manoswini; Lin, Yan Ren; Chen, Wen-Hung; Chiu, Yi-Rong; Li, Thomas Tien-Hsiung; Yeh, Bo-Sou; Wu, Tung-Kung
2011-03-31
Recombinant thermostable direct hemolysin from Grimontia hollisae (Gh-rTDH) exhibits paradoxical Arrhenius effect, where the hemolytic activity is inactivated by heating at 60 °C but is reactivated by additional heating above 80 °C. This study investigated individual or collective mutational effect of Tyr53, Thr59, and Ser63 positions of Gh-rTDH on hemolytic activity, Arrhenius effect, and biophysical properties. In contrast to the Gh-rTDH wild-type (Gh-rTDH(WT)) protein, a 2-fold decrease of hemolytic activity and alteration of Arrhenius effect could be detected from the Gh-rTDH(Y53H/T59I) and Gh-rTDH(T59I/S63T) double-mutants and the Gh-rTDH(Y53H/T59I/S63T) triple-mutant. Differential scanning calorimetry results showed that the Arrhenius effect-loss and -retaining mutants consistently exhibited higher and lower endothermic transition temperatures, respectively, than that of the Gh-rTDH(WT). Circular dichroism measurements of Gh-rTDH(WT) and Gh-rTDH(mut) showed a conspicuous change from a β-sheet to α-helix structure around the endothermic transition temperature. Consistent with the observation is the conformational change of the proteins from native globular form into fibrillar form, as determined by Congo red experiments and transmission electron microscopy.
The Kinetic Behavior of Benzaldehyde under Hydrothermal Conditions
NASA Astrophysics Data System (ADS)
Fecteau, K.; Gould, I.; Hartnett, H. E.; Williams, L. B.; Shock, E.
2013-12-01
Aldehydes represent an intermediate redox state between alcohols and carboxylic acids and are likely intermediates in the transformation of organic compounds in natural systems. We have conducted kinetic studies of a model aldehyde, benzaldehyde, in high-temperature water (250-350 °C, saturation pressure) in clear fused quartz (CFQ) autoclaves. Under these conditions, benzaldehyde is observed to undergo a disproportionation reaction to benzyl alcohol and benzoic acid reminiscent of the base-catalyzed Cannizzaro reaction known to occur at cooler temperatures. Benzene is also produced via decarbonylation of the aldehyde. We have obtained pseudo second-order rate constants for the decomposition of benzaldehyde at 250, 300, and 350 °C. Rates derived via repeated heating phases and subsequent quantitative 13C-NMR spectroscopy of a single NMR-compatible CFQ tube containing isotopically labeled benzaldehyde are consistent with those obtained by analysis of product suites from individual timed experiments via gas chromatography. Arrhenius parameters for these rate constants are consistent with published values for the reaction under supercritical conditions from one study (Tsao et al. 1992) yet the pre-exponential factor is approximately 7 orders of magnitude smaller than that derived from another study (Ikushima et al. 2001). Moreover, fitting our rate constants with the Eyring equation yields an entropy of activation (ΔS‡) of -26.6 kcal mol-1 K-1, which is consistent for a bimolecular transition state at the rate-limiting step. In contrast, the rates of Ikushima et al. yield a positive value of ΔS‡, which is inconsistent with the putative mechanism for the reaction. The linear Arrhenius behavior of the decomposition of benzaldehyde from high-temperature liquid to supercritical conditions demonstrates the potential for extrapolating experimentally derived rates of reactions for organic functional group transformations to conditions where diagenesis, alteration, metamorphism, and other hydrothermal processes of interest occur in natural systems. References Ikushima, Y., K. Hatakeda, O. Sato, T. Yokoyama, and M. Arai. 2001. Structure and base catalysis of supercritical water in the noncatalytic benzaldehyde disproportionation using water at high temperatures and pressures. Angewandte Chemie, 40, 210-213. Tsao, C.C., Y. Zhou, X. Liu, and T.J. Houser. 1992. Reactions of supercritical water with benzaldehyde, benzylidenebenzylamine, benzyl alcohol, and benzoic acid. The Journal of Supercritical Fluids, 5, 107-113.
Zahariev, Federico; De Silva, Nuwan; Gordon, Mark S.; ...
2017-02-23
Here, a newly created object-oriented program for automating the process of fitting molecular-mechanics parameters to ab initio data, termed ParFit, is presented. ParFit uses a hybrid of deterministic and stochastic genetic algorithms. ParFit can simultaneously handle several molecular-mechanics parameters in multiple molecules and can also apply symmetric and antisymmetric constraints on the optimized parameters. The simultaneous handling of several molecules enhances the transferability of the fitted parameters. ParFit is written in Python, uses a rich set of standard and nonstandard Python libraries, and can be run in parallel on multicore computer systems. As an example, a series of phosphine oxides,more » important for metal extraction chemistry, are parametrized using ParFit.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zahariev, Federico; De Silva, Nuwan; Gordon, Mark S.
Here, a newly created object-oriented program for automating the process of fitting molecular-mechanics parameters to ab initio data, termed ParFit, is presented. ParFit uses a hybrid of deterministic and stochastic genetic algorithms. ParFit can simultaneously handle several molecular-mechanics parameters in multiple molecules and can also apply symmetric and antisymmetric constraints on the optimized parameters. The simultaneous handling of several molecules enhances the transferability of the fitted parameters. ParFit is written in Python, uses a rich set of standard and nonstandard Python libraries, and can be run in parallel on multicore computer systems. As an example, a series of phosphine oxides,more » important for metal extraction chemistry, are parametrized using ParFit.« less
Arce, Pedro; Lagares, Juan Ignacio
2018-01-25
We have verified the GAMOS/Geant4 simulation model of a 6 MV VARIAN Clinac 2100 C/D linear accelerator by the procedure of adjusting the initial beam parameters to fit the percentage depth dose and cross-profile dose experimental data at different depths in a water phantom. Thanks to the use of a wide range of field sizes, from 2 × 2 cm 2 to 40 × 40 cm 2 , a small phantom voxel size and high statistics, fine precision in the determination of the beam parameters has been achieved. This precision has allowed us to make a thorough study of the different physics models and parameters that Geant4 offers. The three Geant4 electromagnetic physics sets of models, i.e. Standard, Livermore and Penelope, have been compared to the experiment, testing the four different models of angular bremsstrahlung distributions as well as the three available multiple-scattering models, and optimizing the most relevant Geant4 electromagnetic physics parameters. Before the fitting, a comprehensive CPU time optimization has been done, using several of the Geant4 efficiency improvement techniques plus a few more developed in GAMOS.
A three-component analytic model of long-term climate change
NASA Astrophysics Data System (ADS)
Pratt, V. R.
2011-12-01
On the premise that fast climate fluctuations up to and including the 11-year solar cycle play a negligible role in long-term climate forecasting, we remove these from the 160-year HADCRUT3 global land-sea temperature record and model the result as the sum of a log-raised-exponential (log(b+exp(t))) and two sine waves of respective periods 56 and 75 years coinciding in phase in 1925. The latter two can be understood equivalently as a 62-year-period "carrier" modulated with a 440-year period that peaked in 1925 and vanished in 1705. This model gives an excellent fit, explaining 98% of the variance (r^2) of long-term climate over the 160 years. We derive the first component as the composition of Arrhenius's 1896 logarithmic dependence of surface temperature on CO2 with Hofmann's 2009 raised-exponential dependence of CO2 on time, but interpret its fit to the data as the net anthropogenic contribution incorporating all greenhouse and aerosol emissions and relevant feedbacks, bearing in mind the rapid growth in both population and technology. The 56-year oscillation matches the largest component of the Atlantic Multidecadal Oscillation, while the 75-year one is near an oscillation often judged to be in the vicinity of 70 years. The expected 1705 cancellation is about two decades earlier than suggested by Gray et al's tree-ring proxy for the AMO during 1567-1990 [Gray GPL 31, L12205]. While there is no consensus on the origin of ocean oscillations, the oscillations in geomagnetic secular variation noted by Nagata and Rimitake in 1963 and Slaucitajs and Winch in 1965, of respective periods 77 years and 61 years, correspond strikingly with our 76-year oscillation and 62-year "carrier." This model has a number of benefits. Simplicity. It is easily explained to a lay audience in response to the frequently voiced concern that the temperature record is poorly correlated with the CO2 record alone. It shows that the transition from natural to anthropogenic influences on long-term climate occurred around the 1960s. Analytic. It can be repeatedly differentiated and integrated symbolically. Future skill. Modeling only the temperature data up to 1975 with the same methodology yields parameters almost identical to those obtained by fitting to the current data. This model would therefore have predicted the dramatic rise during the fourth quarter of the century, in sharp contrast to the flat profile obtained by naive extrapolation of the preceding quarter-century. Under the two assumptions of business as usual and no major tipping points, and given the rationales for the three components, we feel this past performance justifies extrapolating the model at least another quarter century if not half. For 2100 the model projects a 2 degree rise, though it is surely wishful thinking to expect both assumptions to hold up that long. Calibrated sensitivity. Instead of assuming a fixed climate sensitivity the model makes it a function of delay between emission and temperature. Taking the delay to be 0 years (instantaneous response), 20 years (transient climate response), and 30 years (best fit for our model) gives respective sensitivities of 1.8, 2.7, and 3.3 degrees per doubling. No conclusion can be drawn about no-feedback sensitivity because the methodology builds in all feedbacks whatever they may be. Figures and further details at
Uncertainty Analysis in 3D Equilibrium Reconstruction
Cianciosa, Mark R.; Hanson, James D.; Maurer, David A.
2018-02-21
Reconstruction is an inverse process where a parameter space is searched to locate a set of parameters with the highest probability of describing experimental observations. Due to systematic errors and uncertainty in experimental measurements, this optimal set of parameters will contain some associated uncertainty. This uncertainty in the optimal parameters leads to uncertainty in models derived using those parameters. V3FIT is a three-dimensional (3D) equilibrium reconstruction code that propagates uncertainty from the input signals, to the reconstructed parameters, and to the final model. Here in this paper, we describe the methods used to propagate uncertainty in V3FIT. Using the resultsmore » of whole shot 3D equilibrium reconstruction of the Compact Toroidal Hybrid, this propagated uncertainty is validated against the random variation in the resulting parameters. Two different model parameterizations demonstrate how the uncertainty propagation can indicate the quality of a reconstruction. As a proxy for random sampling, the whole shot reconstruction results in a time interval that will be used to validate the propagated uncertainty from a single time slice.« less
Uncertainty Analysis in 3D Equilibrium Reconstruction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cianciosa, Mark R.; Hanson, James D.; Maurer, David A.
Reconstruction is an inverse process where a parameter space is searched to locate a set of parameters with the highest probability of describing experimental observations. Due to systematic errors and uncertainty in experimental measurements, this optimal set of parameters will contain some associated uncertainty. This uncertainty in the optimal parameters leads to uncertainty in models derived using those parameters. V3FIT is a three-dimensional (3D) equilibrium reconstruction code that propagates uncertainty from the input signals, to the reconstructed parameters, and to the final model. Here in this paper, we describe the methods used to propagate uncertainty in V3FIT. Using the resultsmore » of whole shot 3D equilibrium reconstruction of the Compact Toroidal Hybrid, this propagated uncertainty is validated against the random variation in the resulting parameters. Two different model parameterizations demonstrate how the uncertainty propagation can indicate the quality of a reconstruction. As a proxy for random sampling, the whole shot reconstruction results in a time interval that will be used to validate the propagated uncertainty from a single time slice.« less
Towards a Quantitative Analysis of the Temperature Dependence of Electron Attachment Processes
2016-06-24
from an Arrhenius law should become pronounced when the temperature range would be extended considerably. Such experiments then were done as reported...in Ref. 13. Indeed marked deviations from the Arrhenius law became visible and, in addition, very good agreement with predictions from our “kinetic
Why Are Some Reactions Slower at Higher Temperatures?
ERIC Educational Resources Information Center
Revell, Laura E.; Williamson, Bryce E.
2013-01-01
It is well understood by most chemistry students at advanced undergraduate levels that chemical reactions generally follow the Arrhenius law of temperature dependence with positive activation energies, proceeding faster at elevated temperatures. It is much less widely known that the rates of some Arrhenius-compliant reactions are retarded by…
Widjaja, Effendi; Tan, Wei Jian
2008-08-01
The solid-state intramolecular cyclization of lisinopril to diketopiperazine was investigated by in situ Fourier transform infrared (FT-IR) microscopy. Using a controllable heating cell, the isothermal transformation was monitored in situ at 147.5, 150, 152.5, 155, and 157.5 degrees C. The collected time-dependent FT-IR spectra at each isothermal temperature were preprocessed and analyzed using a multivariate chemometric approach. The pure component spectra of the observable component (lisinopril and diketopiperazine) were resolved and their time-dependent relative contributions were also determined. Model-free and various model fitting methods were implemented in the kinetic analysis to estimate the activation energy of the intramolecular cyclization reaction. Arrhenius plots indicate that the activation energy is circa 327 kJ/mol.
Andrew D. Richardson; David Y. Hollinger; David Y. Hollinger
2005-01-01
Whether the goal is to fill gaps in the flux record, or to extract physiological parameters from eddy covariance data, researchers are frequently interested in fitting simple models of ecosystem physiology to measured data. Presently, there is no consensus on the best models to use, or the ideal optimization criteria. We demonstrate that, given our estimates of the...
Gross, Deborah S.; Zhao, Yuexing; Williams, Evan R.
2005-01-01
The temperature dependence of the unimolecular kinetics for dissociation of the heme group from holo-myoglobin (Mb) and holo-hemoglobin α-chain (Hb-α) was investigated with blackbody infrared radiative dissociation (BIRD). The rate constant for dissociation of the 9 + charge state of Mb formed by electrospray ionization from a “pseudo-native” solution is 60% lower than that of Hb-α at each of the temperatures investigated. In solutions of pH 5.5–8.0, the thermal dissociation rate for Mb is also lower than that of HB-α (Hargrove, M. S. et al. J. Biol. Chem. 1994, 269, 4207–4214). Thus, Mb is thermally more stable with respect to heme loss than Hb-α both in the gas phase and in solution. The Arrhenius activation parameters for both dissociation processes are indistinguishable within the current experimental error (activation energy 0.9 eV and pre-exponential factor of 108–10 s−1). The 9+ to 12+ charge states of Mb have similar Arrhenius parameters when these ions are formed from pseudo-native solutions. In contrast, the activation energies and pre-exponential factors decrease from 0.8 to 0.3 eV and 107 to 102 s−1, respectively, for the 9 + to 12 + charge states formed from acidified solutions in which at least 50% of the secondary structure is lost. These results demonstrate that gas-phase Mb ions retain clear memory of the composition of the solution from which they are formed and that these differences can be probed by BIRD. PMID:16479269
Schnier, P D; Price, W D; Strittmatter, E F; Williams, E R
1997-08-01
The dissociation kinetics of protonated leucine enkephalin and its proton and alkali metal bound dimers were investigated by blackbody infrared radiative dissociation in a Fourier-transform mass spectrometer. From the temperature dependence of the unimolecular dissociation rate constants, Arrhenius activation parameters in the zero-pressure limit are obtained. Protonated leucine enkephalin dissociates to form b(4) and (M-H(2)O)(+) ions with an average activation energy (E(a)) of 1.1 eV and an A factor of 10(10.5) s(-1). The value of the A factor indicates that these dissociation processes are rearrangements. The b(4) ions subsequently dissociate to form a(4) ions via a process with a relatively high activation energy (1.3 eV), but one that is entropically favored. For the cationized dimers, the thermal stability decreases with increasing cation size, consistent with a simple electrostatic interaction in these noncovalent ion-molecule complexes. The E(a) and A factors are indistinguishable within experimental error with values of approximately 1.5 eV and 10(17) s(-1), respectively. Although not conclusive, results from master equation modeling indicate that all these BIRD processes, except for b(4) --> a(4), are in the rapid energy exchange limit. In this limit, the internal energy of the precursor ion population is given by a Boltzmann distribution and information about the energetics and dynamics of the reaction are obtained directly from the measured Arrhenius parameters.
Gross, D S; Zhao, Y; Williams, E R
1997-05-01
The temperature dependence of the unimolecular kinetics for dissociation of the heme group from holo-myoglobin (Mb) and holo-hemoglobin alpha-chain (Hb-alpha) was investigated with blackbody infrared radiative dissociation (BIRD). The rate constant for dissociation of the 9 + charge state of Mb formed by electrospray ionization from a "pseudo-native" solution is 60% lower than that of Hb-alpha at each of the temperatures investigated. In solutions of pH 5.5-8.0, the thermal dissociation rate for Mb is also lower than that of HB-alpha (Hargrove, M. S. et al. J. Biol. Chem.1994, 269, 4207-4214). Thus, Mb is thermally more stable with respect to heme loss than Hb-alpha both in the gas phase and in solution. The Arrhenius activation parameters for both dissociation processes are indistinguishable within the current experimental error (activation energy 0.9 eV and pre-exponential factor of 10(8-10) s(-1)). The 9+ to 12+ charge states of Mb have similar Arrhenius parameters when these ions are formed from pseudo-native solutions. In contrast, the activation energies and pre-exponential factors decrease from 0.8 to 0.3 eV and 10(7) to 10(2) s(-1), respectively, for the 9 + to 12 + charge states formed from acidified solutions in which at least 50% of the secondary structure is lost. These results demonstrate that gas-phase Mb ions retain clear memory of the composition of the solution from which they are formed and that these differences can be probed by BIRD.
A BRDF statistical model applying to space target materials modeling
NASA Astrophysics Data System (ADS)
Liu, Chenghao; Li, Zhi; Xu, Can; Tian, Qichen
2017-10-01
In order to solve the problem of poor effect in modeling the large density BRDF measured data with five-parameter semi-empirical model, a refined statistical model of BRDF which is suitable for multi-class space target material modeling were proposed. The refined model improved the Torrance-Sparrow model while having the modeling advantages of five-parameter model. Compared with the existing empirical model, the model contains six simple parameters, which can approximate the roughness distribution of the material surface, can approximate the intensity of the Fresnel reflectance phenomenon and the attenuation of the reflected light's brightness with the azimuth angle changes. The model is able to achieve parameter inversion quickly with no extra loss of accuracy. The genetic algorithm was used to invert the parameters of 11 different samples in the space target commonly used materials, and the fitting errors of all materials were below 6%, which were much lower than those of five-parameter model. The effect of the refined model is verified by comparing the fitting results of the three samples at different incident zenith angles in 0° azimuth angle. Finally, the three-dimensional modeling visualizations of these samples in the upper hemisphere space was given, in which the strength of the optical scattering of different materials could be clearly shown. It proved the good describing ability of the refined model at the material characterization as well.
Diffusion in the Muscovite 40K Decay System (Invited)
NASA Astrophysics Data System (ADS)
Harrison, T. M.
2010-12-01
The considerable potential of muscovite for thermochronological applications is beginning to be fully exploited following the belated publication of Ar kinetic data. Muscovite’s high potassium content, low solubility for excess 40Ar*, and ubiquitous presence in regionally metamorphosed terranes make it an important phase for 40Ar/39Ar thermochronometry, particularly in light of recognition that both age spectra and vacuum-step-heating-derived 39Ar Arrhenius plots reflect Ar release via the same volume diffusion mechanism. Thus instead of assuming a nominal closure temperature to estimate a single T-t datum, continuous and accurate thermal histories can be inferred in a similar fashion to that well-documented for K-feldspar using the multi-diffusion domain (MDD) model. The Arrhenius parameters for Ar diffusion in muscovite (E=64 kcal/mol, Do=4 cm2/s) correspond to an effective intragrain closure temperature range of ~500 to 300oC for ca. 100 μm grains cooling at ~10oC/Ma at 5 kbar. However, even greater exploitation of the 40K decay system remains possible as only one of every ten 40K atoms decay to 40Ar. The other 90% decay to 40Ca giving the 40K-40Ca branch, in principle, greater sensitivity for dating high K/Ca minerals such as muscovite. The advent of the ‘double-plus’ SIMS 40K++-40Ca++ dating method, which permits analysis of Ca isotopes at an MRP of ~4k rather than the ~25k required for full separation of 40K+ from 40Ca+, opens up the prospect of directly revealing 40K-40Ca closure profiles in muscovite (as opposed to their indirect inference from inversion of 40Ar/39Ar data through the MDD model) at a gain of enhanced precision and accuracy in thermal history reconstruction. We have used SIMS to observe K-Ca age variations in natural muscovites pressed into In. Translating this data into thermal history information, however, requires knowledge of the Arrhenius parameters for Ca tracer diffusion in muscovite. We are undertaking hydrothermal piston-cylinder experiments of natural muscovites to induce radiogenic 40Ca* diffusion gradients that can be measured with SIMS using a ~5 μm spot. Preliminary indications suggest that Ca diffusion is not substantially slower than Ar in muscovite suggesting a similar to somewhat elevated closure temperature range.
Constraining the red shifts of TeV BL Lac objects
NASA Astrophysics Data System (ADS)
Qin, Longhua; Wang, Jiancheng; Yan, Dahai; Yang, Chuyuan; Yuan, Zunli; Zhou, Ming
2018-01-01
We present a model-dependent method to estimate the red shifts of three TeV BL Lac objects (BL Lacs) through fitting their (quasi-)simultaneous multi-waveband spectral energy distributions (SEDs) with a one-zone leptonic synchrotron self-Compton model. Considering the impact of electron energy distributions (EEDs) on the results, we use three types of EEDs to fit the SEDs: a power-law EED with exponential cut-off (PLC), a log-parabola (PLLP) EED and the broken power-law (BPL) EED. We also use a parameter α to describe the uncertainties of the extragalactic background light models, as in Abdo et al. We then use a Markov chain Monte Carlo method to explore the multi-dimensional parameter space and obtain the uncertainties of the model parameters based on the observational data. We apply our method to obtain the red shifts of three TeV BL Lac objects in the marginalized 68 per cent confidence, and find that the PLC EED does not fit the SEDs. For 3C66A, the red shift is 0.14-0.31 and 0.16-0.32 in the BPL and PLLP EEDs. For PKS1424+240, the red shift is 0.55-0.68 and 0.55-0.67 in the BPL and PLLP EEDs. For PG1553+113, the red shift is 0.22-0.48 and 0.22-0.39 in the BPL and PLLP EEDs. We also estimate the red shift of PKS1424+240 in the high stage to be 0.46-0.67 in the PLLP EED, roughly consistent with that in the low stage.
Escherichia coli survival in, and release from, white-tailed deer feces.
Guber, Andrey K; Fry, Jessica; Ives, Rebecca L; Rose, Joan B
2015-02-01
White-tailed deer are an important reservoir for pathogens that can contribute a large portion of microbial pollution in fragmented agricultural and forest landscapes. The scarcity of experimental data on survival of microorganisms in and release from deer feces makes prediction of their fate and transport less reliable and development of efficient strategies for environment protection more difficult. The goal of this study was to estimate parameters for modeling Escherichia coli survival in and release from deer (Odocoileus virginianus) feces. Our objectives were as follows: (i) to measure survival of E. coli in deer pellets at different temperatures, (ii) to measure kinetics of E. coli release from deer pellets at different rainfall intensities, and (iii) to estimate parameters of models describing survival and release of microorganisms from deer feces. Laboratory experiments were conducted to study E. coli survival in deer pellets at three temperatures and to estimate parameters of Chick's exponential model with temperature correction based on the Arrhenius equation. Kinetics of E. coli release from deer pellets were measured at two rainfall intensities and used to derive the parameters of Bradford-Schijven model of bacterial release. The results showed that parameters of the survival and release models obtained for E. coli in this study substantially differed from those obtained by using other source materials, e.g., feces of domestic animals and manures. This emphasizes the necessity of comprehensive studies of survival of naturally occurring populations of microorganisms in and release from wildlife animal feces in order to achieve better predictions of microbial fate and transport in fragmented agricultural and forest landscapes. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
On the precise determination of the Tsallis parameters in proton–proton collisions at LHC energies
NASA Astrophysics Data System (ADS)
Bhattacharyya, T.; Cleymans, J.; Marques, L.; Mogliacci, S.; Paradza, M. W.
2018-05-01
A detailed analysis is presented of the precise values of the Tsallis parameters obtained in p–p collisions for identified particles, pions, kaons and protons at the LHC at three beam energies \\sqrt{s}=0.9,2.76 and 7 TeV. Interpolated data at \\sqrt{s}=5.02 TeV have also been included. It is shown that the Tsallis formula provides reasonably good fits to the p T distributions in p–p collisions at the LHC using three parameters dN/dy, T and q. However, the parameters T and q depend on the particle species and are different for pions, kaons and protons. As a consequence there is no m T scaling and also no universality of the parameters for different particle species.
Criticality triggers the emergence of collective intelligence in groups.
De Vincenzo, Ilario; Giannoccaro, Ilaria; Carbone, Giuseppe; Grigolini, Paolo
2017-08-01
A spinlike model mimicking human behavior in groups is employed to investigate the dynamics of the decision-making process. Within the model, the temporal evolution of the state of systems is governed by a time-continuous Markov chain. The transition rates of the resulting master equation are defined in terms of the change of interaction energy between the neighboring agents (change of the level of conflict) and the change of a locally defined agent fitness. Three control parameters can be identified: (i) the social interaction strength βJ measured in units of social temperature, (ii) the level of confidence β^{'} that each individual has on his own expertise, and (iii) the level of knowledge p that identifies the expertise of each member. Based on these three parameters, the phase diagrams of the system show that a critical transition front exists where a sharp and concurrent change in fitness and consensus takes place. We show that at the critical front, the information leakage from the fitness landscape to the agents is maximized. This event triggers the emergence of the collective intelligence of the group, and in the end it leads to a dramatic improvement in the decision-making performance of the group. The effect of size M of the system is also investigated, showing that, depending on the value of the control parameters, increasing M may be either beneficial or detrimental.
Criticality triggers the emergence of collective intelligence in groups
NASA Astrophysics Data System (ADS)
De Vincenzo, Ilario; Giannoccaro, Ilaria; Carbone, Giuseppe; Grigolini, Paolo
2017-08-01
A spinlike model mimicking human behavior in groups is employed to investigate the dynamics of the decision-making process. Within the model, the temporal evolution of the state of systems is governed by a time-continuous Markov chain. The transition rates of the resulting master equation are defined in terms of the change of interaction energy between the neighboring agents (change of the level of conflict) and the change of a locally defined agent fitness. Three control parameters can be identified: (i) the social interaction strength β J measured in units of social temperature, (ii) the level of confidence β' that each individual has on his own expertise, and (iii) the level of knowledge p that identifies the expertise of each member. Based on these three parameters, the phase diagrams of the system show that a critical transition front exists where a sharp and concurrent change in fitness and consensus takes place. We show that at the critical front, the information leakage from the fitness landscape to the agents is maximized. This event triggers the emergence of the collective intelligence of the group, and in the end it leads to a dramatic improvement in the decision-making performance of the group. The effect of size M of the system is also investigated, showing that, depending on the value of the control parameters, increasing M may be either beneficial or detrimental.
NASA Astrophysics Data System (ADS)
Cai, Xiuhong; Li, Xiang; Qi, Hong; Wei, Fang; Chen, Jianyong; Shuai, Jianwei
2016-10-01
The gating properties of the inositol 1, 4, 5-trisphosphate (IP3) receptor (IP3R) are determined by the binding and unbinding capability of Ca2+ ions and IP3 messengers. With the patch clamp experiments, the stationary properties have been discussed for Xenopus oocyte type-1 IP3R (Oo-IP3R1), type-3 IP3R (Oo-IP3R3) and Spodoptera frugiperda IP3R (Sf-IP3R). In this paper, in order to provide insights about the relation between the observed gating characteristics and the gating parameters in different IP3Rs, we apply the immune algorithm to fit the parameters of a modified DeYoung-Keizer model. By comparing the fitting parameter distributions of three IP3Rs, we suggest that the three types of IP3Rs have the similar open sensitivity in responding to IP3. The Oo-IP3R3 channel is easy to open in responding to low Ca2+ concentration, while Sf-IP3R channel is easily inhibited in responding to high Ca2+ concentration. We also show that the IP3 binding rate is not a sensitive parameter for stationary gating dynamics for three IP3Rs, but the inhibitory Ca2+ binding/unbinding rates are sensitive parameters for gating dynamics for both Oo-IP3R1 and Oo-IP3R3 channels. Such differences may be important in generating the spatially and temporally complex Ca2+ oscillations in cells. Our study also demonstrates that the immune algorithm can be applied for model parameter searching in biological systems.
Pandey, Ambarish; Swift, Damon L.; McGuire, Darren K.; Ayers, Colby R.; Neeland, Ian J.; Blair, Steven N.; Johannsen, Neil; Earnest, Conrad P.; Church, Timothy S.
