Sample records for fitting euler pole

  1. The Magellan seamount trail: implications for Cretaceous hotspot volcanism and absolute Pacific plate motion

    NASA Astrophysics Data System (ADS)

    Koppers, Anthony A. P.; Staudigel, Hubert; Wijbrans, Jan R.; Pringle, Malcolm S.

    1998-11-01

    The Magellan Seamount Trail (MST) delineates a northwest trending chain of four Cretaceous guyots in the West Pacific Seamount Province (WPSP). Seamount morphology, 40Ar/ 39Ar geochronology and Sr-Nd-Pb geochemistry of the MST provides evidence for a hotspot origin between the Samoa, Rarotonga and Society hotspots of the South Pacific Isotopic and Thermal Anomaly (SOPITA). The MST yields an excellent linear age progression of 47.6±1.6 mm/yr ( r2=1.000; MSWD = 0.23; 1 σ SE) including Vlinder guyot (95.1±0.5 Ma, n=5; 2 σ SD), Pako guyot (91.3±0.3 Ma, n=3) and Ioah guyot (87.1±0.3 Ma, n=2). The MST also exhibits a small range in Sr-Nd-Pb isotopic compositions indicating enriched mantle sources with an affinity of EMI. Nevertheless, three volcanic events are found out of sequence with linear MST hotspot volcanism: (1) an independent volcanic pedestal was formed 4-7 Myr before shield-volcanism started at Vlinder guyot, (2) a post-erosional volcanic cone was formed at least 20-30 Myr after drowning of Vlinder guyot, and (3) Ita Mai Tai guyot (118.1±0.5 Ma, n=3) was formed 34-36 Myr before the MST hotspot arrived at the predicted location of this guyot. By identifying and ruling out discordant volcanic events, we can use the age progression in MST to test the fixity of its hotspot. When presuming the fixed hotspot hypothesis, the local age progressions of the MST (47.6±1.6 mm/yr) and the copolar Musicians seamount trail (55.8±6.4 mm/yr) are not compatible with their 100-80 Ma Euler pole. We investigate two options: (1) acceptance of a `forced' Euler pole obeying the hotspot hypothesis by using both the age progressions and the azimuths of the studied seamount trails, or (2) acceptance of a `best-fit' Euler pole by using the azimuths of the studied seamount trail exclusively. In the first option, the angular speed of the Pacific plate during the 100-80 Ma stage pole is calculated at 0.502±0.017°/Myr. In the second option, the `best-fit' Euler pole is found approximately 35° different from the `forced' Euler pole. We argue that the observed age progressions can only be reconciled with the `best-fit' pole when allowing for the relative movement of the MST and Musicians mantle plumes with respect to one another. The calculated maximum velocity component parallel to the line of age progression could then be as much as 23 mm/yr for the mantle plumes — when assuming one fixed hotspot in this alternate model.

  2. Paleomagnetic Euler Poles and the Apparent Polar Wander and Absolute Motion of North America Since the Carboniferous

    NASA Astrophysics Data System (ADS)

    Gordon, Richard G.; Cox, Allan; O'Hare, Scott

    1984-10-01

    The apparent polar wander path for a plate is determined from paleomagnetic data by plotting a time sequence of paleomagnetic poles, each representing the location of the earth's spin axis as seen from the plate. Apparent polar wander paths consist of long, gently curved segments termed tracks linked by short segments with sharp curvature termed cusps. The tracks correspond to time intervals when the direction of plate motion was constant, and the cusps correspond to time intervals when the direction of plate motion was changing. Apparent polar wander tracks, like hot spot tracks, tend to lie along small circles. The center of a circle is called a hot spot Euler pole in the case of hot spot tracks and a paleomagnetic Euler pole in the case of paleomagnetic apparent polar wander paths. Both types of tracks mark the motion of a plate with respect to a point, a rising mantle plume in the case of hot spot tracks and the earth's paleomagnetic axis in the case of apparent polar wander paths. Unlike approaches uced in previous studies, paleomagnetic Euler pole analysis yields all three components of motion—including the east-west motion—of a plate with respect to the paleomagnetic axis. A new method for analyzing paleomagnetic poles along a track by using a maximum likelihood criterion gives the best fit paleomagnetic Euler pole and an ellipsoid of 95% confidence about the paleomagnetic Euler pole. In analyzing synthetic and real data, we found that the ellipsoids are elongate, the long axes being aligned with a great circle drawn from the paleomagnetic Euler pole to the center of the apparent polar wander track. This elongation is caused by the azimuths of circular tracks being better defined than their radii of curvature. A Jurassic-Cretaceous paleomagnetic Euler pole for North America was determined from 13 paleomagnetic poles. This track begins with the Wingate and Kayenta formations (about 200 Ma) and ends with the Niobrara Formation (about 87 Ma). Morgan's hot spot Euler pole for 200-90 Ma lies only 15° outside the 95% confidence ellipsoid of the paleomagnetic Euler pole. The good but not perfect agreement reflects displacement between the hot spot and paleomagnetic reference frames at an average rate that is smaller by an order of magnitude than the rate at which the faster plates are moving. The angular velocity of North America about the Jurassic-Cretaceous paleomagnetic Euler pole was determined by plotting the angular positions of paleomagnetic poles along the track as a function of age. For the Cretaceous the angular velocity was too small to measure. During the Jurassic the angular velocity was high, corresponding to a root-mean-square velocity of 70 km/m.y. for the North American plate. A short time interval of even more rapid movement during the Middle and Late Jurassic, possibly corresponding to the beginning of rapid displacement between North America and Africa, is suggested by the data. The direction of absolute motion of North America during the Jurassic was toward the northwest. A Carboniferous-Permian-Triassic paleomagnetic Euler pole was determined from 26 paleomagnetic poles. The progression of poles along this track is consistent with known ages and stratigraphy, except for some systematic differences between poles from Triassic rocks on the Colorado Plateau and poles from Triassic rocks off the Colorado Plateau. These differences could be due to a small clockwise rotation of the Colorado Plateau with respect to cratonal North America, or to miscorrelations between Triassic rocks on the Colorado Plateau and off the Colorado Plateau, or to large lag times between the deposition and magnetization of some rock units, or to some combination of these possibilities. Despite these ambiguities in interpreting paleomagnetic data from Triassic rocks, the general pattern of apparent polar wander and plate motion during the Carboniferous through Triassic is clear: The root-mean-square velocity of North America was slow (about 20 km/m.y.) during the Carboniferous, probably slow (about 20 km/m.y.) during the Permian, but rapid (60-100 km/m.y.) during the Triassic. Paleomagnetic Euler pole analysis establishes that the present slow (less than 30 km/m.y.) velocity of large continental plates like North America is not an intrinsic property of the plates. Occasionally these plates have, for intervals of 50 ± 20 m.y., moved as rapidly as the oceanic plates are moving today. In our interpretation, during times of rapid motion the continents were attached along a passive margin to oceanic lithosphere that was being subducted at some distance from the continent. Rapid motion stopped when the oceanic lithosphere had been consumed by subduction. If North America, Greenland, and Eurasia were joined as a single land mass during the Jurassic, then a likely location for the subducting oceanic plate attached to this landmass is along the southern margin of the cratonal core of Asia with the oceanic plate extending into Tethys. At the cusp between the Carboniferous-Permian-Triassic track and the Jurassic-Cretaceous track, the trend of the path changes by 160°. The western point of the cusp, which is delineated by paleomagnetic poles from the Chinle, Wingate, and Kayenta formations, is 13° farther west in our analysis than it is in commonly accepted apparent polar wander paths for North America. An implication for terrane analysis is that northward displacements found by using our Late Triassic and Early Jurassic poles are up to 2000 km smaller than are those found by using previously published Late Triassic and Early Jurassic cratonal poles.

  3. Regularized estimation of Euler pole parameters

    NASA Astrophysics Data System (ADS)

    Aktuğ, Bahadir; Yildirim, Ömer

    2013-07-01

    Euler vectors provide a unified framework to quantify the relative or absolute motions of tectonic plates through various geodetic and geophysical observations. With the advent of space geodesy, Euler parameters of several relatively small plates have been determined through the velocities derived from the space geodesy observations. However, the available data are usually insufficient in number and quality to estimate both the Euler vector components and the Euler pole parameters reliably. Since Euler vectors are defined globally in an Earth-centered Cartesian frame, estimation with the limited geographic coverage of the local/regional geodetic networks usually results in highly correlated vector components. In the case of estimating the Euler pole parameters directly, the situation is even worse, and the position of the Euler pole is nearly collinear with the magnitude of the rotation rate. In this study, a new method, which consists of an analytical derivation of the covariance matrix of the Euler vector in an ideal network configuration, is introduced and a regularized estimation method specifically tailored for estimating the Euler vector is presented. The results show that the proposed method outperforms the least squares estimation in terms of the mean squared error.

  4. Impact of Glacial Isostatic Adjustment on North America Plate Specific Terrestrial Reference Frame

    NASA Astrophysics Data System (ADS)

    Herring, Thomas; Melbourne, Tim; Murray, Mark; Floyd, Mike; Szeliga, Walter; King, Robert; Phillips, David; Puskas, Christine

    2017-04-01

    We examine the impact of incorporating glacial isostatic adjustment (GIA) models in determining the Euler poles for plate specific terrestrial reference frames. We will specifically examine the impact of GIA models on the realization of a North America Reference frame. We use a combination of the velocity fields determined by the Geodesy Advancing Geosciences and EarthScope (GAGE) Facility which analyzes GPS data from the Plate Boundary Observatory (PBO) and other geodetic quality GPS sites in North America, and from the ITRF2014 re-analysis. Initial analysis of the GAGE velocity field shows reduced root-mean-square (RMS) scatter of velocity estimate residuals when the North America Euler pole is estimated including the ICE-6G GIA mode. The reduction in the north-south direction is from 0.69 mm/yr to 0.52 mm/yr, in the east-west direction from 0.34 mm/yr to 0.30 mm/yr and in height from 0.93 mm/yr to 0.72 mm/yr. The reduction in the height RMS is not surprising since the contemporary geodetic height velocity estimates are used in the developing the ICE-6G model. Contemporary horizontal motions are not used the GIA model development, and the reduction in horizontal RMS provides a partial validation of the model. There is no reduction in the horizontal velocity residual when the ICE-5G model is used. Although removing the ICE-6G model before fitting an Euler pole for the North American plate reduces the RMS of the residuals, the pattern of residuals is still systematic suggesting possibly that a spherically symmetric viscosity model might not be adequate for accurate modeling of the horizontal motions associated with GIA in North America. This presentation in focus on the prospects and impacts of incorporating GIA models in plate-specific Euler poles with emphasis on North America.

  5. Rotations in the actively colliding Finisterre Arc Terrane: paleomagnetic constraints on Plio-Pleistocene evolution of the South Bismarck microplate, northeastern Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Weiler, P. D.; Coe, R. S.

    2000-01-01

    We report paleomagnetic results from 12 Plio-Pleistocene localities in the actively colliding Finisterre Arc Terrane of northeastern Papua New Guinea (PNG). Calcareous, hemipelagic cover rocks possess a stable, syn-collisional remagnetization indicating a clockwise rotation of the colliding terrane through about 40° in post-Miocene time. A decrease in paleomagnetic declination anomalies as a function of along-strike distance in the Finisterre Arc Terrane, analyzed by our preferred model of a linear remagnetization and a migrating Euler pole, suggests an average rotation rate of 8° Ma -1, in good agreement with the instantaneous rate from global positioning system geodesy. Thus, we propose that this rotation results from a coherent, rigid-body rotation of the Finisterre Terrane rather than from sequential docking of independently colliding blocks of the terrane. Moreover, we conclude that these paleomagnetic declinations result mainly from South Bismarck Plate motion, and not decoupled rotation of the crustal terrane independent of the underlying lithosphere. We examine models of a syn-collisional remagnetization with both fixed and migrating Euler poles of South Bismarck/Australia plate relative motion, and suggest that the Euler pole describing South Bismarck Plate motion has migrated southwestward to its present location on the collision suture in response to the propagating collision. This plate kinematic model agrees with the variability in depth of the seismogenic slab beneath the collision zone. Our best-fit model of pole migration describes South Bismarck/Australia relative motion producing a highly oblique collision in its early stages, with the Finisterre Arc Terrane converging along a left-lateral Ramu-Markham suture, gradually changing to the nearly orthogonal convergence observed today.

  6. Error Propagation in the four terrestrial reference frames of the 2022 Modernized National Spatial Reference System

    NASA Astrophysics Data System (ADS)

    Roman, D. R.; Smith, D. A.

    2017-12-01

    In 2022, the National Geodetic Survey will replace all three NAD 83 reference frames with four new terrestrial reference frames. Each frame will be named after a tectonic plate (North American, Pacific, Caribbean and Mariana) and each will be related to the IGS frame through three Euler Pole parameters (EPPs). This talk will focus on three main areas of error propagation when defining coordinates in these four frames. Those areas are (1) use of the small angle approximation to relate true rotation about an Euler Pole to small rotations about three Cartesian axes (2) The current state of the art in determining the Euler Poles of these four plates and (3) the combination of both IGS Cartesian coordinate uncertainties and EPP uncertainties into coordinate uncertainties in the four new frames. Discussion will also include recent efforts at improving the Euler Poles for these frames and expected dates when errors in the EPPs will cause an unacceptable level of uncertainty in the four new terrestrial reference frames.

  7. A harbinger of plate tectonics: a commentary on Bullard, Everett and Smith (1965) 'The fit of the continents around the Atlantic'.

    PubMed

    Dewey, John F

    2015-04-13

    In the 1960s, geology was transformed by the paradigm of plate tectonics. The 1965 paper of Bullard, Everett and Smith was a linking transition between the theories of continental drift and plate tectonics. They showed, conclusively, that the continents around the Atlantic were once contiguous and that the Atlantic Ocean had grown at rates of a few centimetres per year since the Early Jurassic, about 160 Ma. They achieved fits of the continental margins at the 500 fathom line (approx. 900 m), not the shorelines, by minimizing misfits between conjugate margins and finding axes, poles and angles of rotation, using Euler's theorem, that defined the unique single finite difference rotation that carried congruent continents from contiguity to their present positions, recognizing that the real motion may have been more complex around a number of finite motion poles. Critically, they were concerned only with kinematic reality and were not restricted by considerations of the mechanism by which continents split and oceans grow. Many of the defining features of plate tectonics were explicit or implicit in their reconstructions, such as the torsional rigidity of continents, Euler's theorem, closure of the Tethyan ocean(s), major continental margin shear zones, the rapid rotation of small continental blocks (Iberia) around nearby poles, the consequent opening of small wedge-shaped oceans (Bay of Biscay), and misfit overlaps (deltas and volcanic piles) and underlaps (stretched continental edges). This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society.

  8. A harbinger of plate tectonics: a commentary on Bullard, Everett and Smith (1965) ‘The fit of the continents around the Atlantic’

    PubMed Central

    Dewey, John F.

    2015-01-01

    In the 1960s, geology was transformed by the paradigm of plate tectonics. The 1965 paper of Bullard, Everett and Smith was a linking transition between the theories of continental drift and plate tectonics. They showed, conclusively, that the continents around the Atlantic were once contiguous and that the Atlantic Ocean had grown at rates of a few centimetres per year since the Early Jurassic, about 160 Ma. They achieved fits of the continental margins at the 500 fathom line (approx. 900 m), not the shorelines, by minimizing misfits between conjugate margins and finding axes, poles and angles of rotation, using Euler's theorem, that defined the unique single finite difference rotation that carried congruent continents from contiguity to their present positions, recognizing that the real motion may have been more complex around a number of finite motion poles. Critically, they were concerned only with kinematic reality and were not restricted by considerations of the mechanism by which continents split and oceans grow. Many of the defining features of plate tectonics were explicit or implicit in their reconstructions, such as the torsional rigidity of continents, Euler's theorem, closure of the Tethyan ocean(s), major continental margin shear zones, the rapid rotation of small continental blocks (Iberia) around nearby poles, the consequent opening of small wedge-shaped oceans (Bay of Biscay), and misfit overlaps (deltas and volcanic piles) and underlaps (stretched continental edges). This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society. PMID:25750142

  9. A test of present-day plate geometries for northeast Asia and Japan

    NASA Technical Reports Server (NTRS)

    Demets, Charles

    1992-01-01

    Alternative geometries for the present-day configuration of plate boundaries in northeast Asia and Japan are tested using NUVEL-1 and 256 horizontal earthquake slip vectors from the Japan and northern Kuril trenches. Statistical analysis of the slip vectors is used to determine whether the North American, Eurasian, or Okhotsk plate overlies the trench. Along the northern Kuril trench, slip vectors are well-fit by the NUVEL-1 Pacific-North America Euler pole, but are poorly fit by the Pacific-Eurasia Euler pole. Results for the Japan trench are less conclusive, but suggest that much of Honshu and Hokkaido are also part of the North American plate. The simplest geometry consistent with the trench slip vectors is a geometry in which the North American plate extends south to 41 deg N, and possibly includes northern Honshu and southern Hokkaido. Although these results imply that the diffuse seismicity that connects the Lena River delta to Sakhalin Island and the eastern Sea of Japan records motion between Eurasia and North America, onshore geologic and seismic data define an additional belt of seismicity in Siberia that cannot be explained with this geometry. Assuming that these two seismic belts constitute evidence for an Okhotsk block, two published kinematic models for motion of the Okhotsk block are tested. The first model, which predicts motion of up to 15 mm/yr relative to North America, is rejected because Kuril and Japan trench slip vectors are fit more poorly than for the simpler geometry described above. The second model gives a good fit to the trench slip vectors, but only if Okhotsk-North America motion is slower than 5 mm/yr.

  10. Determination of regional Euler pole parameters for Eastern Austria

    NASA Astrophysics Data System (ADS)

    Umnig, Elke; Weber, Robert; Schartner, Matthias; Brueckl, Ewald

    2017-04-01

    The horizontal motion of lithospheric plates can be described as rotations around a rotation axes through the Earth's center. The two possible points where this axes intersects the surface of the Earth are called Euler poles. The rotation is expressed by the Euler parameters in terms of angular velocities together with the latitude and longitude of the Euler pole. Euler parameters were calculated from GPS data for a study area in Eastern Austria. The observation network is located along the Mur-Mürz Valley and the Vienna Basin. This zone is part of the Vienna Transfer Fault, which is the major fault system between the Eastern Alps and the Carpathians. The project ALPAACT (seismological and geodetic monitoring of ALpine-PAnnonian ACtive Tectonics) investigated intra plate tectonic movements within the Austrian part in order to estimate the seismic hazard. Precise site coordinate time series established from processing 5 years of GPS observations are available for the regional network spanning the years from 2010.0 to 2015.0. Station velocities with respect to the global reference frame ITRF2008 have been computed for 23 sites. The common Euler vector was estimated on base of a subset of reliable site velocities, for stations directly located within the area of interest. In a further step a geokinematic interpretation shall be carried out. Therefore site motions with respect to the Eurasian Plate are requested. To obtain this motion field different variants are conceivable. In a simple approach the mean ITRF2008 velocity of IGS site GRAZ can be adopted as Eurasian rotational velocity. An improved alternative is to calculate site-specific velocity differences between the Euler rotation and the individual site velocities. In this poster presentation the Euler parameters, the residual motion field as well as first geokinematic interpretation results are presented.

  11. An explicit plate kinematic model for the orogeny in the southern Uralides

    NASA Astrophysics Data System (ADS)

    Görz, Ines; Hielscher, Peggy

    2010-10-01

    The Palaeozoic Uralides formed in a three plate constellation between Europe, Siberia and Kazakhstan-Tarim. Starting from the first plate tectonic concepts, it was controversially discussed, whether the Uralide orogeny was the result of a relative plate motion between Europe and Siberia or between Europe and Kazakhstan. In this study, we use a new approach to address this problem. We perform a structural analysis on the sphere, reconstruct the positions of the Euler poles of the relative plate rotation Siberia-Europe and Tarim-Europe and describe Uralide structures by their relation to small circles about the two Euler poles. Using this method, changes in the strike of tectonic elements that are caused by the spherical geometry of the Earth's surface are eliminated and structures that are compatible with one of the relative plate motions can be identified. We show that only two Euler poles controlled the Palaeozoic tectonic evolution in the whole West Siberian region, but that they acted diachronously in different regions. We provide an explicit model describing the tectonism in West Siberia by an Euler pole, a sense of rotation and an approximate rotation angle. In the southern Uralides, Devonian structures resulted from a plate rotation of Siberia with respect to Europe, while the Permian structures were caused by a relative plate motion of Kazakhstan-Tarim with respect to Europe. The tectonic pause in the Carboniferous period correlates with a reorganization of the plate kinematics.

  12. Cretaceous to present kinematics of the Indian, African and Seychelles plates

    NASA Astrophysics Data System (ADS)

    Eagles, Graeme; Hoang, Ha H.

    2014-01-01

    An iterative inverse model of seafloor spreading data from the Mascarene and Madagascar basins and the flanks of the Carlsberg Ridge describes a continuous history of Indian-African Plate divergence since 84 Ma. Visual-fit modelling of conjugate magnetic anomaly data from near the Seychelles platform and Laxmi Ridge documents rapid rotation of a Seychelles Plate about a nearby Euler pole in Palaeocene times. As the Euler pole migrated during this rotation, the Amirante Trench on the western side of the plate accommodated first convergence and later divergence with the African Plate. The unusual present-day morphology of the Amirante Trench and neighbouring Amirante Banks can be related to crustal thickening by thrusting and folding during the convergent phase and the subsequent development of a spreading centre with a median valley during the divergent phase. The model fits FZ trends in the north Arabian and east Somali basins, suggesting that they formed in India-Africa Plate divergence. Seafloor fabric in and between the basins shows that they initially hosted a segmented spreading ridge that accommodated slow plate divergence until 71-69 Ma, and that upon arrival of the Deccan-Réunion plume and an increase to faster plate divergence rates in the period 69-65 Ma, segments of the ridge lengthened and propagated. Ridge propagation into the Indian continental margin led first to the formation of the Laxmi Basin, which accompanied extensive volcanism onshore at the Deccan Traps and offshore at the Saurashtra High and Somnath Ridge. A second propagation episode initiated the ancestral Carlsberg Ridge at which Seychelles-India and India-Africa Plate motions were accommodated. With the completion of this propagation, the plate boundaries in the Mascarene Basin were abandoned. Seafloor spreading between this time and the present has been accommodated solely at the Carlsberg Ridge.

  13. Crustal Strike-Slip Faulting along Small Circle Paths in the Northwestern United States

    NASA Astrophysics Data System (ADS)

    Brocher, T. M.; Wells, R. E.; Lamb, A. P.; Weaver, C. S.

    2015-12-01

    Late Cenozoic and Quaternary faults, seismicity lineaments, and focal mechanisms provide evidence that clockwise rotation of Washington and Oregon is accommodated by north-directed thrusting and strike-slip deformation in the Washington segment of the Cascadia forearc. Curvilinear NW- to NNW-trending high-angle strike-slip faults and seismicity lineaments define small circles around an Euler pole (117.7°W, 47.9°N) of rotation relative to North America that approximates GPS-derived poles for the rotation of eastern Washington and the Snake River Plain. Although the lengths of strike-slip faults that follow small circle paths suggest maximum earthquake magnitudes of M6.6 to M7.2, their slip rates calculated from the Euler pole are low (0.3 to 0.5 mm/yr). Many normal faults in the Lewis and Clark Zone in Montana, the Centennial fault system north of the Snake River Plain, west of the Wasatch Front, in the northern Basin and Range, and locally east of the Oregon Cascade arc are radial to this pole of rotation, suggesting that these normal faults help accommodate this crustal rotation. Regions undergoing contraction in western Washington and northwestern Oregon are separated from those to the east undergoing extension by lines radial to the Euler pole. In our regional kinematic model, dextral faults along small circles connect SW-directed crustal extension in the Intermountain Seismic Belt and E-directed extension in the Cascade arc south of Mount Hood to N-directed contraction in the Olympic Peninsula, Puget Lowland, and the Yakima Fold and Thrust Belt. The lack of Quaternary faulting and seismicity in the Oregon segment of the forearc is consistent with its clockwise rotation as a rigid block. Potential drivers of the crustal rotation include westward slab rollback and the Yellowstone geoid high, and the overall velocity field may integrate the response of rotating blocks and distributed deformation between them.

  14. True polar wander on convecting planets

    NASA Astrophysics Data System (ADS)

    Rose, Ian Robert

    Rotating planets are most stable when spinning around their maximum moment of inertia, and will tend to reorient themselves to achieve this configuration. Geological activity redistributes mass in the planet, making the moment of inertia a function of time. As the moment of inertia of the planet changes, the spin axis shifts with respect to a mantle reference frame in order to maintain rotational stability. This process is known as true polar wander (TPW). Of the processes that contribute to a planet's moment of inertia, convection in the mantle generates the largest and longest-period fluctuations, with corresponding shifts in the spin axis. True polar wander has been hypothesized to explain several physiographic features on planets and moons in our solar system. On Earth, TPW events have been invoked in some interpretations of paleomagnetic data. Large swings in the spin axis could have enormous ramifications for paleogeography, paleoclimate, and the history of life. Although the existence of TPW is well-verified, it is not known whether its rate and magnitude have been large enough for it to be an important process in Earth history. If true polar wander has been sluggish compared to plate tectonic speeds, then it would be difficult to detect and its consequences would be minor. I investigate rates of true polar wander on convecting planets using scaling, numerics, and inverse problems. I perform a scaling analysis of TPW on a convecting planet, identifying a minimal set of nondimensional parameters which describe the problem. The primary nondimensional numbers that control the rate of TPW are the ratio of centrifugal to gravitational forces m and the Rayleigh number Ra. The parameter m sets the size of a planet's rotational bulge, which determines the amount of work that needs to be done to move the spin axis. The Rayleigh number controls the size, distribution, and rate of change of moment of inertia anomalies, all of which affect the rate of TPW. I find that the characteristic size of moment of inertia anomalies decreases with higher Ra, but that the characteristic response time for TPW also decreases. These two effects approximately cancel. However, the orientation of the principal axes of the moment of inertia becomes less stable to perturbations at high Ra, thereby increasing the rate of TPW. Overall, I find that a more vigorously convecting planet is more likely to experience large TPW events. If early Earth had more vigorous convection, it may have experienced more TPW than present-day Earth. Flow induced by density anomalies in the mantle deflects free surfaces at the surface and the CMB, and the mass anomalies due to these deflections contribute to the moment of inertia. A full accounting of the moment of inertia anomalies must include these surface effects. Numerical models of mantle convection with a free surface have suffered from numerical sloshing instabilities. I analyze the sloshing instability by constructing a generalized eigenvalue problem for the relaxation time spectrum. The minimum relaxation time of the spectrum sets the maximum stable timestep. This analysis gives the first quantitative explanation for why existing techniques for stabilizing geodynamic simulations with a free surface work. I also use this perspective to construct an alternative stabilization scheme based on nonstandard finite differences. This scheme has a single parameter, given by an estimate of the minimum relaxation time, and allows for still larger timesteps. Finally, I develop a new method for analyzing apparent polar wander (APW) paths described by sequences of paleomagnetic poles. Existing techniques, such as spline fits and running means, do not fully account for the uncertainties in the position and timing of paleomagnetic pole paths. Furthermore, they impose regularization on the solution, and the resulting uncertainties are difficult to interpret. Our technique is an extension of paleomagnetic Euler pole (PEP) analysis. I invert for finite Euler pole rotations that can reproduce APW paths within a Bayesian Markov chain Monte Carlo (MCMC) framework. This allows us to naturally include uncertainties in age and position, and provides error estimates on the resulting model parameters. Regularization can be accomplished via physically motivated choices for the parameters' prior probability distributions. I applied the Bayesian PEP technique to the Mesoproterozoic Laurentian APW track, which primarily comes from the Keweenawan Midcontinent Rift. I fit the track with one and two Euler rotations. Both inversions did a good job of reproducing the Keweenawan track, though the two Euler pole inversion has a closer fit. I find that the implied Laurentian plate speeds exceeds 22.9 cm/yr at the 95% confidence level. These speeds are significantly faster than Cenozoic plate speeds, and could be explained by either faster plate speeds in the Proterozoic or a TPW event. (Abstract shortened by ProQuest.).

  15. Pole of rotating analysis of present-day Juan de Fuca plate motion

    NASA Technical Reports Server (NTRS)

    Nishimura, C.; Wilson, D. S.; Hey, R. N.

    1984-01-01

    Convergence rates between the Juan de Fuca and North American plates are calculated by means of their relative, present-day pole of rotation. A method of calculating the propagation of errors in addition to the instantaneous poles of rotation is also formulated and applied to determine the Euler pole for Pacific-Juan de Fuca. This pole is vectorially added to previously published poles for North America-Pacific and 'hot spot'-Pacific to obtain North America-Juan de Fuca and 'hot spot'-Juan de Fuca, respectively. The errors associated with these resultant poles are determined by propagating the errors of the two summed angular velocity vectors. Under the assumption that hot spots are fixed with respect to a mantle reference frame, the average absolute velocity of the Juan de Puca plate is computed at approximately 15 mm/yr, thereby making it the slowest-moving of the oceanic plates.

  16. Tectonics of the Nazca-Antarctic plate boundary

    NASA Technical Reports Server (NTRS)

    Anderson-Fontana, Sandra; Larson, Roger L.; Engeln, Joseph F.; Lundgren, Paul; Stein, Seth

    1987-01-01

    A new bathymetric chart of part of the Chile transform system is constructed, based mainly on an R/V Endeavor survey from 100 deg W to its intersection with the East Ridge of the Juan Fernandez microplate. A generally continuous lineated trend can be followed through the entire region, with the transform valley being relatively narrow and well-defined from 109 deg W to approximately 104 deg 30 min W. The fracture zone then widens to the east, with at least two probable en echelon offsets to the south at 104 deg and 102 deg W. Six new strike-slip mechanisms along the Chile Transform and one normal fault mechanism near the northern end of the Chile Rise, inverted together with other plate-motion data from the eastern portion of the boundary, produce a new best-fit Euler pole for the Nazca-Antarctic plate pair, providing tighter constraints on the relative plate motions.

  17. Ancient plate kinematics derived from the deformation pattern of continental crust: Paleo- and Neo-Tethys opening coeval with prolonged Gondwana-Laurussia convergence

    NASA Astrophysics Data System (ADS)

    Kroner, Uwe; Roscher, Marco; Romer, Rolf L.

    2016-06-01

    The formation and destruction of supercontinents requires prolonged convergent tectonics between particular plates, followed by intra-continental extension during subsequent breakup stages. A specific feature of the Late Paleozoic supercontinent Pangea is the prolonged and diachronous formation of the collisional belts of the Rheic suture zone coeval with recurrent continental breakup and subsequent formation of the mid-ocean ridge systems of the Paleo- and Neo-Tethys oceans at the Devonian and Permian margins of the Gondwana plate, respectively. To decide whether these processes are causally related or not, it is necessary to accurately reconstruct the plate motion of Gondwana relative to Laurussia. Here we propose that the strain pattern preserved in the continental crust can be used for the reconstruction of ancient plate kinematics. We present Euler pole locations for the three fundamental stages of the Late Paleozoic assembly of Pangea and closure of the Rheic Ocean: (I) Early Devonian (ca. 400 Ma) collisional tectonics affected Gondwana at the Armorican Spur north of western Africa and at the promontory of the South China block/Australia of eastern Gondwana, resulting in the Variscan and the Qinling orogenies, respectively. The Euler pole of the rotational axis between Gondwana and Laurussia is positioned east of Gondwana close to Australia. (II) Continued subduction of the western Rheic Ocean initiates the clockwise rotation of Gondwana that is responsible for the separation of the South China block from Gondwana and the opening of Paleo-Tethys during the Late Devonian. The position of the rotational axis north of Africa reveals a shift of the Euler pole to the west. (III) The terminal closure of the Rheic Ocean resulted in the final tectonics of the Alleghanides, the Mauritanides and the Ouachita-Sonora-Marathon belt, occurred after the cessation of the Variscan orogeny in Central Europe, and is coeval with the formation of the Central European Extensional Province and the opening of Neo-Tethys at ca. 300 Ma. The Euler pole for the final closure of the Rheic Ocean is positioned near Oslo (Laurussia). Thus, the concomitant formation of convergent and divergent plate boundaries during the assembly of Pangea is due to the relocation of the particular rotational axis. From a geodynamic point of view, coupled collisional (western Pangea) and extensional tectonics (eastern Pangea) due to plate tectonic reorganization is fully explained by slab pull and ridge push forces.

  18. Defining Geodetic Reference Frame using Matlab®: PlatEMotion 2.0

    NASA Astrophysics Data System (ADS)

    Cannavò, Flavio; Palano, Mimmo

    2016-03-01

    We describe the main features of the developed software tool, namely PlatE-Motion 2.0 (PEM2), which allows inferring the Euler pole parameters by inverting the observed velocities at a set of sites located on a rigid block (inverse problem). PEM2 allows also calculating the expected velocity value for any point located on the Earth providing an Euler pole (direct problem). PEM2 is the updated version of a previous software tool initially developed for easy-to-use file exchange with the GAMIT/GLOBK software package. The software tool is developed in Matlab® framework and, as the previous version, includes a set of MATLAB functions (m-files), GUIs (fig-files), map data files (mat-files) and user's manual as well as some example input files. New changes in PEM2 include (1) some bugs fixed, (2) improvements in the code, (3) improvements in statistical analysis, (4) new input/output file formats. In addition, PEM2 can be now run under the majority of operating systems. The tool is open source and freely available for the scientific community.

  19. Photogeological analysis of Europan tectonic features

    NASA Technical Reports Server (NTRS)

    Tufts, B. R.

    1993-01-01

    Preliminary photogeological analyses of the Pelorus Linea and Sidon Flexus regions of Europa were conducted to explore the proposal by Schenk that lateral motion of crustal blocks has occurred in a 'rift zone' including possible strike-slip, tension fracturing, and geometric plate rotation about an Euler pole. These analyses revealed features interpreted as tensional structures and block rotation in a strike-slip regime consistent with the Schenk hypotheses and implied the presence of at least two stages of crustal deformation consistent with a chronology developed by Lucchitta. Confirmation of regional scale Euler pole rotation was ambiguous, however. Up to 80 kilometers of possible extension was identified in the rift zone; to accommodate this, 'cryosubduction' is speculatively proposed as a mechanism for recycling Europan 'ice lithosphere'. The cumulative width of wedge-shaped bands included in the rift zone was measured and plotted versus distance from the inferred rotation pole. Three sharp decreases in the total width were noted. These occur roughly where certain triple bands cross the rift zone suggesting that the bands are structural features that predate and influence the zone. While the curve hints at one or more sinusoidal relationships consistent with rotation geometry, given the low photographic resolution and the preliminary nature of this examination the question of whether the observations represent coherent regional rotation modified by crosscutting structures or instead imply independent local rotations separated by these structures is unanswered by this analysis.

  20. The 3D Euler solutions using automated Cartesian grid generation

    NASA Technical Reports Server (NTRS)

    Melton, John E.; Enomoto, Francis Y.; Berger, Marsha J.

    1993-01-01

    Viewgraphs on 3-dimensional Euler solutions using automated Cartesian grid generation are presented. Topics covered include: computational fluid dynamics (CFD) and the design cycle; Cartesian grid strategy; structured body fit; grid generation; prolate spheroid; and ONERA M6 wing.

  1. Oscillation Amplitude Growth for a Decelerating Object with Constant Pitch Damping

    NASA Technical Reports Server (NTRS)

    Schoenenberger, Mark; Queen, Eric M.; Litton, Daniel

    2006-01-01

    The equations governing the deceleration and oscillation of a blunt body moving along a planar trajectory are re-expressed in the form of the Euler-Cauchy equation. An analytic solution of this equation describes the oscillation amplitude growth and frequency dilation with time for a statically stable decelerating body with constant pitch damping. The oscillation histories for several constant pitch damping values, predicted by the solution of the Euler-Cauchy equation are compared to POST six degree-of-freedom (6-DoF) trajectory simulations. The simulations use simplified aerodynamic coefficients matching the Euler-Cauchy approximations. Agreement between the model predictions and simulation results are excellent. Euler-Cauchy curves are also fit through nonlinear 6-DoF simulations and ballistic range data to identify static stability and pitch damping coefficients. The model os shown to closely fit through the data points and capture the behavior of the blunt body observed in simulation and experiment. The extracted coefficients are in reasonable agreement with higher fidelity, nonlinear parameter identification results. Finally, a nondimensional version of the Euler-Cauchy equation is presented and shown to be a simple and effective tool for designing dynamically scaled experiments for decelerating blunt capsule flight.

  2. Computing relative plate velocities: a primer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bevis, M.

    1987-08-01

    Standard models of present-day plate motions are framed in terms of rates and poles of rotation, in accordance with the well-known theorem due to Euler. This article shows how computation of relative plate velocities from such models can be viewed as a simple problem in spherical trigonometry. A FORTRAN subroutine is provided to perform the necessary computations.

  3. Viscoelastic deformation near active plate boundaries

    NASA Technical Reports Server (NTRS)

    Ward, Steven N.

    1991-01-01

    Very Long Baseline Interferometry (VLBI) now has the capacity to monitor geodetic positions with precisions of a few 1 mm over continental baselines. For tectonic applications, one of the major products of the VLBI program is the determination of the rate of change of station locations. Vector site velocities are now routinely produced. One of the novel techniques, VLBI Euler poles, is discussed.

  4. Characterizing the ear canal acoustic reflectance and impedance by pole-zero fitting

    PubMed Central

    Robinson, Sarah R.; Nguyen, Cac T.; Allen, Jont B.

    2013-01-01

    This study characterizes middle ear complex acoustic reflectance (CAR) and impedance by fitting poles and zeros to real-ear measurements. The goal of this work is to establish a quantitative connection between pole-zero locations and the underlying physical properties of CAR data. Most previous studies have analyzed CAR magnitude; while the magnitude accounts for reflected power, it does not encode latency information. Thus, an analysis that studies the real and imaginary parts of the data together could be more powerful. Pole-zero fitting of CAR data is examined using data compiled from various studies, dating back to Voss and Allen (1994). Recent CAR measurements were taken using a middle ear acoustic power analyzer (MEPA) system (HearID, Mimosa Acoustics), which makes complex acoustic impedance and reflectance measurements in the ear canal over the 0.2 to 6.0 kHz frequency range. Pole-zero fits to measurements over this range are achieved with an average RMS relative error of less than 3% using 12 poles. Factoring the reflectance fit into its all-pass and minimum-phase components approximates the effect of the ear canal, allowing for comparison across measurements. It was found that individual CAR magnitude variations for normal middle ears in the 1 to 4 kHz range often give rise to closely-placed pole-zero pairs, and that the locations of the poles and zeros in the s-plane may differ between normal and pathological middle ears. This study establishes a methodology for examining the physical and mathematical properties of CAR using a concise parametric model. Pole-zero modeling shows promise for precise parameterization of CAR data and for identification of middle ear pathologies. PMID:23524141

  5. Converting point-wise nuclear cross sections to pole representation using regularized vector fitting

    NASA Astrophysics Data System (ADS)

    Peng, Xingjie; Ducru, Pablo; Liu, Shichang; Forget, Benoit; Liang, Jingang; Smith, Kord

    2018-03-01

    Direct Doppler broadening of nuclear cross sections in Monte Carlo codes has been widely sought for coupled reactor simulations. One recent approach proposed analytical broadening using a pole representation of the commonly used resonance models and the introduction of a local windowing scheme to improve performance (Hwang, 1987; Forget et al., 2014; Josey et al., 2015, 2016). This pole representation has been achieved in the past by converting resonance parameters in the evaluation nuclear data library into poles and residues. However, cross sections of some isotopes are only provided as point-wise data in ENDF/B-VII.1 library. To convert these isotopes to pole representation, a recent approach has been proposed using the relaxed vector fitting (RVF) algorithm (Gustavsen and Semlyen, 1999; Gustavsen, 2006; Liu et al., 2018). This approach however needs to specify ahead of time the number of poles. This article addresses this issue by adding a poles and residues filtering step to the RVF procedure. This regularized VF (ReV-Fit) algorithm is shown to efficiently converge the poles close to the physical ones, eliminating most of the superfluous poles, and thus enabling the conversion of point-wise nuclear cross sections.

  6. Paleomagnetic study of an active arc-continent collision, Finisterre Arc Terrane, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Weiler, Peter Donald

    1999-12-01

    This dissertation includes 3 studies from the active collision zone between the Finisterre volcanic arc and Papua New Guinea. Chapter 1 is a paleomagnetic study of thrust sheets of the fold and thrust belt north of the Ramu-Markham suture indicating very rapid vertical-axis rotations related to tectonic transport of thrust units. Our data indicate that rotations as great as 90° since 1 Ma have occurred locally in the Erap Valley area. Such rapid rotations during thrust sheet emplacement may be more common in fold and thrust belts than is presently recognized. Anisotropy of magnetic susceptibility (AMS) lineations are rendered parallel by the same rotations used to restore the paleomagnetic remanence to N-S thus independently confirming the rapid rotations. In Chapter 2, we compare the AMS fabrics from the Erap Valley with microscopic shape fabrics obtained through digital image analysis. We find that the orientations of principal axes found by the two techniques agree very well, but that the maximum and intermediate axes of the magnetic fabric are inverted relative to the grain shape. We interpret the shape fabric as a primary depositional fabric, and the magnetic fabric as the result of a weak tectonic strain overprinting a depositional fabric. Thus, comparison of these fabrics detects the earliest transition from depositional to tectonic strain fabric. Finally, in Chapter 3, we turn to larger scale paleomagnetic results from the colliding Finisterre Arc. Hemipelagic rocks possess a syn-collisional remagnetization indicating a clockwise rotation of the colliding terrane through about 40° in post-Miocene time. Decreasing paleomagnetic declination anomalies as a function of along-strike distance in the Finisterre Terrane, analyzed by our preferred model of a linear remagnetization and a migrating Euler pole, suggests an average rotation rate of 8°/Ma. Thus, we propose that the rotation results from a rigid-body rotation of the Finisterre Terrane rather than from sequential docking of independently colliding blocks. We examine models of a syn-collisional remagnetization with both fixed and migrating Euler poles, and suggest that the Euler pole describing Bismarck/Australia plate motion may have migrated 675 km through post-Miocene time to its present location at the collision suture.

  7. Permian-Triassic Tethyan realm reorganization: Implications for the outward Pangea margin

    NASA Astrophysics Data System (ADS)

    Riel, Nicolas; Jaillard, Etienne; Martelat, Jean-Emmanuel; Guillot, Stéphane; Braun, Jean

    2018-01-01

    We present a new conceptual model to explain the first order Permian-Triassic evolution of the whole > 30 000 km long Pangea margin facing the Panthalassa ocean. Compilation of available geological, geochemical, geochronogical and paleomagnetic data all along this system allowed us to distinguish three part of the margin: western Laurentia, western Gondwana and eastern Gondwana. These segments record distinct tectonic and magmatic events, which all occur synchronously along the whole margin and correlate well with the main geodynamic events of this period, i.e. subduction of the Paleotethys mid-ocean ridge at 310-280 Ma, opening of the Neotethys at 280-260 Ma, counterclockwise rotation of Pangea at 260-230 Ma and closure of the Paleotethys at 230-220 Ma. Between 260 and 230 Ma, the reorganization of the Tethyan realm triggered the up to 35° rotation of Pangea around an Euler pole located in northernmost South America. This implied both an increase and a decrease of the convergence rate between the margin and the Panthalassa ocean, north and south of the Euler pole, respectively. Thus, the Permian-Triassic Pangean margin was marked: in western Laurentia by marginal sea closure, in western Gondwana by widespread bimodal magmatic and volcanic activity, in eastern Gondwana by transpressive orogenic phase. Therefore, we propose that the Permian-Triassic evolution of the outward margin of Pangea was controlled by the Tethyan realm reorganization.

  8. A new high-resolution kinematic model for the southern North Atlantic region: the Iberian plate kinematics since the Late Cretaceous

    NASA Astrophysics Data System (ADS)

    Macchiavelli, Chiara; Vergés, Jaume; Schettino, Antonio; Fernández, Manel; Turco, Eugenio; Torné, Montserrat; Casciello, Emilio

    2017-04-01

    We present the first high-resolution kinematic model for the southern North Atlantic since the late Cretaceous, in order to constrain the Iberian kinematics during the last 83 Myr. Assessing the detailed movements of the Iberian plate is crucial to constrain the kinematics of the Western Mediterranean region and to better understand the Pyrenees and Betic - Rif orogenic systems evolution. The new plate motions model for the Iberia - North America plate pair is accompanied by a high-resolution isochron map for the southern North Atlantic region, resulting from a re-examination of 400 ship tracks and 3 aeromagnetic tracks in the NGDC data base for the area between the Azores triple junction and 46° N. We derive a well-constrained kinematic solution for the relative motion between an independent Iberia and North America from seafloor spreading data despite the short length of the magnetic lineations and the scarcity of large-offset transform faults and fracture zones. Accurate finite reconstruction poles for the Iberia - North America conjugate plate pair between the Late Cretaceous (Chron 34, 83.5 Ma) and the present day (Chron 2A, 2.58 Ma) are calculated on the basis of a set of 100 magnetic profiles through an iterative method. Euler poles and associated angles of rotation are computed as follow. An initial rotation pole is calculated using only magnetic anomaly crossings. The initial large uncertainty associated with the first determination is reduced by generating a set of synthetic fracture zones associated with the initial pole and using points sampled along these structures in conjunction with magnetic anomaly crossings to calculate a new Euler pole and associated confidence ellipse. This procedure is repeated n times, generating a sequence of improving approximate solutions and stopped when the solution become stable excluding solutions that were inconsistent with geological constraints. We used these results to build a comprehensive kinematic model for the North America - Iberia - Europe - Africa - Morocco plate system. A set of plate reconstructions illustrates the Iberian plate kinematics and show plate boundaries and velocity fields since the Late Cretaceous attempting to reconcile the geology of Pyrenees and Betic - Rif chain and the kinematic of the southern North Atlantic Ocean. This research is supported by project ALPIMED (PIE-CSIC-201530E082)

  9. Euler-Vector Clustering of GPS Velocities Defines Microplate Geometry in Southwest Japan

    NASA Astrophysics Data System (ADS)

    Savage, J. C.

    2018-02-01

    I have used Euler-vector clustering to assign 469 GEONET stations in southwest Japan to k clusters (k = 2, 3,..., 9) so that, for any k, the velocities of stations within each cluster are most consistent with rigid-block motion on a sphere. That is, I attempt to explain the raw (i.e., uncorrected for strain accumulation), 1996-2006 velocities of those 469 Global Positioning System stations by rigid motion of k clusters on the surface of a spherical Earth. Because block geometry is maintained as strain accumulates, Euler-vector clustering may better approximate the block geometry than the values of the associated Euler vectors. The microplate solution for each k is constructed by merging contiguous clusters that have closely similar Euler vectors. The best solution consists of three microplates arranged along the Nankaido Trough-Ryukyu Trench between the Amurian and Philippine Sea Plates. One of these microplates, the South Kyushu Microplate (an extension of the Ryukyu forearc into the southeast corner of Kyushu), had previously been identified from paleomagnetic rotations. Relative to ITRF2000 the three microplates rotate at different rates about neighboring poles located close to the northwest corner of Shikoku. The microplate model is identical to that proposed in the block model of Wallace et al. (2009, https://doi.org/10.1130/G2522A.1) except in southernmost Kyushu. On Shikoku and Honshu, but not Kyushu, the microplate model is consistent with that proposed in the block models of Nishimura and Hashimoto (2006, https://doi.org/10.1016/j.tecto.2006.04.017) and Loveless and Meade (2010, https://doi.org/10.1029/2008JB006248) without the low-slip-rate boundaries proposed in the latter.

  10. Diffraction of a shock wave by a compression corner; regular and single Mach reflection

    NASA Technical Reports Server (NTRS)

    Vijayashankar, V. S.; Kutler, P.; Anderson, D.

    1976-01-01

    The two dimensional, time dependent Euler equations which govern the flow field resulting from the injection of a planar shock with a compression corner are solved with initial conditions that result in either regular reflection or single Mach reflection of the incident planar shock. The Euler equations which are hyperbolic are transformed to include the self similarity of the problem. A normalization procedure is employed to align the reflected shock and the Mach stem as computational boundaries to implement the shock fitting procedure. A special floating fitting scheme is developed in conjunction with the method of characteristics to fit the slip surface. The reflected shock, the Mach stem, and the slip surface are all treated as harp discontinuities, thus, resulting in a more accurate description of the inviscid flow field. The resulting numerical solutions are compared with available experimental data and existing first-order, shock-capturing numerical solutions.

  11. A general multiblock Euler code for propulsion integration. Volume 3: User guide for the Euler code

    NASA Technical Reports Server (NTRS)

    Chen, H. C.; Su, T. Y.; Kao, T. J.

    1991-01-01

    This manual explains the procedures for using the general multiblock Euler (GMBE) code developed under NASA contract NAS1-18703. The code was developed for the aerodynamic analysis of geometrically complex configurations in either free air or wind tunnel environments (vol. 1). The complete flow field is divided into a number of topologically simple blocks within each of which surface fitted grids and efficient flow solution algorithms can easily be constructed. The multiblock field grid is generated with the BCON procedure described in volume 2. The GMBE utilizes a finite volume formulation with an explicit time stepping scheme to solve the Euler equations. A multiblock version of the multigrid method was developed to accelerate the convergence of the calculations. This user guide provides information on the GMBE code, including input data preparations with sample input files and a sample Unix script for program execution in the UNICOS environment.

  12. An installed nacelle design code using a multiblock Euler solver. Volume 2: User guide

    NASA Technical Reports Server (NTRS)

    Chen, H. C.

    1992-01-01

    This is a user manual for the general multiblock Euler design (GMBEDS) code. The code is for the design of a nacelle installed on a geometrically complex configuration such as a complete airplane with wing/body/nacelle/pylon. It consists of two major building blocks: a design module developed by LaRC using directive iterative surface curvature (DISC); and a general multiblock Euler (GMBE) flow solver. The flow field surrounding a complex configuration is divided into a number of topologically simple blocks to facilitate surface-fitted grid generation and improve flow solution efficiency. This user guide provides input data formats along with examples of input files and a Unix script for program execution in the UNICOS environment.

  13. Estimating locations and total magnetization vectors of compact magnetic sources from scalar, vector, or tensor magnetic measurements through combined Helbig and Euler analysis

    USGS Publications Warehouse

    Phillips, J.D.; Nabighian, M.N.; Smith, D.V.; Li, Y.

    2007-01-01

    The Helbig method for estimating total magnetization directions of compact sources from magnetic vector components is extended so that tensor magnetic gradient components can be used instead. Depths of the compact sources can be estimated using the Euler equation, and their dipole moment magnitudes can be estimated using a least squares fit to the vector component or tensor gradient component data. ?? 2007 Society of Exploration Geophysicists.

  14. Paired Magnetic Susceptibility Cyclostratigraphy and Revised Magnetostratigraphy with Late Cretaceous Euler Pole from Forbes Formation, Sand Creek, Sacramento Valley, California

    NASA Astrophysics Data System (ADS)

    Slotznick, S. P.; Raub, T.; Mitchell, R. N.; Ward, P. D.; Kirschvink, J. L.

    2012-12-01

    Magnetostratigraphy in Upper Cretaceous rocks of Sacramento Valley has successfully complemented biostratigraphy for correlating between circum-Pacific basins. Most paleomagnetic measurements were done pre-1990 using alternating field demagnetization only, due to oxidation accompanying thermal demagnetization. We present paleomagnetic data collected via thermal demagnetization in a flowing nitrogen atmosphere from 223 cores collected over a 130m of section of Forbes Formation in Sand Creek, CA spanning upper Dobbins Shale, Forbes Unit 2 and lower Unit 3. These results uniformly indicate Reversed Chron 33R, contra previously published magnetostratigraphy of the area (Ward et al. 1983, Verosub et al. 1989). Additionally, these paleomagnetic results yield a tightly-constrained paleolatitude for Forbes Formation of 31±3°, which varies significantly from previous APWP models ca. 83 Ma (Besse and Courtillot, 2002) suggesting an unaccounted-for deficiency in reconstructions of North America at this time. This discrepancy might indicate an inaccurate cratonic reference pole, underestimated intrabatholithic or distributed plate boundary deformation, and/or true polar wander. As opposed to other units yielding anomalous late Cretaceous paleolatitudes from outboard terranes, Forbes Formation in Sacramento Valley laps unambiguously onto the North American continent. A 25m AW34 core was collected using a Winkie drillrig near the top of Dobbins Shale Mbr. Paleomagnetic measurements on subsamples from the Winkie core, unaffected by surface weathering, combine with the surficial dataset, and we propose a new set of Euler pole solutions potentially quantifying Basin and Range extension and late Cretaceous intra-Sierran shear. Through magnetic susceptibility measurements of the Winkie core, we were able to resolve orbital cycles which, paired with rock magnetic measurements, constrain basin subsidence and sedimentation rate off the Sierran arc at its age of termination. Re-visiting Sand Creek and other Cretaceous sites with improved paleomagnetic techniques, instruments, and equipment can add significant information to our understanding of late Cretaceous time.

  15. Elliptical Chandler pole motions of the Earth and Mars

    NASA Astrophysics Data System (ADS)

    Barkin, Yury; Ferrandiz, Jose

    2010-05-01

    In the work the values of the period and eccentricity of Chandler motion of poles of axes of rotation of the Earth and Mars have been determined. The research has been carried out on the basis of developed earlier by authors an intermediate rotary Chandler-Euler motion of the weakly deformable celestial bodies (Barkin, Ferrandiz and Getino, 1996; Barkin, 1998). An influence of a liquid core on Chandler motion of a pole in the given work has not considered. The periods of the specified pole motions make 447.1 d for the Earth and 218.1 d for Mars. In comparison with Euler motions of poles because of elastic properties of planets the Chandler periods are increased accordingly on 142.8 d (about 46.9 %) for the Earth and on 26.2 d (on 13.7 %) for Mars. Values of eccentricities of specified Chandler motions of pole e = √b2 --a2- b (here a both b are smaller and big semi-axes of Chandler ellipse) make 0.09884 for the Earth and 0.3688 for Mars (accordingly, on 21.1 % and 6.2 % more than the appropriate values of eccentricities for models of planets as rigid non-spherical bodies). Axes of an ellipse a also b correspond to the principal equatorial axes of inertia of a planet Ox and Oyfor which the moments of inertia have the smallest valueA and middle value B. The pole of the principal axis of inertia Ox for the Earth is displaced to the west on the angle 14°9285, and the pole of the principal axis of inertia Ox for Mars is displaced to the west on the angle 105°0178 (in the appropriate basic geographical systems of coordinates of the given planets). For ellipticties of Chandler trajectories ɛ = (b- a)-b the values 0.004897 (for the Earth) and 0.07048 (for Mars) have been obtained. The specified values surpass by Euler values of appropriate ellipticties on 46.8 % (in case of the Earth) and on 13.3 % (in the case of Mars). Love number k2describing the elastic properties of planets, were accepted equal 0.30 for the Earth and 0.153 for Mars. Estimations of Chandler periods will well be coordinated to similar estimations of other authors for models of elastic planet in 200-212 d (Konopliv et al., 2006; Zharkov, Gudkova, 2009). The values of eccentricity and ellipticity of Chandler pole motion of the Earth will be coordinated to earlier estimations e=0.096-0.098 and ɛ=0.0046-0.0048 (Barkin, 1998; Barkin, Ferrandiz, 2004), and for Mars have been obtained for the first time. The account of influence of a liquid core on considered parameters of motion of poles of planet with elastic mantle also is discussed in report on the base of author's approach developed in the paper (Ferrandiz, Barkin, 2001). The Barkin's work partially was finacially accepted by Spanish grants, Japanise-Russian grant N-09-02-92113-JF and by RFBR grant N 08-02-00367. References Barkin Yu.V., Ferrandiz J.M., J. Getino (1996) About Applications Angle-Action Variables in Rotation Dynamics of the Deformable Celestial Bodies. (Eds. S. Ferraz-Mello, B. Morrando, J.-E. Arlot) Dynamics, ephemerides and astrometry of the solar system. Proceedings. 172 nd Symposium of the International Astronomical Union, Paris ( France), 3-8 Jul. 1995. 1996, pp. 243-244. Barkin Yu.V. (1998) Unperturbed Chandler's Motion and Perturbation Theory of the Rotational Motion of the Deformable Celestial Bodies. Astronomical and Astrophysical Transactions, v. 17, N3, pp. 431-475. Barkin Yu.V., Ferrandiz J.M. (2004) Some dynamical effects in unperturbed and perturbed Earth rotation caused by elastic properties of the mantle. Journees 2004 'Systems de reference spatio temporals' (20-22 September, 2004, Paris, France). Fundamental Astronomy: New concepts and models for high accuracy observations. Book of abstracts, Observatoire de Paris, pp. 15-16. Ferrandiz, J.M. and Barkin, Yu.V. (2001) Dynamics of the rotational motion of the planet with the elastic mantle, liquid core and with the changeable external shell. Proceedings of International Conference «AstroKazan-2001». Astronomy and geodesy in new millennium (24-29 September 2001), Kazan State University: Publisher «DAS», pp. 123-129. Konopliv A.S., Yoder C.F., Standish E.M., Yuan D.-N. and Sjogren W.L. (2006) A global solution for Mars static and seasonal gravity, Mars orientation, Phobos and Deimos masses, and Mars ephemeris. Icarus, V. 182, pp. 23-50. Zarkov V.N., Gudkova T.V. (2009) The period and Q of the Chandler wobble of Mars. Planetary and Space Science (in press).

  16. Motion of the Scotia sea plates

    USGS Publications Warehouse

    Thomas, C.; Livermore, R.; Pollitz, F.

    2003-01-01

    Earthquake data from the Scotia Arc to early 2002 are reviewed in the light of satellite gravity and other data in order to derive a model for the motion of plates in the Scotia Sea region. Events with magnitude ???5, which occurred on or near the boundaries of the Scotia and Sandwich plates, and for which Centroid Moment Tensor (CMT) solutions are available, are examined. The newer data fill some of the previous sampling gaps along the boundaries of the Scotia and Sandwich plates, and provide tighter constraints on relative motions. Variations in the width of the Brunhes anomaly on evenly spaced marine magnetic profiles over the East Scotia Ridge provide new estimates of Scotia-Sandwich plate spreading rates. Since there are no stable fracture zones in the east Scotia Sea, the mean azimuth of sea floor fabric mapped by sidescan is used to constrain the direction of spreading. 18 new rate estimates and four azimuths from the East Scotia Ridge are combined with 68 selected earthquake slip vectors from the boundaries of the Scotia Sea in a least-squares inversion for the best-fitting set of Euler poles and angular rotation rates describing the 'present-day' motions of the Scotia and Sandwich plates relative to South America and Antarctica. Our preferred model (TLP2003) gives poles that are similar to previous estimates, except for Scotia Plate motion with respect to South America, which is significantly different from earlier estimates; predicted rates of motion also differ slightly. Our results are much more robust than earlier work. We examine the implications of the model for motion and deformation along the various plate boundaries, with particular reference to the North and South Scotia Ridges, where rates are obtained by closure.

  17. Modelling and control of a rotor supported by magnetic bearings

    NASA Technical Reports Server (NTRS)

    Gurumoorthy, R.; Pradeep, A. K.

    1994-01-01

    In this paper we develop a dynamical model of a rotor and the active magnetic bearings used to support the rotor. We use this model to develop a stable state feedback control of the magnetic bearing system. We present the development of a rigid body model of the rotor, utilizing both Rotation Matrices (Euler Angles) and Euler Parameters (Quaternions). In the latter half of the paper we develop a stable state feedback control of the actively controlled magnetic bearing to control the rotor position under inbalances. The control law developed takes into account the variation of the model with rotational speed. We show stability over the whole operating range of speeds for the magnetic bearing system. Simulation results are presented to demonstrate the closed loop system performance. We develop the model of the magnetic bearing, and present two schemes for the excitation of the poles of the actively controlled magnetic bearing. We also present a scheme for averaging multiple sensor measurements and splitting the actuation forces amongst redundant actuators.

  18. Effect of Materials and Manufacturing on the Bending Stiffness of Vaulting Poles

    ERIC Educational Resources Information Center

    Davis, C. L.; Kukureka, S. N.

    2012-01-01

    The increase in the world record height achieved in pole vaulting can be related to the improved ability of the athletes, in terms of their fitness and technique, and to the change in materials used to construct the pole. For example in 1960 there was a change in vaulting pole construction from bamboo to glass fibre reinforced polymer (GFRP)…

  19. A linearized Euler analysis of unsteady flows in turbomachinery

    NASA Technical Reports Server (NTRS)

    Hall, Kenneth C.; Crawley, Edward F.

    1987-01-01

    A method for calculating unsteady flows in cascades is presented. The model, which is based on the linearized unsteady Euler equations, accounts for blade loading shock motion, wake motion, and blade geometry. The mean flow through the cascade is determined by solving the full nonlinear Euler equations. Assuming the unsteadiness in the flow is small, then the Euler equations are linearized about the mean flow to obtain a set of linear variable coefficient equations which describe the small amplitude, harmonic motion of the flow. These equations are discretized on a computational grid via a finite volume operator and solved directly subject to an appropriate set of linearized boundary conditions. The steady flow, which is calculated prior to the unsteady flow, is found via a Newton iteration procedure. An important feature of the analysis is the use of shock fitting to model steady and unsteady shocks. Use of the Euler equations with the unsteady Rankine-Hugoniot shock jump conditions correctly models the generation of steady and unsteady entropy and vorticity at shocks. In particular, the low frequency shock displacement is correctly predicted. Results of this method are presented for a variety of test cases. Predicted unsteady transonic flows in channels are compared to full nonlinear Euler solutions obtained using time-accurate, time-marching methods. The agreement between the two methods is excellent for small to moderate levels of flow unsteadiness. The method is also used to predict unsteady flows in cascades due to blade motion (flutter problem) and incoming disturbances (gust response problem).

  20. A Pole-Zero Filter Cascade Provides Good Fits to Human Masking Data and to Basilar Membrane and Neural Data

    NASA Astrophysics Data System (ADS)

    Lyon, Richard F.

    2011-11-01

    A cascade of two-pole-two-zero filters with level-dependent pole and zero dampings, with few parameters, can provide a good match to human psychophysical and physiological data. The model has been fitted to data on detection threshold for tones in notched-noise masking, including bandwidth and filter shape changes over a wide range of levels, and has been shown to provide better fits with fewer parameters compared to other auditory filter models such as gammachirps. Originally motivated as an efficient machine implementation of auditory filtering related to the WKB analysis method of cochlear wave propagation, such filter cascades also provide good fits to mechanical basilar membrane data, and to auditory nerve data, including linear low-frequency tail response, level-dependent peak gain, sharp tuning curves, nonlinear compression curves, level-independent zero-crossing times in the impulse response, realistic instantaneous frequency glides, and appropriate level-dependent group delay even with minimum-phase response. As part of exploring different level-dependent parameterizations of such filter cascades, we have identified a simple sufficient condition for stable zero-crossing times, based on the shifting property of the Laplace transform: simply move all the s-domain poles and zeros by equal amounts in the real-s direction. Such pole-zero filter cascades are efficient front ends for machine hearing applications, such as music information retrieval, content identification, speech recognition, and sound indexing.

  1. A Study of Flow Separation in Transonic Flow Using Inviscid and Viscous Computational Fluid Dynamics (CFD) Schemes

    NASA Technical Reports Server (NTRS)

    Rhodes, J. A.; Tiwari, S. N.; Vonlavante, E.

    1988-01-01

    A comparison of flow separation in transonic flows is made using various computational schemes which solve the Euler and the Navier-Stokes equations of fluid mechanics. The flows examined are computed using several simple two-dimensional configurations including a backward facing step and a bump in a channel. Comparison of the results obtained using shock fitting and flux vector splitting methods are presented and the results obtained using the Euler codes are compared to results on the same configurations using a code which solves the Navier-Stokes equations.

  2. Atmospheric Turbulence Modeling for Aerospace Vehicles: Fractional Order Fit

    NASA Technical Reports Server (NTRS)

    Kopasakis, George (Inventor)

    2015-01-01

    An improved model for simulating atmospheric disturbances is disclosed. A scale Kolmogorov spectral may be scaled to convert the Kolmogorov spectral into a finite energy von Karman spectral and a fractional order pole-zero transfer function (TF) may be derived from the von Karman spectral. Fractional order atmospheric turbulence may be approximated with an integer order pole-zero TF fit, and the approximation may be stored in memory.

  3. India plate angular velocity and contemporary deformation rates from continuous GPS measurements from 1996 to 2015.

    PubMed

    Jade, Sridevi; Shrungeshwara, T S; Kumar, Kireet; Choudhury, Pallabee; Dumka, Rakesh K; Bhu, Harsh

    2017-09-12

    We estimate a new angular velocity for the India plate and contemporary deformation rates in the plate interior and along its seismically active margins from Global Positioning System (GPS) measurements from 1996 to 2015 at 70 continuous and 3 episodic stations. A new India-ITRF2008 angular velocity is estimated from 30 GPS sites, which include stations from western and eastern regions of the plate interior that were unrepresented or only sparsely sampled in previous studies. Our newly estimated India-ITRF2008 Euler pole is located significantly closer to the plate with ~3% higher angular velocity than all previous estimates and thus predicts more rapid variations in rates and directions along the plate boundaries. The 30 India plate GPS site velocities are well fit by the new angular velocity, with north and east RMS misfits of only 0.8 and 0.9 mm/yr, respectively. India fixed velocities suggest an approximate of 1-2 mm/yr intra-plate deformation that might be concentrated along regional dislocations, faults in Peninsular India, Kachchh and Indo-Gangetic plain. Relative to our newly-defined India plate frame of reference, the newly estimated velocities for 43 other GPS sites along the plate margins give insights into active deformation along India's seismically active northern and eastern boundaries.

  4. Complete N-point superstring disk amplitude II. Amplitude and hypergeometric function structure

    NASA Astrophysics Data System (ADS)

    Mafra, Carlos R.; Schlotterer, Oliver; Stieberger, Stephan

    2013-08-01

    Using the pure spinor formalism in part I (Mafra et al., preprint [1]) we compute the complete tree-level amplitude of N massless open strings and find a striking simple and compact form in terms of minimal building blocks: the full N-point amplitude is expressed by a sum over (N-3)! Yang-Mills partial subamplitudes each multiplying a multiple Gaussian hypergeometric function. While the former capture the space-time kinematics of the amplitude the latter encode the string effects. This result disguises a lot of structure linking aspects of gauge amplitudes as color and kinematics with properties of generalized Euler integrals. In this part II the structure of the multiple hypergeometric functions is analyzed in detail: their relations to monodromy equations, their minimal basis structure, and methods to determine their poles and transcendentality properties are proposed. Finally, a Gröbner basis analysis provides independent sets of rational functions in the Euler integrals. In contrast to [1] here we use momenta redefined by a factor of i. As a consequence the signs of the kinematic invariants are flipped, e.g. |→|.

  5. Rifting by continental rotation, mantle flow and hotspot volcanism in the salt-depositing South Atlantic

    NASA Astrophysics Data System (ADS)

    Szatmari, P.

    2012-04-01

    Rabinowitz & LaBrecque (1979) proposed that Africa and South America separated between 130 Ma and 107 Ma by 11.1° rigid plate rotation about an Euler pole in NE Brazil. According to those authors, the two continents remained contiguous in the north as the wedge-shaped South Atlantic opened up between them and deposited salt mostly over oceanic crust. Subsequent seismic profiling and drilling showed that salt, restricted to north of the volcanic proto-Walvis Ridge, deposited over rift sediments and stretched-thinned continental crust. Increasingly accurate restorations by Nürnberg & Müller (1991), Aslanian et al. (2009), Torsvik et al. (2009), and Moulin et al. (2010) differentiated in both continents several rigid plates separated by active deformation zones. Still, tectonic analysis of the rifted margins indicates that the main Early Cretaceous event was the clockwise rotation of South America about an Euler pole in its northeast. Both rifting and volcanism, including the Paraná-Etendeka large igneous province, where most flood basalts erupted at 134.6 ± 0.6 Ma (Thiede & Vasconcelos, 2010), were controlled by distance and orientation of rift segments relative to that pole in NE Brazil. Rifting was active from latest Jurassic to early Albian time (Magnavita et al., 2011) over inherited late Proterozoic fold-thrust belts. By Aptian time a long, dry wedge-shaped basin formed north of the volcanic barrier of the proto-Walvis Ridge, widening southward to 700 km and subsiding deep below sea level in the Santos Basin. The basin was filled with oil-rich lacustrine limestone and marine salt, each more than 2 km thick, deposited in often desiccating shallow water over the partially hyperextended continental crust of the São Paulo Plateau (Zalán et al., 2010; Magnavita et al., 2011; Szatmari, 2011). Further south marine sediments deposited over oceanic crust. Surface subsidence of the long, deep sediment-starved rift wedge was shaped, prior to the deposition of the lacustrine limestones and marine evaporites, by South America's continental rotation and by hotspot activity; asthenosphere inflow was limited by the bordering two old continents.

  6. First observation of the Λ(1405) line shape in electroproduction

    NASA Astrophysics Data System (ADS)

    Lu, H. Y.; Schumacher, R. A.; Adhikari, K. P.; Adikaram, D.; Aghasyan, M.; Amaryan, M. J.; Pereira, S. Anefalos; Ball, J.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Boiarinov, S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Cole, P. L.; Collins, P.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Doughty, D.; Dupre, R.; Egiyan, H.; Alaoui, A. El; Fassi, L. El; Eugenio, P.; Fedotov, G.; Fegan, S.; Fleming, J. A.; Gabrielyan, M.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Harrison, N.; Heddle, D.; Hicks, K.; Ho, D.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, W.; Klein, A.; Klein, F. J.; Koirala, S.; Kubarovsky, A.; Kubarovsky, V.; Kuleshov, S. V.; Lewis, S.; Livingston, K.; MacGregor, I. J. D.; Martinez, D.; Mayer, M.; McKinnon, B.; Meyer, C. A.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Moriya, K.; Moutarde, H.; Munevar, E.; Camacho, C. Munoz; Nadel-Turonski, P.; Nepali, C. S.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Park, S.; Pasyuk, E.; Peng, P.; Phelps, E.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Raue, B. A.; Rimal, D.; Ripani, M.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Schott, D.; Seder, E.; Seraydaryan, H.; Sharabian, Y. G.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stoler, P.; Strauch, S.; Taiuti, M.; Tang, W.; Tian, Ye; Tkachenko, S.; Torayev, B.; Vernarsky, B.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Weygand, D. P.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.

    2013-10-01

    We report the first observation of the line shape of the Λ(1405) from electroproduction, and show that it is not a simple Breit-Wigner resonance. Electroproduction of K+Λ(1405) off the proton was studied by using data from CLAS at Jefferson Lab in the range 1.0

  7. A general multiblock Euler code for propulsion integration. Volume 1: Theory document

    NASA Technical Reports Server (NTRS)

    Chen, H. C.; Su, T. Y.; Kao, T. J.

    1991-01-01

    A general multiblock Euler solver was developed for the analysis of flow fields over geometrically complex configurations either in free air or in a wind tunnel. In this approach, the external space around a complex configuration was divided into a number of topologically simple blocks, so that surface-fitted grids and an efficient flow solution algorithm could be easily applied in each block. The computational grid in each block is generated using a combination of algebraic and elliptic methods. A grid generation/flow solver interface program was developed to facilitate the establishment of block-to-block relations and the boundary conditions for each block. The flow solver utilizes a finite volume formulation and an explicit time stepping scheme to solve the Euler equations. A multiblock version of the multigrid method was developed to accelerate the convergence of the calculations. The generality of the method was demonstrated through the analysis of two complex configurations at various flow conditions. Results were compared to available test data. Two accompanying volumes, user manuals for the preparation of multi-block grids (vol. 2) and for the Euler flow solver (vol. 3), provide information on input data format and program execution.

  8. New 40Ar / 39Ar age and geochemical data from seamounts in the Canary and Madeira volcanic provinces: Support for the mantle plume hypothesis

    NASA Astrophysics Data System (ADS)

    Geldmacher, J.; Hoernle, K.; Bogaard, P. v. d.; Duggen, S.; Werner, R.

    2005-08-01

    The role of mantle plumes in the formation of intraplate volcanic islands and seamount chains is being increasingly questioned. Particular examples are the abundant and somewhat irregularly distributed island and seamount volcanoes off the coast of northwest Africa. New 40Ar / 39Ar ages and Sr-Nd-Pb isotope geochemistry of volcanic rocks from seamounts northeast of the Madeira Islands (Seine and Unicorn) and northeast of the Canary Islands (Dacia and Anika), however, provide support for the plume hypothesis. The oldest ages of shield stage volcanism from Canary and Madeira volcanic provinces confirm progressions of increasing age to the northeast. Average volcanic age progression of ∼1.2 cm/a is consistent with rotation of the African plate at an angular velocity of ∼0.20° ± 0.05 /Ma around a common Euler pole at approximately 56° N, 45° W computed for the period of 0-35 Ma. A Euler pole at 35° N, 45° W is calculated for the time interval of 35-64 Ma. The isotope geochemistry further confirms that the Madeira and Canary provinces are derived from different sources, consistent with distinct plumes having formed each volcanic group. Conventional hotspot models, however, cannot easily explain the up to 40 m.y. long volcanic history at single volcanic centers, long gaps in volcanic activity, and the irregular distribution of islands and seamounts in the Canary province. A possible explanation could involve interaction of the Canary mantle plume with small-scale upper mantle processes such as edge-driven convection. Juxtaposition of plume and non-plume volcanism could also account for observed inconsistencies of the classical hotspot concept in other volcanic areas.