2015-01-01
OBJECTIVE To evaluate the impact of exercise training (ET) on metabolic parameters among participants with type 2 diabetes mellitus (T2DM) who do not improve their cardiorespiratory fitness (CRF) with training. RESEARCH DESIGN AND METHODS We studied participants with T2DM participating in the Health Benefits of Aerobic and Resistance Training in Individuals With Type 2 Diabetes (HART-D) trial who were randomized to a control group or one of three supervised ET groups for 9 months. Fitness response to ET was defined as a change in measured peak absolute oxygen uptake (ΔVO2peak, in liters per minute) from baseline to follow-up. ET participants were classified based on ΔVO2peak into fitness responders (ΔVO2peak ≥5%) and nonresponders (ΔVO2peak <5%), and changes in metabolic profiles were compared across control, fitness responder, and fitness nonresponder groups. RESULTS A total of 202 participants (mean age 57.1 ± 7.9 years, 63% women) were included. Among the exercise groups (n = 161), there was substantial heterogeneity in ΔVO2peak; 57% had some improvement in CRF (ΔVO2peak >0), with only 36.6% having a ≥5% increase in VO2peak. Both fitness responders and nonresponders (respectively) had significant improvements in hemoglobin A1c and measures of adiposity (ΔHbA1c: −0.26% [95% CI −0.5 to −0.01] and −0.26% [−0.45 to −0.08]; Δwaist circumference: −2.6 cm [−3.7 to −1.5] and −1.8 cm [−2.6 to −1.0]; Δbody fat: −1.07% [−1.5 to −0.62] and −0.75% [−1.09 to −0.41]). No significant differences were observed in the degree of change of these metabolic parameters between fitness responders and nonresponders. Control group participants had no significant changes in any of these metabolic parameters. CONCLUSIONS ET is associated with significant improvements in metabolic parameters irrespective of improvement in cardiorespiratory fitness. PMID:26084342
{sup 18}F-FLT uptake kinetics in head and neck squamous cell carcinoma: A PET imaging study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Dan, E-mail: dan.liu@oncology.ox.ac.uk; Fenwick, John D.; Chalkidou, Anastasia
2014-04-15
Purpose: To analyze the kinetics of 3{sup ′}-deoxy-3{sup ′}-[F-18]-fluorothymidine (18F-FLT) uptake by head and neck squamous cell carcinomas and involved nodes imaged using positron emission tomography (PET). Methods: Two- and three-tissue compartment models were fitted to 12 tumor time-activity-curves (TACs) obtained for 6 structures (tumors or involved nodes) imaged in ten dynamic PET studies of 1 h duration, carried out for five patients. The ability of the models to describe the data was assessed using a runs test, the Akaike information criterion (AIC) and leave-one-out cross-validation. To generate parametric maps the models were also fitted to TACs of individual voxels.more » Correlations between maps of different parameters were characterized using Pearson'sr coefficient; in particular the phosphorylation rate-constants k{sub 3-2tiss} and k{sub 5} of the two- and three-tissue models were studied alongside the flux parameters K{sub FLT-2tiss} and K{sub FLT} of these models, and standardized uptake values (SUV). A methodology based on expectation-maximization clustering and the Bayesian information criterion (“EM-BIC clustering”) was used to distil the information from noisy parametric images. Results: Fits of two-tissue models 2C3K and 2C4K and three-tissue models 3C5K and 3C6K comprising three, four, five, and six rate-constants, respectively, pass the runs test for 4, 8, 10, and 11 of 12 tumor TACs. The three-tissue models have lower AIC and cross-validation scores for nine of the 12 tumors. Overall the 3C6K model has the lowest AIC and cross-validation scores and its fitted parameter values are of the same orders of magnitude as literature estimates. Maps ofK{sub FLT} and K{sub FLT-2tiss} are strongly correlated (r = 0.85) and also correlate closely with SUV maps (r = 0.72 for K{sub FLT-2tiss}, 0.64 for K{sub FLT}). Phosphorylation rate-constant maps are moderately correlated with flux maps (r = 0.48 for k{sub 3-2tiss} vs K{sub FLT-2tiss} and r = 0.68 for k{sub 5} vs K{sub FLT}); however, neither phosphorylation rate-constant correlates significantly with SUV. EM-BIC clustering reduces the parametric maps to a small number of levels—on average 5.8, 3.5, 3.4, and 1.4 for K{sub FLT-2tiss}, K{sub FLT}, k{sub 3-2tiss}, and k{sub 5.} This large simplification is potentially useful for radiotherapy dose-painting, but demonstrates the high noise in some maps. Statistical simulations show that voxel level noise degrades TACs generated from the 3C6K model sufficiently that the average AIC score, parameter bias, and total uncertainty of 2C4K model fits are similar to those of 3C6K fits, whereas at the whole tumor level the scores are lower for 3C6K fits. Conclusions: For the patients studied here, whole tumor FLT uptake time-courses are represented better overall by a three-tissue than by a two-tissue model. EM-BIC clustering simplifies noisy parametric maps, providing the best description of the underlying information they contain and is potentially useful for radiotherapy dose-painting. However, the clustering highlights the large degree of noise present in maps of the phosphorylation rate-constantsk{sub 5} and k{sub 3-2tiss}, which are conceptually tightly linked to cellular proliferation. Methods must be found to make these maps more robust—either by constraining other model parameters or modifying dynamic imaging protocols.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
C.A. Baldwin; F.B.K. Kam; I. Remec
1998-10-01
This report describes the computational methodology for the least-squares adjustment of the dosimetry data from the HSSI 10.OD dosimetry capsule with neutronics calculations. It presents exposure rates at each dosimetry location for the neutron fluence greater than 1.0 MeV, fluence greater than 0.1 MeV, and displacements per atom. Exposure parameter distributions are also described in terms of three- dimensional fitting functions. When fitting functions are used it is suggested that an uncertainty of 6% (1 o) should be associated with the exposure rate values. The specific activity of each dosimeter at the end of irradiation is listed in the Appendix.
Lee, Seung-Hoon; Xu, Yong; Khim, Dongyoon; Park, Won-Tae; Kim, Dong-Yu; Noh, Yong-Young
2016-11-30
Charge transport in carbon nanotube network transistors strongly depends on the properties of the gate dielectric that is in direct contact with the semiconducting carbon nanotubes. In this work, we investigate the dielectric effects on charge transport in polymer-sorted semiconducting single-walled carbon nanotube field-effect transistors (s-SWNT-FETs) by using three different polymer insulators: A low-permittivity (ε r ) fluoropolymer (CYTOP, ε r = 1.8), poly(methyl methacrylate) (PMMA, ε r = 3.3), and a high-ε r ferroelectric relaxor [P(VDF-TrFE-CTFE), ε r = 14.2]. The s-SWNT-FETs with polymer dielectrics show typical ambipolar charge transport with high ON/OFF ratios (up to ∼10 5 ) and mobilities (hole mobility up to 6.77 cm 2 V -1 s -1 for CYTOP). The s-SWNT-FET with the lowest-k dielectric, CYTOP, exhibits the highest mobility owing to formation of a favorable interface for charge transport, which is confirmed by the lowest activation energies, evaluated by the fluctuation-induced tunneling model (FIT) and the traditional Arrhenius model (E aFIT = 60.2 meV and E aArr = 10 meV). The operational stability of the devices showed a good agreement with the activation energies trend (drain current decay ∼14%, threshold voltage shift ∼0.26 V in p-type regime of CYTOP devices). The poor performance in high-ε r devices is accounted for by a large energetic disorder caused by the randomly oriented dipoles in high-k dielectrics. In conclusion, the low-k dielectric forms a favorable interface with s-SWNTs for efficient charge transport in s-SWNT-FETs.
Effect of Heat (Arrhenius Effect) on Crude Hemolysin of Vibrio parahaemolyticus
Miwatani, Toshio; Takeda, Yoshifumi; Sakurai, Jun; Yoshihara, Akiko; Taga, Sekiko
1972-01-01
Crude hemolysins prepared from various strains of Vibrio parahaemolyticus, which give positive Kanagawa phenomenon, were partly inactivated by heating at 60 C, but not inactivated significantly by heating at 80 to 90 C. The similar phenomenon has been reported as the Arrhenius effect in staphylococcal alpha toxin. Images PMID:4638496
USDA-ARS?s Scientific Manuscript database
The objective of this work is to develop a new thermodynamic mathematical model for evaluating the effect of temperature on the rate of microbial growth. The new mathematical model is derived by combining the Arrhenius equation and the Eyring-Polanyi transition theory. The new model, suitable for ...
Application of the compensated arrhenius formalism to dielectric relaxation.
Petrowsky, Matt; Frech, Roger
2009-12-17
The temperature dependence of the dielectric rate constant, defined as the reciprocal of the dielectric relaxation time, is examined for several groups of organic solvents. Early studies of linear alcohols using a simple Arrhenius equation found that the activation energy was dependent on the chain length of the alcohol. This paper re-examines the earlier data using a compensated Arrhenius formalism that assumes the presence of a temperature-dependent static dielectric constant in the exponential prefactor. Scaling temperature-dependent rate constants to isothermal rate constants so that the dielectric constant dependence is removed results in calculated energies of activation E(a) in which there is a small increase with chain length. These energies of activation are very similar to those calculated from ionic conductivity data using compensated Arrhenius formalism. This treatment is then extended to dielectic relaxation data for n-alkyl bromides, n-nitriles, and n-acetates. The exponential prefactor is determined by dividing the temperature-dependent rate constants by the Boltzmann term exp(-E(a)/RT). Plotting the prefactors versus the static dielectric constant places the data on a single master curve for each group of solvents.
Origin of the Non-Arrhenius Behavior of the Rates of Enzymatic Reactions.
Roy, Subhendu; Schopf, Patrick; Warshel, Arieh
2017-07-13
The origin of the non-Arrhenius behavior of the rate constant for hydride transfer enzymatic reactions has been a puzzling problem since its initial observation. This effect has been used originally to support the idea that enzymes work by dynamical effects and more recently to suggest an entropy funnel model. Our analysis, however, has advanced the idea that the reason for the non-Arrhenius trend reflects the temperature dependence of the rearrangements of the protein polar groups in response to the change in the charge distribution of the reacting system during the transition from the ground state (GS) to the transition state (TS). Here we examine the validity of our early proposal by simulating the catalytic reaction of alcohol dehydrogenase (ADH) and determine the microscopic origin of the entropic and enthalpic contributions to the activation barrier. The corresponding analysis establishes the origin of the non-Arrhenius behaviors and quantifies our original suggestion that the classical effect is due to the entropic contributions of the environment. We also find that the quantum effects reflect in part the temperature dependence of the donor-acceptor distance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albia, Jason R.; Albao, Marvin A., E-mail: maalbao@uplb.edu.ph
Classical nucleation theory predicts that the evolution of mean island density with temperature during growth in one-dimensional systems obeys the Arrhenius relation. In this study, kinetic Monte Carlo simulations of a suitable atomistic lattice-gas model were performed to investigate the experimentally observed non-Arrhenius scaling behavior of island density in the case of one-dimensional Al islands grown on Si(100). Previously, it was proposed that adatom desorption resulted in a transition temperature signaling the departure from classical predictions. Here, the authors demonstrate that desorption above the transition temperature is not possible. Instead, the authors posit that the existence of a transition temperaturemore » is due to a combination of factors such as reversibility of island growth, presence of C-defects, adatom diffusion rates, as well as detachment rates at island ends. In addition, the authors show that the anomalous non-Arrhenius behavior vanishes when adatom binds irreversibly with C-defects as observed in In on Si(100) studies.« less
Superconducting cosmic strings as sources of cosmological fast radio bursts
NASA Astrophysics Data System (ADS)
Ye, Jiani; Wang, Kai; Cai, Yi-Fu
2017-11-01
In this paper we calculate the radio burst signals from three kinds of structures of superconducting cosmic strings. By taking into account the observational factors including scattering and relativistic effects, we derive the event rate of radio bursts as a function of redshift with the theoretical parameters Gμ and I of superconducting strings. Our analyses show that cusps and kinks may have noticeable contributions to the event rate and in most cases cusps would dominate the contribution, while the kink-kink collisions tend to have secondary effects. By fitting theoretical predictions with the normalized data of fast radio bursts, we for the first time constrain the parameter space of superconducting strings and report that the parameter space of Gμ ˜ [10^{-14}, 10^{-12}] and I ˜ [10^{-1}, 102] GeV fit the observation well although the statistic significance is low due to the lack of observational data. Moreover, we derive two types of best fittings, with one being dominated by cusps with a redshift z = 1.3, and the other dominated by kinks at the range of the maximal event rate.
Bernatowicz, Piotr; Shkurenko, Aleksander; Osior, Agnieszka; Kamieński, Bohdan; Szymański, Sławomir
2015-11-21
The theory of nuclear spin-lattice relaxation in methyl groups in solids has been a recurring problem in nuclear magnetic resonance (NMR) spectroscopy. The current view is that, except for extreme cases of low torsional barriers where special quantum effects are at stake, the relaxation behaviour of the nuclear spins in methyl groups is controlled by thermally activated classical jumps of the methyl group between its three orientations. The temperature effects on the relaxation rates can be modelled by Arrhenius behaviour of the correlation time of the jump process. The entire variety of relaxation effects in protonated methyl groups have recently been given a consistent quantum mechanical explanation not invoking the jump model regardless of the temperature range. It exploits the damped quantum rotation (DQR) theory originally developed to describe NMR line shape effects for hindered methyl groups. In the DQR model, the incoherent dynamics of the methyl group include two quantum rate (i.e., coherence-damping) processes. For proton relaxation only one of these processes is relevant. In this paper, temperature-dependent proton spin-lattice relaxation data for the methyl groups in polycrystalline methyltriphenyl silane and methyltriphenyl germanium, both deuterated in aromatic positions, are reported and interpreted in terms of the DQR model. A comparison with the conventional approach exploiting the phenomenological Arrhenius equation is made. The present observations provide further indications that incoherent motions of molecular moieties in the condensed phase can retain quantum character over much broader temperature range than is commonly thought.
Lancaster, Kelly; Odom, Susan A; Jones, Simon C; Thayumanavan, S; Marder, Seth R; Brédas, Jean-Luc; Coropceanu, Veaceslav; Barlow, Stephen
2009-02-11
The electron spin resonance spectra of the radical cations of 4,4'-bis[di(4-methoxyphenyl)amino]tolane, E-4,4'-bis[di(4-methoxyphenyl)amino]stilbene, and E,E-1,4-bis{4-[di(4-methoxyphenyl)amino]styryl}benzene in dichloromethane exhibit five lines over a wide temperature range due to equivalent coupling to two 14N nuclei, indicating either delocalization between both nitrogen atoms or rapid intramolecular electron transfer on the electron spin resonance time scale. In contrast, those of the radical cations of 1,4-bis{4-[di(4-methoxyphenyl)amino]phenylethynyl}benzene and E,E-1,4-bis{4-[di(4-n-butoxyphenyl)amino]styryl}-2,5-dicyanobenzene exhibit line shapes that vary strongly with temperature, displaying five lines at room temperature and only three lines at ca. 190 K, indicative of slow electron transfer on the electron spin resonance time scale at low temperatures. The rates of intramolecular electron transfer in the latter compounds were obtained by simulation of the electron spin resonance spectra and display an Arrhenius temperature dependence. The activation barriers obtained from Arrhenius plots are significantly less than anticipated from Hush analyses of the intervalence bands when the diabatic electron-transfer distance, R, is equated to the N[symbol: see text]N distance. Comparison of optical and electron spin resonance data suggests that R is in fact only ca. 40% of the N[symbol: see text]N distance, while the Arrhenius prefactor indicates that the electron transfer falls in the adiabatic regime.
Neon diffusion kinetics and implications for cosmogenic neon paleothermometry in feldspars
NASA Astrophysics Data System (ADS)
Tremblay, Marissa M.; Shuster, David L.; Balco, Greg; Cassata, William S.
2017-05-01
Observations of cosmogenic neon concentrations in feldspars can potentially be used to constrain the surface exposure duration or surface temperature history of geologic samples. The applicability of cosmogenic neon to either application depends on the temperature-dependent diffusivity of neon isotopes. In this work, we investigate the kinetics of neon diffusion in feldspars of different compositions and geologic origins through stepwise degassing experiments on single, proton-irradiated crystals. To understand the potential causes of complex diffusion behavior that is sometimes manifest as nonlinearity in Arrhenius plots, we compare our results to argon stepwise degassing experiments previously conducted on the same feldspars. Many of the feldspars we studied exhibit linear Arrhenius behavior for neon whereas argon degassing from the same feldspars did not. This suggests that nonlinear behavior in argon experiments is an artifact of structural changes during laboratory heating. However, other feldspars that we examined exhibit nonlinear Arrhenius behavior for neon diffusion at temperatures far below any known structural changes, which suggests that some preexisting material property is responsible for the complex behavior. In general, neon diffusion kinetics vary widely across the different feldspars studied, with estimated activation energies (Ea) ranging from 83.3 to 110.7 kJ/mol and apparent pre-exponential factors (D0) spanning three orders of magnitude from 2.4 × 10-3 to 8.9 × 10-1 cm2 s-1. As a consequence of this variability, the ability to reconstruct temperatures or exposure durations from cosmogenic neon abundances will depend on both the specific feldspar and the surface temperature conditions at the geologic site of interest.
Motor-substrate interactions in mycoplasma motility explains non-Arrhenius temperature dependence.
Chen, Jing; Neu, John; Miyata, Makoto; Oster, George
2009-12-02
Mycoplasmas exhibit a novel, substrate-dependent gliding motility that is driven by approximately 400 "leg" proteins. The legs interact with the substrate and transmit the forces generated by an assembly of ATPase motors. The velocity of the cell increases linearly by nearly 10-fold over a narrow temperature range of 10-40 degrees C. This corresponds to an Arrhenius factor that decreases from approximately 45 k(B)T at 10 degrees C to approximately 10 k(B)T at 40 degrees C. On the other hand, load-velocity curves at different temperatures extrapolate to nearly the same stall force, suggesting a temperature-insensitive force-generation mechanism near stall. In this article, we propose a leg-substrate interaction mechanism that explains the intriguing temperature sensitivity of this motility. The large Arrhenius factor at low temperature comes about from the addition of many smaller energy barriers arising from many substrate-binding sites at the distal end of the leg protein. The Arrhenius dependence attenuates at high temperature due to two factors: 1), the reduced effective multiplicity of energy barriers intrinsic to the multiple-site binding mechanism; and 2), the temperature-sensitive weakly facilitated leg release that curtails the power stroke. The model suggests an explanation for the similar steep, sub-Arrhenius temperature-velocity curves observed in many molecular motors, such as kinesin and myosin, wherein the temperature behavior is dominated not by the catalytic biochemistry, but by the motor-substrate interaction.
Motor-Substrate Interactions in Mycoplasma Motility Explains Non-Arrhenius Temperature Dependence
Chen, Jing; Neu, John; Miyata, Makoto; Oster, George
2009-01-01
Abstract Mycoplasmas exhibit a novel, substrate-dependent gliding motility that is driven by ∼400 “leg” proteins. The legs interact with the substrate and transmit the forces generated by an assembly of ATPase motors. The velocity of the cell increases linearly by nearly 10-fold over a narrow temperature range of 10–40°C. This corresponds to an Arrhenius factor that decreases from ∼45 kBT at 10°C to ∼10 kBT at 40°C. On the other hand, load-velocity curves at different temperatures extrapolate to nearly the same stall force, suggesting a temperature-insensitive force-generation mechanism near stall. In this article, we propose a leg-substrate interaction mechanism that explains the intriguing temperature sensitivity of this motility. The large Arrhenius factor at low temperature comes about from the addition of many smaller energy barriers arising from many substrate-binding sites at the distal end of the leg protein. The Arrhenius dependence attenuates at high temperature due to two factors: 1), the reduced effective multiplicity of energy barriers intrinsic to the multiple-site binding mechanism; and 2), the temperature-sensitive weakly facilitated leg release that curtails the power stroke. The model suggests an explanation for the similar steep, sub-Arrhenius temperature-velocity curves observed in many molecular motors, such as kinesin and myosin, wherein the temperature behavior is dominated not by the catalytic biochemistry, but by the motor-substrate interaction. PMID:19948122
Yu, Chun-tang; Liu, Ying-ying; Xia, Yu-feng
2014-01-01
The stress-strain data of 20MnNiMo alloy were collected from a series of hot compressions on Gleeble-1500 thermal-mechanical simulator in the temperature range of 1173∼1473 K and strain rate range of 0.01∼10 s−1. Based on the experimental data, the improved Arrhenius-type constitutive model and the artificial neural network (ANN) model were established to predict the high temperature flow stress of as-cast 20MnNiMo alloy. The accuracy and reliability of the improved Arrhenius-type model and the trained ANN model were further evaluated in terms of the correlation coefficient (R), the average absolute relative error (AARE), and the relative error (η). For the former, R and AARE were found to be 0.9954 and 5.26%, respectively, while, for the latter, 0.9997 and 1.02%, respectively. The relative errors (η) of the improved Arrhenius-type model and the ANN model were, respectively, in the range of −39.99%∼35.05% and −3.77%∼16.74%. As for the former, only 16.3% of the test data set possesses η-values within ±1%, while, as for the latter, more than 79% possesses. The results indicate that the ANN model presents a higher predictable ability than the improved Arrhenius-type constitutive model. PMID:24688358
NASA Astrophysics Data System (ADS)
Dolomatov, M. Yu.; Kovaleva, E. A.; Khamidullina, D. A.
2018-05-01
An approach that allows the calculation of dynamic viscosity for liquid hydrocarbons from quantum (ionization energies) and molecular (Wiener topological indices) parameters is proposed. A physical relationship is revealed between ionization and the energies of viscous flow activation. This relationship is due to the contribution from the dispersion component of Van der Waals forces to intermolecular interaction. A two-parameter dependence of the energy of viscous flow activation, energy of ionization, and Wiener topological indices is obtained. The dynamic viscosities of liquid hydrocarbons can be calculated from the kinetic compensation effect of dynamic viscosity, which indicates a relationship between the energy of activation and the Arrhenius pre-exponental factor of the Frenkel-Eyring hole model. Calculation results are confirmed through statistical processing of the experimental data.
The nearby triple star HIP 101955
NASA Astrophysics Data System (ADS)
Fang, Xia
2018-04-01
The nearby triple star HIP 101955 with strongly inclined orbit still remains. Thus the long-term dynamical stability deserves to be discussed based on the new dynamical state parameters (component masses and kinematic parameters) derived from fitting the accurate three-body model to the radial velocity, the Hipparcos Intermediate Astrometric Data (HIAD), and the accumulated speckle and visual data. It is found that the three-body system remains integrated and most likely undergoes Kozai cycles. With the already accumulated high-precision data, the three-body effects cannot always be neglected in the determination of the dynamical state. And it is expected that this will be the general case under the available Gaia data.
Bayesian investigation of isochrone consistency using the old open cluster NGC 188
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hills, Shane; Courteau, Stéphane; Von Hippel, Ted
2015-03-01
This paper provides a detailed comparison of the differences in parameters derived for a star cluster from its color–magnitude diagrams (CMDs) depending on the filters and models used. We examine the consistency and reliability of fitting three widely used stellar evolution models to 15 combinations of optical and near-IR photometry for the old open cluster NGC 188. The optical filter response curves match those of theoretical systems and are thus not the source of fit inconsistencies. NGC 188 is ideally suited to this study thanks to a wide variety of high-quality photometry and available proper motions and radial velocities thatmore » enable us to remove non-cluster members and many binaries. Our Bayesian fitting technique yields inferred values of age, metallicity, distance modulus, and absorption as a function of the photometric band combinations and stellar models. We show that the historically favored three-band combinations of UBV and VRI can be meaningfully inconsistent with each other and with longer baseline data sets such as UBVRIJHK{sub S}. Differences among model sets can also be substantial. For instance, fitting Yi et al. (2001) and Dotter et al. (2008) models to UBVRIJHK{sub S} photometry for NGC 188 yields the following cluster parameters: age = (5.78 ± 0.03, 6.45 ± 0.04) Gyr, [Fe/H] = (+0.125 ± 0.003, −0.077 ± 0.003) dex, (m−M){sub V} = (11.441 ± 0.007, 11.525 ± 0.005) mag, and A{sub V} = (0.162 ± 0.003, 0.236 ± 0.003) mag, respectively. Within the formal fitting errors, these two fits are substantially and statistically different. Such differences among fits using different filters and models are a cautionary tale regarding our current ability to fit star cluster CMDs. Additional modeling of this kind, with more models and star clusters, and future Gaia parallaxes are critical for isolating and quantifying the most relevant uncertainties in stellar evolutionary models.« less
NASA Technical Reports Server (NTRS)
Vadyak, J.; Hoffman, J. D.; Bishop, A. R.
1978-01-01
The calculation procedure is based on the method of characteristics for steady three-dimensional flow. The bow shock wave and the internal shock wave system were computed using a discrete shock wave fitting procedure. The general structure of the computer program is discussed, and a brief description of each subroutine is given. All program input parameters are defined, and a brief discussion on interpretation of the output is provided. A number of sample cases, complete with data deck listings, are presented.
Improving Accuracy in Arrhenius Models of Cell Death: Adding a Temperature-Dependent Time Delay.
Pearce, John A
2015-12-01
The Arrhenius formulation for single-step irreversible unimolecular reactions has been used for many decades to describe the thermal damage and cell death processes. Arrhenius predictions are acceptably accurate for structural proteins, for some cell death assays, and for cell death at higher temperatures in most cell lines, above about 55 °C. However, in many cases--and particularly at hyperthermic temperatures, between about 43 and 55 °C--the particular intrinsic cell death or damage process under study exhibits a significant "shoulder" region that constant-rate Arrhenius models are unable to represent with acceptable accuracy. The primary limitation is that Arrhenius calculations always overestimate the cell death fraction, which leads to severely overoptimistic predictions of heating effectiveness in tumor treatment. Several more sophisticated mathematical model approaches have been suggested and show much-improved performance. But simpler models that have adequate accuracy would provide useful and practical alternatives to intricate biochemical analyses. Typical transient intrinsic cell death processes at hyperthermic temperatures consist of a slowly developing shoulder region followed by an essentially constant-rate region. The shoulder regions have been demonstrated to arise chiefly from complex functional protein signaling cascades that generate delays in the onset of the constant-rate region, but may involve heat shock protein activity as well. This paper shows that acceptably accurate and much-improved predictions in the simpler Arrhenius models can be obtained by adding a temperature-dependent time delay. Kinetic coefficients and the appropriate time delay are obtained from the constant-rate regions of the measured survival curves. The resulting predictions are seen to provide acceptably accurate results while not overestimating cell death. The method can be relatively easily incorporated into numerical models. Additionally, evidence is presented to support the application of compensation law behavior to the cell death processes--that is, the strong correlation between the kinetic coefficients, ln{A} and E(a), is confirmed.
Performance of Transit Model Fitting in Processing Four Years of Kepler Science Data
NASA Astrophysics Data System (ADS)
Li, Jie; Burke, Christopher J.; Jenkins, Jon Michael; Quintana, Elisa V.; Rowe, Jason; Seader, Shawn; Tenenbaum, Peter; Twicken, Joseph D.
2014-06-01
We present transit model fitting performance of the Kepler Science Operations Center (SOC) Pipeline in processing four years of science data, which were collected by the Kepler spacecraft from May 13, 2009 to May 12, 2013. Threshold Crossing Events (TCEs), which represent transiting planet detections, are generated by the Transiting Planet Search (TPS) component of the pipeline and subsequently processed in the Data Validation (DV) component. The transit model is used in DV to fit TCEs and derive parameters that are used in various diagnostic tests to validate planetary candidates. The standard transit model includes five fit parameters: transit epoch time (i.e. central time of first transit), orbital period, impact parameter, ratio of planet radius to star radius and ratio of semi-major axis to star radius. In the latest Kepler SOC pipeline codebase, the light curve of the target for which a TCE is generated is initially fitted by a trapezoidal model with four parameters: transit epoch time, depth, duration and ingress time. The trapezoidal model fit, implemented with repeated Levenberg-Marquardt minimization, provides a quick and high fidelity assessment of the transit signal. The fit parameters of the trapezoidal model with the minimum chi-square metric are converted to set initial values of the fit parameters of the standard transit model. Additional parameters, such as the equilibrium temperature and effective stellar flux of the planet candidate, are derived from the fit parameters of the standard transit model to characterize pipeline candidates for the search of Earth-size planets in the Habitable Zone. The uncertainties of all derived parameters are updated in the latest codebase to take into account for the propagated errors of the fit parameters as well as the uncertainties in stellar parameters. The results of the transit model fitting of the TCEs identified by the Kepler SOC Pipeline, including fitted and derived parameters, fit goodness metrics and diagnostic figures, are included in the DV report and one-page report summary, which are accessible by the science community at NASA Exoplanet Archive. Funding for the Kepler Mission has been provided by the NASA Science Mission Directorate.
Amplitude, Latency, and Peak Velocity in Accommodation and Disaccommodation Dynamics
Papadatou, Eleni; Ferrer-Blasco, Teresa; Montés-Micó, Robert
2017-01-01
The aim of this work was to ascertain whether there are differences in amplitude, latency, and peak velocity of accommodation and disaccommodation responses when different analysis strategies are used to compute them, such as fitting different functions to the responses or for smoothing them prior to computing the parameters. Accommodation and disaccommodation responses from four subjects to pulse changes in demand were recorded by means of aberrometry. Three different strategies were followed to analyze such responses: fitting an exponential function to the experimental data; fitting a Boltzmann sigmoid function to the data; and smoothing the data. Amplitude, latency, and peak velocity of the responses were extracted. Significant differences were found between the peak velocity in accommodation computed by fitting an exponential function and smoothing the experimental data (mean difference 2.36 D/s). Regarding disaccommodation, significant differences were found between latency and peak velocity, calculated with the two same strategies (mean difference of 0.15 s and −3.56 D/s, resp.). The strategy used to analyze accommodation and disaccommodation responses seems to affect the parameters that describe accommodation and disaccommodation dynamics. These results highlight the importance of choosing the most adequate analysis strategy in each individual to obtain the parameters that characterize accommodation and disaccommodation dynamics. PMID:29226128
Golovach, Nina G; Cheshchevik, Vitali T; Lapshina, Elena A; Ilyich, Tatsiana V; Zavodnik, Ilya B
2017-04-01
We evaluated the parameters of Ca 2+ -induced mitochondrial permeability transition (MPT) pore formations, Ca 2+ binding constants, stoichiometry, energy of activation, and the effect of oxidative agents, tert-butyl hydroperoxide (tBHP), and hypochlorous acid (HOCl), on Ca 2+ -mediated process in rat liver mitochondria. From the Hill plot of the dependence of MPT rate on Ca 2+ concentration, we determined the order of interaction of Ca 2+ ions with the mitochondrial sites, n = 3, and the apparent K d = 60 ± 12 µM. We also found the apparent Michaelis-Menten constant, K m , for Ca 2+ interactions with mitochondria to be equal to 75 ± 20 µM, whereas that in the presence of 300 µM tBHP was 120 ± 20 µM. Using the Arrhenius plots of the temperature dependences of apparent mitochondrial swelling rate at various Ca 2+ concentrations, we calculated the activation energy of the MPT process. ΔE a was 130 ± 20 kJ/mol at temperatures below the break point of the Arrhenius plot (30-34 °C) and 50 ± 9 kJ/mol at higher temperatures. Ca 2+ ions induced rapid mitochondrial NADH depletion and membrane depolarization. Prevention of the pore formation by cyclosporin A inhibited Ca 2+ -dependent mitochondrial depolarization and Mg 2+ ions attenuated the potential dissipation. tBHP (10-150 µM) dose-dependently enhanced the rate of MPT opening, whereas the effect of HOCl on MPT depended on the ratio of HOCl/Ca 2+ . The apparent K m of tBHP interaction with mitochondria in the swelling reaction was found to be K m = 11 ± 3 µM. The present study provides evidence that three calcium ions interact with mitochondrial site with high affinity during MPT. Ca 2+ -induced MPT pore formations due to mitochondrial membrane protein denaturation resulted in membrane potential dissipation. Oxidants with different mechanisms, tBHP and HOCl, reduced mitochondrial membrane potential and oxidized mitochondrial NADH in EDTA-free medium and had an effect on Ca 2+ -induced MPT onset.
Isovector and flavor-diagonal charges of the nucleon
NASA Astrophysics Data System (ADS)
Gupta, Rajan; Bhattacharya, Tanmoy; Jang, Yong-Chull; Lin, Huey-Wen; Yoon, Boram
2018-03-01
We present an update on the status of the calculations of isovector and flavor-diagonal charges of the nucleon. The calculations of the isovector charges are being done using ten 2+1+1-flavor HISQ ensembles generated by the MILC collaboration covering the range of lattice spacings a ≈ 0.12, 0.09, 0.06 fm and pion masses Mπ ≈ 310, 220, 130 MeV. Excited-states contamination is controlled by using four-state fits to two-point correlators and three-states fits to the three-point correlators. The calculations of the disconnected diagrams needed to estimate flavor-diagonal charges are being done on a subset of six ensembles using the stocastic method. Final results are obtained using a simultaneous fit in M2π, the lattice spacing a and the finite volume parameter MπL keeping only the leading order corrections.
Angioi, Manuela; Metsios, George; Twitchett, Emily A; Koutedakis, Yiannis; Wyon, Matthew
2012-03-01
Within aesthetic sports such as figure skating and rhythmic gymnastics, physical fitness has been shown to have positive benefits on performance outcomes. Presently the link between physical fitness and aesthetic contemporary dance performance has not been demonstrated within an intervention study. In this study, 24 females engaged in contemporary dance (age 27 ± 5.9 yrs; height 165.3 ± 4.8 cm; weight 59.2 ± 7.6 kg) were recruited and randomly assigned to either an exercise (n = 12) or a control group (n = 12). Three dancers withdrew during the study. The intervention group completed a 6-week conditioning programme comprising two 1-hr sessions of circuit and vibration training per week. The circuit training focused on local muscular endurance and aerobic conditioning and vibration training protocol concentrated on power. Repeated measures ANOVA revealed significant increases for the conditioning group in lower body muscular power (11%), upper body muscular endurance (22%), aerobic fitness (11%), and aesthetic competence (12%) (p < 0.05). The control group reported decreases in all the fitness parameters with the exception of aerobic fitness as well as a decrease in aesthetic competence (7%). A 6-week circuit and vibration training programme, which supplemented normal dance commitments, revealed significant increases in selected fitness components and a concomitant increase in aesthetic competence in contemporary professional and student dancers.
Dielectric relaxation in AgI doped silver selenomolybdate glasses
NASA Astrophysics Data System (ADS)
Palui, A.; Shaw, A.; Ghosh, A.
2016-05-01
We report the study of dielectric properties of some silver ion conducting silver selenomolybdate mixed network former glasses in a wide frequency and temperature range. The experimental data have been analyzed in the framework of complex dielectric permittivity. The dielectric permittivity data have been well interpreted using the Cole-Cole function. The temperature dependence of relaxation time obtained from real part of dielectric permittivity data shows an Arrhenius behavior. The activation energy shows a decreasing trend with the increase of doping content. Values of stretched exponential parameter are observed to be independent of temperature and composition.
NASA Astrophysics Data System (ADS)
Lakshman Kumar, Y.; Venkata Nadh, R.; Radhakrishnamurti, P. S.
2014-05-01
In the oxidation of D-sorbitol and D-mannitol by potassium periodate in alkaline media, substrate inhibition was observed with both substrates, i.e., a decrease in the rate of the reaction was observed with an increase in the concentration of substrate. The substrate inhibition was attributed to the formation of stable complex between the substrate and periodate. The reactions were found to be first order in case of periodate and a positive fractional order with hydroxide ions. Arrhenius parameters were calculated for the oxidation of sorbitol and mannitol by potassium periodate in alkali media.
Data Processing Algorithm for Diagnostics of Combustion Using Diode Laser Absorption Spectrometry.
Mironenko, Vladimir R; Kuritsyn, Yuril A; Liger, Vladimir V; Bolshov, Mikhail A
2018-02-01
A new algorithm for the evaluation of the integral line intensity for inferring the correct value for the temperature of a hot zone in the diagnostic of combustion by absorption spectroscopy with diode lasers is proposed. The algorithm is based not on the fitting of the baseline (BL) but on the expansion of the experimental and simulated spectra in a series of orthogonal polynomials, subtracting of the first three components of the expansion from both the experimental and simulated spectra, and fitting the spectra thus modified. The algorithm is tested in the numerical experiment by the simulation of the absorption spectra using a spectroscopic database, the addition of white noise, and the parabolic BL. Such constructed absorption spectra are treated as experimental in further calculations. The theoretical absorption spectra were simulated with the parameters (temperature, total pressure, concentration of water vapor) close to the parameters used for simulation of the experimental data. Then, spectra were expanded in the series of orthogonal polynomials and first components were subtracted from both spectra. The value of the correct integral line intensities and hence the correct temperature evaluation were obtained by fitting of the thus modified experimental and simulated spectra. The dependence of the mean and standard deviation of the evaluation of the integral line intensity on the linewidth and the number of subtracted components (first two or three) were examined. The proposed algorithm provides a correct estimation of temperature with standard deviation better than 60 K (for T = 1000 K) for the line half-width up to 0.6 cm -1 . The proposed algorithm allows for obtaining the parameters of a hot zone without the fitting of usually unknown BL.
The rock-paper-scissors game and the evolution of alternative male strategies
NASA Astrophysics Data System (ADS)
Sinervo, B.; Lively, C. M.
1996-03-01
MANY species exhibit colour polymorphisms associated with alternative male reproductive strategies, including territorial males and 'sneaker males' that behave and look like females1-3. The prevalence of multiple morphs is a challenge to evolutionary theory because a single strategy should prevail unless morphs have exactly equal fitness4,5 or a fitness advantage when rare6,7. We report here the application of an evolutionary stable strategy model to a three-morph mating system in the side-blotched lizard. Using parameter estimates from field data, the model predicted oscillations in morph frequency, and the frequencies of the three male morphs were found to oscillate over a six-year period in the field. The fitnesses of each morph relative to other morphs were non-transitive in that each morph could invade another morph when rare, but was itself invadable by another morph when common. Concordance between frequency-dependent selection and the among-year changes in morph fitnesses suggest that male interactions drive a dynamic 'rock-paper-scissors' game7.
"First-principles" kinetic Monte Carlo simulations revisited: CO oxidation over RuO2 (110).
Hess, Franziska; Farkas, Attila; Seitsonen, Ari P; Over, Herbert
2012-03-15
First principles-based kinetic Monte Carlo (kMC) simulations are performed for the CO oxidation on RuO(2) (110) under steady-state reaction conditions. The simulations include a set of elementary reaction steps with activation energies taken from three different ab initio density functional theory studies. Critical comparison of the simulation results reveals that already small variations in the activation energies lead to distinctly different reaction scenarios on the surface, even to the point where the dominating elementary reaction step is substituted by another one. For a critical assessment of the chosen energy parameters, it is not sufficient to compare kMC simulations only to experimental turnover frequency (TOF) as a function of the reactant feed ratio. More appropriate benchmarks for kMC simulations are the actual distribution of reactants on the catalyst's surface during steady-state reaction, as determined by in situ infrared spectroscopy and in situ scanning tunneling microscopy, and the temperature dependence of TOF in the from of Arrhenius plots. Copyright © 2012 Wiley Periodicals, Inc.
Studies on structural, electrical, thermal and magnetic properties of YFeO3 ceramic
NASA Astrophysics Data System (ADS)
Suthar, Lokesh; Jha, V. K.; Bhadala, Falguni; Roy, M.; Sahu, S.; Barbar, S. K.
2017-10-01
The polycrystalline ceramic sample of YFeO3 has been synthesized by high-temperature solid-state reaction method using high-purity oxides. The formation of the compound has been confirmed by the room temperature (RT) X-ray diffraction analysis. The refined lattice parameters obtained by Rietveld analysis are: a = 5.5907 Å, b = 7.6082 Å and c = 5.2849 Å with orthorhombic symmetry in space group Pnma. The average grain size obtained from the SEM micrograph is around 2 µm. The three-dimensional surface morphology has been investigated using atomic force microscopy (AFM), and the average roughness measured in the sampling area of 100.07 µm2 is around 142 nm. The frequency- and temperature-dependent dielectric constant has been measured. The material shows high dielectric constant value (750) at RT. The activation energy obtained from dc conductivity using Arrhenius relation σ = σ oexp(-Ea/kT) is 2.12 eV. Thermal analysis shows phase change around 625 K with minimum weight loss (i.e. 1.27% of initial weight) from RT to 1273 K. The magnetization measurement indicates soft magnetic behaviour.
Study of Solid-State Diffusion of Bi in Polycrystalline Sn Using Electron Probe Microanalysis
NASA Astrophysics Data System (ADS)
Delhaise, André M.; Perovic, Doug D.
2018-03-01
Current lead-free solders such as SAC305 exhibit degradation in microstructure, properties, and reliability. Current third-generation alloys containing bismuth (Bi) demonstrate preservation of strength after aging; this is accompanied by homogenization of the Bi precipitates in the tin (Sn) matrix, driven via solid-state diffusion. This study quantifies the diffusion of Bi in Sn. Diffusion couples were prepared by mating together polished samples of pure Sn and Bi. Couples were annealed at one of three temperatures, viz. 85°C for 7 days, 100°C for 2 days, or 125°C for 1 day. After cross-sectioning the couples to examine the diffusion microstructure and grain size, elemental analysis was performed using electron probe microanalysis. For this study, it was assumed that the diffusivity of Bi in Sn is concentration dependent, therefore inverse methods were used to solve Fick's non-steady-state diffusion equation. In addition, Darken analysis was used to extract the impurity diffusivity of Bi in Sn at each temperature, allowing estimation of the Arrhenius parameters D 0 and k A.
Heat and mass transfer in combustion - Fundamental concepts and analytical techniques
NASA Technical Reports Server (NTRS)
Law, C. K.
1984-01-01
Fundamental combustion phenomena and the associated flame structures in laminar gaseous flows are discussed on physical bases within the framework of the three nondimensional parameters of interest to heat and mass transfer in chemically-reacting flows, namely the Damkoehler number, the Lewis number, and the Arrhenius number which is the ratio of the reaction activation energy to the characteristic thermal energy. The model problems selected for illustration are droplet combustion, boundary layer combustion, and the propagation, flammability, and stability of premixed flames. Fundamental concepts discussed include the flame structures for large activation energy reactions, S-curve interpretation of the ignition and extinctin states, reaction-induced local-similarity and non-similarity in boundary layer flows, the origin and removal of the cold boundary difficulty in modeling flame propagation, and effects of flame stretch and preferential diffusion on flame extinction and stability. Analytical techniques introduced include the Shvab-Zeldovich formulation, the local Shvab-Zeldovich formulation, flame-sheet approximation and the associated jump formulation, and large activation energy matched asymptotic analysis. Potentially promising research areas are suggested.
Understanding the Relationship among Arrhenius, Brønsted-Lowry, and Lewis Theories
ERIC Educational Resources Information Center
Paik, Seoung-Hey
2015-01-01
Many studies suggest that students have difficulties in learning acid-base concepts. This study presents some conflicts in the textbook descriptions of these concepts and proposes these to be the cause of the students' difficulties. This is especially true regarding the description of the relationship among the Arrhenius, Brønsted-Lowry, and Lewis…
Dubois, F; Derouiche, Y; Leblond, J M; Maschke, U; Douali, R
2015-09-01
The temperature dependence of the ionic conductivity is studied in a series of poly(propylene glycol) diacrylate monomers. The experimental data are analyzed by means of the approach recently proposed by Petrowsky et al. [J. Phys. Chem. B. 113, 5996 (2009)10.1021/jp810095g]. This so-called compensated Arrhenius formalism (CAF) approach takes into account the influence of the dielectric permittivity on the exponential prefactor in the classical Arrhenius equation. The experimental data presented in this paper show a good agreement with the CAF; this means that the exponential prefactor is principally dielectric permittivity dependent. The compensated data revealed two conduction processes with different activation energies; they correspond to low and high temperature ranges, respectively.
NASA Astrophysics Data System (ADS)
Dubois, F.; Derouiche, Y.; Leblond, J. M.; Maschke, U.; Douali, R.
2015-09-01
The temperature dependence of the ionic conductivity is studied in a series of poly(propylene glycol) diacrylate monomers. The experimental data are analyzed by means of the approach recently proposed by Petrowsky et al. [J. Phys. Chem. B. 113, 5996 (2009), 10.1021/jp810095g]. This so-called compensated Arrhenius formalism (CAF) approach takes into account the influence of the dielectric permittivity on the exponential prefactor in the classical Arrhenius equation. The experimental data presented in this paper show a good agreement with the CAF; this means that the exponential prefactor is principally dielectric permittivity dependent. The compensated data revealed two conduction processes with different activation energies; they correspond to low and high temperature ranges, respectively.
Planned Missing Designs to Optimize the Efficiency of Latent Growth Parameter Estimates
ERIC Educational Resources Information Center
Rhemtulla, Mijke; Jia, Fan; Wu, Wei; Little, Todd D.
2014-01-01
We examine the performance of planned missing (PM) designs for correlated latent growth curve models. Using simulated data from a model where latent growth curves are fitted to two constructs over five time points, we apply three kinds of planned missingness. The first is item-level planned missingness using a three-form design at each wave such…
Weiss, Michael
2017-06-01
Appropriate model selection is important in fitting oral concentration-time data due to the complex character of the absorption process. When IV reference data are available, the problem is the selection of an empirical input function (absorption model). In the present examples a weighted sum of inverse Gaussian density functions (IG) was found most useful. It is shown that alternative models (gamma and Weibull density) are only valid if the input function is log-concave. Furthermore, it is demonstrated for the first time that the sum of IGs model can be also applied to fit oral data directly (without IV data). In the present examples, a weighted sum of two or three IGs was sufficient. From the parameters of this function, the model-independent measures AUC and mean residence time can be calculated. It turned out that a good fit of the data in the terminal phase is essential to avoid parameter biased estimates. The time course of fractional elimination rate and the concept of log-concavity have proved as useful tools in model selection.
NASA Astrophysics Data System (ADS)
Olurotimi, E. O.; Sokoya, O.; Ojo, J. S.; Owolawi, P. A.
2018-03-01
Rain height is one of the significant parameters for prediction of rain attenuation for Earth-space telecommunication links, especially those operating at frequencies above 10 GHz. This study examines Three-parameter Dagum distribution of the rain height over Durban, South Africa. 5-year data were used to study the monthly, seasonal, and annual variations using the parameters estimated by the maximum likelihood of the distribution. The performance estimation of the distribution was determined using the statistical goodness of fit. Three-parameter Dagum distribution shows an appropriate distribution for the modeling of rain height over Durban with the Root Mean Square Error of 0.26. Also, the shape and scale parameters for the distribution show a wide variation. The probability exceedance of time for 0.01% indicates the high probability of rain attenuation at higher frequencies.
NASA Astrophysics Data System (ADS)
Hajigeorgiou, Photos G.
2016-12-01
An analytical model for the diatomic potential energy function that was recently tested as a universal function (Hajigeorgiou, 2010) has been further modified and tested as a suitable model for direct-potential-fit analysis. Applications are presented for the ground electronic states of three diatomic molecules: oxygen, carbon monoxide, and hydrogen fluoride. The adjustable parameters of the extended Lennard-Jones potential model are determined through nonlinear regression by fits to calculated rovibrational energy term values or experimental spectroscopic line positions. The model is shown to lead to reliable, compact and simple representations for the potential energy functions of these systems and could therefore be classified as a suitable and attractive model for direct-potential-fit analysis.
NASA Astrophysics Data System (ADS)
Yang, Liu; Xiao-Jing, Yu; Jian-Ming, Ma; Yi-Wen, Guan; Jiang, Li; Qiang, Li; Sa, Yang
2017-06-01
A volumetric ablation model for EPDM (ethylene- propylene-diene monomer) is established in this paper. This model considers the complex physicochemical process in the porous structure of a char layer. An ablation physics model based on a porous structure of a char layer and another model of heterogeneous volumetric ablation char layer physics are then built. In the model, porosity is used to describe the porous structure of a char layer. Gas diffusion and chemical reactions are introduced to the entire porous structure. Through detailed formation analysis, the causes of the compact or loose structure in the char layer and chemical vapor deposition (CVD) reaction between pyrolysis gas and char layer skeleton are introduced. The Arrhenius formula is adopted to determine the methods for calculating carbon deposition rate C which is the consumption rate caused by thermochemical reactions in the char layer, and porosity evolution. The critical porosity value is used as a criterion for char layer porous structure failure under gas flow and particle erosion. This critical porosity value is obtained by fitting experimental parameters and surface porosity of the char layer. Linear ablation and mass ablation rates are confirmed with the critical porosity value. Results of linear ablation and mass ablation rate calculations generally coincide with experimental results, suggesting that the ablation analysis proposed in this paper can accurately reflect practical situations and that the physics and mathematics models built are accurate and reasonable.
A Comparison of the One-and Three-Parameter Logistic Models on Measures of Test Efficiency.
ERIC Educational Resources Information Center
Benson, Jeri
Two methods of item selection were used to select sets of 40 items from a 50-item verbal analogies test, and the resulting item sets were compared for relative efficiency. The BICAL program was used to select the 40 items having the best mean square fit to the one parameter logistic (Rasch) model. The LOGIST program was used to select the 40 items…
Water Sorption Isotherm of Pea Starch Edible Films and Prediction Models.
Saberi, Bahareh; Vuong, Quan V; Chockchaisawasdee, Suwimol; Golding, John B; Scarlett, Christopher J; Stathopoulos, Costas E
2015-12-24
The moisture sorption isotherm of pea starch films prepared with various glycerol contents as plasticizer was investigated at different storage relative humidities (11%-96% RH) and at 5 ± 1, 15 ± 1, 25 ± 1 and 40 ± 1 °C by using gravimetric method. The results showed that the equilibrium moisture content of all films increased substantially above a w = 0.6. Films plasticized with glycerol, under all temperatures and RH conditions (11%-96%), adsorbed more moisture resulting in higher equilibrium moisture contents. Reduction of the temperature enhanced the equilibrium moisture content and monolayer water of the films. The obtained experimental data were fitted to different models including two-parameter equations (Oswin, Henderson, Brunauer-Emmitt-Teller (BET), Flory-Huggins, and Iglesias-Chirife), three-parameter equations Guggenhiem-Anderson-deBoer (GAB), Ferro-Fontan, and Lewicki) and a four-parameter equation (Peleg). The three-parameter Lewicki model was found to be the best-fitted model for representing the experimental data within the studied temperatures and whole range of relative humidities (11%-98%). Addition of glycerol increased the net isosteric heat of moisture sorption of pea starch film. The results provide important information with estimating of stability and functional characteristics of the films in various environments.
[Comparison among three translucency parameters].
Fang, Xiong; Hui, Xia
2017-06-01
This study aims to compare the three commonly used translucency parameters in prosthodontics: transmittance (T), contrast ratio (CR), and translucency parameter (TP). Six platelet specimens were composed of Vita enamel and dental porcelain. The initial thickness was 1.2 mm. The specimens were gradually ground to 1.0, 0.8, 0.6, 0.4, and 0.2 mm. T, color parameters, and reflection were measured by a spectrocolorimeter for each corresponding thickness. T, CR and TP were calculated and compared. TP increased, whereas CR decreased, with decreasing thickness. Moreover, T increased with decreasing thickness, and exponential relationships were found. Two-way ANOVA showed statistical significance between T and thickness, except between T and the 1.2 mm and 1.0 mm enamel porcelain groups. No difference was found among the coefficient variations (CV) of T, CR and TP. Curve fitting indicated the existence of exponential relationships between T and CR and between T and TP. The values for goodness of fit with statistical significance were 0.951 and 0.939, respectively (P<0.05). Under the experimental conditions, T, TP and CR achieved the same CV. T and TP, as well as T and CR, were found with exponential relationships. The value of CR and TP could not represent the translucency precisely, especially when comparing the changing ratios.
Water Sorption Isotherm of Pea Starch Edible Films and Prediction Models
Saberi, Bahareh; Vuong, Quan V.; Chockchaisawasdee, Suwimol; Golding, John B.; Scarlett, Christopher J.; Stathopoulos, Costas E.
2015-01-01
The moisture sorption isotherm of pea starch films prepared with various glycerol contents as plasticizer was investigated at different storage relative humidities (11%–96% RH) and at 5 ± 1, 15 ± 1, 25 ± 1 and 40 ± 1 °C by using gravimetric method. The results showed that the equilibrium moisture content of all films increased substantially above aw = 0.6. Films plasticized with glycerol, under all temperatures and RH conditions (11%–96%), adsorbed more moisture resulting in higher equilibrium moisture contents. Reduction of the temperature enhanced the equilibrium moisture content and monolayer water of the films. The obtained experimental data were fitted to different models including two-parameter equations (Oswin, Henderson, Brunauer–Emmitt–Teller (BET), Flory–Huggins, and Iglesias–Chirife), three-parameter equations Guggenhiem–Anderson–deBoer (GAB), Ferro–Fontan, and Lewicki) and a four-parameter equation (Peleg). The three-parameter Lewicki model was found to be the best-fitted model for representing the experimental data within the studied temperatures and whole range of relative humidities (11%–98%). Addition of glycerol increased the net isosteric heat of moisture sorption of pea starch film. The results provide important information with estimating of stability and functional characteristics of the films in various environments. PMID:28231096
Noguchi, Ko; Yamori, Wataru; Hikosaka, Kouki; Terashima, Ichiro
2015-07-01
The temperature dependence of plant respiratory rate (R) changes in response to growth temperature. Here, we used a modified Arrhenius model incorporating the temperature dependence of activation energy (Eo ), and compared the temperature dependence of R between cold-sensitive and cold-tolerant species. We analyzed the temperature dependences of leaf CO2 efflux rate of plants cultivated at low (LT) or high temperature (HT). In plants grown at HT (HT plants), Eo at low measurement temperature varied among species, but Eo at growth temperature in HT plants did not vary and was comparable to that in plants grown at LT (LT plants), suggesting that the limiting process was similar at the respective growth temperatures. In LT plants, the integrated value of loge R, a measure of respiratory capacity, in cold-sensitive species was lower than that in cold-tolerant species. When plants were transferred from HT to LT, the respiratory capacity changed promptly after the transfer compared with the other parameters. These results suggest that a similar process limits R at different growth temperatures, and that the lower capacity of the respiratory system in cold-sensitive species may explain their low growth rate at LT. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Suda, Hitoshi; Sato, Kazuya; Yanase, Sumino
2012-01-01
The lifespans of many poikilothermic animals, including the nematode Caenorhabditis elegans, depend significantly on environmental temperature. Using long-living, thermosensory mutants of C. elegans, we tested whether the temperature dependency of the mean lifespan is compatible with the Arrhenius equation, which typically represents one of the chemical reaction rate theories. The temperature dependency of C. elegans was the Arrhenius type or normal, but daf-2(e1370) mutants were quite different from the others. However, taking into account the effect of the thermal denaturation of DAF-2 with the temperature, we showed that our analyzed results are compatible with previous ones. We investigated the timing mechanism of one parameter (the onset of biodemographic aging (t(0))) in the lifespan equation by applying the RNAi feeding method to daf-2 mutants in order to suppress daf-16 activity at different times during the life cycle. In summary, we further deepened the biological role of two elements, t(0) and z (the inverse of the aging rate), in the lifespan equation and mean lifespan formulated by our diffusion model z(2) = 4Dt(0), where z is composed of t(0) and D (the diffusion constant). Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
On reaction kinetics and atmospheric lifetimes of CF3CFHCF3 and CF3CH2Br
NASA Technical Reports Server (NTRS)
Nelson, D. D., Jr.; Zahniser, M. S.; Kolb, C. E.
1993-01-01
The rate constants for the reaction of the OH radical with CF3CFHCF3 and with CF3CH2Br have been measured as a function of temperature using the discharge flow technique with laser induced fluorescence detection of the OH radicals. The temperature dependent rate coefficients are well described by a simple Arrhenius expression, k(T) = A exp(E/(RT)). For the reaction of OH with CF3CFHCF3 we find A = 3.7 x 10 exp -13 cu cm/molecules/s and E/R = 1615 K; for the reaction of OH with CF3CH2Br we report A = 1.4 x 10 exp -12 cu cm/molecule/s and E/R = 1350 K. These Arrhenius parameters imply rate coefficients at 277 K of 1.09 x 10 exp -15 cu cm/molecule/s for CF3CFHCF3 and 1.06 x 10 exp -14 cu cm/molecule/s for CF3CH2Br. We find atmospheric lifetimes for CF3CFHCH3 and CF3CH2Br of 42 years and 4.1 years, respectively. We also estimate the steady state ozone depletion potential (ODP) of the brominated species relative to CFCl3 as about 0.84 using a semiempirical model.