  9. Numerical analysis of nonminimum phase zero for nonuniform link design

    NASA Technical Reports Server (NTRS)

    Girvin, Douglas L.; Book, Wayne J.

    1991-01-01

    As the demand for light-weight robots that can operate in a large workspace increases, the structural flexibility of the links becomes more of an issue in control. When the objective is to accurately position the tip while the robot is actuated at the base, the system is nonminimum phase. One important characteristic of nonminimum phase systems is system zeros in the right half of the Laplace plane. The ability to pick the location of these nonminimum phase zeros would give the designer a new freedom similar to pole placement. This research targets a single-link manipulator operating in the horizontal plane and modeled as a Euler-Bernoulli beam with pinned-free end conditions. Using transfer matrix theory, one can consider link designs that have variable cross-sections along the length of the beam. A FORTRAN program was developed to determine the location of poles and zeros given the system model. The program was used to confirm previous research on nonminimum phase systems, and develop a relationship for designing linearly tapered links. The method allows the designer to choose the location of the first pole and zero and then defines the appropriate taper to match the desired locations. With the pole and zero location fixed, the designer can independently change the link's moment of inertia about its axis of rotation by adjusting the height of the beam. These results can be applied to the inverse dynamic algorithms that are currently under development.

  10. Numerical analysis of nonminimum phase zero for nonuniform link design

    NASA Astrophysics Data System (ADS)

    Girvin, Douglas L.; Book, Wayne J.

    1991-11-01

    As the demand for light-weight robots that can operate in a large workspace increases, the structural flexibility of the links becomes more of an issue in control. When the objective is to accurately position the tip while the robot is actuated at the base, the system is nonminimum phase. One important characteristic of nonminimum phase systems is system zeros in the right half of the Laplace plane. The ability to pick the location of these nonminimum phase zeros would give the designer a new freedom similar to pole placement. This research targets a single-link manipulator operating in the horizontal plane and modeled as a Euler-Bernoulli beam with pinned-free end conditions. Using transfer matrix theory, one can consider link designs that have variable cross-sections along the length of the beam. A FORTRAN program was developed to determine the location of poles and zeros given the system model. The program was used to confirm previous research on nonminimum phase systems, and develop a relationship for designing linearly tapered links. The method allows the designer to choose the location of the first pole and zero and then defines the appropriate taper to match the desired locations. With the pole and zero location fixed, the designer can independently change the link's moment of inertia about its axis of rotation by adjusting the height of the beam. These results can be applied to the inverse dynamic algorithms that are currently under development.

  11. First Observation of the {Lambda}(1405) Line Shape in Electroproduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Haiyun; Schumacher, Reinhard A.

    2013-10-01

    We report the first observation of the line shape of the {Lambda}(1405) from electroproduction, and show that it is not a simple Breit-Wigner resonance. Electroproduction of K{sup +}{Lambda}(1405) off the proton was studied by using data from CLAS at Jefferson Lab in the range 1.0

  12. Stresses in curved nematic membranes.

    PubMed

    Santiago, J A

    2018-05-01

    Ordering configurations of a director field on a curved membrane induces stress. In this work, we present a theoretical framework to calculate the stress tensor and the torque as a consequence of the nematic ordering; we use the variational principle and invariance of the energy under Euclidean motions. Euler-Lagrange equations of the membrane as well as the corresponding boundary conditions also appear as natural results. The stress tensor found includes attraction-repulsion forces between defects; likewise, defects are attracted to patches with the same sign in Gaussian curvature. These forces are mediated by the Green function of the Laplace-Beltrami operator of the surface. In addition, we find nonisotropic forces that involve derivatives of the Green function and the Gaussian curvature, even in the normal direction to the membrane. We examine the case of axial membranes to analyze the spherical one. For spherical vesicles we find the modified Young-Laplace law as a consequence of the nematic texture. In the case of spherical cap with defect at the north pole, we find that the force is repulsive with respect to the north pole, indicating that it is an unstable equilibrium point.

  13. Stresses in curved nematic membranes

    NASA Astrophysics Data System (ADS)

    Santiago, J. A.

    2018-05-01

    Ordering configurations of a director field on a curved membrane induces stress. In this work, we present a theoretical framework to calculate the stress tensor and the torque as a consequence of the nematic ordering; we use the variational principle and invariance of the energy under Euclidean motions. Euler-Lagrange equations of the membrane as well as the corresponding boundary conditions also appear as natural results. The stress tensor found includes attraction-repulsion forces between defects; likewise, defects are attracted to patches with the same sign in Gaussian curvature. These forces are mediated by the Green function of the Laplace-Beltrami operator of the surface. In addition, we find nonisotropic forces that involve derivatives of the Green function and the Gaussian curvature, even in the normal direction to the membrane. We examine the case of axial membranes to analyze the spherical one. For spherical vesicles we find the modified Young-Laplace law as a consequence of the nematic texture. In the case of spherical cap with defect at the north pole, we find that the force is repulsive with respect to the north pole, indicating that it is an unstable equilibrium point.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendonça, João M.; Grimm, Simon L.; Grosheintz, Luc

    We have designed and developed, from scratch, a global circulation model (GCM) named THOR that solves the three-dimensional nonhydrostatic Euler equations. Our general approach lifts the commonly used assumptions of a shallow atmosphere and hydrostatic equilibrium. We solve the “pole problem” (where converging meridians on a sphere lead to increasingly smaller time steps near the poles) by implementing an icosahedral grid. Irregularities in the grid, which lead to grid imprinting, are smoothed using the “spring dynamics” technique. We validate our implementation of spring dynamics by examining calculations of the divergence and gradient of test functions. To prevent the computational timemore » step from being bottlenecked by having to resolve sound waves, we implement a split-explicit method together with a horizontally explicit and vertically implicit integration. We validate our GCM by reproducing the Earth and hot-Jupiter-like benchmark tests. THOR was designed to run on graphics processing units (GPUs), which allows for physics modules (radiative transfer, clouds, chemistry) to be added in the future, and is part of the open-source Exoclimes Simulation Platform (www.exoclime.org).« less

  15. Multidomain spectral solution of shock-turbulence interactions

    NASA Technical Reports Server (NTRS)

    Kopriva, David A.; Hussaini, M. Yousuff

    1989-01-01

    The use of a fitted-shock multidomain spectral method for solving the time-dependent Euler equations of gasdynamics is described. The multidomain method allows short spatial scale features near the shock to be resolved throughout the calculation. Examples presented are of a shock-plane wave, shock-hot spot and shock-vortex street interaction.

  16. Flow prediction for propfan engine installation effects on transport aircraft at transonic speeds

    NASA Technical Reports Server (NTRS)

    Samant, S. S.; Yu, N. J.

    1986-01-01

    An Euler-based method for aerodynamic analysis of turboprop transport aircraft at transonic speeds has been developed. In this method, inviscid Euler equations are solved over surface-fitted grids constructed about aircraft configurations. Propeller effects are simulated by specifying sources of momentum and energy on an actuator disc located in place of the propeller. A stripwise boundary layer procedure is included to account for the viscous effects. A preliminary version of an approach to embed the exhaust plume within the global Euler solution has also been developed for more accurate treatment of the exhaust flow. The resulting system of programs is capable of handling wing-body-nacelle-propeller configurations. The propeller disks may be tractors or pushers and may represent single or counterrotation propellers. Results from analyses of three test cases of interest (a wing alone, a wing-body-nacelle model, and a wing-nacelle-endplate model) are presented. A user's manual for executing the system of computer programs with formats of various input files, sample job decks, and sample input files is provided in appendices.

  17. Evaluation of Apple Maturity with Two Types of Dielectric Probes.

    PubMed

    Kafarski, Marcin; Wilczek, Andrzej; Szypłowska, Agnieszka; Lewandowski, Arkadiusz; Pieczywek, Piotr; Janik, Grzegorz; Skierucha, Wojciech

    2018-01-04

    The observed dielectric spectrum of ripe apples in the last period of shelf-life was analyzed using a multipole dielectric relaxation model, which assumes three active relaxation processes: primary α-process (water relaxation) and two secondary processes caused by solid-water-ion interactions α' (bound water relaxations), as well as β' (Maxwell-Wagner effect). The performance of two designs of the dielectric probe was compared: a classical coaxial open-ended probe (OE probe) and an open-ended probe with a prolonged central conductor in a form of an antenna (OE-A-probe). The OE-A probe increases the measurement volume and consequently extends the range of applications to other materials, like granulated agricultural products, soils, or liquid suspensions. However, its measurement frequency range is limited as compared to the OE probe because, above 1.5 GHz, the probe with the antenna generates higher propagation modes and the applied calibrations and calculations are not sufficient. It was shown that data from measurements using the OE-A probe gave slightly stronger correlations with apples' quality parameters than using the typical OE probe. Additionally, we have compared twelve multipole fitting models with different combinations of poles (eight three-pole and four two-pole models). It was shown that the best fit is obtained using a two-pole model for data collected for the OE-A probe and a three-pole model for the OE probe, using only Cole-Cole poles in both cases.

  18. Evaluation of Apple Maturity with Two Types of Dielectric Probes

    PubMed Central

    Kafarski, Marcin; Szypłowska, Agnieszka; Lewandowski, Arkadiusz; Pieczywek, Piotr; Janik, Grzegorz; Skierucha, Wojciech

    2018-01-01

    The observed dielectric spectrum of ripe apples in the last period of shelf-life was analyzed using a multipole dielectric relaxation model, which assumes three active relaxation processes: primary α-process (water relaxation) and two secondary processes caused by solid-water-ion interactions α’ (bound water relaxations), as well as β’ (Maxwell-Wagner effect). The performance of two designs of the dielectric probe was compared: a classical coaxial open-ended probe (OE probe) and an open-ended probe with a prolonged central conductor in a form of an antenna (OE-A-probe). The OE-A probe increases the measurement volume and consequently extends the range of applications to other materials, like granulated agricultural products, soils, or liquid suspensions. However, its measurement frequency range is limited as compared to the OE probe because, above 1.5 GHz, the probe with the antenna generates higher propagation modes and the applied calibrations and calculations are not sufficient. It was shown that data from measurements using the OE-A probe gave slightly stronger correlations with apples’ quality parameters than using the typical OE probe. Additionally, we have compared twelve multipole fitting models with different combinations of poles (eight three-pole and four two-pole models). It was shown that the best fit is obtained using a two-pole model for data collected for the OE-A probe and a three-pole model for the OE probe, using only Cole-Cole poles in both cases. PMID:29300324

  19. A true polar wander model for Neoproterozoic plate motions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ripperdan, R.L.

    1992-01-01

    Recent paleogeographic reconstructions for the interval 750--500 Ma (Neoproterozoic to Late Cambrian) require rapid rates of plate motion and/or rotation around an equatorial Euler pole to accommodate reconstructions for the Early Paleozoic. Motions of this magnitude appear to be very uncommon during the Phanerozoic. A model for plate motions based on the hypothesis that discrete intervals of rapid true polar wander (RTPW) occurred during the Neoproterozoic can account for the paleogeographic changes with minimum amounts of plate motion. The model uses the paleogeographic reconstructions of Hoffman (1991). The following constraints were applied during derivation of the model: (1) relative motionsmore » between major continental units were restricted to be combinations of great circle or small circle translations with Euler poles of rotation = spin axis; (2) maximum rates of relative translational plate motion were 0.2 m/yr. Based on these constraints, two separate sets of synthetic plate motion trajectories were determined. The sequence of events in both can be summarized as: (1) A rapid true polar wander event of ca 90[degree] rafting a supercontinent to the spin axis; (2) breakup of the polar supercontinent into two fragments, one with the Congo, West Africa, Amazonia, and Baltica cratons, the other with the Laurentia, East Gondwana, and Kalahari cratons; (3) great circle motion of the blocks towards the equator; (4) small circle motion leading to amalgamation of Gondwana and separation of Laurentia and Baltica. In alternative 1, rifting initiates between East Antarctica and Laurentia and one episode of RTPW is required. Alternative 2 requires two episodes of RTPW; and that rifting occurred first along the eastern margin and later along the western margin of Laurentia. Synthetic plate motion trajectories are compared to existing paleomagnetic and geological data, and implications of the model for paleoclimatic changes during the Neoproterozoic are discussed.« less

  20. N* resonances from KΛ amplitudes in sliced bins in energy

    NASA Astrophysics Data System (ADS)

    Anisovich, A. V.; Burkert, V.; Hadžimehmedović, M.; Ireland, D. G.; Klempt, E.; Nikonov, V. A.; Omerović, R.; Sarantsev, A. V.; Stahov, J.; Švarc, A.; Thoma, U.

    2017-12-01

    The two reactions γ p→ K+Λ and π- p→ K0Λ are analyzed to determine the leading photoproduction multipoles and the pion-induced partial wave amplitudes in slices of the invariant mass. The multipoles and the partial-wave amplitudes are simultaneously fitted in a multichannel Laurent+Pietarinen model (L+P model), which determines the poles in the complex energy plane on the second Riemann sheet close to the physical axes. The results from the L+P fit are compared with the results of an energy-dependent fit based on the Bonn-Gatchina (BnGa) approach. The study confirms the existence of several poles due to nucleon resonances in the region at about 1.9 GeV with quantum numbers JP = 1/2+, 3/2+, 1/2-, 3/2-, 5/2-.

  1. Numerical analysis of right-half plane zeros for a single-link manipulator. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Girvin, Douglas Lynn

    1992-01-01

    The purpose of this research is to further develop an understanding of how nonminimum phase zero location is affected by structural link design. As the demand for light-weight robots that can operate in a large workspace increases, the structural flexibility of the links become more of an issue in controls problems. When the objective is to accurately position the tip while the robot is actuated at the base, the system is nonminimum phase. One important characteristic of nonminimum phase systems is system zeros in the right half of the Laplace plane. The ability to pick the location of these nonminimum phase zeros would give the designer a new freedom similar to pole placement. The research targets a single-link manipulator operating in the horizontal plane and modeled as a Euler-Bernoulli beam with pinned-free end conditions. Using transfer matrix theory, one can consider link designs that have variable cross-sections along the length of the beam. A FORTRAN program was developed to determine the location of poles and zeros given the system model. The program was used to confirm previous research on nonminimum phase systems, and develop a relationship for designing linearly tapered links. The method allows the designer to choose the location of the first pole and zero and then defines the appropriate taper to match the desired locations. With the pole and zero location fixes, the designer can independently change the link's moment of inertia about its axis of rotation by adjusting the height of the beam. These results can be applied to inverse dynamic algorithms currently under development at Georgia Tech.

  2. Three-dimensional multigrid algorithms for the flux-split Euler equations

    NASA Technical Reports Server (NTRS)

    Anderson, W. Kyle; Thomas, James L.; Whitfield, David L.

    1988-01-01

    The Full Approximation Scheme (FAS) multigrid method is applied to several implicit flux-split algorithms for solving the three-dimensional Euler equations in a body fitted coordinate system. Each of the splitting algorithms uses a variation of approximate factorization and is implemented in a finite volume formulation. The algorithms are all vectorizable with little or no scalar computation required. The flux vectors are split into upwind components using both the splittings of Steger-Warming and Van Leer. The stability and smoothing rate of each of the schemes are examined using a Fourier analysis of the complete system of equations. Results are presented for three-dimensional subsonic, transonic, and supersonic flows which demonstrate substantially improved convergence rates with the multigrid algorithm. The influence of using both a V-cycle and a W-cycle on the convergence is examined.

  3. Free vibration analysis of microtubules based on the molecular mechanics and continuum beam theory.

    PubMed

    Zhang, Jin; Wang, Chengyuan

    2016-10-01

    A molecular structural mechanics (MSM) method has been implemented to investigate the free vibration of microtubules (MTs). The emphasis is placed on the effects of the configuration and the imperfect boundaries of MTs. It is shown that the influence of protofilament number on the fundamental frequency is strong, while the effect of helix-start number is almost negligible. The fundamental frequency is also found to decrease as the number of the blocked filaments at boundaries decreases. Subsequently, the Euler-Bernoulli beam theory is employed to reveal the physics behind the simulation results. Fitting the Euler-Bernoulli beam into the MSM data leads to an explicit formula for the fundamental frequency of MTs with various configurations and identifies a possible correlation between the imperfect boundary conditions and the length-dependent bending stiffness of MTs reported in experiments.

  4. Second order upwind Lagrangian particle method for Euler equations

    DOE PAGES

    Samulyak, Roman; Chen, Hsin -Chiang; Yu, Kwangmin

    2016-06-01

    A new second order upwind Lagrangian particle method for solving Euler equations for compressible inviscid fluid or gas flows is proposed. Similar to smoothed particle hydrodynamics (SPH), the method represents fluid cells with Lagrangian particles and is suitable for the simulation of complex free surface / multiphase flows. The main contributions of our method, which is different from SPH in all other aspects, are (a) significant improvement of approximation of differential operators based on a polynomial fit via weighted least squares approximation and the convergence of prescribed order, (b) an upwind second-order particle-based algorithm with limiter, providing accuracy and longmore » term stability, and (c) accurate resolution of states at free interfaces. In conclusion, numerical verification tests demonstrating the convergence order for fixed domain and free surface problems are presented.« less

  5. Second order upwind Lagrangian particle method for Euler equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samulyak, Roman; Chen, Hsin -Chiang; Yu, Kwangmin

    A new second order upwind Lagrangian particle method for solving Euler equations for compressible inviscid fluid or gas flows is proposed. Similar to smoothed particle hydrodynamics (SPH), the method represents fluid cells with Lagrangian particles and is suitable for the simulation of complex free surface / multiphase flows. The main contributions of our method, which is different from SPH in all other aspects, are (a) significant improvement of approximation of differential operators based on a polynomial fit via weighted least squares approximation and the convergence of prescribed order, (b) an upwind second-order particle-based algorithm with limiter, providing accuracy and longmore » term stability, and (c) accurate resolution of states at free interfaces. In conclusion, numerical verification tests demonstrating the convergence order for fixed domain and free surface problems are presented.« less

  6. N* resonances from K $$\\Lambda$$ Λ amplitudes in sliced bins in energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anisovich, A. V.; Burkert, V.; Hadžimehmedović, M.

    The two reactionsmore » $$\\gamma p\\to K^+\\Lambda$$ and $$\\pi^-p\\to K^0\\Lambda$$ are analyzed to determine the leading photoproduction multipoles and the pion-induced partial wave amplitudes in slices of the invariant mass. The multipoles and the partial-wave amplitudes are simultaneously fitted in a multichannel Laurent+Pietarinen model (L+P model), which determines the poles in the complex energy plane on the second Riemann sheet close to the physical axes. The results from the L+P fit are compared with the results of an energy-dependent fit based on the Bonn-Gatchina (BnGa) approach. The study confirms the existence of several poles due to nucleon resonances in the region at about 1.9\\,GeV with quantum numbers $J^P = 1/2^+$, $3/2^+, 1/2^-, 3/2^-, 5/2^-$.« less

  7. N* resonances from K $$\\Lambda$$ Λ amplitudes in sliced bins in energy

    DOE PAGES

    Anisovich, A. V.; Burkert, V.; Hadžimehmedović, M.; ...

    2017-12-22

    The two reactionsmore » $$\\gamma p\\to K^+\\Lambda$$ and $$\\pi^-p\\to K^0\\Lambda$$ are analyzed to determine the leading photoproduction multipoles and the pion-induced partial wave amplitudes in slices of the invariant mass. The multipoles and the partial-wave amplitudes are simultaneously fitted in a multichannel Laurent+Pietarinen model (L+P model), which determines the poles in the complex energy plane on the second Riemann sheet close to the physical axes. The results from the L+P fit are compared with the results of an energy-dependent fit based on the Bonn-Gatchina (BnGa) approach. The study confirms the existence of several poles due to nucleon resonances in the region at about 1.9\\,GeV with quantum numbers $J^P = 1/2^+$, $3/2^+, 1/2^-, 3/2^-, 5/2^-$.« less

  8. 3D automatic Cartesian grid generation for Euler flows

    NASA Technical Reports Server (NTRS)

    Melton, John E.; Enomoto, Francis Y.; Berger, Marsha J.

    1993-01-01

    We describe a Cartesian grid strategy for the study of three dimensional inviscid flows about arbitrary geometries that uses both conventional and CAD/CAM surface geometry databases. Initial applications of the technique are presented. The elimination of the body-fitted constraint allows the grid generation process to be automated, significantly reducing the time and effort required to develop suitable computational grids for inviscid flowfield simulations.

  9. Molecular ub figure-of-merit studies of solid solutions

    NASA Astrophysics Data System (ADS)

    Healy, David; Thomas, Philip R.; Szablewski, Marek; Cross, Graham H.

    1995-10-01

    The dipole moments ((mu) ) of a series of zwitterionic nonlinear optical chromophores doped into poly(methyl methacrylate) have been determined. Values of between 34 D and 38 D have been measured through the fitting of a uncurtailed Langevin function to the incidence angle dependence of the p-p second harmonic intensity generated from corona poled films. It is shown that accurate values of dipole moment can only be determined when the poling fields are lower than approximately 100 MVm-1 above which existing electric field poling models appear to be inadequate. The reasons for this are as yet unknown, possible mechanisms of the effect are presented.

  10. Tectonics of the Philippine Sea Plate as Seen From GPS Observations

    NASA Astrophysics Data System (ADS)

    Kato, T.; Kotake, Y.

    2002-12-01

    We analyzed the Global Positioning System (GPS) data in and around the Philippine Sea plate (PHS) to provide a velocity field for discussing tectonics of the plate and the mechanism of subduction process around PHS. In the present study, first, we revised the previously determined Euler vector of PHS relative to stable Eurasia using newly obtained data. Eastern part of Europe was assumed to be in a rigid block according to Nocquet et al. (2001) and we estimated the seven parameters of Helmert Transformation of this block relative to ITRF97. Then these parameters were used to estimate the Euler vector of PHS relative to stable Eurasia. For this purpose, we re-analyzed GPS data of up until 2001 at Chichi-jima, Okino-Tori Shima, Minami-Daito, Palau, Aogashima and Hachijo islands in ITRF97 reference together with surrounding IGS sites. Results suggest that the Euler vector of PHS relative to _gstable Eurasia_h is to be (61.4N, 163.7E, 1.003deg/my). Contrary to our previous estimate, the result suggests that Palau may be considered as in the rigid part of PHS. In contrast, the northern Izu islands are suggested to be affected by local volcanic disturbances. Then, we studied tectonic motions of Mariana arc and Palau-Yap arc. The Mariana Islands have been repeatedly observed since 1992. Kotake (2000) analyzed data at Anatahan, Guguan, Pagan and Agrigan as well as Saipan and Guam sites and showed that the velocities are much slower than what we expect from rigid motion of PHS. Residual velocities at these islands clearly show eastward motion of the Mariana Islands, suggesting that the Mariana Islands are subject to the spreading of the Mariana Trough. The rotation pole of the Mariana block was re-estimated as (20.6N, 145.2E) and angular velocity to be 4.17deg/ma, according to the re-estimated PHS motion. The position of the rotation pole is a few degrees south to the geographical hinge point of the Mariana arc and west Mariana ridge at about 24N. Estimated eastward velocities at these islands are consistent with those estimated from magnetic anomaly observations. Small arc parallel extension of about 1cm/yr between Agrigan and Guam suggest that the formation of the arc is not simple fan-shape expansion, as was indicated by Karig et al. (1978). Convergence at Yap trench has also been studied using GPS. Motions of Uliti and Fais suggest slight convergence at Yap trench with about 1cm/yr, but have some northward component relative to the trench.

  11. Supersonic wing and wing-body shape optimization using an adjoint formulation

    NASA Technical Reports Server (NTRS)

    Reuther, James; Jameson, Antony

    1995-01-01

    This paper describes the implementation of optimization techniques based on control theory for wing and wing-body design of supersonic configurations. The work represents an extension of our earlier research in which control theory is used to devise a design procedure that significantly reduces the computational cost by employing an adjoint equation. In previous studies it was shown that control theory could be used toeviseransonic design methods for airfoils and wings in which the shape and the surrounding body-fitted mesh are both generated analytically, and the control is the mapping function. The method has also been implemented for both transonic potential flows and transonic flows governed by the Euler equations using an alternative formulation which employs numerically generated grids, so that it can treat more general configurations. Here results are presented for three-dimensional design cases subject to supersonic flows governed by the Euler equation.

  12. Robust estimators of palaeosecular variation

    NASA Astrophysics Data System (ADS)

    Suttie, Neil; Biggin, Andrew; Holme, Richard

    2015-02-01

    The Fisher distribution is central to palaeomagnetism but presents several problems when used to characterize geomagnetic field directions as observed in sequences of volcanic rocks. First, it introduces a shallowing effect when used to define the mean of any group of directional unit vectors. This is problematic because it can suggest the presence of persistent non-axial dipole components when none are present. More importantly, it fails to capture the observed `long tail' in distributions of both directions and associated virtual geomagnetic poles in terms of angular distance from a central direction. To achieve a good fit to data, it therefore requires the introduction of a second distribution (and therefore the estimation of additional parameters) or the arbitrary removal of data. Here we present a new distribution to describe palaeomagnetic directions and demonstrate that it overcomes both of these problems, generating robust indicators of both the central direction (or pole position) and the spread of palaeomagnetic data as defined by unit vectors. Starting from the assumption that poles (or directions) have an expected colatitude, rather than a mean location, we derive the spherical exponential distribution. We demonstrate that this new distribution provides a good fit to palaeomagnetic data sets from seven large igneous provinces between 15 and 65 Ma and also those produced by numerical dynamo models. We also use it to derive a new shape parameter which may be used as a diagnostic tool for testing goodness of fit of models to data and use this to argue for a shift in geomagnetic behaviour between 5 and 15 Ma. Furthermore, we point out that this new statistic can be used to determine the most appropriate distribution to be used when constructing confidence limits for poles.

  13. A Conventional Mean Pole

    NASA Astrophysics Data System (ADS)

    Stamatakos, N. G.; McCarthy, D. D.

    2016-12-01

    A CONVENTIONAL MEAN POLE PATH The gradual drift of the pole associated with the rotational axis of the Earth in a terrestrial reference frame is characterized by the motion of a "mean pole." The IERS Conventions (2010) does not provide a formal definition of such a "mean pole." In its glossary it defines the terminology "mean pole" in the celestial frame by using the definition "the position on the celestial sphere towards which the Earth's axis points at a particular epoch, with the oscillations due to precession-nutation removed." The need for a terrestrial mean pole is mentioned in Section 7.1.4 of the IERS Conventions, which outlines the procedure to account for the variation in terrestrial site coordinates caused by the pole tide. It states, that an estimate of the wander of the mean pole to within about 10 milliarc-seconds is needed to ensure that the geopotential field is aligned to the long term mean pole. Historically the angular coordinates of this "mean pole" were calculated by averaging the observed angular coordinates of the rotational pole over six years, the beat period of the annual and approximately 14-month Chandler motions of the rotational pole. The IERS Conventions (2010) realization of the mean pole is composed of a cubic fit of the polar coordinates valid over 1976-2010 and a linear model for extrapolation after 2010.0. Further it notes that in the future, the IERS conventional mean pole will be revised as needed with sufficient advance notice. However, this document leaves open the formal definition of a conventional terrestrial mean pole, the spectral frequency content to be expected in such a definition and a procedure to be used to realize the coordinates of the path for users. Background is provided regarding past realizations of a "mean pole," and the requirements for a realization of a mean pole path are reviewed. Possible definitions and potential mathematical models to provide mean pole coordinates in the future are outlined. In addition, the authors hope that this poster will serve to open a discussion, which will identify geodesy disciplines that require a mean pole and what type of definition would be suitable to their needs.

  14. GPS Measurements of Crustal Deformation in Lebanon: Implication for Current Kinematics of the Sinaï Plate.

    NASA Astrophysics Data System (ADS)

    Vergnolle, M.; Jomaa, R.; Brax, M.; Menut, J. L.; Sursock, A.; Elias, A. R.; Mariscal, A.; Vidal, M.; Cotte, N.

    2016-12-01

    The Levant fault is a major strike-slip fault bounding the Arabia and the Sinaï plates. Its kinematics, although understood in its main characteristics, remains partly unresolved in its quantification, especially in the Lebanese restraining bend. We present a GPS velocity field based on survey GPS data acquired in Lebanon (1999, 2002, 2010) and on continuous GPS data publicly available in the Levant area. To complete the measurements along the Levant fault, we combine our velocity field with previously published velocity fields. First, from our velocity field, we derive two velocity profiles, across the Lebanese fault system, which we analyze in terms of elastic strain accumulation. Despite the uncertainty on the locking depth of the main strand of the Levant fault, small lateral fault slip rates (2-4mm/yr) are detected on each profile, with a slight slip rate decrease (<1mm/yr) from south to north. The latter is consistent with published results south and north of Lebanon. Small compression (<0.5mm/yr), with most part of it located across Mount Lebanon, is also suggested. Second, we analyze the combined GPS velocity field in the Sinaï tectonic framework. We evaluate how well the Sinaï plate motion is described with an Euler pole. Due to heterogeneous velocity errors (5 times smaller for cGPS velocities wrt sGPS velocities), a unique pole estimation using all the data provides good statistical results. However, the residuals show systematic deviations at central and northern sGPS stations. Using only the velocities at these stations, the estimated pole is significantly different from the unique pole at 95% confidence level. This analysis highlights the difficulty to robustly resolve the rigid Sinaï plate motion while the uncertainties on the velocities are heterogeneous. New sGPS measurements on existing sites should improve the solution and help to conclude.

  15. Three-Dimensional Aeroelastic and Aerothermoelastic Behavior in Hypersonic Flow

    NASA Technical Reports Server (NTRS)

    McNamara, Jack J.; Friedmann, Peretz P.; Powell, Kenneth G.; Thuruthimattam, Biju J.; Bartels, Robert E.

    2005-01-01

    The aeroelastic and aerothermoelastic behavior of three-dimensional configurations in hypersonic flow regime are studied. The aeroelastic behavior of a low aspect ratio wing, representative of a fin or control surface on a generic hypersonic vehicle, is examined using third order piston theory, Euler and Navier-Stokes aerodynamics. The sensitivity of the aeroelastic behavior generated using Euler and Navier-Stokes aerodynamics to parameters governing temporal accuracy is also examined. Also, a refined aerothermoelastic model, which incorporates the heat transfer between the fluid and structure using CFD generated aerodynamic heating, is used to examine the aerothermoelastic behavior of the low aspect ratio wing in the hypersonic regime. Finally, the hypersonic aeroelastic behavior of a generic hypersonic vehicle with a lifting-body type fuselage and canted fins is studied using piston theory and Euler aerodynamics for the range of 2.5 less than or equal to M less than or equal to 28, at altitudes ranging from 10,000 feet to 80,000 feet. This analysis includes a study on optimal mesh selection for use with Euler aerodynamics. In addition to the aeroelastic and aerothermoelastic results presented, three time domain flutter identification techniques are compared, namely the moving block approach, the least squares curve fitting method, and a system identification technique using an Auto-Regressive model of the aeroelastic system. In general, the three methods agree well. The system identification technique, however, provided quick damping and frequency estimations with minimal response record length, and therefore o ers significant reductions in computational cost. In the present case, the computational cost was reduced by 75%. The aeroelastic and aerothermoelastic results presented illustrate the applicability of the CFL3D code for the hypersonic flight regime.

  16. Dominant takeover regimes for genetic algorithms

    NASA Technical Reports Server (NTRS)

    Noever, David; Baskaran, Subbiah

    1995-01-01

    The genetic algorithm (GA) is a machine-based optimization routine which connects evolutionary learning to natural genetic laws. The present work addresses the problem of obtaining the dominant takeover regimes in the GA dynamics. Estimated GA run times are computed for slow and fast convergence in the limits of high and low fitness ratios. Using Euler's device for obtaining partial sums in closed forms, the result relaxes the previously held requirements for long time limits. Analytical solution reveal that appropriately accelerated regimes can mark the ascendancy of the most fit solution. In virtually all cases, the weak (logarithmic) dependence of convergence time on problem size demonstrates the potential for the GA to solve large N-P complete problems.

  17. Poly-Frobenius-Euler polynomials

    NASA Astrophysics Data System (ADS)

    Kurt, Burak

    2017-07-01

    Hamahata [3] defined poly-Euler polynomials and the generalized poly-Euler polynomials. He proved some relations and closed formulas for the poly-Euler polynomials. By this motivation, we define poly-Frobenius-Euler polynomials. We give some relations for this polynomials. Also, we prove the relationships between poly-Frobenius-Euler polynomials and Stirling numbers of the second kind.

  18. A new model for the Paleogene motion of Greenland relative to North America: Plate reconstructions of the Davis Strait and Nares Strait regions between Canada and Greenland

    NASA Astrophysics Data System (ADS)

    Oakey, Gordon N.; Chalmers, James A.

    2012-10-01

    A simplified plate kinematic model for the Paleogene motion of Greenland relative to North America has been developed to provide a new framework for modeling the oceanic spreading system in Baffin Bay and the intraplate tectonic development of the Davis Strait and Nares Strait regions of the Arctic. A single Euler rotation pole was calculated for the C13N to C24N Eocene motion of the Greenland Plate relative to North America using spreading centers and fracture zones interpreted from satellite derived gravity data in Baffin Bay combined with fracture zones in Labrador Sea from published sources. A single stage pole is proposed for the C25N to C27N portion of the Paleocene and a short-lived stage pole was found necessary to accommodate the C24N to C25N interval. This kinematic model has been used to reinterpret published shipborne magnetic profiles in central Baffin Bay to reveal a Paleocene spreading center and limits of both Eocene and Paleocene oceanic crust. Aeromagnetic data over northeastern Baffin Bay have been used to identify a new fracture zone in northern Baffin Bay. Plate reconstructions are presented incorporating constraints on plate boundaries from onshore and offshore geological and geophysical mapping. Within the Davis Strait, Paleocene oceanic crust was emplaced in an elongated rift that was subsequently inverted by approximately 300 km of Eocene transpression along the Ungava Fault Zone. In the Nares Strait Region, a "microplate" scenario is presented to explain the simultaneous formation of the Lancaster Sound Rift Basin and complex deformation within the Eurekan Orogenic Belt.

  19. Effect of materials and manufacturing on the bending stiffness of vaulting poles

    NASA Astrophysics Data System (ADS)

    Davis, C. L.; Kukureka, S. N.

    2012-09-01

    The increase in the world record height achieved in pole vaulting can be related to the improved ability of the athletes, in terms of their fitness and technique, and to the change in materials used to construct the pole. For example in 1960 there was a change in vaulting pole construction from bamboo to glass fibre reinforced polymer (GFRP) composites. The lighter GFRP pole enabled the athletes to have a faster run-up, resulting in a greater take-off speed, giving them more kinetic energy to convert into potential energy and hence height. GFRP poles also have a much higher failure stress than bamboo, so the poles were engineered to bend under the load of the athlete, thereby storing elastic strain energy that can be released as the pole straightens, resulting in greater energy efficiency. The bending also allowed athletes to change their vaulting technique from a style that involved the body remaining almost upright during the vault to one where the athlete goes over the bar with their feet upwards. Modern vaulting poles can be made from GFRP and/or carbon fibre reinforced polymer (CFRP) composites. The addition of carbon fibres maintains the mechanical properties of the pole, but allows a reduction in the weight. The number and arrangement of the fibres determines the mechanical properties, in particular the bending stiffness. Vaulting poles are also designed for an individual athlete to take into account each athlete’s ability and physical characteristics. The poles are rated by ‘weight’ to allow athletes to select an appropriate pole for their ability. This paper will review the development of vaulting poles and the requirements to maximize performance. The properties (bending stiffness and pre-bend) and microstructure (fibre volume fraction and lay-up) of typical vaulting poles will be discussed. Originally published as Davis C L and Kukureka S N (2004) Effect of materials and manufacturing on the bending stiffness of vaulting poles The Engineering of Sport 5 ed M Hubbard, R D Mehta and J M Pallis (Sheffield: ISEA). Republished here with permission from ISEA.

  20. Stability of the Zagreb realization of the Carnegie-Mellon-Berkeley coupled-channels unitary model

    NASA Astrophysics Data System (ADS)

    Osmanović, H.; Ceci, S.; Švarc, A.; Hadžimehmedović, M.; Stahov, J.

    2011-09-01

    In Hadžimehmedović [Phys. Rev. CPRVCAN0556-281310.1103/PhysRevC.84.035204 84, 035204 (2011)] we have used the Zagreb realization of Carnegie-Melon-Berkeley coupled-channel, unitary model as a tool for extracting pole positions from the world collection of partial-wave data, with the aim of eliminating model dependence in pole-search procedures. In order that the method is sensible, we in this paper discuss the stability of the method with respect to the strong variation of different model ingredients. We show that the Zagreb CMB procedure is very stable with strong variation of the model assumptions and that it can reliably predict the pole positions of the fitted partial-wave amplitudes.

  1. An Adaptively-Refined, Cartesian, Cell-Based Scheme for the Euler and Navier-Stokes Equations. Ph.D. Thesis - Michigan Univ.

    NASA Technical Reports Server (NTRS)

    Coirier, William John

    1994-01-01

    A Cartesian, cell-based scheme for solving the Euler and Navier-Stokes equations in two dimensions is developed and tested. Grids about geometrically complicated bodies are generated automatically, by recursive subdivision of a single Cartesian cell encompassing the entire flow domain. Where the resulting cells intersect bodies, polygonal 'cut' cells are created. The geometry of the cut cells is computed using polygon-clipping algorithms. The grid is stored in a binary-tree data structure which provides a natural means of obtaining cell-to-cell connectivity and of carrying out solution-adaptive refinement. The Euler and Navier-Stokes equations are solved on the resulting grids using a finite-volume formulation. The convective terms are upwinded, with a limited linear reconstruction of the primitive variables used to provide input states to an approximate Riemann solver for computing the fluxes between neighboring cells. A multi-stage time-stepping scheme is used to reach a steady-state solution. Validation of the Euler solver with benchmark numerical and exact solutions is presented. An assessment of the accuracy of the approach is made by uniform and adaptive grid refinements for a steady, transonic, exact solution to the Euler equations. The error of the approach is directly compared to a structured solver formulation. A non smooth flow is also assessed for grid convergence, comparing uniform and adaptively refined results. Several formulations of the viscous terms are assessed analytically, both for accuracy and positivity. The two best formulations are used to compute adaptively refined solutions of the Navier-Stokes equations. These solutions are compared to each other, to experimental results and/or theory for a series of low and moderate Reynolds numbers flow fields. The most suitable viscous discretization is demonstrated for geometrically-complicated internal flows. For flows at high Reynolds numbers, both an altered grid-generation procedure and a different formulation of the viscous terms are shown to be necessary. A hybrid Cartesian/body-fitted grid generation approach is demonstrated. In addition, a grid-generation procedure based on body-aligned cell cutting coupled with a viscous stensil-construction procedure based on quadratic programming is presented.

  2. Higher-order jump conditions for conservation laws

    NASA Astrophysics Data System (ADS)

    Oksuzoglu, Hakan

    2018-04-01

    The hyperbolic conservation laws admit discontinuous solutions where the solution variables can have finite jumps in space and time. The jump conditions for conservation laws are expressed in terms of the speed of the discontinuity and the state variables on both sides. An example from the Gas Dynamics is the Rankine-Hugoniot conditions for the shock speed. Here, we provide an expression for the acceleration of the discontinuity in terms of the state variables and their spatial derivatives on both sides. We derive a jump condition for the shock acceleration. Using this general expression, we show how to obtain explicit shock acceleration formulas for nonlinear hyperbolic conservation laws. We start with the Burgers' equation and check the derived formula with an analytical solution. We next derive formulas for the Shallow Water Equations and the Euler Equations of Gas Dynamics. We will verify our formulas for the Euler Equations using an exact solution for the spherically symmetric blast wave problem. In addition, we discuss the potential use of these formulas for the implementation of shock fitting methods.

  3. On the Solution of the Three-Dimensional Flowfield About a Flow-Through Nacelle. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Compton, William Bernard

    1985-01-01

    The solution of the three dimensional flow field for a flow through nacelle was studied. Both inviscid and viscous inviscid interacting solutions were examined. Inviscid solutions were obtained with two different computational procedures for solving the three dimensional Euler equations. The first procedure employs an alternating direction implicit numerical algorithm, and required the development of a complete computational model for the nacelle problem. The second computational technique employs a fourth order Runge-Kutta numerical algorithm which was modified to fit the nacelle problem. Viscous effects on the flow field were evaluated with a viscous inviscid interacting computational model. This model was constructed by coupling the explicit Euler solution procedure with a flag entrainment boundary layer solution procedure in a global iteration scheme. The computational techniques were used to compute the flow field for a long duct turbofan engine nacelle at free stream Mach numbers of 0.80 and 0.94 and angles of attack of 0 and 4 deg.

  4. A multiblock multigrid three-dimensional Euler equation solver

    NASA Technical Reports Server (NTRS)

    Cannizzaro, Frank E.; Elmiligui, Alaa; Melson, N. Duane; Vonlavante, E.

    1990-01-01

    Current aerodynamic designs are often quite complex (geometrically). Flexible computational tools are needed for the analysis of a wide range of configurations with both internal and external flows. In the past, geometrically dissimilar configurations required different analysis codes with different grid topologies in each. The duplicity of codes can be avoided with the use of a general multiblock formulation which can handle any grid topology. Rather than hard wiring the grid topology into the program, it is instead dictated by input to the program. In this work, the compressible Euler equations, written in a body-fitted finite-volume formulation, are solved using a pseudo-time-marching approach. Two upwind methods (van Leer's flux-vector-splitting and Roe's flux-differencing) were investigated. Two types of explicit solvers (a two-step predictor-corrector and a modified multistage Runge-Kutta) were used with multigrid acceleration to enhance convergence. A multiblock strategy is used to allow greater geometric flexibility. A report on simple explicit upwind schemes for solving compressible flows is included.

  5. Update to the conventional model for rotational deformation

    NASA Astrophysics Data System (ADS)

    Ries, J. C.; Desai, S.

    2017-12-01

    Rotational deformation (also called the "pole tide") is the deformation resulting from the centrifugal effect of polar motion on the solid earth and ocean, which manifests itself as variations in ocean heights, in the gravity field and in surface displacements. The model for rotational deformation assumes a primarily elastic response of the Earth to the centrifugal potential at the annual and Chandler periods and applies body tide Love numbers to the polar motion after removing the mean pole. The original model was conceived when the mean pole was moving (more or less) linearly, largely in response to glacial isostatic adjustment. In light of the significant variations in the mean pole due to present-day ice mass losses, an `appropriately' filtered mean pole was adopted for the conventional model, so that the longer period variations in the mean pole were not included in the rotational deformation model. However, the elastic Love numbers should be applicable to longer period variations as well, and only the secular (i.e. linear) mean pole should be removed. A model for the linear mean pole is recommended based on a linear fit to the IERS C01 time series spanning 1900 to 2015: in milliarcsec, Xp = 55.0+1.677*dt and Yp = 320.5+3.460*dt where dt=(t-t0), t0=2000.0 and assuming a year=365.25 days. The consequences of an updated model for rotational deformation for site motion and the gravity field are illustrated.

  6. Tectonics of the Easter plate

    NASA Technical Reports Server (NTRS)

    Engeln, J. F.; Stein, S.

    1984-01-01

    A new model for the Easter plate is presented in which rift propagation has resulted in the formation of a rigid plate between the propagating and dying ridges. The distribution of earthquakes, eleven new focal mechanisms, and existing bathymetric and magnetic data are used to describe the tectonics of this area. Both the Easter-Nazca and Easter-Pacific Euler poles are sufficiently close to the Easter plate to cause rapid changes in rates and directions of motion along the boundaries. The east and west boundaries are propagating and dying ridges; the southwest boundary is a slow-spreading ridge and the northern boundary is a complex zone of convergent and transform motion. The Easter plate may reflect the tectonics of rift propagation on a large scale, where rigid plate tectonics requires boundary reorientation. Simple schematic models to illustrate the general features and processes which occur at plates resulting from large-scale rift propagation are used.

  7. Volcanic Surface Deformation in Dominica From GPS Geodesy: Results From the 2007 NSF- REU Site

    NASA Astrophysics Data System (ADS)

    Murphy, R.; James, S.; Styron, R. H.; Turner, H. L.; Ashlock, A.; Cavness, C.; Collier, X.; Fauria, K.; Feinstein, R.; Staisch, L.; Williams, B.; Mattioli, G. S.; Jansma, P. E.; Cothren, J.

    2007-12-01

    GPS measurements have been collected on the island of Dominica in the Lesser Antilles between 2001 and 2007, with five month-long campaigns completed in June of each year supported in part by a NSF REU Site award for the past two years. All GPS data were collected using dual-frequency, code-phase receivers and geodetic-quality antenna, primarily choke rings. Three consecutive 24 hr observation days were normally obtained for each site. Precise station positions were estimated with GIPSY-OASISII using an absolute point positioning strategy and final, precise orbits, clocks, earth orientation parameters, and x-files. All position estimates were updated to ITRF05 and a revised Caribbean Euler pole was used to place our observations in a CAR-fixed frame. Time series were created to determine the velocity of each station. Forward and inverse elastic half-space models with planar (i.e. dike) and Mogi (i.e. point) sources were investigated. Inverse modeling was completed using a downhill simplex method of function minimization. Selected site velocities were used to create appropriate models for specific regions of Dominica, which correspond to known centers of pre-historic volcanic or recent shallow, seismic activity. Because of the current distribution of GPS sites with robust velocity estimates, we limit our models to possible magmatic activity in the northern, proximal to the volcanic centers of Morne Diablotins and Morne aux Diables, and southern, proximal to volcanic centers of Soufriere and Morne Plat Pays, regions of the island. Surface deformation data from the northernmost sites may be fit with the development of a several km-long dike trending approximately northeast- southwest. Activity in the southern volcanic centers is best modeled by an expanding point source at approximately 1 km depth.

  8. Iterative spectral methods and spectral solutions to compressible flows

    NASA Technical Reports Server (NTRS)

    Hussaini, M. Y.; Zang, T. A.

    1982-01-01

    A spectral multigrid scheme is described which can solve pseudospectral discretizations of self-adjoint elliptic problems in O(N log N) operations. An iterative technique for efficiently implementing semi-implicit time-stepping for pseudospectral discretizations of Navier-Stokes equations is discussed. This approach can handle variable coefficient terms in an effective manner. Pseudospectral solutions of compressible flow problems are presented. These include one dimensional problems and two dimensional Euler solutions. Results are given both for shock-capturing approaches and for shock-fitting ones.

  9. A computational study on the interaction between a vortex and a shock wave

    NASA Technical Reports Server (NTRS)

    Meadows, Kristine R.; Kumar, Ajay; Hussaini, M. Y.

    1989-01-01

    A computational study of two-dimensional shock vortex interaction is discussed in this paper. A second order upwind finite volume method is used to solve the Euler equations in conservation form. In this method, the shock wave is captured rather than fitted so that the cases where shock vortex interaction may cause secondary shocks can also be investigated. The effects of vortex strength on the computed flow and acoustic field generated by the interaction are qualitatively evaluated.

  10. Photocouplings at the pole from pion photoproduction

    DOE PAGES

    Ronchen, D.; Doring, M.; Huang, F.; ...

    2014-06-24

    The reactions γp → π 0p and γp → π +n are analyzed in a semi-phenomenological approach up to E ~ 2.3 GeV. Fits to differential cross section and single and double polarization observables are performed. A good overall reproduction of the available photoproduction data is achieved. The Julich2012 dynamical coupled-channel model -which describes elastic πN scattering and the world data base of the reactions πN → ηN, KΛ, and KΣ at the same time– is employed as the hadronic interaction in the final state. Furthermore, the framework guarantees analyticity and, thus, allows for a reliable extraction of resonance parametersmore » in terms of poles and residues. In particular, the photocouplings at the pole can be extracted and are presented.« less

  11. Structural fatigue test results for large wind turbine blade sections

    NASA Technical Reports Server (NTRS)

    Faddoul, J. R.; Sullivan, T. L.

    1982-01-01

    In order to provide quantitative information on the operating life capabilities of wind turbine rotor blade concepts for root-end load transfer, a series of cantilever beam fatigue tests was conducted. Fatigue tests were conducted on a laminated wood blade with bonded steel studs, a low cost steel spar (utility pole) with a welded flange, a utility pole with additional root-end thickness provided by a swaged collar, fiberglass spars with both bonded and nonbonded fittings, and, finally, an aluminum blade with a bolted steel fitting (Lockheed Mod-0 blade). Photographs, data, and conclusions for each of these tests are presented. In addition, the aluminum blade test results are compared to field failure information; these results provide evidence that the cantilever beam type of fatigue test is a satisfactory method for obtaining qualitative data on blade life expectancy and for identifying structurally underdesigned areas (hot spots).

  12. Means and method for nonuniform poling of piezoelectric transducers

    DOEpatents

    Hsu, David K.; Margetan, Frank J.; Hasselbusch, Michael D.; Wormley, Samuel J.; Hughes, Michael S.; Thompson, Donald O.

    1990-10-09

    An apparatus and method for nonuniform poling of piezoelectric transducers includes machining one or more indentation into an end of a piezoelectric rod and cutting the rod to present a thickened disk shape. Highly electrically conductive material is deposited on at least the indentations in the one end and on at least portions of the opposite face of the member. One or more electrodes are configured to matingly fit within the indentations on the one face of the disk, with a like number of electrodes being positionable on the opposite face of the material. Electrical power is then applied to the electrodes in desired amounts, polarity, and duration. The indentations vary the electrical field produced within the piezoelectric material to produce nonuniform poling in the material. The thick disk is then cut to remove the indentations and to present a thin, flat two sided disk for installation in a conventional piezoelectric transducer probe. The indentations are selected to produce poling in accordance with desired transducer response profiles such as Gaussian or Bessel functions.

  13. Paleomagnetism of baked sedimentary rocks in the Newark and Culpeper basins: Evidence for the J1 cusp and significant Late Triassic apparent polar wander from the Mesozoic basins of North America

    NASA Astrophysics Data System (ADS)

    Kodama, Kenneth P.; Cioppa, Maria T.; Sherwood, Elizabeth; Warnock, Andrew C.

    1994-08-01

    A paleomagnetic study of 14 sites in the baked sedimentary rocks of the Newark basin Passaic Formation in southeastern Pennsylvania reveals two types of magnetic behavior. Dark gray-colored, baked sedimentary rocks have peak unblocking temperatures of 640°C, high magnetic intensities, and shallow, normal polarity, northeasterly directions. Light gray-colored rocks have peak unblocking temperatures of less than 580°C, low magnetic intensities, and intermediate inclination, normal polarity, northwesterly directions. The low unblocking temperature magnetizations are secondary magnetizations which have declinations similar to but are shallower than the B remagnetization observed by Witte and Kent (1991) throughout the Newark basin. The discrepancy may be due to "underprinting" by an unresolved primary magnetization. The low unblocking temperature magnetization was probably acquired by growth of secondary magnetite during a hydrothermal event, as postulated by Sutter (1988), based on geochronologic data. The high unblocking temperature magnetization is significantly prefolding. Both the low-peak unblocking temperature magnetization and the high-peak unblocking temperature magnetization suggest a 15° counterclockwise block rotation of the Sassamansville syncline. If this rotation is removed from the high unblocking temperature sites collected around the fold, a stronger passage of the fold test results. Six sites were also collected from baked sediments and one site from diabase in northern Virginia's Culpeper basin, since Sutter's geochronological work indicated that the intrusives in the Culpeper basin are coeval to the Newark basin intrusives. Virtual geomagnetic poles (VGPs), based on the tilt-corrected, high-temperature Newark basin magnetizations, were compared with the VGPs calculated from the site means of a high-temperature magnetization isolated from baked sedimentary rocks in the Culpeper basin and to the magnetizations reported by Raymond (1982) from dikes and sills. In this comparison the in situ Culpeper poles agreed with the prefolding Newark poles significantly better than the prefolding Culpeper poles. This result indicates that Culpeper intrusives erupted into already tilted sedimentary rocks. The paleomagnetic pole determined from the combined Culpeper baked sediments, dikes, and sills (in situ coordinates) and the Newark basin baked sediments (tilt-corrected coordinates) lies at 60°N, 69°E and is of 201 Ma age. This latest Triassic/earliest Jurassic pole, when combined with the Newark basin Carnian results (Witte and Kent, 1989) and Norian results (Witte et al., 1991) corrected for a counterclockwise block rotation (Kodama et al., 1994), provides a record of significant polar wander from eastern North America's Mesozoic basins for the Late Triassic. This is consistent with observations made for a similar time period from rocks on the Colorado Plateau (Bazard and Butler, 1991). Comparison of the Newark/Culpeper pole to similar age poles from the Kayenta (Bazard and Butler, 1991) and Moenave Formations (Ekstrand and Butler, 1989) only requires small amounts (5°) of Colorado Plateau rotation. The pole also provides the first well-dated evidence of the Jl cusp in North American apparent polar wander from rocks not located on the Colorado Plateau, thus giving strong support for the usefulness of paleomagnetic Euler pole analysis of apparent polar wander.

  14. Bottom and charm mass determinations from global fits to Q\\overline{Q} bound states at N3LO

    NASA Astrophysics Data System (ADS)

    Mateu, Vicent; Ortega, Pablo G.

    2018-01-01

    The bottomonium spectrum up to n = 3 is studied within Non-Relativistic Quantum Chromodynamics up to N3LO. We consider finite charm quark mass effects both in the QCD potential and the \\overline{MS} -pole mass relation up to third order in the Y-scheme counting. The u = 1 /2 renormalon of the static potential is canceled by expressing the bottom quark pole mass in terms of the MSR mass. A careful investigation of scale variation reveals that, while n = 1 , 2 states are well behaved within perturbation theory, n = 3 bound states are no longer reliable. We carry out our analysis in the n ℓ = 3 and n ℓ = 4 schemes and conclude that, as long as finite m c effects are smoothly incorporated in the MSR mass definition, the difference between the two schemes is rather small. Performing a fit to b\\overline{b} bound states we find {\\overline{m}}_b({\\overline{m}}_b) = 4 .216 ± 0 .039 GeV. We extend our analysis to the lowest lying charmonium states finding {\\overline{m}}_c({\\overline{m}}_c) = 1 .273 ± 0 .054 GeV. Finally, we perform simultaneous fits for {\\overline{m}}_b and α s finding {α}_s^{({n}_f=5)}({m}_Z)=0.1178± 0.0051 . Additionally, using a modified version of the MSR mass with lighter massive quarks we are able to predict the uncalculated O({α}_s^4) virtual massive quark corrections to the relation between the \\overline{MS} and pole masses.

  15. Plume-induced subduction initiation at the Cretaceous India-Arabia transform plate boundary: paleomagnetic constraints from the Semail ophiolite, Oman

    NASA Astrophysics Data System (ADS)

    Van Hinsbergen, D. J. J.; Maffione, M.; Koornneef, L.; Guilmette, C.

    2016-12-01

    The Neotethyan realm hosts a prominent belt of Cretaceous supra-subduction zone ophiolites from Turkey and Cyprus in the west, to Oman in the east. Associated crustal and metamorphic sole ages tightly cluster at 95-90 Ma, interpreted to shortly post-date subduction initiation in an intra-oceanic setting along transform faults or ridge segments (or ridge-parallel oceanic detachments). This subduction episode ended when the Arabian-African continental lithosphere arrived in the trench in the late Cretaceous and the leading edge of the overriding oceanic lithosphere obducted as ophiolites, including the famous Semail ophiolite of Oman. This catastrophic subduction initiation phase is assumed to be as response to some far-field trigger. Here, we analyzed whether the Semail ophiolite was generated at an E-W trending Neotethyan ridge or at a N-S trending transform. Therefore we paleomagnetically analyzed 10 localities in sheeted dyke sections of the Semail ophiolite that trend parallel to the obduction front of the ophiolite taken to reflect the paleo-trench. We demonstrate that the sheeted dyke sections, and thus also the trench, had an initial N-S strike, indicating that subduction below the Semail ophiolite probably initiated along a N-S striking transform plate boundary between the Indian and Arabian plate rather than at a Neotethyan mid-ocean ridge. Sometime before 83 Ma, India broke away from Madagascar, and underwent a counterclockwise rotation relative to Africa/Arabia around an Euler pole just north of Madagascar, likely triggered by the arrival of the Morondova mantle plume, the associated large igneous province formed since at least 91 Ma. Numerical models have shown that plume push was a likely driver for the inception of India-Madagascar spreading and associated Indian rotation. North of the associated Euler pole, E-W convergence India-Arabia must have occurred during India-Madagascar break-up. This has already been related to 96-90 Ma subduction initiation below the Waziristan ophiolite of Pakistan. Our new results suggest that subduction initiation below the Semail ophiolite is directly related to this plume-triggered break-up. We speculate that also the synchronous subduction initiation farther west in the Neotethys, towards Cyprus and Turkey, may have been triggered by this mechanism.

  16. Noncircular features in Saturn's rings IV: Absolute radius scale and Saturn's pole direction

    NASA Astrophysics Data System (ADS)

    French, Richard G.; McGhee-French, Colleen A.; Lonergan, Katherine; Sepersky, Talia; Jacobson, Robert A.; Nicholson, Philip D.; Hedman, Mathew M.; Marouf, Essam A.; Colwell, Joshua E.

    2017-07-01

    We present a comprehensive solution for the geometry of Saturn's ring system, based on orbital fits to an extensive set of occultation observations of 122 individual ring edges and gaps. We begin with a restricted set of very high quality Cassini VIMS, UVIS, and RSS measurements for quasi-circular features in the C and B rings and the Cassini Division, and then successively add suitably weighted additional Cassini and historical occultation measurements (from Voyager, HST and the widely-observed 28 Sgr occultation of 3 Jul 1989) for additional non-circular features, to derive an absolute radius scale applicable across the entire classical ring system. As part of our adopted solution, we determine first-order corrections to the spacecraft trajectories used to determine the geometry of individual occultation chords. We adopt a simple linear model for Saturn's precession, and our favored solution yields a precession rate on the sky n^˙P = 0.207 ± 0 .006‧‧yr-1 , equivalent to an angular rate of polar motion ΩP = 0.451 ± 0 .014‧‧yr-1 . The 3% formal uncertainty in the fitted precession rate is approaching the point where it can provide a useful constraint on models of Saturn's interior, although realistic errors are likely to be larger, given the linear approximation of the precession model and possible unmodeled systematic errors in the spacecraft ephemerides. Our results are largely consistent with independent estimates of the precession rate based on historical RPX times (Nicholson et al., 1999 AAS/Division for Planetary Sciences Meeting Abstracts #31 31, 44.01) and from theoretical expectations that account for Titan's 700-yr precession period (Vienne and Duriez 1992, Astronomy and Astrophysics 257, 331-352). The fitted precession rate based on Cassini data only is somewhat lower, which may be an indication of unmodeled shorter term contributions to Saturn's polar motion from other satellites, or perhaps the result of inconsistencies in the assumed direction of Saturn's pole in the reconstructed Cassini spacecraft ephemerides. Overall, the agreement of our results with the widely-used French et al. (1993, Icarus 103, 163-214) radius scale is excellent, with very small (≲ 0.1 km) systematic differences, although differences in a few individual feature radii are as large as 6 km. Our new solution incorporates many more features across the ring system, and the fitted orbital elements correct for the several-km biases in the radii of many ring features in the French et al. (1993) catalog that were unresolved because of the large projected diameter of the occulted star in the 28 Sgr event. The formal errors in the fitted radii are generally quite small - on the order of tens of meters. Systematic errors stemming from uncertainty in the precession rate of Saturn's pole and its effect on the accuracy of the reconstructed Cassini trajectories are somewhat larger, but the absolute radius scale is relatively insensitive to 5-σ changes in the pole direction or precession rate, and we estimate the combined magnitude of these systematic errors and pole uncertainties to be of order 250 m. This estimate is likely to be improved once a new set of reconstructed Cassini trajectories has been developed, based on a self-consistent model for Saturn's pole. We demonstrate the utility of the new radius scale and the associated trajectory corrections in the analysis of short-wavelength density waves in the C ring. In online supplementary material, we provide in machine-readable form the more than 15,000 individual ring measurements used in this study, as well as details of the ring orbit fits underlying this work.

  17. More Sophisticated Fits of the Oribts of Haumea's Interacting Moons

    NASA Astrophysics Data System (ADS)

    Oldroyd, William Jared; Ragozzine, Darin; Porter, Simon

    2018-04-01

    Since the discovery of Haumea's moons, it has been a challenge to model the orbits of its moons, Hi’iaka and Namaka. With many precision HST observations, Ragozzine & Brown 2009 succeeded in calculating a three-point mass model which was essential because Keplerian orbits were not a statistically acceptable fit. New data obtained in 2010 could be fit by adding a J2 and spin pole to Haumea, but new data from 2015 was far from the predicted locations, even after an extensive exploration using Bayesian Markov Chain Monte Carlo methods (using emcee). Here we report on continued investigations as to why our model cannot fit the full 10-year baseline of data. We note that by ignoring Haumea and instead examining the relative motion of the two moons in the Hi’iaka centered frame leads to adequate fits for the data. This suggests there are additional parameters connected to Haumea that will be required in a full model. These parameters are potentially related to photocenter-barycenter shifts which could be significant enough to affect the fitting process; these are unlikely to be caused by the newly discovered ring (Ortiz et al. 2017) or by unknown satellites (Burkhart et al. 2016). Additionally, we have developed a new SPIN+N-bodY integrator called SPINNY that self-consistently calculates the interactions between n-quadrupoles and is designed to test the importance of other possible effects (Haumea C22, satellite torques on the spin-pole, Sun, etc.) on our astrometric fits. By correctly determining the orbit of Haumea’s satellites we develop a better understanding of the physical properties of each of the objects with implications for the formation of Haumea, its moons, and its collisional family.

  18. Application of advanced grid generation techniques for flow field computations about complex configurations

    NASA Technical Reports Server (NTRS)

    Kathong, Monchai; Tiwari, Surendra N.

    1988-01-01

    In the computation of flowfields about complex configurations, it is very difficult to construct a boundary-fitted coordinate system. An alternative approach is to use several grids at once, each of which is generated independently. This procedure is called the multiple grids or zonal grids approach; its applications are investigated. The method conservative providing conservation of fluxes at grid interfaces. The Euler equations are solved numerically on such grids for various configurations. The numerical scheme used is the finite-volume technique with a three-stage Runge-Kutta time integration. The code is vectorized and programmed to run on the CDC VPS-32 computer. Steady state solutions of the Euler equations are presented and discussed. The solutions include: low speed flow over a sphere, high speed flow over a slender body, supersonic flow through a duct, and supersonic internal/external flow interaction for an aircraft configuration at various angles of attack. The results demonstrate that the multiple grids approach along with the conservative interfacing is capable of computing the flows about the complex configurations where the use of a single grid system is not possible.

  19. Evaluating a linearized Euler equations model for strong turbulence effects on sound propagation.

    PubMed

    Ehrhardt, Loïc; Cheinet, Sylvain; Juvé, Daniel; Blanc-Benon, Philippe

    2013-04-01

    Sound propagation outdoors is strongly affected by atmospheric turbulence. Under strongly perturbed conditions or long propagation paths, the sound fluctuations reach their asymptotic behavior, e.g., the intensity variance progressively saturates. The present study evaluates the ability of a numerical propagation model based on the finite-difference time-domain solving of the linearized Euler equations in quantitatively reproducing the wave statistics under strong and saturated intensity fluctuations. It is the continuation of a previous study where weak intensity fluctuations were considered. The numerical propagation model is presented and tested with two-dimensional harmonic sound propagation over long paths and strong atmospheric perturbations. The results are compared to quantitative theoretical or numerical predictions available on the wave statistics, including the log-amplitude variance and the probability density functions of the complex acoustic pressure. The match is excellent for the evaluated source frequencies and all sound fluctuations strengths. Hence, this model captures these many aspects of strong atmospheric turbulence effects on sound propagation. Finally, the model results for the intensity probability density function are compared with a standard fit by a generalized gamma function.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Yu; Scheeres, D. J.; Busch, Michael W.

    The 4.5 km long near-Earth asteroid 4179 Toutatis has made close Earth flybys approximately every four years between 1992 and 2012, and has been observed with high-resolution radar imaging during each approach. Its most recent Earth flyby in 2012 December was observed extensively at the Goldstone and Very Large Array radar telescopes. In this paper, Toutatis' spin state dynamics are estimated from observations of five flybys between 1992 and 2008. Observations were used to fit Toutatis' spin state dynamics in a least-squares sense, with the solar and terrestrial tidal torques incorporated in the dynamical model. The estimated parameters are Toutatis'more » Euler angles, angular velocity, moments of inertia, and the center-of-mass-center-of-figure offset. The spin state dynamics as well as the uncertainties of the Euler angles and angular velocity of the converged solution are then propagated to 2012 December in order to compare the dynamical model to the most recent Toutatis observations. The same technique of rotational dynamics estimation can be applied to any other tumbling body, given sufficiently accurate observations.« less

  1. Comparison of jet plume shape predictions and plume influence on sonic boom signature

    NASA Technical Reports Server (NTRS)

    Barger, Raymond L.; Melson, N. Duane

    1992-01-01

    An Euler shock-fitting marching code yields good agreement with semiempirically determined plume shapes, although the agreement decreases somewhat with increasing nozzle angle and the attendant increase in the nonisentropic nature of the flow. Some calculations for the low boom configuration with a simple engine indicated that, for flight at altitudes above 60,000 feet, the plume effect is dominant. This negates the advantages of a low boom design. At lower altitudes, plume effects are significant, but of the order that can be incorporated into the low boom design process.

  2. Means and method for nonuniform poling of piezoelectric transducers

    DOEpatents

    Hsu, D.K.; Margetan, F.J.; Hasselbusch, M.D.; Wormley, S.J.; Hughes, M.S.; Thompson, D.O.

    1990-10-09

    An apparatus and method are disclosed for nonuniform poling of piezoelectric transducers includes machining one or more indentation into an end of a piezoelectric rod and cutting the rod to present a thickened disk shape. Highly electrically conductive material is deposited on at least the indentations in the one end and on at least portions of the opposite face of the member. One or more electrodes are configured to matingly fit within the indentations on the one face of the disk, with a like number of electrodes being positionable on the opposite face of the material. Electrical power is then applied to the electrodes in desired amounts, polarity, and duration. The indentations vary the electrical field produced within the piezoelectric material to produce nonuniform poling in the material. The thick disk is then cut to remove the indentations and to present a thin, flat two sided disk for installation in a conventional piezoelectric transducer probe. The indentations are selected to produce poling in accordance with desired transducer response profiles such as Gaussian or Bessel functions. 14 figs.

  3. Resonance-state properties from a phase shift analysis with the S -matrix pole method and the effective-range method

    NASA Astrophysics Data System (ADS)

    Irgaziev, B. F.; Orlov, Yu. V.

    2015-02-01

    Asymptotic normalization coefficients (ANCs) are fundamental nuclear constants playing an important role in nuclear physics and astrophysics. We derive a new useful relationship between ANCs of the Gamow radial wave function and the renormalized (due to the Coulomb interaction) Coulomb-nuclear partial scattering amplitude. We use an analytical approximation in the form of a series for the nonresonant part of the phase shift which can be analytically continued to the point of an isolated resonance pole in the complex plane of the momentum. Earlier, this method which we call the S -matrix pole method was used by us to find the resonance pole energy. We find the corresponding fitting parameters for the 5He,5Li , and 16O concrete resonance states. Additionally, based on the theory of the effective range, we calculate the parameters of the p3 /2 and p1 /2 resonance states of the nuclei 5He and 5Li and compare them with the results obtained by the S -matrix pole method. ANC values are found which can be used to calculate the reaction rate through the 16O resonances which lie slightly above the threshold for the α 12C channel.

  4. Development of Euler's ideas at the Moscow State Regional University

    NASA Astrophysics Data System (ADS)

    Vysikaylo, P. I.; Belyaev, V. V.

    2018-03-01

    In honor of the 250th anniversary of Euler's discovery of three libration points in Russia in 1767 in the area of two rotating gravitational attractors in 2017 an International Interdisciplinary Conference “Euler Readings MRSU 2017” was held in Moscow Region State University (MRSU). The Conference demonstrated that the Euler's ideas continue to remain relevant at the present time. This paper summarizes the main achievements on the basis of Leonard Euler's ideas presented at the Conference.

  5. The rotational dynamics of Titan from Cassini RADAR images

    NASA Astrophysics Data System (ADS)

    Meriggiola, Rachele; Iess, Luciano; Stiles, Bryan. W.; Lunine, Jonathan. I.; Mitri, Giuseppe

    2016-09-01

    Between 2004 and 2009 the RADAR instrument of the Cassini mission provided 31 SAR images of Titan. We tracked the position of 160 surface landmarks as a function of time in order to monitor the rotational dynamics of Titan. We generated and processed RADAR observables using a least squares fit to determine the updated values of the rotational parameters. We provide a new rotational model of Titan, which includes updated values for spin pole location, spin rate, precession and nutation terms. The estimated pole location is compatible with the occupancy of a Cassini state 1. We found a synchronous value of the spin rate (22.57693 deg/day), compatible at a 3-σ level with IAU predictions. The estimated obliquity is equal to 0.31°, incompatible with the assumption of a rigid body with fully-damped pole and a moment of inertia factor of 0.34, as determined by gravity measurements.

  6. Deep magnetic capture of magnetically loaded cells for spatially targeted therapeutics.

    PubMed

    Huang, Zheyong; Pei, Ning; Wang, Yanyan; Xie, Xinxing; Sun, Aijun; Shen, Li; Zhang, Shuning; Liu, Xuebo; Zou, Yunzeng; Qian, Juying; Ge, Junbo

    2010-03-01

    Magnetic targeting has recently demonstrated potential in promoting magnetically loaded cell delivery to target lesion, but its application is limited by magnetic attenuation. For deep magnetic capture of cells for spatial targeting therapeutics, we designed a magnetic pole, in which the magnetic field density can be focused at a distance from the pole. As flowing through a tube served as a model of blood vessels, the magnetically loaded mesenchymal stem cells (MagMSCs) were highly enriched at the site distance from the magnetic pole. The cell capture efficiency was positively influenced by the magnetic flux density, and inversely influenced by the flow velocity, and well-fitted with the deductive value by theoretical considerations. It appeared to us that the spatially-focused property of the magnetic apparatus promises a new deep targeting strategy to promote homing and engraftment for cellular therapy. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  7. Wedge and spring assembly for securing coils in electromagnets and dynamoelectric machines

    DOEpatents

    Lindner, Melvin; Cottingham, James G.

    1996-03-12

    A wedge and spring assembly for use in electromagnets or dynamoelectric machines having a housing with an axis therethrough and a plurality of coils supported on salient poles that extend radially inward from the housing toward the housing axis to define a plurality of interpole spaces. The wedge and spring assembly includes a nonmagnetic retainer spring and a nonmagnetic wedge. The retainer spring is formed to fit into one of the interpole spaces, and has juxtaposed ends defining between them a slit extending in a direction generally parallel to the housing axis. The wedge for insertion into the slit provides an outwardly directed force on respective portions of the juxtaposed ends to expand the slit so that respective portions of the retainer spring engage areas of the coils adjacent thereto, thereby resiliently holding the coils against their respective salient poles. The retainer spring is generally triangular shaped to fit within the interpole space, and the wedge is generally T-shaped.

  8. Wedge and spring assembly for securing coils in electromagnets and dynamoelectric machines

    DOEpatents

    Lindner, M.; Cottingham, J.G.

    1996-03-12

    A wedge and spring assembly for use in electromagnets or dynamoelectric machines is disclosed having a housing with an axis therethrough and a plurality of coils supported on salient poles that extend radially inward from the housing toward the housing axis to define a plurality of interpole spaces. The wedge and spring assembly includes a nonmagnetic retainer spring and a nonmagnetic wedge. The retainer spring is formed to fit into one of the interpole spaces, and has juxtaposed ends defining between them a slit extending in a direction generally parallel to the housing axis. The wedge for insertion into the slit provides an outwardly directed force on respective portions of the juxtaposed ends to expand the slit so that respective portions of the retainer spring engage areas of the coils adjacent thereto, thereby resiliently holding the coils against their respective salient poles. The retainer spring is generally triangular shaped to fit within the interpole space, and the wedge is generally T-shaped. 6 figs.

  9. A computational investigation of the finite-time blow-up of the 3D incompressible Euler equations based on the Voigt regularization

    DOE PAGES

    Larios, Adam; Petersen, Mark R.; Titi, Edriss S.; ...