Flow behaviour and constitutive modelling of a ferritic stainless steel at elevated temperatures
NASA Astrophysics Data System (ADS)
Zhao, Jingwei; Jiang, Zhengyi; Zu, Guoqing; Du, Wei; Zhang, Xin; Jiang, Laizhu
2016-05-01
The flow behaviour of a ferritic stainless steel (FSS) was investigated by a Gleeble 3500 thermal-mechanical test simulator over the temperature range of 900-1100 °C and strain rate range of 1-50 s-1. Empirical and phenomenological constitutive models were established, and a comparative study was made on the predictability of them. The results indicate that the flow stress decreases with increasing the temperature and decreasing the strain rate. High strain rate may cause a drop in flow stress after a peak value due to the adiabatic heating. The Zener-Hollomon parameter depends linearly on the flow stress, and decreases with raising the temperature and reducing the strain rate. Significant deviations occur in the prediction of flow stress by the Johnson-Cook (JC) model, indicating that the JC model cannot accurately track the flow behaviour of the FSS during hot deformation. Both the multiple-linear and the Arrhenius-type models can track the flow behaviour very well under the whole hot working conditions, and have much higher accuracy in predicting the flow behaviour than that of the JC model. The multiple-linear model is recommended in the current work due to its simpler structure and less time needed for solving the equations relative to the Arrhenius-type model.
2015-01-01
The structural similarity between the primary molecules of voltage-gated Na and K channels (alpha subunits) and activation gating in the Hodgkin-Huxley model is brought into full agreement by increasing the model's sodium kinetics to fourth order (m3 → m4). Both structures then virtually imply activation gating by four independent subprocesses acting in parallel. The kinetics coalesce in four-dimensional (4D) cubic diagrams (16 states, 32 reversible transitions) that show the structure to be highly failure resistant against significant partial loss of gating function. Rate constants, as fitted in phase plot data of retinal ganglion cell excitation, reflect the molecular nature of the gating transitions. Additional dimensions (6D cubic diagrams) accommodate kinetically coupled sodium inactivation and gating processes associated with beta subunits. The gating transitions of coupled sodium inactivation appear to be thermodynamically irreversible; response to dielectric surface charges (capacitive displacement) provides a potential energy source for those transitions and yields highly energy-efficient excitation. A comparison of temperature responses of the squid giant axon (apparently Arrhenius) and mammalian channel gating yields kinetic Q10 = 2.2 for alpha unit gating, whose transitions are rate-limiting at mammalian temperatures; beta unit kinetic Q10 = 14 reproduces the observed non-Arrhenius deviation of mammalian gating at low temperatures; the Q10 of sodium inactivation gating matches the rate-limiting component of activation gating at all temperatures. The model kinetics reproduce the physiologically large frequency range for repetitive firing in ganglion cells and the physiologically observed strong temperature dependence of recovery from inactivation. PMID:25867741
Eaton, Jeffrey W.; Bao, Le
2017-01-01
Objectives The aim of the study was to propose and demonstrate an approach to allow additional nonsampling uncertainty about HIV prevalence measured at antenatal clinic sentinel surveillance (ANC-SS) in model-based inferences about trends in HIV incidence and prevalence. Design Mathematical model fitted to surveillance data with Bayesian inference. Methods We introduce a variance inflation parameter σinfl2 that accounts for the uncertainty of nonsampling errors in ANC-SS prevalence. It is additive to the sampling error variance. Three approaches are tested for estimating σinfl2 using ANC-SS and household survey data from 40 subnational regions in nine countries in sub-Saharan, as defined in UNAIDS 2016 estimates. Methods were compared using in-sample fit and out-of-sample prediction of ANC-SS data, fit to household survey prevalence data, and the computational implications. Results Introducing the additional variance parameter σinfl2 increased the error variance around ANC-SS prevalence observations by a median of 2.7 times (interquartile range 1.9–3.8). Using only sampling error in ANC-SS prevalence ( σinfl2=0), coverage of 95% prediction intervals was 69% in out-of-sample prediction tests. This increased to 90% after introducing the additional variance parameter σinfl2. The revised probabilistic model improved model fit to household survey prevalence and increased epidemic uncertainty intervals most during the early epidemic period before 2005. Estimating σinfl2 did not increase the computational cost of model fitting. Conclusions: We recommend estimating nonsampling error in ANC-SS as an additional parameter in Bayesian inference using the Estimation and Projection Package model. This approach may prove useful for incorporating other data sources such as routine prevalence from Prevention of mother-to-child transmission testing into future epidemic estimates. PMID:28296801
Limbach, Hans-Heinrich; Miguel Lopez, Juan; Kohen, Amnon
2006-01-01
In this paper, the Arrhenius curves of selected hydrogen-transfer reactions for which kinetic data are available in a large temperature range are reviewed. The curves are discussed in terms of the one-dimensional Bell–Limbach tunnelling model. The main parameters of this model are the barrier heights of the isotopic reactions, barrier width of the H-reaction, tunnelling masses, pre-exponential factor and minimum energy for tunnelling to occur. The model allows one to compare different reactions in a simple way and prepare the kinetic data for more-dimensional treatments. The first type of reactions is concerned with reactions where the geometries of the reacting molecules are well established and the kinetic data of the isotopic reactions are available in a large temperature range. Here, it is possible to study the relation between kinetic isotope effects (KIEs) and chemical structure. Examples are the tautomerism of porphyrin, the porphyrin anion and related compounds exhibiting intramolecular hydrogen bonds of medium strength. We observe pre-exponential factors of the order of kT/h≅1013 s−1 corresponding to vanishing activation entropies in terms of transition state theory. This result is important for the second type of reactions discussed in this paper, referring mostly to liquid solutions. Here, the reacting molecular configurations may be involved in equilibria with non- or less-reactive forms. Several cases are discussed, where the less-reactive forms dominate at low or at high temperature, leading to unusual Arrhenius curves. These cases include examples from small molecule solution chemistry like the base-catalysed intramolecular H-transfer in diaryltriazene, 2-(2′-hydroxyphenyl)-benzoxazole, 2-hydroxy-phenoxyl radicals, as well as in the case of an enzymatic system, thermophilic alcohol dehydrogenase. In the latter case, temperature-dependent KIEs are interpreted in terms of a transition between two regimes with different temperature-independent KIEs. PMID:16873127
Limbach, Hans-Heinrich; Miguel Lopez, Juan; Kohen, Amnon
2006-08-29
In this paper, the Arrhenius curves of selected hydrogen-transfer reactions for which kinetic data are available in a large temperature range are reviewed. The curves are discussed in terms of the one-dimensional Bell-Limbach tunnelling model. The main parameters of this model are the barrier heights of the isotopic reactions, barrier width of the H-reaction, tunnelling masses, pre-exponential factor and minimum energy for tunnelling to occur. The model allows one to compare different reactions in a simple way and prepare the kinetic data for more-dimensional treatments. The first type of reactions is concerned with reactions where the geometries of the reacting molecules are well established and the kinetic data of the isotopic reactions are available in a large temperature range. Here, it is possible to study the relation between kinetic isotope effects (KIEs) and chemical structure. Examples are the tautomerism of porphyrin, the porphyrin anion and related compounds exhibiting intramolecular hydrogen bonds of medium strength. We observe pre-exponential factors of the order of kT/h congruent with 10(13) s-1 corresponding to vanishing activation entropies in terms of transition state theory. This result is important for the second type of reactions discussed in this paper, referring mostly to liquid solutions. Here, the reacting molecular configurations may be involved in equilibria with non- or less-reactive forms. Several cases are discussed, where the less-reactive forms dominate at low or at high temperature, leading to unusual Arrhenius curves. These cases include examples from small molecule solution chemistry like the base-catalysed intramolecular H-transfer in diaryltriazene, 2-(2'-hydroxyphenyl)-benzoxazole, 2-hydroxy-phenoxyl radicals, as well as in the case of an enzymatic system, thermophilic alcohol dehydrogenase. In the latter case, temperature-dependent KIEs are interpreted in terms of a transition between two regimes with different temperature-independent KIEs.
O'Loughlin, Declan; Oliveira, Bárbara L; Elahi, Muhammad Adnan; Glavin, Martin; Jones, Edward; Popović, Milica; O'Halloran, Martin
2017-12-06
Inaccurate estimation of average dielectric properties can have a tangible impact on microwave radar-based breast images. Despite this, recent patient imaging studies have used a fixed estimate although this is known to vary from patient to patient. Parameter search algorithms are a promising technique for estimating the average dielectric properties from the reconstructed microwave images themselves without additional hardware. In this work, qualities of accurately reconstructed images are identified from point spread functions. As the qualities of accurately reconstructed microwave images are similar to the qualities of focused microscopic and photographic images, this work proposes the use of focal quality metrics for average dielectric property estimation. The robustness of the parameter search is evaluated using experimental dielectrically heterogeneous phantoms on the three-dimensional volumetric image. Based on a very broad initial estimate of the average dielectric properties, this paper shows how these metrics can be used as suitable fitness functions in parameter search algorithms to reconstruct clear and focused microwave radar images.
Sorption equilibrium of mercury onto ground-up tree fern.
Ho, Yuh-Shan; Wang, Chung-Chi
2008-08-15
The sorption behavior of mercury at different temperatures onto ground-up tree fern was investigated. The experimental results were fitted to two two-parameter isotherms, the Freundlich and Langmuir isotherms, as well as to two three-parameter isotherms, the Redlich-Peterson and Sips isotherms to obtain the characteristic parameters of each model. A comparison of best-fitting was performed using the coefficient of determination and Chi-square test. Both the Langmuir and Redlich-Peterson isotherms were found to well represent the measured sorption data. According to the evaluation using the Langmuir equation, the saturated monolayer sorption capacity of mercury ions onto ground-up tree fern was 26.5 mg/g at 298 K. It was noted that an increase in temperature resulted in a higher mercury ion loading per unit weight of the tree fern. In addition, various thermodynamic parameters, such as DeltaG degrees, DeltaH degrees, and DeltaS degrees, were calculated and compared with the sorption of mercury by other sorbents.
Analysis of BaBar data for three meson tau decay modes using the Tauola generator
Shekhovtsova, Olga
2014-11-24
The hadronic current for the τ⁻ → π⁻π⁺π⁻ν τ decay calculated in the framework of the Resonance Chiral Theory with an additional modification to include the σ meson is described. In addition, implementation into the Monte Carlo generator Tauola and fitting strategy to get the model parameters using the one-dimensional distributions are discussed. The results of the fit to one-dimensional mass invariant spectrum of the BaBar data are presented.
A systematical rheological study of polysaccharide from Sophora alopecuroides L. seeds.
Wu, Yan; Guo, Rui; Cao, Nannan; Sun, Xiangjun; Sui, Zhongquan; Guo, Qingbin
2018-01-15
The rheological properties of polysaccharide (SAP) from Sophora alopecuroides L. seeds were systematically investigated by fitting different models. The steady flow testing indicated that SAP exhibited shear-thinning behaviors, which were enhanced with increasing concentration and decreasing temperature. This was demonstrated quantitatively by Williamson and Arrhenius models. According to the generalized Morris equation, SAP exhibited random coil conformation with the potential to form weak gel-like network. On the other hand, multiple results of dynamic tests confirmed the viscoelastic properties of SAP, showing oscillatory behaviors between a dilute solution and an elastic gel. Furthermore, SAP solutions were thermorheologically stable without remarkable energetic interactions or structural heterogeneity, since their rheological patterns were successfully applied to Time-temperature superposition (TTS) principle, modified Cole-Cole analysis and Cox-Merz rule. Copyright © 2017 Elsevier Ltd. All rights reserved.
Carbon diffusion in molten uranium: an ab initio molecular dynamics study
NASA Astrophysics Data System (ADS)
Garrett, Kerry E.; Abrecht, David G.; Kessler, Sean H.; Henson, Neil J.; Devanathan, Ram; Schwantes, Jon M.; Reilly, Dallas D.
2018-04-01
In this work we used ab initio molecular dynamics within the framework of density functional theory and the projector-augmented wave method to study carbon diffusion in liquid uranium at temperatures above 1600 K. The electronic interactions of carbon and uranium were described using the local density approximation (LDA). The self-diffusion of uranium based on this approach is compared with literature computational and experimental results for liquid uranium. The temperature dependence of carbon and uranium diffusion in the melt was evaluated by fitting the resulting diffusion coefficients to an Arrhenius relationship. We found that the LDA calculated activation energy for carbon was nearly twice that of uranium: 0.55 ± 0.03 eV for carbon compared to 0.32 ± 0.04 eV for uranium. Structural analysis of the liquid uranium-carbon system is also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jesus, J.F.; Valentim, R.; Andrade-Oliveira, F., E-mail: jfjesus@itapeva.unesp.br, E-mail: valentim.rodolfo@unifesp.br, E-mail: felipe.oliveira@port.ac.uk
Creation of Cold Dark Matter (CCDM), in the context of Einstein Field Equations, produces a negative pressure term which can be used to explain the accelerated expansion of the Universe. In this work we tested six different spatially flat models for matter creation using statistical criteria, in light of SNe Ia data: Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) and Bayesian Evidence (BE). These criteria allow to compare models considering goodness of fit and number of free parameters, penalizing excess of complexity. We find that JO model is slightly favoured over LJO/ΛCDM model, however, neither of these, nor Γmore » = 3α H {sub 0} model can be discarded from the current analysis. Three other scenarios are discarded either because poor fitting or because of the excess of free parameters. A method of increasing Bayesian evidence through reparameterization in order to reducing parameter degeneracy is also developed.« less
Bayesian analysis of CCDM models
NASA Astrophysics Data System (ADS)
Jesus, J. F.; Valentim, R.; Andrade-Oliveira, F.
2017-09-01
Creation of Cold Dark Matter (CCDM), in the context of Einstein Field Equations, produces a negative pressure term which can be used to explain the accelerated expansion of the Universe. In this work we tested six different spatially flat models for matter creation using statistical criteria, in light of SNe Ia data: Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) and Bayesian Evidence (BE). These criteria allow to compare models considering goodness of fit and number of free parameters, penalizing excess of complexity. We find that JO model is slightly favoured over LJO/ΛCDM model, however, neither of these, nor Γ = 3αH0 model can be discarded from the current analysis. Three other scenarios are discarded either because poor fitting or because of the excess of free parameters. A method of increasing Bayesian evidence through reparameterization in order to reducing parameter degeneracy is also developed.
Xiang, Junfeng; Xie, Lijing; Gao, Feinong; Zhang, Yu; Yi, Jie; Wang, Tao; Pang, Siqin; Wang, Xibin
2018-01-01
Discrepancies in capturing material behavior of some materials, such as Particulate Reinforced Metal Matrix Composites, by using conventional ad hoc strategy make the applicability of Johnson-Cook constitutive model challenged. Despites applicable efforts, its extended formalism with more fitting parameters would increase the difficulty in identifying constitutive parameters. A weighted multi-objective strategy for identifying any constitutive formalism is developed to predict mechanical behavior in static and dynamic loading conditions equally well. These varying weighting is based on the Gaussian-distributed noise evaluation of experimentally obtained stress-strain data in quasi-static or dynamic mode. This universal method can be used to determine fast and directly whether the constitutive formalism is suitable to describe the material constitutive behavior by measuring goodness-of-fit. A quantitative comparison of different fitting strategies on identifying Al6063/SiCp’s material parameters is made in terms of performance evaluation including noise elimination, correlation, and reliability. Eventually, a three-dimensional (3D) FE model in small-hole drilling of Al6063/SiCp composites, using multi-objective identified constitutive formalism, is developed. Comparison with the experimental observations in thrust force, torque, and chip morphology provides valid evidence on the applicability of the developed multi-objective identification strategy in identifying constitutive parameters. PMID:29324688
Absorbing states in a catalysis model with anti-Arrhenius behavior.
de Andrade, M F; Figueiredo, W
2012-04-28
We study a model of heterogeneous catalysis with competitive reactions between two monomers A and B. We assume that reactions are dependent on temperature and follow an anti-Arrhenius mechanism. In this model, a monomer A can react with a nearest neighbor monomer A or B, however, reactions between monomers of type B are not allowed. We assume attractive interactions between nearest neighbor monomers as well as between monomers and the catalyst. Through mean-field calculations, at the level of site and pair approximations, and extensive Monte Carlo simulations, we determine the phase diagram of the model in the plane y(A) versus temperature, where y(A) is the probability that a monomer A reaches the catalyst. The model exhibits absorbing and active phases separated by lines of continuous phase transitions. We calculate the static, dynamic, and spreading exponents of the model, and despite the absorbing state be represented by many different microscopic configurations, the model belongs to the directed percolation universality class in two dimensions. Both reaction mechanisms, Arrhenius and anti-Arrhenius, give the same set of critical exponents and do not change the nature of the universality class of the catalytic models.
Probing static disorder in Arrhenius kinetics by single-molecule force spectroscopy.
Kuo, Tzu-Ling; Garcia-Manyes, Sergi; Li, Jingyuan; Barel, Itay; Lu, Hui; Berne, Bruce J; Urbakh, Michael; Klafter, Joseph; Fernández, Julio M
2010-06-22
The widely used Arrhenius equation describes the kinetics of simple two-state reactions, with the implicit assumption of a single transition state with a well-defined activation energy barrier DeltaE, as the rate-limiting step. However, it has become increasingly clear that the saddle point of the free-energy surface in most reactions is populated by ensembles of conformations, leading to nonexponential kinetics. Here we present a theory that generalizes the Arrhenius equation to include static disorder of conformational degrees of freedom as a function of an external perturbation to fully account for a diverse set of transition states. The effect of a perturbation on static disorder is best examined at the single-molecule level. Here we use force-clamp spectroscopy to study the nonexponential kinetics of single ubiquitin proteins unfolding under force. We find that the measured variance in DeltaE shows both force-dependent and independent components, where the force-dependent component scales with F(2), in excellent agreement with our theory. Our study illustrates a novel adaptation of the classical Arrhenius equation that accounts for the microscopic origins of nonexponential kinetics, which are essential in understanding the rapidly growing body of single-molecule data.
One- and two-stage Arrhenius models for pharmaceutical shelf life prediction.
Fan, Zhewen; Zhang, Lanju
2015-01-01
One of the most challenging aspects of the pharmaceutical development is the demonstration and estimation of chemical stability. It is imperative that pharmaceutical products be stable for two or more years. Long-term stability studies are required to support such shelf life claim at registration. However, during drug development to facilitate formulation and dosage form selection, an accelerated stability study with stressed storage condition is preferred to quickly obtain a good prediction of shelf life under ambient storage conditions. Such a prediction typically uses Arrhenius equation that describes relationship between degradation rate and temperature (and humidity). Existing methods usually rely on the assumption of normality of the errors. In addition, shelf life projection is usually based on confidence band of a regression line. However, the coverage probability of a method is often overlooked or under-reported. In this paper, we introduce two nonparametric bootstrap procedures for shelf life estimation based on accelerated stability testing, and compare them with a one-stage nonlinear Arrhenius prediction model. Our simulation results demonstrate that one-stage nonlinear Arrhenius method has significant lower coverage than nominal levels. Our bootstrap method gave better coverage and led to a shelf life prediction closer to that based on long-term stability data.
Arrhenius reconsidered: astrophysical jets and the spread of spores
NASA Astrophysics Data System (ADS)
Sheldon, Malkah I.; Sheldon, Robert B.
2015-09-01
In 1871, Lord Kelvin suggested that the fossil record could be an account of bacterial arrivals on comets. In 1903, Svante Arrhenius suggested that spores could be transported on stellar winds without comets. In 1984, Sir Fred Hoyle claimed to see the infrared signature of vast clouds of dried bacteria and diatoms. In 2012, the Polonnaruwa carbonaceous chondrite revealed fossilized diatoms apparently living on a comet. However, Arrhenius' spores were thought to perish in the long transit between stars. Those calculations, however, assume that maximum velocities are limited by solar winds to ~5 km/s. Herbig-Haro objects and T-Tauri stars, however, are young stars with jets of several 100 km/s that might provide the necessary propulsion. The central engine of bipolar astrophysical jets is not presently understood, but we argue it is a kinetic plasma instability of a charged central magnetic body. We show how to make a bipolar jet in a belljar. The instability is non-linear, and thus very robust to scaling laws that map from microquasars to active galactic nuclei. We scale up to stellar sizes and recalculate the viability/transit-time for spores carried by supersonic jets, to show the viability of the Arrhenius mechanism.
2010-01-01
The local structure of vanadium oxide supported on nanostructured SiO2 (VxOy/SBA-15) was investigated by in situ X-ray absorption spectroscopy (XAS). Because the number of potential parameters in XAS data analysis often exceeds the number of "independent" parameters, evaluating the reliability and significance of a particular fitting procedure is mandatory. The number of independent parameters (Nyquist) may not be sufficient. Hence, in addition to the number of independent parameters, a novel approach to evaluate the significance of structural fitting parameters in XAS data analysis is introduced. Three samples with different V loadings (i.e. 2.7 wt %, 5.4 wt %, and 10.8 wt %) were employed. Thermal treatment in air at 623 K resulted in characteristic structural changes of the V oxide species. Independent of the V loading, the local structure around V centers in dehydrated VxOy/SBA-15 corresponded to an ordered arrangement of adjacent V2O7 units. Moreover, the V2O7 units were found to persist under selective oxidation reaction conditions. PMID:20181222
Walter, Anke; Herbert, Rita; Hess, Christian; Ressler, Thorsten
2010-02-11
The local structure of vanadium oxide supported on nanostructured SiO2 (VxOy/SBA-15) was investigated by in situ X-ray absorption spectroscopy (XAS). Because the number of potential parameters in XAS data analysis often exceeds the number of "independent" parameters, evaluating the reliability and significance of a particular fitting procedure is mandatory. The number of independent parameters (Nyquist) may not be sufficient. Hence, in addition to the number of independent parameters, a novel approach to evaluate the significance of structural fitting parameters in XAS data analysis is introduced. Three samples with different V loadings (i.e. 2.7 wt %, 5.4 wt %, and 10.8 wt %) were employed. Thermal treatment in air at 623 K resulted in characteristic structural changes of the V oxide species. Independent of the V loading, the local structure around V centers in dehydrated VxOy/SBA-15 corresponded to an ordered arrangement of adjacent V2O7 units. Moreover, the V2O7 units were found to persist under selective oxidation reaction conditions.
O'Brien, Laura E; Timmins, Peter; Williams, Adrian C; York, Peter
2004-10-29
The solid-state transformation of carbamazepine from form III to form I was examined by Fourier Transform Raman spectroscopy. Using a novel environmental chamber, the isothermal conversion was monitored in situ at 130 degrees C, 138 degrees C, 140 degrees C and 150 degrees C. The rate of transformation was monitored by taking the relative intensities of peaks arising from two CH bending modes; this approach minimised errors due to thermal artefacts and variations in power intensities or scattering efficiencies from the samples in which crystal habit changed from a characteristic prism morphology (form III) to whiskers (form I). The solid-state transformation at the different temperatures was fitted to various solid-state kinetic models of which four gave good fits, thus indicating the complexity of the process which is known to occur via a solid-gas-solid mechanism. Arrhenius plots from the kinetic models yielded activation energies from 344 kJ mol(-1) to 368 kJ mol(-1) for the transformation. The study demonstrates the value of a rapid in situ analysis of drug polymorphic type which can be of value for at-line in-process control.
Reconciling different equations for proton conduction using the Meyer-Neldel compensation rule
NASA Astrophysics Data System (ADS)
Jones, Alan G.
2014-02-01
Proton conduction in nominally anhydrous minerals is the likely explanation for moderate values of electrical resistivity observed in the lithospheric and sublithospheric mantle. However, results from the various laboratories making the controlled measurements on mantle minerals, predominantly olivine, are not in agreement with one another. Importantly, the groups use different formalisms to fit their experimental data. In this paper, we show that neither of the two formalisms employed by the various laboratories is consistent with the Meyer-Neldel Rule (MNR), or Compensation Law, by which the preexponent term of the Arrhenian equation is linearly related to the activation energy term. We also demonstrate why the formalism of Karato and colleagues can be used at low water contents (100 wt ppm and below), whereas at higher water contents (above 300 wt ppm), the formalism of Yoshino's and Poe's labs needs to be employed. A new MNR self-consistent formalism is presented that is applicable over all water contents. MNR consistency appears to operate for most processes that can be described by an Arrhenius equation, so its adoption through an MNR consistent formalism is highly recommended when fitting experimental observations.
NASA Astrophysics Data System (ADS)
Chen, X.; Espinoza, N.; Verma, R.; Prodanovic, M.
2017-12-01
We use X-ray micro-computed tomography (μCT) to observe xenon hydrate growth. During xenon hydrate formation in a single pore and a sandpack, we observe heterogeneous (patchy) hydrate distribution at both pore (10 μm) and core scales (10 cm). These results present similarities with earlier observations on naturally occurring and synthetic hydrate-bearing sediment (HBS). Based on image analyses of xenon hydrate in the single pore, we find that, under the quasi-isothermal condition, the xenon volumetric growth rate versus overpressurization curve fits an Arrhenius type equation. Using the μCT images of HBS, we are able to calculate the permeability of HBS using a lattice Boltzmann method. We find the reduced permeability versus hydrate saturation curve fits a simple Corey-type model as suggested by earlier studies. However, patchy distribution of hydrate does not permit a straightforward interpretation of the saturation exponent. This work provides fundamental observations of hydrate growth and pore habit in sediments and how hydrate habit affects the hydraulic conductivity of HBS. Further implications can be extended to the strength, seismic velocities and electrical properties of HBS.
An improved kinetics approach to describe the physical stability of amorphous solid dispersions.
Yang, Jiao; Grey, Kristin; Doney, John
2010-01-15
The recrystallization of amorphous solid dispersions may lead to a loss in the dissolution rate, and consequently reduce bioavailability. The purpose of this work is to understand factors governing the recrystallization of amorphous drug-polymer solid dispersions, and develop a kinetics model capable of accurately predicting their physical stability. Recrystallization kinetics was measured using differential scanning calorimetry for initially amorphous efavirenz-polyvinylpyrrolidone solid dispersions stored at controlled temperature and relative humidity. The experimental measurements were fitted by a new kinetic model to estimate the recrystallization rate constant and microscopic geometry of crystal growth. The new kinetics model was used to illustrate the governing factors of amorphous solid dispersions stability. Temperature was found to affect efavirenz recrystallization in an Arrhenius manner, while recrystallization rate constant was shown to increase linearly with relative humidity. Polymer content tremendously inhibited the recrystallization process by increasing the crystallization activation energy and decreasing the equilibrium crystallinity. The new kinetic model was validated by the good agreement between model fits and experiment measurements. A small increase in polyvinylpyrrolidone resulted in substantial stability enhancements of efavirenz amorphous solid dispersion. The new established kinetics model provided more accurate predictions than the Avrami equation.
Intelligent methods for the process parameter determination of plastic injection molding
NASA Astrophysics Data System (ADS)
Gao, Huang; Zhang, Yun; Zhou, Xundao; Li, Dequn
2018-03-01
Injection molding is one of the most widely used material processing methods in producing plastic products with complex geometries and high precision. The determination of process parameters is important in obtaining qualified products and maintaining product quality. This article reviews the recent studies and developments of the intelligent methods applied in the process parameter determination of injection molding. These intelligent methods are classified into three categories: Case-based reasoning methods, expert system- based methods, and data fitting and optimization methods. A framework of process parameter determination is proposed after comprehensive discussions. Finally, the conclusions and future research topics are discussed.
Blackbody infrared radiative dissociation of protonated oligosaccharides.
Fentabil, Messele A; Daneshfar, Rambod; Kitova, Elena N; Klassen, John S
2011-12-01
The dissociation pathways, kinetics, and energetics of protonated oligosaccharides in the gas phase were investigated using blackbody infrared radiative dissociation (BIRD). Time-resolved BIRD measurements were performed on singly protonated ions of cellohexaose (Cel(6)), which is composed of β-(1→4)-linked glucopyranose rings, and five malto-oligosaccharides (Mal(x), where x=4-8), which are composed of α-(1→4)-linked glucopyranose units. At the temperatures investigated (85-160 °C), the oligosaccharides dissociate at the glycosidic linkages or by the loss of a water molecule to produce B- or Y-type ions. The Y ions dissociate to smaller Y or B ions, while the B ions yield exclusively smaller B ions. The sequential loss of water molecules from the smallest B ions (B(1) and B(2)) also occurs. Rate constants for dissociation of the protonated oligosaccharides and the corresponding Arrhenius activation parameters (E(a) and A) were determined. The E(a) and A-factors measured for protonated Mal(x) (x>4) are indistinguishable within error (~19 kcal mol(-1), 10(10) s(-1)), which is consistent with the ions being in the rapid energy exchange limit. In contrast, the Arrhenius parameters for protonated Cel(6) (24 kcal mol(-1), 10(12) s(-1)) are significantly larger. These results indicate that both the energy and entropy changes associated with the glycosidic bond cleavage are sensitive to the anomeric configuration. Based on the results of this study, it is proposed that formation of B and Y ions occurs through a common dissociation mechanism, with the position of the proton establishing whether a B or Y ion is formed upon glycosidic bond cleavage. © American Society for Mass Spectrometry, 2011
NASA Astrophysics Data System (ADS)
Ji, Cheng; Wang, Zilin; Wu, Chenhui; Zhu, Miaoyong
2018-04-01
According to the calculation results of a 3D thermomechanical-coupled finite-element (FE) model of GCr15 bearing steel bloom during a heavy reduction (HR) process, the variation ranges in the strain rate and strain under HR were described. In addition, the hot deformation behavior of the GCr15 bearing steel was studied over the temperature range from 1023 K to 1573 K (750 °C to 1300 °C) with strain rates of 0.001, 0.01, and 0.1 s-1 in single-pass thermosimulation compression experiments. To ensure the accuracy of the constitutive model, the temperature range was divided into two temperature intervals according to the fully austenitic temperature of GCr15 steel [1173 K (900 °C)]. Two sets of material parameters for the constitutive model were derived based on the true stress-strain curves of the two temperature intervals. A flow stress constitutive model was established using a revised Arrhenius-type constitutive equation, which considers the relationships among the material parameters and true strain. This equation describes dynamic softening during hot compression processes. Considering the effect of glide and climb on the deformation mechanism, the Arrhenius-type constitutive equation was modified by a physically based approach. This model is the most accurate over the temperatures ranging from 1173 K to 1573 K (900 °C to 1300 °C) under HR deformation conditions (ignoring the range from 1273 K to 1573 K (1000 °C to 1300 °C) with a strain rate of 0.1 s-1). To ensure the convergence of the FE calculation, an approximated method was used to estimate the flow stress at temperatures greater than 1573 K (1300 °C).
NASA Technical Reports Server (NTRS)
Nigro, N. J.; Elkouh, A. F.
1975-01-01
The attitude of the balloon system is determined as a function of time if: (a) a method for simulating the motion of the system is available, and (b) the initial state is known. The initial state is obtained by fitting the system motion (as measured by sensors) to the corresponding output predicted by the mathematical model. In the case of the LACATE experiment the sensors consisted of three orthogonally oriented rate gyros and a magnetometer all mounted on the research platform. The initial state was obtained by fitting the angular velocity components measured with the gyros to the corresponding values obtained from the solution of the math model. A block diagram illustrating the attitude determination process employed for the LACATE experiment is shown. The process consists of three essential parts; a process for simulating the balloon system, an instrumentation system for measuring the output, and a parameter estimation process for systematically and efficiently solving the initial state. Results are presented and discussed.
Greer, Amy L; Spence, Kelsey; Gardner, Emma
2017-01-05
The United States swine industry was first confronted with porcine epidemic diarrhea virus (PEDV) in 2013. In young pigs, the virus is highly pathogenic and the associated morbidity and mortality has a significant negative impact on the swine industry. We have applied the IDEA model to better understand the 2014 PEDV outbreak in Ontario, Canada. Using our simple, 2-parameter IDEA model, we have evaluated the early epidemic dynamics of PEDV on Ontario swine farms. We estimated the best-fit R 0 and control parameter (d) for the between farm transmission component of the outbreak by fitting the model to publically available cumulative incidence data. We used maximum likelihood to compare model fit estimates for different combinations of the R 0 and d parameters. Using our initial findings from the iterative fitting procedure, we projected the time course of the epidemic using only a subset of the early epidemic data. The IDEA model projections showed excellent agreement with the observed data based on a 7-day generation time estimate. The best-fit estimate for R 0 was 1.87 (95% CI: 1.52 - 2.34) and for the control parameter (d) was 0.059 (95% CI: 0.022 - 0.117). Using data from the first three generations of the outbreak, our iterative fitting procedure suggests that R 0 and d had stabilized sufficiently to project the time course of the outbreak with reasonable accuracy. The emergence and spread of PEDV represents an important agricultural emergency. The virus presents a significant ongoing threat to the Canadian swine industry. Developing an understanding of the important epidemiological characteristics and disease transmission dynamics of a novel pathogen such as PEDV is critical for helping to guide the implementation of effective, efficient, and economically feasible disease control and prevention strategies that are able to help decrease the impact of an outbreak.
NASA Astrophysics Data System (ADS)
Lasche, George; Coldwell, Robert; Metzger, Robert
2017-09-01
A new application (known as "VRF", or "Visual RobFit") for analysis of high-resolution gamma-ray spectra has been developed using non-linear fitting techniques to fit full-spectrum nuclide shapes. In contrast to conventional methods based on the results of an initial peak-search, the VRF analysis method forms, at each of many automated iterations, a spectrum-wide shape for each nuclide and, also at each iteration, it adjusts the activities of each nuclide, as well as user-enabled parameters of energy calibration, attenuation by up to three intervening or self-absorbing materials, peak width as a function of energy, full-energy peak efficiency, and coincidence summing until no better fit to the data can be obtained. This approach, which employs a new and significantly advanced underlying fitting engine especially adapted to nuclear spectra, allows identification of minor peaks that are masked by larger, overlapping peaks that would not otherwise be possible. The application and method are briefly described and two examples are presented.
EPR investigations of gamma-irradiated ground black pepper
NASA Astrophysics Data System (ADS)
Polovka, Martin; Brezová, Vlasta; Staško, Andrej; Mazúr, Milan; Suhaj, Milan; Šimko, Peter
2006-02-01
The γ-radiation treatment of ground black pepper samples resulted in the production of three paramagnetic species ( GI- GIII) which arise from a different origin and have different thermal behavior and stability. The axially symmetric spectra can be characterized by the spin Hamiltonian parameters: GI ( g⊥=2.0060, g∥=2.0032; A⊥=0.85 mT, A∥=0.70 mT) and GII ( g⊥=2.0060, g∥=2.0050; A⊥=0.50 mT, A∥=0.40 mT) assigned to carbohydrate radical structures. The parameters of EPR signal GIII ( g⊥=2.0029, g∥=2.0014; A⊥=3.00 mT, A∥=1.80 mT) possessed features characteristic of cellulose radical species. The activation energies, evaluated by Arrhenius analysis, are in order Ea( GI)< Ea( GIII)< Ea( GII). The EPR measurements performed 20 weeks after radiation process confirmed that a temperature increase from 298 to 353 K, caused a significant decrease of integral EPR signal intensity for γ-irradiated samples (˜40%), compared to the reference (non-irradiated) ground black pepper, where a decrease of ˜13% was found. The influence of γ-radiation treatment on the radical-scavenging activities of aqueous and ethanol extracts of black pepper were investigated by both an EPR spin trapping technique and DPPH assay. No changes were detected in either the water or ethanol extracts for a γ-irradiation dose of 10 kGy.
Modeling envelope statistics of blood and myocardium for segmentation of echocardiographic images.
Nillesen, Maartje M; Lopata, Richard G P; Gerrits, Inge H; Kapusta, Livia; Thijssen, Johan M; de Korte, Chris L
2008-04-01
The objective of this study was to investigate the use of speckle statistics as a preprocessing step for segmentation of the myocardium in echocardiographic images. Three-dimensional (3D) and biplane image sequences of the left ventricle of two healthy children and one dog (beagle) were acquired. Pixel-based speckle statistics of manually segmented blood and myocardial regions were investigated by fitting various probability density functions (pdf). The statistics of heart muscle and blood could both be optimally modeled by a K-pdf or Gamma-pdf (Kolmogorov-Smirnov goodness-of-fit test). Scale and shape parameters of both distributions could differentiate between blood and myocardium. Local estimation of these parameters was used to obtain parametric images, where window size was related to speckle size (5 x 2 speckles). Moment-based and maximum-likelihood estimators were used. Scale parameters were still able to differentiate blood from myocardium; however, smoothing of edges of anatomical structures occurred. Estimation of the shape parameter required a larger window size, leading to unacceptable blurring. Using these parameters as an input for segmentation resulted in unreliable segmentation. Adaptive mean squares filtering was then introduced using the moment-based scale parameter (sigma(2)/mu) of the Gamma-pdf to automatically steer the two-dimensional (2D) local filtering process. This method adequately preserved sharpness of the edges. In conclusion, a trade-off between preservation of sharpness of edges and goodness-of-fit when estimating local shape and scale parameters is evident for parametric images. For this reason, adaptive filtering outperforms parametric imaging for the segmentation of echocardiographic images.
Tuncer, Necibe; Gulbudak, Hayriye; Cannataro, Vincent L; Martcheva, Maia
2016-09-01
In this article, we discuss the structural and practical identifiability of a nested immuno-epidemiological model of arbovirus diseases, where host-vector transmission rate, host recovery, and disease-induced death rates are governed by the within-host immune system. We incorporate the newest ideas and the most up-to-date features of numerical methods to fit multi-scale models to multi-scale data. For an immunological model, we use Rift Valley Fever Virus (RVFV) time-series data obtained from livestock under laboratory experiments, and for an epidemiological model we incorporate a human compartment to the nested model and use the number of human RVFV cases reported by the CDC during the 2006-2007 Kenya outbreak. We show that the immunological model is not structurally identifiable for the measurements of time-series viremia concentrations in the host. Thus, we study the non-dimensionalized and scaled versions of the immunological model and prove that both are structurally globally identifiable. After fixing estimated parameter values for the immunological model derived from the scaled model, we develop a numerical method to fit observable RVFV epidemiological data to the nested model for the remaining parameter values of the multi-scale system. For the given (CDC) data set, Monte Carlo simulations indicate that only three parameters of the epidemiological model are practically identifiable when the immune model parameters are fixed. Alternatively, we fit the multi-scale data to the multi-scale model simultaneously. Monte Carlo simulations for the simultaneous fitting suggest that the parameters of the immunological model and the parameters of the immuno-epidemiological model are practically identifiable. We suggest that analytic approaches for studying the structural identifiability of nested models are a necessity, so that identifiable parameter combinations can be derived to reparameterize the nested model to obtain an identifiable one. This is a crucial step in developing multi-scale models which explain multi-scale data.
NASA Astrophysics Data System (ADS)
Rakkapao, Suttida; Prasitpong, Singha; Arayathanitkul, Kwan
2016-12-01
This study investigated the multiple-choice test of understanding of vectors (TUV), by applying item response theory (IRT). The difficulty, discriminatory, and guessing parameters of the TUV items were fit with the three-parameter logistic model of IRT, using the parscale program. The TUV ability is an ability parameter, here estimated assuming unidimensionality and local independence. Moreover, all distractors of the TUV were analyzed from item response curves (IRC) that represent simplified IRT. Data were gathered on 2392 science and engineering freshmen, from three universities in Thailand. The results revealed IRT analysis to be useful in assessing the test since its item parameters are independent of the ability parameters. The IRT framework reveals item-level information, and indicates appropriate ability ranges for the test. Moreover, the IRC analysis can be used to assess the effectiveness of the test's distractors. Both IRT and IRC approaches reveal test characteristics beyond those revealed by the classical analysis methods of tests. Test developers can apply these methods to diagnose and evaluate the features of items at various ability levels of test takers.
Neon diffusion kinetics and implications for cosmogenic neon paleothermometry in feldspars
Tremblay, Marissa M.; Shuster, David L.; Balco, Greg; ...
2017-02-20
Observations of cosmogenic neon concentrations in feldspars can potentially be used to constrain the surface exposure duration or surface temperature history of geologic samples. The applicability of cosmogenic neon to either application depends on the temperature-dependent diffusivity of neon isotopes. Here in this work, we investigate the kinetics of neon diffusion in feldspars of different compositions and geologic origins through stepwise degassing experiments on single, proton-irradiated crystals. To understand the potential causes of complex diffusion behavior that is sometimes manifest as nonlinearity in Arrhenius plots, we compare our results to argon stepwise degassing experiments previously conducted on the same feldspars.more » Many of the feldspars we studied exhibit linear Arrhenius behavior for neon whereas argon degassing from the same feldspars did not. This suggests that nonlinear behavior in argon experiments is an artifact of structural changes during laboratory heating. However, other feldspars that we examined exhibit nonlinear Arrhenius behavior for neon diffusion at temperatures far below any known structural changes, which suggests that some preexisting material property is responsible for the complex behavior. In general, neon diffusion kinetics vary widely across the different feldspars studied, with estimated activation energies (E a) ranging from 83.3 to 110.7 kJ/mol and apparent pre-exponential factors (D 0) spanning three orders of magnitude from 2.4 ×10 -3 to 8.9 × 10 -1 cm 2 s -1. Finally, as a consequence of this variability, the ability to reconstruct temperatures or exposure durations from cosmogenic neon abundances will depend on both the specific feldspar and the surface temperature conditions at the geologic site of interest.« less
Latent Trait Model Contributions to Criterion-Referenced Testing Technology.
1982-02-01
levels of ability (ranging from very low to very high). The steps in the reserach were as follows: 1. Specify the characteristics of a "typical" pool...conventional testing methodologies displayed good fit to both of the latent trait models. The one-parameter model compared favorably with the three- parameter... Methodological developments: New directions for testing a!nd measurement (No. 4). San Francisco: Jossey-Bass, 1979. Haubleton, R. K. Advances in
2010-03-31
the determination of bias - dependent EQD activation energies by Arrhenius plots. Fig. 4 shows the EQD activation energies as a function of bias ...consistent with thermal activation and field-assisted tunneling through the triangular potential barrier provided at higher bias voltages. In...contrast, three bias - dependent regions of the EQD activation energy can be identified for the doped samples, as shown in Fig. 4. In Region I (< 0.4 V
A new statistical analysis of rare earth element diffusion data in garnet
NASA Astrophysics Data System (ADS)
Chu, X.; Ague, J. J.
2015-12-01
The incorporation of rare earth elements (REE) in garnet, Sm and Lu in particular, links garnet chemical zoning to absolute age determinations. The application of REE-based geochronology depends critically on the diffusion behaviors of the parent and daughter isotopes. Previous experimental studies on REE diffusion in garnet, however, exhibit significant discrepancies that impact interpretations of garnet Sm/Nd and Lu/Hf ages.We present a new statistical framework to analyze diffusion data for REE using an Arrhenius relationship that accounts for oxygen fugacity, cation radius and garnet unit-cell dimensions [1]. Our approach is based on Bayesian statistics and is implemented by the Markov chain Monte Carlo method. A similar approach has been recently applied to model diffusion of divalent cations in garnet [2]. The analysis incorporates recent data [3] in addition to the data compilation in ref. [1]. We also include the inter-run bias that helps reconcile the discrepancies among data sets. This additional term estimates the reproducibility and other experimental variabilities not explicitly incorporated in the Arrhenius relationship [2] (e.g., compositional dependence [3] and water content).The fitted Arrhenius relationships are consistent with the models in ref. [3], as well as refs. [1]&[4] at high temperatures. Down-temperature extrapolation leads to >0.5 order of magnitude faster diffusion coefficients than in refs. [1]&[4] at <750 °C. The predicted diffusion coefficients are significantly slower than ref. [5]. The fast diffusion [5] was supported by a field test of the Pikwitonei Granulite—the garnet Sm/Nd age postdates the metamorphic peak (750 °C) by ~30 Myr [6], suggesting considerable resetting of the Sm/Nd system during cooling. However, the Pikwitonei Granulite is a recently recognized UHT terrane with peak temperature exceeding 900 °C [7]. The revised closure temperature (~730 °C) is consistent with our new diffusion model.[1] Carlson (2012) Am Mineral 97 1598-1618. [2] Chu & Ague (2015) Contrib Mineral Petrol, in press. [3] Bloch et al. (2015) Contrib Mineral Petrol 169 1-18. [4] Van Orman et al. (2002) Contrib Mineral Petrol 142 416-424. [5] Tirone et al. (2005) GCA 69 2385-2398. [6] Mezger et al. (1992) EPSL 113 397-409. [7] Kooijman et al. (2012) J Metamorph Geol 30 397-412.
The Gibbs free energy of homogeneous nucleation: From atomistic nuclei to the planar limit.
Cheng, Bingqing; Tribello, Gareth A; Ceriotti, Michele
2017-09-14
In this paper we discuss how the information contained in atomistic simulations of homogeneous nucleation should be used when fitting the parameters in macroscopic nucleation models. We show how the number of solid and liquid atoms in such simulations can be determined unambiguously by using a Gibbs dividing surface and how the free energy as a function of the number of solid atoms in the nucleus can thus be extracted. We then show that the parameters (the chemical potential, the interfacial free energy, and a Tolman correction) of a model based on classical nucleation theory can be fitted using the information contained in these free-energy profiles but that the parameters in such models are highly correlated. This correlation is unfortunate as it ensures that small errors in the computed free energy surface can give rise to large errors in the extrapolated properties of the fitted model. To resolve this problem we thus propose a method for fitting macroscopic nucleation models that uses simulations of planar interfaces and simulations of three-dimensional nuclei in tandem. We show that when the chemical potentials and the interface energy are pinned to their planar-interface values, more precise estimates for the Tolman length are obtained. Extrapolating the free energy profile obtained from small simulation boxes to larger nuclei is thus more reliable.
Application of the Hartmann-Tran profile to analysis of H2O spectra
NASA Astrophysics Data System (ADS)
Lisak, D.; Cygan, A.; Bermejo, D.; Domenech, J. L.; Hodges, J. T.; Tran, H.
2015-10-01
The Hartmann-Tran profile (HTP), which has been recently recommended as a new standard in spectroscopic databases, is used to analyze spectra of several lines of H2O diluted in N2, SF6, and in pure H2O. This profile accounts for various mechanisms affecting the line-shape and can be easily computed in terms of combinations of the complex Voigt profile. A multi-spectrum fitting procedure is implemented to simultaneously analyze spectra of H2O transitions acquired at different pressures. Multi-spectrum fitting of the HTP to a theoretical model confirms that this profile provides an accurate description of H2O line-shapes in terms of residuals and accuracy of fitted parameters. This profile and its limiting cases are also fit to measured spectra for three H2O lines in different vibrational bands. The results show that it is possible to obtain accurate HTP line-shape parameters when measured spectra have a sufficiently high signal-to-noise ratio and span a broad range of collisional-to-Doppler line widths. Systematic errors in the line area and differences in retrieved line-shape parameters caused by the overly simplistic line-shape models are quantified. Also limitations of the quadratic speed-dependence model used in the HTP are demonstrated in the case of an SF6 broadened H2O line, which leads to a strongly asymmetric line-shape.
Functional models for colloid retention in porous media at the triple line.
Dathe, Annette; Zevi, Yuniati; Richards, Brian K; Gao, Bin; Parlange, J-Yves; Steenhuis, Tammo S
2014-01-01
Spectral confocal microscope visualizations of microsphere movement in unsaturated porous media showed that attachment at the Air Water Solid (AWS) interface was an important retention mechanism. These visualizations can aid in resolving the functional form of retention rates of colloids at the AWS interface. In this study, soil adsorption isotherm equations were adapted by replacing the chemical concentration in the water as independent variable by the cumulative colloids passing by. In order of increasing number of fitted parameters, the functions tested were the Langmuir adsorption isotherm, the Logistic distribution, and the Weibull distribution. The functions were fitted against colloid concentrations obtained from time series of images acquired with a spectral confocal microscope for three experiments performed where either plain or carboxylated polystyrene latex microspheres were pulsed in a small flow chamber filled with cleaned quartz sand. Both moving and retained colloids were quantified over time. In fitting the models to the data, the agreement improved with increasing number of model parameters. The Weibull distribution gave overall the best fit. The logistic distribution did not fit the initial retention of microspheres well but otherwise the fit was good. The Langmuir isotherm only fitted the longest time series well. The results can be explained that initially when colloids are first introduced the rate of retention is low. Once colloids are at the AWS interface they act as anchor point for other colloids to attach and thereby increasing the retention rate as clusters form. Once the available attachment sites diminish, the retention rate decreases.
Modeling growth from weaning to maturity in beef cattle breeds
USDA-ARS?s Scientific Manuscript database
To better understand growth trajectory and maturity differences between beef breeds, three models – Brody, spline, and quadratic – were fit to cow growth data, and resulting parameter estimates were evaluated for 3 breed categories – British, continental, and Brahman-influenced. The data were weight...
Mathematical Models for the Apparent Mass of the Seated Human Body Exposed to Vertical Vibration
NASA Astrophysics Data System (ADS)
Wei, L.; Griffin, M. J.
1998-05-01
Alternative mathematical models of the vertical apparent mass of the seated human body are developed. The optimum parameters of four models (two single-degree-of-freedom models and two two-degree-of-freedom models) are derived from the mean measured apparent masses of 60 subjects (24 men, 24 women, 12 children) previously reported. The best fits were obtained by fitting the phase data with single-degree-of-freedom and two-degree-of-freedom models having rigid support structures. For these two models, curve fitting was performed on each of the 60 subjects (so as to obtain optimum model parameters for each subject), for the averages of each of the three groups of subjects, and for the entire group of subjects. The values obtained are tabulated. Use of a two-degree-of-freedom model provided a better fit to the phase of the apparent mass at frequencies greater than about 8 Hz and an improved fit to the modulus of the apparent mass at frequencies around 5 Hz. It is concluded that the two-degree-of-freedom model provides an apparent mass similar to that of the human body, but this does not imply that the body moves in the same manner as the masses in this optimized two-degree-of-freedom model.
Sandoval, Claudia Magaly; Medone, Paula; Nieves, Elsa Evelia; Jaimes, Diego Alexander; Ortiz, Nelcy; Rabinovich, Jorge Eduardo
2013-01-01
Triatominae are widely recognised for their role as vectors of Trypanosoma cruzi. One of the main biological characteristics of this subfamily is their obligate haematophagous condition. However, previous studies on Belminus herreri and Belminus ferroae suggested that cockroaches are their principal hosts in domiciles. Due to this peculiar behaviour, the aim of this study was to analyse several demographic and reproductive parameters of B. ferroae fed on three different hosts (mice, cockroaches and Rhodnius prolixus) and relate B. ferroae fitness to these alternative hosts. The cohorts were reared under constant conditions. The egg hatching rate was similar for cohorts fed on cockroaches (69.4%) and R. prolixus (63.8%), but was much lower for the cohort fed on mice (16%). The development time from the nymph to adult stage and the average age of first reproduction (α) presented lower values in the cohort fed on cockroaches, which is consistent with the higher population growth rate associated with this host. Demographic parameters [intrinsic rate of natural increase, finite rate of population growth, net reproductive rate and damping ratio] showed statistically significant differences between the cohorts. Analysis of the life history of B. ferroae revealed a higher fitness related to the cockroach. The implications of these results for the origin of the subfamily are discussed. PMID:24141961
A Field Study of Pixel-Scale Variability of Raindrop Size Distribution in the MidAtlantic Region
NASA Technical Reports Server (NTRS)
Tokay, Ali; D'adderio, Leo Pio; Wolff, David P.; Petersen, Walter A.
2016-01-01
The spatial variability of parameters of the raindrop size distribution and its derivatives is investigated through a field study where collocated Particle Size and Velocity (Parsivel2) and two-dimensional video disdrometers were operated at six sites at Wallops Flight Facility, Virginia, from December 2013 to March 2014. The three-parameter exponential function was employed to determine the spatial variability across the study domain where the maximum separation distance was 2.3 km. The nugget parameter of the exponential function was set to 0.99 and the correlation distance d0 and shape parameter s0 were retrieved by minimizing the root-mean-square error, after fitting it to the correlations of physical parameters. Fits were very good for almost all 15 physical parameters. The retrieved d0 and s0 were about 4.5 km and 1.1, respectively, for rain rate (RR) when all 12 disdrometers were reporting rainfall with a rain-rate threshold of 0.1 mm h1 for 1-min averages. The d0 decreased noticeably when one or more disdrometers were required to report rain. The d0 was considerably different for a number of parameters (e.g., mass-weighted diameter) but was about the same for the other parameters (e.g., RR) when rainfall threshold was reset to 12 and 18 dBZ for Ka- and Ku-band reflectivity, respectively, following the expected Global Precipitation Measurement missions spaceborne radar minimum detectable signals. The reduction of the database through elimination of a site did not alter d0 as long as the fit was adequate. The correlations of 5-min rain accumulations were lower when disdrometer observations were simulated for a rain gauge at different bucket sizes.
Cao, Ying J; Caffo, Brian S; Fuchs, Edward J; Lee, Linda A; Du, Yong; Li, Liye; Bakshi, Rahul P; Macura, Katarzyna; Khan, Wasif A; Wahl, Richard L; Grohskopf, Lisa A; Hendrix, Craig W
2012-01-01
AIMS We sought to describe quantitatively the distribution of rectally administered gels and seminal fluid surrogates using novel concentration–distance parameters that could be repeated over time. These methods are needed to develop rationally rectal microbicides to target and prevent HIV infection. METHODS Eight subjects were dosed rectally with radiolabelled and gadolinium-labelled gels to simulate microbicide gel and seminal fluid. Rectal doses were given with and without simulated receptive anal intercourse. Twenty-four hour distribution was assessed with indirect single photon emission computed tomography (SPECT)/computed tomography (CT) and magnetic resonance imaging (MRI), and direct assessment via sigmoidoscopic brushes. Concentration–distance curves were generated using an algorithm for fitting SPECT data in three dimensions. Three novel concentration–distance parameters were defined to describe quantitatively the distribution of radiolabels: maximal distance (Dmax), distance at maximal concentration (DCmax) and mean residence distance (Dave). RESULTS The SPECT/CT distribution of microbicide and semen surrogates was similar. Between 1 h and 24 h post dose, the surrogates migrated retrograde in all three parameters (relative to coccygeal level; geometric mean [95% confidence interval]): maximal distance (Dmax), 10 cm (8.6–12) to 18 cm (13–26), distance at maximal concentration (DCmax), 3.8 cm (2.7–5.3) to 4.2 cm (2.8–6.3) and mean residence distance (Dave), 4.3 cm (3.5–5.1) to 7.6 cm (5.3–11). Sigmoidoscopy and MRI correlated only roughly with SPECT/CT. CONCLUSIONS Rectal microbicide surrogates migrated retrograde during the 24 h following dosing. Spatial kinetic parameters estimated using three dimensional curve fitting of distribution data should prove useful for evaluating rectal formulations of drugs for HIV prevention and other indications. PMID:22404308
Mavroidis, Panayiotis; Pearlstein, Kevin A; Dooley, John; Sun, Jasmine; Saripalli, Srinivas; Das, Shiva K; Wang, Andrew Z; Chen, Ronald C
2018-02-02
To estimate the radiobiological parameters of three popular normal tissue complication probability (NTCP) models, which describe the dose-response relations of bladder regarding different acute urinary symptoms during post-prostatectomy radiotherapy (RT). To evaluate the goodness-of-fit and the correlation of those models with those symptoms. Ninety-three consecutive patients treated from 2010 to 2015 with post-prostatectomy image-guided intensity modulated radiotherapy (IMRT) were included in this study. Patient-reported urinary symptoms were collected pre-RT and weekly during treatment using the validated Prostate Cancer Symptom Indices (PCSI). The assessed symptoms were flow, dysuria, urgency, incontinence, frequency and nocturia using a Likert scale of 1 to 4 or 5. For this analysis, an increase by ≥2 levels in a symptom at any time during treatment compared to baseline was considered clinically significant. The dose volume histograms of the bladder were calculated. The Lyman-Kutcher-Burman (LKB), Relative Seriality (RS) and Logit NTCP models were used to fit the clinical data. The fitting of the different models was assessed through the area under the receiver operating characteristic curve (AUC), Akaike information criterion (AIC) and Odds Ratio methods. For the symptoms of urinary urgency, leakage, frequency and nocturia, the derived LKB model parameters were: 1) D 50 = 64.2Gy, m = 0.50, n = 1.0; 2) D 50 = 95.0Gy, m = 0.45, n = 0.50; 3) D 50 = 83.1Gy, m = 0.56, n = 1.00; and 4) D 50 = 85.4Gy, m = 0.60, n = 1.00, respectively. The AUC values for those symptoms were 0.66, 0.58, 0.64 and 0.64, respectively. The differences in AIC between the different models were less than 2 and ranged within 0.1 and 1.3. Different dose metrics were correlated with the symptoms of urgency, incontinence, frequency and nocturia. The symptoms of urinary flow and dysuria were poorly associated with dose. The values of the parameters of three NTCP models were determined for bladder regarding four acute urinary symptoms. All the models could fit the clinical data equally well. The NTCP predictions of urgency showed the best correlation with the patient reported outcomes.