    2017-04-29

    We report the results of a computational investigation of two blow-up criteria for the 3D incompressible Euler equations. One criterion was proven in a previous work, and a related criterion is proved here. These criteria are based on an inviscid regularization of the Euler equations known as the 3D Euler-Voigt equations, which are known to be globally well-posed. Moreover, simulations of the 3D Euler-Voigt equations also require less resolution than simulations of the 3D Euler equations for xed values of the regularization parameter α > 0. Therefore, the new blow-up criteria allow one to gain information about possible singularity formationmore » in the 3D Euler equations indirectly; namely, by simulating the better-behaved 3D Euler-Voigt equations. The new criteria are only known to be suficient for blow-up. Therefore, to test the robustness of the inviscid-regularization approach, we also investigate analogous criteria for blow-up of the 1D Burgers equation, where blow-up is well-known to occur.« less

  10. A computational investigation of the finite-time blow-up of the 3D incompressible Euler equations based on the Voigt regularization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larios, Adam; Petersen, Mark R.; Titi, Edriss S.

    We report the results of a computational investigation of two blow-up criteria for the 3D incompressible Euler equations. One criterion was proven in a previous work, and a related criterion is proved here. These criteria are based on an inviscid regularization of the Euler equations known as the 3D Euler-Voigt equations, which are known to be globally well-posed. Moreover, simulations of the 3D Euler-Voigt equations also require less resolution than simulations of the 3D Euler equations for xed values of the regularization parameter α > 0. Therefore, the new blow-up criteria allow one to gain information about possible singularity formationmore » in the 3D Euler equations indirectly; namely, by simulating the better-behaved 3D Euler-Voigt equations. The new criteria are only known to be suficient for blow-up. Therefore, to test the robustness of the inviscid-regularization approach, we also investigate analogous criteria for blow-up of the 1D Burgers equation, where blow-up is well-known to occur.« less

  11. A Universal Formula for Extracting the Euler Angles

    NASA Technical Reports Server (NTRS)

    Shuster, Malcolm D.; Markley, F. Landis

    2004-01-01

    Recently, the authors completed a study of the Davenport angles, which are a generalization of the Euler angles for which the initial and final Euler axes need not be either mutually parallel or mutually perpendicular or even along the coordinate axes. During the conduct of that study, those authors discovered a relationship which can be used to compute straightforwardly the Euler angles characterizing a proper-orthogonal direction-cosine matrix for an arbitrary Euler-axis set satisfying n(sub 1) x n(sub 2) = 0 and n(sub 3) x n(sub 1) = 0, which is also satisfied by the more usual Euler angles we encounter commonly in the practice of Astronautics. Rather than leave that relationship hidden in an article with very different focus from the present Engineering note, we present it and the universal algorithm derived from it for extracting the Euler angles from the direction-cosine matrix here. We also offer literal "code" for performing the operations, numerical examples, and general considerations about the extraction of Euler angles which are not universally known, particularly, the treatment of statistical error.

  12. Measuring (subglacial) bedform orientation, length, and longitudinal asymmetry - Method assessment.

    PubMed

    Jorge, Marco G; Brennand, Tracy A

    2017-01-01

    Geospatial analysis software provides a range of tools that can be used to measure landform morphometry. Often, a metric can be computed with different techniques that may give different results. This study is an assessment of 5 different methods for measuring longitudinal, or streamlined, subglacial bedform morphometry: orientation, length and longitudinal asymmetry, all of which require defining a longitudinal axis. The methods use the standard deviational ellipse (not previously applied in this context), the longest straight line fitting inside the bedform footprint (2 approaches), the minimum-size footprint-bounding rectangle, and Euler's approximation. We assess how well these methods replicate morphometric data derived from a manually mapped (visually interpreted) longitudinal axis, which, though subjective, is the most typically used reference. A dataset of 100 subglacial bedforms covering the size and shape range of those in the Puget Lowland, Washington, USA is used. For bedforms with elongation > 5, deviations from the reference values are negligible for all methods but Euler's approximation (length). For bedforms with elongation < 5, most methods had small mean absolute error (MAE) and median absolute deviation (MAD) for all morphometrics and thus can be confidently used to characterize the central tendencies of their distributions. However, some methods are better than others. The least precise methods are the ones based on the longest straight line and Euler's approximation; using these for statistical dispersion analysis is discouraged. Because the standard deviational ellipse method is relatively shape invariant and closely replicates the reference values, it is the recommended method. Speculatively, this study may also apply to negative-relief, and fluvial and aeolian bedforms.

  13. On the extraction of P 11 resonances from πN data

    DOE PAGES

    Hiroyuki Kamano; Nakamura, Satoshi X.; Lee, Tsung -Shung; ...

    2010-06-22

    With the accuracy of the available P 11 amplitudes of πΔ scattering, we show that two resonance poles near the pi Delta threshold, obtained in several analyses, are stable against large variations of parameters within a dynamical coupled-channels analysis. The number of poles in the 1.5 GeV < W < 2 GeV region could be more than one, depending on how the structure of the single-energy solution of SAID is fitted. Lastly, our results indicate the need of more accurate πN scattering data in the W > 1.6 GeV region for high precision resonance extractions.

  14. 30 CFR 7.304 - Technical requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (coarse, loose fitting) threads. The covers shall be secured against loosening. (5) Flat surfaces between... flame-arresting path shall be finished during the manufacturing process to not more than 250 microinches... requirements as the pole piece. (12) Coil-thread inserts, if used in holes for fastenings, shall meet the...

  15. 30 CFR 7.304 - Technical requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (coarse, loose fitting) threads. The covers shall be secured against loosening. (5) Flat surfaces between... flame-arresting path shall be finished during the manufacturing process to not more than 250 microinches... requirements as the pole piece. (12) Coil-thread inserts, if used in holes for fastenings, shall meet the...

  16. 30 CFR 7.304 - Technical requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (coarse, loose fitting) threads. The covers shall be secured against loosening. (5) Flat surfaces between... flame-arresting path shall be finished during the manufacturing process to not more than 250 microinches... requirements as the pole piece. (12) Coil-thread inserts, if used in holes for fastenings, shall meet the...

  17. 30 CFR 7.304 - Technical requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (coarse, loose fitting) threads. The covers shall be secured against loosening. (5) Flat surfaces between... flame-arresting path shall be finished during the manufacturing process to not more than 250 microinches... requirements as the pole piece. (12) Coil-thread inserts, if used in holes for fastenings, shall meet the...

  18. 30 CFR 7.304 - Technical requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (coarse, loose fitting) threads. The covers shall be secured against loosening. (5) Flat surfaces between... flame-arresting path shall be finished during the manufacturing process to not more than 250 microinches... requirements as the pole piece. (12) Coil-thread inserts, if used in holes for fastenings, shall meet the...

  19. Poling-assisted bleaching of soda-lime float glasses containing silver nanoparticles with a decreasing filling factor across the depth

    NASA Astrophysics Data System (ADS)

    Deparis, Olivier; Kazansky, Peter G.; Podlipensky, Alexander; Abdolvand, Amin; Seifert, Gerhard; Graener, Heinrich

    2006-08-01

    The recently discovered poling-assisted bleaching of glass with embedded silver nanoparticles has renewed the interest in thermal poling as a simple, reliable, and low-cost technique for controlling locally the surface-plasmon-resonant optical properties of metal-doped nanocomposite glasses. In the present study, the emphasis is put on the influence of the volume filling factor of metallic clusters on poling-assisted bleaching. Soda-lime silicate glass samples containing spherical silver nanoparticles with a decreasing filling factor across the depth were subject to thermal poling experiments with various poling temperatures, voltages, and times. Optical extinction spectra were measured from ultraviolet to near-infrared ranges and the surface-plasmon-resonant extinction due to silver nanoparticles (around 410nm) was modeled by the Maxwell Garnett [Philos. Trans. R. Soc. London, Ser. A 203, 385 (1904); 205, 237 (1906)] effective medium theory which was adapted in order to take into account the filling factor depth profile. A method was proposed for the retrieval of the filling factor depth profile from optical extinction spectra recorded in fresh and chemically etched samples. A stretched exponential depth profile turned out to be necessary in order to model samples having a high filling factor near the surface. Based on the fact that the electric-field-assisted dissolution of embedded metallic nanoparticles proceeded progressively from the top surface, a bleaching front was defined that moved forward in depth as time elapsed. The position of the bleaching front was determined after each poling experiment by fitting the measured extinction spectrum to the theoretical one. In samples with higher peak value and steeper gradient of the filling factor, the bleaching front reached more rapidly a steady-state depth as poling time increased. Also it increased less strongly with increasing poling voltage. These results were in agreement with the physics of the dissolution process. Finally, clear evidence of injection of hydrogenated ionic species from the atmosphere into the sample during poling was obtained from the growth of the infrared extinction peak associated with OH radicals.

  20. p-Euler equations and p-Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Li, Lei; Liu, Jian-Guo

    2018-04-01

    We propose in this work new systems of equations which we call p-Euler equations and p-Navier-Stokes equations. p-Euler equations are derived as the Euler-Lagrange equations for the action represented by the Benamou-Brenier characterization of Wasserstein-p distances, with incompressibility constraint. p-Euler equations have similar structures with the usual Euler equations but the 'momentum' is the signed (p - 1)-th power of the velocity. In the 2D case, the p-Euler equations have streamfunction-vorticity formulation, where the vorticity is given by the p-Laplacian of the streamfunction. By adding diffusion presented by γ-Laplacian of the velocity, we obtain what we call p-Navier-Stokes equations. If γ = p, the a priori energy estimates for the velocity and momentum have dual symmetries. Using these energy estimates and a time-shift estimate, we show the global existence of weak solutions for the p-Navier-Stokes equations in Rd for γ = p and p ≥ d ≥ 2 through a compactness criterion.

  1. High-resolution local gravity model of the south pole of the Moon from GRAIL extended mission data.

    PubMed

    Goossens, Sander; Sabaka, Terence J; Nicholas, Joseph B; Lemoine, Frank G; Rowlands, David D; Mazarico, Erwan; Neumann, Gregory A; Smith, David E; Zuber, Maria T

    2014-05-28

    We estimated a high-resolution local gravity field model over the south pole of the Moon using data from the Gravity Recovery and Interior Laboratory's extended mission. Our solution consists of adjustments with respect to a global model expressed in spherical harmonics. The adjustments are expressed as gridded gravity anomalies with a resolution of 1/6° by 1/6° (equivalent to that of a degree and order 1080 model in spherical harmonics), covering a cap over the south pole with a radius of 40°. The gravity anomalies have been estimated from a short-arc analysis using only Ka-band range-rate (KBRR) data over the area of interest. We apply a neighbor-smoothing constraint to our solution. Our local model removes striping present in the global model; it reduces the misfit to the KBRR data and improves correlations with topography to higher degrees than current global models. We present a high-resolution gravity model of the south pole of the Moon Improved correlations with topography to higher degrees than global models Improved fits to the data and reduced striping that is present in global models.

  2. High-resolution local gravity model of the south pole of the Moon from GRAIL extended mission data

    PubMed Central

    Goossens, Sander; Sabaka, Terence J; Nicholas, Joseph B; Lemoine, Frank G; Rowlands, David D; Mazarico, Erwan; Neumann, Gregory A; Smith, David E; Zuber, Maria T

    2014-01-01

    We estimated a high-resolution local gravity field model over the south pole of the Moon using data from the Gravity Recovery and Interior Laboratory's extended mission. Our solution consists of adjustments with respect to a global model expressed in spherical harmonics. The adjustments are expressed as gridded gravity anomalies with a resolution of 1/6° by 1/6° (equivalent to that of a degree and order 1080 model in spherical harmonics), covering a cap over the south pole with a radius of 40°. The gravity anomalies have been estimated from a short-arc analysis using only Ka-band range-rate (KBRR) data over the area of interest. We apply a neighbor-smoothing constraint to our solution. Our local model removes striping present in the global model; it reduces the misfit to the KBRR data and improves correlations with topography to higher degrees than current global models. Key Points We present a high-resolution gravity model of the south pole of the Moon Improved correlations with topography to higher degrees than global models Improved fits to the data and reduced striping that is present in global models PMID:26074637

  3. Thickness dependence of the poling and current-voltage characteristics of paint films made up of lead zirconate titanate ceramic powder and epoxy resin

    NASA Astrophysics Data System (ADS)

    Egusa, Shigenori; Iwasawa, Naozumi

    1995-11-01

    A specially prepared paint made up of lead zirconate titanate (PZT) ceramic powder and epoxy resin was coated on an aluminum plate and was cured at room temperature, thus forming the paint film of 25-300 μm thickness with a PZT volume fraction of 53%. The paint film was then poled at room temperature, and the poling behavior was determined by measuring the piezoelectric activity as a function of poling field. The poling behavior shows that the piezoelectric activity obtained at a given poling field increases with an increase in the film thickness from 25 to 300 μm. The current-voltage characteristic of the paint film, on the other hand, shows that the increase in the film thickness leads not only to an increase in the magnitude of the current density at a given electric field but also to an increase in the critical electric field at which the transition from the ohmic to space-charge-limited conduction takes place. This fact indicates that the amount of the space charge of electrons injected into the paint film decreases as the film thickness increases. Furthermore, comparison of the current-voltage characteristic of the paint film with that of a pure epoxy film reveals that the space charge is accumulated largely at the interface between the PZT and epoxy phases in the paint film. On the basis of this finding, a model is developed for the poling behavior of the paint film by taking into account a possible effect of the space-charge accumulation and a broad distribution of the electric field in the PZT phase. This model is shown to give an excellent fit to the experimental data of the piezoelectric activity obtained here as a function of poling field and film thickness.

  4. Load carriage energy expenditure with and without hiking poles during inclined walking.

    PubMed

    Jacobson, B H; Wright, T; Dugan, B

    2000-07-01

    The purpose of this study was to compare load carriage energy expenditure with and without using hiking poles. Twenty male volunteers aged 20-48yr (Mean=29.8yr) completed two randomly ordered submaximal treadmill trials with poles (E) and without poles (C). Poles and load (15 kg backpack) were fitted for each subject according to the manufacturers' suggestions. Heart rates (HR), minute ventilation (V(E)), oxygen consumption (O2), caloric expenditure (Kcal), and rating of perceived exertion (RPE) were recorded at the end of each minute. Two trials separated by one week consisted of a constant treadmill speed of 1.5 mph and 1 min at 10% grade, 2 min at 15% grade, 2 min at 20% grade, and 10 min. at 25% grade. Mean HR (E = 144.8 +/- 24.4 b x min(-1); C = 144.0 +/- 25.7 b x min(-1)) and mean V(E) (E=51.4 +/- 15.8L x min(-1); C=50.8 +/- 17.0L x min(-1)), VO2 (E = 26.9 +/- 6.1 ml x kg(-1) x min(-1); C = 27.4 +/- 6.6 ml x kg(-1) x min(-1)), and Kcal (E = 10.6 +/- 2.9 Kcal x min(-1); C = 10.8 +/- 3.1 Kcal x min(-1)) were not significantly different between the two conditions. RPE (E = 13.28 +/- 1.2; C = 14.56 +/- 1.2) was significantly lower (P < 0.05) with hiking poles. Analysis of paired time points yielded no significant differences in HR, VO2, V(E), and Kcal, however, RPE means were significantly lower for 5 of the last 7 trial minutes with the use of poles. These results suggest that during load carriage on moderate grade, the weight and use of hiking poles does not increase energy expenditure but may provide reduced perceptions of physical exertion.

  5. Application of multiple grids topology to supersonic internal/external flow interactions

    NASA Technical Reports Server (NTRS)

    Kathong, M.; Tiwari, S. N.; Smith, R. E.

    1988-01-01

    For many aerodynamic applications, it is very difficult to construct a smooth body-fitted grid around complex configurations. An approach, called 'multiple grids' or 'zonal grids', which subdivides the entire physical domain into several subdomains, is used to overcome such difficulties. The approach is applied to obtain the solutions to the Euler equations for the supersonic internal/external flow around a fighter-aircraft configuration. Steady-state solutions are presented for Mach 2 at 0, 3.79, 7, and 10 deg angles-of-attack. The problem of conservative treatment at the zonal interfaces is also addressed.

  6. Linear stability analysis of detonations via numerical computation and dynamic mode decomposition

    NASA Astrophysics Data System (ADS)

    Kabanov, Dmitry I.; Kasimov, Aslan R.

    2018-03-01

    We introduce a new method to investigate linear stability of gaseous detonations that is based on an accurate shock-fitting numerical integration of the linearized reactive Euler equations with a subsequent analysis of the computed solution via the dynamic mode decomposition. The method is applied to the detonation models based on both the standard one-step Arrhenius kinetics and two-step exothermic-endothermic reaction kinetics. Stability spectra for all cases are computed and analyzed. The new approach is shown to be a viable alternative to the traditional normal-mode analysis used in detonation theory.

  7. Palaeomagnetism of the Early Permian Mount Leyshon Intrusive Complex and Tuckers Igneous Complex, North Queensland, Australia

    NASA Astrophysics Data System (ADS)

    Clark, D. A.; Lackie, M. A.

    2003-06-01

    This study provides reliable, precisely defined and well-dated Early Permian (286 +/- 6 Ma) palaeomagnetic poles for Australia from the Mount Leyshon Intrusive Complex (MLIC) and the Tuckers Igneous Complex (TIC). Both complexes are associated with prominent negative magnetic anomalies, indicating the presence of rocks carrying stable remanence of reverse polarity, with a Koenigsberger ratio greater than unity. The characteristic remanence carried by the intrusive phases and by locally remagnetized, contact-metamorphosed host rocks is always of reverse polarity, consistent with acquisition during the Permo-Carboniferous (Kiaman) Reverse Superchron. The corresponding palaeopoles confirm that Australia occupied high latitudes in the Early Permian. The pole positions are: MLIC: lat. = 43.2 °S, long. = 137.3 °E dp = 6.0°, dm = 6.4° Q= 6; TIC: lat. = 47.5 °S, long. = 143.0 °E, dp = 6.0°, dm = 6.6° Q= 6. Permian palaeomagnetic overprinting is detectable at considerable distances from the MLIC (2-3 km), well beyond the zone of visible alteration. The primary nature of the Early Permian palaeomagnetic signature is established by full baked contact/aureole tests at both localities. Other new data from Australia are consistent with the poles reported here. Comparison of the Australian, African and South American Apparent Polar Wander Paths (APWP) suggests that mean Permian and Triassic poles from West Gondwana, particularly from South America, are biased by remagnetization in the Jurassic-Cretaceous and that the Late Palaeozoic-Mesozoic APWP for Gondwana is best defined by Australian data. The Australian APWP exhibits substantial movement through the Mesozoic. Provided only that the time-averaged palaeofield was zonal, the Early Triassic palaeomagnetic data from Australia provide an important palaeogeographic constraint that the south geographic pole was within, or very close to, SE Australia around 240 Ma. The new Early Permian poles are apparently more consistent with Pangaea B-type reconstructions of Gondwana and Laurussia than with the Pangaea A2 configuration. This may be partly an artefact of reconstruction problems within Gondwana, as systematic differences between approximately coeval, apparently reliable, Permo-Carboniferous poles from Africa, South America and Australia are evident in standard Gondwana reconstructions. These discordances require a tighter fit of the southern continents, suggesting that some attenuation of continental margins, not accounted for in the reconstructions, has occurred during breakup of Gondwana, or that the fit between East and West Gondwana needs to be substantially modified. If stretching of continental margins during breakup of supercontinents is a general phenomenon, it may help to ameliorate, but not solve, the long-standing controversy regarding Pangaea reconstructions. Although alternative Pangaea reconstructions, such as Pangaea B, may reconcile poles from Laurussia with Australian poles in the Late Carboniferous-Early Permian, no plausible reconstruction can bring the Early Triassic poles into agreement. This suggests that persistent departures from a pure dipole field may have been present in the Early Triassic. Lesser, but still significant, non-dipole effects may also have been present during the Late Carboniferous and Permian, and may help resolve the Pangaea A versus B controversy, without requiring substantial attenuation of continental margins or intracontinental deformation. We suggest that the most parsimonious interpretation of the palaeomagnetic and geological information is that Laurussia and Gondwana remained in a Pangaea A2-type configuration through the Permian and Triassic. Discordance between the APWPs for these two supercontinents is attributable mainly to persistent non-dipole components of the geomagnetic field, which were most important in the Early Triassic.

  8. Methods for making radially anisotropic thin-film magnetic torroidal cores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, Jizheng; Sullivan, Charles R.

    2017-05-23

    A method of forming a radially anisotropic toroidal magnetic core includes providing apparatus having a first magnet for providing a radial magnetic field extending across a cavity from an axial spindle to a surrounding second magnetic element, placing a substrate in the cavity, the substrate having a hole fitting around the head of the spindle; and sputter-depositing a film of ferromagnetic material onto the substrate. In an embodiment, the spindle is magnetically coupled to a first pole of the first magnet, the second magnetic element is coupled to a second pole of the first magnet, and a thermally conductive, nonmagnetic,more » insert separates the spindle and the second magnetic element.« less

  9. An improved study of the kappa resonance and the non-exotic s wave πK scatterings up to √{s}=2.1 GeV of LASS data

    NASA Astrophysics Data System (ADS)

    Zhou, Z. Y.; Zheng, H. Q.

    2006-09-01

    We point out that the dispersion relation for the left-hand cut integral presented in one of our previous paper [H.Q. Zheng, et al., Nucl. Phys. A 733 (2004) 235] is actually free of subtraction constant, even for unequal mass elastic scatterings. A new fit to the LASS data [D. Aston, et al., LASS Collaboration, Nucl. Phys. B 296 (1988) 493] is performed and firm evidence for the existence of κ pole is found. The correct use of analyticity also put strong constraints on threshold parameters—which are found to be in good agreement with those obtained from chiral theories. We also determined the pole parameters of K0∗(1430) on the second sheet, and reconfirm the existence of K0∗(1950) on the third sheet. We stress that the LASS data do not require them to have the twin pole structure of a typical Breit-Wigner resonance.

  10. Two-component duality and flavoring in the P+f model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dash, J.W.; Jones, S.T.; Martin, A.

    We show that modern Regge fits to rising ..pi..N total cross sections sigma/sub piN/ using the Harari-Freund P+f model of diffraction are not consistent with two-component duality. If a conventional Pomeron is chosen (dominant j-plane pole plus weak cuts), the resulting f is ''dual'' to the resonances plus one-half the background. Conversely, constraining the f-pole amplitude by duality does not allow a reasonable fit to sigma/sub piN/. In contrast, the P-f identity model of diffraction is shown to satisfy a modified form of two-component duality. We show that by incorporating flavoring renormalization, the P+f picture can be made consistent withmore » duality. The unflavored P intercept is 0.91 and the flavored P intercept is 1.1. Significant absorptive j-plane cuts are also required, though these are small enough to be consistent with dominant short-range order. Thus flavoring, which is so essential in P-f identity phenomenology, seems to play a positive role in diffraction scattering generally.« less

  11. Solution of steady and unsteady transonic-vortex flows using Euler and full-potential equations

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.; Chuang, Andrew H.; Hu, Hong

    1989-01-01

    Two methods are presented for inviscid transonic flows: unsteady Euler equations in a rotating frame of reference for transonic-vortex flows and integral solution of full-potential equation with and without embedded Euler domains for transonic airfoil flows. The computational results covered: steady and unsteady conical vortex flows; 3-D steady transonic vortex flow; and transonic airfoil flows. The results are in good agreement with other computational results and experimental data. The rotating frame of reference solution is potentially efficient as compared with the space fixed reference formulation with dynamic gridding. The integral equation solution with embedded Euler domain is computationally efficient and as accurate as the Euler equations.

  12. A Non-Linear Simulation for an Autonomous Unmanned Air Vehicle

    DTIC Science & Technology

    1993-09-01

    4D cos T cos 4D cos T r These equations can now be integrated to find the time history of the Euler angles . 2. Quaternions Another choice for the...is associated with the Euler angles . Quaternions haxe been in 15 use for quite some time. having been discovered by Euler in a search for complex... quaternions has the following advantages over Euler angles in repre- senting spatial orientation of a rigid body: "* Four states required to express the

  13. Embedding methods for the steady Euler equations

    NASA Technical Reports Server (NTRS)

    Chang, S. H.; Johnson, G. M.

    1983-01-01

    An approach to the numerical solution of the steady Euler equations is to embed the first-order Euler system in a second-order system and then to recapture the original solution by imposing additional boundary conditions. Initial development of this approach and computational experimentation with it were previously based on heuristic physical reasoning. This has led to the construction of a relaxation procedure for the solution of two-dimensional steady flow problems. The theoretical justification for the embedding approach is addressed. It is proven that, with the appropriate choice of embedding operator and additional boundary conditions, the solution to the embedded system is exactly the one to the original Euler equations. Hence, solving the embedded version of the Euler equations will not produce extraneous solutions.

  14. Vega: A rapidly rotating pole-on star

    NASA Technical Reports Server (NTRS)

    Gulliver, Austin F.; Hill, Graham; Adelman, Saul J.

    1994-01-01

    High-dispersion (2.4 A/mm), ultrahigh signal-to-noise ratio (3000:1) Reticon spectra of Vega revealed two distinct types of profiles. The strong lines exhibit classical rotational profiles with enhanced wings, but the weak lines have distinctly different, flat-bottomed profiles. Using ATLAS9 model atmopheres and SYNTHE synthetic spectra, Vega has been modeled as a rapidly rotating, pole-on star with a gradient in temperature and gravity over the photosphere. By fitting to the flat-bottomed line profiles of Fe 1 lambda 4528 and Ti 2 lambda 4529, we find least-squares fit values of V sin i = 21.8 plus or minus 0.2 km/sec polar T(sub eff) = 9695 plus or minus 25 K, polar log(base 10)g = 3.75 plus or minus 0.02 dex, V(sub eq) = 245 plus or minus 15 km/sec, and inclination 5 deg .1 plus or minus 0 deg .3. The variations in T(sub eff) and log(base 10)g over the photosphere total 390 K and 0.08 dex, respectively. Assuming V sin i = 21.8 km/sec, an independent fit to the observed continuous flux from 1200 to 10,500 A produced a similar set of values with polar T(sub eff) = 9595 plus or minus 20 K, polar log(base 10)g = 3.80 plus or minus 0.03 dex, and inclination 6 deg .0 plus or minus 0 deg .7.

  15. On Euler's Theorem for Homogeneous Functions and Proofs Thereof.

    ERIC Educational Resources Information Center

    Tykodi, R. J.

    1982-01-01

    Euler's theorem for homogenous functions is useful when developing thermodynamic distinction between extensive and intensive variables of state and when deriving the Gibbs-Duhem relation. Discusses Euler's theorem and thermodynamic applications. Includes six-step instructional strategy for introducing the material to students. (Author/JN)

  16. Experimental Comparison Between Mahoney and Complementary Sensor Fusion Algorithm for Attitude Determination by Raw Sensor Data of Xsens Imu on Buoy

    NASA Astrophysics Data System (ADS)

    Jouybari, A.; Ardalan, A. A.; Rezvani, M.-H.

    2017-09-01

    The accurate measurement of platform orientation plays a critical role in a range of applications including marine, aerospace, robotics, navigation, human motion analysis, and machine interaction. We used Mahoney filter, Complementary filter and Xsens Kalman filter for achieving Euler angle of a dynamic platform by integration of gyroscope, accelerometer, and magnetometer measurements. The field test has been performed in Kish Island using an IMU sensor (Xsens MTi-G-700) that installed onboard a buoy so as to provide raw data of gyroscopes, accelerometers, magnetometer measurements about 25 minutes. These raw data were used to calculate the Euler angles by Mahoney filter and Complementary filter, while the Euler angles collected by XSense IMU sensor become the reference of the Euler angle estimations. We then compared Euler angles which calculated by Mahoney Filter and Complementary Filter with reference to the Euler angles recorded by the XSense IMU sensor. The standard deviations of the differences between the Mahoney Filter, Complementary Filter Euler angles and XSense IMU sensor Euler angles were about 0.5644, 0.3872, 0.4990 degrees and 0.6349, 0.2621, 2.3778 degrees for roll, pitch, and heading, respectively, so the numerical result assert that Mahoney filter is precise for roll and heading angles determination and Complementary filter is precise only for pitch determination, it should be noted that heading angle determination by Complementary filter has more error than Mahoney filter.

  17. Asteroid (16) Psyche: Triaxial Ellipsoid Dimensions and Rotational Pole from Keck II NIRC2 AO Images and Keck I OSIRIS Images

    NASA Astrophysics Data System (ADS)

    Drummond, Jack D.; Conrad, Al; Reddy, Vishnu; de Kleer, Katherine R.; Adamkovics, Mate; de Pater, Imke; Merline, William J.; Tamblyn, Peter

    2016-10-01

    Adaptive optics (AO) images of asteroid (16) Psyche obtained at 4 epochs with the NIRC2 camera at the 10m W. M. Keck Observatory (Keck II) on UT 2015 December 25 lead to triaxial ellipsoid diameters of 279±4 x 230±2 x 195±14 km, and a rotational pole at RA=29° and Dec=-2°. Adding 6 more epochs obtained nearly simultaneously with the OSIRIS system at Keck I, as well as two more epochs from Keck II in 2009, yields diameters of 273±2 x 232±2 x 165±3 km, and a pole at RA=37° and Dec=+1°. (Errors are formal fit parameter uncertainties; an additional 4% uncertainty is possible from systematic biases.) The differing perspectives between 2015 (sub-Earth latitude Θ=-50°) and 2009 (Θ=-6°) improves primarily the c dimension and the location of the rotational pole, but illustrates how well images from even a single night can determine the size, shape, and pole of an asteroid. The 2015 observations were obtained as part of a campaign to study Psyche with many techniques over a few months, including radar from Arecibo and images from Magellan.These handful of images show the same rugged outline as the radius vector model available on the DAMIT website, constructed from many lightcurves and scaled by previous Keck AO images. In fact Psyche has rotated some 125,350 times between the first lightcurve in 1955 and our 2015 AO images, exactly 60 years apart to the day. Since the asteroid has such a high obliquity, these lightcurves have scanned well into both northern and southern hemispheres. The difference between the pole derived from our images and the radius vector model pole is only 7°, and the mean diameters of Psyche are 219 and 211 km, respectively.

  18. Multigrid Relaxation of a Factorizable, Conservative Discretization of the Compressible Flow Equations

    NASA Technical Reports Server (NTRS)

    Roberts, Thomas W.; Sidilkover, David; Thomas, J. L.

    2000-01-01

    The second-order factorizable discretization of the compressible Euler equations developed by Sidilkover is extended to conservation form on general curvilinear body-fitted grids. The discrete equations are solved by symmetric collective Gauss-Seidel relaxation and FAS multigrid. Solutions for flow in a channel with Mach numbers ranging from 0.0001 to a supercritical Mach number are shown, demonstrating uniform convergence rates and no loss of accuracy in the incompressible limit. A solution for the flow around the leading edge of a semi-infinite parabolic body demonstrates that the scheme maintains rapid convergence for a flow containing a stagnation point.

  19. Leonhard Euler and his contributions to fluid mechanics

    NASA Technical Reports Server (NTRS)

    Salas, M. D.

    1988-01-01

    The career of Leonhard Euler, one of the world's most gifted scientists, is reviewed. The paper focuses on Euler's contributions to fluid mechanics and gives a perspective of how this science was born. A bibliography is included to provide the history enthusiast with a starting point for further study.

  20. Beyond Euler's Method: Implicit Finite Differences in an Introductory ODE Course

    ERIC Educational Resources Information Center

    Kull, Trent C.

    2011-01-01

    A typical introductory course in ordinary differential equations (ODEs) exposes students to exact solution methods. However, many differential equations must be approximated with numerical methods. Textbooks commonly include explicit methods such as Euler's and Improved Euler's. Implicit methods are typically introduced in more advanced courses…

  1. A new Euler scheme based on harmonic-polygon approach for solving first order ordinary differential equation

    NASA Astrophysics Data System (ADS)

    Yusop, Nurhafizah Moziyana Mohd; Hasan, Mohammad Khatim; Wook, Muslihah; Amran, Mohd Fahmi Mohamad; Ahmad, Siti Rohaidah

    2017-10-01

    There are many benefits to improve Euler scheme for solving the Ordinary Differential Equation Problems. Among the benefits are simple implementation and low-cost computational. However, the problem of accuracy in Euler scheme persuade scholar to use complex method. Therefore, the main purpose of this research are show the construction a new modified Euler scheme that improve accuracy of Polygon scheme in various step size. The implementing of new scheme are used Polygon scheme and Harmonic mean concept that called as Harmonic-Polygon scheme. This Harmonic-Polygon can provide new advantages that Euler scheme could offer by solving Ordinary Differential Equation problem. Four set of problems are solved via Harmonic-Polygon. Findings show that new scheme or Harmonic-Polygon scheme can produce much better accuracy result.

  2. A New Precession Formula

    NASA Astrophysics Data System (ADS)

    Fukushima, Toshio

    2003-07-01

    We adapt J. G. Williams' expression of the precession and nutation using the 3-1-3-1 rotation to an arbitrary inertial frame of reference. The modified formulation avoids a singularity caused by finite pole offsets near the epoch. By adopting the planetary precession formula numerically determined from DE405 and by using a recent theory of the forced nutation of the nonrigid Earth by Shirai & Fukishima, we analyze the celestial pole offsets observed by VLBI for 1979-2000 and determine the best-fit polynomials of the lunisolar precession angles. We then translate the results into classical precession quantities and evaluate the difference due to the difference in the ecliptic definition. The combination of these formulae and the periodic part of the Shirai-Fukishima nutation theory serves as a good approximation of the precession-nutation matrix in the International Celestial Reference Frame. As a by-product, we determine the mean celestial pole offset at J2000.0 as X0=-(17.12+/-0.01) mas and Y0=-(5.06+/-0.02) mas. Also, we estimate the speed of general precession in longitude at J2000.0 as p=5028.7955"+/-0.0003" per Julian century, the mean obliquity at J2000.0 in the inertial sense as (ɛ0)I=84381.40621"+/-0.00001" and in the rotational sense as (ɛ0)R=84381.40955"+/-0.00001", and the dynamical flattening of Earth as Hd=(3.2737804+/-0.0000003)×10-3. Furthermore, we establish a fast way to compute the precession-nutation matrix and provide a best-fit polynomial of an angle to specify the mean Celestial Ephemeris Origin.

  3. Light-curve modelling constraints on the obliquities and aspect angles of the young Fermi pulsars

    NASA Astrophysics Data System (ADS)

    Pierbattista, M.; Harding, A. K.; Grenier, I. A.; Johnson, T. J.; Caraveo, P. A.; Kerr, M.; Gonthier, P. L.

    2015-03-01

    In more than four years of observation the Large Area Telescope on board the Fermi satellite has identified pulsed γ-ray emission from more than 80 young or middle-aged pulsars, in most cases providing light curves with high statistics. Fitting the observed profiles with geometrical models can provide estimates of the magnetic obliquity α and of the line of sight angle ζ, yielding estimates of the radiation beaming factor and radiated luminosity. Using different γ-ray emission geometries (Polar Cap, Slot Gap, Outer Gap, One Pole Caustic) and core plus cone geometries for the radio emission, we fit γ-ray light curves for 76 young or middle-aged pulsars and we jointly fit their γ-ray plus radio light curves when possible. We find that a joint radio plus γ-ray fit strategy is important to obtain (α,ζ) estimates that can explain simultaneously detectable radio and γ-ray emission: when the radio emission is available, the inclusion of the radio light curve in the fit leads to important changes in the (α,ζ) solutions. The most pronounced changes are observed for Outer Gap and One Pole Caustic models for which the γ-ray only fit leads to underestimated α or ζ when the solution is found to the left or to the right of the main α-ζ plane diagonal respectively. The intermediate-to-high altitude magnetosphere models, Slot Gap, Outer Gap, and One pole Caustic, are favoured in explaining the observations. We find no apparent evolution of α on a time scale of 106 years. For all emission geometries our derived γ-ray beaming factors are generally less than one and do not significantly evolve with the spin-down power. A more pronounced beaming factor vs. spin-down power correlation is observed for Slot Gap model and radio-quiet pulsars and for the Outer Gap model and radio-loud pulsars. The beaming factor distributions exhibit a large dispersion that is less pronounced for the Slot Gap case and that decreases from radio-quiet to radio-loud solutions. For all models, the correlation between γ-ray luminosity and spin-down power is consistent with a square root dependence. The γ-ray luminosities obtained by using the beaming factors estimated in the framework of each model do not exceed the spin-down power. This suggests that assuming a beaming factor of one for all objects, as done in other studies, likely overestimates the real values. The data show a relation between the pulsar spectral characteristics and the width of the accelerator gap. The relation obtained in the case of the Slot Gap model is consistent with the theoretical prediction. Appendices are available in electronic form at http://www.aanda.org

  4. Light-curve modelling constraints on the obliquities and aspect angles of the young Fermi pulsars

    DOE PAGES

    Pierbattista, M.; Harding, A. K.; Grenier, I. A.; ...

    2015-02-10

    In more than four years of observation the Large Area Telescope on board the Fermi satellite has identified pulsed γ-ray emission from more than 80 young or middle-aged pulsars, in most cases providing light curves with high statistics. Fitting the observed profiles with geometrical models can provide estimates of the magnetic obliquity α and of the line of sight angle ζ, yielding estimates of the radiation beaming factor and radiated luminosity. Using different γ-ray emission geometries (Polar Cap, Slot Gap, Outer Gap, One Pole Caustic) and core plus cone geometries for the radio emission, we fit γ-ray light curves formore » 76 young or middle-aged pulsars and we jointly fit their γ-ray plus radio light curves when possible. We find that a joint radio plus γ-ray fit strategy is important to obtain (α,ζ) estimates that can explain simultaneously detectable radio and γ-ray emission: when the radio emission is available, the inclusion of the radio light curve in the fit leads to important changes in the (α,ζ) solutions. The most pronounced changes are observed for Outer Gap and One Pole Caustic models for which the γ-ray only fit leads to underestimated α or ζ when the solution is found to the left or to the right of the main α-ζ plane diagonal respectively. The intermediate-to-high altitude magnetosphere models, Slot Gap, Outer Gap, and One pole Caustic, are favoured in explaining the observations. We find no apparent evolution of α on a time scale of 106 years. For all emission geometries our derived γ-ray beaming factors are generally less than one and do not significantly evolve with the spin-down power. A more pronounced beaming factor vs. spin-down power correlation is observed for Slot Gap model and radio-quiet pulsars and for the Outer Gap model and radio-loud pulsars. The beaming factor distributions exhibit a large dispersion that is less pronounced for the Slot Gap case and that decreases from radio-quiet to radio-loud solutions. For all models, the correlation between γ-ray luminosity and spin-down power is consistent with a square root dependence. The γ-ray luminosities obtained by using the beaming factors estimated in the framework of each model do not exceed the spin-down power. This suggests that assuming a beaming factor of one for all objects, as done in other studies, likely overestimates the real values. The data show a relation between the pulsar spectral characteristics and the width of the accelerator gap. Furthermore, the relation obtained in the case of the Slot Gap model is consistent with the theoretical prediction.« less

  5. Light-Curve Modelling Constraints on the Obliquities and Aspect Angles of the Young Fermi Pulsars

    NASA Technical Reports Server (NTRS)

    Pierbattista, M.; Harding, A. K.; Grenier, I. A.; Johnson, T. J.; Caraveo, P. A.; Kerr, M.; Gonthier, P. L.

    2015-01-01

    In more than four years of observation the Large Area Telescope on board the Fermi satellite has identified pulsed gamma-ray emission from more than 80 young or middle-aged pulsars, in most cases providing light curves with high statistics. Fitting the observed profiles with geometrical models can provide estimates of the magnetic obliquity alpha and of the line of sight angle zeta, yielding estimates of the radiation beaming factor and radiated luminosity. Using different gamma-ray emission geometries (Polar Cap, Slot Gap, Outer Gap, One Pole Caustic) and core plus cone geometries for the radio emission, we fit gamma-ray light curves for 76 young or middle-aged pulsars and we jointly fit their gamma-ray plus radio light curves when possible. We find that a joint radio plus gamma-ray fit strategy is important to obtain (alpha, zeta) estimates that can explain simultaneously detectable radio and gamma-ray emission: when the radio emission is available, the inclusion of the radio light curve in the fit leads to important changes in the (alpha, gamma) solutions. The most pronounced changes are observed for Outer Gap and One Pole Caustic models for which the gamma-ray only fit leads to underestimated alpha or zeta when the solution is found to the left or to the right of the main alpha-zeta plane diagonal respectively. The intermediate-to-high altitude magnetosphere models, Slot Gap, Outer Gap, and One pole Caustic, are favored in explaining the observations. We find no apparent evolution of a on a time scale of 106 years. For all emission geometries our derived gamma-ray beaming factors are generally less than one and do not significantly evolve with the spin-down power. A more pronounced beaming factor vs. spin-down power correlation is observed for Slot Gap model and radio-quiet pulsars and for the Outer Gap model and radio-loud pulsars. The beaming factor distributions exhibit a large dispersion that is less pronounced for the Slot Gap case and that decreases from radio-quiet to radio-loud solutions. For all models, the correlation between gamma-ray luminosity and spin-down power is consistent with a square root dependence. The gamma-ray luminosities obtained by using the beaming factors estimated in the framework of each model do not exceed the spin-down power. This suggests that assuming a beaming factor of one for all objects, as done in other studies, likely overestimates the real values. The data show a relation between the pulsar spectral characteristics and the width of the accelerator gap. The relation obtained in the case of the Slot Gap model is consistent with the theoretical prediction.

  6. Euler force actuation mechanism for siphon valving in compact disk-like microfluidic chips.

    PubMed

    Deng, Yongbo; Fan, Jianhua; Zhou, Song; Zhou, Teng; Wu, Junfeng; Li, Yin; Liu, Zhenyu; Xuan, Ming; Wu, Yihui

    2014-03-01

    Based on the Euler force induced by the acceleration of compact disk (CD)-like microfluidic chip, this paper presents a novel actuation mechanism for siphon valving. At the preliminary stage of acceleration, the Euler force in the tangential direction of CD-like chip takes the primary place compared with the centrifugal force to function as the actuation of the flow, which fills the siphon and actuates the siphon valving. The Euler force actuation mechanism is demonstrated by the numerical solution of the phase-field based mathematical model for the flow in siphon valve. In addition, experimental validation is implemented in the polymethylmethacrylate-based CD-like microfluidic chip manufactured using CO2 laser engraving technique. To prove the application of the proposed Euler force actuation mechanism, whole blood separation and plasma extraction has been conducted using the Euler force actuated siphon valving. The newly introduced actuation mechanism overcomes the dependence on hydrophilic capillary filling of siphon by avoiding external manipulation or surface treatments of polymeric material. The sacrifice for highly integrated processing in pneumatic pumping technique is also prevented by excluding the volume-occupied compressed air chamber.

  7. Ground based planetary research

    NASA Technical Reports Server (NTRS)

    1973-01-01

    High spatial resolution spectrophotometric observations made in the wavelength region lambda lambda 0.6 - 2.0 micrometers are used to study the Jovian and Saturnian limb darkening. Limb darkening coefficients (k) of the Minnaert function are derived for the cloud layers of both planets. A value of k = 1.0 is found for Jupiter over the entire disk while values of between 0.75 and 0.90 are found for different latitudes for Saturn. These data are used to derive geometric albedoes (G) for the various belts, zones, spots and regions observed on Jupiter and Saturn. These values of G and k are in turn used to show that an isotropic scattering model is invalid for Jupiter and that at least an asymmetric scattering function, such as the Euler function, is needed to fit the Jovian data. The Jovian scattering function is found to generally vary between 0.960 and 0.994 as a function of wavelength and the feature observed. The Saturn geometric albedoes and values of k indicate that Euler's function fails to adequately model the scattering properties of the Saturnian clouds. As a result it is suggested that simple scattering theory may not apply to the Saturn clouds or that they are better represented by a cumulus cloud model.

  8. An experiment for determining the Euler load by direct computation

    NASA Technical Reports Server (NTRS)

    Thurston, Gaylen A.; Stein, Peter A.

    1986-01-01

    A direct algorithm is presented for computing the Euler load of a column from experimental data. The method is based on exact inextensional theory for imperfect columns, which predicts two distinct deflected shapes at loads near the Euler load. The bending stiffness of the column appears in the expression for the Euler load along with the column length, therefore the experimental data allows a direct computation of bending stiffness. Experiments on graphite-epoxy columns of rectangular cross-section are reported in the paper. The bending stiffness of each composite column computed from experiment is compared with predictions from laminated plate theory.

  9. The Scaling Group of the 1-D Invisicid Euler Equations

    NASA Astrophysics Data System (ADS)

    Schmidt, Emma; Ramsey, Scott; Boyd, Zachary; Baty, Roy

    2017-11-01

    The one dimensional (1-D) compressible Euler equations in non-ideal media support scale invariant solutions under a variety of initial conditions. Famous scale invariant solutions include the Noh, Sedov, Guderley, and collapsing cavity hydrodynamic test problems. We unify many classical scale invariant solutions under a single scaling group analysis. The scaling symmetry group generator provides a framework for determining all scale invariant solutions emitted by the 1-D Euler equations for arbitrary geometry, initial conditions, and equation of state. We approach the Euler equations from a geometric standpoint, and conduct scaling analyses for a broad class of materials.

  10. Mathematical Investigation of Fluid Flow, Mass Transfer, and Slag-steel Interfacial Behavior in Gas-stirred Ladles

    NASA Astrophysics Data System (ADS)

    Cao, Qing; Nastac, Laurentiu

    2018-06-01

    In this study, the Euler-Euler and Euler-Lagrange modeling approaches were applied to simulate the multiphase flow in the water model and gas-stirred ladle systems. Detailed comparisons of the computational and experimental results were performed to establish which approach is more accurate for predicting the gas-liquid multiphase flow phenomena. It was demonstrated that the Euler-Lagrange approach is more accurate than the Euler-Euler approach. The Euler-Lagrange approach was applied to study the effects of the free surface setup, injected bubble size, gas flow rate, and slag layer thickness on the slag-steel interaction and mass transfer behavior. Detailed discussions on the flat/non-flat free surface assumption were provided. Significant inaccuracies in the prediction of the surface fluid flow characteristics were found when the flat free surface was assumed. The variations in the main controlling parameters (bubble size, gas flow rate, and slag layer thickness) and their potential impact on the multiphase fluid flow and mass transfer characteristics (turbulent intensity, mass transfer rate, slag-steel interfacial area, flow patterns, etc.,) in gas-stirred ladles were quantitatively determined to ensure the proper increase in the ladle refining efficiency. It was revealed that by injecting finer bubbles as well as by properly increasing the gas flow rate and the slag layer thickness, the ladle refining efficiency can be enhanced significantly.

  11. Supercritical Carbon Dioxide Based Processing of PEP Binder Polymers

    DTIC Science & Technology

    1997-03-01

    mBPECTED 1 19990525 017 257 Table 1. Representative PEP Materials with Binders Studied mmsmi§M8i&M Wk&mߣfit0t& • PBXN -5 PBXN -6 PBXN -201 PBX...Meeting, 28 November - 1 December 1989, CPIA Publication 527, pp. 99- 106 , 1989. Reid, R.C; Prausnitz, J.M.; Poling, B.E., The Properties of Liquids and

  12. Imaging Borrelly

    USGS Publications Warehouse

    Soderblom, L.A.; Boice, D.C.; Britt, D.T.; Brown, R.H.; Buratti, B.J.; Kirk, R.L.; Lee, M.; Nelson, R.M.; Oberst, J.; Sandel, B.R.; Stern, S.A.; Thomas, N.; Yelle, R.V.

    2004-01-01

    The nucleus, coma, and dust jets of short-period Comet 19P/Borrelly were imaged from the Deep Space 1 spacecraft during its close flyby in September 2001. A prominent jet dominated the near-nucleus coma and emanated roughly normal to the long axis of nucleus from a broad central cavity. We show it to have remained fixed in position for more than 34 hr, much longer than the 26-hr rotation period. This confirms earlier suggestions that it is co-aligned with the rotation axis. From a combination of fitting the nucleus light curve from approach images and the nucleus' orientation from stereo images at encounter, we conclude that the sense of rotation is right-handed around the main jet vector. The inferred rotation pole is approximately perpendicular to the long axis of the nucleus, consistent with a simple rotational state. Lacking an existing IAU comet-specific convention but applying a convention provisionally adopted for asteroids, we label this the north pole. This places the sub-solar latitude at ???60?? N at the time of the perihelion with the north pole in constant sunlight and thus receiving maximum average insolation. ?? 2003 Elsevier Inc. All rights reserved.

  13. Euler and His Contribution Number Theory

    ERIC Educational Resources Information Center

    Len, Amy; Scott, Paul

    2004-01-01

    Born in 1707, Leonhard Euler was the son of a Protestant minister from the vicinity of Basel, Switzerland. With the aim of pursuing a career in theology, Euler entered the University of Basel at the age of thirteen, where he was tutored in mathematics by Johann Bernoulli (of the famous Bernoulli family of mathematicians). He developed an interest…

  14. CFD validation needs for advanced concepts at Northrop Corporation

    NASA Technical Reports Server (NTRS)

    George, Michael W.

    1987-01-01

    Information is given in viewgraph form on the Computational Fluid Dynamics (CFD) Workshop held July 14 - 16, 1987. Topics covered include the philosophy of CFD validation, current validation efforts, the wing-body-tail Euler code, F-20 Euler simulated oil flow, and Euler Navier-Stokes code validation for 2D and 3D nozzle afterbody applications.

  15. 3D Geodynamic Modelling Reveals Stress and Strain Partitioning within Continental Rifting

    NASA Astrophysics Data System (ADS)

    Rey, P. F.; Mondy, L. S.; Duclaux, G.; Moresi, L. N.

    2014-12-01

    The relative movement between two divergent rigid plates on a sphere can be described using a Euler pole and an angular velocity. On Earth, this typically results in extensional velocities increasing linearly as a function of the distance from the pole (for example in the South Atlantic, North Atlantic, Woodlark Basin, Red Sea Basin, etc.). This property has strong implications for continental rifting and the formation of passive margins, given the role that extensional velocity plays on both rift style (wide or narrow), fault pattern, subsidence histories, and magmatism. Until now, this scissor-style opening has been approached via suites of 2D numerical models of contrasting extensional velocities, complimenting field geology and geophysics. New advances in numerical modelling tools and computational hardware have enabled us to investigate the geodynamics of this problem in a 3D self-consistent high-resolution context. Using Underworld at a grid resolution of 2 km over a domain of 500 km x 500 km x 180 km, we have explored the role of the velocity gradient on the strain pattern, style of rifting, and decompression melting, along the margin. We find that the three dimensionality of this problem is important. The rise of the asthenosphere is enhanced in 2D models compared to 3D numerical solutions, due to the limited volume of material available in 2D. This leads to oceanisation occurring significantly sooner in 2D models. The 3D model shows that there is a significant time and space dependent flows parallel to the rift-axis. A similar picture emerges from the stress field, showing time and space partitioning, including regions of compression separating areas dominated by extension. The strain pattern shows strong zonation along the rift axis, with increasingly localised deformation with extension velocity and though time.

  16. Leonhard Euler and the mechanics of rigid bodies

    NASA Astrophysics Data System (ADS)

    Marquina, J. E.; Marquina, M. L.; Marquina, V.; Hernández-Gómez, J. J.

    2017-01-01

    In this work we present the original ideas and the construction of the rigid bodies theory realised by Leonhard Euler between 1738 and 1775. The number of treatises written by Euler on this subject is enormous, including the most notorious Scientia Navalis (1749), Decouverte d’un noveau principe de mecanique (1752), Du mouvement de rotation des corps solides autour d’un axe variable (1765), Theoria motus corporum solidorum seu rigidorum (1765) and Nova methodus motu corporum rigidorum determinandi (1776), in which he developed the ideas of the instantaneous rotation axis, the so-called Euler equations and angles, the components of what is now known as the inertia tensor, the principal axes of inertia, and, finally, the generalisation of the translation and rotation movement equations for any system. Euler, the man who ‘put most of mechanics into its modern form’ (Truesdell 1968 Essays in the History of Mechanics (Berlin: Springer) p 106).

  17. An Onsager Singularity Theorem for Turbulent Solutions of Compressible Euler Equations

    NASA Astrophysics Data System (ADS)

    Drivas, Theodore D.; Eyink, Gregory L.

    2017-12-01

    We prove that bounded weak solutions of the compressible Euler equations will conserve thermodynamic entropy unless the solution fields have sufficiently low space-time Besov regularity. A quantity measuring kinetic energy cascade will also vanish for such Euler solutions, unless the same singularity conditions are satisfied. It is shown furthermore that strong limits of solutions of compressible Navier-Stokes equations that are bounded and exhibit anomalous dissipation are weak Euler solutions. These inviscid limit solutions have non-negative anomalous entropy production and kinetic energy dissipation, with both vanishing when solutions are above the critical degree of Besov regularity. Stationary, planar shocks in Euclidean space with an ideal-gas equation of state provide simple examples that satisfy the conditions of our theorems and which demonstrate sharpness of our L 3-based conditions. These conditions involve space-time Besov regularity, but we show that they are satisfied by Euler solutions that possess similar space regularity uniformly in time.

  18. The History of the Planar Elastica: Insights into Mechanics and Scientific Method

    ERIC Educational Resources Information Center

    Goss, Victor Geoffrey Alan

    2009-01-01

    Euler's formula for the buckling of an elastic column is widely used in engineering design. However, only a handful of engineers will be familiar with Euler's classic paper "De Curvis Elasticis" in which the formula is derived. In addition to the Euler Buckling Formula, "De Curvis Elasticis" classifies all the bent configurations of elastic rod--a…

  19. The importance of Leonhard Euler's discoveries in the field of shipbuilding for the scientific evolution of academician A. N. Krylov

    NASA Astrophysics Data System (ADS)

    Sharkov, N. A.; Sharkova, O. A.

    2018-05-01

    The paper identifies the importance of the Leonhard Euler's discoveries in the field of shipbuilding for the scientific evolution of academician A. N. Krylov and for the modern knowledge in survivability and safety of ships. The works by Leonard Euler "Marine Science" and "The Moon Motion New Theory" are discussed.

  20. On the statistical mechanics of the 2D stochastic Euler equation

    NASA Astrophysics Data System (ADS)

    Bouchet, Freddy; Laurie, Jason; Zaboronski, Oleg

    2011-12-01

    The dynamics of vortices and large scale structures is qualitatively very different in two dimensional flows compared to its three dimensional counterparts, due to the presence of multiple integrals of motion. These are believed to be responsible for a variety of phenomena observed in Euler flow such as the formation of large scale coherent structures, the existence of meta-stable states and random abrupt changes in the topology of the flow. In this paper we study stochastic dynamics of the finite dimensional approximation of the 2D Euler flow based on Lie algebra su(N) which preserves all integrals of motion. In particular, we exploit rich algebraic structure responsible for the existence of Euler's conservation laws to calculate the invariant measures and explore their properties and also study the approach to equilibrium. Unexpectedly, we find deep connections between equilibrium measures of finite dimensional su(N) truncations of the stochastic Euler equations and random matrix models. Our work can be regarded as a preparation for addressing the questions of large scale structures, meta-stability and the dynamics of random transitions between different flow topologies in stochastic 2D Euler flows.

  1. 3D GIS spatial operation based on extended Euler operators

    NASA Astrophysics Data System (ADS)

    Xu, Hongbo; Lu, Guonian; Sheng, Yehua; Zhou, Liangchen; Guo, Fei; Shang, Zuoyan; Wang, Jing

    2008-10-01

    The implementation of 3 dimensions spatial operations, based on certain data structure, has a lack of universality and is not able to treat with non-manifold cases, at present. ISO/DIS 19107 standard just presents the definition of Boolean operators and set operators for topological relationship query, and OGC GeoXACML gives formal definitions for several set functions without implementation detail. Aiming at these problems, based mathematical foundation on cell complex theory, supported by non-manifold data structure and using relevant research in the field of non-manifold geometry modeling for reference, firstly, this paper according to non-manifold Euler-Poincaré formula constructs 6 extended Euler operators and inverse operators to carry out creating, updating and deleting 3D spatial elements, as well as several pairs of supplementary Euler operators to convenient for implementing advanced functions. Secondly, we change topological element operation sequence of Boolean operation and set operation as well as set functions defined in GeoXACML into combination of extended Euler operators, which separates the upper functions and lower data structure. Lastly, we develop underground 3D GIS prototype system, in which practicability and credibility of extended Euler operators faced to 3D GIS presented by this paper are validated.

  2. Euler force actuation mechanism for siphon valving in compact disk-like microfluidic chips

    PubMed Central

    Deng, Yongbo; Fan, Jianhua; Zhou, Song; Zhou, Teng; Wu, Junfeng; Li, Yin; Liu, Zhenyu; Xuan, Ming; Wu, Yihui

    2014-01-01

    Based on the Euler force induced by the acceleration of compact disk (CD)-like microfluidic chip, this paper presents a novel actuation mechanism for siphon valving. At the preliminary stage of acceleration, the Euler force in the tangential direction of CD-like chip takes the primary place compared with the centrifugal force to function as the actuation of the flow, which fills the siphon and actuates the siphon valving. The Euler force actuation mechanism is demonstrated by the numerical solution of the phase-field based mathematical model for the flow in siphon valve. In addition, experimental validation is implemented in the polymethylmethacrylate-based CD-like microfluidic chip manufactured using CO2 laser engraving technique. To prove the application of the proposed Euler force actuation mechanism, whole blood separation and plasma extraction has been conducted using the Euler force actuated siphon valving. The newly introduced actuation mechanism overcomes the dependence on hydrophilic capillary filling of siphon by avoiding external manipulation or surface treatments of polymeric material. The sacrifice for highly integrated processing in pneumatic pumping technique is also prevented by excluding the volume-occupied compressed air chamber. PMID:24753736

  3. On-Ground Processing of Yaogan-24 Remote Sensing Satellite Attitude Data and Verification Using Geometric Field Calibration

    PubMed Central

    Wang, Mi; Fan, Chengcheng; Yang, Bo; Jin, Shuying; Pan, Jun

    2016-01-01

    Satellite attitude accuracy is an important factor affecting the geometric processing accuracy of high-resolution optical satellite imagery. To address the problem whereby the accuracy of the Yaogan-24 remote sensing satellite’s on-board attitude data processing is not high enough and thus cannot meet its image geometry processing requirements, we developed an approach involving on-ground attitude data processing and digital orthophoto (DOM) and the digital elevation model (DEM) verification of a geometric calibration field. The approach focuses on three modules: on-ground processing based on bidirectional filter, overall weighted smoothing and fitting, and evaluation in the geometric calibration field. Our experimental results demonstrate that the proposed on-ground processing method is both robust and feasible, which ensures the reliability of the observation data quality, convergence and stability of the parameter estimation model. In addition, both the Euler angle and quaternion could be used to build a mathematical fitting model, while the orthogonal polynomial fitting model is more suitable for modeling the attitude parameter. Furthermore, compared to the image geometric processing results based on on-board attitude data, the image uncontrolled and relative geometric positioning result accuracy can be increased by about 50%. PMID:27483287

  4. "Astronomica" in the Correspondence between Leonhard Euler and Daniel Bernoull (German Title: "Astronomica" im Briefwechsel zwischen Leonhard Euler und Daniel Bernoulli)

    NASA Astrophysics Data System (ADS)

    Verdun, Andreas

    2010-12-01

    The Euler Commission of the Swiss Academy of Sciences intends to terminate the edition of Leonhard Euler's works in the next year 2011 after nearly one hundred years since the beginning of the editorial works. These works include, e.g., Volume 3 of the Series quarta A which will contain the correspondence between Leonhard Euler (1707-1783) and Daniel Bernoulli (1700-1783) and which is currently being edited by Dr. Emil A. Fellmann (Basel) and Prof. Dr. Gleb K. Mikhailov (Moscow). This correspondence contains more than hundred letters, principally from Daniel Bernoulli to Euler. Parts of this correspondence were published uncommented already in 1843. It is astonishing that, apart from mathematics and physics (mainly mechanics and hydrodynamics), many topics addressed concern astronomy. The major part of the preserved correspondence between Euler and Daniel Bernoulli, in which astronomical themes are discussed, concerns celestial mechanics as the dominant discipline of theoretical astronomy of the eighteenth century. It was triggered and coined mainly by the prize questions of the Paris Academy of Science. In more than two thirds of the letters current problems and questions concerning celestial mechanics of that time are treated, focusing on the lunar theory and the great inequality in the motions of Jupiter and Saturn as special applications of the three body problem. In the remaining letters, problems concerning spherical astronomy are solved and attempts are made to explain certain phenomena in the field of "cosmic physics" concerning astronomical observations.

  5. Topology in two dimensions. IV - CDM models with non-Gaussian initial conditions

    NASA Astrophysics Data System (ADS)

    Coles, Peter; Moscardini, Lauro; Plionis, Manolis; Lucchin, Francesco; Matarrese, Sabino; Messina, Antonio

    1993-02-01

    The results of N-body simulations with both Gaussian and non-Gaussian initial conditions are used here to generate projected galaxy catalogs with the same selection criteria as the Shane-Wirtanen counts of galaxies. The Euler-Poincare characteristic is used to compare the statistical nature of the projected galaxy clustering in these simulated data sets with that of the observed galaxy catalog. All the models produce a topology dominated by a meatball shift when normalized to the known small-scale clustering properties of galaxies. Models characterized by a positive skewness of the distribution of primordial density perturbations are inconsistent with the Lick data, suggesting problems in reconciling models based on cosmic textures with observations. Gaussian CDM models fit the distribution of cell counts only if they have a rather high normalization but possess too low a coherence length compared with the Lick counts. This suggests that a CDM model with extra large scale power would probably fit the available data.

  6. Interaction of a shock with a longitudinal vortex

    NASA Technical Reports Server (NTRS)

    Erlebacher, Gordon; Hussaini, M. Y.; Shu, Chi-Wang

    1996-01-01

    In this paper we study the shock/longitudinal vortex interaction problem in axisymmetric geometry. Linearized analysis for small vortex strength is performed, and compared with results from a high order axisymmetric shock-fitted Euler solution obtained for this purpose. It is confirmed that for weak vortices, predictions from linear theory agree well with results from nonlinear numerical simulations at the shock location. To handle very strong longitudinal vortices, which may ultimately break the shock, we use an axisymmetric high order essentially non-oscillatory (ENO) shock capturing scheme. Comparison of shock-captured and shock-fitted results are performed in their regions of common validity. We also study the vortex breakdown as a function of Mach number ranging from 1.3 to 10, thus extending the range of existing results. For vortex strengths above a critical value. a triple point forms on the shock and a secondary shock forms to provide the necessary deceleration so that the fluid velocity can adjust to downstream conditions at the shock.

  7. Euler Strut: A Mechanical Analogy for Dynamics in the Vicinity of a Critical Point

    ERIC Educational Resources Information Center

    Bobnar, Jaka; Susman, Katarina; Parsegian, V. Adrian; Rand, Peter R.; Cepic, Mojca; Podgornik, Rudolf

    2011-01-01

    An anchored elastic filament (Euler strut) under an external point load applied to its free end is a simple model for a second-order phase transition. In the static case, a load greater than the critical load causes a Euler buckling instability, leading to a change in the filament's shape. The analysis of filament dynamics with an external point…

  8. Splitting methods for low Mach number Euler and Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Abarbanel, Saul; Dutt, Pravir; Gottlieb, David

    1987-01-01

    Examined are some splitting techniques for low Mach number Euler flows. Shortcomings of some of the proposed methods are pointed out and an explanation for their inadequacy suggested. A symmetric splitting for both the Euler and Navier-Stokes equations is then presented which removes the stiffness of these equations when the Mach number is small. The splitting is shown to be stable.

  9. Comparison between Euler and quaternion parametrization in UAV dynamics

    NASA Astrophysics Data System (ADS)

    Alaimo, A.; Artale, V.; Milazzo, C.; Ricciardello, A.

    2013-10-01

    The main topic addressed in this paper is a comparison between Euler parametrization and Quaternion one in the description of the dynamics of a Unmanned Aerial Vehicle assumed as a rigid body. In details Newton Euler equations are re-written in terms of quaternions due to the singularities that the Euler angles lead. This formulation not only avoids the gimbal lock but also allows a better performance in numerical implementation thanks to the linearity of quaternion algebra. This kind of analysis, proved by some numerical results presented, has a great importance due to the applicability of quaternion to drone control. Indeed, this latter requires a time response as quick as possible, in order to be reliable.

  10. Voidage correction algorithm for unresolved Euler-Lagrange simulations

    NASA Astrophysics Data System (ADS)

    Askarishahi, Maryam; Salehi, Mohammad-Sadegh; Radl, Stefan

    2018-04-01

    The effect of grid coarsening on the predicted total drag force and heat exchange rate in dense gas-particle flows is investigated using Euler-Lagrange (EL) approach. We demonstrate that grid coarsening may reduce the predicted total drag force and exchange rate. Surprisingly, exchange coefficients predicted by the EL approach deviate more significantly from the exact value compared to results of Euler-Euler (EE)-based calculations. The voidage gradient is identified as the root cause of this peculiar behavior. Consequently, we propose a correction algorithm based on a sigmoidal function to predict the voidage experienced by individual particles. Our correction algorithm can significantly improve the prediction of exchange coefficients in EL models, which is tested for simulations involving Euler grid cell sizes between 2d_p and 12d_p . It is most relevant in simulations of dense polydisperse particle suspensions featuring steep voidage profiles. For these suspensions, classical approaches may result in an error of the total exchange rate of up to 30%.

  11. Convergence and stability of the exponential Euler method for semi-linear stochastic delay differential equations.

    PubMed

    Zhang, Ling

    2017-01-01

    The main purpose of this paper is to investigate the strong convergence and exponential stability in mean square of the exponential Euler method to semi-linear stochastic delay differential equations (SLSDDEs). It is proved that the exponential Euler approximation solution converges to the analytic solution with the strong order [Formula: see text] to SLSDDEs. On the one hand, the classical stability theorem to SLSDDEs is given by the Lyapunov functions. However, in this paper we study the exponential stability in mean square of the exact solution to SLSDDEs by using the definition of logarithmic norm. On the other hand, the implicit Euler scheme to SLSDDEs is known to be exponentially stable in mean square for any step size. However, in this article we propose an explicit method to show that the exponential Euler method to SLSDDEs is proved to share the same stability for any step size by the property of logarithmic norm.

  12. Unsteady transonic viscous-inviscid interaction using Euler and boundary-layer equations

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar; Whitfield, Dave

    1989-01-01

    The Euler code is used extensively for computation of transonic unsteady aerodynamics. The boundary layer code solves the 3-D, compressible, unsteady, mean flow kinetic energy integral boundary layer equations in the direct mode. Inviscid-viscous coupling is handled using porosity boundary conditions. Some of the advantages and disadvantages of using the Euler and boundary layer equations for investigating unsteady viscous-inviscid interaction is examined.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jun -Sang; Ray, Atish K.; Dawson, Paul R.

    A shrink-fit sample is manufactured with a Ti-8Al-1Mo-1V alloy to introduce a multiaxial residual stress field in the disk of the sample. A set of strain and orientation pole figures are measured at various locations across the disk using synchrotron high-energy X-ray diffraction. Two approaches—the traditional sin 2Ψ method and the bi-scale optimization method—are taken to determine the stresses in the disk based on the measured strain and orientation pole figures, to explore the range of solutions that are possible for the stress field within the disk. While the stress components computed using the sin 2Ψ method and the bi-scalemore » optimization method have similar trends, their magnitudes are significantly different. Lastly, it is suspected that the local texture variation in the material is the cause of this discrepancy.« less

  14. Isospin decomposition of γ N → N * transitions within a dynamical coupled-channels model

    DOE PAGES

    Kamano, Hiroyuki; Nakamura, S. X.; Lee, T. -S. H.; ...

    2016-07-07

    Here, by extending the dynamical coupled-channels analysis performed in our previous work to include the available data of photoproduction of pi mesons off neutrons, the transition amplitudes for the photoexcitation of the neutron-to-nucleon resonances, γn → N*, at the resonance pole positions are determined. The combined fits to the data for both the proton- and neutron-target reactions also revise our results for the resonance pole positions and the γp → N* transition amplitudes. Our results allow an isospin decomposition of the γN → N* transition amplitudes for the isospin I = 1/2 N* resonances, which is necessary for testing hadronmore » structure models and gives crucial inputs for constructing models of neutrino-induced reactions in the nucleon resonance region.« less

  15. Euler solutions for an unbladed jet engine configuration

    NASA Technical Reports Server (NTRS)

    Stewart, Mark E. M.

    1991-01-01

    A Euler solution for an axisymmetric jet engine configuration without blade effects is presented. The Euler equations are solved on a multiblock grid which covers a domain including the inlet, bypass duct, core passage, nozzle, and the far field surrounding the engine. The simulation is verified by considering five theoretical properties of the solution. The solution demonstrates both multiblock grid generation techniques and a foundation for a full jet engine throughflow calculation.

  16. A minimum entropy principle in the gas dynamics equations

    NASA Technical Reports Server (NTRS)

    Tadmor, E.

    1986-01-01

    Let u(x bar,t) be a weak solution of the Euler equations, governing the inviscid polytropic gas dynamics; in addition, u(x bar, t) is assumed to respect the usual entropy conditions connected with the conservative Euler equations. We show that such entropy solutions of the gas dynamics equations satisfy a minimum entropy principle, namely, that the spatial minimum of their specific entropy, (Ess inf s(u(x,t)))/x, is an increasing function of time. This principle equally applies to discrete approximations of the Euler equations such as the Godunov-type and Lax-Friedrichs schemes. Our derivation of this minimum principle makes use of the fact that there is a family of generalized entrophy functions connected with the conservative Euler equations.

  17. Study of water based nanofluid flows in annular tubes using numerical simulation and sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Siadaty, Moein; Kazazi, Mohsen

    2018-04-01

    Convective heat transfer, entropy generation and pressure drop of two water based nanofluids (Cu-water and Al2O3-water) in horizontal annular tubes are scrutinized by means of computational fluids dynamics, response surface methodology and sensitivity analysis. First, central composite design is used to perform a series of experiments with diameter ratio, length to diameter ratio, Reynolds number and solid volume fraction. Then, CFD is used to calculate the Nusselt Number, Euler number and entropy generation. After that, RSM is applied to fit second order polynomials on responses. Finally, sensitivity analysis is conducted to manage the above mentioned parameters inside tube. Totally, 62 different cases are examined. CFD results show that Cu-water and Al2O3-water have the highest and lowest heat transfer rate, respectively. In addition, analysis of variances indicates that increase in solid volume fraction increases dimensionless pressure drop for Al2O3-water. Moreover, it has a significant negative and insignificant effects on Cu-water Nusselt and Euler numbers, respectively. Analysis of Bejan number indicates that frictional and thermal entropy generations are the dominant irreversibility in Al2O3-water and Cu-water flows, respectively. Sensitivity analysis indicates dimensionless pressure drop sensitivity to tube length for Cu-water is independent of its diameter ratio at different Reynolds numbers.

  18. P(P bar)P elastic scattering and cosmic ray data

    NASA Technical Reports Server (NTRS)

    FAZAL-E-ALEEM; Saleem, M.

    1985-01-01

    It is shown that the total cross section for pp elastic scattering at cosmic ray energies, as well as the total cross section, the slope parameter b(s,t) and the differential cross section for small momentum transfer at ISR and collider energies for p(p)p elastic scattering can be simultaneously fitted by using a simple Regge pole model. The results of this theory is discussed in detail.

  19. Optimised analytical models of the dielectric properties of biological tissue.

    PubMed

    Salahuddin, Saqib; Porter, Emily; Krewer, Finn; O' Halloran, Martin

    2017-05-01

    The interaction of electromagnetic fields with the human body is quantified by the dielectric properties of biological tissues. These properties are incorporated into complex numerical simulations using parametric models such as Debye and Cole-Cole, for the computational investigation of electromagnetic wave propagation within the body. These parameters can be acquired through a variety of optimisation algorithms to achieve an accurate fit to measured data sets. A number of different optimisation techniques have been proposed, but these are often limited by the requirement for initial value estimations or by the large overall error (often up to several percentage points). In this work, a novel two-stage genetic algorithm proposed by the authors is applied to optimise the multi-pole Debye parameters for 54 types of human tissues. The performance of the two-stage genetic algorithm has been examined through a comparison with five other existing algorithms. The experimental results demonstrate that the two-stage genetic algorithm produces an accurate fit to a range of experimental data and efficiently out-performs all other optimisation algorithms under consideration. Accurate values of the three-pole Debye models for 54 types of human tissues, over 500 MHz to 20 GHz, are also presented for reference. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  20. Pole walking down-under: profile of pole walking leaders, walkers and programs in Australia and factors relating to participation.

    PubMed

    Fritschi, Juliette O; van Uffelen, Jannique G Z; Brown, Wendy J

    2014-12-01

    Although pole walking (PW) has the potential to be a useful health-enhancing physical activity (PA), little is known about by whom or how it is being practised. The aims of this study were to describe (1) the characteristics of PW leaders, pole walkers and PW programs in Australia, and (2) participants' perceptions of PW and their reasons for participation. In 2012, PW leaders (n=31) and walkers (n=107) completed self-administered surveys that included questions about participants' sociodemographic and health characteristics, PW programs and perceptions of PW. Data were analysed using SPSS. Leaders and walkers were generally born in Australia (leaders, 71%; walkers, 83%), older (leaders, 55 years [s.d. 11.5]; walkers, 65 years [s.d. 10.6]) and female (leaders, 77%; walkers, 79%). Most walkers (82%) walked regularly in groups, approximately once per week for about an hour, at light to moderate intensity. The program's aims most strongly endorsed by PW leaders were to increase participant enjoyment (90%), increase PA levels (81%), provide a positive social experience (77%) and increase PA confidence (71%). The most strongly endorsed motivations for PW among walkers were to remain physically active (63%), improve fitness (62%) and personal and social enjoyment (60%). In Australia, PW is being practised by a health conscious, older population. It is perceived as an enjoyable and health-enhancing outdoor activity. SO WHAT?: Health and exercise practitioners may find that PW is a beneficial form of PA for older Australians.