The role of curvature in the slowing down acceleration scenario
NASA Astrophysics Data System (ADS)
Cárdenas, Víctor H.; Rivera, Marco
2012-04-01
We introduce the curvature Ωk as a new free parameter in the Bayesian analysis using SNIa, BAO and CMB data, in a model with variable equation of state parameter w(z). We compare the results using both the Constitution and Union 2 data sets, and also study possible low redshift transitions in the deceleration parameter q(z). We found that, incorporating Ωk in the analysis, it is possible to make all the three observational probes consistent using both SNIa data sets. Our results support dark energy evolution at small redshift, and show that the tension between small and large redshift probes is ameliorated. However, although the tension decreases, it is still not possible to find a consensus set of parameters that fit all the three data set using the Chevalier-Polarski-Linder CPL parametrization.
A comparison of methods using optical coherence tomography to detect demineralized regions in teeth
Sowa, Michael G.; Popescu, Dan P.; Friesen, Jeri R.; Hewko, Mark D.; Choo-Smith, Lin-P’ing
2013-01-01
Optical coherence tomography (OCT) is a three- dimensional optical imaging technique that can be used to identify areas of early caries formation in dental enamel. The OCT signal at 850 nm back-reflected from sound enamel is attenuated stronger than the signal back-reflected from demineralized regions. To quantify this observation, the OCT signal as a function of depth into the enamel (also known as the A-scan intensity), the histogram of the A-scan intensities and three summary parameters derived from the A-scan are defined and their diagnostic potential compared. A total of 754 OCT A-scans were analyzed. The three summary parameters derived from the A-scans, the OCT attenuation coefficient as well as the mean and standard deviation of the lognormal fit to the histogram of the A-scan ensemble show statistically significant differences (p < 0.01) when comparing parameters from sound enamel and caries. Furthermore, these parameters only show a modest correlation. Based on the area under the curve (AUC) of the receiver operating characteristics (ROC) plot, the OCT attenuation coefficient shows higher discriminatory capacity (AUC=0.98) compared to the parameters derived from the lognormal fit to the histogram of the A-scan. However, direct analysis of the A-scans or the histogram of A-scan intensities using linear support vector machine classification shows diagnostic discrimination (AUC = 0.96) comparable to that achieved using the attenuation coefficient. These findings suggest that either direct analysis of the A-scan, its intensity histogram or the attenuation coefficient derived from the descending slope of the OCT A-scan have high capacity to discriminate between regions of caries and sound enamel. PMID:22052833
VizieR Online Data Catalog: Vela Junior (RX J0852.0-4622) HESS image (HESS+, 2018)
NASA Astrophysics Data System (ADS)
H. E. S. S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Andersson, T.; Anguener, E. O.; Arakawa, M.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernloehr, K.; Blackwell, R.; Boettcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Buechele, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chretien, M.; Coffaro, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Cui, Y.; Davids, I. D.; Decock, J.; Degrange, B.; Deil, C.; Devin, J.; Dewilt, P.; Dirson, L.; Djannati-Atai, A.; Domainko, W.; Donath, A.; Drury, L. O'c.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Foerster, A.; Funk, S.; Fuessling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzynski, K.; Katsuragawa, M.; Katz, U.; Kerszberg, D.; Khangulyan, D.; Khelifi, B.; Kieffer, M.; King, J.; Klepser, S.; Klochkov, D.; Kluzniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krueger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemiere, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; Lopez-Coto, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Mora, K.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Niederwanger, F.; Niemiec J.; Oakes, L.; O'Brien, P.; Odaka, H.; Oettl, S.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Puehlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; de Los Reyes, R.; Richter, S.; Rieger, F.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Saito, S.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schuessler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, L.; Steenkamp, R.; Stegmann, C.; Stycz, K.; Sushch, I.; Takahashi, T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der, Walt D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Voelk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Woernlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Zywucka, N.
2018-03-01
skymap.fit: H.E.S.S. excess skymap in FITS format of the region comprising Vela Junior and its surroundings. The excess map has been corrected for the gradient of exposure and smoothed with a Gaussian function of width 0.08° to match the analysis point spread function, matching the procedure applied to derive the maps in Fig. 1. sp_stat.txt: H.E.S.S. spectral points and fit parameters for Vela Junior (H.E.S.S. data points in Fig. 3 and Tab. A.2 and H.E.S.S. spectral fit parameters in Tab. 4). The errors in this file represent statistical uncertainties at 1 sigma confidence level. The covariance matrix of the fit is also included in the format: c11 c12 c_13 c21 c22 c_23 c31 c32 c_33 where the subindices represent the following parameters of the power-law with exponential cut-off (ECPL) formula in Tab. 2: 1: flux normalization (Phi0) 2: spectral index (Gamma) 3: inverse of the cutoff energy (lambda=1/Ecut) The units for the covariance matrix are the same as for the fit parameters. Notice that, while the fit parameters section of the file shows E_cut as parameter, the fit was done in lambda=1/Ecut; hence the covariance matrix shows the values for lambda in TeV-1. sp_syst.txt: H.E.S.S. spectral points and fit parameters for Vela Junior (H.E.S.S. data points in Fig. 3 and Tab. A.2 and H.E.S.S. spectral fit parameters in Tab. 4). The errors in this file represent systematic uncertainties at 1 sigma confidence level. The integral fluxes for several energy ranges are also included. (4 data files).
NASA Astrophysics Data System (ADS)
Magri, Alphonso William
This study was undertaken to develop a nonsurgical breast biopsy from Gd-DTPA Contrast Enhanced Magnetic Resonance (CE-MR) images and F-18-FDG PET/CT dynamic image series. A five-step process was developed to accomplish this. (1) Dynamic PET series were nonrigidly registered to the initial frame using a finite element method (FEM) based registration that requires fiducial skin markers to sample the displacement field between image frames. A commercial FEM package (ANSYS) was used for meshing and FEM calculations. Dynamic PET image series registrations were evaluated using similarity measurements SAVD and NCC. (2) Dynamic CE-MR series were nonrigidly registered to the initial frame using two registration methods: a multi-resolution free-form deformation (FFD) registration driven by normalized mutual information, and a FEM-based registration method. Dynamic CE-MR image series registrations were evaluated using similarity measurements, localization measurements, and qualitative comparison of motion artifacts. FFD registration was found to be superior to FEM-based registration. (3) Nonlinear curve fitting was performed for each voxel of the PET/CT volume of activity versus time, based on a realistic two-compartmental Patlak model. Three parameters for this model were fitted; two of them describe the activity levels in the blood and in the cellular compartment, while the third characterizes the washout rate of F-18-FDG from the cellular compartment. (4) Nonlinear curve fitting was performed for each voxel of the MR volume of signal intensity versus time, based on a realistic two-compartment Brix model. Three parameters for this model were fitted: rate of Gd exiting the compartment, representing the extracellular space of a lesion; rate of Gd exiting a blood compartment; and a parameter that characterizes the strength of signal intensities. Curve fitting used for PET/CT and MR series was accomplished by application of the Levenburg-Marquardt nonlinear regression algorithm. The best-fit parameters were used to create 3D parametric images. Compartmental modeling evaluation was based on the ability of parameter values to differentiate between tissue types. This evaluation was used on registered and unregistered image series and found that registration improved results. (5) PET and MR parametric images were registered through FEM- and FFD-based registration. Parametric image registration was evaluated using similarity measurements, target registration error, and qualitative comparison. Comparing FFD and FEM-based registration results showed that the FEM method is superior. This five-step process constitutes a novel multifaceted approach to a nonsurgical breast biopsy that successfully executes each step. Comparison of this method to biopsy still needs to be done with a larger set of subject data.
García-Ríos, Estéfani; Gutiérrez, Alicia; Salvadó, Zoel; Arroyo-López, Francisco Noé
2014-01-01
The effect of the main environmental factors governing wine fermentation on the fitness of industrial yeast strains has barely received attention. In this study, we used the concept of fitness advantage to measure how increasing nitrogen concentrations (0 to 200 mg N/liter), ethanol (0 to 20%), and temperature (4 to 45°C) affects competition among four commercial wine yeast strains (PDM, ARM, RVA, and TTA). We used a mathematical approach to model the hypothetical time needed for the control strain (PDM) to out-compete the other three strains in a theoretical mixed population. The theoretical values obtained were subsequently verified by competitive mixed fermentations in both synthetic and natural musts, which showed a good fit between the theoretical and experimental data. Specifically, the data show that the increase in nitrogen concentration and temperature values improved the fitness advantage of the PDM strain, whereas the presence of ethanol significantly reduced its competitiveness. However, the RVA strain proved to be the most competitive yeast for the three enological parameters assayed. The study of the fitness of these industrial strains is of paramount interest for the wine industry, which uses them as starters of their fermentations. Here, we propose a very simple method to model the fitness advantage, which allows the prediction of the competitiveness of one strain with respect to different abiotic factors. PMID:24242239
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aslam, Tariq Dennis
2017-10-03
A reactive ow model for the tri-amino-tri-nitro-benzene (TATB) based plastic bonded explosive PBX 9502 is presented. This newly devised model is based primarily on the shock temperature of the material, along with local pressure, and accurately models a broader range of detonation and initiation scenarios. The equation of state for the reactants and products, as well as the thermodynamic closure of pressure and temperature equilibration are carried over from the Wescott-Stewart-Davis (WSD) model7,8. Thus, modifying an existing WSD model in a hydrocode should be rather straightforward.
Predicting the stability of nanodevices
NASA Astrophysics Data System (ADS)
Lin, Z. Z.; Yu, W. F.; Wang, Y.; Ning, X. J.
2011-05-01
A simple model based on the statistics of single atoms is developed to predict the stability or lifetime of nanodevices without empirical parameters. Under certain conditions, the model produces the Arrhenius law and the Meyer-Neldel compensation rule. Compared with the classical molecular-dynamics simulations for predicting the stability of monatomic carbon chain at high temperature, the model is proved to be much more accurate than the transition state theory. Based on the ab initio calculation of the static potential, the model can give out a corrected lifetime of monatomic carbon and gold chains at higher temperature, and predict that the monatomic chains are very stable at room temperature.
Cullen, Jared; Lobo, Charlene J; Ford, Michael J; Toth, Milos
2015-09-30
Electron-beam-induced deposition (EBID) is a direct-write chemical vapor deposition technique in which an electron beam is used for precursor dissociation. Here we show that Arrhenius analysis of the deposition rates of nanostructures grown by EBID can be used to deduce the diffusion energies and corresponding preexponential factors of EBID precursor molecules. We explain the limitations of this approach, define growth conditions needed to minimize errors, and explain why the errors increase systematically as EBID parameters diverge from ideal growth conditions. Under suitable deposition conditions, EBID can be used as a localized technique for analysis of adsorption barriers and prefactors.
Microscopic Theory for the Role of Attractive Forces in the Dynamics of Supercooled Liquids.
Dell, Zachary E; Schweizer, Kenneth S
2015-11-13
We formulate a microscopic, no adjustable parameter, theory of activated relaxation in supercooled liquids directly in terms of the repulsive and attractive forces within the framework of pair correlations. Under isochoric conditions, attractive forces can nonperturbatively modify slow dynamics, but at high enough density their influence vanishes. Under isobaric conditions, attractive forces play a minor role. High temperature apparent Arrhenius behavior and density-temperature scaling are predicted. Our results are consistent with recent isochoric simulations and isobaric experiments on a deeply supercooled molecular liquid. The approach can be generalized to treat colloidal gelation and glass melting, and other soft matter slow dynamics problems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dan, Kaustabh, E-mail: kaustabhdan@gmail.com; Roy, Madhusudan, E-mail: kaustabhdan@gmail.com; Datta, Alokmay, E-mail: kaustabhdan@gmail.com
2014-04-24
Differential Scanning Calorimetry (DSC) studies on phase transitions of the pure liquid crystalline material N-4-methoxybenzylidene-4-butylaniline (MBBA) and mixtures of MBBA and the amphiphile Stearic Acid (StA) show significant changes in the behavior of mixture from pure MBBA, as regards the nematic-isotropic (N-I) transition temperature (T{sub c}) and other thermodynamic parameters like enthalpy, specific heat and activation energy with concentration of StA. In particular, the convexity of the Arrhenius plot in pure MBBA vanishes with StA concentration pointing to the formation of a new, perhaps 'nematic-like', phase in the mixtures.
Global search in photoelectron diffraction structure determination using genetic algorithms
NASA Astrophysics Data System (ADS)
Viana, M. L.; Díez Muiño, R.; Soares, E. A.; Van Hove, M. A.; de Carvalho, V. E.
2007-11-01
Photoelectron diffraction (PED) is an experimental technique widely used to perform structural determinations of solid surfaces. Similarly to low-energy electron diffraction (LEED), structural determination by PED requires a fitting procedure between the experimental intensities and theoretical results obtained through simulations. Multiple scattering has been shown to be an effective approach for making such simulations. The quality of the fit can be quantified through the so-called R-factor. Therefore, the fitting procedure is, indeed, an R-factor minimization problem. However, the topography of the R-factor as a function of the structural and non-structural surface parameters to be determined is complex, and the task of finding the global minimum becomes tough, particularly for complex structures in which many parameters have to be adjusted. In this work we investigate the applicability of the genetic algorithm (GA) global optimization method to this problem. The GA is based on the evolution of species, and makes use of concepts such as crossover, elitism and mutation to perform the search. We show results of its application in the structural determination of three different systems: the Cu(111) surface through the use of energy-scanned experimental curves; the Ag(110)-c(2 × 2)-Sb system, in which a theory-theory fit was performed; and the Ag(111) surface for which angle-scanned experimental curves were used. We conclude that the GA is a highly efficient method to search for global minima in the optimization of the parameters that best fit the experimental photoelectron diffraction intensities to the theoretical ones.
Ramadan, Ahmed; Boss, Connor; Choi, Jongeun; Peter Reeves, N; Cholewicki, Jacek; Popovich, John M; Radcliffe, Clark J
2018-07-01
Estimating many parameters of biomechanical systems with limited data may achieve good fit but may also increase 95% confidence intervals in parameter estimates. This results in poor identifiability in the estimation problem. Therefore, we propose a novel method to select sensitive biomechanical model parameters that should be estimated, while fixing the remaining parameters to values obtained from preliminary estimation. Our method relies on identifying the parameters to which the measurement output is most sensitive. The proposed method is based on the Fisher information matrix (FIM). It was compared against the nonlinear least absolute shrinkage and selection operator (LASSO) method to guide modelers on the pros and cons of our FIM method. We present an application identifying a biomechanical parametric model of a head position-tracking task for ten human subjects. Using measured data, our method (1) reduced model complexity by only requiring five out of twelve parameters to be estimated, (2) significantly reduced parameter 95% confidence intervals by up to 89% of the original confidence interval, (3) maintained goodness of fit measured by variance accounted for (VAF) at 82%, (4) reduced computation time, where our FIM method was 164 times faster than the LASSO method, and (5) selected similar sensitive parameters to the LASSO method, where three out of five selected sensitive parameters were shared by FIM and LASSO methods.
USDA-ARS?s Scientific Manuscript database
Thlaspi arvense and Camelina sativa have gained considerable attention as biofuel crops. But in some areas, these species, including C. microcarpa, are becoming rare weeds because of agriculture intensification. Including them as crops could guarantee their conservation in agricultural systems. The ...
Quasi-elastic (QENS) and inelastic neutron scattering (INS) on hexamethylbenzene
NASA Astrophysics Data System (ADS)
Krawczyk, J.; Mayer, J.; Natkaniec, I.; Nowina Konopka, M.; Pawlukojć; Steinsvoll, O.; Janik, J. A.
2005-05-01
The Quasi-elastic Neutron scattering (QENS) spectra of polycrystalline hexamethylbenzene (HMB) were measured for temperatures from 10 K to room temperature (phase III and phase II) for momentum transfer 1.9 Å -1. The Inelastic Neutron scattering (INS) and QENS spectra for momentum transfer 0.5-2.9 Å -1 were measured at T=20, 100 and 130 K for energy transfer up to 200 meV. The low-resolution diffraction patterns, used as the phase indicator, were also obtained. In the phase III (below 117 K), we see practically no quasi-elastic broadening. In phase II, the broadening changes with the temperature are in good agreement with the Arrhenius law. The estimated activation barrier to reorientation is 6 kJ/mol. The fitted mean time between instantaneous 120° jumps of CH 3 groups changes from 10 -11 s at T=130 K to 2×10 -13 s at room temperature. On the basis of EISF versus momentum transfer dependency it is hardly possible to decide what is the geometry of the reorientation. Both reorientation of the CH 3 groups around the three-fold symmetry axis and reorientation of the whole molecule around the six-fold symmetry axis of the benzene ring could describe our results, the former being more probable. The measured INS spectra are compared with the quantum chemical ab initio calculations performed for an isolated HMB molecule.
NASA Astrophysics Data System (ADS)
Adjaoud, O.; Marquardt, K.; Jahn, S.
2011-12-01
Most materials are not single crystals but consist of crystalline grains of various sizes, misorientated with respect to each other and joint by grain boundaries. The latter influence many of the material properties. For instance, grain boundaries are short circuits for diffusion and thus they strongly influence transport properties of materials such as electrical conductivity, or mineral growth rates, creep, or phase transform. Olivine is a major component of the Earth's upper mantle and therefore it is of considerable importance to study its physical and thermodynamic polycrystalline properties. In the present study, we have used molecular dynamics simulations to model thermodynamics, self-diffusion and structure of a series of [100] symmetric tilt grain boundaries in forsterite. The interactions between the atoms are modeled by an advanced ionic interaction potential (Jahn and Madden, 2007). The parameters of the potential are fitted to ab initio results. The model was optimized for the Ca-Mg-Al-Si-O system and shows good transferability in a wide range of pressures, temperatures, and compositions. Thermodynamics and structure were simulated at ambient conditions, and self-diffusion coefficients were determined at ambient pressure and temperatures of 1250, 1500, 1750, and 2000 K. We find that the energy and excess free volume of the grain boundaries in forsterite depend significantly on the misorientation angle of the grain boundary. One of our modeled structures is compared with an high-resolution transmission electron micrograph (HRTEM) (Heinemann et al., 2005). We relate our findings to previous studies of grain boundaries in ionic materials and in metals. For small misorientation angles (up to 22.1°), grain boundary structures consist of an array of c-edge dislocations as suggested by Heinemann et al. (2005) and their energies can be readily fit with the Read-Shockley dislocation model for grain boundaries. For high misorientation angles (32.1° and 60.8°), the cores of dislocations overlap and form repeated structural units. Similar to energies and excess free volumes, the self-diffusion coefficients of Mg and O depend significantly on the misorientation angle of the grain boundaries and they are well fitted with Arrhenius law. We compare our results to MgO grain boundary diffusion in forsterite derived from reaction rim growth experiments (Gardés and Heinrich, 2010).
Brittle failure of rock: A review and general linear criterion
NASA Astrophysics Data System (ADS)
Labuz, Joseph F.; Zeng, Feitao; Makhnenko, Roman; Li, Yuan
2018-07-01
A failure criterion typically is phenomenological since few models exist to theoretically derive the mathematical function. Indeed, a successful failure criterion is a generalization of experimental data obtained from strength tests on specimens subjected to known stress states. For isotropic rock that exhibits a pressure dependence on strength, a popular failure criterion is a linear equation in major and minor principal stresses, independent of the intermediate principal stress. A general linear failure criterion called Paul-Mohr-Coulomb (PMC) contains all three principal stresses with three material constants: friction angles for axisymmetric compression ϕc and extension ϕe and isotropic tensile strength V0. PMC provides a framework to describe a nonlinear failure surface by a set of planes "hugging" the curved surface. Brittle failure of rock is reviewed and multiaxial test methods are summarized. Equations are presented to implement PMC for fitting strength data and determining the three material parameters. A piecewise linear approximation to a nonlinear failure surface is illustrated by fitting two planes with six material parameters to form either a 6- to 12-sided pyramid or a 6- to 12- to 6-sided pyramid. The particular nature of the failure surface is dictated by the experimental data.
Dan, K; Datta, A; Yoshida, Y; Saito, G; Yoshikawa, K; Roy, M
2016-02-28
Differential Scanning Calorimetry (DSC) and optical polarization microscopy of a mixture of the liquid crystalline material (N-(4-methoxybenzylidene)-4-butylaniline, MBBA) and a Fe-based room temperature ionic liquid 1-ethyl-3-methylimidazolium tetrachloroferrate ([Emim](+) [FeCl4](-), EMIF) indicate a decrease in the nematic-isotropic (N-I) phase transition temperature (T(NI)) with an increase in EMIF concentration, explained by a proposed model of Coulomb "screening" of MBBA quadrupoles by the EMIF ions along with ionic "self screening." DSC studies of EMIF-MBBA and pure EMIF and comparison with pure MBBA results show that the major transitions in pure EMIF have Arrhenius behaviour, but more importantly the previously found convex Arrhenius behaviour of the pristine MBBA [K. Dan et al., Europhys. Lett. 108, 36007 (2014)] becomes Arrhenius in the mixture, indicating a conversion of the entropic N-I activation barrier to an enthalpic one. In presence of EMIF, a drastic decrease in the intensity of out-of-plane distortions of benzene rings in MBBA is found from Fourier transform infrared spectroscopy, consistent with significant reduction in the conformational states of MBBA. This suppression of large amplitude motion is again consistent with a Coulomb screening and gives a molecular basis for the entropic-to-enthalpic conversion of the N-I activation barrier.
Rauk, Adam P; Guo, Kevin; Hu, Yanling; Cahya, Suntara; Weiss, William F
2014-08-01
Defining a suitable product presentation with an acceptable stability profile over its intended shelf-life is one of the principal challenges in bioproduct development. Accelerated stability studies are routinely used as a tool to better understand long-term stability. Data analysis often employs an overall mass action kinetics description for the degradation and the Arrhenius relationship to capture the temperature dependence of the observed rate constant. To improve predictive accuracy and precision, the current work proposes a least-squares estimation approach with a single nonlinear covariate and uses a polynomial to describe the change in a product attribute with respect to time. The approach, which will be referred to as Arrhenius time-scaled (ATS) least squares, enables accurate, precise predictions to be achieved for degradation profiles commonly encountered during bioproduct development. A Monte Carlo study is conducted to compare the proposed approach with the common method of least-squares estimation on the logarithmic form of the Arrhenius equation and nonlinear estimation of a first-order model. The ATS least squares method accommodates a range of degradation profiles, provides a simple and intuitive approach for data presentation, and can be implemented with ease. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Investigation of a Coupled Arrhenius-Type/Rossard Equation of AH36 Material.
Qin, Qin; Tian, Ming-Liang; Zhang, Peng
2017-04-13
High-temperature tensile testing of AH36 material in a wide range of temperatures (1173-1573 K) and strain rates (10 -4 -10 -2 s -1 ) has been obtained by using a Gleeble system. These experimental stress-strain data have been adopted to develop the constitutive equation. The constitutive equation of AH36 material was suggested based on the modified Arrhenius-type equation and the modified Rossard equation respectively. The results indicate that the constitutive equation is strongly influenced by temperature and strain, especially strain. Moreover, there is a good agreement between the predicted data of the modified Arrhenius-type equation and the experimental results when the strain is greater than 0.02. There is also good agreement between the predicted data of the Rossard equation and the experimental results when the strain is less than 0.02. Therefore, a coupled equation where the modified Arrhenius-type equation and Rossard equation are combined has been proposed to describe the constitutive equation of AH36 material according to the different strain values in order to improve the accuracy. The correlation coefficient between the computed and experimental flow stress data was 0.998. The minimum value of the average absolute relative error shows the high accuracy of the coupled equation compared with the two modified equations.
Kinetic model for microbial growth and desulphurisation with Enterobacter sp.
Liu, Long; Guo, Zhiguo; Lu, Jianjiang; Xu, Xiaolin
2015-02-01
Biodesulphurisation was investigated by using Enterobacter sp. D4, which can selectively desulphurise and convert dibenzothiophene into 2-hydroxybiphenyl (2-HBP). The experimental values of growth, substrate consumption and product generation were obtained at 95 % confidence level of the fitted values using three models: Hinshelwood equation, Luedeking-Piret and Luedeking-Piret-like equations. The average error values between experimental values and fitted values were less than 10 %. These kinetic models describe all the experimental data with good statistical parameters. The production of 2-HBP in Enterobacter sp. was by "coupled growth".
Global fits of GUT-scale SUSY models with GAMBIT
NASA Astrophysics Data System (ADS)
Athron, Peter; Balázs, Csaba; Bringmann, Torsten; Buckley, Andy; Chrząszcz, Marcin; Conrad, Jan; Cornell, Jonathan M.; Dal, Lars A.; Edsjö, Joakim; Farmer, Ben; Jackson, Paul; Krislock, Abram; Kvellestad, Anders; Mahmoudi, Farvah; Martinez, Gregory D.; Putze, Antje; Raklev, Are; Rogan, Christopher; de Austri, Roberto Ruiz; Saavedra, Aldo; Savage, Christopher; Scott, Pat; Serra, Nicola; Weniger, Christoph; White, Martin
2017-12-01
We present the most comprehensive global fits to date of three supersymmetric models motivated by grand unification: the constrained minimal supersymmetric standard model (CMSSM), and its Non-Universal Higgs Mass generalisations NUHM1 and NUHM2. We include likelihoods from a number of direct and indirect dark matter searches, a large collection of electroweak precision and flavour observables, direct searches for supersymmetry at LEP and Runs I and II of the LHC, and constraints from Higgs observables. Our analysis improves on existing results not only in terms of the number of included observables, but also in the level of detail with which we treat them, our sampling techniques for scanning the parameter space, and our treatment of nuisance parameters. We show that stau co-annihilation is now ruled out in the CMSSM at more than 95% confidence. Stop co-annihilation turns out to be one of the most promising mechanisms for achieving an appropriate relic density of dark matter in all three models, whilst avoiding all other constraints. We find high-likelihood regions of parameter space featuring light stops and charginos, making them potentially detectable in the near future at the LHC. We also show that tonne-scale direct detection will play a largely complementary role, probing large parts of the remaining viable parameter space, including essentially all models with multi-TeV neutralinos.
NASA Astrophysics Data System (ADS)
Sjöberg, Daniel; Larsson, Christer
2015-06-01
We present a method aimed at reducing uncertainties and instabilities when characterizing materials in waveguide setups. The method is based on measuring the S parameters for three different orientations of a rectangular sample block in a rectangular waveguide. The corresponding geometries are modeled in a commercial full-wave simulation program, taking any material parameters as input. The material parameters of the sample are found by minimizing the squared distance between measured and calculated S parameters. The information added by the different sample orientations is quantified using the Cramér-Rao lower bound. The flexibility of the method allows the determination of material parameters of an arbitrarily shaped sample that fits in the waveguide.
Broadband distortion modeling in Lyman-α forest BAO fitting
Blomqvist, Michael; Kirkby, David; Bautista, Julian E.; ...
2015-11-23
Recently, the Lyman-α absorption observed in the spectra of high-redshift quasars has been used as a tracer of large-scale structure by means of the three-dimensional Lyman-α forest auto-correlation function at redshift z≃ 2.3, but the need to fit the quasar continuum in every absorption spectrum introduces a broadband distortion that is difficult to correct and causes a systematic error for measuring any broadband properties. Here, we describe a k-space model for this broadband distortion based on a multiplicative correction to the power spectrum of the transmitted flux fraction that suppresses power on scales corresponding to the typical length of amore » Lyman-α forest spectrum. In implementing the distortion model in fits for the baryon acoustic oscillation (BAO) peak position in the Lyman-α forest auto-correlation, we find that the fitting method recovers the input values of the linear bias parameter b F and the redshift-space distortion parameter β F for mock data sets with a systematic error of less than 0.5%. Applied to the auto-correlation measured for BOSS Data Release 11, our method improves on the previous treatment of broadband distortions in BAO fitting by providing a better fit to the data using fewer parameters and reducing the statistical errors on βF and the combination b F(1+β F) by more than a factor of seven. The measured values at redshift z=2.3 are βF=1.39 +0.11 +0.24 +0.38 -0.10 -0.19 -0.28 and bF(1+βF)=-0.374 +0.007 +0.013 +0.020 -0.007 -0.014 -0.022 (1σ, 2σ and 3σ statistical errors). Our fitting software and the input files needed to reproduce our main results are publicly available.« less
Broadband distortion modeling in Lyman-α forest BAO fitting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blomqvist, Michael; Kirkby, David; Margala, Daniel, E-mail: cblomqvi@uci.edu, E-mail: dkirkby@uci.edu, E-mail: dmargala@uci.edu
2015-11-01
In recent years, the Lyman-α absorption observed in the spectra of high-redshift quasars has been used as a tracer of large-scale structure by means of the three-dimensional Lyman-α forest auto-correlation function at redshift z≅ 2.3, but the need to fit the quasar continuum in every absorption spectrum introduces a broadband distortion that is difficult to correct and causes a systematic error for measuring any broadband properties. We describe a k-space model for this broadband distortion based on a multiplicative correction to the power spectrum of the transmitted flux fraction that suppresses power on scales corresponding to the typical length of amore » Lyman-α forest spectrum. Implementing the distortion model in fits for the baryon acoustic oscillation (BAO) peak position in the Lyman-α forest auto-correlation, we find that the fitting method recovers the input values of the linear bias parameter b{sub F} and the redshift-space distortion parameter β{sub F} for mock data sets with a systematic error of less than 0.5%. Applied to the auto-correlation measured for BOSS Data Release 11, our method improves on the previous treatment of broadband distortions in BAO fitting by providing a better fit to the data using fewer parameters and reducing the statistical errors on β{sub F} and the combination b{sub F}(1+β{sub F}) by more than a factor of seven. The measured values at redshift z=2.3 are β{sub F}=1.39{sup +0.11 +0.24 +0.38}{sub −0.10 −0.19 −0.28} and b{sub F}(1+β{sub F})=−0.374{sup +0.007 +0.013 +0.020}{sub −0.007 −0.014 −0.022} (1σ, 2σ and 3σ statistical errors). Our fitting software and the input files needed to reproduce our main results are publicly available.« less
NASA Astrophysics Data System (ADS)
Han, Xuebing; Ouyang, Minggao; Lu, Languang; Li, Jianqiu
2014-12-01
Now the lithium ion batteries are widely used in electric vehicles (EV). The cycle life is among the most important characteristics of the power battery in EV. In this report, the battery cycle life experiment is designed according to the actual working condition in EV. Five different commercial lithium ion cells are cycled alternatively under 45 °C and 5 °C and the test results are compared. Based on the cycle life experiment results and the identified battery aging mechanism, the battery cycle life models are built and fitted by the genetic algorithm. The capacity loss follows a power law relation with the cycle times and an Arrhenius law relation with the temperature. For automotive application, to save the cost and the testing time, a battery SOH (state of health) estimation method combined the on-line model based capacity estimation and regular calibration is proposed.