  1. Probing the Boundaries of the Heliosphere by Analyzing the Temporal Variation of the Polar ENA Flux

    NASA Astrophysics Data System (ADS)

    Reisenfeld, D. B.; Janzen, P. H.; Bzowski, M.; Dialynas, K.; Funsten, H. O.; Fuselier, S. A.; Karna, N.; Kubiak, M. A.; McComas, D. J.; Schwadron, N.; Sokol, J. M.

    2015-12-01

    With nearly seven years of IBEX observations, we can now trace the time evolution of heliospheric ENAs through over half a solar cycle. At the north and south ecliptic poles, the spacecraft attitude allows for continuous coverage of the ENA flux; thus, signal from these vantages have much higher statistical accuracy and time resolution than anywhere else in the sky. By assuming pressure balance across the termination shock, and comparing the solar wind dynamic pressure measured at 1 AU with the heliosheath plasma pressure derived from the observed ENA fluxes, we show that the heliosheath pressure measured at the poles correlates well with the solar cycle. The analysis requires time-shifting the ENA measurements to account for the travel time out and back from the heliosheath. The time shifts at the north pole range from 5.1 years at 700 eV, the low end of the IBEX-Hi energy range, to 3.2 years at 4.3 keV, the top IBEX-Hi energy. These time shifts assume a common mean distance to the ENA source region for all energies. For the south pole, the best-fit time shifts range from 4.1 to 2.6 years across the IBEX-Hi energy range. Hence, the ENA source at the south is somewhat closer than at the north, consistent with an asymmetric heliosphere model. We will present the details of this analysis, as well as estimates of the scale size of the heliosheath in the polar directions.

  2. Photometric Properties of Enceladus' South Polar Terrain

    NASA Astrophysics Data System (ADS)

    Annex, Andrew; Verbiscer, A. J.; Helfenstein, P.

    2012-10-01

    Cassini images reveal in exquisite detail the complex and varied terrains within the geologically active south pole of Enceladus. The region is dominated by four parallel rifts or sulci, informally known as tiger stripes, from which plumes comprised primarily of water vapor erupt [1,2]. The rich data set of Cassini images acquired at high spatial resolution (< 0.5 km/pixel) and a variety of viewing and illumination geometries enables the quantitative analysis of surface scattering properties through disk-resolved photometry. Here we investigate the photometric properties of individual terrain units [3] through fits of the Hapke photometric model [4] to data acquired in the clear (CL1 CL2), UV3, GRN, and IR3 filters, centered at 0.61, 0.34, 0.57, and 0.93 μm, respectively. Terrain units include the tiger stripe smooth and platy plank formations, tiger stripe medial dorsum structures, relict tiger stripe structures, south pole funiscular (ropy) plains, south pole lateral fold-and-wedge formations, and the south pole reticulated plains. Despite the constant, ubiquitous infall of plume particles onto the surface, differences in scattering properties, texture, and albedo among terrain units can be discerned. Work supported by NASA's Cassini Data Analysis Program. [1] Porco et al. 2006 Science 311, 1393-1401. [2] Hansen et al. 2008 Nature 456, 477-479. [3] Spencer et al. 2009 in Saturn from Cassini-Huygens (M. K. Dougherty et al. Eds.) 683-724. [4] Hapke 2002 Icarus 157, 523-534.

  3. CFD analysis of multiphase blood flow within aorta and its thoracic branches of patient with coarctation of aorta using multiphase Euler - Euler approach

    NASA Astrophysics Data System (ADS)

    Ostrowski, Z.; Melka, B.; Adamczyk, W.; Rojczyk, M.; Golda, A.; Nowak, A. J.

    2016-09-01

    In the research a numerical Computational Fluid Dynamics (CFD) model of the pulsatile blood flow was created and analyzed. A real geometry of aorta and its thoracic branches of 8-year old patient diagnosed with a congenital heart defect - coarctation of aorta was used. The inlet boundary condition were implemented as the User Define Function according to measured values of volumetric blood flow. The blood flow was treated as multiphase: plasma, set as the primary fluid phase, was dominant with volume fraction of 0.585 and morphological elements of blood were treated in Euler-Euler approach as dispersed phases (with 90% Red Blood Cells and White Blood Cells as remaining solid volume fraction).

  4. Euler polynomials and identities for non-commutative operators

    NASA Astrophysics Data System (ADS)

    De Angelis, Valerio; Vignat, Christophe

    2015-12-01

    Three kinds of identities involving non-commutating operators and Euler and Bernoulli polynomials are studied. The first identity, as given by Bender and Bettencourt [Phys. Rev. D 54(12), 7710-7723 (1996)], expresses the nested commutator of the Hamiltonian and momentum operators as the commutator of the momentum and the shifted Euler polynomial of the Hamiltonian. The second one, by Pain [J. Phys. A: Math. Theor. 46, 035304 (2013)], links the commutators and anti-commutators of the monomials of the position and momentum operators. The third appears in a work by Figuieira de Morisson and Fring [J. Phys. A: Math. Gen. 39, 9269 (2006)] in the context of non-Hermitian Hamiltonian systems. In each case, we provide several proofs and extensions of these identities that highlight the role of Euler and Bernoulli polynomials.

  5. Effective Control of Computationally Simulated Wing Rock in Subsonic Flow

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.; Menzies, Margaret A.

    1997-01-01

    The unsteady compressible, full Navier-Stokes (NS) equations and the Euler equations of rigid-body dynamics are sequentially solved to simulate the delta wing rock phenomenon. The NS equations are solved time accurately, using the implicit, upwind, Roe flux-difference splitting, finite-volume scheme. The rigid-body dynamics equations are solved using a four-stage Runge-Kutta scheme. Once the wing reaches the limit-cycle response, an active control model using a mass injection system is applied from the wing surface to suppress the limit-cycle oscillation. The active control model is based on state feedback and the control law is established using pole placement techniques. The control law is based on the feedback of two states: the roll-angle and roll velocity. The primary model of the computational applications consists of a 80 deg swept, sharp edged, delta wing at 30 deg angle of attack in a freestream of Mach number 0.1 and Reynolds number of 0.4 x 10(exp 6). With a limit-cycle roll amplitude of 41.1 deg, the control model is applied, and the results show that within one and one half cycles of oscillation, the wing roll amplitude and velocity are brought to zero.

  6. Flow transition with 2-D roughness elements in a 3-D channel

    NASA Technical Reports Server (NTRS)

    Liu, Zhining; Liu, Chaoquin; Mccormick, Stephen F.

    1993-01-01

    We develop a new numerical approach to study the spatially evolving instability of the streamwise dominant flow in the presence of roughness elements. The difficulty in handling the flow over the boundary surface with general geometry is removed by using a new conservative form of the governing equations and an analytical mapping. The numerical scheme uses second-order backward Euler in time, fourth-order central differences in all three spatial directions, and boundary-fitted staggered grids. A three-dimensional channel with multiple two-dimensional-type roughness elements is employed as the test case. Fourier analysis is used to decompose different Fourier modes of the disturbance. The results show that surface roughness leads to transition at lower Reynolds number than for smooth channels.

  7. Root-sum-square structural strength verification approach

    NASA Technical Reports Server (NTRS)

    Lee, Henry M.

    1994-01-01

    Utilizing a proposed fixture design or some variation thereof, this report presents a verification approach to strength test space flight payload components, electronics boxes, mechanisms, lines, fittings, etc., which traditionally do not lend themselves to classical static loading. The fixture, through use of ordered Euler rotation angles derived herein, can be mounted on existing vibration shakers and can provide an innovative method of applying single axis flight load vectors. The versatile fixture effectively loads protoflight or prototype components in all three axes simultaneously by use of a sinusoidal burst of desired magnitude at less than one-third the first resonant frequency. Cost savings along with improved hardware confidence are shown. The end product is an efficient way to verify experiment hardware for both random vibration and strength.

  8. Optimal pacing for running 400- and 800-m track races

    NASA Astrophysics Data System (ADS)

    Reardon, James

    2013-06-01

    We present a toy model of anaerobic glycolysis that utilizes appropriate physiological and mathematical consideration while remaining useful to the athlete. The toy model produces an optimal pacing strategy for 400-m and 800-m races that is analytically calculated via the Euler-Lagrange equation. The calculation of the optimum v(t) is presented in detail, with an emphasis on intuitive arguments in order to serve as a bridge between the basic techniques presented in undergraduate physics textbooks and the more advanced techniques of control theory. Observed pacing strategies in 400-m and 800-m world-record races are found to be well-fit by the toy model, which allows us to draw a new physiological interpretation for the advantages of common weight-training practices.

  9. Computational methods for the identification of spatially varying stiffness and damping in beams

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Rosen, I. G.

    1986-01-01

    A numerical approximation scheme for the estimation of functional parameters in Euler-Bernoulli models for the transverse vibration of flexible beams with tip bodies is developed. The method permits the identification of spatially varying flexural stiffness and Voigt-Kelvin viscoelastic damping coefficients which appear in the hybrid system of ordinary and partial differential equations and boundary conditions describing the dynamics of such structures. An inverse problem is formulated as a least squares fit to data subject to constraints in the form of a vector system of abstract first order evolution equations. Spline-based finite element approximations are used to finite dimensionalize the problem. Theoretical convergence results are given and numerical studies carried out on both conventional (serial) and vector computers are discussed.

  10. Development of a computer code for calculating the steady super/hypersonic inviscid flow around real configurations. Volume 1: Computational technique

    NASA Technical Reports Server (NTRS)

    Marconi, F.; Salas, M.; Yaeger, L.

    1976-01-01

    A numerical procedure has been developed to compute the inviscid super/hypersonic flow field about complex vehicle geometries accurately and efficiently. A second order accurate finite difference scheme is used to integrate the three dimensional Euler equations in regions of continuous flow, while all shock waves are computed as discontinuities via the Rankine Hugoniot jump conditions. Conformal mappings are used to develop a computational grid. The effects of blunt nose entropy layers are computed in detail. Real gas effects for equilibrium air are included using curve fits of Mollier charts. Typical calculated results for shuttle orbiter, hypersonic transport, and supersonic aircraft configurations are included to demonstrate the usefulness of this tool.

  11. Development of a computer code for calculating the steady super/hypersonic inviscid flow around real configurations. Volume 2: Code description

    NASA Technical Reports Server (NTRS)

    Marconi, F.; Yaeger, L.

    1976-01-01

    A numerical procedure was developed to compute the inviscid super/hypersonic flow field about complex vehicle geometries accurately and efficiently. A second-order accurate finite difference scheme is used to integrate the three-dimensional Euler equations in regions of continuous flow, while all shock waves are computed as discontinuities via the Rankine-Hugoniot jump conditions. Conformal mappings are used to develop a computational grid. The effects of blunt nose entropy layers are computed in detail. Real gas effects for equilibrium air are included using curve fits of Mollier charts. Typical calculated results for shuttle orbiter, hypersonic transport, and supersonic aircraft configurations are included to demonstrate the usefulness of this tool.

  12. Transonic flow analysis for rotors. Part 3: Three-dimensional, quasi-steady, Euler calculation

    NASA Technical Reports Server (NTRS)

    Chang, I-Chung

    1990-01-01

    A new method is presented for calculating the quasi-steady transonic flow over a lifting or non-lifting rotor blade in both hover and forward flight by using Euler equations. The approach is to solve Euler equations in a rotor-fixed frame of reference using a finite volume method. A computer program was developed and was then verified by comparison with wind-tunnel data. In all cases considered, good agreement was found with published experimental data.

  13. Computation of transonic viscous-inviscid interacting flow

    NASA Technical Reports Server (NTRS)

    Whitfield, D. L.; Thomas, J. L.; Jameson, A.; Schmidt, W.

    1983-01-01

    Transonic viscous-inviscid interaction is considered using the Euler and inverse compressible turbulent boundary-layer equations. Certain improvements in the inverse boundary-layer method are mentioned, along with experiences in using various Runge-Kutta schemes to solve the Euler equations. Numerical conditions imposed on the Euler equations at a surface for viscous-inviscid interaction using the method of equivalent sources are developed, and numerical solutions are presented and compared with experimental data to illustrate essential points. Previously announced in STAR N83-17829

  14. Eigenmode Analysis of Boundary Conditions for One-Dimensional Preconditioned Euler Equations

    NASA Technical Reports Server (NTRS)

    Darmofal, David L.

    1998-01-01

    An analysis of the effect of local preconditioning on boundary conditions for the subsonic, one-dimensional Euler equations is presented. Decay rates for the eigenmodes of the initial boundary value problem are determined for different boundary conditions. Riemann invariant boundary conditions based on the unpreconditioned Euler equations are shown to be reflective with preconditioning, and, at low Mach numbers, disturbances do not decay. Other boundary conditions are investigated which are non-reflective with preconditioning and numerical results are presented confirming the analysis.

  15. The most precise computations using Euler's method in standard floating-point arithmetic applied to modelling of biological systems.

    PubMed

    Kalinina, Elizabeth A

    2013-08-01

    The explicit Euler's method is known to be very easy and effective in implementation for many applications. This article extends results previously obtained for the systems of linear differential equations with constant coefficients to arbitrary systems of ordinary differential equations. Optimal (providing minimum total error) step size is calculated at each step of Euler's method. Several examples of solving stiff systems are included. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. Equations with Arithmetic Functions of Pell Numbers

    DTIC Science & Technology

    2014-01-01

    Bull. Math. Soc. Sci. Math. Roumanie Tome 57(105) No. 4, 2014, 409–413 Equations with arithmetic functions of Pell numbers by 1Florian Luca...2Pantelimon Stănică Abstract Here, we prove some diophantine results about the Euler function of Pell numbers and their Pell –Lucas companion sequence. For...example, if the Euler function of the nth Pell number Pn or Pell –Lucas companion number Qn is a power of 2, then n ≤ 8. Key Words: Euler function, Pell

  17. Remarks on Heisenberg-Euler-type electrodynamics

    NASA Astrophysics Data System (ADS)

    Kruglov, S. I.

    2017-05-01

    We consider Heisenberg-Euler-type model of nonlinear electrodynamics with two parameters. Heisenberg-Euler electrodynamics is a particular case of this model. Corrections to Coulomb’s law at r →∞ are obtained and energy conditions are studied. The total electrostatic energy of charged particles is finite. The charged black hole solution in the framework of nonlinear electrodynamics is investigated. We find the asymptotic of the metric and mass functions at r →∞. Corrections to the Reissner-Nordström solution are obtained.

  18. Tectonic processes during oblique collision: Insights from the St. Elias orogen, northern North American Cordillera

    USGS Publications Warehouse

    Pavlis, T.L.; Picornell, C.; Serpa, L.; Bruhn, R.L.; Plafker, G.

    2004-01-01

    Oblique convergence in the St. Elias orogen of southern Alaska and northwestern Canada has constructed the world's highest coastal mountain range and is the principal driver constructing all of the high topography in northern North America. The orogen originated when the Yakutat terrane was excised from the Cordilleran margin and was transported along margin-parallel strike-slip faults into the subduction-transform transition at the eastern end of the Aleutian trench. We examine the last 3 m.y. of this collision through an analysis of Euler poles for motion of the Yakutat microplate with respect to North America and the Pacific. This analysis indicates a Yakutat-Pacific pole near the present southern triple junction of the microplate and' predicts convergence to dextral-oblique convergence across the offshore Transition fault, onland structures adjacent to the Yakutat foreland, or both, with plate speeds increasing from 10 to 30 mm/yr from southeast to northwest. Reconstructions based on these poles show that NNW transport of the collided block into the NE trending subduction zone forced contraction of EW line elements as the collided block was driven into the subduction-transform transition. This suggests the collided block was constricted as it was driven into the transition. Constriction provides an explanation for observed vertical axis refolding of both earlier formed fold-thrust systems and the collisional suture at the top of the fold-thrust stack. We also suggest that this motion was partially accommodated by lateral extrusion of the western portion of the orogen toward the Aleutian trench. Important questions remain regarding which structures accommodated parts of this motion. The Transition fault may have accommodated much of the Yakutat-Pacific convergence on the basis of our analysis and previous interpretations of GPS-based geodetic data. Nonetheless, it is locally overlapped by up to 800 m of undeformed sediment, yet elsewhere shows evidence of young deformation. This contradiction could be produced if the overlapping sediments are too young to have accumulated significant deformation, or GPS motions may be deflected by transient strains or strains from poorly understood fault interactions. In either case, more data are needed to resolve the paradox. Copyright 2004 by the American Geophysical Union.

  19. Strong Evidence for Nucleon Resonances near 1900 MeV

    DOE PAGES

    Anisovich, A. V.; Burkert, V.; Hadžimehmedović, M.; ...

    2017-08-11

    Data on the reaction yp→K +A from the CLAS experiments are used to derive the leading multipoles, E 0+, M 1-, E 1+, and M 1+, from the production threshold to 2180 MeV in 24 slices of the invariant mass. The four multipoles are determined without any constraints. The multipoles are fitted using a multichannel L+P model that allows us to search for singularities and to extract the positions of poles on the complex energy plane in an almost model-independent method. The multipoles are also used as additional constraints in an energy-dependent analysis of a large body of pion andmore » photoinduced reactions within the Bonn-Gatchina partial wave analysis. The study confirms the existence of poles due to nucleon resonances with spin parity J P=1/2 -, 1/2 +, and 3/2 + in the region at about 1.9 GeV.« less

  20. Exclusive diffractive production of real photons and vector mesons in a factorized Regge-pole model with nonlinear Pomeron trajectory

    NASA Astrophysics Data System (ADS)

    Fazio, S.; Fiore, R.; Jenkovszky, L.; Lavorini, A.

    2012-03-01

    Exclusive diffractive production of real photons and vector mesons in ep collisions has been studied at HERA in a wide kinematic range. Here we present and discuss a Regge-type model of real photon production (deeply virtual Compton scattering), as well as production of vector mesons treated on the same footing by using an extension of a factorized Regge-pole model proposed earlier. The model has been fitted to the HERA data. Despite the very small number of the free parameters, the model gives a satisfactory description of the experimental data, both for the total cross section as a function of the photon virtuality Q2 or the energy W in the center of mass of the γ*p system, and the differential cross sections as a function of the squared four-momentum transfer t with fixed Q2 and W.

  1. Strong Evidence for Nucleon Resonances near 1900 MeV

    NASA Astrophysics Data System (ADS)

    Anisovich, A. V.; Burkert, V.; Hadžimehmedović, M.; Ireland, D. G.; Klempt, E.; Nikonov, V. A.; Omerović, R.; Osmanović, H.; Sarantsev, A. V.; Stahov, J.; Švarc, A.; Thoma, U.

    2017-08-01

    Data on the reaction γ p →K+Λ from the CLAS experiments are used to derive the leading multipoles, E0 +, M1 -, E1 +, and M1 +, from the production threshold to 2180 MeV in 24 slices of the invariant mass. The four multipoles are determined without any constraints. The multipoles are fitted using a multichannel L +P model that allows us to search for singularities and to extract the positions of poles on the complex energy plane in an almost model-independent method. The multipoles are also used as additional constraints in an energy-dependent analysis of a large body of pion and photoinduced reactions within the Bonn-Gatchina partial wave analysis. The study confirms the existence of poles due to nucleon resonances with spin parity JP=1 /2- , 1 /2+ , and 3 /2+ in the region at about 1.9 GeV.

  2. The displacement of the sun from the galactic plane using IRAS and faust source counts

    NASA Technical Reports Server (NTRS)

    Cohen, Martin

    1995-01-01

    I determine the displacement of the Sun from the Galactic plane by interpreting IRAS point-source counts at 12 and 25 microns in the Galactic polar caps using the latest version of the SKY model for the point-source sky (Cohen 1994). A value of solar zenith = 15.5 +/- 0.7 pc north of the plane provides the best match to the ensemble of useful IRAS data. Shallow K counts in the north Galactic pole are also best fitted by this offset, while limited FAUST far-ultraviolet counts at 1660 A near the same pole favor a value near 14 pc. Combining the many IRAS determinations with the few FAUST values suggests that a value of solar zenith = 15.0 +/- 0.5 pc (internal error only) would satisfy these high-latitude sets of data in both wavelength regimes, within the context of the SKY model.

  3. Determination of residual stress in a microtextured α titanium component using high-energy synchrotron X-rays

    DOE PAGES

    Park, Jun -Sang; Ray, Atish K.; Dawson, Paul R.; ...

    2016-05-02

    A shrink-fit sample is manufactured with a Ti-8Al-1Mo-1V alloy to introduce a multiaxial residual stress field in the disk of the sample. A set of strain and orientation pole figures are measured at various locations across the disk using synchrotron high-energy X-ray diffraction. Two approaches—the traditional sin 2Ψ method and the bi-scale optimization method—are taken to determine the stresses in the disk based on the measured strain and orientation pole figures, to explore the range of solutions that are possible for the stress field within the disk. While the stress components computed using the sin 2Ψ method and the bi-scalemore » optimization method have similar trends, their magnitudes are significantly different. Lastly, it is suspected that the local texture variation in the material is the cause of this discrepancy.« less

  4. π0 pole mass calculation in a strong magnetic field and lattice constraints

    NASA Astrophysics Data System (ADS)

    Avancini, Sidney S.; Farias, Ricardo L. S.; Benghi Pinto, Marcus; Tavares, William R.; Timóteo, Varese S.

    2017-04-01

    The π0 neutral meson pole mass is calculated in a strongly magnetized medium using the SU(2) Nambu-Jona-Lasinio model within the random phase approximation (RPA) at zero temperature and zero baryonic density. We employ a magnetic field dependent coupling, G (eB), fitted to reproduce lattice QCD results for the quark condensates. Divergent quantities are handled with a magnetic field independent regularization scheme in order to avoid unphysical oscillations. A comparison between the running and the fixed couplings reveals that the former produces results much closer to the predictions from recent lattice calculations. In particular, we find that the π0 meson mass systematically decreases when the magnetic field increases while the scalar mass remains almost constant. We also investigate how the magnetic background influences other mesonic properties such as fπ0 and gπ0qq.

  5. Determination of the free lunar libration modes from ephemeris DE430

    NASA Astrophysics Data System (ADS)

    Yang, Yong-Zhang; Li, Jin-Ling; Ping, Jin-Song; Hanada, Hideo

    2017-12-01

    The Moon’s physical librations have been extensively studied, and elaborate researches have been developed for the purpose of deriving accurate modes of free librations. Our motivation comes from the Planetary and Lunar Ephemeris DE430 by JPL/NASA, which was created in April 2013, and is reported to be the most accurate lunar ephemeris today using the data from Gravity Recovery and Interior Laboratory (GRAIL). Therefore, the residuals after fitting the model have reduced owing to improvement in the libration models, and the free librations embedded in the Euler angles have also improved. We use Fourier analysis to extract the approximate frequencies from DE430 and then a quadratic interpolation method is used to determine higher accuracy frequencies. With the frequencies, the linear least-squares fitting method is employed to fit the lunar physical librations to DE430. From this analysis we identified the three modes of free physical librations, and estimated the amplitudes as {1.471}\\prime\\prime in longitude, {0.025}\\prime\\prime in latitude and {8.19}\\prime\\prime× {3.31}\\prime\\prime for the wobble, with the respective periods of 1056.16, 8806.9 and 27262.99 d. Since the free librations damp with time, they require recent excitation or a continuous stimulating mechanism in order to sustain.

  6. Asymmetrical Damage Partitioning in Bacteria: A Model for the Evolution of Stochasticity, Determinism, and Genetic Assimilation

    PubMed Central

    Chao, Lin; Rang, Camilla Ulla; Proenca, Audrey Menegaz; Chao, Jasper Ubirajara

    2016-01-01

    Non-genetic phenotypic variation is common in biological organisms. The variation is potentially beneficial if the environment is changing. If the benefit is large, selection can favor the evolution of genetic assimilation, the process by which the expression of a trait is transferred from environmental to genetic control. Genetic assimilation is an important evolutionary transition, but it is poorly understood because the fitness costs and benefits of variation are often unknown. Here we show that the partitioning of damage by a mother bacterium to its two daughters can evolve through genetic assimilation. Bacterial phenotypes are also highly variable. Because gene-regulating elements can have low copy numbers, the variation is attributed to stochastic sampling. Extant Escherichia coli partition asymmetrically and deterministically more damage to the old daughter, the one receiving the mother’s old pole. By modeling in silico damage partitioning in a population, we show that deterministic asymmetry is advantageous because it increases fitness variance and hence the efficiency of natural selection. However, we find that symmetrical but stochastic partitioning can be similarly beneficial. To examine why bacteria evolved deterministic asymmetry, we modeled the effect of damage anchored to the mother’s old pole. While anchored damage strengthens selection for asymmetry by creating additional fitness variance, it has the opposite effect on symmetry. The difference results because anchored damage reinforces the polarization of partitioning in asymmetric bacteria. In symmetric bacteria, it dilutes the polarization. Thus, stochasticity alone may have protected early bacteria from damage, but deterministic asymmetry has evolved to be equally important in extant bacteria. We estimate that 47% of damage partitioning is deterministic in E. coli. We suggest that the evolution of deterministic asymmetry from stochasticity offers an example of Waddington’s genetic assimilation. Our model is able to quantify the evolution of the assimilation because it characterizes the fitness consequences of variation. PMID:26761487

  7. Asymmetrical Damage Partitioning in Bacteria: A Model for the Evolution of Stochasticity, Determinism, and Genetic Assimilation.

    PubMed

    Chao, Lin; Rang, Camilla Ulla; Proenca, Audrey Menegaz; Chao, Jasper Ubirajara

    2016-01-01

    Non-genetic phenotypic variation is common in biological organisms. The variation is potentially beneficial if the environment is changing. If the benefit is large, selection can favor the evolution of genetic assimilation, the process by which the expression of a trait is transferred from environmental to genetic control. Genetic assimilation is an important evolutionary transition, but it is poorly understood because the fitness costs and benefits of variation are often unknown. Here we show that the partitioning of damage by a mother bacterium to its two daughters can evolve through genetic assimilation. Bacterial phenotypes are also highly variable. Because gene-regulating elements can have low copy numbers, the variation is attributed to stochastic sampling. Extant Escherichia coli partition asymmetrically and deterministically more damage to the old daughter, the one receiving the mother's old pole. By modeling in silico damage partitioning in a population, we show that deterministic asymmetry is advantageous because it increases fitness variance and hence the efficiency of natural selection. However, we find that symmetrical but stochastic partitioning can be similarly beneficial. To examine why bacteria evolved deterministic asymmetry, we modeled the effect of damage anchored to the mother's old pole. While anchored damage strengthens selection for asymmetry by creating additional fitness variance, it has the opposite effect on symmetry. The difference results because anchored damage reinforces the polarization of partitioning in asymmetric bacteria. In symmetric bacteria, it dilutes the polarization. Thus, stochasticity alone may have protected early bacteria from damage, but deterministic asymmetry has evolved to be equally important in extant bacteria. We estimate that 47% of damage partitioning is deterministic in E. coli. We suggest that the evolution of deterministic asymmetry from stochasticity offers an example of Waddington's genetic assimilation. Our model is able to quantify the evolution of the assimilation because it characterizes the fitness consequences of variation.

  8. Novel Euler-LaCoste linkage as a very low frequency vertical vibration isolator.

    PubMed

    Hosain, M A; Sirr, A; Ju, L; Blair, D G

    2012-08-01

    LaCoste linkage vibration isolators have shown excellent performance for ultra-low frequency vertical vibration isolation. However, such isolators depend on the use of conventional pre-stressed coil springs, which suffer from creep. Here, we show that compressional Euler springs can be configured to create a stable tension unit for use in a LaCoste structure. In a proof of concept experiment, we demonstrate a vertical resonance frequency of 0.15 Hz in an Euler-LaCoste configuration with 200 mm height. The system enables the use of very low creep maraging steel as spring elements to eliminate the creep while minimising spring mass and reducing the effect of parasitic resonances. Larger scale systems with optimized Euler spring boundary conditions should achieve performance suitable for applications on third generation gravitational wave detectors such as the proposed Einstein telescope.

  9. Euler equation computations for the flow over a hovering helicopter rotor

    NASA Technical Reports Server (NTRS)

    Roberts, Thomas Wesley

    1988-01-01

    A numerical solution technique is developed for computing the flow field around an isolated helicopter rotor in hover. The flow is governed by the compressible Euler equations which are integrated using a finite volume approach. The Euler equations are coupled to a free wake model of the rotary wing vortical wake. This wake model is incorporated into the finite volume solver using a prescribed flow, or perturbation, technique which eliminates the numerical diffusion of vorticity due to the artificial viscosity of the scheme. The work is divided into three major parts: (1) comparisons of Euler solutions to experimental data for the flow around isolated wings show good agreement with the surface pressures, but poor agreement with the vortical wake structure; (2) the perturbation method is developed and used to compute the interaction of a streamwise vortex with a semispan wing. The rapid diffusion of the vortex when only the basic Euler solver is used is illustrated, and excellent agreement with experimental section lift coefficients is demonstrated when using the perturbation approach; and (3) the free wake solution technique is described and the coupling of the wake to the Euler solver for an isolated rotor is presented. Comparisons with experimental blade load data for several cases show good agreement, with discrepancies largely attributable to the neglect of viscous effects. The computed wake geometries agree less well with experiment, the primary difference being that too rapid a wake contraction is predicted for all the cases.

  10. Three Dimensional Aerodynamic Analysis of a High-Lift Transport Configuration

    NASA Technical Reports Server (NTRS)

    Dodbele, Simha S.

    1993-01-01

    Two computational methods, a surface panel method and an Euler method employing unstructured grid methodology, were used to analyze a subsonic transport aircraft in cruise and high-lift conditions. The computational results were compared with two separate sets of flight data obtained for the cruise and high-lift configurations. For the cruise configuration, the surface pressures obtained by the panel method and the Euler method agreed fairly well with results from flight test. However, for the high-lift configuration considerable differences were observed when the computational surface pressures were compared with the results from high-lift flight test. On the lower surface of all the elements with the exception of the slat, both the panel and Euler methods predicted pressures which were in good agreement with flight data. On the upper surface of all the elements the panel method predicted slightly higher suction compared to the Euler method. On the upper surface of the slat, pressure coefficients obtained by both the Euler and panel methods did not agree with the results of the flight tests. A sensitivity study of the upward deflection of the slat from the 40 deg. flap setting suggested that the differences in the slat deflection between the computational model and the flight configuration could be one of the sources of this discrepancy. The computation time for the implicit version of the Euler code was about 1/3 the time taken by the explicit version though the implicit code required 3 times the memory taken by the explicit version.

  11. 3-D conditional hyperbolic method of moments for high-fidelity Euler-Euler simulations of particle-laden flows

    NASA Astrophysics Data System (ADS)

    Patel, Ravi; Kong, Bo; Capecelatro, Jesse; Fox, Rodney; Desjardins, Olivier

    2017-11-01

    Particle-laden turbulent flows are important features of many environmental and industrial processes. Euler-Euler (EE) simulations of these flows are more computationally efficient than Euler-Lagrange (EL) simulations. However, traditional EE methods, such as the two-fluid model, cannot faithfully capture dilute regions of flow with finite Stokes number particles. For this purpose, the multi-valued nature of the particle velocity field must be treated with a polykinetic description. Various quadrature-based moment methods (QBMM) can be used to approximate the full kinetic description by solving for a set of moments of the particle velocity distribution function (VDF) and providing closures for the higher-order moments. Early QBMM fail to maintain the strict hyperbolicity of the kinetic equations, producing unphysical delta shocks (i.e., mass accumulation at a point). In previous work, a 2-D conditional hyperbolic quadrature method of moments (CHyQMOM) was proposed as a fourth-order QBMM closure that maintains strict hyperbolicity. Here, we present the 3-D extension of CHyQMOM. We compare results from CHyQMOM to other QBMM and EL in the context of particle trajectory crossing, cluster-induced turbulence, and particle-laden channel flow. NSF CBET-1437903.

  12. The rotation of Titan by latest Cassini data*

    NASA Astrophysics Data System (ADS)

    Meriggiola, R.; Iess, L.; Stiles, B. W.

    2011-12-01

    Between 2004 and 2009 the RADAR instrument of the Cassini mission provided 31 SAR images of Titan. With a good coverage of both polar and equatorial regions, SAR imaging revealed the complex and unique landforms of Titan's surface, including hydrocarbon lakes and river channels. As each observed land strip covers a wide interval of latitudes and/or longitudes, there are many regions of the satellite that have been observed twice, at different epochs and mean anomalies. The overlapping portions of the SAR images offer a good opportunity to determine the body's rotational state (spin pole and length of day) by means of landmark tracking. We selected 44 crossings and 252 outstanding surface features for image correlation. Each pair of features was georeferenced using the IAU model of Titan's rotation and correlated to produce a misregistration vector. The mismatching (in the range of 400 m-42 km) is mainly due to the incorrect values of the rotational parameters. A parallax effect due to errors in the presumed surface body shape can also contribute to misregistration. In extreme cases, this effect can contribute > 5 km of misregistration error. To avoid this extra error source we utilize Titan surface height estimates in our fitting procedure. Both systematic and random errors in the image correlation and georeferencing also contribute at the level of 1 km. The misregistration vectors are used as observable quantities in a least-squares fit, where the rotational parameters are adjusted to minimize the weighted residuals. We used the misregistration of tiepoints to estimate spin pole location (right ascension and declination at J2000 epoch) and the spin period. The new pole location, considering also the precession and nutation terms, is compatible with the occupancy of a Cassini state 1. The spin period is found to be compatible with a long-term synchronous rotation within the bounds of the experimental errors. The analysis confirms the large value of the obliquity (> 0.3 degrees), incompatible with the assumption of a rigid body with fully-damped pole and a moment of inertia factor of 0.34 (as determined by gravity measurements). * Portions of the work reported here were performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration

  13. The triaxial ellipsoid size, density, and rotational pole of asteroid (16) Psyche from Keck and Gemini AO observations 2004-2015

    NASA Astrophysics Data System (ADS)

    Drummond, Jack D.; Merline, William J.; Carry, Benoit; Conrad, Al; Reddy, Vishnu; Tamblyn, Peter; Chapman, Clark R.; Enke, Brian L.; Pater, Imke de; Kleer, Katherine de; Christou, Julian; Dumas, Christophe

    2018-05-01

    We analyze a comprehensive set of our adaptive optics (AO) images taken at the 10 m W. M. Keck telescope and the 8 m Gemini telescope to derive values for the size, shape, and rotational pole of asteroid (16) Psyche. Our fit of a large number of AO images, spanning 14 years and covering a range of viewing geometries, allows a well-constrained model that yields small uncertainties in all measured and derived parameters, including triaxial ellipsoid dimensions, rotational pole, volume, and density. We find a best fit set of triaxial ellipsoid diameters of (a,b,c) = (274 ± 9, 231 ± 7, 176 ± 7) km, with an average diameter of 223 ± 7 km. Continuing the literature review of Carry (2012), we find a new mass for Psyche of 2.43 ± 0.35 × 1019 kg that, with the volume from our size, leads to a density estimate 4.16 ± 0.64 g/cm3. The largest contribution to the uncertainty in the density, however, still comes from the uncertainty in the mass, not our volume. Psyche's M classification, combined with its high radar albedo, suggests at least a surface metallic composition. If Psyche is composed of pure nickel-iron, the density we derive implies a macro-porosity of 47%, suggesting that it may be an exposed, disrupted, and reassembled core of a Vesta-like planetesimal. The rotational pole position (critical for planning spacecraft mission operations) that we find is consistent with others, but with a reduced uncertainty: [RA;Dec]=[32°;+5°] or Ecliptic [λ; δ]=[32∘ ; -8∘ ] with an uncertainty radius of 3°. Our results provide independent measurements of fundamental parameters for this M-type asteroid, and demonstrate that the parameters are well determined by all techniques, including setting the prime meridian over the longest principal axis. The 5.00 year orbital period of Psyche produces only four distinct opposition geometries, suggesting that observations before the arrival of Psyche Mission in 2030 should perhaps emphasize observations away from opposition, although the penalty then would be that the asteroid will be fainter and further than at opposition.

  14. Quality assessment of two- and three-dimensional unstructured meshes and validation of an upwind Euler flow solver

    NASA Technical Reports Server (NTRS)

    Woodard, Paul R.; Batina, John T.; Yang, Henry T. Y.

    1992-01-01

    Quality assessment procedures are described for two-dimensional unstructured meshes. The procedures include measurement of minimum angles, element aspect ratios, stretching, and element skewness. Meshes about the ONERA M6 wing and the Boeing 747 transport configuration are generated using an advancing front method grid generation package of programs. Solutions of Euler's equations for these meshes are obtained at low angle-of-attack, transonic conditions. Results for these cases, obtained as part of a validation study demonstrate accuracy of an implicit upwind Euler solution algorithm.

  15. Faddeev-Jackiw quantization of topological invariants: Euler and Pontryagin classes

    NASA Astrophysics Data System (ADS)

    Escalante, Alberto; Medel-Portugal, C.

    2018-04-01

    The symplectic analysis for the four dimensional Pontryagin and Euler invariants is performed within the Faddeev-Jackiw context. The Faddeev-Jackiw constraints and the generalized Faddeev-Jackiw brackets are reported; we show that in spite of the Pontryagin and Euler classes give rise the same equations of motion, its respective symplectic structures are different to each other. In addition, a quantum state that solves the Faddeev-Jackiw constraints is found, and we show that the quantum states for these invariants are different to each other. Finally, we present some remarks and conclusions.

  16. Refinement Of Hexahedral Cells In Euler Flow Computations

    NASA Technical Reports Server (NTRS)

    Melton, John E.; Cappuccio, Gelsomina; Thomas, Scott D.

    1996-01-01

    Topologically Independent Grid, Euler Refinement (TIGER) computer program solves Euler equations of three-dimensional, unsteady flow of inviscid, compressible fluid by numerical integration on unstructured hexahedral coordinate grid refined where necessary to resolve shocks and other details. Hexahedral cells subdivided, each into eight smaller cells, as needed to refine computational grid in regions of high flow gradients. Grid Interactive Refinement and Flow-Field Examination (GIRAFFE) computer program written in conjunction with TIGER program to display computed flow-field data and to assist researcher in verifying specified boundary conditions and refining grid.

  17. Analysis of stability for stochastic delay integro-differential equations.

    PubMed

    Zhang, Yu; Li, Longsuo

    2018-01-01

    In this paper, we concern stability of numerical methods applied to stochastic delay integro-differential equations. For linear stochastic delay integro-differential equations, it is shown that the mean-square stability is derived by the split-step backward Euler method without any restriction on step-size, while the Euler-Maruyama method could reproduce the mean-square stability under a step-size constraint. We also confirm the mean-square stability of the split-step backward Euler method for nonlinear stochastic delay integro-differential equations. The numerical experiments further verify the theoretical results.

  18. On the Euler Function of the Catalan Numbers

    DTIC Science & Technology

    2012-02-26

    ON THE EULER FUNCTION OF THE CATALAN NUMBERS FLORIAN LUCA AND PANTELIMON STĂNICĂ Abstract. We study the solutions of the equation φ(Cm)/φ(Cn) = r...where r is a fixed rational number , Ck is the kth Catalan number and φ is the Euler function. We note that the number r = 4 is special for this...observation concerning φ(Cn+1)/φ(Cn) For a positive integer n, let (1) Cn = 1 n+ 1 ( 2n n ) be the n-th Catalan number . For a positive integer m we put φ(m) for

  19. Constraints on Titan's rotation from Cassini mission radar data

    NASA Astrophysics Data System (ADS)

    Bills, Bruce; Stiles, Bryan W.; Hayes, Alexander

    2015-05-01

    We present results of a new analysis of the rotational kinematics of Titan, as constrained by Cassini radar data, extending over the entire currently available set of flyby encounters. Our analysis provides a good constraint on the current orientation of the spin pole, but does not have sufficient accuracy and duration to clearly see the expected spin pole precession. In contrast, we do clearly see temporal variations in the spin rate, which are driven by gravitational torques which attempt to keep the prime meridian oriented toward Saturn.Titan is a synchronous rotator. At lowest order, that means that the rotational and orbital motions are synchronized. At the level of accuracy required to fit the Cassini radar data, we can see that synchronous rotation and uniform rotation are not quite the same thing. Our best fitting model has a fixed pole, and a rotation rate which varies with time, so as to keep Titan's prime meridian oriented towards Saturn, as the orbit varies.A gravitational torque on the tri-axial figure of Titan attempts to keep the axis of least inertia oriented toward Saturn. The main effect is to synchronize the orbit and rotation periods, as seen in inertial space. The response of the rotation angle, to periodic changes in orbital mean longitude, is modeled as a damped, forced harmonic oscillator. This acts as a low-pass filter. The rotation angle accurately tracks orbital variations at periods longer than the free libration period, but is unable to follow higher frequency variations.The mean longitude of Titan's orbit varies on a wide range of time scales. The largest variations are at Saturn's orbital period (29.46 years), and are due to solar torques. There are also variations at periods of 640 and 5800 days, due to resonant interaction with Hyperion.For a rigid body, with moments of inertia estimated from observed gravity, the free libration period for Titan would be 850 days. The best fit to the radar data is obtained with a libration period of 645 days, and a damping time of 1000 years.The principal deviation of Titan's rotation from uniform angular rate, as seen in the Cassini radar data, is a periodic signal resonantly forced by Hyperion.

  20. Asteroid (367943) 2012 DA14 Flyby Spin State Analysis

    NASA Astrophysics Data System (ADS)

    Benson, Conor; Scheeres, Daniel J.; Moskovitz, Nicholas

    2017-10-01

    On February 15, 2013 asteroid 2012 DA14 experienced an extremely close Earth encounter, passing within 27700 km altitude. This flyby gave observers the chance to directly detect flyby-induced changes to the asteroid’s spin state and physical properties. The strongest shape and spin state constraints were provided by Goldstone delay-Doppler radar and visible-wavelength photometry taken after closest approach. These data indicated a roughly 40 m x 20 m object in non-principal axis rotation. NPA states are described by two fundamental periods. Pφ is the average precession period of the long/short axis about the angular momentum vector and Pψ is the rotation period about the long/short axis.WindowCLEAN (Belton & Gandhi 1988) power spectrum analysis of the post flyby light curve showed three prominent frequencies, two of which were 1:2 multiples of each other. Mueller et al. (2002) suggest peaks with this relationship are 1/Pφ and 2/Pφ, implying that Pφ = 6.35 hr. Likely values for Pψ were then 8.72, 13.95, or 23.39 hr. These Pφ,Pψ pairs yielded six candidate spin states in total, one LAM and one SAM per pair.Second to fourth order, two-dimensional Fourier series fits to the light curve were best for periods of 6.359 and 8.724 hr. The two other candidate pairs were also in the top ten fits. Inertia constraints of a roughly 2:1 uniform density ellipsoid eliminated two of the three SAM states. Using JPL Horizons ephemerides and Lambertian ellipsoids, simulated light curves were generated. The simulated and observed power spectra were then compared for all angular momentum poles and reasonable ellipsoid elongations. Only the Pφ = 6.359 hr and Pψ = 8.724 hr LAM state produced light curves consistent with the observed frequency structure. All other states were clearly incompatible. With two well-fitting poles found, phasing the initial attitude and angular velocity yielded plausible matches to the observed light curve. Neglecting gravitational torques, neither pole agreed with the observed pre-flyby light curve, suggesting that the asteroid’s spin state changed during the encounter, consistent with numerical simulation predictions. The consistency between the pre-flyby observations and simulated states will be discussed.

  1. Makeup and uses of a basic magnet laboratory for characterizing high-temperature permanent magnets

    NASA Technical Reports Server (NTRS)

    Niedra, Janis M.; Schwarze, Gene E.

    1991-01-01

    A set of instrumentation for making basic magnetic measurements was assembled in order to characterize high intrinsic coercivity, rare earth permanent magnets with respect to short term demagnetization resistance and long term aging at temperatures up to 300 C. The major specialized components of this set consist of a 13 T peak field, capacitor discharge pulse magnetizer; a 10 in. pole size, variable gap electromagnet; a temperature controlled oven equipped with iron cobalt pole piece extensions and a removable paddle that carries the magnetization and field sensing coils; associated electronic integrators; and sensor standards for field intensity H and magnetic moment M calibration. A 1 cm cubic magnet sample, carried by the paddle, fits snugly between the pole piece extensions within the electrically heated aluminum oven, where fields up to 3.2 T can be applied by the electromagnet at temperatures up to 300 C. A sample set of demagnetization data for the high energy Sm2Co17 type of magnet is given for temperatures up to 300 C. These data are reduced to the temperature dependence of the M-H knee field and of the field for a given magnetic induction swing, and they are interpreted to show the limits of safe operation.

  2. Dawn Orbit Determination Team: Modeling and Fitting of Optical Data at Vesta

    NASA Technical Reports Server (NTRS)

    Kennedy, Brian; Abrahamson, Matt; Ardito, Alessandro; Haw, Robert; Mastrodemos, Nicholas; Nandi, Sumita; Park, Ryan; Rush, Brian; Vaughan, Andrew

    2013-01-01

    The Dawn spacecraft was launched on September 27th, 2007. Its mission is to consecutively rendezvous with and observe the two largest bodies in the main asteroid belt, Vesta and Ceres. It has already completed over a year's worth of direct observations of Vesta (spanning from early 2011 through late 2012) and is currently on a cruise trajectory to Ceres, where it will begin scientific observations in mid-2015. Achieving this data collection required careful planning and execution from all Dawn operations teams. Dawn's Orbit Determination (OD) team was tasked with reconstruction of the as-flown trajectory as well as determination of the Vesta rotational rate, pole orientation and ephemeris, among other Vesta parameters. Improved knowledge of the Vesta pole orientation, specifically, was needed to target the final maneuvers that inserted Dawn into the first science orbit at Vesta. To solve for these parameters, the OD team used radiometric data from the Deep Space Network (DSN) along with optical data reduced from Dawn's Framing Camera (FC) images. This paper will de-scribe the initial determination of the Vesta ephemeris and pole using a combination of radiometric and optical data, and also the progress the OD team has made since then to further refine the knowledge of Vesta's body frame orientation and rate with these data.

  3. Symmetry investigations on the incompressible stationary axisymmetric Euler equations with swirl

    NASA Astrophysics Data System (ADS)

    Frewer, M.; Oberlack, M.; Guenther, S.

    2007-08-01

    We discuss the incompressible stationary axisymmetric Euler equations with swirl, for which we derive via a scalar stream function an equivalent representation, the Bragg-Hawthorne equation [Bragg, S.L., Hawthorne, W.R., 1950. Some exact solutions of the flow through annular cascade actuator discs. J. Aero. Sci. 17, 243]. Despite this obvious equivalence, we will show that under a local Lie point symmetry analysis the Bragg-Hawthorne equation exposes itself as not being fully equivalent to the original Euler equations. This is reflected in the way that it possesses additional symmetries not being admitted by its counterpart. In other words, a symmetry of the Bragg-Hawthorne equation is in general not a symmetry of the Euler equations. Not the differential Euler equations but rather a set of integro-differential equations attains full equivalence to the Bragg-Hawthorne equation. For these intermediate Euler equations, it is interesting to note that local symmetries of the Bragg-Hawthorne equation transform to local as well as to nonlocal symmetries. This behaviour, on the one hand, is in accordance with Zawistowski's result [Zawistowski, Z.J., 2001. Symmetries of integro-differential equations. Rep. Math. Phys. 48, 269; Zawistowski, Z.J., 2004. General criterion of invariance for integro-differential equations. Rep. Math. Phys. 54, 341] that it is possible for integro-differential equations to admit local Lie point symmetries. On the other hand, with this transformation process we collect symmetries which cannot be obtained when carrying out a usual local Lie point symmetry analysis. Finally, the symmetry classification of the Bragg-Hawthorne equation is used to find analytical solutions for the phenomenon of vortex breakdown.

  4. Summing up the Euler [phi] Function

    ERIC Educational Resources Information Center

    Loomis, Paul; Plytage, Michael; Polhill, John

    2008-01-01

    The Euler [phi] function counts the number of positive integers less than and relatively prime to a positive integer n. Here we look at perfect totient numbers, number for which [phi](n) + [phi]([phi](n)) + [phi]([phi]([phi](n))) + ... + 1 = n.

  5. Hydrodynamic Coherence and Vortex Solutions of the Euler-Helmholtz Equation

    NASA Astrophysics Data System (ADS)

    Fimin, N. N.; Chechetkin, V. M.

    2018-03-01

    The form of the general solution of the steady-state Euler-Helmholtz equation (reducible to the Joyce-Montgomery one) in arbitrary domains on the plane is considered. This equation describes the dynamics of vortex hydrodynamic structures.

  6. Women and Mathematics in the Time of Euler

    ERIC Educational Resources Information Center

    Mayfield, Betty

    2013-01-01

    We explore mathematics written both by and for women in eighteenth-century Europe, and some of the interesting personalities involved: Maria Agnesi, Emilie du Chatelet, Laura Bassi, Princess Charlotte Ludovica Luisa, John Colson, Francesco Algarotti, and Leonhard Euler himself.

  7. Entropy Splitting and Numerical Dissipation

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Vinokur, M.; Djomehri, M. J.

    1999-01-01

    A rigorous stability estimate for arbitrary order of accuracy of spatial central difference schemes for initial-boundary value problems of nonlinear symmetrizable systems of hyperbolic conservation laws was established recently by Olsson and Oliger (1994) and Olsson (1995) and was applied to the two-dimensional compressible Euler equations for a perfect gas by Gerritsen and Olsson (1996) and Gerritsen (1996). The basic building block in developing the stability estimate is a generalized energy approach based on a special splitting of the flux derivative via a convex entropy function and certain homogeneous properties. Due to some of the unique properties of the compressible Euler equations for a perfect gas, the splitting resulted in the sum of a conservative portion and a non-conservative portion of the flux derivative. hereafter referred to as the "Entropy Splitting." There are several potential desirable attributes and side benefits of the entropy splitting for the compressible Euler equations that were not fully explored in Gerritsen and Olsson. The paper has several objectives. The first is to investigate the choice of the arbitrary parameter that determines the amount of splitting and its dependence on the type of physics of current interest to computational fluid dynamics. The second is to investigate in what manner the splitting affects the nonlinear stability of the central schemes for long time integrations of unsteady flows such as in nonlinear aeroacoustics and turbulence dynamics. If numerical dissipation indeed is needed to stabilize the central scheme, can the splitting help minimize the numerical dissipation compared to its un-split cousin? Extensive numerical study on the vortex preservation capability of the splitting in conjunction with central schemes for long time integrations will be presented. The third is to study the effect of the non-conservative proportion of splitting in obtaining the correct shock location for high speed complex shock-turbulence interactions. The fourth is to determine if this method can be extended to other physical equations of state and other evolutionary equation sets. If numerical dissipation is needed, the Yee, Sandham, and Djomehri (1999) numerical dissipation is employed. The Yee et al. schemes fit in the Olsson and Oliger framework.

  8. Modeling Phase-Aligned Gamma-Ray and Radio Millisecond Pulsar Light Curves

    NASA Technical Reports Server (NTRS)

    Venter, C.; Johnson, T.; Harding, A.

    2012-01-01

    Since the discovery of the first eight gamma-ray millisecond pulsars (MSPs) by the Fermi Large Area Telescope, this population has been steadily expanding. Four of the more recent detections, PSR J00340534, PSR J1939+2134 (B1937+21; the first MSP ever discovered), PSR J1959+2048 (B1957+20; the first discovery of a black widow system), and PSR J2214+3000, exhibit a phenomenon not present in the original discoveries: nearly phase-aligned radio and gamma-ray light curves (LCs). To account for the phase alignment, we explore models where both the radio and gamma-ray emission originate either in the outer magnetosphere near the light cylinder or near the polar caps. Using a Markov Chain Monte Carlo technique to search for best-fit model parameters, we obtain reasonable LC fits for the first three of these MSPs in the context of altitude-limited outer gap (alOG) and two-pole caustic (alTPC) geometries (for both gamma-ray and radio emission). These models differ from the standard outer gap (OG)/two-pole caustic (TPC) models in two respects: the radio emission originates in caustics at relatively high altitudes compared to the usual conal radio beams, and we allow both the minimum and maximum altitudes of the gamma-ray and radio emission regions to vary within a limited range (excluding the minimum gamma-ray altitude of the alTPC model, which is kept constant at the stellar radius, and that of the alOG model, which is set to the position-dependent null charge surface altitude). Alternatively, phase-aligned solutions also exist for emission originating near the stellar surface in a slot gap scenario (low-altitude slot gap (laSG) models). We find that the alTPC models provide slightly better LC fits than the alOG models, and both of these give better fits than the laSG models (for the limited range of parameters considered in the case of the laSG models). Thus, our fits imply that the phase-aligned LCs are likely of caustic origin, produced in the outer magnetosphere, and that the radio emission for these pulsars may come from close to the light cylinder. In addition, we were able to constrain the minimum and maximum emission altitudes with typical uncertainties of 30% of the light cylinder radius. Our results therefore describe a third gamma-ray MSP subclass, in addition to the two previously found by Venter et al.: those with LCs fit by standard OG/TPC models and those with LCs fit by pair-starved polar cap models.

  9. CFD Analysis and Design Optimization Using Parallel Computers

    NASA Technical Reports Server (NTRS)

    Martinelli, Luigi; Alonso, Juan Jose; Jameson, Antony; Reuther, James

    1997-01-01

    A versatile and efficient multi-block method is presented for the simulation of both steady and unsteady flow, as well as aerodynamic design optimization of complete aircraft configurations. The compressible Euler and Reynolds Averaged Navier-Stokes (RANS) equations are discretized using a high resolution scheme on body-fitted structured meshes. An efficient multigrid implicit scheme is implemented for time-accurate flow calculations. Optimum aerodynamic shape design is achieved at very low cost using an adjoint formulation. The method is implemented on parallel computing systems using the MPI message passing interface standard to ensure portability. The results demonstrate that, by combining highly efficient algorithms with parallel computing, it is possible to perform detailed steady and unsteady analysis as well as automatic design for complex configurations using the present generation of parallel computers.

  10. Aerodynamic shape optimization of wing and wing-body configurations using control theory

    NASA Technical Reports Server (NTRS)

    Reuther, James; Jameson, Antony

    1995-01-01

    This paper describes the implementation of optimization techniques based on control theory for wing and wing-body design. In previous studies it was shown that control theory could be used to devise an effective optimization procedure for airfoils and wings in which the shape and the surrounding body-fitted mesh are both generated analytically, and the control is the mapping function. Recently, the method has been implemented for both potential flows and flows governed by the Euler equations using an alternative formulation which employs numerically generated grids, so that it can more easily be extended to treat general configurations. Here results are presented both for the optimization of a swept wing using an analytic mapping, and for the optimization of wing and wing-body configurations using a general mesh.

  11. Numerical Simulation of Illumination and Thermal Conditions at the Lunar Poles Using LOLA DTMs

    NASA Technical Reports Server (NTRS)

    Glaser, P.; Glaser, D.; Oberst, J.; Neumann, G. A.; Mazarico, E.; Siegler, M. A.

    2017-01-01

    We are interested in illumination conditions and the temperature distribution within the upper two meters of regolith near the lunar poles. Here, areas exist receiving almost constant illumination near areas in permanent shadow, which were identified as potential exploration sites for future missions. For our study a numerical simulation of the illumination and thermal environment for lunar near-polar regions is needed. Our study is based on high-resolution, twenty meters per pixel and 400 x 400 km large polar Digital Terrain Models (DTMs), which were derived from Lunar Orbiter Laser Altimeter (LOLA) data. Illumination conditions were simulated by synthetically illuminating the LOLA DTMs using the horizon method considering the Sun as an extended source. We model polar illumination for the central 50 x 50 km subset and use it as an input at each time-step (2 h) to evaluate the heating of the lunar surface and subsequent conduction in the sub-surface. At surface level we balance the incoming insolation with the subsurface conduction and radiation into space, whereas in the sub-surface we consider conduction with an additional constant radiogenic heat source at the bottom of our two-meter layer. Density is modeled as depth-dependent, the specific heat parameter as temperature-dependent and the thermal conductivity as depth- and temperature-dependent. We implemented a fully implicit finite-volume method in space and backward Euler scheme in time to solve the one-dimensional heat equation at each pixel in our 50 x 50 km DTM. Due to the non-linear dependencies of the parameters mentioned above, Newton's method is employed as the non-linear solver together with the Gauss-Seidel method as the iterative linear solver in each Newton iteration. The software is written in OpenCL and runs in parallel on the GPU cores, which allows for fast computation of large areas and long time scales.

  12. A Kinematic Model for Opening of the Gulf of Mexico between 169-150 Ma

    NASA Astrophysics Data System (ADS)

    Harry, D. L.; Jha, S.

    2016-12-01

    Lineated magnetic anomalies interpreted to be seafloor spreading isochrons are identified in the central and eastern Gulf of Mexico. The southernmost of these anomalies coincides with a strong positive vertical gravity gradient interpreted to mark the location of the extinct spreading ridge in the Gulf. Together, the magnetic and gravity anomalies reveal a concave-south fossil spreading system that accommodated counterclockwise rotation of Yucatan away from North America during Jurassic opening of the Gulf. Magnetic models show that the magnetic lineations correlate with geomagnetic time scale chrons M22n (150 Ma), M33n (161 Ma), M39n (165 Ma), and Toar-Aal N (174 Ma). M22n lies astride the fossil ridge and defines the age at which seafloor spreading ended. M33n lies between the ridge and the Florida shelf. M39n lies close to the shelf edge in the eastern Gulf. Taor-Aal N is the oldest recognized seafloor spreading anomaly and is present only in the central Gulf, laying near the ocean-continent transition (OCT). The magnetic anomalies define an Euler pole located at 22°N, 82ºW. Rotating Yucatan clockwise 29° about this pole places the northeast Yucatan shelf edge tightly against the southwestern Florida shelf, closing the southeastern Gulf. An additional 12° clockwise rotation juxtaposes the OCT on the northwestern Yucatan margin against the North American OCT in the central Gulf. These constraints on Yucatan's past position indicate that continental extension propagated from the western into the eastern Gulf between 215-174 Ma as Yucatan began to rotate away from North America. Seafloor spreading began 174 Ma and was asymmetric, with all extension occurring north of the spreading ridge. Symmetric seafloor spreading was established by 165 Ma and continued until 150 Ma. A total of 41°counterclockwise rotation of Yucatan relative to North America is predicted to have occurred during continental extension and seafloor spreading.

  13. Impacts of GNSS position offsets on global frame stability

    NASA Astrophysics Data System (ADS)

    Griffiths, Jake; Ray, Jim

    2015-04-01

    Positional offsets appear in Global Navigation Satellite System (GNSS) time series for a variety of reasons. Antenna or radome changes are the most common cause for these discontinuities. Many others are from earthquakes, receiver changes, and different anthropogenic modifications at or near the stations. Some jumps appear for unknown or undocumented reasons. Accurate determination of station velocities, and therefore geophysical parameters and terrestrial reference frames, requires that positional offsets be correctly found and compensated. Williams (2003) found that undetected offsets introduce a random walk error component in individual station time series. The topic of detecting positional offsets has received considerable attention in recent years (e.g., Detection of Offsets in GPS Experiment; DOGEx), and most research groups using GNSS have adopted a mix of manual and automated methods for finding them. The removal of a positional offset from a time series is usually handled by estimating the average station position on both sides of the discontinuity. Except for large earthquake events, the velocity is usually assumed constant and continuous across the positional jump. This approach is sufficient in the absence of time-correlated errors. However, GNSS time series contain periodic and power-law (flicker) errors. In this paper, we evaluate the impact to individual station results and the overall stability of the global reference frame from adding increasing numbers of positional discontinuities. We use the International GNSS Service (IGS) weekly SINEX files, and iteratively insert positional offset parameters. Each iteration includes a restacking of the modified SINEX files using the CATREF software from Institut National de l'Information Géographique et Forestière (IGN). Comparisons of successive stacked solutions are used to assess the impacts on the time series of x-pole and y-pole offsets, along with changes in regularized position and secular velocity for stations with more than 2.5 years of data. Our preliminary results indicate that the change in polar motion scatter is logarithmic with increasing numbers of discontinuities. The best-fit natural logarithm to the changes in scatter for x-pole has R2 = 0.58; the fit for the y-pole series has R2 = 0.99. From these empirical functions, we find that polar motion scatter increases from zero when the total rate of discontinuities exceeds 0.2 (x-pole) and 1.3 (y-pole) per station, on average (the IGS has 0.65 per station). Thus, the presence of position offsets in GNSS station time series is likely already a contributor to IGS polar motion inaccuracy and global frame instability. Impacts to station position and velocity estimates depend on noise features found in that station's positional time series. For instance, larger changes in velocity occur for stations with shorter and noisier data spans. This is because an added discontinuity parameter for an individual station time series can induce changes in average position on both sides of the break. We will expand on these results, and consider remaining questions about the role of velocity discontinuities and the effects caused by non-core reference frame stations.

  14. Basilar-membrane responses to broadband noise modeled using linear filters with rational transfer functions.

    PubMed

    Recio-Spinoso, Alberto; Fan, Yun-Hui; Ruggero, Mario A

    2011-05-01

    Basilar-membrane responses to white Gaussian noise were recorded using laser velocimetry at basal sites of the chinchilla cochlea with characteristic frequencies near 10 kHz and first-order Wiener kernels were computed by cross correlation of the stimuli and the responses. The presence or absence of minimum-phase behavior was explored by fitting the kernels with discrete linear filters with rational transfer functions. Excellent fits to the kernels were obtained with filters with transfer functions including zeroes located outside the unit circle, implying nonminimum-phase behavior. These filters accurately predicted basilar-membrane responses to other noise stimuli presented at the same level as the stimulus for the kernel computation. Fits with all-pole and other minimum-phase discrete filters were inferior to fits with nonminimum-phase filters. Minimum-phase functions predicted from the amplitude functions of the Wiener kernels by Hilbert transforms were different from the measured phase curves. These results, which suggest that basilar-membrane responses do not have the minimum-phase property, challenge the validity of models of cochlear processing, which incorporate minimum-phase behavior. © 2011 IEEE

  15. Centrifuge Rotor Models: A Comparison of the Euler-Lagrange and the Bond Graph Modeling Approach

    NASA Technical Reports Server (NTRS)

    Granda, Jose J.; Ramakrishnan, Jayant; Nguyen, Louis H.

    2006-01-01

    A viewgraph presentation on centrifuge rotor models with a comparison using Euler-Lagrange and bond graph methods is shown. The topics include: 1) Objectives; 2) MOdeling Approach Comparisons; 3) Model Structures; and 4) Application.

  16. On the commutator of C^{\\infty}} -symmetries and the reduction of Euler-Lagrange equations

    NASA Astrophysics Data System (ADS)

    Ruiz, A.; Muriel, C.; Olver, P. J.

    2018-04-01

    A novel procedure to reduce by four the order of Euler-Lagrange equations associated to nth order variational problems involving single variable integrals is presented. In preparation, a new formula for the commutator of two \

  17. Singularities of the Euler equation and hydrodynamic stability

    NASA Technical Reports Server (NTRS)

    Tanveer, S.; Speziale, Charles G.

    1993-01-01

    Equations governing the motion of a specific class of singularities of the Euler equation in the extended complex spatial domain are derived. Under some assumptions, it is shown how this motion is dictated by the smooth part of the complex velocity at a singular point in the unphysical domain. These results are used to relate the motion of complex singularities to the stability of steady solutions of the Euler equation. A sufficient condition for instability is conjectured. Several examples are presented to demonstrate the efficacy of this sufficient condition which include the class of elliptical flows and the Kelvin-Stuart Cat's Eye.

  18. Singularities of the Euler equation and hydrodynamic stability

    NASA Technical Reports Server (NTRS)

    Tanveer, S.; Speziale, Charles G.

    1992-01-01

    Equations governing the motion of a specific class of singularities of the Euler equation in the extended complex spatial domain are derived. Under some assumptions, it is shown how this motion is dictated by the smooth part of the complex velocity at a singular point in the unphysical domain. These results are used to relate the motion of complex singularities to the stability of steady solutions of the Euler equation. A sufficient condition for instability is conjectured. Several examples are presented to demonstrate the efficacy of this sufficient condition which include the class of elliptical flows and the Kelvin-Stuart Cat's Eye.

  19. Quality assessment of two- and three-dimensional unstructured meshes and validation of an upwind Euler flow solver

    NASA Technical Reports Server (NTRS)

    Woodard, Paul R.; Yang, Henry T. Y.; Batina, John T.

    1992-01-01

    Quality assessment procedures are described for two-dimensional and three-dimensional unstructured meshes. The procedures include measurement of minimum angles, element aspect ratios, stretching, and element skewness. Meshes about the ONERA M6 wing and the Boeing 747 transport configuration are generated using an advancing front method grid generation package of programs. Solutions of Euler's equations for these meshes are obtained at low angle-of-attack, transonic conditions. Results for these cases, obtained as part of a validation study demonstrate the accuracy of an implicit upwind Euler solution algorithm.

  20. On the Local Type I Conditions for the 3D Euler Equations

    NASA Astrophysics Data System (ADS)

    Chae, Dongho; Wolf, Jörg

    2018-05-01

    We prove local non blow-up theorems for the 3D incompressible Euler equations under local Type I conditions. More specifically, for a classical solution {v\\in L^∞ (-1,0; L^2 ( B(x_0,r)))\\cap L^∞_{loc} (-1,0; W^{1, ∞} (B(x_0, r)))} of the 3D Euler equations, where {B(x_0,r)} is the ball with radius r and the center at x 0, if the limiting values of certain scale invariant quantities for a solution v(·, t) as {t\\to 0} are small enough, then { \

  1. Unstructured Euler flow solutions using hexahedral cell refinement

    NASA Technical Reports Server (NTRS)

    Melton, John E.; Cappuccio, Gelsomina; Thomas, Scott D.

    1991-01-01

    An attempt is made to extend grid refinement into three dimensions by using unstructured hexahedral grids. The flow solver is developed using the TIGER (topologically Independent Grid, Euler Refinement) as the starting point. The program uses an unstructured hexahedral mesh and a modified version of the Jameson four-stage, finite-volume Runge-Kutta algorithm for integration of the Euler equations. The unstructured mesh allows for local refinement appropriate for each freestream condition, thereby concentrating mesh cells in the regions of greatest interest. This increases the computational efficiency because the refinement is not required to extend throughout the entire flow field.

  2. Investigation of source location determination from Magsat magnetic anomalies: The Euler method approach

    NASA Technical Reports Server (NTRS)

    Ravat, Dhananjay

    1996-01-01

    The applicability of the Euler method of source location determination was investigated on several model situations pertinent to satellite-data scale situations as well as Magsat data of Europe. Our investigations enabled us to understand the end-member cases for which the Euler method will work with the present satellite magnetic data and also the cases for which the assumptions implicit in the Euler method will not be met by the present satellite magnetic data. These results have been presented in one invited lecture at the Indo-US workshop on Geomagnetism in Studies of the Earth's Interior in August 1994 in Pune, India, and at one presentation at the 21st General Assembly of the IUGG in July 1995 in Boulder, CO. A new method, called Anomaly Attenuation Rate (AAR) Method (based on the Euler method), was developed during this study. This method is scale-independent and is appropriate to locate centroids of semi-compact three dimensional sources of gravity and magnetic anomalies. The method was presented during 1996 Spring AGU meeting and a manuscript describing this method is being prepared for its submission to a high-ranking journal. The grant has resulted in 3 papers and presentations at national and international meetings and one manuscript of a paper (to be submitted shortly to a reputable journal).

  3. A Direct and Non-Singular UKF Approach Using Euler Angle Kinematics for Integrated Navigation Systems

    PubMed Central

    Ran, Changyan; Cheng, Xianghong

    2016-01-01

    This paper presents a direct and non-singular approach based on an unscented Kalman filter (UKF) for the integration of strapdown inertial navigation systems (SINSs) with the aid of velocity. The state vector includes velocity and Euler angles, and the system model contains Euler angle kinematics equations. The measured velocity in the body frame is used as the filter measurement. The quaternion nonlinear equality constraint is eliminated, and the cross-noise problem is overcome. The filter model is simple and easy to apply without linearization. Data fusion is performed by an UKF, which directly estimates and outputs the navigation information. There is no need to process navigation computation and error correction separately because the navigation computation is completed synchronously during the filter time updating. In addition, the singularities are avoided with the help of the dual-Euler method. The performance of the proposed approach is verified by road test data from a land vehicle equipped with an odometer aided SINS, and a singularity turntable test is conducted using three-axis turntable test data. The results show that the proposed approach can achieve higher navigation accuracy than the commonly-used indirect approach, and the singularities can be efficiently removed as the result of dual-Euler method. PMID:27598169

  4. Siberia, the wandering northern terrane, and its changing geography through the Palaeozoic

    NASA Astrophysics Data System (ADS)

    Cocks, L. Robin M.; Torsvik, Trond H.

    2007-05-01

    The old terrane of Siberia occupied a very substantial area in the centre of today's political Siberia and also adjacent areas of Mongolia, eastern Kazakhstan, and northwestern China. Siberia's location within the Early Neoproterozoic Rodinia Superterrane is contentious (since few if any reliable palaeomagnetic data exist between about 1.0 Ga and 540 Ma), but Siberia probably became independent during the breakup of Rodinia soon after 800 Ma and continued to be so until very near the end of the Palaeozoic, when it became an integral part of the Pangea Supercontinent. The boundaries of the cratonic core of the Siberian Terrane (including the Patom area) are briefly described, together with summaries of some of the geologically complex surrounding areas, and it is concluded that all of the Palaeozoic underlying the West Siberian Basin (including the Ob-Saisan Surgut area), Tomsk Terrane, Altai-Sayan Terranes (including Salair, Kuznetsk Alatau, Batenov, Kobdin and West Sayan), Ertix Terrane, Barguzin Terrane, Tuva-Mongol Terrane, Central Mongolia Terrane Assemblage, Gobi Altai and Mandalovoo Terranes, Okhotsk Terrane and much of the Verkhoyansk-Kolyma region all formed parts of peri-Siberia, and thus rotated with the main Siberian Craton as those areas were progressively accreted to the main Siberian Terrane at various times during the latest Neoproterozoic and Palaeozoic. The Ertix Terrane is a new term combining what has been termed the "Altay Terrane" or "NE Xinjiang" area of China, and the Baytag, Baaran and Bidz terranes of Mongolia. The Silurian Tuvaella brachiopod fauna is restricted only to today's southern parts of peri-Siberia. Thus, allowing for subsequent rotation, the fauna occurs only in the N of the Siberian Terrane, and, as well as being a helpful indicator of what marginal terranes made up peri-Siberia, is distinctive as being the only Silurian fauna known from northern higher latitudes globally. In contrast, the other terranes adjacent to peri-Siberia, the North China Terrane, the Manchurides terranes (including the Khingan-Bureya Massif area), the Gurvanshayan Terrane, the Ala Shan Terrane, the Qaidam-Qilian Terrane, the Tarim Terrane, the Junggar Terrane, the Tien Shan terranes and the various Kazakh terranes, did not become part of the Siberian Terrane assemblage until they accreted to it in the Upper Palaeozoic or later during the formation of Pangea. The Farewell Terrane of Alaska includes typical Lower and Middle Palaeozoic Siberian endemic faunas, but its Palaeozoic position is unknown. Cambrian to Early Silurian palaeomagnetic poles from the southern and northern parts of the Siberian Craton differ, but can be matched with an Euler pole of 60°N, 120°E and a rotation angle of 13°. We link this observation with Devonian rifting in the Viljuy Basin near the centre of the craton and also postulate that this rifting rejuvenated an older Precambrian rift zone, since 1-1.1 Ga poles from southern and northern Siberia differ as much as 23° around the same Euler pole. A revised Palaeozoic apparent polar wander (APW) path is presented for the Siberian Craton in which pre-Devonian poles are corrected for Viljuy Basin rifting. There is also much Late Devonian tectonic activity in the Altai-Sayan area, which may be linked. The APW path implies that Siberia was located at low southerly latitudes at the dawn of the Palaeozoic and slowly drifted northward (< 4 cm/yr.). A velocity burst is noted near the Ordovician-Silurian boundary (ca. 13 cm/yr between 450 and 440 Ma), whilst the Mid-Silurian and younger history is characterized by steady clockwise rotation (totalling about 75°) until the Late Permian. The Late Palaeozoic convergence history between Siberia and Baltica (Pangea) is hard to quantify from palaeomagnetic data because there are only two reliable poles (at 360 and 275 Ma) between the Early Silurian and the Permo-Triassic boundary. The Mid and Late Palaeozoic APW path for Siberia is therefore strongly interpolated and we discuss two different APW path alternatives that result in two very different convergence scenarios between Siberia and Baltica/Kazakh terranes. There are a newly-constructed succession of palaeogeographic maps of Siberia and its nearby areas at various times from the Cambrian to the Permian as, firstly, the peri-Siberian terranes and, secondly, the remainder of the Central Asian terranes accreted to it. Prior to the Early Ordovician, Siberia was in the southern hemisphere, but after that it drifted northwards and for most of the Phanerozoic it has been one of the few larger terranes in the northern hemisphere. The Cambrian and Ordovician maps are provisional for the Altai-Sayan and Mongolian areas, whose geology is highly complex and whose detailed palaeogeography is unresolved. The terms "Altaids" and "Paleo-Asian Ocean" have been used in so many different ways by so many different authors over so many geological periods that we reject their use. Wider issues considered include the possible links between the Cambrian Radiation (often wrongly termed "Explosion"), when metazoan animals first gained hard parts, and True Polar Wander (TPW). New Early Cambrian palaeomagnetic data from Siberia do not show rapid APW (< 10 cm/yr.) or dramatic velocity changes (< 4 cm/yr). It is concluded that the Cambrian Radiation occurred over a period approaching 20 Myr, and that rapid and large-scale TPW did not take place in the Cambrian. In addition, there are no traces of glaciogenic deposits in the very large area of Siberia during the Neoproterozoic, casting some doubt on the "Snowball Earth" hypothesis.