Carbon diffusion in molten uranium: an ab initio molecular dynamics study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garrett, Kerry E.; Abrecht, David G.; Kessler, Sean H.
In this work we used ab initio molecular dynamics (AIMD) within the framework of density functional theory (DFT) and the projector-augmented wave (PAW) method to study carbon diffusion in liquid uranium at temperatures above 1600 K. The electronic interactions of carbon and uranium were described using the local density approximation (LDA). The self-diffusion of uranium based on this approach is compared with literature computational and experimental results for liquid uranium. The temperature dependence of carbon and uranium diffusion in the melt was evaluated by fitting the resulting diffusion coefficients to an Arrhenius relationship. We found that the LDA calculated activationmore » energy for carbon was nearly twice that of uranium: 0.55±0.03 eV for carbon compared to 0.32±0.04 eV for uranium. Structural analysis of the liquid uranium-carbon system is also discussed.« less
NASA Astrophysics Data System (ADS)
Xu, Li-Hong; Reid, Elias M.; Guislain, Bradley; Hougen, Jon T.; Alekseev, E. A.; Krapivin, Igor
2017-06-01
Hyperfine splittings in methanol have been revisited in three recent publications. (i) Coudert et al. [JCP 143 (2015) 044304] published an analysis of splittings observed in the low-J range. They calculated 32 spin-rotation, 32 spin-spin, and 16 spin-torsion hyperfine constants using the ACES2 package. Three of these constants were adjusted to fit hyperfine patterns for 12 transitions. (ii) Three present authors and collaborators [JCP 145 (2016) 024307] analyzed medium to high-J experimental Lamb-dip measurements in methanol and presented a theoretical spin-rotation explanation that was based on torsionally mediated spin-rotation hyperfine operators. These contain, in addition to the usual nuclear spin and overall rotational operators, factors in the torsional angle α of the form {e^{plusmn;{inα}}}. Such operators have non-zero matrix elements between the two components of a torsion-rotation ^{tr}E state, but have zero matrix elements within a ^{tr}A state. More than 55 hyperfine splittings were successfully fitted using three parameters and the fitted values agree well with ab initio values obtained in (i). (iii) Lankhaar et al. [JCP 145 (2016) 244301] published a reanalysis of the data set from (i), using CFOUR recalculated hyperfine constants based on their rederivation of the relevant expressions. They explain why their choice of fixed and floated parameters leads to numerical values for all parameters that seem to be more physical than those in (i). The results in (ii) raise the question of whether large torsionally-mediated spin-rotation splittings will occur in other methyl-rotor-containing molecules. This abstract presents ab initio calculations of torsionally mediated hyperfine splittings in the E states of acetaldehyde using the same three operators as in (ii) and spin-rotation constants computed by Gaussian09. We explored the first 13 K states for J from 10 to 40 and ν_{t} = 0, 1, and 2. Our calculations indicate that hyperfine splittings in CH_{3}CHO are just below current measurement capability. This conclusion is confirmed by available experimental measurements.
Laffon, E; Calcagni, M L; Galli, G; Giordano, A; Capotosti, A; Marthan, R; Indovina, L
2018-03-27
Patlak's graphical analysis can provide tracer net influx constant (Ki) with limitation of assuming irreversible tracer trapping, that is, release rate constant (k b ) set to zero. We compared linear Patlak's analysis to non-linear three-compartment three-parameter kinetic model analysis (3P-KMA) providing Ki, k b , and fraction of free 18 F-FDG in blood and interstitial volume (V b ). Dynamic PET data of 21 lung cancer patients were retrospectively analyzed, yielding for each patient an 18 F-FDG input function (IF) and a tissue time-activity curve. The former was fitted with a three-exponentially decreasing function, and the latter was fitted with an analytical formula involving the fitted IF data (11 data points, ranging 7.5-57.5 min post-injection). Bland-Altman analysis was used for Ki comparison between Patlak's analysis and 3P-KMA. Additionally, a three-compartment five-parameter KMA (5P-KMA) was implemented for comparison with Patlak's analysis and 3P-KMA. We found that 3P-KMA Ki was significantly greater than Patlak's Ki over the whole patient series, + 6.0% on average, with limits of agreement of ± 17.1% (95% confidence). Excluding 8 out of 21 patients with k b > 0 deleted this difference. A strong correlation was found between Ki ratio (=3P-KMA/Patlak) and k b (R = 0.801; P < 0.001). No significant difference in Ki was found between 3P-KMA versus 5P-KMA, and between 5P-KMA versus Patlak's analysis, with limits of agreement of ± 23.0 and ± 31.7% (95% confidence), respectively. Comparison between 3P-KMA and Patlak's analysis significantly showed that the latter underestimates Ki because it arbitrarily set k b to zero: the greater the k b value, the greater the Ki underestimation. This underestimation was not revealed when comparing 5P-KMA and Patlak's analysis. We suggest that further studies are warranted to investigate the 3P-KMA efficiency in various tissues showing greater 18 F-FDG trapping reversibility than lung cancer lesions.
Chaudhuri, Shomesh E; Merfeld, Daniel M
2013-03-01
Psychophysics generally relies on estimating a subject's ability to perform a specific task as a function of an observed stimulus. For threshold studies, the fitted functions are called psychometric functions. While fitting psychometric functions to data acquired using adaptive sampling procedures (e.g., "staircase" procedures), investigators have encountered a bias in the spread ("slope" or "threshold") parameter that has been attributed to the serial dependency of the adaptive data. Using simulations, we confirm this bias for cumulative Gaussian parametric maximum likelihood fits on data collected via adaptive sampling procedures, and then present a bias-reduced maximum likelihood fit that substantially reduces the bias without reducing the precision of the spread parameter estimate and without reducing the accuracy or precision of the other fit parameters. As a separate topic, we explain how to implement this bias reduction technique using generalized linear model fits as well as other numeric maximum likelihood techniques such as the Nelder-Mead simplex. We then provide a comparison of the iterative bootstrap and observed information matrix techniques for estimating parameter fit variance from adaptive sampling procedure data sets. The iterative bootstrap technique is shown to be slightly more accurate; however, the observed information technique executes in a small fraction (0.005 %) of the time required by the iterative bootstrap technique, which is an advantage when a real-time estimate of parameter fit variance is required.
Spectral embedding finds meaningful (relevant) structure in image and microarray data
Higgs, Brandon W; Weller, Jennifer; Solka, Jeffrey L
2006-01-01
Background Accurate methods for extraction of meaningful patterns in high dimensional data have become increasingly important with the recent generation of data types containing measurements across thousands of variables. Principal components analysis (PCA) is a linear dimensionality reduction (DR) method that is unsupervised in that it relies only on the data; projections are calculated in Euclidean or a similar linear space and do not use tuning parameters for optimizing the fit to the data. However, relationships within sets of nonlinear data types, such as biological networks or images, are frequently mis-rendered into a low dimensional space by linear methods. Nonlinear methods, in contrast, attempt to model important aspects of the underlying data structure, often requiring parameter(s) fitting to the data type of interest. In many cases, the optimal parameter values vary when different classification algorithms are applied on the same rendered subspace, making the results of such methods highly dependent upon the type of classifier implemented. Results We present the results of applying the spectral method of Lafon, a nonlinear DR method based on the weighted graph Laplacian, that minimizes the requirements for such parameter optimization for two biological data types. We demonstrate that it is successful in determining implicit ordering of brain slice image data and in classifying separate species in microarray data, as compared to two conventional linear methods and three nonlinear methods (one of which is an alternative spectral method). This spectral implementation is shown to provide more meaningful information, by preserving important relationships, than the methods of DR presented for comparison. Tuning parameter fitting is simple and is a general, rather than data type or experiment specific approach, for the two datasets analyzed here. Tuning parameter optimization is minimized in the DR step to each subsequent classification method, enabling the possibility of valid cross-experiment comparisons. Conclusion Results from the spectral method presented here exhibit the desirable properties of preserving meaningful nonlinear relationships in lower dimensional space and requiring minimal parameter fitting, providing a useful algorithm for purposes of visualization and classification across diverse datasets, a common challenge in systems biology. PMID:16483359
Stationary and non-stationary extreme value modeling of extreme temperature in Malaysia
NASA Astrophysics Data System (ADS)
Hasan, Husna; Salleh, Nur Hanim Mohd; Kassim, Suraiya
2014-09-01
Extreme annual temperature of eighteen stations in Malaysia is fitted to the Generalized Extreme Value distribution. Stationary and non-stationary models with trend are considered for each station and the Likelihood Ratio test is used to determine the best-fitting model. Results show that three out of eighteen stations i.e. Bayan Lepas, Labuan and Subang favor a model which is linear in the location parameter. A hierarchical cluster analysis is employed to investigate the existence of similar behavior among the stations. Three distinct clusters are found in which one of them consists of the stations that favor the non-stationary model. T-year estimated return levels of the extreme temperature are provided based on the chosen models.
A method for cone fitting based on certain sampling strategy in CMM metrology
NASA Astrophysics Data System (ADS)
Zhang, Li; Guo, Chaopeng
2018-04-01
A method of cone fitting in engineering is explored and implemented to overcome shortcomings of current fitting method. In the current method, the calculations of the initial geometric parameters are imprecise which cause poor accuracy in surface fitting. A geometric distance function of cone is constructed firstly, then certain sampling strategy is defined to calculate the initial geometric parameters, afterwards nonlinear least-squares method is used to fit the surface. The experiment is designed to verify accuracy of the method. The experiment data prove that the proposed method can get initial geometric parameters simply and efficiently, also fit the surface precisely, and provide a new accurate way to cone fitting in the coordinate measurement.
Fohlmeister, Jürgen F
2015-06-01
The structural similarity between the primary molecules of voltage-gated Na and K channels (alpha subunits) and activation gating in the Hodgkin-Huxley model is brought into full agreement by increasing the model's sodium kinetics to fourth order (m(3) → m(4)). Both structures then virtually imply activation gating by four independent subprocesses acting in parallel. The kinetics coalesce in four-dimensional (4D) cubic diagrams (16 states, 32 reversible transitions) that show the structure to be highly failure resistant against significant partial loss of gating function. Rate constants, as fitted in phase plot data of retinal ganglion cell excitation, reflect the molecular nature of the gating transitions. Additional dimensions (6D cubic diagrams) accommodate kinetically coupled sodium inactivation and gating processes associated with beta subunits. The gating transitions of coupled sodium inactivation appear to be thermodynamically irreversible; response to dielectric surface charges (capacitive displacement) provides a potential energy source for those transitions and yields highly energy-efficient excitation. A comparison of temperature responses of the squid giant axon (apparently Arrhenius) and mammalian channel gating yields kinetic Q10 = 2.2 for alpha unit gating, whose transitions are rate-limiting at mammalian temperatures; beta unit kinetic Q10 = 14 reproduces the observed non-Arrhenius deviation of mammalian gating at low temperatures; the Q10 of sodium inactivation gating matches the rate-limiting component of activation gating at all temperatures. The model kinetics reproduce the physiologically large frequency range for repetitive firing in ganglion cells and the physiologically observed strong temperature dependence of recovery from inactivation. Copyright © 2015 the American Physiological Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hemalatha, K. S.; Damle, R.; Rukmani, K., E-mail: rukmani9909@yahoo.co.in
2015-10-21
Dielectric and conductivity behaviors of nano ZnO doped polyvinyl alcohol (PVA) composites for various concentrations of dopant were investigated using impedance spectroscopy for a wide range of temperatures (303 K–423 K) and frequencies (5 Hz–30 MHZ). The dielectric properties of host polymer matrix have been improved by the addition of nano ZnO and are found to be highly temperature dependent. Anomalous dielectric behavior was observed in the frequency range of 2.5 MHz–5 MHz. Increase in dielectric permittivity and dielectric loss was observed with respect to temperature. The Cole-Cole plot could be modeled by low resistance regions in a high resistance matrix and the lowest resistance wasmore » observed for the 10 mol. % films. The imaginary part of the electric modulus showed asymmetric peaks with the relaxation following Debye nature below and non-Debye nature above the peaks. The ac conductivity is found to obey Jonscher's power law, whereas the variation of dc conductivity with temperature was found to follow Arrhenius behavior. Two different activation energy values were obtained from Arrhenius plot indicating that two conduction mechanisms are involved in the composite films. Fitting the ac conductivity data to Jonscher's law indicates that large polaron assisted tunneling is the most likely conduction mechanism in the composites. Maximum conductivity is observed at 423 K for all the samples and it is optimum for 10 mol. % ZnO doped PVA composite film. Significant increase in dc and ac conductivities in these composite films makes them a potential candidate for application in electronic devices.« less
De Vore, Karl W; Fatahi, Nadia M; Sass, John E
2016-08-01
Arrhenius modeling of analyte recovery at increased temperatures to predict long-term colder storage stability of biological raw materials, reagents, calibrators, and controls is standard practice in the diagnostics industry. Predicting subzero temperature stability using the same practice is frequently criticized but nevertheless heavily relied upon. We compared the ability to predict analyte recovery during frozen storage using 3 separate strategies: traditional accelerated studies with Arrhenius modeling, and extrapolation of recovery at 20% of shelf life using either ordinary least squares or a radical equation y = B1x(0.5) + B0. Computer simulations were performed to establish equivalence of statistical power to discern the expected changes during frozen storage or accelerated stress. This was followed by actual predictive and follow-up confirmatory testing of 12 chemistry and immunoassay analytes. Linear extrapolations tended to be the most conservative in the predicted percent recovery, reducing customer and patient risk. However, the majority of analytes followed a rate of change that slowed over time, which was fit best to a radical equation of the form y = B1x(0.5) + B0. Other evidence strongly suggested that the slowing of the rate was not due to higher-order kinetics, but to changes in the matrix during storage. Predicting shelf life of frozen products through extrapolation of early initial real-time storage analyte recovery should be considered the most accurate method. Although in this study the time required for a prediction was longer than a typical accelerated testing protocol, there are less potential sources of error, reduced costs, and a lower expenditure of resources. © 2016 American Association for Clinical Chemistry.
The Intrinsic Temperature Sensitivity of Ecosystem Respiration as Explained by Thermodynamics
NASA Astrophysics Data System (ADS)
Woods, K. D.; Arcus, V. L.; Schipper, L. A.; Schwalm, C.
2016-12-01
Biological processes exhibit thermal optima; a range within which processes such as photosynthesis and respiration reach a maximum rate. The response of these processes to temperature is well observed in the field and lab experiments, but is poorly captured or explained by widely used Arrhenius equations and Q10 constants. Both Arrhenius and Q10-based explanations of respiration misleadingly project an exponential increase in rate with temperature and rely on concepts such as enzyme denaturation to explain decreases at higher temperatures. This explanation is problematic in that it ignores observed declines which are far below experimental observations of enzyme denaturation. Here, we present a novel theory which explains the intrinsic temperature dependence of plant, soil, and ecosystem respiration based on the thermodynamics of enzyme-catalysed reactions. MacroMolecular Rate Theory (MMRT) allows for the calculation of thermal optima for respiration and photosynthesis (an important input substrate for respiration), as well as for the calculation of the curvature of response which defines temperatures where changes in rates are maximal. To test this theory, we used the recently released FLUXNET2015 dataset which is comprised of 165 sites and 23 years of data. We accounted for the effect of water through partial correlation analysis and extracted the temperature signal of respiration and photosynthesis to fit MacroMolecular Rate Theory. Across ecosystems and biomes, photosynthesis and respiration rates maximized at 7-18oC and 15-27oC respectively. At 16-25oC, and 26-36oC rates photosynthesis and respiration declined. These points, and this method for explaining changes in these processes are important for understanding and predicting net ecosystem carbon gain or loss. They demonstrate temperatures where the sign and magnitude of carbon exchange undergoes important shifts, holding important implications for future carbon cycling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Han Lin
1988-03-01
The objectives of this research are to: (1) conduct experimental investigations of the removal of chlorine from coal by high- temperature leaching; (2) identify important factors affecting the chlorine removal process; (3) understand the mechanisms involved; and (4) develop a mathematical model to describe the process. A generalized mathematical model based on diffusion and relaxation has been developed for water leaching of chlorine from coal. The model has been fitted to four different samples of Illinois No. 6 coal: C22175, C22651, C8601, and C8602. The weight percent of chlorine ranged from 0.42 to 0.82. The experimental data on these samplesmore » covered a temperature range of 297 to 370K and a particle size range of 60 to 325 mesh. Based on the type of coal and the conditions of leaching, it was found that 40 to 80% of the original chlorine could be leached from the coal matrix. The model based on diffusion-relaxation concept predicted the leaching data within +-5% average absolute deviation. The diffusion rate constants at different temperatures were correlated to Arrhenius type relations. Attempts made to correlate the constants in the Arrhenius equations with the chlorine content in coal and with particle size have been discussed. The water leaching data were used to extract Fickian diffusivities based on the time required for 50% desorption. The calculated diffusivity values ranged from 0.6 to 3 /times/ 10/sup /minus/11/ cm/sup 2//sec. The effect of chemical additives on the rate of leaching has also been studied. Both HNO/sub 3/ and NH/sub 4/OH were used as additives. 28 refs., 3 figs., 7 tabs.« less
Omeprazole decreases magnesium transport across Caco-2 monolayers
Thongon, Narongrit; Krishnamra, Nateetip
2011-01-01
AIM: To elucidate the effect and underlying mechanisms of omeprazole action on Mg2+ transport across the intestinal epithelium. METHODS: Caco-2 monolayers were cultured in various dose omeprazole-containing media for 14 or 21 d before being inserted into a modified Ussing chamber apparatus to investigate the bi-directional Mg2+ transport and electrical parameters. Paracellular permeability of the monolayer was also observed by the dilution potential technique and a cation permeability study. An Arrhenius plot was performed to elucidate the activation energy of passive Mg2+ transport across the Caco-2 monolayers. RESULTS: Both apical to basolateral and basolateral to apical passive Mg2+ fluxes of omeprazole-treated epithelium were decreased in a dose- and time-dependent manner. Omeprazole also decreased the paracellular cation selectivity and changed the paracellular selective permeability profile of Caco-2 epithelium to Li+, Na+, K+, Rb+, and Cs+ from series VII to series VI of the Eisenman sequence. The Arrhenius plot revealed the higher activation energy for passive Mg2+ transport in omeprazole-treated epithelium than that of control epithelium, indicating that omeprazole affected the paracellular channel of Caco-2 epithelium in such a way that Mg2+ movement was impeded. CONCLUSION: Omeprazole decreased paracellular cation permeability and increased the activation energy for passive Mg2+ transport of Caco-2 monolayers that led to the suppression of passive Mg2+ absorption. PMID:21472124
Nordström, Albin; Herbert, Roger B
2017-06-01
Nitrate removal rates in a mixture of pine woodchips and sewage sludge were determined in laboratory column studies at 5°C, 12°C, and 22°C, and at two different hydraulic residence times (HRTs; 58.2-64.0 hours and 18.7-20.6 hours). Baffles installed in the flow path were tested as a measure to reduce preferential flow behavior, and to increase the nitrate removal in the columns. The nitrate removal in the columns was simulated at 5°C and 12°C using a combined Arrhenius-Monod equation controlling the removal rate, and a first-order exchange model for incorporation of stagnant zones. Denitrification in the mixture of pine woodchips and sewage sludge reduced nitrate concentrations of 30 mg N L -1 at 5°C to below detection limits at a HRT of 58.2-64.0 hours. At a HRT of 18.7-20.6 hours, nitrate removal was incomplete. The Arrhenius frequency factor and activation energy retrieved from the low HRT data supported a biochemically controlled reaction rate; the same parameters, however, could not be used to simulate the nitrate removal at high HRT. The results show an inversely proportional relationship between the advection velocity and the nitrate removal rate, suggesting that bioreactor performance could be enhanced by promoting low advection velocities.
Omeprazole decreases magnesium transport across Caco-2 monolayers.
Thongon, Narongrit; Krishnamra, Nateetip
2011-03-28
To elucidate the effect and underlying mechanisms of omeprazole action on Mg(2+) transport across the intestinal epithelium. Caco-2 monolayers were cultured in various dose omeprazole-containing media for 14 or 21 d before being inserted into a modified Ussing chamber apparatus to investigate the bi-directional Mg(2+) transport and electrical parameters. Paracellular permeability of the monolayer was also observed by the dilution potential technique and a cation permeability study. An Arrhenius plot was performed to elucidate the activation energy of passive Mg(2+) transport across the Caco-2 monolayers. Both apical to basolateral and basolateral to apical passive Mg(2+) fluxes of omeprazole-treated epithelium were decreased in a dose- and time-dependent manner. Omeprazole also decreased the paracellular cation selectivity and changed the paracellular selective permeability profile of Caco-2 epithelium to Li(+), Na(+), K(+), Rb(+), and Cs(+) from series VII to series VI of the Eisenman sequence. The Arrhenius plot revealed the higher activation energy for passive Mg(2+) transport in omeprazole-treated epithelium than that of control epithelium, indicating that omeprazole affected the paracellular channel of Caco-2 epithelium in such a way that Mg(2+) movement was impeded. Omeprazole decreased paracellular cation permeability and increased the activation energy for passive Mg(2+) transport of Caco-2 monolayers that led to the suppression of passive Mg(2+) absorption.
NASA Technical Reports Server (NTRS)
Steinberger, Craig J.
1991-01-01
The effects of compressibility, chemical reaction exothermicity, and non-equilibrium chemical modeling in a reacting plane mixing layer were investigated by means of two dimensional direct numerical simulations. The chemical reaction was irreversible and second order of the type A + B yields Products + Heat. The general governing fluid equations of a compressible reacting flow field were solved by means of high order finite difference methods. Physical effects were then determined by examining the response of the mixing layer to variation of the relevant non-dimensionalized parameters. The simulations show that increased compressibility generally results in a suppressed mixing, and consequently a reduced chemical reaction conversion rate. Reaction heat release was found to enhance mixing at the initial stages of the layer growth, but had a stabilizing effect at later times. The increased stability manifested itself in the suppression or delay of the formation of large coherent structures within the flow. Calculations were performed for a constant rate chemical kinetics model and an Arrhenius type kinetic prototype. The choice of the model was shown to have an effect on the development of the flow. The Arrhenius model caused a greater temperature increase due to reaction than the constant kinetic model. This had the same effect as increasing the exothermicity of the reaction. Localized flame quenching was also observed when the Zeldovich number was relatively large.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yilmaz, Şeyda, E-mail: seydayilmaz@ktu.edu.tr; Bayrak, Erdem, E-mail: erdmbyrk@gmail.com; Bayrak, Yusuf, E-mail: bayrak@ktu.edu.tr
In this study we examined and compared the three different probabilistic distribution methods for determining the best suitable model in probabilistic assessment of earthquake hazards. We analyzed a reliable homogeneous earthquake catalogue between a time period 1900-2015 for magnitude M ≥ 6.0 and estimated the probabilistic seismic hazard in the North Anatolian Fault zone (39°-41° N 30°-40° E) using three distribution methods namely Weibull distribution, Frechet distribution and three-parameter Weibull distribution. The distribution parameters suitability was evaluated Kolmogorov-Smirnov (K-S) goodness-of-fit test. We also compared the estimated cumulative probability and the conditional probabilities of occurrence of earthquakes for different elapsed timemore » using these three distribution methods. We used Easyfit and Matlab software to calculate these distribution parameters and plotted the conditional probability curves. We concluded that the Weibull distribution method was the most suitable than other distribution methods in this region.« less
Akhtar, Muhammad Nadeem; Lan, Yanhua; AlDamen, Murad A; Zheng, Yan-Zhen; Anson, Christopher E; Powell, Annie K
2018-03-06
Three isostructural lanthanide series with a core of MnMnLn 2 are reported. These three families have the formulae of [MnMnLn 2 (μ 4 -O) 2 (H 2 edte) 2 (piv) 6 (NO 3 ) 2 ] {no crystallization solvent, Ln = La, Ce, Pr, Nd, Eu (1-4, 6); solv = 3MeCN, Ln = Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Y (5, 7-13)}, where H 2 edte = N,N,N',N'-tetrakis(2-hydroxyethyl)ethylenediamine and piv = pivalate; [MnMnLn 2 (μ 4 -O) 2 (H 2 edte) 2 (benz) 6 (NO 3 ) 2 ], where benz = benzoate, or [MnMnLn 2 (μ 4 -O) 2 (edteH 2 ) 2 (benz) 6 (NO 3 ) 2 ]·2MeCN {Ln = Gd, Tb, Dy (14-16); and [MnMnLn 2 (μ 4 -O) 2 (edteH 2 ) 2 (piv) 8 ].solv {solv = 4MeCN, Ln = La (17); solv = 2MeCN·tol·H 2 O, Ln = Pr, Nd, Sm, Tb (18-20, 22); solv = 2MeCN·H 2 O, Ln = Gd (21). These compounds crystallize in two different systems, namely, monoclinic in the space groups P2 1 /n for 1-4, 6, and 14-16 and C2/c for 5, 7-13, 18-20, and 22 and triclinic in the space group P1[combining macron] for 17 and 21. The crystal structures of these compounds display a face-fused dicubane structure connected by different types of bridged oxygen atoms. Solid-state dc magnetic susceptibility characterization was carried out for 1-22, and fitting showed that Mn III Mn III is antiferromagnetically (AF) coupled and Mn II Mn III , Mn II Ln and Mn III Ln are weakly ferromagnetically coupled. In addition, ac measurements were carried out and showed that only 7, 15, and 22 for Tb, 8 and 16 for Dy, and 20 for Sm exhibited slow magnetization relaxation. In the case of 15, it was possible to determine the energy barrier of the slow-relaxation behavior by fitting peak temperatures to the Arrhenius law, which gave a value of U eff = 21.2 K and a pre-exponential factor of τ 0 = 4.0 × 10 -9 s.