  5. The Legacy of Leonhard Euler--A Tricentennial Tribute

    ERIC Educational Resources Information Center

    Debnath, Lokenath

    2009-01-01

    This tricentennial tribute commemorates Euler's major contributions to mathematical and physical sciences. A brief biographical sketch is presented with his major contributions to certain selected areas of number theory, differential and integral calculus, differential equations, solid and fluid mechanics, topology and graph theory, infinite…

  6. Euler's Identity, Leibniz Tables, and the Irrationality of Pi

    ERIC Educational Resources Information Center

    Jones, Timothy W.

    2012-01-01

    Using techniques that show that e and pi are transcendental, we give a short, elementary proof that pi is irrational based on Euler's identity. The proof involves evaluations of a polynomial using repeated applications of Leibniz formula as organized in a Leibniz table.

  7. Three dimensional steady subsonic Euler flows in bounded nozzles

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Xie, Chunjing

    The existence and uniqueness of three dimensional steady subsonic Euler flows in rectangular nozzles were obtained when prescribing normal component of momentum at both the entrance and exit. If, in addition, the normal component of the voriticity and the variation of Bernoulli's function at the entrance are both zero, then there exists a unique subsonic potential flow when the magnitude of the normal component of the momentum is less than a critical number. As the magnitude of the normal component of the momentum approaches the critical number, the associated flows converge to a subsonic-sonic flow. Furthermore, when the normal component of vorticity and the variation of Bernoulli function are both small, the existence and uniqueness of subsonic Euler flows with non-zero vorticity are established. The proof of these results is based on a new formulation for the Euler system, a priori estimate for nonlinear elliptic equations with nonlinear boundary conditions, detailed study for a linear div-curl system, and delicate estimate for the transport equations.

  8. ASTROP2-LE: A Mistuned Aeroelastic Analysis System Based on a Two Dimensional Linearized Euler Solver

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Srivastava, R.; Mehmed, Oral

    2002-01-01

    An aeroelastic analysis system for flutter and forced response analysis of turbomachines based on a two-dimensional linearized unsteady Euler solver has been developed. The ASTROP2 code, an aeroelastic stability analysis program for turbomachinery, was used as a basis for this development. The ASTROP2 code uses strip theory to couple a two dimensional aerodynamic model with a three dimensional structural model. The code was modified to include forced response capability. The formulation was also modified to include aeroelastic analysis with mistuning. A linearized unsteady Euler solver, LINFLX2D is added to model the unsteady aerodynamics in ASTROP2. By calculating the unsteady aerodynamic loads using LINFLX2D, it is possible to include the effects of transonic flow on flutter and forced response in the analysis. The stability is inferred from an eigenvalue analysis. The revised code, ASTROP2-LE for ASTROP2 code using Linearized Euler aerodynamics, is validated by comparing the predictions with those obtained using linear unsteady aerodynamic solutions.

  9. A Revelation: Quantum-Statistics and Classical-Statistics are Analytic-Geometry Conic-Sections and Numbers/Functions: Euler, Riemann, Bernoulli Generating-Functions: Conics to Numbers/Functions Deep Subtle Connections

    NASA Astrophysics Data System (ADS)

    Descartes, R.; Rota, G.-C.; Euler, L.; Bernoulli, J. D.; Siegel, Edward Carl-Ludwig

    2011-03-01

    Quantum-statistics Dichotomy: Fermi-Dirac(FDQS) Versus Bose-Einstein(BEQS), respectively with contact-repulsion/non-condensation(FDCR) versus attraction/ condensationBEC are manifestly-demonstrated by Taylor-expansion ONLY of their denominator exponential, identified BOTH as Descartes analytic-geometry conic-sections, FDQS as Elllipse (homotopy to rectangle FDQS distribution-function), VIA Maxwell-Boltzmann classical-statistics(MBCS) to Parabola MORPHISM, VS. BEQS to Hyperbola, Archimedes' HYPERBOLICITY INEVITABILITY, and as well generating-functions[Abramowitz-Stegun, Handbook Math.-Functions--p. 804!!!], respectively of Euler-numbers/functions, (via Riemann zeta-function(domination of quantum-statistics: [Pathria, Statistical-Mechanics; Huang, Statistical-Mechanics]) VS. Bernoulli-numbers/ functions. Much can be learned about statistical-physics from Euler-numbers/functions via Riemann zeta-function(s) VS. Bernoulli-numbers/functions [Conway-Guy, Book of Numbers] and about Euler-numbers/functions, via Riemann zeta-function(s) MORPHISM, VS. Bernoulli-numbers/ functions, visa versa!!! Ex.: Riemann-hypothesis PHYSICS proof PARTLY as BEQS BEC/BEA!!!

  10. Multigrid calculation of three-dimensional turbomachinery flows

    NASA Technical Reports Server (NTRS)

    Caughey, David A.

    1989-01-01

    Research was performed in the general area of computational aerodynamics, with particular emphasis on the development of efficient techniques for the solution of the Euler and Navier-Stokes equations for transonic flows through the complex blade passages associated with turbomachines. In particular, multigrid methods were developed, using both explicit and implicit time-stepping schemes as smoothing algorithms. The specific accomplishments of the research have included: (1) the development of an explicit multigrid method to solve the Euler equations for three-dimensional turbomachinery flows based upon the multigrid implementation of Jameson's explicit Runge-Kutta scheme (Jameson 1983); (2) the development of an implicit multigrid scheme for the three-dimensional Euler equations based upon lower-upper factorization; (3) the development of a multigrid scheme using a diagonalized alternating direction implicit (ADI) algorithm; (4) the extension of the diagonalized ADI multigrid method to solve the Euler equations of inviscid flow for three-dimensional turbomachinery flows; and also (5) the extension of the diagonalized ADI multigrid scheme to solve the Reynolds-averaged Navier-Stokes equations for two-dimensional turbomachinery flows.

  11. Development of a grid-independent approximate Riemannsolver. Ph.D. Thesis - Michigan Univ.

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher Lockwood

    1991-01-01

    A grid-independent approximate Riemann solver for use with the Euler and Navier-Stokes equations was introduced and explored. The two-dimensional Euler and Navier-Stokes equations are described in Cartesian and generalized coordinates, as well as the traveling wave form of the Euler equations. The spatial and temporal discretization are described for both explicit and implicit time-marching schemes. The grid-aligned flux function of Roe is outlined, while the 5-wave grid-independent flux function is derived. The stability and monotonicity analysis of the 5-wave model are presented. Two-dimensional results are provided and extended to three dimensions. The corresponding results are presented.

  12. On the estimation variance for the specific Euler-Poincaré characteristic of random networks.

    PubMed

    Tscheschel, A; Stoyan, D

    2003-07-01

    The specific Euler number is an important topological characteristic in many applications. It is considered here for the case of random networks, which may appear in microscopy either as primary objects of investigation or as secondary objects describing in an approximate way other structures such as, for example, porous media. For random networks there is a simple and natural estimator of the specific Euler number. For its estimation variance, a simple Poisson approximation is given. It is based on the general exact formula for the estimation variance. In two examples of quite different nature and topology application of the formulas is demonstrated.

  13. On the Approximation of Generalized Lipschitz Function by Euler Means of Conjugate Series of Fourier Series

    PubMed Central

    Kushwaha, Jitendra Kumar

    2013-01-01

    Approximation theory is a very important field which has various applications in pure and applied mathematics. The present study deals with a new theorem on the approximation of functions of Lipschitz class by using Euler's mean of conjugate series of Fourier series. In this paper, the degree of approximation by using Euler's means of conjugate of functions belonging to Lip (ξ(t), p) class has been obtained. Lipα and Lip (α, p) classes are the particular cases of Lip (ξ(t), p) class. The main result of this paper generalizes some well-known results in this direction. PMID:24379744

  14. Uniform high order spectral methods for one and two dimensional Euler equations

    NASA Technical Reports Server (NTRS)

    Cai, Wei; Shu, Chi-Wang

    1991-01-01

    Uniform high order spectral methods to solve multi-dimensional Euler equations for gas dynamics are discussed. Uniform high order spectral approximations with spectral accuracy in smooth regions of solutions are constructed by introducing the idea of the Essentially Non-Oscillatory (ENO) polynomial interpolations into the spectral methods. The authors present numerical results for the inviscid Burgers' equation, and for the one dimensional Euler equations including the interactions between a shock wave and density disturbance, Sod's and Lax's shock tube problems, and the blast wave problem. The interaction between a Mach 3 two dimensional shock wave and a rotating vortex is simulated.

  15. Remarks on High Reynolds Numbers Hydrodynamics and the Inviscid Limit

    NASA Astrophysics Data System (ADS)

    Constantin, Peter; Vicol, Vlad

    2018-04-01

    We prove that any weak space-time L^2 vanishing viscosity limit of a sequence of strong solutions of Navier-Stokes equations in a bounded domain of R^2 satisfies the Euler equation if the solutions' local enstrophies are uniformly bounded. We also prove that t-a.e. weak L^2 inviscid limits of solutions of 3D Navier-Stokes equations in bounded domains are weak solutions of the Euler equation if they locally satisfy a scaling property of their second-order structure function. The conditions imposed are far away from boundaries, and wild solutions of Euler equations are not a priori excluded in the limit.

  16. A Solution Adaptive Structured/Unstructured Overset Grid Flow Solver with Applications to Helicopter Rotor Flows

    NASA Technical Reports Server (NTRS)

    Duque, Earl P. N.; Biswas, Rupak; Strawn, Roger C.

    1995-01-01

    This paper summarizes a method that solves both the three dimensional thin-layer Navier-Stokes equations and the Euler equations using overset structured and solution adaptive unstructured grids with applications to helicopter rotor flowfields. The overset structured grids use an implicit finite-difference method to solve the thin-layer Navier-Stokes/Euler equations while the unstructured grid uses an explicit finite-volume method to solve the Euler equations. Solutions on a helicopter rotor in hover show the ability to accurately convect the rotor wake. However, isotropic subdivision of the tetrahedral mesh rapidly increases the overall problem size.

  17. Functional equations for orbifold wreath products

    NASA Astrophysics Data System (ADS)

    Farsi, Carla; Seaton, Christopher

    2017-10-01

    We present generating functions for extensions of multiplicative invariants of wreath symmetric products of orbifolds presented as the quotient by the locally free action of a compact, connected Lie group in terms of orbifold sector decompositions. Particularly interesting instances of these product formulas occur for the Euler and Euler-Satake characteristics, which we compute for a class of weighted projective spaces. This generalizes results known for global quotients by finite groups to all closed, effective orbifolds. We also describe a combinatorial approach to extensions of multiplicative invariants using decomposable functors that recovers the formula for the Euler-Satake characteristic of a wreath product of a global quotient orbifold.

  18. Improved measurement of the form factors in the decay lambda+c-->lambda + nue.

    PubMed

    Hinson, J W; Huang, G S; Lee, J; Miller, D H; Pavlunin, V; Rangarajan, R; Sanghi, B; Shibata, E I; Shipsey, I P J; Cronin-Hennessy, D; Park, C S; Park, W; Thayer, J B; Thorndike, E H; Coan, T E; Gao, Y S; Liu, F; Stroynowski, R; Artuso, M; Boulahouache, C; Blusk, S; Dambasuren, E; Dorjkhaidav, O; Mountain, R; Muramatsu, H; Nandakumar, R; Skwarnicki, T; Stone, S; Wang, J C; Csorna, S E; Danko, I; Bonvicini, G; Cinabro, D; Dubrovin, M; McGee, S; Bornheim, A; Lipeles, E; Pappas, S P; Shapiro, A; Sun, W M; Weinstein, A J; Briere, R A; Chen, G P; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Adam, N E; Alexander, J P; Berkelman, K; Boisvert, V; Cassel, D G; Duboscq, J E; Ecklund, K M; Ehrlich, R; Galik, R S; Gibbons, L; Gittelman, B; Gray, S W; Hartill, D L; Heltsley, B K; Hsu, L; Jones, C D; Kandaswamy, J; Kreinick, D L; Magerkurth, A; Mahlke-Krüger, H; Meyer, T O; Mistry, N B; Patterson, J R; Peterson, D; Pivarski, J; Richichi, S J; Riley, D; Sadoff, A J; Schwarthoff, H; Shepherd, M R; Thayer, J G; Urner, D; Wilksen, T; Warburton, A; Weinberger, M; Athar, S B; Avery, P; Breva-Newell, L; Potlia, V; Stoeck, H; Yelton, J; Benslama, K; Cawlfield, C; Eisenstein, B I; Gollin, G D; Karliner, I; Lowrey, N; Plager, C; Sedlack, C; Selen, M; Thaler, J J; Williams, J; Edwards, K W; Besson, D; Anderson, S; Frolov, V V; Gong, D T; Kubota, Y; Li, S Z; Poling, R; Smith, A; Stepaniak, C J; Urheim, J; Metreveli, Z; Seth, K K; Tomaradze, A; Zweber, P; Ahmed, S; Alam, M S; Ernst, J; Jian, L; Saleem, M; Wappler, F; Arms, K; Eckhart, E; Gan, K K; Gwon, C; Honscheid, K; Kagan, H; Kass, R; Pedlar, T K; von Toerne, E; Severini, H; Skubic, P; Dytman, S A; Mueller, J A; Nam, S; Savinov, V

    2005-05-20

    Using the CLEO detector at the Cornell Electron Storage Ring, we have studied the distribution of kinematic variables in the decay lambda(+)(c)lambda--> e(+)nu(e). By performing a four-dimensional maximum likelihood fit, we determine the form factor ratio, R= f(2)/f(1) = -0.31 +/- 0.05(stat) +/- 0.04(syst), the pole mass, M(pole) = [2.21 +/- 0.08(stat) +/- 0.14(syst)] GeV/c(2), and the decay asymmetry parameter of the lambda(+)(c), alpha (lambda(c)) = -0.86 +/-0.03(stat) +/- 0.02(syst), for q(2) = 0.67 (GeV/c(2))(2). We compare the angular distributions of the lambda(+)(c) and lambda(-)(c) and find no evidence for CP violation: A(lambda(c)) = (alpha(lambda(c)) + alpha (lambda(c)))/(alpha(lambda(c))-alpha(lambda(c))) = 0.00 +/- 0.03(stat) +/- 0.01(syst) +/- 0.02, where the third error is from the uncertainty in the world average of the CP-violating parameter, A(lambda), for ppi(-).

  19. Jupiter's Swirling South Pole

    NASA Image and Video Library

    2018-01-18

    This image of Jupiter's swirling south polar region was captured by NASA's Juno spacecraft as it neared completion of its tenth close flyby of the gas giant planet. The "empty" space above and below Jupiter in this color-enhanced image can trick the mind, causing the viewer to perceive our solar system's largest planet as less colossal than it is. In reality, Jupiter is wide enough to fit 11 Earths across its clouded disk. The spacecraft captured this image on Dec. 16, 2017, at 11:07 PST (2:07 p.m. EST) when the spacecraft was about 64,899 miles (104,446 kilometers) from the tops of the clouds of the planet at a latitude of 83.9 degrees south -- almost directly over Jupiter's south pole. The spatial scale in this image is 43.6 miles/pixel (70.2 kilometers/pixel). Citizen scientist Gerald Eichstädt processed this image using data from the JunoCam imager. https://photojournal.jpl.nasa.gov/catalog/PIA21975

  20. Multichannel calculation of the very narrow Ds0 *(2317) and the very broad D0 *(2300-2400)

    NASA Astrophysics Data System (ADS)

    Rupp, G.; van Beveren, E.

    2007-03-01

    The narrow D s0 * (2317) and broad D 0 * (2300-2400) charmed scalar mesons and their radial excitations are described in a coupled-channel quark model that also reproduces the properties of the light scalar nonet. All two-meson channels containing ground-state pseudoscalars and vectors are included. The parameters are chosen fixed at published values, except for the overall coupling constant λ, which is fine-tuned to reproduce the D s0 * (2317) mass, and a damping constant α for subthreshold contributions. Variations of λ and D 0 * (2300-2400) pole postions are studied for different α values. Calculated cross-sections for S-wave DK and Dπ scattering, as well as resonance pole positions, are given for the value of α that fits the light scalars. The thus predicted radially excited state D s0 *‧(2850), with a width of about 50MeV, seems to have been observed already.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaboud, M.; Aad, G.; Abbott, B.

    We present single lepton and dilepton kinematic distributions measured in dileptonic tmore » $$\\bar{t}$$ events produced in 20.2fb - 1 of √s=8 TeV pp collisions recorded by the ATLAS experiment at the LHC. Both absolute and normalised differential cross-sections are measured, using events with an opposite-charge eμ pair and one or two b-tagged jets. Furthermore, the cross-sections are measured in a fiducial region corresponding to the detector acceptance for leptons, and are compared to the predictions from a variety of Monte Carlo event generators, as well as fixed-order QCD calculations, exploring the sensitivity of the cross-sections to the gluon parton distribution function. Some of the distributions are also sensitive to the top quark pole mass; a combined fit of NLO fixed-order predictions to all the measured distributions yields a top quark mass value of m$$pole\\atop{t}$$=173.2±0.9±0.8±1.2 GeV, where the three uncertainties arise from data statistics, experimental systematics, and theoretical sources.« less

  2. Discretization vs. Rounding Error in Euler's Method

    ERIC Educational Resources Information Center

    Borges, Carlos F.

    2011-01-01

    Euler's method for solving initial value problems is an excellent vehicle for observing the relationship between discretization error and rounding error in numerical computation. Reductions in stepsize, in order to decrease discretization error, necessarily increase the number of steps and so introduce additional rounding error. The problem is…

  3. From the elastica compass to the elastica catapult: an essay on the mechanics of soft robot arm.

    PubMed

    Armanini, C; Dal Corso, F; Misseroni, D; Bigoni, D

    2017-02-01

    An elastic rod is clamped at one end and has a dead load attached to the other (free) end. The rod is then slowly rotated using the clamp. When the load is smaller than the buckling value, the rod describes a continuous set of quasi-static forms and its end traces a (smooth, convex and simple) closed curve, which would be a circle if the rod were rigid. The closed curve is analytically determined through the integration of the Euler's elastica, so that for sufficiently small loads the mechanical system behaves as an 'elastica compass'. For loads higher than that of buckling, the elastica reaches a configuration from which a snap-back instability occurs, realizing a sort of 'elastica catapult'. The whole quasi-static evolution leading to the critical configuration for snapping is calculated through the elastica and the subsequent dynamic motion simulated using two numerical procedures, one ad hoc developed and another based on a finite-element scheme. The theoretical results are then validated on a specially designed and built apparatus. An obvious application of the present model would be in the development of soft robotic limbs, but the results are also of interest for the optimization analysis in pole vaulting.

  4. “Escargot Effect” and the Chandler Wobble Excitation

    NASA Astrophysics Data System (ADS)

    Zotov, Leonid; Bizouard, Christian

    2018-01-01

    We study the Chandler wobble (CW) of the pole from 1846 to 2017 extracted by the Panteleev filtering. The CW has period of 433 days, average amplitude of 0.13 milliarcseconds (mas) which is changing, and phase jump by ϕ in 1930-th. The CW amplitude strongly (almost to zero) decreases in 1930-th and 2010-th with the phase jump in 1930th. The envelope model contains 83- and 42-years quasi-periodicities. We think the first one can be represented by the 166-years changes of the envelope, crossing zero in 1930th. We reconstruct Chandler input excitation based on the Euler-Liouville equation. Its amplitude has ∼ 20-years variations. We explain this based on simple model and prove, that they appear in consequence of 42-years modulation of CW. The excitation amplifies the amplitude of CW for ∼ 20 years then damps it for another ∼ 20 years. The analysis of the modulated CW signal in a sliding window demonstrates the specific effect, we called the “escargot effect”, when instantaneous “virtual” retrograde component appears in the purely prograde (at long-time interval) signal. Chandler excitation envelope shape is similar to this instantaneous retrograde component, which reflects the changes of ellipticity of the approximation ellipse.

  5. A New Global Model Of Plates Motion Over The Mantle For The Last 300MA: Link Between Mantle Structures, Volcanism and Plate Tectonics.

    NASA Astrophysics Data System (ADS)

    Jean, B.; Sophie, V. D. G.; Greff-Lefftz, M.; Frizon de Lamotte, D.; Lescanne, M.; Leparmentier, F.

    2017-12-01

    We compare several models of hot spot reference frames published in the litterature retracing the kinematics of the lithosphere over the mantle for the last 120Ma. We then propose a new model between 130 and 300Ma, based on the comparison of various surface indicators (geological, thermal data from boreholes and compilation of global surface volcanism), a reassessment of hot spots classification and paleomagnetic data. We discuss the implication of our model on the location and timing of several types of surface volcanism (subductions, intracontinental volcanism, rifting and LIPS, kimberlites) that we link to deep structures interpreted from tomographic images. A clear degree two permanent organization of mantle convection during this period of time is obvious, and the subduction rate appears to be episodic. We finally deduce from our model mantle TPW (True Polar Wander), the shifting of the entire mantle relative to the earth's spin axis over the last 300 million years. The inferred global motion of the mantle deduced occurs around a Euler pole which axis is close to the earth equator but varies significantly in longitude with respect to time showing complex tridimensional mass reorganizations in the mantle, probably linked to both LLSVPs and slabs effect.

  6. An assessment of viscous effects in computational simulation of benign and burst vortex flows on generic fighter wind-tunnel models using TEAM code

    NASA Technical Reports Server (NTRS)

    Kinard, Tim A.; Harris, Brenda W.; Raj, Pradeep

    1995-01-01

    Vortex flows on a twin-tail and a single-tail modular transonic vortex interaction (MTVI) model, representative of a generic fighter configuration, are computationally simulated in this study using the Three-dimensional Euler/Navier-Stokes Aerodynamic Method (TEAM). The primary objective is to provide an assessment of viscous effects on benign (10 deg angle of attack) and burst (35 deg angle of attack) vortex flow solutions. This study was conducted in support of a NASA project aimed at assessing the viability of using Euler technology to predict aerodynamic characteristics of aircraft configurations at moderate-to-high angles of attack in a preliminary design environment. The TEAM code solves the Euler and Reynolds-average Navier-Stokes equations on patched multiblock structured grids. Its algorithm is based on a cell-centered finite-volume formulation with multistage time-stepping scheme. Viscous effects are assessed by comparing the computed inviscid and viscous solutions with each other and experimental data. Also, results of Euler solution sensitivity to grid density and numerical dissipation are presented for the twin-tail model. The results show that proper accounting of viscous effects is necessary for detailed design and optimization but Euler solutions can provide meaningful guidelines for preliminary design of flight vehicles which exhibit vortex flows in parts of their flight envelope.

  7. Investigation of advanced counterrotation blade configuration concepts for high speed turboprop systems, task 1: Ducted propfan analysis

    NASA Technical Reports Server (NTRS)

    Hall, Edward J.; Delaney, Robert A.; Bettner, James L.

    1990-01-01

    The time-dependent three-dimensional Euler equations of gas dynamics were solved numerically to study the steady compressible transonic flow about ducted propfan propulsion systems. Aerodynamic calculations were based on a four-stage Runge-Kutta time-marching finite volume solution technique with added numerical dissipation. An implicit residual smoothing operator was used to aid convergence. Two calculation grids were employed in this study. The first grid utilized an H-type mesh network with a branch cut opening to represent the axisymmetric cowl. The second grid utilized a multiple-block mesh system with a C-type grid about the cowl. The individual blocks were numerically coupled in the Euler solver. Grid systems were generated by a combined algebraic/elliptic algortihm developed specifically for ducted propfans. Numerical calculations were initially performed for unducted propfans to verify the accuracy of the three-dimensional Euler formulation. The Euler analyses were then applied for the calculation of ducted propfan flows, and predicted results were compared with experimental data for two cases. The three-dimensional Euler analyses displayed exceptional accuracy, although certain parameters were observed to be very sensitive to geometric deflections. Both solution schemes were found to be very robust and demonstrated nearly equal efficiency and accuracy, although it was observed that the multi-block C-grid formulation provided somewhat better resolution of the cowl leading edge region.

  8. On reinitializing level set functions

    NASA Astrophysics Data System (ADS)

    Min, Chohong

    2010-04-01

    In this paper, we consider reinitializing level functions through equation ϕt+sgn(ϕ0)(‖∇ϕ‖-1)=0[16]. The method of Russo and Smereka [11] is taken in the spatial discretization of the equation. The spatial discretization is, simply speaking, the second order ENO finite difference with subcell resolution near the interface. Our main interest is on the temporal discretization of the equation. We compare the three temporal discretizations: the second order Runge-Kutta method, the forward Euler method, and a Gauss-Seidel iteration of the forward Euler method. The fact that the time in the equation is fictitious makes a hypothesis that all the temporal discretizations result in the same result in their stationary states. The fact that the absolute stability region of the forward Euler method is not wide enough to include all the eigenvalues of the linearized semi-discrete system of the second order ENO spatial discretization makes another hypothesis that the forward Euler temporal discretization should invoke numerical instability. Our results in this paper contradict both the hypotheses. The Runge-Kutta and Gauss-Seidel methods obtain the second order accuracy, and the forward Euler method converges with order between one and two. Examining all their properties, we conclude that the Gauss-Seidel method is the best among the three. Compared to the Runge-Kutta, it is twice faster and requires memory two times less with the same accuracy.

  9. Effect of Coannular Flow on Linearized Euler Equation Predictions of Jet Noise

    NASA Technical Reports Server (NTRS)

    Hixon, R.; Shih, S.-H.; Mankbadi, Reda R.

    1997-01-01

    An improved version of a previously validated linearized Euler equation solver is used to compute the noise generated by coannular supersonic jets. Results for a single supersonic jet are compared to the results from both a normal velocity profile and an inverted velocity profile supersonic jet.

  10. Baseline Experiments on Coulomb Damping due to Rotational Slip

    DTIC Science & Technology

    1992-12-01

    by Griffe121 . As expected Equation (2-39) matches the result given by Griffel . 2.2.2. Euler-Bernoulli Beam versus Timeshenko Beam. Omitted from Euler...McGraw-Hill, Inc., 1983. 20. Clark, S. K., Dynamics of Continuous Elements, New Jersey, Prentice-Hall, Inc., 1972. 21. Griffel , W., Beam Formulas

  11. Euler Teaches a Class in Structural Steel Design

    ERIC Educational Resources Information Center

    Boyajian, David M.

    2009-01-01

    Even before steel was a topic of formal study for structural engineers, the brilliant eighteenth century Swiss mathematician and physicist, Leonhard Euler (1707-1783), investigated the theory governing the elastic behaviour of columns, the results of which are incorporated into the American Institute of Steel Construction's (AISC's) Bible: the…

  12. Reconciling the MOLA, TES, and Neutron Observations of the North Polar CO2 Mass Budget on Mars

    NASA Technical Reports Server (NTRS)

    Haberle, R. M.; Mattingly, B.; Titus, T. N.

    2003-01-01

    There are now three independent observations of the CO2 polar cap mass budget of Mars' north polar cap. The first is based elevation changes detected by the Mars Orbiter Laser Altimeter (MOLA) on the Mars Global Surveyor (MGS). The second is based on MGS Thermal Emission Spectrometer (TES) broadband observations of the solar and infrared radiation fields at the top of the atmosphere. The third is based on neutron counts measured by the neutron spectrometer (NS) on Odyssey. The TES data are based on an energy balance. The net radiative loss (gain) in a column is balanced by latent heating due condensation (sublimation) of CO2. In calculating the mass budget, the other main energy sources, atmospheric heat transport and subsurface conduction, were neglected. At the pole, atmospheric heat transport is indeed a small term. However, subsurface heat conduction can be significant because at the North Pole water ice, which has a high thermal conductivity compared to bare soil, is a dominant component of the subsurface. Thus, heat conducted down into the ice during summer will slowly bleed back out during fall and winter reducing the amount of CO2 that condenses on the pole. We have taken a first cut at quantifying this effect by fitting a curve to Paige's estimates of the conducted energy flux in his analysis of Viking IRTM data.

  13. From 'third pole' to north pole: a Himalayan origin for the arctic fox.

    PubMed

    Wang, Xiaoming; Tseng, Zhijie Jack; Li, Qiang; Takeuchi, Gary T; Xie, Guangpu

    2014-07-22

    The 'third pole' of the world is a fitting metaphor for the Himalayan-Tibetan Plateau, in allusion to its vast frozen terrain, rivalling the Arctic and Antarctic, at high altitude but low latitude. Living Tibetan and arctic mammals share adaptations to freezing temperatures such as long and thick winter fur in arctic muskox and Tibetan yak, and for carnivorans, a more predatory niche. Here, we report, to our knowledge, the first evolutionary link between an Early Pliocene (3.60-5.08 Myr ago) fox, Vulpes qiuzhudingi new species, from the Himalaya (Zanda Basin) and Kunlun Mountain (Kunlun Pass Basin) and the modern arctic fox Vulpes lagopus in the polar region. A highly hypercarnivorous dentition of the new fox bears a striking resemblance to that of V. lagopus and substantially predates the previous oldest records of the arctic fox by 3-4 Myr. The low latitude, high-altitude Tibetan Plateau is separated from the nearest modern arctic fox geographical range by at least 2000 km. The apparent connection between an ancestral high-elevation species and its modern polar descendant is consistent with our 'Out-of-Tibet' hypothesis postulating that high-altitude Tibet was a training ground for cold-environment adaptations well before the start of the Ice Age. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  14. Detonation Propagation in Slabs and Axisymmetric Rate Sticks

    NASA Astrophysics Data System (ADS)

    Romick, Christopher; Aslam, Tariq

    Insensitive high explosives (IHE) have many benefits; however, these IHEs exhibit longer reaction zones than more conventional high explosives (HE). This makes IHEs less ideal explosives and more susceptible to edge effects as well as other performance degradation issues. Thus, there is a resulting reduction in the detonation speed within the explosive. Many HE computational models, e. g. WSD, SURF, CREST, have shock-dependent reaction rates. This dependency places a high value on having an accurate shock speed. In the common practice of shock-capturing, there is ambiguity in the shock-state due to smoothing of the shock-front. Moreover, obtaining an accurate shock speed with shock-capturing becomes prohibitively computationally expensive in multiple dimensions. The use of shock-fitting removes the ambiguity of the shock-state as it is one of the boundaries. As such, the required resolution for a given error in the detonation speed is less than with shock-capturing. This allows for further insight into performance degradation. A two-dimensional shock-fitting scheme has been developed for unconfined slabs and rate sticks of HE. The HE modeling is accomplished by Euler equations utilizing several models with single-step irreversible kinetics in slab and rate stick geometries. Department of Energy - LANL.

  15. A Comparison of Maps and Power Spectra Determined from South Pole Telescope and Planck Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Z.; Aylor, K.; Benson, B. A.

    We study the consistency of 150 GHz data from the South Pole Telescope (SPT) and 143 GHz data from the \\textit{Planck} satellite over the 2540more » $$\\text{deg}^2$$ patch of sky covered by the SPT-SZ survey. We first visually compare the maps and find that the map residuals appear consistent with noise after we account for differences in angular resolution and filtering. To make a more quantitative comparison, we calculate (1) the cross-spectrum between two independent halves of SPT 150 GHz data, (2) the cross-spectrum between two independent halves of \\textit{Planck} 143 GHz data, and (3) the cross-spectrum between SPT 150 GHz and \\textit{Planck} 143 GHz data. We find the three cross-spectra are well-fit (PTE = 0.30) by the null hypothesis in which both experiments have measured the same sky map up to a single free parameter characterizing the relative calibration between the two. As a by-product of this analysis, we improve the calibration of SPT data by nearly an order of magnitude, from 2.6\\% to 0.3\\% in power; the best-fit power calibration factor relative to the most recent published SPT calibration is $$1.0174 \\pm 0.0033$$. Finally, we compare all three cross-spectra to the full-sky \\textit{Planck} $$143 \\times 143$$ power spectrum and find a hint ($$\\sim$$1.5$$\\sigma$$) for differences in the power spectrum of the SPT-SZ footprint and the full-sky power spectrum, which we model and fit as a power law in the spectrum. The best-fit value of this tilt is consistent between the three cross-spectra in the SPT-SZ footprint, implying that the source of this tilt---assuming it is real---is a sample variance fluctuation in the SPT-SZ region relative to the full sky. Despite the precision of our tests, we find no evidence for systematic errors in either data set. The consistency of cosmological parameters derived from these datasets is discussed in a companion paper.« less

  16. A Comparison of Maps and Power Spectra Determined from South Pole Telescope and Planck Data

    DOE PAGES

    Hou, Z.; Aylor, K.; Benson, B. A.; ...

    2018-01-17

    We study the consistency of 150 GHz data from the South Pole Telescope (SPT) and 143 GHz data from the \\textit{Planck} satellite over the 2540more » $$\\text{deg}^2$$ patch of sky covered by the SPT-SZ survey. We first visually compare the maps and find that the map residuals appear consistent with noise after we account for differences in angular resolution and filtering. To make a more quantitative comparison, we calculate (1) the cross-spectrum between two independent halves of SPT 150 GHz data, (2) the cross-spectrum between two independent halves of \\textit{Planck} 143 GHz data, and (3) the cross-spectrum between SPT 150 GHz and \\textit{Planck} 143 GHz data. We find the three cross-spectra are well-fit (PTE = 0.30) by the null hypothesis in which both experiments have measured the same sky map up to a single free parameter characterizing the relative calibration between the two. As a by-product of this analysis, we improve the calibration of SPT data by nearly an order of magnitude, from 2.6\\% to 0.3\\% in power; the best-fit power calibration factor relative to the most recent published SPT calibration is $$1.0174 \\pm 0.0033$$. Finally, we compare all three cross-spectra to the full-sky \\textit{Planck} $$143 \\times 143$$ power spectrum and find a hint ($$\\sim$$1.5$$\\sigma$$) for differences in the power spectrum of the SPT-SZ footprint and the full-sky power spectrum, which we model and fit as a power law in the spectrum. The best-fit value of this tilt is consistent between the three cross-spectra in the SPT-SZ footprint, implying that the source of this tilt---assuming it is real---is a sample variance fluctuation in the SPT-SZ region relative to the full sky. Despite the precision of our tests, we find no evidence for systematic errors in either data set. The consistency of cosmological parameters derived from these datasets is discussed in a companion paper.« less

  17. Modeling Phase-Aligned Gamma-Ray And Radio Millisecond Pulsar Light Curves

    DOE PAGES

    Venter, C.; Johnson, T. J.; Harding, A. K.

    2011-12-12

    The gamma-ray population of millisecond pulsars (MSPs) detected by the Fermi Large Area Telescope (LAT) has been steadily increasing. A number of the more recent detections, including PSR J0034-0534, PSR J1939+2134 (B1937+21; the first MSP ever discovered), PSR J1959+2048 (B1957+20; the first black widow system), and PSR J2214+3000, exhibit an unusual phenomenon: nearly phase-aligned radio and gamma- ray light curves (LCs). To account for the phase alignment, we explore geometric models where both the radio and gamma-ray emission originate either in the outer magnetosphere near the light cylinder (R LC) or near the polar caps (PCs). We obtain reasonable fitsmore » for the first three of these MSPs in the context of “altitude- limited” outer gap (alOG) and two-pole caustic (alTPC) geometries. The outer magnetosphere phase-aligned models differ from the standard outer gap (OG) / two-pole caustic (TPC) models in two respects: first, the radio emission originates in caustics at relatively high altitudes compared to the usual low-altitude conal radio beams; second, we allow the maximum altitude of the gamma-ray emission region as well as both the minimum and maximum altitudes of the radio emission region to vary within a limited range. Alternatively, there also exist phase-aligned LC solutions for emission originating near the stellar surface in a slot gap (SG) scenario (“low-altitude slot gap” (laSG) models). We find best-fit LCs using a Markov chain Monte Carlo (MCMC) max- imum likelihood approach [30]. Our fits imply that the phase-aligned LCs are likely of caustic origin, produced in the outer magnetosphere, and that the radio emission may come from close to R LC. We lastly constrain the emission altitudes with typical uncertainties of ~ 0.3RLC. Our results describe a third gamma-ray MSP subclass, in addition to the two (with non-aligned LCs) previously found [50]: those with LCs fit by standard OG / TPC models, and those with LCs fit by pair-starved polar cap (PSPC) models.« less

  18. Influence of core flows on the decade variations of the polar motion

    NASA Astrophysics Data System (ADS)

    Hulot, G.; Le Huy, M.; Le Mouël, J.-L.

    We address the possibility for the core flows that generate the geomagnetic field to contribute significantly to the decade variations of the mean pole position (generally called the Markowitz wobble). This assumption is made plausible by the observation that the flow at the surface of the core-estimated from the geomagnetic secular variation models-experiences important changes on this time scale. We discard the viscous and electromagnetic core-mantle couplings and consider only the pressure torque pf resulting from the fluid flow overpressure acting on the non-spherical core-mantle boundary (CMB) at the bottom of the mantle, and the gravity torque gf due to the density heterogeneity driving the core flow. We show that forces within the core balance each other on the time scale considered and, using global integrals over the core, the mantle and the whole Earth, we write Euler's equation for the mantle in terms of two more useful torques Pgeo and . The "geostrophic torque", γ Pgeo incorporates γpf and part of γgf, while γ is another fraction of γgf. We recall how the geostrophic pressure pgeo, and thus γPgeo for a given topography, can be derived from the flow at the CMB and compute the motion of the mean pole from 1900 to 1990, assuming in a first approach that the unknown γ can be neglected. The amplitude of the computed pole motion is three to ten times less than the observed one and out of the phase with it. In order to estimate the possible contribution of γ we then use a second approach and consider the case in which the reference state for the Earth is assumed to be the classical axisymmetric ellipsoidal figure with an almost constant ellipticity within the core. We show that (γPgeo + γ) is then equal to a pseudo-electromagnetic torque γL3, the torque exerted on the core by the component of the Lorentz force along the axis of rotation (this torque exists even though the mantle is assumed insulating). This proves that, at least in this case and probably in the more general case of a bumpy CMB, γ is not negligible compared with γ Pgeo. Eventually, we estimate the order of magnitude of γL3, show that it is likely to be small and conclude with further possibilities for the Markowitz wobble to be excited from within the core.

  19. Moving overlapping grids with adaptive mesh refinement for high-speed reactive and non-reactive flow

    NASA Astrophysics Data System (ADS)

    Henshaw, William D.; Schwendeman, Donald W.

    2006-08-01

    We consider the solution of the reactive and non-reactive Euler equations on two-dimensional domains that evolve in time. The domains are discretized using moving overlapping grids. In a typical grid construction, boundary-fitted grids are used to represent moving boundaries, and these grids overlap with stationary background Cartesian grids. Block-structured adaptive mesh refinement (AMR) is used to resolve fine-scale features in the flow such as shocks and detonations. Refinement grids are added to base-level grids according to an estimate of the error, and these refinement grids move with their corresponding base-level grids. The numerical approximation of the governing equations takes place in the parameter space of each component grid which is defined by a mapping from (fixed) parameter space to (moving) physical space. The mapped equations are solved numerically using a second-order extension of Godunov's method. The stiff source term in the reactive case is handled using a Runge-Kutta error-control scheme. We consider cases when the boundaries move according to a prescribed function of time and when the boundaries of embedded bodies move according to the surface stress exerted by the fluid. In the latter case, the Newton-Euler equations describe the motion of the center of mass of the each body and the rotation about it, and these equations are integrated numerically using a second-order predictor-corrector scheme. Numerical boundary conditions at slip walls are described, and numerical results are presented for both reactive and non-reactive flows that demonstrate the use and accuracy of the numerical approach.

  20. Comparison of two- and three-dimensional flow computations with laser anemometer measurements in a transonic compressor rotor

    NASA Technical Reports Server (NTRS)

    Chima, R. V.; Strazisar, A. J.

    1982-01-01

    Two and three dimensional inviscid solutions for the flow in a transonic axial compressor rotor at design speed are compared with probe and laser anemometers measurements at near-stall and maximum-flow operating points. Experimental details of the laser anemometer system and computational details of the two dimensional axisymmetric code and three dimensional Euler code are described. Comparisons are made between relative Mach number and flow angle contours, shock location, and shock strength. A procedure for using an efficient axisymmetric code to generate downstream pressure input for computationally expensive Euler codes is discussed. A film supplement shows the calculations of the two operating points with the time-marching Euler code.

  1. Generalization of the Euler-type solution to the wave equation

    NASA Astrophysics Data System (ADS)

    Borisov, Victor V.

    2001-08-01

    Generalization of the Euler-type solution to the wave equation is given. Peculiarities of the space-time structure of obtained waves are considered. For some particular cases interpretation of these waves as `subliminal' and `superluminal' is discussed. The possibility of description of electromagnetic waves by means of the scalar solutions is shown.

  2. Discovering Euler Circuits and Paths through a Culturally Relevant Lesson

    ERIC Educational Resources Information Center

    Robichaux, Rebecca R.; Rodrigue, Paulette R.

    2006-01-01

    This article describes a middle school discrete mathematics lesson that uses the context of catching crawfish to provide students with a hands-on experience related to Euler circuits and paths. The lesson promotes mathematical communication through the use of cooperative learning as well as connections between mathematics and the real world…

  3. Two Identities for the Bernoulli-Euler Numbers

    ERIC Educational Resources Information Center

    Gauthier, N.

    2008-01-01

    Two identities for the Bernoulli and for the Euler numbers are derived. These identities involve two special cases of central combinatorial numbers. The approach is based on a set of differential identities for the powers of the secant. Generalizations of the Mittag-Leffler series for the secant are introduced and used to obtain closed-form…

  4. Newton's Laws, Euler's Laws and the Speed of Light

    ERIC Educational Resources Information Center

    Whitaker, Stephen

    2009-01-01

    Chemical engineering students begin their studies of mechanics in a department of physics where they are introduced to the mechanics of Newton. The approach presented by physicists differs in both perspective and substance from that encountered in chemical engineering courses where Euler's laws provide the foundation for studies of fluid and solid…

  5. Testing for a Signal with Unknown Location and Scale in a Stationary Gaussian Random Field

    DTIC Science & Technology

    1994-01-07

    Secondary 60D05, 52A22. Key words and phrases. Euler characteristic, integral geometry, image analysis , Gaussian fields, volume of tubes. SUMMARY We...words and phrases. Euler characteristic, integral geometry. image analysis . Gaussian fields. volume of tubes. 20. AMST RACT (Coith..o an revmreo ef* It

  6. Generation of unstructured grids and Euler solutions for complex geometries

    NASA Technical Reports Server (NTRS)

    Loehner, Rainald; Parikh, Paresh; Salas, Manuel D.

    1989-01-01

    Algorithms are described for the generation and adaptation of unstructured grids in two and three dimensions, as well as Euler solvers for unstructured grids. The main purpose is to demonstrate how unstructured grids may be employed advantageously for the economic simulation of both geometrically as well as physically complex flow fields.

  7. An installed nacelle design code using a multiblock Euler solver. Volume 1: Theory document

    NASA Technical Reports Server (NTRS)

    Chen, H. C.

    1992-01-01

    An efficient multiblock Euler design code was developed for designing a nacelle installed on geometrically complex airplane configurations. This approach employed a design driver based on a direct iterative surface curvature method developed at LaRC. A general multiblock Euler flow solver was used for computing flow around complex geometries. The flow solver used a finite-volume formulation with explicit time-stepping to solve the Euler Equations. It used a multiblock version of the multigrid method to accelerate the convergence of the calculations. The design driver successively updated the surface geometry to reduce the difference between the computed and target pressure distributions. In the flow solver, the change in surface geometry was simulated by applying surface transpiration boundary conditions to avoid repeated grid generation during design iterations. Smoothness of the designed surface was ensured by alternate application of streamwise and circumferential smoothings. The capability and efficiency of the code was demonstrated through the design of both an isolated nacelle and an installed nacelle at various flow conditions. Information on the execution of the computer program is provided in volume 2.

  8. eulerAPE: Drawing Area-Proportional 3-Venn Diagrams Using Ellipses

    PubMed Central

    Micallef, Luana; Rodgers, Peter

    2014-01-01

    Venn diagrams with three curves are used extensively in various medical and scientific disciplines to visualize relationships between data sets and facilitate data analysis. The area of the regions formed by the overlapping curves is often directly proportional to the cardinality of the depicted set relation or any other related quantitative data. Drawing these diagrams manually is difficult and current automatic drawing methods do not always produce appropriate diagrams. Most methods depict the data sets as circles, as they perceptually pop out as complete distinct objects due to their smoothness and regularity. However, circles cannot draw accurate diagrams for most 3-set data and so the generated diagrams often have misleading region areas. Other methods use polygons to draw accurate diagrams. However, polygons are non-smooth and non-symmetric, so the curves are not easily distinguishable and the diagrams are difficult to comprehend. Ellipses are more flexible than circles and are similarly smooth, but none of the current automatic drawing methods use ellipses. We present eulerAPE as the first method and software that uses ellipses for automatically drawing accurate area-proportional Venn diagrams for 3-set data. We describe the drawing method adopted by eulerAPE and we discuss our evaluation of the effectiveness of eulerAPE and ellipses for drawing random 3-set data. We compare eulerAPE and various other methods that are currently available and we discuss differences between their generated diagrams in terms of accuracy and ease of understanding for real world data. PMID:25032825

  9. eulerAPE: drawing area-proportional 3-Venn diagrams using ellipses.

    PubMed

    Micallef, Luana; Rodgers, Peter

    2014-01-01

    Venn diagrams with three curves are used extensively in various medical and scientific disciplines to visualize relationships between data sets and facilitate data analysis. The area of the regions formed by the overlapping curves is often directly proportional to the cardinality of the depicted set relation or any other related quantitative data. Drawing these diagrams manually is difficult and current automatic drawing methods do not always produce appropriate diagrams. Most methods depict the data sets as circles, as they perceptually pop out as complete distinct objects due to their smoothness and regularity. However, circles cannot draw accurate diagrams for most 3-set data and so the generated diagrams often have misleading region areas. Other methods use polygons to draw accurate diagrams. However, polygons are non-smooth and non-symmetric, so the curves are not easily distinguishable and the diagrams are difficult to comprehend. Ellipses are more flexible than circles and are similarly smooth, but none of the current automatic drawing methods use ellipses. We present eulerAPE as the first method and software that uses ellipses for automatically drawing accurate area-proportional Venn diagrams for 3-set data. We describe the drawing method adopted by eulerAPE and we discuss our evaluation of the effectiveness of eulerAPE and ellipses for drawing random 3-set data. We compare eulerAPE and various other methods that are currently available and we discuss differences between their generated diagrams in terms of accuracy and ease of understanding for real world data.

  10. Prediction of Undsteady Flows in Turbomachinery Using the Linearized Euler Equations on Deforming Grids

    NASA Technical Reports Server (NTRS)

    Clark, William S.; Hall, Kenneth C.

    1994-01-01

    A linearized Euler solver for calculating unsteady flows in turbomachinery blade rows due to both incident gusts and blade motion is presented. The model accounts for blade loading, blade geometry, shock motion, and wake motion. Assuming that the unsteadiness in the flow is small relative to the nonlinear mean solution, the unsteady Euler equations can be linearized about the mean flow. This yields a set of linear variable coefficient equations that describe the small amplitude harmonic motion of the fluid. These linear equations are then discretized on a computational grid and solved using standard numerical techniques. For transonic flows, however, one must use a linear discretization which is a conservative linearization of the non-linear discretized Euler equations to ensure that shock impulse loads are accurately captured. Other important features of this analysis include a continuously deforming grid which eliminates extrapolation errors and hence, increases accuracy, and a new numerically exact, nonreflecting far-field boundary condition treatment based on an eigenanalysis of the discretized equations. Computational results are presented which demonstrate the computational accuracy and efficiency of the method and demonstrate the effectiveness of the deforming grid, far-field nonreflecting boundary conditions, and shock capturing techniques. A comparison of the present unsteady flow predictions to other numerical, semi-analytical, and experimental methods shows excellent agreement. In addition, the linearized Euler method presented requires one or two orders-of-magnitude less computational time than traditional time marching techniques making the present method a viable design tool for aeroelastic analyses.

  11. Ultrawideband temperature-dependent dielectric properties of animal liver tissue in the microwave frequency range.

    PubMed

    Lazebnik, Mariya; Converse, Mark C; Booske, John H; Hagness, Susan C

    2006-04-07

    The development of ultrawideband (UWB) microwave diagnostic and therapeutic technologies, such as UWB microwave breast cancer detection and hyperthermia treatment, is facilitated by accurate knowledge of the temperature- and frequency-dependent dielectric properties of biological tissues. To this end, we characterize the temperature-dependent dielectric properties of a representative tissue type-animal liver-from 0.5 to 20 GHz. Since discrete-frequency linear temperature coefficients are impractical and inappropriate for applications spanning wide frequency and temperature ranges, we propose a novel and compact data representation technique. A single-pole Cole-Cole model is used to fit the dielectric properties data as a function of frequency, and a second-order polynomial is used to fit the Cole-Cole parameters as a function of temperature. This approach permits rapid estimation of tissue dielectric properties at any temperature and frequency.

  12. Thermal and albedo mapping of the polar regions of Mars using Viking thermal mapper observations: 2. South polar region

    NASA Technical Reports Server (NTRS)

    Paige, David A.; Keegan, Kenneth D.

    1994-01-01

    We present the first maps of the apparent thermal inertia and albedo of the south polar region of Mars. The observations used to create these maps were acquired by the infrared thermal mapper (IRTM) instruments on the two Viking Orbiters over a 30-day period in 1977 during the Martian late southern summer season. The maps cover the region from 60 deg S to the south pole at a spatial resolution of 1 deg of latitude, thus completing the initial thermal mapping of the entire planet. The analysis and interpretation of these maps is aided by the results of a one-dimensional radiative convective model, which is used to calculate diurnal variations in surface and atmospheric temperatures, and brightness temperatures at the top of the atmosphere for a range of assumptions concerning dust optical properties and dust optical depths. The maps show that apparent thermal inertias of bare ground regions decrease systematically from 60 deg S to the south pole. In unfrosted regions close to the south pole, apparent thermal inertias are among the lowest observed anywhere on the planet. On the south residual cap, apparent thermal inertias are very high due to the presence of CO2 frost. In most other regions of Mars, best fit apparent albedos based on thermal emission measurements are generally in good agreement with actual surface albedos based on broadband solar reflectance measurements. The one-dimensional atmospheric model calculations also predict anomalously cold brightness temperatures close to the pole during late summer, and after considering a number of alternatives, it is concluded that the net surface cooling due to atmospheric dust is the best explanation for this phenomenon. The region of lowest apparent thermal inertia close to the pole, which includes the south polar layered deposits, is interpreted to be mantled by a continuous layer of aeolian material that must be at least a few millimeters thick. The low thermal inertias mapped in the south polar region imply an absence of surface water ice deposits, which is consistent with Viking Mars atmospheric water detector (MAWD) measurements which show low atmospheric water vapor abundances throughout the summer season.

  13. Configuration of the magnetic field and reconstruction of Pangaea in the Permian period.

    PubMed

    Westphal, M

    1977-05-12

    The virtual geomagnetic poles of Laurasia and Gondwanaland in the Carboniferous and Permian periods diverge significantly when these continents are reassembled according to the fit calculated by Bullard et al. Two interpretations have been offered: Briden et al. explain these divergences by a magnetic field configuration very different from that of a geocentric axial dipole; Irving (and private communication), Van der Voo and French(4) suggest a different reconstruction and it is shown here that these two interpretations are not incompatible and that the first may help the second.

  14. A 2500 deg 2 CMB Lensing Map from Combined South Pole Telescope and Planck Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omori, Y.; Chown, R.; Simard, G.

    Here, we present a cosmic microwave background (CMB) lensing map produced from a linear combination of South Pole Telescope (SPT) and Planck temperature data. The 150 GHz temperature data from the 2500 deg 2 SPT-SZ survey is combined with the Planck 143 GHz data in harmonic space to obtain a temperature map that has a broader ℓ coverage and less noise than either individual map. Using a quadratic estimator technique on this combined temperature map, we produce a map of the gravitational lensing potential projected along the line of sight. We measure the auto-spectrum of the lensing potentialmore » $${C}_{L}^{\\phi \\phi }$$, and compare it to the theoretical prediction for a ΛCDM cosmology consistent with the Planck 2015 data set, finding a best-fit amplitude of $${0.95}_{-0.06}^{+0.06}(\\mathrm{stat}.{)}_{-0.01}^{+0.01}(\\mathrm{sys}.)$$. The null hypothesis of no lensing is rejected at a significance of 24σ. One important use of such a lensing potential map is in cross-correlations with other dark matter tracers. We demonstrate this cross-correlation in practice by calculating the cross-spectrum, $${C}_{L}^{\\phi G}$$, between the SPT+Planck lensing map and Wide-field Infrared Survey Explorer (WISE) galaxies. We fit $${C}_{L}^{\\phi G}$$ to a power law of the form $${p}_{L}=a{(L/{L}_{0})}^{-b}$$ with a, L 0, and b fixed, and find $${\\eta }^{\\phi G}={C}_{L}^{\\phi G}/{p}_{L}={0.94}_{-0.04}^{+0.04}$$, which is marginally lower, but in good agreement with $${\\eta }^{\\phi G}={1.00}_{-0.01}^{+0.02}$$, the best-fit amplitude for the cross-correlation of Planck-2015 CMB lensing and WISE galaxies over ~67% of the sky. Finally, the lensing potential map presented here will be used for cross-correlation studies with the Dark Energy Survey, whose footprint nearly completely covers the SPT 2500 deg 2 field.« less

  15. A 2500 deg 2 CMB Lensing Map from Combined South Pole Telescope and Planck Data

    DOE PAGES

    Omori, Y.; Chown, R.; Simard, G.; ...

    2017-11-07

    Here, we present a cosmic microwave background (CMB) lensing map produced from a linear combination of South Pole Telescope (SPT) and Planck temperature data. The 150 GHz temperature data from the 2500 deg 2 SPT-SZ survey is combined with the Planck 143 GHz data in harmonic space to obtain a temperature map that has a broader ℓ coverage and less noise than either individual map. Using a quadratic estimator technique on this combined temperature map, we produce a map of the gravitational lensing potential projected along the line of sight. We measure the auto-spectrum of the lensing potentialmore » $${C}_{L}^{\\phi \\phi }$$, and compare it to the theoretical prediction for a ΛCDM cosmology consistent with the Planck 2015 data set, finding a best-fit amplitude of $${0.95}_{-0.06}^{+0.06}(\\mathrm{stat}.{)}_{-0.01}^{+0.01}(\\mathrm{sys}.)$$. The null hypothesis of no lensing is rejected at a significance of 24σ. One important use of such a lensing potential map is in cross-correlations with other dark matter tracers. We demonstrate this cross-correlation in practice by calculating the cross-spectrum, $${C}_{L}^{\\phi G}$$, between the SPT+Planck lensing map and Wide-field Infrared Survey Explorer (WISE) galaxies. We fit $${C}_{L}^{\\phi G}$$ to a power law of the form $${p}_{L}=a{(L/{L}_{0})}^{-b}$$ with a, L 0, and b fixed, and find $${\\eta }^{\\phi G}={C}_{L}^{\\phi G}/{p}_{L}={0.94}_{-0.04}^{+0.04}$$, which is marginally lower, but in good agreement with $${\\eta }^{\\phi G}={1.00}_{-0.01}^{+0.02}$$, the best-fit amplitude for the cross-correlation of Planck-2015 CMB lensing and WISE galaxies over ~67% of the sky. Finally, the lensing potential map presented here will be used for cross-correlation studies with the Dark Energy Survey, whose footprint nearly completely covers the SPT 2500 deg 2 field.« less

  16. A Brief Historical Introduction to Euler's Formula for Polyhedra, Topology, Graph Theory and Networks

    ERIC Educational Resources Information Center

    Debnath, Lokenath

    2010-01-01

    This article is essentially devoted to a brief historical introduction to Euler's formula for polyhedra, topology, theory of graphs and networks with many examples from the real-world. Celebrated Konigsberg seven-bridge problem and some of the basic properties of graphs and networks for some understanding of the macroscopic behaviour of real…

  17. Computer-Assisted Instruction in Engineering Dynamics. CAI-Systems Memo Number 18.

    ERIC Educational Resources Information Center

    Sheldon, John W.

    A 90-minute computer-assisted instruction (CAI) unit course supplemented by a 1-hour lecture on the dynamic nature of three-dimensional rotations and Euler angles was given to 29 undergraduate engineering students. The area of Euler angles was selected because it is essential to problem-working in three-dimensional rotations of a rigid body, yet…

  18. Implementation of a parallel unstructured Euler solver on shared and distributed memory architectures

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.; Das, Raja; Saltz, Joel; Vermeland, R. E.

    1992-01-01

    An efficient three dimensional unstructured Euler solver is parallelized on a Cray Y-MP C90 shared memory computer and on an Intel Touchstone Delta distributed memory computer. This paper relates the experiences gained and describes the software tools and hardware used in this study. Performance comparisons between two differing architectures are made.

  19. A new stream function formulation for the Euler equations

    NASA Technical Reports Server (NTRS)

    Atkins, H. L.; Hassan, H. A.

    1983-01-01

    A new stream function formulation is developed for the solution of Euler's equations in the transonic flow region. The stream function and the density are the dependent variables in this method, while the governing equations for adiabatic flow are the momentum equations which are solved in the strong conservation law form. The application of this method does not require a knowledge of the vorticity. The algorithm is combined with the automatic grid solver (GRAPE) of Steger and Sorenson (1979) in order to study arbitrary geometries. Results of the application of this method are presented for the NACA 0012 airfoil at various Mach numbers and angles of attack, and cylinders. In addition, detailed comparisons are made with other solutions of the Euler equations.

  20. Use of a residual distribution Euler solver to study the occurrence of transonic flow in Wells turbine rotor blades

    NASA Astrophysics Data System (ADS)

    Henriques, J. C. C.; Gato, L. M. C.

    The aim of the present study is to investigate the occurrence of transonic flow in several cascade geometries and blade sections that have been considered in the design of Wells turbine rotor blades. The calculations were performed using an implicit Euler solver for two-dimensional flow. The numerical method uses a multi-dimensional upwind matrix residual distribution scheme formulated on a new symmetrized form of the Euler equations, both in time and in space, that decouples the entropy and the enthalpy equations. Second-order accurate steady-state solutions where obtained using a compact three-point stencil. The results show that unwanted transonic flow may occur in the turbine rotor at relatively low mean-flow Mach numbers.

  1. Solution of the surface Euler equations for accurate three-dimensional boundary-layer analysis of aerodynamic configurations

    NASA Technical Reports Server (NTRS)

    Iyer, V.; Harris, J. E.

    1987-01-01

    The three-dimensional boundary-layer equations in the limit as the normal coordinate tends to infinity are called the surface Euler equations. The present paper describes an accurate method for generating edge conditions for three-dimensional boundary-layer codes using these equations. The inviscid pressure distribution is first interpolated to the boundary-layer grid. The surface Euler equations are then solved with this pressure field and a prescribed set of initial and boundary conditions to yield the velocities along the two surface coordinate directions. Results for typical wing and fuselage geometries are presented. The smoothness and accuracy of the edge conditions obtained are found to be superior to the conventional interpolation procedures.

  2. Nonlinear truncation error analysis of finite difference schemes for the Euler equations

    NASA Technical Reports Server (NTRS)

    Klopfer, G. H.; Mcrae, D. S.

    1983-01-01

    It is pointed out that, in general, dissipative finite difference integration schemes have been found to be quite robust when applied to the Euler equations of gas dynamics. The present investigation considers a modified equation analysis of both implicit and explicit finite difference techniques as applied to the Euler equations. The analysis is used to identify those error terms which contribute most to the observed solution errors. A technique for analytically removing the dominant error terms is demonstrated, resulting in a greatly improved solution for the explicit Lax-Wendroff schemes. It is shown that the nonlinear truncation errors are quite large and distributed quite differently for each of the three conservation equations as applied to a one-dimensional shock tube problem.

  3. User's Guide for ECAP2D: an Euler Unsteady Aerodynamic and Aeroelastic Analysis Program for Two Dimensional Oscillating Cascades, Version 1.0

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.

    1995-01-01

    This guide describes the input data required for using ECAP2D (Euler Cascade Aeroelastic Program-Two Dimensional). ECAP2D can be used for steady or unsteady aerodynamic and aeroelastic analysis of two dimensional cascades. Euler equations are used to obtain aerodynamic forces. The structural dynamic equations are written for a rigid typical section undergoing pitching (torsion) and plunging (bending) motion. The solution methods include harmonic oscillation method, influence coefficient method, pulse response method, and time integration method. For harmonic oscillation method, example inputs and outputs are provided for pitching motion and plunging motion. For the rest of the methods, input and output for pitching motion only are given.

  4. Textbook Multigrid Efficiency for the Steady Euler Equations

    NASA Technical Reports Server (NTRS)

    Roberts, Thomas W.; Sidilkover, David; Swanson, R. C.

    2004-01-01

    A fast multigrid solver for the steady incompressible Euler equations is presented. Unlike time-marching schemes, this approach uses relaxation of the steady equations. Application of this method results in a discretization that correctly distinguishes between the advection and elliptic parts of the operator, allowing efficient smoothers to be constructed. Solvers for both unstructured triangular grids and structured quadrilateral grids have been written. Computations for channel flow and flow over a nonlifting airfoil have computed. Using Gauss-Seidel relaxation ordered in the flow direction, textbook multigrid convergence rates of nearly one order-of-magnitude residual reduction per multigrid cycle are achieved, independent of the grid spacing. This approach also may be applied to the compressible Euler equations and the incompressible Navier-Stokes equations.

  5. Three-dimensional unstructured grid Euler computations using a fully-implicit, upwind method

    NASA Technical Reports Server (NTRS)

    Whitaker, David L.

    1993-01-01

    A method has been developed to solve the Euler equations on a three-dimensional unstructured grid composed of tetrahedra. The method uses an upwind flow solver with a linearized, backward-Euler time integration scheme. Each time step results in a sparse linear system of equations which is solved by an iterative, sparse matrix solver. Local-time stepping, switched evolution relaxation (SER), preconditioning and reuse of the Jacobian are employed to accelerate the convergence rate. Implicit boundary conditions were found to be extremely important for fast convergence. Numerical experiments have shown that convergence rates comparable to that of a multigrid, central-difference scheme are achievable on the same mesh. Results are presented for several grids about an ONERA M6 wing.

  6. Measure-valued solutions to the complete Euler system revisited

    NASA Astrophysics Data System (ADS)

    Březina, Jan; Feireisl, Eduard

    2018-06-01

    We consider the complete Euler system describing the time evolution of a general inviscid compressible fluid. We introduce a new concept of measure-valued solution based on the total energy balance and entropy inequality for the physical entropy without any renormalization. This class of so-called dissipative measure-valued solutions is large enough to include the vanishing dissipation limits of the Navier-Stokes-Fourier system. Our main result states that any sequence of weak solutions to the Navier-Stokes-Fourier system with vanishing viscosity and heat conductivity coefficients generates a dissipative measure-valued solution of the Euler system under some physically grounded constitutive relations. Finally, we discuss the same asymptotic limit for the bi-velocity fluid model introduced by H.Brenner.

  7. The P1-RKDG method for two-dimensional Euler equations of gas dynamics

    NASA Technical Reports Server (NTRS)

    Cockburn, Bernardo; Shu, Chi-Wang

    1991-01-01

    A class of nonlinearly stable Runge-Kutta local projection discontinuous Galerkin (RKDG) finite element methods for conservation laws is investigated. Two dimensional Euler equations for gas dynamics are solved using P1 elements. The generalization of the local projections, which for scalar nonlinear conservation laws was designed to satisfy a local maximum principle, to systems of conservation laws such as the Euler equations of gas dynamics using local characteristic decompositions is discussed. Numerical examples include the standard regular shock reflection problem, the forward facing step problem, and the double Mach reflection problem. These preliminary numerical examples are chosen to show the capacity of the approach to obtain nonlinearly stable results comparable with the modern nonoscillatory finite difference methods.

  8. Force interaction and 3D pole movement in double poling.

    PubMed

    Stöggl, T; Holmberg, H-C

    2011-12-01

    The aim of this study was to analyze double poling using combined kinetic and 3D kinematic analysis at high skiing speeds as regards pole force components, pole angles and pole behavior during the poling and swing phase. The hypothesis was that a horizontal pole force is more predictive for maximal skiing speed (V(max)) than the resultant pole force. Sixteen elite skiers performed a double-poling V(max) test while treadmill roller skiing. Pole forces and 3D kinematics of pole movement at a speed of 30 km/h were analyzed and related to V(max). The duration of the "preparation phase" showed the strongest relationship with V(max) (r=0.87, P<0.001). Faster skiers generated longer cycle lengths with longer swing and poling times, had less inclined pole angles at pole plant and a later peak pole force. Horizontal pole forces were not more highly related to V(max) compared with the resultant pole force. Impact force was not related to V(max). At high skiing speeds, skiers should aim to combine high pole forces with appropriate timing of pole forces and appropriate pole and body positions during the swing and poling phase. The emphasis in training should be on the development of specific strength capacities for pole force production and the utilization of these capacities in double-poling training sessions. © 2011 John Wiley & Sons A/S.

  9. Closed-form solution for static pull-in voltage of electrostatically actuated clamped-clamped micro/nano beams under the effect of fringing field and van der Waals force

    NASA Astrophysics Data System (ADS)

    Bhojawala, V. M.; Vakharia, D. P.

    2017-12-01

    This investigation provides an accurate prediction of static pull-in voltage for clamped-clamped micro/nano beams based on distributed model. The Euler-Bernoulli beam theory is used adapting geometric non-linearity of beam, internal (residual) stress, van der Waals force, distributed electrostatic force and fringing field effects for deriving governing differential equation. The Galerkin discretisation method is used to make reduced-order model of the governing differential equation. A regime plot is presented in the current work for determining the number of modes required in reduced-order model to obtain completely converged pull-in voltage for micro/nano beams. A closed-form relation is developed based on the relationship obtained from curve fitting of pull-in instability plots and subsequent non-linear regression for the proposed relation. The output of regression analysis provides Chi-square (χ 2) tolerance value equals to 1  ×  10-9, adjusted R-square value equals to 0.999 29 and P-value equals to zero, these statistical parameters indicate the convergence of non-linear fit, accuracy of fitted data and significance of the proposed model respectively. The closed-form equation is validated using available data of experimental and numerical results. The relative maximum error of 4.08% in comparison to several available experimental and numerical data proves the reliability of the proposed closed-form equation.

  10. Application of Artificial Intelligence For Euler Solutions Clustering

    NASA Astrophysics Data System (ADS)

    Mikhailov, V.; Galdeano, A.; Diament, M.; Gvishiani, A.; Agayan, S.; Bogoutdinov, Sh.; Graeva, E.; Sailhac, P.

    Results of Euler deconvolution strongly depend on the selection of viable solutions. Synthetic calculations using multiple causative sources show that Euler solutions clus- ter in the vicinity of causative bodies even when they do not group densely about perimeter of the bodies. We have developed a clustering technique to serve as a tool for selecting appropriate solutions. The method RODIN, employed in this study, is based on artificial intelligence and was originally designed for problems of classification of large data sets. It is based on a geometrical approach to study object concentration in a finite metric space of any dimension. The method uses a formal definition of cluster and includes free parameters that facilitate the search for clusters of given proper- ties. Test on synthetic and real data showed that the clustering technique successfully outlines causative bodies more accurate than other methods of discriminating Euler solutions. In complicated field cases such as the magnetic field in the Gulf of Saint Malo region (Brittany, France), the method provides geologically insightful solutions. Other advantages of the clustering method application are: - Clusters provide solutions associated with particular bodies or parts of bodies permitting the analysis of different clusters of Euler solutions separately. This may allow computation of average param- eters for individual causative bodies. - Those measurements of the anomalous field that yield clusters also form dense clusters themselves. The application of cluster- ing technique thus outlines areas where the influence of different causative sources is more prominent. This allows one to focus on areas for reinterpretation, using different window sizes, structural indices and so on.

  11. Lagrangian averages, averaged Lagrangians, and the mean effects of fluctuations in fluid dynamics.

    PubMed

    Holm, Darryl D.

    2002-06-01

    We begin by placing the generalized Lagrangian mean (GLM) equations for a compressible adiabatic fluid into the Euler-Poincare (EP) variational framework of fluid dynamics, for an averaged Lagrangian. This is the Lagrangian averaged Euler-Poincare (LAEP) theorem. Next, we derive a set of approximate small amplitude GLM equations (glm equations) at second order in the fluctuating displacement of a Lagrangian trajectory from its mean position. These equations express the linear and nonlinear back-reaction effects on the Eulerian mean fluid quantities by the fluctuating displacements of the Lagrangian trajectories in terms of their Eulerian second moments. The derivation of the glm equations uses the linearized relations between Eulerian and Lagrangian fluctuations, in the tradition of Lagrangian stability analysis for fluids. The glm derivation also uses the method of averaged Lagrangians, in the tradition of wave, mean flow interaction. Next, the new glm EP motion equations for incompressible ideal fluids are compared with the Euler-alpha turbulence closure equations. An alpha model is a GLM (or glm) fluid theory with a Taylor hypothesis closure. Such closures are based on the linearized fluctuation relations that determine the dynamics of the Lagrangian statistical quantities in the Euler-alpha equations. Thus, by using the LAEP theorem, we bridge between the GLM equations and the Euler-alpha closure equations, through the small-amplitude glm approximation in the EP variational framework. We conclude by highlighting a new application of the GLM, glm, and alpha-model results for Lagrangian averaged ideal magnetohydrodynamics. (c) 2002 American Institute of Physics.

  12. Magnetic field geometry and chemical abundance distribution of the He-strong star CPD -57°3509

    NASA Astrophysics Data System (ADS)

    Hubrig, S.; Przybilla, N.; Korhonen, H.; Ilyin, I.; Schöller, M.; Järvinen, S. P.; Nieva, M.-F.; Scholz, R.-D.; Kimeswenger, S.; Ramolla, M.; Kholtygin, A. F.; Briquet, M.

    2017-10-01

    The magnetic field of CPD -57°3509 was recently detected in the framework of the BOB (B fields in OB stars) collaboration. We acquired low-resolution spectropolarimetric observations of CPD -57°3509 with the FOcal Reducer low-dispersion Spectrograph 2 and high-resolution UV-Visual Echelle Spectrograph observations randomly distributed over a few months to search for periodicity, to study the magnetic field geometry and to determine the surface distribution of silicon and helium. We also obtained supplementary photometric observations at a timeline similar to the spectroscopic and spectropolarimetric observations. A period of 6.36 d was detected in the measurements of the mean longitudinal magnetic field. A sinusoidal fit to our measurements allowed us to constrain the magnetic field geometry and estimate the dipole strength in the range of 3.9-4.5 kG. Our application of the Doppler imaging technique revealed the presence of He I spots located around the magnetic poles, with a strong concentration at the positive pole and a weaker one around the negative pole. In contrast, high-concentration Si III spots are located close to the magnetic equator. Furthermore, our analysis of the spectral variability of CPD -57°3509 on short time-scales indicates distinct changes in shape and position of line profiles possibly caused by the presence of β Cep like pulsations. A small periodic variability in line with the changes of the magnetic field strength is clearly seen in the photometric data.

  13. Absorptive corrections for vector mesons: matching to complex mass scheme and longitudinal corrections

    NASA Astrophysics Data System (ADS)

    Jiménez Pérez, L. A.; Toledo Sánchez, G.

    2017-12-01

    Unstable spin-1 particles are properly described by including absorptive corrections to the electromagnetic vertex and propagator, without breaking the electromagnetic gauge invariance. We show that the modified propagator can be set in a complex mass form, provided the mass and width parameters, which are properly defined at the pole, are replaced by energy dependent functions fulfilling the same requirements at the pole. We exemplify the case for the {K}* (892) vector meson, and find that the mass function deviates around 2 MeV from the Kπ threshold to the pole, and that the width function exhibits a different behavior compared to the uncorrected energy dependent width. Considering the {τ }-\\to {K}{{S}}{π }-{ν }τ decay as dominated by the {K}* (892) and {K}{\\prime * }(1410) vectors and one scalar particle, we exhibit the role of the transversal and longitudinal corrections to the vector propagator by obtaining the modified vector and scalar form factors. The modified vector form factor is found to be the same as in the complex mass form, while the scalar form factor receives a modification from the longitudinal correction to the vector propagator. A fit to the experimental Kπ spectrum shows that the phase induced by the presence of this new contribution in the scalar sector improves the description of the experimental data in the troublesome region around 0.7 GeV. Besides that, the correction to the scalar form factor is found to be negligible.

  14. Low loss pole configuration for multi-pole homopolar magnetic bearings

    NASA Technical Reports Server (NTRS)

    Blumenstock, Kenneth A. (Inventor); Hakun, Claef F. (Inventor)

    2001-01-01

    A new pole configuration for multi-pole homopolar bearings proposed in this invention reduces rotational losses caused by eddy-currents generated when non-uniform flux distributions exist along the rotor surfaces. The new homopolar magnetic bearing includes a stator with reduced pole-to-pole and exhibits a much more uniform rotor flux than with large pole-to-pole gaps. A pole feature called a pole-link is incorporated into the low-loss poles to provide a uniform pole-to-pole gap and a controlled path for pole-to-pole flux. In order to implement the low-loss pole configuration of magnetic bearings with small pole-to-pole gaps, a new stator configuration was developed to facilitate installation of coil windings. The stator was divided into sector shaped pieces, as many pieces as there are poles. Each sector-shaped pole-piece can be wound on a standard coil winding machine, and it is practical to wind precision layer wound coils. To achieve maximum actuation efficiency, it is desirable to use all the available space for the coil formed by the natural geometric configuration. Then, the coils can be wound in a tapered shape. After winding, the sectored-pole-pieces are installed into and fastened by bonding or other means, to a ring of material which encloses the sectored-pole-pieces, forming a complete stator.

  15. On the numerical solution of the dynamically loaded hydrodynamic lubrication of the point contact problem

    NASA Technical Reports Server (NTRS)

    Lim, Sang G.; Brewe, David E.; Prahl, Joseph M.

    1990-01-01

    The transient analysis of hydrodynamic lubrication of a point-contact is presented. A body-fitted coordinate system is introduced to transform the physical domain to a rectangular computational domain, enabling the use of the Newton-Raphson method for determining pressures and locating the cavitation boundary, where the Reynolds boundary condition is specified. In order to obtain the transient solution, an explicit Euler method is used to effect a time march. The transient dynamic load is a sinusoidal function of time with frequency, fractional loading, and mean load as parameters. Results include the variation of the minimum film thickness and phase-lag with time as functions of excitation frequency. The results are compared with the analytic solution to the transient step bearing problem with the same dynamic loading function. The similarities of the results suggest an approximate model of the point contact minimum film thickness solution.

  16. Modeling Jupiter's current disc - Pioneer 10 outbound

    NASA Astrophysics Data System (ADS)

    Jones, D. E.; Melville, J. G.; Blake, M. L.

    1980-07-01

    A model of the magnetic field of the Jovian current disk is presented. The model uses Euler functions and the Biot-Savart law applied to a series of concentric, but not necessarily coplanar current rings. It was found that the best fit to the Pioneer 10 outbound perturbation magnetic field data is obtained if the current disk is twisted, and also bent to tend toward parallelism with the Jovigraphic equator. The inner and outer radii of the disk appear to be about 7 and 150 Jovian radii, respectively; because of the observed current disk penetrations, the bent disk also requires a deformation in the form of a bump or wrinkle whose axis tends to exhibit spiraling. Modeling of the azimuthal field shows that it is due to a thin radial current sheet, but it may actually be due in large part to penetration of a tail current sheet as suggested by Voyager observations.

  17. Cascade flow analysis by Navier-Stokes equation

    NASA Astrophysics Data System (ADS)

    Nozaki, Osamu

    1987-06-01

    As the performance of the large electronic computer has improved, numerical simulation of the flow around the blade of the aircraft, for instance, is being actively conducted. In the compressor and turbine cascades of aircraft engine, multiple blades are put side by side closely, and the pressure gradient in the flow direction is large. Thus they have more complicated properties than the independent blade. At present, therefore, it is the mainstream to use potential, Euler's equation, etc., as the basic equation but, for knowing the phenomenon caused by the viscosity like the interference of shock waves and boundary layers, it is necessary to solve the Navier-Stokes (N-S) equation. A two-dimensional cascade analysis program was developed by the N-S equation by expanding the two-dimensional high Reynolds number transonic profile analysis code NSFOIL and the lattice formation program AFMESH for the independent blade, which were already developed so as to fit the cascade flow.

  18. A note on singularities of the 3-D Euler equation

    NASA Technical Reports Server (NTRS)

    Tanveer, S.

    1994-01-01

    In this paper, we consider analytic initial conditions with finite energy, whose complex spatial continuation is a superposition of a smooth background flow and a singular field. Through explicit calculation in the complex plane, we show that under some assumptions, the solution to the 3-D Euler equation ceases to be analytic in the real domain in finite time.

  19. Euler potentials of current-free fields expressed in spherical harmonics

    NASA Technical Reports Server (NTRS)

    Stern, David P.

    1994-01-01

    Given a magnetic field B = -del(vector differential operator)(sub gamma) with gamma expanded in spherical harmonics, it is shown that analytic Euler potentials may be derived for B if gamma is asymmetrical but contains only the contribution of a single index n. This work generalizes a result for sectorial harmonics with n = m, derived by Willis and Gardiner (1988).

  20. Entropy Analysis of Kinetic Flux Vector Splitting Schemes for the Compressible Euler Equations

    NASA Technical Reports Server (NTRS)

    Shiuhong, Lui; Xu, Jun

    1999-01-01

    Flux Vector Splitting (FVS) scheme is one group of approximate Riemann solvers for the compressible Euler equations. In this paper, the discretized entropy condition of the Kinetic Flux Vector Splitting (KFVS) scheme based on the gas-kinetic theory is proved. The proof of the entropy condition involves the entropy definition difference between the distinguishable and indistinguishable particles.

  1. Lagrangians and Euler morphisms from connections on the frame bundle

    NASA Astrophysics Data System (ADS)

    Kurek, J.; Mikulski, W. M.

    2011-07-01

    We classify all natural operators transforming torsion free classical linear connections ∇ on m-dimensional manifolds M into r-th order Lagrangians λ(∇) and Euler morphisms E(∇) on the linear frame bundle P1M. We also briefly write how this classification result can be generalized on higher order frame bundles PkM instead of P1M.

  2. A multigrid LU-SSOR scheme for approximate Newton iteration applied to the Euler equations

    NASA Technical Reports Server (NTRS)

    Yoon, Seokkwan; Jameson, Antony

    1986-01-01

    A new efficient relaxation scheme in conjunction with a multigrid method is developed for the Euler equations. The LU SSOR scheme is based on a central difference scheme and does not need flux splitting for Newton iteration. Application to transonic flow shows that the new method surpasses the performance of the LU implicit scheme.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brizard, Alain J.; Tronci, Cesare

    The variational formulations of guiding-center Vlasov-Maxwell theory based on Lagrange, Euler, and Euler-Poincaré variational principles are presented. Each variational principle yields a different approach to deriving guiding-center polarization and magnetization effects into the guiding-center Maxwell equations. The conservation laws of energy, momentum, and angular momentum are also derived by Noether method, where the guiding-center stress tensor is now shown to be explicitly symmetric.

  4. Analysis of real-time numerical integration methods applied to dynamic clamp experiments.

    PubMed

    Butera, Robert J; McCarthy, Maeve L

    2004-12-01

    Real-time systems are frequently used as an experimental tool, whereby simulated models interact in real time with neurophysiological experiments. The most demanding of these techniques is known as the dynamic clamp, where simulated ion channel conductances are artificially injected into a neuron via intracellular electrodes for measurement and stimulation. Methodologies for implementing the numerical integration of the gating variables in real time typically employ first-order numerical methods, either Euler or exponential Euler (EE). EE is often used for rapidly integrating ion channel gating variables. We find via simulation studies that for small time steps, both methods are comparable, but at larger time steps, EE performs worse than Euler. We derive error bounds for both methods, and find that the error can be characterized in terms of two ratios: time step over time constant, and voltage measurement error over the slope factor of the steady-state activation curve of the voltage-dependent gating variable. These ratios reliably bound the simulation error and yield results consistent with the simulation analysis. Our bounds quantitatively illustrate how measurement error restricts the accuracy that can be obtained by using smaller step sizes. Finally, we demonstrate that Euler can be computed with identical computational efficiency as EE.

  5. Implicit flux-split Euler schemes for unsteady aerodynamic analysis involving unstructured dynamic meshes

    NASA Technical Reports Server (NTRS)

    Batina, John T.

    1990-01-01

    Improved algorithms for the solution of the time-dependent Euler equations are presented for unsteady aerodynamic analysis involving unstructured dynamic meshes. The improvements have been developed recently to the spatial and temporal discretizations used by unstructured grid flow solvers. The spatial discretization involves a flux-split approach which is naturally dissipative and captures shock waves sharply with at most one grid point within the shock structure. The temporal discretization involves an implicit time-integration shceme using a Gauss-Seidel relaxation procedure which is computationally efficient for either steady or unsteady flow problems. For example, very large time steps may be used for rapid convergence to steady state, and the step size for unsteady cases may be selected for temporal accuracy rather than for numerical stability. Steady and unsteady flow results are presented for the NACA 0012 airfoil to demonstrate applications of the new Euler solvers. The unsteady results were obtained for the airfoil pitching harmonically about the quarter chord. The resulting instantaneous pressure distributions and lift and moment coefficients during a cycle of motion compare well with experimental data. The paper presents a description of the Euler solvers along with results and comparisons which assess the capability.

  6. Modelling gas dynamics in 1D ducts with abrupt area change

    NASA Astrophysics Data System (ADS)

    Menina, R.; Saurel, R.; Zereg, M.; Houas, L.

    2011-09-01

    Most gas dynamic computations in industrial ducts are done in one dimension with cross-section-averaged Euler equations. This poses a fundamental difficulty as soon as geometrical discontinuities are present. The momentum equation contains a non-conservative term involving a surface pressure integral, responsible for momentum loss. Definition of this integral is very difficult from a mathematical standpoint as the flow may contain other discontinuities (shocks, contact discontinuities). From a physical standpoint, geometrical discontinuities induce multidimensional vortices that modify the surface pressure integral. In the present paper, an improved 1D flow model is proposed. An extra energy (or entropy) equation is added to the Euler equations expressing the energy and turbulent pressure stored in the vortices generated by the abrupt area variation. The turbulent energy created by the flow-area change interaction is determined by a specific estimate of the surface pressure integral. Model's predictions are compared with 2D-averaged results from numerical solution of the Euler equations. Comparison with shock tube experiments is also presented. The new 1D-averaged model improves the conventional cross-section-averaged Euler equations and is able to reproduce the main flow features.

  7. A Ritz approach for the static analysis of planar pantographic structures modeled with nonlinear Euler-Bernoulli beams

    NASA Astrophysics Data System (ADS)

    Andreaus, Ugo; Spagnuolo, Mario; Lekszycki, Tomasz; Eugster, Simon R.

    2018-04-01

    We present a finite element discrete model for pantographic lattices, based on a continuous Euler-Bernoulli beam for modeling the fibers composing the pantographic sheet. This model takes into account large displacements, rotations and deformations; the Euler-Bernoulli beam is described by using nonlinear interpolation functions, a Green-Lagrange strain for elongation and a curvature depending on elongation. On the basis of the introduced discrete model of a pantographic lattice, we perform some numerical simulations. We then compare the obtained results to an experimental BIAS extension test on a pantograph printed with polyamide PA2200. The pantographic structures involved in the numerical as well as in the experimental investigations are not proper fabrics: They are composed by just a few fibers for theoretically allowing the use of the Euler-Bernoulli beam theory in the description of the fibers. We compare the experiments to numerical simulations in which we allow the fibers to elastically slide one with respect to the other in correspondence of the interconnecting pivot. We present as result a very good agreement between the numerical simulation, based on the introduced model, and the experimental measures.

  8. A hybrid approach for nonlinear computational aeroacoustics predictions

    NASA Astrophysics Data System (ADS)

    Sassanis, Vasileios; Sescu, Adrian; Collins, Eric M.; Harris, Robert E.; Luke, Edward A.

    2017-01-01

    In many aeroacoustics applications involving nonlinear waves and obstructions in the far-field, approaches based on the classical acoustic analogy theory or the linearised Euler equations are unable to fully characterise the acoustic field. Therefore, computational aeroacoustics hybrid methods that incorporate nonlinear wave propagation have to be constructed. In this study, a hybrid approach coupling Navier-Stokes equations in the acoustic source region with nonlinear Euler equations in the acoustic propagation region is introduced and tested. The full Navier-Stokes equations are solved in the source region to identify the acoustic sources. The flow variables of interest are then transferred from the source region to the acoustic propagation region, where the full nonlinear Euler equations with source terms are solved. The transition between the two regions is made through a buffer zone where the flow variables are penalised via a source term added to the Euler equations. Tests were conducted on simple acoustic and vorticity disturbances, two-dimensional jets (Mach 0.9 and 2), and a three-dimensional jet (Mach 1.5), impinging on a wall. The method is proven to be effective and accurate in predicting sound pressure levels associated with the propagation of linear and nonlinear waves in the near- and far-field regions.

  9. On Bi-Grid Local Mode Analysis of Solution Techniques for 3-D Euler and Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Ibraheem, S. O.; Demuren, A. O.

    1994-01-01

    A procedure is presented for utilizing a bi-grid stability analysis as a practical tool for predicting multigrid performance in a range of numerical methods for solving Euler and Navier-Stokes equations. Model problems based on the convection, diffusion and Burger's equation are used to illustrate the superiority of the bi-grid analysis as a predictive tool for multigrid performance in comparison to the smoothing factor derived from conventional von Neumann analysis. For the Euler equations, bi-grid analysis is presented for three upwind difference based factorizations, namely Spatial, Eigenvalue and Combination splits, and two central difference based factorizations, namely LU and ADI methods. In the former, both the Steger-Warming and van Leer flux-vector splitting methods are considered. For the Navier-Stokes equations, only the Beam-Warming (ADI) central difference scheme is considered. In each case, estimates of multigrid convergence rates from the bi-grid analysis are compared to smoothing factors obtained from single-grid stability analysis. Effects of grid aspect ratio and flow skewness are examined. Both predictions are compared with practical multigrid convergence rates for 2-D Euler and Navier-Stokes solutions based on the Beam-Warming central scheme.

  10. Accuracy of an unstructured-grid upwind-Euler algorithm for the ONERA M6 wing

    NASA Technical Reports Server (NTRS)

    Batina, John T.

    1991-01-01

    Improved algorithms for the solution of the three-dimensional, time-dependent Euler equations are presented for aerodynamic analysis involving unstructured dynamic meshes. The improvements have been developed recently to the spatial and temporal discretizations used by unstructured-grid flow solvers. The spatial discretization involves a flux-split approach that is naturally dissipative and captures shock waves sharply with at most one grid point within the shock structure. The temporal discretization involves either an explicit time-integration scheme using a multistage Runge-Kutta procedure or an implicit time-integration scheme using a Gauss-Seidel relaxation procedure, which is computationally efficient for either steady or unsteady flow problems. With the implicit Gauss-Seidel procedure, very large time steps may be used for rapid convergence to steady state, and the step size for unsteady cases may be selected for temporal accuracy rather than for numerical stability. Steady flow results are presented for both the NACA 0012 airfoil and the Office National d'Etudes et de Recherches Aerospatiales M6 wing to demonstrate applications of the new Euler solvers. The paper presents a description of the Euler solvers along with results and comparisons that assess the capability.

  11. Implicit flux-split Euler schemes for unsteady aerodynamic analysis involving unstructured dynamic meshes

    NASA Technical Reports Server (NTRS)

    Batina, John T.

    1990-01-01

    Improved algorithm for the solution of the time-dependent Euler equations are presented for unsteady aerodynamic analysis involving unstructured dynamic meshes. The improvements were developed recently to the spatial and temporal discretizations used by unstructured grid flow solvers. The spatial discretization involves a flux-split approach which is naturally dissipative and captures shock waves sharply with at most one grid point within the shock structure. The temporal discretization involves an implicit time-integration scheme using a Gauss-Seidel relaxation procedure which is computationally efficient for either steady or unsteady flow problems. For example, very large time steps may be used for rapid convergence to steady state, and the step size for unsteady cases may be selected for temporal accuracy rather than for numerical stability. Steady and unsteady flow results are presented for the NACA 0012 airfoil to demonstrate applications of the new Euler solvers. The unsteady results were obtained for the airfoil pitching harmonically about the quarter chord. The resulting instantaneous pressure distributions and lift and moment coefficients during a cycle of motion compare well with experimental data. A description of the Euler solvers is presented along with results and comparisons which assess the capability.

  12. Solving Nonlinear Euler Equations with Arbitrary Accuracy

    NASA Technical Reports Server (NTRS)

    Dyson, Rodger W.

    2005-01-01

    A computer program that efficiently solves the time-dependent, nonlinear Euler equations in two dimensions to an arbitrarily high order of accuracy has been developed. The program implements a modified form of a prior arbitrary- accuracy simulation algorithm that is a member of the class of algorithms known in the art as modified expansion solution approximation (MESA) schemes. Whereas millions of lines of code were needed to implement the prior MESA algorithm, it is possible to implement the present MESA algorithm by use of one or a few pages of Fortran code, the exact amount depending on the specific application. The ability to solve the Euler equations to arbitrarily high accuracy is especially beneficial in simulations of aeroacoustic effects in settings in which fully nonlinear behavior is expected - for example, at stagnation points of fan blades, where linearizing assumptions break down. At these locations, it is necessary to solve the full nonlinear Euler equations, and inasmuch as the acoustical energy is of the order of 4 to 5 orders of magnitude below that of the mean flow, it is necessary to achieve an overall fractional error of less than 10-6 in order to faithfully simulate entropy, vortical, and acoustical waves.

  13. Numerical simulation of vortical ideal fluid flow through curved channel

    NASA Astrophysics Data System (ADS)

    Moshkin, N. P.; Mounnamprang, P.

    2003-04-01

    A numerical algorithm to study the boundary-value problem in which the governing equations are the steady Euler equations and the vorticity is given on the inflow parts of the domain boundary is developed. The Euler equations are implemented in terms of the stream function and vorticity. An irregular physical domain is transformed into a rectangle in the computational domain and the Euler equations are rewritten with respect to a curvilinear co-ordinate system. The convergence of the finite-difference equations to the exact solution is shown experimentally for the test problems by comparing the computational results with the exact solutions on the sequence of grids. To find the pressure from the known vorticity and stream function, the Euler equations are utilized in the Gromeka-Lamb form. The numerical algorithm is illustrated with several examples of steady flow through a two-dimensional channel with curved walls. The analysis of calculations shows strong dependence of the pressure field on the vorticity given at the inflow parts of the boundary. Plots of the flow structure and isobars, for different geometries of channel and for different values of vorticity on entrance, are also presented.

  14. Results from DESDM Pipeline on Data From Blanco Cosmology Survey

    NASA Astrophysics Data System (ADS)

    Desai, Shantanu; Mohr, J.; Armstrong, R.; Bertin, E.; Zenteno, A.; Tucker, D.; Song, J.; Ngeow, C.; Lin, H.; Bazin, G.; Liu, J.; Cosmology Survey, Blanco

    2011-01-01

    The Blanco Cosmology Survey (BCS) is a 60-night survey of the southern skies using the CTIO Blanco 4 m telescope, whose main goal to study cosmic acceleration using galaxy clusters. BCS has carried out observations in two 50 degree patches of the southern skies centered at 23 hr and 5 hr in griz bands. These fields were chosen to maximize overlap with the the South Pole Telescope. The data from this survey has been processed using the Dark energy Data Management System (DESDM) on Teragrid resources at NCSA and CCT. DESDM is developed to analyze data from the Dark Energy Survey, which begins around 2011 and analysis of real data provides valuable warmup exercise before the DES survey starts. We describe in detail the key steps in producing science ready catalogs from the raw data. This includes detrending, astrometric calibration, photometric calibration, co-addition with psf homogenization. The final catalogs are constructed using model-fitting photometry which includes detailed galaxy fitting models convolved with the local PSF. We illustrate how photometric redshifts of galaxy clusters are estimated using red-sequence fitting and show results from a few clusters.

  15. Selection of High-Redshift QSOs using Subaru and CFHT Photometry

    NASA Astrophysics Data System (ADS)

    Jones, Victoria; White, Cameron; Hasinger, Guenther; Hu, Esther

    2018-01-01

    We present 31 high redshift (5.0 ≤ z ≤ 6.0) quasar candidates using photometry from the Subaru and Canada France Hawaii telescopes. These candidates were observed as part of the Hawaii EROsita Ecliptic Pole Survey (HEROES) of the North Ecliptic Pole in 2016 and again in 2017. The ongoing HEROES survey is gathering ground-based imaging data in preparation for the eROSITA X-Ray mission. For this selection, we utilized optical-near IR imaging data of a 36 square degree field in one narrowband and five broadband filters on Subaru’s Hyper Suprime-Cam (HSC). We also utilized less complete coverage of the field in the U and J bands from CFHT’s MegaCam and WIRCam respectively. Photometric redshifts were calculated using SED fitting techniques in comparison with stellar, quasar, and galaxy models. Selections were then made through extendedness cuts, color-color comparisons, and color-redshift plots. Follow-up spectroscopic observations of these candidates with the DEIMOS spectrograph on Keck and X-Ray observations with eROSITA in the coming years will allow for reliable classifications of our selected candidates.

  16. The Local Bubble: a magnetic veil to our Galaxy

    NASA Astrophysics Data System (ADS)

    Alves, M. I. R.; Boulanger, F.; Ferrière, K.; Montier, L.

    2018-04-01

    The magnetic field in the local interstellar medium does not follow the large-scale Galactic magnetic field. The local magnetic field has probably been distorted by the Local Bubble, a cavity of hot ionized gas extending all around the Sun and surrounded by a shell of cold neutral gas and dust. However, so far no conclusive association between the local magnetic field and the Local Bubble has been established. Here we develop an analytical model for the magnetic field in the shell of the Local Bubble, which we represent as an inclined spheroid, off-centred from the Sun. We fit the model to Planck dust polarized emission observations within 30° of the Galactic poles. We find a solution that is consistent with a highly deformed magnetic field, with significantly different directions towards the north and south Galactic poles. This work sets a methodological framework for modelling the three-dimensional (3D) structure of the magnetic field in the local interstellar medium, which is a most awaited input for large-scale Galactic magnetic field models.

  17. Single-step collision-free trajectory planning of biped climbing robots in spatial trusses.

    PubMed

    Zhu, Haifei; Guan, Yisheng; Chen, Shengjun; Su, Manjia; Zhang, Hong

    For a biped climbing robot with dual grippers to climb poles, trusses or trees, feasible collision-free climbing motion is inevitable and essential. In this paper, we utilize the sampling-based algorithm, Bi-RRT, to plan single-step collision-free motion for biped climbing robots in spatial trusses. To deal with the orientation limit of a 5-DoF biped climbing robot, a new state representation along with corresponding operations including sampling, metric calculation and interpolation is presented. A simple but effective model of a biped climbing robot in trusses is proposed, through which the motion planning of one climbing cycle is transformed to that of a manipulator. In addition, the pre- and post-processes are introduced to expedite the convergence of the Bi-RRT algorithm and to ensure the safe motion of the climbing robot near poles as well. The piecewise linear paths are smoothed by utilizing cubic B-spline curve fitting. The effectiveness and efficiency of the presented Bi-RRT algorithm for climbing motion planning are verified by simulations.

  18. Development of upwind schemes for the Euler equations

    NASA Technical Reports Server (NTRS)

    Chakravarthy, Sukumar R.

    1987-01-01

    Described are many algorithmic and computational aspects of upwind schemes and their second-order accurate formulations based on Total-Variation-Diminishing (TVD) approaches. An operational unification of the underlying first-order scheme is first presented encompassing Godunov's, Roe's, Osher's, and Split-Flux methods. For higher order versions, the preprocessing and postprocessing approaches to constructing TVD discretizations are considered. TVD formulations can be used to construct relaxation methods for unfactored implicit upwind schemes, which in turn can be exploited to construct space-marching procedures for even the unsteady Euler equations. A major part of the report describes time- and space-marching procedures for solving the Euler equations in 2-D, 3-D, Cartesian, and curvilinear coordinates. Along with many illustrative examples, several results of efficient computations on 3-D supersonic flows with subsonic pockets are presented.

  19. Concepts for radically increasing the numerical convergence rate of the Euler equations

    NASA Technical Reports Server (NTRS)

    Nixon, David; Tzuoo, Keh-Lih; Caruso, Steven C.; Farshchi, Mohammad; Klopfer, Goetz H.; Ayoub, Alfred

    1987-01-01

    Integral equation and finite difference methods have been developed for solving transonic flow problems using linearized forms of the transonic small disturbance and Euler equations. A key element is the use of a strained coordinate system in which the shock remains fixed. Additional criteria are developed to determine the free parameters in the coordinate straining; these free parameters are functions of the shock location. An integral equation analysis showed that the shock is located by ensuring that no expansion shocks exist in the solution. The expansion shock appears as oscillations in the solution near the sonic line, and the correct shock location is determined by removing these oscillations. A second objective was to study the ability of the Euler equation to model separated flow.

  20. Developing and utilizing an Euler computational method for predicting the airframe/propulsion effects for an aft-mounted turboprop transport. Volume 2: User guide

    NASA Technical Reports Server (NTRS)

    Chen, H. C.; Neback, H. E.; Kao, T. J.; Yu, N. Y.; Kusunose, K.

    1991-01-01

    This manual explains how to use an Euler based computational method for predicting the airframe/propulsion integration effects for an aft-mounted turboprop transport. The propeller power effects are simulated by the actuator disk concept. This method consists of global flow field analysis and the embedded flow solution for predicting the detailed flow characteristics in the local vicinity of an aft-mounted propfan engine. The computational procedure includes the use of several computer programs performing four main functions: grid generation, Euler solution, grid embedding, and streamline tracing. This user's guide provides information for these programs, including input data preparations with sample input decks, output descriptions, and sample Unix scripts for program execution in the UNICOS environment.

  1. General invertible transformation and physical degrees of freedom

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazufumi; Motohashi, Hayato; Suyama, Teruaki; Kobayashi, Tsutomu

    2017-04-01

    An invertible field transformation is such that the old field variables correspond one-to-one to the new variables. As such, one may think that two systems that are related by an invertible transformation are physically equivalent. However, if the transformation depends on field derivatives, the equivalence between the two systems is nontrivial due to the appearance of higher derivative terms in the equations of motion. To address this problem, we prove the following theorem on the relation between an invertible transformation and Euler-Lagrange equations: If the field transformation is invertible, then any solution of the original set of Euler-Lagrange equations is mapped to a solution of the new set of Euler-Lagrange equations, and vice versa. We also present applications of the theorem to scalar-tensor theories.

  2. An accuracy assessment of Cartesian-mesh approaches for the Euler equations

    NASA Technical Reports Server (NTRS)

    Coirier, William J.; Powell, Kenneth G.

    1995-01-01

    A critical assessment of the accuracy of Cartesian-mesh approaches for steady, transonic solutions of the Euler equations of gas dynamics is made. An exact solution of the Euler equations (Ringleb's flow) is used not only to infer the order of the truncation error of the Cartesian-mesh approaches, but also to compare the magnitude of the discrete error directly to that obtained with a structured mesh approach. Uniformly and adaptively refined solutions using a Cartesian-mesh approach are obtained and compared to each other and to uniformly refined structured mesh results. The effect of cell merging is investigated as well as the use of two different K-exact reconstruction procedures. The solution methodology of the schemes is explained and tabulated results are presented to compare the solution accuracies.

  3. Euler Technology Assessment - SPLITFLOW Code Applications for Stability and Control Analysis on an Advanced Fighter Model Employing Innovative Control Concepts

    NASA Technical Reports Server (NTRS)

    Jordan, Keith J.

    1998-01-01

    This report documents results from the NASA-Langley sponsored Euler Technology Assessment Study conducted by Lockheed-Martin Tactical Aircraft Systems (LMTAS). The purpose of the study was to evaluate the ability of the SPLITFLOW code using viscous and inviscid flow models to predict aerodynamic stability and control of an advanced fighter model. The inviscid flow model was found to perform well at incidence angles below approximately 15 deg, but not as well at higher angles of attack. The results using a turbulent, viscous flow model matched the trends of the wind tunnel data, but did not show significant improvement over the Euler solutions. Overall, the predictions were found to be useful for stability and control design purposes.

  4. Multi-pelvis characterisation of articular cartilage geometry.

    PubMed

    Gillard, Faye C; Dickinson, Alexander S; Schneider, Urs; Taylor, Andrew C; Browne, Martin

    2013-12-01

    The shape of the acetabular cartilage follows the contact stress distribution across the joint. Accurate characterisation of this geometry may be useful for the development of acetabular cup devices that are more biomechanically compliant. In this study, the geometry of the acetabular cartilage was characterised by taking plaster moulds of the acetabulum from 24 dry bone human pelvises and digitising the mould shapes using a three-dimensional laser scanner. The articular bone surface geometry was analysed, and the shape of the acetabulum was approximated by fitting a best-fit sphere. To test the hypothesis that the acetabulum is non-spherical, a best-fit ellipsoid was also fitted to the geometry. In each case, points around the acetabular notch edge that disclosed the articular surface geometry were identified, and vectors were drawn between these and the best-fit sphere or ellipsoid centre. The significantly larger z radii (into the pole) of the ellipsoids indicated that the acetabulum was non-spherical and could imply that the kinematics of the hip joint is more complex than purely rotational motion, and the traditional ball-and-socket replacement may need to be updated to reflect this motion. The acetabular notch edges were observed to be curved, with males exhibiting deeper, wider and shorter notches than females, although the difference was not statistically significant (mean: p = 0.30) and supports the use of non-gender-specific models in anatomical studies.

  5. Inversion for the driving forces of plate tectonics

    NASA Technical Reports Server (NTRS)

    Richardson, R. M.

    1983-01-01

    Inverse modeling techniques have been applied to the problem of determining the roles of various forces that may drive and resist plate tectonic motions. Separate linear inverse problems have been solved to find the best fitting pole of rotation for finite element grid point velocities and to find the best combination of force models to fit the observed relative plate velocities for the earth's twelve major plates using the generalized inverse operator. Variance-covariance data on plate motion have also been included. Results emphasize the relative importance of ridge push forces in the driving mechanism. Convergent margin forces are smaller by at least a factor of two, and perhaps by as much as a factor of twenty. Slab pull, apparently, is poorly transmitted to the surface plate as a driving force. Drag forces at the base of the plate are smaller than ridge push forces, although the sign of the force remains in question.

  6. Orthogonal stack of global tide gauge sea level data

    NASA Technical Reports Server (NTRS)

    Trupin, A.; Wahr, J.

    1990-01-01

    Yearly and monthly tide gauge sea level data from around the globe are fitted to numerically generated equilibrium tidal data to search for the 18.6 year lunar tide and 14 month pole tide. Both tides are clearly evident in the results, and their amplitudes and phases are found to be consistent with a global equilibrium response. Global, monthly sea level data from outside the Baltic sea and Gulf of Bothnia are fitted to global atmospheric pressure data to study the response of the ocean to pressure fluctuations. The response is found to be inverted barometer at periods greater than two months. Global averages of tide gauge data, after correcting for the effects of post glacial rebound on individual station records, reveal an increase in sea level over the last 80 years of between 1.1 mm/yr and 1.9 mm/yr.

  7. PopZ identifies the new pole, and PodJ identifies the old pole during polar growth in Agrobacterium tumefaciens

    PubMed Central

    Grangeon, Romain; Zupan, John R.; Anderson-Furgeson, James; Zambryski, Patricia C.

    2015-01-01

    Agrobacterium tumefaciens elongates by addition of peptidoglycan (PG) only at the pole created by cell division, the growth pole, whereas the opposite pole, the old pole, is inactive for PG synthesis. How Agrobacterium assigns and maintains pole asymmetry is not understood. Here, we investigated whether polar growth is correlated with novel pole-specific localization of proteins implicated in a variety of growth and cell division pathways. The cell cycle of A. tumefaciens was monitored by time-lapse and superresolution microscopy to image the localization of A. tumefaciens homologs of proteins involved in cell division, PG synthesis and pole identity. FtsZ and FtsA accumulate at the growth pole during elongation, and improved imaging reveals FtsZ disappears from the growth pole and accumulates at the midcell before FtsA. The L,D-transpeptidase Atu0845 was detected mainly at the growth pole. A. tumefaciens specific pole-organizing protein (Pop) PopZAt and polar organelle development (Pod) protein PodJAt exhibited dynamic yet distinct behavior. PopZAt was found exclusively at the growing pole and quickly switches to the new growth poles of both siblings immediately after septation. PodJAt is initially at the old pole but then also accumulates at the growth pole as the cell cycle progresses suggesting that PodJAt may mediate the transition of the growth pole to an old pole. Thus, PopZAt is a marker for growth pole identity, whereas PodJAt identifies the old pole. PMID:26324921

  8. How physiological and physical processes contribute to the phenology of cyanobacterial blooms in large shallow lakes: A new Euler-Lagrangian coupled model.

    PubMed

    Feng, Tao; Wang, Chao; Wang, Peifang; Qian, Jin; Wang, Xun

    2018-09-01

    Cyanobacterial blooms have emerged as one of the most severe ecological problems affecting large and shallow freshwater lakes. To improve our understanding of the factors that influence, and could be used to predict, surface blooms, this study developed a novel Euler-Lagrangian coupled approach combining the Eulerian model with agent-based modelling (ABM). The approach was subsequently verified based on monitoring datasets and MODIS data in a large shallow lake (Lake Taihu, China). The Eulerian model solves the Eulerian variables and physiological parameters, whereas ABM generates the complete life cycle and transport processes of cyanobacterial colonies. This model ensemble performed well in fitting historical data and predicting the dynamics of cyanobacterial biomass, bloom distribution, and area. Based on the calculated physical and physiological characteristics of surface blooms, principal component analysis (PCA) captured the major processes influencing surface bloom formation at different stages (two bloom clusters). Early bloom outbreaks were influenced by physical processes (horizontal transport and vertical turbulence-induced mixing), whereas buoyancy-controlling strategies were essential for mature bloom outbreaks. Canonical correlation analysis (CCA) revealed the combined actions of multiple environment variables on different bloom clusters. The effects of buoyancy-controlling strategies (ISP), vertical turbulence-induced mixing velocity of colony (VMT) and horizontal drift velocity of colony (HDT) were quantitatively compared using scenario simulations in the coupled model. VMT accounted for 52.9% of bloom formations and maintained blooms over long periods, thus demonstrating the importance of wind-induced turbulence in shallow lakes. In comparison, HDT and buoyancy controlling strategies influenced blooms at different stages. In conclusion, the approach developed here presents a promising tool for understanding the processes of onshore/offshore algal blooms formation and subsequent predicting. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Flow regimes during immiscible displacement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, Ryan T.; Mcclure, James; Berrill, Mark A.

    Fractional ow of immiscible phases occurs at the pore scale where grain surfaces and phases interfaces obstruct phase mobility. However, the larger scale behavior is described by a saturation-dependent phenomenological relationship called relative permeability. As a consequence, pore-scale parameters, such as phase topology and/ or geometry, and details of the flow regime cannot be directly related to Darcy-scale flow parameters. It is well understood that relative permeability is not a unique relationship of wetting-phase saturation and rather depends on the experimental conditions at which it is measured. Herein we use fast X-ray microcomputed tomography to image pore-scale phase arrangements duringmore » fractional flow and then forward simulate the flow regimes using the lattice-Boltzmann method to better understand the underlying pore-scale flow regimes and their influence on Darcy-scale parameters. We find that relative permeability is highly dependent on capillary number and that the Corey model fits the observed trends. At the pore scale, while phase topologies are continuously changing on the scale of individual pores, the Euler characteristic of the nonwetting phase (NWP) averaged over a sufficiently large field of view can describe the bulk topological characteristics; the Euler characteristic decreases with increasing capillary number resulting in an increase in relative permeability. Lastly, we quantify the fraction of NWP that flows through disconnected ganglion dynamics and demonstrate that this can be a significant fraction of the NWP flux for intermediate wetting-phase saturation. Furthermore, rate dependencies occur in our homogenous sample (without capillary end effect) and the underlying cause is attributed to ganglion flow that can significantly influence phase topology during the fractional flow of immiscible phases.« less

  10. Flow regimes during immiscible displacement

    DOE PAGES

    Armstrong, Ryan T.; Mcclure, James; Berrill, Mark A.; ...

    2017-02-01

    Fractional ow of immiscible phases occurs at the pore scale where grain surfaces and phases interfaces obstruct phase mobility. However, the larger scale behavior is described by a saturation-dependent phenomenological relationship called relative permeability. As a consequence, pore-scale parameters, such as phase topology and/ or geometry, and details of the flow regime cannot be directly related to Darcy-scale flow parameters. It is well understood that relative permeability is not a unique relationship of wetting-phase saturation and rather depends on the experimental conditions at which it is measured. Herein we use fast X-ray microcomputed tomography to image pore-scale phase arrangements duringmore » fractional flow and then forward simulate the flow regimes using the lattice-Boltzmann method to better understand the underlying pore-scale flow regimes and their influence on Darcy-scale parameters. We find that relative permeability is highly dependent on capillary number and that the Corey model fits the observed trends. At the pore scale, while phase topologies are continuously changing on the scale of individual pores, the Euler characteristic of the nonwetting phase (NWP) averaged over a sufficiently large field of view can describe the bulk topological characteristics; the Euler characteristic decreases with increasing capillary number resulting in an increase in relative permeability. Lastly, we quantify the fraction of NWP that flows through disconnected ganglion dynamics and demonstrate that this can be a significant fraction of the NWP flux for intermediate wetting-phase saturation. Furthermore, rate dependencies occur in our homogenous sample (without capillary end effect) and the underlying cause is attributed to ganglion flow that can significantly influence phase topology during the fractional flow of immiscible phases.« less

  11. Scaling relations between trabecular bone volume fraction and microstructure at different skeletal sites.

    PubMed

    Räth, Christoph; Baum, Thomas; Monetti, Roberto; Sidorenko, Irina; Wolf, Petra; Eckstein, Felix; Matsuura, Maiko; Lochmüller, Eva-Maria; Zysset, Philippe K; Rummeny, Ernst J; Link, Thomas M; Bauer, Jan S

    2013-12-01

    In this study, we investigated the scaling relations between trabecular bone volume fraction (BV/TV) and parameters of the trabecular microstructure at different skeletal sites. Cylindrical bone samples with a diameter of 8mm were harvested from different skeletal sites of 154 human donors in vitro: 87 from the distal radius, 59/69 from the thoracic/lumbar spine, 51 from the femoral neck, and 83 from the greater trochanter. μCT images were obtained with an isotropic spatial resolution of 26μm. BV/TV and trabecular microstructure parameters (TbN, TbTh, TbSp, scaling indices (< > and σ of α and αz), and Minkowski Functionals (Surface, Curvature, Euler)) were computed for each sample. The regression coefficient β was determined for each skeletal site as the slope of a linear fit in the double-logarithmic representations of the correlations of BV/TV versus the respective microstructure parameter. Statistically significant correlation coefficients ranging from r=0.36 to r=0.97 were observed for BV/TV versus microstructure parameters, except for Curvature and Euler. The regression coefficients β were 0.19 to 0.23 (TbN), 0.21 to 0.30 (TbTh), -0.28 to -0.24 (TbSp), 0.58 to 0.71 (Surface) and 0.12 to 0.16 (<α>), 0.07 to 0.11 (<αz>), -0.44 to -0.30 (σ(α)), and -0.39 to -0.14 (σ(αz)) at the different skeletal sites. The 95% confidence intervals of β overlapped for almost all microstructure parameters at the different skeletal sites. The scaling relations were independent of vertebral fracture status and similar for subjects aged 60-69, 70-79, and >79years. In conclusion, the bone volume fraction-microstructure scaling relations showed a rather universal character. © 2013.

  12. Hydrogen bond network around the semiquinone of the secondary quinone acceptor Q(B) in bacterial photosynthetic reaction centers.

    PubMed

    Taguchi, Alexander T; O'Malley, Patrick J; Wraight, Colin A; Dikanov, Sergei A

    2015-05-07

    By utilizing a combined pulsed EPR and DFT approach, the high-resolution structure of the QB site semiquinone (SQB) was determined. The development of such a technique is crucial toward an understanding of protein-bound semiquinones on the structural level, as (i) membrane protein crystallography typically results in low resolution structures, and (ii) obtaining protein crystals in the semiquinone form is rarely feasible. The SQB hydrogen bond network was investigated with Q- (∼34 GHz) and X-band (∼9.7 GHz) pulsed EPR spectroscopy on fully deuterated reactions centers from Rhodobacter sphaeroides. Simulations in the SQB g-tensor reference frame provided the principal values and directions of the H-bond proton hyperfine tensors. Three protons were detected, one with an anisotropic tensor component, T = 4.6 MHz, assigned to the histidine NδH of His-L190, and two others with similar anisotropic constants T = 3.2 and 3.0 MHz assigned to the peptide NpH of Gly-L225 and Ile-L224, respectively. Despite the strong similarity in the peptide couplings, all hyperfine tensors were resolved in the Q-band ENDOR spectra. The Euler angles describing the series of rotations that bring the hyperfine tensors into the SQB g-tensor reference frame were obtained by least-squares fitting of the spectral simulations to the ENDOR data. These Euler angles show the locations of the hydrogen bonded protons with respect to the semiquinone. Our geometry optimized model of SQB used in previous DFT work is in strong agreement with the angular constraints from the spectral simulations, providing the foundation for future joint pulsed EPR and DFT semiquinone structural determinations in other proteins.

  13. Peculiarities of the tectonic and magma evolution of the southwestern Indian middle-ocean crust within the range of 51°-67° eastern longitude

    NASA Astrophysics Data System (ADS)

    Shreider, A. A.; Kashintsev, G. L.

    2010-02-01

    The comparative estimation of the parameters of the lithosphere of the Mid-Ocean Southwestern Indian range in the areas westwards and eastwards of the Atlantis II transform fault zone shows that, within this zone, an alteration in the basalt composition occurred. Eastwards of this zone, a decrease of the anomaly of the magnetic field occurred and increased average depths of the axial part (4.7 km) and thinning (up to 4-5 km) of the ocean crust with increased rates of seismic waves in the upper mantle were observed. This, first of all, indicates an anomalously cold mantle below the oceanic crust. The changes that occurred in the location of the Euler pole within the last millions of years resulted in slanting spreading in the area of the investigation with rates of opening lower than 1.8 cm/year probably accompanied by the phenomena of transtension in the active parts of the transform faults. The interaction between the Landly and Somali lithosphere plates occurred along the diffusion boundary and was accompanied by problems with tracing the chrones between the neighboring profiles of geomagnetic observations. Consequently, the more detailed investigation of the configuration of the diffusion boundary will contribute to the more accurate reconstruction of the paleogeodynamics of the central part of the Indian Ocean.

  14. Improved Ionospheric Electrodynamic Models and Application to Calculating Joule Heating Rates

    NASA Technical Reports Server (NTRS)

    Weimer, D. R.

    2004-01-01

    Improved techniques have been developed for empirical modeling of the high-latitude electric potentials and magnetic field aligned currents (FAC) as a function of the solar wind parameters. The FAC model is constructed using scalar magnetic Euler potentials, and functions as a twin to the electric potential model. The improved models have more accurate field values as well as more accurate boundary locations. Non-linear saturation effects in the solar wind-magnetosphere coupling are also better reproduced. The models are constructed using a hybrid technique, which has spherical harmonic functions only within a small area at the pole. At lower latitudes the potentials are constructed from multiple Fourier series functions of longitude, at discrete latitudinal steps. It is shown that the two models can be used together in order to calculate the total Poynting flux and Joule heating in the ionosphere. An additional model of the ionospheric conductivity is not required in order to obtain the ionospheric currents and Joule heating, as the conductivity variations as a function of the solar inclination are implicitly contained within the FAC model's data. The models outputs are shown for various input conditions, as well as compared with satellite measurements. The calculations of the total Joule heating are compared with results obtained by the inversion of ground-based magnetometer measurements. Like their predecessors, these empirical models should continue to be a useful research and forecast tools.

  15. Euler and Potential Experiment/CFD Correlations for a Transport and Two Delta-Wing Configurations

    NASA Technical Reports Server (NTRS)

    Hicks, R. M.; Cliff, S. E.; Melton, J. E.; Langhi, R. G.; Goodsell, A. M.; Robertson, D. D.; Moyer, S. A.

    1990-01-01

    A selection of successes and failures of Computational Fluid Dynamics (CFD) is discussed. Experiment/CFD correlations involving full potential and Euler computations of the aerodynamic characteristics of four commercial transport wings and two low aspect ratio, delta wing configurations are shown. The examples consist of experiment/CFD comparisons for aerodynamic forces, moments, and pressures. Navier-Stokes equations are not considered.

  16. Current Plate Motion Across the Southwest Indian Ridge: Implications for the Diffuse Oceanic Plate Boundary Between Nubia and Somalia

    NASA Astrophysics Data System (ADS)

    Horner-Johnson, B. C.; Cowles, S. M.; Gordon, R. G.; Argus, D. F.

    2001-12-01

    Prior studies of plate motion data along the Southwest Indian Ridge (SWIR) have produced results that conflict in detail. Chu & Gordon [1999], from an analysis of 59 spreading rates averaged over 3 Myr and of the azimuths of active transform faults, found that the data are most consistent with a diffuse Nubia-Somalia plate boundary where it intersects the SWIR. When they solve for the best-fitting hypothetical narrow boundary, they find that it lies near 37° E, east of the Prince Edward fracture zone. They find a Nubia-Somalia pole of rotation near the east coast of South Africa. In contrast, Lemaux, Gordon, and Royer [2001], from an analysis of 237 crossings of marine magnetic anomaly 5 (11 Ma), find that most of the motion is accommodated in a narrow zone, most likely along the ``inactive'' trace of the Andrew Bain fracture zone complex (ABFZC), which intersects the SWIR near 32° E. They find a pole well to the west of, and probably to the southwest of, the pole of rotation found by Chu & Gordon. Their pole indicates mainly strike-slip motion along the ``inactive'' ABFZC. To resolve these conflicting results, we determined a new greatly expanded and spatially much denser set of 243 spreading rates and analyzed available bathymetric data of active transform faults along the SWIR. The data show that the African oceanic lithosphere spreading away from the SWIR cannot simply be two plates divided by a single narrow boundary. Our interpretation of the data is as follows. Near the SWIR, there is a diffuse boundary with a western limit near the ABFZC and an eastern limit near 63.5° E. Slip is partitioned in this wide boundary. Somewhere near the ABFZC (most likely the ABFZC itself) is a concentrated locus of right-lateral shearing parallel to the ABFZC whereas contraction perpendicular to the ABFZC is accommodated east of the ABFZC, perhaps over a very broad zone.

  17. Segmentation and disruption of the East Pacific Rise in the mouth of the Gulf of California

    NASA Astrophysics Data System (ADS)

    Lonsdale, Peter

    1995-08-01

    Analysis of new multibeam bathymetry and all available magnetic data shows that the 340 km-long crest of the East Pacific Rise between Rivera and Tamayo transforms contains segments of both the Pacific-Rivera and the Pacific-North America plate boundaries. Another Pacific-North America spreading segment (“Alarcon Rise”) extends 60 km further north to the Mexican continental margin. The Pacific-North America-Rivera triple junction is now of the RRR type, located on the risecrest 60 km south of Tamayo transform. Slow North America-Rivera rifting has ruptured the young lithosphere accreted to the east flank of the rise, and extends across the adjacent turbidite plain to the vicinity of the North America-Rivera Euler pole, which is located on the plate boundary. The present absolute motion of the Rivera microplate is an anticlockwise spin at 4° m.y.-1 around a pole located near its southeast corner; its motion has recently changed as the driving forces applied to its margins have changed, especially with the evolution of the southern margin from a broad shear zone between Rivera and Mathematician microplates to a long Pacific-Rivera transform. Pleistocene rotations in spreading direction, by as much as 15° on the Pacific-Rivera boundary, have segmented the East Pacific Rise into a staircase of en echelon spreading axes, which overlap at lengthening and migrating nontransform offsets. The spreading segments vary greatly in risecrest geomorphology, including the full range of structural types found on other rises with intermediate spreading rates: axial rift valleys, split shield volcanoes, and axial ridges. Most offsets between the segments have migrated southward, but within the past 1 m.y. the largest of them (with 14 27 km of lateral displacement) have shown “dueling” behavior, with short-lived reversals in migration direction. Migration involves propagation of a spreading axis into abyssal hill terrain, which is deformed and uplifted while it occupies the broad shear zones between overlapping spreading axes. Tectonic rotation of the deformed crust occurs by bookshelf faulting, which generates teleseismically recorded strike-slip earthquakes. When reversals of migration direction occur, plateaus of rotated crust are shed onto the rise flanks.

  18. A hybrid formulation for the numerical simulation of condensed phase explosives

    NASA Astrophysics Data System (ADS)

    Michael, L.; Nikiforakis, N.

    2016-07-01

    In this article we present a new formulation and an associated numerical algorithm, for the simulation of combustion and transition to detonation of condensed-phase commercial- and military-grade explosives, which are confined by (or in general interacting with one or more) compliant inert materials. Examples include confined rate-stick problems and interaction of shock waves with gas cavities or solid particles in explosives. This formulation is based on an augmented Euler approach to account for the mixture of the explosive and its products, and a multi-phase diffuse interface approach to solve for the immiscible interaction between the mixture and the inert materials, so it is in essence a hybrid (augmented Euler and multi-phase) model. As such, it has many of the desirable features of the two approaches and, critically for our applications of interest, it provides the accurate recovery of temperature fields across all components. Moreover, it conveys a lot more physical information than augmented Euler, without the complexity of full multi-phase Baer-Nunziato-type models or the lack of robustness of augmented Euler models in the presence of more than two components. The model can sustain large density differences across material interfaces without the presence of spurious oscillations in velocity and pressure, and it can accommodate realistic equations of state and arbitrary (pressure- or temperature-based) reaction-rate laws. Under certain conditions, we show that the formulation reduces to well-known augmented Euler or multi-phase models, which have been extensively validated and used in practice. The full hybrid model and its reduced forms are validated against problems with exact (or independently-verified numerical) solutions and evaluated for robustness for rate-stick and shock-induced cavity collapse case-studies.

  19. Mechanical Removal and Rescreening of Local Screening Charges on Ferroelectric Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tong, Sheng; Park, Woon Ik; Choi, YoonYoung

    2015-01-20

    We report the kinetics of screening charge removal and rescreening on periodically poled lithium niobate using charge-gradient microscopy and electrostatic force microscopy (EFM). A minimum pressure needs to be applied to initiate mechanical screening charge removal, and increasing the pressure leads to further removal of charge until a threshold is reached when all screening charges are removed. We fit all rescreening EFM contrast curves under various pressures into a universal exponential decay. The findings imply that we can control the screening degree of ferroelectric surfaces by mechanical means without affecting the polarization underneath.

  20. Mechanical Removal and Rescreening of Local Screening Charges at Ferroelectric Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tong, Sheng; Park, Woon Ik; Choi, Yoon-Young

    2015-01-20

    In this paper, we report the kinetics of screening charge removal and rescreening on periodically poled lithium niobate using charge-gradient microscopy and electrostatic force microscopy (EFM). A minimum pressure needs to be applied to initiate mechanical screening charge removal, and increasing the pressure leads to further removal of charge until a threshold is reached when all screening charges are removed. We fit all rescreening EFM contrast curves under various pressures into a universal exponential decay. Finally, the findings imply that we can control the screening degree of ferroelectric surfaces by mechanical means without affecting the polarization underneath.

  1. Mathematical Simulation of Convective Processes in the Liquid Core of the Earth and Implications for the Interpretation of Geomagnetic Field Variations in Polar Latitudes

    NASA Astrophysics Data System (ADS)

    Abakumov, M. V.; Chechetkin, V. M.; Shalimov, S. L.

    2018-05-01

    The flow structure induced by thermal convection in a rotating spherical shell with viscous boundary conditions is considered under the assumption that the differential rotation of the core relative to the mantle is absent. The radial, azimuthal, and meridional components of the flow's velocity and helicity are studied. With the magnetic field assumed to be frozen into a liquid (frozen-flux hypothesis), it is shown that the numerical results fit the observations of the geomagnetic field variations close to the pole.

  2. Development of Implicit Methods in CFD NASA Ames Research Center 1970's - 1980's

    NASA Technical Reports Server (NTRS)

    Pulliam, Thomas H.

    2010-01-01

    The focus here is on the early development (mid 1970's-1980's) at NASA Ames Research Center of implicit methods in Computational Fluid Dynamics (CFD). A class of implicit finite difference schemes of the Beam and Warming approximate factorization type will be addressed. The emphasis will be on the Euler equations. A review of material pertinent to the solution of the Euler equations within the framework of implicit methods will be presented. The eigensystem of the equations will be used extensively in developing a framework for various methods applied to the Euler equations. The development and analysis of various aspects of this class of schemes will be given along with the motivations behind many of the choices. Various acceleration and efficiency modifications such as matrix reduction, diagonalization and flux split schemes will be presented.

  3. Stability of the Euler resting N-body relative equilibria

    NASA Astrophysics Data System (ADS)

    Scheeres, D. J.

    2018-03-01

    The stability of a system of N equal-sized mutually gravitating spheres resting on each other in a straight line and rotating in inertial space is considered. This is a generalization of the "Euler Resting" configurations previously analyzed in the finite density 3 and 4 body problems. Specific questions for the general case are how rapidly the system must spin for the configuration to stabilize, how rapidly it can spin before the components separate from each other, and how these results change as a function of N. This paper shows that the Euler Resting configuration can only be stable for up to 5 bodies and that for 6 or more bodies the configuration can never be stable. This places an ideal limit of 5:1 on the aspect ratio of a rubble pile body's shape.

  4. A multiple-block multigrid method for the solution of the three-dimensional Euler and Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Atkins, Harold

    1991-01-01

    A multiple block multigrid method for the solution of the three dimensional Euler and Navier-Stokes equations is presented. The basic flow solver is a cell vertex method which employs central difference spatial approximations and Runge-Kutta time stepping. The use of local time stepping, implicit residual smoothing, multigrid techniques and variable coefficient numerical dissipation results in an efficient and robust scheme is discussed. The multiblock strategy places the block loop within the Runge-Kutta Loop such that accuracy and convergence are not affected by block boundaries. This has been verified by comparing the results of one and two block calculations in which the two block grid is generated by splitting the one block grid. Results are presented for both Euler and Navier-Stokes computations of wing/fuselage combinations.

  5. Using monomer vibrational wavefunctions as contracted basis functions to compute rovibrational levels of an H2O-atom complex in full dimensionality.

    PubMed

    Wang, Xiao-Gang; Carrington, Tucker

    2017-03-14

    In this paper, we present new ideas for computing rovibrational energy levels of molecules composed of two components and apply them to H 2 O-Cl - . When both components are themselves molecules, Euler angles that specify their orientation with respect to an axis system attached to the inter-monomer vector are used as vibrational coordinates. For H 2 O-Cl - , there is only one set of Euler angles. Using Euler angles as intermolecular vibrational coordinates is advantageous because in many cases coupling between them and coordinates that describe the shape of the monomers is unimportant. The monomers are not assumed to be rigid. In the most efficient calculation, vibrational wavefunctions of the monomers are used as contracted basis functions. Energy levels are calculated using the Lanczos algorithm.

  6. Using monomer vibrational wavefunctions as contracted basis functions to compute rovibrational levels of an H2O-atom complex in full dimensionality

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Gang; Carrington, Tucker

    2017-03-01

    In this paper, we present new ideas for computing rovibrational energy levels of molecules composed of two components and apply them to H2O-Cl-. When both components are themselves molecules, Euler angles that specify their orientation with respect to an axis system attached to the inter-monomer vector are used as vibrational coordinates. For H2O-Cl-, there is only one set of Euler angles. Using Euler angles as intermolecular vibrational coordinates is advantageous because in many cases coupling between them and coordinates that describe the shape of the monomers is unimportant. The monomers are not assumed to be rigid. In the most efficient calculation, vibrational wavefunctions of the monomers are used as contracted basis functions. Energy levels are calculated using the Lanczos algorithm.

  7. Parallel discontinuous Galerkin FEM for computing hyperbolic conservation law on unstructured grids

    NASA Astrophysics Data System (ADS)

    Ma, Xinrong; Duan, Zhijian

    2018-04-01

    High-order resolution Discontinuous Galerkin finite element methods (DGFEM) has been known as a good method for solving Euler equations and Navier-Stokes equations on unstructured grid, but it costs too much computational resources. An efficient parallel algorithm was presented for solving the compressible Euler equations. Moreover, the multigrid strategy based on three-stage three-order TVD Runge-Kutta scheme was used in order to improve the computational efficiency of DGFEM and accelerate the convergence of the solution of unsteady compressible Euler equations. In order to make each processor maintain load balancing, the domain decomposition method was employed. Numerical experiment performed for the inviscid transonic flow fluid problems around NACA0012 airfoil and M6 wing. The results indicated that our parallel algorithm can improve acceleration and efficiency significantly, which is suitable for calculating the complex flow fluid.

  8. Development of an Aeroelastic Code Based on an Euler/Navier-Stokes Aerodynamic Solver

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.; Srivastava, Rakesh; Keith, Theo G., Jr.; Stefko, George L.; Janus, Mark J.

    1996-01-01

    This paper describes the development of an aeroelastic code (TURBO-AE) based on an Euler/Navier-Stokes unsteady aerodynamic analysis. A brief review of the relevant research in the area of propulsion aeroelasticity is presented. The paper briefly describes the original Euler/Navier-Stokes code (TURBO) and then details the development of the aeroelastic extensions. The aeroelastic formulation is described. The modeling of the dynamics of the blade using a modal approach is detailed, along with the grid deformation approach used to model the elastic deformation of the blade. The work-per-cycle approach used to evaluate aeroelastic stability is described. Representative results used to verify the code are presented. The paper concludes with an evaluation of the development thus far, and some plans for further development and validation of the TURBO-AE code.

  9. CFD Approaches for Simulation of Wing-Body Stage Separation

    NASA Technical Reports Server (NTRS)

    Buning, Pieter G.; Gomez, Reynaldo J.; Scallion, William I.

    2004-01-01

    A collection of computational fluid dynamics tools and techniques are being developed and tested for application to stage separation and abort simulation for next-generation launch vehicles. In this work, an overset grid Navier-Stokes flow solver has been enhanced and demonstrated on a matrix of proximity cases and on a dynamic separation simulation of a belly-to-belly wing-body configuration. Steady cases show excellent agreement between Navier-Stokes results, Cartesian grid Euler solutions, and wind tunnel data at Mach 3. Good agreement has been obtained between Navier-Stokes, Euler, and wind tunnel results at Mach 6. An analysis of a dynamic separation at Mach 3 demonstrates that unsteady aerodynamic effects are not important for this scenario. Results provide an illustration of the relative applicability of Euler and Navier-Stokes methods to these types of problems.

  10. Shapes, rotation, and pole solutions of the selected Hilda and Trojan asteroids

    NASA Astrophysics Data System (ADS)

    Gritsevich, Maria; Sonnett, Sarah; Torppa, Johanna; Mainzer, Amy; Muinonen, Karri; Penttilä, Antti; Grav, Thomas; Masiero, Joseph; Bauer, James; Kramer, Emily

    2017-04-01

    Binary asteroid systems contain key information about the dynamical and chemical environments in which they formed. For example, determining the formation environments of Trojan and Hilda asteroids (in 1:1 and 3:2 mean-motion resonance with Jupiter, respectively) will provide critical constraints on how small bodies and the planets that drive their migration must have moved throughout Solar System history, see e.g. [1-3]. Therefore, identifying and characterizing binary asteroids within the Trojan and Hilda populations could offer a powerful means of discerning between Solar System evolution models. Dozens of possibly close or contact binary Trojans and Hildas were identified within the data obtained by NEOWISE [4]. Densely sampled light curves of these candidate binaries have been obtained in order to resolve rotational light curve features that are indicative of binarity (e.g., [5-7]). We present analysis of the shapes, rotation, and pole solutions of some of the follow-up targets observed with optical ground-based telescopes. For modelling the asteroid photometric properties, we use parameters describing the shape, surface light scattering properties and spin state of the asteroid. Scattering properties of the asteroid surface are modeled using a two parameter H-G12 magnitude system. Determination of the initial best-fit parameters is carried out by first using a triaxial ellipsoid shape model, and scanning over the period values and spin axis orientations, while fitting the other parameters, after which all parameters were fitted, taking the initial values for spin properties from the spin scanning. In addition to the best-fit parameters, we also provide the distribution of the possible solution, which should cover the inaccuracies of the solution, caused by the observing errors and model. The distribution of solutions is generated by Markov-Chain Monte Carlo sampling the spin and shape model parameters, using both an ellipsoid shape model and a convex model, Gaussian curvature of which is defined as a spherical harmonics series [8]. References: [1] Marzari F. and Scholl H. (1998), A&A, 339, 278. [2] Morbidelli A. et al. (2005), Nature, 435, 462. [3] Nesvorny D. et al. (2013), ApJ, 768, 45. [4] Sonnett S. et al. (2015), ApJ, 799, 191. [5] Behrend R. et al. (2006), A&A, 446, 1177. [6] Lacerda P. and Jewitt D. C. (2007), AJ, 133, 1393. [7] Oey J. (2016), MPB, 43, 45. [8] Muinonen et al., ACM 2017.

  11. Solution of the Euler equations with viscous-inviscid interaction for high Reynolds number transonic flow past wing/body configurations

    NASA Technical Reports Server (NTRS)

    Koenig, Keith

    1986-01-01

    The theoretical and numerical bases of a program for the solution of the Euler equations with viscous-inviscid interaction for high Reynolds number transonic flow past wing/body configurations are explained. The emphasis is upon the logic behind the equation development. The program is fully detailed so that the user can quickly become familiar with its operation.

  12. Multiplicative Quaternion Extended Kalman Filtering for Nonspinning Guided Projectiles

    DTIC Science & Technology

    2013-07-01

    tactical applications are inertial. The advantages of using quaternions rather than Euler angles to represent projectile attitude are discussed, and...projectiles generally don’t experience a wide range of heading angles , this has not a primary concern. The other major advantage of quaternions (or...DCMs) over Euler angles is their propagation equations are linear with respect to the quaternion and only depend on the IMU’s angular velocity. This

  13. Miniature Rotorcraft Flight Control Stabilization System

    DTIC Science & Technology

    2008-05-30

    The first algorithm is based on the well known QUEST algorithm used for spacecraft and satellites. Due to large vibration in sensors a pseudo...for spacecraft and satellites. Due to large vibration in sensors a pseudo-measurement is developed from gyroscope measurements and rotational...using any valid set of orientation map. Note, in Eq. (6) Euler angles were used to describe . A common alternative to Euler angles is a quaternion

  14. Implementation of a parallel unstructured Euler solver on the CM-5

    NASA Technical Reports Server (NTRS)

    Morano, Eric; Mavriplis, D. J.

    1995-01-01

    An efficient unstructured 3D Euler solver is parallelized on a Thinking Machine Corporation Connection Machine 5, distributed memory computer with vectoring capability. In this paper, the single instruction multiple data (SIMD) strategy is employed through the use of the CM Fortran language and the CMSSL scientific library. The performance of the CMSSL mesh partitioner is evaluated and the overall efficiency of the parallel flow solver is discussed.

  15. On the Use of Linearized Euler Equations in the Prediction of Jet Noise

    NASA Technical Reports Server (NTRS)

    Mankbadi, Reda R.; Hixon, R.; Shih, S.-H.; Povinelli, L. A.

    1995-01-01

    Linearized Euler equations are used to simulate supersonic jet noise generation and propagation. Special attention is given to boundary treatment. The resulting solution is stable and nearly free from boundary reflections without the need for artificial dissipation, filtering, or a sponge layer. The computed solution is in good agreement with theory and observation and is much less CPU-intensive as compared to large-eddy simulations.

  16. Euler equation existence, non-uniqueness and mesh converged statistics

    PubMed Central

    Glimm, James; Sharp, David H.; Lim, Hyunkyung; Kaufman, Ryan; Hu, Wenlin

    2015-01-01

    We review existence and non-uniqueness results for the Euler equation of fluid flow. These results are placed in the context of physical models and their solutions. Non-uniqueness is in direct conflict with the purpose of practical simulations, so that a mitigating strategy, outlined here, is important. We illustrate these issues in an examination of mesh converged turbulent statistics, with comparison to laboratory experiments. PMID:26261361

  17. Convergence of the flow of a chemically reacting gaseous mixture to incompressible Euler equations in a unbounded domain

    NASA Astrophysics Data System (ADS)

    Kwon, Young-Sam

    2017-12-01

    The flow of chemically reacting gaseous mixture is associated with a variety of phenomena and processes. We study the combined quasineutral and inviscid limit from the flow of chemically reacting gaseous mixture governed by Poisson equation to incompressible Euler equations with the ill-prepared initial data in the unbounded domain R^2× T. Furthermore, the convergence rates are obtained.

  18. L{sup {infinity}} Variational Problems with Running Costs and Constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aronsson, G., E-mail: gunnar.aronsson@liu.se; Barron, E. N., E-mail: enbarron@math.luc.edu

    2012-02-15

    Various approaches are used to derive the Aronsson-Euler equations for L{sup {infinity}} calculus of variations problems with constraints. The problems considered involve holonomic, nonholonomic, isoperimetric, and isosupremic constraints on the minimizer. In addition, we derive the Aronsson-Euler equation for the basic L{sup {infinity}} problem with a running cost and then consider properties of an absolute minimizer. Many open problems are introduced for further study.

  19. Taylor O(h³) Discretization of ZNN Models for Dynamic Equality-Constrained Quadratic Programming With Application to Manipulators.

    PubMed

    Liao, Bolin; Zhang, Yunong; Jin, Long

    2016-02-01

    In this paper, a new Taylor-type numerical differentiation formula is first presented to discretize the continuous-time Zhang neural network (ZNN), and obtain higher computational accuracy. Based on the Taylor-type formula, two Taylor-type discrete-time ZNN models (termed Taylor-type discrete-time ZNNK and Taylor-type discrete-time ZNNU models) are then proposed and discussed to perform online dynamic equality-constrained quadratic programming. For comparison, Euler-type discrete-time ZNN models (called Euler-type discrete-time ZNNK and Euler-type discrete-time ZNNU models) and Newton iteration, with interesting links being found, are also presented. It is proved herein that the steady-state residual errors of the proposed Taylor-type discrete-time ZNN models, Euler-type discrete-time ZNN models, and Newton iteration have the patterns of O(h(3)), O(h(2)), and O(h), respectively, with h denoting the sampling gap. Numerical experiments, including the application examples, are carried out, of which the results further substantiate the theoretical findings and the efficacy of Taylor-type discrete-time ZNN models. Finally, the comparisons with Taylor-type discrete-time derivative model and other Lagrange-type discrete-time ZNN models for dynamic equality-constrained quadratic programming substantiate the superiority of the proposed Taylor-type discrete-time ZNN models once again.

  20. Bending, longitudinal and torsional wave transmission on Euler-Bernoulli and Timoshenko beams with high propagation losses.

    PubMed

    Wang, X; Hopkins, C

    2016-10-01

    Advanced Statistical Energy Analysis (ASEA) is used to predict vibration transmission across coupled beams which support multiple wave types up to high frequencies where Timoshenko theory is valid. Bending-longitudinal and bending-torsional models are considered for an L-junction and rectangular beam frame. Comparisons are made with measurements, Finite Element Methods (FEM) and Statistical Energy Analysis (SEA). When beams support at least two local modes for each wave type in a frequency band and the modal overlap factor is at least 0.1, measurements and FEM have relatively smooth curves. Agreement between measurements, FEM, and ASEA demonstrates that ASEA is able to predict high propagation losses which are not accounted for with SEA. These propagation losses tend to become more important at high frequencies with relatively high internal loss factors and can occur when there is more than one wave type. At such high frequencies, Timoshenko theory, rather than Euler-Bernoulli theory, is often required. Timoshenko theory is incorporated in ASEA and SEA using wave theory transmission coefficients derived assuming Euler-Bernoulli theory, but using Timoshenko group velocity when calculating coupling loss factors. The changeover between theories is appropriate above the frequency where there is a 26% difference between Euler-Bernoulli and Timoshenko group velocities.

  1. New Constraints on Baja California-North America Relative Plate Motion Since 11 Ma

    NASA Astrophysics Data System (ADS)

    Bennett, S. E.; Skinner, L. A.; Darin, M. H.; Umhoefer, P. J.; Oskin, M. E.; Dorsey, R. J.

    2013-12-01

    Tectonic reconstructions of the Pacific-North America (PAC-NAM) plate boundary across the Gulf of California and Salton Trough (GCAST) constrain the controversial magnitude of Baja California microplate-North America (BCM-NAM) relative motion since middle Miocene time. We use estimates of total PAC-NAM relative dextral-oblique motion from the updated global plate-circuit model (Atwater and Stock, 2013; GSA Cordilleran Mtg) to resolve the proportion of this motion on faults east of the BCM. Modern GPS studies and offset of late Miocene cross-gulf geologic tie points both suggest that BCM has never been completely coupled to the Pacific plate. Thus, our preferred GCAST reconstruction uses 93% BCM-PAC coupling from the present back to 6 Ma. We assume BCM-PAC coupling of 60% between 6 and 7 Ma, and 25% between 7 and 11 Ma, to avoid unacceptable overlap of continental crustal blocks between Baja California and the Sierra Madre Occidental (on stable NAM). Using these coupling ratios and PAC-NAM stage Euler poles, we determine the azimuth and velocity of individual points on the BCM in 1 million year increments back to 11 Ma. This procedure accounts for minor clockwise rotation of BCM that occurred during oblique rifting, and shows how total BCM-NAM relative motion increases from north to south due to greater distance from the Euler pole. Finer-scale restoration of tectonic blocks along significant (>1 km offset) faults, across extensional (e.g. pull-apart and half-graben) basins, and by vertical-axis rotation is constrained by local geologic and marine-geophysical datasets and accomplished via the open-source Tectonic Reconstruct ArcGIS tool. We find that restoration across the Gulf of California completely closes marine basins and their terrestrial predecessors between 6 and 9 Ma. Latest Miocene opening of these basins was coincident with a ~10° clockwise azimuthal change from 8 to 6 Ma in PAC-NAM relative motion, as revealed by the global plate circuit model. The coupling ratios used in our reconstruction produce important changes in BCM-NAM relative motion, where a point at the latitude of the Guaymas rift corridor experienced a ~10° clockwise azimuthal change from ~119° to ~129° between 8 and 6 Ma, and a ~27 mm/yr rifting rate increase from ~13 to ~40 mm/yr between 9 and 6 Ma. This increase in obliquity and rate of rifting likely drove localization of plate boundary strain into the North American continent and ultimately formed the Gulf of California. Initiation of these basins ca. 9 Ma requires that the residual ~20 - 40 km of dextral-oblique motion from 9 to 11 Ma occurred immediately offshore or east of the present-day Sonora-Sinaloa shoreline on as-yet undocumented structures. Total preferred BCM-NAM dextral-oblique motion since 11 Ma varies from ~385 km in the southern Gulf of California to ~365 km at the Midriff Islands. These values and the south-north gradient are consistent with recent estimates of ~340 × 40 km of relative dextral plate motion across southern California and the Eastern California Shear Zone. Attempts to restore larger amounts (e.g. 450 - 500 km) of BCM-NAM motion require a higher percent of late Miocene BCM-PAC coupling and result in unacceptable overlap between continental tectonic blocks in western Sonora and Sinaloa and submerged, extended continental crust in the southern Gulf of California.

  2. Method and apparatus for assembling a permanent magnet pole assembly

    DOEpatents

    Carl, Jr., Ralph James; Bagepalli, Bharat Sampathkumaran [Niskayuna, NY; Jansen, Patrick Lee [Scotia, NY; Dawson, Richard Nils [Voorheesville, NY; Qu, Ronghai [Clifton Park, NY; Avanesov, Mikhail Avramovich [Moscow, RU

    2009-08-11

    A pole assembly for a rotor, the pole assembly includes a permanent magnet pole including at least one permanent magnet block, a plurality of laminations including a pole cap mechanically coupled to the pole, and a plurality of laminations including a base plate mechanically coupled to the pole.

  3. High-order shock-fitted detonation propagation in high explosives

    NASA Astrophysics Data System (ADS)

    Romick, Christopher M.; Aslam, Tariq D.