The Burgers/squirt-flow seismic model of the crust and mantle
NASA Astrophysics Data System (ADS)
Carcione, José M.; Poletto, Flavio; Farina, Biancamaria
2018-01-01
Part of the crust shows generally brittle behaviour while areas of high temperature and/or high pore pressure, including the mantle, may present ductile behaviour. For instance, the potential heat source of geothermal fields, overpressured formations and molten rocks. Seismic waves can be used to detect these conditions on the basis of reflection and transmission events. Basically, from the elastic-plastic point of view the seismic properties (seismic velocity, quality factor and density) depend on effective pressure and temperature. Confining and pore pressures have opposite effects on these properties, and high temperatures may induce a similar behaviour by partial melting. In order to model these effects, we consider a poro-viscoelastic model based on the Burgers mechanical element and the squirt-flow model to represent the properties of the rock frame to describe ductility in which deformation takes place by shear plastic flow, and to model local and global fluid flow effects. The Burgers element allows us to model the effects of the steady-state creep flow on the dry-rock frame. The stiffness components of the brittle and ductile media depend on stress and temperature through the shear viscosity, which is obtained by the Arrhenius equation and the octahedral stress criterion. Effective pressure effects are taken into account in the dry-rock moduli by using exponential functions whose parameters are obtained by fitting experimental data as a function of confining pressure. Since fluid effects are important, the density and bulk modulus of the saturating fluids (water at sub- and supercritical conditions) are modeled by using the equations provided by the NIST website. The squirt-flow model has a single free parameter represented by the aspect ratio of the grain contacts. The theory generalizes a preceding theory based on Gassmann (low-frequency) moduli to the more general case of the presence of local (squirt) flow and global (Biot) flow, which contribute with additional attenuation mechanisms to the wave propagation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yujie; Gong, Sha; Wang, Zhen
The thermodynamic and kinetic parameters of an RNA base pair were obtained through a long-time molecular dynamics simulation of the opening-closing switch process of the base pair near its melting temperature. The thermodynamic parameters were in good agreement with the nearest-neighbor model. The opening rates showed strong temperature dependence, however, the closing rates showed only weak temperature dependence. The transition path time was weakly temperature dependent and was insensitive to the energy barrier. The diffusion constant exhibited super-Arrhenius behavior. The free energy barrier of breaking a single base stack results from the enthalpy increase, ΔH, caused by the disruption ofmore » hydrogen bonding and base-stacking interactions. The free energy barrier of base pair closing comes from the unfavorable entropy loss, ΔS, caused by the restriction of torsional angles. These results suggest that a one-dimensional free energy surface is sufficient to accurately describe the dynamics of base pair opening and closing, and the dynamics are Brownian.« less
Origins of the temperature dependence of hammerhead ribozyme catalysis.
Peracchi, A
1999-01-01
The difficulties in interpreting the temperature dependence of protein enzyme reactions are well recognized. Here, the hammerhead ribozyme cleavage was investigated under single-turnover conditions between 0 and 60 degrees C as a model for RNA-catalyzed reactions. Under the adopted conditions, the chemical step appears to be rate-limiting. However, the observed rate of cleavage is affected by pre-catalytic equilibria involving deprotonation of an essential group and binding of at least one low-affinity Mg2+ion. Thus, the apparent entropy and enthalpy of activation include contributions from the temperature dependence of these equilibria, precluding a simple physical interpretation of the observed activation parameters. Similar pre-catalytic equilibria likely contribute to the observed activation parameters for ribozyme reactions in general. The Arrhenius plot for the hammerhead reaction is substantially curved over the temperature range considered, which suggests the occurrence of a conformational change of the ribozyme ground state around physiological temperatures. PMID:10390528
Chemical reaction mechanisms in solution from brute force computational Arrhenius plots.
Kazemi, Masoud; Åqvist, Johan
2015-06-01
Decomposition of activation free energies of chemical reactions, into enthalpic and entropic components, can provide invaluable signatures of mechanistic pathways both in solution and in enzymes. Owing to the large number of degrees of freedom involved in such condensed-phase reactions, the extensive configurational sampling needed for reliable entropy estimates is still beyond the scope of quantum chemical calculations. Here we show, for the hydrolytic deamination of cytidine and dihydrocytidine in water, how direct computer simulations of the temperature dependence of free energy profiles can be used to extract very accurate thermodynamic activation parameters. The simulations are based on empirical valence bond models, and we demonstrate that the energetics obtained is insensitive to whether these are calibrated by quantum mechanical calculations or experimental data. The thermodynamic activation parameters are in remarkable agreement with experiment results and allow discrimination among alternative mechanisms, as well as rationalization of their different activation enthalpies and entropies.
Chemical reaction mechanisms in solution from brute force computational Arrhenius plots
Kazemi, Masoud; Åqvist, Johan
2015-01-01
Decomposition of activation free energies of chemical reactions, into enthalpic and entropic components, can provide invaluable signatures of mechanistic pathways both in solution and in enzymes. Owing to the large number of degrees of freedom involved in such condensed-phase reactions, the extensive configurational sampling needed for reliable entropy estimates is still beyond the scope of quantum chemical calculations. Here we show, for the hydrolytic deamination of cytidine and dihydrocytidine in water, how direct computer simulations of the temperature dependence of free energy profiles can be used to extract very accurate thermodynamic activation parameters. The simulations are based on empirical valence bond models, and we demonstrate that the energetics obtained is insensitive to whether these are calibrated by quantum mechanical calculations or experimental data. The thermodynamic activation parameters are in remarkable agreement with experiment results and allow discrimination among alternative mechanisms, as well as rationalization of their different activation enthalpies and entropies. PMID:26028237
Le Borgne, François; Pruvost, Jérémy
2013-06-01
Biomass decay rate (BDR) in the dark was investigated for Chlamydomonas reinhardtii (microalga) and Arthrospira platensis (cyanobacterium). A specific setup based on a torus photobioreactor with online gas analysis was validated, enabling us to follow the time course of the specific BDR using oxygen monitoring and mass balance. Various operating parameters that could limit respiration rates, such as culture temperature and oxygen deprivation, were then investigated. C. reinhardtii was found to present a higher BDR in the dark than A. platensis, illustrating here the difference between eukaryotic and prokaryotic cells. In both cases, temperature proved an influential parameter, and the Arrhenius law was found to efficiently relate specific BDR to culture temperature. The utility of decreasing temperature at night to increase biomass productivity in a solar photobioreactor is also illustrated. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yakub, Eugene; Ronchi, Claudio; Staicu, Dragos
2007-09-01
Results of molecular dynamics (MD) simulation of UO2 in a wide temperature range are presented and discussed. A new approach to the calibration of a partly ionic Busing-Ida-type model is proposed. A potential parameter set is obtained reproducing the experimental density of solid UO2 in a wide range of temperatures. A conventional simulation of the high-temperature stoichiometric UO2 on large MD cells, based on a novel fast method of computation of Coulomb forces, reveals characteristic features of a premelting λ transition at a temperature near to that experimentally observed (Tλ=2670K ). A strong deviation from the Arrhenius behavior of the oxygen self-diffusion coefficient was found in the vicinity of the transition point. Predictions for liquid UO2, based on the same potential parameter set, are in good agreement with existing experimental data and theoretical calculations.
The Arrhenius Law and Storage of Food in a Freezer
NASA Astrophysics Data System (ADS)
Leenson, I. A.
1999-04-01
This article contains a brief review of some "unconventional" applications of the Arrhenius law. One such example is proposed as a problem concerning the shelf-life of frozen food (Italian pizza) at temperatures ranging from 0 to -18 °C. The effective activation energy (180 kJ/mole) calculated from the information presented by the manufacturer implies that the most probable mechanism of pizza deterioration on storage is enzyme and microbial destruction.
Non-Arrhenius protein aggregation.
Wang, Wei; Roberts, Christopher J
2013-07-01
Protein aggregation presents one of the key challenges in the development of protein biotherapeutics. It affects not only product quality but also potentially impacts safety, as protein aggregates have been shown to be linked with cytotoxicity and patient immunogenicity. Therefore, investigations of protein aggregation remain a major focus in pharmaceutical companies and academic institutions. Due to the complexity of the aggregation process and temperature-dependent conformational stability, temperature-induced protein aggregation is often non-Arrhenius over even relatively small temperature windows relevant for product development, and this makes low-temperature extrapolation difficult based simply on accelerated stability studies at high temperatures. This review discusses the non-Arrhenius nature of the temperature dependence of protein aggregation, explores possible causes, and considers inherent hurdles for accurately extrapolating aggregation rates from conventional industrial approaches for selecting accelerated conditions and from conventional or more advanced methods of analyzing the resulting rate data.
Convex Arrhenius plots and their interpretation
Truhlar, Donald G.; Kohen, Amnon
2001-01-01
This paper draws attention to selected experiments on enzyme-catalyzed reactions that show convex Arrhenius plots, which are very rare, and points out that Tolman's interpretation of the activation energy places a fundamental model-independent constraint on any detailed explanation of these reactions. The analysis presented here shows that in such systems, the rate coefficient as a function of energy is not just increasing more slowly than expected, it is actually decreasing. This interpretation of the data provides a constraint on proposed microscopic models, i.e., it requires that any successful model of a reaction with a convex Arrhenius plot should be consistent with the microcanonical rate coefficient being a decreasing function of energy. The implications and limitations of this analysis to interpreting enzyme mechanisms are discussed. This model-independent conclusion has broad applicability to all fields of kinetics, and we also draw attention to an analogy with diffusion in metastable fluids and glasses. PMID:11158559
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, D.A.
1988-02-01
Thermal maturity can be calculated with time-temperature indices (TTI) based on the Arrhenius equation using kinetics applicable to a range of Types II and III kerogens. These TTIs are compared with TTI calculations based on the Lopatin method and are related theoretically (and empirically via vitrinite reflectance) to the petroleum-generation window. The TTIs for both methods are expressed mathematically as integrals of temperature combined with variable linear heating rates for selected temperature intervals. Heating rates control the thermal-maturation trends of buried sediments. Relative to Arrhenius TTIs, Lopatin TTIs tend to underestimate thermal maturity at high heating rates and overestimate itmore » as low heating rates. Complex burial histories applicable to a range of tectonic environments illustrate the different exploration decisions that might be made on the basis of independent results of these two thermal-maturation models. 15 figures, 8 tables.« less
Synthesis, characterization and intramolecular cyclisation study of three new liquid crystals
NASA Astrophysics Data System (ADS)
Saïdat, B.; Guermouche, M. H.; Bayle, J.-P.
2004-12-01
Internal cyclization of three new phenyldiazene liquid crystals (R is an alkyl substituent with 4, 6 or 8 carbons) with activated methylene group in the ortho position to the diazo linkage was studied . The initial liquid crystals was synthesised and characterized by ^1H NMR, electrospray mass spectrometry and differential scanning calorimetry. The final compound was characterized by ^1H NMR and differential scanning calorimetry. The kinetic of cyclization was studied at different temperatures and followed by reversed phase HPLC and a UV detection. For all the temperatures used, it appeared that the cyclisation was a first order reaction for the three compounds. The Arrhenius plot (ln reaction constant k against 1000/T) gave the mean activation energy of the cyclisation.
Midha, M; Schmitt, J K; Sclater, M
1999-03-01
To determine the effect of exercise with the wheelchair aerobic fitness trainer (WAFT) on anthropometric indices, conditioning, and endocrine and metabolic parameters in persons with lower extremity disability. Exercise sessions with the WAFT lasted 20 to 30 minutes for two to three sessions. Tertiary-care Veterans Administration medical center. Twelve subjects (3 with quadriplegia, 7 with paraplegia, 1 with cerebrovascular accident, 1 with bilateral above-knee amputation). Anthropometric indices (heart rate, blood pressure, weight, oxygen utilization, body mass index, upper arm and abdominal circumference, arm power) and endocrine and metabolic parameters (fasting serum glucose, lipids, and thyroid function) were determined before and after 10 weeks of exercise with the WAFT. All patients noted improved feelings of well-being after training. Mean resting heart rate, upper arm fat area, and fasting serum cholesterol level decreased significantly. Peak oxygen consumption, midarm circumference, and free thyroxine index increased significantly with training. WAFT improves quality of life, conditioning, and endocrine-metabolic parameters in disabled persons.
Determination of Kinetic Parameters for the Thermal Decomposition of Parthenium hysterophorus
NASA Astrophysics Data System (ADS)
Dhaundiyal, Alok; Singh, Suraj B.; Hanon, Muammel M.; Rawat, Rekha
2018-02-01
A kinetic study of pyrolysis process of Parthenium hysterophorous is carried out by using thermogravimetric analysis (TGA) equipment. The present study investigates the thermal degradation and determination of the kinetic parameters such as activation E and the frequency factor A using model-free methods given by Flynn Wall and Ozawa (FWO), Kissinger-Akahira-Sonuse (KAS) and Kissinger, and model-fitting (Coats Redfern). The results derived from thermal decomposition process demarcate decomposition of Parthenium hysterophorous among the three main stages, such as dehydration, active and passive pyrolysis. It is shown through DTG thermograms that the increase in the heating rate caused temperature peaks at maximum weight loss rate to shift towards higher temperature regime. The results are compared with Coats Redfern (Integral method) and experimental results have shown that values of kinetic parameters obtained from model-free methods are in good agreement. Whereas the results obtained through Coats Redfern model at different heating rates are not promising, however, the diffusion models provided the good fitting with the experimental data.
Shim, Woo Hyun; Kim, Ho Sung; Choi, Choong-Gon; Kim, Sang Joon
2015-01-01
Brain tumor cellularity has been assessed by using apparent diffusion coefficient (ADC). However, the ADC value might be influenced by both perfusion and true molecular diffusion, and the perfusion effect on ADC can limit the reliability of ADC in the characterization of tumor cellularity, especially, in hypervascular brain tumors. In contrast, the IVIM technique estimates parameter values for diffusion and perfusion effects separately. The purpose of our study was to compare ADC and IVIM for differentiating among glioblastoma, metastatic tumor, and primary CNS lymphoma (PCNSL) focusing on diffusion-related parameter. We retrospectively reviewed the data of 128 patients with pathologically confirmed glioblastoma (n = 55), metastasis (n = 31), and PCNSL (n = 42) prior to any treatment. Two neuroradiologists independently calculated the maximum IVIM-f (fmax) and minimum IVIM-D (Dmin) by using 16 different b-values with a bi-exponential fitting of diffusion signal decay, minimum ADC (ADCmin) by using 0 and 1000 b-values with a mono-exponential fitting and maximum normalized cerebral blood volume (nCBVmax). The differences in fmax, Dmin, nCBVmax, and ADCmin among the three tumor pathologies were determined by one-way ANOVA with multiple comparisons. The fmax and Dmin were correlated to the corresponding nCBV and ADC using partial correlation analysis, respectively. Using a mono-exponential fitting of diffusion signal decay, the mean ADCmin was significantly lower in PCNSL than in glioblastoma and metastasis. However, using a bi-exponential fitting, the mean Dmin did not significantly differ in the three groups. The mean fmax significantly increased in the glioblastomas (reader 1, 0.103; reader 2, 0.109) and the metastasis (reader 1, 0.105; reader 2, 0.107), compared to the primary CNS lymphomas (reader 1, 0.025; reader 2, 0.023) (P < .001 for each). The correlation between fmax and the corresponding nCBV was highest in glioblastoma group, and the correlation between Dmin and the corresponding ADC was highest in primary CNS lymphomas group. Unlike ADC value derived from a mono-exponential fitting of diffusion signal, diffusion-related parametric value derived from a bi-exponential fitting with separation of perfusion effect doesn't differ among glioblastoma, metastasis, and PCNSL.
Anatomically contoured plates for fixation of rib fractures.
Bottlang, Michael; Helzel, Inga; Long, William B; Madey, Steven
2010-03-01
: Intraoperative contouring of long bridging plates for stabilization of flail chest injuries is difficult and time consuming. This study implemented for the first time biometric parameters to derive anatomically contoured rib plates. These plates were tested on a range of cadaveric ribs to quantify plate fit and to extract a best-fit plating configuration. : Three left and three right rib plates were designed, which accounted for anatomic parameters required when conforming a plate to the rib surface. The length lP over which each plate could trace the rib surface was evaluated on 109 cadaveric ribs. For each rib level 3-9, the plate design with the highest lP value was extracted to determine a best-fit plating configuration. Furthermore, the characteristic twist of rib surfaces was measured on 49 ribs to determine the surface congruency of anatomic plates with a constant twist. : The tracing length lP of the best-fit plating configuration ranged from 12.5 cm to 14.7 cm for ribs 3-9. The corresponding range for standard plates was 7.1-13.7 cm. The average twist of ribs over 8-cm, 12-cm, and 16-cm segments was 8.3 degrees, 20.6 degrees, and 32.7 degrees, respectively. The constant twist of anatomic rib plates was not significantly different from the average rib twist. : A small set of anatomic rib plates can minimize the need for intraoperative plate contouring for fixation of ribs 3-9. Anatomic rib plates can therefore reduce the time and complexity of flail chest stabilization and facilitate spanning of flail segments with long plates.
Varga, S; Kytöviita, M-M
2014-03-01
In several gynodioecious species, intermediate sex between female and hermaphrodite has been reported, but few studies have investigated fitness parameters of this intermediate phenotype. Here, we examined the interactions between plant sex and arbuscular mycorrhizal (AM) fungal species affecting the reproductive output of Geranium sylvaticum, a sexually polymorphic plant species with frequent intermediate sexes between females and hermaphrodites, using a common garden experiment. Flowering phenology, AM colonisation levels and several plant vegetative and reproductive parameters, including seed and pollen production, were measured. Differences among sexes were detected in flowering, fruit set, pollen production and floral size. The two AM species used in the present work had different effects on plant fitness parameters. One AM species increased female fitness through increasing seed number and seed mass, while the other species reduced seed mass in all sexes investigated. AM fungi did not affect intermediate and hermaphrodite pollen content in anthers. The three sexes in G. sylvaticum did not differ in their reproductive output in terms of total seed production, but hermaphrodites had potentially larger fathering ability than intermediates due to higher anther number. The ultimate female function--seed production--did not differ among the sexes, but one of the AM fungi used potentially decreased host plant fitness. In addition, in the intermediate sex, mycorrhizal symbiosis functioned similarly in females as in hermaphrodites. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.
Busseron, Eric; Romuald, Camille; Coutrot, Frédéric
2010-09-03
High-yield, straightforward synthesis of two- and three-station [2]rotaxane molecular machines based on an anilinium, a triazolium, and a mono- or disubstituted pyridinium amide station is reported. In the case of the pH-sensitive two-station molecular machines, large-amplitude movement of the macrocycle occurred. However, the presence of an intermediate third station led, after deprotonation of the anilinium station, and depending on the substitution of the pyridinium amide, either to exclusive localization of the macrocycle around the triazolium station or to oscillatory shuttling of the macrocycle between the triazolium and monosubstituted pyridinium amide station. Variable-temperature (1)H NMR investigation of the oscillating system was performed in CD(2)Cl(2). The exchange between the two stations proved to be fast on the NMR timescale for all considered temperatures (298-193 K). Interestingly, decreasing the temperature displaced the equilibrium between the two translational isomers until a unique location of the macrocycle around the monosubstituted pyridinium amide station was reached. Thermodynamic constants K were evaluated at each temperature: the thermodynamic parameters DeltaH and DeltaS were extracted from a Van't Hoff plot, and provided the Gibbs energy DeltaG. Arrhenius and Eyring plots afforded kinetic parameters, namely, energies of activation E(a), enthalpies of activation DeltaH( not equal), and entropies of activation DeltaS( not equal). The DeltaG values deduced from kinetic parameters match very well with the DeltaG values determined from thermodynamic parameters. In addition, whereas signal coalescence of pyridinium hydrogen atoms located next to the amide bond was observed at 205 K in the oscillating rotaxane and at 203 K in the two-station rotaxane with a unique location of the macrocycle around the pyridinium amide, no separation of (1)H NMR signals of the considered hydrogen atoms was seen in the corresponding nonencapsulated thread. It is suggested that the macrocycle acts as a molecular brake for the rotation of the pyridinium-amide bond when it interacts by hydrogen bonding with both the amide NH and the pyridinium hydrogen atoms at the same time.
Piecewise compensation for the nonlinear error of fiber-optic gyroscope scale factor
NASA Astrophysics Data System (ADS)
Zhang, Yonggang; Wu, Xunfeng; Yuan, Shun; Wu, Lei
2013-08-01
Fiber-Optic Gyroscope (FOG) scale factor nonlinear error will result in errors in Strapdown Inertial Navigation System (SINS). In order to reduce nonlinear error of FOG scale factor in SINS, a compensation method is proposed in this paper based on curve piecewise fitting of FOG output. Firstly, reasons which can result in FOG scale factor error are introduced and the definition of nonlinear degree is provided. Then we introduce the method to divide the output range of FOG into several small pieces, and curve fitting is performed in each output range of FOG to obtain scale factor parameter. Different scale factor parameters of FOG are used in different pieces to improve FOG output precision. These parameters are identified by using three-axis turntable, and nonlinear error of FOG scale factor can be reduced. Finally, three-axis swing experiment of SINS verifies that the proposed method can reduce attitude output errors of SINS by compensating the nonlinear error of FOG scale factor and improve the precision of navigation. The results of experiments also demonstrate that the compensation scheme is easy to implement. It can effectively compensate the nonlinear error of FOG scale factor with slightly increased computation complexity. This method can be used in inertial technology based on FOG to improve precision.
Helgesson, P; Sjöstrand, H
2017-11-01
Fitting a parametrized function to data is important for many researchers and scientists. If the model is non-linear and/or defect, it is not trivial to do correctly and to include an adequate uncertainty analysis. This work presents how the Levenberg-Marquardt algorithm for non-linear generalized least squares fitting can be used with a prior distribution for the parameters and how it can be combined with Gaussian processes to treat model defects. An example, where three peaks in a histogram are to be distinguished, is carefully studied. In particular, the probability r 1 for a nuclear reaction to end up in one out of two overlapping peaks is studied. Synthetic data are used to investigate effects of linearizations and other assumptions. For perfect Gaussian peaks, it is seen that the estimated parameters are distributed close to the truth with good covariance estimates. This assumes that the method is applied correctly; for example, prior knowledge should be implemented using a prior distribution and not by assuming that some parameters are perfectly known (if they are not). It is also important to update the data covariance matrix using the fit if the uncertainties depend on the expected value of the data (e.g., for Poisson counting statistics or relative uncertainties). If a model defect is added to the peaks, such that their shape is unknown, a fit which assumes perfect Gaussian peaks becomes unable to reproduce the data, and the results for r 1 become biased. It is, however, seen that it is possible to treat the model defect with a Gaussian process with a covariance function tailored for the situation, with hyper-parameters determined by leave-one-out cross validation. The resulting estimates for r 1 are virtually unbiased, and the uncertainty estimates agree very well with the underlying uncertainty.
NASA Astrophysics Data System (ADS)
Helgesson, P.; Sjöstrand, H.
2017-11-01
Fitting a parametrized function to data is important for many researchers and scientists. If the model is non-linear and/or defect, it is not trivial to do correctly and to include an adequate uncertainty analysis. This work presents how the Levenberg-Marquardt algorithm for non-linear generalized least squares fitting can be used with a prior distribution for the parameters and how it can be combined with Gaussian processes to treat model defects. An example, where three peaks in a histogram are to be distinguished, is carefully studied. In particular, the probability r1 for a nuclear reaction to end up in one out of two overlapping peaks is studied. Synthetic data are used to investigate effects of linearizations and other assumptions. For perfect Gaussian peaks, it is seen that the estimated parameters are distributed close to the truth with good covariance estimates. This assumes that the method is applied correctly; for example, prior knowledge should be implemented using a prior distribution and not by assuming that some parameters are perfectly known (if they are not). It is also important to update the data covariance matrix using the fit if the uncertainties depend on the expected value of the data (e.g., for Poisson counting statistics or relative uncertainties). If a model defect is added to the peaks, such that their shape is unknown, a fit which assumes perfect Gaussian peaks becomes unable to reproduce the data, and the results for r1 become biased. It is, however, seen that it is possible to treat the model defect with a Gaussian process with a covariance function tailored for the situation, with hyper-parameters determined by leave-one-out cross validation. The resulting estimates for r1 are virtually unbiased, and the uncertainty estimates agree very well with the underlying uncertainty.
Kaur, Jaspreet; Nygren, Anders; Vigmond, Edward J
2014-01-01
Fitting parameter sets of non-linear equations in cardiac single cell ionic models to reproduce experimental behavior is a time consuming process. The standard procedure is to adjust maximum channel conductances in ionic models to reproduce action potentials (APs) recorded in isolated cells. However, vastly different sets of parameters can produce similar APs. Furthermore, even with an excellent AP match in case of single cell, tissue behaviour may be very different. We hypothesize that this uncertainty can be reduced by additionally fitting membrane resistance (Rm). To investigate the importance of Rm, we developed a genetic algorithm approach which incorporated Rm data calculated at a few points in the cycle, in addition to AP morphology. Performance was compared to a genetic algorithm using only AP morphology data. The optimal parameter sets and goodness of fit as computed by the different methods were compared. First, we fit an ionic model to itself, starting from a random parameter set. Next, we fit the AP of one ionic model to that of another. Finally, we fit an ionic model to experimentally recorded rabbit action potentials. Adding the extra objective (Rm, at a few voltages) to the AP fit, lead to much better convergence. Typically, a smaller MSE (mean square error, defined as the average of the squared error between the target AP and AP that is to be fitted) was achieved in one fifth of the number of generations compared to using only AP data. Importantly, the variability in fit parameters was also greatly reduced, with many parameters showing an order of magnitude decrease in variability. Adding Rm to the objective function improves the robustness of fitting, better preserving tissue level behavior, and should be incorporated.
2014-01-01
The single parameter hyperbolic model has been frequently used to describe value discounting as a function of time and to differentiate substance abusers and non-clinical participants with the model's parameter k. However, k says little about the mechanisms underlying the observed differences. The present study evaluates several alternative models with the purpose of identifying whether group differences stem from differences in subjective valuation, and/or time perceptions. Using three two-parameter models, plus secondary data analyses of 14 studies with 471 indifference point curves, results demonstrated that adding a valuation, or a time perception function led to better model fits. However, the gain in fit due to the flexibility granted by a second parameter did not always lead to a better understanding of the data patterns and corresponding psychological processes. The k parameter consistently indexed group and context (magnitude) differences; it is thus a mixed measure of person and task level effects. This was similar for a parameter meant to index payoff devaluation. A time perception parameter, on the other hand, fluctuated with contexts in a non-predicted fashion and the interpretation of its values was inconsistent with prior findings that supported enlarged perceived delays for substance abusers compared to controls. Overall, the results provide mixed support for hyperbolic models of intertemporal choice in terms of the psychological meaning afforded by their parameters. PMID:25390941
Chemical and quantum simulation of electron transfer through a polypeptide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ungar, L.W.; Voth, G.A.; Newton, M.D.
1999-08-26
Quantum rate theory, molecular dynamics simulations, and semiempirical electronic structure calculations are used to fully investigate electron transfer mediated by a solvated polypeptide for the first time. Using a stationary-phase approximation, the nonadiabatic electron-transfer rate constant is calculated from the nuclear free energies and the electronic coupling between the initial and final states. The former are obtained from quantum path integral and classical molecular dynamics simulations; the latter are calculated using semiempirical electronic structure calculations and the generalized Mulliken-Hush method. Importantly, no parameters are fit to kinetic data. The simulated system consists of a solvated four-proline polypeptide with a tris(bipyridine)rutheniummore » donor group and an oxypentamminecobalt acceptor group. From the simulation data entropy and energy contributions to the free energies are distinguished. Quantum suppression of the barrier, including important solvent contributions, is demonstrated. Although free energy profiles along the reaction coordinate are nearly parabolic, pronounced departures from harmonic behavior are found for the separate energy and entropy functions. Harmonic models of the system are compared to simulation results in order to quantify anharmonic effects. Electronic structure calculations show that electronic coupling elements vary considerably with system conformation, even when the effective donor-acceptor separation remains roughly constant. The calculations indicate that electron transfer in a significant range of conformations linking the polypeptide to the acceptor may contribute to the overall rate constant. After correction for limitations of the solvent model, the simulations and calculations agree well with the experimental activation energy and Arrhenius prefactor.« less
Modelling the influence of time and temperature on the respiration rate of fresh oyster mushrooms.
Azevedo, Sílvia; Cunha, Luís M; Fonseca, Susana C
2015-12-01
The respiration rate of mushrooms is an important indicator of postharvest senescence. Storage temperature plays a major role in their rate of respiration and, therefore, in their postharvest life. In this context, reliable predictions of respiration rates are critical for the development of modified atmosphere packaging that ultimately will maximise the quality of the product to be presented to consumers. This work was undertaken to study the influence of storage time and temperature on the respiration rate of oyster mushrooms. For that purpose, oyster mushrooms were stored at constant temperatures of 2, 6, 10, 14 and 18 ℃ under ambient atmosphere. Respiration rate data were measured with 8-h intervals up to 240 h. A decrease of respiration rate was found after cutting of the carpophores. Therefore, time effect on respiration rate was modelled using a first-order decay model. The results also show the positive influence of temperature on mushroom respiration rate. The model explaining the effect of time on oyster mushroom's respiration rate included the temperature dependence according to the Arrhenius equation, and the inclusion of a parameter describing the decrease of the respiration rate, from the initial time until equilibrium. These yielded an overall model that fitted well to the experimental data. Moreover, results show that the overall model is useful to predict respiration rate of oyster mushrooms at different temperatures and times, using the initial respiration rate of mushrooms. Furthermore, predictive modelling can be relevant for the choice of an appropriate packaging system for fresh oyster mushrooms. © The Author(s) 2014.