    2017-03-01

    A highly accurate numerical shock and material interface fitting scheme composed of fifth-order spatial and third- or fifth-order temporal discretizations is applied to the two-dimensional reactive Euler equations in both slab and axisymmetric geometries. High rates of convergence are not typically possible with shock-capturing methods as the Taylor series analysis breaks down in the vicinity of discontinuities. Furthermore, for typical high explosive (HE) simulations, the effects of material interfaces at the charge boundary can also cause significant computational errors. Fitting a computational boundary to both the shock front and material interface (i.e. streamline) alleviates the computational errors associated with captured shocks and thus opens up the possibility of high rates of convergence for multi-dimensional shock and detonation flows. Several verification tests, including a Sedov blast wave, a Zel'dovich-von Neumann-Döring (ZND) detonation wave, and Taylor-Maccoll supersonic flow over a cone, are utilized to demonstrate high rates of convergence to nontrivial shock and reaction flows. Comparisons to previously published shock-capturing multi-dimensional detonations in a polytropic fluid with a constant adiabatic exponent (PF-CAE) are made, demonstrating significantly lower computational error for the present shock and material interface fitting method. For an error on the order of 10 m /s, which is similar to that observed in experiments, shock-fitting offers a computational savings on the order of 1000. In addition, the behavior of the detonation phase speed is examined for several slab widths to evaluate the detonation performance of PBX 9501 while utilizing the Wescott-Stewart-Davis (WSD) model, which is commonly used in HE modeling. It is found that the thickness effect curve resulting from this equation of state and reaction model using published values is dramatically more steep than observed in recent experiments. Utilizing the present fitting strategy, in conjunction with a nonlinear optimizer, a new set of reaction rate parameters improves the correlation of the model to experimental results. Finally, this new model is tested against two dimensional slabs as a validation test.

  4. Phase-shift parametrization and extraction of asymptotic normalization constants from elastic-scattering data

    NASA Astrophysics Data System (ADS)

    Ramírez Suárez, O. L.; Sparenberg, J.-M.

    2017-09-01

    We introduce a simplified effective-range function for charged nuclei, related to the modified K matrix but differing from it in several respects. Negative-energy zeros of this function correspond to bound states. Positive-energy zeros correspond to resonances and "echo poles" appearing in elastic-scattering phase-shifts, while its poles correspond to multiple-of-π phase shifts. Padé expansions of this function allow one to parametrize phase shifts on large energy ranges and to calculate resonance and bound-state properties in a very simple way, independently of any potential model. The method is first tested on a d -wave 12C+α potential model. It is shown to lead to a correct estimate of the subthreshold-bound-state asymptotic normalization constant (ANC) starting from the elastic-scattering phase shifts only. Next, the 12C+α experimental p -wave and d -wave phase shifts are analyzed. For the d wave, the relatively large error bars on the phase shifts do not allow one to improve the ANC estimate with respect to existing methods. For the p wave, a value agreeing with the 12C(6Li,d )16O transfer-reaction measurement and with the recent remeasurement of the 16Nβ -delayed α decay is obtained, with improved accuracy. However, the method displays two difficulties: the results are sensitive to the Padé-expansion order and the simplest fits correspond to an imaginary ANC, i.e., to a negative-energy "echo pole," the physical meaning of which is still debatable.

  5. The Organic Aerosols of Titan's Atmosphere

    NASA Technical Reports Server (NTRS)

    Sotin, Christophe; Lawrence, Kenneth; Beauchamp, Patricia M.; Zimmerman, Wayne

    2012-01-01

    One of Titan's many characteristics is the presence of a haze that veils its surface. This haze is composed of heavy organic particles and determining the chemical composition of these particles is a primary objective for future probes that would conduct in situ analysis. Meanwhile, solar occultations provide constraints on the optical characteristics of the haze layer. This paper describes solar occultation observations obtained by the Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft. These observations strongly constrain the optical characteristics of the haze layer. We detail the different steps involved in the processing of these data and apply them to two occultations that were observed at the South Pole and at the equator in order to investigate the latitudinal dependence of optical properties. The light curves obtained in seven atmospheric windows between 0.933-microns to 5-microns allow us to characterize atmospheric layers from 300 km to the surface. Very good fits of the light curves are obtained using a simple profile of number density of aerosols that is characterized by a scale height. The main difference between the South Pole and the equator is that the value of the scale height increases with altitude at the South Pole whereas it decreases at the equator. The vertically integrated amount of aerosols is similar at the two locations. The curve describing the cross-section versus wavelength is identical at the two locations suggesting that the aerosols have similar characteristics. Finally, we find that the two-way vertical transmission at 5-microns is as large as 80% at both locations.

  6. Fundus-controlled two-color dark adaptometry with the Microperimeter MP1.

    PubMed

    Bowl, Wadim; Stieger, Knut; Lorenz, Birgit

    2015-06-01

    The aim of this study was to provide fundus-controlled two-color adaptometry with an existing device. A quick and easy approach extends the application possibilities of a commercial fundus-controlled perimeter. An external filter holder was placed in front the objective lens of the MP1 (Nidek, Italy) and fitted with filters to modify background, stimulus intensity, and color. Prior to dark adaptometry, the subject's visual sensitivity profile was measured for red and blue stimuli to determine whether rods or cones or both mediated the absolute threshold. After light adaptation, 20 healthy subjects were investigated with a pattern covering six spots at the posterior pole of the retina up to 45 min of dark adaptation. Thresholds were determined using a 200 ms red Goldmann IV and a blue Goldmann II stimulus. The pre-test sensitivity showed a typical distribution of values along the meridian, with high peripheral light increment sensitivity (LIS) and low central LIS for rods and the reverse for cones. After bleach, threshold recovery had a classic biphasic shape. The absolute threshold was reached after approximately 10 min for the red and 15 min for the blue stimulus. Two-color fundus-controlled adaptometry with a commercial MP1 without internal changes to the device provides a quick and easy examination of rod and cone function during dark adaptation at defined retinal loci of the posterior pole. This innovative method will be helpful to measure rod vs. cone function at known loci of the posterior pole in early stages of retinal degenerations.

  7. A model for the motion of the Philippine Sea plate consistent with NUVEL-1 and geological data

    NASA Technical Reports Server (NTRS)

    Seno, Tetsuzo; Stein, Seth; Gripp, Alice E.

    1993-01-01

    We investigate angular velocity vectors of the Philippine Sea (PH) plate relative to the adjacent major plates, Eurasia (EU) and Pacific (PA), and the smaller Caroline (CR) plate. Earthquake slip vector data along the Philippine Sea plate are inverted, subject to the constraint that EU-PA motion equals that predicted by the global relative plate model NUVEL-1. The resulting solution fails to satisfy geological constraints along the Caroline-Pacific boundary: convergence along the Mussau Trench and divergence along the Sorol Trough. We then seek solutions satisfying both the CR-PA boundary conditions and the Philippine Sea slip vector data, by adjusting the PA-PH and EU-PH best fitting poles within their error ellipses. We also consider northern Honshu to be part of the North American plate and impose the constraint that the Philippine Sea plate subducts beneath northern Honshu along the Sagmi Trough in a NNW-NW direction. Of the solutions satisfying these conditions, we select the best EU-PH as 48.2 deg N, 157.0 deg E, 1.09 deg/my, corresponding to a pole far from Japan and south of Kamchatka, and PA-PH, 1.2 deg N, 134.2 deg E, 1.00 deg/my. Predicted NA-PH and EU-PH convergence rates in central Honshu are consistent with estimated seismic slip rates. Previous estimates of the EU-PH pole close to central Honshu are inconsistent with extension within the Bonin backarc implied by earthquake slip vectors and NNW-NW convergence of the Bonin forearc at the Sagami Trough.

  8. Cauchy problem with general discontinuous initial data along a smooth curve for 2-d Euler system

    NASA Astrophysics Data System (ADS)

    Chen, Shuxing; Li, Dening

    2014-09-01

    We study the Cauchy problems for the isentropic 2-d Euler system with discontinuous initial data along a smooth curve. All three singularities are present in the solution: shock wave, rarefaction wave and contact discontinuity. We show that the usual restrictive high order compatibility conditions for the initial data are automatically satisfied. The local existence of piecewise smooth solution containing all three waves is established.

  9. A 3D Unstructured Mesh Euler Solver Based on the Fourth-Order CESE Method

    DTIC Science & Technology

    2013-06-01

    Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 A 3D Unstructured Mesh Euler Solver Based on the Fourth-Order CESE Method David L. Bilyeu ∗1,2...Similarly, the fluxes, f x,y,z i , and their derivatives inside a SE are also discretized by the Taylor series expansion: ∂ Cfx ,y,zi ∂xI∂yJ∂zK∂tL = A

  10. Modeling and Control of Intelligent Flexible Structures

    DTIC Science & Technology

    1994-03-26

    can be approximated as a simply supported beam in transverse vibration. Assuming that the Euler- Bernoulli beam assumptions hold, linear equations of...The assumptions made during the derivation are that the element can be modeled as an Euler- Bernoulli beam, that the cross-section is symmetric, and...parametes A,. and ,%. andc input maces 3,,. The closed loop system. ecuation (7), is stable when the 3.. 8 and output gain mantices H1., H., H. for

  11. Lower Bounds for Possible Singular Solutions for the Navier-Stokes and Euler Equations Revisited

    NASA Astrophysics Data System (ADS)

    Cortissoz, Jean C.; Montero, Julio A.

    2018-03-01

    In this paper we give optimal lower bounds for the blow-up rate of the \\dot{H}s( T^3) -norm, 1/25/2.

  12. Factorials of real negative and imaginary numbers - A new perspective.

    PubMed

    Thukral, Ashwani K

    2014-01-01

    Presently, factorials of real negative numbers and imaginary numbers, except for zero and negative integers are interpolated using the Euler's gamma function. In the present paper, the concept of factorials has been generalised as applicable to real and imaginary numbers, and multifactorials. New functions based on Euler's factorial function have been proposed for the factorials of real negative and imaginary numbers. As per the present concept, the factorials of real negative numbers, are complex numbers. The factorials of real negative integers have their imaginary part equal to zero, thus are real numbers. Similarly, the factorials of imaginary numbers are complex numbers. The moduli of the complex factorials of real negative numbers, and imaginary numbers are equal to their respective real positive number factorials. Fractional factorials and multifactorials have been defined in a new perspective. The proposed concept has also been extended to Euler's gamma function for real negative numbers and imaginary numbers, and beta function.

  13. New method for blowup of the Euler-Poisson system

    NASA Astrophysics Data System (ADS)

    Kwong, Man Kam; Yuen, Manwai

    2016-08-01

    In this paper, we provide a new method for establishing the blowup of C2 solutions for the pressureless Euler-Poisson system with attractive forces for RN (N ≥ 2) with ρ(0, x0) > 0 and Ω 0 i j ( x 0 ) = /1 2 [" separators=" ∂ i u j ( 0 , x 0 ) - ∂ j u i ( 0 , x 0 ) ] = 0 at some point x0 ∈ RN. By applying the generalized Hubble transformation div u ( t , x 0 ( t ) ) = /N a ˙ ( t ) a ( t ) to a reduced Riccati differential inequality derived from the system, we simplify the inequality into the Emden equation a ̈ ( t ) = - /λ a ( t ) N - 1 , a ( 0 ) = 1 , a ˙ ( 0 ) = /div u ( 0 , x 0 ) N . Known results on its blowup set allow us to easily obtain the blowup conditions of the Euler-Poisson system.

  14. Control theory based airfoil design using the Euler equations

    NASA Technical Reports Server (NTRS)

    Jameson, Antony; Reuther, James

    1994-01-01

    This paper describes the implementation of optimization techniques based on control theory for airfoil design. In our previous work it was shown that control theory could be employed to devise effective optimization procedures for two-dimensional profiles by using the potential flow equation with either a conformal mapping or a general coordinate system. The goal of our present work is to extend the development to treat the Euler equations in two-dimensions by procedures that can readily be generalized to treat complex shapes in three-dimensions. Therefore, we have developed methods which can address airfoil design through either an analytic mapping or an arbitrary grid perturbation method applied to a finite volume discretization of the Euler equations. Here the control law serves to provide computationally inexpensive gradient information to a standard numerical optimization method. Results are presented for both the inverse problem and drag minimization problem.

  15. PID position regulation in one-degree-of-freedom Euler-Lagrange systems actuated by a PMSM

    NASA Astrophysics Data System (ADS)

    Verastegui-Galván, J.; Hernández-Guzmán, V. M.; Orrante-Sakanassi, J.

    2018-02-01

    This paper is concerned with position regulation in one-degree-of-freedom Euler-Lagrange Systems. We consider that the mechanical subsystem is actuated by a permanent magnet synchronous motor (PMSM). Our proposal consists of a Proportional-Integral-Derivative (PID) controller for the mechanical subsystem and a slight variation of field oriented control for the PMSM. We take into account the motor electric dynamics during the stability analysis. We present, for the first time, a global asymptotic stability proof for such a control scheme without requiring the mechanical subsystem to naturally possess viscous friction. Finally, as a corollary of our main result we prove global asymptotic stability for output feedback PID regulation of one-degree-of-freedom Euler-Lagrange systems when generated torque is considered as the system input, i.e. when the electric dynamics of PMSM's is not taken into account.

  16. On the Maxwellian distribution, symmetric form, and entropy conservation for the Euler equations

    NASA Technical Reports Server (NTRS)

    Deshpande, S. M.

    1986-01-01

    The Euler equations of gas dynamics have some very interesting properties in that the flux vector is a homogeneous function of the unknowns and the equations can be cast in symmetric hyperbolic form and satisfy the entropy conservation. The Euler equations are the moments of the Boltzmann equation of the kinetic theory of gases when the velocity distribution function is a Maxwellian. The present paper shows the relationship between the symmetrizability and the Maxwellian velocity distribution. The entropy conservation is in terms of the H-function, which is a slight modification of the H-function first introduced by Boltzmann in his famous H-theorem. In view of the H-theorem, it is suggested that the development of total H-diminishing (THD) numerical methods may be more profitable than the usual total variation diminishing (TVD) methods for obtaining wiggle-free solutions.

  17. Boundary states at reflective moving boundaries

    NASA Astrophysics Data System (ADS)

    Acosta Minoli, Cesar A.; Kopriva, David A.

    2012-06-01

    We derive and evaluate boundary states for Maxwell's equations, the linear, and the nonlinear Euler gas-dynamics equations to compute wave reflection from moving boundaries. In this study we use a Discontinuous Galerkin Spectral Element method (DGSEM) with Arbitrary Lagrangian-Eulerian (ALE) mapping for the spatial approximation, but the boundary states can be used with other methods, like finite volume schemes. We present four studies using Maxwell's equations, one for the linear Euler equations, and one more for the nonlinear Euler equations. These are: reflection of light from a plane mirror moving at constant velocity, reflection of light from a moving cylinder, reflection of light from a vibrating mirror, reflection of sound from a plane wall and dipole sound generation by an oscillating cylinder in an inviscid flow. The studies show that the boundary states preserve spectral convergence in the solution and in derived quantities like divergence and vorticity.

  18. Euler-euler anisotropic gaussian mesoscale simulation of homogeneous cluster-induced gas-particle turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kong, Bo; Fox, Rodney O.; Feng, Heng

    An Euler–Euler anisotropic Gaussian approach (EE-AG) for simulating gas–particle flows, in which particle velocities are assumed to follow a multivariate anisotropic Gaussian distribution, is used to perform mesoscale simulations of homogeneous cluster-induced turbulence (CIT). A three-dimensional Gauss–Hermite quadrature formulation is used to calculate the kinetic flux for 10 velocity moments in a finite-volume framework. The particle-phase volume-fraction and momentum equations are coupled with the Eulerian solver for the gas phase. This approach is implemented in an open-source CFD package, OpenFOAM, and detailed simulation results are compared with previous Euler–Lagrange simulations in a domain size study of CIT. Here, these resultsmore » demonstrate that the proposed EE-AG methodology is able to produce comparable results to EL simulations, and this moment-based methodology can be used to perform accurate mesoscale simulations of dilute gas–particle flows.« less

  19. Euler-euler anisotropic gaussian mesoscale simulation of homogeneous cluster-induced gas-particle turbulence

    DOE PAGES

    Kong, Bo; Fox, Rodney O.; Feng, Heng; ...

    2017-02-16

    An Euler–Euler anisotropic Gaussian approach (EE-AG) for simulating gas–particle flows, in which particle velocities are assumed to follow a multivariate anisotropic Gaussian distribution, is used to perform mesoscale simulations of homogeneous cluster-induced turbulence (CIT). A three-dimensional Gauss–Hermite quadrature formulation is used to calculate the kinetic flux for 10 velocity moments in a finite-volume framework. The particle-phase volume-fraction and momentum equations are coupled with the Eulerian solver for the gas phase. This approach is implemented in an open-source CFD package, OpenFOAM, and detailed simulation results are compared with previous Euler–Lagrange simulations in a domain size study of CIT. Here, these resultsmore » demonstrate that the proposed EE-AG methodology is able to produce comparable results to EL simulations, and this moment-based methodology can be used to perform accurate mesoscale simulations of dilute gas–particle flows.« less

  20. Polynomial elimination theory and non-linear stability analysis for the Euler equations

    NASA Technical Reports Server (NTRS)

    Kennon, S. R.; Dulikravich, G. S.; Jespersen, D. C.

    1986-01-01

    Numerical methods are presented that exploit the polynomial properties of discretizations of the Euler equations. It is noted that most finite difference or finite volume discretizations of the steady-state Euler equations produce a polynomial system of equations to be solved. These equations are solved using classical polynomial elimination theory, with some innovative modifications. This paper also presents some preliminary results of a new non-linear stability analysis technique. This technique is applicable to determining the stability of polynomial iterative schemes. Results are presented for applying the elimination technique to a one-dimensional test case. For this test case, the exact solution is computed in three iterations. The non-linear stability analysis is applied to determine the optimal time step for solving Burgers' equation using the MacCormack scheme. The estimated optimal time step is very close to the time step that arises from a linear stability analysis.

  1. Conical Euler solution for a highly-swept delta wing undergoing wing-rock motion

    NASA Technical Reports Server (NTRS)

    Lee, Elizabeth M.; Batina, John T.

    1990-01-01

    Modifications to an unsteady conical Euler code for the free-to-roll analysis of highly-swept delta wings are described. The modifications involve the addition of the rolling rigid-body equation of motion for its simultaneous time-integration with the governing flow equations. The flow solver utilized in the Euler code includes a multistage Runge-Kutta time-stepping scheme which uses a finite-volume spatial discretization on an unstructured mesh made up of triangles. Steady and unsteady results are presented for a 75 deg swept delta wing at a freestream Mach number of 1.2 and an angle of attack of 30 deg. The unsteady results consist of forced harmonic and free-to-roll calculations. The free-to-roll case exhibits a wing rock response produced by unsteady aerodynamics consistent with the aerodynamics of the forced harmonic results. Similarities are shown with a wing-rock time history from a low-speed wind tunnel test.

  2. Modeling of Mixing Behavior in a Combined Blowing Steelmaking Converter with a Filter-Based Euler-Lagrange Model

    NASA Astrophysics Data System (ADS)

    Li, Mingming; Li, Lin; Li, Qiang; Zou, Zongshu

    2018-05-01

    A filter-based Euler-Lagrange multiphase flow model is used to study the mixing behavior in a combined blowing steelmaking converter. The Euler-based volume of fluid approach is employed to simulate the top blowing, while the Lagrange-based discrete phase model that embeds the local volume change of rising bubbles for the bottom blowing. A filter-based turbulence method based on the local meshing resolution is proposed aiming to improve the modeling of turbulent eddy viscosities. The model validity is verified through comparison with physical experiments in terms of mixing curves and mixing times. The effects of the bottom gas flow rate on bath flow and mixing behavior are investigated and the inherent reasons for the mixing result are clarified in terms of the characteristics of bottom-blowing plumes, the interaction between plumes and top-blowing jets, and the change of bath flow structure.

  3. Estimating pole/zero errors in GSN-IRIS/USGS network calibration metadata

    USGS Publications Warehouse

    Ringler, A.T.; Hutt, C.R.; Aster, R.; Bolton, H.; Gee, L.S.; Storm, T.

    2012-01-01

    Mapping the digital record of a seismograph into true ground motion requires the correction of the data by some description of the instrument's response. For the Global Seismographic Network (Butler et al., 2004), as well as many other networks, this instrument response is represented as a Laplace domain pole–zero model and published in the Standard for the Exchange of Earthquake Data (SEED) format. This Laplace representation assumes that the seismometer behaves as a linear system, with any abrupt changes described adequately via multiple time-invariant epochs. The SEED format allows for published instrument response errors as well, but these typically have not been estimated or provided to users. We present an iterative three-step method to estimate the instrument response parameters (poles and zeros) and their associated errors using random calibration signals. First, we solve a coarse nonlinear inverse problem using a least-squares grid search to yield a first approximation to the solution. This approach reduces the likelihood of poorly estimated parameters (a local-minimum solution) caused by noise in the calibration records and enhances algorithm convergence. Second, we iteratively solve a nonlinear parameter estimation problem to obtain the least-squares best-fit Laplace pole–zero–gain model. Third, by applying the central limit theorem, we estimate the errors in this pole–zero model by solving the inverse problem at each frequency in a two-thirds octave band centered at each best-fit pole–zero frequency. This procedure yields error estimates of the 99% confidence interval. We demonstrate the method by applying it to a number of recent Incorporated Research Institutions in Seismology/United States Geological Survey (IRIS/USGS) network calibrations (network code IU).

  4. A Comparison of Maps and Power Spectra Determined from South Pole Telescope and Planck Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Z.; Aylor, K.; Benson, B. A.

    We study the consistency of 150 GHz data from the South Pole Telescope (SPT) and 143 GHz data from the Planck satellite over the patch of sky covered by the SPT-SZ survey. Here, we first visually compare the maps and find that the residuals appear consistent with noise after accounting for differences in angular resolution and filtering. We then calculate (1) the cross-spectrum between two independent halves of SPT data, (2) the cross-spectrum between two independent halves of Planck data, and (3) the cross-spectrum between SPT and Planck data. We find that the three cross-spectra are well fit (PTE =more » 0.30) by the null hypothesis in which both experiments have measured the same sky map up to a single free calibration parameter—i.e., we find no evidence for systematic errors in either data set. As a by-product, we improve the precision of the SPT calibration by nearly an order of magnitude, from 2.6% to 0.3% in power. Finally, we compare all three cross-spectra to the full-sky Planck power spectrum and find marginal evidence for differences between the power spectra from the SPT-SZ footprint and the full sky. We model these differences as a power law in spherical harmonic multipole number. The best-fit value of this tilt is consistent among the three cross-spectra in the SPT-SZ footprint, implying that the source of this tilt is a sample variance fluctuation in the SPT-SZ region relative to the full sky. Lastly, the consistency of cosmological parameters derived from these data sets is discussed in a companion paper.« less

  5. New Precession Formulas

    NASA Astrophysics Data System (ADS)

    Fukushima, T.

    2003-08-01

    We adapted J.G. Williams' expression of the precession and nutation by the 3-1-3-1 rotation (Williams 1994) to an arbitrary inertial frame of reference. The new expression of the precession matrix is P = R1(-ɛ ) R3(-ψ ) R1(ϕ) R3(γ ) while that of precession-nutation matrix is NP = R1(-ɛ -Δ ɛ ) R3(-ψ -Δ ψ ) R1(ϕ) R3(γ ). Here γ and ϕ are the new planetary precession angles, ψ and ɛ are the new luni-solar precession angles, and Δ ψ and Δ ɛ are the usual nutations. The modified formulation avoids a singularity caused by finite pole offsets near the epoch. By adopting the latest planetary precession formula determined from DE405 (Harada 2003) and by using a recent theory of the forced nutation of the non-rigid Earth, SF2001 (Shirai and Fukushima 2001), we analysed the celestial pole offsets observed by VLBI for 1979-2000 and compiled by USNO and determined the best-fit polynomials of the new luni-solar precession angles. Then we translated the results into the classic precessional quantities as sin π A sin Π A, sin π A \\cos Π A, π A, Π A, pA, ψ A, ω A, χA, ζ A, zA, and θ A. Also we evaluated the effect of the difference in the ecliptic definition between the inertial and rotational senses. The combination of these formulas and the periodic part of SF2001 serves as a good approximation of the precession-nutation matrix in the ICRF. As a by-product, we determined the mean celestial pole offset at J2000.0 as X0 = -(17.12 +/- 0.01) mas and Y0 = -(5.06 +/- 0.02) mas. Also we estimated the speed of general precession in longitude at J2000.0 as p = (5028.7955 +/- 0.0003)''/Julian century, the mean obliquity at J2000.0 in the rotational sense as ɛ 0 = (84381.40955 +/- 0.00001)'', and the dynamical flattening of the Earth as Hd = (0.0032737804 +/- 0.0000000003). Further, we established a fast way to compute the precession-nutation matrix and provided a best-fit polynomial of s, an angle to specify the mean CEO.

  6. A 2500 deg 2 CMB Lensing Map from Combined South Pole Telescope and Planck Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omori, Y.; Chown, R.; Simard, G.

    We present a cosmic microwave background (CMB) lensing map produced from a linear combination of South Pole Telescope (SPT) and \\emph{Planck} temperature data. The 150 GHz temperature data from themore » $$2500\\ {\\rm deg}^{2}$$ SPT-SZ survey is combined with the \\emph{Planck} 143 GHz data in harmonic space, to obtain a temperature map that has a broader $$\\ell$$ coverage and less noise than either individual map. Using a quadratic estimator technique on this combined temperature map, we produce a map of the gravitational lensing potential projected along the line of sight. We measure the auto-spectrum of the lensing potential $$C_{L}^{\\phi\\phi}$$, and compare it to the theoretical prediction for a $$\\Lambda$$CDM cosmology consistent with the \\emph{Planck} 2015 data set, finding a best-fit amplitude of $$0.95_{-0.06}^{+0.06}({\\rm Stat.})\\! _{-0.01}^{+0.01}({\\rm Sys.})$$. The null hypothesis of no lensing is rejected at a significance of $$24\\,\\sigma$$. One important use of such a lensing potential map is in cross-correlations with other dark matter tracers. We demonstrate this cross-correlation in practice by calculating the cross-spectrum, $$C_{L}^{\\phi G}$$, between the SPT+\\emph{Planck} lensing map and Wide-field Infrared Survey Explorer (\\emph{WISE}) galaxies. We fit $$C_{L}^{\\phi G}$$ to a power law of the form $$p_{L}=a(L/L_{0})^{-b}$$ with $$a=2.15 \\times 10^{-8}$$, $b=1.35$, $$L_{0}=490$$, and find $$\\eta^{\\phi G}=0.94^{+0.04}_{-0.04}$$, which is marginally lower, but in good agreement with $$\\eta^{\\phi G}=1.00^{+0.02}_{-0.01}$$, the best-fit amplitude for the cross-correlation of \\emph{Planck}-2015 CMB lensing and \\emph{WISE} galaxies over $$\\sim67\\%$$ of the sky. The lensing potential map presented here will be used for cross-correlation studies with the Dark Energy Survey (DES), whose footprint nearly completely covers the SPT $$2500\\ {\\rm deg}^2$$ field.« less

  7. A 2500 deg 2 CMB Lensing Map from Combined South Pole Telescope and Planck Data

    DOE PAGES

    Omori, Y.; Chown, R.; Simard, G.; ...

    2017-11-07

    We present a cosmic microwave background (CMB) lensing map produced from a linear combination of South Pole Telescope (SPT) and \\emph{Planck} temperature data. The 150 GHz temperature data from themore » $$2500\\ {\\rm deg}^{2}$$ SPT-SZ survey is combined with the \\emph{Planck} 143 GHz data in harmonic space, to obtain a temperature map that has a broader $$\\ell$$ coverage and less noise than either individual map. Using a quadratic estimator technique on this combined temperature map, we produce a map of the gravitational lensing potential projected along the line of sight. We measure the auto-spectrum of the lensing potential $$C_{L}^{\\phi\\phi}$$, and compare it to the theoretical prediction for a $$\\Lambda$$CDM cosmology consistent with the \\emph{Planck} 2015 data set, finding a best-fit amplitude of $$0.95_{-0.06}^{+0.06}({\\rm Stat.})\\! _{-0.01}^{+0.01}({\\rm Sys.})$$. The null hypothesis of no lensing is rejected at a significance of $$24\\,\\sigma$$. One important use of such a lensing potential map is in cross-correlations with other dark matter tracers. We demonstrate this cross-correlation in practice by calculating the cross-spectrum, $$C_{L}^{\\phi G}$$, between the SPT+\\emph{Planck} lensing map and Wide-field Infrared Survey Explorer (\\emph{WISE}) galaxies. We fit $$C_{L}^{\\phi G}$$ to a power law of the form $$p_{L}=a(L/L_{0})^{-b}$$ with $$a=2.15 \\times 10^{-8}$$, $b=1.35$, $$L_{0}=490$$, and find $$\\eta^{\\phi G}=0.94^{+0.04}_{-0.04}$$, which is marginally lower, but in good agreement with $$\\eta^{\\phi G}=1.00^{+0.02}_{-0.01}$$, the best-fit amplitude for the cross-correlation of \\emph{Planck}-2015 CMB lensing and \\emph{WISE} galaxies over $$\\sim67\\%$$ of the sky. The lensing potential map presented here will be used for cross-correlation studies with the Dark Energy Survey (DES), whose footprint nearly completely covers the SPT $$2500\\ {\\rm deg}^2$$ field.« less

  8. New precession expressions, valid for long time intervals

    NASA Astrophysics Data System (ADS)

    Vondrák, J.; Capitaine, N.; Wallace, P.

    2011-10-01

    Context. The present IAU model of precession, like its predecessors, is given as a set of polynomial approximations of various precession parameters intended for high-accuracy applications over a limited time span. Earlier comparisons with numerical integrations have shown that this model is valid only for a few centuries around the basic epoch, J2000.0, while for more distant epochs it rapidly diverges from the numerical solution. In our preceding studies we also obtained preliminary developments for the precessional contribution to the motion of the equator: coordinates X,Y of the precessing pole and precession parameters ψA,ωA, suitable for use over long time intervals. Aims: The goal of the present paper is to obtain upgraded developments for various sets of precession angles that would fit modern observations near J2000.0 and at the same time fit numerical integration of the motions of solar system bodies on scales of several thousand centuries. Methods: We used the IAU 2006 solutions to represent the precession of the ecliptic and of the equator close to J2000.0 and, for more distant epochs, a numerical integration using the Mercury 6 package and solutions by Laskar et al. (1993, A&A, 270, 522) with upgraded initial conditions and constants to represent the ecliptic, and general precession and obliquity, respectively. From them, different precession parameters were calculated in the interval ± 200 millennia from J2000.0, and analytical expressions are found that provide a good fit for the whole interval. Results: Series for the various precessional parameters, comprising a cubic polynomial plus from 8 to 14 periodic terms, are derived that allow precession to be computed with an accuracy comparable to IAU 2006 around the central epoch J2000.0, a few arcseconds throughout the historical period, and a few tenths of a degree at the ends of the ± 200 millennia time span. Computer algorithms are provided that compute the ecliptic and mean equator poles and the precession matrix. The Appendix containing the computer code is available in electronic form at http://www.aanda.org

  9. Development of a Chemically Reacting Flow Solver on the Graphic Processing Units

    DTIC Science & Technology

    2011-05-10

    been implemented on the GPU by Schive et al. (2010). The outcome of their work is the GAMER code for astrophysical simulation. Thibault and...Euler equations at each cell. For simplification, consider the Euler equations in one dimension with no source terms; the discretized form of the...is known to be more diffusive than the other fluxes due to the large bound of the numerical signal velocities: b+, b-. 3.4 Time Marching Methods

  10. Boundary and Interface Conditions for High Order Finite Difference Methods Applied to the Euler and Navier-Strokes Equations

    NASA Technical Reports Server (NTRS)

    Nordstrom, Jan; Carpenter, Mark H.

    1998-01-01

    Boundary and interface conditions for high order finite difference methods applied to the constant coefficient Euler and Navier-Stokes equations are derived. The boundary conditions lead to strict and strong stability. The interface conditions are stable and conservative even if the finite difference operators and mesh sizes vary from domain to domain. Numerical experiments show that the new conditions also lead to good results for the corresponding nonlinear problems.

  11. Algorithms for the Euler and Navier-Stokes equations for supercomputers

    NASA Technical Reports Server (NTRS)

    Turkel, E.

    1985-01-01

    The steady state Euler and Navier-Stokes equations are considered for both compressible and incompressible flow. Methods are found for accelerating the convergence to a steady state. This acceleration is based on preconditioning the system so that it is no longer time consistent. In order that the acceleration technique be scheme-independent, this preconditioning is done at the differential equation level. Applications are presented for very slow flows and also for the incompressible equations.

  12. The general solution to the classical problem of finite Euler Bernoulli beam

    NASA Technical Reports Server (NTRS)

    Hussaini, M. Y.; Amba-Rao, C. L.

    1977-01-01

    An analytical solution is obtained for the problem of free and forced vibrations of a finite Euler Bernoulli beam with arbitrary (partially fixed) boundary conditions. The effects of linear viscous damping, Winkler foundation, constant axial tension, a concentrated mass, and an arbitrary forcing function are included in the analysis. No restriction is placed on the values of the parameters involved, and the solution presented here contains all cited previous solutions as special cases.

  13. Solution algorithms for the two-dimensional Euler equations on unstructured meshes

    NASA Technical Reports Server (NTRS)

    Whitaker, D. L.; Slack, David C.; Walters, Robert W.

    1990-01-01

    The objective of the study was to analyze implicit techniques employed in structured grid algorithms for solving two-dimensional Euler equations and extend them to unstructured solvers in order to accelerate convergence rates. A comparison is made between nine different algorithms for both first-order and second-order accurate solutions. Higher-order accuracy is achieved by using multidimensional monotone linear reconstruction procedures. The discussion is illustrated by results for flow over a transonic circular arc.

  14. The Camassa-Holm equation as an incompressible Euler equation: A geometric point of view

    NASA Astrophysics Data System (ADS)

    Gallouët, Thomas; Vialard, François-Xavier

    2018-04-01

    The group of diffeomorphisms of a compact manifold endowed with the L2 metric acting on the space of probability densities gives a unifying framework for the incompressible Euler equation and the theory of optimal mass transport. Recently, several authors have extended optimal transport to the space of positive Radon measures where the Wasserstein-Fisher-Rao distance is a natural extension of the classical L2-Wasserstein distance. In this paper, we show a similar relation between this unbalanced optimal transport problem and the Hdiv right-invariant metric on the group of diffeomorphisms, which corresponds to the Camassa-Holm (CH) equation in one dimension. Geometrically, we present an isometric embedding of the group of diffeomorphisms endowed with this right-invariant metric in the automorphisms group of the fiber bundle of half densities endowed with an L2 type of cone metric. This leads to a new formulation of the (generalized) CH equation as a geodesic equation on an isotropy subgroup of this automorphisms group; On S1, solutions to the standard CH thus give radially 1-homogeneous solutions of the incompressible Euler equation on R2 which preserves a radial density that has a singularity at 0. An other application consists in proving that smooth solutions of the Euler-Arnold equation for the Hdiv right-invariant metric are length minimizing geodesics for sufficiently short times.

  15. Vanishing Viscosity Approach to the Compressible Euler Equations for Transonic Nozzle and Spherically Symmetric Flows

    NASA Astrophysics Data System (ADS)

    Chen, Gui-Qiang G.; Schrecker, Matthew R. I.

    2018-04-01

    We are concerned with globally defined entropy solutions to the Euler equations for compressible fluid flows in transonic nozzles with general cross-sectional areas. Such nozzles include the de Laval nozzles and other more general nozzles whose cross-sectional area functions are allowed at the nozzle ends to be either zero (closed ends) or infinity (unbounded ends). To achieve this, in this paper, we develop a vanishing viscosity method to construct globally defined approximate solutions and then establish essential uniform estimates in weighted L p norms for the whole range of physical adiabatic exponents γ\\in (1, ∞) , so that the viscosity approximate solutions satisfy the general L p compensated compactness framework. The viscosity method is designed to incorporate artificial viscosity terms with the natural Dirichlet boundary conditions to ensure the uniform estimates. Then such estimates lead to both the convergence of the approximate solutions and the existence theory of globally defined finite-energy entropy solutions to the Euler equations for transonic flows that may have different end-states in the class of nozzles with general cross-sectional areas for all γ\\in (1, ∞) . The approach and techniques developed here apply to other problems with similar difficulties. In particular, we successfully apply them to construct globally defined spherically symmetric entropy solutions to the Euler equations for all γ\\in (1, ∞).

  16. Navier-Stokes and Euler solutions for lee-side flows over supersonic delta wings. A correlation with experiment

    NASA Technical Reports Server (NTRS)

    Mcmillin, S. Naomi; Thomas, James L.; Murman, Earll M.

    1990-01-01

    An Euler flow solver and a thin layer Navier-Stokes flow solver were used to numerically simulate the supersonic leeside flow fields over delta wings which were observed experimentally. Three delta wings with 75, 67.5, and 60 deg leading edge sweeps were computed over an angle-of-attack range of 4 to 20 deg at a Mach number 2.8. The Euler code and Navier-Stokes code predict equally well the primary flow structure where the flow is expected to be separated or attached at the leading edge based on the Stanbrook-Squire boundary. The Navier-Stokes code is capable of predicting both the primary and the secondary flow features for the parameter range investigated. For those flow conditions where the Euler code did not predict the correct type of primary flow structure, the Navier-Stokes code illustrated that the flow structure is sensitive to boundary layer model. In general, the laminar Navier-Stokes solutions agreed better with the experimental data, especially for the lower sweep delta wings. The computational results and a detailed re-examination of the experimental data resulted in a refinement of the flow classifications. This refinement in the flow classification results in the separation bubble with the shock flow type as the intermediate flow pattern between separated and attached flows.

  17. Measurement of lepton differential distributions and the top quark mass in t\\bar{t} production in pp collisions at √{s}=8 TeV with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aaboud, M.; Aad, G.; Abbott, B.; Abdinov, O.; Abeloos, B.; Abidi, S. H.; AbouZeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adachi, S.; Adamczyk, L.; Adelman, J.; Adersberger, M.; Adye, T.; Affolder, A. A.; Afik, Y.; Agatonovic-Jovin, T.; Agheorghiesei, C.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akatsuka, S.; Akerstedt, H.; Åkesson, T. P. A.; Akilli, E.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albicocco, P.; Alconada Verzini, M. J.; Alderweireldt, S. C.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Ali, B.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alshehri, A. A.; Alstaty, M. I.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Angerami, A.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antel, C.; Antonelli, M.; Antonov, A.; Antrim, D. J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Araujo Ferraz, V.; Arce, A. T. H.; Ardell, R. E.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Bagnaia, P.; Bahmani, M.; Bahrasemani, H.; Baines, J. T.; Bajic, M.; Baker, O. K.; Bakker, P. J.; Baldin, E. M.; Balek, P.; Balli, F.; Balunas, W. K.; Banas, E.; Bandyopadhyay, A.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisits, M.-S.; Barkeloo, J. T.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska-Blenessy, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barranco Navarro, L.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Beck, H. C.; Becker, K.; Becker, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beermann, T. A.; Begalli, M.; Begel, M.; Behr, J. K.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez, J.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernardi, G.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Bethani, A.; Bethke, S.; Betti, A.; Bevan, A. J.; Beyer, J.; Bianchi, R. M.; Biebel, O.; Biedermann, D.; Bielski, R.; Bierwagen, K.; Biesuz, N. V.; Biglietti, M.; Billoud, T. R. V.; Bilokon, H.; Bindi, M.; Bingul, A.; Bini, C.; Biondi, S.; Bisanz, T.; Bittrich, C.; Bjergaard, D. M.; Black, J. E.; Black, K. M.; Blair, R. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blue, A.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bolz, A. E.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Boscherini, D.; Bosman, M.; Bossio Sola, J. D.; Boudreau, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozson, A. J.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Braren, F.; Bratzler, U.; Brau, B.; Brau, J. E.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Briglin, D. L.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruni, A.; Bruni, G.; Bruni, L. S.; Bruno, S.; Brunt, BH; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burch, T. J.; Burdin, S.; Burgard, C. D.; Burger, A. M.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Burr, J. T. P.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cai, H.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Callea, G.; Caloba, L. P.; Calvente Lopez, S.; Calvet, D.; Calvet, S.; Calvet, T. P.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Camincher, C.; Campana, S.; Campanelli, M.; Camplani, A.; Campoverde, A.; Canale, V.; Cano Bret, M.; Cantero, J.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carlson, B. T.; Carminati, L.; Carney, R. M. D.; Caron, S.; Carquin, E.; Carrá, S.; Carrillo-Montoya, G. D.; Casadei, D.; Casado, M. P.; Casha, A. F.; Casolino, M.; Casper, D. W.; Castelijn, R.; Castillo Gimenez, V.; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Celebi, E.; Ceradini, F.; Cerda Alberich, L.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, W. S.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chau, C. C.; Chavez Barajas, C. A.; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, C.; Chen, H.; Chen, J.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Cheu, E.; Cheung, K.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chiu, Y. H.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, Y. S.; Christodoulou, V.; Chu, M. C.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Colasurdo, L.; Cole, B.; Colijn, A. P.; Collot, J.; Colombo, T.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Constantinescu, S.; Conti, G.; Conventi, F.; Cooke, M.; Cooper-Sarkar, A. M.; Cormier, F.; Cormier, K. J. R.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Creager, R. A.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cueto, A.; Cuhadar Donszelmann, T.; Cukierman, A. R.; Cummings, J.; Curatolo, M.; Cúth, J.; Czekierda, S.; Czodrowski, P.; D'amen, G.; D'Auria, S.; D'eramo, L.; D'Onofrio, M.; Da Cunha Sargedas De Sousa, M. J.; Da Via, C.; Dabrowski, W.; Dado, T.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Daneri, M. F.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Daubney, T.; Davey, W.; David, C.; Davidek, T.; Davis, D. R.; Davison, P.; Dawe, E.; Dawson, I.; De, K.; de Asmundis, R.; De Benedetti, A.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Maria, A.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vasconcelos Corga, K.; De Vivie De Regie, J. B.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.; Del Gaudio, M.; Del Peso, J.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delporte, C.; Delsart, P. A.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Devesa, M. R.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Bello, F. A.; Di Ciaccio, A.; Di Ciaccio, L.; Di Clemente, W. K.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Di Nardo, R.; Di Petrillo, K. F.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Díez Cornell, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Dodsworth, D.; Doglioni, C.; Dolejsi, J.; Dolezal, Z.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Dubinin, F.; Dubreuil, A.; Duchovni, E.; Duckeck, G.; Ducourthial, A.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudder, A. Chr.; Duffield, E. M.; Duflot, L.; Dührssen, M.; Dulsen, C.; Dumancic, M.; Dumitriu, A. E.; Duncan, A. K.; Dunford, M.; Duperrin, A.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Duvnjak, D.; Dyndal, M.; Dziedzic, B. S.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; El Kosseifi, R.; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Ennis, J. S.; Epland, M. B.; Erdmann, J.; Ereditato, A.; Ernst, M.; Errede, S.; Escalier, M.; Escobar, C.; Esposito, B.; Estrada Pastor, O.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Ezzi, M.; Fabbri, F.; Fabbri, L.; Fabiani, V.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farina, E. M.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Fenton, M. J.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, R. R. M.; Flick, T.; Flierl, B. M.; Flores Castillo, L. R.; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Förster, F. A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Franchino, S.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Freund, B.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fusayasu, T.; Fuster, J.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Ganguly, S.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; García, C.; García Navarro, J. E.; García Pascual, J. A.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gascon Bravo, A.; Gasnikova, K.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gee, C. N. P.; Geisen, J.; Geisen, M.; Geisler, M. P.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; Gentsos, C.; George, S.; Gerbaudo, D.; Geßner, G.; Ghasemi, S.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giangiacomi, N.; Giannetti, P.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giordani, M. P.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugliarelli, G.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gkountoumis, P.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Gama, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, G.; Gonella, L.; Gongadze, A.; Gonski, J. L.; González de la Hoz, S.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Gottardo, C. A.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Grabowska-Bold, I.; Gradin, P. O. J.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.; Gray, C.; Gray, H. M.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Grummer, A.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Gui, B.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, W.; Guo, Y.; Gupta, R.; Gurbuz, S.; Gustavino, G.; Gutelman, B. J.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Guzik, M. P.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Hadef, A.; Hageböck, S.; Hagihara, M.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Han, S.; Hanagaki, K.; Hanawa, K.; Hance, M.; Handl, D. M.; Haney, B.; Hanke, P.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrison, P. F.; Hartmann, N. M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havener, L. B.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayakawa, D.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heer, S.; Heidegger, K. K.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Held, A.; Hellman, S.; Helsens, C.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Herde, H.; Herget, V.; Hernández Jiménez, Y.; Herr, H.; Herten, G.; Hertenberger, R.; Hervas, L.; Herwig, T. C.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Higashino, S.; Higón-Rodriguez, E.; Hildebrand, K.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hils, M.; Hinchliffe, I.; Hirose, M.; Hirschbuehl, D.; Hiti, B.; Hladik, O.; Hlaluku, D. R.; Hoad, X.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohn, D.; Holmes, T. R.; Homann, M.; Honda, S.; Honda, T.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hostiuc, A.; Hou, S.; Hoummada, A.; Howarth, J.; Hoya, J.; Hrabovsky, M.; Hrdinka, J.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, P. J.; Hsu, S.-C.; Hu, Q.; Hu, S.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Huhtinen, M.; Hunter, R. F. H.; Huo, P.; Huseynov, N.; Huston, J.; Huth, J.; Hyneman, R.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Iltzsche, F.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Isacson, M. F.; Ishijima, N.; Ishino, M.; Ishitsuka, M.; Issever, C.; Istin, S.; Ito, F.; Iturbe Ponce, J. M.; Iuppa, R.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, P.; Jacobs, R. M.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansky, R.; Janssen, J.; Janus, M.; Janus, P. A.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Javurkova, M.; Jeanneau, F.; Jeanty, L.; Jejelava, J.; Jelinskas, A.; Jenni, P.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiang, Z.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Jivan, H.; Johansson, P.; Johns, K. A.; Johnson, C. A.; Johnson, W. J.; Jon-And, K.; Jones, R. W. L.; Jones, S. D.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Juste Rozas, A.; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kaji, T.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kar, D.; Karakostas, K.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kay, E. F.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kellermann, E.; Kempster, J. J.; Kendrick, J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khader, M.; Khalil-zada, F.; Khanov, A.; Kharlamov, A. G.; Kharlamova, T.; Khodinov, A.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kilby, C. R.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; Kirchmeier, D.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kitali, V.; Kivernyk, O.; Kladiva, E.; Klapdor-Kleingrothaus, T.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klingl, T.; Klioutchnikova, T.; Klitzner, F. F.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Köhler, N. M.; Koi, T.; Kolb, M.; Koletsou, I.; Komar, A. A.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Konya, B.; Kopeliansky, R.; Koperny, S.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Koulouris, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kourlitis, E.; Kouskoura, V.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Krauss, D.; Kremer, J. A.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, M. C.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kulinich, Y. P.; Kuna, M.; Kunigo, T.; Kupco, A.; Kupfer, T.; Kuprash, O.; Kurashige, H.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kurth, M. G.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; La Ruffa, F.; Lacasta, C.; Lacava, F.; Lacey, J.; Lack, D. P. J.; Lacker, H.; Lacour, D.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lanfermann, M. C.; Lang, V. S.; Lange, J. C.; Langenberg, R. J.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Lapertosa, A.; Laplace, S.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Lau, T. S.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le, B.; Le Dortz, O.; Le Guirriec, E.; Le Quilleuc, E. P.; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, G. R.; Lee, S. C.; Lee, L.; Lefebvre, B.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Lerner, G.; Leroy, C.; Les, R.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.; Li, B.; Li, C.; Li, H.; Li, L.; Li, Q.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lie, K.; Liebal, J.; Liebig, W.; Limosani, A.; Lin, C. Y.; Lin, K.; Lin, S. C.; Lin, T. H.; Linck, R. A.; Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lister, A.; Litke, A. M.; Liu, B.; Liu, H.; Liu, H.; Liu, J. K. K.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo, C. Y.; Sterzo, F. Lo; Lobodzinska, E. M.; Loch, P.; Loebinger, F. K.; Loesle, A.; Loew, K. M.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopez, J. A.; Lopez Paz, I.; Lopez Solis, A.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lu, Y. J.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lutz, M. S.; Luzi, P. M.; Lynn, D.; Lysak, R.; Lytken, E.; Lyu, F.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Maček, B.; Machado Miguens, J.; Madaffari, D.; Madar, R.; Mader, W. F.; Madsen, A.; Madysa, N.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A. S.; Magerl, V.; Maiani, C.; Maidantchik, C.; Maier, T.; Maio, A.; Majersky, O.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandić, I.; Maneira, J.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mankinen, K. H.; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchese, L.; Marchiori, G.; Marcisovsky, M.; Marin Tobon, C. A.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Martensson, M. U. F.; Marti-Garcia, S.; Martin, C. B.; Martin, T. A.; Martin, V. J.; Martin dit Latour, B.; Martinez, M.; Martinez Outschoorn, V. I.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Mason, L. H.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Maznas, I.; Mazza, S. M.; Mc Fadden, N. C.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McDonald, E. F.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McNamara, P. C.; McNicol, C. J.; McPherson, R. A.; Meehan, S.; Megy, T. J.; Mehlhase, S.; Mehta, A.; Meideck, T.; Meier, K.; Meirose, B.; Melini, D.; Mellado Garcia, B. R.; Mellenthin, J. D.; Melo, M.; Meloni, F.; Melzer, A.; Menary, S. B.; Meng, L.; Meng, X. T.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Merlassino, C.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer Zu Theenhausen, H.; Miano, F.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Millar, D. A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Minegishi, Y.; Ming, Y.; Mir, L. M.; Mirto, A.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mizukami, A.; Mjörnmark, J. U.; Mkrtchyan, T.; Mlynarikova, M.; Moa, T.; Mochizuki, K.; Mogg, P.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, S.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Moschovakos, P.; Mosidze, M.; Moss, H. J.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Moyse, E. J. W.; Muanza, S.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Munoz Sanchez, F. J.; Murray, W. J.; Musheghyan, H.; Muškinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nelson, M. E.; Nemecek, S.; Nemethy, P.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Newman, P. R.; Ng, T. Y.; Ng, Y. S.; Nguyen Manh, T.; Nickerson, R. B.; Nicolaidou, R.; Nielsen, J.; Nikiforou, N.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishu, N.; Nisius, R.; Nitsche, I.; Nitta, T.; Nobe, T.; Noguchi, Y.; Nomachi, M.; Nomidis, I.; Nomura, M. A.; Nooney, T.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'connor, K.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Oleiro Seabra, L. F.; Olivares Pino, S. A.; Oliveira Damazio, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oppen, H.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero y Garzon, G.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Pacheco Rodriguez, L.; Padilla Aranda, C.; Pagan Griso, S.; Paganini, M.; Paige, F.; Palacino, G.; Palazzo, S.; Palestini, S.; Palka, M.; Pallin, D.; Panagiotopoulou, E. St.; Panagoulias, I.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasner, J. M.; Pasqualucci, E.; Passaggio, S.; Pastore, Fr.; Pataraia, S.; Pater, J. R.; Pauly, T.; Pearson, B.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Peri, F.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, F. H.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pinamonti, M.; Pinfold, J. L.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Pluth, D.; Podberezko, P.; Poettgen, R.; Poggi, R.; Poggioli, L.; Pogrebnyak, I.; Pohl, D.; Pokharel, I.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Ponomarenko, D.; Pontecorvo, L.; Popeneciu, G. A.; Portillo Quintero, D. M.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potti, H.; Poulsen, T.; Poveda, J.; Pozo Astigarraga, M. E.; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Primavera, M.; Prince, S.; Proklova, N.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puri, A.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rangel-Smith, C.; Rashid, T.; Raspopov, S.; Ratti, M. G.; Rauch, D. M.; Rauscher, F.; Rave, S.; Ravinovich, I.; Rawling, J. H.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reed, R. G.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reiss, A.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Resseguie, E. D.; Rettie, S.; Reynolds, E.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi, L.; Ripellino, G.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Roberts, R. T.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Rocco, E.; Roda, C.; Rodina, Y.; Rodriguez Bosca, S.; Rodriguez Perez, A.; Rodriguez Rodriguez, D.; Roe, S.; Rogan, C. S.; Røhne, O.; Roloff, J.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Rosati, S.; Rosbach, K.; Rose, P.; Rosien, N.-A.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Rothberg, J.; Rousseau, D.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Rüttinger, E. M.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salazar Loyola, J. E.; Salek, D.; Sales De Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sampsonidou, D.; Sánchez, J.; Sanchez Martinez, V.; Sanchez Pineda, A.; Sandaker, H.; Sandbach, R. L.; Sander, C. O.; Sandhoff, M.; Sandoval, C.; Sankey, D. P. C.; Sannino, M.; Sano, Y.; Sansoni, A.; Santoni, C.; Santos, H.; Santoyo Castillo, I.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sato, K.; Sauvan, E.; Savage, G.; Savard, P.; Savic, N.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.; Schaefer, D.; Schaefer, L.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schier, S.; Schildgen, L. K.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schott, M.; Schouwenberg, J. F. P.; Schovancova, J.; Schramm, S.; Schuh, N.; Schulte, A.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Sciandra, A.; Sciolla, G.; Scornajenghi, M.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Semprini-Cesari, N.; Senkin, S.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Shen, Y.; Sherafati, N.; Sherman, A. D.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shipsey, I. P. J.; Shirabe, S.; Shiyakova, M.; Shlomi, J.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shope, D. R.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sickles, A. M.; Sidebo, P. E.; Sideras Haddad, E.; Sidiropoulou, O.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simic, L.; Simion, S.; Simioni, E.; Simmons, B.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Siral, I.; Sivoklokov, S. Yu.; Sjölin, J.; Skinner, M. B.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smiesko, J.; Smirnov, N.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, J. W.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snyder, I. M.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Søgaard, A.; Soh, D. A.; Sokhrannyi, G.; Solans Sanchez, C. A.; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Sopczak, A.; Sosa, D.; Sotiropoulou, C. L.; Sottocornola, S.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spieker, T. M.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; St. Denis, R. D.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanitzki, M. M.; Stapf, B. S.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Stark, S. H.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Stegler, M.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, T. J.; Stewart, G. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultan, DMS; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Suruliz, K.; Suster, C. J. E.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Swift, S. P.; Sykora, I.; Sykora, T.; Ta, D.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Tahirovic, E.; Taiblum, N.; Takai, H.; Takashima, R.; Takasugi, E. H.; Takeda, K.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tanaka, J.; Tanaka, M.; Tanaka, R.; Tanaka, S.; Tanioka, R.; Tannenwald, B. B.; Tapia Araya, S.; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, A. C.; Taylor, A. J.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teixeira-Dias, P.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Thais, S. J.; Theveneaux-Pelzer, T.; Thiele, F.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Tian, Y.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorova-Nova, S.; Todt, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Tornambe, P.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Treado, C. J.; Trefzger, T.; Tresoldi, F.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tsang, K. W.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tu, Y.; Tudorache, A.; Tudorache, V.; Tulbure, T. T.; Tuna, A. N.; Turchikhin, S.; Turgeman, D.; Turk Cakir, I.; Turra, R.; Tuts, P. M.; Ucchielli, G.; Ueda, I.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Uno, K.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usui, J.; Vacavant, L.; Vacek, V.; Vachon, B.; Vadla, K. O. H.; Vaidya, A.; Valderanis, C.; Valdes Santurio, E.; Valente, M.; Valentinetti, S.; Valero, A.; Valéry, L.; Valkar, S.; Vallier, A.; Valls Ferrer, J. A.; Van Den Wollenberg, W.; van der Graaf, H.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varni, C.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vasquez, G. A.; Vazeille, F.; Vazquez Furelos, D.; Vazquez Schroeder, T.; Veatch, J.; Veeraraghavan, V.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, A. T.; Vermeulen, J. C.; Vetterli, M. C.; Viaux Maira, N.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vishwakarma, A.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vogel, M.; Vokac, P.; Volpi, G.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Wagner, W.; Wagner-Kuhr, J.; Wahlberg, H.; Wahrmund, S.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, Q.; Wang, R.-J.; Wang, R.; Wang, S. M.; Wang, T.; Wang, W.; Wang, W.; Wang, Z.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, A. F.; Webb, S.; Weber, M. S.; Weber, S. M.; Weber, S. W.; Weber, S. A.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weirich, M.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M. D.; Werner, P.; Wessels, M.; Weston, T. D.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A. S.; White, A.; White, M. J.; White, R.; Whiteson, D.; Whitmore, B. W.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winkels, E.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wobisch, M.; Wolf, T. M. H.; Wolff, R.; Wolter, M. W.; Wolters, H.; Wong, V. W. S.; Woods, N. L.; Worm, S. D.; Wosiek, B. K.; Wotschack, J.; Wozniak, K. W.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xi, Z.; Xia, L.; Xu, D.; Xu, L.; Xu, T.; Xu, W.; Yabsley, B.; Yacoob, S.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamane, F.; Yamatani, M.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yigitbasi, E.; Yildirim, E.; Yorita, K.; Yoshihara, K.; Young, C.; Young, C. J. S.; Yu, J.; Yu, J.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zacharis, G.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanzi, D.; Zeitnitz, C.; Zemaityte, G.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, L.; Zhang, M.; Zhang, P.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Y.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, M.; Zhou, M.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Zou, R.; zur Nedden, M.; Zwalinski, L.

    2017-11-01

    This paper presents single lepton and dilepton kinematic distributions measured in dileptonic t\\bar{t} events produced in 20.2fb^{-1} of √{s}=8 TeV pp collisions recorded by the ATLAS experiment at the LHC. Both absolute and normalised differential cross-sections are measured, using events with an opposite-charge eμ pair and one or two b-tagged jets. The cross-sections are measured in a fiducial region corresponding to the detector acceptance for leptons, and are compared to the predictions from a variety of Monte Carlo event generators, as well as fixed-order QCD calculations, exploring the sensitivity of the cross-sections to the gluon parton distribution function. Some of the distributions are also sensitive to the top quark pole mass; a combined fit of NLO fixed-order predictions to all the measured distributions yields a top quark mass value of {m_t^{pole}}=173.2± 0.9± 0.8± 1.2 GeV, where the three uncertainties arise from data statistics, experimental systematics, and theoretical sources.

  18. Measurement of the inclusive t t ¯ production cross section in p p ¯ collisions at s = 1.96 TeV and determination of the top quark pole mass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abazov, V. M.; Abbott, B.; Acharya, B. S.

    The inclusive cross section of top quark-antiquark pairs produced in pmore » $$\\bar{p}$$ collisions at √ s = 1.96 TeV is measured in the lepton + jets and dilepton decay channels. The data sample corresponds to 9.7 fb -1 of integrated luminosity recorded with the D0 detector during Run II of the Fermilab Tevatron Collider. Employing multivariate analysis techniques we measure the cross section in the two decay channels and we perform a combined cross section measurement. For a top quark mass of 172.5 GeV, we measure a combined inclusive top quark-antiquark pair production cross section of σ t $$\\bar{t}$$ = 7.26 ± 0.13 ( stat ) $$+0.57\\atop{-0.50}$$ ( syst ) pb which is consistent with standard model predictions. We also perform a likelihood fit to the measured and predicted top quark mass dependence of the inclusive cross section, which yields a measurement of the pole mass of the top quark. The extracted value is m t = 172.8 ± 1.1 ( theo ) $$+3.3\\atop{-3.1}$$ ( exp ) GeV .« less

  19. Measurement of the inclusive t t ¯ production cross section in p p ¯ collisions at s = 1.96 TeV and determination of the top quark pole mass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abazov, V. M.; Abbott, B.; Acharya, B. S.

    Here, the inclusive cross section of top quark-antiquark pairs produced inmore » $$p\\bar{p}$$ collisions at $$\\sqrt{s}=1.96$$ TeV is measured in the lepton+jets and dilepton decay channels. The data sample corresponds to 9.7 fb -1 of integrated luminosity recorded with the D0 detector during Run II of the Fermilab Tevatron Collider. Employing multivariate analysis techniques we measure the cross section in the two decay channels and we perform a combined cross section measurement. For a top quark mass of 172.5 GeV, we measure a combined inclusive top quark-antiquark pair production cross section of σ $$t\\bar{t}$$=7.26±0.13(stat)$$+0.57\\atop{-0.50}$$(syst) pb which is consistent with standard model predictions. We also perform a likelihood fit to the measured and predicted top quark mass dependence of the inclusive cross section, which yields a measurement of the pole mass of the top quark. The extracted value is m t=172.8±1.1(theo)$$+3.3\\atop{-3.1}$$(exp) GeV.« less

  20. Measurement of the inclusive t t ¯ production cross section in p p ¯ collisions at s = 1.96 TeV and determination of the top quark pole mass

    DOE PAGES

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; ...

    2016-11-23

    Here, the inclusive cross section of top quark-antiquark pairs produced inmore » $$p\\bar{p}$$ collisions at $$\\sqrt{s}=1.96$$ TeV is measured in the lepton+jets and dilepton decay channels. The data sample corresponds to 9.7 fb -1 of integrated luminosity recorded with the D0 detector during Run II of the Fermilab Tevatron Collider. Employing multivariate analysis techniques we measure the cross section in the two decay channels and we perform a combined cross section measurement. For a top quark mass of 172.5 GeV, we measure a combined inclusive top quark-antiquark pair production cross section of σ $$t\\bar{t}$$=7.26±0.13(stat)$$+0.57\\atop{-0.50}$$(syst) pb which is consistent with standard model predictions. We also perform a likelihood fit to the measured and predicted top quark mass dependence of the inclusive cross section, which yields a measurement of the pole mass of the top quark. The extracted value is m t=172.8±1.1(theo)$$+3.3\\atop{-3.1}$$(exp) GeV.« less

  1. Measurement of the inclusive t t xAF production cross section in p p xAF collisions at √{s }=1.96 TeV and determination of the top quark pole mass

    NASA Astrophysics Data System (ADS)

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Agnew, J. P.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Askew, A.; Atkins, S.; Augsten, K.; Aushev, Y.; Avila, C.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barberis, E.; Baringer, P.; Bartlett, J. F.; Bassler, U.; Bazterra, V.; Bean, A.; Begalli, M.; Bellantoni, L.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Beuselinck, R.; Bhat, P. C.; Bhatia, S.; Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.; Boehnlein, A.; Boline, D.; Boos, E. E.; Borissov, G.; Borysova, M.; Brandt, A.; Brandt, O.; Brock, R.; Bross, A.; Brown, D.; Bu, X. B.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Buszello, C. P.; Camacho-Pérez, E.; Casey, B. C. K.; Castilla-Valdez, H.; Caughron, S.; Chakrabarti, S.; Chan, K. M.; Chandra, A.; Chapon, E.; Chen, G.; Cho, S. W.; Choi, S.; Choudhary, B.; Cihangir, S.; Claes, D.; Clutter, J.; Cooke, M.; Cooper, W. E.; Corcoran, M.; Couderc, F.; Cousinou, M.-C.; Cuth, J.; Cutts, D.; Das, A.; Davies, G.; de Jong, S. J.; De La Cruz-Burelo, E.; Déliot, F.; Demina, R.; Denisov, D.; Denisov, S. P.; Desai, S.; Deterre, C.; DeVaughan, K.; Diehl, H. T.; Diesburg, M.; Ding, P. F.; Dominguez, A.; Dubey, A.; Dudko, L. V.; Duperrin, A.; Dutt, S.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Enari, Y.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Fauré, A.; Feng, L.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fortner, M.; Fox, H.; Franc, J.; Fuess, S.; Garbincius, P. H.; Garcia-Bellido, A.; García-González, J. A.; Gavrilov, V.; Geng, W.; Gerber, C. E.; Gershtein, Y.; Ginther, G.; Gogota, O.; Golovanov, G.; Grannis, P. D.; Greder, S.; Greenlee, H.; Grenier, G.; Gris, Ph.; Grivaz, J.-F.; Grohsjean, A.; Grünendahl, S.; Grünewald, M. W.; Guillemin, T.; Gutierrez, G.; Gutierrez, P.; Haley, J.; Han, L.; Harder, K.; Harel, A.; Hauptman, J. M.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hoeneisen, B.; Hogan, J.; Hohlfeld, M.; Holzbauer, J. L.; Howley, I.; Hubacek, Z.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffré, M.; Jayasinghe, A.; Jeong, M. S.; Jesik, R.; Jiang, P.; Johns, K.; Johnson, E.; Johnson, M.; Jonckheere, A.; Jonsson, P.; Joshi, J.; Jung, A. W.; Juste, A.; Kajfasz, E.; Karmanov, D.; Katsanos, I.; Kaur, M.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Kiselevich, I.; Kohli, J. M.; Kozelov, A. V.; Kraus, J.; Kumar, A.; Kupco, A.; Kurča, T.; Kuzmin, V. A.; Lammers, S.; Lebrun, P.; Lee, H. S.; Lee, S. W.; Lee, W. M.; Lei, X.; Lellouch, J.; Li, D.; Li, H.; Li, L.; Li, Q. Z.; Lim, J. K.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Liu, H.; Liu, Y.; Lobodenko, A.; Lokajicek, M.; Lopes de Sa, R.; Luna-Garcia, R.; Lyon, A. L.; Maciel, A. K. A.; Madar, R.; Magaña-Villalba, R.; Malik, S.; Malyshev, V. L.; Mansour, J.; Martínez-Ortega, J.; McCarthy, R.; McGivern, C. L.; Meijer, M. M.; Melnitchouk, A.; Menezes, D.; Mercadante, P. G.; Merkin, M.; Meyer, A.; Meyer, J.; Miconi, F.; Mondal, N. K.; Mulhearn, M.; Nagy, E.; Narain, M.; Nayyar, R.; Neal, H. A.; Negret, J. P.; Neustroev, P.; Nguyen, H. T.; Nunnemann, T.; Orduna, J.; Osman, N.; Osta, J.; Pal, A.; Parashar, N.; Parihar, V.; Park, S. K.; Partridge, R.; Parua, N.; Patwa, A.; Penning, B.; Perfilov, M.; Peters, Y.; Petridis, K.; Petrillo, G.; Pétroff, P.; Pleier, M.-A.; Podstavkov, V. M.; Popov, A. V.; Prewitt, M.; Price, D.; Prokopenko, N.; Qian, J.; Quadt, A.; Quinn, B.; Ratoff, P. N.; Razumov, I.; Ripp-Baudot, I.; Rizatdinova, F.; Rominsky, M.; Ross, A.; Royon, C.; Rubinov, P.; Ruchti, R.; Sajot, G.; Sánchez-Hernández, A.; Sanders, M. P.; Santos, A. S.; Savage, G.; Savitskyi, M.; Sawyer, L.; Scanlon, T.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schott, M.; Schwanenberger, C.; Schwienhorst, R.; Sekaric, J.; Severini, H.; Shabalina, E.; Shary, V.; Shaw, S.; Shchukin, A. A.; Simak, V.; Skubic, P.; Slattery, P.; Smirnov, D.; Snow, G. R.; Snow, J.; Snyder, S.; Söldner-Rembold, S.; Sonnenschein, L.; Soustruznik, K.; Stark, J.; Stoyanova, D. A.; Strauss, M.; Suter, L.; Svoisky, P.; Titov, M.; Tokmenin, V. V.; Tsai, Y.-T.; Tsybychev, D.; Tuchming, B.; Tully, C.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; Van Kooten, R.; van Leeuwen, W. M.; Varelas, N.; Varnes, E. W.; Vasilyev, I. A.; Verkheev, A. Y.; Vertogradov, L. S.; Verzocchi, M.; Vesterinen, M.; Vilanova, D.; Vokac, P.; Wahl, H. D.; Wang, M. H. L. S.; Warchol, J.; Watts, G.; Wayne, M.; Weichert, J.; Welty-Rieger, L.; Williams, M. R. J.; Wilson, G. W.; Wobisch, M.; Wood, D. R.; Wyatt, T. R.; Xie, Y.; Yamada, R.; Yang, S.; Yasuda, T.; Yatsunenko, Y. A.; Ye, W.; Ye, Z.; Yin, H.; Yip, K.; Youn, S. W.; Yu, J. M.; Zennamo, J.; Zhao, T. G.; Zhou, B.; Zhu, J.; Zielinski, M.; Zieminska, D.; Zivkovic, L.; D0 Collaboration

    2016-11-01

    The inclusive cross section of top quark-antiquark pairs produced in p p ¯ collisions at √{s }=1.96 TeV is measured in the lepton+jets and dilepton decay channels. The data sample corresponds to 9.7 fb-1 of integrated luminosity recorded with the D0 detector during Run II of the Fermilab Tevatron Collider. Employing multivariate analysis techniques we measure the cross section in the two decay channels and we perform a combined cross section measurement. For a top quark mass of 172.5 GeV, we measure a combined inclusive top quark-antiquark pair production cross section of σt t ¯=7.26 ±0.13 (stat )-0.50+0.57(syst ) pb which is consistent with standard model predictions. We also perform a likelihood fit to the measured and predicted top quark mass dependence of the inclusive cross section, which yields a measurement of the pole mass of the top quark. The extracted value is mt=172.8 ±1.1 (theo )-3.1+3.3(exp ) GeV .

  2. Role of interfacial charge in the piezoelectric properties of ferroelectric 0-3 composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, C.K.; Shin, F.G.; Department of Applied Physics, Materials Research Center and Center for Smart Materials, Hong Kong Polytechnic University, Hong Kong

    2005-02-01

    We investigated the effects of compensating charges (at the inclusion-matrix interface) on the piezoelectric properties of ferroelectric 0-3 composites. Our previously developed model [C. K. Wong, Y. M. Poon, and F. G. Shin, J. Appl. Phys. 90, 4690 (2001)] has been extended to include the additional contribution from the deformation of the inclusion particles due to the applied stress in the piezoelectric measurement. The relative significance of this contribution is mainly determined by the amount of compensating interfacial charge, which is significantly governed by the degrees of poling of the constituent materials in the composite sample. This model provides anmore » explanation to an anomaly in the piezoelectric coefficients of 0-3 composite samples with the matrix and inclusion phases polarized in opposite directions. Explicit expressions in closed form have been derived for the effective d{sub 33}, d{sub 31}, and d{sub h} coefficients. After taking into consideration the degree of poling of the constituents and the effects of the compensating interfacial charges, theoretical predictions show good agreement with published experimental data. Goodness of fit is not limited to low volume concentration of inclusions.« less

  3. Measurement of lepton differential distributions and the top quark mass in $$t\\bar{t}$$ production in pp collisions at $$\\sqrt{s}=8$$  TeV with the ATLAS detector

    DOE PAGES

    Aaboud, M.; Aad, G.; Abbott, B.; ...

    2017-11-25

    We present single lepton and dilepton kinematic distributions measured in dileptonic tmore » $$\\bar{t}$$ events produced in 20.2fb - 1 of √s=8 TeV pp collisions recorded by the ATLAS experiment at the LHC. Both absolute and normalised differential cross-sections are measured, using events with an opposite-charge eμ pair and one or two b-tagged jets. Furthermore, the cross-sections are measured in a fiducial region corresponding to the detector acceptance for leptons, and are compared to the predictions from a variety of Monte Carlo event generators, as well as fixed-order QCD calculations, exploring the sensitivity of the cross-sections to the gluon parton distribution function. Some of the distributions are also sensitive to the top quark pole mass; a combined fit of NLO fixed-order predictions to all the measured distributions yields a top quark mass value of m$$pole\\atop{t}$$=173.2±0.9±0.8±1.2 GeV, where the three uncertainties arise from data statistics, experimental systematics, and theoretical sources.« less

  4. Orbiter escape pole

    NASA Technical Reports Server (NTRS)

    Goodrich, Winston D. (Inventor); Wesselski, Clarence J. (Inventor); Pelischek, Timothy E. (Inventor); Becker, Bruce H. (Inventor); Kahn, Jon B. (Inventor); Grimaldi, Margaret E. (Inventor); McManamen, John P. (Inventor); Castro, Edgar O. (Inventor)

    1989-01-01

    A Shuttle type of aircraft (10) with an escape hatch (12) has an arcuately shaped pole housing (16) attachable to an interior wall and ceiling with its open end adjacent to the escape hatch. The pole housing 16 contains a telescopically arranged and arcuately shaped primary pole member (22) and extension pole member (23) which are guided by roller assemblies (30,35). The extension pole member (23) is slidable and extendable relative to the primary pole member (22). For actuation, a spring actuated system includes a spring (52) in the pole housing. A locking member (90) engages both pole members (22,23) through notch portions (85,86) in the pole members. The locking member selectively releases the extension pole member (23) and the primary pole member (22). An internal one-way clutch or anti-return mechanism prevents retraction of the extension pole member from an extended position. Shock absorbers (54)(150,152) are for absoring the energy of the springs. A manual backup deployment system is provided which includes a canted ring (104) biased by a spring member (108). A lever member (100) with a slot and pin connection (102) permits the mechanical manipulation of the canted ring to move the primary pole member. The ring (104) also prevents retraction of the main pole. The crew escape mechanism includes a magazine (60) and a number of lanyards (62), each lanyard being mounted by a roller loop (68) over the primary pole member (22). The strap on the roller loop has stitching for controlled release, a protection sheath (74) to prevent tangling and a hook member (69) for attachment to a crew harness.

  5. 47 CFR 1.1404 - Complaint.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... default rate of return; (xi) The average amount of usable space per pole for those poles used for pole... unusable space per pole for those poles used for pole attachments (a 24 foot presumption may be used in...) The number of ducts in the conduit subject to the complaint; (vi) The number of inner-ducts in the...

  6. 47 CFR 1.1404 - Complaint.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... default rate of return; (xi) The average amount of usable space per pole for those poles used for pole... unusable space per pole for those poles used for pole attachments (a 24 foot presumption may be used in...) The number of ducts in the conduit subject to the complaint; (vi) The number of inner-ducts in the...

  7. 47 CFR 1.1404 - Complaint.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... default rate of return; (xi) The average amount of usable space per pole for those poles used for pole... unusable space per pole for those poles used for pole attachments (a 24 foot presumption may be used in...) The number of ducts in the conduit subject to the complaint; (vi) The number of inner-ducts in the...

  8. MIMO system identification using frequency response data

    NASA Technical Reports Server (NTRS)

    Medina, Enrique A.; Irwin, R. D.; Mitchell, Jerrel R.; Bukley, Angelia P.

    1992-01-01

    A solution to the problem of obtaining a multi-input, multi-output statespace model of a system from its individual input/output frequency responses is presented. The Residue Identification Algorithm (RID) identifies the system poles from a transfer function model of the determinant of the frequency response data matrix. Next, the residue matrices of the modes are computed guaranteeing that each input/output frequency response is fitted in the least squares sense. Finally, a realization of the system is computed. Results of the application of RID to experimental frequency responses of a large space structure ground test facility are presented and compared to those obtained via the Eigensystem Realization Algorithm.

  9. [Arthroscopically Assisted Minimally Invasive Fixation of a Type D2c Scapular Fracture].

    PubMed

    Kornherr, Patrick; Konerding, Christiane; Kovacevic, Mark; Wenda, Klaus

    2018-06-12

    Fractures of the scapula are rare and have an incidence of 1% of all fractures. Publications highlight glenoid rim fractures. Classification by Ideberg and Euler and Rüdi are accepted. Euler and Rüdi describe three extra-articular and two intra-articular fracture patterns. The indications for surgery are displaced glenoid fractures, scapula tilt of more than 40° and injuries to the superior shoulder suspensory complex. We describe a case of a 22 year old man, who while cycling collided with a moving car due to wet roads. After his admission to hospital as a polytraumatised patient, the trauma CT-Scan showed haemothorax with several associated rip fractures, displaced humeral shaft fracture and fractures of the acromion and glenoid, classified as type D2c according to Euler and Rüdi. Following damage control principles, drainage of the haemothorax was already performed in the ER and surgical treatment of the displaced humeral shaft fracture was performed on the day of admission. No peripheral neurological deficits were evident. After pulmonary stabilisation, surgery was performed 6 days later on the glenoid and acromion fracture, which in conjunction may be regarded as an injury to the superior shoulder suspensory complex. We performed an arthroscopically-assisted screw fixation of the glenoid fracture (type D2c according to Euler and Rüdi) and an ORIF procedure at the acromion. Postoperative rehabilitation was performed with passive abduction and elevation up to 90° for the first two weeks and active abduction an elevation up to 90° for weeks 3 to 6. Full ROM was allowed at week 7. Articular fractures of the glenoid are rare and mainly seen as rim fractures. The indications for surgery are displaced articular fractures and injury to the superior shoulder suspensory complex. As demonstrated by this article, type D2c fractures according to Euler and Rüdi can be treated effectively as an arthroscopically-assisted screw fixation procedure. Georg Thieme Verlag KG Stuttgart · New York.

  10. Interpretation of high resolution airborne magnetic data (HRAMD) of Ilesha and its environs, Southwest Nigeria, using Euler deconvolution method

    NASA Astrophysics Data System (ADS)

    Olurin, Oluwaseun Tolutope

    2017-12-01

    Interpretation of high resolution aeromagnetic data of Ilesha and its environs within the basement complex of the geological setting of Southwestern Nigeria was carried out in the study. The study area is delimited by geographic latitudes 7°30'-8°00'N and longitudes 4°30'-5°00'E. This investigation was carried out using Euler deconvolution on filtered digitised total magnetic data (Sheet Number 243) to delineate geological structures within the area under consideration. The digitised airborne magnetic data acquired in 2009 were obtained from the archives of the Nigeria Geological Survey Agency (NGSA). The airborne magnetic data were filtered, processed and enhanced; the resultant data were subjected to qualitative and quantitative magnetic interpretation, geometry and depth weighting analyses across the study area using Euler deconvolution filter control file in Oasis Montag software. Total magnetic intensity distribution in the field ranged from -77.7 to 139.7 nT. Total magnetic field intensities reveal high-magnitude magnetic intensity values (high-amplitude anomaly) and magnetic low intensities (low-amplitude magnetic anomaly) in the area under consideration. The study area is characterised with high intensity correlated with lithological variation in the basement. The sharp contrast is enhanced due to the sharp contrast in magnetic intensity between the magnetic susceptibilities of the crystalline and sedimentary rocks. The reduced-to-equator (RTE) map is characterised by high frequencies, short wavelengths, small size, weak intensity, sharp low amplitude and nearly irregular shaped anomalies, which may due to near-surface sources, such as shallow geologic units and cultural features. Euler deconvolution solution indicates a generally undulating basement, with a depth ranging from -500 to 1000 m. The Euler deconvolution results show that the basement relief is generally gentle and flat, lying within the basement terrain.

  11. Taper of wood poles

    Treesearch

    Billy Bohannan; Hermann Habermann; Joan E. Lengel

    1974-01-01

    Round wood pole use has changed without accompanying advancement in engineering design data. Previous pole design was based on the assumption that maximum stress occurred at the groundline but, with the larger poles that are now being used, maximum stress may occur along the pole length. For accurate engineering analysis the shape or taper of a pole must be known. Both...

  12. Magnet pole tips

    DOEpatents

    Thorn, Craig E.; Chasman, Chellis; Baltz, Anthony J.

    1984-04-24

    An improved magnet which more easily provides a radially increasing magnetic field, as well as reduced fringe field and requires less power for a given field intensity. The subject invention comprises a pair of spaced, opposed magnetic poles which further comprise a pair of pole roots, each having a pole tip attached to its center. The pole tips define the gap between the magnetic poles and at least a portion of each pole tip is separated from its associated pole root. The separation begins at a predetermined distance from the center of the pole root and increases with increasing radial distance while being constant with azimuth within that portion. Magnets in accordance with the subject invention have been found to be particularly advantageous for use in large isochronous cyclotrons.

  13. Magnet pole tips

    DOEpatents

    Thorn, C.E.; Chasman, C.; Baltz, A.J.

    1981-11-19

    An improved magnet more easily provides a radially increasing magnetic field, as well as reduced fringe field and requires less power for a given field intensity. The subject invention comprises a pair of spaced, opposed magnetic poles which further comprise a pair of pole roots, each having a pole tip attached to its center. The pole tips define the gap between the magnetic poles and at least a portion of each pole tip is separated from its associated pole root. The separation begins at a predetermined distance from the center of the pole root and increases with increasing radial distance while being constant with azimuth within that portion. Magnets in accordance with the subject invention have been found to be particularly advantageous for use in large isochronous cyclotrons.

  14. Asymptotic of the Solutions of Hyperbolic Equations with a Skew-Symmetric Perturbation

    NASA Astrophysics Data System (ADS)

    Gallagher, Isabelle

    1998-12-01

    Using methods introduced by S. Schochet inJ. Differential Equations114(1994), 476-512, we compute the first term of an asymptotic expansion of the solutions of hyperbolic equations perturbated by a skew-symmetric linear operator. That result is first applied to two systems describing the motion of geophysic fluids: the rotating Euler equations and the primitive system of the quasigeostrophic equations. Finally in the last part, we study the slightly compressible Euler equations by application of that same result.

  15. Hamilton's Equations with Euler Parameters for Rigid Body Dynamics Modeling. Chapter 3

    NASA Technical Reports Server (NTRS)

    Shivarama, Ravishankar; Fahrenthold, Eric P.

    2004-01-01

    A combination of Euler parameter kinematics and Hamiltonian mechanics provides a rigid body dynamics model well suited for use in strongly nonlinear problems involving arbitrarily large rotations. The model is unconstrained, free of singularities, includes a general potential energy function and a minimum set of momentum variables, and takes an explicit state space form convenient for numerical implementation. The general formulation may be specialized to address particular applications, as illustrated in several three dimensional example problems.

  16. a Numerical Comparison of Langrange and Kane's Methods of AN Arm Segment

    NASA Astrophysics Data System (ADS)

    Rambely, Azmin Sham; Halim, Norhafiza Ab.; Ahmad, Rokiah Rozita

    A 2-D model of a two-link kinematic chain is developed using two dynamics equations of motion, namely Kane's and Lagrange Methods. The dynamics equations are reduced to first order differential equation and solved using modified Euler and fourth order Runge Kutta to approximate the shoulder and elbow joint angles during a smash performance in badminton. Results showed that Runge-Kutta produced a better and exact approximation than that of modified Euler and both dynamic equations produced better absolute errors.

  17. Definition, transformation-formulae and measurements of tipvane angles

    NASA Astrophysics Data System (ADS)

    Bruining, A.

    1987-10-01

    The theoretical background of different angle systems used to define tipvane attitude in 3-D space is outlined. Different Euler equations are used for the various, wind tunnel, towing tank, and full scale tipvane models. The influence of rotor blade flapping angle on tipvane angles is described. The tipvane attitude measuring method is outlined in relationship to the Euler angle system. Side effects on the angle of attack of the tipvane due to rotation, translation, and curving of the tipvane are described.

  18. Numerical solution of the two-dimensional time-dependent incompressible Euler equations

    NASA Technical Reports Server (NTRS)

    Whitfield, David L.; Taylor, Lafayette K.

    1994-01-01

    A numerical method is presented for solving the artificial compressibility form of the 2D time-dependent incompressible Euler equations. The approach is based on using an approximate Riemann solver for the cell face numerical flux of a finite volume discretization. Characteristic variable boundary conditions are developed and presented for all boundaries and in-flow out-flow situations. The system of algebraic equations is solved using the discretized Newton-relaxation (DNR) implicit method. Numerical results are presented for both steady and unsteady flow.

  19. Conformal field theory as microscopic dynamics of incompressible Euler and Navier-Stokes equations.

    PubMed

    Fouxon, Itzhak; Oz, Yaron

    2008-12-31

    We consider the hydrodynamics of relativistic conformal field theories at finite temperature. We show that the limit of slow motions of the ideal hydrodynamics leads to the nonrelativistic incompressible Euler equation. For viscous hydrodynamics we show that the limit of slow motions leads to the nonrelativistic incompressible Navier-Stokes equation. We explain the physical reasons for the reduction and discuss the implications. We propose that conformal field theories provide a fundamental microscopic viewpoint of the equations and the dynamics governed by them.

  20. Remembrances of Ulf Svante von Euler.

    PubMed

    Igić, Rajko

    2018-05-21

    I first met Ulf Svante von Euler when he came to Belgrade, in 1968, to attend an international symposium on the occasion of the 50 th anniversary of the Medical Faculty. I was at that time a graduate student at the Medical Faculty in Sarajevo, and a new researcher. I had finished medical school in Belgrade and had worked for two years as a physician in the northern part of Serbia. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brezov, D. S.; Mladenova, C. D.; Mladenov, I. M., E-mail: mladenov@bio21.bas.bg

    In this paper we obtain the Lie derivatives of the scalar parameters in the generalized Euler decomposition with respect to arbitrary axes under left and right deck transformations. This problem can be directly related to the representation of the angular momentum in quantum mechanics. As a particular example, we calculate the angular momentum and the corresponding quantum hamiltonian in the standard Euler and Bryan representations. Similarly, in the hyperbolic case, the Laplace-Beltrami operator is retrieved for the Iwasawa decomposition. The case of two axes is considered as well.

  2. Wind tunnel pressure study and Euler code validation of a missile configuration with 77 deg swept delta wings at supersonic speeds. M.S. Thesis - George Washington Univ.

    NASA Technical Reports Server (NTRS)

    Fulton, Patsy S.

    1988-01-01

    A wind-tunnel pressure study was conducted on an axisymmetric missile configuration in the Unitary Plan Wind Tunnel at NASA Langley Research Center. The Mach numbers ranged from 1.70 to 2.86 and the angles of attack ranged from minus 4 degrees to plus 24 degrees. The computational accuracy for limited conditions of a space-marching Euler code was assessed.

  3. A note on blowup of smooth solutions for relativistic Euler equations with infinite initial energy

    NASA Astrophysics Data System (ADS)

    Dong, Jianwei; Zhu, Junhui

    2018-04-01

    We study the singularity formation of smooth solutions of the relativistic Euler equations in (3+1)-dimensional spacetime for infinite initial energy. We prove that the smooth solution blows up in finite time provided that the radial component of the initial generalized momentum is sufficiently large without the conditions M(0)>0 and s2<1/3c2 , which were two key constraints stated in Pan and Smoller (Commun Math Phys 262:729-755, 2006).

  4. Exploration of POD-Galerkin Techniques for Developing Reduced Order Models of the Euler Equations

    DTIC Science & Technology

    2015-07-01

    modes [1]. Barone et al [15, 16] proposed to stabilize the reduced system by symmetrizing the higher-order PDE with a preconditioning matrix. Rowley et...advection scalar equation. The ROM is obtained by employing Galerkin’s method to reduce the high-order PDEs to a lower- order ODE system by means of POD...high-order PDEs to a lower-order ODE system by means of POD eigen-bases. For purposes of this study, a linearized version of the Euler equations is

  5. Higher order solution of the Euler equations on unstructured grids using quadratic reconstruction

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.; Frederickson, Paul O.

    1990-01-01

    High order accurate finite-volume schemes for solving the Euler equations of gasdynamics are developed. Central to the development of these methods are the construction of a k-exact reconstruction operator given cell-averaged quantities and the use of high order flux quadrature formulas. General polygonal control volumes (with curved boundary edges) are considered. The formulations presented make no explicit assumption as to complexity or convexity of control volumes. Numerical examples are presented for Ringleb flow to validate the methodology.

  6. Lagrangian averaging with geodesic mean

    NASA Astrophysics Data System (ADS)

    Oliver, Marcel

    2017-11-01

    This paper revisits the derivation of the Lagrangian averaged Euler (LAE), or Euler-α equations in the light of an intrinsic definition of the averaged flow map as the geodesic mean on the volume-preserving diffeomorphism group. Under the additional assumption that first-order fluctuations are statistically isotropic and transported by the mean flow as a vector field, averaging of the kinetic energy Lagrangian of an ideal fluid yields the LAE Lagrangian. The derivation presented here assumes a Euclidean spatial domain without boundaries.

  7. Lagrangian averaging with geodesic mean.

    PubMed

    Oliver, Marcel

    2017-11-01

    This paper revisits the derivation of the Lagrangian averaged Euler (LAE), or Euler- α equations in the light of an intrinsic definition of the averaged flow map as the geodesic mean on the volume-preserving diffeomorphism group. Under the additional assumption that first-order fluctuations are statistically isotropic and transported by the mean flow as a vector field, averaging of the kinetic energy Lagrangian of an ideal fluid yields the LAE Lagrangian. The derivation presented here assumes a Euclidean spatial domain without boundaries.

  8. Computational Aerodynamics Based on the Euler Equations (L’aerodynamique Numerique a Partir des Equations d’Euler)

    DTIC Science & Technology

    1994-01-01

    0 The Mission of AGARD 0 According to its Charter, the mission of AGARD is to bring together the leading personalities of the NATO nations in the...advances in the aerospace sciences relevant to strengthening the common defence posture; • - Improving the co-operation among member nations in aerospace...for the physical principles. To construct the relevant equations for fluid gas consisting of pseudo particles, 10 is the internal energy due motion it

  9. The mechanics of surface expansion anisotropy in Medicago truncatula root hairs.

    PubMed

    Dumais, Jacques; Long, Sharon R; Shaw, Sidney L

    2004-10-01

    Wall expansion in tip-growing cells shows variations according to position and direction. In Medicago truncatula root hairs, wall expansion exhibits a strong meridional gradient with a maximum near the pole of the cell. Root hair cells also show a striking expansion anisotropy, i.e. over most of the dome surface the rate of circumferential wall expansion exceeds the rate of meridional expansion. Concomitant measurements of expansion rates and wall stresses reveal that the extensibility of the cell wall must vary abruptly along the meridian of the cell to maintain the gradient of wall expansion. To determine the mechanical basis of expansion anisotropy, we compared measurements of wall expansion with expansion patterns predicted from wall structural models that were either fully isotropic, transversely isotropic, or fully anisotropic. Our results indicate that a model based on a transversely isotropic wall structure can provide a good fit of the data although a fully anisotropic model offers the best fit overall. We discuss how such mechanical properties could be controlled at the microstructural level.

  10. Self Assembly and Pyroelectric Poling for Organics

    DTIC Science & Technology

    2015-07-06

    ozone or nitrogen oxides) and energetic species from corona discharge . These problems can strongly inhibit the efficient poling and large-scale...poling techniques. Although contact and corona poling protocols are quite well established for decades, there do exist some challenging problems. In...contact poling, severe charge injection from metal electrodes often results in large current that causes dielectric breakdown of films. Corona poling

  11. GPU computing of compressible flow problems by a meshless method with space-filling curves

    NASA Astrophysics Data System (ADS)

    Ma, Z. H.; Wang, H.; Pu, S. H.

    2014-04-01

    A graphic processing unit (GPU) implementation of a meshless method for solving compressible flow problems is presented in this paper. Least-square fit is used to discretize the spatial derivatives of Euler equations and an upwind scheme is applied to estimate the flux terms. The compute unified device architecture (CUDA) C programming model is employed to efficiently and flexibly port the meshless solver from CPU to GPU. Considering the data locality of randomly distributed points, space-filling curves are adopted to re-number the points in order to improve the memory performance. Detailed evaluations are firstly carried out to assess the accuracy and conservation property of the underlying numerical method. Then the GPU accelerated flow solver is used to solve external steady flows over aerodynamic configurations. Representative results are validated through extensive comparisons with the experimental, finite volume or other available reference solutions. Performance analysis reveals that the running time cost of simulations is significantly reduced while impressive (more than an order of magnitude) speedups are achieved.

  12. Lagrangian particle method for compressible fluid dynamics

    NASA Astrophysics Data System (ADS)

    Samulyak, Roman; Wang, Xingyu; Chen, Hsin-Chiang

    2018-06-01

    A new Lagrangian particle method for solving Euler equations for compressible inviscid fluid or gas flows is proposed. Similar to smoothed particle hydrodynamics (SPH), the method represents fluid cells with Lagrangian particles and is suitable for the simulation of complex free surface/multiphase flows. The main contributions of our method, which is different from SPH in all other aspects, are (a) significant improvement of approximation of differential operators based on a polynomial fit via weighted least squares approximation and the convergence of prescribed order, (b) a second-order particle-based algorithm that reduces to the first-order upwind method at local extremal points, providing accuracy and long term stability, and (c) more accurate resolution of entropy discontinuities and states at free interfaces. While the method is consistent and convergent to a prescribed order, the conservation of momentum and energy is not exact and depends on the convergence order. The method is generalizable to coupled hyperbolic-elliptic systems. Numerical verification tests demonstrating the convergence order are presented as well as examples of complex multiphase flows.

  13. A 4 Tesla Superconducting Magnet Developed for a 6 Circle Huber Diffractometer at the XMaS Beamline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, P. B. J.; Brown, S. D.; Bouchenoire, L.

    2007-01-19

    We report here on the development and testing of a 4 Tesla cryogen free superconducting magnet designed to fit within the Euler cradle of a 6 circle Huber diffractometer, allowing scattering in both the vertical and horizontal planes. The geometry of this magnet allows the field to be applied in three orientations. The first being along the beam direction, the second with the field transverse to the beam direction a horizontal plane and finally the field can be applied vertically with respect to the beam. The magnet has a warm bore and an open geometry of 180 deg. , allowingmore » large access to reciprocal space. A variable temperature insert has been developed, which is capable of working down to a temperature of 1.7 K and operating over a wide range of angles whilst maintaining a temperature stability of a few mK. Initial ferromagnetic diffraction measurements have been carried out on single crystal Tb and Dy samples.« less

  14. Modelling the Size Effects on the Mechanical Properties of Micro/Nano Structures.

    PubMed

    Abazari, Amir Musa; Safavi, Seyed Mohsen; Rezazadeh, Ghader; Villanueva, Luis Guillermo

    2015-11-11

    Experiments on micro- and nano-mechanical systems (M/NEMS) have shown that their behavior under bending loads departs in many cases from the classical predictions using Euler-Bernoulli theory and Hooke's law. This anomalous response has usually been seen as a dependence of the material properties on the size of the structure, in particular thickness. A theoretical model that allows for quantitative understanding and prediction of this size effect is important for the design of M/NEMS. In this paper, we summarize and analyze the five theories that can be found in the literature: Grain Boundary Theory (GBT), Surface Stress Theory (SST), Residual Stress Theory (RST), Couple Stress Theory (CST) and Surface Elasticity Theory (SET). By comparing these theories with experimental data we propose a simplified model combination of CST and SET that properly fits all considered cases, therefore delivering a simple (two parameters) model that can be used to predict the mechanical properties at the nanoscale.

  15. Modelling the Size Effects on the Mechanical Properties of Micro/Nano Structures

    PubMed Central

    Abazari, Amir Musa; Safavi, Seyed Mohsen; Rezazadeh, Ghader; Villanueva, Luis Guillermo

    2015-01-01

    Experiments on micro- and nano-mechanical systems (M/NEMS) have shown that their behavior under bending loads departs in many cases from the classical predictions using Euler-Bernoulli theory and Hooke’s law. This anomalous response has usually been seen as a dependence of the material properties on the size of the structure, in particular thickness. A theoretical model that allows for quantitative understanding and prediction of this size effect is important for the design of M/NEMS. In this paper, we summarize and analyze the five theories that can be found in the literature: Grain Boundary Theory (GBT), Surface Stress Theory (SST), Residual Stress Theory (RST), Couple Stress Theory (CST) and Surface Elasticity Theory (SET). By comparing these theories with experimental data we propose a simplified model combination of CST and SET that properly fits all considered cases, therefore delivering a simple (two parameters) model that can be used to predict the mechanical properties at the nanoscale. PMID:26569256

  16. Polymerase ε (POLE) ultra-mutation in uterine tumors correlates with T lymphocyte infiltration and increased resistance to platinum-based chemotherapy in vitro

    PubMed Central

    Bellone, Stefania; Eliana, Bignotti; Lonardi, Silvia; Ferrari, Francesca; Centritto, Floriana; Masserdotti, Alice; Pettinella, Francesca; Black, Jonathan; Menderes, Gulden; Altwerger, Gary; Hui, Pei; Lopez, Salvatore; de Haydu, Christopher; Bonazzoli, Elena; Predolini, Federica; Zammataro, Luca; Cocco, Emiliano; Ferrari, Federico; Ravaggi, Antonella; Romani, Chiara; Facchettie, Fabio; Sartori, Enrico; Odicino, Franco E.; Silasi, Dan-Arin; Litkouhi, Babak; Ratner, Elena; Azodi, Masoud; Schwartz, Peter E.; Santin, Alessandro D.

    2016-01-01

    Objective Up to 12 % of all endometrial-carcinomas (EC) harbor DNA-polymerase-ε-(POLE) mutations. It is currently unknown whether the favorable prognosis of POLE-mutated EC is derived from their low metastatic capability, extraordinary number of somatic mutations thus imparting immunogenicity, or a high sensitivity to chemotherapy. Methods Polymerase-chain-reaction-amplification and Sanger-sequencing were used to test for POLE exonuclease-domain-mutations (exons 9–14) 131 EC. Infiltration of CD4+ and CD8+ T-lymphocytes (TIL) and PD-1-expression in POLE-mutated vs POLE wild-type EC was studied by immunohistochemistry (IHC) and the correlations between survival and molecular features were investigated. Finally, primary POLE-mutated and POLE-wild-type EC cell lines were established and compared in-vitro for their sensitivity to chemotherapy. Results Eleven POLE-mutated EC (8.5%) were identified. POLE-mutated tumors were associated with improved progression-free-survival (P<0.05) and displayed increased numbers of CD4+ (44.5 vs 21.8; P = .001) and CD8+ (32.8 vs 13.5; P < .001) TILs when compared to wild-type POLE EC. PD-1 receptor was overexpressed in TILs from POLE-mutated vs wild-type-tumors (81% vs 28%; P < .001). Primary POLE tumor cell lines were significantly more resistant to platinum-chemotherapy in-vitro when compared to POLE-wild-type tumors (P < 0.004). Conclusions POLE ultra-mutated EC are heavily infiltrated with CD4+/CD8+ TIL, overexpress PD-1 immune-check-point (i.e., features consistent with chronic antigen-exposure), and have a better prognosis when compared to other molecular subtypes of EC patients. POLE-mutated tumor-cell lines are resistant to platinum-chemotherapy in-vitro suggesting that the better prognosis of POLE-patients is not secondary to a higher sensitivity to chemotherapy but likely linked to enhanced immunogenicity. PMID:27894751

  17. Decay resistance of out-of-service utility poles as related to the distribution of residual creosote content

    Treesearch

    Han Roliadi; Chung Y. Hse; Elvin T. Choong; Todd F. Shupe

    2000-01-01

    Decay resistance of out-of-service poles was investigated to evaluate their effectiveness against biodegradation for possible recycling of these poles for composite products. Decay resistance was related to creosote content and creosote distribution in poles with service durations of 5 and 25 years and also freshly treated poles. Weathering of the poles had caused...

  18. A Miniature Mineralogical Instrument for In-Situ Characterization of Ices and Hydrous Minerals at the Lunar Poles

    NASA Technical Reports Server (NTRS)

    Sarrazin, P.; Blake, D.; Vaniman, D.; Bish, D.; Chipera, S.; Collins, S. A.

    2002-01-01

    Lunar missions over the past few years have provided new evidence that water may be present at the lunar poles in the form of cold-trapped ice deposits, thereby rekindling interest in sampling the polar regions. Robotic landers fitted with mineralogical instrumentation for in-situ analyses could provide unequivocal answers on the presence of crystalline water ice and/or hydrous minerals at the lunar poles. Data from Lunar Prospector suggest that any surface exploration of the lunar poles should include the capability to drill to depths of more than 40 cm. Limited data on the lunar geotherm indicate temperatures of approximately 245-255 K at regolith depths of 40 cm, within a range where water may exist in the liquid state as brine. A relevant terrestrial analog occurs in Antarctica, where the zeolite mineral chabazite has been found at the boundary between ice-free and ice-cemented regolith horizons, and precipitation from a regolith brine is indicated. Soluble halogens and sulfur in the lunar regolith could provide comparable brine chemistry in an analogous setting. Regolith samples collected by a drilling device could be readily analyzed by CheMin, a mineralogical instrument that combines X-ray diffraction (XRD) and X-ray fluorescence (XRF) techniques to simultaneously characterize the chemical and mineralogical compositions of granular or powdered samples. CheMin can unambiguously determine not only the presence of hydrous alteration phases such as clays or zeolites, but it can also identify the structural variants or types of clay or zeolite present (e.g., well-ordered versus poorly ordered smectite; chabazite versus phillipsite). In addition, CheMin can readily measure the abundances of key elements that may occur in lunar minerals (Na, Mg, Al, Si, K, Ca, Fe) as well as the likely constituents of lunar brines (F, Cl, S). Finally, if coring and analysis are done during the lunar night or in permanent shadow, CheMin can provide information on the chemistry and structure of any crystalline ices that might occur in the regolith samples.

  19. Absolute plate velocities from seismic anisotropy: Importance of correlated errors

    NASA Astrophysics Data System (ADS)

    Zheng, Lin; Gordon, Richard G.; Kreemer, Corné

    2014-09-01

    The errors in plate motion azimuths inferred from shear wave splitting beneath any one tectonic plate are shown to be correlated with the errors of other azimuths from the same plate. To account for these correlations, we adopt a two-tier analysis: First, find the pole of rotation and confidence limits for each plate individually. Second, solve for the best fit to these poles while constraining relative plate angular velocities to consistency with the MORVEL relative plate angular velocities. Our preferred set of angular velocities, SKS-MORVEL, is determined from the poles from eight plates weighted proportionally to the root-mean-square velocity of each plate. SKS-MORVEL indicates that eight plates (Amur, Antarctica, Caribbean, Eurasia, Lwandle, Somalia, Sundaland, and Yangtze) have angular velocities that differ insignificantly from zero. The net rotation of the lithosphere is 0.25 ± 0.11° Ma-1 (95% confidence limits) right handed about 57.1°S, 68.6°E. The within-plate dispersion of seismic anisotropy for oceanic lithosphere (σ = 19.2°) differs insignificantly from that for continental lithosphere (σ = 21.6°). The between-plate dispersion, however, is significantly smaller for oceanic lithosphere (σ = 7.4°) than for continental lithosphere (σ = 14.7°). Two of the slowest-moving plates, Antarctica (vRMS = 4 mm a-1, σ = 29°) and Eurasia (vRMS = 3 mm a-1, σ = 33°), have two of the largest within-plate dispersions, which may indicate that a plate must move faster than ≈ 5 mm a-1 to result in seismic anisotropy useful for estimating plate motion. The tendency of observed azimuths on the Arabia plate to be counterclockwise of plate motion may provide information about the direction and amplitude of superposed asthenospheric flow or about anisotropy in the lithospheric mantle.

  20. Comparative analysis of different weight matrices in subspace system identification for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Shokravi, H.; Bakhary, NH

    2017-11-01

    Subspace System Identification (SSI) is considered as one of the most reliable tools for identification of system parameters. Performance of a SSI scheme is considerably affected by the structure of the associated identification algorithm. Weight matrix is a variable in SSI that is used to reduce the dimensionality of the state-space equation. Generally one of the weight matrices of Principle Component (PC), Unweighted Principle Component (UPC) and Canonical Variate Analysis (CVA) are used in the structure of a SSI algorithm. An increasing number of studies in the field of structural health monitoring are using SSI for damage identification. However, studies that evaluate the performance of the weight matrices particularly in association with accuracy, noise resistance, and time complexity properties are very limited. In this study, the accuracy, noise-robustness, and time-efficiency of the weight matrices are compared using different qualitative and quantitative metrics. Three evaluation metrics of pole analysis, fit values and elapsed time are used in the assessment process. A numerical model of a mass-spring-dashpot and operational data is used in this research paper. It is observed that the principal components obtained using PC algorithms are more robust against noise uncertainty and give more stable results for the pole distribution. Furthermore, higher estimation accuracy is achieved using UPC algorithm. CVA had the worst performance for pole analysis and time efficiency analysis. The superior performance of the UPC algorithm in the elapsed time is attributed to using unit weight matrices. The obtained results demonstrated that the process of reducing dimensionality in CVA and PC has not enhanced the time efficiency but yield an improved modal identification in PC.

  1. Testing the equivalence principle on cosmological scales

    NASA Astrophysics Data System (ADS)

    Bonvin, Camille; Fleury, Pierre

    2018-05-01

    The equivalence principle, that is one of the main pillars of general relativity, is very well tested in the Solar system; however, its validity is more uncertain on cosmological scales, or when dark matter is concerned. This article shows that relativistic effects in the large-scale structure can be used to directly test whether dark matter satisfies Euler's equation, i.e. whether its free fall is characterised by geodesic motion, just like baryons and light. After having proposed a general parametrisation for deviations from Euler's equation, we perform Fisher-matrix forecasts for future surveys like DESI and the SKA, and show that such deviations can be constrained with a precision of order 10%. Deviations from Euler's equation cannot be tested directly with standard methods like redshift-space distortions and gravitational lensing, since these observables are not sensitive to the time component of the metric. Our analysis shows therefore that relativistic effects bring new and complementary constraints to alternative theories of gravity.

  2. Development of advanced Navier-Stokes solver

    NASA Technical Reports Server (NTRS)

    Yoon, Seokkwan

    1994-01-01

    The objective of research was to develop and validate new computational algorithms for solving the steady and unsteady Euler and Navier-Stokes equations. The end-products are new three-dimensional Euler and Navier-Stokes codes that are faster, more reliable, more accurate, and easier to use. The three-dimensional Euler and full/thin-layer Reynolds-averaged Navier-Stokes equations for compressible/incompressible flows are solved on structured hexahedral grids. The Baldwin-Lomax algebraic turbulence model is used for closure. The space discretization is based on a cell-centered finite-volume method augmented by a variety of numerical dissipation models with optional total variation diminishing limiters. The governing equations are integrated in time by an implicit method based on lower-upper factorization and symmetric Gauss-Seidel relaxation. The algorithm is vectorized on diagonal planes of sweep using two-dimensional indices in three dimensions. Convergence rates and the robustness of the codes are enhanced by the use of an implicit full approximation storage multigrid method.

  3. Adaptive grid embedding for the two-dimensional flux-split Euler equations. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Warren, Gary Patrick

    1990-01-01

    A numerical algorithm is presented for solving the 2-D flux-split Euler equations using a multigrid method with adaptive grid embedding. The method uses an unstructured data set along with a system of pointers for communication on the irregularly shaped grid topologies. An explicit two-stage time advancement scheme is implemented. A multigrid algorithm is used to provide grid level communication and to accelerate the convergence of the solution to steady state. Results are presented for a subcritical airfoil and a transonic airfoil with 3 levels of adaptation. Comparisons are made with a structured upwind Euler code which uses the same flux integration techniques of the present algorithm. Good agreement is obtained with converged surface pressure coefficients. The lift coefficients of the adaptive code are within 2 1/2 percent of the structured code for the sub-critical case and within 4 1/2 percent of the structured code for the transonic case using approximately one-third the number of grid points.

  4. Global Regularity for Several Incompressible Fluid Models with Partial Dissipation

    NASA Astrophysics Data System (ADS)

    Wu, Jiahong; Xu, Xiaojing; Ye, Zhuan

    2017-09-01

    This paper examines the global regularity problem on several 2D incompressible fluid models with partial dissipation. They are the surface quasi-geostrophic (SQG) equation, the 2D Euler equation and the 2D Boussinesq equations. These are well-known models in fluid mechanics and geophysics. The fundamental issue of whether or not they are globally well-posed has attracted enormous attention. The corresponding models with partial dissipation may arise in physical circumstances when the dissipation varies in different directions. We show that the SQG equation with either horizontal or vertical dissipation always has global solutions. This is in sharp contrast with the inviscid SQG equation for which the global regularity problem remains outstandingly open. Although the 2D Euler is globally well-posed for sufficiently smooth data, the associated equations with partial dissipation no longer conserve the vorticity and the global regularity is not trivial. We are able to prove the global regularity for two partially dissipated Euler equations. Several global bounds are also obtained for a partially dissipated Boussinesq system.

  5. Manufactured solutions for the three-dimensional Euler equations with relevance to Inertial Confinement Fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waltz, J., E-mail: jwaltz@lanl.gov; Canfield, T.R.; Morgan, N.R.

    2014-06-15

    We present a set of manufactured solutions for the three-dimensional (3D) Euler equations. The purpose of these solutions is to allow for code verification against true 3D flows with physical relevance, as opposed to 3D simulations of lower-dimensional problems or manufactured solutions that lack physical relevance. Of particular interest are solutions with relevance to Inertial Confinement Fusion (ICF) capsules. While ICF capsules are designed for spherical symmetry, they are hypothesized to become highly 3D at late time due to phenomena such as Rayleigh–Taylor instability, drive asymmetry, and vortex decay. ICF capsules also involve highly nonlinear coupling between the fluid dynamicsmore » and other physics, such as radiation transport and thermonuclear fusion. The manufactured solutions we present are specifically designed to test the terms and couplings in the Euler equations that are relevant to these phenomena. Example numerical results generated with a 3D Finite Element hydrodynamics code are presented, including mesh convergence studies.« less

  6. Euler technology assessment for preliminary aircraft design employing OVERFLOW code with multiblock structured-grid method

    NASA Technical Reports Server (NTRS)

    Treiber, David A.; Muilenburg, Dennis A.

    1995-01-01

    The viability of applying a state-of-the-art Euler code to calculate the aerodynamic forces and moments through maximum lift coefficient for a generic sharp-edge configuration is assessed. The OVERFLOW code, a method employing overset (Chimera) grids, was used to conduct mesh refinement studies, a wind-tunnel wall sensitivity study, and a 22-run computational matrix of flow conditions, including sideslip runs and geometry variations. The subject configuration was a generic wing-body-tail geometry with chined forebody, swept wing leading-edge, and deflected part-span leading-edge flap. The analysis showed that the Euler method is adequate for capturing some of the non-linear aerodynamic effects resulting from leading-edge and forebody vortices produced at high angle-of-attack through C(sub Lmax). Computed forces and moments, as well as surface pressures, match well enough useful preliminary design information to be extracted. Vortex burst effects and vortex interactions with the configuration are also investigated.

  7. A High Order Finite Difference Scheme with Sharp Shock Resolution for the Euler Equations

    NASA Technical Reports Server (NTRS)

    Gerritsen, Margot; Olsson, Pelle

    1996-01-01

    We derive a high-order finite difference scheme for the Euler equations that satisfies a semi-discrete energy estimate, and present an efficient strategy for the treatment of discontinuities that leads to sharp shock resolution. The formulation of the semi-discrete energy estimate is based on a symmetrization of the Euler equations that preserves the homogeneity of the flux vector, a canonical splitting of the flux derivative vector, and the use of difference operators that satisfy a discrete analogue to the integration by parts procedure used in the continuous energy estimate. Around discontinuities or sharp gradients, refined grids are created on which the discrete equations are solved after adding a newly constructed artificial viscosity. The positioning of the sub-grids and computation of the viscosity are aided by a detection algorithm which is based on a multi-scale wavelet analysis of the pressure grid function. The wavelet theory provides easy to implement mathematical criteria to detect discontinuities, sharp gradients and spurious oscillations quickly and efficiently.

  8. Evaluation of Linear, Inviscid, Viscous, and Reduced-Order Modeling Aeroelastic Solutions of the AGARD 445.6 Wing Using Root Locus Analysis

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Perry, Boyd III; Chwalowski, Pawel

    2014-01-01

    Reduced-order modeling (ROM) methods are applied to the CFD-based aeroelastic analysis of the AGARD 445.6 wing in order to gain insight regarding well-known discrepancies between the aeroelastic analyses and the experimental results. The results presented include aeroelastic solutions using the inviscid CAP-TSD code and the FUN3D code (Euler and Navier-Stokes). Full CFD aeroelastic solutions and ROM aeroelastic solutions, computed at several Mach numbers, are presented in the form of root locus plots in order to better reveal the aeroelastic root migrations with increasing dynamic pressure. Important conclusions are drawn from these results including the ability of the linear CAP-TSD code to accurately predict the entire experimental flutter boundary (repeat of analyses performed in the 1980's), that the Euler solutions at supersonic conditions indicate that the third mode is always unstable, and that the FUN3D Navier-Stokes solutions stabilize the unstable third mode seen in the Euler solutions.

  9. A new fractional nonlocal model and its application in free vibration of Timoshenko and Euler-Bernoulli beams

    NASA Astrophysics Data System (ADS)

    Rahimi, Zaher; Sumelka, Wojciech; Yang, Xiao-Jun

    2017-11-01

    The application of fractional calculus in fractional models (FMs) makes them more flexible than integer models inasmuch they can conclude all of integer and non-integer operators. In other words FMs let us use more potential of mathematics to modeling physical phenomena due to the use of both integer and fractional operators to present a better modeling of problems, which makes them more flexible and powerful. In the present work, a new fractional nonlocal model has been proposed, which has a simple form and can be used in different problems due to the simple form of numerical solutions. Then the model has been used to govern equations of the motion of the Timoshenko beam theory (TBT) and Euler-Bernoulli beam theory (EBT). Next, free vibration of the Timoshenko and Euler-Bernoulli simply-supported (S-S) beam has been investigated. The Galerkin weighted residual method has been used to solve the non-linear governing equations.

  10. Modeling of Cluster-Induced Turbulence in Particle-Laden Channel Flow

    NASA Astrophysics Data System (ADS)

    Baker, Michael; Capecelatro, Jesse; Kong, Bo; Fox, Rodney; Desjardins, Olivier

    2017-11-01

    A phenomenon often observed in gas-solid flows is the formation of mesoscale clusters of particles due to the relative motion between the solid and fluid phases that is sustained through the dampening of collisional particle motion from interphase momentum coupling inside these clusters. The formation of such sustained clusters, leading to cluster-induced turbulence (CIT), can have a significant impact in industrial processes, particularly in regards to mixing, reaction progress, and heat transfer. Both Euler-Lagrange (EL) and Euler-Euler anisotropic Gaussian (EE-AG) approaches are used in this work to perform mesoscale simulations of CIT in fully developed gas-particle channel flow. The results from these simulations are applied in the development of a two-phase Reynolds-Averaged Navier-Stokes (RANS) model to capture the wall-normal flow characteristics in a less computationally expensive manner. Parameters such as mass loading, particle size, and gas velocity are varied to examine their respective impact on cluster formation and turbulence statistics. Acknowledging support from the NSF (AN:1437865).

  11. A macroscopic plasma Lagrangian and its application to wave interactions and resonances

    NASA Technical Reports Server (NTRS)

    Peng, Y. K. M.

    1974-01-01

    The derivation of a macroscopic plasma Lagrangian is considered, along with its application to the description of nonlinear three-wave interaction in a homogeneous plasma and linear resonance oscillations in a inhomogeneous plasma. One approach to obtain the Lagrangian is via the inverse problem of the calculus of variations for arbitrary first and second order quasilinear partial differential systems. Necessary and sufficient conditions for the given equations to be Euler-Lagrange equations of a Lagrangian are obtained. These conditions are then used to determine the transformations that convert some classes of non-Euler-Lagrange equations to Euler-Lagrange equation form. The Lagrangians for a linear resistive transmission line and a linear warm collisional plasma are derived as examples. Using energy considerations, the correct macroscopic plasma Lagrangian is shown to differ from the velocity-integrated low Lagrangian by a macroscopic potential energy that equals twice the particle thermal kinetic energy plus the energy lost by heat conduction.

  12. Single phase two pole/six pole motor

    DOEpatents

    Kirschbaum, Herbert S.

    1984-01-01

    A single phase alternating current two pole/six pole motor is provided with a main stator winding having six coils disposed unequally around the periphery of the machine. These coils are divided into two groups. When these groups are connected such that their magnetomotive forces are additive, two pole motor operation results. When the polarity of one of the groups is then reversed, six pole motor operation results. An auxiliary stator winding which is similar to the main stator winding is displaced from the main stator winding by 90 electrical degrees on a two pole basis.

  13. Pole pulling apparatus and method

    DOEpatents

    McIntire, Gary L.

    1989-01-01

    An apparatus for removal of embedded utility-type poles which removes the poles quickly and efficiently from their embedded position without damage to the pole or surrounding structures. The apparatus includes at least 2 piston/cylinder members equally spaced about the pole, and a head member affixed to the top of each piston. Elongation of the piston induces rotation of the head into the pole to increase the gripping action and reduce slippage. Repeated actuation and retraction of the piston and head member will "jack" the pole from its embedded position.

  14. Use of geometric properties of landmark arrays for reorientation relative to remote cities and local objects.

    PubMed

    Mou, Weimin; Nankoo, Jean-François; Zhou, Ruojing; Spetch, Marcia L

    2014-03-01

    Five experiments investigated how human adults use landmark arrays in the immediate environment to reorient relative to the local environment and relative to remote cities. Participants learned targets' directions with the presence of a proximal 4 poles forming a rectangular shape and an array of more distal poles forming a rectangular shape. Then participants were disoriented and pointed to targets with the presence of the proximal poles or the distal poles. Participants' orientation was estimated by the mean of their pointing error across targets. The targets could be 7 objects in the immediate local environment in which the poles were located or 7 cities around Edmonton (Alberta, Canada) where the experiments occurred. The directions of the 7 cities could be learned from reading a map first and then from pointing to the cities when the poles were presented. The directions of the 7 cities could also be learned from viewing labels of cities moving back and forth in the specific direction in the immediate local environment in which the poles were located. The shape of the array of the distal poles varied in salience by changing the number of poles on each edge of the rectangle (2 vs. 34). The results showed that participants regained their orientation relative to local objects using the distal poles with 2 poles on each edge; participants could not reorient relative to cities using the distal pole array with 2 poles on each edge but could reorient relative to cities using the distal pole array with 34 poles on each edge. These results indicate that use of cues in reorientation depends not only on the cue salience but also on which environment people need to reorient to.

  15. Permanent magnet machine and method with reluctance poles and non-identical PM poles for high density operation

    DOEpatents

    Hsu, John S.

    2010-05-18

    A method and apparatus in which a stator (11) and a rotor (12) define a primary air gap (20) for receiving AC flux and at least one source (23, 40), and preferably two sources (23, 24, 40) of DC excitation are positioned for inducing DC flux at opposite ends of the rotor (12). Portions of PM material (17, 17a) are provided as boundaries separating PM rotor pole portions from each other and from reluctance poles. The PM poles (18) and the reluctance poles (19) can be formed with poles of one polarity having enlarged flux paths in relation to flux paths for pole portions of an opposite polarity, the enlarged flux paths communicating with a core of the rotor (12) so as to increase reluctance torque produced by the electric machine. Reluctance torque is increased by providing asymmetrical pole faces. The DC excitation can also use asymmetric poles and asymmetric excitation sources. Several embodiments are disclosed with additional variations.

  16. Cavitation Modeling in Euler and Navier-Stokes Codes

    NASA Technical Reports Server (NTRS)

    Deshpande, Manish; Feng, Jinzhang; Merkle, Charles L.

    1993-01-01

    Many previous researchers have modeled sheet cavitation by means of a constant pressure solution in the cavity region coupled with a velocity potential formulation for the outer flow. The present paper discusses the issues involved in extending these cavitation models to Euler or Navier-Stokes codes. The approach taken is to start from a velocity potential model to ensure our results are compatible with those of previous researchers and available experimental data, and then to implement this model in both Euler and Navier-Stokes codes. The model is then augmented in the Navier-Stokes code by the inclusion of the energy equation which allows the effect of subcooling in the vicinity of the cavity interface to be modeled to take into account the experimentally observed reduction in cavity pressures that occurs in cryogenic fluids such as liquid hydrogen. Although our goal is to assess the practicality of implementing these cavitation models in existing three-dimensional, turbomachinery codes, the emphasis in the present paper will center on two-dimensional computations, most specifically isolated airfoils and cascades. Comparisons between velocity potential, Euler and Navier-Stokes implementations indicate they all produce consistent predictions. Comparisons with experimental results also indicate that the predictions are qualitatively correct and give a reasonable first estimate of sheet cavitation effects in both cryogenic and non-cryogenic fluids. The impact on CPU time and the code modifications required suggests that these models are appropriate for incorporation in current generation turbomachinery codes.

  17. Multidisciplinary design optimization for sonic boom mitigation

    NASA Astrophysics Data System (ADS)

    Ozcer, Isik A.

    Automated, parallelized, time-efficient surface definition and grid generation and flow simulation methods are developed for sharp and accurate sonic boom signal computation in three dimensions in the near and mid-field of an aircraft using Euler/Full-Potential unstructured/structured computational fluid dynamics. The full-potential mid-field sonic boom prediction code is an accurate and efficient solver featuring automated grid generation, grid adaptation and shock fitting, and parallel processing. This program quickly marches the solution using a single nonlinear equation for large distances that cannot be covered with Euler solvers due to large memory and long computational time requirements. The solver takes into account variations in temperature and pressure with altitude. The far-field signal prediction is handled using the classical linear Thomas Waveform Parameter Method where the switching altitude from the nonlinear to linear prediction is determined by convergence of the ground signal pressure impulse value. This altitude is determined as r/L ≈ 10 from the source for a simple lifting wing, and r/L ≈ 40 for a real complex aircraft. Unstructured grid adaptation and shock fitting methodology developed for the near-field analysis employs an Hessian based anisotropic grid adaptation based on error equidistribution. A special field scalar is formulated to be used in the computation of the Hessian based error metric which enhances significantly the adaptation scheme for shocks. The entire cross-flow of a complex aircraft is resolved with high fidelity using only 500,000 grid nodes after only about 10 solution/adaptation cycles. Shock fitting is accomplished using Roe's Flux-Difference Splitting scheme which is an approximate Riemann type solver and by proper alignment of the cell faces with respect to shock surfaces. Simple to complex real aircraft geometries are handled with no user-interference required making the simulation methods suitable tools for product design. The simulation tools are used to optimize three geometries for sonic boom mitigation. The first is a simple axisymmetric shape to be used as a generic nose component, the second is a delta wing with lift, and the third is a real aircraft with nose and wing optimization. The objectives are to minimize the pressure impulse or the peak pressure in the sonic boom signal, while keeping the drag penalty under feasible limits. The design parameters for the meridian profile of the nose shape are the lengths and the half-cone angles of the linear segments that make up the profile. The design parameters for the lifting wing are the dihedral angle, angle of attack, non-linear span-wise twist and camber distribution. The test-bed aircraft is the modified F-5E aircraft built by Northrop Grumman, designated the Shaped Sonic Boom Demonstrator. This aircraft is fitted with an optimized axisymmetric nose, and the wings are optimized to demonstrate optimization for sonic boom mitigation for a real aircraft. The final results predict 42% reduction in bow shock strength, 17% reduction in peak Deltap, 22% reduction in pressure impulse, 10% reduction in foot print size, 24% reduction in inviscid drag, and no loss in lift for the optimized aircraft. Optimization is carried out using response surface methodology, and the design matrices are determined using standard DoE techniques for quadratic response modeling.

  18. New Insights into the present-day kinematics of the central and western Papua New Guinea from GPS

    NASA Astrophysics Data System (ADS)

    Koulali, A.; Tregoning, P.; McClusky, S.; Stanaway, R.; Wallace, L.; Lister, G.

    2015-08-01

    New Guinea is a region characterized by rapid oblique convergence between the Pacific and Australian tectonic plates. The detailed tectonics of the region, including the partitioning of relative block motions and fault slip rates within this complex boundary plate boundary zone are still not well understood. In this study, we quantify the distribution of the deformation throughout the central and western parts of Papua New Guinea (PNG) using 20 yr of GPS data (1993-2014). We use an elastic block model to invert the regional GPS velocities as well as earthquake slip vectors for the location and rotation rates of microplate Euler poles as well as fault slip parameters in the region. Convergence between the Pacific and the Australian plates is accommodated in northwestern PNG largely by the New Guinea Trench with rates exceeding 90 mm yr-1, indicating that this is the major active interplate boundary. However, some convergent deformation is partitioned into a shear component with ˜12 per cent accommodated by the Bewani-Torricelli fault zone and the southern Highlands Fold-and-Thrust Belt. New GPS velocities in the eastern New Guinea Highlands region have led to the identification of the New Guinea Highlands and the Papuan Peninsula being distinctly different blocks, separated by a boundary through the Aure Fold-and-Thrust Belt complex which accommodates an estimated 4-5 mm yr-1 of left-lateral and 2-3 mm yr-1 of convergent motion. This implies that the Highlands Block is rotating in a clockwise direction relative to the rigid Australian Plate, consistent with the observed transition to left-lateral strike-slip regime observed in western New Guinea Highlands. We find a better fit of our block model to the observed velocities when assigning the current active boundary between the Papuan Peninsula and the South Bismark Block to be to the north of the city of Lae on the Gain Thrust, rather than on the more southerly Ramu-Markham fault as previously thought. This may indicate a temporary shift of activity onto out of sequence thrusts like the Gain Thrust as opposed to the main frontal thrust (the Ramu-Markham fault). In addition, we show that the southern Highlands Fold-and-Thrust Belt is the major boundary between the rigid Australian Plate and the New Guinea Highlands Block, with convergence occurring at rates between ˜6 and 13 mm yr-1.

  19. A QUARTER-CENTURY OF OBSERVATIONS OF COMET 10P/TEMPEL 2 AT LOWELL OBSERVATORY: CONTINUED SPIN-DOWN, COMA MORPHOLOGY, PRODUCTION RATES, AND NUMERICAL MODELING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knight, Matthew M.; Schleicher, David G.; Schwieterman, Edward W.

    2012-11-01

    We report on photometry and imaging of Comet 10P/Tempel 2 obtained at Lowell Observatory from 1983 through 2011. We measured a nucleus rotation period of 8.950 {+-} 0.002 hr from 16 nights of imaging acquired between 2010 September and 2011 January. This rotation period is longer than the period we previously measured in 1999, which was itself longer than the period measured in 1988, and demonstrates that Tempel 2 is continuing to spin down, presumably due to torques caused by asymmetric outgassing. A nearly linear jet was observed which varied little during a rotation cycle in both R and CNmore » images acquired during the 1999 and 2010 apparitions. We measured the projected direction of this jet throughout the two apparitions and, under the assumption that the source region of the jet was near the comet's pole, determined a rotational pole direction of R.A./decl. = 151 Degree-Sign /+59 Degree-Sign from CN measurements and R.A./decl. = 173 Degree-Sign /+57 Degree-Sign from dust measurements (we estimate a circular uncertainty of 3 Degree-Sign for CN and 4 Degree-Sign for dust). Different combinations of effects likely bias both gas and dust solutions and we elected to average these solutions for a final pole direction of R.A./decl. = 162 Degree-Sign {+-} 11 Degree-Sign /+58 Degree-Sign {+-} 1 Degree-Sign . Photoelectric photometry was acquired on 3 nights in 1983, 2 nights in 1988, 19 nights in 1999/2000, and 10 nights in 2010/2011. The activity exhibited a steep 'turn-on' {approx}3 months prior to perihelion (the exact timing of which varies) and a relatively smooth decline after perihelion. The activity during the 1999 and 2010 apparitions was similar; limited data in 1983 and 1988 (along with IUE data from the literature) were systematically higher and the difference cannot be explained entirely by the smaller perihelion distance. We measured a 'typical' composition, in agreement with previous investigators. Monte Carlo numerical modeling with our pole solution best replicated the observed coma morphology for a source region located near a comet latitude of +80 Degree-Sign and having a radius of {approx}10 Degree-Sign . Our model reproduced the seasonal changes in activity, suggesting that the majority of Tempel 2's activity originates from a small active region located near the pole. We also find that a cosine-squared solar angle function gives the best fit as compared to a standard cosine function.« less

  20. Single phase two pole/six pole motor

    DOEpatents

    Kirschbaum, H.S.

    1984-09-25

    A single phase alternating current two pole/six pole motor is provided with a main stator winding having six coils disposed unequally around the periphery of the machine. These coils are divided into two groups. When these groups are connected such that their magnetomotive forces are additive, two pole motor operation results. When the polarity of one of the groups is then reversed, six pole motor operation results. An auxiliary stator winding which is similar to the main stator winding is displaced from the main stator winding by 90 electrical degrees on a two pole basis. 12 figs.

  1. Detection and Classification of Pole-Like Objects from Mobile Mapping Data

    NASA Astrophysics Data System (ADS)

    Fukano, K.; Masuda, H.

    2015-08-01

    Laser scanners on a vehicle-based mobile mapping system can capture 3D point-clouds of roads and roadside objects. Since roadside objects have to be maintained periodically, their 3D models are useful for planning maintenance tasks. In our previous work, we proposed a method for detecting cylindrical poles and planar plates in a point-cloud. However, it is often required to further classify pole-like objects into utility poles, streetlights, traffic signals and signs, which are managed by different organizations. In addition, our previous method may fail to extract low pole-like objects, which are often observed in urban residential areas. In this paper, we propose new methods for extracting and classifying pole-like objects. In our method, we robustly extract a wide variety of poles by converting point-clouds into wireframe models and calculating cross-sections between wireframe models and horizontal cutting planes. For classifying pole-like objects, we subdivide a pole-like object into five subsets by extracting poles and planes, and calculate feature values of each subset. Then we apply a supervised machine learning method using feature variables of subsets. In our experiments, our method could achieve excellent results for detection and classification of pole-like objects.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anthony, R.W.; Bodig, J.; Phillips, G.E.

    This report describes the development of a nondestructive evaluation (NDE) methodology for assessing the bending strength of new wood utility poles. Fundamental concepts of stress wave propagation are presented. The development of a longitudinal stress wave methodology for predicting pole strength and the results of destructive tests on full-size poles are described. Mathematical correlations between stress wave parameters, geometric characteristics, and individual pole bending strengths form the basis of strength prediction models for western redcedar, Douglas-fir and southern pine poles. Models were developed for NDE in the whitewood stage and after preservative treatment of poles. For each species the twomore » most commonly used preservative types were evaluated. Excellent correlations were obtained for western redcedar and Douglas-fir poles, but high moisture content in the southern pine poles resulted in lower prediction accuracies for this species. Verification of the developed mathematical models demonstrates that improvement in classifying poles into the ANSI 05.1 tip-load capacities is technically feasible. The development and field trial of the prototype equipment for strength grading of new poles is also described. Research results can be used to benefit utilities by enabling the supply of strength graded poles with a higher accuracy than previously possible.« less

  3. Formation of a Bright Polar Hood over the Summer North Pole of Saturn in 2016

    NASA Astrophysics Data System (ADS)

    Sayanagi, Kunio M.; Blalock, John J.; Ingersoll, Andrew P.; Dyudina, Ulyana A.; Ewald, Shawn P.

    2016-10-01

    We report that a bright polar hood has formed over the north pole of Saturn, seen first in images captured by the Cassini ISS camera in 2016. When the north pole was observed during the previous period of Cassini spacecraft's high-inclination orbits in 2012-2013, the concentration of light-scattering aerosols within 2-degree latitude of the north pole appeared to be less than that of the surrounding region, and appeared as a dark hole in all ISS filters, in particular in the shorter wavelength filters BL1 (460 nm), and VIO (420 nm). The north pole's appearance in 2012 was in contrast to that of the south pole in 2007, when the south pole had a bright polar hood in those short wavelengths; the south pole appeared dark in all other ISS filters in 2007. The difference between the south pole in 2007 and the north pole in 2012 was interpreted to be seasonal; in 2007, Saturn was approaching the equinox of 2009 and the south pole had been continuously illuminated since the previous equinox in 1995. In 2012, the north pole had been illuminated for only ~3 years after the long winter polar night. The bright hood over the summer south pole in 2007 was hypothesized to consist of aerosols produced by ultraviolet photodissociation of hydrocarbon molecules. Fletcher et al (2015) predicted that a similar bright hood should form over the north pole as Saturn approaches the 2017 solstice. In 2016, the Cassini spacecraft raised its orbital inclination again in preparation for its Grande Finale phase of the mission, from where it has a good view of the north pole. New images captured in 2016 show that the north pole has developed a bright polar hood. We present new images of the north polar region captured in 2016 that show the north pole, and other seasonally evolving high-latitude features including the northern hexagon. Our research has been supported by the Cassini Project, NASA grants OPR NNX11AM45G, CDAPS NNX15AD33G PATM NNX14AK07G, and NSF grant AAG 1212216.

  4. Shock wave lithotripsy outcomes for lower pole and non-lower pole stones from a university teaching hospital: Parallel group comparison during the same time period

    PubMed Central

    Geraghty, Robert; Burr, Jacob; Simmonds, Nick; Somani, Bhaskar K.

    2015-01-01

    Introduction: Shock wave lithotripsy (SWL) is a treatment option for all locations of renal and ureteric stones. We compared the results of SWL for lower pole renal stones with all other non-lower pole renal and ureteric stones during the same time period. Material and Methods: All SWL procedures were carried out as day case procedures by a mobile lithotripter from January 2012 to August 2013. The follow-up imaging was a combination of KUB X-ray or USS. Following SWL treatment, the stone free rate (SFR) was defined as ≤3 mm fragments. Results: A total of 148 patients with a mean age of 62 years underwent 201 procedures. Of the 201 procedures, 93 (46%) were for lower pole stones. The non-lower pole stones included upper pole (n = 36), mid pole (n = 40), renal pelvis (n = 10), PUJ (n = 8), mid ureter (n = 3), upper ureter (n = 5) and a combination of upper, middle and/or lower pole (n = 6). The mean stone size for lower pole stones (7.4 mm; range: 4-16 mm) was slightly smaller than non-lower pole stones (8 mm; range: 4-17 mm). The stone fragmentation was successful in 124 (62%) of patients. However, the SFR was statistically significantly better (P = 0.023) for non-lower pole stones 43 (40%) compared to lower pole stones 23 (25%). There were 9 (4%) minor complications and this was not significantly different in the two groups. Conclusions: Although SWL achieves a moderately high stone fragmentation rate with a low complication rate, the SFR is variable depending on the location of stone and the definition of SFR, with lower pole stones fairing significantly worse than stones in all other locations. PMID:25657543

  5. Shock wave lithotripsy outcomes for lower pole and non-lower pole stones from a university teaching hospital: Parallel group comparison during the same time period.

    PubMed

    Geraghty, Robert; Burr, Jacob; Simmonds, Nick; Somani, Bhaskar K

    2015-01-01

    Shock wave lithotripsy (SWL) is a treatment option for all locations of renal and ureteric stones. We compared the results of SWL for lower pole renal stones with all other non-lower pole renal and ureteric stones during the same time period. All SWL procedures were carried out as day case procedures by a mobile lithotripter from January 2012 to August 2013. The follow-up imaging was a combination of KUB X-ray or USS. Following SWL treatment, the stone free rate (SFR) was defined as ≤3 mm fragments. A total of 148 patients with a mean age of 62 years underwent 201 procedures. Of the 201 procedures, 93 (46%) were for lower pole stones. The non-lower pole stones included upper pole (n = 36), mid pole (n = 40), renal pelvis (n = 10), PUJ (n = 8), mid ureter (n = 3), upper ureter (n = 5) and a combination of upper, middle and/or lower pole (n = 6). The mean stone size for lower pole stones (7.4 mm; range: 4-16 mm) was slightly smaller than non-lower pole stones (8 mm; range: 4-17 mm). The stone fragmentation was successful in 124 (62%) of patients. However, the SFR was statistically significantly better (P = 0.023) for non-lower pole stones 43 (40%) compared to lower pole stones 23 (25%). There were 9 (4%) minor complications and this was not significantly different in the two groups. Although SWL achieves a moderately high stone fragmentation rate with a low complication rate, the SFR is variable depending on the location of stone and the definition of SFR, with lower pole stones fairing significantly worse than stones in all other locations.

  6. The potential of wood-based composite poles

    Treesearch

    Todd F. Shupe; Cheng Piao; Chung Y. Hse

    2009-01-01

    Wood-based composite utility poles are receiving increasing attention in the North American pole market. This interest is being driven by many increasing factors such as increasing: (1) disposal costs of solid wood poles, (2) liability and environmental concerns with traditional means of disposal of solid wood poles, (3) cost and concerns of long-term...

  7. Non-dispersive conservative regularisation of nonlinear shallow water (and isentropic Euler equations)

    NASA Astrophysics Data System (ADS)

    Clamond, Didier; Dutykh, Denys

    2018-02-01

    A new regularisation of the shallow water (and isentropic Euler) equations is proposed. The regularised equations are non-dissipative, non-dispersive and posses a variational structure; thus, the mass, the momentum and the energy are conserved. Hence, for instance, regularised hydraulic jumps are smooth and non-oscillatory. Another particularly interesting feature of this regularisation is that smoothed 'shocks' propagates at exactly the same speed as the original discontinuous ones. The performance of the new model is illustrated numerically on some dam-break test cases, which are classical in the hyperbolic realm.

  8. Airfoil Design Using a Coupled Euler and Integral Boundary Layer Method with Adjoint Based Sensitivities

    NASA Technical Reports Server (NTRS)

    Edwards, S.; Reuther, J.; Chattot, J. J.

    1997-01-01

    The objective of this paper is to present a control theory approach for the design of airfoils in the presence of viscous compressible flows. A coupled system of the integral boundary layer and the Euler equations is solved to provide rapid flow simulations. An adjunct approach consistent with the complete coupled state equations is employed to obtain the sensitivities needed to drive a numerical optimization algorithm. Design to target pressure distribution is demonstrated on an RAE 2822 airfoil at transonic speed.

  9. Detailed interpretation of aeromagnetic data from the Patagonia Mountains area, southeastern Arizona

    USGS Publications Warehouse

    Bultman, Mark W.

    2015-01-01

    Euler deconvolution depth estimates derived from aeromagnetic data with a structural index of 0 show that mapped faults on the northern margin of the Patagonia Mountains generally agree with the depth estimates in the new geologic model. The deconvolution depth estimates also show that the concealed Patagonia Fault southwest of the Patagonia Mountains is more complex than recent geologic mapping represents. Additionally, Euler deconvolution depth estimates with a structural index of 2 locate many potential intrusive bodies that might be associated with known and unknown mineralization.

  10. Euler-Lagrange CFD modelling of unconfined gas mixing in anaerobic digestion.

    PubMed

    Dapelo, Davide; Alberini, Federico; Bridgeman, John

    2015-11-15

    A novel Euler-Lagrangian (EL) computational fluid dynamics (CFD) finite volume-based model to simulate the gas mixing of sludge for anaerobic digestion is developed and described. Fluid motion is driven by momentum transfer from bubbles to liquid. Model validation is undertaken by assessing the flow field in a labscale model with particle image velocimetry (PIV). Conclusions are drawn about the upscaling and applicability of the model to full-scale problems, and recommendations are given for optimum application. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Given a one-step numerical scheme, on which ordinary differential equations is it exact?

    NASA Astrophysics Data System (ADS)

    Villatoro, Francisco R.

    2009-01-01

    A necessary condition for a (non-autonomous) ordinary differential equation to be exactly solved by a one-step, finite difference method is that the principal term of its local truncation error be null. A procedure to determine some ordinary differential equations exactly solved by a given numerical scheme is developed. Examples of differential equations exactly solved by the explicit Euler, implicit Euler, trapezoidal rule, second-order Taylor, third-order Taylor, van Niekerk's second-order rational, and van Niekerk's third-order rational methods are presented.

  12. Interactive boundary-layer calculations of a transonic wing flow

    NASA Technical Reports Server (NTRS)

    Kaups, Kalle; Cebeci, Tuncer; Mehta, Unmeel

    1989-01-01

    Results obtained from iterative solutions of inviscid and boundary-layer equations are presented and compared with experimental values. The calculated results were obtained with an Euler code and a transonic potential code in order to furnish solutions for the inviscid flow; they were interacted with solutions of two-dimensional boundary-layer equations having a strip-theory approximation. Euler code results are found to be in better agreement with the experimental data than with the full potential code, especially in the presence of shock waves, (with the sole exception of the near-tip region).

  13. Euler-Lagrange formulas for pseudo-Kähler manifolds

    NASA Astrophysics Data System (ADS)

    Park, JeongHyeong

    2016-01-01

    Let c be a characteristic form of degree k which is defined on a Kähler manifold of real dimension m > 2 k. Taking the inner product with the Kähler form Ωk gives a scalar invariant which can be considered as a generalized Lovelock functional. The associated Euler-Lagrange equations are a generalized Einstein-Gauss-Bonnet gravity theory; this theory restricts to the canonical formalism if c =c2 is the second Chern form. We extend previous work studying these equations from the Kähler to the pseudo-Kähler setting.

  14. Numerical Modelling and Prediction of Erosion Induced by Hydrodynamic Cavitation

    NASA Astrophysics Data System (ADS)

    Peters, A.; Lantermann, U.; el Moctar, O.

    2015-12-01

    The present work aims to predict cavitation erosion using a numerical flow solver together with a new developed erosion model. The erosion model is based on the hypothesis that collapses of single cavitation bubbles near solid boundaries form high velocity microjets, which cause sonic impacts with high pressure amplitudes damaging the surface. The erosion model uses information from a numerical Euler-Euler flow simulation to predict erosion sensitive areas and assess the erosion aggressiveness of the flow. The obtained numerical results were compared to experimental results from tests of an axisymmetric nozzle.

  15. Linear Equations with the Euler Totient Function

    DTIC Science & Technology

    2007-02-13

    unclassified c . THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 2 FLORIAN LUCA, PANTELIMON STĂNICĂ...of positive integers n such that φ(n) = φ(n+ 1), and that the set of Phibonacci numbers is A(1,1,−1) + 2. Theorem 2.1. Let C (t, a) = t3 logH(a). Then...the estimate #Aa(x) C (t, a) x log log log x√ log log x LINEAR EQUATIONS WITH THE EULER TOTIENT FUNCTION 3 holds uniformly in a and 1 ≤ t < y. Note

  16. Low-pass filtering of noisy Schlumberger sounding curves. Part I: Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patella, D.

    1986-02-01

    A contribution is given to the solution of the problem of filtering noise-degraded Schlumberger sounding curves. It is shown that the transformation to the pole-pole system is actually a smoothing operation that filters high-frequency noise. In the case of residual noise contamination in the transformed pole-pole curve, it is demonstrated that a subsequent application of a conventional rectangular low-pass filter, with cut-off frequency not less than the right-hand frequency limit of the main message pass-band, may satisfactorily solve the problem by leaving a pole-pole curve available for interpretation. An attempt is also made to understand the essential peculiarities of themore » pole-pole system as far as penetration depth, resolving power and selectivity power are concerned.« less

  17. Control of speed during the double poling technique performed by elite cross-country skiers.

    PubMed

    Lindinger, Stefan Josef; Stöggl, Thomas; Müller, Erich; Holmberg, Hans-Christer

    2009-01-01

    Double poling (DP) as a main technique in cross-country skiing has developed substantially over the last 15 yr. The purpose of the present study was to analyze the question, "How do modern elite skiers control DP speed?" Twelve male elite cross-country skiers roller skied using DP at 9, 15, 21, and 27 km.h(-1) and maximum velocity (V(max)). Cycle characteristics, pole and plantar forces, and elbow, hip, and knee joint angles were analyzed. Both poling frequency and cycle length increased up to 27 km.h (-1)(P < 0.05), with a further increase in poling frequency at V(max) (P < 0.05). Peak pole force, rate of force development, and rearfoot plantar force increased with submaximal velocities (V(sm)), whereas poling time and time-to-peak pole force gradually shortened (P < 0.05). Changes in elbow joint kinematics during the poling phase were characterized by a decreased angle minimum and an increased flexion and extension ranges of motion as well as angular velocities across V(sm) (P < 0.05), with no further changes at V(max). Hip and knee joint kinematics adapted across V(sm) by 1) decreasing angles at pole plant and angle minima during the poling phase, 2) increasing the ranges of motion and angular velocities during the flexion phases occurring around pole plant, and 3) increasing extension ranges of motion and angular velocities during the recovery phase (all P values <0.05), with no further changes at V(max). Elite skiers control DP speed by increasing both poling frequency and cycle length; the latter is achieved by increased pole force despite reduced poling time. Adaptation to higher speeds was assisted by an increased range of motion, smaller angle minima, and higher angular velocities in the elbow, the hip, and the knee joints.

  18. Centromere-associated meiotic drive and female fitness variation in Mimulus.

    PubMed

    Fishman, Lila; Kelly, John K

    2015-05-01

    Female meiotic drive, in which chromosomal variants preferentially segregate to the egg pole during asymmetric female meiosis, is a theoretically pervasive but still mysterious form of selfish evolution. Like other selfish genetic elements, driving chromosomes may be maintained as balanced polymorphisms by pleiotropic or linked fitness costs. A centromere-associated driver (D) with a ∼58:42 female-specific transmission advantage occurs at intermediate frequency (32-40%) in the Iron Mountain population of the yellow monkeyflower, Mimulus guttatus. Previously determined male fertility costs are sufficient to prevent the fixation of D, but predict a higher equilibrium frequency. To better understand the dynamics and effects of D, we developed a new population genetic model and measured genotype-specific lifetime female fitness in the wild. In three of four years, and across all years, D imposed significant recessive seedset costs, most likely due to hitchhiking by deleterious mutations. With both male and female costs as measured, and 58:42 drive, our model predicts an equilibrium frequency of D (38%) very close to the observed value. Thus, D represents a rare selfish genetic element whose local population genetic dynamics have been fully parameterized, and the observation of equilibrium sets the stage for investigations of coevolution with suppressors. © 2015 The Author(s).

  19. Density of Mars' south polar layered deposits.

    PubMed

    Zuber, Maria T; Phillips, Roger J; Andrews-Hanna, Jeffrey C; Asmar, Sami W; Konopliv, Alexander S; Lemoine, Frank G; Plaut, Jeffrey J; Smith, David E; Smrekar, Suzanne E

    2007-09-21

    Both poles of Mars are hidden beneath caps of layered ice. We calculated the density of the south polar layered deposits by combining the gravity field obtained from initial results of radio tracking of the Mars Reconnaissance Orbiter with existing surface topography from the Mars Orbiter Laser Altimeter on the Mars Global Surveyor spacecraft and basal topography from the Mars Advanced Radar for Subsurface and Ionospheric Sounding on the Mars Express spacecraft. The results indicate a best-fit density of 1220 kilograms per cubic meter, which is consistent with water ice that has approximately 15% admixed dust. The results demonstrate that the deposits are probably composed of relatively clean water ice and also refine the martian surface-water inventory.

  20. Top Quark Mass Calibration for Monte Carlo Event Generators

    NASA Astrophysics Data System (ADS)

    Butenschoen, Mathias; Dehnadi, Bahman; Hoang, André H.; Mateu, Vicent; Preisser, Moritz; Stewart, Iain W.

    2016-12-01

    The most precise top quark mass measurements use kinematic reconstruction methods, determining the top mass parameter of a Monte Carlo event generator mtMC. Because of hadronization and parton-shower dynamics, relating mtMC to a field theory mass is difficult. We present a calibration procedure to determine this relation using hadron level QCD predictions for observables with kinematic mass sensitivity. Fitting e+e- 2-jettiness calculations at next-to-leading-logarithmic and next-to-next-to-leading-logarithmic order to pythia 8.205, mtMC differs from the pole mass by 900 and 600 MeV, respectively, and agrees with the MSR mass within uncertainties, mtMC≃mt,1 GeV MSR .

Top